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Abstract

Current software engineering frameworks for robotics treat artificial neural networks (ANNs) com-
ponents as black boxes, and existing white-box techniques consider either component-level prop-
erties, or properties involving a specific case study. A method to establish properties that may
depend on all components in such a system is, as yet, undefined. Our work consists of defining such
a method. First, we developed a component whose behaviour is defined by an ANN and acts as
a robotic controller. Considering our application to robotics, we focus on pre-trained ANNs used
for control. We define our component in the context of RoboChart, where we define modelling
notation involving a meta-model and well-formedness conditions, and a process-algebraic seman-
tics. To further support our framework, we defined an implementation of these semantics in Java
and CSPM, to enable validation and discretised verification. Given these components, we then
developed an approach to verify software systems involving our ANN components. This approach
involves replacing existing memoryless, cyclic, controller components with ANN components, and
proving that the new system does not deviate in behaviour by more than a constant ϵ from the
original system. Moreover, we describe a strategy for automating these proofs based on Isabelle
and Marabou, combining ANN-specific verification tools with general verification tools. We demon-
strate our framework using a case study involving a Segway robot where we replace a PID controller
with an ANN component. Our contributions can be summarised as follows: we have generated a
framework that enables the modelling, validation, and verification of robotic software involving
neural network components. Finally, this work represents progress towards establishing the safety
and reliability of autonomous robotics.
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Chapter 1

Introduction

Creating intelligent machines is a fascinating prospect that has the potential to affect all as-
pects of society. Makridakis [2] argues that the emergence of artificial intelligence is analogous
to the industrial and digital revolution. Artificial intelligence (AI) has multiple definitions;
but a strong definition, from [3], is machines that can ‘imitate human intelligent behaviour’;
behaviour which entails learning, reasoning and self-correction.

Our work contributes to this vision by enabling machines involving AI to be verified. In
particular, we focus on developing verified robots whose implementation involve neural net-
works for control. Next, we detail the motivation for this work. In Section 1.2 we describe
our objectives, in Section 1.3, we give an overview of the workflow suggested by this work,
and Section 1.4 describes the structure of the thesis.

1.1 Motivation

Machine learning (ML) refers to algorithms that automatically detect patterns in data from
a training set, and uses these patterns to predict or classify future data provided after
training [3]. Machine learning algorithms accomplish this through utilising induction rules
to generate models based on the training set [4].

Neural networks are effective, widely used and efficient machine-learning methods. They have
been used to generate state-of-the-art results in image recognition [5], and word spotting [6].
Sudholt [6] comments that a type of neural network is able to consistently outperform all
other approaches in virtually every field of computer vision. Neural networks have also been
proposed for collision detection in: aircraft [7], road vehicles [8] and ships [9].

For computer vision problems, some form of machine learning is all but necessary to obtain
state-of-the-art results in tractable time frames. Benalcázar [10] comments that computer
vision is a problem that belongs to the field of AI. For low dimensional recognition problems,
similar results have been obtained using other methods. An example is the Airborne Collision
Avoidance System. In this system, dynamic programming and Markov chains were originally
used before a new system was proposed using neural networks, and obtained a slightly higher,
though comparable accuracy. On the other hand, the runtime was reduced and the storage
space required was reduced by a factor of 1000 [7]. This is because a neural network only
requires the parameters of its model to be stored instead of all interactions in a look-up
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CHAPTER 1. INTRODUCTION 8

table.

One of the potential applications of ML algorithms with significant impact is the design of
robotic systems. Machine learning can enable robots to reason, adapt and perceive their
environments with reasoning abilities closer to those of humans. This area is referred to as
RAAI, the combination of Robotics, Automation and AI.

In October 2016, the UK’s Council for Science and Technology sent a letter to the Prime
Minister detailing the potential impact of RAAI. It comments that a recent report estimates
that these technologies will have an impact on global markets of up to $4.5 trillion per annum
by 2025 [11]. They describe that RAAI will enable the design of machines that are able to
perceive their environments, reason about events, make and revise plans, and control their
actions.

ML has a significant role in enabling this type of functionality. As Johnson [4] comments,
it would be difficult to envisage how autonomous systems could reason about their envi-
ronment through collision detection and support sensor fusion without the use of machine
learning.

The application areas for RAAI include: healthcare, hazardous domains such as nuclear
power, autonomous vehicles and domestic assistants [12, 13]. Safety of RAAI systems is
a major concern because these application areas involve interactions with humans or with
hazardous environments. Utilising formal methods can provide evidence for the safety of
robotic systems [13].

There are existing platforms for developing robotic software taking advantage of formal
methods [14, 15, 16, 17] and there are tools available for verifying neural networks [18, 19, 20].
There is, however, a lack of platforms to verify robotic software that has a component
implemented using a neural network.

There are two broad categories of notations used in formal approaches to verification of
robotic software: general purpose languages and domain-specific languages. General purpose
languages with verification support include: C, C++, Java, UML and its derivatives, SysML,
AADL and Focus [14]. Domain-specific languages (DSLs) are more focused, smaller and more
usable, their intended application is for a single domain.

Domain-specific modelling languages provide an efficient and flexible way to combine ex-
pertise from multiple domains of robotics [21]. In addition, Dhouib [22] comments that
robotic experts face significant problems developing their applications in general purpose
languages without expert knowledge of programming languages. DSLs provide a solution to
this problem.

There are multiple domain-specific languages for robotics. Nordmann [21] mentions 137
DSLs, which, however, are not focused on formal verification. There are also more re-
cent DSLs including: ArmarX, rFSM, CommonLang, RobotML, FlexBE, RoboChart and
vTSL [17, 14, 23, 16]. Of these, ArmarX, FlexBE and rFSM do not contain support for
formal verification, CommonLang is focused on Java-code generation, and RobotML does
not contain support for the verification of non-functional properties [14].

Those with support for formal methods are vTSL and RoboChart. vTSL, however, does not
contain support for timed properties [16] and only provides support for model checking. The
semantics of vTSL enable translation to Promela [16], the input language of the Spin model
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checker [24], while RoboChart enables verification through a CSP semantics [14]. Model
checking is enabled through FDR [25], and theorem proving is enabled through a predicative
relational semantics [14] that can cater for time, continuous, and probabilistic behaviour, all
relevant to reason about robotics systems.

RoboChart contains support for the modelling of time properties, static and dynamic verifica-
tion via testing, and interfaces to multiple verification tools, including simulation. RoboChart
also has a graphical notation that provides a clear method for designing robotic software,
enabling communication between engineers from various disciplines [17].

To encourage adoption by roboticists, we use RoboChart as a basis for our verification
technique.

1.2 Objectives

The overall aim of this work is to enable the development of safe RAAI software. Since
machine learning can enable more effective robotic autonomy and neural networks are a very
effective form of machine learning, our goal is to support verification of robotic software that
uses neural networks. We will, therefore, integrate support for neural network verification
into RoboChart. This will enable verification of reactive properties of software that are
defined in RoboChart and uses neural networks components.

To achieve our goal, we have the following objectives.

1. Extension of RoboChart’s meta-model to accommodate the definition of components
that are implemented by neural networks. This will enable the definition of neural network
components as part of a complete design. This extension should be compact, usable and
consistent with RoboChart’s metamodel.

2. Extension of RoboChart’s semantics to accommodate such components. This enables a
formal definition of their behaviour to accommodate verification techniques. These semantics
should cover all RoboChart constructs to define systems involving multiple components,
including standard state machines.

3. Definition of a technique that can verify the overall model. This enables the verification of
system level specifications, where the existing neural network verification tools are concerned
with component-level specifications. Moreover, this allows system requirements to be linked
to component specifications.

4. Automation of the verification technique. The verification technique should be automated.
This is because there are multiple techniques with varying scalability, applicability and pre-
cision under various situations. Automation will also take advantage of existing support for
RoboChart.

Using our work, it is possible to develop verified robots whose control software is imple-
mented using neural networks for control. This technique allows the definition and proof
of rich behavioural properties of robots using RoboChart. In addition, this technique de-
fines verifiable semantics for the entire model to provide guarantees on behaviour. Finally,
our work takes advantage of existing support for RoboChart, including code generation and
simulation through RoboTool 1.

1robostar.cs.york.ac.uk/robotool/
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Figure 1.1: The vision of the workflow enabled by our work. In this diagram purple bub-
bles represent tools, blue boxes represent concrete programming languages, and the other
elements represent modelling or formal languages.

RoboTool constitutes a set of Eclipse plug-ins that provide an implementation of the RoboChart
language. It supports the graphical modelling, validation, and automated verification of
properties of the model. It also provides support to create RoboSim models, a notation to
model simulations of robotic systems [26].

1.3 Workflow

In this section, we discuss the high-level workflow enabled by our work, as well as frame our
work with respect to a broader context. This also describes how our work can be integrated
into existing frameworks and languages.

This workflow, when fully completed, enables a fully automated approach to soundly replace
any cyclic, memoryless component with a component implemented by a neural network. We
present this workflow in Figure 1.1.

First, we generate a RoboChart module using RoboTool, as shown by the ‘RoboChart mod-
ule‘ box, described in Section 3.2. Next, we check if there is a cyclic, memoryless component
in this module. If there is not, we refine the module to obtain such a component. When
we obtain one, we replace this component with an ANN component: our novel RoboChart
components that are implemented by neural networks (defined in Section 3.3). We then
automatically generate CSP semantics, translate these to a UTP encoding, and use this to
prove conformance between the original module, and the module with the ANN component.
Conformance is refinement with an ϵ tolerance on the values communicated by their outputs,
as discussed in Chapter 4. We can prove this with a combination of the Isabelle/UTP [27]
and Marabou [18] tools.
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We can also simulate our RoboChart module with Java, using the JCSP package, or using
an implementation in C/C++, as shown in the ‘Java/JCSP code’ and ‘C/C++ simulation’
boxes.

The CSP semantics of RoboChart are presented in [14], and the automatic generation is
enabled through the tool ‘RoboTool’ [26]. The translation fundamentals, from RoboChart
to Circus, is presented in [28], the full automation of this translation from RoboChart to
UTP is ongoing work.

In our work, we define the translation from the ‘RoboChart with ANN’ to ‘CSP semantics’,
and we provide a translation from our CSP semantics to a UTP encoding. We present the
CSP semantics for our ANN components in Figure 3.18, and we translate them to a UTP
encoding in Section 4.2. The automation of both, however, is beyond the scope of this
project.

We define an encoding of our semantics in Java, using the JCSP package, in Section 3.6.
The translation of these semantics to C and C++ is future work.

1.4 Structure

Chapter 2 discusses background material relevant to the project: ANN verification and ANN
tools. That chapter covers the fundamentals of ANNs, which include ANN training, ANN
mathematical representation, and ANN types. That chapter also presents ANN verification
techniques, considering both complete and incomplete approaches. Finally, that chapter
discusses ANN tools; it provides a novel comparison between multiple ANN tools to inform
our verification work.

In Chapter 3, we discuss how to integrate ANNs into RoboChart, including: extending
RoboChart’s meta-model, defining well-formedness conditions, and providing a semantics.
That chapter defines how to model ANNs as components in a robotic system, instead of
being treated in isolation.

Chapter 4 discusses how to verify properties of RoboChart models with integrated ANN
components, as defined in Chapter 3. This involves the use of multiple tools, languages,
and frameworks working in conjunction. That chapter defines a novel verification tech-
nique appropriate to verify complete robotic systems involving ANNs used to implement
controllers.

Chapter 5 concludes this work by summarising our results and discussing future direc-
tions.



Chapter 2

Formal Verification of Neural
Networks

This chapter discusses how formal verification has been applied to neural networks so far. In
Section 2.1, we discuss the fundamentals of neural networks. Section 2.2 gives an overview
of the available techniques. In Sections 2.3, 2.4, and 2.5, we discuss the available techniques
for verifying neural networks. In Section 2.6, we compare the available tools for verifying
neural networks. Finally, we give closing remarks in Section 2.7.

2.1 Neural Networks

Data itself has no inherent meaning to the real world. Machine learning is concerned with
providing an interpretation of data. The meaning of data is encoded through labelling data.
There are two broad types of learning, supervised and unsupervised learning: in supervised
learning, labels are explicitly provided for training data; and in unsupervised learning, labels
are inferred by the learning algorithm itself.

We give the general form of (supervised) training data below.

{(x0, l0), (x1, l1), . ., (xs , ls)}

Here s represents the number of training samples, xi represents the data indexed by i as
an n-dimensional vector, and li denotes the label for sample i , which is an m-dimensional
vector. Supervised machine learning generally seeks to approximate a function that maps
an n-dimensional input vector to an m-dimensional output vector, according to the given
training data.

More formally, machine learning approximates a function F of type:

F : Rn → Rm

An artificial neural network (ANN) is a well-known, efficient, and powerful machine-learning
approach. An ANN is an abstraction of a nervous system of interconnected neurons.

12
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Figure 2.1: A basic biological neuron (left) from [30], and its mathematical abstraction
(right), from [29]. In an ANN, these nodes are organised layer-by-layer, where each node on
one layer is connected to all nodes in the next layer.

A neuron is a cell with multiple forms and components in biological neural networks. Infor-
mation is stored at contact points between different neurons, these contact points are known
as synapses. The basic function of a neuron is to receive several electrical signals from other
neurons through dendrites and then to produce an output signal to send to other neurons
through an axon. The body of the neuron determines the output signal sent through the
axon.

An ANN approximates this process using a computer. The concept of an ANN was originally
developed by Wiener, McCulloch, Pitts and Von Neumann as one of five fundamental models
of computation in the 1940s [29]. Neural networks were developed alongside: the logic-
operational model by Turing; the mathematical model by Kleene and Church; the cellular
automata model by Von Neumann; and the physical computer model by Von Neumann.

ANN’s approximate biological neurons through nodes (artificial neurons), graphically repre-
sented in Figure 2.1:

• Dendrites are modelled by input channels from other nodes.

• Synapses are modelled by assigning a separate weighting for each node connection.

• The axon is modelled by a single output value from the node.

• The cell body is modelled by a function assigned to each node, referred to as an ac-
tivation function, which models the decision-making logic involved in generating the
output signal.

In a deep neural network, generally referred to as a network with more than one hidden layer,
nodes are arranged in layers, with each connection assigned a trainable weighting. Each node
is also assigned a single value referred to as a bias, more details of which are discussed later
in this section. These parameters are used to approximate a given training data set.

In Figure 2.2, each line represents a connection from the left layer to the right layer; each
connection is given a trainable weight parameter. The total weights of each layer can be
represented as a matrix, and the bias values of each layer can be represented as a vector.
We discuss further details of these representations in Subsection 2.1.4.

What follows is a description of how we can train an ANN, that is, how we can assign values
to the trainable parameters: the weights and biases.
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Figure 2.2: An abstract ANN from [20]. Here, input nodes are green, hidden nodes are blue,
and output nodes are red.

2.1.1 Training a Neural Network

To make a neural network model useful, it must be able to represent a mapping from data
to meaning. This is achieved by minimizing an objective function, defined as F (x ), where
x is the trainable neural network parameters. An objective function is also referred to as,
equivalently, an error function or a loss function. An objective function is a function that
considers training data, and gives a weighting of 0 for a correct label prediction. So the
objective of the training is to have the output of this function be as small as possible,
representing that the neural network classifies as many samples correctly as possible.

There are multiple types of objective functions, but one of the most common is the sum of
squared errors, which is:

F (x ) =
n∑

i=1

(yi − ȳi)
2

Here n is the number of data samples, yi is the neural network output for the data sample
i , and ȳi is the label for the data sample indexed by i .

An objective function F (x ) is minimized by calculating the derivative of this function and
minimizing this value. In this function, x represents all of the trainable values of a neural
network, which is the summed weight matrices and bias vectors for every layer (for a fully
connected layer, more details of which are given in Subsection 2.1.3). The number of trainable
weights for a neural network can be given by the following.

i=L∑
i=1

((mi−1 ∗mi) +mi)

Here mi represents the size of layer i , m0 represents the size of the input layer, and L is the
number of layers.
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To compute the derivative of the objective function, the most well-known method is through
backpropagation. Here, partial derivatives of each weight are computed iteratively by prop-
agating the error value of each node backwards. These partial derivatives are used in an
optimization method to update the weights and fit the network to the objective function.
The partial derivative of these trainable parameters shows which weight is more ‘responsible’
for the error, so those with a higher derivative are updated more than those with a lower
derivative.

The backpropagation algorithm consists of four phases: feed-forward computation, back-
propagation to the output layer, backpropagation to the hidden layers, and updating the
weights. The optimization method used in backpropagation is gradient descent, described
below.

The four-phrase process can be described mathematically as finding F ′(x ): the derivative of
the objective function concerning the network trainable parameters x , then updating each
value according to a learning rate. This learning rate is a value between 0 and 1 and controls
the speed of convergence and the network update rate. This parameter’s value depends on
the training data set and network structure.

This can be represented as:

wi new = wi − δ
∂F

∂wi

Here δ is the learning rate, wi is a trainable parameter, and wi new is the updated wi value.
For a fully connected network, the trainable parameters are the weight matrix and bias vector
of every layer. This process is repeated until the value of the objective function converges
to a sufficient degree, defined by a threshold.

There are several problems, however, that can occur during training, one of which is the
vanishing gradient problem. This occurs when the partial derivative wi for a particular
parameter becomes too low, and the update for that weight becomes very slow, decreasing
exponentially with the number of weights multiplied into it subsequently. This occurs because
backpropagation uses the chain rule, multiplying n weights to compute each gradient, so the
derivative of a gradient value smaller than 1 decreases exponentially with n.

Another problem that can occur during training is overfitting: when a machine learning
model fits too closely to its training data. An overfitted model learns relationships and
patterns that exist only in the training data, not in the overall trend of the data. For example,
when a model fits too closely to patterns of noise present in the training data.

The backpropagation algorithm terminates when the objective function reaches an acceptable
error threshold. This represents a local minimum in the objective function, but it may not be
a global minimum as the objective function is non-convex. A trained ANN represents a non-
linear function where convexity is not guaranteed, so the objective function is non-convex,
and non-linear gradient-based optimization must be used. So, multiple applications of the
backpropagation algorithm may produce varying results as the algorithm can get ‘stuck’ in
local minimas. Optimization and convexity are discussed further in Section 2.2.

The next section discusses the types of layers a neural network may contain.
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Figure 2.3: An example convolution operation, from [31].

2.1.2 Layer Types

Neural networks are organised in layers, where each layer’s output is input to the next layer.
There are a wide variety of layer types used in neural networks. The three broad types of
layers, however, are fully connected, convolutional, and recurrent.

These types of layers can be differentiated based on purpose. Fully connected layers learn
a relationship between input nodes. Convolutional layers learn a lower-dimensional repre-
sentation of the input features; these layers can then extract the useful features of a given
input. Sudholt and Fink [6] comment that convolutional neural networks (that is, neural
networks containing convolutional layers) can consistently outperform all other approaches
in virtually every field of computer vision. This is because computer vision applications are
usually high-dimensional, and learning a fully connected layer between every input node in
a high-dimensional domain becomes ineffective as it contains a large amount of unnecessary
information and noise.

Convolutional layers are referred to as such because of the convolution linear operation. In
this operation, a small matrix, referred to as a kernel, is multiplied element-wise across the
entire input space; the result is then summed to produce the output of the layer. Convolu-
tional neural networks are often trained on high-dimensional data, such as images or audio,
so we often represent the input space of a convolutional layer with a tensor : a term repre-
senting a vector using an array of components. The output is sometimes called a ‘feature
map’ because the output is designed to represent extracted features of the input tensor. Fur-
ther operations such as pooling or fully connected layers can then be applied [31]. Figure 2.3
displays a graphical representation of the convolution operation; this displays the first kernel
multiplication of convolution, the kernel is then rotated across the entire input tensor to
produce the elements of the feature map.

The trainable parameter in a convolutional layer is the kernel itself. The hyper-parameters,
the pre-set parameters, that define a convolutional layer include the number of kernels and
the size of these kernels [31].

The pooling layer type is another layer that reduces the dimensionality of the input space,
similar to the convolution layer. The pooling layer operates with a set kernel, as a convolu-
tional layer, but instead of performing matrix multiplication, it performs a pooling function,
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commonly the MAX function, that returns only the maximum value [31].

Recurrent networks are networks containing loops. These recurrent connections allow the
network to ‘remember’ its own previous output decisions, allowing the network to learn tem-
poral patterns as well as patterns in the input vector itself. Recurrent networks experience
problems with training, however, as this model contains loops, and they can experience
problems such as vanishing and exploding gradients, as discussed in [32].

In the next section, we discuss the various types of activation functions that each network
node uses.

2.1.3 Activation Functions

The activation function of a node is the non-linear transformation that is applied to the
weighted sum of its input. This function is non-linear because it represents an activation
threshold. If the activation function were linear then no matter the number of layers, the
ANN could be represented by one affine transformation. This limits the types of relationships
that the network can learn. Affine transformations are discussed in Section 2.4.

There is a wide array of activation functions that are used in ANN models; in this work,
however, we cover well-used, well-documented activation functions. So, the activation func-
tions we cover are fundamental and have been modified in various ways but are still popular
and widely used.

One of the first activation functions to be proposed was the sigmoid activation function,
defined in [33] as:

f (x ) =
1

1 + e−x

The sigmoid function is a bounded differentiable real function; it is useful for predicting
probability-based output as its output is in the range between 0 and 1. It has been success-
fully applied in many domains, such as binary classification and modelling logistic regres-
sion.

The sigmoid activation function has multiple drawbacks, however, such as slower training on
multi-layer neural networks and it has a non-zero centre. This means gradient updates can
propagate in different directions, making training more inconsistent.

Another activation function is the hyperbolic tangent function, or tanh, given as [33]:

f (x ) =
ex − e−x

ex + e−x

The tanh activation function is smoother than the sigmoid function, performs better on
multi-layer neural networks, is zero-centred, and its range lies between −1 and 1.

Both the tanh and sigmoid activation functions, however, suffer from the vanishing gradient
problem. This is due to their tendency to ‘snap’ to certain values: for large input values,
they ‘snap’ to 1; and for small input values, they ‘snap’ to −1 or 0. This can lead to the
vanishing or exploding gradient problem.
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A more modern function, which was defined to address the problems with the previous
activation functions, is the rectified linear unit (ReLU):

f (x ) = max (0, x )

The advantages of the ReLU function include: it is faster to train, easier to optimize, and
has been reported to perform and generalise better than the sigmoid function [33]. The
ReLU function is also piecewise-linear, it is composed of multiple linear functions at various
intervals. In this case, the function is f (x ) = 0 if x < 0 and f (x ) = x if x ⩾ 0. Piecewise lin-
earity has positive implications in implementation, optimization and verification as opposed
to fully non-linear functions such as sigmoid or tanh.

A review published in 2015 shows that ReLU is the most popular activation function for deep
neural networks [34]. Nwankpa et al. [33] also comment that ReLU is the most widely used
activation function for deep learning applications that achieve state-of-the-art results.

The gradient of the ReLU function can only be 1 or 0. This eliminates the vanishing gradient
problem, as this can only occur when the gradient of a function is less than 1; similarly, it
eliminates the exploding gradient problem, as the gradient cannot be greater than 1.

The ReLU activation function does contain several problems, however, such as certain nodes
can ‘die’ when their weights are updated such that they return 0 for any input, and are
therefore not updated for the rest of the training process. Also, in comparison to the sigmoid
function, ReLU is more likely to overfit [33] to training data. This is because the rate of
change is not as smooth as other activation functions, and the update is more ‘jagged’, either
being forced to 0 or the maximum value.

The dropout technique [33] has been employed to reduce the effect of overfitting. In addition,
further developments on the ReLU function, such as the leaky ReLU and the Parametric
Rectified Linear Unit [33], can help reduce the effect of overfitting and dead neurons.

One additional key feature about activation functions is that they contain an activation
threshold, for which any value below this threshold is either negligible or zero. This threshold
can be modified by adjusting the weights assigned to each input. This enables the network
to learn relationships between input nodes.

In the next section, we discuss how fully connected layers can be represented using linear
algebra.

2.1.4 Matrix Form

Fully connected layers are the essential operation of a neural network: they represent the
relational properties learnt on input data. In this section, we detail the operation of fully
connected layers.

In a fully connected layer, each layer represents a linear transformation, a linear translation
and a non-linear transformation. A linear transformation is represented by matrix multipli-
cation, and a linear translation is represented by vector addition. For the purposes of the
following discussion, vectors and matrices are described as N ×M , where N is the rows and
M is the columns.
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The linear transformation can be represented by a matrix product of the input (column)
vector I × 1 and an N × I weight matrix, and the linear translation can be represented as
vector addition of bias vector N × 1, where I is the input dimensions and N is the number
of neurons in the layer. The full output of the layer also applies a non-linear function f to
the output of these operations.

Li = f (Wixi + bi)

Here Li represents the output of layer i , and the weight matrix W , input vector x , and bias
vector b are indexed by layer i . This operation takes an input vector of size I and outputs
a vector of size N .

This is a linear algebraic neural network formulation, so it cannot accurately represent fully
non-linear transformations, such as some types of activation function. Although, when a
network utilises the ReLU function, when f = ReLU , linear algebra can be used since, as
mentioned, the function is piecewise-linear.

The ReLU function is represented in linear algebra through two versions of the function: one
assuming that the output is 0, and one assuming that the output is x , where x is the input
to that node. Whether the ReLU function returns 0 or x is referred to as the phase of the
ReLU function.

In a layer-by-layer computation using the formulation above, the number of calculations
necessary in each layer is 2N , where N is the number of nodes in that layer. This is because
every combination of phases must be computed to represent the output of that layer.

This computation can be represented using other formulations, such as through set operations
[19, 35] or linear programming [20, 18]. In these formulations, a ‘split’ represents each time
a branch is made; here, a branch refers to setting the phase of the ReLU function for a node.
The number of splits can vary depending on various factors.

The number of splits increases exponentially as the number of layers increase, because each
layer’s input dimension (denoted I ) relies on the previous layer’s output dimension. The
worst case is when the number of layers equals the number of nodes, with each layer composed
of one node. In this case, the number of splits is given by 2l , where l is the number of
layers.

The best case number of splits is 2(n) where n is the total number of nodes in the network.
This would be when the network is single-layered.

A formula to give the number of splits is n(x l ), where n is the number of nodes, l is the
number of layers, and x is a variable constant that changes depending on the shape and the
exact layer structure of the network. This is for a ReLU activated ANN, with no assumptions
on the phase of each node. It is worth noting that the primary goal of a large number of
verification techniques is to minimise the number of splits necessary to verify the property
in question.

The number of splits and node phases are useful concepts for all activation functions used
within an ANN. This linear algebraic representation, while only directly applicable to ReLU
ANNs, illustrates the general operation of feed-forward ANNs.

In the next section, we summarise our discussion on ANNs so far.
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2.1.5 Summary

The ANN model is a fascinating and multi-faceted model of computation. This section
covered how an ANN can learn, interpret, and inductively extract patterns from data, and the
essential types and forms they can take. The essence of an ANN’s function is to inductively
extract patterns in approximations of the real world.

If an ANN is discretised or binary, it can be represented by a discrete function. If an ANN’s
activations are real-valued, it can be represented by a real-valued function. The verification
of an ANN is the verification of this function.

The remainder of this chapter focuses on establishing properties about trained ANNs via
establishing properties on the functions which capture their behaviour.

2.2 Neural Network Verification Techniques

Verifying an ANN is a very complex problem. ANNs operate on real numbers, so model-
checking approaches and boolean satisfiability (SAT) solvers are not directly applicable.
Furthermore, as discussed, ANNs are also non-convex. The result is that convex optimiza-
tion techniques, including linear programming (LP) and semi-definitive programming (SDP)
solvers, are also not directly applicable.

So, dedicated techniques are required for the tractable verification of ANNs. Verification
of even simple properties, those defined by linear constraints, has been proved to be NP-
complete [20]. Also, no accepted approximation or optimal method has been widely ac-
cepted.

We classify ANN verification techniques as either complete or incomplete, referring to their
logical completeness. These are also referred to as exact and over-approximate verifiers
[36, 37]. There are also two primary types of properties: adversarial robustness and general
linear constrained properties.

Adversarial examples, a concept first introduced by Szedgedy et al. [38], are defined as mis-
classified data samples that are imperceptibly different from correctly classified data samples,
such as images that differ in just one pixel. In response, the concept of adversarial robustness
property was developed; it ensures the absence of adversarial examples. Adversarial robust-
ness is defined by an optimization problem, where the objective of this property is to find
the minimum adversarial perturbation in a given area around a data sample or verify that
none exists. We present, below, a concise definition of the adversarial robustness property,
from [36].

min
x ′∈Sin (x),i ̸=i∗

fi∗(x )− fi(x
′) > 0

Here, we represent an ANN using the function f : Rn → Rm , where fi(x ) is the output of
logit i , and a logit is an output node of a neural network. Additionally, i∗ = arg maxj fj (x ),
where arg max is the pre-image of the function’s maximum, that is to say, it is the set of
inputs in the domain of the function that corresponds to the maximum value of its image.
Here, the index j is the index of the logit, so i∗ represents the index of the highest logit in
this ANN, which is the predicted class for the original input data sample x . Sin(x ) represents
an area bounded by a givem vector norm around the data sample x , usually the linf , l1 or l2
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norm. This definition guarantees that all samples x ′, those in Sin(x ), are classified as i∗. To
illustrate, if a misclassified x ′ existed, then there would exist some i that would make fi(x

′)
greater than fi∗(x ), so the inequality presented above would be false.

The interpretation of this representation is, given a point x , where the weighting for this
class is given by fi∗ , there does not exist any sample x ′ in the area of interest Sin(x ) that is
classified differently. Providing a different classification requires that there must exist a value
x ′ for which fi(x

′) > fi∗(x ), that is, the logit i of the activation x ′ that is higher than the
highest logit for the original data sample. This can be rewritten as the property of interest
is to satisfy fi∗(x )− fi(x

′) > 0 for all x ′ ∈ Sin(x ).

In contrast to this specification, which is defined as a minimization problem [36, 38], general
linear constrained properties are defined as seeking to satisfy a property φ that is a conjunc-
tion of linear constraints over the input vector x and the output vector y of an ANN, so, φ
takes the form φ = φ1(x )∧φ2(y), where φ1(x ) and φ2(x ) are themselves the conjunction of
an arbitrary number of linear constraints over x and y .

The first class of techniques we introduce is the complete verification type. These techniques
are used to reason over a network’s exact operation and, if they terminate, are guaranteed
to prove the property or prove it is unsatisfiable. Since the problem of verifying an ANN
is NP-complete [20], these techniques all have an exponential worst-case runtime. The pri-
mary drawback of these techniques is their scalability and applicability. Where the result’s
precision is not a factor for complete algorithms themselves.

The next class we introduce is incomplete techniques. These obtain verified upper and lower
bounds on the network’s output. Given a linear constrained bound, they produce a range of
the network’s potential outputs. The main problem is the quality of the bounds produced,
which may not be tight enough upper and lower bounds to verify properties. This is often
referred to as the problem of bound tightness [36].

Incomplete methods are concerned with striking a balance between precision and scalability,
as in maintaining useful bounds while still being tractable. Incomplete methods, because
they operate on a representation of a network, not the exact one, are usually applicable to
more activation functions and layer types than complete methods.

Table 2.1 summarises the categories of complete and incomplete formal verification tech-
niques, the details of which are discussed in Sections 2.3 and 2.4. This table displays the
class of technique, complete or incomplete, the type of the technique, the date a paper was
first published, the name of the technique, the author and a reference. The name of the
technique is obtained from the name of the tool implementing that technique (more details
of which are in Section 2.3), the name of the technique given by the authors themselves or
the name of the technique as referred to in the comparison work by Liu et al. [37]. The first
submitted date was the first available publication date, either in conference proceedings or
on the arXiv open access website (arxiv.org). In this section, we describe the approaches
that have been taken to verify neural networks.

In Sections 2.3 and 2.4, we discuss the two main types of formal verification techniques:
complete and incomplete. In Section 2.5, we discuss other types of induction and simulation
techniques available for verifying and validating neural networks. Before that, however, we
discuss a fundamental property that enables tractable verification of ANNs, convexity.

In a paper for the International Congress of Mathematicians 2010, Kjeldsen [64] discusses
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Type Name of Technique/Tool* Authors First Submitted Reference
Complete Linear Programming MIPVerify Tjeng et al. Nov 2017 [39]

- Cheng et al. Apr 2017 [40]
- Fischetti & Jo Dec 2017 [41]
NSVerify Lomuscio & Maganti Jun 2017 [42]

SMT Solvers Reluplex Katz et al. Feb 2017 [20]
Marabou Katz et al. 2019 [18]
Planet Ehlers May 2017 [43]
NPAQ Baluta et al. Jun 2019 [44]

Interval Analysis ReluVal Wang et al. Apr 2018 [45]
- Xiang et al. Dec 2018 [46]

Symbolic Representation ExactReach Xiang et al. Dec 2017 [47]
Exact-Star Tran et al. 2019 [19]

Incomplete Boundary Search Branch and Bound (BaB) Bunel et al. Nov 2017 [48]
SHERLOCK Dutta et al. Sep 2017 [49]
MaxSens Xiang et al. Aug 2017 [50]

Abstract Domain Ai2 Gehr et al. 2018 [51]
DeepZ Singh et al. 2018 [52]
RefineZono* Singh et al. 2019 [53]
DeepPoly Singh et al. Jan 2019 [54]
RefinePoly* - - [55]
Approx-Star Tran et al. 2019 [19]

Linear Relaxation Neurify Wang et al. Sep 2018 [56]
Fast-Lin Weng et al. Apr 2018 [57]
CROWN Zhang et al. Nov 2018 [58]
- Qin et al. Feb 2019 [59]

Dual Formulation LP/LP-FULL Wong & Kotler Nov 2017 [60]
SDP Raghunathan et al. Jan 2018 [61]
Duality Dvijotham et al. Mar 2018 [62]

Lipschitz Constant Estimation Fast-Lip Weng et al. Apr 2018 [57]
RecurJac Zhang et al. Oct 2018 [63]

Table 2.1: A table summarising the categories of formal verification techniques discussed in
this section. *RefineZono and RefinePoly (we were unable to locate the original paper in
NeurIPS’19 [55]) are hybrid methods and have a complete mode, but for the purposes of this
comparison are listed as incomplete because of their standard operation.

how the study of convexity is heavily associated with developing tractable mathematical
programming in general. Convexity is a concept crucial to linear programming [64], game
theory [64], and most algorithms for verifying neural networks.

Convexity is central in enabling tractable computation for real-number valued analysis.
There are multiple reasons for this concerning complexity results. In particular, for op-
timization problems, which form the basis for most techniques, there are no deterministic
algorithms for nonconvex optimization. That is to say, nonconvex optimization is NP-Hard
[65]. Conversely, convex optimization can be solved tractably in polynomial time [66].

A convex function is defined as a function that has an epigraph, the set of points on or above
the function, as a convex set. A convex set has no ‘gaps’, that is, for any two points in the
set, all points on the line segment between them are also in that set. For any convex set C ,
for any x1, x2 ∈ C , and for any 0 ⩽ θ ⩽ 1, then θx1 + (1 − θ)x2 ∈ C [66]. In addition, the
opposite of convex is concave, and a function is concave when −f is convex.

Another property about convex functions concerns any chord on the function: the line
segment between (x , f (x )) and (y , f (y)). All points on the chord are above the graph of the
function. This is shown in Figure 2.4 for a 1-D input.

Convexity and concavity are guaranteed when a function is linear, as a linear function has a
constant rate of change. This means that the function cannot contain any inflection points.
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Figure 2.4: A graph of a convex function, displaying the line segment from x to y , (x , f (x ))
to (y , f (y) from [66].

A neural network, however, is composed of multiple non-linear functions, so convexity cannot
be assumed.

To optimise a non-convex function using convex optimization, a convex function must be
obtained to represent this function. This may be achieved by multiple convex functions
or at least one over-approximate function. This is referred to as convex relaxation. If an
over-approximation of the function is generated, any optimum point found will be an upper
or lower bound to the function’s true minimum or maximum. In addition, even if a function
is convex but non-linear, it may be preferable to relax it to a linear approximation in some
situations.

For example, consider the function:

f (x ) = max (x , 0)

This is the ReLU activation function, and a fully connected layer in an ANN can be composed
of a linear combination of such functions. This function is convex but non-linear, and a
linear combination of non-linear functions is not necessarily convex. On the other hand, any
linear combination of linear functions can still be represented as a linear function, which is
convex. Following this, to form a convex representation of a neural network, these non-linear
constraints must be relaxed to linear constraints.

ReLU can be represented as two linear functions, f (x ) = x and f (x ) = 0, however, the
consequence is that the number of constraints increases exponentially as the layers increase.
This concept is mentioned in Section 2.1.4 on matrix form. This representation can also be
described as a node-wise convex relaxation of a ReLU ANN. This linear relaxation is an exact
representation and forms the basic concept for the complete verification of ANNs.

An alternative, however, provides an over-approximate convex relaxation of the network,
which can be applied layer-wise. A linear combination of ReLU functions forms this layer-
wise non-linear function according to the layer size. Convex relaxation is then applied to
this non-linear function to form an approximate representation for verification. This is the
basic concept of enabling incomplete verification of ANNs.

Further details of how this is performed are discussed in Section 2.3. We present, first,
complete techniques in the next section.
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2.3 Complete Techniques

Complete analysis of neural networks can be performed in two ways: providing a counterex-
ample disproving the property or generating the complete output range possible for the input
bounds and checking that this does not intersect with a given unsafe zone that would violate
the property. Here, a counterexample refers to a particular data sample that cannot exist if
the property holds.

It is worth noting that, in this work, safe and unsafe refer to whether or not a property is
satisfied. This safety does not refer to the safety of the overall system or safety concerning
a domain.

For example, we consider a single input x , single output network y , and a property requiring
that input bound x > 5 ensures output bound y < 1. If, when given x = 6, the network
returns 2, this is a counterexample, as it shows the property is not satisfied. In addition,
any property can be checked in this way, instead of verifying that every value greater than
5 produces an output smaller than 1, attempting to find a single example that violates the
output bound. In this example, this would be finding an input greater than 5 that produces
an output greater than or equal to one. This is the basis of search techniques: SMT and
linear programming solvers are examples of search-based solvers.

Considering the same property, x > 5 implies y < 1, an alternative method to verify it is
to estimate the output of this network. This involves finding, given x > 5, the possible
values of y that can be produced. In this approach, the ANN does not satisfy the property
if the reachability set, R, has a non-empty intersection with a given unsafe area U . In other
words, if R ∩ U ̸= ⊘ holds, then the property does not hold. In our example, the unsafe
area is characterised by y ⩾ 1. This approach is used by interval analysis and symbolic
representation solvers.

Search techniques can be used in two ways, to find a counterexample, as described above, or
to find the minimum or maximum possible value produced by the network under given input
conditions. This can be useful depending on the property, for example, if it is an adversar-
ial robustness property, finding a counterexample involves finding the sample a minimum
distance from the input.

As already said, SMT and LP solvers can be seen as search techniques, searching for the
best assignment of decision variables. In contrast, reachability techniques seek to establish
the range of possible values an ANN may produce under a given input, in other words, they
define the image of the input domain under the function representing an ANN. This image
can be represented in multiple ways, but for a complete representation of this image, we
define two primary methods: interval analysis and symbolic representation. Both search and
reachability techniques can be complete or incomplete. The main differences are in how the
ANN is represented, either exactly or as a relaxed form. Here, we discuss how an ANN can
be represented exactly. Relaxed form ANNs are covered in Section 2.4.

In this section, we first discuss search techniques, then reachability techniques. Specifically,
we discuss techniques involving linear programming in Section 2.3.1, then those that use
SMT solvers in Section 2.3.2. Next, we discuss interval analysis techniques in Sections 2.3.3,
and lastly, we discuss symbol representation techniques in Section 2.3.4.
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2.3.1 Linear Programming

A linear program (LP) is a specific formulation of a convex optimization problem where all
constraints, including the objective function, are linear functions.

An LP is a problem requiring maximising or minimising a single objective function over a
set of decision variables, where the decision variables are defined as real-valued variables of
the form xj , j = 1, 2...n [67], and the objective function takes the form:

ζ = c1x1 + c2x2 + · · ·+ cnxn

A linear constraint is defined as any constraint of the form Ax{≤,≥,=}b, where x and b
are vectors, and A is a weight vector for x , and {≤,≥,=} denotes the use of one of three
comparator operators, ≤, ≥ or =. Inequalities can be converted easily. For example, the
inequality Ax ⩽ b can be converted to Ax + w = b, w ⩾ 0. Here, w is referred to as a slack
variable. To convert from an equality to an inequality constraint, for example, Ax = b can
be expressed as Ax ⩽ b and Ax ⩾ b.

There is a type of linear program known as a mixed integer linear program, or simply a mixed
integer program (MILP/MIP), where at least one of the decision variables is an integer.

Vanderbei [67] notes that the preferred form is: all constraints are less-than inequalities, and
all decision variables are positive. A general example of this is displayed below:

maximise c1x1 + c2x2 + · · ·+ cnxn
subject to a11x1 + a12x2 + · · ·+ a1nxn ⩽ b1

a21x1 + a22x2 + · · ·+ a2nxn ⩽ b2
...
am1x1 + am2x2 + · · ·+ amnxn ⩽ bm
x2, x2, · · · xn ⩾ 0

Here, n is the number of decision variables, and m is the number of constraints.

There are multiple specialised tools for solving LPs, including Gurobi1, GLPK2, and LP-
solve3. Solving a linear program with arbitrary constraints is a complex problem and may
be infeasible. The most used algorithm for solving LPs is the simplex method.

The simplex method’s average-case runtime is polynomial but can be exponential. The so-
lution should converge since linear programs are a type of convex optimization, but this
depends on the cost function. The LP may even be infeasible based on the set-up of the con-
straints. While convex optimization, at worst, can be exponential, non-convex optimization,
on the other hand, has no clear deterministic method for convergence.

A ReLU ANN can be encoded as a linear program by encoding the objective function as
the property in question, or the inverse, to find either a counterexample or a bound to the
output to prove the property. The input nodes are encoded as the decision variables so that
a program can generate a counterexample or a boundary value for verification.

1//gurobi.com
2//gnu.org/software/glpk/
3//lpsolve.sourceforge.net/5.5/
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Lomuscio & Maganti [42] and Cheng et al. [40] propose a method for encoding binary de-
cision variables’ behaviour in formulating a ReLU network called big-M MILP. Cheng et
al. [40] utilises a node-wise representation, and Lomuscio & Magnati use a layer-wise repre-
sentation.

To illustrate the operation of the big-M encoding, we consider the variable y = max (0, x ),
where x is the input. This variable cannot be represented directly through linear constraints,
as y = 0 and y = x are conflicting constraints. The big-M encoding introduces a variable M
and a binary variable δ, defining the following constraints.

y ⩽ x + δM and y ⩽ M (1− δ)

Here, δ is a binary variable recording whether the ReLU function is active. If δ is 0, then
y ⩽ x and y ⩽ M , meaning the ReLU function is active, and if δ is 1, then y ⩽ 0 and
y ⩽ x +M , meaning the function is inactive. Additional constraints are introduced to force
the value to 0 or x , and x is treated asWx+b, with the constraints modified accordingly. The
layer-wise representation has fewer constraints and one M value per layer, and the node-wise
representation introduces more constraints with a separate M value per node.

Tjeng et al. [39] use indicator variables, and Fischetti & Jo [41] define a MILP layer-based
representation using indicator constraints to represent the non-linearity. Indicator variables
refer to variables similar to those used by big-M encoding, representing the phase of the
ReLU function. In contrast to big-M, though, Tjeng et al. [39] uses separate recorded upper
and lower bound variables. Indicator constraints differ from indicator variables because they
are logical implication constraints converted internally to valid linear constraints by the LP
solver. This approach also generates a distinct upper and lower bound value instead of one
M value encompassing the entire constraint. Furthermore, instead of big-M encoding or
indicator variables, this approach will always generate a feasible set of constraints.

Tjeng et al. [39] and Fischetti & Jo [41] use asymmetric bounds, separate upper and lower
bounds, which the big-M encoders do not use. Tjeng et al. [39] comment that this, in their
experiments, creates an increase in the runtime of multiple orders of magnitude, and they
also mention that by using a restricted input domain, another optimization technique, they
can improve upon the approach of Fischetti & Jo by at least one order of magnitude.

To be encoded as a linear program, as noted by Tjeng et al. [39], a property must be
expressible as the conjunction or disjunction of linear properties. This is because the output
constraints must be encoded in the objective function, and the input constraints in the LP
constraints. The layers in the represented network must also be piecewise-linear: contain
piecewise-linear or linear transformations. The authors note, however, that this is not a
particularly limiting restriction as it allows for convolutional, fully connected and max-
pooling layers, as well as ReLU and linear activation functions. Finally, the runtime of these
formulations depends on the bounds of the problem but also the tightness of the bounds
computed, this is either the upper and lower bounds or the value of M . This is due to the
bounds on the linear constraints determining the search space for the linear problem.

2.3.2 SMT Solvers

The next class of search techniques we discuss is the SMT solver technique. A boolean
satisfiability solver (SAT) is a specialised solver designed for propositional logic equations,
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that is, equations using boolean variables, conjunction, disjunction, and implication. A SAT
solver operates on a discrete space, so cannot be directly applied to ANN verification.

A satisfiability modulo theorem (SMT) solver extends a SAT solver to include further theo-
ries. These theories can include first-order logic, predicate logic, linear real arithmetic, and
many others. First-order logic includes quantifiers, variables, and relation symbols. An SMT
solver involves a SAT solver at its core. The techniques we discuss here either use SMT or
SAT solvers.

An ANN using the ReLU activation function can be represented by a set of linear bounded
constraints to be analysed by an SMT solver. This approach is incredibly inefficient, however,
as demonstrated by Katz et al. [20] in 2017. This is because the search space is intractable,
essentially infinite when the constraints are encoded without optimisations. Using this ap-
proach, even with state-of-the-art SMT solvers, the authors could not verify even the most
basic properties of the form x ⩾ c for a constant c and an output variable x [20].

One of the first dedicated techniques for ANN verification modified the simplex algorithm
for ReLU ANNs. This involved adding further derivation rules to the simplex algorithm
to enable efficient solving of ReLU ANNs using SMT solvers. This method extended the
simplex algorithm to add the ReLU activation function, hence the name, Reluplex. This
method operates by assigning variable pairs for each ReLU connection to represent the
inputs and output of each node. An assignment of values to a variable pair is called a ReLU
pair. Reluplex attempts to find valid ReLU pairs that characterise a counterexample.

Non-linearity is handled in Reluplex through the ReluSplit rule, which infers the phase of
the ReLU activation function and attempts to find a working assignment based on the phase
of that particular node. Notably, the method does not need to split on every node, only
on those nodes that could be active or inactive, and thus, changing these could lead to a
counterexample. The algorithm identifies these nodes using bound tightening by defining
upper and lower bounds on the variables.

The key difference in this formulation of Simplex is that Reluplex, based on an SMT solver,
not an LP solver, seeks to find a feasible, not the optimal, assignment, and so it searches
for counterexamples. As Reluplex encodes each node as a set of satisfiability rules; this
framework applies only to ReLU nodes. Reluplex has been extended, in 2019, into the
framework Marabou [18]. It operates on the same principles as Reluplex but with several
significant improvements and parallelism enabled through the divide-and-conquer (DnC)
mode. Efficient parallel solving is enabled by splitting the input query into multiple sub-
problems. Marabou also extends the applicability of Reluplex to general piecewise-linear
layers and activation functions.

The Planet approach is similar but uses linear estimation for bounding and a SAT core to
compute node phases. This linear estimation allows the solver to prune out large parts of
the search domain. Planet applies to piecewise-linear nodes. It uses a SAT core to find a
satisfying combination of the phases of the relevant ReLU nodes to find a counterexample
instead of searching for an assignment on a real-valued domain over the decision variables,
as Reluplex.

It is noted in [48] that the bounding method of Planet is tighter than that of Reluplex. While
Reluplex uses a relaxation based on constraint removal, Planet uses a linear estimation. The
consequence is that theoretically, more of the search space can be pruned; practically, more
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of the nodes can be set to either active or inactive state.

Reluplex, Marabou and Planet all operate on piecewise-linear transformations. NPAQ [44],
on the other hand, operates solely on binarised neural networks. NPAQ formulates the
binarised ANN as a CNF (a propositional formula of the form (A ∨ B) ∧ (C ∨ D) ∧ · · · ).
This approach is the only quantitative verification of ANNs we are aware of and can prove rich
properties, such as the exact number of discrete values satisfying a property, quantitative
analysis of adversarial examples, quantified trojan attacks, and even bias over the class
predictions of an ANN [44].

Next, we discuss how an ANN reachable set can be computed.

2.3.3 Interval Analysis

Interval analysis is a classic technique for representing the ranges of functions through inter-
vals. This involves defining a lower and upper bounded input, and propagating this through
the function domain, instead of propagating a concrete value. This can represent the possi-
ble output range for a function given an input domain or, in other words, the image of the
function under a given interval.

Interval analysis, in general, computes over-approximate bounds, but this can be enough for
verification purposes. If the over-approximate output range satisfies the required property
for a given input range, it is guaranteed that the true output range satisfies the property
due to the over-approximation [45].

Interval arithmetic, instead of assigning a concrete value for each variable, defines a range of
possible values for each, in the form X = [X ,X ], where X is the lower bound, and X is the
upper bound. We consider the function f (x ) = x as a simple example for an arbitrary input
range [x ]. The ideal interval extension is a function of intervals that approaches the image
of f , such that [y ] = [y

1
, y1] × · · · × [y

n
, yn ]. This is what the following techniques seek to

estimate for an input range [x ]. It is verified if the [y ] does not violate the property.

The work by Xiang et al. [46] proposes an algorithm based on interval analysis and bisection-
guided search. This approach is based on splitting the input space into finer and finer
partitions approaching the unsafe zone to get to a precision fine enough to prove safety or to
reach a pre-defined tolerance limit ϵ. This tolerance is defined as a value greater than 0 and
determines the smallest interval size possible for the algorithm. This can provide arbitrary
precision on an ANN but with scalability varying with ϵ.

Given an input range and an unsafe output range, the technique is [46] computes the output
range through interval arithmetic, and if this intersects with the unsafe zone, bisect this
interval into smaller intervals, referred to as partitions, and repeat until tolerance is reached
or until no partitions intersect with the unsafe zone. This is shown, for a 2-D input, in
Figure 2.5. This figure demonstrates where the input space intersects with the output unsafe
zone. Each rectangle represents a partition of the input space, with a corresponding over-
approximate range calculated. If the computed over-approximate output does not intersect
with the unsafe zone, then the partition is left, it can be pruned out of the search space.
Otherwise, the partition may contain a counterexample, so finer partitions must be computed
to tighten the over-approximation and prune out unnecessary input sections.

Another approach to applying interval analysis for ANN verification, called ReluVal, is pre-
sented by Wang et al. [45]. ReluVal is based on symbolic interval analysis. This is an
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Figure 2.5: An illustration of input space partitioning, from Xiang et al. [46]. The partitions
are larger in areas where no counterexample can occur.

extension of interval analysis, where instead of maintaining concrete ranges of intervals, it
maintains equations based on the previous propagations to preserve information about the
relationships between inputs and concretizes (computes exact interval bounds) only when
required [45].

ReluVal keeps track of linear equations based on the linear transformations of the weight
matrix multiplication and bias vector addition. The nonlinearity of a ReLU presents a
problem because when the value of the linear equation representing the interval can be
negative, the linear equation does not sufficiently bound the ReLU’s behaviour. In this case,
the bounds must be concretized with the exact values. The concrete bounds can then be
reduced by iterative interval refinement, which separates the intervals into separate sub-
intervals to refine the bounds. The authors note that this can achieve an arbitrary level of
precision for any Lipschitz continuous DNN. An arbitrary level of precision is not guaranteed
for a non-Lipschitz continuous activation function.

Lipschitz continuity is a strong measure of function continuity. It is important because
intervals cannot accurately capture its image if a function is not Lipschitz continuous. A
function is Lipschitz continuous if a constant C can be defined for the function, such that,
for arbitrary x and y , the following holds:

| f (x )− f (y) |⩽ C | x − y |

One problem with interval analysis for ANNs is the dependency problem: the error caused by
intervals producing bounds that depend on conflicting values of input nodes. For example,
we consider a single, two-node, hidden layer ANN with nodes n1 and n2. Here, the input to
each node is x1 and x2, respectively, and the output of each node is y1 and y2. The output
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y1 of node n1 has a computed upper bound of y1 when the input is x1. The output y2 of
node n2 has an upper bound of y2, when the input to this node is x2. These upper bounds
are then used to compute the upper bound of the output layer. However, if x1 ̸= x2, this
upper bound for the output layer is impossible, as it depends on the input being two values
simultaneously, referred to as the input dependency error or dependency error. Wang et
al. [45] prove that in Lipschitz continuous functions, this dependency error decreases as the
width of the intervals decreases.

Layers and activations shown to be Lipschitz continuous are fairly extensive: they include the
piecewise-linear transformations contained in convolutional layers, ReLU layers, linear layers,
max-pooling layers, softmax layers, and contrast-normalization layers [38]. Furthermore,
some non-linear activation functions are Lipschitz continuous: such as the sigmoid and tanh
function, by [68].

Wang et al. [45], and Xiang et al. [46] can achieve arbitrary precision using interval arithmetic.
This is because both approaches use iterative interval refinement, as discussed, and can
provide arbitrary precision. ReluVal, however, uses symbolic intervals, which the authors
comment reduces dependency errors by maintaining only the relationships between variables.
Furthermore, they comment that this reduces computation time, as the bounds are not
necessarily concretized at every node of the ANN. Finally, if the ANN is linear, symbolic
interval analysis can eliminate the input dependency problem entirely.

2.3.4 Symbolic Representation

The final class of technique we introduce is verification by symbolic representation. Symbolic
representation refers to maintaining an interval range, generating a set representing the
reachable set, and checking if it intersects with the unsafe zone. This involves defining a set
of states via an intermediate representation, which, for computability, is a type of convex
polytope with efficient inclusion, translation and transformation operations.

The reachable set is composed of conjunctions of multiple convex polytopes. A hyper-
rectangle is the simplest class of convex set. Hyper-rectangles, in this work, have rational
endpoints that can be represented by their leftmost and rightmost corners x = (x 1, ..., xn)
and x̄ = (x̄ 1, ..., x̄n) [69]. A hyper-rectangle is defined as all points x = (x 1, ..., xn) satisfying
the following as property as given in [69]:

n∧
i=1

x i ≤ x i ≤ x̄ i

For accuracy and flexibility, further representations of convex polytopes are required. A
convex polytope is a bounded convex polyhedron [69]: its points form a convex set. A
polyhedron is defined here as any n-dimensional shape with flat sides, so a hyper-rectangle
is a convex polyhedron but not all convex polyhedrons are hyper-rectangles.

Convex polytopes can be defined through several different representations. Each represents
the same class of sets, but the complexity of operations on sets varies depending on the
representation [69].

Convex polytopes can be represented canonically in two ways.

1. Vertex Representation: a finite minimal set P̃ such that P = conv(P̃).
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2. Inequality Representation: a conjunction of a minimal set of halfspaces (H = H 1, ...,H k )
such that P =

⋂k
i=1H

i . Syntactically this is represented as
∧k

i=1 a
ix ⩽ bi .

Here P̃ is the vertices of P , and conv(P̃) is its convex hull. Intuitively, for a set of points
S , conv(S ) is the set of all points between the set of all possible convex combinations of the
elements of S . [69]. A convex combination of a set {x1, ..., xl} is any x = λ1 x1 + ... + λl xl
such that Σl

i=1 λi = 1.

One of the key properties of convex polytopes is that, in contrast to hyper-rectangles, they
are closed under general linear operations. That is, if P is a convex polytope, then AP is
also a convex polytope where:

AP = Ax : x ∈ P

This property is very useful for set-based computation, as they allow the representation of
general linear functions. The complexity of set operations varies depending on the repre-
sentation used, for example, testing membership x ∈ P is easier using inequalities while
checking non-empty intersection P1 ∩ P2 is easier with vertex representation.

Convex polytopes are not closed under non-linear transformations but under affine transfor-
mations. These are transformations of objects in affine space: a type of Euclidean, real-valued
space where the origin is omitted. A linear transformation of an object is represented by
a matrix product, where the origin is preserved. In contrast, an affine transformation is
a linear transformation in affine space, where the origin is not fixed, so the object can be
translated. So, an affine transformation can be represented by a linear transformation and
a translation.

Xiang et al. [47] propose a symbolic representation ANN verification method based on poly-
hedra defined in inequality form. Their method defines a union of multiple polyhedra,
propagated layer-by-layer, to define the reachable set of an ANN.

Tran et al. [19, 70] proposes a symbolic representation method based on star sets, efficient
representations of bounded convex polytopes. A star set is a tuple Θ = ⟨c,V ,P⟩, where
c is a vector representing the centre of the star, V is a set of basis vectors describing the
star bounds, and P is the predicates describing what part of the bounds encompass the star.
The predicates are restricted to a conjunction of linear constraints, and so a star represents
a bounded convex polytope. A star is closed under affine transformations and halfspace
intersections [19].

The input is given as a star set to represent an ANN’s reachable set, which is transformed
using an affine transform representing the weight matrix and bias vector computation. The
input reachable set is calculated as Θ = W ∗Θprev +b = ⟨Wc+b,WV ,P⟩, where the output
set from the previous layer is Θprev , W represents the weight matrix, and b the bias vector
of this layer. This is a simplified form of the reachability calculation described in [19].

To handle the ReLU function, each component of the reachable set is analysed, and if the
lower bound is less than 0 for that component, then one of the nodes corresponding to that
component has the potential to exhibit non-linear behaviour. This is dealt with by defining
two further start sets, Θ1 = Θ ∧ xi ⩾ 0, and Θ2 = Θ ∧ xi < 0, where xi is the component of
the input set whose lower bound is less than 0. Here, Θ2 represents the inactive state of the
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ReLU because xi is now strictly less than 0, and when the ReLU function is applied, that
component is set to 0. This process is referred to as stepReLU.

Every new star set created by stepReLU leads to another full reachability construction in
subsequent layers, as in another stepReLU for each new star set generated. This leads to a
worst-case number of stars for an ANN with n nodes, to be 2n , which is also the worst-case
number of splits, as discussed in Section 2.1.

The symbolic representation algorithms we discuss apply to piecewise-linear layers, such as
max pooling, convolutional, ReLU, and linear fully connected activation functions. This is
due to the necessity of affine transformations to these representative sets.

2.3.5 Discussion

No complete technique we know applies to pure non-linear activation functions or layers.
All are at most applicable to piecewise-linear transformations. This is due to the com-
plexity of capturing an ANN’s output range through computable methods, as this section
outlines.

This output set is sometimes known as an adversarial polytope, representing the complete
output range. This requires representing a non-convex multi-dimensional polytope through
various forms, which is computationally challenging. Piecewise-linear activation functions
make this polytope significantly simpler to reason with.

Comparing these techniques’ effectiveness is challenging. This is because they are all new
and currently in development, and consistent benchmarks are unavailable for the emerging
sub-field of neural network verification. As mentioned, all complete verification techniques’
runtime is, in the worst-case, exponential, but their average and best cases vary and depend
significantly on multiple factors.

The scalability of these techniques depends on multiple factors: the width of the ANN, the
depth of the ANN, the property bounds, the input and output dimensions, and the number
of splits required. The depth of an ANN is the number of hidden layers it has, and its width
is the number of nodes in those hidden layers; together, the width and depth characterise
the shape of the ANN. The property bounds refer to the shape and complexity of the linear
bounds defining the property. The input and output dimensions refer to the number of input
and output nodes corresponding to the size of the input and output vectors.

The most important factor, arguably, is the number of splits required. For example, if the
number of splits required is 0, and every node has a value greater than 0 after the weights
and bias vectors, the ReLU node is always f (x ) = x . This system of equations becomes
entirely linear. This reduces the number of constraints required dramatically for linear
program solvers, makes the network able to be represented by one affine transform of one
polytope set, and makes the network able to be represented by a single affine arithmetic
computation.

For complete techniques, scalability is the biggest concern, as representing non-linearity and
complete verification of ANNs is NP-hard. This leads to problems with larger networks, but
also to a problem with utilising exact arithmetic. Using exact or floating point arithmetic
is an important consideration for real-valued calculations. Exact arithmetic is usually used
in verification methods, such as SMT solvers with the theory of real arithmetic, but is
challenging to use with verification techniques, as scalability is already an issue and exact
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arithmetic is usually at least an order of magnitude slower than floating point arithmetic
[20].

Techniques use various types of approximation or error compensation to compensate for
this challenge. Some techniques maintain a separate parameter for error tolerance, such
as NPAQ [44] or Reluplex. Interval analysis approaches use outward rounding to ensure
soundness over the true output range. The intervals, however, may not be precise enough
to verify the network. To compensate, they use iterative interval refinement, as discussed.
Reluplex, to compensate for the error, tracks the cumulative round-off error, and if it exceeds
a certain threshold, essentially backtracks a certain number of steps in its assignment of
variables but does not completely guarantee soundness. A recent work outlines how these
errors can be exploited for previously verified networks [71].

This area, as mentioned, is currently in active development, and the fusion and collaboration
of multiple types of analysis and techniques is a promising direction. This stems from the
key difference in the philosophy of search and reachability techniques and the possibility of
further collaboration to improve search, branching and bounding. This is suggested by Katz
et al. [18] with integrating further network-level reasoning into Marabou, such as reachability
techniques, and by Singh et al. [53].

This section has given an overview and compared approaches taken to represent an ANN’s
behaviour exactly for verification. The next section discusses how to represent an ANN
approximately for verification.

2.4 Incomplete Techniques

In this section, we discuss ANN verification techniques which are, algorithmically, incom-
plete. These techniques generate an approximate output set describing the ANN’s behaviour.
The techniques we discuss in this section generate strict over-approximations, so they can
guarantee behaviour. The over-approximation, however, results in incompleteness. Incom-
plete ANN verification techniques operate in three main ways: searching for the bound
limits using over-approximation, relaxing the ANN’s non-linearity, or generating a Lipschitz
constant for the network to generate bounds.

Some types of incomplete techniques involve relaxing the non-convexity present in the func-
tion representing an ANN into a convex representation, through a process known as con-
vex relaxation. This process involves representing a non-convex problem using an over-
approximate convex problem. We separate the convex relaxation techniques into three types:
abstract domain techniques, linear relaxation techniques and dual formulation techniques.
We note that some complete techniques involve convex relaxation steps; in the techniques
above, however, the entire function capturing an ANN is relaxed.

First, in Section 2.4.1, we discuss over-approximate search techniques, referred to as bound-
ary search techniques. Next, we discuss convex relaxation techniques: abstract domain tech-
niques in Section 2.4.2, linear relaxation techniques in Section 2.4.3, and dual formulation
techniques in Section 2.4.4. In Section 2.4.5, we discuss techniques that involve estimat-
ing the Lipschitz constant, and we conclude with a discussion of incomplete techniques in
Section 2.4.6.
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Figure 2.6: The operation of the approach by Bunel et al. [48], from [37]. Step 1 illustrates
the generation of the approximate upper bound and concrete lower bound for the entire
input space. Step 2 splits the input space into two partitions: a right and a left partition.
Step 3 prunes the left partition, as its approximate upper bound is lower than the right’s
concrete lower bound.

2.4.1 Boundary Search

In a complete technique form, search techniques use higher and higher precision until a valid
solution is reached. In incomplete techniques, convergence and arbitrary precision are not
always guaranteed, they are often traded for efficiency.

The first technique we discuss was proposed by an overview paper of piecewise-linear verifi-
cation techniques by Bunel et al. [48], referred to as Branch-and-Bound, or BaB.

This technique re-phrases the neural network verification problem to a single optimization
problem by adding additional linear layers, with a single node representing the property.
This property must be formed from a combination of linear inequalities. Properties based
on a single linear inequality can be represented with one additional layer, those based on
multiple inequalities require further layers. If the output value falls below 0, the property is
violated.

The goal of this technique is to find a single point which is the maximum activation in a
given input range. Search techniques achieve this by input space partitioning, removing areas
that cannot contain the maximum activation. Note that input space partitioning is used in
Xiang et al. [46]’s approach but for intersections with unsafe zones of properties instead of
maximum activation searching.

To enable tight bounds, the objective is to maximise the lower bound and minimise the upper
bound. This makes the range of possible outputs as tight as possible, enabling effective search
space pruning. The lower bound can be generated using stochastic sampling techniques on
the input domain, and the upper bounds can be generated using a linear convex relaxation
described in [43]. This means the upper bound will always be an over-approximation, and
the lower bounds will always be an under-approximation [37].

This reduces the search space of the input domain. This process is illustrated in Figure 2.6,
where the solid line is the lower bound and the dotted line is the upper bound. Note that,
due to the formulation of the property into a single output node, only an upper bound is
required to prove safety, the lower bounds generated here are only for pruning out sections
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of the input domain, not for generating bounds.

A related search technique is proposed by Dutta et al. [49] and is referred to as SHERLOCK.
This approach searches for the upper bound in a related way to Bunel et al. [48]. Dutta et
al. [49], however, use a combination of local and global search, instead of linear relaxation
and concrete sampling, to estimate the output boundary.

First, a point is sampled from within the valid input constraints. Then, this point is incre-
mented using local search, a gradient-based ascent method. As this method is gradient-based,
it is not guaranteed to return the global upper bound if the function is non-convex. To im-
prove the bounds, global search is then used on this upper bound. Global search is an
optimization technique that operates on non-convex functions but is not necessarily guaran-
teed to reach a local optimum. If a global search can find a point with a greater activation,
the process repeats, local search is then applied to the new point.

To find the lower bounds, the same method is applied, but in reverse i.e. with gradient
descent and global minimization techniques. The tightness of bounds generated by this
method is affected by a tolerance parameter δ. This is added to every upper bound computed
by local search. The tolerance parameter is a value greater than 0, and the smaller it is the
longer the runtime, but the tighter the bounds produced.

The approach by Dutta et al. [49] only applies directly to one-layer neural networks. In
contrast, the approach by Bunel et al. [48] is applicable to multiple through the method to
re-phrasing the network, whereas Dutta et al. [49] does not give a method of re-phrasing the
network in this way.

Next, we begin our discussion of convex relaxation techniques with abstract domain tech-
niques.

2.4.2 Abstract Domain

Symbolic representation techniques use multiple convex sets to encompass an ANN’s exact
(non-convex) image. Abstract domain techniques, on the other hand, define the effect an
ANN has on a single convex set. That is the smallest convex set that can encompass the
entire image of an ANN.

If a network were linear, its image can be represented exactly by a single set: each layer would
represent an affine transform. Considering a non-linear network, where the layers represent
non-linear transforms, this is not the case. In this case, instead of splitting apart the set to
encompass the behaviour, as a symbolic representation, the set is modified with additional
variables, or dimensions, to compensate for the non-linearity. The number of splits necessary
to represent the network by linear algebra is related to the complexity of the set, not to the
number of sets.

DeepPoly, defined by Singh et al. [54] uses polytopes as its domain; it combines floating point
polyhedra with interval analysis. In addition, it defines transformers for affine transforms,
ReLU, sigmoid, tanh and maxpool layers. Transformer here describes how a polyhedron is
transformed to approximately represent these layers.

DeepPoly defines two linear constraints per ReLU, an upper and lower bound constraint.
This is to avoid an exponential blowup of the analysis. These linear constraints are de-
fined by minimising a polytope in a 2D input-output plane. Abstract domain methods
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Figure 2.7: Polytope approximations for the ReLU function, from [54]: (a) shows the ideal
polytope, (b) and (c) show the two proposed in that work. Here, λ and µ are the gradient
and the intercept, defining the upper bound of the polytope. The representation in (a) is
more accurate but less efficient as it contains two lower bounds: the lines xj = xi , and xi = 0.
The polytopes in (b) and (c) are more efficient as they only have one lower bound.

minimise to reduce the over-approximation in the linear constraints made: the smaller the
shape, the tighter the area represented by the linear constraints, so the tighter the over-
approximation.

Convex approximations for the ReLU function from Singh et al. [54] are shown in Figure 2.7.
Here, λ and µ are the gradient and the intercept, the 1 and 0-dimensional variables defining
the upper bound of the polytope.

Gehr et al. [51] and Singh et al. [52] use zonotopes. Zonotopes, as discussed in Complete
techniques, are a type of centrally symmetric polytope, and are faster, but more approximate.
Singh et al. [52] define zonotopes in affine form, and for every ambiguous value encountered,
a new noise symbol is added to the affine form: where an ambiguous value is a value that
could either be positive or negative.

Singh et al. [52] use affine arithmetic to define zonotopes, where affine arithmetic is an
extension of interval arithmetic. Zonotopes are defined by associating an affine form x̂ with
each of its dimensions. An affine form is x̂ such that x̂ = x0 + x1ϵ1 + ...+ xnϵn . Where x0 is
the central value and x1, ..xn are known as the partial deviations, associated with the noise
symbols ϵ [72].

Singh et al. [52]’s transformation rules define the input zonotope, as in, the single zonotope
transformed with just the linear transformations if the lower bound is greater than 0, defines
the affine form [0, 0] if the upper bound is less than or equal to 0, and in the ambiguous case
defines the output affine form to be ŷ where ŷ is:

[λl , λu ] · x̂ + [µl , µu ] + [µl , µu ] · ϵnew
Here, λ is a floating point representation of λopt and µ, which is the optimal gradient and
intercept, respectively, for the lines constructing the zonotope.

This transformation adds another noise symbol ϵ to the affine form, making the runtime
linear in the number of noise symbols. Singh et al. [52] also mention that Gehr et al.’s [51]
approximation is imprecise and costly due to their approach using the zonotope join operator.
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The join operator uses one zonotope to cover and approximate all zonotopes generated,
whereas Singh et al. [52] uses affine form manipulations, instead.

Singh et al. [52]s approach handles convolutional architectures and is sound with respect to
floating point arithmetic.

Approx-Star, by Tran et al. [19] is an abstract domain technique using the star set, an efficient
representation of a bounded convex polytope, and is a tighter representation than a zonotope.
Approx-Star uses a similar approximation to DeepPoly, but instead of two constraints per
node, they use three. This means that this abstract domain is tighter, and more precise
than DeepPoly, but may result in a model with more constraints, which can mean it is less
scalable. The star representation, however, contains more set-efficient operations than the
polytope representation, so further investigation could be useful for this.

Abstract domain techniques have been defined, because of the over-approximation, of non-
linear activation functions, and convolutional layers.

Abstract domain techniques, as they represent the ANNs image with a single polytope, are
particularly applicable to image domains, as properties such as rotation, scale, and linear
interpolation can be applied as transforms to the generated set, instead of new properties
being developed for each type of image property.

2.4.3 Linear Relaxation

Linear relaxation is a convex relaxation technique that defines upper and lower-bound linear
functions to approximate the non-linearity in ANNs.

There are three techniques we are aware of which utilise linear relaxation: Weng et al.
[57], Fast-Lin; Wang et al. [56], Neurify; and Zhang et al. [58], CROWN. Fast-Lin uses
linear relaxation, Neurify utilises symbolic linear relaxation, and CROWN uses linear and
polynomial relaxation.

Fast-Lin defines two linear upper and lower bounds to replace the ReLU activation function.
These are:

u

u − l
x ⩽ σ(x ) ⩽

u

u − l
(x − l)

Here x is the input to the ReLU, σ(x ) is the ReLU function, and u and l represent the upper
and lower bounds of the original x .

Fast-Lin obtains two explicit lower bounded linear functions, f U and f L, that bound the value
of the original ReLU neural network function, f such that f L ⩽ f ⩽ f U . Obtaining these
leads to analytic bounds that can be computed efficiently without using any optimization
solvers, to enable fast computation for layer-wise output bounds. The time complexity for
computing the output bounds of a ReLU network in polynomial time. Fast-Lin is, however,
only applicable to ReLU neural networks.

CROWN is an improved version of Fast-Lin, it bounds ANNs using linear and quadratic
relaxation, allowing it to be applicable to general non-linear activation functions. CROWN
allows flexible selection of upper and lower bounds for activation functions, enabling up to
26% improvements in certified lower bounds compared to Fast-Lin [58].

Neurify, the approach defined by Wang et al. [56], is a technique utilising symbolic linear
relaxation. Symbolic linear relaxation refers to a combination of symbolic interval analysis,
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as ReluVal [45], and linear relaxation to linear bounds on ANNs. Neurify is only applicable
to ReLU networks.

The complete approach by Ehlers [43] also uses a linear relaxation of a network, along with
an SMT solver. The approach by Qin et al. [59] also uses this relaxation, however, they define
a method to verify non-linear properties through convex relaxation, the only technique we
are aware of that is able to do so. Due to their relaxation of the properties, their technique
is over-approximating.

2.4.4 Dual Formulation

These techniques formulate a dual optimization problem that obtains valid bounds on the
lower bounds, through maximising the dual problem.

Wong & Kotler [60], referred to as LP/LP-full, define a linear program to define the dual. The
feasible set of this dual problem, critically, can be expressed as an ANN, and can be solved us-
ing backpropogation-like computing, this means verification can be folded into training time,
creating a trainable certificate. Another consequence of this approach, however, is that the
optimization is non-convex, as the dual is expressed through an ANN. Finally, this approach
can train networks with provable robustness against all attacks, instead of generating bounds
pointwise, it can generate bounds against all possible attacks for a network.

This approach is sometimes referred to as a certification method, as it can provide guaranteed
bounds for an entire network, a ’certificate’ of robustness. This approach can be applied only
to ReLU networks, however.

Raghunathan et al. [61] present an approach developed in parallel to Kotler & Wong [60],
which also presents a certification method using duality. Instead of using linear programming,
however, Raghunathan et al. [61] uses semi-definite programming, but is only tractable for
one layer, for any additional layers it is NP-hard. It produces a bound on the global Lipschitz
constant for a network, this means that the bound is for all samples considered, as opposed
to other works which produce a local Lipschitz constant, based on individual samples.

These techniques can be used as a training method, and as a cost function, to obtain verifi-
cation at training time. A key weakness of these techniques is that they obtain loose bounds
on networks not trained with their training methods.

A dual formulation technique developed after, and inspired by, these techniques is Dvijotham
et al. [62], referred to by [37] as Duality. This approach operates in four stages: formulate
the problem as a linear program, find a Lagrangian relaxation of the constraints, find the
dual of this relaxation, and solve using unconstrained minimization.

The linear program developed in the first stage is non-convex, and the Lagrangian relaxation
is to develop a convex approximation of this non-convex linear problem. This approach,
instead of solving non-convex optimization, as in Kotler &Wong [60], solves the dual problem
using unconstrained minimization. A consequence of unconstrained minimization is that
their approach is anytime, the process can be halted anytime and still provide valid lower
bounds.

Their approach is, in theory, applicable to recurrent neural networks, although the formula-
tion of their approach given in [62] is applicable to layered architectures.
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The final type of technique is those that use a Lipschitz constant to generate valid bounds
on the output.

2.4.5 Lipschitz Constant Estimation

These techniques are estimators, as to return an exact Lipschitz constant would be complete
verification. Both techniques we consider bound the Jacobian matrix to bound a Lipschitz
constant: where the Jacobian matrix is the matrix of first-order derivatives of a function,
for a one-dimensional function, the gradient.

The approach by Weng et al. [57], referred to as Fast-Lip, bounds the Jacobian matrix
by bounding the worst-case construction of the function of the ANN. It achieves this by
generating a diagonal matrix of activations for each node to quantify which sections of the
function are linear. It then performs analysis on the remaining sections, assuming the worst
case for the non-linearity, and uses this to construct the bounds on the Jacobian matrix of
the function.

Fast-Lip is applicable solely to ReLU networks, because of how the matrix is constructed,
based on the piecewise-linear nature of the ReLU section. Furthermore, Fast-Lip loses effi-
ciency on the number of layers, as the size of the matrix of activations increases exponentially
with the number of layers.

Recurjac, by Zhang et al. [63] is a developed version of Fast-Lip which also bounds the
Jacobian matrix. Recurjac improves upon fast-Lip in multiple ways: it is applicable to
general non-linear activation functions, it does not lose efficiency with multi-layer networks,
and it produces a tighter bound on the Lipschitz constant.

Recurjac, instead of processing the network layer-by-layer, presents a recursive refinement
algorithm. It finds the maximum gradient in a ball around each activation, obtaining bounds
for each layer, known as pre-activations, through CROWN [58]. This algorithm is able to
achieve a Lipschitz constant two orders of magnitude smaller than the state-of-the-art (non-
recursive) algorithm.

Recurjac has polynomial time complexity, which is also up to M times slower than that of
Fast-Lip, where M is the number of layers in the ANN. However, the authors note that this
is not a particularly limiting restriction, as it is still tractable for 10-layer 200-node networks,
and the time increases linearly with the number of layers, so should not be a particularly
limiting restriction.

2.4.6 Discussion

For incomplete techniques, striking a balance between precision and scalability is the key
factor. They represent network-level reasoning techniques, as they primarily reason not on
the concrete bounds and activations of the original network, but on a relaxed network. This
is as opposed to complete verification techniques, which operate primarily on the original
network, even if intermediary network-level reasoning techniques are used, these are used to
inform concrete reasoning techniques. They can inform this by tightening the search space,
and pruning the input domain to rule out areas which cannot contain counterexamples.

Salman et al. [36] describes a relationship between the theoretical tightness of relaxations for
convex relaxation techniques, as shown in Figure 2.8. DeepZ is more relaxed than DeepPoly
due to the zonotope approximation, and Fast-Lin and Neurify are weaker than CROWN
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Figure 2.8: The relationship between convex relaxation algorithms, from [36].

due to the polynomial bounding as well as linear bounding. In addition, they show that
the approach by Dvijotham et al. [62] and Wong & Kotler [60] is shown to have similar
strength.

Incomplete techniques attempt to balance precision and scalability, and experiments run
have not been conclusive about the most precise method of over-estimation. There are
multiple factors influencing the effectiveness of these methods, namely: the network shape,
the specification type, the theoretical bounding, the network setup and the training data. In
particular, in the type of specification, the type of norm used can make a difference in the
techniques, such as shown in [57].

In summary, more standardised benchmarks and experiments are necessary to explore the
relationships between these techniques and the effect of modifying various parameters. In-
cluding exploring the relationship further between Lipschitz constant analysis and convex
relaxation of LP methods, and how these two fundamental methods behave under various
circumstances.

2.5 Other Techniques

All techniques discussed in Section 2.3 and 2.4 are techniques that provide a direct guarantee
on the behaviour of an ANN. In this section, we briefly discuss other types of ANN verification
techniques: those that provide guarantees with respect to discretization, adversarial example
crafting, or attack, algorithms, and techniques based on inductive arguments.

Huang et al. [73] and Wu et al. [74] propose techniques based on discretization of the input
domain. The consequence of this is that their techniques are applicable only to image
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domains; they do not establish properties about the full behaviour of the ANN.

Huang et al.’s [73]s approach is based on forming a derivation tree of possible perturbations
from a single point and verifying the non-existence of adversarial examples within these
perturbations. These perturbations usually refer to manipulations of images.

Wu et al.’s [74] approach is modelled as a two-player game to create a guaranteed lower
bound to adversarial perturbations. This technique has two modes of operation, computing
the minimum distance to an adversarial sample, based on the L0 norm, and quantifying the
robustness of individual features to adversarial perturbation features, such as, for images,
’sky’, ’grass’, etc. This technique requires a Lipschitz constant, which can be generated from
Lipschitz constant estimators as discussed in Section 2.4.

Attacks generate the best possible adversarial example; the best possible refers to as a sample
as close to the original sample as possible. They do not provide guarantees that this is the
best possible sample or even an upper bound on the best possible sample. That is, incomplete
techniques generate a guaranteed lower bound, a sample such that no more optimal samples
can exist. This provides a guarantee of safety with respect to that point. The samples crafted
by attack algorithms do not perform this, but their samples can still be used to provide an
upper bound to the true adversarial bounds, whereas incomplete techniques provide a lower
bound. If the adversarial example search is incomplete, the generated bounds represent a
lower bound on the true adversarial bounds, while an attack represents an over approximate
upper bound. Attacks can also be used to augment the training data to increase robustness
to attacks, as is demonstrated in [75].

L-BGFS is an algorithm for solving unconstrained non-linear optimization problems. It
also refers to an attack algorithm by Szegedy et al. [38], which uses L-BGFS to construct
adversarial examples. It does this by minimising the distance between a correctly classified
x , and a new adversarial x ′, such that x ′ is as close as possible to x , while still being
misclassified.

The fast gradient sign method (FGSM), is an attack proposed by Goodfellow et al. [76]. It
is based on linear perturbation of correctly classified samples, and suggests that “ANNs are
too linear to resist linear adversarial perturbation”. This attack is optimised for the L∞
norm and is designed for speed instead of accuracy.

JSMA, the Jacobian Saliency Map Attack, proposed by Papernot et al. [77] is an attack based
on linear estimation and Jacobian matrix analysis. It modifies each pixel of an input image
one at a time and models the impact each pixel has on the resulting classification [78].

DeepFool, proposed by Moosavi-Dezfooli et al. [75], is an attack algorithm designed for L2

distance metrics. It uses linear estimation and hyperplanes to visualise the classification
boundaries of an ANN and uses this to converge on a true solution.

Defensive distillation is a type of training method designed to reduce vulnerabilities to at-
tacks, introduced by Papernot et al. [78]. This training method significantly reduces the
effectiveness of the attacks mentioned so far.

Following this work, Carlini & Wagner [79] introduce three attacks that are effective against
defensively distilled networks. They propose three attacks for the L0, L2, and L∞ norm
adversarial distances. These attacks are sometimes referred to as Projected Gradient Descent
(PGD). All attacks mentioned so far have been white-box attacks, but black box attacks are
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possible against ANNs, as outlined by Papernot et al. [80].

All the techniques we have discussed so far in this work are deductive verification techniques.
A deductive verification technique refers to the desired property to be verified as known
beforehand. Deductive techniques create an argument of safety based on a priori reasoning
about the domain. This type of verification is the main focus of our work, as it provides
guarantees about the behaviour of ANNs, however, creating an inductive argument, as well
as a deductive one, has multiple benefits.

The last type of technique we introduce is referred to as simulation or test data augmentation
methods. This type of verification is crucial to satisfying current safety standards. ANNs are
often deployed in environments with uncertain and changing contexts of operation, such as
autonomous vehicles. In addition, as quoted from the UK Department for Transport in 2015
by Johnson [4], “...no state has fully determined how existing traffic laws should apply to
automated vehicles”. Therefore, deductive verification is not sufficient to fully demonstrate
safety.

Tian et al. [81] and Pei et al. [82] outline two approaches, referred to as DeepTest and
DeepXplore, respectively, for data augmentation. Both of these techniques define neuron
coverage and domain-specific transformations as metrics. Neuron coverage refers to the
number of neurons activated by a set of test inputs, and domain-specific transformations
are transformations that are likely to be encountered in that domain. Both approaches use
image domains as examples, and these include transformations such as rotation, translation,
scale, and others. Central to both techniques’ operation is that they generate synthetic test
data based on these domain-specific transformations that induce a higher neuron coverage,
testing more of the decision logic of the ANN.

Fremont et al. [83] define a language for defining probabilistic relations for deep neural
network systems. They define syntax and semantics for defining a wide range of scenarios that
could be encountered by deep neural network systems. In particular, they use self-driving
cars as an example of how their language can define realistic scenarios for simulation.

The approach by Dreossi et al. [84], implemented in the tool AnalyzeNN, is based on test
data augmentation using counterexamples. That is, generating domain-specific images using
a synthetic image generator, this image generator uses similar methods to those described
in [82, 81, 83]. In contrast to these techniques, however, it uses this image generator to
find counterexamples and only augments the test data with these counterexamples. This
approach also provides an error table to attempt to explain the reason why counterexamples
are misclassified. It does this by enabling the analysis of various features of that counterex-
ample.

2.6 Tool Comparison

In this section, we compare, via experiments, available tools for verifying neural networks.
Each tool implements one or more of the techniques discussed in Sections 2.3 and 2.4.

First, in Section 2.6.1, we provide an introduction to our experiments by discussing our
comparison criteria and the tools we have selected. In Section 2.6.2, we detail the meth-
ods implemented by each tool. In Section 2.6.3, we provide the results of our evaluation
experiments. Finally, in Section 2.6.4, we discuss and evaluate our results.
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2.6.1 Overview of Experiments

We have selected four criteria to compare the tools: usability, scalability, precision and
applicability. Usability is concerned with the facilities for the definition of a property to
verify and of the neural network. Scalability explores how the tools deal with larger and more
complex networks. Precision refers to whether the results are precise enough to provide proof
of the property. Finally, applicability refers to the type of networks that can be verified.

We explore, in our experiments, neural networks for control systems as these are the most
relevant in robotics. Examples include a robotic arm network [50] and an airborne collision
avoidance system [20]. We are interested in verifying properties such as the robotic arm not
reaching an unsafe zone [50] or, if the intruder aircraft is sufficiently far away, the network
advises ‘clear of conflict’ [20]. We focus our comparison on linear properties. They can
capture a wide range of specifications, including control safety, adversarial robustness, and
robotic controller properties. Furthermore, the vast majority of techniques are concerned
with linear properties [52, 53, 54, 62, 51, 19, 35, 20].

In addition, our comparison is based on networks with ReLU activation functions. They are
widely used, powerful, and easily trained [33], and every verification method and tool, as far
as we know, is applicable to ReLU networks. Its piecewise linear nature is the basis for the
feasibility of most techniques.

The tools we have selected are those that contain functionality to verify generalised linear
specifications: Matlab Toolbox for Neural Network Verification (NNV) 4, ETH Robustness
Analyzer for Neural Networks (ERAN) 5, NeuralVerification.jl 6,Reluplex 7, Marabou 8, and
SHERLOCK 9. We evaluate them on three benchmark properties of two networks: two
properties of a small neural network (TN) based on the implementation of a real robot, and
property one of Network 1, 1 of the ACAS Xu neural networks.

TN is a feed-forward and deep neural network with two hidden layers of 32 nodes each,
with two input nodes and one output node. This network shares key features with control
networks: low input and output dimensionality, and feed-forward ReLU structure. It also
has a low number of hidden layers and class-invariant input zones, which can be represented
as linear properties.

Network 1, 1 of ACAS Xu refers to one of the networks of the Airborne Collision Avoidance
Systems for Unmanned Aircraft (ACAS Xu) first presented by Katz et al. [20] in 2017. The
ACAS Xu networks are a set of 45 neural networks critical for ensuring unmanned aircraft
avoid aerial collisions. It is desirable to establish properties to guarantee the behaviour of
these networks under certain input domains, so ten properties have been identified.

Next, we introduce the methods implemented by each tool.

4//github.com/verivital/nnv
5//github.com/eth-sri/eran
6//github.com/sisl/NeuralVerification.jl
7//github.com/guykatzz/ReluplexCav2017
8//github.com/NeuralNetworkVerification/Marabou
9//github.com/souradeep-111/sherlock
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2.6.2 Methods

NNV, ERAN, and SHERLOCK are output range analysers [85, 55, 86]. Given an input range,
they compute an output range, and if it falls within the safe output zone of the property, the
network is determined safe. This computation can either be complete or incomplete, giving
the output range or an overestimation of the output range. NNV and ERAN use sets to
compute the output range.

NNV has implemented multiple methods for output range analysis: complete output range
verification in exact-star and exact-poly, incomplete output range analysis in approx-zono,
approx-star, abs-dom (which uses polytopes) and approx-hr (which uses hyper rectangles).
We consider them all here.

ERAN has three modes of operation. Two of them, namely,Linf and geometric analysis, are
applicable to image domain specifications, so are not considered here. In the third mode,
Linear specifications are defined using zonotopes, a centrally symmetric polytope [69]. ERAN
defines zonotopes using affine arithmetic, an extension of interval arithmetic. For analysing
zonotopes, ERAN has two methods: a hybrid analysis RefineZono, and an incomplete output
range analysis DeepZono. We consider both.

SHERLOCK utilises conjunctions of linear inequalities as input [86]. SHERLOCK com-
bines gradient-based local search with MILP solving: it solves a series of MILP feasibil-
ity problems with local search steps. SHERLOCK, however, is only applicable to net-
works with a single output node [49]. The implementation we evaluate is that in https:

//github.com/souradeep-111/sherlock, as it has proved impossible to build the newer
version in https://github.com/souradeep-111/sherlock_2, even with support from the
authors.

All the above tools do not require an output set to be defined as they are output range anal-
ysers. Defining an unsafe zone after computation can be useful for analysing the generated
output range sets, but is not necessary.

Reluplex and Marabou are SMT solvers for neural networks [20, 18, 87, 88]. The implemen-
tation of Reluplex we have evaluated is the proof of concept implementation in [87]. They
find an activation, a single value within the bounds of the problem given. As they compute
a single point, the property is inverted, and it is proved if no activation that satisfies the
inverse property is found. The input and output constraints are defined using multiple linear
inequalities.

NeuralVerification.jl implements 17 different verification methods, both SMT solvers and
output range analysers. Inputs are polytopes and hyper-rectangles, and as output, it uses
half-spaces and polytope complements [89]. Polytope complements define outputs for SMT
solvers, and halfspaces are used for the output specification for output-range analysers.
However, we have been able to run only five of these methods: SHERLOCK (the algorithm
and tool are referred to by the same name), BaB (an SMT solver), Duality, ExactReach,
and Ai2. Of these, only BaB and SHERLOCK ran on both properties of TN.

In the next section, we discuss these tools and methods in more detail considering our
evaluation criteria and experiments.
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2.6.3 Evaluation

As mentioned, we evaluate the tools based on four criteria: usability (Section 2.6.3.1), scal-
ability (Section 2.6.3.2), precision (Section 2.6.3.3) and applicability (Section 2.6.3.4).

2.6.3.1 Usability

Specification of Properties In the following, we describe how an I/O property of a
neural network can be defined in each tool.

NNV I/O properties in NNV are defined by the input-set object used by their reach
methods. Defining an unsafe output set, however, is a simpler way of evaluating the generated
output reachable set. Each set is defined as a custom MATLAB object. The simplest way to
build these objects is to build a hyper-rectangle based on a lower and upper bound vector,
and then convert this using NNV’s built in methods. If an output set is defined, NNV is
also able to generate an intersection with the generated reachable set with the safe output
set.

ERAN The input property is defined as a zonotope in affine form. This allows any convex
polytope to be defined through shared error terms, but for linear properties, we define a
simple hyper-rectangle input in affine interval form.

NeuralVerification.jl Properties are defined through the creation of input and output
set objects, in a similar manner to NNV. NeuralVerification.jl also uses an output set with
reachability methods.

There are four implemented types of sets used as I/O definitions; these are hyper-rectangles,
halfspaces, hpolytope (halfspace polytopes) and hpolytope complements. Hyper-rectangles,
halfspaces and polytopes are the most commonly used; polytope complements are used for
the output sets for solvers. This is because the output set needs to be the negation of
the safe zone, and a PolytopeComplement of a closed set is necessarily an open set, and
non-convex.

Reluplex There is no distinct method to define properties; the code that defines the
method has to be modified to deal with the desired input.

Marabou This implementation requires properties to be defined using a set of inequalities,
relating to the input and output nodes. The input nodes are defined as xn , and the output
nodes as yn , where n is the index of the node.

SHERLOCK The input is defined through input constraints as a hyper-rectangle. There
is no way to define output zones, and properties are verified by analysing the computed
output range.

Neural Network File Formats The file formats used to define neural networks vary,
but the key information which all file formats support is: the weight matrix and the bias
vector for each layer. We primarily focus on human-readable neural network file formats,
since only ERAN is able to natively support non-text based file formats such as ONNX [90],
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Tensorflow .pb and .meta files [55]. NNV is also able to support these, but through an
extension, NNVMT [91].

NNet Format The nnet file format was created in 2016 to define the ACAS networks in
a human-readable format [92]. It contains normalization information and the structure of
the network, including input and output dimensions. The primary drawback of this format
is that it is only applicable to feed forward fully connected ReLU networks [92]. The nnet
file format is utilised by Reluplex, Marabou and NeuralVerification.jl.

ERAN Text Data Formats ERAN’s text-based formats are TensorFlows .tf and Py-
Torch’s .pyt. Unlike nnet files, they can define wider types of activation functions, including
tanh, Sigmoid, and Affine functions. They can also define convolutional networks. Neither
file format, however, is readable because the input and output dimension of the network has
to be inferred from the weight matrices themselves. Also, these file formats do not contain a
definition of the structure of the hidden layers, which has to be inferred from the matrices.
Only .pyt files contain inherent normalization information.

SHERLOCK Format SHERLOCK utilises a custom file format that defines solely a feed-
forward ReLU network. The format defines a network neuron by neuron for small networks.
This can provide readable information about the internal structure of the network because
it flattens the weight matrix for each layer and delimits the weights via new line characters.
For larger networks, however, this is not a readable file format.

NNV NNV builds networks layer by layer, given the activation function, weight matrix
and bias vector for each layer. This information can be loaded through any file format
supported by MATLAB, for example, mat, csv and txt files. There is, however, no standard
neural network file format support without the use of NNVMT.

A property can be defined by inequalities [87, 88, 86], or convex sets [85, 55, 89]. A neural
network is defined by associating a weight matrix, a bias vector, and an activation function
for each layer, which can be defined node by node, [86], layer by layer [85], or through nnet,
pyt or tf files [87, 88, 55, 37].

2.6.3.2 Scalability

We have installed and built the tools on Linux version: ‘Ubuntu 18.04.2 LTS’, apart from
NNV which was installed on MATLAB 2019a, Windows version10. We have used an i5-8265U
CPU with 8GB RAM, with the timeout for each experiment set to 2 hours. We repeated
each experiment that terminated 10 times.

For the NeuralVerification.jl implementations, we have obtained impossible results using
Reluplex. In addition, we have experienced problems executing ExactReach and Ai2 on
both benchmark networks.

RefineZono is a hybrid method; results are for RefineZono with its complete part at one
second, the default value. We ran RefineZono with a 1000-second timeout, however, it was
still unable to obtain tight enough bounds to verify property one of ACAS Xu. Finally,

10www.mathworks.com/products/matlab.html
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Table 2.2: Scalability Results (Seconds, 2dp). Here, the Mean, Min, and Max columns refer
to the times taken for the tools to terminate. The ‘RES’ column displays the result of the
method: ‘SAT’, the property is satisfied; ‘AMB’, the result of the method was ambiguous,
that is, the bounds were not tight enough to prove the property; ‘ERR’, the method did not
execute on the property and the time is displayed as *; ‘T/O’ represents a time out result.

TN P1: TN P2: AX 111:

Tool: Method: Mean Min Max RES Mean Min Max RES Mean Min Max RES
NNV Exact-Star 95.18 77.33 122.57 SAT 73.4 55.72 93.57 SAT T/O T/O T/O T/O

Exact-Poly * * * ERR * * * ERR T/O T/O T/O T/O
Approx-Star 4.83 3.94 6.81 AMB 4.67 4.67 5.78 AMB 42.4 30.83 55.38 AMB
Zono 0 0 0.01 AMB 0.01 0 0.01 AMB 0.03 0.02 0.04 AMB
Abs-dom 4.94 3.88 6.81 AMB 4.71 3.7 5.81 AMB 40.86 19.55 49.09 AMB
Approx-Hr 0.01 0 0.05 AMB 0.01 0 0.02 AMB 0.01 0.01 0.02 AMB

ERAN DeepZono 0.06 0.06 0.07 AMB 0.06 0.06 0.06 AMB 0.15 0.09 0.16 AMB
RefineZono 3.42 3.24 3.6 SAT 3.85 3.67 4.04 SAT 38.42 37.21 39.47 AMB*

SHERLOCK SHERLOCK * * * ERR 0.9 0.72 1.08 SAT N/A N/A N/A N/A
NeuralVerification.jl SHERLOCK 28.64 28.22 29.19 SAT 43.81 41.68 46.12 SAT N/A N/A N/A N/A

BaB T/O T/O T/O T/O T/O T/O T/O T/O N/A N/A N/A N/A
Marabou Marabou 1.21 0.75 1.52 SAT 0.44 0.43 0.48 SAT 130.84 130.22 134.22 SAT
Reluplex Reluplex * * * ERR * * * ERR 1348.9 1119 2620 SAT

we ran RefineZono using its full complete mode, although this timed out. The result of
RefineZono with milp timeout 1000 is discussed in the next section.

Table 2.2 displays the results of the experiments on the three benchmarks. The ‘RES’ column
displays the result of the method: ‘SAT’, the property is satisfied; ‘AMB’, the result of the
method was ambiguous, that is, the bounds were not tight enough to prove the property;
‘ERR’, the method did not execute on the property and the time is displayed as *; ‘T/O’
represents a time out result.

Table 2.2 shows that Marabou is the only tool able to verify all three properties; NNV and
ERAN can verify TN but only using complete methods, and SHERLOCK can verify P2 but
produces errors on TN P1.

2.6.3.3 Precision

In this section, we evaluate the quality of the output bounds produced by the incomplete
methods implemented by the tools. These bounds may not be tight enough to prove the
property in question.

Figures 1 and 2 show the positive bounds generated by the methods of the tools using
logarithmic scaling. Some techniques generate negative bounds, but we record only the
positive bounds, as all networks have ReLU output layers. In addition, the bounds given by
complete methods are displayed for reference.

One of our main observations is that the type of convex set used by a method significantly
impacts the bounds generated. Ordering them from least to most precise, we have hyper-
rectangles, zonotopes, polytopes, and star sets. One exception is that hyper-rectangles are
slightly more precise than zonotope methods on ACAS Xu. RefineZono also involves an
additional MILP component and a zonotope abstract domain formulation.
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2.6.3.4 Applicability

Marabou and Reluplex are applicable solely to feedforward fully connected ReLU networks,
as the modified Simplex algorithm they are based on does not allow for other types of nonlin-
earity. SHERLOCK also exclusively applies to ReLU networks and contains the additional
limitation of only one output node.

ERAN implements abstract domain methods and so is the most widely applicable tool. It
applies to ReLU, Sigmoid, and Tanh activation functions and to feedforward convolutional
and residual layers.

NNV’s methods vary as to their applicability. The exact techniques only apply to ReLU or
linear activation functions, while their approximate reachability modes also apply to sigmoid
and tanh activation functions. Both types of methods are also applicable to convolutional
layer types.

Of the methods we considered of NeuralVerification.jl, those applicable to only ReLU net-
works are BaB, Reluplex, ExactReach, ConvDual and SHERLOCK. BaB is also only relevant
to one output. The implementation of Ai2 applies only to ReLU networks. However, Ai2
applies to further types of networks [51]. Duality applies to any monotone activation func-
tion.

2.6.4 Discussion

Marabou is the most successful tool for verifying ReLU networks, overall, by our criteria. It
is the most usable, scalable and precise, but is one of the most limited tools in applicabil-
ity.

The most usable method for defining properties is Marabou’s. It is the only tool with a
dedicated file format for the specification of a complete property. ERAN has a file for
specifying a zonotope in affine form, but this is only the input to the network, not a complete
property definition.

Further conversion tools would be helpful for usability, such as a converter from linear in-
equality to set representation, converters between various models of sets, and a converter
between generator-form zonotopes and affine-form zonotopes, as used by ERAN and NNV,
respectively. These facilities could facilitate obtaining complementary results from multiple
tools.

In terms of defining networks, nnet files are the most usable. This is for two main reasons:
they display the network structure efficiently and contain normalisation information. In
some situations, however, viewing the exact weightings for each node with a node-by-node
file structure may be helpful. This can give further details into the weighting assigned to
each feature of the data, although this is only feasible with small, simple networks.

Marabou is the most scalable tool for complete verification, obtaining a runtime on TN 2.8x
faster than ERAN, the following fastest complete tool. It has a runtime 78x faster than
NNV’s complete analysis on TN, and NNV timed out in the verification of ACAS Xu. The
only means for complete verification that terminated ACAS Xu Property 1 were Reluplex
and Marabou.

The runtime of these tools was influenced by the bounds of the property chosen for the
network. This is minor in most tools, but Marabou experienced a difference of 2.71x from
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TN property 1 to property 2. For comparison, the most significant variation other than
Marabou was SHERLOCK, with a variation of 1.52x.

The most precise tool for incomplete analysis is ERAN (utilising RefineZono); this, however,
is also the least scalable incomplete method. Only Marabou, ERAN and SHERLOCK are
precise enough to verify TN properties, and only Marabou and Reluplex are precise enough
to verify the Acas Xu property.

In terms of verifying ReLU neural networks, all tools apply to all networks. Still, BaB, from
NeuralVerification.jl and SHERLOCK, cannot verify networks with more than one output
node. This is a limitation of the algorithms defining their methods. ERAN and NNV are
the only tools applicable to types of neural networks beyond feedforward fully connected
networks.

NNV, while not quite the most scalable, precise or applicable, has the highest degree of
functionality of all tools presented. It is an output range analyser and has methods to
generate the unsafe input zones of a problem, a functionality no other method can perform.
One advantage of this is that the unsafe input zone can be used as an adversarial input
generator for robust training [19]. Furthermore, NNV contains output visualisation and
intersection methods, functionality also unique to NNV. This enables a clear representation
of the decision logic of a neural network.

Based on the examples we have considered regarding usability, the best tool is Marabou and
the worst is SHERLOCK. For scalability, the best is NNV, and the worst is Reluplex. For
precision, the best is Marabou, and the worst is NNV. Lastly, for applicability, the best is
ERAN, and the worst is SHERLOCK.

2.7 Final Considerations

Formally verifying ANNs is a challenging problem. Currently, there is no accepted optimal
method for ANN verification: in general or even for any specific type of ANN. In this work,
we want to verify feedforward fully connected networks for use in RAAI systems. The optimal
method cannot be determined entirely, theoretically, as the runtime is based on individual
model parameters. These determine the sections that can be pruned, affecting the runtime
and precision of the method.

Our comparison of tools suggests, first, possible ways of combining tools so that their results
complement each other and increase the explainability of the network. Second, we conclude
that tool combination and integration is an exciting avenue for future work. Finally, we
note that a unified format of representing linear inequalities is helpful in the development of
verification tools.

There also are a few accepted benchmark problems for ANN verification. MNIST or CIFAR-
10 are often used. However, the ANNs produced for each dataset may vary, making the
comparison more challenging. The need for further empirical comparisons and benchmarks
is clear.

Our overall goal is to determine a verification system for complete RAAI systems. To do
this, we require a model of a complete RAAI system involving ANNs; from there, we can
determine a verification technique for the entire system. We discuss this in the following
chapter.



Chapter 3

Neural Networks in RoboChart

In this chapter we present an ANN modelling approach integrated with RoboChart. Follow-
ing from Chapter 2, the ANNs we describe in RoboChart are pre-trained ANNs composed
of feed-forward, fully connected layers with ReLU or linear activation functions. We first
give an overview of our results in this chapter in Section 3.1, then we give an overview
of RoboChart in Section 3.2, followed by an approach to integrate ANN components into
RoboChart in Section 3.3. We then provide an overview of the RoboChart semantics in
Section 3.4, define a CSP semantics for our ANN components in Section 3.5, and present
its validation via simulation, to complement early simple checks via model checking and
assertion reasoning, in Section 3.6. We make final considerations in Section 3.7.

3.1 Overview

We describe the structure of our framework to integrate ANN components into RoboChart
in Figure 3.1. Here, we describe how we extend the RoboChart semantics to cater for these
ANN components. The result is a unified model that enables verification of the complete

RoboChart
module

ANN
components

COMPOSED OF ANN
metamodel

DEFINED BY

well-formedness
conditions

data-rich
process algebraic

semantics

CIRCUS: Z + CSP

JCSP

CSP-M

UTP

ENCODED IN
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machines

OpenJML

FDR

Isabelle/UTP

Marabou

Figure 3.1: The structure of our verification framework: the nodes in pink represent
RoboChart constructs, the nodes in white represent the modelling artefacts to support ANN
components, the node in green represents the semantics of RoboChart, the nodes in grey
represent semantic encodings, and the nodes in purple represent verification tools.
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system. To support tractable verification, we consider only the ANN type discussed in
Chapter 2: trained, fully-connected, ReLU activated ANNs.

Our framework begins with a RoboChart module, the leftmost node in Figure 3.1; we describe
RoboChart modules through an example in Section 3.3. A RoboChart module is composed
of existing components defined by state machines (‘state machines’ node), and our new
ANN components (‘ANN components’ node). We define our ANN components by defining
a metamodel and well-formedness conditions, shown by the ‘ANN metamodel’ and ‘well-
formedness conditions’ nodes. We describe our metamodel in Section 3.3.2. and our well-
formedness conditions in Section 3.3.3. We define the semantics for our ANN components
in Section 3.5, and we give an overview of the existing semantics for the state machine
components in Section 3.4.2.

RoboChart has a formal semantics [14] described in Circus, a combination of Z and CSP.
Using Circus gives an indirect UTP semantics to RoboChart, since the denotational semantics
of Circus is defined in UTP. A formal semantics in UTP enables proofs of the properties and
behaviour of a system using theorem proving. Isabelle/UTP [27] mechanises UTP proofs; it
is an implementation of UTP in the Isabelle/HOL proof assistant [93].

We define two encodings of our Circus semantics to enable automated verification using a
variety of technologies: CSP and JCSP. The CSP semantics enables model-checking via the
tool FDR [94], and the JCSP semantics enables both theorem proving and runtime assertion
checking via the OpenJML tool [95]. We also describe an approach to generate a UTP
encoding of our semantics, enabling automated verification via Isabelle/UTP. We present
our CSP encoding in Section 3.5, our JCSP encoding in Section 3.6, and our approach to
generate a UTP encoding in Section 4.2.

We model an ANN in RoboChart by defining a dedicated component. We cater for two
approaches: ANN components at the level of operations, presented in Section 3.3.1.1; and
ANN components at the same level of controllers, described in Section 3.3.1.2. They allow
for different forms of abstraction. In the former, the ANN executes in parallel with the
other controllers, and communicates with them via events. In the operation-based approach,
other components can trigger the execution of the ANN and block waiting for the result.
Communication, in this case, is via parameter passing and shared variables. In both cases,
timing specification is defined explicitly outside the ANN components.

3.2 RoboChart

Throughout our work, we use a simple example of a two-wheeled Segway robot to provide
a concrete example of the use of RoboChart (a full description of RoboChart can be found
in [14]). The segway consists of: an inertial measurement unit (IMU), and two wheels, each
with a Hall effect sensor: a sensor which detects magnetic fields; it is used in the Segway
for monitoring the speed of the wheels. IMUs combine magnetometers, accelerometers and
gyroscopes to measure the segway’s tilt. The software uses this data with three PID con-
trollers to update the velocity of the wheels in a smooth and consistent fashion such that
the Segway balances.

RoboChart is a state-machine based modelling language that can be regarded as a profile
of UML; it defines an abstraction of an entire robotic control software. The RoboChart
language abstracts the functionalities of the hardware using robotic platform components.
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Figure 3.2: Segway module from [96], Legend: : module, : controller definition, :
connection, : robotic platform reference, : state machine reference, : required interface.

Controllers and a robotic platform are grouped together in a Module, which represents the
complete robotic software [14].

Figure 3.2 describes the segway module. The robotic platform SegwayRP communicates with
the controller SegwayController using asynchronous communication along six connections,
each of type real, representing the communication of the IMU data and Hall effect sensors.
SegwayController interacts with its state machine BalanceSTM using identical events and
types, transferring the information sent from SegwayRP to BalanceSTM.

RoboChart controllers are in independent (parallel) operation with each other, and each
individual state machine inside a controller is in parallel operation with other state machines
inside a controller. Each controller must have at least one state machine, which represents
the behaviour of the controller.

RoboChart components interact with each other via connections. These connections estab-
lish a source and a target node (state machine, controller or robotic platform) via their
events. Connections can be asynchronous, where the data from the writer node is stored in
a temporary buffer, and the writer is not blocked until the reader node is ready to receive.
Connections can also be bidirectional, in which case, both nodes can read and write.

In RoboChart, controllers may communicate with other controllers or robotic platforms, and
state machines may communicate with other state machines or their controller. Communi-
cation with a robotic platform is always asynchronous, capturing the fact that a physical
robot is not blocked by the control software. Communication between controllers, however,
may be synchronous or asynchronous. State machines communicate synchronously to model
parallel threads of behaviour abstractly.

Events are used to represent the inputs and outputs of an individual component. They may
be typed, representing data transfer, or untyped, representing a simple interaction such as
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a signal or interrupt.

State machines in RoboChart are similar to UML state machines, but have some features
removed to facilitate the definition of a compositional semantics and enable formal verifi-
cation. State machines are composed of states and junctions, where states define a stable
configuration of the machine. Junctions capture unstable configurations such as decision
points. It is possible to define nondeterministic behaviour using state machines, as more
than one transition may be enabled from a state or junction.

RoboChart also allows the definition of operations: these represent functionalities provided
either by the physical robot or implemented as part of the control software. They can be
defined either through libraries or through a state machine. Operations used in a state
machine need to be declared in a required interface. An operation signature declares the
name of the operation, its parameters, and their types. In Figure 3.3, the interface PIDs
declares three operations (AnglePID, RotationPID and SpeedPID) each taking one or two real
parameters.

Figure 3.3 defines BalanceSTM: a state machine that describes how the data received from
the sensors is used to update the velocities of the segway’s motors. BalanceSTM has six
events that represent input received from the segway’s sensors: leftMotorVelocity, rightMo-
torVelocity, angle, gyroX, gyroY, and gyroZ. The machine uses a clock loopTimer to define a
time budget for each iteration, given by the loopTime constant. The machine defines fur-
ther time constants angleBudget, speedBudget and rotationBudget; these represent the time
for AnglePID, SpeedPID and RotationPID operations to complete, respectively. The machine
also defines startupDelay, which represents the time for the hardware to initialise.

AnglePID is called every iteration, SpeedPID and RotationPID are called only every speedUp-
date and rotationUpdate, iterations. The variables speedCount and rotationCount count the it-
erations for the purposes of calling SpeedPID and RotationPID at the correct iterations.

The machine starts in the state Initialisation, where speedCount and rotationCount are set
to 0. The machine then waits for startupDelay time units and resets the clock loopTimer
through # loopTimer. The machine then transitions to state WaitForNextIteration, where the
machine waits for since(loopTimer) to be greater than or equal to loopTime. The expression
since(loopTimer) represents the number of time units since loopTimer was reset; so, in Wait-
ForNextIteration the machine waits for loopTime time units to pass before starting the next
iteration. In this transition, loopTimer is reset, and there is an additional action disableInter-
rupts(). The clock operates using interrupts, which is also how the hall effect sensors in the
robotic platform operate; so, to prevent interference, interrupts are disabled as the clock is
reset.

The machine then transitions to the state CalculateAngle, where interrupts are enabled im-
mediately, then currAngle and currGyroX values are read in via the events angle and gyroX.
AnglePID is then called with these parameters, and the machine waits for a time between 0
and angleBudget: representing the time for AnglePID to complete.

There is one transition from CalculateAngle (with no condition) that increments speedCount
by 1. The machine then moves to a junction, where the subsequent state is determined by
whether speedCount is less than speedUpdate or not. If speedCount is less than speedUpdate,
the machine proceeds to another junction; if it is greater or equal to speedCount, however,
then BalanceSTM enters the state CalculateSpeed.
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Figure 3.3: Segway model BalanceSTM state machine (final) from [96]. Legend: : state
machine definition, : variable, : initial junction, : transition, : operation declaration.
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CalculateSpeed first, similarly to CalculateAngle, reads in currLeftVel via leftMotorVelocity and
currRightVel via rightMotorVelocity. SpeedPID is then called with the sum of the currLeftVel
and currRightVel as a parameter. Lastly, the variable speedCount is reset to 0, and there is a
nondeterministic wait to represent the time for SpeedPID to complete, as in AnglePID.

There is one transition out of CalculateSpeed, to the same junction as if CalculateSpeed was
skipped. This junction has a single transition, which leads to another junction, concerning
RotationPID, and increments rotationCount. This junction determines whether CalculateRo-
tation is performed this iteration, depending on whether rotationCount is greater than or
equal to rotationUpdate. If it is, BalanceSTM enters CalculateRotation, and if not, the ma-
chine skips CalculateRotation this iteration and moves to the final junction of this iteration:
a decision on how to update the motors this cycle.

The first action of the state CalculateRotation is to read the value communicated by the
event gyroZ into the variable currGyroZ. Then, RotationPID is called with currGyroZ. Finally,
similarly to the other states, the variable rotationCount is reset to 0 and there is a final
nondeterministic wait for rotationBudget time units.

The final junction of BalanceSTM determines whether to stop or set the motors. In this
model, if the segway’s angle of tilt is within a range where we can restore balance, then
the motor velocities are updated using the results from our PID components. In this case,
we transition to the state SetMotors. Here, the angle of tilt is determined by the currAngle
variable, which is read in from the angle event, and the recoverable angle range is defined as
the range in between the constants -maxAngle and maxAngle. If the segway’s tilt angle is not
in such a range, then we stop the motors completely, which we represent by transitioning to
the state StopMotors.

In SetMotors, we update the velocities of the motors via calls to the operations setLeftMotor-
Speed and setRightMotorSpeed, which are accessed through the required interface MotorsI.
Both operations are updated with the sum of the outputs from the PID controllers, stored
in the variables angleOutput, speedOutput, and rotationOutput; for the left motor, however,
rotationOutput is subtracted instead, compensating for the observed rotation by updating the
wheels independently. There is a final nondeterministic wait for a period between 0 and mo-
torBudget time units, which represents the time for the update operations to execute. Lastly,
BalanceSTM transitions to WaitForNextIteration, in preparation for the next cycle.

In StopMotors, we stop the motors completely through calling the operations setLeftMotor-
Speed and setRightMotorSpeed with the parameter 0. The machine then performs a final
nondeterministic wait representing the time to update the motors: between 0 and motor-
Budget. BalanceSTM then transitions to WaitForNextIteration, as in SetMotors, to prepare
for the next cycle.

We use the Segway example to illustrate our approach; in particular, we replace the AnglePID
component with a neural network component. In the next section, we discuss the integration
of ANNs into RoboChart, using the Segway example as described here.

3.3 ANNs in RoboChart

In this section, we describe how ANN components can be integrated into RoboChart. First,
we provide an overview of these components via an example of a RoboChart model includ-
ing ANN components in Section 3.3.1. Next, we describe our extension of the RoboChart
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metamodel to accommodate these components in Section 3.3.2. Finally, we define well-
formedness conditions to characterise meaningful models described using the metamodel in
Section 3.3.3.

3.3.1 Parallel Segway Model

To integrate an ANN controller into the Segway example, we first present a different version
of its model that allows all PIDs to operate in parallel. It is feasible to add an ANN
controller or an ANN operation to the original model presented in the previous section,
but the parallel model presented here allows us to illustrate the idea in a simpler context
regarding the semantics of RoboChart.

It would be possible to train an ANN to replace every PID controller in our example, that
is, we can train an ANN based on all five inputs of the three PID controllers. Our primary
goal, however, is to discuss how an ANN can fit in the larger context of a system: how it can
interact with other controllers or machines. To this end, we replace just one of the PIDs,
namely, the AnglePID, with an ANN component.

We first provide a definition of the parallel Segway model. Then, in Section 3.3.1.1, we
describe how an ANN component interacting as an operation can be integrated into this
model. Finally, in Section 3.3.1.2, we present an ANN component interacting as a controller,
and how it can be integrated into the Segway model.

To allow parallel operation, we define each PID operation by a state machine that accepts
its inputs through events communicating with BalanceSTM.

We present the parallel version of the module Segway in Figure 3.4; this module replaces all
PID controllers with state machine components, named identically to their corresponding
operation components: AnglePID, SpeedPID, and RotationPID. We also define a new con-
troller, AnglePID C, whose behaviour is defined by the state machine AnglePID. We add a
controller in this module to demonstrate how we can replace a controller with an ANNCon-
troller component.

The input events contain a prefix character indicating which PID they connect to: the input
of SpeedPID is snewError, the input of RotationPID is rdiff, and the inputs of AnglePID are
anewError and adiff.

Figure 3.5 presents our parallel version of the BalanceSTM state machine. It adds the
following variables to track whether BalanceSTM has sent input events to the PID state
machines: speedSent, angleSent, rotationSent. We also define angleReceived, used to prevent
multiple readings of the result from AnglePID in a single cycle: required because AnglePID
is not timed in the same way as the rotation and speed PIDs.

The machine starts in Initialisation, where the entry action, in addition to what it executes in
the original model, sets speedSent, angleSent and rotationSent to false. WaitForNextIteration
and the corresponding transition is unchanged. The state it transitions into, however, is
different. It is called Setup and its purpose is twofold: to increment the rotationCount and
speedCount variables, and to set angleReceived to false.

The machine then moves to ReceiveInput, where most of the behaviour of this machine is
defined. There are seven transitions from ReceiveInput: three to states whose entry actions
send data and trigger a PID, three self transitions for receiving data from the PIDs, and one
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Figure 3.4: A parallel version of the Segway model. Legend: : Module, : controller
definition, : connection, : constant, : robotic platform reference, : state machine
reference.

transition to a junction, exiting this state. Sending data is handled by the states SendRo-
tation, SendSpeed and SendAngle. Transitions to these states are guarded by conditions on
speedSent, rotationSent, and angleSent. This is to prevent consecutive redundant input events
being sent to the PIDs.

The transition to SendAngle requires both angleSent and angleReceived to be false, to prevent
multiple sends of AnglePID per iteration. These variables are both false at the start of the
iteration. We set angleSent to true after the SendAngle state terminates, and is set to false
once the result of AnglePID is received. The variable angleReceived records whether the
output of the PID has been received in the current cycle. If it has been, if angleRecieved is
true, then AnglePID cannot be started again this cycle.

SendAngle reads in currAngle and currGyroX from the events angle and gyroX, then sends
them via the anewError and adiff events to the AnglePID state machine. As an action of the
transition from this state, angleSent is set to true.

The transition to SendSpeed is also guarded by the condition that speedCount must be
greater than or equal to speedUpdate, and greater than 0. This means that, as speedCount
is only incremented once every iteration, the speed PID is only executed every speedUpdate
iterations. We also add the condition that angleReceived must be true, ensuring each PID
is called in the correct order. In SendSpeed, the entry action reads in the data needed for
SpeedPID (currLeftVel and currRightVel) then communicates their sum (like in BalanceSTM)
to the SpeedPID, through an output via the event snewError. Next, speedCount is set to 0,
to keep the speed PID operating on the correct iterations. Finally, speedSent is set to true
as an action of the transition back to ReceiveInput.

SendRotation is similar to SendSpeed. Instead of speedCount and speedUpdate, rotationCount
and rotationUpdate are used, and instead of speedSent, rotationSent is set to true. We also
ensure correct ordering by requiring that angleReceived is true, and that SpeedSent either
has terminated, or is not called this cycle through a condition on speedCount. RotationPID
only requires one input to be read from the robotic platform, gyroZ, and this value is sent
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Figure 3.5: A parallel version of the BalanceSTM state machine. Legend: : state machine
definition, : variable, : constant, : initial junction, : transition.
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to RotationPID using the rdiff event.

Receiving data is handled using transitions from ReceiveInput to itself. The triggers are
the output events of the PIDs: speedOutputE, angleOutputE and rotationOutputE. These are
recorded in the variables speedOutput, angleOutput and rotationOutput. The guards require
that each sent variable is true, as the machine should not receive output from a PID until
it has called that PID. The second condition for angleOutput is that angleReceived must be
false; this prevents performing multiple reads from AnglePID in a single cycle. This cannot
occur for the SpeedPID and RotationPID state machines as they cannot send input data twice
in the same iteration due to the speed and rotation counts.

The action of the receiving transitions resets the sent variables: rotationSent, speedSent and
angleSent are set to false to indicate that the output has been received and new data can
be sent. In the angleOutput transition, angleReceived is also set to true, indicating that
angleOutput cannot be updated again this cycle.

The machine is timed to reflect the same design as the original BalanceSTM, presented
in Figure 3.3. In each sending state (SendAngle, SendRotation, and SendSpeed) there is a
nondeterministic wait operation to represent the time spent on the calculations.

The machine transitions to a junction when all required PID results are read. This is denoted
by three conditions. The first is that output must have been received from all PIDs that
have been called this cycle. AnglePID is called every cycle, so angleReceived must be true.
SpeedPID and RotationPID may or may not have been called this cycle, but if they have been,
and an output has not been received this cycle, then speedSent or rotationSent will be true.
So, we require that speedSent and rotationSent are false. The second condition to terminate
is, either speedCount is 0, or speedCount must be less than speedUpdate; speedCount is 0 on
the cycles where SendSpeed has been called, and this should not occur when speedCount is
less than speedUpdate. The next condition is identical but for RotationPID. These conditions
ensure that the machine can only transition from ReceiveInput when all required PID results
are read.

The junction, and the proceeding states, StopMotors and SetMotors, are identical to those
in the original model. The machine then proceeds to WaitForNextIteration and repeats the
iteration.

The AnglePID state machine, in Figure 3.6, starts in the Read state, where inputs anew-
Error?currNewError and adiff?currDiff are accepted. When both inputs are received, the
machine transitions to UpdateOutput, where currAngleOut is calculated. This is the sum of
the product of currNewError and P, representing the proportional constant, and the product
of currDiff and D, the derivative constant. The machine then transitions back to Read; in
the transition action, we communicate currAngleOut via the event angleOutputE.

The parallel Segway model is equivalent to the sequential Segway model presented in Section
3.2. That is to say, refinement holds both directions between the module Segway presented
in Figures 3.2 and 3.4.

Next, we present how ANNs can be integrated into this model through the use of the ANN-
Operation component.
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Figure 3.6: AnglePID defined as a state machine. Legend: : state machine definition, :
variable, : initial junction, : transition.

AnglePIDANN(newError : real, diff : real)

- filename = ‘anglepid_params’

Parameters
AnglePIDANNOutput 

Required Interface

Figure 3.7: AnglePIDANN defined as an ANNOperation. Legend: : ANN component.

3.3.1.1 ANN Operation component

Here, we define an ANN component that interacts with the system as an operation; Figure
3.7 displays an ANNOperation component: AnglePIDANN. This component interacts with
the rest of the system through parameters. This allows the component to be invoked from
within a state machine or another operation. In addition, pre-conditions and post-conditions
can be defined for the ANN component.

An ANNOperation is defined through populating two partitions of an ANNOperation block.
For AnglePIDANN, the values of the parameters are shown in Figure 3.7. The first is its
parameters, in the box labelled Parameters, we define this by setting filename to the string
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AnglePIDANN(newError : real, diff : real)

- layerstructure = <1,1>
- weights = < < <1.22838, 0.132874> >, 

< <0.744636> > >
- biases = < < 0.125424 >, < -0.107753 > > 
- activationfunction = RELU

Parameters
AnglePIDANNOutput 

Required Interface

Figure 3.8: AnglePIDANN defined as an ANNOperation, with explicit parameters. Legend:
: ANN component.

1 ReLU,

2 1.22838e+00,1.32874e-01,

3 1.25424e-01,

4 7.44636e-01,

5 -1.07753e-01,

Figure 3.9: The anglepid params csv file, used to define an ANN for AnglePID.

anglepid params. The second partition defines the required interface, in the box labelled
Required Interface, that ANNOperation’s use to communicate the output of the ANN to the
rest of the system.

The parameters of an ANNOperation, similarly to an operation definition in RoboChart, is
defined in brackets after the name of the component. In our example, the parameters of
ANNOperation are newError and diff, both of type real.

The Parameters box of an ANN component can be filled in two ways. The first is through
defining a filename parameter, from which the weights, biases, layerstructure, and activation-
function parameters can be inferred. The second is defining the weights, biases, layerstructure,
and activationfunction parameters explicitly inside the Parameters box. We demonstrate the
first method in Figure 3.7, and the second in Figure 3.8.

We display the contents of the file ’anglepid params’ in Figure 3.9. A parameter file is a csv
file containing the information required to define an ANN component. The weights and biases
must be extracted from a trained ANN. We can, for example, use the Keras API 1.

Keras is a widely-used and powerful deep learning API built on the TensorFlow machine-
learning platform. Given a Keras model instance, weights and biases can be extracted using
the method ‘get weights’ 2. This Keras model instance can be generated from the Keras
‘H5’ model format, or the ‘SavedModel’ format 3.

The values of the weights and biases should be real numbers listed in E notation with a
maximum of 7 decimal places, and an exponent value between −38 and 38. This is to support

1https://keras.io/
2https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer#get_weights
3https://www.tensorflow.org/guide/keras/save_and_serialize
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Figure 3.10: AnglePID defined using an ANN Operation component. Legend: : state
machine definition, : variable, : initial junction, : transition.

single-precision 32-bit floating point machine architecture. The number of supported precise
decimal digits in single precision architecture is 7, and the maximum decimal exponent
value is 38 [97]. In addition, the standard practice for training ANNs uses single-precision
architecture [98]. There is, however, nothing in our approach that is dependent on these
restrictions.

The activation function is given as an enumerated type, one of RELU or LINEAR. The
activation functions of an ANN are usually defined when the ANN is built, or, given a Keras
model instance, can be displayed using the ‘summary’ method 4.

The parameter file starts with a single string defining the activation function, line 1 of Figure
3.9. The remainder of the file is split into groups of lines: one for each layer of the ANN,
excluding the input layer.

In Figure 3.9, we have two groups: lines 2 to 3 for the hidden layer, and lines 4 to 5 for the
output layer. Every group of lines has two sections. The first section defines the weights,
where each line contains the weights for a single node, delimited by commas. This section
has a number of lines equal to the number of nodes. The second section defines the bias
values for the layer; this section also has a number of lines equal to the number of nodes,
with each line defining a single bias value.

4https://keras.io/api/models/model/
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In our example, line 1 defines the activation function as ‘ReLU’. Line 2 defines the weights
over just one line as there is one node, and provides two values because the network contains
two inputs. Line 3 defines the bias value: a single value as there is a single node.

The second, and final, layer is defined in lines 4-5 in a similar way. This layer has a single
input, as the output size of the previous layer is 1, so the weight value in line 5 contains a
single value.

Figure 3.10 displays the modified version of AnglePID, described as a state machine, which
uses the ANN component AnglePIDANN. This machine requires the interface ANNOpera-
tionSig, which defines the signature of AnglePIDANN, and uses the interface AnglePIDAN-
NOutput to receive the output from AnglePIDANN.

Compared to the definition of AnglePID in Figure 3.6, the difference in the behaviour of
the machine is that currAngleOut is calculated by a call to AnglePIDANN, instead of being
calculated with an equation. In the state UpdateOutput, we first call AnglePIDANN with the
parameters currNewError and currDiff, then we set currNewError to angleOutput, the output
of AnglePIDANN.

Here, interaction with the ANN component operates through interfaces containing variables.
Next, we discuss an alternative modelling approach, where communication with the ANN
component operates via events.

3.3.1.2 ANN Controller component

The ANN can also be integrated at the controller level. Given the parallel version of the
Segway model, communicating through events, we can introduce this type of interaction
to this model without much change. This approach allows an ANN to interact in parallel
with other controllers, which is useful for larger networks where computation time is a more
significant factor, and for ANN components that interact with other ANN components.

We describe an example of this approach in Figure 3.11, where we replace the controller
AnglePID C with the ANN component AnglePIDANN. It interacts with BalanceSTM using
the same events as the controller AnglePID C. In this way, the only aspect of the model that
needs to be changed is the definition of the controller, just to connect to another (ANN)
controller, rather than to the state machine AnglePID. All state machines are unchanged in
this approach.

Similarly to an ANNOperation, an ANNController requires a Parameters box, filled in the
same way as demonstrated in Figures 3.7 and 3.8. An ANNController also requires two
more boxes, both containing integers: one containing the input size, labelled Input Size; and
one containing the output size, labelled Output Size. We note that these parameters can
be inferred from the parameters and required interface of an ANNOperation, but need to
be given explicitly in an ANNController. The ANNController component does not contain a
Required Interface partition, but this component can contain events on its borders, similarly
to a controller. We note that we give the parameters of AnglePIDANN via a file in Figure
3.11, but we could also have defined them explicitly, as in Figure 3.8.

ANNs are trained to operate on vectors of real numbers. These can be represented either by a
single sequence of real numbers, or by multiple separate real numbers. The size of an ANN’s
input and output vectors can be, and often are, different. In RoboChart, a controller’s input
or output can be represented by either a single event, communicating a sequence representing



CHAPTER 3. NEURAL NETWORKS IN ROBOCHART 65

Figure 3.11: A parallel version of the Segway model with AnglePIDANN modelled as an
ANNController. Legend: : Module, : controller definition, : connection, : constant,
: robotic platform reference, : state machine reference, : ANN component.

the whole vector, or multiple events: one for each element of the vector. For example, in our
model, we define multiple events to represent the input and output vectors, as our ANN is
low-dimensional. We declare two input events, as the Input Size of AnglePIDANN is 2, and
one output event, as the Output Size of AnglePIDANN is 1. The input events are anewError
and adiff, and the output event is angleOutputE.

In the next section we describe our extensions to the RoboChart metamodel to accommodate
these components.

3.3.2 ANN Components Metamodel

We define two types of ANN component: a controller and an operation. We begin by de-
scribing how, in the existing metamodel, controllers and operations are represented: see
Figure 3.12. Following this, we discuss how ANN components are integrated into the meta-
model.

A module describes a robotic system; it is composed of multiple ConnectionNode objects
and multiple Connection objects that define the relationships between ConnectionNodes [99].
A ConnectionNode represents elements that can be connected, namely: robotic platforms,
controllers, and state machines. A RoboticPlatform component can be included by either
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Figure 3.12: Metamodel of a RoboChart module [99]. Key: grey background box - abstract
class; yellow background box - class; bold elements - required elements; non-bold elements -
optional elements.

Figure 3.13: Metamodel of RoboChart operations. Key: grey background box: abstract
class, yellow background box: class, bold elements: required elements, non-bold elements:
optional elements.

a definition, RoboticPlatformDef, or a reference to a definition, RoboticPlatformRef. Every
Connection establishes a relationship between two ConnectionNode objects. A Connection can
be either synchronous or asynchronous, and unidirectional or bidirectional, and it defines two
events of the nodes that they connect. Via these two events a connection can define control
and data flow between these nodes.

Figure 3.13 describes how an operation is defined and used in other RoboChart components.
An operation can be defined through an OperationDef, which defines the operation’s be-
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Figure 3.14: A diagram of our extensions to the RoboChart metamodel. Key: grey back-
ground box: abstract class, yellow background box: class, bold elements: required elements,
non-bold elements: optional elements.

haviour as a state machine. Alternatively, an operation can be specified via an OperationRef
reference to an OperationDef.

The OperationSig class represents details about an operation: its parameters, and its pre
and postconditions. OperationSig is used in the definition of contexts that require use of the
operation. The BasicContext abstract class defines the variables, constants, operations, and
events of an element; the Context class is a BasicContext that also has interfaces. A BasicCon-
text has a property operations, which contains 0 or more OperationSig objects. The subclasses
for Context include RoboticPlatformDef, StateMachineBody, and ControllerDef.

We present a diagram of our extensions to the RoboChart metamodel in Figure 3.14. We
present the full metamodel in Appendix A. Principally, we define two new classes: ANNOp-
eration and ANNController to represent operations and controllers defined by an ANN.

The abstract class ANN contains a single reference to an ANNParameters instance. ANNOper-
ation and ANNController are subclasses of ANN. ANNOperation contains a reference rInterface
to an Interface, allowing it to communicate its output through the variables in this interface.
ANNController contains a single reference to a list of events, these are the events that the
component can engage in.

The class ANNParameters defines the parameters of an ANN. This class contains six refer-
ences, two of which are of type IntegerExp: a class which represents an expression of type
integer. These are insize, the input size of the ANN, and outsize, the output size of the ANN.
ANNParameters contains three sequence properties, represented in RoboChart through ref-
erences to the SeqExp class. The property layerstructure defines the size of each layer, and
weights and biases define the weights and biases of the trained ANN, respectively. The
weights, biases, and layerstructure values are optional, as they may be defined implicitly
through filename.

We note that weights and biases are both sequences of real numbers. RoboChart’s type
system is based on Z [14]. Hence, we can use the Z type system to represent real numbers,
specifically, by using the approach in [100] to define the relevant subset of A, the Z type for
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Figure 3.15: A diagram of our modifications to the RoboChart metamodel. Key: grey
background box: abstract class, yellow background box: class, bold elements: required
elements, non-bold elements: optional elements.

numbers.

Although it is possible for different layers to use different functions, here we assume that all
layers use a single function. In addition, we consider just RELU and LINEAR functions, as
indicated in the definition of the enumeration type ActivationFunction. These are convenient
for the verification technology we discuss in the next chapter. Extension of this metamodel
to consider the possibility to use additional functions, and different functions in different
layers is simple. It requires just extension of the ActivationFunction, and the definition of
activationfunction as a sequence.

Our ANN components are not defined using state machines, so the existing structures that
define controllers and operations in RoboChart, namely ControllerDef and OperationDef (pre-
sented in [99]) are not applicable to our components. To address this, we introduce two
abstract classes, GeneralController and GeneralOperation, that allow controllers and opera-
tions to be defined using multiple methods. We present these new classes, and the discussed
changes in Figure 3.15.

The abstract classes Controller, and Operation are unchanged in our work, but we add to the
way we allow these components to be defined. The classes that we use to represent references
to these components,ControllerRef and OperationRef, are also unchanged.

ControllerRef now contains a reference to an instance of a GeneralController, not to a Con-
trollerDef instance. Both ControllerDef and ANNController are concrete subtypes of General-
Controller, so both can be used to define the behaviour of a controller.

Similarly, OperationRef now refers to a GeneralOperation instance, where ANNOperation and
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WF1 insize and outsize are greater than 0, and layerstructure, weights, and biases are non-
empty and of the same size, if not null.

WF2 If filename is null, then weights, biases, and layerstructure are not.
WF3 Either layerstructure, weights, and biases are all null, in which case filename is not,

or they are all different from null.
WF4 activationfunction is NOTSPECIFIED if, and only if, filename is not null.
WF5 For every i , the size of weights i and biases i is layerstructure i .
WF6 For every i , and for all j , the size of weights i j is layerstructure (i − 1) when i is

greater than 1, or insize otherwise.
WF7 An ANNController must have exactly the sum of insize and outsize events, or exactly

two events.
WF8 The connections to and from an ANNController match the nature of the events (in-

puts and outputs) in their directions and types.
WF9 An ANNOperationmust have exactly insize parameters or just one, and must require

exactly one variable, or outsize variables.

Table 3.1: RoboChart ANN well-formedness conditions

OperationDef have roles similar to those of the corresponding controller definition classes.
In this case, though, OperationSig is a superclass of both ANNOperation and OperationDef,
allowing both to contain a signature: enabling the definition of parameters, termination, and
pre and postconditions. These modifications allow other RoboChart components to refer to
an ANNOperation whenever they could refer to an OperationDef.

We also rephrase some of the well-formedness conditions of RoboChart to accommodate the
above changes. These changes are minor and concerning with differentiating components
defined with state machines and those defined using neural networks.

In the next section, we discuss well-formedness conditions of the new classes, required to
enable meaningful semantics models to be generated.

3.3.3 ANN Component Well-Formedness Conditions

The metamodel in Fig. 3.14 enables the definition of models that are not meaningful. In
Tab. 3.1, we present well-formedness conditions that need to be satisfied by a RoboChart
model that includes ANN components. These are in addition to the existing well-formedness
conditions of RoboChart [101].

WF1 reflects properties of trained ANNs. This condition restricts the values that the pa-
rameters of the ANNParameters class can take. We formalise WF1 in Z below.
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WF1 : PANNParameters

∀ annparams : ANNParameters •
annparams.insize > 0 ∧
annparams.outsize > 0 ∧
(annparams.weights ̸= null seq ∧ annparams.biases ̸= null seq ∧
annparams.layerstructure ̸= null seq ⇒

(tensor∼)annparams.weights ̸= ∅ ∧
(matrix∼)annparams.biases ̸= ∅ ∧
(vector∼)annparams.layerstructure ̸= ∅ ∧
#(tensor∼)annparams.weights = #(vector∼)annparams.layerstructure ∧
#(matrix∼)annparams.biases = #(vector∼)annparams.layerstructure)

Here, we define a setWF1 containing those ANNParameter objects that satisfy theWF1 well-
formedness condition. In our specification, we define objects as a free type with the following
constructor functions: tensor , whose domain is the triple nested sequences; matrix , defined
on the double nested sequences; and vector , defined on the sequence type. We extract the
values contained in the free types using the inverse of these functions: tensor∼, matrix∼,
and vector∼. We denote that a SeqExp object (weights, biases, layerstructure) is null using
the constant null seq , and we denote that the sequence contained by a SeqExp object is
non-empty by stating that it is not equal to the empty set (∅). More information on free
types and the Z specification language is available in [102, 103].

WF2 ensures that if we are not defining the ANN’s parameters via a file, if the filename
reference is null, then the parameters must be defined through the weights, biases, and lay-
erstructure references; so, they must not be null. We provide a formalisation of WF2 be-
low.

WF2 : PANNParameters

∀ annparams : ANNParameters •
annparams.filename = null string ⇒

annparams.weights ̸= null seq ∧
annparams.biases ̸= null seq ∧
annparams.layerstructure ̸= null seq

Here, filename is of type StringExp, so we denote that it is null using the constant null string .

WF3 guarantees that the references layerstructure, weights, and biases can only be null if
filename is non-null, in every other case they must contain values. We formalise this condition
below.
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WF3 : PANNParameters

∀ annparams : ANNParameters •
annparams.weights = null seq ∧
annparams.biases = null seq ∧
annparams.layerstructure = null seq ∧
annparams.filename ̸= null string
∨
annparams.weights ̸= null seq ∧
annparams.biases ̸= null seq ∧
annparams.layerstructure ̸= null seq

If the ANN’s parameters are declared via a file, then the activation function should not be
declared in the attribute activationfunction, it should take the value NOTSPECIFIED. We
capture this through WF4, and we formalise this condition below.

WF4 : PANNParameters

∀ annparams : ANNParameters •
(annparams.activationfunction = NOTSPECIFIED)⇔
annparams.filename ̸= null string

WF5 and WF6 concern the specific structure of the weights and biases sequences, as they
must be constructed with strict size considerations. First, the size of the both sequences must
be equal to the size of layerstructure (the number of layers). Next, every element indexed by
i in weights and biases, which is also a sequence, must be of size equal to layerstructure(i).
This is because there is a separate weight vector and bias scalar for each node in each layer.
Finally, the size of each sequence weights(i)(j ) must be equal to the size of the previous
layer, or the input size in the case of the first layer. We present the formalisations of both
conditions below.

WF5 : PANNParameters

∀ annparams : ANNParameters •
(annparams.filename = null string)⇒
∀ i : dom((vector∼)annparams.layerstructure) •

#(tensor∼)annparams.weights i =
(vector∼)annparams.layerstructure i

∧
#(matrix∼)annparams.biases i =

(vector∼)annparams.layerstructure i
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WF6 : PANNParameters

∀ annparams : ANNParameters •
(annparams.filename = null string)⇒
∀ i : dom((vector∼)annparams.layerstructure) •

∀ j : dom((tensor∼)annparams.weights i) •
(i > 1)⇒ #(tensor∼)annparams.weights i j =

(vector∼)annparams.layerstructure i
∧
(i = 1)⇒ #(tensor∼)annparams.weights i j =

annparams.insize

Both WF5 and WF6 are only active when we are not defining the parameters through a file,
so we add the antecedent that the filename must be null to these conditions.

WF7 ensures conformance between the ANN’s declared number of inputs and outputs and
the number of events of the controller. We give its formalisation below.

WF7 : PANNController

∀ anncontroller : ANNController •
#anncontroller .events = 2 ∨
#anncontroller .events =

anncontroller .annparameters.insize+
anncontroller .annparameters.outsize

WF8 states that if a module contains an ANN component, then events intended to represent
inputs are used in incoming connections, and those intended to represent outputs are used
in outgoing connections. Its formalisation is below.

WF8 : PRCModule

∀module : RCModule •
∀ anncontroller : ANNController | anncontroller ∈ module.nodes •

#{conns : module.connections | conns.to = anncontroller} =
anncontroller .annparameters.insize ∧

#{conns : module.connections | conns.from = anncontroller} =
anncontroller .annparameters.outsize ∧

∀ from conn, to conn : module.connections |
from conn.from = anncontroller ∧ to conn.to = anncontroller •
∃ ann input , ann output : anncontroller .events •

from conn.efrom.type = ann output .type ∧
to conn.eto.type = ann input .type

Lastly, we provide a single well-formedness condition concerning the ANNOperation class: an
ANNOperation must have exactly insize parameters or just one. Similarly, an ANNOperation
must require a single variable, or outsize variables, representing scalar or vector output. As
with the other conditions, we present a formalisation below.
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WF9 : PANNOperation

∀ annoperation : ANNOperation •
(#annoperation.parameters = 1 ∨
#annoperation.parameters = annoperation.annparameters.insize)
∧
(#

⋃
{varList : VariableList |
varList ∈ annoperation.rInterface.variableList ∧
varList .modifier = VAR • varList .vars} = 1

∨
#
⋃
{varList : VariableList |
varList ∈ annoperation.rInterface.variableList ∧
varList .modifier = VAR • varList .vars} =
annoperation.annparameters.outsize)

Here, we capture the required variables by defining all variables contained in the interface
rInterface, using a set comprehension term. We consider the variable varList as those
variable lists in rInterface, as such this variable must fulfil two conditions. The first is that
varList is contained in the variableList of the interface rInterface: denoted by varList ∈
annoperation.rInterface.variableList . The second is that the modifier of varList is VAR, not
CONST , denoting a constant. Then, the set is formed of the expression varList .vars: the
set of variables contained in a single variable list. Finally, as we now have a set of sets of the
required variables, we take the distributed union of this set to define every variable contained
in the interface rInterface.

The metamodel and well-formedness conditions presented in this section define how to spec-
ify ANN components in RoboChart. In the next section, we define semantics for these
components to enable integration, validation, and verification.

3.4 Semantics Overview

In this section, we present an overview of the existing RoboChart semantics as the basis
of our integrated ANN component semantics. We describe CSP in Section 3.4.1 and the
RoboChart semantics in Section 3.4.2.

3.4.1 CSP Overview

CSP stands for Communicating Sequential Processes; it was first introduced by Tony Hoare
in 1978 [104], and has been described in numerous works since [105, 106, 107]. A CSP model
describes a set of abstract processes that continuously interact with their environment via
events. Communication channels enable processes to interact with each other and their
environment. Processes can transfer information through writing and reading via channels,
a communication via a channel is an event. CSP incorporates function definitions, set theory,
and propositional calculus.

A process can be seen as an abstraction of a thread of behaviour in a system. An event in
CSP is an abstraction of a process’s instantaneous interaction with its environment. Events
in CSP may require multiple processes to participate simultaneously. The alphabet of all
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processes, that is, all events in which a process can engage, is often referred to as Σ [106]. The
complete set of events that the channel can communicate is referred to as the communications
of a channel.

Table 3.2: CSP Operators

Symbol Name
Skip Skip
P |[ a ]|Q Parallel Composition
P ||| Q Interleaving
{| c |} Channel Set
c → P Prefix
c?x → P Input
c!e → P Output
P ; Q Sequential Composition
PΘcsQ Exception
P \ cs Hiding
P [[c ← d ]] Renaming

Table 3.2 presents the CSP operators used in our work. We describe these operators as we
use them in the following sections. Next, we give an overview of the RoboChart semantics
encoded in CSP.

3.4.2 RoboChart Semantics Overview

In this section, we give a brief overview of the RoboChart semantics. It defines a CSP process
for each module, controller, and state machine component and their memories, holding values
for their local variables. (The local variables of a module are those of its robotic platform.)
These processes are composed together using either parallel or sequential composition. We
display the structure of this composition in Figure 3.16.

Each box in the diagram represents a CSP process. Memory processes are represented by
double bordered boxes; these processes handle updating variables and propagating them to
each component that requires them. The Robotic Platform Memory propagates changes to
the Controller Memory, which propagates changes to the State Machine Memory.

Each module process is composed of a Robotic Platform memory process in parallel with
multiple Controller processes, as shown in Figure 3.16. Likewise, each Controller is com-
posed of a Controller Memory process interacting in parallel with multiple State Machine
processes.

Events are used to represent changes in the values of the variables of the platform, occurrences
of platform events, and calls to platform operations. These are the visible events in a module.
Events representing internal interactions of controllers, which are those that do not involve
the robotic platform, are hidden. The definition of hiding in CSP is as shown below.

P \ cs

Here, the operator \ describes that events in the set cs are hidden from the process P . A
process may not engage with a hidden event; its sub-processes, however, can still engage
with this event.
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Figure 3.16: The structure of the RoboChart semantics; Figure 11 in [14]. Parallel composi-
tion is indicated by stacked components and parallel lines. Memory processes are indicated
by double bordered boxes, and bordered boxes represent interaction points between compo-
nents.

To illustrate the semantics, we describe the CSP semantics of the segway model, in particular
the semantics of the module Segway in terms of the controller SegwayController as presented
in Section 3.3. We use the naming scheme from [14], where we prefix each channel name
with its component identifier, such that for a channel c of component C , the name will be
C c.

A module process is defined by the parallel composition of controller processes, one for every
controller in the module, as displayed in Figure 3.16. In our example, there is a single
controller, so the parallel composition of each controller is just the process representing
the single controller, which we will refer to as SegwayController . This leads to an initial
definition of the process representing the entire module, which we will refer to as Segway , as
the following process:

Segway = ((SegwayController [[ . . . ]])Θ{end}Skip) \ {end}

A module process terminates when all of its controller processes engage with the event end ,
which is a special RoboChart event that represents termination of a component. We use
CSP’s exception operator to denote this termination, the definition of which is as shown
below.

PΘcsQ

Here, the exception operator Θ represents the process that behaves like P until an event
in the set cs occurs, in which case, it behaves like Q . In our example, the process Segway
behaves like SegwayController until the event end occurs, when it behaves like Skip, which
is a special process in CSP representing successful termination. That is to say, our module
process Segway successfully terminates if it engages in the event end . In addition, the event
end is also hidden in Segway , as it is an event a module process itself cannot engage in, only
its controller processes.
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We recall that the SegwayRP robotic platform, presented in Section 3.3.1, defines six events:
angle, gyroX, gyroY, gyroZ, leftMotorVelocity, and rightMotorVelocity. In the semantics, a
separate channel is defined for every event in the RoboChart model, each communicating
values of the type InOut .DataType. Here, the InOut type corresponds to the two values in
or out , used to denote input or output across the channel. The DataType type corresponds
to the type of data communicated through the channel (if any), which is omitted here. Each
channel is named according to its RoboChart event prefixed by SRP . The SegwayRP platform
also defines four operations: setRightMotorSpeed, setLeftMotorSpeed, enableInterruptsCall,
and disableInterruptsCall. A channel is defined for every operation, where the name of that
channel corresponds to the name of the operation suffixed with Call . Additionally, we note
that channels representing events that are involved in connections between controllers are
hidden in a module process. There are no such connections, however, in the module Segway,
so no event hiding is required in the process Segway .

This leads to the definition of the visible events of the Segway process, defined from the
Segway module, as those events associated with the channels listed in the set below:

{SRP angle,SRP gyroX ,SRP gyroY ,SRP gyroZ ,
SRP leftMotorVelocity ,SRP rightMotorVelocity ,
setLeftMotorSpeedCall , setRightMotorSpeedCall ,
enableInterruptsCall , disableInterruptsCall}

The process SegwayController representing the controller SegwayController, in the context of
the Segway process representing the module Segway, must have those channels that represent
RoboChart events renamed to capture connections between components of the module. In
our parallel Segway model, all events of the robotic platform SegwayRP connect to identically
named events of the controller SegwayController. In the semantics, we represent connections
involving robotic platforms by renaming all channels involved according to the qualified name
of the robotic platform. For example, the event angle of SegwayController is involved in a
connection with SegwayRP, so the channel SC angle (SC as an abbreviation of SegwayCon-
troller) is renamed to SRP angle (SRP as an abbreviation of SegwayRP). The definition of
renaming in CSP is as shown below.

P [[c ← d ]]

This represents process P , where the event c is now referred to by the name d . Notably, if
there were multiple events renamed to d , a single call to d synchronises on all events that
were renamed to d , as they are now referred to by the same name.

We present the renaming of the process SegwayController , in the context of the process rep-
resenting a module, Segway . Specifically, we only rename channels representing RoboChart
events, not channels that represent operation calls.

SegwayController [[
SC angle ← SRP angle
SC gyroX ← SRP gyroX
SC gyroY ← SRP gyroY
SC gyroZ ← SRP gyroZ
SC leftMotorVelocity ← SRP leftMotorVelocity
SC rightMotorVelocity ← SRP rightMotorVelocity ]]
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The process SegwayController represents the semantics of the RoboChart controller Seg-
wayController (considering the parallel SegwayController, as presented in Figure 3.4). This
is defined as the parallel composition of processes for its state machines, as shown in Fig-
ure 3.16. SegwayController is composed of three state machines: SpeedPID, RotationPID,
and BalanceSTM. Following this, we define SegwayController as the parallel composition of
three processes, where each represents a single state machine component of identical name:
SpeedPID , RotationPID , and BalanceSTM . Finally, SegwayController behaves like Skip if
the event end occurs, defined using the exception operator.

SegwayController = (
SpeedPID [[ . . . ]] |[SpeedPID evts ]| (

RotationPID [[ . . . ]] |[RotationPID evts ]| (
BalanceSTM [[ . . . ]])))ΘendSkip

\ SC hidden evts

To define parallel composition, we use the following CSP operator:

P |[ a ]|Q

Here, the operator ∥ is used to denote that a process P is composed in parallel with the
process Q , along the synchronisation set a. This means that each process must cooperate
on events in the set a, such that neither can perform these events independently. In our
example, all four state machines processes are in parallel with each other, synchronising on
three separate sets, each containing the events used for communication between the state
machines.

The visible events of the process SegwayController should correspond to communications
along channels representing RoboChart events, communications along channels representing
calls to RoboChart operations, and the event end (which is visible in processes for con-
trollers). The RoboChart controller SegwayController defines six events: angle, gyroX, gyroY,
gyroZ, leftMotorVelocity, and rightMotorVelocity; each is represented by a channel prefixed
with SC . SegwayController also requires four operations: setLeftMotorSpeed, setRightMotor-
Speed, enableInterrupts, and disableInterrupts. In the semantics, a separate channel is defined
for each, suffixed by Call . This leads to the complete visible events of SegwayController as
communications along the following channels:

{SC angle,SC gyroX ,SC gyroY ,SC gyroZ ,
SC leftMotorVelocity ,SC rightMotorVelocity ,
setLeftMotorSpeedCall , setRightMotorSpeedCall ,
enableInterruptsCall , disableInterruptsCall ,
end}

Each process for a state machine in the context of the controller process SegwayController
(SpeedPID , RotationPID , and BalanceSTM ) is renamed to capture the connections involved
in the RoboChart controller SegwayController. In a controller process, each channel (rep-
resenting a RoboChart event) involved in a connection to the controller itself is renamed
according to the qualified name of the controller. This is similar to renaming a controller’s
channels (which connect to a robotic platform) to the qualified name of the robotic platform
in a module process. For example, RoboChart event angle of BalanceSTM is involved in a
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connection with the controller SegwayController, so the channel BSTM angle (BSTM as an
abbreviation of BalanceSTM) is renamed to SC angle. SegwayController, however, contains
connections between state machines, referred to as internal connections of the controller,
which are defined in a different way.

An internal controller connection (which is both unidirectional and synchronous) defines a
relationship between two events of separate state machines: one outgoing event communi-
cating with one incoming event. In the semantics, a channel is defined for each event, and
a process for each state machine. The outgoing process (for the outgoing state machine)
communicates via output on its channel, which is received by the incoming process (for the
incoming state machine) via input on its channel. In the semantics, this connection is re-
alised by renaming all in events (from the InOut type) of the incoming channel to out events
of the outgoing channel. For example, the event snewError of BalanceSTM connects to snew-
Error of SpeedPID, in the semantics the outgoing channel is BSTM snewError .out (BSTM
is an abbreviated version of BalanceSTM) and the incoming channel is SPID snewError .in
(SPID is an abbreviated version of SpeedPID). Therefore, SPID snewError .in is renamed
to BSTM snewError .out , which means that any communication on BSTM snewError .out
is synchronised with SPID snewError .in, connecting the two channels. All out events of
the incoming channel are also renamed to the in events of the outgoing channel. A connec-
tion may also be bidirectional or asynchronous; all connections in our example, however, are
unidirectional and synchronous.

We present the renaming of SpeedPID below, which captures its connections to BalanceSTM .
To clarify, the channel SPID speedOutputE is not renamed, as it represents the event
speedOutputE, which is involved in an outgoing connection event from SpeedPID to Bal-
anceSTM.

SpeedPID = SpeedPID STM [[
SPID snewError .in ← BSTM snewError .out
SPID snewError .out ← BSTM snewError .in]]

Given this renaming, we can now define the synchronisation set of SpeedPID , which we refer
to as SpeedPID evts. This set contains all channel communication events that SpeedPID
and BalanceSTM synchronise on, as the state machine SpeedPID is connected to only Bal-
anceSTM (if it were connected to more, it would contain all shared communication events).
These processes communicate on two channels: BSTM snewError and SPID speedOutputE .
These channels are the outgoing channels representing the three connections that they share
in the RoboChart model. Following this, the synchronisation set needs to contain all chan-
nel communication events of these channels. This can be done using the channel set op-
erator, which defines all events associated with a given channel. We present this operator
below.

{| c |}

Here, the brackets {| c |} denote the channel set of c, this is the set of all possible communi-
cation events of c. That is to say, this is all possible events of the type of the channel c. This
operator is used here to form the set of the complete events in these channels to synchronise
on.
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We present the synchronisation set SpeedPID evts below. This set enables connection be-
tween these two processes, because communications over these channels synchronise with
events in both SpeedPID and BalanceSTM (due to renaming). In addition, the set contains
the event end , as all state machine processes need to terminate simultaneously.

SpeedPID evts = {| BSTM snewError ,SPID angleOutputE |} ∪ {end}

Each PID state machine process interacts in parallel based on a separate synchronisation set,
following a similar process as described for SpeedPID . In a controller, all internal connections,
that is, connections between state machines, are hidden. The set SC hidden evts, therefore,
represents all events associated with these internal connections, and is hidden in the definition
of SegwayController .

Given these three renamed state machines, the only events that remain visible are those in
terms of the SegwayController itself, which is why all events used in the parallel composition
are hidden. This leads to the visible events of SegwayController as defined earlier in this
section.

Our ANNController components interact on the same level as a Controller. Our semantics
defines a single process that represents an ANNController. This process is composed in parallel
with the processes for the other controllers (whether defined as additional ANNControllers
or not) to form the definition of a module process. In the next section, we define the CSP
semantics of these components.

3.5 CSP Semantics for Neural Networks

Our semantics defines constants to capture the metamodel. They are insize : N, outsize : N,
and layerstructure : seqN. In addition, layerNo : N and maxSize : N record prop-
erties of layerstructure: its length, and its largest element. Finally, we have weights :

seq(seq(seq(Value))) and biases : seq(seq(Value)).

Value is a type that represents the data communicated by our ANN. This is defined based on
the types used in the ANN component in RoboChart. Some examples of the types that can be
used are floating-point, integer, or binary values. If there are various ANN components, there
is a definition for a type Value for each of them. Equally, constants such as layerstructure,
maxSize, and the others mentioned here are defined for each component.

In our semantics, we use the ReLU activation function as piecewise linearity is useful for
the scalability of verification approaches. Our semantics, however, can be easily adapted to
other activation functions.

We use two channels. The first layerRes : {0 . . layerNo}.{1 . . maxSize}.Value is used to
communicate with other processes in the RoboChart semantics and for inter-layer commu-
nications. An event layerRes.l .n.v represents the communication of a value v to or from the
process for the nth in the process for the lth layer.

The second channel nodeOut : {1 . . layerNo}.{1 . .maxSize}.{1 . .maxSize}.Value is for intra-
node communication; nodeOut .l .n.i .v refers to the layer, node and value for layerRes. The
use of an index i is a technicality explained below.

In our semantics, presented in Fig. 3.18, we treat inputs to the ANN process as events on
the channel layerRes, with 0 as the first argument’s value. In this way, events layerRes.0
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Figure 3.17: Processes defining the semantics of an ANN component. Light grey boxes:
visible channels,Grey boxes: hidden channels,Parallel lines: parallel composition (synchroni-
sation set intersects the lines),Stacked processes: parallel composition (synchronisation set
is on the border),Stacked channels: multiple channels representation.

represent inputs to the ANN process from other components in the RoboChart model. All
other communications on layerRes represent results from layer processes. Events layerRes.2
represent the outputs of the ANN.

Fig. 3.18 presents the specification of the process ANN , defining our semantics for AN-
NControllers. We further illustrate our semantics through the diagram in Figure 3.17. It
terminates (Skip) on the occurrence of a special event end , as defined using the exception
operator Θend . This is an event raised by other controllers when all state machines termi-
nate.

The operator P |[ cs ]|Q describes the process whose behaviour is defined by those of P and
Q , synchronising on all events in the set cs. Also, P \ cs defines a process that behaves
as P , but its events from the set cs are hidden. ANN composes in parallel the processes
HiddenLayers and OutputLayer , then repeats via a recursive call. Since the OutputLayer
communicates only with the last hidden layer, these processes synchronise on the events
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ANN =
((HiddenLayers |[ {| layerRes.(layerNo − 1) |} ]|OutputLayer) \ ANNHiddenEvts
Θend Skip); ANN

ANNHiddenEvts = Σ \ {| layerRes.0, layerRes.layerNo, end |}

HiddenLayers = ∥ i : 1 . . layerNo − 1 • [ {| layerRes.(i − 1), layerRes.i |} ]
HiddenLayer(i , layerSize(i), layerSize(i − 1))

HiddenLayer(l , s, inpSize) = ∥ i : 0 . . s − 1 • [{| layerRes.(l − 1) |}]Node(l , i , inpSize)

Node(l ,n, inpSize) =

( (||| i : 0 . . inpSize − 1 • NodeIn(l ,n, i))
|[ {| nodeOut .l .n |} ]|

Collator(l ,n, inpSize) ) \ {| nodeOut |}

NodeIn(l ,n, i) = layerRes.(l − 1).n?x → nodeOut .l .n.i !(x ∗ weight)→ Skip

Collator(l ,n, inpSize) = let
C (l ,n, 0, sum) = layerRes.l .n!(ReLU (sum + bias))→ Skip
C (l ,n, i , sum) = nodeOut .l .n.i?x → C (l ,n, (i − 1), (sum + x ))

within
C (l ,n, inpSize, 0)

OutputLayer = ∥ i : 0 . . layer(layerNo)− 1 • [ {| layerRes.(layerNo − 1) |} ]
Node(layerNo, i , layerSize(layerNo − 1))

Figure 3.18: CSP ANN Semantics - General.

layerRes.(layerNo − 1). The set {| c |} includes all events representing communications via
c.

All events in ANNHiddenEvts are hidden. This includes all events (Σ), except those of
layerRes.0, representing inputs, layerRes.layerNo, representing outputs, and end . These
define the visible behaviour of an ANNController.

We define the process HiddenLayers via an iterated alphabetised parallel composition (∥)
over an index i for hidden layers ranging from 1 to layerNo − 1. For each i , the layer-
process HiddenLayer(i , layerSize(i), layerSize(i − 1)) for the ith layer is associated with the
alphabet containing the set of events on layerRes.(i − 1) and layerRes.i . In an iterated
alphabetised parallelism, the parallel processes synchronise on the intersection of their al-
phabets. So, a layer-process HiddenLayers synchronises with the process for the previous
layer on layerRes.(i−1) and the process for the following layer on layerRes.i . So, the output
events of each layer are used as the input events for the next layer.

The second argument layerSize(i) passed to a layer-process is the value of the i -th element
of layerstructure, that is, the number of nodes in the i -th layer if i is greater than 0, and
insize when i is 0. Similarly, the third argument layerSize(i − 1) concerns the layer i − 1.
In our example, layerNo − 1 is 1, and there is a single HiddenLayer process, instantiated
with arguments 1, 1, and 2. These are the values of insize and layerstructure(1) for the
example.
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HiddenLayer(l , s, inpSize) is also defined by an iterated alphabetised parallelism: over an
index i ranging from 1 to s, to compose s node processes Node(l , i , inpSize) interacting via
events in {| layerRes.(layer − 1) |}. This set contains all events the previous layer’s node
processes use for output because a node process requires the outputs from all nodes in the
previous layer.

The Node(l ,n, inpSize) process represents the nth node in the layer l , which has inpSize in-
puts. We define Node(l ,n, inpSize) as the parallel composition of interleaved NodeIn(l ,n, i)
processes, with i ranging over 1 to inpSize, and a Collator(l ,n, inpSize) process. Interleaved
processes (|||) do not synchronise.

NodeIn(l ,n, i) captures a weight application to an input. A NodeIn process receives inputs
via layerRes.(l−1).n and communicates output through nodeOut .l .n.i . NodeIn(l ,n, i)’s out-
put is its input weighted by the constant weight , which is given by the expression weights l n i .
After engaging in this output event, NodeIn terminates, denoted by Skip.

We denote input via channels using c?x → P , which defines the process that engages in
an event c.x , then behaves like P . This process accepts input x over the channel c’s type.
The output prefix c!e → P is a process that outputs (synchronises) on the specific event c.e
and then behaves like P . Collator(l ,n, inpSize) sums all values output by the NodeIn pro-
cesses and applies the bias value, given by biases l n. The output of Collator(l ,n, inpSize)
on layerRes is the output of the node process. The definition of Collator(l ,n, inpSize) uses a
local recursive process C (l ,n, i , sum); its extra argument is the accumulated sum of the out-
puts. In the base case C (layer ,node, 0, sum), we have an output sum, with the bias term ap-
plied, subject to the activation function ReLU . In the recursive case C (layer ,node, i , sum),
we get an input x via nodeOut .l .n.i , and a recursive call with a descending index i − 1, and
the sum of x and sum.

Finally, the definition of OutputLayer is similar to that of HiddenLayer .

The visible events of an ANN process are used to define the connection to other components
of the RoboChart semantics and for defining termination. In our example, these are the
events layerRes.0, layerRes.2, and end .

We rename the visible events of our ANN semantics to match the CSP events used to
represent the events defined in the RoboChart model. For our example, these events, from
Section 3.3.1.2, are anewError, adiff, and angleOutputE. We give the renaming of our example,
AnglePIDANN , below.

AnglePIDANN [[ layerRes.0.1← anewError .in
layerRes.0.2← adiff .in
layerRes.2.1← angleOutputE .out ]]

To illustrate the behaviour of our semantics, we describe a trace of a single iteration of
our AnglePIDANN component. In this example, we discretize all constants of AnglePIDANN
to enable model checking. Here, all weight values are 1 and all bias values are 0. In our
example, the values communicated through the channels anewError and adiff are 1 and 0,
respectively.

anewError .in.1→
adiff .in.0→
angleOutputE .out .1
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We now describe a trace of events on the component level: a trace of the AnglePIDANN
semantics without hiding or renaming. Through the process described earlier, the events
anewError .in.0 and adiff .in.0 correspond to the following layerRes events.

layerRes.0.1.1→
layerRes.0.2.0→

The NodeIn processes of Node synchronise with events on layerRes.0. So, each NodeIn
receives the input and communicates the result of the weight application on the nodeOut
channel. We give these events below.

nodeOut .1.1.1.1→
nodeOut .1.1.2.0→

Next, Collator receives these values, sums them, then applies the bias term to them. Fol-
lowing this, the Collator applies the ReLU function to the result (here, however, this does
not change the result). The Collator process then communicates its result on the layerRes
channel. We display the corresponding event below.

layerRes.1.1.1→

Communication events on layerRes.1.1 are synchronised with the NodeIn processes of the
OutputLayer . Its NodeIn processes apply the weight to the value communicated (in this
case 1), and communicates this value through the channel nodeOut . We show this event
below.

nodeOut .2.1.1.1→

This value is the product of the weight of the output layer’s node and the output of the
previous layer’s single node.

Communications on nodeOut .2.1.1 are synchronised with the Collator process of the output
layer; this process then produces the final output of the layer (and the model). It communi-
cates this value on the channel layerRes as shown below.

layerRes.2.1.1

Lastly, we rename layerRes.2 to angleOutputE .out , as discussed earlier, obtaining a full trace
of a single iteration of AnglePIDANN.

For a primary validation of our semantics, we have used a CSP model checker to compare
the semantics of the AnglePIDANN to that of the controller AnglePID C of the parallel
version of the Segway model. For the latter, we have used the semantics automatically
generated by the RoboChart tool5. We have used a discretized neural network to make model
checking feasible. In this setting, we have been able to show refinement (in both directions)
automatically. Further validation has been provided by implementing our semantics in Java
using the JCSP package [108]. This has enabled simulation and assertion-based reasoning
via JML in a setting where values are floating-point numbers.

In the next section, Section 3.6, we discuss this Java implementation and its implications for
assertion-based reasoning.

5robostar.cs.york.ac.uk/robotool/
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3.6 JCSP Validation

In this section, we present an implementation of our the parallel Segway model, including
AnglePIDANN defined as an ANNController, as defined in Section 3.5, in Java 6. We utilise
the package JCSP, which provides an implementation of CSP in Java [108]. Our work
here enables simulation and analysis by assertion-based reasoning of our RoboChart ANN
components as presented in Section 3.3. We are able to perform this simulation because
JCSP accommodates floating-point arithmetic.

In this section, and in what follows, we work only with nonterminating RoboChart models.
For those, the event end and the exception operator used in the RoboChart semantics are
unnecessary. Encoding the exception operator in JCSP and in Isabelle is left as future
work.

In Section 3.6.1, we give a brief description of JCSP. Our encoding of the semantics of a
RoboChart ANN controller in JCSP, and the Segwaymodel, is the subject of Section 3.6.2.

3.6.1 JCSP

A key part of the JCSP implementation of CSP is the CSProcess interface. It specifies the
behaviour of a process; classes that implement this interface behave similarly to a process.
CSProcess contains a single abstract method: run(), which defines the behaviour of the
process. We can define parallel composition and synchronisation of instances of these classes.
We refer to instances of a class that implements the CSProcess interface as process objects,
to distinguish them from CSP processes.

In order to communicate values between these processes, CSP channels are implemented in
JCSP through the class Channel. A Channel can communicate either an object or an integer.
Additionally, the Channel class provides static methods for constructing various types of
writers and readers. In a Channel, channel synchronisation is defined as synchronisation
between one reader object, and one writer object. These writer and reader objects are
defined using two dedicated interfaces: ChannelInput for the reader and ChannelOutput for
the writer.

ChannelInput and ChannelOutput are superinterfaces for other specialised forms of reader and
writer. Similarly, specific types of channel are specified using interfaces. One example of
a Channel interface is One2OneChannel, which specifies a channel that relates a single reader
to a single writer object. Another sub-interface of Channel is Any2OneChannel, which defines
a channel that attaches multiple writers to a single reader. This, however, does not allow
multiple synchronous writers to one reader. This is because each writer object can only
synchronise with a single reader, internally.

To illustrate channels in JCSP, we present below an example of creating all required objects
for a One2OneChannel. We note that Channel.one2oneChannel() is a static method of Channel
designed to create a One2OneChannel.

1 One2OneChannel c = Channel.one2oneChannel();

2 ChannelInput in = c.in();

3 ChannelOutput out = c.out();

6https://docs.oracle.com/javase/7/docs/technotes/guides/language/
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In this example, we create a single channel c of the type One2OneChannel, and we use this
to define a reading end in and a writing end out. These two objects, in and out, are linked
together, internally, such that writing calls on out are synchronised with reading calls on
in. These can be passed to process objects to be used as required. Notably, if either is not
available in the context of a running process, the processes deadlock.

To link CSP concepts to JCSP, we present in Table 3.3 how the CSP operators we use are
implemented in JCSP. We describe further details on these operations as we use them.

Table 3.3: CSP Operators

Symbol Name JCSP Implementation
Skip Skip new Skip();

P |[ a ]|Q Parallel Composition new Parallel(new CSProcess[] {P, Q});

c?x → P Input (ChannelInput)c.read();

c!e → P Output (ChannelInput)c.read();

We can define parallel composition for process objects by using an instance of the class
Parallel. We can construct an instance of Parallel by providing an array containing the
objects for processes to be executed in parallel. The Parallel class implements CSProcess, so
instances of Parallel are themselves process objects. The behaviour of Parallel instances is
defined as the parallel composition of its constituent CSProcess arguments. This composition
respects the synchronisation present in channels and other constructs. In Table 3.3, we create
a new CSProcess array containing P and Q. Here, P and Q are process objects.

In the following section, we discuss how we can use JCSP to validate our ANN components,
based on our CSP model from Section 3.5.

3.6.2 ANN Component Validation

In the CSP model, as already explained, each layer interacts with its proceeding layer using
the channel layerRes, given in Equation (2) of Section 3.5. We implement this in JCSP
as:

1 One2AnyChannel[][] layerRes = new One2AnyChannel[layerNo+1][];

The channel layerRes is ultimately used to define events layerRes.layer .index .value that
represent a communication of a value from a node identified by index in the given layer
to another node in the next layer. In JCSP, we represent each such communication means
between processes, here, processes for nodes, by a channel. We, therefore, define layerRes

as a 2D array of type One2AnyChannel. Each channel identified by layerRes[layer][index] is
used to represent events layerRes.layer .index . In CSP, for use in FDR, we need to identify
a limit maxSize for the values of index . In Java, this can be defined on a per layer basis
instead. We take advantage of this facility to avoid the creation of unnecessary channels
when the layers have different numbers of nodes. Finally, we use One2AnyChannel because
each node process in a layer needs to write to every node in its proceeding layer.

The events layerRes.0.1 represent the inputs to the ANN model. We represent these events
in JCSP using One2AnyChannel layerRes[0][1]. The definition of Value is determined by
the RoboChart model.
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In our JCSP implementation, we use double-precision floating-point arithmetic, double in
Java, for this implementation. For the sake of illustration, we could represent the event
layerRes.0.1.0 in JCSP through two function calls as follows. First, we would write 0 on the
writing end, using layerRes[0][1].out().write(0). To read this value from the appropriate
reading end, we would use layerRes[0][1].in().read(). These two function calls represent
an occurrence of the event layerRes.0.1.0.

In our example, the class AnglePIDANN represents the controller AnglePIDANN, as presented
in Figure 3.11. We construct a AnglePIDANN in line 11 of Figure 3.19. The constructor of this
class is empty, as its behaviour is defined by the constants of the model.

We implement the constants using the public interface Constants, that stores the constants
as final and static variables. The use of the final keyword makes their values immutable.
All classes implement Constants, representing the CSP constants we discuss in Sections 3.5
and 3.3.

We represent CSP sequences as arrays because ordering is preserved, duplicates are preserved,
and there is native support for them in Java. Here, we represent the type Value through a
Java double, as mentioned. So, all constants which are of type of Value in CSP, are of type
double in JCSP. As an example, the types of both weights and biases are arrays of double
values in JCSP, where they are sequences of type Value in CSP.

We show an example of the use of the complete Segway module defined using JCSP in Figure
3.19. The class Segway presented in this example implements a simplified, but equivalent,
version of the model of the Segway semantics.

The process definition, of the semantics of the module Segway, is given in the implemen-
tation of the run and runANN methods of the Segway class. The run method, starting on
line 14, represents the standard configuration of the parallel Segway model, as presented
in Figure 3.4. This method defines that the following process objects synchronise in paral-
lel: segwayRP, representing the semantics of SegwayRP; segwayController, representing the
semantics of SegwayController; and anglePIDC, representing the semantics of the controller
AnglePID C. The method runANN, on the other hand, defines a process where an ANN con-
troller, AnglePIDANN (Figure 3.11), replaces the controller AnglePID C. In this version, the
Segway behaves as the parallel composition of segwayRP, segwayController, and anglePIDANN

process objects.

This implementation is for a single configuration of the values of the Segway module’s visible
events. We construct SegwayRP objects using a constructor that receives five parameters,
each representing the value of a corresponding visible event of the SegwayRP robotic platform:
currAngle, the value of the event angle; currGyroX, the value of the event gyroX; currGyroZ,
corresponding to the event gyroZ; currLeftVel, corresponding to the event leftMotorVelocity;
and currRightVel, the value communicated by rightMotorVelocity. We note that the event
gyroY is not engaged in by the sequential nor the parallel version of BalanceSTM, so it is not
implemented here. We construct the process object segwayRP using this method in line 8 of
Figure 3.19.

The class ANN is the core of our encoding of the CSP semantics of RoboChart ANN controllers.
Its implementation matches the CSP definition of the process ANN presented in Section 3.5.
The class AnglePIDANN calls this process internally, as it represents an ANN controller.

In the definition of the CSP process ANN , Figure 3.18, we hide all events except for those
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1 public class Segway implements CSProcess {

2 SegwayRP segwayRP;

3 SegwayController segwayController;

4 AnglePID anglePIDC;

5 AnglePIDANN anglePIDANN;

6

7 public Segway(double currAngle, double currGyroX, double currGyroZ, double

currLeftVel, double currRightVel) {

8 this.segwayRP = new SegwayRP(currAngle, currGyroX, currGyroZ, currLeftVel,

currRightVel);

9 this.segwayController = new SegwayController();

10 this.anglePIDC = new AnglePID();

11 this.anglePIDANN = new AnglePIDANN();

12 }

13

14 public void run() {

15 new Parallel(new CSProcess[] {

16 segwayRP,

17 segwayController,

18 anglePIDC

19 }).run();

20 }

21

22 public void runAnn() {

23 new Parallel(new CSProcess[] {

24 segwayRP,

25 segwayController,

26 anglePIDANN

27 }).run();

28 }

29 }

Figure 3.19: The semantics of the parallel Segway model implemented in Java.
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indexed by layerRes.0, layerRes.2, and end . More generally, we hide all events, except those
representing the inputs and outputs of the ANN. As there is no explicit hiding operator in
JCSP, we use the Java visibility keywords to represent event hiding. To capture this, we
define the channel layerRes using the Java private keyword, and we represent the visible
events using the following attributes of ANN.

1 public ChannelOutput[] visibleInputs;

2 public ChannelInput[] visibleOutputs;

Here, the array visibleInputs represents the events indexed by layerRes.0. This attribute
is defined through the following: visibleInputs = Channel.getOutputArray(layerRes[0]),
meaning visibleInputs represents input on the channels indexed by layerRes.0. Here, the
method Channel.getOutputArray(c) returns the ChannelOutput object array corresponding
to the array of channels c. The array visibleOutputs represents the events of the last layer,
defined through visibleOutputs = Channel.getInputArray(layerRes[layerNo]); the method
getInputArray operates similarly to getOutputArray, but returns the reading ends, instead
of the writing ends, of the channel.

The implementation of ANN uses two process objects operating in parallel: hiddenlayers and
outputlayer. We give the Java code below.

1 new Parallel(new CSProcess[] {

2 (HiddenLayers) hiddenlayers,

3 (OutputLayer) outputlayer

4 }).run();

Here, line 1 creates a new parallel process, as described above. Line 2 references our hid-
den layers process, hiddenlayers; this represents the process HiddenLayers, presented in
Figure 3.18. Line 3 references a process outputlayer, which implements the CSP process
OutputLayer . This reflects the behaviour of the CSP process ANN .

Each HiddenLayers process object is composed of multiple HiddenLayer process objects. Our
HiddenLayer class represents a hidden layer in our ANN. We present the constructor of this
class below:

1 public HiddenLayers(One2AnyChannel[][] layerRes)

The CSP process HiddenLayers does not contain any parameters; in its JCSP implementa-
tion, however, we define a single parameter. In JCSP, we provide each process with only
the channel and channel end objects required by that process. Despite, we take the channel
layerRes as a parameter, to hold the full channel object. HiddenLayers does not directly en-
gage in events on those channels but it passes the reading and writing ends onto the processes
that require them.

The CSP process HiddenLayers behaves as the alphabetised parallel composition of all
HiddenLayer processes, from Figure 3.18 of Section 3.5. We implement that in JCSP through
the use of the Parallel object, as defined in Table 3.3. In our example, this is composed of
a single HiddenLayer process. We give the structure of this process below.

1 new Parallel((HiddenLayer[]) layers).run();
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Here, we define parallel composition of all processes in an array of HiddenLayer process
objects referred to as layers. This implements the parallel composition of all layer processes
in HiddenLayers.

Next, we define the class HiddenLayer, which represents the process HiddenLayer . We present
its constructor below.

1 public HiddenLayer(int layer, int size, int inpSize,

2 ChannelInput[] layerInput, ChannelOutput[] layerOutput)

Our constructor of HiddenLayer requires five parameters: layer, size, inpSize, layerInput,
and layerOutput. The first three parameters correspond one-to-one to a parameter in CSP:
layer represents the CSP parameter l , size corresponds to s, and inpSize represents inpSize.
The final two parameters store the ChannelInput and ChannelOutput objects required to
connect this layer to the rest of the model.

In our CSP model, the process HiddenLayer is composed of the parallel composition of
processes for its nodes. Following this, our HiddenLayer process behaves as the parallel
composition of process objects of the type Node, a class that represents a Node process. We
display this in JCSP, below, where nodes is an array of Node objects.

1 new Parallel((Node[]) nodes).run();

We note that we define output layers in a very similar way to the class HiddenLayer, using
the class OutputLayer.

Below, we present the class Node, which represents the Node process, in JCSP.

1

2 public Node(int layer, int node, int inpSize,

3 ChannelInput[] nodeInputs, ChannelOutput nodeOutput)

We recall that we require three parameters in our CSP process representing a node (l , n, and
inpSize). Similarly to HiddenLayer, the first three parameters constructor of our Node class
represent the CSP parameters: layer represents l , node represents n, and inpSize represents
inpSize. The last two parameters store the reading and writing ends that this process uses:
nodeInputs for input from the previous layer’s nodes, and nodeOutput for the single output
event of a node.

We define the class NodeIn to represent NodeIn processes, and the class Collator to represent
Collator processes. According to the CSP process Node, we use the following code snippet
in Java to define the behaviour of a Node.

1 new Parallel(

2 new CSProcess[] {

3 new Parallel((NodeIn[]) nodeIns),

4 (Collator) collator

5 }

6 ).run();

Here, nodeIns is an array of type NodeIn, and collator is of type Collator.
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Each NodeIn communicates values to its respective Collator process along a single JCSP
channel object. These processes communicate on channels from the channel nodeOut. We
define this as a Any2OneChannel, as this channel connects multiple NodeIn writers to one
Collator reader. We define the constructor of NodeIn below.

1 public NodeIn(int layer, int node, int index, ChannelInput input, ChannelOutput

output)

Here, again, layer corresponds to the CSP parameter l , node corresponds to n, and index

corresponds to i . In this process, we receive input from a Node via input, and output its
output to a Collator through output.

We define the nodeOut channel with the following.

1 Any2OneChannel nodeOut = Channel.any2one();

This represents the nodeOut channel from Section 3.5. There must be a single Any2OneChannel
for each node in our ANN. Each Node process defines a nodeOut channel, and it passes
the reading and writing ends to the NodeIn and Collator processes. Each NodeIn receives
values from the previous layer, from the appropriate channels on layerRes. Then, it writes
its result to the nodeOut channel. Next, its Collator receives the values from the NodeIn

processes through nodeOut, and finally writes the result of the node to the next layer via
layerRes.

Lastly, we introduce the constructor of Collator below.

1 public Collator(int layer, int node, int inpSize,

2 AltingChannelInput input, ChannelOutput output)

Here, the constructor of Collator takes five parameters: layer, node, inpSize, input, and
output. As with the other classes, layer represents the parameter l , node represents the
parameter n, and inpSize represents the inpSize parameter of the Collator process. We
require a single AltingChannelInput input to read in the results from the NodeIn processes.
The interface AltingChannelInput enables a choice between channel inputs, allowing the
output from the NodeIn processes to be accepted in any order. Finally, we require the
parameter output, to communicate its result to the next layer.

So far, we have presented the pattern of interaction between the classes that form our
JCSP implementation. The actual behaviour of each class is defined in its run method. We
present below the run method for the NodeIn class, as this forms the basis of our JCSP
implementation.

1 public void run() {

2 double in;

3 in = (Double) input.read();

4

5 double transfer = in * weights[layer][node][index];

6 nodeOut.write(transfer);

7 }
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In this context, input is an instance of ChannelInput, which represents the input to this node
from the previous layer. The variable output is an instance of ChannelOutput, which writes
to its Collator. The weight of this NodeIn process is defined using the appropriate index of
the array weights, which represents the weights CSP constant (see Section 3.5). In line 1,
we initialise the method. In line 3, we set the local variable in to be the result of the method
read() of ChannelInput, cast as a double because of the precision of this implementation, and
read() returns a value of type Object. In line 5, we calculate the output of the NodeIn, which
is the product of in and weight, just like in the CSP ANN process, presented in Figure 3.18.
This value is assigned to transfer, and, finally, in line 6, we write the value transfer to the
ChannelOutput nodeOut, which is received by the Collator process object.

The Collator process synchronises with the next layer’s NodeIn processes. Each Node re-
ceives the events from all Collators in the previous layer, so multi-synchronisation is present
in this system. Implementing multi-synchronisation in JCSP requires a dedicated protocol,
as each event in JCSP may only synchronise between two processes. Freitas and Caval-
canti [109] present a protocol to implement multi-synchronisation in JCSP. Additionally,
a protocol to implement multi-synchronisation in Handel-C is presented in [110]. These
protocols handle general multi-synchronisation.

In this work, we use a special case of multi-synchronisation. This is because each Collator
writes to a single channel, and it is always the unique writer to this channel. There are any
number of Node processes reading from a single channel, so there are any number of readers.
We can represent this case of multi-synchronisation using a simpler protocol.

We have proved this in CSP. We have first defined a specification that contains multi-
synchronisation, then defined an implementation that does not, and proved that this imple-
mentation refines the specification. We then implement the resulting process in JCSP.

In the specification, we represent the Collator process as a Writer process, and each Node
as a Reader process. To demonstrate this protocol, we consider a system with three Writer
processes, each writing on a separate channel. These writers are interleaved, such that there
is no ordering between events. Finally, the communications between each Writer and Reader
use multi-synchronisation. In particular, each communication is synchronised between one
Writer and three Reader processes.

In the implementation, eachWriter engages with as many events as there are readers, instead
of one, where each of these events synchronises with a single Reader . We also define a new
channel to accommodate this, and show its relationship to the specification using renaming
and hiding. We have proven refinement in both directions using FDR, such that we have
proven equality between the specification and the implementation.

We implement this protocol in JCSP through the Collator engaging in as many output
events as there are nodes in the following layer. This implements the protocol because the
number of readers assigned to each Collator process object is equal to the number of nodes
in the following layer.

In the next and final section, we discuss the usage and implementation of our encoding.

3.6.3 Discussion

We have used our JCSP implementation for simulating ANNs defined in our CSP framework,
as we can use floating-point arithmetic. For a previous version, we have also enhanced
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this implementation by adding JML annotations, which enables theorem proving via formal
verification tools.

To validate our JCSP implementation, and the semantics that it encodes, we have defined
two other implementations of the AnglePIDANN component: a C++ implementation, and
a python implementation. To validate these, we have ran them against a test data set, of
size 30, 000, formed of values with consistent intervals across the normalised range. We have
observed a maximum error of 1e − 6 across all three implementations. This error value
is expected, as the C++ implementation uses single-precision values and each compiler’s
implementation varies.

3.7 Final Considerations

This concludes our description of how ANNs can be integrated into RoboChart. We have in-
troduced ANN components in RoboChart in Section 3.3, given an overview of the RoboChart
semantics in Section 3.4, and presented CSP semantics for our ANN components in Section
3.5, and provided an implementation of these in Section 3.6. These implementations can be
used for validation and simulation of our ANN components. Our CSP semantics can be used
to provide early validation of our ANN components, and verification via model-checking of
discretized neural network components. In the next chapter, we present a strategy to verify
properties of these models, which capture the software of RAAI systems.



Chapter 4

Verification Strategy

In this chapter, we describe a technique to verify robotic systems involving ANN components.
Our technique proves that replacing an existing standard RoboChart controller with an
ANN controller is sound with respect to a conformance notion we introduce here to cater for
numerical imprecision. Although we focus here on verification with respect to RoboChart
controllers whose behaviour is specified by state machines, our approach also applies to
verification based on RoboChart operations and our new ANN operations.

The use of model checking, even in the absence of a neural network using real numbers, is
challenging. We pursue instead a theorem-proving approach. For that, we take advantage
of the predicative UTP semantics of Circus (and CSP). Namely, we consider the encoding of
our semantics in a UTP theory. Specifically, we use the theory of reactive contracts, which
captures the failures-divergences semantics of CSP [28].

In this chapter, we first provide an overview of our verification strategy in Section 4.1, then
we describe a pattern of reactive contracts for the semantics of our ANN components in
Section 4.2, which we justify in Section 4.3. In Section 4.4, we describe a contract pattern
for those RoboChart controllers that we can replace with ANNs. Next, in Section 4.5,
we define a relation that formally establishes conformance between reactive contracts. In
Section 4.6, we present our system-level verification technique, which establishes system-level
conformance. We automate this technique using a combination of Isabelle and Marabou.
Finally, we provide concluding remarks in Section 4.7.

4.1 Overview

Our verification strategy uses specifications of the RoboChart controllers (the original con-
troller and the ANN controller) that we obtain from the semantics of our RoboChart models.
We obtain this by translating the CSP semantics into a reactive contract. We then gener-
ated verification conditions from these reactive contracts, the proof of these conditions can
be carried out using Isabelle/UTP and Marabou. We present an overview of this strategy
in Figure 4.1.

We start by defining CSP processes that capture a RoboChart controller’s iteration, from the
RoboChart semantics, as indicated by the box in Figure 4.1 labelled ‘RoboChart controller
iteration’. We then define the CSP process that captures the call of an ANN component

93
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Figure 4.1: The structure of our verification strategy: the nodes in pink represent CSP
models, the nodes in grey represent UTP reactive contracts, the nodes in green represent
verification conditions, and the nodes in pink represent verification tools.

(‘RoboChart ANN call’) from our CSP semantics in Figure 3.18.

We then generate the reactive contracts capturing these CSP semantics, as indicated in the
‘UTP’ box in Figure 4.1, using reactive contract patterns that we define in Sections 4.2
and 4.4. We establish conformance, described in Section 4.5, between these contracts by
defining verification conditions (‘verification conditions’ box), which we present in Sec-
tion 4.6. To support tractable verification, we define reachability conditions (‘reachabil-
ity conditions’ box), on the function capturing an ANN’s behaviour. These are logically
stronger than our verification conditions, and these conditions can be proved automatically
via Marabou. We present these reachability conditions in Section 4.6.

4.2 General Pattern of ANN Contracts

In this section, we first introduce the theory of reactive contracts, in Section 4.2.1. We then
describe the general pattern of contracts for our ANN components, in Section 4.2.2.

4.2.1 UTP Reactive Contracts

UTP is a semantic framework to describe concepts to give denotational semantics to a wide
range of computational paradigms. UTP is based on a predicative alphabetised relational
calculus expressed pointwise. Every UTP predicate has an alphabet of variables to which
the predicate can refer. UTP uses binary relations to denote the observations that can be
made about programs, separating initial observations and final observations.

In the UTP, a theory describes a semantic domain, characterising relations by predicates with
a given alphabet and satisfying given healthiness conditions. Theories can be combined to
define the semantics of richer languages. So, there is support to extend our work to consider
our results in the context of languages other than RoboChart, that define reactive behaviours
but perhaps also include notions of continuous time [27] and probability [111].

The alphabet of a theory is often composed of observational variables, which encode concepts
essential to the paradigm defined by the theory, and state variables, concerned with the
individual mechanisms denoted. In a UTP theory, the alphabet is usually open to extension,
enabling state variables to be declared and added.

In our work, we use the UTP theory of reactive contracts [112, 113], which can represent
CSP processes and has a rich set of calculational laws. Its observational variables are st ,
st ′, ok , ok ′, wait , wait ′, ref , ref ′, and tt . Here, st refers to the state of the process: the set
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of variables it uses. The observational variable ref represents the set of events the process
refuses. Finally, tt describes the trace contribution: the events from tr ′ that the process
has engaged in. The boolean observational variable ok represents the termination of the
process, and the boolean wait represents that the process is waiting for interaction with its
environment. Neither ok nor wait are referred to explicitly by any predicate in this theory
but are implicit in the structure of a reactive contract.

The dashed versions of the alphabet variables represent later observations of their values. A
predicate describes a relation by restricting the possible initial and later observations. There
is no tt ′ because tt itself is an expression on the variables capturing the trace: tr ′− tr .

These contracts take the form [R1[tt , st ] ⊢ R2[tt , st , ref
′] | R3[tt , st , st

′] ]. The square brack-
ets define the observational variables to which each predicate can refer. The precondition,
R1, describes conditions on the pre-state st and the trace tt . Next, the pericondition R2

describes a condition on the pre-state, the value of the trace tt , and which events are refused
by referring to ref ′. A pericondition captures the stable intermediate states of a reactive
program’s execution, such as when waiting on interaction from its environment. Lastly, the
postcondition R3 describes a condition on the state, the state update on st ′, the program’s
effect on the post-state, and the final assignment of tt .

Here, we use operators E [t ,E ] and Φ[t ], simplified versions of those in Definition. 4.6 from [28],
where we consider that a CSP process has no state. With E , we can construct a pericondition
stating that t has been observed, that tt = t , and the events in X are not refused, no event
in X is in ref ′. On the other hand, Φ constructs a postcondition, stating that the final trace
observed is characterised by t . For example, E [⟨⟩, {| c |}] stands for E [true, ⟨⟩, {| c |}], the
predicate obtained by replacing tt and E with ⟨⟩ and {| c |}, and true for s, denoting no
restriction on st , in E . Similarly, Φ[⟨⟩] stands for Φ[true, id , ⟨⟩], where we replace tt with ⟨⟩,
s with true, and st ′ with the identity id , denoting no change in state.

In the next section, we use these contracts to describe a pattern of reactive contracts which
captures the semantics for our ANN components.

4.2.2 Reactive Contracts for ANN components

Definition 4.1 provides a pattern for contracts corresponding to an optimised version of the
CSP process ANN in Fig. 3.18. The pattern is for the process defining one iteration of
the ANN : the parallelism between HiddenLayers and OutputLayer . So, we consider one
application of the ANN. With that, the compositionality of refinement allows us to make
direct deductions about the overall ANN process.

To optimise reasoning, we eliminate the interleavings that allow inputs and outputs to be
received and offered in any order and internal computations among and inside the layers to
occur in any order. Our highly parallel semantics captures the common use of parallelisation
to optimise the performance of implementations of ANNs. We have proved, however, that the
different interleavings produce equivalent outputs once the internal events are hidden.

First, the model of the ANN is deterministic, so hiding the events representing the commu-
nications between the nodes (and the layers) introduces no nondeterminism. This means
that the internal order of computation (as signalled by the events) in the layers and their
nodes is irrelevant. Second, if we add a wrapper process that keeps that responsiveness
for the inputs but feeds them to ANN in a fixed order, the values and responsiveness of
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outputs are maintained. With this, we have rigorous evidence that parallelisation is a valid
implementation strategy and that we can use a simpler model for reasoning.

For brevity, in Definition 4.1, the contract is defined using a sequence input containing only
the events representing inputs extracted from the trace tt . Formally, input = tt ↾ I , here
I = {| layerRes.0 |}. (We use ↾ to denote sequence filtering.)

Definition 4.1 (ANN Component General Contract).

GeneralANNContract =̂
[ truer
⊢ #input < insize ∧ E [input , {| layerRes.0.(#input + 1) |}]
∨
#input = insize ∧
∃ l : 1 . . layerNo • ∃n : 1 . . layerSize(l) •
E [ front ◦ layeroutput(l ,n), { last ◦ layeroutput(l ,n) }]

| #input = insize ∧ Φ[layeroutput(layerNo, layerSize(layerNo))]
]

The pattern in Definition 4.1 is for contracts that require that the process does not di-
verge: the precondition is truer . This is appropriate as no ANN diverges.

To define the pericondition and the postcondition, we specify the valid observations using
the predicate operators E and Φ. The pericondition characterises the stable intermediate
states of the ANN where some or all inputs have been received. We identify these states by
considering the size of inputs. When some of the inputs are available (#input < insize), the
trace is input , and the next input event layerRes.0.(#input + 1) is not refused.

When all inputs are available (#input = size), we specify the trace of layerRes interactions
up to where layerRes.l .n has occurred using a function layeroutput(l ,n), where l and n
are layer and node indices. In the pericondition, we consider all layer indices l and all node
indices n in l , from 1 to layerSize(l). The function layeroutput(l ,n) encodes the specification
of the ANN, in terms of its structure, into a trace-based specification. For example, for an
ANN with input size 2, with two nodes in its first layer, and all weights and biases defined as
2, if tt defines the input sequence as ⟨layerRes.0.1.1, layerRes.0.2.1⟩, then layeroutput(1, 2) is
⟨layerRes.0.1.1, layerRes.0.2.1, layerRes.1.1.6, layerRes.1.2.6⟩. This reflects that the inputs
in input are taken first, and the output of each node is the weighted sum of these inputs.
Since our weights and biases are all 2, each node outputs 6, resulting in the trace above.

With layeroutput(l ,n), we define the entire trace up to and including the result of the
calculation of the node n on the layer l , which is the last element of layeroutput(l ,n).
Therefore, the trace in the case #input = size, where all inputs have been received, includes
all elements in layeroutput(l ,n) but the last, denoted using the front function. We define
the set of accepted events as the singleton containing the event last ◦ layeroutput(l ,n).

To specify the postcondition, we first state that all inputs have been received, #input =
insize, and then we state that the trace contribution of this process, variable tt , must be equal
to the expression layeroutput(layerNo, layerSize(layerNo)). Here, this expression represents
the trace after the last node (that of index layerSize(layerNo)) of the last layer (that of index
layerNo) has occurred, in other words, after all nodes in the ANN have terminated.

Next, we present the formal definitions of the functions we use to construct our general
pattern in Definition 4.1, starting with the definition of layeroutput .
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Definition 4.2 (Layer Output Function).

layeroutput : Z × Z→ seqEvent

∀ l : 0 . . layerNo •
∀n : 1 . . layerSize(l) | #input = insize •

layeroutput(0,n) = (1 . . n) ↿ input
∧
layeroutput(l ,n) =

layeroutput(l − 1, layerSize(l − 1))⌢

layercalc(lastn(layeroutput(l − 1, layerSize(l − 1)),
layerSize(l − 1)),

l ,
n)

We require that all inputs are available (#input = insize) for layeroutput(l ,n) to be well
defined. This precondition is made explicit above.

We define layeroutput by two equations, one for a base case and one for a recursive case. In
the base case, when l is 0, the result is the first n elements of input . In the recursive case,
layeroutput(l ,n) is the concatenation of two sequences. The first is the complete trace of the
previous layer, layeroutput(l − 1, layerSize(l − 1)), that is, the layer indexed by (l − 1). The
second trace records the output of the current layer, index l , up to the node n. We describe
the trace of the current layer using the function layercalc.

The function layercalc, Definition 4.3, defines the trace of a single layer in an ANN using
three arguments. The first argument is the trace of the previous layer, used to calculate the
current layer’s output values. Here, we define that trace as the last layerSize(l −1) elements
of the trace of all previous layers defined using layeroutput as explained above. We extract
the last layerSize(l − 1) elements using a function lastn, specified in Definition B.5. The
second and third parameters specify the layer and node index of the node to calculate the
trace up to.

We illustrate the application of layeroutput in Ex. 4.1. We consider an ANN with input size
2, with two nodes in its first layer, and all weights and biases are 2. We also define the input
sequence as ⟨layerRes.0.0.1, layerRes.0.1.1⟩.

Example 4.1 (Layer Output Function).

layeroutput(1, 2)

= layeroutput(0, layerSize(0))⌢

layercalc(
lastn(

layeroutput(0, layerSize(0)),
layerSize(0)),

1,
2)

[Def. 4.2]

= ⟨layerRes.0.1.1, layerRes.0.2.1⟩⌢
layercalc(⟨layerRes.0.1.1, layerRes.0.2.1⟩, 1, 2)

= ⟨layerRes.0.1.1, layerRes.0.2.1⟩⌢
⟨layerRes.1.1.6, layerRes.1.2.6⟩

[Def. 4.3]
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= ⟨layerRes.0.1.1, layerRes.0.2.1, layerRes.1.1.6, layerRes.1.2.6⟩

As said, our second function, layercalc, defines the trace of a single layer up to a given node
n. Its parameters are the sequence pl of results of the previous layer, a layer index l , and a
node index n. We specify this function in Definition 4.3.

Definition 4.3 (Layer Calculation Function).

layercalc : (seqEvent × Z × Z)→ seqEvent

∀ pl : seqValue; l : 1 . . layerNo •
∀n : 1 . . layerSize(l) | #pl = layerSize(l − 1) •

layercalc(pl , l , 0) = ⟨⟩
∧
layercalc(pl , l ,n) =

layercalc(pl , l , (n − 1))⌢

⟨ layerRes.l .n.
relu(dotprod(dropseq(pl),weights l n)
+
biases l n)⟩

For layercalc to be well-defined, we require that sequence pl ’s size is equal to the size of the
previous layer, which is layerSize(l − 1), because to define the result of any node, we require
the complete trace of the layer preceding this node.

We define layercalc using two recursive equations. The base case is when the node index is
0; this evaluates to the empty trace because nodes are indexed from 1 in our ANN model.
In the recursive case, this function evaluates to the concatenation of the sequence given by
layercalc(pl , l , (n − 1)) (representing the trace up to the previous node), with a singleton
sequence representing node n’s output event.

We define the trace for a node as a singleton sequence containing an event of the form
⟨layerRes.l .n.v⟩, where l and n are the layer and node indices, and v is the output of this
node. In our ANN model, the output of a single node is given by an activation function ap-
plied to the weighted sum of the previous layer’s output, with a given bias value added.

The previous layer’s output is given by dropseq(pl), specified in Definition B.6. It identifies
a sequence of values v corresponding to a sequence of events of the form layerRes.l .n.v .
We represent the weights of this node using the sequence weights l n. Using these two
sequences, we can calculate the weighted sum of this node using the dotprod (Definition B.4)
function. We represent the bias application by adding the biases l n value to this weighted
sum. Finally, we apply the relu function, presented in Definition B.3, capturing our activation
function.

Next, we present an example, Ex. 4.2, where we apply layercalc with identical parameters
as from Ex. 4.1: which are (⟨layerRes.0.1.1, layerRes.0.2.1⟩, 1, 2).

Example 4.2 (Layer Calculation Function).

layercalc(⟨layerRes.0.1.1, layerRes.0.2.1⟩, 1, 2)
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= layercalc(⟨layerRes.0.1.1, layerRes.0.2.1⟩, 1, 1)⌢
⟨layerRes.1.2.relu(dotprod(⟨1, 1⟩, ⟨2, 2⟩) + 2)⟩

[Def. 4.3]

= layercalc(⟨layerRes.0.1.1, layerRes.0.2.1⟩, 1, 1)⌢
⟨layerRes.1.2.relu((4) + 2)⟩

[Def. B.4]

= layercalc(⟨layerRes.0.1.1, layerRes.0.2.1⟩, 1, 1)⌢
⟨layerRes.1.2.6⟩

[Def. B.3]

= (⟨⟩⌢ ⟨layerRes.1.1.6⟩)⌢ ⟨layerRes.1.2.6⟩
= ⟨layerRes.1.1.6, layerRes.1.2.6⟩

In the next section, we use the laws of reactive contracts and the definition of the CSP
operators as reactive contracts [113] to prove that the pattern in Definition 4.1 captures our
ANN component’s CSP semantics, given fully in Figure 3.18.

4.3 ANN Pattern Justification

Using laws of reactive contracts and the definition of the CSP operators [113], we prove that
the pattern in Definition 4.1 captures the RoboChart ANN semantics.

Theorem 4.1. The semantics of

HiddenLayers |[ {| layerRes.(layerNo − 1) |} ]|OutputLayer

can be expressed using the pattern in Definition 4.1.

Proof. In this proof, we make a case for the precondition, pericondition, and postcondition
separately. Using FDR, we have, as already mentioned, established that the ANN process in
Fig. 3.18 is deterministic and that the order in which the inputs are accepted has no impact
on the output. So, our contract is for a fully sequential version of that process. In particular,
the parallelism between HiddenLayers and OutputLayer is given by the process below.

SANN = (SANN Layers |[ {| add input , get input |} ]| Input)
\ {| add input , get input |}

SANN Layers = SANN InputLayer ; ( ; l : 1 . . layerNo • SANN Layer(l))

SANN InputLayer = ; i : 1 . . insize • SANN InputNode(i)

SANN InputNode(i) = layerRes.0.i?x → add input .x → Skip

SANN Layer(l) = ; n : 1 . . layerSize(l) • SANN Node(l ,n)

SANN Node(l ,n) = get input?in → layerRes.l .n.annoutput(l ,n, in)→ Skip

We define the process SANN as the parallel composition of SANN Layers, which gives a
sequential account of the calculations in the layers, and an Input process, which records
the sequence of values of the input nodes. SANN Layers and Input synchronise on events
add input and get input . The event get input?in is used to retrieve the sequence of inputs
in. We record all inputs, the values of the events of the form layerRes.0, through add input .v .

SANN Layers represents all hidden layers and the output layer of our ANN process. We de-
fine SANN Layers as SANN InputLayer sequentially composed with the sequential compo-
sition of layerNo processes SANN Layer(l), one for each layer l . With SANN InputLayer ,
we ensure that all inputs are received (in order) before the hidden-layer calculations start.
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SANN InputLayer is defined by the sequential composition of insize SANN InputNode(n)
processes, representing the nth input nodes. This process accepts any event layerRes.0.n?x
and records x in the Input process (omitted here) via the event add input .x .

SANN Layer is the sequential composition of processes SANN Node(l ,n) for the nth node
of a layer l . SANN Node(l ,n) first retrieves the sequence in of inputs, then raises the event
layerRes.l .n.annoutput(l ,n, in). For the purposes of this proof, we provide an implementa-
tion of our annoutput function, Definition B.2, in CSPM, which calculates the output value
of a given node with respect to an input sequence in.

We have used FDR to prove that the process SANN is equivalent to the parallel composition
of HiddenLayers and OutputLayer , in parallel with a third process that fixes the order of
the layerRes events. Namely, we have enforced an ascending order of layer and node indices
inside each layer. As we have explained, this fixed order does not affect the values of the
ANN output events. We have proved this result for a variety of input and layer sizes.

The parallelism with the Input process is an encoding in CSP for a data-rich process. UTP
does not require such encoding because its CSP theory caters to an imperative data-rich view
of processes. So, our justification is for SANN Layers, with a view that it can access data
directly rather than via communication with a memory process as in our encoding above.

Precondition Our precondition is true because the semantics is divergence free. We have
established this via model checking and observed that we use one recursive process in SANN ,
which is in SANN Node. This process cannot diverge because it is productive: it engages in
an event before recursing. So, the recursion is guarded and has a unique fixed point [28].

Pericondition Next, we show that the pericondition of the contract for SANN is that of
GeneralANNContract in Definition 4.1. We use the notation P2 to refer to the pericondition
of the contract capturing process P , and P3 to refer to the postcondition of P . We prove
this in Lemma B.2.

Postcondition Our proof of the postcondition is similar to that of the pericondition, we
present this in Lemma B.3.

In the next section, we describe a pattern of reactive contracts for those RoboChart con-
trollers that can be replaced by ANN components, in order to compare them to our pattern
of reactive contracts for ANN components, presented here.

4.4 Cyclic Memoryless RoboChart Controllers

An ANN cannot implement reactive behaviour where input and output events are arbitrarily
interspersed according to environmental interactions. So, we consider specifications that de-
fine a controller whose control flow alternates between taking inputs and producing outputs,
that does not terminate, and does not contain memory across cycles. (This is the flow of sim-
ulations, for example.) For instance, the inputs of the AnglePID, as presented in Figure 3.6,
are anewError and adiff, and the output is angleOutputE as indicated by the connections
to the SegwayController (see Fig. 3.4). For such controllers, the RoboChart semantics can
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be captured by a reactive design of a particular format. For example, the AnglePID state
machine can be captured by the following contract:

AnglePID UTP =̂
[ truer
⊢
∃ currNewError , currDiff , currAngleOut : Value |

currAngleOut = P ∗ currNewError +D ∗ currDiff •
wait ′ ∧ ( tt = ⟨⟩ ∧ anewError .currNewError /∈ ref ′ ∨

tt = ⟨anewError .currNewError⟩ ∧ adiff .currDiff /∈ ref ′ ∨
tt = ⟨anewError .currNewError , adiff .in.currDiff ⟩ ∧
angleOutputE .currAngleOut /∈ ref ′)

∨
¬ wait ′ ∧
tt = ⟨anewError .currNewError , adiff .currDiff , angleOutputE .currAngleOut⟩

]

This contract captures the behaviour of one iteration of the AnglePID state machine: it
receives inputs via channels anewError and adiff and produces an output via angleOutputE .
The local variables of AnglePID are quantified and defined according to the RoboChart
model in terms of constants P and D . The precondition is just truer , as the process cannot
diverge.

The postcondition comprises two parts: either the process is waiting on interaction (wait ′),
or not (¬ wait ′). In the first case, three cases are distinguished by the trace contribution
tt : no input events have happened, just anewError has occurred, or both anewError and
adiff have been provided. In each case, we state that ref ′ does not contain an event, denoting
that we accept that event in this state. When wait ′ is false, tt contains all inputs and the
output. The local variables record the values communicated, according to the definition of
AnglePID.

The contract for the AnglePID follows a pattern defined below for a cyclic controller, where
we consider inp and out to be lists of input and output events. For every event, we have a
quantified variable that records the value communicated via that event: x1 to x#inp for inputs,
and y1 to y#out for outputs. We also consider a predicate p to capture the permissible values
these variables can take, according to the RoboChart model.
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Definition 4.4 (Cyclic RoboChart Controller Pattern).

Cyclic RC Controller =̂
[ truer
⊢
∃ x1, . . . , x#inp ; y1, . . . , y#out : Value | p •

wait ′ ∧ (∃ i : dom inp • tt = ⌢/ j : 1..(i − 1) • ⟨inp(j ).xj ⟩ ∧
inp(i).xi /∈ ref ′)

∨
(∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′)

∨
¬ wait ′ ∧
tt = ⌢/ i : dom inp • ⟨inp(i).xi⟩⌢⌢/ j : dom out • ⟨out(j ).yj ⟩

]

The reactive design for AnglePID is an instance of Cyclic RC Controller above, where we
have two inputs: x1 is currNewError and x2 is currDiff . The output y1 is currAngleOut . So,
dom inp is {1, 2}, and dom out is {1}. The predicate p characterises values for the outputs
in terms of local variables xi and yi .

In Definition 4.4, in the wait ′ case, we have a disjunction of two existential quantifications.
In the first, the quantification on i ranges over dom inp, and we define a value for tt in
terms of a distributed concatenation (⌢/). The concatenation comprises singleton sequences
⟨inp(j ).xj ⟩, with j ranging over 1 . . (i − 1). These represent all input events before the i -th
input given by the event inp(i).xi . So we get tt = ⟨⟩ for i = 1, or in the case of our example,
tt = ⟨anewError .currNewError⟩ for i = 2 and j = 1. For the definition of ref ′, we specify
that the input event inp(i).xi , which is either anewError .currNewError or adiff .currDiff , is
not refused. This corresponds to the first two disjuncts in the wait ′ case of the postcondition
for AnglePID.

The second quantification is on i from dom out , with tt formed of two distributed concatena-
tions. The first is of sequences ⟨inp(n).xn⟩, like in the first quantification, but now n ranges
over the whole dom inp, so we get all input events. The second is of sequences ⟨out(j ).yj ⟩,
representing proper prefixes of the sequences of all output events. Our example has one out-
put, so this sequence resolves to the empty trace. The refusal does not include the following
output. For our example, we accept out(i).yi , which is angleOutputE .currAngleOut .

In the terminating case, we define tt as the concatenation of all input events followed by all
output events: ⟨anewError .currNewError , adiff .currDiff , angleOutputE .currAngleOut⟩ for
our example.

A reactive design that instantiates the pattern in Definition 4.4 defines one iteration of a
cyclic RoboChart controller. In the full model of the controller, that design is the body of
a loop with the weakest fixed-point semantics. Since the precondition is truer , the weakest
fixed-point operator transfers directly to the postcondition [113].

Besides structural differences in the patterns in Definition 4.1 and 4.4, we have a substantial
difference in how outputs are defined regarding the inputs. In an ANN contract, the results
are determined by a deterministic function based on the parameters of an ANN. In the
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pattern for a cyclic controller, the inputs and outputs are related by the predicate p. We
can, for example, define even nondeterministic behaviour with this predicate. Finally, the
alphabet of events in the patterns is different: one is based on the layerRes events and the
other on RoboChart application-specific events to represent inputs and outputs.

To summarise, in this section, we have presented a pattern of RoboChart components that
ANN components can replace, in Definition 4.4. Those components have the following prop-
erties: they are memoryless, they do not terminate, and they receive all input events before
engaging in output events.

In the next section, we discuss a strategy to formally verify properties which relate patterns
of ANN components and patterns of cyclic RoboChart controllers.

4.5 Conformance

In our approach to verification, we want to replace a RoboChart controller with an ANN
component. Therefore, we want to prove that the ANN component implements all behaviours
of the RoboChart controller, or in other words, we want to show that an ANN component
is a refinement of the RoboChart controller. ANN components, however, contain numerical
imprecision in their output, so we allow an error tolerance on the values communicated
by the output events of an ANN component. Formally, we define a conformance relation
Q conf (ϵ) P that holds if, and only if, Q is a refinement of P , where the value of P ’s output
events can vary by at most by a non-negative error value ϵ as formalised below.

Definition 4.5 (Conformance Relation).

conf : R 7→ Proc ↔ Proc

∀ ϵ : R; P ,Q : Proc | ϵ ⩾ 0 •
Q conf (ϵ) P
⇔
∃ s : seq Event ; a : PEvent | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

P [s, (αP \ a)/tt , ref ′] ⊑ Q

We say that Q conf (ϵ) P if, and only if, Q is a refinement of P [s, (αP \ a)/tt , ref ′], that is,
we accept P as a specification that restricts the trace s and the refusals αP \ a, instead of
tt and ref ′, where s and a are approximations of tt and the set a of acceptances as captured
by relations seqapprox (ϵ) and setapprox (ϵ). Here, s1 seqapprox (ϵ) s2 relates sequences s1 and
s2 if, and only if, s1 differs from s2 just in that its output values are within ϵ of those of s2.
A1 setapprox (ϵ) A2 if, and only if, their input events are the same, and the output events
are the same, but the communicated values differ by a maximum tolerance of ϵ.

Here, we use the type Proc to refer to any reactive contract that implements a CSP process,
and, therefore, this conformance definition relates any reactive contracts.

We refer to the seqapprox (ϵ) relation, as the relation defined by seqapprox under ϵ, as we
use seqapprox primarily as a relation.

Definition 4.6 (Sequence approximation relation).
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seqapprox : R 7→ (seqEvent ↔ seqEvent)

∀ ϵ : R | ϵ ⩾ 0 •
∀ s1, s2, s3 : seqEvent | s2 = s1 ↾ (I ∪O) ∧ #s3 = #s2 •

s1 seqapprox (ϵ) s3 ⇔
∀ i : dom s2 •

(s2(i) ∈ I ⇒ s3(i) = s2(i)) ∧
(s2(i) ∈ O ⇒ ev(s3(i)) = ev(s2(i)) ∧

∃ r : (−ϵ, ϵ) • value(s3(i)) = value(s2(i)) + r)

We use the sets I and O to refer to the sets containing just the input and output events
from the alphabet of an arbitrary process. These have to be instantiated for each process,
based on its definition. In the definition above for s1 seqapprox (ϵ) s3, we define the sequence
s2 as s1 filtered to contain only input or outputs events, as these are the only events relevant
for our notion of conformance.

The above states that s1 seqapprox (ϵ) s3 if, and only if, for every index i of s2, every event
s2(i) is either an input event, and identical to s3(i), or an output event, then the channel
of both events is identical, and the value of s2(i) is within ϵ of the value of s3(i). We use
the function ev to extract the channel identifier of an event, and the function value to refer
to the value communicated by the event. The specific definition of these functions varies
depending on the type of channel used in the process.

The relation seqapprox (ϵ) is reflexive as long as we are comparing sequences that contain
only input or output events. We prove this in Lemma B.4.

Lemma B.5 proves that if we are comparing two sequences of output events, with identical
lengths and event names, we can simplify the seqapprox (ϵ) relation to an inequality predicate.
In other words, if we have these conditions, the sequence s3 is an approximation of s if and
only the difference in the values communicated by each event of s and s3 is less than ϵ.

The relation setapprox (ϵ) defines what it means for a set to be an approximation of another.
Its definition below is similar to seqapprox (ϵ).

Definition 4.7 (Set approximation relation).

setapprox : R 7→ (PEvent ↔ PEvent)

∀ ϵ : R | ϵ ⩾ 0 •
∀ r1, r2, r : PEvent | r2 = r1 ∩ (I ∪O) ∧ #r = #r2 •

r1 setapprox (ϵ) r ⇔
∀ e : r2 •

(e ∈ I ⇔ e ∈ r) ∧
(e ∈ O ⇔ ∃ e1 : r • ev(e) = ev(e1) ∧

∃ c : (−ϵ, ϵ) • value(e) = value(e1) + c)

Similarly to seqapprox , we say that r1 setapprox (ϵ) r if, and only if, for any event e in r2,
whose value is the set obtained by restricting r1 to inputs and outputs, e is either an input
event, and therefore e is in the set r , or an output event, and then there exists an event e1
such that ev(e) = ev(e1) and the value of e1 is within ϵ of the value of e. This relation is
used to compare acceptance sets, where for conformance to hold, if an event is accepted in
r1, then there must exist a corresponding event in r .
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Similar to seqapprox (ϵ), we can show that setapprox (ϵ) is reflexive if all events are either
input or events. This assists in reasoning concerning setappox (ϵ). We present this, formally,
In Lemma B.6.

Lemma B.7, similar to Lemma B.5, formalises the conditions under which comparing the
values communicated by the events in the sets is sufficient to prove set approximation. In
this case, these conditions are that: both sets contain solely output events, both sets are of
the same size, and that we have corresponding event identifiers in both sets.

In the next section, we use the formal material presented here and in previous sections to
define our system-level verification technique involving ANN components.

4.6 System-Level Conformance

As presented in Section 4.5, our conformance definition enables component-level confor-
mance. In this work, however, we are concerned with system-level conformance to verify
systems involving ANN components, not just the components themselves. So, in this sec-
tion, we use the definitions presented in Sections 4.2.2, 4.4, and 4.5 to define a system-level
verification approach concerning ANN components and cyclic RoboChart controllers.

Our verification approach starts with an abstract RoboChart model. That model can be
refined using the structural rules of RoboChart justified by its CSP semantics and refine-
ment relation. These rules are out of scope here, but we refer to [114] for examples of the
kinds of laws of interest. Refinement in our approach may need to be used to specify a
cyclic controller. In our example, we had to extract the AnglePID state machines out of the
SegwayController where it was originally to obtain the Segway module in Fig. 3.4.

With a refined model, we can identify a cyclic controller CDes to be implemented by an ANN
and prove conformance of the ANN controller to CDes according to conf (ϵ). The following
result justifies the joint use of refinement and conf (ϵ).

Theorem 4.2. P ⊑ Q ∧ R conf (ϵ) Q ⇒ R conf (ϵ) P

This ensures that the ANN conforms to the original specification.

In the context of our work regarding ANN controllers in RoboChart, the proof of conformance
is in the following form (see Figure 3.18).

(Q \ ANNHiddenEvts)[inp/layerRes.0, out/layerRes.layerNo] conf (ϵ) P (4.1)

Here, Q is a reactive contract that instantiates the pattern in Definition 4.1, and P cap-
tures the semantics of a cyclic controller described using the pattern in Definition 4.4. As
said, our general contract for ANN components does not capture the hiding in the CSP
semantics (Figure 3.18), so we add it to Q above. Moreover, the pattern is concerned with
layerRes events and the specification with RoboChart events. So, we substitute layerRes.0
and layerRes.layerNo with the input and output events captured by the sequences inp and
out .

We use the reactive contract, which captures the component AnglePIDANN. Besides hid-
ing the layerRes.1 events, we rename layerRes.0.1 and layerRes.0.2 to currNewError and
layerRes.0.2 to curradiff , and layerRes.2.1 to currAngleOutput .
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In the UTP theory of reactive contracts, general hiding is (as yet) undefined. So, as a
compromise, we define relations capturing event hiding for specifically those contracts defined
using the pattern in Definition 4.1.

For an instance Q of the pattern in Definition 4.1, Q \ S = [truer ⊢ Q2 \peri S | Q3 \post S ],
where the hide operators \peri and \post are defined in Appendix B.

Below, we define theorems that identify verification conditions sufficient to prove confor-
mance for instances of our patterns, taking advantage of structural similarities in the pat-
terns.

Theorem 4.3. Q conf (ϵ) P provided

[Q2 ⇒ ∃ s : seqEvent ; a : PEvent | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox a •
P2[s, (αP \ a)/tt , ref ′]]

and

[Q3 ⇒ ∃ s : seq Event | tt seqapprox (ϵ) s • P3[s/tt ]]

where Q and P are instances of the patterns in Definitions 4.1 and 4.4.

Proof.

Q conf (ϵ) P

= ∃ s : seqEvent ; a : PEvent | tt seqapprox (ϵ) s ∧
(αP \ ref ′) setapprox (ϵ) a •

P [s, (αP \ a)/tt , ref ′] ⊑ Q

[Def. 4.5]

= ∃ s : seqEvent ; a : PEvent | tt seqapprox (ϵ) s ∧
(αP \ ref ′) setapprox (ϵ) a •

[P1 ⊢ P2 | P3][s, (αP \ a)/tt , ref ′] ⊑ [Q1 ⊢ Q2 | Q3]

[reactive Contract Definition, Def. B.13]

= ∃ s : seqEvent ; a : PEvent | tt seqapprox (ϵ) s ∧
(αP \ ref ′) setapprox (ϵ) a •

[P1[s, (αP \ a)/tt , ref ′] ⊢ P2[s, (αP \ a)/tt , ref ′] | P3[s, (αP \ a)/tt , ref ′]] ⊑
[Q1 ⊢ Q2 | Q3]

[substitution distributes through reactive contracts]

= ∃ s : seqEvent ; a : PEvent | tt seqapprox (ϵ) s ∧
(αP \ ref ′) setapprox (ϵ) a •

[⊢ P2[s, (αP \ a)/tt , ref ′] | P3[s, (αP \ a)/tt , ref ′]] ⊑ [⊢ Q2 | Q3]

[precondition of both is truer ]

= ∃ s : seqEvent ; a : PEvent | tt seqapprox (ϵ) s ∧
(αP \ ref ′) setapprox (ϵ) a •

[⊢ P2[s, (αP \ a)/tt , ref ′] | P3[s/tt ]] ⊑ [⊢ Q2 | Q3]

[ref ′ not free in P3, CRF healthiness condition [28]]

= [⊢ ∃ s : seqEvent ; a : PEvent | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •
P2[s, (αP \ a)/tt , ref ′]

| ∃ s : seqEvent | tt seqapprox (ϵ) s • P3[s/tt ]] ⊑ [⊢ Q2 | Q3]
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[existential quantification distributes through disjunction]

= (∃ s : seqEvent ; a : PEvent | tt seqapprox (ϵ) s ∧ αP \ ref ′ setapprox a •
P2[s, (αP \ a)/tt , ref ′] ⊑ Q2)

∧
(∃ s : seq Event | tt seqapprox (ϵ) s • P3[s/tt ]] ⊑ Q3)

[Thm. B.4 (no precondition)]

= [Q2 ⇒ ∃ s : seqEvent ; a : PEvent | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox a •
P2[s, (αP \ a)/tt , ref ′]]

∧
[Q3 ⇒ ∃ s : seqEvent | tt seqapprox (ϵ) s • P3[s/tt ]]

[expand UTP refinement operator [115] (square brackets here show universal closure)]

In short, Theorem 4.3 gives two verification conditions that distribute the conformance defi-
nition over the peri and postconditions of Q . The first condition requires the periconditions
P2 and Q2 to be related by conf (ϵ). The second condition makes the same requirement of the
postconditions P3 and Q3 and is simpler because postconditions do not restrict ref ′.

We can discharge these verification conditions using Isabelle and the laws of UTP and es-
tablish Equation 4.1 to prove the properties of the segway. For instance, we have proved
that “when P is non-zero, other PID constants are 0, and values greater than or equal to -
maxAngle and less than or equal to maxAngle are communicated by the event angle, the values
set by setLeftMotorSpeed() and setRightMotorSpeed() are equal to the value communicated
by angle multiplied by P”, using the original model of the segway with the AnglePID state
machine. With our proof of (4.1), we can obtain the same result for the version that uses
AnglePIDANN, but we need to accept an error tolerance ϵ for the values set.

Moreover, for the particular case where the conformance that is being proved is of the
form (4.1) above, the following theorem maps both conditions to set reachability conditions
that can be discharged by ANN verification tools and, in particular, by Marabou. The com-
promise is that while we can carry out proofs for any input values in Isabelle, Marabou does
not have facilities for dealing with universal quantification over real-valued sets. So, we ap-
proximate the input range with intervals and form properties based on these intervals.

Theorem 4.4.

¬ ∃ x1, . ., xinsize : Value • ∃ y1, . ., youtsize : Value | p • ∃ i : 1 . . outsize •
{annoutput(layerNo, i , ⟨x1, . ., xinsize⟩)} ∩ {x : R | |x − yi | < ϵ} = ∅

⇒ [(Q2 \peri ANNHiddenEvts)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s : seq Event ; a : PEvent | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

P2[s, (αP \ a)/tt , ref ′]]
∧
[(Q3 \post ANNHiddenEvts)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s | tt seqapprox (ϵ) s • P3[s/tt ]]

provided Q2 is an ANN’s pericondition, Q3 is its postcondition, P2 is a cyclic Robochart
controller’s pericondition, P3 is its postcondition, and inp and out are sequences of events
with #inp = insize and #out = outsize.
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Proof. Our proof of Theorem 4.4 consists of proving two separate conditions: first, that the
antecedent is stronger than our pericondition; second, that the antecedent is stronger than
our postcondition. Together, these provide a proof of the complete theorem.

With lemma C.1, we prove that the antecedent is stronger than our pericondition, and we
establish that the antecedent is stronger than our postcondition through Lemma C.2. Due to
the propositional logic laws of implication, our antecedent is stronger than the conjunction
of our pericondition and postcondition. This completes our proof.

Theorem 4.4 states that if an output variable yi with an error greater than ϵ does not exist
when considering all possible input combinations, our verification conditions are discharged.
The error, here, refers to the difference between the ANN’s output value, denoted using
the expression annoutput(l ,n, ⟨x1, . ., xinsize⟩) (Definition B.2), and our cyclic RoboChart
controller’s output value, captured by the variables yi and the predicate p. We guarantee
that output variables yi have an error less than ϵ by requiring that the intersection between
the set {annoutput(layerNo, i , ⟨x1, . ., xinsize⟩)} and {x : R | |x − yi | < ϵ} is empty.

We provide an example below of the reachability conditions we obtain using Theorem 4.4,
based on AnglePID UTP (Sect. 4.4), capturing the semantics of AnglePID (Fig.3.6).

Example 4.3. The antecedent of Theorem 4.4 for our example is the following verification
condition. (Here, i takes just the value 1).

¬ ∃ currNewError , currDiff : Value •
∃ currAngleOut | currAngleOut = P ∗ currNewError +D ∗ currDiff •
{annoutput(layerNo, 1, ⟨currNewError , currDiff ⟩)} ∩
{x : R | |x − currAngleOut | < ϵ} = ∅

The verification condition presented above can be encoded as a set of reachability conditions
if we define Value as a collection of sets that, together, encompass the complete range of
Value:

⋃
{n : 0 . . c • [min + n × c,min + (n + 1) × c] }. Here, min is a minimum value,

and c is a natural number. Given these constants, we can obtain finite conditions to prove
in Marabou, as illustrated by the lemma below.

Lemma 4.1. The antecedent of Theorem 4.4 for AnglePIDANN is as follows.

¬ ∃n1,n2 : 0 . . c • ∃ currNewError , currDiff : R •
∃ y : R | y = annoutput(layerNo, 1, ⟨currNewError , currDiff ⟩) •

min + n1 × c ⩽ currNewError ⩽ min + (n1 + 1) × c ∧
min + n2 × c ⩽ currDiff ⩽ min + (n2 + 1) × c ∧
y ⩽ (P ∗ (min + n1 × c) +D ∗min + n2 × c)− ϵ
∨
min + n1 × c ⩽ currNewError ⩽ min + (n1 + 1) × c ∧
min + n2 × c ⩽ currDiff ⩽ min + (n2 + 1) × c ∧
y ⩾ (P ∗ (min + n1 × c) +D ∗min + n2 × c) + ϵ

Proof.

¬ ∃ currNewError , currDiff : Value •



CHAPTER 4. VERIFICATION STRATEGY 109

∃ currAngleOut | currAngleOut = P ∗ currNewError +D ∗ currDiff •
{annoutput(layerNo, 1, ⟨currNewError , currDiff ⟩)} ∩
{x : R | |x − currAngleOut | < ϵ} = ∅

= ¬ ∃ currNewError , currDiff : Value •
{annoutput(layerNo, 1, ⟨currNewError , currDiff ⟩)} ∩
{x : R |

∣∣x − (P ∗ currNewError +D ∗ currDiff )
∣∣ < ϵ} = ∅

[one-point rule on currAngleOut ]

= ¬ ∃ currNewError , currDiff : Value •
annoutput(layerNo, 1, ⟨currNewError , currDiff ⟩) ⩽
(P ∗ currNewError +D ∗ currDiff )− ϵ
∨
annoutput(layerNo, 1, ⟨currNewError , currDiff ⟩) ⩾
(P ∗ currNewError +D ∗ currDiff ) + ϵ

[set theory]

= ¬ ∃ currNewError , currDiff :
⋃
{n : 0 . . c • [min + n × c,min + (n + 1)× c] } •

annoutput(layerNo, 1, ⟨currNewError , currDiff ⟩) ⩽
(P ∗ currNewError +D ∗ currDiff )− ϵ
∨
annoutput(layerNo, 1, ⟨currNewError , currDiff ⟩) ⩾
(P ∗ currNewError +D ∗ currDiff ) + ϵ

[introduce set collection version of Value]

= ∀S ,S1 : {n : 0 . . c • [min + n × c,min + (n + 1)× c] } •
¬ ∃ currNewError : S , currDiff : S1 •

annoutput(layerNo, 1, ⟨currNewError , currDiff ⟩) ⩽
(P ∗ currNewError +D ∗ currDiff )− ϵ
∨
annoutput(layerNo, 1, ⟨currNewError , currDiff ⟩) ⩾
(P ∗ currNewError +D ∗ currDiff ) + ϵ

[equivalent condition]

= ∀S ,S1 : {n : 0 . . c • [min + n × c,min + (n + 1)× c] } •
¬ ∃ currNewError , currDiff : R •

currNewError ∈ S ∧
currDiff ∈ S1 ∧
annoutput(layerNo, 1, ⟨currNewError , currDiff ⟩) ⩽
(P ∗ currNewError +D ∗ currDiff )− ϵ
∨
annoutput(layerNo, 1, ⟨currNewError , currDiff ⟩) ⩾
(P ∗ currNewError +D ∗ currDiff ) + ϵ)

[logic]
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= ∀n1,n2 : 0 . . c •
¬ ∃ currNewError , currDiff : R •

currNewError ⩽ min + (n1 + 1) × c ∧
currNewError ⩾ min + n1 × c ∧
currDiff ⩽ min + (n2 + 1) × c ∧
currDiff ⩾ min + n2 × c ∧
annoutput(layerNo, 1, ⟨currNewError , currDiff ⟩) ⩽
(P ∗ currNewError +D ∗ currDiff )− ϵ
∨
annoutput(layerNo, 1, ⟨currNewError , currDiff ⟩) ⩾
(P ∗ currNewError +D ∗ currDiff ) + ϵ)

[set theory]

= ∀n1,n2 : 0 . . c • ¬ ∃ currNewError , currDiff : R •
min + n1 × c ⩽ currNewError ⩽ min + (n1 + 1) × c ∧
min + n2 × c ⩽ currDiff ⩽ min + (n2 + 1) × c ∧
annoutput(layerNo, 1, ⟨currNewError , currDiff ⟩) ⩽

(P ∗ (min + n1 × c) +D ∗min + n2 × c)− ϵ
∨
min + n1 × c ⩽ currNewError ⩽ min + (n1 + 1) × c ∧
min + n2 × c ⩽ currDiff ⩽ min + (n2 + 1) × c ∧
annoutput(layerNo, 1, ⟨currNewError , currDiff ⟩) ⩾

(P ∗ (min + (n1 + 1) × c) +D ∗min + (n2 + 1) × c) + ϵ

[propositional logic]

= ¬ ∃n1,n2 : 0 . . c • ∃ currNewError , currDiff : R •
min + n1 × c ⩽ currNewError ⩽ min + (n1 + 1) × c ∧
min + n2 × c ⩽ currDiff ⩽ min + (n2 + 1) × c ∧
annoutput(layerNo, 1, ⟨currNewError , currDiff ⟩) ⩽

(P ∗ (min + n1 × c) +D ∗min + n2 × c)− ϵ
∨
min + n1 × c ⩽ currNewError ⩽ min + (n1 + 1) × c ∧
min + n2 × c ⩽ currDiff ⩽ min + (n2 + 1) × c ∧
annoutput(layerNo, 1, ⟨currNewError , currDiff ⟩) ⩾

(P ∗ (min + (n1 + 1) × c) +D ∗min + (n2 + 1) × c) + ϵ

[predicate logic]

= ¬ ∃n1,n2 : 0 . . c • ∃ currNewError , currDiff : R •
∃ y : R | y = annoutput(layerNo, 1, ⟨currNewError , currDiff ⟩) •

min + n1 × c ⩽ currNewError ⩽ min + (n1 + 1) × c ∧
min + n2 × c ⩽ currDiff ⩽ min + (n2 + 1) × c ∧
y ⩽ (P ∗ (min + n1 × c) +D ∗min + n2 × c)− ϵ
∨
min + n1 × c ⩽ currNewError ⩽ min + (n1 + 1) × c ∧
min + n2 × c ⩽ currDiff ⩽ min + (n2 + 1) × c ∧
y ⩾ (P ∗ (min + (n1 + 1) × c) +D ∗min + (n2 + 1) × c) + ϵ

[existential introduction]

This verification condition amounts to proving (c+1)× (c+1) conditions: one for each value
of n1 and n2. If any of these conditions fail, Marabou produces a counterexample, where
we identify the assignment of input variables xi that causes the error. This tells us exactly
where the failure is, and the ANN can be retrained using this counterexample [84].
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Lemma 4.1’s constraints form a hyper-rectangle in the domain of an ANN and form a convex
polytope, in inequality form, in the range (see Section 2.3.4). We can use these sets to specify
properties in NNV, ERAN, and Marabou. In particular, NNV and ERAN can handle non-
linear activation functions such as tanh and sigmoid , as well as ReLU . In our approach, we
choose the value of ϵ based on the system’s needs. So, even though Marabou cannot find the
least upper bound for ϵ, this is not necessary in our work.

This concludes the description and automation of our approach to proving the conformance
of robotic systems involving ANN components, defined through the context of RoboChart.

4.7 Final Considerations

This chapter has shown how we can generate, and establish verification conditions concerning
systems involving ANN components (defined in Chapter 3). Our approach is to replace
RoboChart controllers with ANN components, so we generate a specification for the system
based on these RoboChart controllers. We enable this formally by, first, in Sections 4.2 to 4.4,
defining reactive contract patterns for ANN components, and those RoboChart controllers
that we can replace with ANN components. Afterwards, in Sections 4.5 and 4.6, we discuss
how we can generate a specification for the system using these components, and, finally, how
to prove that the system conforms to this specification.

In the following, final, chapter, we discuss our conclusions with respect to the entire project.



Chapter 5

Conclusions

In this thesis, we have defined the first framework that enables the modelling, validation,
and formal verification of robotic software involving neural network components. We have
combined and coordinated multiple notations, tools, and techniques to enable this framework.
In this chapter, we provide a summary of our contributions in Section 5.1, we then give
concluding remarks in Section 5.2, and, lastly, in Section 5.3, we discuss future work.

5.1 Summary

First, in Chapter 2, Sections 2.1 to 2.5, we have described and analysed the tools and
techniques that can be used to verify artificial neural networks in isolation. In particular, we
place a focus on approaches that verify ANNs for control, not for recognition, as generating
specifications concerning such ANNs is an open problem, and existing specifications are of
debatable reliability. To conclude this chapter, in Section 2.6, we perform a novel comparison
of verification tools and techniques. Through this investigation, we determine that Marabou
is the most appropriate tool to integrate into our framework, as it has a dedicated property
specification file, and is both precise and scalable.

We begin the description of our novel framework in Chapter 3, where we discuss how we
can integrate components implemented using ANNs into the context of a robotic system.
We use the RoboChart domain-specific language to reify our ideas, where we define compo-
nents whose behaviour is determined by an artificial neural network. We make the following
significant modelling decisions in this chapter: we model trained feed-forward, fully con-
nected, ReLU activated neural networks. We model this specific type of ANN because it is
widely used and effective for control purposes, and supports tractable verification because
of its piecewise-linearity. Moreover, modelling trained ANNs allows for any of the wide, and
rapidly evolving, training techniques for ANNs to be used.

We complete our framework in Chapter 4 by defining a verification technique specific to
robotic systems involving ANN components as presented in Chapter 3. This technique
involves replacing robotic controllers with ANN components. Through theories presented in
this chapter, we define a method to show that a robotic system involving ANN components
conforms to the behaviour defined by a traditional control algorithm. The limits of this
technique are that the system must contain a cyclic controller, that is, a stateful, memoryless
controller that receives all input events before engaging in output events, and does not
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terminate. Further, our ANN components are limited in form, as discussed, but not in size,
shape, or training method.

We address our research objectives, as defined in Section 1.2, throughout Chapters 3 and 4.
We address our first objective in Section 3.3 through extending RoboChart’s metamodel and
defining well-formedness conditions to support this model. Sections 3.4 and 3.5 fulfil our
second objective by extending the semantics of RoboChart to support these components.
Section 3.6, on the other hand, implements these semantics in JCSP, enabling validation
activities to help establish these objectives.

Our third objective states that we should define a technique that can verify the overall system
model, which enables the verification of system-level specifications. We have addressed this
objective in two stages. First, in Section 4.5, we define and formalise conformance, a property
that we can establish about systems involving ANNs. Then in Section 4.6, we define a
technique to establish conformance for system models involving ANN components.

Building upon our third objective, our fourth objective states that the verification technique
should be automated, taking advantage of existing support for RoboChart. We have defined
two automation approaches in Section 4.6. The first takes advantage of existing support for
RoboChart, namely, the use of the Isabelle proof assistant, and the reactive contract UTP
theory, implemented in the Isabelle/UTP tool. With Theorem 4.3, we define conditions that
we can discharge to Isabelle/UTP, constituting the first automation of our verification tech-
nique. Through Theorem 4.4, we present verification conditions that can be discharged by
SMT solver techniques, enabling automation via these techniques. Finally, through Lemma
4.1, we translate Theorem 4.4 to a format that can be directly interpreted by Marabou,
constituting our second automation method, and fulfilling our fourth objective.

This concludes the summary of the contributions we have made in this work, next, we discuss
our work in a broader context.

5.2 Discussion

The aim of this project was to develop a technique to verify system-level properties of robotic
software involving ANN components, by relating high-level specifications of robotic software
to component-level specifications for ANN components. In our work, we have created a
general strategy to soundly replace existing controllers with ANN components. The strength
of our approach lies in its generality: our strategy can accommodate any stateful behaviour
a controller may exhibit, as long as it is memoryless. Moreover, our strategy allows for
the ANN components to be of any width or depth, as long as they are fully-connected and
ReLU-activated.

Our strategy produces a proof of conformance between a robotic controller and an ANN
component: conformance is refinement with an ϵ tolerance on the outputs as discussed in
Section 4.5. This conformance relation, however, is not a partial order (it is not antisym-
metric or transitive). Due to this, we cannot compare ANN components to other ANN
components, and our conformance relation is not compositional, in general.

A partial order relation between ANNs would require defining another UTP theory to accom-
modate observations that are relevant to machine-learning components. This result could
be appealing, as it could even suggest ways of comparing ANNs to other machine learning
methods.
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The kernel of the approach we did take is to link formal logic and vector-space theory.
We have shown that, under certain circumstances, a predicate on an n-dimensional vector
space is stronger than a predicate in the UTP reactive contract theory, which is a type
of formal logical theory. Particularly, a reachability condition on a function capturing an
ANN’s behaviour is stronger than the conformance relation between controllers and ANN
components, as we prove in Theorem 4.4. This link allows us to use a lower-level specification
language to soundly establish high-level specifications.

This work represents progress towards bridging the gap between formal verification ap-
proaches of software and ANNs. We believe that finding more links between logic and
geometry, a geometric profile of logic, is key to generating understandable, usable, and use-
ful specifications for learning software, to enable a richer understanding of our machines that
learn. Our work represents steps forward in this direction, but it also suggests the potential
for more relations to be found, especially involving retraining and relearning.

Next, we discuss the future work suggested by our thesis.

5.3 Future Work

The future work suggested by this framework can be broadly summarised into three potential
directions. First, directly extending this framework to accommodate more types of neural
network, and linking more tools to address the properties we create in this work. Second,
to generate more techniques to address more types of system-level properties, particularly
involving ANNs for perception. Third, to explore dynamic verification of AI systems, how
we can verify their learning as they explore and adapt to new environments, which could
involve exploring different types of refinement specific to learning components.

An immediate goal is to generalise the ANN components. Our metamodel and semantics
can easily accommodate several activation functions and can be extended to cater for con-
volutional neural networks with minor changes. Various tools and techniques remain appli-
cable because the layer function is piecewise linear. Recurrent neural networks require more
changes; fewer techniques and tools are available, although some are emerging [116].

We can extend the tools we use in our framework in numerous ways. For example, we can
use ERAN [52] to enable verification via abstract interpretation, which can provide support
for a wider variety of ANN types. As another alternative, we can use NNV [19] to carry out
analysis via reachability analysis, which we can use to propagate output spaces back to input
spaces to refine the property. Moreover, this suggests the possibility of defining a toolchain
of ANN-specific tools instead of discharging our proof to a single tool. It would require
techniques to reduce the search space and discharge properties using complete techniques.
It would allow us to verify more extensive and complex ANNs.

A further possibility is to integrate the work by Brucker and Stell in [117], where they also
use Isabelle/HOL, but utilising a different approach to that taken in our work. Their work
describes an approach to use Isabelle/HOL to verify the properties of feed-forward ANNs, in
isolation. Using this approach instead of Marabou to automate the proofs generated using
our framework is feasible, and avoid input and output value restrictions.

Our second direction is generating a verification approach for perception-based ANNs. De-
veloping meaningful specifications for such components is challenging, but there is a growing
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body of work to address this [118]. The goal of this approach would be to guarantee against
certain behaviours and situations instead of a guaranteed error bound.

Finally, we consider approaches that can support the dynamic verification of ANNs, partic-
ularly, new forms of refinement concerning learning components. The work by Dupont et
al. [119] describes an approach based on refinement to deal with robotic systems involving
continuous behaviours. Their approach enables two methods: upwards approximation, where
an approximated system is refined to an exact system; and downwards approximation, where
an exact system is refined to an approximated version of that system. Our work is a type
of upwards approximation: we refine an approximate system into an exact system. Explor-
ing downwards approximation, and approximate refinement with respect to AI components,
however, is an interesting potential future direction.

This work represents progress towards the colossal task of unifying the languages, tools, and
techniques required to enable safe, reliable, and transparent RAAI systems. Our work also
suggests a new perspective of how to use AI, from an angle not concerned with the details
of its creation, but with its form and utility, and contributes to the discussion of how we can
use intelligent machines in the future.



Appendix A

Full Meta-model

We describe the following classes as Ecore classes formatted by the tool OCLinEcore. A
summary of ECore is available 1, and a summary of OCLinEcore is available 2.

Our additions:

1 abstract class ANN

2 {

3 property annparameters : ANNParameters[1] { composes };

4 }

5 class ANNParameters

6 {

7 property insize : IntegerExp[1] { composes };

8 property outsize : IntegerExp[1] { composes };

9 property layerstructure : SeqExp[1] { composes };

10 property weights : SeqExp[?] { composes };

11 property biases : SeqExp[?] { composes };

12 property filename : StringExp[?] { composes };

13 attribute activationfunction : ActivationFunction[1];

14 }

15 enum ActivationFunction { serializable }

16 {

17 literal RELU;

18 literal LINEAR;

19 literal NOTSPECIFIED;

20 }

21 abstract class GeneralController extends Controller;

22

23 class ANNController extends ANN,GeneralController

24 {

25 property events : Event[*] { composes };

26 }

27

28 abstract class GeneralOperation extends Operation, OperationSig;

29

1https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/

package-summary.html
2https://help.eclipse.org/2021-06/index.jsp?topic=\%2Forg.eclipse.ocl.doc\%2Fhelp\

%2FOCLinEcore.html
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30 class ANNOperation extends ANN,GeneralOperation

31 {

32 property rInterface : Interface[1];

33

34 }

Our modifications to the existing metamodel:

1 class RCPackage extends BasicPackage

2 {

3 property interfaces : Interface[*] { composes };

4 property robots : RoboticPlatformDef[*] { composes };

5 property types : TypeDecl[*] { composes };

6 property machines : StateMachineDef[*] { composes };

7 property controllers : GeneralController[*] { composes };

8 property modules : RCModule[*] { composes };

9 property operations : GeneralOperation[*] { composes };

10 property functions : Function[*] { composes };

11 }

12 class OperationDef extends StateMachineBody,GeneralOperation;

13 class OperationRef extends Operation,Reference

14 {

15 property ref : GeneralOperation[1];

16 }

17 class ControllerDef extends Context,GeneralController

18 {

19 property machines : StateMachine[*] { composes };

20 property lOperations : Operation[*] { composes };

21 property connections : Connection[*] { composes };

22 }

23 class ControllerRef extends Controller

24 {

25 property ref : GeneralController[1];

26 }
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UTP Reactive Contract Laws

Here, we present formal material that augments the material presented in Chapter 4. In
Section B.1, we present laws and definitions we have defined to support our work, and in
Section B.2, we present existing laws that we rely on in our work.

B.1 Supporting Laws

In the function layeroutput , the trace contribution tt appears free (through the reference to
input). We would like to reason about the ANN contracts without referring to the complete
trace of the process. To this end, we provide a function nodeoutput which defines the output
event engaged of a given node, without referring to tt . Its parameters are l , the layer index,
n, the node’s index, and in, a numeric sequence of type A, that captures the input of the
ANN component.

Definition B.1 (Node Output Function).

nodeoutput : Z × Z × seqA→ Event

∀ l : 1 . . layerNo; in : seqA • ∀n : 1 . . layerSize(l) •
nodeoutput(l ,n, in) = layerRes.l .n.annoutput(l ,n, in)

We define nodeoutput as the single event layerRes.l .n.annoutput(l ,n, in). Here, the expres-
sion annoutput(l ,n, in) denotes the value communicated by a node indexed by n of layer l .
For example, if we evaluate layeroutput(1, 2, ⟨1, 1⟩), we get layerRes.1.2.annoutput(1, 2, ⟨1, 1⟩).

We note that layercalc calculates the complete event sequence of a layer, while annoutput
calculates just the value communicated by the output event engaged in by a single node. To
illustrate, annoutput(l ,n, in) is equivalent to value(last(layercalc(l ,n, pl))).

We define the function annoutput formally below. It takes identical input parameters as
nodeoutput , but annoutput evaluates to a single numeric value instead of an Event .

Definition B.2 (ANN Output Function).
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annoutput : Z × Z × seqA→ A

∀ l : 0 . . layerNo; in : seqA • ∀n : 1 . . layerSize(l) •
annoutput(0,n, in) = in n ∧
annoutput(l ,n, in) = relu( dotprod( {pn : 1 . . layerSize(l − 1) •

(pn, annoutput(l − 1, pn, in))},
weights l n)

+
biases l n)

We define annoutput using two equations. The first is for the input layer, that returns the
index of the input sequence in according to the node index n. The second captures the result
of any other node, given by the function relu applied to the sum of: the weighted output of
the previous layer, and the biases l n scalar. Here, the previous layer’s results are captured
by the sequence {pn : 1 . . layerSize(l − 1) • (pn, annoutput(l − 1, pn, in))}, that contains
the results, given by annoutput , of all nodes indexed by pn of the previous layer l − 1. We
then capture the weighted sum of this sequence via the function dotprod : given the previous
layer’s results, as above, and the sequence weights l n.

As an example, consider a node in an ANN with the following parameters: layer index 1,
node index 1, weight vector ⟨2,−1⟩, bias scalar 1, and with two input nodes. In this context,
annoutput(1, 1, ⟨1, 1⟩) would evaluate to simply 2.

Next, we define a lemma that formalises the relationship between layeroutput and nodeoutput ,
and the assumption we make about the variable input , that was discussed earlier. That is,
the sequence input contains all input events occurring in order, and the value communicated
by each event is from the set Value. We capture this, below, by introducing separate bound
variables x1, . ., xinsize for each value communicated by an input event.

Lemma B.1. For all layer indices l ∈ 1 . . layerNo and node indices n ∈ 1 . . layerSize(l),
and for a given input sequence input ∈ seqEvent the following holds:

∃ x1, . ., xinsize : Value •
layeroutput(l ,n) =

⌢/ in : 1 . . insize • ⟨layerRes.0.in.xin⟩
⌢
⌢/ p l : 1 . . l − 1 •

⌢/ p n : 1 . . layerSize(p l) •
⟨nodeoutput(p l , p n, ⟨x1, . ., xinsize⟩)⟩

⌢
⌢/ p n : 1 . . n • ⟨nodeoutput(l , p n, ⟨x1, . ., xinsize⟩)⟩

This lemma states that the function layeroutput(l ,n) is equal to the concatenation of three
distributed concatenations (denoted by ⌢/). The first represents the input sequence, and
states that all input events occur in order, and are of the form layerRes.0.in.xin . The
second captures the result of all previous layers, layers before the layer l , where we represent
the previous layers index by p l , and the previous node’s index by p n. Here, we define
the events with the expression nodeoutput(p l , p n, ⟨x1, . ., xinsize⟩), where ⟨x1, . ., xinsize⟩ is
the sequence containing the values communicated by all input events. Lastly, our third
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distributed concatenation captures all nodes up to and including the node n, on the layer
l .

Next, we discuss functions that enable our definitions above.

First, we define our relu function below. If x < 0, then the function evaluates to 0, otherwise
x . We define ReLU as a function on A, which our ANN uses.

Definition B.3 (ReLU).

relu : A→ A

∀ x : Value •
(x < 0⇒ (x , 0) ∈ relu) ∧
(x ⩾ 0⇒ (x , x ) ∈ relu)

We define our sequence dot product function below. It takes two sequences as arguments,
both containing numeric values and of identical size.

Definition B.4 (Sequence Dot Product Function).

dotprod : (seqA × seqA)→ A

∀ s1, s2 : seqA | #s1 = #s2 •
dotprod(⟨⟩, ⟨⟩) = 0
∧
dotprod(s1, s2) =

(head(s1) ∗ head(s1))+
dotprod(tail(s1), tail(s2))

For example, dotprod(⟨1, 2, 3⟩, ⟨2, 3, 4⟩) is the scalar value 20 (2 + 6 + 12). The output value
of a single ANN node can be expressed as the dot product of the two vectors representing
the weights and the previous layer’s output. This dot product is the sum of all elements
multiplied element-wise, so, dotprod captures the vector dot product operator.

Finally, we define the lastn function, which returns a sequence’s last n elements. This
function takes a sequence of a generic type X and an integer quantity of elements to return,
and delivers a sequence of type X as output.

Definition B.5 (Last N Elements Function).

[X ]
lastn : (seqX × Z)→ seqX

∀ s : seqX ; i : N | i ≤ #s • lastn(s, i) = (#s − i . .#s) ↿ s

For lastn(s, i) to be well-defined, we require that i is less than or equal to the size of the
sequence s. This is because we cannot extract more elements from s than exist in s.

We define lastn as taking all elements from s indexed from #s − i to #s, the last section of
the sequence. For example, lastn(⟨1, 2, 3, 4⟩, 2) evaluates to the sequence ⟨3, 4⟩.

The function dropseq takes a sequence of layerRes events and returns a sequence of arithmetic
values corresponding to each layerRes event’s value, denoted by v in layerRes.l .n.v .
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Definition B.6 (Event Drop Function).

dropseq : seqEvent → seqA

∀ s : seqEvent •
dropseq(⟨⟩) = ⟨⟩
∧
dropseq(s) = dropseq(tail(s))⌢ ⟨head(s).4⟩

In the base case, given the empty sequence, we return the empty sequence. In the recursive
case, we take the head of the sequence and return the 4th component of the pair given by
the Event . Here, we consider Event to capture layerRes events.

For example, if we evaluate dropseq given the sequence below:

⟨layerRes.0.1.1, layerRes.0.2.1, layerRes.1.1.6, layerRes.1.2.6⟩

We obtain the sequence ⟨1, 1, 6, 6⟩.

Lemma B.2. The pericondition of the reactive contract capturing SANN Layers is the
pericondition of GeneralANNContract: SANN Layers2 = GeneralANNContract2.

Proof.

(SANN Layers)2

= (SANN InputLayer)2 ∨
(SANN InputLayer)3 ;
( ; l : 1 . . layerNo • SANN Layer(l))2

[Theorem B.1, law (1).]

= (; i : 1 . . insize • (SANN InputNode))2 ∨
(SANN InputLayer)3 ;
( ; l : 1 . . layerNo • SANN Layer(l))2

[unfolding SANN InputLayer ]

= (; i : 1 . . insize • □ v : Value • (Do(layerRes.0.i .v) ; Skip))2 ∨
(SANN InputLayer)3 ;
( ; l : 1 . . layerNo • SANN Layer(l))2

[unfolding SANN InputNode and converting to UTP notation]

= (; i : 1 . . insize • □ v : Value • Do(layerRes.0.i .v))2 ∨
(SANN InputLayer)3 ;
( ; l : 1 . . layerNo • SANN Layer(l))2

[Skip is a right unit of ; in the CSP theory]

= ([ truer ⊢
∃ s : seqEvent | #s = insize ∧ (∀ i : 1 . . insize • ∃ v : Value • s i = layerRes.0.i .v) •

tt prefix s ∧ #tt < #s ∧ wait ′ ∧ ref ′ ⊆ {s (#tt + 1)} ∨ tt = s ∧ ¬ wait ′])2
∨
(SANN InputLayer)3 ;
( ; l : 1 . . layerNo • SANN Layer(l))2

[Lemma B.8]
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= ([ truer ⊢
∃ s : seqEvent | #s = insize ∧ (∀ i : 1 . . insize • ∃ v : Value • s i = layerRes.0.i .v) •

input prefix s ∧ #input < #s ∧ wait ′ ∧ ref ′ ⊆ {s (#input + 1)} ∧ tt = input ∨
tt = s ∧ tt = input ∧ ¬ wait ′])2

∨
(SANN InputLayer)3 ;
( ; l : 1 . . layerNo • SANN Layer(l))2

[tt = input when #tt ⩽ insize]

= ([ truer ⊢
∃ s : seqEvent | #s = insize ∧ (∀ i : 1 . . insize • ∃ v : Value • s i = layerRes.0.i .v) •

input prefix s ∧ #input < #s ∧ wait ′ ∧ ref ′ ⊆ {| layerRes.0.(#input + 1) |}
∧ tt = input
∨
tt = s ∧ tt = input ∧ ¬ wait ′])2

∨
(SANN InputLayer)3 ;
( ; l : 1 . . layerNo • SANN Layer(l))2

[{s(#input + 1)} ⊆ {| layerRes.0.(#input + 1) |}]

= ([ truer ⊢
∃ s : seqEvent | #s = insize ∧ (∀ i : 1 . . insize • ∃ v : Value • s i = layerRes.0.i .v) •

input prefix s ∧ #input < insize ∧ wait ′ ∧ ref ′ ⊆ {| layerRes.0.(#input + 1) |}
∧ tt = input
∨
tt = s ∧ tt = input¬ wait ′])2

∨
(SANN InputLayer)3 ;
( ; l : 1 . . layerNo • SANN Layer(l))2

[#s = insize]

= ([ truer ⊢
∃ s : seqEvent | #s = insize ∧ (∀ i : 1 . . insize • ∃ v : Value • s i = layerRes.0.i .v) •

input prefix s ∧ #input < insize ∧ wait ′ ∧ ref ′ ⊆ {| layerRes.0.(#input + 1) |}
∧ tt = input

∨
∃ s : seqEvent | #s = insize ∧ (∀ i : 1 . . insize • ∃ v : Value • s i = layerRes.0.i .v) •

tt = s ∧ tt = input ∧ ¬ wait ′])2

∨
(SANN InputLayer)3 ;
( ; l : 1 . . layerNo • SANN Layer(l))2

[∃ distributes through ∨]
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= ([ truer ⊢
(∃ s : seqEvent | #s = insize ∧ (∀ i : 1 . . insize • ∃ v : Value • s i = layerRes.0.i .v) •

input prefix s)
∧
#input < insize ∧ wait ′ ∧ ref ′ ⊆ {| layerRes.0.(#input + 1) |} ∧ tt = input
∨
∃ s : seqEvent | #s = insize ∧ (∀ i : 1 . . insize • ∃ v : Value • s i = layerRes.0.i .v) •

tt = s ∧ tt = input ∧ ¬ wait ′])2

∨
(SANN InputLayer)3 ;
( ; l : 1 . . layerNo • SANN Layer(l))2

[predicate calculus]

= ([ truer ⊢
#input < insize ∧ wait ′ ∧ ref ′ ⊆ {| layerRes.0.(#input + 1) |} ∧ tt = input
∨
∃ s : seqEvent | #s = insize ∧ (∀ i : 1 . . insize • ∃ v : Value • s i = layerRes.0.i .v) •

tt = s ∧ tt = input ∧ ¬ wait ′])2
∨
(SANN InputLayer)3 ;
( ; l : 1 . . layerNo • SANN Layer(l))2

[definition of input and propositional calculus]

= ([ truer ⊢
#input < insize ∧ wait ′ ∧ ref ′ ⊆ {| layerRes.0.(#input + 1) |} ∧ tt = input
∨
tt = input ∧ ¬ wait ′])2

∨
(SANN InputLayer)3 ;
( ; l : 1 . . layerNo • SANN Layer(l))2

[one-point rule and definition of input ]

= ([truer ⊢ #input < insize ∧ E [input , {| layerRes.0.(#input + 1) |}]
| #input = insize ∧ Φ[input ]])2

∨
(SANN InputLayer)3 ;
( ; l : 1 . . layerNo • SANN Layer(l))2

[Def. B.14, Def.B.13, and input definition]

= (#input < insize ∧ E [input , {| layerRes.0.(#input + 1) |}])
∨
(SANN InputLayer)3 ;
( ; l : 1 . . layerNo • SANN Layer(l))2

[pericondition extraction (Theorem B.3)]

= (#input < insize ∧ E [input , {| layerRes.0.(#input + 1) |}])
∨
([truer ⊢ #input < insize ∧ E [input , {| layerRes.0.(#input + 1) |}]
| #input = insize ∧ Φ[input ]])3 ;

( ; l : 1 . . layerNo • SANN Layer(l))2

[argument similar to the above]
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= (#input ⩽ insize ∧ E [input , {| layerRes.0.(#input + 1) |}])
∨
(#input = insize ∧ Φ[input ]) ;
( ; l : 1 . . layerNo • SANN Layer(l))2

[postcondition extraction (Theorem B.3)]

= (#input ⩽ insize ∧ E [input , {| layerRes.0.(#input + 1) |}])
∨
(#input = insize ∧ Φ[input ]) ;
( ; l : 1 . . layerNo • ; n : 1 . . layerSize(l) • ∀ in : seqValue | #in = insize •

Do(layerRes.l .n.annoutput(l ,n, in)))2

[unfolding SANN Layer(l) and SANN Node, and Skip is a right unit of ;]

= (#input ⩽ insize ∧ E [input , {| layerRes.0.(#input + 1) |}])
∨
(#input = insize ∧ Φ[input ]) ;
( ; l : 1 . . layerNo • ; n : 1 . . layerSize(l) • ∀ in : seqValue | #in = insize •

Do(nodeoutput(l ,n, in)))2

[equivalent to nodeoutput(l ,n, in), Def. B.1]

= (#input ⩽ insize ∧ E [input , {| layerRes.0.(#input + 1) |}])
∨
(#input = insize ∧ Φ[input ]) ;
([ truer
⊢
∃ l : 1 . . layerNo; n : 1 . . layerSize(l) •

∀ in : seqValue | #in = insize •
E [ ⌢/ pl : 1 . . (l − 1); pn : 1 . . layerSize(pl) • ⟨nodeoutput(pl , pn, in)⟩

⌢
⌢/ cn : 1 . . (n − 1) • ⟨nodeoutput(l , cn, in)⟩, {nodeoutput(l ,n, in)}]

|
∀ in : seqValue | #in = insize •

Φ[⌢/ l : 1 . . layerNo; n : 1 . . layerSize(l) • ⟨nodeoutput(l ,n, in)⟩]])2
[Lemma B.9, here E is layerSize]

= (#input ⩽ insize ∧ E [input , {| layerRes.0.(#input + 1) |}])
∨
(#input = insize ∧ Φ[input ]) ;
∃ l : 1 . . layerNo • ∃n : 1 . . layerSize(l) •

∀ in : seqValue | #in = insize •
E [ ⌢/ pl : 1 . . (l − 1); pn : 1 . . layerSize(pl) • ⟨nodeoutput(pl , pn, in)⟩

⌢
⌢/ cn : 1 . . (n − 1) • ⟨nodeoutput(l , cn, in)⟩, {nodeoutput(l ,n, in)}]

[pericondition extraction, Theorem B.3]
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= (#input ⩽ insize ∧ E [input , {| layerRes.0.(#input + 1) |}])
∨
#input = insize ∧
∃ l : 1 . . layerNo • ∃n : 1 . . layerSize(l) •

∀ in : seqValue | #in = insize •
E [ input⌢

⌢/ pl : 1 . . (l − 1); pn : 1 . . layerSize(pl) • ⟨nodeoutput(pl , pn, in)⟩
⌢
⌢/ cn : 1 . . (n − 1) • ⟨nodeoutput(l , cn, in)⟩, {nodeoutput(l ,n, in)}]

[sequential composition, Theorem B.1]

= (#input ⩽ insize ∧ E [input , {| layerRes.0.(#input + 1) |}])
∨
#input = insize ∧
∃ l : 1 . . layerNo • ∃n : 1 . . layerSize(l) •

∀ in : seqValue; x1, . ., xinsize : Value | in = #insize •
E [ ⌢/n : 1 . . insize • ⟨layerRes.0.n.xn⟩

⌢
⌢/ pl : 1 . . (l − 1); pn : 1 . . layerSize(pl) • ⟨nodeoutput(pl , pn, in)⟩
⌢
⌢/ cn : 1 . . (n − 1) • ⟨nodeoutput(l , cn, in)⟩,
{nodeoutput(l ,n, in)}]

[input assumption]

= (#input ⩽ insize ∧ E [input , {| layerRes.0.(#input + 1) |}])
∨
#input = insize ∧
∃ l : 1 . . layerNo • ∃n : 1 . . layerSize(l) •

∀ x1, . ., xinsize : Value •
E [ ⌢/n : 1 . . insize • ⟨layerRes.0.n.xn⟩

⌢
⌢/ pl : 1 . . (l − 1); pn : 1 . . layerSize(pl) •

⟨nodeoutput(pl , pn,⌢/ in : 1 . . insize • ⟨xin⟩)⟩
⌢
⌢/ cn : 1 . . (n − 1) • ⟨nodeoutput(l , cn,⌢/ in : 1 . . insize • ⟨xin⟩)⟩,
{nodeoutput(l ,n,⌢/ in : 1 . . insize • ⟨xin⟩)}]

[in must contain all input variables x ]

= (#input ⩽ insize ∧ E [input , {| layerRes.0.(#input + 1) |}])
∨
#input = insize ∧
∃ l : 1 . . layerNo • ∃n : 1 . . layerSize(l) •

∀ x1, . ., xinsize : Value •
E [ ⌢/n : 1 . . insize • ⟨layerRes.0.n.xn⟩

⌢
⌢/ pl : 1 . . (l − 1); pn : 1 . . layerSize(pl) •

⟨nodeoutput(pl , pn, ⟨x1, . ., xinsize⟩)⟩
⌢
⌢/ cn : 1 . . (n − 1) • ⟨nodeoutput(l , cn, ⟨x1, . ., xinsize⟩)⟩,
{nodeoutput(l ,n, ⟨x1, . ., xinsize⟩)}]
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[introduce shorthand]

= (#input ⩽ insize ∧ E [input , {| layerRes.0.(#input + 1) |}])
∨
#input = insize ∧
∃ l : 1 . . layerNo • ∃n : 1 . . layerSize(l) •

E [front ◦ layeroutput(l ,n), {last ◦ layeroutput(l ,n)}]
[Lemma B.1, and nodeoutput = last ◦ layeroutput in this context]

= GeneralANNContract2 [Def. 4.1]

Lemma B.3. The postcondition of the reactive contract capturing SANN Layers is the
postcondition of GeneralANNContract: SANN Layers3 = GeneralANNContract3.

Proof.

(SANN Layers)3

= (SANN InputLayer)3 ;
(; l : 1 . . layerNo • SANN Layer(l))3

[unfolding SANN Layers, law (1)-Theorem B.1, definition of (P)3]

= (; i : 1 . . insize • (SANN InputNode))3 ;
(; l : 1 . . layerNo • SANN Layer(l))3

[unfolding SANN InputLayer ]

= (; i : 1 . . insize • □ v : Value • (Do(layerRes.0.i .v) ; Skip))3 ;
(; l : 1 . . layerNo • SANN Layer(l))3

[unfolding SANN InputNode and converting to UTP notation]

= (; i : 1 . . insize • □ v : Value • Do(layerRes.0.i .v))3 ;
(; l : 1 . . layerNo • SANN Layer(l))3

[Skip is a right unit of ; in the CSP theory]

= ([ truer ⊢
∃ s : seqEvent | #s = insize ∧ (∀ i : 1 . . insize • ∃ v : Value • s i = layerRes.0.i .v) •

tt prefix s ∧ #tt < #s ∧ wait ′ ∧ ref ′ ⊆ {s (#tt + 1)} ∨ tt = s ∧ ¬ wait ′])3 ;
( ; l : 1 . . layerNo • SANN Layer(l))3

[Lemma B.8]

= ([ truer ⊢
∃ s : seqEvent | #s = insize ∧ (∀ i : 1 . . insize • ∃ v : Value • s i = layerRes.0.i .v) •

input prefix s ∧ #input < #s ∧ wait ′ ∧ ref ′ ⊆ {s (#input + 1)} ∧ tt = input ∨
tt = s ∧ tt = input ∧ ¬ wait ′])3 ;

( ; l : 1 . . layerNo • SANN Layer(l))3

[tt = input when #tt ⩽ insize]

= ([ truer ⊢
∃ s : seqEvent | #s = insize ∧ (∀ i : 1 . . insize • ∃ v : Value • s i = layerRes.0.i .v) •

input prefix s ∧ #input < #s ∧ wait ′ ∧ ref ′ ⊆ {| layerRes.0.(#input + 1) |}
∧ tt = input
∨
tt = s ∧ tt = input ∧ ¬ wait ′])3 ;

( ; l : 1 . . layerNo • SANN Layer(l))3

[{s(#input + 1)} ⊆ {| layerRes.0.(#input + 1) |}]
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= ([ truer ⊢
∃ s : seqEvent | #s = insize ∧ (∀ i : 1 . . insize • ∃ v : Value • s i = layerRes.0.i .v) •

input prefix s ∧ #input < insize ∧ wait ′ ∧ ref ′ ⊆ {| layerRes.0.(#input + 1) |}
∧ tt = input
∨
tt = s ∧ tt = input ∧ ¬ wait ′])3

( ; l : 1 . . layerNo • SANN Layer(l))3

[#s = insize]

= ([ truer ⊢
∃ s : seqEvent | #s = insize ∧ (∀ i : 1 . . insize • ∃ v : Value • s i = layerRes.0.i .v) •

input prefix s ∧ #input < insize ∧ wait ′ ∧ ref ′ ⊆ {| layerRes.0.(#input + 1) |}
∧ tt = input

∨
∃ s : seqEvent | #s = insize ∧ (∀ i : 1 . . insize • ∃ v : Value • s i = layerRes.0.i .v) •

tt = s ∧ tt = input ∧ ¬ wait ′])3 ;
( ; l : 1 . . layerNo • SANN Layer(l))3

[∃ distributes through ∨]

= ([ truer ⊢
(∃ s : seqEvent | #s = insize ∧ (∀ i : 1 . . insize • ∃ v : Value • s i = layerRes.0.i .v) •

input prefix s)
∧
#input < insize ∧ wait ′ ∧ ref ′ ⊆ {| layerRes.0.(#input + 1) |} ∧ tt = input
∨
∃ s : seqEvent | #s = insize ∧ (∀ i : 1 . . insize • ∃ v : Value • s i = layerRes.0.i .v) •

tt = s ∧ tt = input ∧ ¬ wait ′])3 ;
( ; l : 1 . . layerNo • SANN Layer(l))3

[predicate calculus]

= ([ truer ⊢
#input < insize ∧ wait ′ ∧ ref ′ ⊆ {| layerRes.0.(#input + 1) |} ∧ tt = input
∨
∃ s : seqEvent | #s = insize ∧ (∀ i : 1 . . insize • ∃ v : Value • s i = layerRes.0.i .v) •

tt = s ∧ tt = input ∧ ¬ wait ′])3 ;
( ; l : 1 . . layerNo • SANN Layer(l))3

[definition of input and propositional calculus]

= ([ truer ⊢
#input < insize ∧ wait ′ ∧ ref ′ ⊆ {| layerRes.0.(#input + 1) |} ∧ tt = input
∨
tt = input ∧ ¬ wait ′])3 ;

( ; l : 1 . . layerNo • SANN Layer(l))3

[one-point rule and definition of input , s has property of tt (input)]

= ([truer ⊢ #input < insize ∧ E [input , {| layerRes.0.(#input + 1) |}]
| #input = insize ∧ Φ[input ]])3 ;

( ; l : 1 . . layerNo • SANN Layer(l))3

[Def. B.14, Def.B.13, and input definition]

= (#input = insize ∧ Φ[input ]) ;
( ; l : 1 . . layerNo • SANN Layer(l))3

[postcondition extraction (Theorem B.3)]

= (#input = insize ∧ Φ[input ]) ;
( ; l : 1 . . layerNo • ; n : 1 . . layerSize(l) • ∀ in : seqEvent | #in = insize •

Do(layerRes.l .n.annoutput(l ,n, in)))3

[unfolding SANN Layer(l), Skip is a right unit of ; and Do is NCSP -healthy]
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= (#input = insize ∧ Φ[input ]) ;
( ; l : 1 . . layerNo • ; n : 1 . . layerSize(l) • ∀ in : seqEvent | #in = insize •

Do(nodeoutput(l ,n, in)))3

[equivalent to nodeoutput(l ,n, in) by Def.B.1]

= (#input = insize ∧ Φ[input ]) ;
([ truer
⊢
∃ l : 1 . . layerNo • ∃n : 1 . . layerSize(l) •

∀ in : seqValue | #in = insize •
E [ ⌢/ pl : 1 . . (l − 1); pn : 1 . . layerSize(pl) • ⟨nodeoutput(pl , pn, in)⟩

⌢
⌢/ cn : 1 . . (n − 1) • ⟨nodeoutput(l , cn, in)⟩, {nodeoutput(l ,n, in)}]

|
∀ in : seqValue | #in = insize •

Φ[⌢/ l : 1 . . layerNo; n : 1 . . layerSize(l) • ⟨nodeoutput(l ,n, in)⟩]])3
[Lemma B.9, here, E is layerSize]

= (#input = insize ∧ Φ[input ]) ;
∀ in : seqValue | #in = insize •

Φ[⌢/ l : 1 . . layerNo; n : 1 . . layerSize(l) • ⟨nodeoutput(l ,n, in)⟩]

[postcondition extraction, Theorem B.3]

= #input = insize ∧
∀ in : seqValue | #in = insize •

Φ[ input
⌢
⌢/ l : 1 . . layerNo • ⌢/n : 1 . . layerSize(l) • ⟨nodeoutput(l ,n, in)⟩]

[sequential composition, Theorem B.1]

= #input = insize ∧
∀ in : seqValue; x1, . ., xinsize : Value | #in = insize •

Φ[ ⌢/n : 1 . . insize • ⟨layerRes.0.n.xn⟩
⌢
⌢/ l : 1 . . layerNo • ⌢/n : 1 . . layerSize(l) • ⟨nodeoutput(l ,n, in)⟩]

[input assumption]

= #input = insize ∧
∀ x1, . ., xinsize : Value •

Φ[ ⌢/n : 1 . . insize • ⟨layerRes.0.n.xn⟩
⌢
⌢/ l : 1 . . layerNo • ⌢/n : 1 . . layerSize(l) •

⟨nodeoutput(l ,n,⌢/n : 1 . . insize • ⟨xn⟩)⟩]
[in must contain all input variables x ]

= #input = insize ∧ Φ[layeroutput(layerNo, layerSize(l))]

[equivalent to layeroutput(layerNo, layerSize(l) by Lemma B.1]

= GeneralANNContract3 [Def. 4.1]

Lemma B.4 (seqapprox (ϵ) reflexivity).

∀ s : seqEvent | ran s ⊆ (I ∪O) • s seqapprox (ϵ) s
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given ϵ is a non-negative real number.

Proof.

∀ s : seqEvent • s seqapprox (ϵ) s

= ∀ s1, s2, s3 : seqEvent | s2 = s1 ↾ (I ∪O) ∧ #t = #s2 •
(s1, s3) ∈ seqapprox (ϵ)⇔

∀ i : dom s2 •
(s2(i) ∈ I ⇒ s3(i) = s2(i)) ∧
(s2(i) ∈ O ⇒ ev(s3(i)) = ev(s2(i)) ∧

∃ r : (−ϵ, ϵ) • value(s3(i)) = value(s2(i)) + r)

s1 = s
t = s

[unfolding seqapprox , Definition 4.6]

= ∀ s, s2 : seqEvent | s2 = s ↾ (I ∪O) ∧ #s = #s •
(s, s) ∈ seqapprox (ϵ)⇔

∀ i : dom s2 •
(s(i) ∈ I ⇒ s(i) = s2(i)) ∧
(s2(i) ∈ O ⇒ ev(s(i)) = ev(s2(i)) ∧

∃ r : (−ϵ, ϵ) • value(s(i)) = value(s2(i)) + r)

[substitute [s/s1] and [s/s3]]

= ∀ s : seqEvent •
(s, s) ∈ seqapprox (ϵ)⇔

∀ i : dom(s ↾ (I ∪O)) •
(s(i) ∈ I ⇒ s(i) = (s ↾ (I ∪O))(i)) ∧
((s ↾ (I ∪O))(i) ∈ O ⇒

ev(s(i)) = ev((s ↾ (I ∪O))(i)) ∧
∃ r : (−ϵ, ϵ) •

value(s(i)) = value((s ↾ (I ∪O))(i)) + r)

[one-point s2]

= ∀ s : seqEvent •
(s, s) ∈ seqapprox (ϵ)⇔

∀ i : dom s •
(s(i) ∈ I ⇒ s(i) = s(i) ∧
(s(i) ∈ O ⇒ ev(s(i)) = ev(s(i)) ∧

∃ r : (−ϵ, ϵ) • value(s(i)) = value(s(i) + r)

[s ↾ (I ∪O) = s, because ran s ⊆ (I ∪O)]

= ∀ s : seqEvent •
(s, s) ∈ seqapprox (ϵ)⇔

∀ i : dom s •
(s(i) ∈ I ⇒ true ∧
(s(i) ∈ O ⇒ ev(s(i)) = ev(s(i)) ∧

∃ r : (−ϵ, ϵ) • value(s(i)) = value(s(i) + r)

[equality]

= ∀ s : seqEvent •
(s, s) ∈ seqapprox (ϵ)⇔

∀ i : dom s •
(s(i) ∈ O ⇒ ev(s(i)) = ev(s(i)) ∧

∃ r : (−ϵ, ϵ) • value(s(i)) = value(s(i) + r)

[any predicate is stronger than true]
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= ∀ s : seqEvent •
(s, s) ∈ seqapprox (ϵ)⇔

∀ i : dom s •
(s(i) ∈ O ⇒ ∃ r : (−ϵ, ϵ) • value(s(i)) = value(s(i) + r)

[equality]

= ∀ s : seqEvent •
(s, s) ∈ seqapprox (ϵ)⇔

∀ i : dom s •
(s(i) ∈ O ⇒ value(s(i)) = value(s(i)) + 0

[select a witness, for r : 0, which is in the open range (−ϵ, ϵ)]

= ∀ s : seqEvent •
(s, s) ∈ seqapprox (ϵ)⇔

∀ i : dom s •
(s(i) ∈ O ⇒ true)

[arithmetic]

= ∀ s : seqEvent •
(s, s) ∈ seqapprox (ϵ)⇔

∀ i : dom s •
true

[implication]

Lemma B.5 (seqapprox (ϵ) output events).

∀ s, s3 : seqEvent | (ran s ∪ ran s3) ⊆ O ∧ #s = #s3 •
s seqapprox (ϵ) s3 ⇔ ∀ i : dom s •

∣∣value(t(i))− value(s(i))
∣∣ < ϵ

given ϵ is a non-negative real number, and that the event names given by event are identical
for each index.

Proof.

∀ s, s3 : seqEvent | (ran s ∪ ran s3) ⊆ O ∧ #s = #s3 • s seqapprox (ϵ) s3

= ∀ s, s3 : seqEvent | (ran s ∪ ran s3) ⊆ O ∧ #s = #t •
∀ s2 : seqEvent | s2 = s1 ↾ (I ∪O) ∧ #t = #s2 •

∀ i : dom s2 • (s2(i) ∈ I ⇒ t(i) = s2(i)) ∧
(s2(i) ∈ O ⇒ ev(s3(i)) = ev(s2(i)) ∧

∃ r : (−ϵ, ϵ) • value(s3(i)) = value(s2(i)) + r)

[unfolding seqapprox , Definition 4.6]

= ∀ s, s3 : seqEvent | (ran s ∪ ran s3) ⊆ O ∧ #s = #s3 •
∀ i : dom s •

(s(i) ∈ I ⇒ s3(i) = s(i)) ∧
(s(i) ∈ O ⇒ ev(s3(i)) = ev(s(i)) ∧

∃ r : (−ϵ, ϵ) • value(s3(i)) = value(s(i)) + r)

[s2 = s, because ran s ⊆ O ]

= ∀ s, s3 : seqEvent | (ran s ∪ ran s3) ⊆ O ∧ #s = #s3 •
∀ i : dom s •

(s(i) ∈ O ⇒ ev(s3(i)) = ev(s(i)) ∧
∃ r : (−ϵ, ϵ) • value(s3(i)) = value(s(i)) + r)

[ran(s) ⊆ O , so s(i) ∈ I is false]
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= ∀ s, s3 : seqEvent | (ran s ∪ ran s3) ⊆ O ∧ #s = #s3 •
∀ i : dom s •

(s(i) ∈ O ⇒ ∃ r : (−ϵ, ϵ) • value(s3(i)) = value(s(i)) + r)

[given the event names are the same]

= ∀ s, s3 : seqEvent | (ran s ∪ ran s3) ⊆ O ∧ #s = #s3 •
∀ i : dom s •

∃ r : (−ϵ, ϵ) • value(s3(i)) = value(s(i)) + r

[s(i) ∈ O always true]

= ∀ s, s3 : seqEvent | (ran s ∪ ran s3) ⊆ O ∧ #s = #s3 •
∀ i : dom s •

∃ r : R | −ϵ < r < ϵ • value(s3(i)) = value(s(i)) + r

[definition of open interval]

= ∀ s, s3 : seqEvent | (ran s ∪ ran s3) ⊆ O ∧ #s = #s3 •
∀ i : dom s •

∃ r : R • value(s3(i)) = value(s(i)) + r ∧
−ϵ < r < ϵ

[existential quantification laws]

= ∀ s, s3 : seqEvent | (ran s ∪ ran s3) ⊆ O ∧ #s = #s3 •
∀ i : dom s •

∃ r : R • r = value(s3(i))− value(s(i)) ∧
−ϵ < r < ϵ

[arithmetic]

= ∀ s, s3 : seqEvent | (ran s ∪ ran s3) ⊆ O ∧ #s = #s3 •
∀ i : dom s •

−ϵ < value(s3(i))− value(s(i)) < ϵ

[one-point rule on r ]

= ∀ s, s3 : seqEvent | (ran s ∪ ran s3) ⊆ O ∧ #s = #s3 •
∀ i : dom s •∣∣value(s3(i))− value(s(i))

∣∣ < ϵ

[arithmetic]

Lemma B.6 (setapprox (ϵ) reflexivity).

∀ r : PEvent | r ⊆ (I ∪O) • r setapprox (ϵ) r

given ϵ is a non-negative real number.

Proof.

r setapprox (ϵ) r
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= ∀ r1, r2, r : PEvent | r2 = r1 ∩ (I ∪O) ∧ #r = #r2 •
(r1, r) ∈ setapprox (ϵ)⇔

∀ e : r2 •
(e ∈ I ⇔ e ∈ r) ∧
(e ∈ O ⇔ ∃ e1 : r • ev(e) = ev(e1) ∧

∃ c : (−ϵ, ϵ) • value(e) = value(e1) + c)

r1 = r

[setapprox (ϵ) definition 4.7]

= ∀ r , r2 : PEvent | r2 = r ∩ (I ∪O) ∧ #r = #r2 •
(r , r) ∈ setapprox (ϵ)⇔

∀ e : r2 •
(e ∈ I ⇔ e ∈ r) ∧
(e ∈ O ⇔ ∃ e1 : r • ev(e) = ev(e1) ∧

∃ c : (−ϵ, ϵ) • value(e) = value(e1) + c)

[equality substitution]

= ∀ r : PEvent •
(r , r) ∈ setapprox (ϵ)⇔

∀ e : r •
(e ∈ I ⇔ e ∈ r) ∧
(e ∈ O ⇔ ∃ e1 : r • ev(e) = ev(e1) ∧

∃ c : (−ϵ, ϵ) • value(e) = value(e1) + c)

[r2 = r , as r1 ⊆ I ∪O ]

= ∀ r : PEvent •
(r , r) ∈ setapprox (ϵ)⇔

∀ e : r •
(e ∈ I ⇔ e ∈ r) ∧
(e ∈ O ⇔ ev(e) = ev(e) ∧

∃ c : (−ϵ, ϵ) • value(e) = value(e) + c)

[select witness for e1: e]

= ∀ r : PEvent •
(r , r) ∈ setapprox (ϵ)⇔

∀ e : r •
(e ∈ O ⇔ ∃ c : (−ϵ, ϵ) • value(e) = value(e) + c)

[discharge input constraint and ev(e) = ev(e)]

= ∀ r : PEvent •
(r , r) ∈ setapprox (ϵ)⇔

∀ e : r •
(e ∈ O ⇔ value(e) = value(e) + 0)

[witness for c: 0]

= ∀ r : PEvent •
(r , r) ∈ setapprox (ϵ)⇔

∀ e : r •
true

[arithmetic]
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Lemma B.7 (setapprox (ϵ) output events).

∀ r1, r : seqEvent | (r1 ∪ r) ⊆ O ∧ #r1 = #r •
r1 setapprox (ϵ) r ⇔ ∀ e : r1 • ∃ e1 : r •

∣∣value(e)− value(e1)
∣∣ < ϵ

given that ϵ is a non-negative real number, and that for every event in r1, there exists a
corresponding event in r with the same identifier as r1.

Proof.

∀ r1, r : seqEvent | (r1 ∪ r) ⊆ O ∧ #r1 = #r • r1 setapprox (ϵ) r
= ∀ r1, r : seqEvent | (r1 ∪ r) ⊆ O ∧ #r1 = #r •

∀ r2 : PEvent | r2 = r1 ∩ (I ∪O) ∧ #r = #r2 •
∀ e : r2 •

(e ∈ I ⇔ e ∈ r) ∧
(e ∈ O ⇔ ∃ e1 : r • ev(e) = ev(e1) ∧

∃ c : (−ϵ, ϵ) • value(e) = value(e1) + c)

[setapprox (ϵ), Definition 4.7]

= ∀ r1, r : seqEvent | (r1 ∪ r) ⊆ O ∧ #r1 = #r •
∀ e : r1 •

(e ∈ I ⇔ e ∈ r) ∧
(e ∈ O ⇔ ∃ e1 : r • ev(e) = ev(e1) ∧

∃ c : (−ϵ, ϵ) • value(e) = value(e1) + c)

[r2 = r1, r1 ⊆ O ]

= ∀ r1, r : seqEvent | (r1 ∪ r) ⊆ O ∧ #r1 = #r •
∀ e : r1 •

∃ e1 : r • ev(e) = ev(e1) ∧
∃ c : (−ϵ, ϵ) • value(e) = value(e1) + c

[from predicate r1 ⊆ O ]

= ∀ r1, r : seqEvent | (r1 ∪ r) ⊆ O ∧ #r1 = #r •
∀ e : r1 •

∃ e1 : r • ∃ c : (−ϵ, ϵ) • value(e) = value(e1) + c

[assumption about event ]

= ∀ r1, r : seqEvent | (r1 ∪ r) ⊆ O ∧ #r1 = #r •
∀ e : r1 •

∃ e1 : r • ∃ c : R | −ϵ < c < ϵ • value(e) = value(e1) + c

[definition of open interval]

= ∀ r1, r : seqEvent | (r1 ∪ r) ⊆ O ∧ #r1 = #r •
∀ e : r1 •

∃ e1 : r • ∃ c : R • value(e) = value(e1) + c ∧
−ϵ < c < ϵ

[existential quantification laws]
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= ∀ r1, r : seqEvent | (r1 ∪ r) ⊆ O ∧ #r1 = #r •
∀ e : r1 •

∃ e1 : r • ∃ c : R • c = value(e)− value(e1) ∧
−ϵ < c < ϵ

[arithmetic]

= ∀ r1, r : seqEvent | (r1 ∪ r) ⊆ O ∧ #r1 = #r •
∀ e : r1 •

∃ e1 : r • −ϵ < value(e)− value(e1) < ϵ

[one-point rule on c]

= ∀ r1, r : seqEvent | (r1 ∪ r) ⊆ O ∧ #r1 = #r •
∀ e : r1 • ∃ e1 : r •

∣∣value(e)− value(e1)
∣∣ < ϵ

[arithmetic]

Lemma B.8. Given a an event c.i .v, a communication on the channel c, where v is of a
type V , the following holds for all i ∈ 1 . . n, where n ⩾ 1:

; i : 1 . . n • □v ∈ V • Do(c.i .v) =
[truer
⊢
∃ s : seqEvent | #s = n ∧ (∀ i : 1 . . n • ∃ v : V • s i = c.i .v) •

tt prefix s ∧ #tt < #s ∧ wait ′ ∧ ref ′ ⊆ {s (#tt + 1)} ∨
tt = s ∧ ¬ wait ′

]

Lemma B.9. Given an expression e(i , j ), of type Event, where i ∈ 1 . .n, and j ∈ 1 . .E (i),
where E (i) is an expression returning a natural number, based on i, where, for all n ⩾ 1
and m ⩾ 1, the following holds:

; i : 1 . . n • (; j : 1 . . E (i) • Do(e(i , j ))) =
[ truer
⊢
∃ i : 1 . . n • ∃ j : 1 . . E (i) •
E [ (⌢/ pi : 1 . . (i − 1); pj : 1 . . E (pi) • ⟨e(pi , pj )⟩)⌢⌢/ cj : 1 . . (j − 1) • ⟨e(i , cj )⟩,
{e(i , j )}]

|
Φ[⌢/ i : 1 . . n; j : 1 . . E (i) • ⟨e(i , j )⟩]
]

First, though, we define a simple function which hides events from sequences of events.

Definition B.7 (Sequence Hiding).

[X ]
shide : (seqX × PX )→ seqX

∀ s : seqX ; E : PX • s shide E = s ↾ (ran s \ E )
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To illustrate, consider the expression ⟨a, b, c⟩ shide {b}, here: ran s is {a, b, c}, E is {b},
and therefore ran s \ E is {a, b}, so in the definition above, we get ⟨a, b, c⟩ ↾ {a, c}, which is
⟨a, c⟩.

Given this definition, we now define notation to capture hiding for our ANN contracts. As our
hiding is specific to a type of reactive contract, we require a different operator for pre, peri,
and postcondition hiding. Still, since we have a true precondition, we only need operators for
the peri and postconditions. We denote our hiding operators for the peri and postconditions
using \peri and \post , and we present their characteristic predicates below.

Definition B.8 (ANN Contract Event Hiding). Given a hidden event set E, and that no
input event is hidden.

GeneralANNContract2 \peri E ⇔
#input < insize ∧ E [input , {| layerRes.0.(#input + 1) |}]
∨
#input = insize ∧
∃ l : 1..layerNo • ∃n : 1..layerSize(l) •

CRR(tt = (front ◦ layeroutput(l ,n)) shide E ∧ last ◦ layeroutput(l ,n) /∈ E ∪ ref ′)

GeneralANNContract3 \post E ⇔
#input = insize ∧ Φ[layeroutput(layerNo, layerSize(layerNo)) shide E ]

Our \post definition is fairly straightforward. We apply the shide function to the complete
trace of our ANN contracts, given by layeroutput (Definition 4.2), as discussed. For example,
suppose we have an ANN with input ⟨1, 1⟩, layerNo = 2 and one output node.

Example B.1 (Postcondition Hiding Example).

#input = insize ∧ Φ[layeroutput(2, 1)] \post {| layerRes.1 |}
= #input = insize ∧

Φ[layeroutput(2, 1) shide {| layerRes.1 |}]
[Def. B.8]

= #input = insize ∧
Φ[ ⟨layerRes.0.1.1, layerRes.0.2.1, layerRes.1.1.1, layerRes.2.1.1⟩

shide {| layerRes.1 |}]

[Def. 4.2 and input is ⟨1, 1⟩]

= #input = insize ∧
Φ[ ⟨layerRes.0.1.1, layerRes.0.2.1, layerRes.1.1.1, layerRes.2.1.1⟩

↾{| layerRes |} \ {| layerRes.1 |}]

[Def. B.7 and ran s here is {| layerRes |}]

= #input = insize ∧
Φ[⟨layerRes.0.1.1, layerRes.0.2.1, layerRes.2.1.1⟩]

[evaluate ↾]

However, our pericondition hiding operator, denoted by \peri , is more involved. First, we
do not permit the hiding of input events, as, in an ANN, this introduces nondeterminism.
Moreover, in this context, hiding is used to hide the events of the hidden layers.

In our general pattern, presented in Definition 4.1, we capture each node’s output event
by a single predicate formed by the reactive relational operator E [t ,A]. This operator,
as discussed, specifies that tt = t and that no event in the set A is in the refusal set,
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meaning those events are accepted. Further, this operator applies the healthiness-condition
CRR (DefinitionB.14) to denote that this relation is a stateful-failure reactive relation; more
details are in [28].

When considering hiding, we can remove those hidden events from the trace using shide, as
in the postcondition hiding operator. In the refusals, however, if we remove those events in
set E from the acceptance set A, in a state where we only accept hidden events, we obtain a
condition of the form E [t , {}]. This is a problem as we now have a state in which no event is
accepted, but there is a restriction on tt ; in other words, we introduce deadlock. Further, we
present a nondeterministic chance of deadlock whenever events are hidden because we hide
events from the trace t using shide.

To address this, we define a new condition to capture each node’s output instead of using
E , which is also CRR-healthy. This condition sets tt to the trace up to this node, given by
front ◦ layeroutput(. . .), with the hidden events removed using shide, as in the postcondition.
In this condition, we also specify that the output event of the node, denoted by last ◦
layeroutput(l ,n), is not contained within the union of the hidden event set E and the refusals
set ref ′. So, when considering a state where the output event of a node is hidden, this
condition evaluates to false instead of evaluating to tt = t ∧ {} /∈ ref ′, which is deadlock. In
other words, this state is no longer considered a stable state of the reactive contract.

We describe, below, an example illustrating the application of \peri using the same ANN as
used in Example B.1 and the same hidden events.

Example B.2 (Pericondition Hiding Example).

(#input < insize ∧ E [input , {| layerRes.0.(#input + 1) |}] ∨
#input = insize ∧
∃ l : 1 . . 2 • ∃n : 1 . . layerSize(l) •

E [front ◦ layeroutput(l ,n), {last ◦ layeroutput(l ,n)}])
\post {| layerRes.1 |}

= (#input < insize ∧ E [input , {| layerRes.0.(#input + 1) |}] ∨
#input = insize ∧
(E [front ◦ layeroutput(1, 1), {last ◦ layeroutput(1, 1)}] ∨
E [front ◦ layeroutput(2, 1), {last ◦ layeroutput(2, 1)}]))
\post {| layerRes.1 |}

[unfolding existential quantifiers]

= (#input < insize ∧ E [input , {| layerRes.0.(#input + 1) |}] ∨
#input = insize ∧
(E [⟨layerRes.0.1.1, layerRes.0.2.1⟩, {layerRes.1.1.1}] ∨
E [⟨layerRes.0.1.1, layerRes.0.2.1, layerRes.1.1.1⟩, {layerRes.2.1.1}]))
\post {| layerRes.1 |}

[Def.4.2]
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= #input < insize ∧ E [input , {| layerRes.0.(#input + 1) |}] ∨
#input = insize ∧
(CRR( tt = ⟨layerRes.0.1.1, layerRes.0.2.1⟩ shide {| layerRes.1 |} ∧

layerRes.1.1.1 /∈ {| layerRes.1 |} ∪ ref ′)
∨
CRR( tt = ⟨layerRes.0.1.1, layerRes.0.2.1, layerRes.1.1.1⟩

shide {| layerRes.1 |}
∧
layerRes.2.1.1 /∈ {| layerRes.1 |} ∪ ref ′))

[Def.B.8]

= #input < insize ∧ E [input , {| layerRes.0.(#input + 1) |}] ∨
#input = insize ∧
(CRR( tt = ⟨layerRes.0.1.1, layerRes.0.2.1⟩ shide {| layerRes.1 |} ∧

false)
∨
CRR( tt = ⟨layerRes.0.1.1, layerRes.0.2.1, layerRes.1.1.1⟩

shide {| layerRes.1 |}
∧
layerRes.2.1.1 /∈ {| layerRes.1 |} ∪ ref ′))

[layerRes.1.1.1 ∈ {| layerRes.1 |}]
= #input < insize ∧ E [input , {| layerRes.0.(#input + 1) |}] ∨

#input = insize ∧
(CRR(false) ∨
CRR( tt = ⟨layerRes.0.1.1, layerRes.0.2.1, layerRes.1.1.1⟩

shide {| layerRes.1 |}
∧
layerRes.2.1.1 /∈ {| layerRes.1 |} ∪ ref ′))

[logic]

= #input < insize ∧ E [input , {| layerRes.0.(#input + 1) |}] ∨
#input = insize ∧
(CRR( tt = ⟨layerRes.0.1.1, layerRes.0.2.1, layerRes.1.1.1⟩

shide {| layerRes.1 |}
∧
layerRes.2.1.1 /∈ {| layerRes.1 |} ∪ ref ′))

[false is CRR-healthy]

= #input < insize ∧ E [input , {| layerRes.0.(#input + 1) |}] ∨
#input = insize ∧
(CRR( tt = ⟨layerRes.0.1.1, layerRes.0.2.1⟩

∧
layerRes.2.1.1 /∈ {| layerRes.1 |} ∪ ref ′))

[evaluate shide]

= #input < insize ∧ E [input , {| layerRes.0.(#input + 1) |}] ∨
#input = insize ∧
(CRR( tt = ⟨layerRes.0.1.1, layerRes.0.2.1⟩

∧
layerRes.2.1.1 /∈ ref ′))

[layerRes.2.1.1 /∈ {| layerRes.1 |}]
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= #input < insize ∧ E [input , {| layerRes.0.(#input + 1) |}] ∨
#input = insize ∧
E [⟨layerRes.0.1.1, layerRes.0.2.1⟩, {layerRes.2.1.1}]

[Def.B.14]

The next section presents the laws of the UTP reactive contract calculus that we rely on in
this work.

B.2 Existing Laws

Here, we present definitions and theorems from work by Foster et al. in [28] and [113]. All
reactive contracts we use in this work are NCSP -healthy, as we use them to capture CSP
processes.

First, we present the basic reactive operators used to construct the contracts capturing
our CSP processes. These definitions are extracted from Definition 4.7 and Definition 2.10
from [28].

Definition B.9 (Reactive Operators).

Do(a) =̂ [truer ⊢ E [true, ⟨⟩, {a}] | Φ[true, id , ⟨a⟩]]
Skip =̂ [truer ⊢ false | tt = ⟨⟩ ∧ st ′ = st ]

Next, we present selected laws for the sequential composition of reactive contracts from
Theorem 2.17 and Theorem 4.8 in [28].

Theorem B.1 (Reactive Contract Sequential Composition).

[ ⊢ P2 | P3] ; [ ⊢ Q2 | Q3] = [ ⊢ P2 ∨ (P3 ; Q2) | P3 ; Q3] [1]

Φ[s1, σ1, t1] ; Φ[s2, σ2, t2] = Φ[s1 ∧ σ1 † s2, σ2 ◦ σ1, t1 ⌢ σ1 † t2] [2]

Φ[s1, σ1, t1] ; E [s2, t2,E ] = E [s1 ∧ σ1 † s2, t1 ⌢ σ1 † t2, σ1 †E ] [3]

(
∧
i ∈ I • E [s(i), t ,E (i)]) = E [

∧
i ∈ I • s(i), t ,

⋃
i ∈ I • E (i)] [4]

(
∨
i ∈ I • E [s(i), t ,E (i)]) = E [

∨
i ∈ I • s(i), t ,

⋂
i ∈ I • E (i)] [5]

Definition 5.1 from [28].

Definition B.10. Indexed External Choice

□i ∈ I • [P1(i) ⊢ P2(i) | P3(i)] =̂
[
∧
i ∈ I • P1(i) ⊢ (

∧
i ∈ I • R5(P2(i))) ∨ (

∨
i ∈ I • R4(P2(i))) |

∨
i ∈ I • P3(i)]

Theorem 5.2 from [28].

Theorem B.2. Trace Filtering

R4(Φ[s, σ, ⟨⟩]) = false
R4(Φ[s, σ, ⟨a, . . .⟩]) = Φ[s, σ, ⟨a, . . .⟩]
R5(E [s, ⟨⟩,E ]) = E [s, ⟨⟩,E ]
R5(E [s, ⟨a, . . .⟩,E ]) = false

Definition 6.1 from [113].
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Definition B.11. Pre-, Peri- and postcondition extraction functions

preR(P) =̂ ¬ rP [true, false, false/ok , ok ′,wait ]
periR(P) =̂ P [true, true, false, true/ok , ok ′,wait ,wait ′]
postR(P) =̂ P [true, true, false, false/ok , ok ′,wait ,wait ′]

Theorem 6.2 from [28].

Theorem B.3. Condition extraction on reactive contracts

preR([P1 ⊢ P2 | P3]) = P1

periR([P1 ⊢ P2 | P3]) = P1 ⇒r P2

postR([P1 ⊢ P2 | P3]) = P1 ⇒r P3

Given P1, P2 and P3 are RR healthy.

Definition B.12. Extraction function abbreviations

(P)1 =̂ preR(P)
(P)2 =̂ periR(P)
(P)3 =̂ postR(P)

Definition 2.12 from [28].

Definition B.13.

[P1 ⊢ P2 | P3] =̂ R1 ◦ R2 ◦ R3h(ok ∧ P1 ⇒ ok ′ ∧ (P2 ◁ wait
′ ▷ P3))

Definition 4.6 from [28].

Definition B.14.

I[s(st), t(st)] =̂ CRC (s(st)⇒r ¬ r (t(st) ⩽ tt))
E [s(st), t(st),E (st)] =̂ CRR(s(st) ∧ tt = t(st) ∧ (∀ e ∈ E (st) • e /∈ ref ′))
Φ[s(st), σ, t(st)] =̂ CRF (s(st) ∧ st ′ = σ(st) ∧ tt = t(st))

Definition 2.1 from [113].

Definition B.15.

P ⊑ Q =̂ [Q ⇒ P ] where α(P) = α(Q)
if α(P) = {x1 . . . xn} then [P ] =̂ (∀ x1 . . . xn • P)

Theorem 2.16 from [28].

Theorem B.4 (Reactive Design Refinement).

[P1 ⊢ P2 | P3] ⊑ [Q1 ⊢ Q2 | Q3] if, and only if, Q1 ⊑ P1, P2 ⊑ (Q2 ∧ P1), and P3 ⊑ (Q3 ∧ P1)
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ANN Component Conformance
Lemmas

Lemma C.1.

¬ ∃ x1, . ., xinsize : Value • ∃ y1, . ., youtsize : Value | p • ∃ i : 1 . . outsize •
{annoutput(layerNo, i , ⟨x1, . ., xinsize⟩)} ∩ {x : R | |x − yi | < ϵ} = ∅

⇒ [(Q2 \peri ANNHiddenEvts)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s : seq Event ; a : PEvent | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

P2[s, αP \ a/tt , ref ′]]

Proof.

[(Q2 \peri ANNHiddenEvts)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s : seqEvent , a : PEvent | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

P2[s, αP \ a/tt , ref ′]]
= ∀ st , st ′,wait ,wait ′, ref , ref ′, ok , ok ′, tr , tr ′, tt •

Q2 \peri ANNHiddenEvts[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a • P2[s, αP \ a/tt , ref ′]

[unfolding universal closure]

= ∀ st , st ′,wait ,wait ′, ref , ref ′, ok , ok ′, tr , tr ′, tt •
(ok ∧ ok ′ ∧ ¬ wait ∧ wait ′ ∧ st ′ = st ∧
#input < insize ∧ E [input , {| layerRes.0.(#input + 1) |}]
∨
#input = insize ∧
∃ l : 1..layerNo • ∃n : 1..layerSize(l) •

CRR( tt = (front ◦ layeroutput(l ,n)) shide ANNHiddenEvts ∧
last ◦ layeroutput(l ,n) /∈ ANNHiddenEvts ∪ ref ′)

)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a • P2[s, αP \ a/tt , ref ′]

[unfolding Q2: pericondition extraction ( 2) and hiding, Definition B.8]

140
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= ∀ st , st ′,wait ,wait ′, ref , ref ′, ok , ok ′, tr , tr ′, tt •
(ok ∧ ok ′ ∧ ¬ wait ∧ wait ′ ∧ st ′ = st ∧
#input < insize ∧ E [input , {| layerRes.0.(#input + 1) |}]
∨
#input = insize ∧
∃ l : 1..layerNo • ∃n : 1..layerSize(l) •

CRR( tt = (front ◦ layeroutput(l ,n)) shide ANNHiddenEvts ∧
last ◦ layeroutput(l ,n) /∈ ANNHiddenEvts ∪ ref ′)

)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ x1, . ., x#inp ; y1, . ., y#out | p •
(ok ∧ ok ′ ∧ ¬ wait ∧ wait ′ ∧ st ′ = st ∧

((∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧
inp(i).xi /∈ ref ′)

∨
(∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′))

)[s, αP \ a/tt , ref ′]
[unfolding P2: pericondition extraction ( 2) and Definition 4.4]

= ∀ ref , ref ′, tr , tr ′, tt •
(#input < insize ∧ E [input , {| layerRes.0.(#input + 1) |}]
∨
#input = insize ∧
∃ l : 1..layerNo • ∃n : 1..layerSize(l) •

CRR( tt = (front ◦ layeroutput(l ,n)) shide ANNHiddenEvts ∧
last ◦ layeroutput(l ,n) /∈ ANNHiddenEvts ∪ ref ′)

)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ x1, . ., x#inp ; y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]
[one-point rule on ok , ok ′,wait ,wait ′, st ]
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= ∀ ref , ref ′, tr , tr ′, tt •
(#input < insize ∧ tt = input ∧ {| layerRes.0.(#input + 1) |} ∩ ref ′ = ∅
∨
#input = insize ∧
∃ l : 1..layerNo • ∃n : 1..layerSize(l) •

tt = (front ◦ layeroutput(l ,n)) shide ANNHiddenEvts ∧
last ◦ layeroutput(l ,n) /∈ ANNHiddenEvts ∪ ref ′)

)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ x1, . ., x#inp ; y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]
[CRR healthiness and unfold E , Definition B.14]

= ∀ ref , ref ′, tr , tr ′, tt •
(∃ x1, . ., xinsize •

∃ i : 1 . . insize •
tt = ⌢/ j : 1..(i − 1) • ⟨layerRes.0.j .xj ⟩ ∧
layerRes.0.i .xi /∈ ref ′

∨
∃ l : 1 . . layerNo • ∃n : 1 . . layerSize(l) •

tt = front ◦ layeroutput(l ,n) shide ANNHiddenEvts ∧
last ◦ layeroutput(l ,n) /∈ ANNHiddenEvts ∪ ref ′

)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ x1, . ., x#inp ; y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]
[assumption about input ]
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= ∀ ref ′, tr , tr ′, tt •
(∃ x1, . ., xinsize •

∃ i : 1 . . insize •
tt = ⌢/ j : 1..(i − 1) • ⟨layerRes.0.j .xj ⟩ ∧
layerRes.0.i .xi /∈ ref ′

∨
∃ l : 1 . . layerNo • ∃n : 1 . . layerSize(l) •

tt = front ◦ layeroutput(l ,n) shide ANNHiddenEvts ∧
last ◦ layeroutput(l ,n) /∈ ANNHiddenEvts ∪ ref ′

)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ x1, . ., x#inp ; y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]
[ref not referred to in periconditions, CRR healthiness condition [113]]

= ∀ ref ′, tr , tr ′, tt •
(∃ x1, . ., xinsize •

∃ i : 1 . . insize •
tt = ⌢/ j : 1..(i − 1) • ⟨layerRes.0.j .xj ⟩ ∧
layerRes.0.i .xi /∈ ref ′

∨
∃ l : 1 . . layerNo • ∃n : 1 . . layerSize(l) •

tt = front ◦ layeroutput(l ,n) shide ANNHiddenEvts ∧
nodeoutput(l ,n, ⟨x1, . ., xinsize⟩) /∈ ANNHiddenEvts ∪ ref ′

)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ x1, . ., x#inp ; y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]
[last ◦ layeroutput(l ,n) = nodeoutput(l ,n, ⟨x1, . ., xinsize⟩)]
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= ∀ ref ′, tr , tr ′, tt •
(∃ x1, . ., xinsize •

∃ i : 1 . . insize •
tt = ⌢/ j : 1..(i − 1) • ⟨layerRes.0.j .xj ⟩ ∧
layerRes.0.i .xi /∈ ref ′

∨
∃ l : 1 . . layerNo • ∃n : 1 . . layerSize(l) •

tt = ⌢/ in : 1 . . insize •
⟨layerRes.0.in.xin⟩

⌢
⌢/ p l : 1 . . l − 1 •

⌢/ p n : 1 . . layerSize(p l) •
⟨nodeoutput(p l , p n, ⟨x1, . ., xinsize⟩)⟩

⌢
⌢/ p n : 1 . . n − 1 •

⟨nodeoutput(l , p n, ⟨x1, . ., xinsize⟩)⟩
shide ANNHiddenEvts

∧
nodeoutput(l ,n, ⟨x1, . ., xinsize⟩) /∈ ANNHiddenEvts ∪ ref ′

)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ x1, . ., x#inp ; y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[Lemma B.1 (modified for front)]
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= ∀ ref ′, tr , tr ′, tt •
(∃ x1, . ., xinsize •

∃ i : 1 . . insize •
tt = ⌢/ j : 1..(i − 1) • ⟨layerRes.0.j .xj ⟩ ∧
layerRes.0.i .xi /∈ ref ′

∨
∃ l : 1 . . layerNo • ∃n : 1 . . layerSize(l) •

tt = ⌢/ in : 1 . . insize •
⟨layerRes.0.in.xin⟩

⌢
⌢/ p l : 1 . . l − 1 •

⌢/ p n : 1 . . layerSize(p l) •
⟨layerRes.p l .p n.annoutput(p l , p n, ⟨x1, . ., xinsize⟩)⟩

⌢
⌢/ p n : 1 . . n − 1 •

⟨layerRes.l .p n.annoutput(l , p n, ⟨x1, . ., xinsize⟩)⟩
shide ANNHiddenEvts

∧
layerRes.l .n.annoutput(l ,n, ⟨x1, . ., xinsize⟩) /∈ ANNHiddenEvts ∪ ref ′

)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ x1, . ., x#inp ; y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[unfold nodeoutput , Definition B.1]
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= ∀ ref ′, tr , tr ′, tt •
(∃ x1, . ., xinsize •

∃ i : 1 . . insize •
tt = ⌢/ j : 1..(i − 1) • ⟨inp(j ).xj ⟩ ∧
inp(i).xi /∈ ref ′

∨
∃ l : 1 . . layerNo − 1 • ∃n : 1 . . layerSize(l) •

tt = ⌢/ in : 1 . . insize •
⟨inp(in).xin⟩

⌢
⌢/ p l : 1 . . l − 1 •

⌢/ p n : 1 . . layerSize(p l) •
⟨layerRes.p l .p n.annoutput(p l , p n, ⟨x1, . ., xinsize⟩)⟩

⌢
⌢/ p n : 1 . . n − 1 •

⟨layerRes.l .p n.annoutput(l , p n, ⟨x1, . ., xinsize⟩)⟩
shide ANNHiddenEvts

∧
layerRes.l .n.annoutput(l ,n, ⟨x1, . ., xinsize⟩) /∈ ANNHiddenEvts ∪ ref ′

∨
∃n : 1 . . layerSize(layerNo) •

tt = ⌢/ in : 1..insize •
⟨inp(in).xin⟩

⌢
⌢/ p l : 1 . . layerNo − 1 •

⌢/ p n : 1 . . layerSize(p l) •
⟨layerRes.p l .p n.annoutput(p l , p n, ⟨x1, . ., xinsize⟩)⟩

⌢
⌢/ p n : 1 . . n − 1 •

⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩
shide ANNHiddenEvts

∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ANNHiddenEvts ∪ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ x1, . ., x#inp ; y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[apply [inp/layerRes.0, out/layerRes.layerNo]]
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= ∀ ref ′, tr , tr ′, tt •
(∃ x1, . ., xinsize •

∃ i : 1 . . insize •
tt = ⌢/ j : 1..(i − 1) • ⟨inp(j ).xj ⟩ ∧
inp(i).xi /∈ ref ′

∨
∃ l : 1 . . layerNo − 1 • ∃n : 1 . . layerSize(l) •

tt = ⌢/ in : 1 . . insize •
⟨inp(in).xin⟩

∧
layerRes.l .n.annoutput(l ,n, ⟨x1, . ., xinsize⟩) /∈ ANNHiddenEvts ∪ ref ′

∨
∃n : 1 . . layerSize(layerNo) •

tt = ⌢/ in : 1..insize •
⟨inp(in).xin⟩

⌢
⌢/ p n : 1 . . n − 1 •
⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩

∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ANNHiddenEvts ∪ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ x1, . ., x#inp ; y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[evaluate shide ANNHiddenEvts]
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= ∀ ref ′, tr , tr ′, tt •
(∃ x1, . ., xinsize •

∃ i : 1 . . insize •
tt = ⌢/ j : 1..(i − 1) • ⟨inp(j ).xj ⟩ ∧
inp(i).xi /∈ ref ′

∨
∃ l : 1 . . layerNo − 1 • ∃n : 1 . . layerSize(l) •

tt = ⌢/ in : 1 . . insize •
⟨inp(in).xin⟩

∧
false

∨
∃n : 1 . . layerSize(layerNo) •

tt = ⌢/ in : 1..insize •
⟨inp(in).xin⟩

⌢
⌢/ p n : 1 . . n − 1 •
⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩

∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ x1, . ., x#inp ; y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[evaluate /∈ ANNHiddenEvts ∪ ref ′]
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= ∀ ref ′, tr , tr ′, tt •
(∃ x1, . ., xinsize •

∃ i : 1 . . insize •
tt = ⌢/ j : 1..(i − 1) • ⟨inp(j ).xj ⟩ ∧
inp(i).xi /∈ ref ′

∨
∃n : 1 . . layerSize(layerNo) •

tt = ⌢/ in : 1..insize •
⟨inp(in).xin⟩

⌢
⌢/ p n : 1 . . n − 1 •
⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩

∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ x1, . ., x#inp ; y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[logic of false]
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⇐ ∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •
(∃ i : 1 . . insize •

tt = ⌢/ j : 1..(i − 1) • ⟨inp(j ).xj ⟩ ∧
inp(i).xi /∈ ref ′

∨
∃n : 1 . . layerSize(layerNo) •

tt = ⌢/ in : 1..insize •
⟨inp(in).xin⟩

⌢
⌢/ p n : 1 . . n − 1 •
⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩

∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]
[strengthen condition, universally quantify input variables]
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= ∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •
(∃ i : 1 . . insize •

tt = ⌢/ j : 1..(i − 1) • ⟨inp(j ).xj ⟩ ∧
inp(i).xi /∈ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]
∧
(∃n : 1 . . layerSize(layerNo) •

tt = ⌢/ in : 1..insize •
⟨inp(in).xin⟩

⌢
⌢/ p n : 1 . . n − 1 •

⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩
∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[antecedant has a disjunction]
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⇐ ∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •
(∃ i : 1 . . insize •

tt = ⌢/ j : 1..(i − 1) • ⟨inp(j ).xj ⟩ ∧
inp(i).xi /∈ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

)[s, αP \ a/tt , ref ′]
∧
(∃n : 1 . . layerSize(layerNo) •

tt = ⌢/ in : 1..insize •
⟨inp(in).xin⟩

⌢
⌢/ p n : 1 . . n − 1 •
⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩

∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[in the first conjunct, strengthen the disjunction]
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= ∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •
(∃ i : 1 . . insize •

tt = ⌢/ j : 1..(i − 1) • ⟨inp(j ).xj ⟩ ∧
inp(i).xi /∈ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ y1, . ., y#out | p •
(∃ i : dom inp • s = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ αP \ a
)

∧
(∃n : 1 . . layerSize(layerNo) •

tt = ⌢/ in : 1..insize •
⟨inp(in).xin⟩

⌢
⌢/ p n : 1 . . n − 1 •

⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩
∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[substitute s and αP \ a in the first conjunct]
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= ∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ y1, . ., y#out | p •
(∃ i : 1 . . insize •

tt = ⌢/ j : 1..(i − 1) • ⟨inp(j ).xj ⟩ ∧
inp(i).xi /∈ ref ′

)
⇒
(∃ i : dom inp • s = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ αP \ a
)

∧
(∃n : 1 . . layerSize(layerNo) •

tt = ⌢/ in : 1..insize •
⟨inp(in).xin⟩

⌢
⌢/ p n : 1 . . n − 1 •

⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩
∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[extend scope of variables s, a and y ]
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= ∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ y1, . ., y#out , i : 1 . . insize | p •
tt = ⌢/ j : 1..(i − 1) • ⟨inp(j ).xj ⟩ ∧
inp(i).xi /∈ ref ′

⇒
s = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧
inp(i).xi /∈ αP \ a

∧
(∃n : 1 . . layerSize(layerNo) •

tt = ⌢/ in : 1..insize •
⟨inp(in).xin⟩

⌢
⌢/ p n : 1 . . n − 1 •

⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩
∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[extend scope of i ]
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= ∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •
∃ s; a •

∃ y1, . ., y#out , i : 1 . . insize | p •
tt seqapprox (ϵ) s ∧
(αP \ ref ′) setapprox (ϵ) a ∧
(tt = ⌢/ j : 1..(i − 1) • ⟨inp(j ).xj ⟩ ∧
inp(i).xi /∈ ref ′

⇒
s = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧
inp(i).xi /∈ αP \ a)

∧
(∃n : 1 . . layerSize(layerNo) •

tt = ⌢/ in : 1..insize •
⟨inp(in).xin⟩

⌢
⌢/ p n : 1 . . n − 1 •

⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩
∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[propagate predicate of s and a]
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= ∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •
∃ s; a •

∃ y1, . ., y#out , i : 1 . . insize | p •
tt seqapprox (ϵ) s ∧
(αP \ ref ′) setapprox (ϵ) a ∧
(tt = ⌢/ j : 1..(i − 1) • ⟨inp(j ).xj ⟩ ∧
inp(i).xi /∈ ref ′

⇒
s = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧
inp(i).xi /∈ αP \ a)

∧
∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •

(∃n : 1 . . layerSize(layerNo) •
tt = ⌢/ in : 1..insize •

⟨inp(in).xin⟩
⌢
⌢/ p n : 1 . . n − 1 •

⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩
∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[distribute universal quantifiers ref ′, tr .. through conjunction]
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= ∀ ref ′, x1, . ., xinsize •
∃ a •

∃ y1, . ., y#out , i : 1 . . insize | p •
⌢/ j : 1..(i − 1) • ⟨inp(j ).xj ⟩ seqapprox (ϵ) ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧
(αP \ ref ′) setapprox (ϵ) a ∧
(inp(i).xi /∈ ref ′

⇒
inp(i).xi /∈ αP \ a)

∧
∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •

(∃n : 1 . . layerSize(layerNo) •
tt = ⌢/ in : 1..insize •

⟨inp(in).xin⟩
⌢
⌢/ p n : 1 . . n − 1 •

⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩
∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[one-point rule on tt and s in first conjunct]
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= ∀ ref ′, x1, . ., xinsize •
∃ a •

∃ y1, . ., y#out , i : 1 . . insize | p •
(αP \ ref ′) setapprox (ϵ) a ∧
(inp(i).xi /∈ ref ′

⇒
inp(i).xi /∈ αP \ a)

∧
∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •

(∃n : 1 . . layerSize(layerNo) •
tt = ⌢/ in : 1..insize •

⟨inp(in).xin⟩
⌢
⌢/ p n : 1 . . n − 1 •

⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩
∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]
[all elements in I ∪O , so seqapprox (ϵ) is reflexive, Lemma B.4]
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= ∀ ref ′, x1, . ., xinsize •
∃ a •

∃ y1, . ., y#out , i : 1 . . insize | p ∧ inp(i).xi /∈ ref ′ •
(αP \ ref ′) setapprox (ϵ) a ∧
inp(i).xi /∈ αP \ a

∧
∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •

(∃n : 1 . . layerSize(layerNo) •
tt = ⌢/ in : 1..insize •

⟨inp(in).xin⟩
⌢
⌢/ p n : 1 . . n − 1 •

⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩
∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[rearrange notation, add predicate to universal quantifier]
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= ∀ ref ′, x1, . ., xinsize •
∃ y1, . ., y#out , i : 1 . . insize | p ∧ inp(i).xi /∈ ref ′ •

(αP \ ref ′) setapprox (ϵ) {inp(i).xi} ∧
inp(i).xi /∈ αP \ {inp(i).xi}

∧
∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •

(∃n : 1 . . layerSize(layerNo) •
tt = ⌢/ in : 1..insize •

⟨inp(in).xin⟩
⌢
⌢/ p n : 1 . . n − 1 •
⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩

∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[select a witness for a: {inp(i).xi}]
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= ∀ ref ′, x1, . ., xinsize •
∃ y1, . ., y#out , i : 1 . . insize | p ∧ inp(i).xi /∈ ref ′ •

(αP \ ref ′) setapprox (ϵ) {inp(i).xi}
∧
∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •

(∃n : 1 . . layerSize(layerNo) •
tt = ⌢/ in : 1..insize •

⟨inp(in).xin⟩
⌢
⌢/ p n : 1 . . n − 1 •
⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩

∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∃ y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[set theory]

⇐ ∀ ref ′, x1, . ., xinsize •
∀ y1, . ., y#out , i : 1 . . insize | p ∧ inp(i).xi /∈ ref ′ •

(αP \ ref ′) setapprox (ϵ) {inp(i).xi}
∧
∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •

(∃n : 1 . . layerSize(layerNo) •
tt = ⌢/ in : 1..insize •

⟨inp(in).xin⟩
⌢
⌢/ p n : 1 . . n − 1 •
⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩

∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∀ y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[strengthen quantifier on y variables and i ]
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= ¬ ∃ ref ′, x1, . ., xinsize •
∃ y1, . ., y#out , i : 1 . . insize | p ∧ inp(i).xi /∈ ref ′ •

¬ (αP \ ref ′) setapprox (ϵ) {inp(i).xi}
∧
∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •

(∃n : 1 . . layerSize(layerNo) •
tt = ⌢/ in : 1..insize •

⟨inp(in).xin⟩
⌢
⌢/ p n : 1 . . n − 1 •
⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩

∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∀ y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[double negation on first conjunct]

= ¬ ∃ x1, . ., xinsize •
∃ y1, . ., y#out , i : 1 . . insize | p ∧ inp(i).xi /∈ αP \ {inp(i).xi} •

¬ (αP \ αP \ {inp(i).xi}) setapprox (ϵ) {inp(i).xi}
∧
∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •

(∃n : 1 . . layerSize(layerNo) •
tt = ⌢/ in : 1..insize •

⟨inp(in).xin⟩
⌢
⌢/ p n : 1 . . n − 1 •
⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩

∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∀ y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[select a witness for ref ′: αP \ {inp(i).xi}]
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= ¬ ∃ x1, . ., xinsize •
∃ y1, . ., y#out , i : 1 . . insize | p •

¬ {inp(i).xi} setapprox (ϵ) {inp(i).xi}
∧
∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •

(∃n : 1 . . layerSize(layerNo) •
tt = ⌢/ in : 1..insize •

⟨inp(in).xin⟩
⌢
⌢/ p n : 1 . . n − 1 •

⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩
∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∀ y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[set theory]

= ¬ ∃ x1, . ., xinsize •
∃ y1, . ., y#out , i : 1 . . insize | p •

¬ true
∧
∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •

(∃n : 1 . . layerSize(layerNo) •
tt = ⌢/ in : 1..insize •

⟨inp(in).xin⟩
⌢
⌢/ p n : 1 . . n − 1 •

⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩
∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∀ y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[setapprox (ϵ) is reflexive, Lemma B.6]
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= true ∧
∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •

(∃n : 1 . . layerSize(layerNo) •
tt = ⌢/ in : 1..insize •

⟨inp(in).xin⟩
⌢
⌢/ p n : 1 . . n − 1 •

⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩
∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∀ y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[logic]

= ∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •
(∃n : 1 . . layerSize(layerNo) •

tt = ⌢/ in : 1..insize •
⟨inp(in).xin⟩

⌢
⌢/ p n : 1 . . n − 1 •

⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩
∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ref ′

)
⇒
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∀ y1, . ., y#out | p •
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[logic]
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= ∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∀ y1, . ., y#out | p •
(∃n : 1 . . layerSize(layerNo) •

tt = ⌢/ in : 1..insize •
⟨inp(in).xin⟩

⌢
⌢/ p n : 1 . . n − 1 •
⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩

∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ref ′

)
⇒
(∃ i : dom inp • tt = ⌢/ j : 1 . . (i − 1) • ⟨inp(j ).xj ⟩ ∧

inp(i).xi /∈ ref ′

∨
∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[extend scope of s, a and y ]

⇐ ∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∀ y1, . ., y#out | p •
(∃n : 1 . . layerSize(layerNo) •

tt = ⌢/ in : 1..insize •
⟨inp(in).xin⟩

⌢
⌢/ p n : 1 . . n − 1 •
⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩

∧
out(n).annoutput(layerNo,n, ⟨x1, . ., xinsize⟩) /∈ ref ′

)
⇒
(∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[stronger condition, disjunction laws]
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= ∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∀ y1, . ., y#out | p •
(∃ i : 1 . . layerSize(layerNo) •

tt = ⌢/n : 1..insize •
⟨inp(n).xn⟩

⌢
⌢/ j : 1 . . i − 1 •
⟨out(j ).annoutput(layerNo, j , ⟨x1, . ., xinsize⟩)⟩

∧
out(i).annoutput(layerNo, i , ⟨x1, . ., xinsize⟩) /∈ ref ′

)
⇒
(∃ i : dom out • tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[rename n to i , p n to j , and in to n]

⇐ ∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∀ y1, . ., y#out | p •
∀ i : 1 . . outsize •

(tt = ⌢/n : 1..insize •
⟨inp(n).xn⟩

⌢
⌢/ j : 1 . . i − 1 •
⟨out(j ).annoutput(layerNo, j , ⟨x1, . ., xinsize⟩)⟩

∧
out(i).annoutput(layerNo, i , ⟨x1, . ., xinsize⟩) /∈ ref ′)
⇒
(tt = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ ref ′

)[s, αP \ a/tt , ref ′]

[extend scope of i , layerSize(layerNo) = outsize]
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= ∀ ref ′, tr , tr ′, tt , x1, . ., xinsize •
∃ s; a | tt seqapprox (ϵ) s ∧ (αP \ ref ′) setapprox (ϵ) a •

∀ y1, . ., y#out | p •
∀ i : 1 . . outsize •

(tt = ⌢/n : 1..insize •
⟨inp(n).xn⟩

⌢
⌢/ j : 1 . . i − 1 •
⟨out(j ).annoutput(layerNo, j , ⟨x1, . ., xinsize⟩)⟩

∧
out(i).annoutput(layerNo, i , ⟨x1, . ., xinsize⟩) /∈ ref ′)
⇒
(s = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ αP \ a
)

[Apply s and αP substitutions]

= ∀ ref ′, x1, . ., xinsize •
∃ s; a | (⌢/n : 1..insize • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . i − 1 • ⟨out(j ).annoutput(layerNo, j , ⟨x1, . ., xinsize⟩)⟩)
seqapprox (ϵ) s
∧
(αP \ ref ′) setapprox (ϵ) a •

∀ y1, . ., y#out | p •
∀ i : 1 . . outsize •

(out(i).annoutput(layerNo, i , ⟨x1, . ., xinsize⟩) /∈ ref ′)
⇒
(s = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ αP \ a
)

[one-point tt ]

= ∀ ref ′, x1, . ., xinsize •
∃ s; a | (⌢/n : 1..insize • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . i − 1 • ⟨out(j ).annoutput(layerNo, j , ⟨x1, . ., xinsize⟩)⟩)
seqapprox (ϵ) s
∧
(αP \ ref ′) setapprox (ϵ) a •

∀ y1, . ., y#out ; i : 1 . . outsize |
p ∧ out(i).annoutput(layerNo, i , ⟨x1, . ., xinsize⟩) /∈ ref ′ •
s = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ αP \ a

[rearrange quantifiers and add predicate]
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= ∀ ref ′, x1, . ., xinsize •
∃ s; a •

∀ y1, . ., y#out ; i : 1 . . outsize |
p ∧ out(i).annoutput(layerNo, i , ⟨x1, . ., xinsize⟩) /∈ ref ′ •
(⌢/n : 1..insize • ⟨inp(n).xn⟩⌢
⌢/ j : 1 . . i − 1 • ⟨out(j ).annoutput(layerNo, j , ⟨x1, . ., xinsize⟩)⟩)
seqapprox (ϵ) s
∧
(αP \ ref ′) setapprox (ϵ) a ∧
s = ⌢/n : dom inp • ⟨inp(n).xn⟩⌢

⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
out(i).yi /∈ αP \ a

[propagate conditions of s and a]

= ∀ ref ′, x1, . ., xinsize •
∃ a •

∀ y1, . ., y#out ; i : 1 . . outsize |
p ∧ out(i).annoutput(layerNo, i , ⟨x1, . ., xinsize⟩) /∈ ref ′ •
(⌢/n : 1..insize • ⟨inp(n).xn⟩⌢
⌢/ j : 1 . . i − 1 • ⟨out(j ).annoutput(layerNo, j , ⟨x1, . ., xinsize⟩)⟩)
seqapprox (ϵ)
⌢/n : dom inp • ⟨inp(n).xn⟩⌢
⌢/ j : 1 . . (i − 1) • ⟨out(j ).yj ⟩ ∧
∧
(αP \ ref ′) setapprox (ϵ) a ∧
out(i).yi /∈ αP \ a

[one-point s]

= ∀ ref ′, x1, . ., xinsize •
∃ a •

∀ y1, . ., y#out ; i : 1 . . outsize |
p ∧ out(i).annoutput(layerNo, i , ⟨x1, . ., xinsize⟩) /∈ ref ′ •
∀n : 1 . . i − 1 •∣∣annoutput(layerNo,n, ⟨x1, . ., xinsize⟩)− yn

∣∣ < ϵ
∧
(αP \ ref ′) setapprox (ϵ) a ∧
out(i).yi /∈ αP \ a

[using reflexivity of seqapprox , inputs identical, and output lemma B.5]

= ∀ ref ′, x1, . ., xinsize •
∀ y1, . ., y#out ; i : 1 . . outsize | p ∧ out(i).annoutput(layerNo, i , ⟨x1, . ., xinsize⟩) /∈ ref ′ •

∀n : 1 . . i − 1 •∣∣annoutput(layerNo,n, ⟨x1, . ., xinsize⟩)− yn
∣∣ < ϵ

∧
(αP \ ref ′) setapprox (ϵ) {out(i).yi} ∧
out(i).yi /∈ αP \ {out(i).yi}

[select witness for a: {out(i).yi}]

= ∀ ref ′, x1, . ., xinsize •
∀ y1, . ., y#out ; i : 1 . . outsize | p ∧ out(i).annoutput(layerNo, i , ⟨x1, . ., xinsize⟩) /∈ ref ′ •

∀n : 1 . . i − 1 •∣∣annoutput(layerNo,n, ⟨x1, . ., xinsize⟩)− yn
∣∣ < ϵ

∧
(αP \ ref ′) setapprox (ϵ) {out(i).yi}

[set theory]
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= ¬ ∃ ref ′, x1, . ., xinsize •
∃ y1, . ., y#out ; i : 1 . . outsize | p ∧ out(i).annoutput(layerNo, i , ⟨x1, . ., xinsize⟩) /∈ ref ′ •

¬ ( ∀n : 1 . . i − 1 •∣∣annoutput(layerNo,n, ⟨x1, . ., xinsize⟩)− yn
∣∣ < ϵ

∧
(αP \ ref ′) setapprox (ϵ) {out(i).yi}
)

[double negation]

= ¬ ∃ x1, . ., xinsize •
∃ y1, . ., y#out ; i : 1 . . outsize | p ∧

out(i).annoutput(layerNo, i , ⟨x1, . ., xinsize⟩) /∈
αP \ {out(i).annoutput(layerNo, i , ⟨x1, . ., xinsize⟩)} •

¬ ( ∀n : 1 . . i − 1 •∣∣annoutput(layerNo,n, ⟨x1, . ., xinsize⟩)− yn
∣∣ < ϵ

∧
(αP\

αP \ {out(i).annoutput(layerNo, i , ⟨x1, . ., xinsize⟩)})
setapprox (ϵ)
{out(i).yi}

)

[select a witness for ref ′:αP \ {out(i).annoutput(layerNo, i , ⟨x1, . ., xinsize⟩)}]
= ¬ ∃ x1, . ., xinsize •

∃ y1, . ., y#out ; i : 1 . . outsize | p •
¬ ( ∀n : 1 . . i − 1 •∣∣annoutput(layerNo,n, ⟨x1, . ., xinsize⟩)− yn

∣∣ < ϵ
∧
{out(i).annoutput(layerNo, i , ⟨x1, . ., xinsize⟩)} setapprox (ϵ) {out(i).yi}
)

[set theory]

= ¬ ∃ x1, . ., xinsize •
∃ y1, . ., y#out ; i : 1 . . outsize | p •

¬ ( ∀n : 1 . . i − 1 •∣∣annoutput(layerNo,n, ⟨x1, . ., xinsize⟩)− yn
∣∣ < ϵ

∧
∀ e : {out(i).annoutput(layerNo, i , ⟨x1, . ., xinsize⟩)} •

∃ e1 : {out(i).yi} •
∣∣value(e)− value(e1)

∣∣ < ϵ
)

[output event comparison, using Lemma B.7]

= ¬ ∃ x1, . ., xinsize •
∃ y1, . ., y#out ; i : 1 . . outsize | p •

¬ ( ∀n : 1 . . i − 1 •∣∣annoutput(layerNo,n, ⟨x1, . ., xinsize⟩)− yn
∣∣ < ϵ

∧∣∣value(out(i).annoutput(layerNo, i , ⟨x1, . ., xinsize⟩)− value(out(i).yi)
∣∣ < ϵ

)

[singleton sets]
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= ¬ ∃ x1, . ., xinsize •
∃ y1, . ., y#out ; i : 1 . . outsize | p •

¬ ( ∀n : 1 . . i − 1 •∣∣annoutput(layerNo,n, ⟨x1, . ., xinsize⟩)− yn
∣∣ < ϵ

∧∣∣annoutput(layerNo, i , ⟨x1, . ., xinsize⟩)− yi
∣∣ < ϵ

)

[evaluate value]

= ¬ ∃ x1, . ., xinsize •
∃ y1, . ., y#out ; i : 1 . . outsize | p •

¬ ( ∀n : 1 . . i •∣∣annoutput(layerNo,n, ⟨x1, . ., xinsize⟩)− yn
∣∣ < ϵ

)

[combining indicies]

= ¬ ∃ x1, . ., xinsize •
∃ y1, . ., y#out ; i : 1 . . outsize | p •

¬
∣∣annoutput(layerNo, i , ⟨x1, . ., xinsize⟩)− yi

∣∣ < ϵ

[equivalent condition, n not needed]

= ¬ ∃ x1, . ., xinsize : Value • ∃ y1, . ., youtsize : Value | p • ∃ i : 1 . . outsize •
{annoutput(layerNo, i , ⟨x1, . ., xinsize⟩)} ∩ {x : R •|x − yi | < ϵ} = ∅

[equivalent condition, in set reachability form (and #out = outsize)]

Lemma C.2.

¬ ∃ x1, . ., xinsize : Value • ∃ y1, . ., youtsize : Value | p • ∃ i : 1 . . outsize •
{annoutput(layerNo, i , ⟨x1, . ., xinsize⟩)} ∩ {x : R | |x − yi | < ϵ} = ∅

⇒ [(Q3 \post ANNHiddenEvts)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s | tt seqapprox (ϵ) s • P3[s/tt ]]

Proof.

[Q3 \post ANNHiddenEvts[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s | tt seqapprox (ϵ) s • P3[s/tt ]]

= ∀ st , st ′,wait ,wait ′, ref , ref ′, ok , ok ′, tr , tr ′, tt •
Q3 \post ANNHiddenEvts[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s | tt seqapprox (ϵ) s • P3[s/tt ]

[unfolding universal closure]

= ∀ st , st ′,wait ,wait ′, ref , ref ′, ok , ok ′, tr , tr ′, tt •
(ok ∧ ok ′ ∧ ¬ wait ∧ ¬ wait ′ ∧ st ′ = st ∧
#input = insize ∧
Φ[layeroutput(layerNo, layerSize(layerNo)) shide ANNHiddenEvts
)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s | tt seqapprox (ϵ) s • P3[s/tt ]

[unfolding Q3: postcondition extraction ( 3), Def. B.11 and Definition B.8]
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= ∀ st , st ′,wait ,wait ′, ref , ref ′, ok , ok ′, tr , tr ′, tt •
(ok ∧ ok ′ ∧ ¬ wait ∧ ¬ wait ′ ∧ st ′ = st ∧
#input = insize ∧
tt = layeroutput(layerNo, layerSize(layerNo)) shide ANNHiddenEvts
)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s | tt seqapprox (ϵ) s • P3[s/tt ]

[unfolding Φ, Definition B.14]

= ∀ st , st ′,wait ,wait ′, ref , ref ′, ok , ok ′, tr , tr ′, tt •
(ok ∧ ok ′ ∧ ¬ wait ∧ ¬ wait ′ ∧ st ′ = st ∧
#input = insize ∧
tt = layeroutput(layerNo, layerSize(layerNo)) shide ANNHiddenEvts
)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s | tt seqapprox (ϵ) s •

∃ x1, . ., x#inp ; y1, . ., y#out | p • (ok ∧ ok ′ ∧ ¬ wait ∧ ¬ wait ′ ∧ st ′ = st ∧
tt = ⌢/ i : dom inp • ⟨inp(i).xi⟩⌢

⌢/ j : dom out • ⟨out(j ).yj ⟩)[s/tt ]

[unfolding P3: Definitions 4.4 and B.11]

= ∀ st ′, ref , ref ′, tr , tr ′, tt •
(#input = insize ∧
tt = layeroutput(layerNo, layerSize(layerNo)) shide ANNHiddenEvts
)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s | tt seqapprox (ϵ) s •

∃ x1, . ., x#inp ; y1, . ., y#out | p • st ′ = st ′ ∧
(tt = ⌢/ i : dom inp • ⟨inp(i).xi⟩⌢

⌢/ j : dom out • ⟨out(j ).yj ⟩)[s/tt ]

[one-point rule on ok , ok ′,wait ,wait ′ and st ]

= ∀ ref , ref ′, tr , tr ′, tt •
(#input = insize ∧
tt = layeroutput(layerNo, layerSize(layerNo)) shide ANNHiddenEvts
)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s | tt seqapprox (ϵ) s •

∃ x1, . ., x#inp ; y1, . ., y#out | p • (tt = ⌢/ i : dom inp • ⟨inp(i).xi⟩⌢
⌢/ j : dom out • ⟨out(j ).yj ⟩)[s/tt ]

[reflexivity of equality]

= ∀ tr , tr ′, tt •
(#input = insize ∧
tt = layeroutput(layerNo, layerSize(layerNo)) shide ANNHiddenEvts
)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s | tt seqapprox (ϵ) s •

∃ x1, . ., x#inp ; y1, . ., y#out | p • (tt = ⌢/ i : dom inp • ⟨inp(i).xi⟩⌢
⌢/ j : dom out • ⟨out(j ).yj ⟩)[s/tt ]

[no references to ref or ref ′ in postcondition (CRF healthiness condition [28])]
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= ∀ tr , tr ′, tt •
∃ x1, . ., xinsize • (#input = insize ∧

tt = ⌢/ in : 1 . . insize • ⟨layerRes.0.in.xin⟩
⌢
⌢/ p l : 1 . . layerNo − 1 •

⌢/ p n : 1 . . layerSize(p l) •
⟨nodeoutput(p l , p n, ⟨x1, . ., xinsize⟩)⟩

⌢
⌢/ p n : 1 . . layerSize(layerNo) •

⟨nodeoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩
shide ANNHiddenEvts

)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s | tt seqapprox (ϵ) s •

∃ x1, . ., x#inp ; y1, . ., y#out | p • (tt = ⌢/ i : dom inp • ⟨inp(i).xi⟩⌢
⌢/ j : dom out • ⟨out(j ).yj ⟩)[s/tt ]

[layeroutput expansion, Lemma B.1]

= ∀ tr , tr ′, tt •
(∃ x1, . ., xinsize : Value • tt = ⌢/ in : 1 . . insize • ⟨layerRes.0.in.xin⟩

⌢
⌢/ p l : 1 . . layerNo − 1 •

⌢/ p n : 1 . . layerSize(p l) •
⟨nodeoutput(p l , p n, ⟨x1, . ., xinsize⟩)⟩

⌢
⌢/ p n : 1 . . layerSize(layerNo) •

⟨nodeoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩
shide ANNHiddenEvts

)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s | tt seqapprox (ϵ) s •

∃ x1, . ., x#inp ; y1, . ., y#out | p • (tt = ⌢/ i : dom inp • ⟨inp(i).xi⟩⌢
⌢/ j : dom out • ⟨out(j ).yj ⟩)[s/tt ]

[assumption about input ]

= ∀ tr , tr ′, tt •
(∃ x1, . ., xinsize : Value • tt = ⌢/ in : 1 . . insize • ⟨layerRes.0.in.xin⟩

⌢
⌢/ p l : 1 . . layerNo − 1 •

⌢/ p n : 1 . . layerSize(p l) •
⟨layerRes.p l .p n.annoutput( p l , p n,

⟨x1, . ., xinsize⟩)⟩
⌢
⌢/ p n : 1 . . layerSize(layerNo) •

⟨layerRes.layerNo.p n.annoutput( layerNo, p n,
⟨x1, . ., xinsize⟩)⟩

shide ANNHiddenEvts
)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s | tt seqapprox (ϵ) s •

∃ x1, . ., x#inp ; y1, . ., y#out | p • (tt = ⌢/ i : dom inp • ⟨inp(i).xi⟩⌢
⌢/ j : dom out • ⟨out(j ).yj ⟩)[s/tt ]

[unfolding nodeoutput , Definition B.1]
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= ∀ tr , tr ′, tt •
(∃ x1, . ., xinsize : Value • tt = ⌢/ in : 1 . . insize • ⟨layerRes.0.in.xin⟩

⌢
⌢/ p n : 1 . . layerSize(layerNo) •

⟨layerRes.layerNo.p n.annoutput( layerNo, p n,
⟨x1, . ., xinsize⟩)⟩

)[inp/layerRes.0, out/layerRes.layerNo]⇒
∃ s | tt seqapprox (ϵ) s •

∃ x1, . ., x#inp ; y1, . ., y#out | p • (tt = ⌢/ i : dom inp • ⟨inp(i).xi⟩⌢
⌢/ j : dom out • ⟨out(j ).yj ⟩)[s/tt ]

[evaluate shide ANNHiddenEvts]

= ∀ tr , tr ′, tt •
(∃ x1, . ., xinsize : Value • tt = ⌢/ in : 1 . . insize • ⟨inp(in).xin⟩

⌢
⌢/ p n : 1 . . layerSize(layerNo) •
⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩

)⇒
∃ s | tt seqapprox (ϵ) s •

∃ x1, . ., x#inp ; y1, . ., y#out | p • (tt = ⌢/ i : dom inp • ⟨inp(i).xi⟩⌢
⌢/ j : dom out • ⟨out(j ).yj ⟩)[s/tt ]

[applying [inp/layerRes.0, out/layerRes.layerNo]]

= ∀ tr , tr ′, tt •
(∃ x1, . ., xinsize : Value • tt = ⌢/ in : 1 . . insize • ⟨inp(in).xin⟩

⌢
⌢/ p n : 1 . . layerSize(layerNo) •

⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩
)⇒
∃ s | tt seqapprox (ϵ) s •

∃ x1, . ., x#inp ; y1, . ., y#out | p • (s = ⌢/ i : dom inp • ⟨inp(i).xi⟩⌢
⌢/ j : dom out • ⟨out(j ).yj ⟩)

[applying [s/tt ]]

= ∀ tr , tr ′, tt •
(∃ x1, . ., xinsize : Value • tt = ⌢/ in : 1 . . insize • ⟨inp(in).xin⟩

⌢
⌢/ p n : 1 . . layerSize(layerNo) •
⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩

)⇒
∃ s • ∃ x1, . ., x#inp ; y1, . ., y#out | p • tt seqapprox (ϵ) s ∧

(s = ⌢/ i : dom inp • ⟨inp(i).xi⟩⌢
⌢/ j : dom out • ⟨out(j ).yj ⟩)

[propagate condition of s]

= ∀ tr , tr ′, tt •
(∃ x1, . ., xinsize : Value • tt = ⌢/ in : 1 . . insize • ⟨inp(in).xin⟩

⌢
⌢/ p n : 1 . . layerSize(layerNo) •
⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩

)⇒
∃ x1, . ., x#inp ; y1, . ., y#out | p • tt seqapprox (ϵ) ⌢/ i : dom inp • ⟨inp(i).xi⟩⌢

⌢/ j : dom out • ⟨out(j ).yj ⟩

[one-point rule on s]
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⇐ ∀ tr , tr ′, tt •
∀ x1, . ., xinsize : Value •

∀ y1, . ., y#out | p •
(tt = ⌢/ in : 1 . . insize • ⟨inp(in).xin⟩

⌢
⌢/ p n : 1 . . layerSize(layerNo) •
⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩

)⇒
tt seqapprox (ϵ) ⌢/ i : dom inp • ⟨inp(i).xi⟩⌢

⌢/ j : dom out • ⟨out(j ).yj ⟩

[strengthen condition]

= ∀ x1, . ., xinsize : Value •
∀ y1, . ., y#out | p •

( ⌢/ in : 1 . . insize • ⟨inp(in).xin⟩
⌢
⌢/ p n : 1 . . layerSize(layerNo) •

⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩
seqapprox (ϵ)
(⌢/ i : dom inp • ⟨inp(i).xi⟩⌢
⌢/ j : dom out • ⟨out(j ).yj ⟩)

[one-point rule on tt ]

= ∀ x1, . ., xinsize : Value •
∀ y1, . ., youtsize | p •

( ⌢/ in : 1 . . insize • ⟨inp(in).xin⟩
⌢
⌢/ p n : 1 . . layerSize(layerNo) •

⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩
seqapprox (ϵ)
(⌢/ i : dom inp • ⟨inp(i).xi⟩⌢
⌢/ j : dom out • ⟨out(j ).yj ⟩)

[outsize = #out ]

= ∀ x1, . ., xinsize : Value •
∀ y1, . ., youtsize | p • s1 seqapprox (ϵ) t

s1 = ⌢/ in : 1 . . insize • ⟨inp(in).xin⟩
⌢
⌢/ p n : 1 . . layerSize(layerNo) •
⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩

t = ⌢/ i : dom inp • ⟨inp(i).xi⟩⌢
⌢/ j : dom out • ⟨out(j ).yj ⟩)

[introduce bound variables for sequence expressions for clarity]
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= ∀ x1, . ., xinsize : Value •
∀ y1, . ., youtsize | p •

∀ i : dom s2 •
(s2(i) ∈ I ⇒ t(i) = s2(i)) ∧
(s2(i) ∈ O ⇒ ev(t(i)) = ev(s2(i)) ∧

∃ r : (−ϵ, ϵ) • value(t(i)) = value(s2(i)) + r)

s1 = ⌢/ in : 1 . . insize • ⟨inp(in).xin⟩
⌢
⌢/ p n : 1 . . layerSize(layerNo) •
⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩

t = ⌢/ i : dom inp • ⟨inp(i).xi⟩⌢
⌢/ j : dom out • ⟨out(j ).yj ⟩)

s2 = s1 ↾ (I ∪O)

[unfold definition of seqapprox (ϵ)]

= ∀ x1, . ., xinsize : Value •
∀ y1, . ., youtsize | p •

∀ i : dom s2 •
(s2(i) ∈ I ⇒ t(i) = s2(i)) ∧
(s2(i) ∈ O ⇒ ev(t(i)) = ev(s2(i)) ∧

∃ r : (−ϵ, ϵ) • value(t(i)) = value(s2(i)) + r)

t = ⌢/ i : dom inp • ⟨inp(i).xi⟩⌢
⌢/ j : dom out • ⟨out(j ).yj ⟩)

s2 = ⌢/ in : 1 . . insize • ⟨inp(in).xin⟩
⌢
⌢/ p n : 1 . . layerSize(layerNo) •
⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩

[unfold s2 (s1 no longer used)]

= ∀ x1, . ., xinsize : Value •
∀ y1, . ., youtsize | p •

∀ i : dom s2 • (s2(i) ∈ I ⇒ t(i) = s2(i)) ∧
∀ i : dom s2 • (s2(i) ∈ O ⇒ ev(t(i)) = ev(s2(i)) ∧

∃ r : (−ϵ, ϵ) • value(t(i)) = value(s2(i)) + r)

t = ⌢/ i : dom inp • ⟨inp(i).xi⟩⌢
⌢/ j : dom out • ⟨out(j ).yj ⟩)

s2 = ⌢/ in : 1 . . insize • ⟨inp(in).xin⟩
⌢
⌢/ p n : 1 . . layerSize(layerNo) •
⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩

[distribute universal quantifier of i ]
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= ∀ x1, . ., xinsize : Value •
∀ y1, . ., youtsize | p •

∀ i : dom s2 | s2(i) ∈ I • t(i) = s2(i) ∧
∀ i : dom s2 | s2(i) ∈ O • ev(t(i)) = ev(s2(i)) ∧

∃ r : (−ϵ, ϵ) • value(t(i)) = value(s2(i)) + r

t = ⌢/ i : dom inp • ⟨inp(i).xi⟩⌢
⌢/ j : dom out • ⟨out(j ).yj ⟩)

s2 = ⌢/ in : 1 . . insize • ⟨inp(in).xin⟩
⌢
⌢/ p n : 1 . . layerSize(layerNo) •
⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩

[implication in a universal quantifier]

= ∀ x1, . ., xinsize : Value •
∀ y1, . ., youtsize | p •

∀ i : 1 . . insize • t(i) = s2(i) ∧
∀ i : insize + 1 . . outsize • ev(t(i)) = ev(s2(i)) ∧

∃ r : (−ϵ, ϵ) • value(t(i)) = value(s2(i)) + r

t = ⌢/ i : dom inp • ⟨inp(i).xi⟩⌢
⌢/ j : dom out • ⟨out(j ).yj ⟩)

s2 = ⌢/ in : 1 . . insize • ⟨inp(in).xin⟩
⌢
⌢/ p n : 1 . . layerSize(layerNo) •
⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩

[separate into the indices of dom s2 such that their constraint holds]

= ∀ x1, . ., xinsize : Value •
∀ y1, . ., youtsize | p •

∀ i : 1 . . insize • t(i) = s2(i) ∧
∀ i : insize + 1 . . outsize • ev(t(i)) = ev(s2(i)) ∧

∃ r : (−ϵ, ϵ) • value(t(i)) = value(s2(i)) + r

t = ⌢/ i : dom inp • ⟨inp(i).xi⟩⌢
⌢/ j : dom out • ⟨out(j ).yj ⟩)

s2 = ⌢/ i : 1 . . insize • ⟨inp(i).xi⟩
⌢
⌢/ p n : 1 . . outsize •
⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩

[layerSize(layerNo) = outsize, and rename in to i ]

= ∀ x1, . ., xinsize : Value •
∀ y1, . ., youtsize | p •

∀ i : 1 . . insize • inp(i).xi = inp(i).xi ∧
∀ i : insize + 1 . . outsize • ev(t(i)) = ev(s2(i)) ∧

∃ r : (−ϵ, ϵ) • value(t(i)) = value(s2(i)) + r

t = ⌢/ i : dom inp • ⟨inp(i).xi⟩⌢
⌢/ j : dom out • ⟨out(j ).yj ⟩)

s2 = ⌢/ i : 1 . . insize • ⟨inp(i).xi⟩
⌢
⌢/ p n : 1 . . outsize •
⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩

[replace t(i) and s2(i) with their values in the first conjunct]
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= ∀ x1, . ., xinsize : Value •
∀ y1, . ., youtsize | p •

∀ i : insize + 1 . . outsize • ev(t(i)) = ev(s2(i)) ∧
∃ r : (−ϵ, ϵ) • value(t(i)) = value(s2(i)) + r

t = ⌢/ i : dom inp • ⟨inp(i).xi⟩⌢
⌢/ j : dom out • ⟨out(j ).yj ⟩)

s2 = ⌢/ i : 1 . . insize • ⟨inp(i).xi⟩
⌢
⌢/ p n : 1 . . outsize •
⟨out(p n).annoutput(layerNo, p n, ⟨x1, . ., xinsize⟩)⟩

[equality]

= ∀ x1, . ., xinsize : Value •
∀ y1, . ., youtsize | p •

∀ i : insize + 1 . . outsize •
ev(out(i − insize).yi−insize) =

ev(out(i − insize).annoutput(layerNo, (i − insize), ⟨x1, . ., xinsize⟩) ∧
∃ r : (−ϵ, ϵ) • value(out(i − insize).yi−insize) =

value(out(i − insize).annoutput(layerNo, (i − insize), ⟨x1, . ., xinsize⟩)) + r

[replace t(i) and s2(i) in the output constraint]

= ∀ x1, . ., xinsize : Value •
∀ y1, . ., youtsize | p •

∀ i : insize + 1 . . outsize •
out(i − insize) = out(i − insize) ∧
∃ r : (−ϵ, ϵ) • yi−insize = annoutput(layerNo, (i − insize), ⟨x1, . ., xinsize⟩) + r

[evaluate event and value functions]

= ∀ x1, . ., xinsize : Value •
∀ y1, . ., youtsize | p •

∀ i : insize + 1 . . outsize •
∃ r : (−ϵ, ϵ) • yi−insize = annoutput(layerNo, (i − insize), ⟨x1, . ., xinsize⟩) + r

[equality]

= ∀ x1, . ., xinsize : Value •
∀ y1, . ., youtsize | p •

∀ i : 1 . . outsize •
∃ r : (−ϵ, ϵ) • yi = annoutput(layerNo, (i), ⟨x1, . ., xinsize⟩) + r

[index rearranging]

= ∀ x1, . ., xinsize : Value •
∀ y1, . ., youtsize | p •

∀ i : 1 . . outsize •
∃ r : R | −ϵ < r < ϵ • yi = annoutput(layerNo, (i), ⟨x1, . ., xinsize⟩) + r

[open range definition]

= ∀ x1, . ., xinsize : Value •
∀ y1, . ., youtsize | p •

∀ i : 1 . . outsize •
∃ r : R • yi = annoutput(layerNo, (i), ⟨x1, . ., xinsize⟩) + r ∧

−ϵ < r < ϵ

[existential quantification laws]

= ∀ x1, . ., xinsize : Value •
∀ y1, . ., youtsize | p •

∀ i : 1 . . outsize •
∃ r : R • r = yi − annoutput(layerNo, (i), ⟨x1, . ., xinsize⟩) ∧

−ϵ < r < ϵ

[arithmetic]
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= ∀ x1, . ., xinsize : Value •
∀ y1, . ., youtsize | p •

∀ i : 1 . . outsize •
−ϵ < yi − annoutput(layerNo, (i), ⟨x1, . ., xinsize⟩) < ϵ

[one-point rule on r ]

= ∀ x1, . ., xinsize : Value •
∀ y1, . ., youtsize | p •

∀ i : 1 . . outsize •∣∣yi − annoutput(layerNo, (i), ⟨x1, . ., xinsize⟩)
∣∣ < ϵ

[arithmetic]

= ¬ ∃ x1, . ., xinsize : Value •
∃ y1, . ., youtsize | p •

∃ i : 1 . . outsize •
¬
∣∣yi − annoutput(layerNo, (i), ⟨x1, . ., xinsize⟩)

∣∣ < ϵ

[double negate condition]

= ¬ ∃ x1, . ., xinsize : Value • ∃ y1, . ., youtsize | p • ∃ i : 1 . . outsize •
{annoutput(layerNo, i , ⟨x1, . ., xinsize⟩)} ∩ {x : R | |x − yi | < ϵ} = ∅

[set theory]
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