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Abstract

Recently launched, the Global Energy Alliance for People and Planet (GEAPP)

has set an ambitious goal to provide one billion people with clean, affordable, and

reliable energy access by 2030. The vast majority of these populations live in rural

and remote areas of Sub-Saharan Africa and South Asia. There is a dual impera-

tive; we must identify appropriate pathways for large-scale electrification to ensure

clean, affordable, and reliable energy access for all while transitioning to net-zero

futures. In this thesis, we aim to develop a comprehensive understanding of the ru-

ral electrification pathways adopted in India, emphasising the potential for off-grid

solutions, particularly solar mini-grids. Through our analysis, we identify research

gaps concerning the social and economic complexities considered in mini-grid plan-

ning. Moreover, when examining existing electricity demand estimation models for

mini-grids, we observe a lack of research data that may impede the scalability of

these models and delay the clean energy transition in rural India.

In this thesis, we address these research gaps in two parts: In the first part, we

highlight the importance of estimating electricity demand growth in rural communi-

ties through case studies of three hamlets in the state of Maharashtra, India. These

were each recently electrified with decentralised solar mini-grids and battery stor-

age. We conducted 70 household energy use surveys and collected data on appliance

ownership and its usage over time to estimate long-term electricity demand growth

in the community. The growth in appliance ownership is modelled by considering

the rate of diffusion of each appliance. Based on this, we investigated three demand

growth scenarios and their impact on the mini-grid sizing approaches. Our results

show the cost-effectiveness of utilising a multi-stage approach to size mini-grids,

i.e. capacity expansion to accommodate increasing demand. Through sensitivity

analysis of multiple variables associated with the mini-grid model, we also found

that total system costs are most sensitive to fluctuations in demand growth rates

and a decline in the costs of solar PV and batteries. This part is summarised by

highlighting the relevance of electricity demand in rural electricity planning and the

need for better methodologies to forecast long-term electricity demand to inform the

techno-economic sizing of off-grid energy systems.
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The second part of the thesis has the objective of developing an innovative frame-

work to more rigorously characterise long-term energy demand and its potential for

integration with rural electrification planning tools. In this framework, the elec-

tricity demand curve is described as consisting of two components: a longitudinal

component, which captures growth trends over a certain period of time (e.g. over

several years), and a transverse component, which represents daily demand curves

(24 hours cycle). To estimate the daily electricity demand of rural households, a

model was constructed utilising a nationwide socioeconomic time use survey dataset

to discern activities that exhibit significant electricity consumption. These activities

were then correlated to find probabilities of relevant appliances in use. The model

computes appliance switch-on times based on the relevant coincident activities and

appliance usage times based on the duration of these activities to construct load

profiles. To demonstrate the significance of this demand model, we analysed time-

use activities performed in rural households of four different states in India and

compared their load profile characteristics. For the multiannual demand, we have

developed a conceptual system dynamics model to forecast the longitudinal growth

in demand, estimated based available secondary data sources. We discuss how this

more exploratory model could be integrated with the transverse daily load model to

build an integrated energy demand model.

Lastly, we conclude the thesis by discussing how the present contribution could

be usefully complemented and reinforced through future research work, with the

aim of developing a generalised energy demand model involving social and economic

complexities in designing renewable energy systems for rural electrification in the

global south.
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1 Introduction

1.1 Renewable energy access in the Global South

Energy is considered to be one of the essential human needs; thus it is central to

every challenge and opportunity the world faces today. Globally, nearly 759 million

people are expected to receive electricity access for the first time in this decade, and

more than 2 billion people will need access to clean and reliable energy sources for

cooking at the same time (SE4all, n.d.). Majority of these people reside in rural areas

of various Global South countries, so focused efforts will be made towards achieving

transformative economic growth in these areas through electrification projects(IEA,

2021). It is projected that around 84% of the global energy demand growth in

this decade will come from the Global South (Wolfram, Shelef, & Gertler, 2012).

On the other side, production of energy, which is the main source of greenhouse

gas emissions, presents a dual challenge: providing clean and affordable energy to

meet the rising demand while simultaneously working to reduce emissions. The

conventional approach to electrifying rural communities has traditionally been to

expand the national grid, with a heavy reliance on a fossil fuel energy mix which

has detrimental impact on the environment. However renewable energy technolo-

gies can help promote a balanced approach to economic development considering

investments in human capital, environmental degradation, and depletion of natural

resources. (Kamoun, Abdelkafi, & Ghorbel, 2019). Electrification plays a pivotal

role in fostering economic growth and studies have consistently shown a strong cor-

relation between electricity access and economic development. In the recent past

, with the decline in renewable technology prices, decentralised a.k.a. off-grid en-

ergy production is also gaining traction(IRENA, 2021). Another research study

highlights that, particularly in remote villages with low electricity needs, biomass

gasifiers or solar emerge as more cost-effective alternatives than extending the main

power grid(Mahapatra & Dasappa, 2012).

Figure 1.1 depicts the intricate and interconnected relationship between economic

growth, energy access, and achieving net-zero targets. Of all countries, India finds

itself in a particularly unique position. Whilst it is the country with fourth largest

emissions contributing nearly 6.65% of the world’s total carbon emissions, it grapples
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Figure 1.1: Our world in data, Data source - World Bank (Ritchie et al., 2019)

with poor energy access for significant segment of its population. According to the

World Energy Council’s 2016 forecast (World Energy Council & Institute, 2016),

global electricity demand is anticipated to peak in 2030. As one of the largest

consumers of coal worldwide, India heavily relies on costly imports of fossil fuels.

Presently, approximately 74% of the country’s energy demand is met by coal and

oil, necessitating an urgent exploration of alternative electricity generation sources.

In line with this, India has set an ambitious Nationally Determined Contribution

(NDC) to achieve 50% cumulative electric power installed capacity from non-fossil

fuel-based energy resources by 2030 (Contribution, 2022).

As per the Load Generation and Balance Report of the Central Electricity Au-

thority of India, it was projected that the demand for electrical energy in 2021-

2022 will be minimum 1915 terawatt hours (TWh), with the peak electric demand

expected to reach 298 GW(Central Electricity Authority, 2022). India has made

significant progress in providing electricity to rural areas over the past ten years

by expanding the central grid and utilising off-grid renewable energy sources (India

energy outlook report (IEA), 2021). As rural electrification progress, it is likely

economic activities also expand and as household incomes increase, acquisition of

17



energy-consuming appliances is anticipated to rise, resulting in a surge in residen-

tial energy consumption(Wolfram et al., 2012). The increased demand for electrical

appliances in the residential sector can be attributed to the rise in income levels.

Moreover, the demand for electricity has also been driven by the need for materi-

als in the construction, transportation, capital goods, and infrastructure industries.

Additionally, the transition to electric vehicles and induction cook stoves is also

expected to further contribute to the growth in electricity demand in residential

sectors.

1.2 Rural residential energy demand

Residential energy use is the largest share of total energy supplied in India, ac-

counting for 31.76%, a 7.15% increase from the previous year (Central Electricity

Authority, 2022)and likely to continue rising further. To gain a deeper insight into

the residential energy demand from rural households, it is essential to look at elec-

trification as a non binary approach. Figure 1.2 provides a multi-tier framework

(Bhatia & Angelou, 2015) that delineates different levels of energy access and il-

lustrates the potential progression of electricity usage. For instance, it is evident

that solar home systems can cater up to tier 1 and tier 2 electricity requirements,

whereas for higher tiers, solutions such as mini-grids or interconnected mini-grids /

grid-connected mini-grids systems would be more suitable. However, many barriers

still prevent reliable and sustainable energy access in rural communities. Whilst

decentralised energy access through renewable sources is found cost-effective, the

most significant obstacle is the cost of off-grid renewable energy generation, which

is not affordable for many rural communities (Palit & Kumar, 2022). According

to the research study by (Urban, Benders, & Moll, 2009), if primarily renewable

energy-based end-uses were adopted for rural electrification in India, it could lead

to a reduction of up to 99% in total CO2 emissions and a decrease of 35% in pri-

mary energy use by 2030 compared to the business-as-usual scenario. This highlights

the need for a better understanding of residential energy demand in the context of

renewable energy planning in India(Khosla, 2018).
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Figure 1.2: Simplified Schematic of Multi-tier Framework adapted from (Bhatia et

al. 2015) The wattage presented here is reflective of conservative allowance defined

in the framework. The supply sources mentioned here are just indicative of possible

off-grid options for each tier of access.

1.3 Research Motivation

Taking into account the literature, it became evident that decentralised solar mini-

grids could have the potential to provide a holistic and sustainable solution for rural

household electrification in India. However, their widespread expansion encountered

several challenges. These obstacles included the absence of a regulatory framework,

the need for designs ensuring effective and autonomous operations, insufficient fi-

nancing and business models, and the more pressing issue of inaccurate demand

assessment.1. Research suggest that these challenges can be overcome by optimis-

ing design and planning (Akbas, Kocaman, Nock, & Trotter, 2022), implement-

ing appropriate policies and regulations that are tailored to the local rural context

(Bhattacharyya & Palit, 2016), offering multichannel financing options (Malhotra,

Schmidt, Haelg, & Waissbein, 2017), and acquiring reliable data sources (Lorenzoni

et al., 2020). We endeavored to tackle the challenge of demand assessment, espe-

cially in understanding the growth of electricity demand in communities served by

solar mini-grids, and how this growth impacts both system design and performance

over the system’s lifetime.

As we expand our research scope, it was evident that understanding the rising

demand for electricity when planning decentralised renewable systems is of utmost

1Here, demand assessment comprises of estimating present and future demand for long-term

planning
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importance. However, whether we consider decentralised or grid-connected sys-

tems, understanding residential energy demand is a pivotal factor in shaping India’s

future clean energy transition, wherein the need for storage becomes a primary con-

sideration. Whilst research studies on urban household energy use from India are

available, lack of literature and scarcity of data from rural household energy use

pertains. Accurately assessing energy demand in rural contexts is fraught with un-

certainties, particularly when households have no prior experience with electricity

usage(Riva, Tognollo, Gardumi, & Colombo, 2018). These uncertainties surrounding

load profiles can result in additional costs, as exemplified in a case study in Malawi,

where costs rose as high as US $.92 to US $6.02 per watt-hour(Louie & Dauen-

hauer, 2016).This challenge is exacerbated in communities with no prior access to

electricity, where traditional energy sources provide the only means of estimating

an electric load profile(Gambino et al., 2019). These uncertainties affect both short

and long-term renewable energy planning.

Historically, residential energy demand has been modelled based on various fac-

tors, including demographics, socioeconomic conditions within the local context

(Ziramba, 2008), and the available supply sources (Pachauri, 2004). In recent times,

there has been an increased utilisation of Geographic Information System (GIS) for

projecting long-term energy demand.(Blechinger, Cader, & Bertheau, 2019) (Ciller

et al., 2019) (Mentis et al., 2017). Despite the advancements in tools and tech-

niques, estimating realistic household demand in rural areas remains error-prone

with a high margin of error.(Hartvigsson & Ahlgren, 2018). However, a notable re-

search gap exists in the literature concerning energy demand models that can predict

future energy demand growth. It is crucial to take into account several factors, such

as the number of household appliances owned by individuals and the time-sensitive

nature of their usage, including peak and off-peak usage times. In this thesis, our

aim is to address the existing gaps in the current knowledge base on energy demand

modelling and to develop a framework that can effectively model energy demand

from households across multiple time horizons, incorporating socioeconomic infor-

mation. The model is calibrated using rural household data from India, with the

approach designed to be scalable and generalisable.
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1.4 Aim and Objectives

In this thesis, our primary aim is to better understand rural residential energy

demand, assess its implications on decentralised renewable systems, and introduce a

multi-scale framework to integrate time-sensitive energy consumption patterns. The

research objectives are outlined as follows.

1.4.1 Research Objectives

Objective 1: Estimate electricity demand growth in rural communities in India

gaining energy access through renewable mini-grid systems, specially solar-based.

• We visited five hamlets in the Shahapur district of Maharashtra receiving

electricity via decentralised solar mini-grids and conducted household energy

use surveys.

• Estimated bottom-up community scale load profiles representative of each ap-

pliance following S-shaped diffusion in the ten years of system lifetime.

Objective 2: Examine the impact of electricity demand growth on the required

mini-grid system size and the potential need for adaptive capacity expansion.

• Three scenarios of demand growth were designed, including baseline, S-shaped

adaptive growth, and target.

• The sizing optimisation tool CLOVER (Continuous Lifecycle Over Variable

Energy Resource) was used to investigate the impact of these demand growth

scenarios on system costs and reliability levels.

• A sensitivity analysis was carried out for size variables, and the impact of these

variables on two different sizing approaches was presented. These approaches

included a one-off installation versus capacity expansion in two steps at every

five years.

Objective 3: Develop a multi-scale framework to model energy demand with a

focus on capturing the time-sensitive nature of energy use in rural households.

• The residential energy demand was decomposed into three sub-components:

longitudinal (long-term), seasonal (medium-term), and transverse (daily).
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• To capture the transverse energy demand, which relates to the diurnal vari-

ations in energy consumption, we proposed an energy demand model. This

model was calibrated based on Time Use Survey data on residential activities.

• Using this model, we generated appliance-wise daily load profiles, which were

representative of the energy use patterns in rural households.

Objective 4: Conceptualising long-term electricity demand growth based on

longitudinal appliance adoption in rural households.

• We conceptualised a system dynamics model to estimate longitudinal growth

in household appliance ownership.

• To test the model, we demonstrated preliminary results of the trend of appli-

ance adoption in a hypothetical rural community. This was based on primary

assumptions drawn from data obtained from the National Family Health Sur-

vey.

1.5 Thesis contribution

This thesis makes knowledge contributions in three key areas. To begin with, it

effectively identifies the research gaps in understanding energy demand from rural

India, with a specific emphasis on how demand grows after acquiring energy access.

This is particularly intriguing due to India’s extensive rural electrification over the

past decade, yet there is a noticeable absence of models or research studies that suf-

ficiently underscore rural residential energy use and its contribution to daily peak

electricity demand. This becomes more crucial in the context of achieving net zero

targets, as India will undergo a large-scale clean energy transition, necessitating a

thorough estimation of peak demand, which will inevitably impact storage manage-

ment costs. Additionally, the thesis delves into the implications of energy demand

growth on decentralised renewable systems such as solar mini-grids in rural India.

It also undertakes an analysis to determine whether incremental or modular sys-

tem design would prove beneficial and make mini-grids sustainable in the long run.

The third primary contribution lies in the methodological aspect. Addressing the

consensus in the research community about the lack of a socioeconomic dimension
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in the technical design of renewable energy systems, specifically decentralised sys-

tems, this thesis introduces the concept of multi-scale demand estimation methods.

These methods incorporate social practices based on time-dependent activities and

cursorily pinpoint how to incorporate expert opinions or on-ground observations

into technical designs based on system dynamics modelling. By combining these

approaches, the aim is to make techno-social systems more inclusive and tailored to

community needs.

1.6 Organisation of thesis

The thesis is structured into several chapters, each aimed at achieving specific ob-

jectives. Chapter 2 outlines the history of rural electrification in India. Chapter 3

addresses objective 1, the estimation of bottom-up load profiles for three different

demand growth scenarios in a community of households based on surveys and appli-

ance diffusion and objective 2, which involves a comparison and analysis of fifteen

mini-grid modelling tools and implementation the CLOVER optimisation tool to

investigate two mini-grid sizing approaches to assess the impact of capacity expan-

sion of mini-grids adapting to growing electricity demand. Objectives 3 is achieved

in Chapters 4 and 5. The need for modelling the time-sensitive nature of energy de-

mand is demonstrated based on residential activity data recorded in a national-scale

time use survey. Chapter 6 conceptualises a system dynamics model for identify-

ing trends of appliance adoption in rural households, thereby achieving objective 4.

Finally, Chapter 7 concludes the research and lists some future research directions.
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Chapter 2

Rural electrification in India

As for the future, your task is not to foresee but to enable it.

—-Antoine de Saint-Exupèry The Wisdom of the Sands (1948)
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2 Rural electrification in India

This chapter outlines the history of rural electrification in India. It briefly describes

energy policies introduced and the outcomes or obstacles faced in achieving electrifica-

tion. We then provide critical insights into the energy transition challenges in rural India

and describe the role of extending central grid, standalone solar and hybrid mini-grids in

achieving universal electrification. We identify mini-grids as one of the ways India could

achieve clean energy access and describe three different mini-grid business models cur-

rently in operation. Further we emphasise on how mini-grids can contribute towards the

decarbonisation of rural India in the long-run.

2.1 Rural electrification in India

Clean, affordable and reliable access to energy is crucial in harmonising sustainable eco-

nomic growth and a low-carbon future within our planetary boundaries. As we discussed

in the previous chapter India is in a unique position, facing this dual challenge which man-

dates a rapid transformation of its energy sector(India energy outlook report (IEA), 2021).

2. Approximately 70 % of the population lives in rural areas in India, which inherently

links its economic growth predominantly to rural development(GNESD, 2014). Since the

time of India’s independence in 1947, rural electrification has been on the agenda of every

major government. Indeed, the government has implemented a range of measures to im-

prove India’s infrastructure for rural electrification, including setting up new transmission

and distribution lines extended from the national grid, upgrading existing infrastructure,

and incorporating decentralised renewable energy sources to provide electricity to last-

mile households 3. Following concerted efforts spanning more than five decades to bring

rural electrification plans to fruition, in March 2019, the current Government claimed

that nearly 99.99% of households in India are electrified (India energy outlook report

(IEA), 2021) (Palit & Kumar, 2022). The new initiatives are now expected to improve the

reliability and quality of electricity supply in rural areas. However, several challenges re-

main in addressing the environmental consequences of electricity generation, such as rising

greenhouse gas emissions and air pollution (India energy outlook report (IEA), 2021).

The Government of India has laid out various schemes and initiatives to facilitate

2Energy access can be decomposed into two forms, one is electric power (electricity) that is

used for running a variety of electrical or electronic devices, and the other can be energy used for

cooking, such as biomass; we have focused on the electricity in the current study
3http://www.saubhagya.gov.in/dashboard
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Figure 2.1: Electricity access in rural India

electricity provision in rural and remote villages through grid extension and distributed

renewable sources. Figure 1 outlines the time frame of the critical policies and targets

that contributed to achieving near-universal electricity access in India. Early efforts were

primarily focused on the electrification of irrigation systems to increase farm yields across
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rural villages in the context of economic development(Palit & Bandyopadhyay, 2017).

However, a lack of electricity in households still had a direct and negative impact on the

quality of life for the rural population. First-of-its-kind rural household electrification

started with the Minimum Needs Program proposed in the fifth five-year plan in 1974 4

aiming to provide essential services to the rural population. Following this, in the late

1980s, Kutir Jyoti Yojana 5 was launched to make single-point access to electricity available

to people living Below the Poverty Line (BPL) - those whose annual income was less

than 11000 Indian rupees (US$135) 6. These programs were grant-funded by the Central

Government and implemented by the state governments, with beneficiaries receiving a

single-point connection, a light bulb and a meter at no cost. The energy bills were paid by

the beneficiaries every month as per the distribution company’s norms. Despite its noble

aims, these early programs achieved only marginal success for various reasons, including

a lack of resources and incompatible infrastructure for grid expansion to operate cost-

effectively in rural areas (Upadhyay & Badoni, 2014) (Palit & Bandyopadhyay, 2017).

Persisting in their efforts, the Government initiated the Remote Village Electrification

program in 2001. This program implemented distributed renewable energy sources, such

as small hydro, solar power and biogas plants based on local availability, to bring electricity

to un-electrified villages and hamlets where national grid extension was infeasible and

economically non-viable. The aim was to provide a minimum of 1 kWh per household per

day. Unfortunately, state governments concluded that it was not achievable cost-effectively

through renewable technologies due to prohibitively high costs. Nevertheless, this program

helped in providing limited access to essential services like solar home lighting to some

10,318 remote villages and has helped reduce the use of polluting fuels like kerosene, which

had previously been used for lighting in many of these villages 7. However, halfway through

the execution of the program, as per the Rural Electrification Policy 2006, villages/hamlets

using isolated lighting technologies were not to be designated as “electrified” (Ministry of

New and Renewable Energy, 2013). Despite considerable efforts made to uplift rural

economies through electrification programs, many obstacles remained in unlocking their

full potential.

In 2005, the Government of India merged all previous schemes and launched an am-

bitious integrated scheme Rajiv Gandhi Grameen Vidyutikaran Yojana (RGGVY), with

4http://planningcommission.nic.in/plans/planrel/fiveyr/5th/welcome.html
5Parliament of India, Lok Sabha Library archive - Kutir Jyoti Yojana
61 USD = 81.81 Indian rupees as of December 2022
7Remote Village Electrification - Ministry of New and Renewable Energy
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the aim of providing electricity to the entire population in India, with a special focus on

eliminating poverty through energy access. The scheme was implemented by the Ministry

of Power and funded through a combination of central and state government resources

and loans from the World Bank. Under the scheme, the Government allotted financial

assistance to electricity distribution authorities in states and union territories through

grants to meet the capital expenditure required for electricity infrastructure development.

It also targeted local stakeholders’ capacity building, bringing holistic development of ru-

ral habitations. Through RGGVY, the Government adopted a multi-pronged approach

of providing electricity access to households through extending grid connectivity, off-grid

solutions and decentralised mini-grid systems based on renewable energy sources for the

first time. Under this Yojana 312,000 villages were electrified, and more than 22 million

households falling below the poverty line received connections free of charge. Despite this

remarkable stride in increasing electricity access, the RGGVY scheme fell short of its

target of 100% household electrification in the stipulated time and achieved very limited

socioeconomic impact, leaving last-mile households in darkness (“Deen Dayal Upadhyaya

Gram Jyoti Yojana (DDUGJY)”, 2015) (Burlig & Preonas, 2021). There were mixed out-

comes of RGGVY reported; land acquisition disputes delayed RGGVY in most states. In

other states it was delayed due to regulatory process which added to the slow progress.

Additionally, poor identification of BPL households led to exclusion from the beneficiary

list, further impacted implementation (Government of India, 2014).

The remaining electrification goals then were accommodated in Deen Dayal Upadhyaya

Gram Jyoti Yojana in 2015. The key aim of this scheme was to address specific issues

related to the transmission and distribution of agricultural and non-agricultural end-uses

of electricity; to manage peak loads more effectively. By 2017, the electrification rate

in India rose to more than 80 % (Outlook, 2018). With this momentum, the DDUGJY

scheme also aimed to improve the duration of electricity access in electrified households in

rural areas and give access to electricity to community spaces such as schools and clinics,

enabling holistic rural development. However, nearly 14,700 last-mile villages were yet to

gain access to electricity.

Finally, the Saubhagya scheme was launched in 2017 under the umbrella of Pradhan

Mantri Har Ghar Bijli Yojana, with the goal of providing energy access to last-mile house-

holds, using a combination of rapid grid extensions, solar home systems and distributed

generation where grid extension was not feasible. Approximately 40 million households

received access to electricity under this scheme, and in March 2019, the Government an-
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nounced 99.99 % of nationwide electricity access on the Saubhagya dashboard. India has

achieved an exceptionally high electrification rate, with roughly 400 million households

having received electricity access in the last decade alone(Palit & Kumar, 2022).

India is a vast country and is politically divided into 36 entities: thirty states and

six union territories. Hence the experiences and impacts of the national-scale electrifi-

cation plan differed considerably from state to state. Challenging the assertion of the

Government’s claim, a few independent studies have assessed the status of electrification

in villages across various states in India and reported their observations. Firstly, Agrawal

et al. (Agrawal, Mani, Jain, & Ganesan, 2020) surveyed more than 10,000 households in

six different states and observed that 2.43 % households were still not electrified. Secondly,

a village was considered ’electrified’ even if just 10% of the households and public places

received connections, according to the definition of ’electrified’ village carried forward

from the previous schemes, raising many questions regarding the accuracy in accounting

for connections (GoI, 2015), and thirdly and quite importantly, end-users reported that

they would not be able to pay energy bills, even if the connections were provided free

of charge and tariffs were subsidised so that the Government did not give connections to

those households who were unwilling or unable to pay(Urpelainen, 2019). Burgess et al.

(Burgess, Greenstone, Ryan, & Sudarshan, 2020)further investigated causal relationship

and inferred that there is a difference of perception at both ends, utility and consumers

in rural India. . This lack of reconciliation can lead to somewhat vicious cycle, i.e. dis-

tribution companies may bear massive losses, and consequentilly may reduce supply of

electricity to rural areas, feeding back a negative impact on service satisfaction, as expe-

rienced by rural customers. Similarly, Swain et al. (Ashwini K Swain, 2019) questioned

the adequacy of electricity access and emphasised the importance of reliability and qual-

ity of supply in rural areas as a way forward. However, as awareness of the benefits of

electricity has grown, off-grid energy solutions have become increasingly attractive to con-

sumers, including solar lanterns, solar home systems (SHS) and decentralised renewable

energy (DRE). Although according to a survey conducted by the Council of Energy, En-

vironment, and Water (CEEW), only 0.33 % households have access to off-grid renewable

energy sources (S. Agarwal, Mani, Jain, & Ganesan, 2020).

Providing reliable, affordable and sustainable access to electricity requires appropriate

technologies, multi-channel financing, social adaptation, regulatory frameworks and, more

importantly, strategies for electrification pathways that can minimise the negative envi-

ronmental impact. Based on historical efforts towards rural electrification in India, three
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viable pathways have emerged:

• Extension of the centralised national grid.

• Solar lanterns and home systems (SHS), designed for individual households.

• Mini-grids, community-scale electricity network (solar, small hydro, biogas, wind or

diesel generator).

Each of these pathways has its advantages and drawbacks. A range of factors deter-

mines the viability and impact of each pathway, including quality of supply, reliability of

operation and maintenance, consistent financing and, in particular, whether it can meet

the needs and desires of its specific end users in the long term.

• Grid extension: Central grid extension has proven advantages, allowing access to

reliable and high-capacity electricity. It can serve a variety of electricity needs at the

household level as well as for commercial and community services with higher power

demands. Centralised networks are also resilient against uncertain demand and sea-

sonal changes, making it a robust pathway for electrification in a country like India

with a high variance in demand and varied climate zones (Candelise et al., 2022).

Additionally, India is an agrarian economy; since the 1970s, the government has

provided free or heavily subsidised electricity to rural farmers. Hence from an end-

user perspective, this made the grid extension pathway the cheapest option. These

advantages do, however, come at a very high cost in terms of building infrastructure

for extending the grid to provide new connections to rural areas, particularly when

the end-user market volume is low and nascent. Typically, for every 1$ invested in

generation on average, the state utilities make 0.4 $ in revenue, making grid exten-

sion economically non-viable in the long run(Burgess et al., 2020). This leads to

frequent load-shedding in rural areas and reduces the reliability of power supply, in

turn forcing the rural population to use alternate solutions like polluting substitutes

such as diesel and biomass(Harish, Morgan, & Subrahmanian, 2014). On the other

hand, the overall energy mix in the grid electricity supply is dominated by fossil fuels

such as coal and lignite (Power sector at a glance, Ministry of Power, Government

of India, 2022). Over half of carbon dioxide emissions in India arise from electricity

generation, 60% of which is a result of the combustion of coal(Raghuvanshi, Chan-

dra, & Raghav, 2006). Considering future prospects, electrification by extending

the central grid could be financially non-viable and environmentally unsustainable,

especially in the rapidly growing economy of India.
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• Solar home systems: As the cost of solar technologies continues to decline, off-grid

solar appliances like solar lanterns, solar torches and especially solar home systems

(SHS) gained traction. SHS is comprised of solar panels, batteries, LED lights and

often a phone charging port. These systems are seen as a viable option to meet basic

electricity demands in last-mile households and remote areas. Generally, the access

is limited to Tier 1 of the Multi-tier Framework (less than 50W of power available

for less than four hours per day) (Bhatia & Angelou, 2015). Nearly 3,000 villages

received standalone solar systems under the Government’s Saubhagya scheme in

2018 8. In the same year, the CLEAN network reported that approximately 10

million solar lanterns and solar lamps were sold in India (CLEAN, 2017). While

SHS and off-grid solar lighting solutions are stepping stones towards energy access

goals, they offer limited power capacity and lack long-term reliability. Moreover,

these systems are usually found in domestic end-use, which are rarely scaled up to

enable income-generating productive energy services. However, solar home systems

have recently been integrated virtually to form a mini-grid network that enables

productive use and higher power capacities, but these are still in their infancy.

• Mini-grids: Mini-grids are small-scale electricity grids that are designed to provide

power to small villages and hamlets. The majority of mini-grids are solar-based,

usually comprising solar panels and batteries as storage systems or diesel generators.

A small percentage of them employ small hydro plants or wind turbines. Mini-

grids are increasingly seen as an alternate and ideal solution for remote locations

where central grid extension is difficult and, in contrast to SHS, are better equipped

to provide reliable, clean energy to households, businesses, and a wide variety of

other end-users. Currently, slightly less than 1 % of total solar capacity in India is

contributed by solar mini-grids. Various technical and socioeconomic barriers have

hampered wide-scale mini-grid deployment in India. A lack of private capital is one

of the major reasons (Comello, Reichelstein, & Sahoo, 2017), (Dr Shashi Buluswar,

Dr Hasna Khan , Tia Hansen, n.d.). Mini-grid development in India is discussed in

more detail in section 2.2.

From the supply side, grid extension is a ’top-down’ approach, organised and delivered

hierarchically, whereas off-grid access via SHS or mini-grids is a ’bottom-up’ approach,

fragmented and delivered to meet small community scale energy needs. From the demand

side, mixed opinions were received on energy use and demand growth from a small segment

8http://www.saubhagya.gov.in/dashboard
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of the population surveyed to assess the impact of each electrification pathway(SPI and

ISEP, 2019). Regardless of whether we consider rural electricity access from a supply-

side or a demand-side perspective, none of the above-discussed pathways and distribution

models can be considered a complete solution in a standalone manner(Palit & Bandy-

opadhyay, 2016). Instead, the future of rural electricity dispatch may combine multiple

sources, depending on the quality of supply and reliability, finances, i.e. cost of generation

and end-user affordability as well as environmental sustainability.

2.1.1 Environmental impact - sustainability

India has set a goal to reach net-zero emissions by 2070. This is a challenging target

given that India has to reduce emissions from its existing electricity infrastructure, which

represents the greatest source of emissions currently, whilst ensuring that new develop-

ments have a low carbon footprint. This challenge is more pronounced than in developed

economies because much of India’s future emissions will come from power infrastructure

that is yet to be built or acquired (India energy outlook report (IEA), 2021). There-

fore, energy planning today must prioritise environmental considerations to meet future

electricity demand from rural areas. Decentralised renewable energy alternatives, such as

solar PV, can greatly reduce emissions compared to traditional coal-fired power stations.

The emissions from solar PV systems can range from 50-130 gCO2eq/kWh over their life-

time, including the need for local infrastructure such as battery storage and distribution

networks(Ortega-Arriaga, Babacan, Nelson, & Gambhir, 2021). In contrast, extending the

central grid with coal-fired power plants can result in emissions of 675-1,689 gCO2eq/kWh.

India’s rural electrification program, such as Rajiv Gandhi Grameen Vidyutikaran Yojana

(RGGVY) and Saubhagya scheme, aims to provide 8-20 hours of electricity access per day

to villages through the expansion of the central grid infrastructure and, in areas where this

was not financially feasible or possible, through solar home systems (SHS) and mini-grids.

However, these systems do not have to be mutually exclusive and can be used in combina-

tion. If mini-grids are designed with the potential for future connection to the central grid,

in the long term, they will support the decarbonisation of the central electricity network

(Comello et al., 2017) (Palit & Kumar, 2022).

2.1.2 Quality of supply - reliability

Quality and reliability of supply can be evaluated through two metrics: hours of supply

and the capacity of supply (single-phase or three-phase). The capacity of grid supply
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is typically high. However, the number of hours of supply can vary greatly in rural ar-

eas, ranging from 8 to 20 hours (Agrawal, Mani, et al., 2020). Grid electrification can

bring many positive benefits, but numerous barriers exist, which can impede reliable and

consistent power supply. These include losses in transmission due to long distances, low

demand and consumption resulting in insufficient revenue, inconsistent payment of connec-

tion fees, financial limitations to households’ ability to procure electrical appliances, and

poor operation and maintenance of local infrastructures (e.g. poles and wiring), leading

to frequent damage and increased repair costs. All of these factors act as impediments to

the reliable power supply in the grid extension scenario(Alstone, Gershenson, & Kammen,

2015). Alternatively, locally installed large-scale grid-tied solar projects also have poten-

tial advantages due to economies of scale, resulting in lower costs of energy per unit and

more efficient operations, thus reducing system losses compared to traditional distribution

networks. Likewise, solar mini-grids could offer a reliable power supply at a local level

without having to rely on long-distance transmission lines that suffer from high losses

(Bhattacharyya, Palit, Sarangi, Srivastava, & Sharma, 2019). Another research study

highlighted the lack of reliable power supply in grid-connected rural areas and deficit-

related losses incurred by consumers. The study also emphasised that augmentation of

grid supply with local biomass or diesel-based backups can be a way forward(Harish et

al., 2014). In terms of standalone off-grid systems, such as decentralised solar mini-grids,

communities can choose the minimum level of reliability they want or define what are

critical and non-critical loads in order to obtain the best balance between costs, reliability

and performance. This way, customers connected to mini-grids can achieve reliable access

at an affordable price (Ciller et al., 2019).

2.1.3 Economics of electrification - affordability

Comparing the costs of generation under different electrification options, grid extension

versus off-grid solutions, is an arduous process due to the topography of areas involved,

variable fuel costs and the different metrics used in planning estimates over the years.

Examples of such metrics include the cost of electricity transmission and distribution,

type of fuel utilised and level of demand, and in the case of off-grid, storage system

designs. In the context of demographic and geographic constraints, grid extension is

usually more economical in densely populated villages, while off-grid systems are often

cheaper in sparsely populated regions that are far away from an existing power grid. In a

generalised review of studies, it is found that delivery costs of off-grid solutions can range
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between $0.2 - $1.4 per kWh compared to costs below $0.1/kWh up to over $8/kWh for

extending the current electrical infrastructure to rural areas (Ortega-Arriaga et al., 2021).

In the case of India, Amutha et al. (Amutha & Rajini, 2016) found that a combination

of solar, wind and hydro off-grid energy is relatively cheaper than grid extension if the

village is farther than 75 km from the existing grid (which is generally the case for the

majority of un-electrified or recently electrified villages). On a similar note, an earlier

study found that the total delivery cost of grid-based electricity (levelised unit cost of

electricity and costs associated with transmitting/distributing) in remote areas located in

the distance range of 5-25 km varies from $ 0.03/kWh to $ 2.82/kWh 9, depending on peak

electrical loads of up to 100 kW and the load factor 10(Nouni, Mullick, & Kandpal, 2009).

In contrast, Narula et al. (Narula, Nagai, & Pachauri, 2012) found that decentralised

distributed generation, e.g. off-grid solutions like SHS and mini-grids, are emerging as

cost-effective options that are independent of distance from the grid but do depend on

the level of demand. For example, off-grid solutions can meet the lighting and mobile

charging needs of rural populations. However, to meet an evolving demand for high-power

appliances in households, higher investments may be required than for grid extension and

infrastructure. Overall, some of these estimates may have focused on the short-term costs

rather than the long-term investments altogether, complicating the process of comparing

the costs of electrification pathways.

From the end-user perspective, i.e. energy costs to households, Government subsidies

play a major role and are one of the primary determining factors influencing whether a

household will gain connection to an electricity network (Urpelainen, 2019). The Indian

Government has heavily subsidised grid electricity tariffs for the majority of rural house-

holds, with minimal connection and administrative fees. For the population living below

the poverty line, grid electricity is provided completely free of charge (GoI, 2016). Whereas

off-grid projects in certain rural regions of India are either privately owned or partially

funded by grants, they often charge higher tariffs per unit of electricity to recover their in-

vestments. This makes off-grid electricity more costly than grid-connected options for the

majority of rural households(GNESD, 2014) (Daniel Schnitzer, Deepa Shinde Lounsbury,

Juan Pablo Carvallo et al., 2014). However, a faster-than-anticipated decline in the cost

of renewable sources (Luderer et al., 2022), especially solar and battery technologies, can

render decentralised mini-grids a more financially attractive option to both suppliers and

91 USD = 81.81 Indian rupees as of December 2022
10The load factor is the ratio of an average load to the peak load over a given period of time.

The higher the load factor, the lower the cost of electricity
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end-users in the long-run (Dr Shashi Buluswar, Dr Hasna Khan , Tia Hansen, n.d.). De-

spite the promising outlook, mini-grids have not attracted significant private investments

in India (Singh, 2016), although this scenario is beginning to change. The Rockefeller

Foundation, for example, and its Smart Power India11 programme, in collaboration with

Tata Power, is implementing 10,000 mini-grids throughout rural India to serve nearly 5

million homes by 2026 (Dr Shashi Buluswar, Dr Hasna Khan , Tia Hansen, n.d.).

2.2 Mini-grid models in India

Currently, there are three business models in practice in India, private, partly subsidised

and fully subsidised.

• Private mini-grids: This type of mini-grid follows a standard business model.

The developers build, own and operate mini-grids and generate revenue for profit.

Husk Power Systems (HPS) and Mera Gaon Power (MGP) are examples of pri-

vately owned mini-grids. HPS has provided electricity to over 200,000 people in

some 300 villages and hamlets since 2007 in the state of Bihar. MGP has also

set up solar-powered mini-grids in Uttar Pradesh, connecting 15,000 households

across 500 hamlets. The composition of mini-grids is mainly based on biomass (rice

husk) and solar PV. Typical tariffs are higher for users connected to private mini-

grids compared to heavily subsidised grid power 12. Therefore, the quick expansion

of the grid infrastructure poses a significant risk to the sustainability of privately

owned mini-grids, particularly due to the absence of incentives for private investors

(Schmidt, Hawkes, Gambhir, & Staffell, 2017) (Subramony, Doolla, & Chandorkar,

2017) (Candelise et al., 2022) (Daniel Schnitzer, Deepa Shinde Lounsbury, Juan

Pablo Carvallo et al., 2014).

• Partly subsidised: In this category of mini-grid, developers procure large subsidies

or grants for capital costs of the system from either international donors or corporate

social responsibility funds. They generate a small revenue to cover the costs of

operation and maintenance, including battery replacements. Gram Oorja Pvt ltd,

Oorja Solutions Pvt ltd, Mlinda foundation and Naturetech Infra are examples of

developers across various states in India which follow this partly subsidised model.

The unit cost to users in this model is moderate, yet households connected to partly

11https://smartpowerindia.org/
12HPS & MGP tariff for baseline usage = $2− 3 per month
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subsidised mini-grids spend a higher proportion of their family income on their

electricity bill (See section 3.5 for more details on Gram Oorja’s business model).

• Fully subsidised: Fully subsidised mini-grids are generally funded by the Gov-

ernment or third-party donations. Two government agencies in India, WBREDA13

and CREDA14, have implemented grant-funded mini-grids. WBREDA has set up

over 20 solar power plants with a total capacity of 1 MWp, providing electricity to

10,000 households in the state of West Bengal. CREDA has electrified 35,000 house-

holds across 1400 villages and hamlets in Chattisgarh with 1-6kWp solar mini-grids.

The goal of these projects is to quickly increase the rate of electrification, resulting

in the installation of small-scale mini-grids to meet the baseline demands of remote

hamlets. However, as cost recovery is not a concern for these mini-grids, the quality

of service is often low and cannot keep up with increasing demand. Village Electric-

ity Committees(VEC) are responsible for managing and operating these mini-grids,

and almost none or minimal charges are borne by households receiving electricity

through these grids.

India has been implementing solar mini-grids since the 1980s, facilitated by national

and state policies like the Saubhagya Scheme. Approximately more than 4000 pico-grids

and mini-grids were established in regions like Uttar Pradesh, Chhatisgarh and Jharkhand

in the northern side, addressing the need for reliable electricity access. Despite their po-

tential, challenges have arisen, including issues with financial planning and understanding

community needs. The Rockefeller Foundation and other organisations are now driving

new investments and promoting mini-grids as a solution for rural and remote communities.

However, scaling up faces hurdles, particularly concerning high initial investment costs and

revenue collection challenges. Government grants and international funding could alleviate

financial burdens, while policy improvements might enhance developer access to finance.

Addressing revenue collection concerns may involve implementing stricter policies, such as

discontinuing supply for non-payment. Additionally, the coexistence of mini-grids with the

national grid poses a challenge, emphasising the necessity of a clear regulatory framework

to define integration conditions. Despite these challenges, mini-grids have the potential

to serve as a hybrid grid component, supporting utilities and providing reliable, environ-

mentally friendly energy. They offer quicker connections and the potential for community

development by powering various applications.

13West Bengal Renewable Energy Development Agency
14Chhattisgarh state Renewable Energy Development Agency
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Ensuring a reliable and consistent electricity supply from mini-grids is essential to

making them a viable business model. If the performance standards are not up to par,

fewer people will be willing to pay for the service, resulting in decreased revenue for their

developers. Additionally, this will lead to increased operational costs due to the need for

more maintenance. Therefore, providing a high-quality service is essential to achieving

sustainable and viable business models for mini-grids in the long term. Social enterprises

operating mini-grid systems face significant challenges in balancing the technical and social

aspects of the system to ensure customer affordability and business viability. This requires

careful management of the socio-technical complexities inherent in mini-grid processes,

such as balancing the cost of energy production with the need to meet energy demands

from the community and their ability to pay for energy services. The sustainability of

a business model in this context depends on how well these socio-technical aspects are

integrated and managed in the design, operation, and maintenance of the mini-grid system

(Bandi, Sahrakorpi, Paatero, & Lahdelma, 2022). In this sense, the success of a mini-

grid model is heavily influenced by key design factors such as the choice of renewable

energy source, estimating electricity demand for the sizing of system components, and the

lifespan of those components. The selection of these parameters can greatly impact the

financial feasibility of the mini-grid and the cost of the energy necessary to make the system

profitable. In the next chapter, our focus will be on comprehending significant obstacles,

such as the accuracy of demand assessment and the long-term utilisation of mini-grids. We

aim to introduce various metrics for sizing optimisation and examine whether increasing

capacity will enhance the financing for mini-grids.
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Chapter 3

Solar mini-grids
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3 Solar mini-grids

In this chapter, a comprehensive overview of mini-grids in the context of the global south

is presented. This is followed by an in-depth discussion of existing literature regarding

mini-grid planning and sizing tools, highlighting research gaps in the field. These gaps

include the need for accurate estimation of demand growth, analysis of mini-grid sizing

approaches that can adapt to increasing demand and utilisation, and the consideration

of resource efficiency throughout the lifetime of the mini-grid system. To address these

gaps, a pilot study involving a field survey was conducted in a community that recently

gained access to electricity through a decentralised solar mini-grid. The outcomes of

the survey were used to estimate the bottom-up electricity demand of the community

and generate plausible demand growth scenarios for the next ten years. Subsequently,

the importance of determining optimal component sizes in solar mini-grids is evaluated.

This was achieved by utilising the Continuous Life-cycle Of Variable Energy Resources

(CLOVER) model to study two different sizing approaches in relation to demand growth

scenarios. Furthermore, a sensitivity analysis was performed on seven different parameters

to evaluate their impact on optimal system size and associated costs of mini-grid systems.

Overall, this chapter provides insights into the various factors that should be considered

for long-term sustainability of mini-grid systems in the global south.

3.1 Overview of mini-grids

To achieve universal access by 2030, it is necessary to implement a combinatorial approach

to electrification by extending the main grid, mini-grids, and off-grid solar or wind, as

discussed in previous chapters. The World Bank Group’s Energy Sector Management

Assistance Program (ESMAP) released the most comprehensive report on mini-grids in

2019(ESMAP, 2019). The report provides an in-depth analysis, stating that approximately

half a billion people can be supplied with electricity cost-effectively through mini-grids

(ESMAP, 2019). This is due to multiple factors, including steeply decreasing costs of

solar and wind technologies, a dramatic increase in the quality of service, technological

innovation and micro-financing models. In combination, these have made modern mini-

grids a scalable option to supplement grid extension and solar home systems. The ESMAP

report also estimated that globally at least 19,000 mini-grids had been installed and are

currently being operated in 134 countries, representing a total investment of around 28

billion USD and providing electricity to approximately 47 million people. Of these 19,000
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mini-grids, Asia has the highest number to date, while the African continent holds the

highest potential for future mini-grid deployment and is forecasted to outrank Asia by

2030. It is estimated that some 210,000 mini-grids will be required to serve the target

populations of half a billion globally and that approximately 220 billion USD will be

required in public and private investments in total(ESMAP, 2019). Planning such large-

scale capital investments for mini-grids requires a multidisciplinary undertaking.

Given the scale, it is important to have techniques in place to guide the planning and

management of large capital investments to address the challenges in mini-grid deploy-

ment. These can be categorised as i) Technological: such as identifying the appropriate

site location for the mini-grid, the optimum size of system components, and composi-

tion of resources for mini-grids to ensure that these are cost-competitive and can yield

reliable energy dispatch with ease of maintenance ii) Economic: such as lowering gener-

ation costs, effective tariff plans, and planning for substantive revenue streams to recover

investments and the costs of future component replacement iii) Social and Political:

including estimating accurate electricity demand from the community, temporal energy

growth and energy policies that catalyse clean energy transitions iv) Environmental: to

avoid rising emissions, adopting a diverse composition of mini-grids, based on renewable

energy as a primary source for electricity generation. In order to make mini-grids sus-

tainable in the long term, all these categories need to be considered at the design stage.

Holistic modelling tools can aid the process of deploying mini-grids at a larger scale. More-

over, mini-grid planners can escalate the process of finding cost-optimised configurations

of energy generation infrastructure and optimising energy dispatch with the help of such

tools.

3.2 Mini-grid modelling

The literature on modelling renewable energy systems, whether they are standalone or

connected to the central grid and incorporate storage, is extensive. These models aim

to optimise system costs by identifying the most efficient resource combination. Various

factors, including system reliability, emissions, socioeconomic considerations, and commu-

nity affordability, are taken into account. Before delving into mini-grid modelling, Figure

3.1 provides a schematic representation of a solar mini-grid with a photovoltaic array and

battery storage. The electricity generated is distributed to domestic, public, and commer-

cial buildings, supporting the power needs of income-generating appliances like flour mills

or irrigation water pumps. In this study we specifically focus on domestic end-use and
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Figure 3.1: Schematic of mini-grid system

renewable energy access via decentralised solar mini-grids.

Mini-grid models are designed to enhance the operational efficiency of systems by

considering variables such as resource availability, weather patterns, energy demand and

more. These models serve as invaluable decision-making tools in the strategic planning

and execution of mini-grid projects, offering the capability to assess diverse scenarios

and anticipate their implications. These modelling tools keep evolving and refining as

new data and technologies are made available and hence it is crucial to understand foun-

dational methodologies and assumptions upon which they are constructed. Within the

existing literature, mini-grid modelling tools can be categorised into two distinct types:

planning tools and sizing tools. Planning tools primarily serve the purpose of identifying

optimal locations where mini-grids represent the most cost-effective electrification option.

Conversely, sizing tools are implemented to ascertain the optimal dimensions and config-

uration of a mini-grid system to ensure efficient operation. In this section, an in-depth

analysis and comparison of the functionalities of these two categories of tools is presented.

This analysis will cover the core methodologies of each tool and outline their respective

strengths and limitations, along with systematic evaluation of how the three key features

of the models are addressed within each tool’s core methods. These key features are

• Site Selection: Identifying the optimum location for the installation of a mini-grid

is essential, as it not only determines the distribution and transmission path but also

influences the economic situation, which in turn informs decision-making regarding
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the financial viability of off-grid services. We compare the data and methodology

used in existing models, as well as the scale at which the model is implemented in

the case studies that are referred.

• Demand Assessment: Estimating short-term (daily load), medium-term (sea-

sonal) and long-term demand (over a system’s lifetime) is a critical step in mini-grid

planning, as discussed in Chapter 2. Various methods are explored in the literature,

including top-down econometric methods and bottom-up stochastic methods. We

surveyed existing literature to understand whether or not the model can capture

evolving electricity demand and what methods are used for demand projection.

• Optimisation for Sizing: Configuring the correct size of each component is a

determining factor in whether or not mini-grids will be viable in the long run. We

compare the methods used for this optimisation, the objectives of the model, and

whether the model is tested for capacity expansion in the future, i.e. incremental

sizing to meet growing demand, in the case studies considered here.

Considering the importance of these three key features, we’re looking at five planning

tools in Table 1 and ten sizing tools in Table 2.

Table 1: Mini-grid planning tools

Model

Name
Scale

Site

selection

Demand

Assessment

Sizing

optimisation

Case study

and Ref.

OnSSET

District

State

National

Continent

GIS +

Techno

Economic

Bottom-up

(Static

demand)

LCOE

(One-off)

Sub-Saharan

Africa [a],

Nigeria [b]

Network

Planner

Urban

Peri-urban

Rural

National

GIS +

Techno-

Economic

Demographics

Econometric

(Arbitrary

demand

growth)

LCOE

(One-off)

Ghana [c],

Liberia [d],

Nigeria [e]

GeoSIM

Urban

Peri-urban

Rural

GIS+

Power network+

Topographic

Bottom-up

(Demand

growth over

Planning

Period)

Capital

Costs
Tanzania [f]
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Table 1 continued from previous page

Model

Name
Scale

Site

selection

Demand

Assessment

Sizing

optimisation

Case study

and Ref.

REM
Rural

National

GIS+

Power network+

Technical+

Socioeconomic

Bottom-up

(Repetitive

over a year)

LCOE

System

Reliability

(One-off)

Africa [g]

and South

Asia

micrOgridS

(RLI)

National

District

GIS+

Topographic+

Techno

Economic

Bottom-up

Latent

Demand

(Repetitive

over lifetime)

LCOE

(One-off)
Nigeria [h]

[a] (Mentis et al., 2017)

[b] (Isihak, Akpan, & Ohiare, 2020)

[c] (Kemausuor, Adkins, Adu-Poku, Brew-Hammond, & Modi, 2014)

[d] (Modi, Adkins, Carbajal, & Sherpa, 2013)

[e] (Akpan, 2015)

[f] (Analyst, n.d.)

[g] (Ciller et al., 2019)

[h] (Blechinger et al., 2019)

3.2.1 Mini-grids models

OnSSET: OnSSET, an open-source spatial electrification tool, was developed to allow

decision-makers to identify the most effective electrification plans at various scales, from

the village level up to the continental scale. OnSSET uses a range of data sources, such

as GIS databases (mainly sourced from Open Street Maps), night light data for existing

central grid networks, topology, potential resource availability data (such as solar or wind),

and economic data. It is unique in its consideration of small-hydro mini-grids, which are

enabled by including topology databases. OnSSET uses a Multi-tier Framework to esti-

mate initial energy demand scenarios and to project growth based on transitions between

tiers, considering household income level and demographic data. The model focuses on

a single objective of minimising LCOE, and operational strategies are chosen according

to the minimised investment required. As energy demand increases, diesel generation is

selected as the primary complement for mini-grids because the model does not consider
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environmental factors (Mentis et al., 2017).

Network Planner: The Network Planner is an innovative web-based tool for design-

ing electricity networks for a wide range of scales. It is possible to build scenarios and

conduct sensitivity analyses of certain parameters using this model, which can provide in-

sights into the effects of individual factors on total investments required for electrification

with grid extension or off-grid solutions. Energy demand is estimated using a top-down

approach, with household type characterised based on urban, peri-urban or rural and

population density using GIS and census data. To optimise the cost of electrification, the

energy network is represented using MV lines for grid extension and LV lines for mini-

grids. The tool utilises a heuristic method known as minimum spanning trees (or minimum

weight spanning trees) to calculate the cost of extending the central grid network to some

area, comparing electrifying that area with either SHS or Diesel generation. This approach

is unique in that it assigns different weights to each connection of the network, resulting in

minimum-weight pathways of electrification. The model considers socioeconomic factors

such as income and population density; however, it does not account for grid reliability,

which is a critical factor in designing off-grid or grid-based electrification projects. Fur-

thermore, the electrification scenario outcomes are exceptionally sensitive to changes in

household electricity consumption. For example, increasing the household demand from

100 kWh to 150 kWh results in a nearly 20% decrease in un-electrified communities being

electrified by off-grid solutions compared to grid extension; this shows that consideration

of electricity demand at the designing stage is a key factor in determining the potential of

off-grid energy.

GeoSIM: GeoSIM (Geospatial Rural Electrification Planning) is a commercial power

network planning tool that applies state-of-the-art GIS technology to identify generation

sites based on LV/MV networks at local and national levels. It is built based on the

Huff model, a spatial interaction tool that calculates probabilities based on two types

of distances: traditional Euclidean (straight-line) distance and travel time along a street

network. In the context of electrification, this model is applied to delineate probability-

based energy markets, taking into account social and economic parameters to identify the

least-cost site locations for hybrid mini-grids or related off-grid solutions. It uses bottom-

up energy demand assessment to accurately forecast high or low-energy consumption areas

and to reliably and extend these inputs to strategic energy planning for mini-grid projects.

It also enables post-implementation performance monitoring. Being a commercialised tool,

GeoSIM’s methods are not published in the literature. Thus far, its use has been limited
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to small-scale projects in developing countries.

REM: the Reference Electrification Model (REM) is designed as a platform for large-

scale rural electrification planning, primarily in developing countries. REM uses a clus-

tering technique to determine the least-cost option for electrification. This involves a

combination of heuristics and algorithm-based cost optimisation by employing a modified

version of the Hooke-Jeeves algorithm, otherwise known as ’pattern search’, to find the

clusters of consumption points. This algorithm performs a three-dimensional search space

comprised of the diesel generator capacity, the total capacity of the solar panels and the

battery capacity. It uses this information to calculate the objective function, which is the

total cost of mini-grid investments for a large number of options, eventually moving in the

direction of the lowest cost. REM accounts for the reliability of the system by incorporat-

ing a non-monetary cost of unmet load, i.e. social cost, in its static planning simulation,

which makes the model flexible in terms of setting a cost versus reliability trade-off, i.e. the

model can be customised to prioritise critical and non-critical loads and choose the level

of desired reliability. However, initial energy demand is assessed empirically, and demand

evolution isn’t considered. REM implies a simple load-following strategy and fixed pricing

mechanisms. REM will be commercialised in collaboration with a startup called Waya

energy ltd. to provide enhanced customer support. Currently, it is a ’work in progress’

and has been verified with only a few case studies.

RLI model Developed by the Reiner-Lemoine-Institut GmbH, this is sometimes re-

ferred to as ”micrOgridS”, an open-access tool designed to simulate and optimise elec-

trification through grid-tied or off-grid energy systems. It uses a load projection tool

to create an initial energy assessment based on targeted demographic and socioeconomic

data, such as night light GIS data, household income levels and national GDP per capita.

This data is used to estimate three levels of energy use and to generate a daily demand

curve based on household clusters. Seasonality and various single-phase end-use (generally

domestic) and three-phase end-use (productive use / income generating large appliances)

are also considered to offset the consumption patterns throughout the day. Precisely, the

model considers five different data sets - economic raster data, land use, road network,

grid pathways, power network and protected areas to find the least-cost electrification

option. These data sets are weighted and input into a Minimum Spanning Tree Algorithm

to identify the best pathway. The load projection tool is the primary strength of the

model. However, the accuracy of initial load estimations relies heavily on the availability

of large datasets. Unfortunately, many developing countries may not have the necessary
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data available. Even when this data is available, it can be a challenge to achieve the

desired level of accuracy due to the quality and types of data structures. The model’s spa-

tial resolution is at the level of 0.5 square kilometres; Clustering of population density at

this scale can potentially result in large errors, which can directly affect the electrification

pathway chosen. Like the earlier described tool, Network Planner, RLI may potentially

underestimate the suitability of off-grid energy planning strategies.

The use of planning tools has become imperative in identifying the feasibility of mini-

grids in various geographic locations. These tools employ metrics like the levelised cost of

generation and the net present cost of electrification pathway to determine the viability of

mini-grid implementation. However, the accuracy of demand assessment is crucial to the

success of mini-grid planning and deployment. Currently, demand assessment is mostly

based on satellite mapping or econometric methods, and is sensitive to parameters such as

the distance granularity used in GIS planning. Therefore, there is a need for more precise

mini-grid planning methods in order to successfully scale up the adoption of mini-grids.

As a result, this study also considers and evaluates other sizing tools, assessing them for

their effectiveness in terms of the aforementioned key features. Table 2 outlines the sizing

tools and their limitations and strengths respectively.

Table 2: Mini-grid sizing tools

Model

Name
Scale

Site

selection

Demand

Assessment

Sizing

optimisation

Case study

and Ref.

HOMER
Rural

Urban

Techno

Economic+

Meteorological

Feasible

Load

(Arbitrary/

repetitive)

Net

Present

Cost

(Flexible)

Bangladesh [i],

Pakistan[j],

India[k],

Honduras[l],

Ethiopia[m],

A review[n]

iHOGA
Rural

Urban

Techno

Economic+

Social

Static

present day

load

Net

Present

Cost /

LCOE

(one-off)

Colombia[o]

India [p]
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Table 2 continued from previous page

Model

Name
Scale

Site

selection

Demand

Assessment

Sizing

optimisation

Case study

and Ref.

PoliNRG Rural

Techno

Economic

Social

Demographic

Bottom-up

(Present day/

repetitive over

lifetime)

Net

Present

Cost

Loss of

Load

(one-off)

Tanzania[q]

Uganda[r]

AVEREMS Rural

Techno

Economic

Demographic

End-use

specific

(Present-day

Demand)

Capital

Costs

(One-off)

Peru[s]

Nicaragua[t]

DER-

CAM

Rural

Techno

Economic

Social

Bottom-up

(Appliance

growth over

lifetime)

Capital

Costs

(Capacity

Expansion)

Tanzania [u]

PSO
Rural

Urban

Techno

Economic

Bottom-up

(Static and

constant

growth)

Net

Present

Cost +

(Capacity

Expansion)

Lesotho [v]

Kenya [w]

ESCoBox Rural

Techno

Economic

Social

Meteorological

Bottom-up

(Present day/

Possibility of

Growth)

Decision

Support

Tool

Kenya[x]

OSeMOSYS Rural

Techno

Economic

Social

Meteorological

Bottom-up

(Demand/

Growth

(Historical)

Net

Present

Cost

India[y]
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Table 2 continued from previous page

Model

Name
Scale

Site

selection

Demand

Assessment

Sizing

optimisation

Case study

and Ref.

CLOVER Rural

Techno

Economic

Social

Meteorological

Environmental

Bottom-up

(Utilisation+

Appliance

Growth)

Levelised

Cost of

Used

Energy

(Capacity

Expansion)

India[z],

[i] (Shoeb & Shafiullah, 2018)

[j] (Waqar et al., 2017)

[k] (Phurailatpam, Rajpurohit, & Wang, 2018)

[l] (Del-Citto, R., Micangeli, 2018)

[m] (Brenna, Foiadelli, Longo, & Abegaz, 2016)

[n] (Sen & Bhattacharyya, 2014a)

[o] (Lujano-Rojas, Monteiro, Dufo-López, & Bernal-Agust́ın, 2012)

[p] (Saiprasad, Kalam, & Zayegh, 2019)

[q] (Mandelli, Brivio, Colombo, & Merlo, 2016)

[r] (Brivio, Moncecchi, Mandelli, & Merlo, 2017)

[s] (Ferrer-Mart́ı, Domenech, Garćıa-Villoria, & Pastor, 2013)

[t] (Ranaboldo, Garćıa-Villoria, Ferrer-Mart́ı, & Pastor Moreno, 2015)

[u] (Hartvigsson & Ahlgren, 2018)

[v] (Ghaem Sigarchian, Orosz, Hemond, & Malmquist, 2016)

[w] (Fioriti, Frangioni, & Poli, 2021)

[x] (Gammon, Boait, & Advani, 2016)

[y] (Riva, Colombo, & Piccardi, 2019)

[z] (Beath et al., 2021)

HOMER: (Hybrid Optimisation Model for Electric Renewable) is a widely used com-

mercial software for mini-grid energy planning in developing countries. Its optimisation

includes a variety of stand-alone renewable energy sources, including wind, hydropower,

biomass, photovoltaic (PV) arrays, hydrogen and flywheel storage, to determine the most

effective size and combination of components for mini-grids. The model considers all pos-

sible combinations of system components and applies power balance constraints to find

49



the combination of resources with the least Net Present Cost. Although the model is

highly sensitive to certain parameters such as wind speed, solar radiation, fuel prices and

component costs, it uses a repetitive hourly energy demand profile throughout the year,

which can potentially result in under or over-sizing of mini-grids. The operational strate-

gies it uses for load following and charging cycles are also limited in scope. Nevertheless,

HOMER has an advantage over other tools in its capacity to assess a variety of renew-

able energy sources and the corresponding reduction in GHG emissions. It also has a

user-friendly graphical interface.

iHOGA : iHOGA (Improved Hybrid Optimisation by Genetic Algorithms) is a soft-

ware tool developed to simulate and optimise renewable energy-based hybrid grids in both

stand-alone and grid-tied modes. The model is built on genetic algorithms, which is an

effective method for the optimisation of energy systems with a large number of param-

eters. It has two loops, the primary and secondary, to optimise cost and determine the

optimum size of renewable generation and storage. The primary loop optimises the Net

Present Cost of the system, taking into account component size, energy demand and other

technical details. The secondary loop evaluates various control strategies for energy dis-

patch, such as charging cycles of a storage system, source priority and reliability of supply.

iHOGA also considers multiple objectives such as reduction of emissions, limiting unmet

demand and improving the human development index in the optimisation of system sizing,

which is the unique advantage of this model. Temperature effects on equipment efficiency,

maintenance and lifetime cost predictions are also taken into account in the planning sim-

ulation. Furthermore, iHOGA enables AC grid connection, and grid planners can use Net

metering for feed-in-tariffs when required. However, the model has only been tested for a

few use cases and is at a nascent stage. It is currently only available commercially.

PoliNRG: PoliNRG, an abbreviation for Politecnico di Milano -Network Robust De-

sign, employs four categories of model: bottom-up stochastic energy demand assessment

from the community, renewable generation, optimisation for least cost configuration of the

system and an operations and dispatch strategy. To estimate energy demand from the

community, PoliNRG applies LoadProGen, a bottom-up stochastic method based on sur-

vey data and field observations, but this can be difficult to scale up. An iterative heuristic

optimisation process is applied to find the least-cost option of electrification while tak-

ing into account the cost and reliability of the system through the calculation of loss of

load probability. An Imperialist Competitive Algorithm (ICA) is used to find the opti-

mum solution from a two-dimensional search space consisting of PV and battery sizes,

50



which is then tested for robustness in order to find the cost-minimised configuration of the

mini-grid.

AVEREMS: (Autonomous Village Electrification through Renewable Energy and

Microgrid Systems) is divided into three phases: construction, generation and distribution.

To identify the optimal site for the mini-grid, a Greedy Randomised Adaptive Search

algorithm (GRASP) is applied in the construction phase. Initially, all of the consumption

points are considered as individual distributed generation points, which results in the

highest cost solution before the algorithm runs to find the least cost configuration of a

hybrid grid, such as solar-wind-battery, based on the distance between the generation and

consumption points. Primary constraints applied in the optimisation are that 100% of

the demand should be met, days of autonomy are kept to a minimum, and batteries kept

at maximum discharge capacity, as well as all the consumption points being consistently

connected to the mini-grid for the duration of the simulation. GRASP consists of two

phases: the first generates a set of solutions based on a randomised greedy approach, and

the second performs a local search to find the minimised cost configuration. The simulation

takes into account load growth in the sizing of the system based on field observations, but

this can limit its scalability. In terms of operation, the priority of energy dispatch and tariff

design is checked in Peru and Nicaragua, while component-wise maintenance is considered

in the planning simulation, making the predictions of operation and maintenance costs

more realistic.

DER-CAM+VenSIM: DER-CAM, an abbreviation for the Distributed Energy

Resources- Customer Adaption Model, has been developed for the cost optimisation of

mini-grids. This model combines three ways to optimise the initial system and also es-

timate the effects of capacity expansion strategies. These methods include a MATLAB-

based bottom-up energy demand model, and system dynamics approach using VenSIM for

testing capacity expansion and cost optimisation on investments based on DER-CAM. The

system dynamics models are advantageous in terms of improving system sizing accuracy

as mini-grid models have a large parameter space. Despite their utility, they are sensitive

to fast and small variations in daily load. Therefore, a separate bottom-up energy demand

model based on micro-scale data has been created to complement these limitations. The

two methods are then combined with DER-CAM for cost optimisation based on Mixed-

integer Linear Programming. The conceptual framework and functionalities of this model

are powerful, but it is also correspondingly less user-friendly and uses the proprietary

software products MATLAB and VenSIM.
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PSO: Particle swarm optimisation (PSO) is a straightforward and computationally

inexpensive meta-heuristic optimisation method. A case study from Iran (Borhanazad,

Mekhilef, Gounder Ganapathy, Modiri-Delshad, & Mirtaheri, 2014) includes multiple ob-

jectives in sizing simulation, which are equally weighted, Cost of energy (CoE) and Loss of

power supply probability. These two objectives are linearly scaled and taken as constraints

in single-objective optimisation, making it converge faster. PSO finds global optima and

works efficiently on continuous functions, a key strength. Another case study in Kenya

(Fioriti et al., 2021) et al. take into consideration the uncertainties associated with elec-

tricity demand growth and component degradation over multiple years. To further account

for these uncertainties, a predefined scenario tree structure is utilised, allowing for differ-

ent capacity expansion strategies for each scenario to more accurately assess the potential

risk associated with demand growth and sizing.

ESCoBOx: ESCoBox is a decision support tool designed to assist rural mini-grid

planners, particularly those in low-income countries. It is composed of two sub-parts: a

disaggregated demand assessment tool and a battery modelling tool. Monte Carlo simu-

lations are applied to calculate disaggregated demand from individual appliances, tested

and validated through field experiments in Gambia. Smart metering was used to intro-

duce demand-side management plans to reduce peak demand. System sizing simulations

primarily rely on peak demand from the community. However, given that rural commu-

nities are generally smaller in terms of the number of households, the uncertainty in peak

demand is heightened. Here, demand-side flexibility can be advantageous in optimising

battery size and, ultimately, total system costs. EScoBox’s storage modelling tool incor-

porates the Wöhler curve for battery lifetime prediction, which calculates the battery life

cycle based on the depth of discharge. It is claimed to be more accurate than the linear

model of HOMER.

OSeMOSYS: (Open Source energy MOdelling SYStem) is a linear programming

model which can be used to analyse the development of the energy system of a coun-

try or region over a multi-year time horizon by identifying the least-cost energy system

that meets a set of constraints and goals. The objective function of finding the opti-

mum size of components is based on minimising the total investments required to support

decision-making on renewable financing. In the context of mini-grid sizing, OSeMOSYS

was implemented by Riva et al. (Riva, Colombo, & Piccardi, 2019) in India, which in-

cluded the present and future demand for electricity, the cost of different technologies and

the available renewable energy resources in the area. The strength of this model comes
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from the consideration of demand evolution based on a Gompertz curve for incorporating

technology diffusion. However, it does not consider the additional positive environmental

impact of using renewable mini-grids.

CLOVER: CLOVER (Continuous Lifetime Optimisation of Variable Energy Re-

sources) is a model developed to aid decision-making in the sizing of renewable energy

systems. It primarily has two objective functions, one minimising the Levelised Cost of

Used Energy (LCUE) (Discussed in detail in section 3.6) and the other reducing GHG

emissions. It uses hourly energy demand from individual appliances to create a yearly

demand profile with seasonal variations and growth in appliance ownership to create a

load profile over the system’s lifetime. For finding the optimum size of the system compo-

nents, CLOVER implements criteria for reliability in terms of blackouts. In other words,

it ensures the desired level of energy demand is met over the system lifetime while finding

the least-cost configuration for the mini-grid. CLOVER also considers grid supply and

mini-grids functioning in conjunction or stand-alone, accounting for both grid supply and

mini-grid for the frequency blackouts to optimise supply reliability. More details on the

methodology of CLOVER are discussed in section 3.6.

It is evident that planning tools have the benefit of being scalable and can assist in

identifying areas for electrification on a large scale, they may not accurately calculate the

optimal size of mini-grids. On the other hand, sizing tools offer a higher level of accuracy

when determining the appropriate size and composition of a mini-grid, but they are often

complex and challenging to scale for widespread use. Thus, both planning and sizing tools

play crucial roles in mini-grid modelling, with planning tools being more suited for broader

electrification plans and sizing tools being better suited for individual case studies. Despite

the availability of these tools, there are still research gaps that need to be addressed in

order to further enhance the widespread implementation of mini-grids to close the global

energy access gap. Based on this, we identify that the constant evolution of demand must

be taken into account during system design, with a greater emphasis on precision. Failure

to accurately consider this aspect could have significant consequences in terms of mini-grid

size and cumulative system costs. Furthermore, it is also crucial to consider incorporating

capacity expansion into system sizing in order to meet the evolving demand. Additionally,

resource efficiency plays a crucial role in the longevity of the system and should not be

overlooked during the design and planning process. Therefore, it is imperative that sizing

tools are readily available as open access resources, and are easily scalable to assess wider

geographic ranges. This would greatly speed up the process of mini-grid planning, while
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also ensuring accuracy and resource efficiency .

3.3 Demand estimation in mini-grid modelling

Electricity demand exhibits fluctuations that vary by season and time of day (Rallapalli &

Ghosh, 2012). Accurate forecasting of electricity demand is crucial for mini-grid developers

and operators. The main distinction in their needs is the forecast horizon. Developers

need to prioritise the long-term horizon while operators focus on medium to short-term

forecasts. Electricity demand forecasting can be classified into three categories: long-term,

medium-term, and short-term. Long-term forecasts are utilised for policy-making, system

planning and resource allocation. Medium-term forecasts aid in the planning of yearly

maintenance activities, storage management and energy demand management. Short-term

forecasts assist in the daily operation of mini-grids and electrical networks to efficiently

manage daily loads. In this chapter, we focus on demand estimations for the long term,

considering mini-grid energy at the early planning stage.

Accurately estimating the electricity demand of rural communities is a major challenge

in the design and sizing of mini-grid systems due to various factors, including data scarcity,

uncertainty and the intricate socioeconomic dynamics of rural communities (Riva et al.,

2018) (Van Ruijven et al., 2011). The scarcity of data makes it hard to know the patterns

of electricity consumption and total energy needs that helps in finding the optimal size

of components needed for a mini-grid. These complexities add an extra layer of difficulty

to the already challenging task of accurately estimating electricity demand in rural com-

munities, making it essential to carefully weigh the various factors before determining an

estimate. A review by Bhattacharyya et al. (Bhattacharyya & Timilsina, 2010) distin-

guished two main approaches for demand estimation in developing economies - top-down

and bottom-up. A top-down approach, such as econometric methods, makes use of aggre-

gated data at a national and/or regional level, which is generally available for open access

by Government agencies. These methods do not capture the complexities of the local

contexts, such as the prevalent urban-rural divide, the rate of technology adoption, and

energy transitions from traditional fuels (e.g. biomass). On the other hand, bottom-up

methods, for example, based on comprehensive household energy use surveys, allow for a

more granular and realistic representation of local demand, but they require substantial

data availability to capture the contextual situations in different regions. Therefore, it

is important to consider the pros and cons of each approach when estimating electric-

ity demand from a rural community, as both approaches have their own strengths and
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limitations.

Both researchers and mini-grid developers survey early adopters in a target commu-

nity to forecast long-term demand because household energy surveys closely represent the

energy needs in the rural community (Blodgett, Dauenhauer, Louie, & Kickham, 2017)

(GIZ, 2016). Moreover, surveying early adopters allows for the gathering of additional

information, such as the choice of appliances bought, the ability to pay for energy services

and expectations for energy access. Previous research has revealed a lack of consistency

between survey data and actual measurements or other data-based proxy methods used

to calculate energy access demand (Louie & Dauenhauer, 2016)(Hartvigsson & Ahlgren,

2018). Hartvigsson et al. (Hartvigsson & Ahlgren, 2018) compared interview-based load

estimations with actual monitored appliance-based load profiles in Tanzania and found

that the interview-based estimations resulted in overestimations of 48-117%. Blodgett et

al. (Blodgett et al., 2017) analysed energy-use survey data from 176 households in Kenya

and found that an evaluation of its suitability rarely accompanies technical design data

after installation. Although the use of surveys and interviews can be beneficial in gaining

a basic understanding of energy access, it is not always accurate in estimating long-term

energy demand growth (Blodgett et al., 2017) (Stevanato et al., 2020). Therefore, sur-

vey data needs to be combined with other methods, such as assuming a certain level of

growth in energy demand over a given period for medium-term or long-term energy de-

mand forecasts. This could be based on growth patterns observed in the past, national

plans, or global energy access targets, allowing for a more accurate and comprehensive

assessment of long-term energy demand. Applying these trends and scenarios of demand

growth can help reduce forecast uncertainty, but this typically necessitates the utilisa-

tion of complex mathematical optimisation techniques (Riva et al., 2018). To understand

energy access and demand growth comprehensively, a combination of both survey data

and other methods should be employed. More details on energy demand modelling are

discussed in chapter 4, section 4.2.

3.4 Mini-grid sizing

To ensure reliable and affordable energy access via mini-grids, it is crucial to size the

components of the system optimally because it has a direct impact on the total cost of

the system and the investments required, which in turn determines not only the price of

the electricity produced but also the quality of service over its lifetime(GIZ, 2016)(Fioriti

et al., 2018)(Akbas et al., 2022). Over-sizing or under-sizing a mini-grid system can have
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negative consequences as well. If the mini-grid is oversized, it can result in increased

investment and higher operational costs, as well as lower efficiency (Riva, Colombo, &

Piccardi, 2019) (GIZ, 2016). While under-sizing mini-grids may lead to unreliable supply,

blackouts, and reduced service quality, which can lead to customer dissatisfaction (Aklin,

Cheng, Urpelainen, Ganesan, & Jain, 2016) and higher operation and maintenance costs

(GIZ, 2016). Thus, the sizing of mini-grid systems implies a cost-reliability trade-off,

which might be influenced by estimated demand and/or the desired reliability of the

system. For example, Louie et al. (Louie & Dauenhauer, 2016) explored the incremental

cost of improving system reliability from 99% to nearly 100% for off-grid photovoltaic (PV)

systems in Malawi and found that this increases the cost by an average of 46%. Hence,

it is important to size the individual components of mini-grids optimally, and this can

be achieved by incorporating technological and socioeconomic complexities into mini-grid

planning (Bandi et al., 2022). In this chapter, we focus on solar mini-grids exclusively;

however, the modelling tool can, in principle, be generalised to include other sources.

Each tool discussed in table 2 exhibits a unique set of advantages over the others that

can be potentially distinguished by its consideration of the energy demand model and op-

timisation objectives. The focus of our research has centred around two specific aspects:

the ability to account for the dynamic nature of demand in community-oriented mini-

grids and a sizing optimisation which can consider a capacity expansion approach. The

majority of the modelling tools discussed for mini-grid sizing involve static or repetitive

demand, with only a few accounting for the likelihood of electricity demand growth over

time. Van Ruijven et al.(Van Ruijven et al., 2011) considered demand growth by creating

a bottom-up demand model that requires historical information, while Riva et al.(Riva,

Gardumi, Tognollo, & Colombo, 2019) employed endogenous factors such as household

income to soft-link energy demand growth and constructed multi-year load profiles. The

usage of these static profiles or elementary growth models may lead to a holistic assess-

ment of the energy needs of a community. CLOVER, however, enables the accounting for

demand evolution over granular periods and allows for tuning the rate of individual appli-

ance diffusion, potentially representing realistic scenarios of demand growth and thereby

enabling the accurate sizing of mini-grids. CLOVER has a few useful features and ad-

vantages over other tools. For instance, we can choose between two different optimisation

objective functions: reducing costs and/or GHG emissions of mini-grids over their entire

lifetime. Within CLOVER, we can design future electricity demand growth scenarios and

test capacity expansion in sizing optimisation to adapt to the growing demand, which is
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explored in depth in this study. It also enables the assessment of system performance over

a granular period (Sandwell, 2017) (Sandwell, Wheeler, & Nelson, 2017)15.

Moreover, the existing literature on mini-grid design has primarily relied on static fore-

casting of generation and storage capacity. There has been limited research on the sizing

of systems to accommodate future capacity expansion. According to Allee et al. (Allee,

Williams, Davis, & Jaramillo, 2021a), static forecasting involves one-off system sizing of

individual components of mini-grids and calculates one-time investment on mini-grids; in

other words, single investments for one-off installation. To overcome this limitation, the

authors recommended that future research should explore the techno-economic feasibility

of the modular mini-grid design. Stevanato et al.(Stevanato et al., 2020) have similarly em-

phasised the importance of considering planned expansions over two years*. Their study

resulted in modularly designed mini-grids that performed better economically than relying

on a single investment decision step. Hartvigsson et al.(Hartvigsson, Stadler, & Cardoso,

2020) explored the use of system dynamics in conjunction with the DER-CAM model to

incorporate capacity expansion in mini-grids in Tanzania. The authors demonstrated the

cost-effectiveness and efficiency of capacity expansion in mini-grids. To this end, we imple-

mented CLOVER simulations to optimise the size of solar mini-grids and investigate two

different sizing approaches, one-off installation of mini-grid versus a two-stage approach

with re-sizing of PV and storage after five years.

In addition to considering the demand growth and sizing optimisation to assess the

possibility of capacity expansion, CLOVER allows investigation into system performance

over its lifetime. This is rarely examined thoroughly at the planning stage using the models

discussed above. To this end, in this chapter, we aim to address the following research

questions:

• What is the initial electricity demand of a typical un-electrified rural community

(100 households) in India and how could this grow over time?

• How should mini-grid components be optimally sized to adapt to the growing elec-

tricity demands of rural communities in India?

• What are the benefits of two sizing approaches, i.e., one-off sizing versus capacity

expansion after 5 years?

15We also had advice available from the developers of the code during the analysis as this research

work was a collaborative approach
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• What are the system performance and quality of supply characteristics of cost-

optimised mini-grids over their lifetime?

In this chapter, we explore the electricity demand growth in recently electrified rural

communities in India and its impact on sizing solar mini-grids. Using Shahapur as a

case study, we determine cost-optimal mini-grid sizing to meet projected demand growth

by 2030. The study offers valuable insights for designing and deploying solar PV mini-

grids in rural India, investigating the effectiveness of incremental sizing for economically

sustainable energy solutions. The rest of this chapter is organised as follows: section 3.5

describes a pilot study conducted in rural India where solar mini-grid is installed recently.

The methodology implemented in CLOVER is explained in section 3.6. This is followed by

the Results, showing how demand growth scenarios and other parameters impact mini-grid

system sizing, as described in section 3.7. Then, we explain the efficacy of this strategy

to size mini-grid systems in Discussion section 3.8. We close the chapter by reiterating

our main findings in the Conclusion, in section 3.9, with a summary of future research

directions and suggestions on sizing strategies for mini-grid developers, practitioners and

researchers.

3.5 Rural household energy survey: a pilot study

In May-June 2019, we conducted a pilot study of five solar mini-grids in the state of Ma-

harashtra India. This case study examines the demographic and energy access patterns in

remote hamlets inhabited by marginalised communities16 living below the poverty Line.

These remote settlements typically comprise 30-50 households in each hamlet, and agricul-

ture is the primary source of income, supplemented by labour work and natural resources.

For this pilot study, we partnered with the organisation Gram Oorja 17. Gram Oorja

has built and installed more than 100 mini-grids in various rural and remote locations

across India. Gram Oorja follows a partly funded business model for solar mini-grid in-

stallations, where the upfront capital costs are covered by Corporate Social Responsibility

(CSR) grants and donations, while the recurrent operations and maintenance costs are

met through regular billing arising from each household’s electricity consumption. Bills

are collected on a monthly basis, and revenues are deposited into a village bank account

and managed by a democratically chosen village energy committee. A combination of a

16The population in three of the hamlets in Shahapur district had to migrate and settle here

when the Vaitarna and Tansa dams were being built in the late 1950s
17https://gramoorja.in/
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fixed fee and a per-unit tariff is charged to households with solar mini-grid connections.

A one-off connection fee is also collected at the beginning from each household to en-

sure users’ longer-term commitment. The cost of public lighting is included in the fixed

monthly fee, and villagers also make in-kind contributions in the form of labour for con-

struction, materials for installation, or land for the plant and control room. Gram Oorja

works with local NGOs and trusts to implement energy access projects and promote the

holistic, sustainable development of these communities.

We conducted 70 energy use surveys (Questionnaire available. see Appendix A.3.1)

at five different locations, including Darewadi, Vanvasipada, Talwada, Vadpada, and

Shiswadi, in May-June 201918. Darewadi is located in the Junnar district and has been

utilising a mini-grid system since 2012. This is the first mini-grid Gram Oorja installed,

while the mini-grid in Vanvasipada was installed in May 2016. A cluster of three hamlets,

Talwada, Vadpada and Shishwali, in the Shahapur district was provided electricity access

through solar mini-grids in March 2018. These five mini-grids were powered by mono-

crystalline silicon photovoltaic panels, with total capacities ranging from 2.8-14.4 kWp,

and were equipped with lead-acid batteries for energy storage. The mini-grids operated

in alternating current mode. Brief technical specifications for each mini-grid are provided

in Table 3. Each hamlet had a unique configuration that was tailored to meet the specific

needs and given the availability of the space. The systems were designed to ensure a

reliable power supply, and regular tariff collection generated a stable and constant stream

of revenue that could support the relatively high maintenance costs of the mini-grids.

Name of Place Households (Surveyed) PV Capacity (kWp) Battery capacity

Darewadi 38 (5) 9.4 48V, 750Ah

Talwada 58 (16) 14.4 48V, 1020Ah

Shiswali 41 (25) 9.9 48V, 750Ah

Vadpada 12 (9) 2.8 48V, 300Ah

Vanvasipada 41 (10) 8.8 48V, 750Ah

Table 3: Technical specifications of five hamlets with solar mini-grids

The primary objective of the survey questionnaire was to evaluate energy demand

after one year of access and to gain insight into the energy needs of the community

connected to the solar mini-grid. We gathered information on demographics, appliance

18The ethics application and approval letter for this pilot study are given in Appendix A.3.2
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Figure 3.2: Electricity access in rural India

ownership and time of use of appliances from 70 randomly sampled households in the five

communities. For ease of comparison, we normalised the total number of households in

each community to 100 for the estimation of long-term load profiles. For further analysis,

we focused on survey responses (n=50) from three hamlets located in the Shahapur

district (Talwada, Vadapad, and Shiswali), as these hamlets had received energy access

in the same month (March 2018), 15 months prior to the surveys conducted. The

survey responses revealed growth in average appliance ownership, usage hours for each

appliance and nominal power rating, as shown in Table 4. Some participants responded to

open-ended questions saying refrigerators were their aspiring energy need. Inconsistencies

were observed in the ownership and usage of other types of appliances, such as irons or

mixer grinders 19. Due to the difficulty in accurately calibrating the usage hours of these

appliances, only the appliances listed in Table 4 were considered for further calculations.

Figure 3.3 presents meter data from Talwada. It captures the effect of the three

seasons in India - summer, winter, and monsoon - on the hamlet’s energy use. Typically,

consumption peaks in the summer months of April and May and is low in the winter

months of December and January. The low consumption in March is due to it being the

first month of energy access. By January and February 2019, a growth in appliances was

19Only two households responded with iron and mixer grinder ownership
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Appliance

Type

Avg.

Ownership

(2018)

Avg.

Ownership

(2019)

Nominal

Power (W)

Usage

hours

(Summer)

Usage

hours

(Winter)

LED bulb 3 3.68 6 4.6 5

Television 0 0.3 20 4 4

Mobile phone 1 1.36 5 4 4

Fan 0 0.36 40 6 0-1

Radio 0 0.04 5 4 4

Refrigerator 0 0 220 2 1.8

Table 4: Appliance details

observed. Figure 3.4 shows the increment in median usage of electricity20 from 2018 to

2019 to be 33% in Talwada. Guided by this meter and billing data, we attempted to

design three electricity growth scenarios in a prospective (or hypothetical) hamlet that

gains access to electricity via a solar mini-grid.

3.5.1 Electricity Demand growth scenarios

Three scenarios for electricity demand were analysed to assess their effects on the sizing,

performance, and costs of mini-grid systems in rural India.

• Baseline scenario: The baseline demand is considered as the minimum electricity

consumption level in a household upon receiving access to a mini-grid for the first

time. Gram Oorja provided a demand stimulus package to all customers, including 4

LED bulbs and one plug point to charge mobile phones, along with the connection to

the mini-grid. With this, lighting and mobile charging defined the baseline electricity

demand for a prospective hamlet. This Baseline scenario aligns with the definition of

Tier 1 electricity access, as defined by the International Energy Agency (IEA) (IEA,

2020) and the World Bank’s Multi-Tier Framework (MTF) (Bhatia & Angelou,

2015), which is 76 Wh per household per day. The usage profiles were derived

from the time of use information of each appliance in the survey responses. An

average usage time per appliance was used to create a representative profile for the

20Note to self - Median is a better metric than mean in identifying patterns or trends in electricity

usage that captures the central tendencies in the data distributions
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Figure 3.3: Seasonality observed in monthly billing data from Talwada between 2018

and 2019

community21.

• Adaptive growth scenario: To estimate growing electricity demand, we employed

the Bass model (Bass, 1969) for innovation diffusion as described in Equation 1, to

define demand growth as a function of appliance growth. This model enabled us

to create adoption profiles of each appliance in each community over the ten-year

period of mini-grid access analysed.

F (t) =
1− exp (−(p+ q)t

1 + ( qp) exp (−(p+ q)t
(1)

Equation 1 calculates the rate of appliance purchase, F(t), based on the number

of early adopters, p, and buyers who imitate their peers, q. We made an informed

guess of the values of p and q for individual appliances based on field observations

on households’ purchase decisions and appliance ownership inputs from surveys. We

also use different growth rates for each appliance, as the adoption of large appliances

21Household sample size, n=50
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Figure 3.4: Total growth in electricity usage calculated based on monthly bills between

March 2018 and December 2019

such as refrigerators is slower than that of appliances like TVs or fans. More details

on the coefficient values are given in Appendix A.3.3.

• Target Scenario: Following IEA guidance on energy access and the SDG 7 target

by 2030(SE4all, n.d.), we constructed a scenario for generalised residential electricity

consumption in rural households for the ten-year period, hypothesising that the

demand is immediately high and static throughout this period. This scenario reflects

a conservative level of demand designed to meet electricity needs in rural Indian

communities by 2030. The demand in this scenario (779 Wh per household per day)

is equivalent to the upper end of Tier 2 of the World Bank’s Multi-tier framework

(Bhatia & Angelou, 2015). In other words, if households living below the poverty line

receive energy access to tier 1, the Target scenario hypothesises that all households

should transition to tier 2 (upper) within 10 years or by 2030.

Following these criteria for growth, we generated stochastic load profiles for a prospec-
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tive community of 100 households at an hourly resolution for a ten-year period 22. The

Baseline load and Target load set a lower and upper bound of consumption levels, re-

spectively, whereas the adaptive scenario load profile attempts to express a more realistic

representation of latent demand from an unelectrified or recently electrified community.

Evidently, the rate of growth can differ greatly among communities; as such, we performed

a sensitivity analysis by varying the appliance adoption coefficients for each appliance and

calculated the estimated 10-year load profiles for different rates of adoption, including

slow, medium and fast. A community scale load profile was generated using a bottom-

up method, as discussed in the next section. This method incorporated daily utilisation

profiles obtained from time-use data and supplemented with growth trends derived from

appliance ownership data.

3.5.2 Stochastic load profiles

We calculated load profiles by analysing survey data according to the following steps.

1. Consider the number of appliances in the community, and the times of usage, from

surveys.

2. Produce a utilisation profile for each appliance.

3. Stochastically generate a profile of the number of appliances that are in use at any

given time.

4. Calculate the load profile for each appliance.

5. Calculate the total load for all appliances in the community.

The number of each appliance of a given type in use at a given time in the community

is represented by N i(t). This can be derived from the average ownership found from

the surveys and the community size and can incorporate growth in ownership rates. The

utilisation profile of an appliance is defined to be the probability that it is in use and is given

by U i ϵ [0, 1]. The utilisation profile represents the typical average usage of each appliance

of a given type across the community, assuming each device is used independently and can

vary between days and months of the year. The number of appliances of each type used by

the community is given by N i
T(t). This is generated stochastically for each time-step of

the simulation period, from values drawn at random from a binomial distribution given by

2210-year period was chosen for the target scenario being capped at 2030
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Bi(t)(N i(t), U i(t)). From the number of appliances in use at a given time and the nominal

power of each appliance type W i(t)), the total load Ei(t)) resultant from each appliance

type is given by:

Ei(t) = W i(t) ∗N i
T(t) (2)

Thus, the total load of the community across all appliance types, ET(t), is given by:

ET(t) =
∑
i

Ei(t) (3)

Tables 15, 16 and 16 in Appendix A.3.3 show the inputs for each demand growth

scenario to calculate N i(t). The rate of diffusion of each appliance plays a major role in

determining the number of appliances owned by the community and, consequently, the

total community load profile. The values of the coefficients innovation (p) and imitation

(q), as stated in Equation 1, ultimately influence the rate at which the community adopts

each appliance. This rate can be influenced by a variety of factors, such as the cost

of appliances (Richmond, Agrawal, & Urpelainen, 2020) and the level of education as

well as gender roles(Dhanaraj, Mahambare, & Munjal, 2018). In practical terms, these

values represent households’ appliance purchase decisions over time, which is hard to

predict. For the baseline load profile, we considered appliances that were part of the

demand stimulus package provided by Gram Oorja and growth in appliance adoption

was kept at zero. In the adaptive and target scenarios, a refrigerator was included as

an additional appliance that households may acquire in the future. The usage profile of

refrigerators was taken into account based on guidance from the literature (UK Aid, 2019)

and smart meter data recorded for the refrigerator use by Prayas group (Prayas, 2021).

We also considered seasonality by varying the hours of usage of lights and cooling devices

between the summer and winter months, as summarised in Table 423. Our current study

only focuses on domestic load evolution by considering load growth as a function of the

growth in appliance ownership within households rather than an increase in the number

of households connected to the mini-grid, an additional number of households driven by

population growth/migration or appliances used for income generation. In the following

section, the resultant stochastic load profiles for the community scale are presented and

discussed in detail.

23Some assumptions on this are made based field observations and based on conversations with

community - the season at the time of survey was peak summer
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Demand growth scenarios will allow developers and practitioners to account for realistic

growth rates comprehensively by considering the S-curve adoption trend of appliances

and incorporating these into optimisation tools to improve system sizing. Additionally, to

increase the accuracy of future demand estimates, it is also preferential to consider specific

factors such as population growth, economic development (for example, the ownership of

productive appliances and the revenue derived from their use) or changes in energy policies

that could affect adoption rates of energy services. Furthermore, data from previously

electrified villages can be used to inform grounded assumptions about future demand

growth. Ultimately, this will reduce uncertainties surrounding system sizing and the costs

associated with off-grid electrification projects.

3.6 CLOVER optimisation for sizing mini-grid

In this section, we describe the methodology used to size a mini-grid using CLOVER

optimisation. The diagrammatic representation presented in Figure 3.5 consists of three

interconnected modules: a load profile (demand growth), an optimisation for sizing, and

system simulations. The load profile focuses on expected loads derived from survey data

and projected for a ten-year period. These load profiles are then linked with the Optimi-

sation module for sizing, which requires boundary conditions in terms of the desired level

of reliability and techno-economic data for generation and storage. The third module is

composed of two levels: one considering technical inputs for storage system specifications

and the other extracting real-time meteorological data required for renewable generation,

such as solar, to extract system performance. These modules take two distinct sets of in-

puts: (a) inputs specified by the users (represented by solid arrows) and (b) inputs derived

from energy system simulations (dashed arrows). The user-specified inputs encompass a

range of parameters, including the financial and technical characteristics of the system.

Full aggregated and anonymised data and modelling techniques used in this study are

openly accessible at (https://github.com/rjsayani/Clover-analysis).

3.6.1 Demand growth scenarios for sizing approach

We implemented CLOVER simulations to investigate a community load profile of a total

of 100 households connected to a mini-grid for three different demand growth scenarios, as

discussed in chapter 2. To characterise current and future electricity demand, baseline and

target demand scenarios set the lower and upper bound of the mini-grid size. Demand is

considered static in nature in both these scenarios and thus this approach is modelled as a
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Figure 3.5: Overview of CLOVER model adapted from (Sandwell et al 2017a).

CLOVER modules are divided into blocks: (a) energy demand (b) system sizing

optimisation, and (c) system simulation.
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one-off installation (referred as one-step sizing in this chapter), while the adaptive scenario

involves resizing the system after five-years, allowing for a capacity expansion (referred as

multi-step sizing) based on logistic demand growth. One-step sizing optimisation finds the

cost-optimum system prior to mini-grid installation, considering a system to be ’sufficient’

to meet the electricity demand over its entire ten-year lifetime. Conversely, multi-step

optimisation is an incremental sizing approach which allows for the implementation of the

’sufficiency’ criteria after five years of mini-grid operation, to resize the system to meet

an increased demand. To assess the implications of each demand growth scenario on total

system costs and performance we tested them for respective sizing approaches as shown

in Table 5.

Scenario name Location
Sizing

approach

Demand

growth

Iteration

period

(years)

BS-SH Shahapur One-step Static 10

Adapt-SH-mstep Shahapur Multi-step S curve 5

Adapt-SH-onestep Shahapur One-step S curve 10

Target Generic One-step Static 10

Table 5: Scenario specifications

3.6.2 Optimisation for sizing

Clover utilises a heuristic search algorithm and sufficiency criteria to identify the least cost

systems. The algorithm works by following single-line optimisation in a two-dimensional

search space consisting of PV and battery sizes to find the minimum size of a system that

is required to meet the estimated demand. This process is illustrated in figure 3. Once

the minimum size is found, a sufficiency criterion is employed to define the permissible

threshold for supply reliability. This is then optimised to locate the least-cost system

available. (Sandwell, 2017)(Sandwell, Ekins-Daukes, & Nelson, 2017). The permissible

threshold for blackouts can be defined as a proportion of the time in a day that a blackout

is allowed, i.e. when 95 % is required, 1.2 hours of blackouts in a 24-hour period is the

permissible threshold. The optimum system size is that which must meet this sufficiency

criterion i.e. the minimum reliability specified and for which the Levelised Cost of Use

Electricity(LCUE) is the lowest. These two metrics are described in detail in the next

section.
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Figure 3.6: Illustration of heuristic search optimisation for finding cost-optimal sys-

tem size

To find optimum system components, several techno-economic inputs are needed,

which are system specific. This includes technical inputs such as battery C-rate and

conversion efficiency as well as finance inputs, including equipment costs, operation and

maintenance (O&M) costs, discount rates and cost reductions of PV and battery over

time. GHG inputs are composed of embedded emissions from various components of the

system and those offset from substituting fuels such as kerosene. We generated inputs on

demand and energy supply balance from energy system simulations in CLOVER. Further

details of the optimisation method can be found in (Sandwell, Ekins-Daukes, & Nelson,

2017). All system-related techno-economic inputs considered in this study are listed in

table 5.

3.6.3 Metrics to assess mini-grids

In order to perform a comprehensive analysis of costs, we incorporated two financial in-

dicators computed from the CLOVER optimisation. The first metric, cumulative system

costs ($), includes both the equipment costs and operational and maintenance (O&M)

costs over the system’s lifetime. The second metric, LCUE ($ per kWh), differs from the

conventional levelised cost of electricity (LCOE) in that it explicitly takes into account the

levelised cost per unit of electricity consumed by the community, rather than the electric-

ity generated by the system as a whole. This distinction is particularly important when

evaluating systems that allow for consideration of different reliability levels. As presented
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in Sandwell et al.(Sandwell, Ekins-Daukes, & Nelson, 2017), the LCUE is given by:

LCUE =

∑N
n=1

In+Mn+Fn
(1+r)n∑N

n=1
En

(1+r)n

(4)

LCUE is the discounted sum of all capital investment In, O&M costs Mn, and fuel

costs Fn (which is zero in this case) over each year, divided by the sum of the discounted

energy En that is used (demand that is met) in each year. rn is the discount rate for each

year and N is 10 in this study.

In addition to LCUE, the reliability of the system was taken into account when finding

a cost-optimal mini-grid size. A threshold for blackouts (95 % reliability) was set, which

denotes the level of electricity demand that must be met per day. This reliability threshold

can have a considerable influence on the total size of the mini-grid, particularly on storage

units. Further information regarding the optimisation process in CLOVER can be found

in Baranda Alphonso et al.(Baranda, Sandwell, & Nelson, 2021). After the cost-optimal

system size is obtained for each scenario, we assessed the system performance at an hourly

resolution over the system’s lifetime using energy system simulations, as described in the

next section.

3.6.4 Energy system simulations

Energy system simulation calculates an energy balance EB in mini-grids on an hourly ba-

sis. In this simulation, first, the solar power generation profile is derived for the ten-year

period based on historical solar irradiance data taken from MERRA2 using the renew-

ables.ninja API (Pfenninger & Staffell, 2016). Then, the energy balance EB is calculated

by subtracting total energy demand ED (see Equation 2.6) from the solar energy generated

for a specified system defined by EG.

EB(t) = EG(t)− ED(t) (5)

The energy balance also considers the storage profile, which is calculated based on:


Es(t) = S(Cin) for EB(t) > S(Cout)

Es(t) = (−S(Cin) for EB(t) < −S(Cout)

(6)

In this equation, the storage energy flow Es is calculated based on the storage capacity

S and the C rates of lead-acid batteries, which is denoted as Cin and Cout. The first case

represents the situation where the energy in the battery EB is greater than the storage
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capacity minus the Cout rate, while the second case represents the opposite scenario where

the energy in the battery is less than the negative of the storage capacity multiplied by

the Cin rate 24. Correspondingly, the simulation ensures storage energy flow for a set

bound of capacity for a given threshold of reliability in the energy balance; any surplus

energy is then considered as unutilised. This unutilised energy, as well as the unmet

energy calculated from the energy balance, is then evaluated to assess the performance of

the system in both one-step and multi-step adaptive scenarios. Energy simulation uses

technical specifications of the system, such as C-rates of lead-acid batteries, state of charge,

depth of charge, conversion efficiency, battery life cycles etc. The inputs considered in the

calculations are given in Table 6 with related references.

Table 6: Technical inputs considered in CLOVER optimisation

Technical parameters Value Units Notes

PV azimuth 180 Degrees From north

PV tilt angle 29 From horizontal

Battery depth of discharge 40 % Observation

Battery C-rate PV lifetime 0.33 20 — Years
Agarwal et al (2013)(N. Agarwal, Kumar, & Varun, 2013)

IRENA (2020, 2021) (IRENA, 2021)

Battery lifetime 1000 Cycles
Institute for Transformative

Technologies (2017)(Institute for Transformative Technologies, 2017)

Battery conversion efficiency 95 % Sen and Bhattacharyya (2014)(Sen & Bhattacharyya, 2014b)

Financial parameters Value Units Notes

PV module 372 $ per kW Loom Solar (2022)25

PV module O&M 7.45 $ per kW
2 % capital costs

(Chambon et al 2020)(Chambon, Karia, Sandwell, & Hallett, 2020)

PV cost decrease 10 % IRENA (2020, 2021)(IRENA, 2021)

Battery storage (Lead-acid) 150 $ per kWh
Institute for Transformative

Technologies (2017)(Institute for Transformative Technologies, 2017)

Battery storage O&M 1.50 $ kWh per annum
1% of capital costs;

own assumption

Storage cost decrease 4 % Schmidt et al (2017) (Schmidt et al., 2017)

Connection cost 30 $/Household Field observations

Misc Cost 100 $ per kW

Includes logistics,

installation and maintenance

costs not covered above.

Values are based on assumptions.

Discount rate 4.25 % p.a. As of October 2021 (FRED 2021)(FRED, 2021)

24further description of the storage energy calculations available in Beath et al.(Beath et al.,

2021)

71



Parameters Low value Central value High value

Demand

growth rate

Slow

growth rate

(S-curve)

Medium

growth rate

(S-curve)

Fast

growth rate

(S-curve)

Logistics

cost

Misc. costs:

50 $ per kW

Misc. costs:

100 $ per kW

Misc. costs:

200 $ per kW

Iteration

period

5 steps,

2 years

(Short iteration

period)

2 steps,

5 years

(multi-step)

1 step,

10 years

(one-step)

(Longer

iteration period)

Blackouts
99%

(Less blackouts)

95%

blackouts

90%

(More blackouts)

PV -

battery cost

(rate per year)

PV cost decrease: 20%

Battery cost decrease: 8%

(Lower cost)

PV cost decrease: 10%

Battery cost decrease: 4%

PV cost decrease: 5%

Battery cost decrease: 2%

(Higher cost)

PV -

battery

degradation

(lifetime)

PV lifetime: 10 years

Battery lifecycles: 1000

Battery lifetime loss = 40%

(Lower system lifetime,

more degradation)

PV lifetime: 20 years

Battery lifecycles: 1000

Battery lifetime loss = 20%

PV lifetime: 30 years

Battery cycle lifetime (cycles): 1000

Battery lifetime loss = 10%

(Higher system lifetime,

less degradation)

Discount

Rate

Discount rate lower

3.35%

Discount rate current

4.25% (Oct 2021)

Discount rate higher

5.15%

Table 7: Description of sensitivity analysis parameter variations

3.6.5 Sensitivity analysis

Lastly, we conducted a sensitivity analysis to understand the impact of seven parameters

on system costs in each sizing approach. These parameters are demand growth rate,

logistics costs, iteration period (or system re-sizing frequency), the probability of blackouts,

solar PV and battery cost, and degradation,and discount rate (as presented in Table

7). The ratio of system cost in the multi-step approach to system costs in the one-

step approach indicates the cost-saving potential of modular sizing with corresponding

parametric values. We then examined unutilised and unmet energy in depth for one-step

and multi-step adaptive scenarios to reassess the resource efficiency of multi-step sizing.

3.7 Results

In this section, we present four different temporal variations of load profile generated for

a community of 100 households. These include: i) the daily average load curve for each
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scenario, ii) the monthly average load profiles to demonstrate seasonality, iii) the S-shaped

growth curve over a ten-year period to examine adaptive growth, and iv) the impact of

growth rates on the monthly average load, through sensitivity analysis. As seen in Figure

3.7, the peak load occurs during the evening hours in all scenarios. This peak is primarily

caused by the increased use of lights and TVs, as well as the use of ceiling fans and

refrigerators during the summer months. The load curves for both the baseline and target

scenarios remain static throughout the ten years, as these scenarios depict the lowest and

highest levels of demand taken into consideration in the study.

Figure 3.7: Daily load profiles in three scenarios

In constructing the stochastic load profile, the effect of seasonality on appliance usages,

such as refrigerators and fans, which are influenced by ambient temperature, was taken

into account. As seen in Figure 3.8, where the seasonal variation in the load is evident

by comparing the winter (November-January) and summer months (April-June), in which

refrigerators and fans account for more than half of the total demand. While seasonal

variations were also considered in the baseline and target loads, the variations are more

visible in the target load than the baseline due to ownership of the refrigerator. Similarly,

usage of high-power consuming appliances such as refrigerators, fans, and TVs increases

over time, and the consumption level of the adaptive scenario is similar to the target,

shown by the S-curve yearly growth in Figure 3.9. These load curves indicate that the

total load varies significantly with changes in appliance ownership.
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Figure 3.8: Seasonality in three scenarios

Figure 3.9: S-shape growth over lifecycle

Figure 3.10 illustrates the load evolution over a ten-year period at slow, medium and

fast rates of appliance adoption. As per our demand characterisation, large cooling ap-

pliances such as refrigerators are bought less frequently than others in rural India, due

primarily to their cost, whereas mobile phones and lights are adopted immediately upon
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Figure 3.10: Three different growth rates in the adaptive growth scenario

a household receiving access to electricity. The community load profile at each growth

rate also exhibits seasonal variation, which is dominated by the use of refrigerators and

ceiling fans. Based on the analysis of meter and billing data and median electricity con-

sumption from Talwada (See figure 4), we found that the medium growth curve is more

representative. This growth rate was found to be consistent with previous studies on

understanding factors that drive domestic appliance ownership in rural India (Aklin et

al., 2016)(Richmond et al., 2020). Hence the medium growth scenario was considered for

further analysis of sizing mechanisms.

3.7.1 System size

The outcome of the cost-optimised mini-grid size for each load scenario is shown in Figure

3.11. To ensure the system’s reliability, the blackout frequency was set to 5%, and the

resolution for PV at 1 kWp PV and battery at 5 kWh during the optimisation process. In

terms of practicality, the resolution indicates that as the load evolved, the PV and battery

were topped up by a unit of 1kWp of PV panel and 5kWh of batteries. This approach

allows us to choose a cost-effective solution for a permissible level of blackouts.

The size of the actual mini-grid installed in Shahapur ranged from 2.88-14.4 kWp PV

and 14.4–48.96 kWh battery. However, these systems were designed for a different number

of households, as specified in table 3. These results are normalised for a community of
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Figure 3.11: System size, for both solar PV (kWp) and battery (kWh), for each

scenario at the beginning of the period. The number beside each square/bubble rep-

resents the ratio of battery to PV, indicating the balance between daytime and night-

time load. The reliability of the system is 95% in all scenarios.

100 households. The baseline demand remains constant and minimum during the entire

simulation period. Hence, the requisite capacity of the system to meet this demand is

the lowest among all scenarios. For this scenario, the optimal configuration comprises a

5 kWp PV and a 40 kWh battery system. Conversely, the target demand exhibits the

highest value and requires the largest capacity system, 31 kWp PV and 160 kWh battery,

to satisfy this demand. As shown in figure 3.11, squares represent the one-step sizing

approach, and connected circles depict the multi-step sizing approach for the adaptive

growth scenario. The multi-step approach divides the optimisation into two periods of

five years each and adjusts the system capacity at the midpoint to meet the growing

demand. The one-step and multi-step sizing approaches result in similar sizes at the end

of the investigated period. However, it is the size of storage at the beginning of the first

5-year period in multi-step, which is 75 kWh, is significantly smaller than in the 10-year

period, which is 140 kWh. In simple words, the large storage energy may not be fully

utilised until the demand matures.
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3.7.2 System cost

The optimisation results gave insights into the impact of system size on overall costs and

capital required to provide electricity access through solar mini-grids. These costs include

costs of individual components as well as their O& M over the system life cycle. Figure

3.12 shows the total system costs and LCUE ($ per kWh) of the optimised system size

for each scenario. The findings demonstrate that adopting a two-step mini-grid sizing

strategy can yield cost savings of up to 12% in total system costs. This is evidenced by

figure 3.12, which indicates that the LCUE at the end of the assessment period is lower

for the multi-step sizing approach in comparison to the one-step method. For example,

the LCUE is 0.34 USD per kWh in the multi-step sizing versus 0.37 USD per kWh in the

one-step sizing approach. This finding suggests that when considering the whole system’s

lifetime, capacity expansion is more affordable than one-off installation. Interestingly, the

LCUE of the largest system (target scenario) is the lowest. This is primarily due to the

underlying assumption that demand is consistent from the beginning of the simulation

period. Thus, the design of the system is well matched to the demand throughout the

system’s lifetime, resulting in consistently high utilisation and, therefore, a lower LCUE.

To increase affirmation of the apparent cost-saving potential, a sensitivity analysis of

seven different parameters on total system costs in each sizing approach is shown in figure

3.13. The values of these parameters can be found in table 7. We analysed the low,

central, and high values of these parameters for the adaptive demand growth scenario in

Shahapur. The results present the cost ratio of multi-step sizing to one-step step sizing for

demand growth rate, logistics cost, iteration period, reliability (or frequency of blackouts),

PV and battery cost and PV and battery degradation and discount rate.

This analysis reveals that multi-step sizing offers potential cost savings in comparison

to one-step sizing for all parameters examined. Variations in demand growth rates and

cost reductions in solar PV and storage have a significant impact on total system costs, as

demonstrated in Figure 3.13. Conversely, changes in logistics costs show less sensitivity.

By increasing the iteration period from a single ten-year step to five two-year steps, we dis-

covered a cost-saving potential of 9%. Total system costs are higher with fewer blackouts,

which corresponds to greater reliability. The cost-saving potential of multi-step sizing is

greater still as the target reliability approaches 99%. Higher values of solar PV and bat-

tery lifetime, which result in less degradation, show less cost sensitivity than lower values.

The length of the investigation period, which is 10 years 26, may explain this finding, as

26The PV system is expected to last 20 years. We analysed the mini-grid utilisation for 10
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Figure 3.12: The total costs and LCUE for each scenario. The bars on the primary

vertical axis (left) represent the cumulative costs of the resultant optimum system

for each scenario, whilst the secondary vertical axis (right) shows the LCUE ($ per

kWh). Multi-step costs are divided in two columns corresponding to the first and

last five years of the ten year period. The sum of these columns represents the total

cumulative costs for multi-step scenarios.

it is shorter than the expected solar PV lifetime of 20 years. Nonetheless, the analysis

revealed a close interdependence between cost sensitivity and degradation.Similarly, when

considering higher discount rate (5.15% ) compared to the central scenario (4.25%) the

cost-saving potential of the multi-sizing approach is approximately 9%.On the other hand,

if the discount rate decreases to 3.35 % the savings can be around 6%. These results

confirm the relationship between cost-saving potential, system performance and reliability

levels. Consequently, we conducted a further investigation into the implications of different

sizing approaches on system performance, as presented in Figures 3.14 and 3.15.

years with the assumption that demand growth would stabilise after this period or that a specific

demand target would be reached by 2030.
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Figure 3.13: Sensitivity analysis of seven parameters, the red dot represents the

central scenario for the mini-grid in Shahapur (table 8)

3.7.3 System performance

The performance of the system over a 10-year period is shown in Figure 3.14, including

the hourly details of unmet energy (Fig. 3.14(a)) and un-utilised energy (Fig. 3.14(b))

throughout the simulation period for the multi-step Shahapur scenario. As indicated by

Figure 3.14(b), unutilised energy is relatively high during the initial two years of each

step (Years 1-2 and 6-7) as demand rises and battery capacity deteriorates over time.

Additionally, intermittent occurrences of supply shortages are depicted in Figure 3.14(a),

with fewer instances observed during the initial three years of the simulation but an

increase in the final years of each step due to demand growth. Notably, brownouts or

blackouts are most often observed between 2 am and 7 am, after midnight, and to a lesser

extent during peak demand periods in the evenings. While during the summer months

these brownouts could cause thermal discomfort if the community is not able to use cooling

appliance like ceiling fans, whereas in winter months these brownouts or blackout might be

acceptable. Furthermore, the unmet energy profile (Figure 3.14(a)) demonstrates a visible

inverse correlation with seasonal load variations, with higher supply shortages experienced

during the summer months when electricity demand is greater.

Figure 3.15 demonstrates a comparison of system performance regarding one-step mini-

grid sizing. Notably, no instances of brownouts or blackouts occurred until Year 5. This
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Figure 3.14: System performance of multi-step sizing for the adaptive growing de-

mand in Shahapur, at an hourly scale per year over a ten-year period, with 95%

reliability. (a) unmet energy in kWh and (b) Unutilised energy in kWh for a central

scenario.
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can primarily be attributed to the excessive storage capacity and minimal electricity de-

mand at the initial stages of the period, as illustrated in Figure 3.15(a). However, as

the batteries degrade over time and demand increases, the unmet load rises, particularly

during the summer months of Years 9 and 10, which is clearly evident in Figure 3.15(b).

The equivalent profile of the state of charge of storage over the system lifetime is demon-

strated in Figure 7.6 in Appendix A.3.4. It is essential to consider that battery lifecycles

typically span around 1000 cycles. The influence of this cycle count becomes apparent

in the storage dynamics heatmap (refer to Figure 7.6 in Appendix A.3.4), where unmet

demand begins to rise during peak hours in year 3. However, it’s crucial to note that this

value isn’t fixed at 1000 cycles, as it heavily depends on the state of charge and depth

of discharge—meaning that not all cycles fully discharge the batteries. Additionally, we

have demonstrated the effect of battery degradation by altering the cycle count in the

sensitivity analysis. This alteration indeed impacts system costs, but notably less so than

the impact of demand growth.

Another crucial aspect is the consideration of resource efficiency concerning the energy

balance between unmet energy and un-utilised energy. The energy balance acts as a crucial

indicator of potential brownouts and blackouts during the system lifetime. The investiga-

tion reveals that the one-step sizing approach results in 32% more un-utilised energy over

the entire period in comparison to multi-step sizing, as shown in Figure 3.16. The energy

balance in mini-grids draws attention to the resource efficiency contrast between both

sizing approaches. Intriguingly, the one-step approach demonstrates an increase in unmet

energy and a decrease in un-utilised energy, while multi-step sizing the mini-grid adapts

to the growing demand, thereby achieving an energy balance. These findings provide use-

ful insights into the system performance of cost-optimal mini-grids while highlighting the

implications of future growing demand, as shown in figure 3.16.

3.8 Discussion

The implementation of a modular or multi-stage sizing has the potential to achieve cost

savings, in comparison to a one-step sizing approach, in terms of total system costs and

LCUE during the simulated period, as demonstrated in the results section. This obser-

vation is consistent with earlier studies by Stevenato et al.(Stevanato et al., 2020), which

revealed that the utilisation of a multi-year formulation and capacity expansion strate-

gies enabled the optimisation process to arrive at a more cost-effective solution. Similarly,

Fioriti et al.(Fioriti et al., 2021) advised the adoption of multi-year approaches over single-
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Figure 3.15: System performance of one-step sizing for the adaptive growing demand

in Shahapur, at an hourly scale per year over a ten-year period, with 95% reliability.

(a) Unutilised energy in kWh and (b) unmet energy in kWh for central scenario.
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(a) Un-utilised energy

(b) Unmet energy

Figure 3.16: (a) Un-utilised energy and (b) unmet energy summed over a year in

Shahapur mini-grid with different sizing approaches for the central scenario. The

vertical dashed line represents the capacity expansion undertaken mid-point in year

5 for multi-step sizing. Total unutilised energy over the system lifetime in one step

is 155,204 kWh compared to 117,152 kWh in multi-step. Total unmet energy in

multi-step is 7511 kWh compared to 9555 kWh in one-step.
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year formulations, as they can cover a broader range of design factors. Our investigation

suggests that the main cost savings are linked to equipment expenses, as O&M costs, as

shown in Appendix A.3.5. Figure 7.5. Thus, one of the advantages of the multi-step siz-

ing strategy is its ability to reduce expenses on depreciating assets. Although a one-step

sizing approach may present advantages such as lower unit costs via bulk purchasing and

reduced field visits for capacity expansion in later years, careful consideration of O&M

costs is required in future modelling attempts, as accurately predicting transport costs is

challenging because they are influenced by exogenous factors such as road networks and

fuel costs. However, our results have revealed that the trade-off between cost and reliabil-

ity becomes increasingly steep when reliability exceeds 99%, as previously noted by Lee et

al. (Lee, Soto, & Modi, 2014), Sandwell et al. (Sandwell, Wheeler, & Nelson, 2017), and

Chambon (Chambon et al., 2020)

Results showed that the multi-step sizing approach performed better than the one-step

approach in terms of energy generation and usage. Specifically when facing increasing

demand in later years. The one-step approach leads to more unmet and unused energy

compared to multi-step sizing. The contrasting results on system performance, particularly

on energy balance, as illustrated in figures 3.14 and 3.15, demonstrate the implications of

adopting different sizing approaches in mini-grid design. The technology chosen for solar

PV and battery in our study could potentially explain the observed system performance.

Notably, most brownouts or blackouts occurred during the night (between 12am and 7am)

and occasionally in the evenings of summer months when batteries were discharged, similar

to the findings reported by Lee et al. (Lee et al., 2014) in a solar mini-grid in Mali.

Nevertheless, the impact of blackouts on customer satisfaction may be less significant if

they occur during the middle of the night in the winter months. However, the unavailability

of services to meet peak demand in summer evenings may have a more significant effect on

customer satisfaction, particularly for cooling needs, based on the use of ceiling fans in this

region. Further research should consider additional parameters, such as days of autonomy,

which were excluded from our analysis. Future studies might also usefully examine the

demand for potential applications of electricity for clean cooking, such as electric cookers.

We recommend designing mini-grids with higher reliability levels to accommodate clean

cooking loads, which are a crucial everyday demand in mini-grids that have not yet been

connected.

Mini-grid developers and donors have the opportunity to realise cost savings through

the use of multi-step or modular sizing techniques, but such an approach may have financial
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implications that should be carefully considered. Specifically, in order to accommodate

future capacity expansion, it would be necessary to reserve resources or raise new funds.

Failure to do so could result in limited access to electricity in the community from Years

5-10 if the second planned installation is not completed. In order to optimise modular

sizing, it is recommended that demand be measured over time to ensure that developers

can adjust their mini-grids accordingly, should demand to grow faster than anticipated.

Conversely, the decision to oversize the mini-grid at the outset of a project to meet a target

demand carries the risk of misspending investment if demand fails to meet expectations.

When designing mini-grids, careful attention should be paid to demand growth rates

and the cost decline associated with solar PV and storage*27, as the sizing approach chosen

(over-sizing or modular) can have a significant impact on costs. It is also recommended

that a life cycle perspective be employed when designing future mini-grids, as this per-

spective is critical not only for considering the financial implications of different sizing

approaches but also for assessing the environmental impacts of various electricity sources.

For instance, research has shown that solar PV and battery systems in India can have

a carbon intensity that is ten times lower than diesel-only systems (Beath et al., 2021).

Similar methodologies have been applied to investigate the cost and emissions intensity

implications of mini-grid design in India (Few et al., 2022).

3.9 Conclusion

3.9.1 Summary and Conclusion

Estimating future electricity demand in the off-grid sector is fraught with uncertainty.

Here, we implemented the Bass diffusion model, which is a practical approach that can

make realistic demand growth projections when market potential information, such as the

number of appliance adopters, is known or estimable. While these values are difficult to

predict accurately, especially in recently electrified rural communities, multi-stakeholder

engagement with the target community and developers’ previous experience in recently

electrified villages could improve its estimation. Such engagement should involve local

stakeholders and experts on electrification and energy access. Through such engagement,

it is possible to identify the needs and preferences of the local community and their will-

ingness to pay for different energy services. Additionally, understanding the area’s socioe-

conomic dynamics can help inform projections about future electricity demand.

27*We have considered lead-acid batteries in this study, but some of the battery technologies

such as lithium-ion, costs are not declining further since last year
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In this study, we examined various demand growth scenarios, two sizing methods,

and the cost-sensitivity of seven parameters for mini-grid design for representative Indian

rural communities of Shahapur. Our analysis revealed that demand growth estimates

were a more significant driver of system size and had a higher impact on costs compared

to the baseline initial demand. Furthermore, a modular approach to mini-grid design,

which involves adjusting installed capacity according to demand growth rather than ini-

tial over-sizing, showed potential for cost savings and improved resource efficiency from

a techno-economic perspective. These cost-saving opportunities increased significantly as

mini-grids were designed for higher reliability levels. Our results indicated that using a

modular approach to size mini-grids could lead to potential cost savings of up to 12%,

compared to a static optimisation approach. Moreover, modular sizing could help acceler-

ate electrification efforts by providing basic access in more villages initially and adjusting

capacity expansion in subsequent years instead of installing oversized systems in fewer vil-

lages. However, practical considerations, such as funding availability and related business

models, may influence the sizing approach. It is crucial to have a detailed understanding

of the available appliances and their diffusion prospects in the target community to en-

hance demand growth projections. Our methodology is relevant to solar PV and battery

technologies, locations, and demand profiles, but it can be generalised to other renewable

technologies implemented in energy access contexts.

Lastly, this study also confirms that more granular approaches to modelling energy

demand can enhance the evaluation of technical and economic aspects of energy systems.

Estimating energy demand, however, is a complex undertaking that requires a multi-

disciplinary approach. In the next chapters, we will develop a novel framework for energy

demand modelling for rural households that incorporates the technical, economic and

social aspects of energy access, as well as recommend scenarios of long-term demand

growth projections.
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Chapter 4

Residential activities and energy use
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4 Residential activities and energy use

This chapter begins with an overview of the literature on long-term energy demand mod-

elling and draws attention to the significance of time dependency when estimating resi-

dential daily energy demand. The importance of accurately calculating peak demand for

energy storage sizing is also highlighted. With this in mind, we utilised a nationwide time

use survey to understand the social practices reflected in daily activities that influence

electricity use. We describe the survey sampling methods, inclusion of weights and demo-

graphic details of sub-sampled rural households and individuals from four different states

in India. We then discuss the outcomes of empirical analysis carried out to understand

daily activities performed by individuals in each state and compare their social practices.

4.1 Electricity Demand Assessment in rural areas

Energy demand assessment is pivotal for decentralised energy planning, not only for pro-

viding initial energy access but also for decarbonising existing energy infrastructure. An

in-depth understanding of electricity requirements at various times and locations enables

energy providers to effectively plan and invest in renewable energy sources, storage tech-

nologies, and energy-efficient measures. This proactive approach helps to prevent overca-

pacity or undercapacity, resulting in a more efficient and optimised electricity grid, thereby

facilitating the transition toward a low-carbon or net-zero energy system.

In the preceding chapters, the primary focus of energy assessment revolved around

mini-grid planning, relying on surveys that proved to be inaccurate and unfeasible consid-

ering the magnitude of the energy transition. India is confronted with a twofold challenge:

while it strives to decarbonise its urban energy infrastructure, a substantial rural popula-

tion is gaining access to electricity for the first time. This complexity makes the energy

transition in India both intricate and constantly evolving. Understanding the growth of

energy demand in rural India is crucial for proactively planning energy access and fa-

cilitating a transition to cleaner energy sources, especially considering that the energy

demand in rural India is still not thoroughly understood. As inferred from prior chapters,

it is evident that detailed load profiles enhance energy planning. Hence, the development

of energy demand profiles for rural households can prove to be beneficial for long-term

planning.

The development of granular load profiles plays a significant role in crafting efficient

energy systems suited for standalone, interconnected, or grid-connected configurations.
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Understanding the precise timing and quantity of energy demand in these areas enables

the creation of tailored systems that optimise energy usage, ultimately enhancing the

reliability and sustainability of rural power supplies. Given the intermittency of renewable

power supply such as solar or wind, storage solutions are mandatory requirements to meet

basic electricity demand. The primary sources of value for energy storage in India, both

in the immediate and long run, lie in energy time-shifting and capacity services. The

capability of energy storage to facilitate diurnal energy time-shifting significantly influences

the deployment of storage technologies. These technologies enable the transfer of energy

from periods of lower value to high-value periods, such as shifting solar energy abundance

from midday to high-demand periods during early morning or late evening. This approach

aids in mitigating startup expenses for traditional generators while also decreasing the

curtailment of renewable energy (NREL (National Renewable Energy Agency), 2021).

4.2 Residential energy demand

4.2.1 Residential energy demand theories

As we discussed in Chapter 3, estimating long-term electricity demand is an essential part

of renewable energy planning owing to its significant impact on both systems costs and

resource efficiency. It may also influence energy policies necessary for facilitating the tran-

sition to clean energy and mitigating the impact of climate change more broadly(Gupta,

2014) (Grover & Chandra, 2006). The task of modelling future residential28 electricity

demand is challenging, as it involves a multitude of variables and complex socioeconomic

dynamics. Early theories involved conceptualising household energy use based on tradi-

tional fuel choices such as the ”energy ladder” (Hosier & Dowd, 1987) theory. It postu-

lates that, as household income increases, it will lead to a transition from traditional fuels

to more sophisticated and modern energy carriers. Then as households make economic

progress, this relationship was believed to follow a linear trend. Later in the early 2000s,

Masera et al.(Masera, Saatkamp, & Kammen, 2000) presented a critique of the ”energy

ladder” model and proposed an alternative theory known as ”energy stacking” to facilitate

the adoption of efficient and modern fuels, which may follow nonlinear trends. It posits

that households often use multiple energy sources simultaneously rather than completely

transitioning from one energy source to another linearly. The theory acknowledged that

household energy consumption is complex and dynamic in nature as it potentially in-

28Residential and household are used interchangeably in this chapter
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volves many factors driving the change in consumption, such as affordability, accessibility,

reliability and cultural preferences.

In more recent literature, the factors determining electricity consumption in house-

holds are classified into two major categories: endogenous and exogenous factors. The

endogenous factors are intrinsic household features including but not limited to household

size, income levels, ownership of land or property and education. In contrast, exoge-

nous factors involve external variables such as geographical location, climate conditions,

energy policies, subsidies, and accessibility to reliable power supply (Kowsari & Zerriffi,

2011)(Riva, Gardumi, et al., 2019). In order to improve the estimated level of energy

demand and project future demand realistically, it is essential to consider a multitude of

variables in the energy demand model.

A vast literature on forecasting residential energy consumption is based on exoge-

nous factors, which are generally techno-economic features. Energy demand character-

isation performed based on topography, agricultural commodities or forest accessibility

(Rijal, Bansal, & Grover, 1990), climate conditions (Ghisi, Gosch, & Lamberts, 2007)

(Blechinger et al., 2019) gross domestic product growth (Ziramba, 2008) or income and

price elasticity variations over seasons (Filippini & Pachauri, 2004) are examples of stud-

ies which include exogenous factors. Endogenous factors, on the other hand, are typically

socioeconomic in nature, for example, analysing technology adoption (Riva, Gardumi, et

al., 2019) (Van Ruijven et al., 2011), or per capita expenditure (Rahut, Behera, & Ali,

2016). Bhattacharyya et al. (Bhattacharyya & Timilsina, 2009) suggests that a funda-

mental understanding of energy consumption in a household based on economic context

follows the maximum utility principle; i.e. a household will opt for an energy service which

gives the maximum benefit for the price/effort that consumers are willing to pay. Whilst

Walker(Walker, 2014) has argued that energy demand can be seen as a result of how so-

cial practices rely on various forms of energy service and that the temporalities involved

within these practices can generate the underlying dynamics of energy demand on long-

term, seasonal, and weekly and daily timescales. Kowsari et al. (Kowsari & Zerriffi, 2011)

proposed a three-dimensional framework which focuses on household-level qualitative and

quantitative data to capture micro-trends and identify the inter-relationships between dif-

ferent variables. It takes into account human behaviours and social context to reduce the

emphasis on income as the major determinant of energy consumption. This framework

can be used as a basis for building new theoretical and empirical models for assessing rural

household energy use in the developing world, which can potentially aid in decentralised
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renewable energy planning.

4.2.2 Residential energy demand modelling

Since the 1970 energy crisis, a large amount of literature has been devoted to forecasting

household energy demand and discussing technological, socioeconomic and environmental

factors influencing current and future energy demand. A seminal review of models by

Swan et al.(Swan & Ugursal, 2009) distinguished these models into two broad categories:

top-down and bottom-up models. The top-down approach treats the residential sector

as an energy sink. In contrast, the bottom-up approach extrapolates the estimated en-

ergy consumption of a representative set of individual houses to wider geographical scales.

Within top-down models, there are two groups: econometric and technological. Economet-

ric models are based primarily on price and income, whereas technological models attribute

energy consumption to macro characteristics of the entire housing stocks or appliance own-

ership trends. These models have tended to be used by the energy sector, to anticipate

future aggregated demands for energy. Bottom-up models anticipate end-use consumption

by applying a variety of physical and statistical modelling methods, including regression

analysis, discrete choice methods or conditional demand analysis to construct long-term

load profiles and to test the impacts of strategies, at varying degrees of dis-aggregation,

to alter these profiles. Despite their general applicability, these models have been found

lacking in their ability to capture the context of developing countries(Bhattacharyya &

Timilsina, 2009).

A review by Bhattacharya et al.(Bhattacharyya & Timilsina, 2009) highlighted chal-

lenges in forecasting energy demand in specifically focusing on developing countries con-

text. The study differentiated between simple approaches, such as employing a single

variable like economic growth rate (GDP) or household income elasticity to project future

demand, and sophisticated approaches like top-down econometric models with multiple

variables or demand estimations using bottom-up end-use analysis considering multiple

factors such as appliances stock, population demographics, or affordability levels. This

review study further identified gaps in the literature regarding the translation of existing

models to developing countries. These models often are limited in accurately reflecting

informal energy use, the mix of modern and traditional fuel choices, and the socioeconomic

context associated with the urban-rural divide. Both of these comprehensive review stud-

ies (Swan & Ugursal, 2009) and (Bhattacharyya & Timilsina, 2009) covered multi-sector

energy demand, as well as the evaluation of a diverse mix of supply sources, thereby
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providing a holistic perspective on energy systems and their interactions.

A recent review by Riva et al. (Riva, Colombo, & Piccardi, 2019) explicitly focused on

rural energy demand assessment in long-term renewable energy planning in the context

of rural electrification. Its emphasises on the upcoming projects of energy access in rural

areas should consider socioeconomic changes caused by new technologies and model resi-

dential energy demand based on end-use functions and appliance diffusion. The authors

also reiterated observations from Swan et al. that bottom-up approaches are suitable for

contexts with rapid technological development in developing countries. Based on the exist-

ing literature, a few categories of methods commonly used for energy demand models have

emerged. The next section covers a brief description of these models, relevant case studies

in developing countries, and their strengths and limitations in terms of their suitability

for assessing household energy demand in rural contexts in developing countries.

• Econometrics: Econometric models are statistical models widely implemented by

economists and social scientists to analyse data and make predictions or inferences

about specific phenomena relevant to energy use and their dependency on socioe-

conomic parameters. To project future household energy use trends, such models

typically rely on historical and/or macro-level aggregated data on many variables

like household size, income, expenses, fuel prices, GDP growth rates etc. Econo-

metric estimations span from elementary single equations featuring one dependent

and independent variable or reduced-form analyses to more complex simultaneous

equations involving multiple independent variables. Numerous studies have utilised

these models, with examples particularly relevant to developing countries, such as

investigations into household energy demand in Nepal and Bhutan. Pokharel et

al.(Pokharel, 2007) utilised the log-linear Cobb-Douglas model; emphasising energy

balance in fuel transition for household energy use to achieve economic objectives

in Nepal. Rahut et al.(Rahut et al., 2016) implemented multivariate probit and

Tobit models calibrated using Living Standard Survey data in Bhutan. Although

econometric models offer simplicity and interpretability, they may be constrained

by data availability and quality. Moreover, these models rarely capture endogeneity

at the household level. Econometric models are unable to estimate the temporality

involved with energy use, which is highly important in renewable system designs.

• Regression: Regression methods encompass a vast range of techniques and are

commonly applied to estimate household energy demand. Conditional demand

analysis (CDA) is one example of a regression method that is used to pre-
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dict demand based on the conditional relationship between energy consumption

and various socioeconomic factors such as income, household size, and climate

conditions(Aydinalp-Koksal & Ugursal, 2008). Aklin et al.(Richmond et al., 2020)

have applied linear regression to appliance usage based on the source of energy

available to different households in order to estimate parameters influencing house-

hold energy demand in rural India. Similarly, Allee et al.(Allee, Williams, Davis, &

Jaramillo, 2021b) compared machine learning techniques and found Lasso regression

outperformed other models while finding uncertainties in energy demand from rural

households in Tanzania. Regression techniques can enhance the accuracy of energy

demand modelling by analysing the relationships between various factors. However,

their effectiveness depends on the availability of high-quality micro-data, which may

be limited or inaccessible in many developing countries.

• Scenario-based models: LEAP (Long-range Energy Alternative Planning), de-

veloped by the Stockholm Environment Institute (SEI), is a widely used tool for

energy demand analysis, particularly in rural electrification projects throughout the

Global South. It uses economic, demographic and energy-use information to create

scenarios that show how energy consumption will change over time. The most com-

monly designed scenarios are ’Business-as-usual’ or ’Government-policy-roll-out’ to

examine the costs and environmental impacts of each scenario. LEAP provides flex-

ibility in how the demand data is structured, ranging from highly disaggregated to

highly aggregated. There are also different methodologies available for energy de-

mand analysis, such as Activity Level Analysis and Stock Analysis. Activity Level

Analysis looks at the final energy demand or useful energy demand, while Stock

Analysis looks at the current and projected stocks of energy-using devices. Perwez

et al.(Perwez, Sohail, Hassan, & Zia, 2015) also utilised the LEAP model to forecast

Pakistan’s energy scenarios till 2030 to guide energy policies required to meet emis-

sions criteria. Likewise, in Colombia, Nieves et al.(Nieves, Aristizábal, Dyner, Báez,

& Ospina, 2019) designed two scenarios of energy demand growth up to 2050, consid-

ering parameters such as population and household size in order to comprehensively

estimate aggregate residential demand. The majority of scenario-based models are

designed to facilitate decision-making on energy policies. Although these models

prove effective in achieving their intended objectives, it is important to note that

they exhibit a high degree of sensitivity to numerous variables. However, sensitivity

analyses of these variables are rarely presented as they tend to be computationally
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intensive.

• End-use models: MAED (Model-based Analysis of Energy Demand) and REMG

(Residential Energy Model Global) are built using the bottom-up approach, consid-

ering the end-use of energy. The MAED model is a stochastic model that simulates

household energy demand by considering the energy use of individual appliances

and activities. It uses a combination of survey data and statistical analysis to es-

timate the energy demand for different activities such as cooking, heating, cooling,

and lighting. The MAED model has been used in various studies to estimate the

impact of energy efficiency policies and programs on household energy demand in

OECD countries but is readily extendable to incorporate developing country con-

texts, for instance, in Syria(Hainoun, 2009). REMG, as described in (Van Ruijven

et al., 2011) and (Daioglou, van Ruijven, & van Vuuren, 2012), was developed to

better understand the underlying trends of energy use in developing countries (In-

dia, China*, South Africa, South East Asia, Brazil). The model is able to reproduce

many of the dynamics that determine future residential energy demand, providing

insights into the energy transition, energy supply functions, fuel switching, inequal-

ity, urbanisation, and the use of solid fuels for cooking. Both these models heavily

rely on high-quality structured data, and interpretation of some calibration factors

may be improvised in the case of REMG.

• Housing Stock Energy Models: Housing stock energy modelling is a framework

used to analyse the energy use and sustainability of housing units in a given geo-

graphic location. It looks at factors like construction materials, heating and cooling

systems, and energy efficiency to assess overall energy performance and find ways

to improve sustainability. In a recent policy brief for Welsh Government (Robinson,

Tilley, Price, & Lloyd, 2023) analysed two categories of housing energy models -

traditional and dynamic, and how they are used to study energy use in houses.

The authors also highlight the impact of external factors like climate and infras-

tructure on energy use. Traditional models focus on short-term interventions and

building physics, while dynamic models look at long-term impacts, including the ef-

fects of climate change and the shift to low carbon energy sources like heat pumps.

(Mastrucci, van Ruijven, Byers, Poblete-Cazenave, & Pachauri, 2021) described a

study that used different global scenarios and modelling techniques to assess the im-

pact of residential buildings on energy demand and CO2 emissions for heating and

cooling. The study considered factors such as geographical context, socio-economics,
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and building characteristics. It also utilised climatic data and a classification system

to define different climate zones. The study covered macro-regions in Europe, North

America, Central Asia, South asia and countries in the Global South.

4.2.3 Residential energy demand in India

About a quarter of India’s total electricity consumption comes from the residential sector,

and it is expected to rise five to six times by 2030(The World Bank, 2008)(Chunekar,

Varshney, & Shantanu, 2016). Various studies have been conducted in order to project In-

dia’s future residential demand using econometric models, bottom-up end-use estimations

or hybrid methods. The 2008 World Bank report (The World Bank, 2008) presented the

most comprehensive study on residential electricity consumption in India. It projected

annual energy consumption from 2005-06 to 2031-32 using nonlinear regression based on

factors such as household size, appliance ownership, per capita expenditure, GDP growth,

and geographic location. The study surveyed 600 households across 12 cities and 5 climatic

zones. Two scenarios were designed to measure efficiency, with a significant difference in

electricity consumption between them. The rebound effect29 may lessen potential savings.

In Scenario 1, while GDP grows at an annual average rate of 7.8%, household electricity

usage grows by 5.8% per annum, indicating lower income elasticity for households as con-

suming units. Urban et al.(Urban et al., 2009) evaluated the need for government policies

in rural electrification in India using a scenario-based approach. They assessed energy

demand in four electrification pathways: central grid-based, decentralised diesel-based,

decentralised renewable energy-based using electric appliances, and decentralised renew-

able energy-based using primarily renewable energy appliances. Results showed that rural

electrification with renewable energy could reduce CO2 emissions by up to 99% compared

to grid and diesel systems, and correspondingly decrease primary energy use. Poblete

Cazenave et al.(Poblete-Cazenave & Pachauri, 2021) extended an econometric model that

is applied to micro-data from surveys in four countries in the Global South, including In-

dia. The model is used to test scenarios exploring differences in future income, population

size and distribution, and electricity access, and the authors found that in scenarios with

higher income growth and urbanisation, electricity demand is higher than in scenarios

with lower income growth and urbanisation, even though population growth is higher in

29In conservation and energy economics, the rebound effect (or take-back effect) is the reduction

in expected gains from new technologies that increase the efficiency of resource use, because of

behavioural or other systemic responses.
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those scenarios. The adoption of electrical appliances considerably differed across coun-

tries, appliance types, and income levels. In recent years, Agrawal et al.(Agrawal, Harish,

Mahajan, Thomas, & Urpelainen, 2020) conducted a large-scale survey in size different

states of India and checked multiple factors affecting household electricity consumption

and quality of supply and found every 1 hour of supply increase, entails a 1.25 % con-

sumption increased. Another model for bottom-up residential electricity consumption

called RUMI30 has been recently developed by the Prayas group with the aim of analysing

government policies to improve energy efficiency measures. The aforementioned studies

tested electricity demand from the bottom-up at the appliance level, but lack crucial in-

formation on the time-sensitive nature of electricity consumption and peak load growth

in long-term electricity planning.

4.2.4 Need for time-sensitive energy assessment

In the context of renewable energy planning, it is important to consider three distinct

forecasting horizons for energy demand: multi-yearly, seasonal, and daily. This is partly

due to the intermittency inherent in renewable energy sources, which necessitates planning

at a multi-time scale, but also because of the demand dynamics mentioned above. Econo-

metric models, typically applied at the macro scale, often fail to capture the intricacies of

social dynamics and the time-sensitive nature of energy consumption. On the other hand,

end-use and regression models that take social dynamics into account are generally case-

specific, limiting their scalability. Furthermore, these models may not adequately capture

temporal granularities in energy demand patterns, presenting an additional challenge for

effective storage management.

Residential energy demand curves are often referred to as rigid in terms of time of use

and the timing of peak loads. Understanding time-dependent activities and incorporat-

ing the social dimension can be instrumental in capturing intra-day variations in energy

consumption patterns (Torriti, 2014). As a result, comprehensively examining energy de-

mand across various time horizons and from a techno-social-economic perspective can offer

crucial insights for more effective renewable energy planning and implementation.

Energy consumption models that incorporate time-dependent activity data have been

employed in various countries in the Global North, including the UK(Lőrincz, Ramı́rez-

Mendiola, & Torriti, 2021) and France(Wilke, 2013). These models consider the impact of

daily activities, occupancy patterns, appliance-level end-use, and demographic character-

30https://github.com/prayas-energy/Rumi
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istics on residential energy consumption. The Centre for Time Use Research curates the

Multinational Time Use Studies31, an extensive database of time-use surveys from around

the world, covering over 25 countries and spanning more than five decades. The database

enables researchers to study time-use patterns, such as work, leisure, and household ac-

tivities, across different cultures and time periods. These types of comprehensive survey

provide a standardised dataset which offers valuable insights into human behaviour and

can inform consequential use of electricity in daily activities. These surveys involve indi-

viduals recording their activities, the duration of these activities and the timing of each

activity over a 24-hour period in a diary at specific intervals of 10-30 minutes. The data

collected from time use surveys can provide valuable insights into how individuals allocate

their time across different activities and how this varies by demographic characteristics

such as age, gender, and socioeconomic status. Numerous studies have investigated energy

consumption patterns based on time-use surveys in OECD countries, yet such research is

scarce in the Global South.

4.2.5 Importance of Time-use energy modelling

Time Use surveys can offer unique insights into the energy consumption patterns of house-

holds and are highly relevant in identifying peak time of energy demand. First, they

can capture social practices that are distinctly different in urban and rural areas, thus

highlighting the urban-rural divide that presents a challenge(Bhattacharyya & Timilsina,

2010). Secondly, the granularity provided by time-use data is also critical in the calibration

of peak energy demand, which is vital in designing batteries for storage in solar mini-grids

as we discussed in previous chapter. Thirdly it can support the creation of scenarios for

energy transitions, especially in terms of cooking where a mix of traditional fuels such as

firewood and LPG are used; electric stoves have only recently begun to gain traction in

the Global South (Pachauri, Poblete-Cazenave, Aktas, & Gidden, 2021). Additionally, a

report by National Renewable Energy Laboratory monitored 36 micro-grids (with 4,660

meters) currently operating in Africa and summarises classifying household time-sensitive

consumption patterns can help with tariff design, allowing for the implementation of time-

of-use rates or reduced tariffs to incentivise desired load profiles . Whilst this approach

gives insights into existing energy usage patterns, it can also inform understanding of the

energy usage of appliances in the future (Li et al., 2020). This is especially beneficial

in rural households, where there has historically been a lack of appliance ownership, but

31https://www.timeuse.org/
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also where significant growth in this ownership is expected in the near future(Chunekar et

al., 2016). Identifying the future electricity demand from home appliances is also highly

relevant because of their respective power ratings, which significantly affect the daily load

curve. Energy demand projections based on Time Use can also give insights into designing

cross-subsidies between productive use and residential use for Demand Side Management

(DSM) because of the ability to predict the evening peak more accurately. Adeoye et

al.(Adeoye & Spataru, 2019) developed a model for household energy projections in Nige-

ria; however, it was calibrated using synthetic time-use data. In this thesis, we introduce

a multi-scale framework to estimate household energy demand in rural India, accounting

for time granularities at various scales and incorporating the local socioeconomic context.

This approach aids in informing the technical design of future renewable energy systems.

4.3 A Multi-scale framework for residential energy demand

Although the terms ”electricity demand” and ”load profile” are sometimes used inter-

changeably in this thesis, they have distinct meanings. In this context, we interpret

electricity demand as the sum of existing load and aspiring energy needs. In contrast,

the load profile is more explanatory of the demand that is met or should be met. This

distinction is important when considering energy planning, as the electricity demand de-

notes a descriptive or explanatory phenomenon, whereas the load profile is characterised

as actionable or prescriptive. The research and data gaps in existing literature regarding

the rural household energy demand models in developing countries provide a foundation

for the new framework that can offer a holistic view of future residential load profiles. In

this regard, we decompose the temporality of the long-term electricity load profile into

three components: Longitudinal, seasonal and transverse. This framework can serve as a

basis for the new data-backed empirical model of rural household energy demand. Figure

4.1 illustrate these three components. Longitudinal demand considers changes that occur

over several years, while seasonal variations refer to the effects of seasons on electricity

demand within a given year. Transverse, which refers to a wave propagating perpendicular

to the direction of propagation in physics, is a term we use to define electricity demand

reflecting a consumption pattern over a 24-hour period that extends along the axis of time.

• Longitudinal: This part of the load profile accounts for the changes in energy

demand that occur over several years, typically driven by factors such as popula-

tion growth, economic development, changes in energy efficiency, and shifts in the
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Figure 4.1: The decomposition of long-term energy demand growth into three com-

ponents: longitudinal energy demand, seasonal variations, and transverse energy

demand. These graphs are provided solely for illustrative purposes and are represen-

tative of the shape of actual load profiles.

energy mix. In this context, longitudinal demand represents the long-term trends

in energy consumption, which can be influenced by appliance diffusion and policies

on energy efficiency. Chalal et al.(Chalal et al., 2017) gathered longitudinal data on

consumption in the UK which helped explain the socioeconomic factors influencing

the household’s energy demand evolution and subsequently predicted possible fu-

ture transition patterns for a period of 10 years. In the context of renewable energy

planning, the longitudinal load profile primarily informs decision-making on the fu-

ture size of the system and aids in designing policies to improve energy efficiency.

More about this is discussed in Chapter 6.

• Seasonal: This component captures the impact of seasonal factors on energy de-

mand within a given year. Seasonal variations in energy demand often result from

changes in weather patterns, such as temperature fluctuations or variations in day-

light hours, that affect heating, cooling, and lighting needs. While obtaining infor-

mation on weather-influenced parameters such as temperature, relative humidity,

and heating/cooling degree days is relatively straightforward with the help of biocli-

matic design toolkits like PyClim(Robinson, 2020), it is important to consider the

other side of the equation as well. Cooling appliance usage is not solely determined
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by these weather-related factors; thermal comfort plays a significant role in driving

energy demand for cooling systems (Rawal et al., 2022). In this context, under-

standing and modelling thermal comfort becomes crucial for accurately predicting

energy consumption related to cooling appliances. This framework can be read-

ily extended to take into account both weather-influenced parameters and thermal

comfort, to developed a correspondingly more comprehensive and accurate energy

demand model.

• Transverse (diurnal variations): Transverse demand represents the daily pattern

of energy use over a 24-hour period, reflecting how consumption changes throughout

the day; noting that there may in principle be multiples of these days, e.g. to

distinguish between weekdays and weekends. Transverse demand is influenced by

factors such as daily routines, working hours, and the timing of various energy-

intensive activities (e.g., cooking, laundry, or industrial processes). In this context,

the term ”transverse” signifies that the demand pattern extends along the time

axis, covering the full range of daily activities. To model transverse demand, we

analyse hourly or sub-hourly data on time-dependent activities to identify typical

daily patterns to estimate the intra-day variations in energy consumption.

To understand energy use in rural households in India comprehensively, our goal is

to develop an energy demand model that encompasses all three forecasting horizons and

integrates the techno-socioeconomic features of the local context. Our primary objective is

to investigate the diurnal variation of energy use in rural households that are representative

of social practices. We will utilise the recently conducted national-scale time use survey

in India. Although this survey design is quite similar to the Multinational Time Use

Survey (MTUS), there are some notable differences. For instance, the MTUS diary data

is recorded at 10-15 minute intervals, while the Indian data is documented at 30-minute

intervals. Additionally, some variations exist in the demographic information collected.

In order to accomplish this objective, we undertake an empirical analysis of the Indian

time use survey data, assessing its suitability for modelling energy demand across varying

spatio-temporal scales, covering individual households up to the district or state level

within the rural Indian context.

In this chapter, our primary focus will be on gaining a deeper understanding of time-

dependent energy use. This will serve as the foundation for developing an energy demand

modelling framework tailored to rural Indian households. Residential energy demand

modelling based on time-dependent activities will be discussed in Chapter 5, and the
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longitudinal and seasonal components of energy consumption will be discussed in greater

detail in Chapter 6. Section 4.4 delves into time use surveys in India, providing an overview

of the sampling strategies employed and the methods used to process the collected data.

In Section 4.5, we will shed light on the demographic and socioeconomic characteristics of

the time use data, which play a crucial role in shaping energy consumption patterns. This

chapter concludes with a presentation of the results, showcasing activity profiles from four

distinct states in India. An assessment of the suitability of this information for energy

demand modelling will then be summarised.

4.4 Time Use Survey India

Since 1950, the Government of India has been collecting an extensive range of socioeco-

nomic data through National Sample Surveys (NSS). The NSS is handled by the National

Sample Survey Organisation (NSSO), which is formed as a part of the Ministry of Statis-

tics and Programme Implementation (MOSPI). The working groups of statisticians and

economists assigned by the MOPSI are responsible for organising the surveys, develop-

ing survey designs, setting up questionnaires, supplying field staff with instructions, and

overseeing data collection and analysis. These groups gather unit-level data (households

and individuals) from all parts of India. Thus, NSSO survey data provides a vast source

of information for research and policy-making in the country. The surveys are carefully

planned to ensure equal representation of all demographics, with samples divided into

rural and urban sectors.

Between 2019-2020, NSSO conducted the Time Use Survey (TUS), with the aim of

understanding how Indians spend their time across different activities throughout the

day, such as paid work, unpaid care-giving and household work, leisure and self-care.

The survey also collects data on how people’s time use differs by age, gender, education,

location and other socioeconomic factors. This data has been used to inform policies and

programs related to employment, education, social welfare and gender equity. As noted

earlier, it can also help energy system modellers to understand the time-sensitive nature of

electricity consumption, particularly regarding when and where peak electricity demand

occurs. This can help identify opportunities for energy efficiency measures and storage

management strategies in renewable energy planning. Furthermore, the survey can provide

insights into patterns of occupancy in households, particularly in the rural sector, where

there’s serious data paucity. Thus the availability of a rich time use survey dataset from

rural India can be utilised for energy demand modelling, which can inform the design and
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implementation of the clean energy transition and improve access to reliable electricity in

rural areas.

4.4.1 Sampling TUS India

The survey has been conducted in urban and rural sectors, with all inhabited villages

within each NSS State region32 constituting a rural stratum. A stratified two-stage sur-

vey design has been adopted for the TUS. The first-stage is to identify the first stage

units (FSU), which are villages in rural areas or Urban first sub-units (UFS blocks) in

urban areas or sub-units (SUs) in some special cases. The second stage is the selection

of households which are also called Ultimate Stage Units (USU), and the surveying of 2

to 3 individuals in each household. FSUs are divided into rural and special strata. Rural

strata are all inhabited villages in each NSS State region. Special strata are villages in

areas with a sparse population where the village-level population is less than 600 people.

The survey period has been divided into four sub-rounds of three months’ duration each

in order to ensure a uniform distribution of samples throughout the duration 33. A total of

14 households are selected from each FSU and surveyed uniformly across all 7 days of the

week. 2 households are canvassed on each day of the week. The selection of households is

done based on Simple Random Sampling Without Replacement (SRSWOR). Figure 4.1

summarises the sampling method used in TUS India.

Table 8: Sampled number of households and individuals in four states and selection

criteria

State

Total

Population

*Census 2011

Households

Surveyed

(Rural)

Individuals

Surveyed

(Rural)

GDP

2019-2020 (GoI2019, n.d.)

USD

(Bn)

Climatic

Conditions (Rawal et al., 2022)
Region

Uttar Pradesh

(UP)
199,812,341 11153 39654 230 Composite Northen

Maharashtra

(MH)
112,374,333 6245 19497 350

Hot-dry+

Composite
Western

Tamilnadu

(TN)
72,147,030 4159 10939 210 Warm-Humid Southern

Nagaland

(NG)
1,978,502 672 1900 3.7

Composite

+Cold
North-eastern

32List of NSS regions can be found here NSS regions
33In some parts of India, some places aren’t uniformly surveyed in all four sub-rounds because of

the arduous field conditions, these include Andaman and Nicobar Islands, Lakshadweep, Ladakh

region (Leh and Kargil districts) of Jammu & Kashmir and rural areas of Arunachal Pradesh and

Nagaland
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Figure 4.2: Time Use Survey Sampling

The survey is conducted through face-to-face interactions with the sampled house-

holds and individuals aged 6 years or above in all thirty states and six union territories

of India. In this chapter, we consider sub-samples of rural households from four states:

Uttar Pradesh, Maharashtra, Tamil Nadu and Nagaland, to provide insights into the

variability of time use patterns across different geographic regions and socio-demographic

compositions within India. India has diverse climatic conditions and varied economic

circumstances that can potentially impact the time-use. To represent this diversity, we

have selected these four states based on population size, climatic conditions and economic

situation. Details on the number of surveys conducted, total population and climatic con-

ditions in each state are given in table 7 (see Appendix A.4.1 to compare rural households

sampled compared to a number of urban households). When the data needs to be used at

an aggregated level, the consideration of weights is crucial to ensure the representativeness

of the population and de-risk biases in the data. These weights are given by multipliers

in the NSSO unit-level data. More about the weights is discussed in section 4.4.2.

The survey data is divided into five levels: levels 1 and 3 relate to household unit data,

and levels 2, 4, and 5 to individual records. The questionnaire of the survey is available for

open access on the NSSO website. As for reference, it can also be found on this GitHub

repository 34 In the household level data, the demographic section covers information on

34TUS analysis GitHub repository https://github.com/rjsayani/TUS india and NSSO TUS
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monthly expenses, energy service usage, dwelling structure and types of fuel employed for

cooking; while individual records encompass information pertaining to age, education, and

marital status. Table 8 gives a list of variables and their descriptions in the household

data. Time use activity related variables and their descriptions are given in Table 9.

Table 9: Household unit data variables and descriptions

Variables Description Level

Date of

Survey

Gives time the survey was taken and

information on sub-round
HH1

Sector

and HHID
Sector and number of households HH1

HH Size
Total number of members living in a household

Numeric value
HH3

Land

Ownership

Ownership of land in hectares coded

(1-12 for incremental ownership)

99 for no ownership

HH3

Monthly

Expenses (A)
Numeric value (up to 10 digits) HH3

Monthly imputed

goods for own

consumption (B)

Numeric value (up to 10 digits) HH3

Monthly wages

received in

kind (C)

Numeric value (up to 10 digits) HH3

Amount spent

on durable goods

(D)

Numerical value (up to 10 digits) HH3

Overall monthly

expenses

(A+B+C+D/12)

Numeric value (up to 10 digits) HH3

2019−2020, https://mospi.gov.in/time-use-survey.
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Table 9 continued from previous page

Variables Description Level

Energy use

(cooking)

Coded for 10 different categories

1- Firewood, 2-LPG, 3-Natural Gas, 4-Dung,

5- Kerosene, 6-coal,7-Gober gas, 8-biogas,

10-charcoal, 11-electricity, 12-no cooking, 19-other

HH3

Energy use

(Lighting)

The primary source of energy for lighting,

1-electricity, 2-kerosene, 3-oil, 4-gas, 5-candle, 6-no lights,

9-others

HH3

Washing

clothes

Codes 1- Mechanised (this can be with electricity or without)

2- Manual by a member of household

3- Outsourced (either commercial or through house-help)

HH3

Cleaning

floor

Codes 1- Mechanised (this can be with electricity or without)

2- Manual by a member of household

3- Outsourced (either commercial or through house-help)

HH3

Dwelling structure Codes - 1 kutcha, 2- semi-pucca, 3-pucca, 9- no dwelling HH3

Table 10: Individual unit data related to Time use variables and description

Variables Description Level

Common sector,

HHID and

Person ID

Common id with sector, state, district and household id

and associated individual id
TUS2

Type of enterprise Location of work/occupation of individuals TUS2

Day of the week
Day of the week when survey is conducted

(1-7, Monday to Sunday)
TUS2

Gender Codes - 1- Male, 2- Female, 3- Transgender TUS4

Age Numeric value (up to 3 digits) TUS4

Marital Status
Codes

1- never married 2-married 3- widowed 4- divorced
TUS2
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Table 10 continued from previous page

Variables Description Level

Highest level of

Education

Codes

1- Not literate, 2- Below primary, 3- primary,

4-middle primary, 5-secondary, 6- higher secondary,

7-diploma, 8- Certificate course, 10-Graduation diploma,

11-Graduate, 12-post graduate and above

TUS2

Activities
Activities are recorded based on 3-digit codes at 30 mins

intervals. These codes are adapted from ICATUS 2016
TUS5

Major Activity
If there is more than one activity recorded at the same time

interval, if the primary activity is major -1, if not 2.
TUS5

Simultaneous

Activity

If there is more than one activity recorded at the same

time interval and simultaneously occurred, 1-yes, 2-no
TUS5

Multiple

Activity

If there is more than one activity occurs within

the same time interval, 1- yes, 2-no
TUS5

Where
Location of the activity being performed.

1- home 2- outside home 3-not fixed
TUS5

4.4.2 Weights in Time Use Survey

Weighting serves as a crucial step in survey data analysis. Each unit record within a

selected sample is assigned an estimation weight, which facilitates aggregation of causal

or descriptive statistics of relevant population parameters, such as a specific population’s

average income. Unit weight also signifies the number of individuals in the population

the sample unit represents. For instance, in a random sample of 25 individuals drawn

from a population of 100 members, each sampled individual effectively represents four

members of a population. Survey weights are generally critical for mitigating bias when

estimating population means or proportions of variables in the context of a descriptive

analysis(Bollen, Biemer, Karr, Tueller, & Berzofsky, 2016). It is essential to consider

weights when analysing complex surveys, such as stratified time-use surveys based on

SRSWOR(Lavallee & Beaumont, 2015).

In TUS India unit data, the weights are given in terms of a Multiplier, and the value

of the multiplier (MLT ) for households is calculated based on:

MLT =
H

hst
(7)
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Where H is the total number of households in the FSU being surveyed, and h(st) is

sampled households in that FSU. s and t represent the stratum and substratum, respec-

tively. The multiplier for individual unit data in TUS levels 2,4 and 5 is calculated based

on:

MLT =
N

nst
∗ H

hst
(8)

N is the total number of FSUs in the sub-stratum, and n(st) represents the sampled

FSUs from that sub-stratum. Information on estimating parameters based on NSS data

notes that a weight w for each unit is MLT/100. The calculation of descriptive parameters

for the population Pop can be estimated through the utilisation of the variable of interest

y, as measured for each unit within the sample s. An estimation weight wk is assigned

to every sample unit (individual or a household) k and subsequently employed to derive

estimates of the parameters of interest. For example, the estimator of the population total

Y =
∑

kϵU yk is given by:

Y =
∑
kϵs

wk ∗ yk (9)

The estimation of more complex population parameters, for example, the probability

of an activity i being performed by person k at time t, can be done similarly by assigning

weight wk to each person 35,

Pik =

∑
k wk ∗ Iik∑

k wk
(10)

Where Iik is 1 if an individual k is engaged in an activity i on the reference day and

0 otherwise. Likewise, the average time T spent by an individual k on activity i with

consideration of weight can be calculated thus:

T =

∑
k wk ∗ Tik∑

k wk
(11)

Here Tik indicates the amount of time spent on an activity i by respondent k, and wk

is the weight assigned to person k. To mitigate bias in our analysis, we have considered

the weightage calculated described above.

35The equation is followed from American Time Use Survey weightage consideration - ATUS

manual
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4.4.3 Treating outliers

Many factors can induce bias in the statistical analysis of survey data, and one of these

relates to the presence of outliers. These are values that are significantly different from

the other observations and can be either caused by human errors (enumeration error by

field surveyors in this case), or they can be genuine extreme cases. Outliers can have a

significant impact on numeric data such as income and expenses. If left untreated, they

can strongly influence statistical inferences drawn from the analysis and induce a bias in

the conclusions drawn. Therefore, it is important to identify and remove or replace these

outliers using appropriate methods. The TUS India level 3 household data, as presented in

Table 8, represents survey response variables such as overall expenses, household size, and

monthly consumption as numerical values. The overall monthly expenditure is calculated

based on 4 variables: Usual monthly expenses, Amount spent on purchasing durable goods

in the last year, amount imputed by homegrown goods, and money received in kindness

(gifts). It is important to note that these variables may contain extreme or unusual values

that could potentially be classified as outliers, although it is challenging to identify outliers

in such data. For instance, durable goods are quite an ambiguous variable. It can be an

electric appliance or a piece of expensive jewellery. This then further complicates the task

of finding which observations among the data are either genuine and extreme points or

results from erroneous estimation or data entry.

(Osborne & Overbay, 2004) demonstrated the impact of outliers on statistical infer-

ences in two ways: by checking accuracy levels and their correlation with the rest of the

population and by comparing error rates. It is imperative to choose whether outliers need

to be removed or replaced. Various methods have been implemented by statisticians to

treat outliers depending on the type of data, sample size and the assumed causes of er-

rors behind outlier observations. To summarise, a few commonly used methods that are

relevant to income and expense data are:

• Winsorisation: This method involves replacing extreme values with the near-

est values within a specified range of data. For example, the upper 5% of in-

come/expense values can be replaced with the value at the 95th percentile.

• Trimming: Trimming is a widely used method which is removing a fixed percentage

of observations from both the upper and lower ends of the distribution. For example,

the top and bottom 5% of values are removed from the data, considering this to

result from erroneous entry.
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• Z-score method: The Z-score and robust Z-score methods are based on calculating

the z-score of each observation and removing those that fall outside of a defined

threshold. A typical z-score is the number of standard deviations away from the

mean that the observation falls. A widely used threshold applied for z-scores is

greater than 3 or less than -3.

• Interquartile range (IQR) method: IQR is similar to trimming, but it involves

identifying outliers as observations that fall outside a specified range based on the

IQR. For example, outliers can be identified as observations that fall outside 1.5

times the IQR below the first quartile or above the third quartile.

In this chapter, we have investigated the effectiveness of two methods for handling out-

liers in TUS household data; the IQR method, which removes certain data points falling

outside specified quartiles, and the Winsorisation method, which is a non-parametric tech-

nique for replacing outliers with nearby values. The details of the outcomes of the outlier

treatment are presented and discussed in the forthcoming section.

4.4.4 Household activities

The central aim of this chapter is to determine time-dependent activities performed by

individuals that have an impact on electricity consumption. In the TUS level 5, the start

time and end time of each activity performed by an individual is recorded at a time interval

of 30 minutes for a 24-hour period from 04:00 am to 04:00 am the next day (see table

9). All activities are encoded based on the International Classification of Activities for

Time-Use Statistics (ICATUS) 2016. Table 10 lists all major divisions and sub-divisions

of activities categorised in ICATUS, and we identified sub-groups of ten activities that

may potentially influence energy use based on guidance from the work on energy demand

modelling based on time-use data of Wilke et al. (Wilke, Haldi, Scartezzini, & Robinson,

2013),(Wilke, 2013) and Torriti et al.(Torriti, 2017). These ten activities in our analysis

which can either have a direct energy use associated with it, such as the use of television

and radio, or a passive use of electricity, such as studying and learning at home or eating

meals, which may require lights. Furthermore, personal hygiene and in-house employment

activities may be difficult to predict in terms of electricity use in the absence of concrete

information on corresponding device ownership, but are integral parts of daily routine

and thus provide significant insights into occupancy levels in the household. Sleeping

and related activities have a strong influence on occupancy levels, as well as the usage

of ventilating, cooling or heating appliances during different seasons of the year, based
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on thermal comfort considerations. In this regard, we further emphasise sleeping and

related activities as they may also have an influence on storage management in the case

of renewable electricity access in rural households.

Three variables are defined in relation to activities recorded in TUS level 5: major

activity, multiple activity and simultaneous activity (see table 9). A major activity occurs

if a respondent is performing more than one activity at the same time in 30 mins interval

(simultaneously or consecutively), one of which is the primary (or major) one. For exam-

ple, if someone is watching TV while eating a meal, eating may be identified as primary

and watching TV as a somewhat passive secondary activity. Multiple activity indicates if

a person is engaged in more than one activity that happened within a span of 30 minutes.

For example, personal hygiene and eating breakfast can be noted within the same time

interval, though not in the order in which they occurred. Respondents can note up to

three such activities that occurs in span of 30 mins, but the major activity is identified as

one of the two or three multiple activities recorded. Simultaneous activities refer to cases

when more than two activities occur at the same time, with the input being a boolean.

This is consistent with the other two variables.

In summary, the methods employed in analysing activity groups guide the character-

isation of the load profiles for rural households. A step-by-step flowchart illustrating the

process can be found in Figure 4.3. This method is subsequently applied to the time-use

data analysis of rural households across four states in India, enabling a comparison of

activity charts and an assessment of the similarities and differences in social practices that

actively or passively influence household energy consumption in each state.

4.5 Results

4.5.1 Demographics of TUS data

This section presents the demographic characteristics of the surveys conducted, including

information on age, education, and gender balance in the sampling. The age distribution

is representative of the overall national age distribution in each state, except in Uttar

Pradesh, where around 42% young persons between the ages 6-20 are surveyed. There

are nearly even populations sampled between male and female respondents in each state.

However, the number of transgender respondents surveyed is less than 0.05% in most

states and nil in Nagaland. Notably, the respondents are not equally distributed in terms

of education level, with the vast majority of participants having completed schooling.

Literacy level among participants in Uttar Pradesh is severely low, whereas the other

110



Table 11: Activity codes and groups based on ICATUS 2016

Activity

Major division

(ICATUS) 2016

Sub-division

of Activities

(ICATUS) 2016

Activity

code

Activity

groups

defined

Employment and related activities

Employment within

household (producing goods

for sale)

12 1

Unpaid domestic services for

household members

Food and meals management

and preparation
31 2

Unpaid domestic services for

household members

Cleaning and maintaining of own

dwelling and surroundings
32 3

Unpaid domestic services for

household members

Care and maintenance of textiles

and footwear
34 4

Learning

Homework, being tutored, course review,

research and activities related to formal

education

62 5

Culture, leisure, mass-media

and sports practices

Mass media use for entertainment

(TV)
842 6

Culture, leisure, mass-media

and sports practices

Mass media use for entertainment

(Radio)
843 7

Self-care and maintenance Eating and drinking 92 8

Self-care and maintenance Personal hygiene and care 93 9

Self-care and maintenance Sleep and related activities 91 10

three states are quite similar. The survey was conducted uniformly across different days

of the week, as highlighted in Figure 4.4, which shows a balance between all seven days.

However, the date of the month varied across states. To capture the effect of seasonality

on time use, the survey was taken evenly in all sub-rounds, except in Nagaland, where field

conditions might be arduous during winter months due to the cold climate. The temporal

balance in the survey design is a crucial factor that ensures the representativeness of the

sample and increases the overall generalizability in modelling energy use based on TUS.

Taking into account the distribution of demographic factors can help in our understanding

of the different perspectives that influence the survey responses.

4.5.2 Energy use recorded in TUS data

TUS Level 3 data on household energy service provides insight into the current and po-

tential use of electricity for everyday tasks such as cleaning, cooking, lighting and washing
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clothes. This information is essential in understanding the complexities of technology

diffusion in rural areas. It is unsurprising that a mix of different fuels is used for cook-

ing across different states, including firewood, LPG, charcoal and electricity. Numerous

socioeconomic factors influence the fuel transition in rural areas, with affordability and

access to clean cooking being two of the most important drivers. Figure 4.6 shows that,

with Maharashtra and Tamilnadu being economically advantageous states compared to

the other two, their cooking energy is dominated by LPG, whereas in the populous state

of Uttar Pradesh, nearly half of the population still relies on firewood. A transition to

clean cooking remains a major challenge in rural India, where electric cooking stoves hold

the most potential. This will be discussed further in Chapter 6.

Energy use in activities such as cleaning and washing clothes is typically divided into

three categories: mechanical, manual, and outsourced. In most states, this being done

manually by a member of the household remains the most prevalent. However, in econom-

ically progressing states, technological solutions are adopted to automatise these tasks,

and it is likely that many of these activities will be mechanised in the future. In Maha-

rashtra, a relatively higher number of households are using mechanical ways for washing

clothes, which suggests that there is a potential market for appliances such as washing

machines. This shift will not only influence the amount of electricity being used by these

machines but will also be crucial in determining the timing of these tasks and hence the

time of use of these machines.

Lighting is a key component of energy consumption, and this is reflected in the re-

sponses given by households in all four Indian states. The majority of households re-

ported using electric lights, indicating at least Tier-1 access to electricity being available

for most. However, a noteworthy proportion of households in Uttar Pradesh reported re-

lying on kerosene lamps for lighting, which suggests that there are still some areas in this

state where access to electricity might be limited or less reliable. Kerosene lamps have a

detrimental impact on the environment and the health of those exposed to them.
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Figure 4.3: Flowchart for analysing time-dependent activities
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Figure 4.4: Distributions of Age, Gender and Education in survey respondents, here

UP = Uttar Pradesh, MH = Maharashtra, NG= Nagaland, TN = Tamilnadu
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(a)

(b)

(c)

Figure 4.5: (a) describes the days of the week the survey is taken and (b) represents

days of the month the survey is taken, and (c) captures all the months of the year
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Figure 4.6: Energy use in Uttar Pradesh

Figure 4.7: Energy use in Maharashtra
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Figure 4.8: Energy use in Nagaland

Figure 4.9: Energy use in Tamilnadu
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4.5.3 Economic characteristics of TUS data

Figure 4.8 and Figure 4.9 show the effect of outlier treatments on two univariates, house-

hold size and overall monthly expenses. We compared all variables with numeric data

entries in household level 3 and found a pair-wise correlation of each variable. As a result,

household size and overall monthly expenses showed a correlation (see Appendix A.4.2),

but the presence of outliers strongly influenced the descriptive statistics of these variables.

As noted earlier, we tested two methods to handle these values. Figure 4.8(a) shows the

original data on overall monthly expenses; the Median value of expenses in rural Maha-

rashtra is higher than that of the other three states, as it is an economically progressing

state. Meanwhile, Nagaland and Tamilnadu exhibit nearly similar median expenses, with

Uttar Pradesh having the lowest among the rest. There is a strong presence of extreme

values on the upper end, the highest being in Maharashtra, slightly less than $4000 USD36.

Although this value at the upper extreme may be a genuine observation, it does not concur

with the average annual high-income estimated at a national scale. A survey conducted by

People Research on India’s Consumer Economy (PRICE), an independent not-for-profit

organisation in 2020 (People Research on India ’ s Consumer Economy , 2021) covered

200,000 households, with 80,000 of them being in rural areas in 100 districts across India.

Their report on micro-economic data reveals that 10% of the high-income population in

India accounts for 29% of the total income, with an average annual household income

of $9170 USD, while the low-income 10% population accounts for only 3% of the total

income, with an average annual household income of $1710 USD. Keeping this range as

a guide, we implemented two methods for treating the values that are at far extremes:

IQR+1.5 and Winsorisation.

Figure 4.10(b) provides a visual representation of the impact of the IQR outlier treat-

ment on the overall monthly expense data. The IQR outlier treatment involved the removal

of observations that fell outside the range defined by 1.5 times the first quartile and 1.5

times the third quartile. In Maharashtra, 5980 out of 6245 households, or approximately

95.8%, were included within this range, resulting in the removal of 265 households that

exhibited extreme values. As a result of this outlier treatment, the mean, maximum, and

minimum values were significantly altered. Prior to the IQR treatment, the minimum

monthly expense was $6, whereas the maximum expense reported was $3871. In contrast,

following the IQR treatment, these values shifted to $22 and $433, respectively. Notably,

36All the values are originally recorded in rupees, taken in US dollars here for the simplicity and

comparison, the rate of a currency is taken at USD 1 = 81.81 Indian rupees as of December 2022
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the mean overall expense also shifted considerably, decreasing by $21 from $181 before

the treatment to $160 after. A similar shift in descriptive statistics of the rest of the three

states is also observed and enlisted in Table 11 for reference.

In addition to IQR, another approach, Winsorization, is shown in Figure 4.10(c). In

this method, for instance, extreme values are replaced with the values corresponding to the

1st and 99th percentile, thereby bounding the range of the data. In the case of the state of

Maharashtra, this approach resulted in a minimum expense of $22 and a maximum expense

of $667, leading to an approximate decrease of $4 in the mean expenses. Notably, these

values align more with the average high-income households’ statistics on a national scale,

though it has been debated over the years whether matching national averages with survey

data perpetuates misconception (Deaton & Kozel, 2005). Nevertheless, Winsorization can

be an effective method for handling extreme values in the upper bound, minimising the

deviation of the mean value from its original value.

Figure 4.11(a) shows original data on household size in each state. The original data

from rural households in Uttar Pradesh contained an extreme value for the maximum

number of members in a household of 21. It can be either an outlier which needs to

be removed or handled with a reasonable assumption of the upper limit. However, this

value might be legitimate from a cultural perspective where joint families are common in

Indian societies. Therefore, treating this value as an outlier and dropping it might not be

appropriate. Both of the outlier treatment methods, IQR and Winsorization, might not be

sufficient for handling outliers while dealing with household size data. They might result

in an improper estimation of household size. In addition, it’s worth noting that household

size may not always have a linear correlation with monthly expenses, but it may have

a nonlinear relationship that needs further analysis. Table 11 also highlighted all the

minimum, maximum and mean values of household size in all four states for reference.

The IQR method for outlier detection assumes that the data follows a normal dis-

tribution, which is not the case in all scenarios of TUS household data. Non-normal

distributions may result in the misidentification of outliers or the failure to detect true

outliers, thus impacting the accuracy and reliability of the analysis. Therefore, we also

tested Winsorization, which may be more suitable for non-normal data. However, Win-

sorization may also have its limitations and may lead to misrepresentation of data in

certain cases. For instance, Winsorization may result in slightly higher reported expenses

for the bottom of the pyramid populations, as it replaces the extreme values in the lower

bound with less extreme ones and increase the value of the average expenses. This could
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Table 12: Outliers’ impact on descriptive statistics of household level 3 variables:

Household size and overall monthly expenses

States Values

Overall

Monthly

Expenses

Original

$

Overall

Monthly

Expenses

IQR

$

Overall

Monthly

Expenses

Winsorisation

$

Household

Size

Original

Household

Size

IQR

Household

Size

Winsorisation

MH Min 6.1 (n=6245) 6.1 (n=5980) 22.0 (n=6245) 1 (n=6245) 1(n=6135) 1(n=6245)

Max 3681.7 433.9 667.1 18 7 8

Mean 181.5 160.6 177.4 3.5 3.4 3.5

UP Min 3.6 (n=11153) 3.6(n=10615) 18.9(n=11153) 1(n=11153) 1(n=10864) 1(n=11153)

Max 1102.9 181.4 274.0 21 8 10

Mean 88.3 80.3 87.42 4.3 4.2 4.4

NG Min 11.4 (n=672) 11.4 (n=648) 24.7(n=672) 1(n=672) 1(n=668) 1(n=672)

Max 611.1 249.5 336.1 9 7 7

Mean 120.5 113.1 119.8 3.3 3.2 3.3

TN Min 5.2(n=4159) 5.2(n=4005) 18.6(n=4159) 1(n=4159) 1(n=4151) 1(n=4159)

Max 977.8 285.2 366.7 10 7 6

Mean 125.8 116.1 124.4 2.9 2.9 2.9

potentially exclude equal representation of all income levels in the analysis and induce

bias in estimations. Therefore, careful consideration of the specific data characteristics

and the potential impact of different outlier detection methods is necessary to ensure the

accuracy levels in analysis. Economic attributions of various households can have a sig-

nificant influence on activities performed in households and the energy use behaviours of

members occupying the house.

4.5.4 Time dependent residential activity profiles

This section provides insights into the social practices of rural households as a function

of time-dependent activities. We will refer to these as activity profiles henceforth. Fig-

ure 4.12 displays the probabilities of the proportion of populations engaging in activity

profiles of rural households across all four states, taking into consideration ten domestic

activities occurring over a 24-hour period with potential implications for residential energy

consumption. Time use data is recorded based on a 24-hour cycle starting at 04:00 am to

the next day at 04:00 am; survey participants have responded to activities they engage in

within discrete intervals of 30 minutes.

In the activity profiles of all four states in India, there are certain similarities in daily
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Figure 4.10: Monthly expenses

with original data, IQR and Win-

sorisation

Figure 4.11: Household size with

original data, IQR and Winsori-

sation
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Figure 4.12: Residential activity profiles of four states without consideration of

weights of individual respondents

routines but also notable differences in the time of their occurrences. For example, long-

duration activity, such as sleeping in Maharashtra, is seen in two different time periods

- night and afternoon. However, in Nagaland, people do not appear to take afternoon

naps. Similarly, the timing of laundry activities also varies between the states. While in

Maharashtra, only a segment of the population undertakes the activity only for a short

duration in the morning (perhaps reflecting the increased use of mechanised washing);

in Nagaland, it is carried out in the afternoons until the early evening. These activities

are indicative of the time of use of appliances such as ceiling fans and washing machines,

respectively, which majorly contribute to residential peak energy demand. Other activities,

such as meal preparations, are comparatively more elaborate in Maharashtra, with a major

part of the population preparing meals for lunch during the late mornings and for dinner

during the evening. Whereas, in Nagaland, the probability of people preparing meals is

less during the evening when there is a high probability of people watching a TV, which

might occur simultaneously with eating meals.

In this analysis, we also incorporated weights assigned to individual respondents, as

elaborated in section 4.4.2. The activity profiles, which include the weighted probabilities

of populations, are shown in Figure 4.13. Upon comparison with non-weighted survey

activity profiles in Figure 4.12, these weighted activity profiles appear remarkably simi-

lar. The discrepancies between the two profiles range from 10−2 to 10−4, as illustrated
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Figure 4.13: Residential activity profiles of four states without consideration of

weights of individual respondents

in Figure 4.16. This observation suggests that the sampling of the time-use survey is

representative of its sub-populations. In conclusion, we have verified the suitability of

the Indian time-use survey data for the calibration of activity modelling, which will be

discussed in further detail in Chapter 5.

4.6 Summary

This chapter began with an overview of energy demand models, emphasising the impor-

tance of accounting for the time-sensitive nature of energy use. We then introduced a

multi-scale framework for energy demand modelling. We discussed its applicability to

Global South countries, with a focus on model calibration with time use survey data. The

Indian Time Use Survey dataset from 2019-2020 was then presented, along with identifi-

cation of categories of activity with significant energy use implications. A thorough data

assessment examining demographic characteristics, energy use variables, and economic pa-

rameters show that Indian TUS data has the necessary attributes to support high quality

disaggregated energy demand modelling based on residential activities. In support of this,

we presented activity profiles for four different states, confirming the representativeness
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Figure 4.14: Difference in probabilities with and without consideration of weights in

TUS data of four states
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of the datasets for sub-populations by considering the weights of individual respondents.

In the following chapter, we will calibrate models for residential activities to construct a

load profile underpinning the time-sensitive nature of energy demand.
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Chapter 5

Residential energy demand model
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5 Residential load profiles

In this chapter, we introduce a model designed to create bottom-up load profiles at the

household level, with the goal of scaling up to the community or village level. The model

is calibrated using residential activity data derived from Time Use surveys in India (in

this, two states are considered: Uttar Pradesh and Nagaland). Specifically, we address

three key tasks: i) calculating starting probabilities for activities, which inform the start

time of correlated appliances; ii) the duration of activities once initiated, which influences

the duration of appliance use; and iii) Generating representative load profiles of televisions

in use in rural communities of Uttar Pradesh and Nagaland. Additionally, we compare

Gaussian and Weibull distributions for duration modelling, providing error statistics for

both. The chapter concludes with a summary and outlines future work needed to further

refine the model, as it is currently a work in progress.

5.1 Overview of residential activity modelling

Expanding upon the groundwork done in the previous chapter, the focus of this chapter

shifts toward building a model of residential activities in order to construct load profiles

using a bottom-up approach. The task of characterising residential load profiles is chal-

lenging as it involves multiple social and behavioural aspects of energy use with a high

degree of stochasticity. An early model accounting for this stochastic nature of residential

energy use is found in (Capasso, Lamedica, Prudenzi, & Grattieri, 1994); the model used

two-level aggregation of behavioural and engineering probability functions and a Monte

Carlo process to construct a load profile highlighting the shape of the daily residential

demand curve and its significance.

Other more granular models have been recently developed to generate demand patterns

from residential activity sequences. One such model, introduced by (Widén & Wäckelg̊ard,

2010), was validated against measured demand based on key features such as end-use

composition, diurnal and annual variations. Similarly, (Richardson, Thomson, Infield, &

Clifford, 2010) presented a model that mapped occupant activity onto the appliance use

and stochastically created synthetic demand data with a one-minute time resolution. This

model was constructed using individual appliance power consumption data and nationwide

ownership statistics and was validated using high-resolution measured data from 22 local

dwellings in the UK. The effectiveness of the model lies in its ability to represent the

time-coincidence/diversity of demand due to the inclusion of after-diversity demand and
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power factors. Wilke et al.(Wilke, 2013) have developed a stochastic bottom-up energy use

model capable of predicting load profiles based on occupancy levels, appliance stocks and

residential activities. The model was calibrated with French Time Use Survey data (TUS)

validated against measured data. Torriti (Torriti, 2017) has reviewed several models built

to estimate residential energy demand based on time use studies. The author evaluated

these models based on what type of data has been used, what statistical methods are

implemented and identified their limitations, and in conclusion, highlighted the importance

of the quality of data.

Time use survey data is a valuable resource for researchers and academics as it is

unique in nature, translating qualitative narratives of people’s day-to-day activities into

quantitative information in discrete time steps (Gershuny, Margarita, & Lamote, 2020).

However, the quality of the data collected can have a significant impact on the accuracy

of models developed based on time-use studies. In the previous chapter, we extensively

discussed the robust nature of Indian Time Use Survey (TUS) data and its suitability

for building time-use energy demand models. In the present chapter, our primary aim is

to discern the patterns of daily electricity consumption and the corresponding appliance

usage in rural households, taking into account the influence of time-dependent activities

performed in rural households in India. To this end, we present a preliminary bottom-up

stochastic model which addresses the following questions:

• What proportion of the population initiates activities that result in energy con-

sumption by the related appliance?

• Once initiated, what is the average duration of the activity and, in turn, the corre-

sponding appliance usage period?

• What are the anticipated energy consumption patterns exhibited by the appliances

while in use?

To address these questions, Section 5.2 presents a methodology of the bottom-up

approach. Each subsection of the methodology elucidates the model structure and analysis,

along with corresponding results from two states in India: Uttar Pradesh and Nagaland37.

Section 5.3 focuses on the application of Monte Carlo methods to generate appliance-level

37Uttar Pradesh because it has the highest population in India with low electrification rate and

Nagaland because it has small population size with low electrification rates. The government

claimed that all the villages in both states are electrified 100 %, however there are no independent

studies found affirming the claim
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load profiles, illustrating the efficacy of the residential activity model. The key findings and

discussions are followed in Section 5.4, as well as an outline of future research directions.

Finally, Section 5.5 provides a conclusion to the chapter.

5.2 Methodology for residential energy demand model

As the primary objective of the model is to understand the time-sensitive nature of daily

energy use in households, key parameters of interest include the start times and usage

duration of appliances. Hence the methodology associated with the energy model based

on residential activities comprises four steps:

1. Estimating the starting time probabilities of each activity. (Section 5.2.1)

2. Calculating the probabilities of activity duration once initiated. (Section 5.2.2)

3. Duration modelling - fitting Gaussian and Weibull distributions to each activity

duration. (Section 5.2.3)38

4. Constructing appliance load profiles based on the corresponding activity data for a

prospective hypothetical village. (Section 5.2.4)

Figure 5.1 illustrates the schematic representation of the steps undertaken in the

methodology, and the following subsections describe the model structure in detail.

5.2.1 Probability of starting an activity

First, we initialise the residential activity records 39 and calculate the probability Pi(t) of

individuals starting an activity i at any given time t. Given that our data is recorded in

discrete 30-minute intervals, we applied a 1D Gaussian filter to reduce fluctuations. The

Gaussian function is used as a mask to overlap the original data, resulting in a smoothed

output.

The one-dimensional Gaussian filter f(x) is described as :

f(x) =
1

σ
√
2π

e−
x2

2σ2 (12)

Where x is the observed value, and σ is the standard deviation. The convolution pro-

cess involves calculating the sum of element-wise products at each time step, yielding a

38In 2nd step we calculate probabilities and in 3rd we calculated probability density function
39for more details on activity types considered, see Table 10 in Chapter 4
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Figure 5.1: Schematic of activity modelling steps

smoothed output. Subsequently, the smoothed output is interpolated using a cubic func-

tion. Figures 5.2 and 5.3 display the resulting probabilities of initiating ten activities in

rural households of Uttar Pradesh and Nagaland, respectively. Distinct characteristics are

evident in both states, particularly with activities such as watching TV and sleeping. In

Uttar Pradesh, a considerable proportion of the population seems to engage in afternoon

naps, while in Nagaland, a relatively higher percentage of people watch TV in the evening.

It is important to note that within the first activity group, employment, we only

considered activities performed inside the house for profit, commonly known as ’working

from home’ in recent times. However, since the survey data was collected prior to the

pandemic and agriculture serves as the primary source of livelihood in rural India, this

activity is not initiated by a significant number of individuals. However, with the rise of

working from home culture and strong encouragement towards women’s empowerment in

villages (referring to griha udhyog) these activities are likely to increase in the future with

corresponding increases in the utilisation of appliances such as electric sewing machines.

5.2.2 Probabilities of the duration of activities

Once these residential activities are initiated, we are interested in calculating how long

these activities will last for. The probability Pi(∆t) of the duration of each activity i is
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Figure 5.2: Probabilities of the starting ten activities in rural Uttar Pradesh

(n=39654)

. The solid blue line denotes the original data, and the red dashed line is smoothed

data with a Gaussian filter.
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Figure 5.3: Probabilities of the starting ten activities in rural Nagaland (n=1900).

The solid orange line denotes original data, and the green dashed line represents

smoothed data with a Gaussian filter
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calculated based on

Pi(∆t) =
ni(∆t)

N
(13)

Pi(∆t) denotes the probability of x people performing the activity for a duration of ∆t.

x(∆t) represents the number of people performing the activity for a duration of ∆t. N is

the total number of people. Each bar in the chart represents a 30-minute time interval.

For instance, in Uttar Pradesh, once individuals begin watching TV, approximately 45%

of the population continues to watch for 1 hour, while fewer than 20% watch for more

than 1.5 hours. In contrast, the duration of TV watching in Nagaland is comparatively

evenly distributed, with nearly 30% of the population watching for 1 hour and an equal

percentage watching for 2 hours.

This observation may be attributed to the fact that the intervals are discrete, while

people in developing countries, particularly rural areas, tend to perceive time as a con-

tinuum rather than discrete units, as noted by Hirway (Hirway, 1999). In simpler terms,

instead of reporting the precise duration of an activity, individuals often provide rough

estimates and round off the hours spent on a particular activity.

Another crucial distinction to consider regarding activity durations is the distribution

of sleeping activity, which is markedly different from other activities due to its signifi-

cantly longer duration when occurring at night. However, it is also essential to recognise

that sleeping occurs during two distinct time zones, especially in Uttar Pradesh, where a

considerable portion of the population takes shorter afternoon naps. This observation ne-

cessitates dividing time into four zones—morning, afternoon, evening, and night—to gain

deeper insights into activity duration and how they are influenced by these time zones.

We employ this approach with respect to all ten activities in each zone. The wide-scale

utilisation of ceiling fans during the summer season at night while sleeping also highlights

the energy consumption implications of this activity. Moreover, as previously discussed in

Chapter 3, from the supply-side perspective, the nighttime use of ceiling fans significantly

impacts the storage size requirements for renewable mini-grid systems.

5.2.3 Duration model fitting

As a next step in the process of building the electricity demand model, we fitted the

Gaussian distribution (also known as the normal distribution) and Weibull distribution to

the duration of each activity. First, we divided activity records into four time zones, 4 am

to 10 am as the morning, 10 am to 16 pm as the afternoon, 16 pm to 8 pm as the evening

and 8 pm to 4 am the next day as nighttime. Following this classification, we fitted the
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Figure 5.4: Probabilities of the duration of activities Uttar Pradesh (n=39654)
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Figure 5.5: Probabilities of the duration of activities Nagaland (n=1900)
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respective distributions to the original data.

The Gaussian distribution (interchangeably written as the normal distribution) is a

continuous probability distribution that is often used to model random variables that are

distributed symmetrically around a mean value. The Probability Density Function (PDF)

of a Gaussian distribution with mean µ and standard deviation σ is:

f(x) =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
(14)

Where x is the random variable, µ is the mean, and σ is the standard deviation. The

Weibull-min distribution is a continuous probability distribution. The probability density

function (PDF) of a Weibull-min distribution with shape parameter k and scale parameter

λ is:

f(x) =

{
k
λ

(
x
λ

)k−1
exp

(
−
(
x
λ

)k)
&x ≥ 0 &x < 0 (15)

Where x is the random variable, k is the shape parameter, and λ is the scale parameter.

The PDF describes the relative likelihood of observing different values of the random

variable. To compare the goodness of fit, the Root Mean Squared Error (RMSE) is

calculated for each activity in each time zone. RMSE is a measure of the differences

between the predicted values and the actual values.

RMSE =

√√√√ 1

n

n∑
i=1

(xi − x̂i)2 (16)

where n is the number of data points, xi is the actual value of the and x̂i is the

predicted value of the point.

We identified three activities that have a direct association with electricity usage, in-

cluding watching TV, laundry (potential use of washing machines as ownership increases),

and sleeping, as discussed in the previous section. The observed data and fitted distribu-

tions for these three activities are presented in Figures 5.6 and 5.7 for Uttar Pradesh and

Nagaland, respectively. For each of these activities recorded in the four time zones, both

Gaussian and Weibull distributions are displayed, along with their respective RMSE val-

ues. Weibull distribution tends to fit better than the Gaussian distribution for activities

that are short in duration but have a high probability density function (PDF).

The primary focus of model fitting is on activities such as laundry in the morning and

sleeping at night, where both distributions exhibit a good fit. For example, in Nagaland

(Figure 5.7), the RMSE for laundry in the morning is 0.08 for the Weibull fit and 0.09
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Figure 5.6: Duration modelling of activities in Uttar Pradesh, the histogram repre-

sents original data, the red dashed line shows a Normal fit, and the blue dashed line

shows a Weibull fit.
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Figure 5.7: Duration modelling of activities in Nagaland, the histogram represents

original data, the red dashed line shows a Normal fit, and the blue dashed line shows

a Weibull fit.
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for the normal fit. However, laundry at night is highly unlikely, and similarly, sleeping

in the evening is less likely to occur. Neither of these activities shows a good fit due to

the inherent nature of the data. In Nagaland, afternoon naps also demonstrate a good fit.

The activity of watching TV fits well in three time zones, with RMSE values less than 0.1

in all three, except for the morning. For further load profile calculations, we will consider

the duration probability density function (PDF) of each activity in each time zone with

the lowest RMSE.

In Uttar Pradesh, the Weibull distribution, in contrast, does not show a good fit for

key activities and tends to overfit the peak. This observation might be due to discrepancies

in the data. For example, nighttime sleeping has a small number of people recording sleep

for only 30 minutes because of the way data is recorded from 4 am to 4 am. Nighttime

sleeping is recorded in two separate time slots: individuals reported sleeping at 10 pm

and ending the activity at 4 am, then continuing the same activity from 4 am to 6 am.

We have combined these recordings into a single entry; however, for a small number of

observations, this could be erroneous or genuine. Similarly, all other activities show a

good fit, except for TV watching in the evening and night, which exhibit slightly higher

RMSE values. We utilise these duration PDFs with the lowest RMSE values to generate

load profiles for the corresponding appliances, aiming to identify electricity consumption

patterns. The methodology for this process is discussed in detail in the following section.

5.3 Load profiles

The generation of load profiles based on time-dependent activities, fundamentally it is built

upon the assumption that the switching on times and duration of appliances are derived

by human interactions with electrical devices. These interactions can be categorised into

four types: 1) appliances that autonomously switch on and off (e.g., fridge), 2) appliances

that are user-initiated but switch off automatically (e.g., washing machine), 3) appliances

that are user-initiated and usage varies throughout the day (e.g., television and cooker),

and 4) a subgroup of appliances that adhere to scheduled switching on and off (e.g., air

conditioning). For the purpose of illustration, we have chosen to derive load profiles only

for appliances falling under type 3. However, for a more comprehensive representation

of energy usage, a deeper understanding of factors like seasonality and thermal comfort

becomes imperative.

Our primary objective is to establish stochastic load profiles corresponding to indi-

vidual appliances based on their respective activity profiles, encompassing both starting
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times and duration. As illustrated in Figure 5.8, the process involves sequential steps,

hinging on two critical inputs: the interpolation function (as discussed in Section 5.2.2)

and the duration Probability Density Function (PDF) of each activity across different time

zones, detailed in Section 5.2.3. Following the initiation of the process, utilising binomial

probability, we determine the initiation status of an activity at each time step over the

24-hour period. If the appliance is switched ’ON’, we sample a random duration from

the duration PDF. This procedure is iterated at each time step throughout the 24-hour

duration to determine the appliance’s ON/OFF profiles.

5.3.1 Monte Carlo Simulation / random sampling

Every randomly sampled profile is described as the path. In this process, we are sampling

10,000 such paths and finding a mean path that represents the time of an appliance usage.

When n is the number of paths, T is the total number of time steps, Pstart(t) is the start

probability at time step t and fduration(t) is the duration PDF for each time zone, the

mean path X̄ is defined as:

X̄ =
[
0 0· · · 0

]
T×1

(17)

For each path i ∈ 1, 2, . . . , n, we repeated the following:

Xi =
[
0 0· · · 0

]
T×1

(18)

When t < T , the start probability Pstart(t) (which is similar to Pi(t) using the inter-

polation function described in section 5.2.2. A random number r ∼ U(0, 1) is generated.

If r < Pstart(t) in each time zone, duration d ∼ fduration(t) is sampled from the duration

PDF fduration(t). The path Xi is updated for the duration d, and the process is repeated

with every t incremented by d

Xi[t : t+ d] =
[
1 1 · · · 1

]
1×d

(19)

The mean path X̄ ′/ is updated based on equation (20)

X̄ ′ = X̄ +Xi (20)

and the final mean path is given by:

X̄ =
1

n
X̄ ′ (21)

In the following section, we will illustrate the load profiles of individual appliance, focusing

on the time-dependent usage of televisions which has straight forward consequence of
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Figure 5.8: Flow chart for generating load profile of relevant appliance
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electricity usage . These profiles are based on activity data gathered from rural households

in the states of Uttar Pradesh and Nagaland, showcasing how appliance usage pattern is

influenced by the respective activities.

5.3.2 Appliance wise load profiles

The objective of this simulation is to showcase the conceptual model to generate a stochas-

tic load profile of individual appliances. This model is calibrated based on corresponding

activity data recorded by rural households in Uttar Pradesh and Nagaland. To demon-

strate its functionality, we can implement it in two ways within a hypothetical scenario:

i) In a target community or village consisting of 100 households, the aim is to generate

individual appliance level load profiles and aggregate them to household or community

level, for example, finding the daily usage patterns of televisions. Due to the limited

availability of information on appliance ownership in TUS, our initial assumption is that

each household owns one television; then we ask, what will the average usage pattern

of television within this population be? By applying the random sampling technique

discussed in the previous section, we determine the time-dependent activity profile (a.k.a.

path); in this context, this activity of watching TV can be directly correlated with the

television’s load profile40. The resulting load profile represents the aggregate television

energy consumption within the community, as well as the average usage times over a 24-

hour period. Importantly, in this model, we can simulate usage patterns at different time

scales with smaller intervals which can be instrumental in understanding the dynamics of

energy consumption.

ii) Alternatively, the model can be used to simulate a sequence of daily usage profiles,

say for 30 days with a time interval of 10 minutes (or less). In this case, the mean path

(activity profile) provides the average load profile of a single appliance, a television say,

over a month. The primary objective of this model is to identify diurnal variations in

appliance usage, which we have termed the ’transverse’ component of the load profile.

Figures 5.9 display the daily load profiles for televisions, in a hypothetical community

of 100 households in Uttar Pradesh. These profiles are shown at 10-minute intervals for a

single day, illustrating the first approach. Figures 5.11 show similar load profile for Naga-

land, further emphasising the utility of this approach. The majority of TVs are switched

on during the evening time in both states contributing to the peak loads. This insight

40Considering that the nominal power consumption of a 32-inch television varies between 65-

80W, an average power consumption of 70W was assumed for the calculations
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Figure 5.9: TV load profile in Uttar Pradesh community (n=100)

underscores the importance of considering the timing of activities that significantly con-

tribute to peak loads when predicting appliance usage patterns. As previously mentioned,

for simplicity, we have assumed a 100% ownership for the appliances in this hypothet-

ical community. In real-world situations, comprehending appliance ownership involves

navigating the intricate interplay between social and technological systems. A detailed

discussion of appliance ownership is given in Chapter 6, as this aspect falls within the

scope of the longitudinal component of the load profile. By distinguishing between the

transverse and longitudinal components, this research aims to provide a comprehensive

understanding of the factors influencing residential load profiles, thereby enabling us to

develop a multiscale energy demand model.

5.4 Discussion

5.4.1 Model validation and future tasks

The study described in this thesis has faced a consistent challenge of data paucity. In an

ideal world, we would empirically validate load profile modelling workflow described above

with the use of disaggregated real time monitored data, similar to model validation per-

formed by (Wilke, 2013). For example, utilising smart meter-monitored data of residential

electricity use. However, the scarcity of comparable datasets from rural India presents a

challenge for model validation. One potential data source is the eMARC household energy

dataset, monitored by the Prayas Group 41. Nevertheless, this dataset is aggregated, and

41http://emarc.watchyourpower.org/
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Figure 5.10: TV load profile in Nagaland community (n=100)

appliance-level consumption is not specifically monitored. Furthermore, the sample size of

rural households is quite small, limiting the applicability of this data source for our model

validation purposes.

However, the load profile modelling workflow is conceptually simple. For each appli-

ance and its dependent activity, we wish to know when that activity will start and the

duration for which it will survive. These we have shown are well captured by the model.

We, of course, assume that appliance power demand is constant and well-estimated in our

workflow, and this may not be the case. Nevertheless, we suggest that, for the present

purposes and given the data available, this pragmatic approach of testing the key compo-

nent of time dependency is a reasonable one. Clearly, it would in the future be desirable

to empirically validate the combined model when high-granularity appliance-level smart

meter data from rural households does become available.

5.4.2 Strengths of transverse energy model

The proposed model effectively captures diurnal variations in energy consumption at the

individual appliance level, offering valuable insights into daily usage patterns. Addition-

ally, the model is readily scalable and generalisable, allowing for adaptation across different

local contexts. Furthermore, by incorporating social practices and the nuances of daily life,

a wide range of scenarios can be accommodated by the model for estimating future energy

demand. Thus increasing the scope of load profile characterisation for various socioeco-

nomic groups or demographics, ensuring a holistic understanding of energy consumption

patterns and facilitating the effective renewable energy transition in rural areas.
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5.4.3 Limitations of transverse energy model

Whilst the strengths of the proposed model are promising, it has certain limitations that

must be acknowledged. Firstly, the model primarily provides only average estimates,

and causal relationships between activities are difficult to incorporate. Secondly, to fully

realise the potential of the time use model, it is crucial to combine it with high-quality

appliance ownership data. This is due to the complex relationship between household size

and ownership, which complicates the task of linking the number of appliances in use with

the number of people utilising them.

Furthermore, the model depends on national-scale time use surveys, which are often

unavailable in many Global South countries. When available, these surveys are typically

conducted infrequently, with long gaps between iterations. For instance, India’s last sur-

vey before the current one (in 2019-2020) was conducted in 1999. Lastly, it is important

to recognise that residential activity-based energy models can primarily predict energy

use resulting from active interactions with appliances, such as when an occupant initi-

ates energy consumption. However, non-interactive energy use or externally stimulated

energy use, as observed in appliances like refrigerators or ceiling fans, is more difficult to

predict using time use data alone. To account for these types of energy use, a more com-

prehensive understanding of factors such as seasonality and thermal comfort is required.

Furthermore, the model depends on national-scale time use surveys, which are often un-

available in many Global South countries. When available, these surveys are typically

conducted infrequently, with long gaps between iterations. For instance, India’s last sur-

vey before the current one (in 2019-2020) was conducted in 1999. Lastly, it is important

to recognise that residential activity-based energy models can primarily predict energy

use resulting from active interactions with appliances, such as when an occupant initiates

energy consumption. However, non-interactive energy use or externally stimulated energy

use, as observed in appliances like refrigerators or ceiling fans, is more difficult to predict

using time use data alone.

5.5 Summary

In this chapter, we have presented the transverse demand component of the proposed

multiscale model, which constructs appliance-level bottom-up load profiles based on resi-

dential activity data obtained from the Time Use Survey in India. Our approach involved

calculating the starting time probabilities of various activities, as well as the duration for

which these activities persisted once initiated. We derived Gaussian and Weibull proba-
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bility density functions for the duration of these activities and evaluated the goodness of

fit for each distribution.

Utilising these parameters, we implemented Monte Carlo simulations to construct load

profiles for the corresponding appliances in use. The conceptual functioning of the model

is demonstrated through average load profile for televisions in two states: Uttar Pradesh,

which has the highest sample size in the Time Use Survey, and Nagaland, which has the

lowest. We subsequently discussed the challenges associated with model validation, the

strengths and limitations of the time use energy model, and the necessity of linking it to

appliance ownership data.

1. Considering the level of occupancy, we can model the usage times of lighting and

generate stochastic load profiles. The use of lights notably contributes to the evening

peak period (given the data of daylight availability). This aspect becomes partic-

ularly crucial when devising plans for decentralised energy systems as the evening

peak demand significantly influences the storage requirements.

2. By integrating occupancy and activity data with the seasonal dimension of the

framework, we can also project the usage patterns of ceiling fans, a widely owned

appliance with substantial nominal power ratings. Given the escalating tempera-

tures and prolonged heatwaves in India, the operation of fans plays a critical role in

shifting peak demands. Ceiling fans could notably contribute to afternoon peak de-

mands during summers in rural India; this would also benefit from a mechanism for

assessing occupants’ thermal discomfort, which would act as a trigger for switching

on the fans.

3. Looking ahead, as we transition towards clean cooking practices, the adoption of

electric cook stoves may further intensify the evening peak demand or possibly create

new peak periods. A comprehensive time-use survey capturing meal preparation and

cooking times will be instrumental in understanding the future demand for cooking

activities. Presently, clean cooking practices in rural India are at an early stage;

however, for achieving net-zero pathways, focusing on clean cooking is essential,

demanding further research initiatives.

While our present illustration focuses solely on activity modelling for televisions, it’s crucial

to note that this model is adaptable to a broader spectrum of appliances, presenting a

versatile framework for future applications and extensions. In the following chapter, we
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will discuss the details of appliance ownership and explore how it can be integrated into

the model to develop long-term energy demand estimates for rural villages.
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6 Longitudinal energy

In this chapter, we present a conceptual framework for a system dynamics model to esti-

mate long-term longitudinal growth in appliance ownership and its electricity usage within

rural households in India. We begin by highlighting the necessity of this model and pro-

vide a brief literature review to contextualise our approach. Next, we outline our research

objectives and explore the methodology of system dynamics, explaining the preliminary

building blocks of the proposed model. Finally, we discuss the challenges associated with

developing such models due to data scarcity and suggest potential future directions for

research in this area.

6.1 Overview of Appliance Ownership

India’s future grid size lacks a definitive forecast, with estimates ranging from 650 to 1000

gigawatts (Dubash, Khosla, Rao, & Bhardwaj, 2017). This wide range could lead to vary-

ing supply needs and risks, including energy security concerns and stranded assets due

to inaccurate demand predictions (Khosla, 2018). All over India, residential energy use

is the largest share with 31.76% of the total energy supplied, showing an increase from

29.34% in 2019-20. This represents a 7.15% growth in the domestic sector compared to

the previous year. (Central Electricity Authority, 2022). As we have seen in previous

chapters, estimating this growth in electricity consumption can have multi-fold impacts

on sustainable energy planning. Understanding this longitudinal component of demand

is thus of paramount of importance. Longitudinal growth in appliance ownership refers

to evaluating the increase in the number of appliances owned by households over specific

intervals of time. This means understanding how and why the number of appliances, like

refrigerators, washing machines, or televisions, increases in households as time goes by.

This growth is influenced by various factors such as household income, access to electricity

and changing lifestyles. It is therefore necessary to understand individual decisions that

are ”constructed” by interactions between social and technological systems and these de-

cisions are determined by services such as comfort and convenience provided by the home

appliances that are purchased(Wilson & Dowlatabadi, 2007). We must also consider the

positive feedbacks arising from energy efficiency measures and changes in societal aspira-

tions for energy services and comfort. For example, Wilson et al. highlighted that the

ownership of air conditioners in American homes increased from 12% in 1962 to 75% in

2001, now accounting for 50% of U.S. household energy use. Likewise, a recent report by

148



the International Energy Agency on the Indian energy sector (India energy outlook report

(IEA), 2021) projected electricity consumption to increase six-fold by 2040, primarily due

to rising air conditioner ownership. Efficiency measures are expected to have the potential

to reduce the associated energy use by as mush as a quarter in targeted policy scenarios.

The rapid electrification of rural India has led to a significant increase in household

appliance ownership, which, in turn, has intensified energy consumption in the last decade.

The dynamics of growth and electrification are a complex web of underlying forces and

feedback mechanisms. Rural electrification, in particular, is expected to have a positive

impact on the availability of new economic and educational opportunities. This, in turn,

could make electricity and associated appliances more affordable, which could then in-

crease local electricity demand(Khandker, Barnes, & Samad, 2012). Walia et al.(Walia,

Tathagat, Dhingra, & Varma, 2019) conducted a nationwide study in India to understand

the ownership patterns and associated electricity consumption of appliances. The study

found that appliances such as cell-phone chargers, TV sets, set-top boxes, cooktops/stoves,

refrigerators and ceiling fans have penetrated 80% or more of the market. The study also

found that energy consumption is higher in summer than in winter across socio-economic

strata, dwelling type, and climatic zones except for cold climates. Space and water heating

appliances are major contributors to winter peak demand, while summer peak demand is

attributed to space cooling devices. This study was conducted only in urban households,

no similar studies exist for rural areas, whilst other studies confirmed significant ownership

differences between urban and rural regions in India (Kulkarni, Sahasrabudhe, Chunekar,

& Dukkipati, 2022). National Electricity End-use Monitoring (NEEM) by Bureau of En-

ergy Efficiency in India (NEEM, 2007) 42NEEM by BEE conducted a pan-India study

of over 5,000 urban households in 2017, appliance ownership and usage were examined

alongside socio-economic indicators and climate zones. The data indicates that appli-

ance ownership and usage are on the rise significantly, with households shifting towards

family nuclearisation. Per capita energy use is also increasing. The results also provide

good insights on variations in energy consumption across climatic zones, demographic

parameters, and socio-economic strata for the major appliances. Factoring in ownership,

air-conditioners, refrigerators and ceiling fans have the largest urban household footprints,

highlighting India’s increasing demand for cooling appliances. The survey covered more

high and middle income households than low income households. The growth dynamics

in low income rural households may not be reflective in this study.

42*
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In order to accurately estimate the longitudinal growth of appliance ownership in

rural India, researchers require data collected over long periods of time. The Consumer

Pyramids Household Survey (CPHS)43 is one such survey. It has been conducted three

times a year since 2014 and includes information collected from more than 200,000 Indian

households. The CPHS data is representative of national, state, and urban-rural levels and

has been used to examine various aspects of the living standards in India such as income

equality, access to finance, unemployment and other issues. While the CPHS data provides

an invaluable source of information, there are some concerns surrounding its sampling

methodology and survey process, which is biased towards high income households. The

CPHS dataset has also been compared with the National Family Health Survey (NFHS)

544 conducted by The International Institute for Population Sciences, Mumbai for the

Ministry of Health and Family Welfare (MoHFW) and confirmed the biasness in CPHS

data(Kulkarni et al., 2022).. This survey covers data on appliance ownership for 636,000

households across both rural and urban regions. Despite its extensive coverage, the NFHS

data has limitations, as it is administered relatively infrequently. Of the five survey rounds

in the last 50 years, only three are open access. This is insufficient for analysing long-

term patterns. Despite the inherent constraints in both datasets, they provide valuable

information for the framework to model longitudinal energy demand patterns in rural

India.

6.2 System dynamics for appliance ownership growth

Appliance ownership growth in the context of rural electrification and sustainable energy

planning involves not only technical factors but also social, economic, and environmental

factors, with interconnected influences. As discussed previously, the growth in household

energy demand is driven by various factors, including perceived improvements in quality

of life and social status, cost considerations, availability of local resources, and access to

relevant technology. This can be understood as a complex system, a concept central to

systems theory as defined by Flood and Jackson (1991). Complexity in systems can be

characterised as organised simplicity, disorganised complexity, or organised complexity.

1. Organised Simplicity: This could refer to systems that are relatively straightforward

with clear and easily understandable structures and relationships. In such systems,

the components interact in a more linear and predictable manner.

43CPHS survey
44NFHS-5
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2. Organised Complexity: This likely relates to systems that are intricate and have nu-

merous interconnected elements. Despite the complexity, there might be some level

of order and organisation within the system, and understanding the relationships

between components can result in improvised systems.

3. Disorganised Complexity: These type of systems refer to challenges with many more

independent variables that require sophisticated statistical analysis to understand.

In rural electrification energy planning, many models are heavily focused on technical

aspects and often lack the capacity to accommodate qualitative inputs, such as the impact

of specific policies, preferences of local communities, or on-ground observations of energy

use behaviours. These purely technical models, based on predefined assumptions and input

parameters, are often referred to as black box models (e.g., HOMER), particularly when

dealing with a wide array of parameters. Recognising rural electrification as ”Organised

complexity” highlights its similarity with socio-technical systems. This concept denotes

a system with numerous interconnected elements, resisting effective analysis through tra-

ditional statistical methods. Such systems often manifest as wicked problems, shaped by

individuals’ responses to new information or their decision-making processes, with the

potential for reduced complexity with increased understanding. Within this framework,

understanding appliance ownership in the context of rural electrification fits within the

organised complexity paradigm, where system dynamics emerges as an apt technique for

study. This approach can be categorised as a ’white’ or ’grey’ model, depending on input

parameters derived from expert opinion or aggregated data. It effectively captures inter-

connections and feedback mechanisms, offering a more comprehensive understanding of

underlying factors and facilitating more informed decision-making processes.

System dynamics, first developed by Prof. J.W. Forrester at MIT in the 1950s, is a

modelling and simulation method for analysing complex behaviours in the social sciences,

through computer simulations(Forrester, 2009). Dyner et al.(Dyner et al., 1995) pioneered

the application of System Dynamics in the energy sector by developing a methodology that

informed energy policy formulation, using the Medellin Metropolitan Area in Colombia

as a case study. Their model considered the complex interconnections among various

economic sectors, energy demand, and alternative energy sources, while accounting for

macroeconomic financial constraints and energy supply and demand in each sub sector.

This comprehensive model assessed the consumption of energy from gas and alternative

sources, the impact of energy efficiency and conservation programs, and the influence

of electricity tariff changes on consumption, offering valuable insights for energy policy.

151



Tonini et al. (Tonini, Sanvito, Colombelli, & Colombo, 2022) and Hartvigsson et al.

(Hartvigsson et al., 2020) suggested the use of System Dynamics models to understand

the long-term, bottom-up electricity demand in rural electrification in Kenya and Tanza-

nia, respectively. Tonini et al. (Tonini et al., 2022) incorporated the impact of external

factors, such as local economic growth through income generating appliances and micro-

credits, on overall residential energy demand increase in their analysis. On the other hand,

Hartvigsson et al. (Hartvigsson et al., 2020) examined the potential for capacity expansion

in mini-grids within their study.

In this chapter, our overarching research aim is to investigate the growth trajectory

of per capita residential electricity consumption in rural India. Our objectives are to

develop a bottom-up understanding of appliance growth trends and assess the potential

positive impact of energy efficiency measures on consumption patterns. We hypothesise

that as rural electrification progresses, per capita energy consumption will initially grow

exponentially, as illustrated in Figure 6.145, but will ultimately plateau as the system

nears saturation in appliance adoption, following the S-shaped curve discussed in Chapter

2.

To effectively analyse our dynamic hypothesis, we propose a system dynamics model

with feedback mechanisms that captures some of the key relationships between exogenous

factors such as energy efficiency measure and endogenous factors such as affordability,

which influence residential electricity consumption. By comprehensively understanding

these interconnected components, we can project realistic long-term demand growth from

rural households.

To demonstrate the conceptual workings of this model, we draw guidance from the

CPHS dataset and construct a basic model to generate long-term projections for individ-

ual appliances - washing machines in the for instance - within the rural context. To this

end, Section 6.3 describes the building blocks of the system dynamics model and presents

preliminary results for this single appliance type. Section 6.4 introduces a model incorpo-

rating additional parameters to account for energy efficiency measures and discusses the

challenges posed by data scarcity. Finally, Section 6.5 outlines future research directions

for integrating longitudinal and transverse components within the model.

45The data shown in this figure does not differentiate between rural and urban sector, neither it

captures sub sectors of energy use i.e. residential or industry
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Source IEA Statistics 2014 iea.org/stats/index.asp
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6.3 System Dynamics

System Dynamics modelling underpins causal relationship between variables in the form

of feedback loops, stocks, flows, and time delays to simulate and predict the behaviour of

interconnected components within a system over time. We hypothesise that a community

or village, consisting of nearly 1,000 households, represents a complex system in which

numerous parameters influence electricity usage. To examine this system, we formally

define variables using the building blocks of stock, flows and feedbacks. By capturing

the underlying structure and dynamic relationships between parameters, the model allows

for the identification of leverage points with which to test a variety of scenarios and

potentially to estimation variable sensitivity and its impact on system behaviour, i.e.

factors influencing electricity demand growth trends.

6.3.1 Building blocks

In system dynamics models, stocks and flows are two fundamental concepts used to rep-

resent and analyse the behaviour of complex systems. Additionally, feedback loops are an

essential aspect of these models, as they help to capture the dynamic interplay between

stocks and flows within a system.

1. Stocks: Stocks, also known as state variables or levels, represent the accumulations

of resources, information, or any other measurable quantity within a system. They

can be thought of as the ”memory” of the system, as they capture the system’s

current state at any given time. As shown in figure 6.2, in our basic appliance

diffusion model, we defined two stocks, potential household ownership of appliance

and existing appliance ownership.

2. Flows: Flows, also referred to as rates or transitions, are the variables that control

the movement or transfer of resources, information or other quantities between dif-

ferent stocks within a system. They represent the processes that cause the stocks to

change over time. In the basic appliance diffusion model, the adoption or purchase

of appliances by households is defined as a flow or transition.

3. Auxiliary variables: These variables can represent constants, parameters or math-

ematical functions that are used to capture the complex interactions and dependen-

cies of stocks and their intermediary interactions with other variables. These are the

key parameters through which we can embed multiple factors influencing the system

i.e., a community of households owning certain appliances. In our basic model, we
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include Awareness related parameters that strongly influence the adoption of any

appliance. More on the key parameters is discussed in the next section.

4. Feedback loops: Feedback loops are fundamental components of system dynam-

ics models, as they capture the interconnections and causal relationships within a

system. There are two categories of these loops. 1) A reinforcing loop also known

as positive feedback loop expresses the cycle of cause and effect that leads to an

exponential growth or decline in the system’s behaviour. When an action or change

in a variable leads to an effect that further amplifies the initial action, a reinforc-

ing loop is formed. For example, in our basic model, we create a ’word of mouth’

or ’awareness’ reinforcement which increases growth in appliance ownership. 2) A

balancing loop also known as negative feedback loops is a cycle of cause and effect

that helps to maintain stability or equilibrium within a system. In a balancing

loop, a change in a variable triggers a response that counteracts or opposes the

initial change, eventually bringing the system back to a state of balance. We will

incorporate this feedback loop in our proposed model.

Using the building blocks of system dynamics modelling, a conceptual basic appliance

diffusion model has been developed and simulated using the Vensim software, a popular

tool created by Ventana Systems. The model focuses on the spread and adoption of a

particular appliance over time. The structure of the model, as illustrated in Figure 6.2,

includes stocks, flows, and auxiliary variables, which together represent the key elements

of the system.

The model is designed with a single reinforcing loop, which demonstrates the growth of

appliance diffusion. In simple terms, this means that as more people adopt the appliance,

this in turn leads to an increasing rate of adoption by others (a phenomenon referred to

in the UK as ’keeping up with the Jones’s’). This can be driven by factors such as word-

of-mouth or increasing awareness of the appliance. Equations defined for the variability

of each parameter are defined in Table 12 with descriptions and units. The time step is

kept to 3 months and the method of integration is Euler.

Using the NFHS-5 dataset as a reference for appliance ownership in rural India, we

found that the average ownership of washing machines in rural Indian villages is cur-

rently at 9% (see appendix A.6.1). This value has been used as a starting point for the

baseline adoption of washing machines in our model. We have simulated and presented

preliminary results, showcasing a sigmoidal growth over the next ten years, spanning from

2023 to 2033. Figure 6.3 illustrates the growth trends for washing machine ownership.
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Figure 6.1: Basic appliance diffusion model

Table 13: Auxiliary parameters and description of basic diffusion model

Key Parameter Equation Description Unit

Household Aware
Household w/o appliances*awareness

rate

How many numbers of

households get aware of appliances
HH/Year

Awareness Rate Constant

Number of HH getting aware of

appliances per year

(Reflective of imitation - word of mouth)

Number/year

Adoption Fraction Constant

Percentage of new appliances

penetrated the potential market

(reflective of innovation coefficient)

Dimensionless

Fraction of existing

appliances

HH Appliance Ownership / total

households

Percentage of household already

owns the appliance
Dimensionless

HH in contact with HH

owning existing appliance

Households Aware * fraction of

existing appliances

Number of unaware household interacting with

household owning an appliance
HH/Year

Table 14: Input parameters for basic diffusion model

Scenario
Initial

Ownership

Final

Ownership

Awareness

Rate

(app/year)

Adoption

Fraction

Baseline 90 867 90 0.009

Midline 150 930 150 0.01

Optimum 250 1028 250 0.003
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Figure 6.2: Diffusion of washing machines in a hypothetical rural communities with

assumptions on baseline, midline and optimum growth in ownership

We have incorporated assumed awareness rates and adoption fractions for both optimum

and midline growth scenarios to emphasise how these variables can influence the growth

patterns. By comparing these scenarios, we can better understand the sensitivity of the

model to changes in awareness and adoption rates. The presented model is conceptually

straightforward; however, it may not fully capture the realistic adoption of appliances. As

mentioned earlier, appliance ownership can be influenced by numerous factors, and under-

standing the dynamics of the causal relationships between these parameters is crucial. To

create a more accurate representation of real-world adoption, it is important to account

for the complex interplay amongst the most significant of these influencing factors within

the model.

6.4 Longitudinal Appliance ownership

We have expanded our model to account for more key parameters that influence appliance

ownership, such as affordability, marketing campaigns and other factors. Details of the

rationale underlying the choice of these parameters is given as follows:
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Figure 6.3: Proposed model with multiple factors

6.4.1 Key Parameters

• Awareness: One key influencer of energy consumption is the awareness of the

energy-efficient of appliances. Adoption decisions are also influenced by marketing

campaigns. Our basic model considered the effects of such awareness on the overall

adoption of appliances. The proposed model will extend it to cover the impact of

marketing campaigns as well. For example, Chunekar et al. (Chunekar, Aditya,

2023) found a lack of awareness regarding five-star rated ceiling fans in India, as

the Star Labelling program had only recently been launched. However, promoting

awareness about energy-efficient fans could have a massive impact on overall resi-

dential electricity consumption. With 30-40 million new ceiling fans sold annually,

adding to the nearly 400 million existing fans in use, these appliances contribute

40% of total residential electricity consumption. Enhancing awareness of energy-

efficient options could therefore significantly reduce both adoption and subsequent

energy usage.

• Availability: The availability of specific types of appliances in the nearest market

hub to a village can significantly impact overall appliance ownership, as this factor

creates a balancing feedback to the total stock. This is particularly pronounced in

remote areas, where distribution systems are intricately linked with road networks

and local transport systems, making appliance accessibility more challenging. With
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the rise of online sales for home appliances, the impact of availability on overall

stock can be highly sensitive. Online sales can potentially overcome some of the

distribution challenges faced in remote areas, making appliances more accessible

and influencing the overall ownership rate.

• Affordability: Affordability is a highly influential factor when projecting appliance

ownership, especially for rural households. As Agrawal et al. (Agrawal, Harish, et

al., 2020) found in their study, affordability is even more sensitive in rural settings

due to the dual challenge of having both the purchasing power to acquire appliances

and the ability to afford the ongoing costs of powering them. However, affordability

is also a notoriously difficult parameter to determine because it is affected by factors

including varying income levels, economic conditions, fluctuating appliance prices,

availability of financing options and the cost and reliability of electricity.

• Repurchase rate: A strength of system dynamics modelling lies in its ability to

incorporate delays and the nonlinear nature of certain parameters that affect system

behaviour. In the context of appliance ownership, repurchase rates can involve such

delays, as shown in orange in the proposed model. Delays come into play when

households decide to repurchase broken appliances or buy an additional unit of the

same kind. Incorporating delays helps account for the time lag associated with these

decision-making processes. Considering delays in the model also raises the question

of whether newly purchased appliances are more energy-efficient than the ones they

replace. This aspect is crucial, as it influences the overall energy consumption

patterns and the potential environmental impact of increased appliance ownership.

• Star labelled appliances: The Bureau of Energy Efficiency (BEE) in India has ini-

tiated star labelling campaigns to raise awareness about energy-efficient appliances.

These campaigns can significantly impact overall energy consumption by promoting

the use of energy-saving devices. However, they may also negatively affect afford-

ability levels, as energy-efficient appliances tend to be more expensive. For now,

the proposed model only includes the energy efficiency rating in a cursory manner.

In future iterations, it would be beneficial to incorporate energy efficiency as part

of a balancing loop. This would allow for a more comprehensive understanding of

the trade-offs between energy efficiency and affordability, ultimately resulting in a

more realistic representation of appliance adoption dynamics and the corresponding

impact on energy consumption.
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Each parameter in the model requires initial input data. For example, awareness

can be derived from marketing and sales data of individual appliances, while availability

depends on distribution and sales information in the local context. Affordability can be

calculated using macroeconomic data, such as the ratio between income and expenses for

various sub-populations. The Time Use Survey provides partial information on people’s

ability to spend on durable goods, but it does not offer a complete picture because this

input can be quite ambiguous, as the definition of durable goods in the TUS includes both

purchasing (new and used) and repairing household durables. Durable goods also cover a

wide range of items, making it challenging to accurately estimate affordability for specific

appliances. On the other hand, there is a significant lack of data on repurchase rates and

energy efficiency, which limits the impact and accuracy of the model. Addressing these

data gaps is essential to create a more comprehensive understanding of appliance adoption

dynamics and their consequences for long term energy consumption estimation.

6.5 Conclusion and Future research

Future research efforts should emphasise the inclusion of the additional aforementioned

features to establish a more robust foundation for modelling longitudinal growth in appli-

ance adoption. By refining the model and incorporating more comprehensive data, there

is potential to gain a cohesive understanding of the dynamics of appliance ownership, in-

cluding the potential impacts of policy and energy efficiency measures on this ownership

and corresponding energy consumption. It is our belief that the ultimate aim should be

to merge this longitudinal modelling with daily appliance usage, derived from residential

activity modelling, to enable the projection of long-term load profiles. Such an integra-

tion stands to aid modellers in developing realistic scenarios of energy demand growth in

the rural domestic sector, contributing significantly to renewable energy planning and the

clean energy transition in rural India.

However, it should be recognised that the current integration of such systems is com-

plex due to the distinct functionalities of the tools used. The system dynamics model

is developed in VenSIM, while the transverse aspect of the model is created in Python.

Although tools like PySD46 offer the ability to convert VenSIM model files into Python

modules, allowing for modification, simulation, and observation of these converted models,

on the other side, the development of a System Analysis and Design Methodology (SADM)

in Ventity software could potentially support future integration. However, this remains

46https://pysd.readthedocs.io/en/master/structure/vensimtranslation.html
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a direction for future research and was not feasible within the scope of this thesis due to

time constraints.
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7 Conclusion and Future research

In this thesis, we endeavoured to extend our understanding of residential energy demand

within the context of rural electrification via renewable energy sources, primarily solar

mini-grids. To reach this goal, we first estimated electricity demand growth scenarios

for rural communities through the energy use surveys and appliance diffusion. We then

analysed the impact of these demand growth scenarios on two different sizing mechanisms

of solar mini-grids, thereby highlighting the importance of accurately assessing the de-

mand growth. In the second part, we proposed a multi-scale framework for estimating

longitudinal (long-term) and transverse (daily) demand based on appliance ownership and

its usage times. Conceptual model functionalities were demonstrated with preliminary

results showing diurnal variations in energy use as well as longitudinal trends in appliance

adoption. The main objective of this thesis was to improve the accuracy of energy demand

models used in renewable energy planning by embedding the local socioeconomic context

which was fraught with high error margins in existing body of literature.

7.1 Objective 1

Estimate electricity demand growth in rural communities gaining energy access

through solar-mini grids.

To achieve our objective of improving load estimations for solar mini-grid planning,

we conducted household energy surveys in five hamlets of Shahapur district in the state

of Maharashtra. Of these hamlets, three had recently received access to electricity for the

first time, 15 months prior to the surveys. To simulate long term (ten years) of stochastic

load profiles, we considered the growth in demand as a function of household appliance

ownership in the community. We used two types of information to derive these load

profiles - appliance adoption coefficients guided by appliance ownership after one year of

electricity access and appliance usage times based on surveys conducted. We hypothesised

three different demand growth scenarios - baseline, adaptive, and target. The baseline and

target scenarios set the lower and upper bounds of load profiles, respectively, while the

adaptive profiles followed an S-shape growth based on the evolution in appliance adoption.

This mixed-method approach of combining survey data with appliance diffusion allowed

us to better understand and characterise the demand for electricity in these hamlets.
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7.2 Objective 2

Examine the impact of electricity demand growth on the required mini-grid

system size and the potential need for adaptive capacity expansion.

In this objective, we conducted a comprehensive literature review of fifteen mini-grid

modelling tools to evaluate whether they considered evolution of electricity demand for

sizing mini-grids. We then investigated the impact of three demand growth scenarios on

two different mini-grid sizing approaches: a one-off installation and capacity expansion to

accommodate growing demand. Analysis of the results showed that estimating demand

growth is a critical factor in determining the mini-grid size and cost. Additionally, our

findings suggest that a modular approach to mini-grid design, which involves adjustment

of capacity based on demand growth rather than a one-off installation, can lead to cost

savings and improved efficiency. Our research indicates that the use of modular sizing

can result in cost savings of up to 12%, and that system costs are the most sensitive to

variations in demand growth rates and cost decreases in solar PV and batteries. The

analysis from this study highlights the important financial and operational implications

of demand growth scenarios and choice of mini-grid sizing approaches when designing

systems for rural electrification.

7.3 Objective 3

Develop a multi-scale framework to model energy demand with a focus on

capturing the time-sensitive nature of energy use in rural households

The objective of our study was to develop a comprehensive multi-scale framework to

model energy demand from rural households. The framework encompasses three different

scales: longitudinal, seasonal, and transverse. The longitudinal scale considers the energy

demand of rural households over a period of years. The seasonal scale takes into account

the variations in energy demand caused by weather changes within a year, while the

transverse scale focuses on the daily demand fluctuations or diurnal variation.

Our study highlights the lack of existing models that can capture the time-dependent

use of energy, as well as the potential impact of residential activity on energy demand. To

better understand this relationship, we implemented residential activity modelling based

on national scale Time Use Surveys conducted in India. These surveys provide valuable

insights into the timing and frequency of corresponding energy use related to household

activities (social practices), which we demonstrated through the activity profiles of rural

households in four different states. The main objective here is to develop in-depth under-
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standing of the transverse component of a multi-scale model, which constructs appliance-

level bottom-up load profiles based on the residential activity data obtained. To achieve

this, we calculated the starting time probabilities and duration of these activities, which

were used to create Gaussian and Weibull probability density functions. This informa-

tion was then utilised to construct load profiles based on Monte Carlo simulations for

the corresponding appliances. As an illustration, we presented the average load profiles

for televisions and washing machines use in rural households of Uttar Pradesh and Naga-

land, demonstrating the conceptual functioning of the model. Finally, we discussed the

challenges associated with model validation, the strengths and limitations of the time use

energy model, and the necessity of linking it to appliance ownership data.

7.4 Objective 4

Conceptualising long-term electricity demand growth based on longitudinal

appliance adoption in rural households.

We developed a system dynamics model to better understand the longitudinal nature

of energy demand, specifically in terms of appliance ownership and individual decision-

making. Our goal was to create a proof-of-concept model that could accurately capture

the dynamics of appliance ownership and purchase power, assuming certain rates of adop-

tion and awareness of energy-efficient appliances. To illustrate the potential impact of

our model, we simulated the ten-year growth trend of washing machine ownership in a

hypothetical rural community of approximately 1000 households. However, we must ac-

knowledge that our model is limited by a severe lack of data regarding the longitudinal

nature of energy demand growth. Nonetheless, it is a crucial step forward in understanding

demand growth and also effectively design energy efficiency interventions.

7.5 Future research

• The immediate next step would be to incorporate seasonal variations and thermal

comfort as additional component to proposed multi-scale residential energy demand

model. This will enable a more accurate representation of energy demand patterns

at different scales, from individual appliances to households and communities. In
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addition, load factor47 and diversity factor 48 should be taken into account while

aggregating individual appliance load profiles to households and community scale,

allowing for a more precise estimation of energy demand.

• The next step in this research will be to design various scenarios of residential de-

mand based on demographic characteristics of rural households and tailor the model

to the local context, specifically for the community that mini-grids are planned for.

This will involve testing the residential energy demand model for each scenario and

evaluating its effectiveness in predicting energy demand.

• The modelled load profiles can be reintegrated in CLOVER as a replacement for

the need of survey input to assess the impact of survey-based or model-based load

profiles on mini-grid sizing. The impact of these load profiles on mini-grid sizing

can be evaluated to determine the feasibility of using model-based load profiles for

mini-grid sizing.

• In the long term, the aim is to scale up and generalise the model to make it ready

for integration with large-scale electrification tools like OnSSET. This will allow for

a more comprehensive analysis of energy demand and the design of electrification

strategies that are tailored to the specific needs of communities.

47Load factor is the ratio of average power demand to maximum demand, it represents how

much of the available capacity is being used
48diversity factor is the ratio of the sum of individual maximum demands to the maximum

demand of the group, and it represents the variation of demand across a group of consumers.
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Raises personal safety issues?

Yes

I am planning to take data from the villagers in rural areas of India. Namely hamlets of Darewadi and Dahigaon in the Maharashtra state
of India. These places are 30-100kms from metropolitan cities like Mumbai and Pune. For this work, we are collaborating with an
organisation called 'Gram Oorja' which has headquarter located in Pune. Mr. Anshuman Lath, in-charge of business operations at Gram
Oorja and Mr. Kiran Auti, senior engineer at Gram Oorja have agreed to guide me and accompany me in the village area for the entire
period of data collection.

For all field work days, I plan to stay in Pune and travel in a group from Pune to nearby villages via hired car. In case of emergency, I
have two family friends living in the same city. I will share their contact details with my supervisors as well as Gram Oorja staff.

Also, I can read, write and speak the local language spoken in these villages, hence I can anytime communicate with local people for help
if required.

Section D: About the participants

1. Potential Participants

I have collaborated with an organisation named 'Gram Oorja'. This organisation has deployed several micro grids in villages near by Pune
district in Maharashtra, India where the access of electricity was not available or scarce. 
My participants are the people of these villages who are using energy services provided by Gram Oorja.

2. Recruiting Potential Participants

I am planning to contact participants in person by arranging a group meeting at first. In this meeting, I will explain them about my work
and how it will help them to receive improved energy services in future. I will ask for feedback after the meeting and to decide whether
they are willing to participate.

2.1. Advertising methods

Will the study be advertised using the volunteer lists for staff or students maintained by IT Services? No

- not entered -

3. Consent

Will informed consent be obtained from the participants? (i.e. the proposed process) Yes

I will inform all the participants about the research work prior to the interview and I will obtain their consent on paper before the I start the
interview.

All documents will be made available in both English and the local language.

4. Payment

Will financial/in kind payments be offered to participants? No

5. Potential Harm to Participants

What is the potential for physical and/or psychological harm/distress to the participants?

In this work, participants are only expected to answer a few questions regarding their electricity usage. This will just demand around 15
minutes of their time. We do not envisage any adverse health risks arising from this study.

How will this be managed to ensure appropriate protection and well-being of the participants?

I will ask participant's preferred time and will contact them only at that given time slot. I will ask for their consent as well before starting the
interview. I will also provide them freedom to terminate the interview any time if they wish to and to choose not to answer any question if
they don't wish too.

Section E: About the data

1. Data Processing

Figure 7.3: Ethics application page 3
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Please outline how your data will be managed and stored securely, in line with good practice and relevant funder requirements

All the data taken by survey will be entered in a computationally readable format as a CSV file. Then I plan to use my university service of
'research group data storage' to store these data files. These files will be only accessible to me and my supervisors. I will ensure that
these file are never shared or stored in any public accessible domain.

Will you be processing (i.e. collecting, recording, storing, or otherwise using) personal data as part of this project? (Personal data is any information
relating to an identified or identifiable living person).
No

Section F: Supporting documentation

Information & Consent

All versions

Participant information sheets relevant to project?
Yes

Document 1060187 (Version 1)
Participation information sheet which describes the details of my research work which I will explain to the participants before collecting
the data

All versions

Consent forms relevant to project?
Yes

Document 1060188 (Version 1)
Consent form to get signed by participants before the interview

All versions

All versions

Additional Documentation

Document 1060483 (Version 1)
Questionnaire for the interview

Document 1060482 (Version 1)
field trip risk assessement

External Documentation

- not entered -

Section G: Declaration

Signed by:
Reena Jayantilal Sayani
Date signed:
Thu 25 April 2019 at 01:13

Offical notes

- not entered -

Figure 7.4: Ethics application page 4
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Downloaded: 07/12/2023 
Approved: 16/05/2019

Reena Sayani 
Registration number: 180124736 
School of Architecture 
Programme: Postgraduate Research - School of Architecture

Dear Reena

PROJECT TITLE: Sustainable management of energy to improve quality of life in developing countires 
APPLICATION: Reference Number 025937

On behalf of the University ethics reviewers who reviewed your project, I am pleased to inform you that on 16/05/2019 the above-named
project was approved on ethics grounds, on the basis that you will adhere to the following documentation that you submitted for ethics review:

University research ethics application form 025937 (form submission date: 25/04/2019); (expected project end date: 15/06/2019).
Participant information sheet 1060187 version 1 (17/04/2019).
Participant consent form 1060188 version 1 (17/04/2019).

The following optional amendments were suggested:

(1) Would be useful to briefly describe the type of company Gram Oorja are, to confirm there are no ethical conflicts in working with them. (2)
Could you also clarify what time of day you will be working in the villages, presumably daytime working will be less risky than if you were there
at night? (3) Could you confirm age criteria for participants, I assume you will not be interviewing children but clarifying this is useful. (4) It
sounds like you will be collecting personally identifiable data and therefore response to section E should be changed, with brief details given of
how you will maintain anonymity as appropriate. Shouldn't the answer to processing personal data be yes? The consent form will require a
signature, which would identify the participant. In small village communities, it may also be possible to identify a participant from their
descriptions of activities and the appliances they own. This is not a problem, you just need to be clear on how you would protect their identity,
e.g. using arbitrary ID code for participants in data file and keeping consent form separate, not identifying individual behaviours and data when
reporting results, etc. (5) Will the information sheet and consent form be translated into the local language? Will all participants be literate/able
to understand written information? (6) If you have a mobile phone and it can work in the field data collection areas, please keep it with you all
the time. You should maintain daily contact with your supervisors and family members throughout the data collection period. You should also
let them know what they should do if they do not hear from from after a certain period. This is to safeguard your personal safety and well-being
while undertaking the field work.

If during the course of the project you need to deviate significantly from the above-approved documentation please inform me since written
approval will be required.

Your responsibilities in delivering this research project are set out at the end of this letter.

Yours sincerely 

Chengzhi Peng 
Ethics Administrator 
School of Architecture

Please note the following responsibilities of the researcher in delivering the research project:

The project must abide by the University's Research Ethics Policy: https://www.sheffield.ac.uk/research-services/ethics-integrity/policy
The project must abide by the University's Good Research & Innovation Practices Policy:
https://www.sheffield.ac.uk/polopoly_fs/1.671066!/file/GRIPPolicy.pdf
The researcher must inform their supervisor (in the case of a student) or Ethics Administrator (in the case of a member of staff) of any
significant changes to the project or the approved documentation.
The researcher must comply with the requirements of the law and relevant guidelines relating to security and confidentiality of personal
data.
The researcher is responsible for effectively managing the data collected both during and after the end of the project in line with best
practice, and any relevant legislative, regulatory or contractual requirements.

Figure 7.5: Ethics Approval letter

Appendix A.3.3 - Appliance diffusion inputs

Appendix A.3.4 - storage system performance

Appendix A.3.5 - cost breakdown

Appendix A.4.1 Sampling of households in four states of India in TUS.

Appendix A.4.2 -Correlation between two variables and effect of outlier treatment
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Figure 7.6: System performance for adaptive growing demand in Shahapur, at an

hourly scale per year over a ten-year period, with 95% reliability. Storage state of

charge in kWh of (a) one-step sizing and (b) multi-step sizing.
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Baseline
Average

Ownership

Diffusion

coefficients

Appliances Initial Final innovation (p) Imitation (q)

Lights 3 3 0 0

Mobile phone 1 1 0 0

Security Light 1 1 0 0

TV 0 0 0 0

Fan 0 0 0 0

Refrigerator 0 0 0 0

Table 15: Appliance diffusion coefficients

Adaptive
Average

Ownership

Diffusion

coefficients

Appliances Initial Final innovation (p) Imitation (q)

Lights 3 5 0.01 0.9

Mobile phone 1 1 0.01 0.9

Security Light 1 1 0 0

TV 0 1 0.05 0.9

Fan 0 1 0.05 0.8

Refrigerator 0 1 0.02 0.5

Table 16: Appliance diffusion coefficients
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Target
Average

Ownership

Diffusion

coefficients

Appliances Initial Final innovation (p) Imitation (q)

Lights 3 5 0 0

Mobile phone 1 2 0 0

Security Light 1 1 0 0

TV 0 0 0 0

Fan 0 0 0 0

Refrigerator 0 0 0 0

Table 17: Appliance diffusion coefficients

Figure 7.7: Costs breakdown (equipment and O&M costs) per scenario considering

95% reliability.
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Figure 7.8: Sampling of rural households compared to urban households

Figure 7.9: Before outliers with IQR UP
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Figure 7.10: After removing outliers with IQR UP
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Figure 7.11: Washing machine ownership statistics based on NFHS round 5, source:

Statsindia group

Appendix A.6.1

Guidance on initial ownership of washing machine taken from this data
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