Verification of RoboChart Models with Neural Network Components

Ziggy Attala

PhD

University of York

Computer Science

October 2023
Abstract

Current software engineering frameworks for robotics treat artificial neural networks (ANNs) components as black boxes, and existing white-box techniques consider either component-level properties, or properties involving a specific case study. A method to establish properties that may depend on all components in such a system is, as yet, undefined. Our work consists of defining such a method. First, we developed a component whose behaviour is defined by an ANN and acts as a robotic controller. Considering our application to robotics, we focus on pre-trained ANNs used for control. We define our component in the context of RoboChart, where we define modelling notation involving a meta-model and well-formedness conditions, and a process-algebraic semantics. To further support our framework, we defined an implementation of these semantics in Java and CSPM, to enable validation and discretised verification. Given these components, we then developed an approach to verify software systems involving our ANN components. This approach involves replacing existing memoryless, cyclic, controller components with ANN components, and proving that the new system does not deviate in behaviour by more than a constant ϵ from the original system. Moreover, we describe a strategy for automating these proofs based on Isabelle and Marabou, combining ANN-specific verification tools with general verification tools. We demonstrate our framework using a case study involving a Segway robot where we replace a PID controller with an ANN component. Our contributions can be summarised as follows: we have generated a framework that enables the modelling, validation, and verification of robotic software involving neural network components. Finally, this work represents progress towards establishing the safety and reliability of autonomous robotics.
Declaration

I declare that this thesis is a presentation of original work and I am the sole author. This work has not previously been presented for a degree or other qualification at this University or elsewhere. All sources are acknowledged as references.

Part of the material presented in Chapter 2 has been published in [1]. A paper based on the work presented in Chapter 4 has been accepted for publication at ICTAC 2023 \(^1\) in Lima, Peru.

\(^1\)https://ictac2023.compsust.utec.edu.pe/
Acknowledgements

Firstly, I would like to thank everyone in the RoboStar group in York for their support, encouragement, and guidance throughout my time at York. I am grateful for the contributions of Pedro Ribeiro and Alvaro Miyazawa for their help with the RoboTool technologies, and the suggestions and feedback of Matt Windsor concerning modelling in RoboChart. In particular, I would like to acknowledge the invaluable advice and guidance Simon Foster provided concerning the Isabelle proof assistant, UTP theories, and the Isabelle extensions to accommodate these theories. Both the module and the summer school he ran on these topics were very useful to the completion of this project.

I would also like to thank those I met through the University of York’s Canoe Club and Mixed Martial Arts Club for their friendship, support, and some truly unforgettable experiences.

I am very grateful to my family for their unwavering support and encouragement throughout this journey. I would also like to thank them for taking the time to carefully proofread this thesis.

Finally, getting the opportunity to work with my supervisors, Ana Cavalcanti and Jim Woodcock, has been the highlight of this journey. Their expertise, dedication, and endless passion has been a joy to work with, and has contributed to my growth academically, professionally, and personally.
for my parents, and for my brother
Contents

1 Introduction ... 7
 1.1 Motivation ... 7
 1.2 Objectives .. 9
 1.3 Workflow .. 10
 1.4 Structure .. 11

2 Formal Verification of Neural Networks 12
 2.1 Neural Networks 12
 2.1.1 Training a Neural Network 14
 2.1.2 Layer Types 16
 2.1.3 Activation Functions 17
 2.1.4 Matrix Form 18
 2.1.5 Summary 20
 2.2 Neural Network Verification Techniques 20
 2.3 Complete Techniques 24
 2.3.1 Linear Programming 25
 2.3.2 SMT Solvers 26
 2.3.3 Interval Analysis 28
 2.3.4 Symbolic Representation 30
 2.3.5 Discussion 32
 2.4 Incomplete Techniques 33
 2.4.1 Boundary Search 34
 2.4.2 Abstract Domain 35
 2.4.3 Linear Relaxation 37
 2.4.4 Dual Formulation 38
 2.4.5 Lipschitz Constant Estimation 39
 2.4.6 Discussion 39
 2.5 Other Techniques 40
 2.6 Tool Comparison 42
 2.6.1 Overview of Experiments 43
 2.6.2 Methods 44
 2.6.3 Evaluation 45
 2.6.4 Discussion 49
 2.7 Final Considerations 50

3 Neural Networks in RoboChart 51
 3.1 Overview .. 51
CONTENTS

3.2 RoboChart ... 52
3.3 ANNs in RoboChart ... 56
 3.3.1 Parallel Segway Model 57
 3.3.2 ANN Components Metamodel 65
 3.3.3 ANN Component Well-Formedness Conditions 69
3.4 Semantics Overview ... 73
 3.4.1 CSP Overview ... 73
 3.4.2 RoboChart Semantics Overview 74
3.5 CSP Semantics for Neural Networks 79
3.6 JCSP Validation ... 84
 3.6.1 JCSP .. 84
 3.6.2 ANN Component Validation 85
 3.6.3 Discussion ... 91
3.7 Final Considerations .. 92

4 Verification Strategy ... 93
 4.1 Overview .. 93
 4.2 General Pattern of ANN Contracts 94
 4.2.1 UTP Reactive Contracts 94
 4.2.2 Reactive Contracts for ANN components 95
 4.3 ANN Pattern Justification 99
 4.4 Cyclic Memoryless RoboChart Controllers 100
 4.5 Conformance .. 103
 4.6 System-Level Conformance 105
 4.7 Final Considerations 111

5 Conclusions .. 112
 5.1 Summary .. 112
 5.2 Discussion ... 113
 5.3 Future Work .. 114

A Full Meta-model .. 116

B UTP Reactive Contract Laws 118
 B.1 Supporting Laws ... 118
 B.2 Existing Laws ... 138

C ANN Component Conformance Lemmas 140
Chapter 1

Introduction

Creating intelligent machines is a fascinating prospect that has the potential to affect all aspects of society. Makridakis [2] argues that the emergence of artificial intelligence is analogous to the industrial and digital revolution. *Artificial intelligence* (AI) has multiple definitions; but a strong definition, from [3], is machines that can ‘imitate human intelligent behaviour’; behaviour which entails learning, reasoning and self-correction.

Our work contributes to this vision by enabling machines involving AI to be verified. In particular, we focus on developing verified robots whose implementation involve neural networks for control. Next, we detail the motivation for this work. In Section 1.2 we describe our objectives, in Section 1.3, we give an overview of the workflow suggested by this work, and Section 1.4 describes the structure of the thesis.

1.1 Motivation

Machine learning (ML) refers to algorithms that automatically detect patterns in data from a training set, and uses these patterns to predict or classify future data provided after training [3]. Machine learning algorithms accomplish this through utilising induction rules to generate models based on the training set [4].

Neural networks are effective, widely used and efficient machine-learning methods. They have been used to generate state-of-the-art results in image recognition [5], and word spotting [6]. Sudholt [6] comments that a type of neural network is able to consistently outperform all other approaches in virtually every field of computer vision. Neural networks have also been proposed for collision detection in: aircraft [7], road vehicles [8] and ships [9].

For computer vision problems, some form of machine learning is all but necessary to obtain state-of-the-art results in tractable time frames. Benalcázar [10] comments that computer vision is a problem that belongs to the field of AI. For low dimensional recognition problems, similar results have been obtained using other methods. An example is the Airborne Collision Avoidance System. In this system, dynamic programming and Markov chains were originally used before a new system was proposed using neural networks, and obtained a slightly higher, though comparable accuracy. On the other hand, the runtime was reduced and the storage space required was reduced by a factor of 1000 [7]. This is because a neural network only requires the parameters of its model to be stored instead of all interactions in a look-up
CHAPTER 1. INTRODUCTION

One of the potential applications of ML algorithms with significant impact is the design of robotic systems. Machine learning can enable robots to reason, adapt and perceive their environments with reasoning abilities closer to those of humans. This area is referred to as RAAI, the combination of Robotics, Automation and AI.

In October 2016, the UK’s Council for Science and Technology sent a letter to the Prime Minister detailing the potential impact of RAAI. It comments that a recent report estimates that these technologies will have an impact on global markets of up to $4.5 trillion per annum by 2025 [11]. They describe that RAAI will enable the design of machines that are able to perceive their environments, reason about events, make and revise plans, and control their actions.

ML has a significant role in enabling this type of functionality. As Johnson [4] comments, it would be difficult to envisage how autonomous systems could reason about their environment through collision detection and support sensor fusion without the use of machine learning.

The application areas for RAAI include: healthcare, hazardous domains such as nuclear power, autonomous vehicles and domestic assistants [12, 13]. Safety of RAAI systems is a major concern because these application areas involve interactions with humans or with hazardous environments. Utilising formal methods can provide evidence for the safety of robotic systems [13].

There are existing platforms for developing robotic software taking advantage of formal methods [14, 15, 16, 17] and there are tools available for verifying neural networks [18, 19, 20]. There is, however, a lack of platforms to verify robotic software that has a component implemented using a neural network.

There are two broad categories of notations used in formal approaches to verification of robotic software: general purpose languages and domain-specific languages. General purpose languages with verification support include: C, C++, Java, UML and its derivatives, SysML, AADL and Focus [14]. Domain-specific languages (DSLs) are more focused, smaller and more usable, their intended application is for a single domain.

Domain-specific modelling languages provide an efficient and flexible way to combine expertise from multiple domains of robotics [21]. In addition, Dhouib [22] comments that robotic experts face significant problems developing their applications in general purpose languages without expert knowledge of programming languages. DSLs provide a solution to this problem.

There are multiple domain-specific languages for robotics. Nordmann [21] mentions 137 DSLs, which, however, are not focused on formal verification. There are also more recent DSLs including: ArmarX, rFSM, CommonLang, RobotML, FlexBE, RoboChart and vTSL [17, 14, 23, 16]. Of these, ArmarX, FlexBE and rFSM do not contain support for formal verification, CommonLang is focused on Java-code generation, and RobotML does not contain support for the verification of non-functional properties [14].

Those with support for formal methods are vTSL and RoboChart. vTSL, however, does not contain support for timed properties [16] and only provides support for model checking. The semantics of vTSL enable translation to Promela [16], the input language of the Spin model.
CHAPTER 1. INTRODUCTION

checker [24], while RoboChart enables verification through a CSP semantics [14]. Model checking is enabled through FDR [25], and theorem proving is enabled through a predicative relational semantics [14] that can cater for time, continuous, and probabilistic behaviour, all relevant to reason about robotics systems.

RoboChart contains support for the modelling of time properties, static and dynamic verification via testing, and interfaces to multiple verification tools, including simulation. RoboChart also has a graphical notation that provides a clear method for designing robotic software, enabling communication between engineers from various disciplines [17].

To encourage adoption by roboticists, we use RoboChart as a basis for our verification technique.

1.2 Objectives

The overall aim of this work is to enable the development of safe RAAI software. Since machine learning can enable more effective robotic autonomy and neural networks are a very effective form of machine learning, our goal is to support verification of robotic software that uses neural networks. We will, therefore, integrate support for neural network verification into RoboChart. This will enable verification of reactive properties of software that are defined in RoboChart and uses neural networks components.

To achieve our goal, we have the following objectives.

1. Extension of RoboChart’s meta-model to accommodate the definition of components that are implemented by neural networks. This will enable the definition of neural network components as part of a complete design. This extension should be compact, usable and consistent with RoboChart’s metamodel.

2. Extension of RoboChart’s semantics to accommodate such components. This enables a formal definition of their behaviour to accommodate verification techniques. These semantics should cover all RoboChart constructs to define systems involving multiple components, including standard state machines.

3. Definition of a technique that can verify the overall model. This enables the verification of system level specifications, where the existing neural network verification tools are concerned with component-level specifications. Moreover, this allows system requirements to be linked to component specifications.

4. Automation of the verification technique. The verification technique should be automated. This is because there are multiple techniques with varying scalability, applicability and precision under various situations. Automation will also take advantage of existing support for RoboChart.

Using our work, it is possible to develop verified robots whose control software is implemented using neural networks for control. This technique allows the definition and proof of rich behavioural properties of robots using RoboChart. In addition, this technique defines verifiable semantics for the entire model to provide guarantees on behaviour. Finally, our work takes advantage of existing support for RoboChart, including code generation and simulation through RoboTool 1.

1robostar.cs.york.ac.uk/robotool/
RoboTool constitutes a set of Eclipse plug-ins that provide an implementation of the RoboChart language. It supports the graphical modelling, validation, and automated verification of properties of the model. It also provides support to create RoboSim models, a notation to model simulations of robotic systems [26].

1.3 Workflow

In this section, we discuss the high-level workflow enabled by our work, as well as frame our work with respect to a broader context. This also describes how our work can be integrated into existing frameworks and languages.

This workflow, when fully completed, enables a fully automated approach to soundly replace any cyclic, memoryless component with a component implemented by a neural network. We present this workflow in Figure 1.1.

First, we generate a RoboChart module using RoboTool, as shown by the ‘RoboChart module’ box, described in Section 3.2. Next, we check if there is a cyclic, memoryless component in this module. If there is not, we refine the module to obtain such a component. When we obtain one, we replace this component with an ANN component: our novel RoboChart components that are implemented by neural networks (defined in Section 3.3). We then automatically generate CSP semantics, translate these to a UTP encoding, and use this to prove conformance between the original module, and the module with the ANN component. Conformance is refinement with an ϵ tolerance on the values communicated by their outputs, as discussed in Chapter 4. We can prove this with a combination of the Isabelle/UTP [27] and Marabou [18] tools.
We can also simulate our RoboChart module with Java, using the JCSP package, or using an implementation in C/C++, as shown in the ‘Java/JCSP code’ and ‘C/C++ simulation’ boxes.

The CSP semantics of RoboChart are presented in [14], and the automatic generation is enabled through the tool ‘RoboTool’ [26]. The translation fundamentals, from RoboChart to Circus, is presented in [28], the full automation of this translation from RoboChart to UTP is ongoing work.

In our work, we define the translation from the ‘RoboChart with ANN’ to ‘CSP semantics’, and we provide a translation from our CSP semantics to a UTP encoding. We present the CSP semantics for our ANN components in Figure 3.18, and we translate them to a UTP encoding in Section 4.2. The automation of both, however, is beyond the scope of this project.

We define an encoding of our semantics in Java, using the JCSP package, in Section 3.6. The translation of these semantics to C and C++ is future work.

1.4 Structure

Chapter 2 discusses background material relevant to the project: ANN verification and ANN tools. That chapter covers the fundamentals of ANNs, which include ANN training, ANN mathematical representation, and ANN types. That chapter also presents ANN verification techniques, considering both complete and incomplete approaches. Finally, that chapter discusses ANN tools; it provides a novel comparison between multiple ANN tools to inform our verification work.

In Chapter 3, we discuss how to integrate ANNs into RoboChart, including: extending RoboChart’s meta-model, defining well-formedness conditions, and providing a semantics. That chapter defines how to model ANNs as components in a robotic system, instead of being treated in isolation.

Chapter 4 discusses how to verify properties of RoboChart models with integrated ANN components, as defined in Chapter 3. This involves the use of multiple tools, languages, and frameworks working in conjunction. That chapter defines a novel verification technique appropriate to verify complete robotic systems involving ANNs used to implement controllers.

Chapter 5 concludes this work by summarising our results and discussing future directions.
Chapter 2

Formal Verification of Neural Networks

This chapter discusses how formal verification has been applied to neural networks so far. In Section 2.1, we discuss the fundamentals of neural networks. Section 2.2 gives an overview of the available techniques. In Sections 2.3, 2.4, and 2.5, we discuss the available techniques for verifying neural networks. In Section 2.6, we compare the available tools for verifying neural networks. Finally, we give closing remarks in Section 2.7.

2.1 Neural Networks

Data itself has no inherent meaning to the real world. Machine learning is concerned with providing an interpretation of data. The meaning of data is encoded through labelling data. There are two broad types of learning, supervised and unsupervised learning: in supervised learning, labels are explicitly provided for training data; and in unsupervised learning, labels are inferred by the learning algorithm itself.

We give the general form of (supervised) training data below.

\[\{(x_0, l_0), (x_1, l_1), \ldots, (x_s, l_s)\} \]

Here \(s \) represents the number of training samples, \(x_i \) represents the data indexed by \(i \) as an \(n \)-dimensional vector, and \(l_i \) denotes the label for sample \(i \), which is an \(m \)-dimensional vector. Supervised machine learning generally seeks to approximate a function that maps an \(n \)-dimensional input vector to an \(m \)-dimensional output vector, according to the given training data.

More formally, machine learning approximates a function \(F \) of type:

\[F : \mathbb{R}^n \rightarrow \mathbb{R}^m \]

An artificial neural network (ANN) is a well-known, efficient, and powerful machine-learning approach. An ANN is an abstraction of a nervous system of interconnected neurons.
A neuron is a cell with multiple forms and components in biological neural networks. Information is stored at contact points between different neurons, these contact points are known as synapses. The basic function of a neuron is to receive several electrical signals from other neurons through dendrites and then to produce an output signal to send to other neurons through an axon. The body of the neuron determines the output signal sent through the axon.

An ANN approximates this process using a computer. The concept of an ANN was originally developed by Wiener, McCulloch, Pitts and Von Neumann as one of five fundamental models of computation in the 1940s [29]. Neural networks were developed alongside: the logic-operational model by Turing; the mathematical model by Kleene and Church; the cellular automata model by Von Neumann; and the physical computer model by Von Neumann.

ANN’s approximate biological neurons through nodes (artificial neurons), graphically represented in Figure 2.1:

- **Dendrites** are modelled by input channels from other nodes.
- **Synapses** are modelled by assigning a separate weighting for each node connection.
- The **axon** is modelled by a single output value from the node.
- The **cell body** is modelled by a function assigned to each node, referred to as an activation function, which models the decision-making logic involved in generating the output signal.

In a deep neural network, generally referred to as a network with more than one hidden layer, nodes are arranged in layers, with each connection assigned a trainable weighting. Each node is also assigned a single value referred to as a bias, more details of which are discussed later in this section. These parameters are used to approximate a given training data set.

In Figure 2.2, each line represents a connection from the left layer to the right layer; each connection is given a trainable weight parameter. The total weights of each layer can be represented as a matrix, and the bias values of each layer can be represented as a vector. We discuss further details of these representations in Subsection 2.1.4.

What follows is a description of how we can train an ANN, that is, how we can assign values to the trainable parameters: the weights and biases.
2.1.1 Training a Neural Network

To make a neural network model useful, it must be able to represent a mapping from data to meaning. This is achieved by minimizing an objective function, defined as $F(x)$, where x is the trainable neural network parameters. An objective function is also referred to as, equivalently, an error function or a loss function. An objective function is a function that considers training data, and gives a weighting of 0 for a correct label prediction. So the objective of the training is to have the output of this function be as small as possible, representing that the neural network classifies as many samples correctly as possible.

There are multiple types of objective functions, but one of the most common is the sum of squared errors, which is:

$$F(x) = \sum_{i=1}^{n} (y_i - \bar{y}_i)^2$$

Here n is the number of data samples, y_i is the neural network output for the data sample i, and \bar{y}_i is the label for the data sample indexed by i.

An objective function $F(x)$ is minimized by calculating the derivative of this function and minimizing this value. In this function, x represents all of the trainable values of a neural network, which is the summed weight matrices and bias vectors for every layer (for a fully connected layer, more details of which are given in Subsection 2.1.3). The number of trainable weights for a neural network can be given by the following.

$$\sum_{i=1}^{L} ((m_{i-1} * m_i) + m_i)$$

Here m_i represents the size of layer i, m_0 represents the size of the input layer, and L is the number of layers.
To compute the derivative of the objective function, the most well-known method is through backpropagation. Here, partial derivatives of each weight are computed iteratively by propagating the error value of each node backwards. These partial derivatives are used in an optimization method to update the weights and fit the network to the objective function. The partial derivative of these trainable parameters shows which weight is more ‘responsible’ for the error, so those with a higher derivative are updated more than those with a lower derivative.

The backpropagation algorithm consists of four phases: feed-forward computation, backpropagation to the output layer, backpropagation to the hidden layers, and updating the weights. The optimization method used in backpropagation is gradient descent, described below.

The four-phrase process can be described mathematically as finding $F'(x)$: the derivative of the objective function concerning the network trainable parameters x, then updating each value according to a learning rate. This learning rate is a value between 0 and 1 and controls the speed of convergence and the network update rate. This parameter’s value depends on the training data set and network structure.

This can be represented as:

$$w_{\text{new}} = w - \delta \frac{\partial F}{\partial w}$$

Here δ is the learning rate, w is a trainable parameter, and w_{new} is the updated w value. For a fully connected network, the trainable parameters are the weight matrix and bias vector of every layer. This process is repeated until the value of the objective function converges to a sufficient degree, defined by a threshold.

There are several problems, however, that can occur during training, one of which is the vanishing gradient problem. This occurs when the partial derivative w for a particular parameter becomes too low, and the update for that weight becomes very slow, decreasing exponentially with the number of weights multiplied into it subsequently. This occurs because backpropagation uses the chain rule, multiplying n weights to compute each gradient, so the derivative of a gradient value smaller than 1 decreases exponentially with n.

Another problem that can occur during training is overfitting: when a machine learning model fits too closely to its training data. An overfitted model learns relationships and patterns that exist only in the training data, not in the overall trend of the data. For example, when a model fits too closely to patterns of noise present in the training data.

The backpropagation algorithm terminates when the objective function reaches an acceptable error threshold. This represents a local minimum in the objective function, but it may not be a global minimum as the objective function is non-convex. A trained ANN represents a non-linear function where convexity is not guaranteed, so the objective function is non-convex, and non-linear gradient-based optimization must be used. So, multiple applications of the backpropagation algorithm may produce varying results as the algorithm can get ‘stuck’ in local minima. Optimization and convexity are discussed further in Section 2.2.

The next section discusses the types of layers a neural network may contain.
2.1.2 Layer Types

Neural networks are organised in layers, where each layer’s output is input to the next layer. There are a wide variety of layer types used in neural networks. The three broad types of layers, however, are fully connected, convolutional, and recurrent.

These types of layers can be differentiated based on purpose. Fully connected layers learn a relationship between input nodes. Convolutional layers learn a lower-dimensional representation of the input features; these layers can then extract the useful features of a given input. Sudholt and Fink [6] comment that convolutional neural networks (that is, neural networks containing convolutional layers) can consistently outperform all other approaches in virtually every field of computer vision. This is because computer vision applications are usually high-dimensional, and learning a fully connected layer between every input node in a high-dimensional domain becomes ineffective as it contains a large amount of unnecessary information and noise.

Convolutional layers are referred to as such because of the convolution linear operation. In this operation, a small matrix, referred to as a kernel, is multiplied element-wise across the entire input space; the result is then summed to produce the output of the layer. Convolutional neural networks are often trained on high-dimensional data, such as images or audio, so we often represent the input space of a convolutional layer with a tensor: a term representing a vector using an array of components. The output is sometimes called a ‘feature map’ because the output is designed to represent extracted features of the input tensor. Further operations such as pooling or fully connected layers can then be applied [31]. Figure 2.3 displays a graphical representation of the convolution operation; this displays the first kernel multiplication of convolution, the kernel is then rotated across the entire input tensor to produce the elements of the feature map.

The trainable parameter in a convolutional layer is the kernel itself. The hyper-parameters, the pre-set parameters, that define a convolutional layer include the number of kernels and the size of these kernels [31].

The pooling layer type is another layer that reduces the dimensionality of the input space, similar to the convolution layer. The pooling layer operates with a set kernel, as a convolutional layer, but instead of performing matrix multiplication, it performs a pooling function,
commonly the \(\text{MAX} \) function, that returns only the maximum value \([31]\).

Recurrent networks are networks containing loops. These recurrent connections allow the network to ‘remember’ its own previous output decisions, allowing the network to learn temporal patterns as well as patterns in the input vector itself. Recurrent networks experience problems with training, however, as this model contains loops, and they can experience problems such as vanishing and exploding gradients, as discussed in \([32]\).

In the next section, we discuss the various types of activation functions that each network node uses.

2.1.3 Activation Functions

The activation function of a node is the non-linear transformation that is applied to the weighted sum of its input. This function is non-linear because it represents an activation threshold. If the activation function were linear then no matter the number of layers, the ANN could be represented by one affine transformation. This limits the types of relationships that the network can learn. Affine transformations are discussed in Section 2.4.

There is a wide array of activation functions that are used in ANN models; in this work, however, we cover well-used, well-documented activation functions. So, the activation functions we cover are fundamental and have been modified in various ways but are still popular and widely used.

One of the first activation functions to be proposed was the \textit{sigmoid} activation function, defined in \([33]\) as:

\[
f(x) = \frac{1}{1 + e^{-x}}
\]

The sigmoid function is a bounded differentiable real function; it is useful for predicting probability-based output as its output is in the range between 0 and 1. It has been successfully applied in many domains, such as binary classification and modelling logistic regression.

The sigmoid activation function has multiple drawbacks, however, such as slower training on multi-layer neural networks and it has a non-zero centre. This means gradient updates can propagate in different directions, making training more inconsistent.

Another activation function is the \textit{hyperbolic tangent function}, or \textit{tanh}, given as \([33]\):

\[
f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}
\]

The tanh activation function is smoother than the sigmoid function, performs better on multi-layer neural networks, is zero-centred, and its range lies between \(-1\) and \(1\).

Both the tanh and sigmoid activation functions, however, suffer from the vanishing gradient problem. This is due to their tendency to ‘snap’ to certain values: for large input values, they ‘snap’ to 1; and for small input values, they ‘snap’ to \(-1\) or 0. This can lead to the vanishing or exploding gradient problem.
A more modern function, which was defined to address the problems with the previous activation functions, is the *rectified linear unit (ReLU)*:

\[f(x) = \max(0, x) \]

The advantages of the ReLU function include: it is faster to train, easier to optimize, and has been reported to perform and generalise better than the sigmoid function [33]. The ReLU function is also piecewise-linear, it is composed of multiple linear functions at various intervals. In this case, the function is \(f(x) = 0 \) if \(x < 0 \) and \(f(x) = x \) if \(x \geq 0 \). Piecewise linearity has positive implications in implementation, optimization and verification as opposed to fully non-linear functions such as sigmoid or tanh.

A review published in 2015 shows that ReLU is the most popular activation function for deep neural networks [34]. Nwankpa et al. [33] also comment that ReLU is the most widely used activation function for deep learning applications that achieve state-of-the-art results.

The gradient of the ReLU function can only be 1 or 0. This eliminates the vanishing gradient problem, as this can only occur when the gradient of a function is less than 1; similarly, it eliminates the exploding gradient problem, as the gradient cannot be greater than 1.

The ReLU activation function does contain several problems, however, such as certain nodes can ‘die’ when their weights are updated such that they return 0 for any input, and are therefore not updated for the rest of the training process. Also, in comparison to the sigmoid function, ReLU is more likely to overfit [33] to training data. This is because the rate of change is not as smooth as other activation functions, and the update is more ‘jagged’, either being forced to 0 or the maximum value.

The dropout technique [33] has been employed to reduce the effect of overfitting. In addition, further developments on the ReLU function, such as the *leaky ReLU* and the *Parametric Rectified Linear Unit* [33], can help reduce the effect of overfitting and dead neurons.

One additional key feature about activation functions is that they contain an activation threshold, for which any value below this threshold is either negligible or zero. This threshold can be modified by adjusting the weights assigned to each input. This enables the network to learn relationships between input nodes.

In the next section, we discuss how fully connected layers can be represented using linear algebra.

2.1.4 Matrix Form

Fully connected layers are the essential operation of a neural network: they represent the relational properties learnt on input data. In this section, we detail the operation of fully connected layers.

In a fully connected layer, each layer represents a linear transformation, a linear translation and a non-linear transformation. A linear transformation is represented by matrix multiplication, and a linear translation is represented by vector addition. For the purposes of the following discussion, vectors and matrices are described as \(N \times M \), where \(N \) is the rows and \(M \) is the columns.
The linear transformation can be represented by a matrix product of the input (column) vector $I \times 1$ and an $N \times I$ weight matrix, and the linear translation can be represented as vector addition of bias vector $N \times 1$, where I is the input dimensions and N is the number of neurons in the layer. The full output of the layer also applies a non-linear function f to the output of these operations.

$$L_i = f(W_i x_i + b_i)$$

Here L_i represents the output of layer i, and the weight matrix W, input vector x, and bias vector b are indexed by layer i. This operation takes an input vector of size I and outputs a vector of size N.

This is a linear algebraic neural network formulation, so it cannot accurately represent fully non-linear transformations, such as some types of activation function. Although, when a network utilises the ReLU function, when $f = ReLU$, linear algebra can be used since, as mentioned, the function is piecewise-linear.

The ReLU function is represented in linear algebra through two versions of the function: one assuming that the output is 0, and one assuming that the output is x, where x is the input to that node. Whether the ReLU function returns 0 or x is referred to as the phase of the ReLU function.

In a layer-by-layer computation using the formulation above, the number of calculations necessary in each layer is 2^N, where N is the number of nodes in that layer. This is because every combination of phases must be computed to represent the output of that layer.

This computation can be represented using other formulations, such as through set operations [19, 35] or linear programming [20, 18]. In these formulations, a ‘split’ represents each time a branch is made; here, a branch refers to setting the phase of the ReLU function for a node. The number of splits can vary depending on various factors.

The number of splits increases exponentially as the number of layers increase, because each layer’s input dimension (denoted I) relies on the previous layer’s output dimension. The worst case is when the number of layers equals the number of nodes, with each layer composed of one node. In this case, the number of splits is given by 2^l, where l is the number of layers.

The best case number of splits is $2(n)$ where n is the total number of nodes in the network. This would be when the network is single-layered.

A formula to give the number of splits is $n(x^l)$, where n is the number of nodes, l is the number of layers, and x is a variable constant that changes depending on the shape and the exact layer structure of the network. This is for a ReLU activated ANN, with no assumptions on the phase of each node. It is worth noting that the primary goal of a large number of verification techniques is to minimise the number of splits necessary to verify the property in question.

The number of splits and node phases are useful concepts for all activation functions used within an ANN. This linear algebraic representation, while only directly applicable to ReLU ANNs, illustrates the general operation of feed-forward ANNs.

In the next section, we summarise our discussion on ANNs so far.
2.1.5 Summary

The ANN model is a fascinating and multi-faceted model of computation. This section covered how an ANN can learn, interpret, and inductively extract patterns from data, and the essential types and forms they can take. The essence of an ANN’s function is to inductively extract patterns in approximations of the real world.

If an ANN is discretised or binary, it can be represented by a discrete function. If an ANN’s activations are real-valued, it can be represented by a real-valued function. The verification of an ANN is the verification of this function.

The remainder of this chapter focuses on establishing properties about trained ANNs via establishing properties on the functions which capture their behaviour.

2.2 Neural Network Verification Techniques

Verifying an ANN is a very complex problem. ANNs operate on real numbers, so model-checking approaches and boolean satisfiability (SAT) solvers are not directly applicable. Furthermore, as discussed, ANNs are also non-convex. The result is that convex optimization techniques, including linear programming (LP) and semi-definitive programming (SDP) solvers, are also not directly applicable.

So, dedicated techniques are required for the tractable verification of ANNs. Verification of even simple properties, those defined by linear constraints, has been proved to be NP-complete [20]. Also, no accepted approximation or optimal method has been widely accepted.

We classify ANN verification techniques as either complete or incomplete, referring to their logical completeness. These are also referred to as exact and over-approximate verifiers [36, 37]. There are also two primary types of properties: adversarial robustness and general linear constrained properties.

Adversarial examples, a concept first introduced by Szegedy et al. [38], are defined as misclassified data samples that are imperceptibly different from correctly classified data samples, such as images that differ in just one pixel. In response, the concept of adversarial robustness property was developed; it ensures the absence of adversarial examples. Adversarial robustness is defined by an optimization problem, where the objective of this property is to find the minimum adversarial perturbation in a given area around a data sample or verify that none exists. We present, below, a concise definition of the adversarial robustness property, from [36].

\[
\min_{x' \in S_m(x), i \neq i^*,} f_{i^*}(x) - f_i(x') > 0
\]

Here, we represent an ANN using the function \(f : \mathbb{R}^n \to \mathbb{R}^m \), where \(f_i(x) \) is the output of logit \(i \), and a logit is an output node of a neural network. Additionally, \(i^* = \arg \max_j f_j(x) \), where \(\arg \max \) is the pre-image of the function’s maximum, that is to say, it is the set of inputs in the domain of the function that corresponds to the maximum value of its image. Here, the index \(j \) is the index of the logit, so \(i^* \) represents the index of the highest logit in this ANN, which is the predicted class for the original input data sample \(x \). \(S_m(x) \) represents an area bounded by a given vector norm around the data sample \(x \), usually the \(l_{\text{inf}}, l_1 \) or \(l_2 \).
norm. This definition guarantees that all samples x', those in $S_{in}(x)$, are classified as i^*. To illustrate, if a misclassified x' existed, then there would exist some i that would make $f_i(x')$ greater than $f_{i^*}(x)$, so the inequality presented above would be false.

The interpretation of this representation is, given a point x, where the weighting for this class is given by f_{i^*}, there does not exist any sample x' in the area of interest $S_{in}(x)$ that is classified differently. Providing a different classification requires that there must exist a value x' for which $f_i(x') > f_{i^*}(x)$, that is, the logit i of the activation x' that is higher than the highest logit for the original data sample. This can be rewritten as the property of interest is to satisfy $f_{i^*}(x) - f_i(x') > 0$ for all $x' \in S_{in}(x)$.

In contrast to this specification, which is defined as a minimization problem [36, 38], general linear constrained properties are defined as seeking to satisfy a property φ that is a conjunction of linear constraints over the input vector x and the output vector y of an ANN, so, φ takes the form $\varphi = \varphi_1(x) \land \varphi_2(y)$, where $\varphi_1(x)$ and $\varphi_2(x)$ are themselves the conjunction of an arbitrary number of linear constraints over x and y.

The first class of techniques we introduce is the complete verification type. These techniques are used to reason over a network’s exact operation and, if they terminate, are guaranteed to prove the property or prove it is unsatisfiable. Since the problem of verifying an ANN is NP-complete [20], these techniques all have an exponential worst-case runtime. The primary drawback of these techniques is their scalability and applicability. Where the result’s precision is not a factor for complete algorithms themselves.

The next class we introduce is incomplete techniques. These obtain verified upper and lower bounds on the network’s output. Given a linear constrained bound, they produce a range of the network’s potential outputs. The main problem is the quality of the bounds produced, which may not be tight enough upper and lower bounds to verify properties. This is often referred to as the problem of bound tightness [36].

Incomplete methods are concerned with striking a balance between precision and scalability, as in maintaining useful bounds while still being tractable. Incomplete methods, because they operate on a representation of a network, not the exact one, are usually applicable to more activation functions and layer types than complete methods.

Table 2.1 summarises the categories of complete and incomplete formal verification techniques, the details of which are discussed in Sections 2.3 and 2.4. This table displays the class of technique, complete or incomplete, the type of the technique, the date a paper was first published, the name of the technique, the author and a reference. The name of the technique is obtained from the name of the tool implementing that technique (more details of which are in Section 2.3), the name of the technique given by the authors themselves or the name of the technique as referred to in the comparison work by Liu et al. [37]. The first submitted date was the first available publication date, either in conference proceedings or on the arXiv open access website (arxiv.org). In this section, we describe the approaches that have been taken to verify neural networks.

In Sections 2.3 and 2.4, we discuss the two main types of formal verification techniques: complete and incomplete. In Section 2.5, we discuss other types of induction and simulation techniques available for verifying and validating neural networks. Before that, however, we discuss a fundamental property that enables tractable verification of ANNs, convexity.

In a paper for the International Congress of Mathematicians 2010, Kjeldsen [64] discusses...
Table 2.1: A table summarising the categories of formal verification techniques discussed in this section. *RefineZono and RefinePoly (we were unable to locate the original paper in NeurIPS’19 [55]) are hybrid methods and have a complete mode, but for the purposes of this comparison are listed as incomplete because of their standard operation.

<table>
<thead>
<tr>
<th>Type</th>
<th>Name of Technique/Tool*</th>
<th>Authors</th>
<th>First Submitted</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Linear Programming</td>
<td>MIPVerify</td>
<td>Tjeng et al.</td>
<td>Nov 2017</td>
<td>[39]</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Cheng et al.</td>
<td>Apr 2017</td>
<td>[40]</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Fischetti & Jo</td>
<td>Dec 2017</td>
<td>[41]</td>
</tr>
<tr>
<td></td>
<td>NSVerify</td>
<td>Lomuscio & Maganti</td>
<td>Jun 2017</td>
<td>[42]</td>
</tr>
<tr>
<td>SMT Solvers</td>
<td>Reluplex</td>
<td>Katz et al.</td>
<td>Feb 2017</td>
<td>[20]</td>
</tr>
<tr>
<td></td>
<td>Marabou</td>
<td>Katz et al.</td>
<td>2019</td>
<td>[43]</td>
</tr>
<tr>
<td></td>
<td>Planet</td>
<td>Ehlers</td>
<td>May 2017</td>
<td>[44]</td>
</tr>
<tr>
<td>Interval Analysis</td>
<td>RehuVal</td>
<td>Wang et al.</td>
<td>Apr 2018</td>
<td>[45]</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Xiang et al.</td>
<td>Dec 2018</td>
<td>[46]</td>
</tr>
<tr>
<td>Symbolic Representation</td>
<td>ExactReach</td>
<td>Xiang et al.</td>
<td>Dec 2017</td>
<td>[47]</td>
</tr>
<tr>
<td>Incomplete Boundary Search</td>
<td>Branch and Bound (BaB)</td>
<td>Buel et al.</td>
<td>Nov 2017</td>
<td>[48]</td>
</tr>
<tr>
<td></td>
<td>SHERLOCK</td>
<td>Dutta et al.</td>
<td>Sep 2017</td>
<td>[49]</td>
</tr>
<tr>
<td></td>
<td>MaxSens</td>
<td>Xiang et al.</td>
<td>Aug 2017</td>
<td>[50]</td>
</tr>
<tr>
<td>Abstract Domain</td>
<td>Ai2</td>
<td>Gehr et al.</td>
<td>2018</td>
<td>[51]</td>
</tr>
<tr>
<td></td>
<td>DeepZ</td>
<td>Singh et al.</td>
<td>2018</td>
<td>[52]</td>
</tr>
<tr>
<td></td>
<td>RefineZono*</td>
<td>Singh et al.</td>
<td>2019</td>
<td>[53]</td>
</tr>
<tr>
<td></td>
<td>DeepPoly</td>
<td>Singh et al.</td>
<td>Jan 2019</td>
<td>[54]</td>
</tr>
<tr>
<td></td>
<td>RefinePoly*</td>
<td>-</td>
<td>-</td>
<td>[55]</td>
</tr>
<tr>
<td>Linear Relaxation</td>
<td>Neurify</td>
<td>Wang et al.</td>
<td>Sep 2018</td>
<td>[56]</td>
</tr>
<tr>
<td></td>
<td>Fast-Lin</td>
<td>Weng et al.</td>
<td>Apr 2018</td>
<td>[57]</td>
</tr>
<tr>
<td></td>
<td>CROWN</td>
<td>Zhang et al.</td>
<td>Nov 2018</td>
<td>[58]</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Qin et al.</td>
<td>Feb 2019</td>
<td>[59]</td>
</tr>
<tr>
<td>Dual Formulation</td>
<td>LP/LP-FULL</td>
<td>Wong & Kotler</td>
<td>Nov 2017</td>
<td>[60]</td>
</tr>
<tr>
<td></td>
<td>SDP</td>
<td>Raghunathan et al.</td>
<td>Jan 2018</td>
<td>[61]</td>
</tr>
<tr>
<td></td>
<td>Duality</td>
<td>Droyotham et al.</td>
<td>Mar 2018</td>
<td>[62]</td>
</tr>
<tr>
<td>Lipschitz Constant Estimation</td>
<td>Fast-Lip</td>
<td>Weng et al.</td>
<td>Apr 2018</td>
<td>[57]</td>
</tr>
<tr>
<td></td>
<td>RecurJac</td>
<td>Zhang et al.</td>
<td>Oct 2018</td>
<td>[63]</td>
</tr>
</tbody>
</table>

The study of convexity is heavily associated with developing tractable mathematical programming in general. Convexity is a concept crucial to linear programming [64], game theory [64], and most algorithms for verifying neural networks.

Convexity is central in enabling tractable computation for real-number valued analysis. There are multiple reasons for this concerning complexity results. In particular, for optimization problems, which form the basis for most techniques, there are no deterministic algorithms for nonconvex optimization. That is to say, nonconvex optimization is NP-Hard [65]. Conversely, convex optimization can be solved tractably in polynomial time [66].

A convex function is defined as a function that has an epigraph, the set of points on or above the function, as a convex set. A convex set has no ‘gaps’, that is, for any two points in the set, all points on the line segment between them are also in that set. For any convex set C, for any $x_1, x_2 \in C$, and for any $0 \leq \theta \leq 1$, then $\theta x_1 + (1 - \theta)x_2 \in C$ [66]. In addition, the opposite of convex is concave, and a function is concave when $-f$ is convex.

Another property about convex functions concerns any chord on the function: the line segment between $(x, f(x))$ and $(y, f(y))$. All points on the chord are above the graph of the function. This is shown in Figure 2.4 for a 1-D input.

Convexity and concavity are guaranteed when a function is linear, as a linear function has a constant rate of change. This means that the function cannot contain any inflection points.
A neural network, however, is composed of multiple non-linear functions, so convexity cannot be assumed.

To optimise a non-convex function using convex optimization, a convex function must be obtained to represent this function. This may be achieved by multiple convex functions or at least one over-approximate function. This is referred to as convex relaxation. If an over-approximation of the function is generated, any optimum point found will be an upper or lower bound to the function’s true minimum or maximum. In addition, even if a function is convex but non-linear, it may be preferable to relax it to a linear approximation in some situations.

For example, consider the function:

\[f(x) = \max(x, 0) \]

This is the ReLU activation function, and a fully connected layer in an ANN can be composed of a linear combination of such functions. This function is convex but non-linear, and a linear combination of non-linear functions is not necessarily convex. On the other hand, any linear combination of linear functions can still be represented as a linear function, which is convex. Following this, to form a convex representation of a neural network, these non-linear constraints must be relaxed to linear constraints.

ReLU can be represented as two linear functions, \(f(x) = x \) and \(f(x) = 0 \), however, the consequence is that the number of constraints increases exponentially as the layers increase. This concept is mentioned in Section 2.1.4 on matrix form. This representation can also be described as a node-wise convex relaxation of a ReLU ANN. This linear relaxation is an exact representation and forms the basic concept for the complete verification of ANNs.

An alternative, however, provides an over-approximate convex relaxation of the network, which can be applied layer-wise. A linear combination of ReLU functions forms this layer-wise non-linear function according to the layer size. Convex relaxation is then applied to this non-linear function to form an approximate representation for verification. This is the basic concept of enabling incomplete verification of ANNs.

Further details of how this is performed are discussed in Section 2.3. We present, first, complete techniques in the next section.
CHAPTER 2. FORMAL VERIFICATION OF NEURAL NETWORKS

2.3 Complete Techniques

Complete analysis of neural networks can be performed in two ways: providing a counterexample disproving the property or generating the complete output range possible for the input bounds and checking that this does not intersect with a given unsafe zone that would violate the property. Here, a counterexample refers to a particular data sample that cannot exist if the property holds.

It is worth noting that, in this work, safe and unsafe refer to whether or not a property is satisfied. This safety does not refer to the safety of the overall system or safety concerning a domain.

For example, we consider a single input x, single output network y, and a property requiring that input bound $x > 5$ ensures output bound $y < 1$. If, when given $x = 6$, the network returns 2, this is a counterexample, as it shows the property is not satisfied. In addition, any property can be checked in this way, instead of verifying that every value greater than 5 produces an output smaller than 1, attempting to find a single example that violates the output bound. In this example, this would be finding an input greater than 5 that produces an output greater than or equal to one. This is the basis of search techniques: SMT and linear programming solvers are examples of search-based solvers.

Considering the same property, $x > 5$ implies $y < 1$, an alternative method to verify it is to estimate the output of this network. This involves finding, given $x > 5$, the possible values of y that can be produced. In this approach, the ANN does not satisfy the property if the reachability set, R, has a non-empty intersection with a given unsafe area U. In other words, if $R \cap U \neq \emptyset$ holds, then the property does not hold. In our example, the unsafe area is characterised by $y \geq 1$. This approach is used by interval analysis and symbolic representation solvers.

Search techniques can be used in two ways, to find a counterexample, as described above, or to find the minimum or maximum possible value produced by the network under given input conditions. This can be useful depending on the property, for example, if it is an adversarial robustness property, finding a counterexample involves finding the sample a minimum distance from the input.

As already said, SMT and LP solvers can be seen as search techniques, searching for the best assignment of decision variables. In contrast, reachability techniques seek to establish the range of possible values an ANN may produce under a given input, in other words, they define the image of the input domain under the function representing an ANN. This image can be represented in multiple ways, but for a complete representation of this image, we define two primary methods: interval analysis and symbolic representation. Both search and reachability techniques can be complete or incomplete. The main differences are in how the ANN is represented, either exactly or as a relaxed form. Here, we discuss how an ANN can be represented exactly. Relaxed form ANNs are covered in Section 2.4.

In this section, we first discuss search techniques, then reachability techniques. Specifically, we discuss techniques involving linear programming in Section 2.3.1, then those that use SMT solvers in Section 2.3.2. Next, we discuss interval analysis techniques in Sections 2.3.3, and lastly, we discuss symbol representation techniques in Section 2.3.4.
2.3.1 Linear Programming

A linear program (LP) is a specific formulation of a convex optimization problem where all constraints, including the objective function, are linear functions.

An LP is a problem requiring maximising or minimising a single objective function over a set of decision variables, where the decision variables are defined as real-valued variables of the form x_j, $j = 1, 2... n$ [67], and the objective function takes the form:

$$
\zeta = c_1x_1 + c_2x_2 + \cdots + c_nx_n
$$

A linear constraint is defined as any constraint of the form $Ax \{\leq, \geq, =\} b$, where x and b are vectors, and A is a weight vector for x, and $\{\leq, \geq, =\}$ denotes the use of one of three comparator operators, \leq, \geq or $=$. Inequalities can be converted easily. For example, the inequality $Ax \leq b$ can be converted to $Ax + w = b$, $w \geq 0$. Here, w is referred to as a slack variable. To convert from an equality to an inequality constraint, for example, $Ax = b$ can be expressed as $Ax \leq b$ and $Ax \geq b$.

There is a type of linear program known as a mixed integer linear program, or simply a mixed integer program (MILP/MIP), where at least one of the decision variables is an integer. Vanderbei [67] notes that the preferred form is: all constraints are less-than inequalities, and all decision variables are positive. A general example of this is displayed below:

$$
\begin{align*}
\text{maximise} & \quad c_1x_1 + c_2x_2 + \cdots + c_nx_n \\
\text{subject to} & \quad a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \leq b_1 \\
& \quad a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \leq b_2 \\
& \quad \vdots \\
& \quad a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \leq b_m \\
& \quad x_2, x_2, \cdots, x_n \geq 0
\end{align*}
$$

Here, n is the number of decision variables, and m is the number of constraints.

There are multiple specialised tools for solving LPs, including Gurobi\(^1\), GLPK\(^2\), and LP-solve\(^3\). Solving a linear program with arbitrary constraints is a complex problem and may be infeasible. The most used algorithm for solving LPs is the *simplex* method.

The simplex method’s average-case runtime is polynomial but can be exponential. The solution should converge since linear programs are a type of convex optimization, but this depends on the cost function. The LP may even be infeasible based on the set-up of the constraints. While convex optimization, at worst, can be exponential, non-convex optimization, on the other hand, has no clear deterministic method for convergence.

A ReLU ANN can be encoded as a linear program by encoding the objective function as the property in question, or the inverse, to find either a counterexample or a bound to the output to prove the property. The input nodes are encoded as the decision variables so that a program can generate a counterexample or a boundary value for verification.

\(^1\)gurobi.com
\(^2\)gnu.org/software/glpk/
\(^3\)lpsolve.sourceforge.net/5.5/
Lomuscio & Maganti [42] and Cheng et al. [40] propose a method for encoding binary decision variables’ behaviour in formulating a ReLU network called big-M MILP. Cheng et al. [40] utilises a node-wise representation, and Lomuscio & Magnati use a layer-wise representation.

To illustrate the operation of the big-M encoding, we consider the variable \(y = \max(0, x) \), where \(x \) is the input. This variable cannot be represented directly through linear constraints, as \(y = 0 \) and \(y = x \) are conflicting constraints. The big-M encoding introduces a variable \(M \) and a binary variable \(\delta \), defining the following constraints.

\[
y \leq x + \delta M \quad \text{and} \quad y \leq M(1 - \delta)
\]

Here, \(\delta \) is a binary variable recording whether the ReLU function is active. If \(\delta \) is 0, then \(y \leq x \) and \(y \leq M \), meaning the ReLU function is active, and if \(\delta \) is 1, then \(y \leq 0 \) and \(y \leq x + M \), meaning the function is inactive. Additional constraints are introduced to force the value to 0 or \(x \), and \(x \) is treated as \(Wx + b \), with the constraints modified accordingly. The layer-wise representation has fewer constraints and one \(M \) value per layer, and the node-wise representation introduces more constraints with a separate \(M \) value per node.

Tjeng et al. [39] use indicator variables, and Fischetti & Jo [41] define a MILP layer-based representation using indicator constraints to represent the non-linearity. Indicator variables refer to variables similar to those used by big-M encoding, representing the phase of the ReLU function. In contrast to big-M, though, Tjeng et al. [39] uses separate recorded upper and lower bound variables. Indicator constraints differ from indicator variables because they are logical implication constraints converted internally to valid linear constraints by the LP solver. This approach also generates a distinct upper and lower bound value instead of one \(M \) value encompassing the entire constraint. Furthermore, instead of big-M encoding or indicator variables, this approach will always generate a feasible set of constraints.

Tjeng et al. [39] and Fischetti & Jo [41] use asymmetric bounds, separate upper and lower bounds, which the big-M encoders do not use. Tjeng et al. [39] comment that this, in their experiments, creates an increase in the runtime of multiple orders of magnitude, and they also mention that by using a restricted input domain, another optimization technique, they can improve upon the approach of Fischetti & Jo by at least one order of magnitude.

To be encoded as a linear program, as noted by Tjeng et al. [39], a property must be expressible as the conjunction or disjunction of linear properties. This is because the output constraints must be encoded in the objective function, and the input constraints in the LP constraints. The layers in the represented network must also be piecewise-linear: contain piecewise-linear or linear transformations. The authors note, however, that this is not a particularly limiting restriction as it allows for convolutional, fully connected and max-pooling layers, as well as ReLU and linear activation functions. Finally, the runtime of these formulations depends on the bounds of the problem but also the tightness of the bounds computed, this is either the upper and lower bounds or the value of \(M \). This is due to the bounds on the linear constraints determining the search space for the linear problem.

2.3.2 SMT Solvers

The next class of search techniques we discuss is the SMT solver technique. A boolean satisfiability solver (SAT) is a specialised solver designed for propositional logic equations,
that is, equations using boolean variables, conjunction, disjunction, and implication. A SAT solver operates on a discrete space, so cannot be directly applied to ANN verification.

A satisfiability modulo theorem (SMT) solver extends a SAT solver to include further theories. These theories can include first-order logic, predicate logic, linear real arithmetic, and many others. First-order logic includes quantifiers, variables, and relation symbols. An SMT solver involves a SAT solver at its core. The techniques we discuss here either use SMT or SAT solvers.

An ANN using the ReLU activation function can be represented by a set of linear bounded constraints to be analysed by an SMT solver. This approach is incredibly inefficient, however, as demonstrated by Katz et al. [20] in 2017. This is because the search space is intractable, essentially infinite when the constraints are encoded without optimisations. Using this approach, even with state-of-the-art SMT solvers, the authors could not verify even the most basic properties of the form \(x \geq c \) for a constant \(c \) and an output variable \(x \) [20].

One of the first dedicated techniques for ANN verification modified the simplex algorithm for ReLU ANNs. This involved adding further derivation rules to the simplex algorithm to enable efficient solving of ReLU ANNs using SMT solvers. This method extended the simplex algorithm to add the ReLU activation function, hence the name, Reluplex. This method operates by assigning variable pairs for each ReLU connection to represent the inputs and output of each node. An assignment of values to a variable pair is called a ReLU pair. Reluplex attempts to find valid ReLU pairs that characterise a counterexample.

Non-linearity is handled in Reluplex through the ReluSplit rule, which infers the phase of the ReLU activation function and attempts to find a working assignment based on the phase of that particular node. Notably, the method does not need to split on every node, only on those nodes that could be active or inactive, and thus, changing these could lead to a counterexample. The algorithm identifies these nodes using bound tightening by defining upper and lower bounds on the variables.

The key difference in this formulation of Simplex is that Reluplex, based on an SMT solver, not an LP solver, seeks to find a feasible, not the optimal, assignment, and so it searches for counterexamples. As Reluplex encodes each node as a set of satisfiability rules; this framework applies only to ReLU nodes. Reluplex has been extended, in 2019, into the framework Marabou [18]. It operates on the same principles as Reluplex but with several significant improvements and parallelism enabled through the divide-and-conquer (DnC) mode. Efficient parallel solving is enabled by splitting the input query into multiple subproblems. Marabou also extends the applicability of Reluplex to general piecewise-linear layers and activation functions.

The Planet approach is similar but uses linear estimation for bounding and a SAT core to compute node phases. This linear estimation allows the solver to prune out large parts of the search domain. Planet applies to piecewise-linear nodes. It uses a SAT core to find a satisfying combination of the phases of the relevant ReLU nodes to find a counterexample instead of searching for an assignment on a real-valued domain over the decision variables, as Reluplex.

It is noted in [48] that the bounding method of Planet is tighter than that of Reluplex. While Reluplex uses a relaxation based on constraint removal, Planet uses a linear estimation. The consequence is that theoretically, more of the search space can be pruned; practically, more
of the nodes can be set to either active or inactive state.

Reluplex, Marabou and Planet all operate on piecewise-linear transformations. NPAQ [44], on the other hand, operates solely on binarised neural networks. NPAQ formulates the binarised ANN as a CNF (a propositional formula of the form \((A \lor B) \land (C \lor D) \land \cdots\)). This approach is the only quantitative verification of ANNs we are aware of and can prove rich properties, such as the exact number of discrete values satisfying a property, quantitative analysis of adversarial examples, quantified trojan attacks, and even bias over the class predictions of an ANN [44].

Next, we discuss how an ANN reachable set can be computed.

2.3.3 Interval Analysis

Interval analysis is a classic technique for representing the ranges of functions through intervals. This involves defining a lower and upper bounded input, and propagating this through the function domain, instead of propagating a concrete value. This can represent the possible output range for a function given an input domain or, in other words, the image of the function under a given interval.

Interval analysis, in general, computes over-approximate bounds, but this can be enough for verification purposes. If the over-approximate output range satisfies the required property for a given input range, it is guaranteed that the true output range satisfies the property due to the over-approximation [45].

Interval arithmetic, instead of assigning a concrete value for each variable, defines a range of possible values for each, in the form \(X = [X^L, X^U]\), where \(X^L\) is the lower bound, and \(X^U\) is the upper bound. We consider the function \(f(x) = x\) as a simple example for an arbitrary input range \([x]\). The ideal interval extension is a function of intervals that approaches the image of \(f\), such that \([y] = [y^L_1, y^U_1] \times \cdots \times [y^L_n, y^U_n]\). This is what the following techniques seek to estimate for an input range \([x]\). It is verified if the \([y]\) does not violate the property.

The work by Xiang et al. [46] proposes an algorithm based on interval analysis and bisection-guided search. This approach is based on splitting the input space into finer and finer partitions approaching the unsafe zone to get to a precision fine enough to prove safety or to reach a pre-defined tolerance limit \(\epsilon\). This tolerance is defined as a value greater than 0 and determines the smallest interval size possible for the algorithm. This can provide arbitrary precision on an ANN but with scalability varying with \(\epsilon\).

Given an input range and an unsafe output range, the technique is [46] computes the output range through interval arithmetic, and if this intersects with the unsafe zone, bisect this interval into smaller intervals, referred to as partitions, and repeat until tolerance is reached or until no partitions intersect with the unsafe zone. This is shown, for a 2-D input, in Figure 2.5. This figure demonstrates where the input space intersects with the output unsafe zone. Each rectangle represents a partition of the input space, with a corresponding over-approximate range calculated. If the computed over-approximate output does not intersect with the unsafe zone, then the partition is left, it can be pruned out of the search space. Otherwise, the partition may contain a counterexample, so finer partitions must be computed to tighten the over-approximation and prune out unnecessary input sections.

Another approach to applying interval analysis for ANN verification, called ReluVal, is presented by Wang et al. [45]. ReluVal is based on symbolic interval analysis. This is an
extension of interval analysis, where instead of maintaining concrete ranges of intervals, it maintains equations based on the previous propagations to preserve information about the relationships between inputs and concretizes (computes exact interval bounds) only when required [45].

ReluVal keeps track of linear equations based on the linear transformations of the weight matrix multiplication and bias vector addition. The nonlinearity of a ReLU presents a problem because when the value of the linear equation representing the interval can be negative, the linear equation does not sufficiently bound the ReLU’s behaviour. In this case, the bounds must be concretized with the exact values. The concrete bounds can then be reduced by iterative interval refinement, which separates the intervals into separate sub-intervals to refine the bounds. The authors note that this can achieve an arbitrary level of precision for any Lipschitz continuous DNN. An arbitrary level of precision is not guaranteed for a non-Lipschitz continuous activation function.

Lipschitz continuity is a strong measure of function continuity. It is important because intervals cannot accurately capture its image if a function is not Lipschitz continuous. A function is Lipschitz continuous if a constant C can be defined for the function, such that, for arbitrary x and y, the following holds:

$$ | f(x) - f(y) | \leq C | x - y | $$

One problem with interval analysis for ANNs is the dependency problem: the error caused by intervals producing bounds that depend on conflicting values of input nodes. For example, we consider a single, two-node, hidden layer ANN with nodes n_1 and n_2. Here, the input to each node is x_1 and x_2, respectively, and the output of each node is y_1 and y_2. The output
y_1 of node n_1 has a computed upper bound of $\overline{y_1}$ when the input is x_1. The output y_2 of node n_2 has an upper bound of $\overline{y_2}$, when the input to this node is x_2. These upper bounds are then used to compute the upper bound of the output layer. However, if $x_1 \neq x_2$, this upper bound for the output layer is impossible, as it depends on the input being two values simultaneously, referred to as the input dependency error or dependency error. Wang et al. [45] prove that in Lipschitz continuous functions, this dependency error decreases as the width of the intervals decreases.

Layers and activations shown to be Lipschitz continuous are fairly extensive: they include the piecewise-linear transformations contained in convolutional layers, ReLU layers, linear layers, max-pooling layers, softmax layers, and contrast-normalization layers [38]. Furthermore, some non-linear activation functions are Lipschitz continuous: such as the sigmoid and tanh function, by [68]. Wang et al. [45], and Xiang et al. [46] can achieve arbitrary precision using interval arithmetic. This is because both approaches use iterative interval refinement, as discussed, and can provide arbitrary precision. ReLuVal, however, uses symbolic intervals, which the authors comment reduces dependency errors by maintaining only the relationships between variables. Furthermore, they comment that this reduces computation time, as the bounds are not necessarily concretized at every node of the ANN. Finally, if the ANN is linear, symbolic interval analysis can eliminate the input dependency problem entirely.

2.3.4 Symbolic Representation

The final class of technique we introduce is verification by symbolic representation. Symbolic representation refers to maintaining an interval range, generating a set representing the reachable set, and checking if it intersects with the unsafe zone. This involves defining a set of states via an intermediate representation, which, for computability, is a type of convex polytope with efficient inclusion, translation and transformation operations.

The reachable set is composed of conjunctions of multiple convex polytopes. A hyper-rectangle is the simplest class of convex set. Hyper-rectangles, in this work, have rational endpoints that can be represented by their leftmost and rightmost corners $\underline{x} = (\underline{x}^1, ..., \underline{x}^n)$ and $\bar{x} = (\bar{x}^1, ..., \bar{x}^n)$ [69]. A hyper-rectangle is defined as all points $x = (x^1, ..., x^n)$ satisfying the following as property as given in [69]:

$$\bigwedge_{i=1}^{n} \underline{x}^i \leq x^i \leq \bar{x}^i$$

For accuracy and flexibility, further representations of convex polytopes are required. A convex polytope is a bounded convex polyhedron [69]: its points form a convex set. A polyhedron is defined here as any n-dimensional shape with flat sides, so a hyper-rectangle is a convex polyhedron but not all convex polyhedrons are hyper-rectangles.

Convex polytopes can be defined through several different representations. Each represents the same class of sets, but the complexity of operations on sets varies depending on the representation [69].

Convex polytopes can be represented canonically in two ways.

1. Vertex Representation: a finite minimal set \tilde{P} such that $P = \text{conv}(\tilde{P})$.
2. Inequality Representation: a conjunction of a minimal set of halfspaces \(H = H^1, \ldots, H^k \) such that \(P = \bigcap_{i=1}^{k} H^i \). Syntactically this is represented as \(\bigwedge_{i=1}^{k} a^i x \leq b^i \).

Here \(\hat{P} \) is the vertices of \(P \), and \(\text{conv}(\hat{P}) \) is its convex hull. Intuitively, for a set of points \(S \), \(\text{conv}(S) \) is the set of all points between the set of all possible convex combinations of the elements of \(S \). \[69\]. A convex combination of a set \(\{x_1, \ldots, x_l\} \) is any \(x = \lambda_1 x_1 + \ldots + \lambda_l x_l \) such that \(\sum_{i=1}^{l} \lambda_i = 1 \).

One of the key properties of convex polytopes is that, in contrast to hyper-rectangles, they are closed under general linear operations. That is, if \(P \) is a convex polytope, then \(AP \) is also a convex polytope where:

\[
AP = Ax : x \in P
\]

This property is very useful for set-based computation, as they allow the representation of general linear functions. The complexity of set operations varies depending on the representation used, for example, testing membership \(x \in P \) is easier using inequalities while checking non-empty intersection \(P_1 \cap P_2 \) is easier with vertex representation.

Convex polytopes are not closed under non-linear transformations but under affine transformations. These are transformations of objects in affine space: a type of Euclidean, real-valued space where the origin is omitted. A linear transformation of an object is represented by a matrix product, where the origin is preserved. In contrast, an affine transformation is a linear transformation in affine space, where the origin is not fixed, so the object can be translated. So, an affine transformation can be represented by a linear transformation and a translation.

Xiang et al. \[47\] propose a symbolic representation ANN verification method based on polyhedra defined in inequality form. Their method defines a union of multiple polyhedra, propagated layer-by-layer, to define the reachable set of an ANN.

Tran et al. \[19, 70\] proposes a symbolic representation method based on star sets, efficient representations of bounded convex polytopes. A star set is a tuple \(\Theta = \langle c, V, P \rangle \), where \(c \) is a vector representing the centre of the star, \(V \) is a set of basis vectors describing the star bounds, and \(P \) is the predicates describing what part of the bounds encompass the star. The predicates are restricted to a conjunction of linear constraints, and so a star represents a bounded convex polytope. A star is closed under affine transformations and halfspace intersections \[19\].

The input is given as a star set to represent an ANN’s reachable set, which is transformed using an affine transform representing the weight matrix and bias vector computation. The input reachable set is calculated as \(\Theta = W \ast \Theta_{\text{prev}} + b = \langle Wc + b, WV, P \rangle \), where the output set from the previous layer is \(\Theta_{\text{prev}} \), \(W \) represents the weight matrix, and \(b \) the bias vector of this layer. This is a simplified form of the reachability calculation described in \[19\].

To handle the ReLU function, each component of the reachable set is analysed, and if the lower bound is less than 0 for that component, then one of the nodes corresponding to that component has the potential to exhibit non-linear behaviour. This is dealt with by defining two further start sets, \(\Theta_1 = \Theta \land x_i \geq 0 \), and \(\Theta_2 = \Theta \land x_i < 0 \), where \(x_i \) is the component of the input set whose lower bound is less than 0. Here, \(\Theta_2 \) represents the inactive state of the
CHAPTER 2. FORMAL VERIFICATION OF NEURAL NETWORKS

ReLU because x_i is now strictly less than 0, and when the ReLU function is applied, that component is set to 0. This process is referred to as stepReLU.

Every new star set created by stepReLU leads to another full reachability construction in subsequent layers, as in another stepReLU for each new star set generated. This leads to a worst-case number of stars for an ANN with n nodes, to be 2^n, which is also the worst-case number of splits, as discussed in Section 2.1.

The symbolic representation algorithms we discuss apply to piecewise-linear layers, such as max pooling, convolutional, ReLU, and linear fully connected activation functions. This is due to the necessity of affine transformations to these representative sets.

2.3.5 Discussion

No complete technique we know applies to pure non-linear activation functions or layers. All are at most applicable to piecewise-linear transformations. This is due to the complexity of capturing an ANN’s output range through computable methods, as this section outlines.

This output set is sometimes known as an adversarial polytope, representing the complete output range. This requires representing a non-convex multi-dimensional polytope through various forms, which is computationally challenging. Piecewise-linear activation functions make this polytope significantly simpler to reason with.

Comparing these techniques’ effectiveness is challenging. This is because they are all new and currently in development, and consistent benchmarks are unavailable for the emerging sub-field of neural network verification. As mentioned, all complete verification techniques’ runtime is, in the worst-case, exponential, but their average and best cases vary and depend significantly on multiple factors.

The scalability of these techniques depends on multiple factors: the width of the ANN, the depth of the ANN, the property bounds, the input and output dimensions, and the number of splits required. The depth of an ANN is the number of hidden layers it has, and its width is the number of nodes in those hidden layers; together, the width and depth characterise the shape of the ANN. The property bounds refer to the shape and complexity of the linear bounds defining the property. The input and output dimensions refer to the number of input and output nodes corresponding to the size of the input and output vectors.

The most important factor, arguably, is the number of splits required. For example, if the number of splits required is 0, and every node has a value greater than 0 after the weights and bias vectors, the ReLU node is always $f(x) = x$. This system of equations becomes entirely linear. This reduces the number of constraints required dramatically for linear program solvers, makes the network able to be represented by one affine transform of one polytope set, and makes the network able to be represented by a single affine arithmetic computation.

For complete techniques, scalability is the biggest concern, as representing non-linearity and complete verification of ANNs is NP-hard. This leads to problems with larger networks, but also to a problem with utilising exact arithmetic. Using exact or floating point arithmetic is an important consideration for real-valued calculations. Exact arithmetic is usually used in verification methods, such as SMT solvers with the theory of real arithmetic, but is challenging to use with verification techniques, as scalability is already an issue and exact
arithmetic is usually at least an order of magnitude slower than floating point arithmetic [20].

Techniques use various types of approximation or error compensation to compensate for this challenge. Some techniques maintain a separate parameter for error tolerance, such as NPAQ [44] or Reluplex. Interval analysis approaches use outward rounding to ensure soundness over the true output range. The intervals, however, may not be precise enough to verify the network. To compensate, they use iterative interval refinement, as discussed. Reluplex, to compensate for the error, tracks the cumulative round-off error, and if it exceeds a certain threshold, essentially backtracks a certain number of steps in its assignment of variables but does not completely guarantee soundness. A recent work outlines how these errors can be exploited for previously verified networks [71].

This area, as mentioned, is currently in active development, and the fusion and collaboration of multiple types of analysis and techniques is a promising direction. This stems from the key difference in the philosophy of search and reachability techniques and the possibility of further collaboration to improve search, branching and bounding. This is suggested by Katz et al. [18] with integrating further network-level reasoning into Marabou, such as reachability techniques, and by Singh et al. [53].

This section has given an overview and compared approaches taken to represent an ANN’s behaviour exactly for verification. The next section discusses how to represent an ANN approximately for verification.

2.4 Incomplete Techniques

In this section, we discuss ANN verification techniques which are, algorithmically, incomplete. These techniques generate an approximate output set describing the ANN’s behaviour. The techniques we discuss in this section generate strict over-approximations, so they can guarantee behaviour. The over-approximation, however, results in incompleteness. Incomplete ANN verification techniques operate in three main ways: searching for the bound limits using over-approximation, relaxing the ANN’s non-linearity, or generating a Lipschitz constant for the network to generate bounds.

Some types of incomplete techniques involve relaxing the non-convexity present in the function representing an ANN into a convex representation, through a process known as convex relaxation. This process involves representing a non-convex problem using an over-approximate convex problem. We separate the convex relaxation techniques into three types: abstract domain techniques, linear relaxation techniques and dual formulation techniques. We note that some complete techniques involve convex relaxation steps; in the techniques above, however, the entire function capturing an ANN is relaxed.

First, in Section 2.4.1, we discuss over-approximate search techniques, referred to as boundary search techniques. Next, we discuss convex relaxation techniques: abstract domain techniques in Section 2.4.2, linear relaxation techniques in Section 2.4.3, and dual formulation techniques in Section 2.4.4. In Section 2.4.5, we discuss techniques that involve estimating the Lipschitz constant, and we conclude with a discussion of incomplete techniques in Section 2.4.6.
Figure 2.6: The operation of the approach by Bunel et al. [48], from [37]. Step 1 illustrates the generation of the approximate upper bound and concrete lower bound for the entire input space. Step 2 splits the input space into two partitions: a right and a left partition. Step 3 prunes the left partition, as its approximate upper bound is lower than the right’s concrete lower bound.

2.4.1 Boundary Search

In a complete technique form, search techniques use higher and higher precision until a valid solution is reached. In incomplete techniques, convergence and arbitrary precision are not always guaranteed, they are often traded for efficiency.

The first technique we discuss was proposed by an overview paper of piecewise-linear verification techniques by Bunel et al. [48], referred to as Branch-and-Bound, or BaB.

This technique re-phrases the neural network verification problem to a single optimization problem by adding additional linear layers, with a single node representing the property. This property must be formed from a combination of linear inequalities. Properties based on a single linear inequality can be represented with one additional layer, those based on multiple inequalities require further layers. If the output value falls below 0, the property is violated.

The goal of this technique is to find a single point which is the maximum activation in a given input range. Search techniques achieve this by input space partitioning, removing areas that cannot contain the maximum activation. Note that input space partitioning is used in Xiang et al. [46]’s approach but for intersections with unsafe zones of properties instead of maximum activation searching.

To enable tight bounds, the objective is to maximise the lower bound and minimise the upper bound. This makes the range of possible outputs as tight as possible, enabling effective search space pruning. The lower bound can be generated using stochastic sampling techniques on the input domain, and the upper bounds can be generated using a linear convex relaxation described in [43]. This means the upper bound will always be an over-approximation, and the lower bounds will always be an under-approximation [37].

This reduces the search space of the input domain. This process is illustrated in Figure 2.6, where the solid line is the lower bound and the dotted line is the upper bound. Note that, due to the formulation of the property into a single output node, only an upper bound is required to prove safety, the lower bounds generated here are only for pruning out sections
CHAPTER 2. FORMAL VERIFICATION OF NEURAL NETWORKS

of the input domain, not for generating bounds.

A related search technique is proposed by Dutta et al. [49] and is referred to as SHERLOCK. This approach searches for the upper bound in a related way to Bunel et al. [48]. Dutta et al. [49], however, use a combination of local and global search, instead of linear relaxation and concrete sampling, to estimate the output boundary.

First, a point is sampled from within the valid input constraints. Then, this point is incremented using local search, a gradient-based ascent method. As this method is gradient-based, it is not guaranteed to return the global upper bound if the function is non-convex. To improve the bounds, global search is then used on this upper bound. Global search is an optimization technique that operates on non-convex functions but is not necessarily guaranteed to reach a local optimum. If a global search can find a point with a greater activation, the process repeats, local search is then applied to the new point.

To find the lower bounds, the same method is applied, but in reverse i.e. with gradient descent and global minimization techniques. The tightness of bounds generated by this method is affected by a tolerance parameter δ. This is added to every upper bound computed by local search. The tolerance parameter is a value greater than 0, and the smaller it is the longer the runtime, but the tighter the bounds produced.

The approach by Dutta et al. [49] only applies directly to one-layer neural networks. In contrast, the approach by Bunel et al. [48] is applicable to multiple through the method to re-phrasing the network, whereas Dutta et al. [49] does not give a method of re-phrasing the network in this way.

Next, we begin our discussion of convex relaxation techniques with abstract domain techniques.

2.4.2 Abstract Domain

Symbolic representation techniques use multiple convex sets to encompass an ANN’s exact (non-convex) image. Abstract domain techniques, on the other hand, define the effect an ANN has on a single convex set. That is the smallest convex set that can encompass the entire image of an ANN.

If a network were linear, its image can be represented exactly by a single set: each layer would represent an affine transform. Considering a non-linear network, where the layers represent non-linear transforms, this is not the case. In this case, instead of splitting apart the set to encompass the behaviour, as a symbolic representation, the set is modified with additional variables, or dimensions, to compensate for the non-linearity. The number of splits necessary to represent the network by linear algebra is related to the complexity of the set, not to the number of sets.

DeepPoly, defined by Singh et al. [54] uses polytopes as its domain; it combines floating point polyhedra with interval analysis. In addition, it defines transformers for affine transforms, ReLU, sigmoid, tanh and maxpool layers. Transformer here describes how a polyhedron is transformed to approximately represent these layers.

DeepPoly defines two linear constraints per ReLU, an upper and lower bound constraint. This is to avoid an exponential blowup of the analysis. These linear constraints are defined by minimising a polytope in a 2D input-output plane. Abstract domain methods
Figure 2.7: Polytope approximations for the ReLU function, from [54]: (a) shows the ideal polytope, (b) and (c) show the two proposed in that work. Here, λ and μ are the gradient and the intercept, defining the upper bound of the polytope. The representation in (a) is more accurate but less efficient as it contains two lower bounds: the lines $x_j = x_i$, and $x_i = 0$. The polytopes in (b) and (c) are more efficient as they only have one lower bound.

minimise to reduce the over-approximation in the linear constraints made: the smaller the shape, the tighter the area represented by the linear constraints, so the tighter the over-approximation.

Convex approximations for the ReLU function from Singh et al. [54] are shown in Figure 2.7. Here, λ and μ are the gradient and the intercept, the 1 and 0-dimensional variables defining the upper bound of the polytope.

Gehr et al. [51] and Singh et al. [52] use zonotopes. Zonotopes, as discussed in Complete techniques, are a type of centrally symmetric polytope, and are faster, but more approximate. Singh et al. [52] define zonotopes in affine form, and for every ambiguous value encountered, a new noise symbol is added to the affine form: where an ambiguous value is a value that could either be positive or negative.

Singh et al. [52] use affine arithmetic to define zonotopes, where affine arithmetic is an extension of interval arithmetic. Zonotopes are defined by associating an affine form \hat{x} with each of its dimensions. An affine form is \hat{x} such that $\hat{x} = x_0 + x_1\epsilon_1 + ... + x_n\epsilon_n$. Where x_0 is the central value and $x_1,..x_n$ are known as the partial deviations, associated with the noise symbols ϵ [72].

Singh et al. [52]'s transformation rules define the input zonotope, as in, the single zonotope transformed with just the linear transformations if the lower bound is greater than 0, defines the affine form $[0,0]$ if the upper bound is less than or equal to 0, and in the ambiguous case defines the output affine form to be \hat{y} where \hat{y} is:

$$[\lambda_l, \lambda_u] \cdot \hat{x} + [\mu_l, \mu_u] + [\mu_l, \mu_u] \cdot \epsilon_{new}$$

Here, λ is a floating point representation of λ_{opt} and μ, which is the optimal gradient and intercept, respectively, for the lines constructing the zonotope.

This transformation adds another noise symbol ϵ to the affine form, making the runtime linear in the number of noise symbols. Singh et al. [52] also mention that Gehr et al.'s [51] approximation is imprecise and costly due to their approach using the zonotope join operator.
The join operator uses one zonotope to cover and approximate all zonotopes generated, whereas Singh et al. [52] uses affine form manipulations, instead.

Singh et al. [52]s approach handles convolutional architectures and is sound with respect to floating point arithmetic.

Approx-Star, by Tran et al. [19] is an abstract domain technique using the star set, an efficient representation of a bounded convex polytope, and is a tighter representation than a zonotope. Approx-Star uses a similar approximation to DeepPoly, but instead of two constraints per node, they use three. This means that this abstract domain is tighter, and more precise than DeepPoly, but may result in a model with more constraints, which can mean it is less scalable. The star representation, however, contains more set-efficient operations than the polytope representation, so further investigation could be useful for this.

Abstract domain techniques have been defined, because of the over-approximation, of non-linear activation functions, and convolutional layers.

Abstract domain techniques, as they represent the ANNs image with a single polytope, are particularly applicable to image domains, as properties such as rotation, scale, and linear interpolation can be applied as transforms to the generated set, instead of new properties being developed for each type of image property.

2.4.3 Linear Relaxation

Linear relaxation is a convex relaxation technique that defines upper and lower-bound linear functions to approximate the non-linearity in ANNs.

There are three techniques we are aware of which utilise linear relaxation: Weng et al. [57], Fast-Lin; Wang et al. [56], Neurify; and Zhang et al. [58], CROWN. Fast-Lin uses linear relaxation, Neurify utilises symbolic linear relaxation, and CROWN uses linear and polynomial relaxation.

Fast-Lin defines two linear upper and lower bounds to replace the ReLU activation function. These are:

\[
\frac{u}{u-l} x \leq \sigma(x) \leq \frac{u}{u-l} (x-l)
\]

Here \(x \) is the input to the ReLU, \(\sigma(x) \) is the ReLU function, and \(u \) and \(l \) represent the upper and lower bounds of the original \(x \).

Fast-Lin obtains two explicit lower bounded linear functions, \(f^U \) and \(f^L \), that bound the value of the original ReLU neural network function, \(f \) such that \(f^L \leq f \leq f^U \). Obtaining these leads to analytic bounds that can be computed efficiently without using any optimization solvers, to enable fast computation for layer-wise output bounds. The time complexity for computing the output bounds of a ReLU network in polynomial time. Fast-Lin is, however, only applicable to ReLU neural networks.

CROWN is an improved version of Fast-Lin, it bounds ANNs using linear and quadratic relaxation, allowing it to be applicable to general non-linear activation functions. CROWN allows flexible selection of upper and lower bounds for activation functions, enabling up to 26% improvements in certified lower bounds compared to Fast-Lin [58].

Neurify, the approach defined by Wang et al. [56], is a technique utilising symbolic linear relaxation. Symbolic linear relaxation refers to a combination of symbolic interval analysis,
as ReluVal [45], and linear relaxation to linear bounds on ANNs. Neurify is only applicable to ReLU networks.

The complete approach by Ehlers [43] also uses a linear relaxation of a network, along with an SMT solver. The approach by Qin et al. [59] also uses this relaxation, however, they define a method to verify non-linear properties through convex relaxation, the only technique we are aware of that is able to do so. Due to their relaxation of the properties, their technique is over-approximating.

2.4.4 Dual Formulation

These techniques formulate a dual optimization problem that obtains valid bounds on the lower bounds, through maximising the dual problem.

Wong & Kotler [60], referred to as LP/LP-full, define a linear program to define the dual. The feasible set of this dual problem, critically, can be expressed as an ANN, and can be solved using backpropagation-like computing, this means verification can be folded into training time, creating a trainable certificate. Another consequence of this approach, however, is that the optimization is non-convex, as the dual is expressed through an ANN. Finally, this approach can train networks with provable robustness against all attacks, instead of generating bounds pointwise, it can generate bounds against all possible attacks for a network.

This approach is sometimes referred to as a certification method, as it can provide guaranteed bounds for an entire network, a 'certificate' of robustness. This approach can be applied only to ReLU networks, however.

Raghunathan et al. [61] present an approach developed in parallel to Kotler & Wong [60], which also presents a certification method using duality. Instead of using linear programming, however, Raghunathan et al. [61] uses semi-definite programming, but is only tractable for one layer, for any additional layers it is NP-hard. It produces a bound on the global Lipschitz constant for a network, this means that the bound is for all samples considered, as opposed to other works which produce a local Lipschitz constant, based on individual samples.

These techniques can be used as a training method, and as a cost function, to obtain verification at training time. A key weakness of these techniques is that they obtain loose bounds on networks not trained with their training methods.

A dual formulation technique developed after, and inspired by, these techniques is Dvijotham et al. [62], referred to by [37] as Duality. This approach operates in four stages: formulate the problem as a linear program, find a Lagrangian relaxation of the constraints, find the dual of this relaxation, and solve using unconstrained minimization.

The linear program developed in the first stage is non-convex, and the Lagrangian relaxation is to develop a convex approximation of this non-convex linear problem. This approach, instead of solving non-convex optimization, as in Kotler & Wong [60], solves the dual problem using unconstrained minimization. A consequence of unconstrained minimization is that their approach is anytime, the process can be halted anytime and still provide valid lower bounds.

Their approach is, in theory, applicable to recurrent neural networks, although the formulation of their approach given in [62] is applicable to layered architectures.
The final type of technique is those that use a Lipschitz constant to generate valid bounds on the output.

2.4.5 Lipschitz Constant Estimation

These techniques are estimators, as to return an exact Lipschitz constant would be complete verification. Both techniques we consider bound the Jacobian matrix to bound a Lipschitz constant: where the Jacobian matrix is the matrix of first-order derivatives of a function, for a one-dimensional function, the gradient.

The approach by Weng et al. [57], referred to as Fast-Lip, bounds the Jacobian matrix by bounding the worst-case construction of the function of the ANN. It achieves this by generating a diagonal matrix of activations for each node to quantify which sections of the function are linear. It then performs analysis on the remaining sections, assuming the worst case for the non-linearity, and uses this to construct the bounds on the Jacobian matrix of the function.

Fast-Lip is applicable solely to ReLU networks, because of how the matrix is constructed, based on the piecewise-linear nature of the ReLU section. Furthermore, Fast-Lip loses efficiency on the number of layers, as the size of the matrix of activations increases exponentially with the number of layers.

Recurjac, by Zhang et al. [63] is a developed version of Fast-Lip which also bounds the Jacobian matrix. Recurjac improves upon Fast-Lip in multiple ways: it is applicable to general non-linear activation functions, it does not lose efficiency with multi-layer networks, and it produces a tighter bound on the Lipschitz constant.

Recurjac, instead of processing the network layer-by-layer, presents a recursive refinement algorithm. It finds the maximum gradient in a ball around each activation, obtaining bounds for each layer, known as pre-activations, through CROWN [58]. This algorithm is able to achieve a Lipschitz constant two orders of magnitude smaller than the state-of-the-art (non-recursive) algorithm.

Recurjac has polynomial time complexity, which is also up to M times slower than that of Fast-Lip, where M is the number of layers in the ANN. However, the authors note that this is not a particularly limiting restriction, as it is still tractable for 10-layer 200-node networks, and the time increases linearly with the number of layers, so should not be a particularly limiting restriction.

2.4.6 Discussion

For incomplete techniques, striking a balance between precision and scalability is the key factor. They represent network-level reasoning techniques, as they primarily reason not on the concrete bounds and activations of the original network, but on a relaxed network. This is as opposed to complete verification techniques, which operate primarily on the original network, even if intermediary network-level reasoning techniques are used, these are used to inform concrete reasoning techniques. They can inform this by tightening the search space, and pruning the input domain to rule out areas which cannot contain counterexamples.

Salman et al. [36] describes a relationship between the theoretical tightness of relaxations for convex relaxation techniques, as shown in Figure 2.8. DeepZ is more relaxed than DeepPoly due to the zonotope approximation, and Fast-Lin and Neurify are weaker than CROWN.
due to the polynomial bounding as well as linear bounding. In addition, they show that the approach by Dvijotham et al. [62] and Wong & Kotler [60] is shown to have similar strength.

Incomplete techniques attempt to balance precision and scalability, and experiments run have not been conclusive about the most precise method of over-estimation. There are multiple factors influencing the effectiveness of these methods, namely: the network shape, the specification type, the theoretical bounding, the network setup and the training data. In particular, in the type of specification, the type of norm used can make a difference in the techniques, such as shown in [57].

In summary, more standardised benchmarks and experiments are necessary to explore the relationships between these techniques and the effect of modifying various parameters. Including exploring the relationship further between Lipschitz constant analysis and convex relaxation of LP methods, and how these two fundamental methods behave under various circumstances.

2.5 Other Techniques

All techniques discussed in Section 2.3 and 2.4 are techniques that provide a direct guarantee on the behaviour of an ANN. In this section, we briefly discuss other types of ANN verification techniques: those that provide guarantees with respect to discretization, adversarial example crafting, or attack, algorithms, and techniques based on inductive arguments.

Huang et al. [73] and Wu et al. [74] propose techniques based on discretization of the input domain. The consequence of this is that their techniques are applicable only to image
CHAPTER 2. FORMAL VERIFICATION OF NEURAL NETWORKS

domains; they do not establish properties about the full behaviour of the ANN.

Huang et al.’s [73]s approach is based on forming a derivation tree of possible perturbations from a single point and verifying the non-existence of adversarial examples within these perturbations. These perturbations usually refer to manipulations of images.

Wu et al.’s [74] approach is modelled as a two-player game to create a guaranteed lower bound to adversarial perturbations. This technique has two modes of operation, computing the minimum distance to an adversarial sample, based on the L_0 norm, and quantifying the robustness of individual features to adversarial perturbation features, such as, for images, 'sky', 'grass', etc. This technique requires a Lipschitz constant, which can be generated from Lipschitz constant estimators as discussed in Section 2.4.

Attacks generate the best possible adversarial example; the best possible refers to as a sample as close to the original sample as possible. They do not provide guarantees that this is the best possible sample or even an upper bound on the best possible sample. That is, incomplete techniques generate a guaranteed lower bound, a sample such that no more optimal samples can exist. This provides a guarantee of safety with respect to that point. The samples crafted by attack algorithms do not perform this, but their samples can still be used to provide an upper bound to the true adversarial bounds, whereas incomplete techniques provide a lower bound. If the adversarial example search is incomplete, the generated bounds represent a lower bound on the true adversarial bounds, while an attack represents an over approximate upper bound. Attacks can also be used to augment the training data to increase robustness to attacks, as is demonstrated in [75].

L-BGFS is an algorithm for solving unconstrained non-linear optimization problems. It also refers to an attack algorithm by Szegedy et al. [38], which uses L-BGFS to construct adversarial examples. It does this by minimising the distance between a correctly classified x, and a new adversarial x', such that x' is as close as possible to x, while still being misclassified.

The fast gradient sign method (FGSM), is an attack proposed by Goodfellow et al. [76]. It is based on linear perturbation of correctly classified samples, and suggests that “ANNs are too linear to resist linear adversarial perturbation”. This attack is optimised for the L_∞ norm and is designed for speed instead of accuracy.

JSMA, the Jacobian Saliency Map Attack, proposed by Papernot et al. [77] is an attack based on linear estimation and Jacobian matrix analysis. It modifies each pixel of an input image one at a time and models the impact each pixel has on the resulting classification [78].

DeepFool, proposed by Moosavi-Dezfooli et al. [75], is an attack algorithm designed for L_2 distance metrics. It uses linear estimation and hyperplanes to visualise the classification boundaries of an ANN and uses this to converge on a true solution.

Defensive distillation is a type of training method designed to reduce vulnerabilities to attacks, introduced by Papernot et al. [78]. This training method significantly reduces the effectiveness of the attacks mentioned so far.

Following this work, Carlini & Wagner [79] introduce three attacks that are effective against defensively distilled networks. They propose three attacks for the L_0, L_2, and L_∞ norm adversarial distances. These attacks are sometimes referred to as Projected Gradient Descent (PGD). All attacks mentioned so far have been white-box attacks, but black box attacks are
possible against ANNs, as outlined by Papernot et al. [80].

All the techniques we have discussed so far in this work are deductive verification techniques. A deductive verification technique refers to the desired property to be verified as known beforehand. Deductive techniques create an argument of safety based on a priori reasoning about the domain. This type of verification is the main focus of our work, as it provides guarantees about the behaviour of ANNs, however, creating an inductive argument, as well as a deductive one, has multiple benefits.

The last type of technique we introduce is referred to as simulation or test data augmentation methods. This type of verification is crucial to satisfying current safety standards. ANNs are often deployed in environments with uncertain and changing contexts of operation, such as autonomous vehicles. In addition, as quoted from the UK Department for Transport in 2015 by Johnson [4], “...no state has fully determined how existing traffic laws should apply to automated vehicles”. Therefore, deductive verification is not sufficient to fully demonstrate safety.

Tian et al. [81] and Pei et al. [82] outline two approaches, referred to as DeepTest and DeepXplore, respectively, for data augmentation. Both of these techniques define neuron coverage and domain-specific transformations as metrics. Neuron coverage refers to the number of neurons activated by a set of test inputs, and domain-specific transformations are transformations that are likely to be encountered in that domain. Both approaches use image domains as examples, and these include transformations such as rotation, translation, scale, and others. Central to both techniques’ operation is that they generate synthetic test data based on these domain-specific transformations that induce a higher neuron coverage, testing more of the decision logic of the ANN.

Fremont et al. [83] define a language for defining probabilistic relations for deep neural network systems. They define syntax and semantics for defining a wide range of scenarios that could be encountered by deep neural network systems. In particular, they use self-driving cars as an example of how their language can define realistic scenarios for simulation.

The approach by Dreossi et al. [84], implemented in the tool AnalyzeNN, is based on test data augmentation using counterexamples. That is, generating domain-specific images using a synthetic image generator, this image generator uses similar methods to those described in [82, 81, 83]. In contrast to these techniques, however, it uses this image generator to find counterexamples and only augments the test data with these counterexamples. This approach also provides an error table to attempt to explain the reason why counterexamples are misclassified. It does this by enabling the analysis of various features of that counterexample.

2.6 Tool Comparison

In this section, we compare, via experiments, available tools for verifying neural networks. Each tool implements one or more of the techniques discussed in Sections 2.3 and 2.4.

First, in Section 2.6.1, we provide an introduction to our experiments by discussing our comparison criteria and the tools we have selected. In Section 2.6.2, we detail the methods implemented by each tool. In Section 2.6.3, we provide the results of our evaluation experiments. Finally, in Section 2.6.4, we discuss and evaluate our results.
2.6.1 Overview of Experiments

We have selected four criteria to compare the tools: usability, scalability, precision and applicability. Usability is concerned with the facilities for the definition of a property to verify and of the neural network. Scalability explores how the tools deal with larger and more complex networks. Precision refers to whether the results are precise enough to provide proof of the property. Finally, applicability refers to the type of networks that can be verified.

We explore, in our experiments, neural networks for control systems as these are the most relevant in robotics. Examples include a robotic arm network [50] and an airborne collision avoidance system [20]. We are interested in verifying properties such as the robotic arm not reaching an unsafe zone [50] or, if the intruder aircraft is sufficiently far away, the network advises ‘clear of conflict’ [20]. We focus our comparison on linear properties. They can capture a wide range of specifications, including control safety, adversarial robustness, and robotic controller properties. Furthermore, the vast majority of techniques are concerned with linear properties [52, 53, 54, 62, 51, 19, 35, 20].

In addition, our comparison is based on networks with ReLU activation functions. They are widely used, powerful, and easily trained [33], and every verification method and tool, as far as we know, is applicable to ReLU networks. Its piecewise linear nature is the basis for the feasibility of most techniques.

The tools we have selected are those that contain functionality to verify generalised linear specifications: Matlab Toolbox for Neural Network Verification (NNV) 4, ETH Robustness Analyzer for Neural Networks (ERAN) 5, NeuralVerification.jl 6, Reluplex 7, Marabou 8, and SHERLOCK 9. We evaluate them on three benchmark properties of two networks: two properties of a small neural network (TN) based on the implementation of a real robot, and property one of Network 1.1 of the ACAS Xu neural networks.

TN is a feed-forward and deep neural network with two hidden layers of 32 nodes each, with two input nodes and one output node. This network shares key features with control networks: low input and output dimensionality, and feed-forward ReLU structure. It also has a low number of hidden layers and class-invariant input zones, which can be represented as linear properties.

Network 1.1 of ACAS Xu refers to one of the networks of the Airborne Collision Avoidance Systems for Unmanned Aircraft (ACAS Xu) first presented by Katz et al. [20] in 2017. The ACAS Xu networks are a set of 45 neural networks critical for ensuring unmanned aircraft avoid aerial collisions. It is desirable to establish properties to guarantee the behaviour of these networks under certain input domains, so ten properties have been identified.

Next, we introduce the methods implemented by each tool.

4.github.com/verivital/nnv
5.github.com/eth-sri/eran
6.github.com/sisl/NeuralVerification.jl
7.github.com/guykatzz/ReluplexCav2017
8.github.com/NeuralNetworkVerification/Marabou
9.github.com/souradeep-111/sherlock
CHAPTER 2. FORMAL VERIFICATION OF NEURAL NETWORKS

2.6.2 Methods

NNV, ERAN, and SHERLOCK are output range analysers [85, 55, 86]. Given an input range, they compute an output range, and if it falls within the safe output zone of the property, the network is determined safe. This computation can either be complete or incomplete, giving the output range or an overestimation of the output range. NNV and ERAN use sets to compute the output range.

NNV has implemented multiple methods for output range analysis: complete output range verification in exact-star and exact-poly, incomplete output range analysis in approx-zono, approx-star, abs-dom (which uses polytopes) and approx-hr (which uses hyper rectangles). We consider them all here.

ERAN has three modes of operation. Two of them, namely, \(L_{\text{inf}}\) and geometric analysis, are applicable to image domain specifications, so are not considered here. In the third mode, Linear specifications are defined using zonotopes, a centrally symmetric polytope [69]. ERAN defines zonotopes using affine arithmetic, an extension of interval arithmetic. For analysing zonotopes, ERAN has two methods: a hybrid analysis RefineZono, and an incomplete output range analysis DeepZono. We consider both.

SHERLOCK utilises conjunctions of linear inequalities as input [86]. SHERLOCK combines gradient-based local search with MILP solving: it solves a series of MILP feasibility problems with local search steps. SHERLOCK, however, is only applicable to networks with a single output node [49]. The implementation we evaluate is that in https://github.com/souradeep-111/sherlock, as it has proved impossible to build the newer version in https://github.com/souradeep-111/sherlock_2, even with support from the authors.

All the above tools do not require an output set to be defined as they are output range analysers. Defining an unsafe zone after computation can be useful for analysing the generated output range sets, but is not necessary.

Reluplex and Marabou are SMT solvers for neural networks [20, 18, 87, 88]. The implementation of Reluplex we have evaluated is the proof of concept implementation in [87]. They find an activation, a single value within the bounds of the problem given. As they compute a single point, the property is inverted, and it is proved if no activation that satisfies the inverse property is found. The input and output constraints are defined using multiple linear inequalities.

NeuralVerification.jl implements 17 different verification methods, both SMT solvers and output range analysers. Inputs are polytopes and hyper-rectangles, and as output, it uses half-spaces and polytope complements [89]. Polytope complements define outputs for SMT solvers, and halfspaces are used for the output specification for output-range analysers. However, we have been able to run only five of these methods: SHERLOCK (the algorithm and tool are referred to by the same name), BaB (an SMT solver), Duality, ExactReach, and Ai2. Of these, only BaB and SHERLOCK ran on both properties of TN.

In the next section, we discuss these tools and methods in more detail considering our evaluation criteria and experiments.
2.6.3 Evaluation

As mentioned, we evaluate the tools based on four criteria: usability (Section 2.6.3.1), scalability (Section 2.6.3.2), precision (Section 2.6.3.3) and applicability (Section 2.6.3.4).

2.6.3.1 Usability

Specification of Properties In the following, we describe how an I/O property of a neural network can be defined in each tool.

NNV I/O properties in NNV are defined by the input-set object used by their reach methods. Defining an unsafe output set, however, is a simpler way of evaluating the generated output reachable set. Each set is defined as a custom MATLAB object. The simplest way to build these objects is to build a hyper-rectangle based on a lower and upper bound vector, and then convert this using NNV’s built in methods. If an output set is defined, NNV is also able to generate an intersection with the generated reachable set with the safe output set.

ERAN The input property is defined as a zonotope in affine form. This allows any convex polytope to be defined through shared error terms, but for linear properties, we define a simple hyper-rectangle input in affine interval form.

NeuralVerification.jl Properties are defined through the creation of input and output set objects, in a similar manner to NNV. NeuralVerification.jl also uses an output set with reachability methods.

There are four implemented types of sets used as I/O definitions; these are hyper-rectangles, halfspaces, lpolytope (halfspace polytopes) and lpolytope complements. Hyper-rectangles, halfspaces and polytopes are the most commonly used; polytope complements are used for the output sets for solvers. This is because the output set needs to be the negation of the safe zone, and a PolytopeComplement of a closed set is necessarily an open set, and non-convex.

Reluplex There is no distinct method to define properties; the code that defines the method has to be modified to deal with the desired input.

Marabou This implementation requires properties to be defined using a set of inequalities, relating to the input and output nodes. The input nodes are defined as x_n, and the output nodes as y_n, where n is the index of the node.

SHERLOCK The input is defined through input constraints as a hyper-rectangle. There is no way to define output zones, and properties are verified by analysing the computed output range.

Neural Network File Formats The file formats used to define neural networks vary, but the key information which all file formats support is: the weight matrix and the bias vector for each layer. We primarily focus on human-readable neural network file formats, since only ERAN is able to natively support non-text based file formats such as ONNX [90],
CHAPTER 2. FORMAL VERIFICATION OF NEURAL NETWORKS

TensorFlow .pb and .meta files [55]. NNV is also able to support these, but through an extension, NNVMT [91].

NNet Format The nnet file format was created in 2016 to define the ACAS networks in a human-readable format [92]. It contains normalization information and the structure of the network, including input and output dimensions. The primary drawback of this format is that it is only applicable to feed forward fully connected ReLU networks [92]. The nnet file format is utilised by Reluplex, Marabou and NeuralVerification.jl.

ERAN Text Data Formats ERAN’s text-based formats are TensorFlows .tf and PyTorch’s .pyt. Unlike nnet files, they can define wider types of activation functions, including tanh, Sigmoid, and Affine functions. They can also define convolutional networks. Neither file format, however, is readable because the input and output dimension of the network has to be inferred from the weight matrices themselves. Also, these file formats do not contain a definition of the structure of the hidden layers, which has to be inferred from the matrices. Only .pyt files contain inherent normalization information.

SHERLOCK Format SHERLOCK utilises a custom file format that defines solely a feed-forward ReLU network. The format defines a network neuron by neuron for small networks. This can provide readable information about the internal structure of the network because it flattens the weight matrix for each layer and delimits the weights via new line characters. For larger networks, however, this is not a readable file format.

NNV NNV builds networks layer by layer, given the activation function, weight matrix and bias vector for each layer. This information can be loaded through any file format supported by MATLAB, for example, mat, csv and txt files. There is, however, no standard neural network file format support without the use of NNVMT.

A property can be defined by inequalities [87, 88, 86], or convex sets [85, 55, 89]. A neural network is defined by associating a weight matrix, a bias vector, and an activation function for each layer, which can be defined node by node, [86], layer by layer [85], or through nnet, pyt or tf files [87, 88, 55, 37].

2.6.3.2 Scalability

We have installed and built the tools on Linux version: ‘Ubuntu 18.04.2 LTS’, apart from NNV which was installed on MATLAB 2019a, Windows version\(^\text{10}\). We have used an i5-8265U CPU with 8GB RAM, with the timeout for each experiment set to 2 hours. We repeated each experiment that terminated 10 times.

For the NeuralVerification.jl implementations, we have obtained impossible results using Reluplex. In addition, we have experienced problems executing ExactReach and Ai2 on both benchmark networks.

RefineZono is a hybrid method; results are for RefineZono with its complete part at one second, the default value. We ran RefineZono with a 1000-second timeout, however, it was still unable to obtain tight enough bounds to verify property one of ACAS Xu. Finally,

\[^{10}\text{www.mathworks.com/products/matlab.html}\]
CHAPTER 2. FORMAL VERIFICATION OF NEURAL NETWORKS

Table 2.2: Scalability Results (Seconds, 2dp). Here, the Mean, Min, and Max columns refer to the times taken for the tools to terminate. The ‘RES’ column displays the result of the method: ‘SAT’, the property is satisfied; ‘AMB’, the result of the method was ambiguous, that is, the bounds were not tight enough to prove the property; ‘ERR’, the method did not execute on the property and the time is displayed as *; ‘T/O’ represents a time out result.

<table>
<thead>
<tr>
<th>Tool:</th>
<th>TN P1: Mean</th>
<th>Min</th>
<th>Max</th>
<th>RES</th>
<th>TN P2: Mean</th>
<th>Min</th>
<th>Max</th>
<th>RES</th>
<th>AX(11): Mean</th>
<th>Min</th>
<th>Max</th>
<th>RES</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNV</td>
<td>95.18</td>
<td>77.33</td>
<td>122.57</td>
<td>SAT</td>
<td>73.4</td>
<td>55.72</td>
<td>93.57</td>
<td>SAT</td>
<td>T/O</td>
<td>T/O</td>
<td>T/O</td>
<td>T/O</td>
</tr>
<tr>
<td>Exact-Star</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>ERR</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>ERR</td>
<td>T/O</td>
<td>T/O</td>
<td>T/O</td>
<td>T/O</td>
</tr>
<tr>
<td>Exact-Poly</td>
<td>4.83</td>
<td>3.94</td>
<td>6.81</td>
<td>AMB</td>
<td>4.67</td>
<td>4.67</td>
<td>5.78</td>
<td>AMB</td>
<td>42.4</td>
<td>30.83</td>
<td>55.38</td>
<td>AMB</td>
</tr>
<tr>
<td>Zono</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>AMB</td>
<td>0.01</td>
<td>0</td>
<td>0.01</td>
<td>AMB</td>
<td>0.03</td>
<td>0.02</td>
<td>0.04</td>
<td>AMB</td>
</tr>
<tr>
<td>Abs-dom</td>
<td>4.94</td>
<td>3.88</td>
<td>6.81</td>
<td>AMB</td>
<td>4.71</td>
<td>3.7</td>
<td>5.81</td>
<td>AMB</td>
<td>40.86</td>
<td>19.55</td>
<td>49.09</td>
<td>AMB</td>
</tr>
<tr>
<td>Approx-Hr</td>
<td>0.01</td>
<td>0</td>
<td>0.05</td>
<td>AMB</td>
<td>0.01</td>
<td>0</td>
<td>0.02</td>
<td>AMB</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>AMB</td>
</tr>
<tr>
<td>ERAN</td>
<td>0.06</td>
<td>0.06</td>
<td>0.07</td>
<td>AMB</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>AMB</td>
<td>0.15</td>
<td>0.09</td>
<td>0.16</td>
<td>AMB</td>
</tr>
<tr>
<td>RefineZono</td>
<td>3.42</td>
<td>3.24</td>
<td>3.6</td>
<td>SAT</td>
<td>3.85</td>
<td>3.67</td>
<td>4.04</td>
<td>SAT</td>
<td>49.32</td>
<td>19.21</td>
<td>50.11</td>
<td>AMB*</td>
</tr>
<tr>
<td>SHERLOCK</td>
<td>SHERLOCK</td>
<td>*</td>
<td>*</td>
<td>ERR</td>
<td>0.9</td>
<td>0.72</td>
<td>1.08</td>
<td>SAT</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>NeuralVerification.jl</td>
<td>28.64</td>
<td>28.22</td>
<td>29.19</td>
<td>SAT</td>
<td>43.81</td>
<td>41.68</td>
<td>46.12</td>
<td>SAT</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Bab</td>
<td>T/O</td>
<td>T/O</td>
<td>T/O</td>
<td>T/O</td>
<td>T/O</td>
<td>T/O</td>
<td>T/O</td>
<td>T/O</td>
<td>130.84</td>
<td>130.22</td>
<td>134.22</td>
<td>SAT</td>
</tr>
<tr>
<td>Marabou</td>
<td>Marabou</td>
<td>1.21</td>
<td>0.75</td>
<td>1.52</td>
<td>SAT</td>
<td>0.44</td>
<td>0.43</td>
<td>0.48</td>
<td>SAT</td>
<td>134.9</td>
<td>134.22</td>
<td>SAT</td>
</tr>
<tr>
<td>Reluplex</td>
<td>Reluplex</td>
<td>*</td>
<td>*</td>
<td>ERR</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>ERR</td>
<td>2008.9</td>
<td>1119</td>
<td>2008.9</td>
<td>SAT</td>
</tr>
</tbody>
</table>

we ran RefineZono using its full complete mode, although this timed out. The result of RefineZono with milp timeout 1000 is discussed in the next section.

Table 2.2 displays the results of the experiments on the three benchmarks. The ‘RES’ column displays the result of the method: ‘SAT’, the property is satisfied; ‘AMB’, the result of the method was ambiguous, that is, the bounds were not tight enough to prove the property; ‘ERR’, the method did not execute on the property and the time is displayed as *; ‘T/O’ represents a time out result.

Table 2.2 shows that Marabou is the only tool able to verify all three properties; NNV and ERAN can verify TN but only using complete methods, and SHERLOCK can verify P2 but produces errors on TN P1.

2.6.3.3 Precision

In this section, we evaluate the quality of the output bounds produced by the incomplete methods implemented by the tools. These bounds may not be tight enough to prove the property in question.

Figures 1 and 2 show the positive bounds generated by the methods of the tools using logarithmic scaling. Some techniques generate negative bounds, but we record only the positive bounds, as all networks have ReLU output layers. In addition, the bounds given by complete methods are displayed for reference.

One of our main observations is that the type of convex set used by a method significantly impacts the bounds generated. Ordering them from least to most precise, we have hyper-rectangles, zonotopes, polytopes, and star sets. One exception is that hyper-rectangles are slightly more precise than zonotope methods on ACAS Xu. RefineZono also involves an additional MILP component and a zonotope abstract domain formulation.
CHAPTER 2. FORMAL VERIFICATION OF NEURAL NETWORKS

Comparison of Bounds (Normalized) for Acas Xu Logit 1 (CoC) on Network 1_1

Figure 2.9: ACAS Xu P1 Bounds Comparison

Figure 2.10: TN P1 and P2 Bounds Comparison
2.6.3.4 Applicability

Marabou and Reluplex are applicable solely to feedforward fully connected ReLU networks, as the modified Simplex algorithm they are based on does not allow for other types of nonlinearity. SHERLOCK also exclusively applies to ReLU networks and contains the additional limitation of only one output node.

ERAN implements abstract domain methods and so is the most widely applicable tool. It applies to ReLU, Sigmoid, and Tanh activation functions and to feedforward convolutional and residual layers.

NNV’s methods vary as to their applicability. The exact techniques only apply to ReLU or linear activation functions, while their approximate reachability modes also apply to sigmoid and tanh activation functions. Both types of methods are also applicable to convolutional layer types.

Of the methods we considered of NeuralVerification.jl, those applicable to only ReLU networks are BaB, Reluplex, ExactReach, ConvDual and SHERLOCK. BaB is also only relevant to one output. The implementation of Ai2 applies only to ReLU networks. However, Ai2 applies to further types of networks [51]. Duality applies to any monotone activation function.

2.6.4 Discussion

Marabou is the most successful tool for verifying ReLU networks, overall, by our criteria. It is the most usable, scalable and precise, but is one of the most limited tools in applicability.

The most usable method for defining properties is Marabou’s. It is the only tool with a dedicated file format for the specification of a complete property. ERAN has a file for specifying a zonotope in affine form, but this is only the input to the network, not a complete property definition.

Further conversion tools would be helpful for usability, such as a converter from linear inequality to set representation, converters between various models of sets, and a converter between generator-form zonotopes and affine-form zonotopes, as used by ERAN and NNV, respectively. These facilities could facilitate obtaining complementary results from multiple tools.

In terms of defining networks, nnet files are the most usable. This is for two main reasons: they display the network structure efficiently and contain normalisation information. In some situations, however, viewing the exact weightings for each node with a node-by-node file structure may be helpful. This can give further details into the weighting assigned to each feature of the data, although this is only feasible with small, simple networks.

Marabou is the most scalable tool for complete verification, obtaining a runtime on TN 2.8x faster than ERAN, the following fastest complete tool. It has a runtime 78x faster than NNV’s complete analysis on TN, and NNV timed out in the verification of ACAS Xu. The only means for complete verification that terminated ACAS Xu Property 1 were Reluplex and Marabou.

The runtime of these tools was influenced by the bounds of the property chosen for the network. This is minor in most tools, but Marabou experienced a difference of 2.71x from
TN property 1 to property 2. For comparison, the most significant variation other than Marabou was SHERLOCK, with a variation of 1.52x.

The most precise tool for incomplete analysis is ERAN (utilising RefineZono); this, however, is also the least scalable incomplete method. Only Marabou, ERAN and SHERLOCK are precise enough to verify TN properties, and only Marabou and Reluplex are precise enough to verify the Acas Xu property.

In terms of verifying ReLU neural networks, all tools apply to all networks. Still, BaB, from NeuralVerification.jl and SHERLOCK, cannot verify networks with more than one output node. This is a limitation of the algorithms defining their methods. ERAN and NNV are the only tools applicable to types of neural networks beyond feedforward fully connected networks.

NNV, while not quite the most scalable, precise or applicable, has the highest degree of functionality of all tools presented. It is an output range analyser and has methods to generate the unsafe input zones of a problem, a functionality no other method can perform. One advantage of this is that the unsafe input zone can be used as an adversarial input generator for robust training [19]. Furthermore, NNV contains output visualisation and intersection methods, functionality also unique to NNV. This enables a clear representation of the decision logic of a neural network.

Based on the examples we have considered regarding usability, the best tool is Marabou and the worst is SHERLOCK. For scalability, the best is NNV, and the worst is Reluplex. For precision, the best is Marabou, and the worst is NNV. Lastly, for applicability, the best is ERAN, and the worst is SHERLOCK.

2.7 Final Considerations

Formally verifying ANNs is a challenging problem. Currently, there is no accepted optimal method for ANN verification: in general or even for any specific type of ANN. In this work, we want to verify feedforward fully connected networks for use in RAAI systems. The optimal method cannot be determined entirely, theoretically, as the runtime is based on individual model parameters. These determine the sections that can be pruned, affecting the runtime and precision of the method.

Our comparison of tools suggests, first, possible ways of combining tools so that their results complement each other and increase the explainability of the network. Second, we conclude that tool combination and integration is an exciting avenue for future work. Finally, we note that a unified format of representing linear inequalities is helpful in the development of verification tools.

There also are a few accepted benchmark problems for ANN verification. MNIST or CIFAR-10 are often used. However, the ANNs produced for each dataset may vary, making the comparison more challenging. The need for further empirical comparisons and benchmarks is clear.

Our overall goal is to determine a verification system for complete RAAI systems. To do this, we require a model of a complete RAAI system involving ANNs; from there, we can determine a verification technique for the entire system. We discuss this in the following chapter.
Chapter 3

Neural Networks in RoboChart

In this chapter we present an ANN modelling approach integrated with RoboChart. Following from Chapter 2, the ANNs we describe in RoboChart are pre-trained ANNs composed of feed-forward, fully connected layers with ReLU or linear activation functions. We first give an overview of our results in this chapter in Section 3.1, then we give an overview of RoboChart in Section 3.2, followed by an approach to integrate ANN components into RoboChart in Section 3.3. We then provide an overview of the RoboChart semantics in Section 3.4, define a CSP semantics for our ANN components in Section 3.5, and present its validation via simulation, to complement early simple checks via model checking and assertion reasoning, in Section 3.6. We make final considerations in Section 3.7.

3.1 Overview

We describe the structure of our framework to integrate ANN components into RoboChart in Figure 3.1. Here, we describe how we extend the RoboChart semantics to cater for these ANN components. The result is a unified model that enables verification of the complete

Figure 3.1: The structure of our verification framework: the nodes in pink represent RoboChart constructs, the nodes in white represent the modelling artefacts to support ANN components, the node in green represents the semantics of RoboChart, the nodes in grey represent semantic encodings, and the nodes in purple represent verification tools.
system. To support tractable verification, we consider only the ANN type discussed in Chapter 2: trained, fully-connected, ReLU activated ANNs.

Our framework begins with a RoboChart module, the leftmost node in Figure 3.1; we describe RoboChart modules through an example in Section 3.3. A RoboChart module is composed of existing components defined by state machines (‘state machines’ node), and our new ANN components (‘ANN components’ node). We define our ANN components by defining a metamodel and well-formedness conditions, shown by the ‘ANN metamodel’ and ‘well-formedness conditions’ nodes. We describe our metamodel in Section 3.3.2. and our well-formedness conditions in Section 3.3.3. We define the semantics for our ANN components in Section 3.5, and we give an overview of the existing semantics for the state machine components in Section 3.4.2.

RoboChart has a formal semantics [14] described in Circus, a combination of Z and CSP. Using Circus gives an indirect UTP semantics to RoboChart, since the denotational semantics of Circus is defined in UTP. A formal semantics in UTP enables proofs of the properties and behaviour of a system using theorem proving. Isabelle/UTP [27] mechanises UTP proofs; it is an implementation of UTP in the Isabelle/HOL proof assistant [93].

We define two encodings of our Circus semantics to enable automated verification using a variety of technologies: CSP and JCSP. The CSP semantics enables model-checking via the tool FDR [94], and the JCSP semantics enables both theorem proving and runtime assertion checking via the OpenJML tool [95]. We also describe an approach to generate a UTP encoding of our semantics, enabling automated verification via Isabelle/UTP. We present our CSP encoding in Section 3.5, our JCSP encoding in Section 3.6, and our approach to generate a UTP encoding in Section 4.2.

We model an ANN in RoboChart by defining a dedicated component. We cater for two approaches: ANN components at the level of operations, presented in Section 3.3.1.1; and ANN components at the same level of controllers, described in Section 3.3.1.2. They allow for different forms of abstraction. In the former, the ANN executes in parallel with the other controllers, and communicates with them via events. In the operation-based approach, other components can trigger the execution of the ANN and block waiting for the result. Communication, in this case, is via parameter passing and shared variables. In both cases, timing specification is defined explicitly outside the ANN components.

3.2 RoboChart

Throughout our work, we use a simple example of a two-wheeled Segway robot to provide a concrete example of the use of RoboChart (a full description of RoboChart can be found in [14]). The segway consists of: an inertial measurement unit (IMU), and two wheels, each with a Hall effect sensor: a sensor which detects magnetic fields; it is used in the Segway for monitoring the speed of the wheels. IMUs combine magnetometers, accelerometers and gyroscopes to measure the segway’s tilt. The software uses this data with three PID controllers to update the velocity of the wheels in a smooth and consistent fashion such that the Segway balances.

RoboChart is a state-machine based modelling language that can be regarded as a profile of UML; it defines an abstraction of an entire robotic control software. The RoboChart language abstracts the functionalities of the hardware using robotic platform components.
Controllers and a robotic platform are grouped together in a Module, which represents the complete robotic software [14].

Figure 3.2 describes the Segway module. The robotic platform SegwayRP communicates with the controller SegwayController using asynchronous communication along six connections, each of type real, representing the communication of the IMU data and Hall effect sensors. SegwayController interacts with its state machine BalanceSTM using identical events and types, transferring the information sent from SegwayRP to BalanceSTM.

RoboChart controllers are in independent (parallel) operation with each other, and each individual state machine inside a controller is in parallel operation with other state machines inside a controller. Each controller must have at least one state machine, which represents the behaviour of the controller.

RoboChart components interact with each other via connections. These connections establish a source and a target node (state machine, controller or robotic platform) via their events. Connections can be asynchronous, where the data from the writer node is stored in a temporary buffer, and the writer is not blocked until the reader node is ready to receive. Connections can also be bidirectional, in which case, both nodes can read and write.

In RoboChart, controllers may communicate with other controllers or robotic platforms, and state machines may communicate with other state machines or their controller. Communication with a robotic platform is always asynchronous, capturing the fact that a physical robot is not blocked by the control software. Communication between controllers, however, may be synchronous or asynchronous. State machines communicate synchronously to model parallel threads of behaviour abstractly.

Events are used to represent the inputs and outputs of an individual component. They may be typed, representing data transfer, or untyped, representing a simple interaction such as...
a signal or interrupt.

State machines in RoboChart are similar to UML state machines, but have some features removed to facilitate the definition of a compositional semantics and enable formal verification. State machines are composed of states and junctions, where states define a stable configuration of the machine. Junctions capture unstable configurations such as decision points. It is possible to define nondeterministic behaviour using state machines, as more than one transition may be enabled from a state or junction.

RoboChart also allows the definition of operations: these represent functionalities provided either by the physical robot or implemented as part of the control software. They can be defined either through libraries or through a state machine. Operations used in a state machine need to be declared in a required interface. An operation signature declares the name of the operation, its parameters, and their types. In Figure 3.3, the interface PIDs declares three operations (AnglePID, RotationPID and SpeedPID) each taking one or two real parameters.

Figure 3.3 defines BalanceSTM: a state machine that describes how the data received from the sensors is used to update the velocities of the segway’s motors. BalanceSTM has six events that represent input received from the segway’s sensors: leftMotorVelocity, rightMotorVelocity, angle, gyroX, gyroY, and gyroZ. The machine uses a clock loopTimer to define a time budget for each iteration, given by the loopTime constant. The machine defines further time constants angleBudget, speedBudget and rotationBudget; these represent the time for AnglePID, SpeedPID and RotationPID operations to complete, respectively. The machine also defines startupDelay, which represents the time for the hardware to initialise.

AnglePID is called every iteration, SpeedPID and RotationPID are called only every speedUpdate and rotationUpdate, iterations. The variables speedCount and rotationCount count the iterations for the purposes of calling SpeedPID and RotationPID at the correct iterations.

The machine starts in the state Initialisation, where speedCount and rotationCount are set to 0. The machine then waits for startupDelay time units and resets the clock loopTimer through # loopTimer. The machine then transitions to state WaitForNextIteration, where the machine waits for since(loopTimer) to be greater than or equal to loopTime. The expression since(loopTimer) represents the number of time units since loopTimer was reset; so, in WaitForNextIteration the machine waits for loopTime time units to pass before starting the next iteration. In this transition, loopTimer is reset, and there is an additional action disableInterrupts(). The clock operates using interrupts, which is also how the hall effect sensors in the robotic platform operate; so, to prevent interference, interrupts are disabled as the clock is reset.

The machine then transitions to the state CalculateAngle, where interrupts are enabled immediately, then currAngle and currGyroX values are read in via the events angle and gyroX. AnglePID is then called with these parameters, and the machine waits for a time between 0 and angleBudget: representing the time for AnglePID to complete.

There is one transition from CalculateAngle (with no condition) that increments speedCount by 1. The machine then moves to a junction, where the subsequent state is determined by whether speedCount is less than speedUpdate or not. If speedCount is less than speedUpdate, the machine proceeds to another junction; if it is greater or equal to speedCount, however, then BalanceSTM enters the state CalculateSpeed.
Figure 3.3: Segway model BalanceSTM state machine (final) from [96]. Legend: \(\mathcal{S}\): state machine definition, \(\mathbf{X}\): variable, \(\bullet\): initial junction, \(\rightarrow\): transition, \(\circ\): operation declaration.
CalculateSpeed first, similarly to CalculateAngle, reads in currLeftVel via leftMotorVelocity and currRightVel via rightMotorVelocity. SpeedPID is then called with the sum of the currLeftVel and currRightVel as a parameter. Lastly, the variable speedCount is reset to 0, and there is a nondeterministic wait to represent the time for SpeedPID to complete, as in AnglePID.

There is one transition out of CalculateSpeed, to the same junction as if CalculateSpeed was skipped. This junction has a single transition, which leads to another junction, concerning RotationPID, and increments rotationCount. This junction determines whether CalculateRotation is performed this iteration, depending on whether rotationCount is greater than or equal to rotationUpdate. If it is, BalanceSTM enters CalculateRotation, and if not, the machine skips CalculateRotation this iteration and moves to the final junction of this iteration: a decision on how to update the motors this cycle.

The first action of the state CalculateRotation is to read the value communicated by the event gyroZ into the variable currGyroZ. Then, RotationPID is called with currGyroZ. Finally, similarly to the other states, the variable rotationCount is reset to 0 and there is a final nondeterministic wait for rotationBudget time units.

The final junction of BalanceSTM determines whether to stop or set the motors. In this model, if the segway’s angle of tilt is within a range where we can restore balance, then the motor velocities are updated using the results from our PID components. In this case, we transition to the state SetMotors. Here, the angle of tilt is determined by the currAngle variable, which is read in from the angle event, and the recoverable angle range is defined as the range in between the constants -maxAngle and maxAngle. If the segway’s tilt angle is not in such a range, then we stop the motors completely, which we represent by transitioning to the state StopMotors.

In SetMotors, we update the velocities of the motors via calls to the operations setLeftMotorSpeed and setRightMotorSpeed, which are accessed through the required interface MotorsI. Both operations are updated with the sum of the outputs from the PID controllers, stored in the variables angleOutput, speedOutput, and rotationOutput; for the left motor, however, rotationOutput is subtracted instead, compensating for the observed rotation by updating the wheels independently. There is a final nondeterministic wait for a period between 0 and motorBudget time units, which represents the time for the update operations to execute. Lastly, BalanceSTM transitions to WaitForNextIteration, in preparation for the next cycle.

In StopMotors, we stop the motors completely through calling the operations setLeftMotorSpeed and setRightMotorSpeed with the parameter 0. The machine then performs a final nondeterministic wait representing the time to update the motors: between 0 and motorBudget. BalanceSTM then transitions to WaitForNextIteration, as in SetMotors, to prepare for the next cycle.

We use the Segway example to illustrate our approach; in particular, we replace the AnglePID component with a neural network component. In the next section, we discuss the integration of ANNs into RoboChart, using the Segway example as described here.

3.3 ANNs in RoboChart

In this section, we describe how ANN components can be integrated into RoboChart. First, we provide an overview of these components via an example of a RoboChart model including ANN components in Section 3.3.1. Next, we describe our extension of the RoboChart
metamodel to accommodate these components in Section 3.3.2. Finally, we define well-formedness conditions to characterise meaningful models described using the metamodel in Section 3.3.3.

3.3.1 Parallel Segway Model

To integrate an ANN controller into the Segway example, we first present a different version of its model that allows all PIDs to operate in parallel. It is feasible to add an ANN controller or an ANN operation to the original model presented in the previous section, but the parallel model presented here allows us to illustrate the idea in a simpler context regarding the semantics of RoboChart.

It would be possible to train an ANN to replace every PID controller in our example, that is, we can train an ANN based on all five inputs of the three PID controllers. Our primary goal, however, is to discuss how an ANN can fit in the larger context of a system: how it can interact with other controllers or machines. To this end, we replace just one of the PIDs, namely, the AnglePID, with an ANN component.

We first provide a definition of the parallel Segway model. Then, in Section 3.3.1.1, we describe how an ANN component interacting as an operation can be integrated into this model. Finally, in Section 3.3.1.2, we present an ANN component interacting as a controller, and how it can be integrated into the Segway model.

To allow parallel operation, we define each PID operation by a state machine that accepts its inputs through events communicating with BalanceSTM.

We present the parallel version of the module Segway in Figure 3.4; this module replaces all PID controllers with state machine components, named identically to their corresponding operation components: AnglePID, SpeedPID, and RotationPID. We also define a new controller, AnglePID_C, whose behaviour is defined by the state machine AnglePID. We add a controller in this module to demonstrate how we can replace a controller with an ANNController component.

The input events contain a prefix character indicating which PID they connect to: the input of SpeedPID is snewError, the input of RotationPID is rdiff, and the inputs of AnglePID are anewError and adiff.

Figure 3.5 presents our parallel version of the BalanceSTM state machine. It adds the following variables to track whether BalanceSTM has sent input events to the PID state machines: speedSent, angleSent, rotationSent. We also define angleReceived, used to prevent multiple readings of the result from AnglePID in a single cycle: required because AnglePID is not timed in the same way as the rotation and speed PIDs.

The machine starts in Initialisation, where the entry action, in addition to what it executes in the original model, sets speedSent, angleSent and rotationSent to false. WaitForNextIteration and the corresponding transition is unchanged. The state it transitions into, however, is different. It is called Setup and its purpose is twofold: to increment the rotationCount and speedCount variables, and to set angleReceived to false.

The machine then moves to ReceiveInput, where most of the behaviour of this machine is defined. There are seven transitions from ReceiveInput: three to states whose entry actions send data and trigger a PID, three self transitions for receiving data from the PIDs, and one
transition to a junction, exiting this state. Sending data is handled by the states SendRotation, SendSpeed and SendAngle. Transitions to these states are guarded by conditions on speedSent, rotationSent, and angleSent. This is to prevent consecutive redundant input events being sent to the PIDs.

The transition to SendAngle requires both angleSent and angleReceived to be false, to prevent multiple sends of AnglePID per iteration. These variables are both false at the start of the iteration. We set angleSent to true after the SendAngle state terminates, and set it to false once the result of AnglePID is received. The variable angleReceived records whether the output of the PID has been received in the current cycle. If it has been, if angleRecieved is true, then AnglePID cannot be started again this cycle.

SendAngle reads in currAngle and currGyroX from the events angle and gyroX, then sends them via the anewError and adiff events to the AnglePID state machine. As an action of the transition from this state, angleSent is set to true.

The transition to SendSpeed is also guarded by the condition that speedCount must be greater than or equal to speedUpdate, and greater than 0. This means that, as speedCount is only incremented once every iteration, the speed PID is only executed every speedUpdate iterations. We also add the condition that angleReceived must be true, ensuring each PID is called in the correct order. In SendSpeed, the entry action reads in the data needed for SpeedPID (currLeftVel and currRightVel) then communicates their sum (like in BalanceSTM) to the SpeedPID, through an output via the event snewError. Next, speedSent is set to 0, to keep the speed PID operating on the correct iterations. Finally, speedSent is set to true as an action of the transition back to ReceiveInput.

SendRotation is similar to SendSpeed. Instead of speedCount and speedUpdate, rotationCount and rotationUpdate are used, and instead of speedSent, rotationSent is set to true. We also ensure correct ordering by requiring that angleReceived is true, and that SpeedSent either has terminated, or is not called this cycle through a condition on speedCount. RotationPID only requires one input to be read from the robotic platform, gyroZ, and this value is sent.
Figure 3.5: A parallel version of the BalanceSTM state machine. Legend: \mathcal{A}: state machine definition, \mathbf{x}: variable, π: constant, \bullet: initial junction, \rightarrow: transition.
to RotationPID using the rdiff event.

Receiving data is handled using transitions from ReceiveInput to itself. The triggers are the output events of the PIDs: speedOutputE, angleOutputE and rotationOutputE. These are recorded in the variables speedOutput, angleOutput and rotationOutput. The guards require that each sent variable is true, as the machine should not receive output from a PID until it has called that PID. The second condition for angleOutput is that angleReceived must be false; this prevents performing multiple reads from AnglePID in a single cycle. This cannot occur for the SpeedPID and RotationPID state machines as they cannot send input data twice in the same iteration due to the speed and rotation counts.

The action of the receiving transitions resets the sent variables: rotationSent, speedSent and angleSent are set to false to indicate that the output has been received and new data can be sent. In the angleOutput transition, angleReceived is also set to true, indicating that angleOutput cannot be updated again this cycle.

The machine is timed to reflect the same design as the original BalanceSTM, presented in Figure 3.3. In each sending state (SendAngle, SendRotation, and SendSpeed) there is a nondeterministic wait operation to represent the time spent on the calculations.

The machine transitions to a junction when all required PID results are read. This is denoted by three conditions. The first is that output must have been received from all PIDs that have been called this cycle. AnglePID is called every cycle, so angleReceived must be true. SpeedPID and RotationPID may or may not have been called this cycle, but if they have been, and an output has not been received this cycle, then speedSent or rotationSent will be true. So, we require that speedSent and rotationSent are false. The second condition to terminate is, either speedCount is 0, or speedCount must be less than speedUpdate; speedCount is 0 on the cycles where SendSpeed has been called, and this should not occur when speedCount is less than speedUpdate. The next condition is identical but for RotationPID. These conditions ensure that the machine can only transition from ReceiveInput when all required PID results are read.

The junction, and the proceeding states, StopMotors and SetMotors, are identical to those in the original model. The machine then proceeds to WaitForNextIteration and repeats the iteration.

The AnglePID state machine, in Figure 3.6, starts in the Read state, where inputs anewError?currNewError and adiff?currDiff are accepted. When both inputs are received, the machine transitions to UpdateOutput, where currAngleOut is calculated. This is the sum of the product of currNewError and P, representing the proportional constant, and the product of currDiff and D, the derivative constant. The machine then transitions back to Read; in the transition action, we communicate currAngleOut via the event angleOutputE.

The parallel Segway model is equivalent to the sequential Segway model presented in Section 3.2. That is to say, refinement holds both directions between the module Segway presented in Figures 3.2 and 3.4.

Next, we present how ANNs can be integrated into this model through the use of the ANN-Operation component.
Figure 3.6: AnglePID defined as a state machine. Legend: ⬑: state machine definition, ⧫: variable, ⚫: initial junction, →: transition.

Figure 3.7: AnglePIDANN defined as an ANNOperation. Legend: ⬑: ANN component.

3.3.1.1 ANN Operation component

Here, we define an ANN component that interacts with the system as an operation; Figure 3.7 displays an ANNOperation component: AnglePIDANN. This component interacts with the rest of the system through parameters. This allows the component to be invoked from within a state machine or another operation. In addition, pre-conditions and post-conditions can be defined for the ANN component.

An ANNOperation is defined through populating two partitions of an ANNOperation block. For AnglePIDANN, the values of the parameters are shown in Figure 3.7. The first is its parameters, in the box labelled Parameters, we define this by setting filename to the string
CHAPTER 3. NEURAL NETWORKS IN ROBOCHART

AnglePIDANN(newError : real, diff : real)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Required Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>- layerstructure = <1,1></td>
<td>AnglePIDANNOutput</td>
</tr>
<tr>
<td>- weights = < < 1.22838, 0.132874 >, < 0.744636 > ></td>
<td></td>
</tr>
<tr>
<td>- biases = < < 0.125424, < -0.107753 > ></td>
<td></td>
</tr>
<tr>
<td>- activationfunction = RELU</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.8: AnglePIDANN defined as an ANNOperation, with explicit parameters. Legend: ☺ ANN component.

anglepid_params. The second partition defines the required interface, in the box labelled Required Interface, that ANNOperation’s use to communicate the output of the ANN to the rest of the system.

The parameters of an ANNOperation, similarly to an operation definition in RoboChart, is defined in brackets after the name of the component. In our example, the parameters of ANNOperation are newError and diff, both of type real.

The Parameters box of an ANN component can be filled in two ways. The first is through defining a filename parameter, from which the weights, biases, layerstructure, and activationfunction parameters can be inferred. The second is defining the weights, biases, layerstructure, and activationfunction parameters explicitly inside the Parameters box. We demonstrate the first method in Figure 3.7, and the second in Figure 3.8.

We display the contents of the file ‘anglepid_params’ in Figure 3.9. A parameter file is a csv file containing the information required to define an ANN component. The weights and biases must be extracted from a trained ANN. We can, for example, use the Keras API.

Keras is a widely-used and powerful deep learning API built on the TensorFlow machine-learning platform. Given a Keras model instance, weights and biases can be extracted using the method ‘get_weights’. This Keras model instance can be generated from the Keras ‘H5’ model format, or the ‘SavedModel’ format.

The values of the weights and biases should be real numbers listed in E notation with a maximum of 7 decimal places, and an exponent value between −38 and 38. This is to support

1https://keras.io/
2https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer#get_weights
3https://www.tensorflow.org/guide/keras/save_and_serialize
single-precision 32-bit floating point machine architecture. The number of supported precise decimal digits in single precision architecture is 7, and the maximum decimal exponent value is 38 [97]. In addition, the standard practice for training ANNs uses single-precision architecture [98]. There is, however, nothing in our approach that is dependent on these restrictions.

The activation function is given as an enumerated type, one of RELU or LINEAR. The activation functions of an ANN are usually defined when the ANN is built, or, given a Keras model instance, can be displayed using the ‘summary’ method \(^4\).

The parameter file starts with a single string defining the activation function, line 1 of Figure 3.9. The remainder of the file is split into groups of lines: one for each layer of the ANN, excluding the input layer.

In Figure 3.9, we have two groups: lines 2 to 3 for the hidden layer, and lines 4 to 5 for the output layer. Every group of lines has two sections. The first section defines the weights, where each line contains the weights for a single node, delimited by commas. This section has a number of lines equal to the number of nodes. The second section defines the bias values for the layer; this section also has a number of lines equal to the number of nodes, with each line defining a single bias value.

\(^4\)https://keras.io/api/models/model/
In our example, line 1 defines the activation function as ‘ReLU’. Line 2 defines the weights over just one line as there is one node, and provides two values because the network contains two inputs. Line 3 defines the bias value: a single value as there is a single node.

The second, and final, layer is defined in lines 4-5 in a similar way. This layer has a single input, as the output size of the previous layer is 1, so the weight value in line 5 contains a single value.

Figure 3.10 displays the modified version of AnglePID, described as a state machine, which uses the ANN component AnglePIDANN. This machine requires the interface ANNOperationSig, which defines the signature of AnglePIDANN, and uses the interface ANNOOutput to receive the output from AnglePIDANN.

Compared to the definition of AnglePID in Figure 3.6, the difference in the behaviour of the machine is that currAngleOut is calculated by a call to AnglePIDANN, instead of being calculated with an equation. In the state UpdateOutput, we first call AnglePIDANN with the parameters currNewError and currDiff, then we set currNewError to angleOutput, the output of AnglePIDANN.

Here, interaction with the ANN component operates through interfaces containing variables. Next, we discuss an alternative modelling approach, where communication with the ANN component operates via events.

3.3.1.2 ANN Controller component

The ANN can also be integrated at the controller level. Given the parallel version of the Segway model, communicating through events, we can introduce this type of interaction to this model without much change. This approach allows an ANN to interact in parallel with other controllers, which is useful for larger networks where computation time is a more significant factor, and for ANN components that interact with other ANN components.

We describe an example of this approach in Figure 3.11, where we replace the controller AnglePID_C with the ANN component AnglePIDANN. It interacts with BalanceSTM using the same events as the controller AnglePID_C. In this way, the only aspect of the model that needs to be changed is the definition of the controller, just to connect to another (ANN) controller, rather than to the state machine AnglePID. All state machines are unchanged in this approach.

Similarly to an ANNOperation, an ANNController requires a Parameters box, filled in the same way as demonstrated in Figures 3.7 and 3.8. An ANNController also requires two more boxes, both containing integers: one containing the input size, labelled Input Size; and one containing the output size, labelled Output Size. We note that these parameters can be inferred from the parameters and required interface of an ANNOperation, but need to be given explicitly in an ANNController. The ANNController component does not contain a Required Interface partition, but this component can contain events on its borders, similarly to a controller. We note that we give the parameters of AnglePIDANN via a file in Figure 3.11, but we could also have defined them explicitly, as in Figure 3.8.

ANNs are trained to operate on vectors of real numbers. These can be represented either by a single sequence of real numbers, or by multiple separate real numbers. The size of an ANN’s input and output vectors can be, and often are, different. In RoboChart, a controller’s input or output can be represented by either a single event, communicating a sequence representing
Figure 3.11: A parallel version of the Segway model with AnglePIDANN modelled as an ANNController. Legend: ⊙: Module, ◊: controller definition, →: connection, π: constant, ⊙: robotic platform reference, ◊: state machine reference, ◊: ANN component.

the whole vector, or multiple events: one for each element of the vector. For example, in our model, we define multiple events to represent the input and output vectors, as our ANN is low-dimensional. We declare two input events, as the Input Size of AnglePIDANN is 2, and one output event, as the Output Size of AnglePIDANN is 1. The input events are anewError and adiff, and the output event is angleOutputE.

In the next section we describe our extensions to the RoboChart metamodel to accommodate these components.

3.3.2 ANN Components Metamodel

We define two types of ANN component: a controller and an operation. We begin by describing how, in the existing metamodel, controllers and operations are represented: see Figure 3.12. Following this, we discuss how ANN components are integrated into the metamodel.

A module describes a robotic system; it is composed of multiple ConnectionNode objects and multiple Connection objects that define the relationships between ConnectionNodes [99]. A ConnectionNode represents elements that can be connected, namely: robotic platforms, controllers, and state machines. A RoboticPlatform component can be included by either
Figure 3.12: Metamodel of a RoboChart module [99]. Key: grey background box - abstract class; yellow background box - class; bold elements - required elements; non-bold elements - optional elements.

Figure 3.13: Metamodel of RoboChart operations. Key: grey background box: abstract class, yellow background box: class, bold elements: required elements, non-bold elements: optional elements.

An operation can be defined through an OperationDef, which defines the operation’s be-

Figure 3.13 describes how an operation is defined and used in other RoboChart components. An operation can be defined through an OperationDef, which defines the operation’s be-
haviour as a state machine. Alternatively, an operation can be specified via an OperationRef reference to an OperationDef.

The OperationSig class represents details about an operation: its parameters, and its pre and postconditions. OperationSig is used in the definition of contexts that require use of the operation. The BasicContext abstract class defines the variables, constants, operations, and events of an element; the Context class is a BasicContext that also has interfaces. A BasicContext has a property operations, which contains 0 or more OperationSig objects. The subclasses for Context include RoboticPlatformDef, StateMachineBody, and ControllerDef.

We present a diagram of our extensions to the RoboChart metamodel in Figure 3.14. We present the full metamodel in Appendix A. Principally, we define two new classes: ANNOperation and ANNCycler to represent operations and controllers defined by an ANN.

The abstract class ANN contains a single reference to an ANNParameters instance. ANNOperation and ANNCycler are subclasses of ANN. ANNOperation contains a reference rInterface to an Interface, allowing it to communicate its output through the variables in this interface. ANNCycler contains a single reference to a list of events, these are the events that the component can engage in.

The class ANNParameters defines the parameters of an ANN. This class contains six references, two of which are of type IntegerExp: a class which represents an expression of type integer. These are isize, the input size of the ANN, and outsize, the output size of the ANN. ANNParameters contains three sequence properties, represented in RoboChart through references to the SeqExp class. The property layerstructure defines the size of each layer, and weights and biases define the weights and biases of the trained ANN, respectively. The weights, biases, and layerstructure values are optional, as they may be defined implicitly through filename.

We note that weights and biases are both sequences of real numbers. RoboChart’s type system is based on Z [14]. Hence, we can use the Z type system to represent real numbers, specifically, by using the approach in [100] to define the relevant subset of A, the Z type for
Although it is possible for different layers to use different functions, here we assume that all layers use a single function. In addition, we consider just RELU and LINEAR functions, as indicated in the definition of the enumeration type ActivationFunction. These are convenient for the verification technology we discuss in the next chapter. Extension of this metamodel to consider the possibility to use additional functions, and different functions in different layers is simple. It requires just extension of the ActivationFunction, and the definition of activationfunction as a sequence.

Our ANN components are not defined using state machines, so the existing structures that define controllers and operations in RoboChart, namely ControllerDef and OperationDef (presented in [99]) are not applicable to our components. To address this, we introduce two abstract classes, GeneralController and GeneralOperation, that allow controllers and operations to be defined using multiple methods. We present these new classes, and the discussed changes in Figure 3.15.

The abstract classes Controller, and Operation are unchanged in our work, but we add to the way we allow these components to be defined. The classes that we use to represent references to these components, ControllerRef and OperationRef, are also unchanged.

ControllerRef now contains a reference to an instance of a GeneralController, not to a ControllerDef instance. Both ControllerDef and ANNController are concrete subtypes of GeneralController, so both can be used to define the behaviour of a controller.

Similarly, OperationRef now refers to a GeneralOperation instance, where ANNOperation and
WF1: `insize` and `outsize` are greater than 0, and `layerstructure`, `weights`, and `biases` are non-empty and of the same size, if not null.

WF2: If `filename` is null, then `weights`, `biases`, and `layerstructure` are not.

WF3: Either `layerstructure`, `weights`, and `biases` are all null, in which case `filename` is not, or they are all different from null.

WF4: `activationfunction` is `NOTSPECIFIED` if, and only if, `filename` is not null.

WF5: For every `i`, the size of `weights i` and `biases i` is `layerstructure i`.

WF6: For every `i`, and for all `j`, the size of `weights i j` is `layerstructure (i - 1)` when `i` is greater than 1, or `insize` otherwise.

WF7: An `ANNController` must have exactly the sum of `insize` and `outsize` events, or exactly two events.

WF8: The connections to and from an `ANNController` match the nature of the events (inputs and outputs) in their directions and types.

WF9: An `ANNOperation` must have exactly `insize` parameters or just one, and must require exactly one variable, or `outsize` variables.

Table 3.1: RoboChart ANN well-formedness conditions

OperationDef have roles similar to those of the corresponding controller definition classes. In this case, though, **OperationSig** is a superclass of both `ANNOperation` and `OperationDef`, allowing both to contain a signature: enabling the definition of parameters, termination, and pre and postconditions. These modifications allow other RoboChart components to refer to an `ANNOperation` whenever they could refer to an `OperationDef`.

We also rephrase some of the well-formedness conditions of RoboChart to accommodate the above changes. These changes are minor and concerning with differentiating components defined with state machines and those defined using neural networks.

In the next section, we discuss well-formedness conditions of the new classes, required to enable meaningful semantics models to be generated.

3.3.3 ANN Component Well-Formedness Conditions

The metamodel in Fig. 3.14 enables the definition of models that are not meaningful. In Tab. 3.1, we present well-formedness conditions that need to be satisfied by a RoboChart model that includes ANN components. These are in addition to the existing well-formedness conditions of RoboChart [101].

WF1 reflects properties of trained ANNs. This condition restricts the values that the parameters of the `ANNParameters` class can take. We formalise WF1 in Z below.
Here, we define a set WF_1 containing those ANNParameter objects that satisfy the WF_1 well-formedness condition. In our specification, we define objects as a free type with the following constructor functions: tensor, whose domain is the triple nested sequences; matrix, defined on the double nested sequences; and vector, defined on the sequence type. We extract the values contained in the free types using the inverse of these functions: tensor~\,\,\sim\,\,\sim\,\,\sim, matrix~\,\,\sim\,\,\sim, and vector~\,\,\sim. We denote that a SeqExp object (weights, biases, layerstructure) is null using the constant null_seq, and we denote that the sequence contained by a SeqExp object is non-empty by stating that it is not equal to the empty set (\emptyset). More information on free types and the Z specification language is available in [102, 103].

WF_2 ensures that if we are not defining the ANN’s parameters via a file, if the filename reference is null, then the parameters must be defined through the weights, biases, and layerstructure references; so, they must not be null. We provide a formalisation of WF_2 below.

Here, filename is of type StringExp, so we denote that it is null using the constant null_string. WF_3 guarantees that the references layerstructure, weights, and biases can only be null if filename is non-null, in every other case they must contain values. We formalise this condition below.
If the ANN’s parameters are declared via a file, then the activation function should not be declared in the attribute activationfunction, it should take the value NOTSPECIFIED. We capture this through WF4, and we formalise this condition below.

\[
WF4 : \mathbb{P} \text{ANNParameters}
\]
\[
\forall \text{annparams : ANNParameters} \bullet
\begin{align*}
\text{annparams.weights} &= \text{null_seq} \land \\
\text{annparams.biases} &= \text{null_seq} \land \\
\text{annparams.layerstructure} &= \text{null_seq} \land \\
\text{annparams.filename} &\neq \text{null_string} \\
\lor
\begin{align*}
\text{annparams.weights} &\neq \text{null_seq} \land \\
\text{annparams.biases} &\neq \text{null_seq} \land \\
\text{annparams.layerstructure} &\neq \text{null_seq}
\end{align*}
\]

WF5 and WF6 concern the specific structure of the weights and biases sequences, as they must be constructed with strict size considerations. First, the size of the both sequences must be equal to the size of layerstructure (the number of layers). Next, every element indexed by \(i \) in \(\text{weights} \) and \(\text{biases} \), which is also a sequence, must be of size equal to layerstructure\((i)\). This is because there is a separate weight vector and bias scalar for each node in each layer. Finally, the size of each sequence \(\text{weights}(i)(j) \) must be equal to the size of the previous layer, or the input size in the case of the first layer. We present the formalisations of both conditions below.

\[
WF5 : \mathbb{P} \text{ANNParameters}
\]
\[
\forall \text{annparams : ANNParameters} \bullet
\begin{align*}
(\text{annparams.filename} = \text{null_string}) \Rightarrow \\
\forall i : \text{dom}((\text{vector}^{\sim})\text{annparams.layerstructure}) \bullet
\begin{align*}
(\text{tensor}^{\sim})\text{annparams.weights} i &= (\text{vector}^{\sim})\text{annparams.layerstructure} i \\
\land
(\text{matrix}^{\sim})\text{annparams.biases} i &= (\text{vector}^{\sim})\text{annparams.layerstructure} i
\end{align*}
\]
WF6 : \(\forall \text{annparams} : \text{ANNParameters} \bullet \)
\[(\text{annparams}.\text{filename} = \text{null_string}) \Rightarrow \\
\forall i : \text{dom}(\langle \text{vector}\rangle\text{annparams}.\text{layerstructure}) \bullet \\
\forall j : \text{dom}(\langle \text{tensor}\rangle\text{annparams}.\text{weights} i) \bullet \\
(i > 1) \Rightarrow \#(\langle \text{tensor}\rangle\text{annparams}.\text{weights} i j = \\
\langle \text{vector}\rangle\text{annparams}.\text{layerstructure} i \\
\land \\
(i = 1) \Rightarrow \#(\langle \text{tensor}\rangle\text{annparams}.\text{weights} i j = \\
\text{annparams}.\text{insize})
\]

Both WF5 and WF6 are only active when we are not defining the parameters through a file, so we add the antecedent that the filename must be \text{null} to these conditions.

WF7 ensures conformance between the ANN’s declared number of inputs and outputs and the number of events of the controller. We give its formalisation below.

WF7 : \(\forall \text{anncontroller} : \text{ANNController} \bullet \)
\[\#\text{anncontroller}.\text{events} = 2 \lor \\
\#\text{anncontroller}.\text{events} = \\
\text{anncontroller}.\text{annparameters}.\text{insize} + \\
\text{anncontroller}.\text{annparameters}.\text{outsize}
\]

WF8 states that if a module contains an ANN component, then events intended to represent inputs are used in incoming connections, and those intended to represent outputs are used in outgoing connections. Its formalisation is below.

WF8 : \(\forall \text{module} : \text{RCModule} \bullet \)
\[\forall \text{anncontroller} : \text{ANNController} \mid \text{anncontroller} \in \text{module}.\text{nodes} \bullet \\
\#\{\text{conns} : \text{module}.\text{connections} \mid \text{conns}.\text{to} = \text{anncontroller}\} = \\
\text{anncontroller}.\text{annparameters}.\text{insize} \land \\
\#\{\text{conns} : \text{module}.\text{connections} \mid \text{conns}.\text{from} = \text{anncontroller}\} = \\
\text{anncontroller}.\text{annparameters}.\text{outsize} \land \\
\forall \text{from}_\text{conn}, \text{to}_\text{conn} : \text{module}.\text{connections} | \\
\text{from}_\text{conn}.\text{from} = \text{anncontroller} \land \text{to}_\text{conn}.\text{to} = \text{anncontroller} \bullet \\
\exists \text{ann}_\text{input}, \text{ann}_\text{output} : \text{anncontroller}.\text{events} \bullet \\
\text{from}_\text{conn}.\text{efrom}.\text{type} = \text{ann}_\text{output}.\text{type} \land \\
\text{to}_\text{conn}.\text{eto}.\text{type} = \text{ann}_\text{input}.\text{type}
\]

Lastly, we provide a single well-formedness condition concerning the \text{ANNOperation} class: an \text{ANNOperation} must have exactly \text{insize} parameters or just one. Similarly, an \text{ANNOperation} must require a single variable, or \text{outsize} variables, representing scalar or vector output. As with the other conditions, we present a formalisation below.
Here, we capture the required variables by defining all variables contained in the interface \(rInterface \), using a set comprehension term. We consider the variable \(varList \) as those variable lists in \(rInterface \), as such this variable must fulfil two conditions. The first is that \(varList \) is contained in the \(variableList \) of the interface \(rInterface \): denoted by \(\text{varList} \in \text{annoperation}.rInterface.variableList \). The second is that the modifier of \(varList \) is \(VAR \), not \(CONST \), denoting a constant. Then, the set is formed of the expression \(varList.\text{vars} \): the set of variables contained in a single variable list. Finally, as we now have a set of sets of the required variables, we take the distributed union of this set to define every variable contained in the interface \(rInterface \).

The metamodel and well-formedness conditions presented in this section define how to specify ANN components in RoboChart. In the next section, we define semantics for these components to enable integration, validation, and verification.

3.4 Semantics Overview

In this section, we present an overview of the existing RoboChart semantics as the basis of our integrated ANN component semantics. We describe CSP in Section 3.4.1 and the RoboChart semantics in Section 3.4.2.

3.4.1 CSP Overview

CSP stands for Communicating Sequential Processes; it was first introduced by Tony Hoare in 1978 [104], and has been described in numerous works since [105, 106, 107]. A CSP model describes a set of abstract processes that continuously interact with their environment via events. Communication channels enable processes to interact with each other and their environment. Processes can transfer information through writing and reading via channels, a communication via a channel is an event. CSP incorporates function definitions, set theory, and propositional calculus.

A process can be seen as an abstraction of a thread of behaviour in a system. An event in CSP is an abstraction of a process’s instantaneous interaction with its environment. Events in CSP may require multiple processes to participate simultaneously. The alphabet of all
processes, that is, all events in which a process can engage, is often referred to as \(\Sigma \). The complete set of events that the channel can communicate is referred to as the communications of a channel.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Skip})</td>
<td>Skip</td>
</tr>
<tr>
<td>(P | a | Q)</td>
<td>Parallel Composition</td>
</tr>
<tr>
<td>(P | Q)</td>
<td>Interleaving</td>
</tr>
<tr>
<td>{</td>
<td>c</td>
</tr>
<tr>
<td>(c \rightarrow P)</td>
<td>Prefix</td>
</tr>
<tr>
<td>(c?x \rightarrow P)</td>
<td>Input</td>
</tr>
<tr>
<td>(c!e \rightarrow P)</td>
<td>Output</td>
</tr>
<tr>
<td>(P; Q)</td>
<td>Sequential Composition</td>
</tr>
<tr>
<td>(P\Theta_{cs} Q)</td>
<td>Exception</td>
</tr>
<tr>
<td>(P \setminus cs)</td>
<td>Hiding</td>
</tr>
<tr>
<td>(P[{c \leftarrow d}])</td>
<td>Renaming</td>
</tr>
</tbody>
</table>

Table 3.2 presents the CSP operators used in our work. We describe these operators as we use them in the following sections. Next, we give an overview of the RoboChart semantics encoded in CSP.

3.4.2 RoboChart Semantics Overview

In this section, we give a brief overview of the RoboChart semantics. It defines a CSP process for each module, controller, and state machine component and their memories, holding values for their local variables. (The local variables of a module are those of its robotic platform.) These processes are composed together using either parallel or sequential composition. We display the structure of this composition in Figure 3.16.

Each box in the diagram represents a CSP process. Memory processes are represented by double bordered boxes; these processes handle updating variables and propagating them to each component that requires them. The Robotic Platform Memory propagates changes to the Controller Memory, which propagates changes to the State Machine Memory.

Each module process is composed of a Robotic Platform memory process in parallel with multiple Controller processes, as shown in Figure 3.16. Likewise, each Controller is composed of a Controller Memory process interacting in parallel with multiple State Machine processes.

Events are used to represent changes in the values of the variables of the platform, occurrences of platform events, and calls to platform operations. These are the visible events in a module. Events representing internal interactions of controllers, which are those that do not involve the robotic platform, are hidden. The definition of hiding in CSP is as shown below.

\[P \setminus cs \]

Here, the operator \(\setminus \) describes that events in the set \(cs \) are hidden from the process \(P \). A process may not engage with a hidden event; its sub-processes, however, can still engage with this event.
To illustrate the semantics, we describe the CSP semantics of the segway model, in particular the semantics of the module \textit{Segway} in terms of the controller \textit{SegwayController} as presented in Section 3.3. We use the naming scheme from [14], where we prefix each channel name with its component identifier, such that for a channel \(c\) of component \(C\), the name will be \(C_{-c}\).

A module process is defined by the parallel composition of controller processes, one for every controller in the module, as displayed in Figure 3.16. In our example, there is a single controller, so the parallel composition of each controller is just the process representing the single controller, which we will refer to as \textit{SegwayController}. This leads to an initial definition of the process representing the entire module, which we will refer to as \textit{Segway}, as the following process:

\[
\textit{Segway} = ((\textit{SegwayController}[\ldots])\Theta_{\{\text{end}\}}\textit{Skip}) \setminus \{\text{end}\}
\]

A module process terminates when all of its controller processes engage with the event \textit{end}, which is a special RoboChart event that represents termination of a component. We use CSP’s exception operator to denote this termination, the definition of which is as shown below.

\[
P\Theta_{cs}Q
\]

Here, the exception operator \(\Theta\) represents the process that behaves like \(P\) until an event in the set \(cs\) occurs, in which case, it behaves like \(Q\). In our example, the process \textit{Segway} behaves like \textit{SegwayController} until the event \textit{end} occurs, when it behaves like \textit{Skip}, which is a special process in CSP representing successful termination. That is to say, our module process \textit{Segway} successfully terminates if it engages in the event \textit{end}. In addition, the event \textit{end} is also hidden in \textit{Segway}, as it is an event a module process itself cannot engage in, only its controller processes.
We recall that the SegwayRP robotic platform, presented in Section 3.3.1, defines six events: angle, gyroX, gyroY, gyroZ, leftMotorVelocity, and rightMotorVelocity. In the semantics, a separate channel is defined for every event in the RoboChart model, each communicating values of the type InOut.DataType. Here, the InOut type corresponds to the two values in or out, used to denote input or output across the channel. The DataType type corresponds to the type of data communicated through the channel (if any), which is omitted here. Each channel is named according to its RoboChart event prefixed by SRP. The SegwayRP platform also defines four operations: setRightMotorSpeed, setLeftMotorSpeed, enableInterruptsCall, and disableInterruptsCall. A channel is defined for every operation, where the name of that channel corresponds to the name of the operation suffixed with Call. Additionally, we note that channels representing events that are involved in connections between controllers are hidden in a module process. There are no such connections, however, in the module Segway, so no event hiding is required in the process Segway.

This leads to the definition of the visible events of the Segway process, defined from the Segway module, as those events associated with the channels listed in the set below:

\[
\{SRP_angle, SRP_gyroX, SRP_gyroY, SRP_gyroZ, \\
SRP_leftMotorVelocity, SRP_rightMotorVelocity, \\
setLeftMotorSpeedCall, setRightMotorSpeedCall, \\
enableInterruptsCall, disableInterruptsCall\}
\]

The process SegwayController representing the controller SegwayController, in the context of the Segway process representing the module Segway, must have those channels that represent RoboChart events renamed to capture connections between components of the module. In our parallel Segway model, all events of the robotic platform SegwayRP connect to identically named events of the controller SegwayController. In the semantics, we represent connections involving robotic platforms by renaming all channels involved according to the qualified name of the robotic platform. For example, the event angle of SegwayController is involved in a connection with SegwayRP, so the channel SC_angle (SC as an abbreviation of SegwayController) is renamed to SRP_angle (SRP as an abbreviation of SegwayRP). The definition of renaming in CSP is as shown below.

\[P[c \leftarrow d]\]

This represents process \(P\), where the event \(c\) is now referred to by the name \(d\). Notably, if there were multiple events renamed to \(d\), a single call to \(d\) synchronises on all events that were renamed to \(d\), as they are now referred to by the same name.

We present the renaming of the process SegwayController, in the context of the process representing a module, Segway. Specifically, we only rename channels representing RoboChart events, not channels that represent operation calls.

\[SegwayController\]
\[SC_angle \leftarrow SRP_angle\]
\[SC_gyroX \leftarrow SRP_gyroX\]
\[SC_gyroY \leftarrow SRP_gyroY\]
\[SC_gyroZ \leftarrow SRP_gyroZ\]
\[SC_leftMotorVelocity \leftarrow SRP_leftMotorVelocity\]
\[SC_rightMotorVelocity \leftarrow SRP_rightMotorVelocity\]\n
The process *SegwayController* represents the semantics of the RoboChart controller *SegwayController* (considering the parallel *SegwayController*, as presented in Figure 3.4). This is defined as the parallel composition of processes for its state machines, as shown in Figure 3.16. *SegwayController* is composed of three state machines: *SpeedPID*, *RotationPID*, and *BalanceSTM*. Following this, we define *SegwayController* as the parallel composition of three processes, where each represents a single state machine component of identical name: *SpeedPID*, *RotationPID*, and *BalanceSTM*. Finally, *SegwayController* behaves like *Skip* if the event *end* occurs, defined using the exception operator.

\[
SegwayController = (\
\text{SpeedPID}[\ldots] \parallel \text{SpeedPID}_\text{evts}) (\text{RotationPID}[\ldots] \parallel \text{RotationPID}_\text{evts}) (\text{BalanceSTM}[\ldots])\Theta \text{end \ Skip}
\]

\text{SC\textunderscore hidden\textunderscore evts}

To define parallel composition, we use the following CSP operator:

\[P \parallel [a] Q\]

Here, the operator \(\parallel\) is used to denote that a process \(P\) is composed in parallel with the process \(Q\), along the synchronisation set \(a\). This means that each process must cooperate on events in the set \(a\), such that neither can perform these events independently. In our example, all four state machines processes are in parallel with each other, synchronising on three separate sets, each containing the events used for communication between the state machines.

The visible events of the process *SegwayController* should correspond to communications along channels representing RoboChart events, communications along channels representing calls to RoboChart operations, and the event *end* (which is visible in processes for controllers). The RoboChart controller *SegwayController* defines six events: *angle*, *gyroX*, *gyroY*, *gyroZ*, *leftMotorVelocity*, and *rightMotorVelocity*; each is represented by a channel prefixed with *SC*. *SegwayController* also requires four operations: *setLeftMotorSpeed*, *setRightMotorSpeed*, *enableInterrupts*, and *disableInterrupts*. In the semantics, a separate channel is defined for each, suffixed by *Call*. This leads to the complete visible events of *SegwayController* as communications along the following channels:

\{SC_angle, SC_gyroX, SC_gyroY, SC_gyroZ, SC_leftMotorVelocity, SC_rightMotorVelocity, setLeftMotorSpeed\textunderscore Call, setRightMotorSpeed\textunderscore Call, enableInterrupts\textunderscore Call, disableInterrupts\textunderscore Call, end\}

Each process for a state machine in the context of the controller process *SegwayController* (*SpeedPID*, *RotationPID*, and *BalanceSTM*) is renamed to capture the connections involved in the RoboChart controller *SegwayController*. In a controller process, each channel (representing a RoboChart event) involved in a connection to the controller itself is renamed according to the qualified name of the controller. This is similar to renaming a controller’s channels (which connect to a robotic platform) to the qualified name of the robotic platform in a module process. For example, RoboChart event *angle* of *BalanceSTM* is involved in a
connection with the controller SegwayController, so the channel $BSTM_angle$ ($BSTM$ as an abbreviation of $BalanceSTM$) is renamed to SC_angle. SegwayController, however, contains connections between state machines, referred to as internal connections of the controller, which are defined in a different way.

An internal controller connection (which is both unidirectional and synchronous) defines a relationship between two events of separate state machines: one outgoing event communicating with one incoming event. In the semantics, a channel is defined for each event, and a process for each state machine. The outgoing process (for the outgoing state machine) communicates via output on its channel, which is received by the incoming process (for the incoming state machine) via input on its channel. In the semantics, this connection is realised by renaming all in events (from the InOut type) of the incoming channel to out events of the outgoing channel. For example, the event $snewError$ of $BalanceSTM$ connects to $snewError$ of $SpeedPID$, in the semantics the outgoing channel is $BSTM_snewError_out$ ($BSTM$ is an abbreviated version of $BalanceSTM$) and the incoming channel is $SPID_snewError_in$ ($SPID$ is an abbreviated version of $SpeedPID$). Therefore, $SPID_snewError_in$ is renamed to $BSTM_snewError_out$, which means that any communication on $BSTM_snewError_out$ is synchronised with $SPID_snewError_in$, connecting the two channels. All out events of the incoming channel are also renamed to the in events of the outgoing channel. A connection may also be bidirectional or asynchronous; all connections in our example, however, are unidirectional and synchronous.

We present the renaming of $SpeedPID$ below, which captures its connections to $BalanceSTM$. To clarify, the channel $SPID_speedOutputE$ is not renamed, as it represents the event $speedOutputE$, which is involved in an outgoing connection event from $SpeedPID$ to $BalanceSTM$.

$$\begin{align*}
 \text{SpeedPID} &= \text{SpeedPID_STM}[] \\
 \text{SPID_snewError_in} &\leftarrow \text{BSTM_snewError_out} \\
 \text{SPID_snewError_out} &\leftarrow \text{BSTM_snewError_in}
\end{align*}$$

Given this renaming, we can now define the synchronisation set of $SpeedPID$, which we refer to as $SpeedPID_evts$. This set contains all channel communication events that $SpeedPID$ and $BalanceSTM$ synchronise on, as the state machine $SpeedPID$ is connected to only $BalanceSTM$ (if it were connected to more, it would contain all shared communication events). These processes communicate on two channels: $BSTM_snewError$ and $SPID_speedOutputE$. These channels are the outgoing channels representing the three connections that they share in the RoboChart model. Following this, the synchronisation set needs to contain all channel communication events of these channels. This can be done using the channel set operator, which defines all events associated with a given channel. We present this operator below.

$$\{| \ c \ | \}$$

Here, the brackets $\{| \ c \ | \}$ denote the channel set of c, this is the set of all possible communication events of c. That is to say, this is all possible events of the type of the channel c. This operator is used here to form the set of the complete events in these channels to synchronise on.
We present the synchronisation set $\text{SpeedPID}_{\text{evts}}$ below. This set enables connection between these two processes, because communications over these channels synchronise with events in both SpeedPID and BalanceSTM (due to renaming). In addition, the set contains the event end, as all state machine processes need to terminate simultaneously.

$$\text{SpeedPID}_{\text{evts}} = \{|\text{BSTM}_\text{newError}, \text{SPID}_\text{angleOutputE}|\} \cup \{\text{end}\}$$

Each PID state machine process interacts in parallel based on a separate synchronisation set, following a similar process as described for SpeedPID. In a controller, all internal connections, that is, connections between state machines, are hidden. The set $\text{SC}_{\text{hidden}_{\text{evts}}}$, therefore, represents all events associated with these internal connections, and is hidden in the definition of SegwayController.

Given these three renamed state machines, the only events that remain visible are those in terms of the SegwayController itself, which is why all events used in the parallel composition are hidden. This leads to the visible events of SegwayController as defined earlier in this section.

Our ANNController components interact on the same level as a Controller. Our semantics defines a single process that represents an ANNController. This process is composed in parallel with the processes for the other controllers (whether defined as additional ANNControllers or not) to form the definition of a module process. In the next section, we define the CSP semantics of these components.

3.5 CSP Semantics for Neural Networks

Our semantics defines constants to capture the metamodel. They are $\text{insize} : \mathbb{N}$, $\text{outsize} : \mathbb{N}$, and $\text{layerstructure} : \text{seq}\mathbb{N}$. In addition, $\text{layerNo} : \mathbb{N}$ and $\text{maxSize} : \mathbb{N}$ record properties of layerstructure: its length, and its largest element. Finally, we have $\text{weights} : \text{seq}(\text{seq}(\text{seq}(\text{Value})))$ and $\text{biases} : \text{seq}(\text{seq}(\text{Value}))$.

Value is a type that represents the data communicated by our ANN. This is defined based on the types used in the ANN component in RoboChart. Some examples of the types that can be used are floating-point, integer, or binary values. If there are various ANN components, there is a definition for a type Value for each of them. Equally, constants such as layerstructure, maxSize, and the others mentioned here are defined for each component.

In our semantics, we use the ReLU activation function as piecewise linearity is useful for the scalability of verification approaches. Our semantics, however, can be easily adapted to other activation functions.

We use two channels. The first $\text{layerRes} : \{0..\text{layerNo}\},\{1..\text{maxSize}\}.\text{Value}$ is used to communicate with other processes in the RoboChart semantics and for inter-layer communications. An event $\text{layerRes}.l.n.v$ represents the communication of a value v to or from the process for the nth in the process for the lth layer.

The second channel $\text{nodeOut} : \{1..\text{layerNo}\},\{1..\text{maxSize}\},\{1..\text{maxSize}\}.\text{Value}$ is for intra-node communication; $\text{nodeOut}.l.n.i.v$ refers to the layer, node and value for layerRes. The use of an index i is a technicality explained below.

In our semantics, presented in Fig. 3.18, we treat inputs to the ANN process as events on the channel layerRes, with 0 as the first argument’s value. In this way, events $\text{layerRes}.0$
represent inputs to the ANN process from other components in the RoboChart model. All other communications on \(\text{layerRes} \) represent results from layer processes. Events \(\text{layerRes.2} \) represent the outputs of the ANN.

Fig. 3.18 presents the specification of the process \(\text{ANN} \), defining our semantics for \(\text{ANNControllers} \). We further illustrate our semantics through the diagram in Figure 3.17. It terminates (\(\text{Skip} \)) on the occurrence of a special event \(\text{end} \), as defined using the exception operator \(\Theta_{\text{end}} \). This is an event raised by other controllers when all state machines terminate.

The operator \(P \parallel [cs]Q \) describes the process whose behaviour is defined by those of \(P \) and \(Q \), synchronising on all events in the set \(cs \). Also, \(P \setminus cs \) defines a process that behaves as \(P \), but its events from the set \(cs \) are hidden. \(\text{ANN} \) composes in parallel the processes \(\text{HiddenLayers} \) and \(\text{OutputLayer} \), then repeats via a recursive call. Since the \(\text{OutputLayer} \) communicates only with the last hidden layer, these processes synchronise on the events
ANN =
((\text{HiddenLayers}[\{\text{layerRes.}(\text{layerNo} - 1)\} \parallel \text{OutputLayer}) \setminus \text{ANNHiddenEvts} \\
\Theta_{\text{end}} \parallel \text{Skip}) ; \text{ANN})
\text{ANNHiddenEvts} = \Sigma \setminus \{\{\text{layerRes.0}, \text{layerRes.layerNo}, \text{end}\}\}
\text{HiddenLayers} = \parallel i : 1 \ldots \text{layerNo} - 1 \bullet [\{\text{layerRes.}(i - 1), \text{layerRes}.i\}]
\text{HiddenLayer}(i, \text{layerSize}(i), \text{layerSize}(i - 1))
\text{HiddenLayer}(l, s, \text{inpSize}) = \parallel i : 0 \ldots s - 1 \bullet [\{\text{layerRes.}(l - 1)\}] \text{Node}(l, i, \text{inpSize})
\text{Node}(l, n, \text{inpSize}) =
(((i : 0 \ldots \text{inpSize} - 1 \bullet \text{NodeIn}(l, n, i) \\
\parallel [\{\text{nodeOut}.l.n\}]) \\
\text{Collator}(l, n, \text{inpSize})) \setminus \{\text{nodeOut}\})
\text{NodeIn}(l, n, i) = \text{layerRes.}(l - 1).n?x \to \text{nodeOut}.l.n.i!(x \ast \text{weight}) \to \text{Skip}
\text{Collator}(l, n, \text{inpSize}) = \text{let}
\begin{align*}
\text{Collator}(l, n, \text{inpSize}) &= \text{let} \\
C(l, n, 0, \text{sum}) &= \text{layerRes}.l.n!(\text{ReLU}(\text{sum} + \text{bias})) \to \text{Skip} \\
C(l, n, i, \text{sum}) &= \text{nodeOut}.l.n.i?x \to C(l, n, (i - 1), (\text{sum} + x))
\end{align*}
\text{within} \\
C(l, n, \text{inpSize}, 0)
\text{OutputLayer} = \parallel i : 0 \ldots \text{layer}(ext{layerNo}) - 1 \bullet [\{\text{layerRes.}(\text{layerNo} - 1)\}] \\
\text{Node}((\text{layerNo}, i, \text{layerSize}(\text{layerNo} - 1))
\text{Figure 3.18: CSP ANN Semantics - General.}

\text{layerRes.}(\text{layerNo} - 1). The set \{\text{c}\}\} includes all events representing communications via \text{c}.

All events in \text{ANNHiddenEvts} are hidden. This includes all events (\Sigma), except those of \text{layerRes.0}, representing inputs, \text{layerRes.layerNo}, representing outputs, and \text{end}. These define the visible behaviour of an \text{ANNController}.

We define the process \text{HiddenLayers} via an iterated alphabetised parallel composition (\parallel) over an index \text{i} for hidden layers ranging from 1 to \text{layerNo} - 1. For each \text{i}, the layer-process \text{HiddenLayer}(i, \text{layerSize}(i), \text{layerSize}(i - 1)) for the \text{i}th layer is associated with the alphabet containing the set of events on \text{layerRes.}(i - 1) and \text{layerRes}.i. In an iterated alphabetised parallelism, the parallel processes synchronise on the intersection of their alphabets. So, a layer-process \text{HiddenLayers} synchronises with the process for the previous layer on \text{layerRes.}(i - 1) and the process for the following layer on \text{layerRes}.i. So, the output events of each layer are used as the input events for the next layer.

The second argument \text{layerSize}(i) passed to a layer-process is the value of the \text{i}-th element of \text{layerstructure}, that is, the number of nodes in the \text{i}-th layer if \text{i} is greater than 0, and \text{inSize} when \text{i} is 0. Similarly, the third argument \text{layerSize}(i - 1) concerns the layer \text{i} - 1. In our example, \text{layerNo} - 1 is 1, and there is a single \text{HiddenLayer} process, instantiated with arguments 1, 1, and 2. These are the values of \text{inSize} and \text{layerstructure}(1) for the example.
HiddenLayer(l, s, inpSize) is also defined by an iterated alphabetised parallelism: over an index i ranging from 1 to s, to compose s node processes Node(l, i, inpSize) interacting via events in \{ | layerRes.(layer – 1) \}. This set contains all events the previous layer’s node processes use for output because a node process requires the outputs from all nodes in the previous layer.

The Node(l, n, inpSize) process represents the nth node in the layer l, which has inpSize inputs. We define Node(l, n, inpSize) as the parallel composition of interleaved NodeIn(l, n, i) processes, with i ranging over 1 to inpSize, and a Collator(l, n, inpSize) process. Interleaved processes (||) do not synchronise.

NodeIn(l, n, i) captures a weight application to an input. A NodeIn process receives inputs via layerRes.(l-1).n and communicates output through nodeOut.l.n.i. NodeIn(l, n, i)’s output is its input weighted by the constant weight, which is given by the expression weights l n i. After engaging in this output event, NodeIn terminates, denoted by Skip.

We denote input via channels using c?x → P, which defines the process that engages in an event c.x, then behaves like P. This process accepts input x over the channel c’s type. The output prefix c!e → P is a process that outputs (synchronises) on the specific event c.e and then behaves like P. Collator(l, n, inpSize) sums all values output by the NodeIn processes and applies the bias value, given by biases l n. The output of Collator(l, n, inpSize) on layerRes is the output of the node process. The definition of Collator(l, n, inpSize) uses a local recursive process C(l, n, i, sum); its extra argument is the accumulated sum of the outputs. In the base case C(layer, node, 0, sum), we have an output sum, with the bias term applied, subject to the activation function ReLU. In the recursive case C(layer, node, i, sum), we get an input x via nodeOut.l.n.i, and a recursive call with a descending index i – 1, and the sum of x and sum.

Finally, the definition of OutputLayer is similar to that of HiddenLayer.

The visible events of an ANN process are used to define the connection to other components of the RoboChart semantics and for defining termination. In our example, these are the events layerRes.0, layerRes.2, and end.

We rename the visible events of our ANN semantics to match the CSP events used to represent the events defined in the RoboChart model. For our example, these events, from Section 3.3.1.2, are anewError, adiff, and angleOutputE. We give the renaming of our example, AnglePIDANN, below.

\[
\text{AnglePIDANN} \llbracket \begin{align*}
\text{layerRes.0.1} & \leftarrow \text{anewError.in} \\
\text{layerRes.0.2} & \leftarrow \text{adiff.in} \\
\text{layerRes.2.1} & \leftarrow \text{angleOutputE.out}
\end{align*} \rrbracket
\]

To illustrate the behaviour of our semantics, we describe a trace of a single iteration of our AnglePIDANN component. In this example, we discretize all constants of AnglePIDANN to enable model checking. Here, all weight values are 1 and all bias values are 0. In our example, the values communicated through the channels anewError and adiff are 1 and 0, respectively.

\[
\begin{align*}
\text{anewError.in.1} & \rightarrow \\
\text{adiff.in.0} & \rightarrow \\
\text{angleOutputE.out.1}
\end{align*}
\]
We now describe a trace of events on the component level: a trace of the AnglePIDANN semantics without hiding or renaming. Through the process described earlier, the events anewError.in.0 and adiff.in.0 correspond to the following layerRes events.

\[\text{layerRes.0.1.1} \rightarrow \]
\[\text{layerRes.0.2.0} \rightarrow \]

The NodeIn processes of Node synchronise with events on layerRes.0. So, each NodeIn receives the input and communicates the result of the weight application on the nodeOut channel. We give these events below.

\[\text{nodeOut.1.1.1.1} \rightarrow \]
\[\text{nodeOut.1.1.2.0} \rightarrow \]

Next, Collator receives these values, sums them, then applies the bias term to them. Following this, the Collator applies the ReLU function to the result (here, however, this does not change the result). The Collator process then communicates its result on the layerRes channel. We display the corresponding event below.

\[\text{layerRes.1.1.1} \rightarrow \]

Communication events on layerRes.1.1 are synchronised with the NodeIn processes of the OutputLayer. Its NodeIn processes apply the weight to the value communicated (in this case 1), and communicates this value through the channel nodeOut. We show this event below.

\[\text{nodeOut.2.1.1.1} \rightarrow \]

This value is the product of the weight of the output layer’s node and the output of the previous layer’s single node.

Communications on nodeOut.2.1.1 are synchronised with the Collator process of the output layer; this process then produces the final output of the layer (and the model). It communicates this value on the channel layerRes as shown below.

\[\text{layerRes.2.1.1} \]

Lastly, we rename layerRes.2 to angleOutputE.out, as discussed earlier, obtaining a full trace of a single iteration of AnglePIDANN.

For a primary validation of our semantics, we have used a CSP model checker to compare the semantics of the AnglePIDANN to that of the controller AnglePID_C of the parallel version of the Segway model. For the latter, we have used the semantics automatically generated by the RoboChart tool\(^5\). We have used a discretized neural network to make model checking feasible. In this setting, we have been able to show refinement (in both directions) automatically. Further validation has been provided by implementing our semantics in Java using the JCSP package [108]. This has enabled simulation and assertion-based reasoning via JML in a setting where values are floating-point numbers.

In the next section, Section 3.6, we discuss this Java implementation and its implications for assertion-based reasoning.

\(^5\)robostar.cs.york.ac.uk/robotool/
3.6 JCSP Validation

In this section, we present an implementation of our the parallel Segway model, including AnglePIDANN defined as an ANNController, as defined in Section 3.5, in Java. We utilise the package JCSP, which provides an implementation of CSP in Java. Our work here enables simulation and analysis by assertion-based reasoning of our RoboChart ANN components as presented in Section 3.3. We are able to perform this simulation because JCSP accommodates floating-point arithmetic.

In this section, and in what follows, we work only with nonterminating RoboChart models. For those, the event end and the exception operator used in the RoboChart semantics are unnecessary. Encoding the exception operator in JCSP and in Isabelle is left as future work.

In Section 3.6.1, we give a brief description of JCSP. Our encoding of the semantics of a RoboChart ANN controller in JCSP, and the Segway model, is the subject of Section 3.6.2.

3.6.1 JCSP

A key part of the JCSP implementation of CSP is the CSProcess interface. It specifies the behaviour of a process; classes that implement this interface behave similarly to a process. CSProcess contains a single abstract method: run(), which defines the behaviour of the process. We can define parallel composition and synchronisation of instances of these classes. We refer to instances of a class that implements the CSProcess interface as process objects, to distinguish them from CSP processes.

In order to communicate values between these processes, CSP channels are implemented in JCSP through the class Channel. A Channel can communicate either an object or an integer. Additionally, the Channel class provides static methods for constructing various types of writers and readers. In a Channel, channel synchronisation is defined as synchronisation between one reader object, and one writer object. These writer and reader objects are defined using two dedicated interfaces: ChannelInput for the reader and ChannelOutput for the writer.

ChannelInput and ChannelOutput are superinterfaces for other specialised forms of reader and writer. Similarly, specific types of channel are specified using interfaces. One example of a Channel interface is One2OneChannel, which specifies a channel that relates a single reader to a single writer object. Another sub-interface of Channel is Any2OneChannel, which defines a channel that attaches multiple writers to a single reader. This, however, does not allow multiple synchronous writers to one reader. This is because each writer object can only synchronise with a single reader, internally.

To illustrate channels in JCSP, we present below an example of creating all required objects for a One2OneChannel. We note that Channel.one2oneChannel() is a static method of Channel designed to create a One2OneChannel.

```java
One2OneChannel c = Channel.one2oneChannel();
ChannelInput in = c.in();
ChannelOutput out = c.out();
```

6. https://docs.oracle.com/javase/7/docs/technotes/guides/language/
In this example, we create a single channel \(c \) of the type \(\text{One2OneChannel} \), and we use this to define a reading end \(\text{in} \) and a writing end \(\text{out} \). These two objects, \(\text{in} \) and \(\text{out} \), are linked together, internally, such that writing calls on \(\text{out} \) are synchronised with reading calls on \(\text{in} \). These can be passed to process objects to be used as required. Notably, if either is not available in the context of a running process, the processes deadlock.

To link CSP concepts to JCSP, we present in Table 3.3 how the CSP operators we use are implemented in JCSP. We describe further details on these operations as we use them.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Name</th>
<th>JCSP Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Skip})</td>
<td>Skip</td>
<td>\texttt{new Skip();}</td>
</tr>
<tr>
<td>(P \mid [a] \mid Q)</td>
<td>Parallel Composition</td>
<td>\texttt{new Parallel(new CSProcess[] {P, Q});}</td>
</tr>
<tr>
<td>(c?x \rightarrow P)</td>
<td>Input</td>
<td>(ChannelInput)c.read();</td>
</tr>
<tr>
<td>(c!e \rightarrow P)</td>
<td>Output</td>
<td>(ChannelInput)c.read();</td>
</tr>
</tbody>
</table>

We can define parallel composition for process objects by using an instance of the class \(\text{Parallel} \). We can construct an instance of \(\text{Parallel} \) by providing an array containing the objects for processes to be executed in parallel. The \(\text{Parallel} \) class implements \(\text{CSProcess} \), so instances of \(\text{Parallel} \) are themselves process objects. The behaviour of \(\text{Parallel} \) instances is defined as the parallel composition of its constituent \(\text{CSProcess} \) arguments. This composition respects the synchronisation present in channels and other constructs. In Table 3.3, we create a new \(\text{CSProcess} \) array containing \(P \) and \(Q \). Here, \(P \) and \(Q \) are process objects.

In the following section, we discuss how we can use JCSP to validate our ANN components, based on our CSP model from Section 3.5.

3.6.2 ANN Component Validation

In the CSP model, as already explained, each layer interacts with its proceeding layer using the channel \(\text{layerRes} \), given in Equation (2) of Section 3.5. We implement this in JCSP as:

\[
\text{One2AnyChannel[][] layerRes = new One2AnyChannel[layerNo+1][];}
\]

The channel \(\text{layerRes} \) is ultimately used to define events \(\text{layerRes.layer.index.value} \) that represent a communication of a value from a node identified by \(\text{index} \) in the given \(\text{layer} \) to another node in the next layer. In JCSP, we represent each such communication means between processes, here, processes for nodes, by a channel. We, therefore, define \(\text{layerRes} \) as a 2D array of type \(\text{One2AnyChannel} \). Each channel identified by \(\text{layerRes[layer][index]} \) is used to represent events \(\text{layerRes.layer.index.value} \). In CSP, for use in FDR, we need to identify a limit \(\text{maxSize} \) for the values of \(\text{index} \). In Java, this can be defined on a per layer basis instead. We take advantage of this facility to avoid the creation of unnecessary channels when the layers have different numbers of nodes. Finally, we use \(\text{One2AnyChannel} \) because each node process in a layer needs to write to every node in its proceeding layer.

The events \(\text{layerRes.0.1} \) represent the inputs to the ANN model. We represent these events in JCSP using \(\text{One2AnyChannel layerRes[0][1]} \). The definition of \(\text{Value} \) is determined by the RoboChart model.
In our JCSP implementation, we use double-precision floating-point arithmetic, `double` in Java, for this implementation. For the sake of illustration, we could represent the event `layerRes.0.1.0` in JCSP through two function calls as follows. First, we would write 0 on the writing end, using `layerRes[0][1].out().write(0)`. To read this value from the appropriate reading end, we would use `layerRes[0][1].in().read()`. These two function calls represent an occurrence of the event `layerRes.0.1.0`.

In our example, the class `AnglePIDANN` represents the controller `AnglePIDANN`, as presented in Figure 3.11. We construct a `AnglePIDANN` in line 11 of Figure 3.19. The constructor of this class is empty, as its behaviour is defined by the constants of the model.

We implement the constants using the public interface `Constants`, that stores the constants as `final` and `static` variables. The use of the `final` keyword makes their values immutable. All classes implement `Constants`, representing the CSP constants we discuss in Sections 3.5 and 3.3.

We represent CSP sequences as arrays because ordering is preserved, duplicates are preserved, and there is native support for them in Java. Here, we represent the type `Value` through a Java `double`, as mentioned. So, all constants which are of type of `Value` in CSP, are of type `double` in JCSP. As an example, the types of both `weights` and `biases` are arrays of `double` values in JCSP, where they are sequences of type `Value` in CSP.

We show an example of the use of the complete `Segway` module defined using JCSP in Figure 3.19. The class `Segway` presented in this example implements a simplified, but equivalent, version of the model of the `Segway` semantics.

The process definition, of the semantics of the module `Segway`, is given in the implementation of the `run` and `runANN` methods of the `Segway` class. The `run` method, starting on line 14, represents the standard configuration of the parallel `Segway` model, as presented in Figure 3.4. This method defines that the following process objects synchronise in parallel: `segwayRP`, representing the semantics of `SegwayRP`; `segwayController`, representing the semantics of `SegwayController`; and `anglePIDC`, representing the semantics of the controller `AnglePID_C`. The method `runANN`, on the other hand, defines a process where an ANN controller, `AnglePIDANN` (Figure 3.11), replaces the controller `AnglePID_C`. In this version, the `Segway` behaves as the parallel composition of `segwayRP`, `segwayController`, and `anglePIDANN` process objects.

This implementation is for a single configuration of the values of the `Segway` module’s visible events. We construct `SegwayRP` objects using a constructor that receives five parameters, each representing the value of a corresponding visible event of the `SegwayRP` robotic platform: `currAngle`, the value of the event `angle`; `currGyroX`, the value of the event `gyroX`; `currGyroZ`, corresponding to the event `gyroZ`; `currLeftVel`, corresponding to the event `leftMotorVelocity`; and `currRightVel`, the value communicated by `rightMotorVelocity`. We note that the event `gyroY` is not engaged in by the sequential nor the parallel version of `BalanceSTM`, so it is not implemented here. We construct the process object `segwayRP` using this method in line 8 of Figure 3.19.

The class `ANN` is the core of our encoding of the CSP semantics of RoboChart ANN controllers. Its implementation matches the CSP definition of the process `ANN` presented in Section 3.5. The class `AnglePIDANN` calls this process internally, as it represents an ANN controller.

In the definition of the CSP process `ANN`, Figure 3.18, we hide all events except for those
public class Segway implements CSProcess {
 SegwayRP segwayRP;
 SegwayController segwayController;
 AnglePID anglePIDC;
 AnglePIDANN anglePIDANN;

 public Segway(double currAngle, double currGyroX, double currGyroZ, double currLeftVel, double currRightVel) {
 this.segwayRP = new SegwayRP(currAngle, currGyroX, currGyroZ, currLeftVel, currRightVel);
 this.segwayController = new SegwayController();
 this.anglePIDC = new AnglePID();
 this.anglePIDANN = new AnglePIDANN();
 }

 public void run() {
 new Parallel(new CSProcess[] {
 segwayRP,
 segwayController,
 anglePIDC
 }).run();
 }

 public void runAnn() {
 new Parallel(new CSProcess[] {
 segwayRP,
 segwayController,
 anglePIDANN
 }).run();
 }
}

Figure 3.19: The semantics of the parallel Segway model implemented in Java.
indexed by \texttt{layerRes.0}, \texttt{layerRes.2}, and \texttt{end}. More generally, we hide all events, except those representing the inputs and outputs of the ANN. As there is no explicit hiding operator in JCSP, we use the Java visibility keywords to represent event hiding. To capture this, we define the channel \texttt{layerRes} using the Java \texttt{private} keyword, and we represent the visible events using the following attributes of \texttt{ANN}.

```java
1 public ChannelOutput[] visibleInputs;
2 public ChannelInput[] visibleOutputs;
```

Here, the array \texttt{visibleInputs} represents the events indexed by \texttt{layerRes.0}. This attribute is defined through the following: \texttt{visibleInputs = Channel.getOutputArray(layerRes[0])}, meaning \texttt{visibleInputs} represents input on the channels indexed by \texttt{layerRes.0}. Here, the method \texttt{Channel.getOutputArray(c)} returns the \texttt{ChannelOutput} object array corresponding to the array of channels \texttt{c}. The array \texttt{visibleOutputs} represents the events of the last layer, defined through \texttt{visibleOutputs = Channel.getInputArray(layerRes[layerNo])}; the method \texttt{getInputArray} operates similarly to \texttt{getOutputArray}, but returns the reading ends, instead of the writing ends, of the channel.

The implementation of \texttt{ANN} uses two process objects operating in parallel: \texttt{hiddenlayers} and \texttt{outputlayer}. We give the Java code below.

```java
new Parallel(new CSProcess[] {
    (HiddenLayers) hiddenlayers,
    (OutputLayer) outputlayer
}).run();
```

Here, line 1 creates a new parallel process, as described above. Line 2 references our hidden layers process, \texttt{hiddenlayers}; this represents the process \texttt{HiddenLayers}, presented in Figure 3.18. Line 3 references a process \texttt{outputlayer}, which implements the CSP process \texttt{OutputLayer}. This reflects the behaviour of the CSP process \texttt{ANN}.

Each \texttt{HiddenLayers} process object is composed of multiple \texttt{HiddenLayer} process objects. Our \texttt{HiddenLayer} class represents a hidden layer in our ANN. We present the constructor of this class below:

```java
public HiddenLayers(One2AnyChannel[] [] layerRes)
```

The CSP process \texttt{HiddenLayers} does not contain any parameters; in its JCSP implementation, however, we define a single parameter. In JCSP, we provide each process with only the channel and channel end objects required by that process. Despite, we take the channel \texttt{layerRes} as a parameter, to hold the full channel object. \texttt{HiddenLayers} does not directly engage in events on those channels but it passes the reading and writing ends onto the processes that require them.

The CSP process \texttt{HiddenLayers} behaves as the alphabetised parallel composition of all \texttt{HiddenLayer} processes, from Figure 3.18 of Section 3.5. We implement that in JCSP through the use of the \texttt{Parallel} object, as defined in Table 3.3. In our example, this is composed of a single \texttt{HiddenLayer} process. We give the structure of this process below.

```java
new Parallel((HiddenLayer[]) layers).run();
```
Here, we define parallel composition of all processes in an array of HiddenLayer process objects referred to as layers. This implements the parallel composition of all layer processes in HiddenLayers.

Next, we define the class HiddenLayer, which represents the process HiddenLayer. We present its constructor below.

```java
public HiddenLayer(int layer, int size, int inpSize,
                     ChannelInput[] layerInput, ChannelOutput[] layerOutput)
```

Our constructor of HiddenLayer requires five parameters: layer, size, inpSize, layerInput, and layerOutput. The first three parameters correspond one-to-one to a parameter in CSP: layer represents the CSP parameter \(l \), size corresponds to \(s \), and inpSize represents \(inpSize \). The final two parameters store the ChannelInput and ChannelOutput objects required to connect this layer to the rest of the model.

In our CSP model, the process HiddenLayer is composed of the parallel composition of processes for its nodes. Following this, our HiddenLayer process behaves as the parallel composition of process objects of the type Node, a class that represents a Node process. We display this in JCSP, below, where nodes is an array of Node objects.

```java
new Parallel((Node[]) nodes).run();
```

We note that we define output layers in a very similar way to the class HiddenLayer, using the class OutputLayer.

Below, we present the class Node, which represents the Node process, in JCSP.

```java
public Node(int layer, int node, int inpSize,
            ChannelInput[] nodeInputs, ChannelOutput nodeOutput)
```

We recall that we require three parameters in our CSP process representing a node \((l, n, \text{ and } inpSize)\). Similarly to HiddenLayer, the first three parameters constructor of our Node class represent the CSP parameters: layer represents \(l \), node represents \(n \), and inpSize represents \(inpSize \). The last two parameters store the reading and writing ends that this process uses: nodeInputs for input from the previous layer’s nodes, and nodeOutput for the single output event of a node.

We define the class NodeIn to represent NodeIn processes, and the class Collator to represent Collator processes. According to the CSP process Node, we use the following code snippet in Java to define the behaviour of a Node.

```java
new Parallel(
    new CSProcess[] {
        new Parallel((NodeIn[]) nodeIns),
        (Collator) collator
    }
).run();
```

Here, nodeIns is an array of type NodeIn, and collator is of type Collator.
CHAPTER 3. NEURAL NETWORKS IN ROBOCHART

Each NodeIn communicates values to its respective Collator process along a single JCSP channel object. These processes communicate on channels from the channel nodeOut. We define this as a Any2OneChannel, as this channel connects multiple NodeIn writers to one Collator reader. We define the constructor of NodeIn below.

```java
public NodeIn(int layer, int node, int index, ChannelInput input, ChannelOutput output)
```

Here, again, layer corresponds to the CSP parameter \(l \), node corresponds to \(n \), and index corresponds to \(i \). In this process, we receive input from a Node via input, and output its result to a Collator through output.

We define the nodeOut channel with the following.

```java
Any2OneChannel nodeOut = Channel.any2one();
```

This represents the nodeOut channel from Section 3.5. There must be a single Any2OneChannel for each node in our ANN. Each Node process defines a nodeOut channel, and it passes the reading and writing ends to the NodeIn and Collator processes. Each NodeIn receives values from the previous layer, from the appropriate channels on layerRes. Then, it writes its result to the nodeOut channel. Next, its Collator receives the values from the NodeIn processes through nodeOut, and finally writes the result of the node to the next layer via layerRes.

Lastly, we introduce the constructor of Collator below.

```java
public Collator(int layer, int node, int inpSize,
                AltingChannelInput input, ChannelOutput output)
```

Here, the constructor of Collator takes five parameters: layer, node, inpSize, input, and output. As with the other classes, layer represents the parameter \(l \), node represents the parameter \(n \), and inpSize represents the inpSize parameter of the Collator process. We require a single AltingChannelInput input to read in the results from the NodeIn processes. The interface AltingChannelInput enables a choice between channel inputs, allowing the output from the NodeIn processes to be accepted in any order. Finally, we require the parameter output, to communicate its result to the next layer.

So far, we have presented the pattern of interaction between the classes that form our JCSP implementation. The actual behaviour of each class is defined in its run method. We present below the run method for the NodeIn class, as this forms the basis of our JCSP implementation.

```java
public void run() {
    double in;
    in = (Double) input.read();
    double transfer = in * weights[layer][node][index];
    nodeOut.write(transfer);
}
```
In this context, \texttt{input} is an instance of \texttt{ChannelInput}, which represents the input to this node from the previous layer. The variable \texttt{output} is an instance of \texttt{ChannelOutput}, which writes to its \texttt{Collator}. The weight of this \texttt{NodeIn} process is defined using the appropriate index of the array \texttt{weights}, which represents the \texttt{weights} CSP constant (see Section 3.5). In line 1, we initialise the method. In line 3, we set the local variable \texttt{in} to be the result of the method \texttt{read()} of \texttt{ChannelInput}, cast as a \texttt{double} because of the precision of this implementation, and \texttt{read()} returns a value of type \texttt{Object}. In line 5, we calculate the output of the \texttt{NodeIn}, which is the product of \texttt{in} and \texttt{weight}, just like in the CSP ANN process, presented in Figure 3.18. This value is assigned to \texttt{transfer}, and, finally, in line 6, we write the value \texttt{transfer} to the \texttt{ChannelOutput nodeOut}, which is received by the \texttt{Collator} process object.

The \texttt{Collator} process synchronises with the next layer’s \texttt{NodeIn} processes. Each \texttt{Node} receives the events from all \texttt{Collators} in the previous layer, so multi-synchronisation is present in this system. Implementing multi-synchronisation in JCSP requires a dedicated protocol, as each event in JCSP may only synchronise between two processes. Freitas and Cavalcanti [109] present a protocol to implement multi-synchronisation in JCSP. Additionally, a protocol to implement multi-synchronisation in Handel-C is presented in [110]. These protocols handle general multi-synchronisation.

In this work, we use a special case of multi-synchronisation. This is because each \texttt{Collator} writes to a single channel, and it is always the unique writer to this channel. There are any number of \texttt{Node} processes reading from a single channel, so there are any number of readers. We can represent this case of multi-synchronisation using a simpler protocol.

We have proved this in CSP. We have first defined a specification that contains multi-synchronisation, then defined an implementation that does not, and proved that this implementation refines the specification. We then implement the resulting process in JCSP.

In the specification, we represent the \texttt{Collator} process as a \texttt{Writer} process, and each \texttt{Node} as a \texttt{Reader} process. To demonstrate this protocol, we consider a system with three \texttt{Writer} processes, each writing on a separate channel. These writers are interleaved, such that there is no ordering between events. Finally, the communications between each \texttt{Writer} and \texttt{Reader} use multi-synchronisation. In particular, each communication is synchronised between one \texttt{Writer} and three \texttt{Reader} processes.

In the implementation, each \texttt{Writer} engages with as many events as there are readers, instead of one, where each of these events synchronises with a single \texttt{Reader}. We also define a new channel to accommodate this, and show its relationship to the specification using renaming and hiding. We have proven refinement in both directions using FDR, such that we have proven equality between the specification and the implementation.

We implement this protocol in JCSP through the \texttt{Collator} engaging in as many output events as there are nodes in the following layer. This implements the protocol because the number of readers assigned to each \texttt{Collator} process object is equal to the number of nodes in the following layer.

In the next and final section, we discuss the usage and implementation of our encoding.

3.6.3 Discussion

We have used our JCSP implementation for simulating ANNs defined in our CSP framework, as we can use floating-point arithmetic. For a previous version, we have also enhanced
this implementation by adding JML annotations, which enables theorem proving via formal verification tools.

To validate our JCSP implementation, and the semantics that it encodes, we have defined two other implementations of the AnglePIDANN component: a C++ implementation, and a python implementation. To validate these, we have ran them against a test data set, of size 30,000, formed of values with consistent intervals across the normalised range. We have observed a maximum error of $1e^{-6}$ across all three implementations. This error value is expected, as the C++ implementation uses single-precision values and each compiler's implementation varies.

3.7 Final Considerations

This concludes our description of how ANNs can be integrated into RoboChart. We have introduced ANN components in RoboChart in Section 3.3, given an overview of the RoboChart semantics in Section 3.4, and presented CSP semantics for our ANN components in Section 3.5, and provided an implementation of these in Section 3.6. These implementations can be used for validation and simulation of our ANN components. Our CSP semantics can be used to provide early validation of our ANN components, and verification via model-checking of discretized neural network components. In the next chapter, we present a strategy to verify properties of these models, which capture the software of RAAI systems.
Chapter 4

Verification Strategy

In this chapter, we describe a technique to verify robotic systems involving ANN components. Our technique proves that replacing an existing standard RoboChart controller with an ANN controller is sound with respect to a conformance notion we introduce here to cater for numerical imprecision. Although we focus here on verification with respect to RoboChart controllers whose behaviour is specified by state machines, our approach also applies to verification based on RoboChart operations and our new ANN operations.

The use of model checking, even in the absence of a neural network using real numbers, is challenging. We pursue instead a theorem-proving approach. For that, we take advantage of the predicative UTP semantics of Circus (and CSP). Namely, we consider the encoding of our semantics in a UTP theory. Specifically, we use the theory of reactive contracts, which captures the failures-divergences semantics of CSP [28].

In this chapter, we first provide an overview of our verification strategy in Section 4.1, then we describe a pattern of reactive contracts for the semantics of our ANN components in Section 4.2, which we justify in Section 4.3. In Section 4.4, we describe a contract pattern for those RoboChart controllers that we can replace with ANNs. Next, in Section 4.5, we define a relation that formally establishes conformance between reactive contracts. In Section 4.6, we present our system-level verification technique, which establishes system-level conformance. We automate this technique using a combination of Isabelle and Marabou. Finally, we provide concluding remarks in Section 4.7.

4.1 Overview

Our verification strategy uses specifications of the RoboChart controllers (the original controller and the ANN controller) that we obtain from the semantics of our RoboChart models. We obtain this by translating the CSP semantics into a reactive contract. We then generated verification conditions from these reactive contracts, the proof of these conditions can be carried out using Isabelle/UTP and Marabou. We present an overview of this strategy in Figure 4.1.

We start by defining CSP processes that capture a RoboChart controller's iteration, from the RoboChart semantics, as indicated by the box in Figure 4.1 labelled 'RoboChart controller iteration’. We then define the CSP process that captures the call of an ANN component
4.2 General Pattern of ANN Contracts

In this section, we first introduce the theory of reactive contracts, in Section 4.2.1. We then describe the general pattern of contracts for our ANN components, in Section 4.2.2.

4.2.1 UTP Reactive Contracts

UTP is a semantic framework to describe concepts to give denotational semantics to a wide range of computational paradigms. UTP is based on a predicative alphabetised relational calculus expressed pointwise. Every UTP predicate has an alphabet of variables to which the predicate can refer. UTP uses binary relations to denote the observations that can be made about programs, separating initial observations and final observations.

In the UTP, a theory describes a semantic domain, characterising relations by predicates with a given alphabet and satisfying given healthiness conditions. Theories can be combined to define the semantics of richer languages. So, there is support to extend our work to consider our results in the context of languages other than RoboChart, that define reactive behaviours but perhaps also include notions of continuous time [27] and probability [111].

The alphabet of a theory is often composed of observational variables, which encode concepts essential to the paradigm defined by the theory, and state variables, concerned with the individual mechanisms denoted. In a UTP theory, the alphabet is usually open to extension, enabling state variables to be declared and added.

In our work, we use the UTP theory of reactive contracts [112, 113], which can represent CSP processes and has a rich set of calculational laws. Its observational variables are \(st\), \(st'\), \(ok\), \(ok'\), \(wait\), \(wait'\), \(ref\), \(ref'\), and \(tt\). Here, \(st\) refers to the state of the process: the set
of variables it uses. The observational variable ref represents the set of events the process refuses. Finally, tt describes the trace contribution: the events from tr' that the process has engaged in. The boolean observational variable ok represents the termination of the process, and the boolean $wait$ represents that the process is waiting for interaction with its environment. Neither ok nor $wait$ are referred to explicitly by any predicate in this theory but are implicit in the structure of a reactive contract.

The dashed versions of the alphabet variables represent later observations of their values. A predicate describes a relation by restricting the possible initial and later observations. There is no tt' because tt itself is an expression on the variables capturing the trace: $tr' - tr$.

These contracts take the form $[R_1[tt, st] \vdash R_2[tt, st, ref'] | R_3[tt, st, st']]$. The square brackets define the observational variables to which each predicate can refer. The precondition, R_1, describes conditions on the pre-state st and the trace tt. Next, the pericondition R_2 describes a condition on the pre-state, the value of the trace tt, and which events are refused by referring to ref'. A pericondition captures the stable intermediate states of a reactive program’s execution, such as when waiting on interaction from its environment. Lastly, the postcondition R_3 describes a condition on the state, the state update on st', the program’s effect on the post-state, and the final assignment of tt.

Here, we use operators $E[t, E]$ and $\Phi[t]$, simplified versions of those in Definition 4.6 from [28], where we consider that a CSP process has no state. With E, we can construct a pericondition stating that t has been observed, that $tt = t$, and the events in X are not refused, no event in X is in ref'. On the other hand, Φ constructs a postcondition, stating that the final trace observed is characterised by t. For example, $E[\langle \rangle, \{| c |\}]$ stands for $E[true, \langle \rangle, \{| c |\}]$, the predicate obtained by replacing tt and E with $\langle \rangle$ and $\{| c |\}$, and true for s, denoting no restriction on st, in E. Similarly, $\Phi[\langle \rangle]$ stands for $\Phi[true, id, \langle \rangle]$, where we replace tt with $\langle \rangle$, s with $true$, and st' with the identity id, denoting no change in state.

In the next section, we use these contracts to describe a pattern of reactive contracts which captures the semantics for our ANN components.

4.2.2 Reactive Contracts for ANN components

Definition 4.1 provides a pattern for contracts corresponding to an optimised version of the CSP process ANN in Fig. 3.18. The pattern is for the process defining one iteration of the ANN: the parallelism between $HiddenLayers$ and $OutputLayer$. So, we consider one application of the ANN. With that, the compositionality of refinement allows us to make direct deductions about the overall ANN process.

To optimise reasoning, we eliminate the interleavings that allow inputs and outputs to be received and offered in any order and internal computations among and inside the layers to occur in any order. Our highly parallel semantics captures the common use of parallelisation to optimise the performance of implementations of ANNs. We have proved, however, that the different interleavings produce equivalent outputs once the internal events are hidden.

First, the model of the ANN is deterministic, so hiding the events representing the communications between the nodes (and the layers) introduces no nondeterminism. This means that the internal order of computation (as signalled by the events) in the layers and their nodes is irrelevant. Second, if we add a wrapper process that keeps that responsiveness for the inputs but feeds them to ANN in a fixed order, the values and responsiveness of
outputs are maintained. With this, we have rigorous evidence that parallelisation is a valid implementation strategy and that we can use a simpler model for reasoning.

For brevity, in Definition 4.1, the contract is defined using a sequence input containing only the events representing inputs extracted from the trace \(\text{tt} \). Formally, \(\text{input} = \text{tt} \upharpoonright I \), here \(I = \{ \text{layerRes} \cdot 0 \} \). (We use \(\upharpoonright \) to denote sequence filtering.)

Definition 4.1 (ANN Component General Contract).

\[
\begin{align*}
\text{GeneralANNContract} & \equiv \\
& [\text{true}_r] \\
& \quad \# \text{input} < \text{insize} \land \mathcal{E}[\text{input}, \{ \text{layerRes} \cdot 0 \cdot (\# \text{input} + 1) \}] \\
& \quad \lor \\
& \quad \# \text{input} = \text{insize} \land \\
& \quad \exists l:1..\text{layerNo} \cdot \exists n:1..\text{layerSize}(l) \cdot \\
& \quad \mathcal{E}[\text{front} \circ \text{layeroutput}(l, n), \{ \text{last} \circ \text{layeroutput}(l, n) \}] \\
& \quad | \quad \# \text{input} = \text{insize} \land \Phi[\text{layeroutput}(\text{layerNo}, \text{layerSize}(\text{layerNo}))]
\end{align*}
\]

The pattern in Definition 4.1 is for contracts that require that the process does not diverge: the precondition is \(\text{true}_r \). This is appropriate as no ANN diverges.

To define the pericondition and the postcondition, we specify the valid observations using the predicate operators \(\mathcal{E} \) and \(\Phi \). The pericondition characterises the stable intermediate states of the ANN where some or all inputs have been received. We identify these states by considering the size of inputs. When some of the inputs are available (\(\# \text{input} < \text{insize} \)), the trace is \(\text{input} \), and the next input event \(\text{layerRes} \cdot 0 \cdot (\# \text{input} + 1) \) is not refused.

When all inputs are available (\(\# \text{input} = \text{size} \)), we specify the trace of \(\text{layerRes} \) interactions up to where \(\text{layerRes} \cdot l \cdot n \) has occurred using a function \(\text{layeroutput}(l, n) \), where \(l \) and \(n \) are layer and node indices. In the pericondition, we consider all layer indices \(l \) and all node indices \(n \) in \(l \), from 1 to \(\text{layerSize}(l) \). The function \(\text{layeroutput}(l, n) \) encodes the specification of the ANN, in terms of its structure, into a trace-based specification. For example, for an ANN with input size 2, with two nodes in its first layer, and all weights and biases defined as 2, if \(\text{tt} \) defines the input sequence as \(\langle \text{layerRes} \cdot 0 \cdot 1.1, \text{layerRes} \cdot 0 \cdot 2.1 \rangle \), then \(\text{layeroutput}(1, 2) = \langle \text{layerRes} \cdot 0 \cdot 1.1, \text{layerRes} \cdot 0 \cdot 2.1, \text{layerRes} \cdot 1 \cdot 1.6, \text{layerRes} \cdot 1 \cdot 2.6 \rangle \). This reflects that the inputs in \(\text{input} \) are taken first, and the output of each node is the weighted sum of these inputs. Since our weights and biases are all 2, each node outputs 6, resulting in the trace above.

With \(\text{layeroutput}(l, n) \), we define the entire trace up to and including the result of the calculation of the node \(n \) on the layer \(l \), which is the last element of \(\text{layeroutput}(l, n) \). Therefore, the trace in the case \(\# \text{input} = \text{size} \), where all inputs have been received, includes all elements in \(\text{layeroutput}(l, n) \) but the last, denoted using the \(\text{front} \) function. We define the set of accepted events as the singleton containing the event \(\text{last} \circ \text{layeroutput}(l, n) \).

To specify the postcondition, we first state that all inputs have been received, \(\# \text{input} = \text{insize} \), and then we state that the trace contribution of this process, variable \(\text{tt} \), must be equal to the expression \(\text{layeroutput}(\text{layerNo}, \text{layerSize}(\text{layerNo})) \). Here, this expression represents the trace after the last node (that of index \(\text{layerSize}(\text{layerNo}) \)) of the last layer (that of index \(\text{layerNo} \)) has occurred, in other words, after all nodes in the ANN have terminated.

Next, we present the formal definitions of the functions we use to construct our general pattern in Definition 4.1, starting with the definition of \(\text{layeroutput} \).
Definition 4.2 (Layer Output Function).

\[
\text{layeroutput} : \mathbb{Z} \times \mathbb{Z} \rightarrow \text{seq Event}
\]

\[
\forall l : 0 \ldots \text{layerNo} \quad \forall n : 1 \ldots \text{layerSize}(l) \mid \#\text{input} = \text{insize} \quad \cdot
\]

\[
\text{layeroutput}(0, n) = (1 \ldots n) \uparrow \text{input}
\]

\[
\land
\]

\[
\text{layeroutput}(l, n) = \text{layeroutput}(l - 1, \text{layerSize}(l - 1))\uparrow
\]

\[
\text{layercalc}(\text{lastn}(\text{layeroutput}(l - 1, \text{layerSize}(l - 1)),
\]

\[
\text{layerSize}(l - 1)),
\]

\[
1,
\]

\[
2)
\]

We require that all inputs are available (\(\#\text{input} = \text{insize}\)) for \(\text{layeroutput}(l, n)\) to be well defined. This precondition is made explicit above.

We define \(\text{layeroutput}\) by two equations, one for a base case and one for a recursive case. In the base case, when \(l\) is 0, the result is the first \(n\) elements of \(\text{input}\). In the recursive case, \(\text{layeroutput}(l, n)\) is the concatenation of two sequences. The first is the complete trace of the previous layer, \(\text{layeroutput}(l - 1, \text{layerSize}(l - 1))\), that is, the layer indexed by \((l - 1)\). The second trace records the output of the current layer, index \(l\), up to the node \(n\). We describe the trace of the current layer using the function \(\text{layercalc}\).

The function \(\text{layercalc}\), Definition 4.3, defines the trace of a single layer in an ANN using three arguments. The first argument is the trace of the previous layer, used to calculate the current layer’s output values. Here, we define that trace as the last \(\text{layerSize}(l - 1)\) elements of the trace of all previous layers defined using \(\text{layeroutput}\) as explained above. We extract the last \(\text{layerSize}(l - 1)\) elements using a function \(\text{lastn}\), specified in Definition B.5. The second and third parameters specify the layer and node index of the node to calculate the trace up to.

We illustrate the application of \(\text{layeroutput}\) in Ex. 4.1. We consider an ANN with input size 2, with two nodes in its first layer, and all weights and biases are 2. We also define the \(\text{input}\) sequence as \(\langle \text{layerRes}.0.0.1, \text{layerRes}.0.1.1 \rangle\).

Example 4.1 (Layer Output Function).

\[
\text{layeroutput}(1, 2)
\]

\[
= \text{layeroutput}(0, \text{layerSize}(0))\uparrow
\]

\[
\text{layercalc}(\text{lastn}(\text{layeroutput}(0, \text{layerSize}(0)),
\]

\[
\text{layerSize}(0)),
\]

\[
1,
\]

\[
2)
\]

\[
= \langle \text{layerRes}.0.1.1, \text{layerRes}.0.2.1 \rangle\uparrow
\]

\[
\text{layercalc}(\langle \text{layerRes}.0.1.1, \text{layerRes}.0.2.1, 1, 2 \rangle)
\]

\[
= \langle \text{layerRes}.0.1.1, \text{layerRes}.0.2.1 \rangle\uparrow
\]

\[
\langle \text{layerRes}.1.1.6, \text{layerRes}.1.2.6 \rangle
\]

[Def. 4.3]
As said, our second function, \(\text{layercalc} \), defines the trace of a single layer up to a given node \(n \). Its parameters are the sequence \(pl \) of results of the previous layer, a layer index \(l \), and a node index \(n \). We specify this function in Definition 4.3.

Definition 4.3 (Layer Calculation Function).

\[
\text{layercalc} : (\text{seq Event} \times \mathbb{Z} \times \mathbb{Z}) \rightarrow \text{seq Event}
\]

\[
\forall pl : \text{seq Value}; l : 1 \ldots \text{layerNo} \bullet
\forall n : 1 \ldots \text{layerSize}(l) | \#pl = \text{layerSize}(l - 1) \bullet
\quad \text{layercalc}(pl, l, 0) = \langle \rangle
\quad \wedge
\quad \text{layercalc}(pl, l, n) =
\quad \text{layercalc}(pl, l, (n - 1))
\quad \langle \text{layerRes}.l.n.
\quad \quad \text{relu} (\text{dotprod}(\text{dropseq}(pl), \text{weights } l \ n)
\quad \quad +
\quad \quad \text{biases } l \ n)
\rangle
\]

For \(\text{layercalc} \) to be well-defined, we require that sequence \(pl \)'s size is equal to the size of the previous layer, which is \(\text{layerSize}(l - 1) \), because to define the result of any node, we require the complete trace of the layer preceding this node.

We define \(\text{layercalc} \) using two recursive equations. The base case is when the node index is 0; this evaluates to the empty trace because nodes are indexed from 1 in our ANN model. In the recursive case, this function evaluates to the concatenation of the sequence given by \(\text{layercalc}(pl, l, (n - 1)) \) (representing the trace up to the previous node), with a singleton sequence representing node \(n \)'s output event.

We define the trace for a node as a singleton sequence containing an event of the form \(\langle \text{layerRes}.l.n.v \rangle \), where \(l \) and \(n \) are the layer and node indices, and \(v \) is the output of this node. In our ANN model, the output of a single node is given by an activation function applied to the weighted sum of the previous layer’s output, with a given bias value added.

The previous layer’s output is given by \(\text{dropseq}(pl) \), specified in Definition B.6. It identifies a sequence of values \(v \) corresponding to a sequence of events of the form \(\text{layerRes}.l.n.v \).

We represent the weights of this node using the sequence \(\text{weights } l \ n \). Using these two sequences, we can calculate the weighted sum of this node using the \(\text{dotprod} \) (Definition B.4) function. We represent the bias application by adding the \(\text{biases } l \ n \) value to this weighted sum. Finally, we apply the \(\text{relu} \) function, presented in Definition B.3, capturing our activation function.

Next, we present an example, Ex. 4.2, where we apply \(\text{layercalc} \) with identical parameters as from Ex. 4.1: which are \(\langle \langle \text{layerRes}.0.1.1, \text{layerRes}.0.2.1 \rangle, 1, 2 \rangle \).

Example 4.2 (Layer Calculation Function).

\[\text{layercalc}(\langle \text{layerRes}.0.1.1, \text{layerRes}.0.2.1 \rangle, 1, 2)\]
CHAPTER 4. VERIFICATION STRATEGY

In the next section, we use the laws of reactive contracts and the definition of the CSP operators as reactive contracts [113] to prove that the pattern in Definition 4.1 captures our ANN component’s CSP semantics, given fully in Figure 3.18.

4.3 ANN Pattern Justification

Using laws of reactive contracts and the definition of the CSP operators [113], we prove that the pattern in Definition 4.1 captures the RoboChart ANN semantics.

Theorem 4.1. The semantics of

\[
\text{HiddenLayers}[[\{} \text{layerRes.(layerNo - 1)} \}]\] \text{OutputLayer}
\]

can be expressed using the pattern in Definition 4.1.

Proof. In this proof, we make a case for the precondition, pericondition, and postcondition separately. Using FDR, we have, as already mentioned, established that the ANN process in Fig. 3.18 is deterministic and that the order in which the inputs are accepted has no impact on the output. So, our contract is for a fully sequential version of that process. In particular, the parallelism between HiddenLayers and OutputLayer is given by the process below.

\[
SANN = (SANN_Layers[[\{} \{ add_input, get_input \}]] \text{Input})
\backslash \{ \{ add_input, get_input \}\}
\]

\[
SANN_Layers = SANN_InputLayer: (; l: 1..layerNo \bullet SANN_Layer(l))
\]

\[
SANN_InputLayer = ; i: 1..insize \bullet SANN_InputNode(i)
\]

\[
SANN_InputNode(i) = \text{layerRes.0}.i?x \rightarrow add_input.x \rightarrow \text{Skip}
\]

\[
SANN_Layer(l) = ; n: 1..layerSize(l) \bullet SANN_Node(l, n)
\]

\[
SANN_Node(l, n) = get_input?in \rightarrow \text{layerRes.l.n.annoutput(l, n, in)} \rightarrow \text{Skip}
\]

We define the process SANN as the parallel composition of SANN_Layers, which gives a sequential account of the calculations in the layers, and an Input process, which records the sequence of values of the input nodes. SANN_Layers and Input synchronise on events add_input and get_input. The event get_input?in is used to retrieve the sequence of inputs in. We record all inputs, the values of the events of the form layerRes.0, through add_input.v.

SANN_Layers represents all hidden layers and the output layer of our ANN process. We define SANN_Layers as SANN_InputLayer sequentially composed with the sequential composition of layerNo processes SANN_Layer(l), one for each layer l. With SANN_InputLayer, we ensure that all inputs are received (in order) before the hidden-layer calculations start.
CHAPTER 4. VERIFICATION STRATEGY

\texttt{SANN_InputLayer} is defined by the sequential composition of \texttt{insize SANN_InputNode(n)} processes, representing the \textit{n}th input nodes. This process accepts any event \texttt{layerRes.0.n?x} and records \texttt{x} in the \texttt{Input} process (omitted here) via the event \texttt{add_input.x}.

\texttt{SANN_Layer} is the sequential composition of processes \texttt{SANN_Node(l, n)} for the \textit{n}th node of a layer \textit{l}. \texttt{SANN_Node(l, n)} first retrieves the sequence \textit{in} of inputs, then raises the event \texttt{layerRes.l.n.annoutput(l, n, in)}. For the purposes of this proof, we provide an implementation of our \texttt{annoutput} function, Definition B.2, in CSPM, which calculates the output value of a given node with respect to an input sequence \textit{in}.

We have used FDR to prove that the process \texttt{SANN} is equivalent to the parallel composition of \texttt{HiddenLayers} and \texttt{OutputLayer}, in parallel with a third process that fixes the order of the \texttt{layerRes} events. Namely, we have enforced an ascending order of layer and node indices inside each layer. As we have explained, this fixed order does not affect the values of the ANN output events. We have proved this result for a variety of input and layer sizes.

The parallelism with the \texttt{Input} process is an encoding in CSP for a data-rich process. UTP does not require such encoding because its CSP theory caters to an imperative data-rich view of processes. So, our justification is for \texttt{SANN_Layers}, with a view that it can access data directly rather than via communication with a memory process as in our encoding above.

Precondition Our precondition is \textit{true} because the semantics is divergence free. We have established this via model checking and observed that we use one recursive process in \texttt{SANN}, which is in \texttt{SANN_Node}. This process cannot diverge because it is productive: it engages in an event before recursing. So, the recursion is guarded and has a unique fixed point [28].

Pericondition Next, we show that the pericondition of the contract for \texttt{SANN} is that of \texttt{GeneralANNContract} in Definition 4.1. We use the notation \texttt{P_2} to refer to the pericondition of the contract capturing process \texttt{P}, and \texttt{P_3} to refer to the postcondition of \texttt{P}. We prove this in Lemma B.2.

Postcondition Our proof of the postcondition is similar to that of the pericondition, we present this in Lemma B.3.

In the next section, we describe a pattern of reactive contracts for those RoboChart controllers that can be replaced by ANN components, in order to compare them to our pattern of reactive contracts for ANN components, presented here.

4.4 Cyclic Memoryless RoboChart Controllers

An ANN cannot implement reactive behaviour where input and output events are arbitrarily interspersed according to environmental interactions. So, we consider specifications that define a controller whose control flow alternates between taking inputs and producing outputs, that does not terminate, and does not contain memory across cycles. (This is the flow of simulations, for example.) For instance, the inputs of the \texttt{AnglePID}, as presented in Figure 3.6, are \texttt{anewError} and \texttt{adiff}, and the output is \texttt{angleOutputE} as indicated by the connections to the \texttt{SegwayController} (see Fig. 3.4). For such controllers, the RoboChart semantics can
be captured by a reactive design of a particular format. For example, the AnglePID state machine can be captured by the following contract:

\[
\text{AnglePID}_{\text{UTP}} \equiv \\
| \text{true}_r \quad \\
\lor \\
\exists \text{currNewError}, \text{currDiff}, \text{currAngleOut} : \text{Value} | \\
\quad \text{currAngleOut} = P \ast \text{currNewError} + D \ast \text{currDiff} \bullet \\
\quad \text{wait} \lor (\text{tt} = \langle \rangle \land \text{anewError}.\text{currNewError} \notin \text{ref'} \lor \\
\quad \quad \text{tt} = \langle \text{anewError}.\text{currNewError} \rangle \land \text{adiff}.\text{currDiff} \notin \text{ref'} \lor \\
\quad \quad \text{tt} = \langle \text{anewError}.\text{currNewError}, \text{adiff}.\text{in}.\text{currDiff} \rangle \land \\
\quad \quad \quad \text{angleOutputE}.\text{currAngleOut} \notin \text{ref'}) \\
\lor \\
\neg \text{wait} \land \\
\text{tt} = \langle \text{anewError}.\text{currNewError}, \text{adiff}.\text{currDiff}, \text{angleOutputE}.\text{currAngleOut} \rangle
\]

This contract captures the behaviour of one iteration of the AnglePID state machine: it receives inputs via channels \text{anewError} and \text{adiff} and produces an output via \text{angleOutputE}. The local variables of AnglePID are quantified and defined according to the RoboChart model in terms of constants \(P \) and \(D \). The precondition is just \text{true}_r, as the process cannot diverge.

The postcondition comprises two parts: either the process is waiting on interaction (\text{wait}'), or not (\neg \text{wait}'). In the first case, three cases are distinguished by the trace contribution \text{tt}: no input events have happened, just \text{anewError} has occurred, or both \text{anewError} and \text{adiff} have been provided. In each case, we state that \text{ref'} does not contain an event, denoting that we accept that event in this state. When \text{wait}' is false, \text{tt} contains all inputs and the output. The local variables record the values communicated, according to the definition of AnglePID.

The contract for the AnglePID follows a pattern defined below for a cyclic controller, where we consider \text{inp} and \text{out} to be lists of input and output events. For every event, we have a quantified variable that records the value communicated via that event: \(x_1 \) to \(x_{\#\text{inp}} \) for inputs, and \(y_1 \) to \(y_{\#\text{out}} \) for outputs. We also consider a predicate \text{p} to capture the permissible values these variables can take, according to the RoboChart model.
Definition 4.4 (Cyclic RoboChart Controller Pattern).

\[
\text{Cyclic_RC_Controller} \equiv \\
[true_r \\
\vdash \\
\exists x_1, \ldots, x_{\#\text{inp}}, y_1, \ldots, y_{\#\text{out}} : \text{Value} \mid p \bullet \\
\text{wait}' \land (\exists i : \text{dom inp} \bullet tt = <j : 1..(i-1) \bullet \langle \text{inp}(j).x_j \rangle \land \\
\text{inp}(i).x_i \notin ref') \\
\lor \\
(\exists i : \text{dom out} \bullet tt = </n : \text{dom inp} \bullet \langle \text{inp}(n).x_n \rangle </
\langle j : 1..(i-1) \bullet \langle \text{out}(j).y_j \rangle \land \\
\text{out}(i).y_i \notin ref') \\
\lor \\
\neg \text{wait}' \land \\
tt = </i : \text{dom inp} \bullet \langle \text{inp}(i).x_i \rangle </j : \text{dom out} \bullet \langle \text{out}(j).y_j \rangle
]
\]

The reactive design for AnglePID is an instance of \text{Cyclic_RC_Controller} above, where we have two inputs: \(x_1\) is \text{currNewError} and \(x_2\) is \text{currDiff}. The output \(y_1\) is \text{currAngleOut}. So, \text{dom inp} is \{1, 2\}, and \text{dom out} is \{1\}. The predicate \(p\) characterises values for the outputs in terms of local variables \(x_i\) and \(y_i\).

In Definition 4.4, in the \text{wait}' case, we have a disjunction of two existential quantifications. In the first, the quantification on \(i\) ranges over \text{dom inp}, and we define a value for \(tt\) in terms of a distributed concatenation (<\(i\)>). The concatenation comprises singleton sequences \(\langle \text{inp}(j).x_j \rangle\), with \(j\) ranging over \(1..(i-1)\). These represent all input events before the \(i\)-th input given by the event \(\text{inp}(i).x_i\). So we get \(tt = \langle\rangle\) for \(i = 1\), or in the case of our example, \(tt = \langle\text{anewError}\text{.currNewError}\rangle\) for \(i = 2\) and \(j = 1\). For the definition of \(\text{ref}'\), we specify that the input event \(\text{inp}(i).x_i\), which is either \text{anewError}\text{.currNewError} or \text{adiff}\text{.currDiff}, is not refused. This corresponds to the first two disjuncts in the \text{wait}' case of the postcondition for AnglePID.

The second quantification is on \(i\) from \text{dom out}, with \(tt\) formed of two distributed concatenations. The first is of sequences \(\langle \text{inp}(n).x_n \rangle\), like in the first quantification, but now \(n\) ranges over the whole \text{dom inp}, so we get all input events. The second is of sequences \(\langle \text{out}(j).y_j \rangle\), representing proper prefixes of the sequences of all output events. Our example has one output, so this sequence resolves to the empty trace. The refusal does not include the following output. For our example, we accept \(\text{out}(i).y_i\), which is \text{angleOutputE}\text{.currAngleOut}.

In the terminating case, we define \(tt\) as the concatenation of all input events followed by all output events: \(\langle\text{anewError}\text{.currNewError}\rangle, \text{adiff}\text{.currDiff}, \text{angleOutputE}\text{.currAngleOut}\rangle\) for our example.

A reactive design that instantiates the pattern in Definition 4.4 defines one iteration of a cyclic RoboChart controller. In the full model of the controller, that design is the body of a loop with the weakest fixed-point semantics. Since the precondition is \(true_r\), the weakest fixed-point operator transfers directly to the postcondition [113].

Besides structural differences in the patterns in Definition 4.1 and 4.4, we have a substantial difference in how outputs are defined regarding the inputs. In an ANN contract, the results are determined by a deterministic function based on the parameters of an ANN. In the
pattern for a cyclic controller, the inputs and outputs are related by the predicate \(p \). We can, for example, define even nondeterministic behaviour with this predicate. Finally, the alphabet of events in the patterns is different: one is based on the \(\text{layerRes} \) events and the other on RoboChart application-specific events to represent inputs and outputs.

To summarise, in this section, we have presented a pattern of RoboChart components that ANN components can replace, in Definition 4.4. Those components have the following properties: they are memoryless, they do not terminate, and they receive all input events before engaging in output events.

In the next section, we discuss a strategy to formally verify properties which relate patterns of ANN components and patterns of cyclic RoboChart controllers.

4.5 Conformance

In our approach to verification, we want to replace a RoboChart controller with an ANN component. Therefore, we want to prove that the ANN component implements all behaviours of the RoboChart controller, or in other words, we want to show that an ANN component is a refinement of the RoboChart controller. ANN components, however, contain numerical imprecision in their output, so we allow an error tolerance on the values communicated by the output events of an ANN component. Formally, we define a conformance relation \(Q \text{ conf}(\epsilon) P \) that holds if, and only if, \(Q \) is a refinement of \(P \), where the value of \(P \)'s output events can vary by at most by a non-negative error value \(\epsilon \) as formalised below.

Definition 4.5 (Conformance Relation).

\[
\text{conf} : \mathbb{R} \rightarrow \text{Proc} \leftrightarrow \text{Proc} \\
\forall \epsilon \in \mathbb{R}; P, Q : \text{Proc} \mid \epsilon \geq 0 \Rightarrow \ Q \text{ conf}(\epsilon) P \\
\iff \exists s : \text{seq Event}; a : \mathbb{P} \text{Event} \mid tt \text{ seqapprox}(\epsilon) s \land (\alpha P \setminus \text{ref}') \text{ setapprox}(\epsilon) a \Rightarrow \ P[s, (\alpha P \setminus a)/tt, \text{ref}'] \sqsubseteq Q
\]

We say that \(Q \text{ conf}(\epsilon) P \) if, and only if, \(Q \) is a refinement of \(P[s, (\alpha P \setminus a)/tt, \text{ref}'] \), that is, we accept \(P \) as a specification that restricts the trace \(s \) and the refusals \(\alpha P \setminus a \), instead of \(tt \) and \(\text{ref}' \), where \(s \) and \(a \) are approximations of \(tt \) and the set \(a \) of acceptances as captured by relations \(\text{seqapprox}(\epsilon) \) and \(\text{setapprox}(\epsilon) \). Here, \(s_1 \text{ seqapprox}(\epsilon) s_2 \) relates sequences \(s_1 \) and \(s_2 \) if, and only if, \(s_1 \) differs from \(s_2 \) just in that its output values are within \(\epsilon \) of those of \(s_2 \). \(A_1 \text{ setapprox}(\epsilon) A_2 \) if, and only if, their input events are the same, and the output events are the same, but the communicated values differ by a maximum tolerance of \(\epsilon \).

Here, we use the type \(\text{Proc} \) to refer to any reactive contract that implements a CSP process, and, therefore, this conformance definition relates any reactive contracts.

We refer to the \(\text{seqapprox}(\epsilon) \) relation, as the relation defined by \(\text{seqapprox} \) under \(\epsilon \), as we use \(\text{seqapprox} \) primarily as a relation.

Definition 4.6 (Sequence approximation relation).
CHAPTER 4. VERIFICATION STRATEGY

\[\text{setapprox} : \mathbb{R} \rightarrow (\mathbb{P} \text{ Event} \leftrightarrow \mathbb{P} \text{ Event})\]

\[\forall \epsilon : \mathbb{R} \mid \epsilon \geq 0 \bullet\]
\[\forall r_1, r_2, r : \mathbb{P} \text{ Event} \mid r_2 = r_1 \cap (I \cup O) \land \#r = \#r_2 \bullet\]
\[r_1 \ \text{setapprox}(\epsilon) \ r \leftrightarrow\]
\[\forall e : r_2 \bullet\]
\[\left(e \in I \iff e \in r \right) \land\]
\[\left(e \in O \iff \exists e_1 : r \bullet \ ev(e) = ev(e_1) \land\right.\]
\[\exists c : (-\epsilon, \epsilon) \bullet \ value(e) = value(e_1) + c\]

Similarly to \text{seqapprox}, we say that \text{r}_1 \ \text{setapprox}(\epsilon) \ r \ if, and only if, for any event \(e \) in \(r_2 \), whose value is the set obtained by restricting \(r_1 \) to inputs and outputs, \(e \) is either an input event, and therefore \(e \) is in the set \(r \), or an output event, and then there exists an event \(e_1 \) such that \(ev(e) = ev(e_1) \) and the \text{value} of \(e_1 \) is within \(\epsilon \) of the \text{value} of \(e \). This relation is used to compare acceptance sets, where for conformance to hold, if an event is accepted in \text{r}_1, then there must exist a corresponding event in \text{r}.
Similar to seqapprox(ϵ), we can show that setapprox(ϵ) is reflexive if all events are either input or output. This assists in reasoning concerning setapprox(ϵ). We present this, formally, in Lemma B.6.

Lemma B.7, similar to Lemma B.5, formalises the conditions under which comparing the values communicated by the events in the sets is sufficient to prove set approximation. In this case, these conditions are that: both sets contain solely output events, both sets are of the same size, and that we have corresponding event identifiers in both sets.

In the next section, we use the formal material presented here and in previous sections to define our system-level verification technique involving ANN components.

4.6 System-Level Conformance

As presented in Section 4.5, our conformance definition enables component-level conformance. In this work, however, we are concerned with system-level conformance to verify systems involving ANN components, not just the components themselves. So, in this section, we use the definitions presented in Sections 4.2.2, 4.4, and 4.5 to define a system-level verification approach concerning ANN components and cyclic RoboChart controllers.

Our verification approach starts with an abstract RoboChart model. That model can be refined using the structural rules of RoboChart justified by its CSP semantics and refinement relation. These rules are out of scope here, but we refer to [114] for examples of the kinds of laws of interest. Refinement in our approach may need to be used to specify a cyclic controller. In our example, we had to extract the AnglePID state machines out of the SegwayController where it was originally to obtain the Segway module in Fig. 3.4.

With a refined model, we can identify a cyclic controller C_{Des} to be implemented by an ANN and prove conformance of the ANN controller to C_{Des} according to $conf(\epsilon)$. The following result justifies the joint use of refinement and $conf(\epsilon)$.

Theorem 4.2. $P \models Q \land R \implies R \implies Q \implies R \implies \text{con}f(\epsilon) P$

This ensures that the ANN conforms to the original specification.

In the context of our work regarding ANN controllers in RoboChart, the proof of conformance is in the following form (see Figure 3.18).

$$(Q \setminus \text{ANNHiddenEvts})[\text{inp}/\text{layerRes}.0, \text{out}/\text{layerRes}.\text{layerNo}] \text{con}f(\epsilon) P \quad (4.1)$$

Here, Q is a reactive contract that instantiates the pattern in Definition 4.1, and P captures the semantics of a cyclic controller described using the pattern in Definition 4.4. As said, our general contract for ANN components does not capture the hiding in the CSP semantics (Figure 3.18), so we add it to Q above. Moreover, the pattern is concerned with layerRes events and the specification with RoboChart events. So, we substitute layerRes.0 and layerRes.layerNo with the input and output events captured by the sequences inp and out.

We use the reactive contract, which captures the component AnglePIDANN. Besides hiding the layerRes.1 events, we rename layerRes.0.1 and layerRes.0.2 to currNewError and layerRes.0.2 to curradiff, and layerRes.2.1 to currAngleOutput.
In the UTP theory of reactive contracts, general hiding is (as yet) undefined. So, as a compromise, we define relations capturing event hiding for specifically those contracts defined using the pattern in Definition 4.1.

For an instance \(Q \) of the pattern in Definition 4.1, \(Q \setminus S = [\text{true}_r \vdash Q_2 \setminus_{\text{peri}} S \mid Q_3 \setminus_{\text{post}} S] \), where the hide operators \(\setminus_{\text{peri}} \) and \(\setminus_{\text{post}} \) are defined in Appendix B.

Below, we define theorems that identify verification conditions sufficient to prove conformance for instances of our patterns, taking advantage of structural similarities in the patterns.

Theorem 4.3. \(Q \text{ conf}(\epsilon) P \) provided

\[
[Q_2 \Rightarrow \exists s : \text{seq Event}; \ a : \mathbb{P} \text{ Event} | \ tt \ \text{seqapprox}(\epsilon) \ s \land (\alpha P \setminus \text{ref'}) \ \text{setapprox} \ a \bullet P_2[s,(\alpha P \setminus a)/tt, \text{ref'}]]
\]

and

\[
[Q_3 \Rightarrow \exists s : \text{seq Event} | \ tt \ \text{seqapprox}(\epsilon) \ s \bullet P_3[s/tt]]
\]

where \(Q \) and \(P \) are instances of the patterns in Definitions 4.1 and 4.4.

Proof.

\[
Q \text{ conf}(\epsilon) P
\]

\[
= \exists s : \text{seq Event}; \ a : \mathbb{P} \text{ Event} | \ tt \ \text{seqapprox}(\epsilon) \ s \land (\alpha P \setminus \text{ref'}) \ \text{setapprox} \ a \bullet P_2[s,(\alpha P \setminus a)/tt, \text{ref'}] \subseteq Q
\]

[Def. 4.5]

\[
= \exists s : \text{seq Event}; \ a : \mathbb{P} \text{ Event} | \ tt \ \text{seqapprox}(\epsilon) \ s \land (\alpha P \setminus \text{ref'}) \ \text{setapprox} \ a \bullet [P_1 \vdash P_2 | P_3][s,(\alpha P \setminus a)/tt, \text{ref'}] \subseteq [Q_1 \vdash Q_2 | Q_3]
\]

[reactive Contract Definition, Def. B.13]

\[
= \exists s : \text{seq Event}; \ a : \mathbb{P} \text{ Event} | \ tt \ \text{seqapprox}(\epsilon) \ s \land (\alpha P \setminus \text{ref'}) \ \text{setapprox} \ a \bullet [P_1[s,(\alpha P \setminus a)/tt, \text{ref'}] \vdash P_2[s,(\alpha P \setminus a)/tt, \text{ref'}] \mid P_3[s,(\alpha P \setminus a)/tt, \text{ref'}]] \subseteq [\vdash Q_2 | Q_3]
\]

[substitution distributes through reactive contracts]

\[
= \exists s : \text{seq Event}; \ a : \mathbb{P} \text{ Event} | \ tt \ \text{seqapprox}(\epsilon) \ s \land (\alpha P \setminus \text{ref'}) \ \text{setapprox} \ a \bullet [\vdash P_2[s,(\alpha P \setminus a)/tt, \text{ref'}] \mid P_3[s,(\alpha P \setminus a)/tt, \text{ref'}]] \subseteq [\vdash Q_2 | Q_3]
\]

[precondition of both is \(\text{true}_r \)]

\[
= [\vdash \exists s : \text{seq Event}; \ a : \mathbb{P} \text{ Event} | \ tt \ \text{seqapprox}(\epsilon) \ s \land (\alpha P \setminus \text{ref'}) \ \text{setapprox} \ a \bullet P_2[s,(\alpha P \setminus a)/tt, \text{ref'}]] \mid \exists s : \text{seq Event} | \ tt \ \text{seqapprox}(\epsilon) \ s \bullet P_3[s/tt]] \subseteq [\vdash Q_2 | Q_3]
\]

[\(\text{ref'} \) not free in \(P_3, \text{CRF healthiness condition [28]} \)]
[existential quantification distributes through disjunction]

\[
(\exists s : \text{seq Event}; a : \mathbb{P} \text{ Event} \mid \text{tt seqapprox}(e) s \land (\alpha P \setminus a) / \text{tt}, \text{ref}' \text{ seqapprox} a \bullet \text{P}_2[s, (\alpha P \setminus a) / \text{tt}, \text{ref}'] \subseteq Q_2)
\]

\wedge

\[
(\exists s : \text{seq Event}; a : \mathbb{P} \text{ Event} \mid \text{tt seqapprox}(e) s \bullet \text{P}_3[s / \text{tt}] \subseteq Q_3)
\]

[Thm. B.4 (no precondition)]

\[
[Q_2 \Rightarrow \exists s : \text{seq Event}; a : \mathbb{P} \text{ Event} \mid \text{tt seqapprox}(e) s \land (\alpha P \setminus a) / \text{tt}, \text{ref}' \text{ seqapprox} a \bullet \text{P}_2[s, (\alpha P \setminus a) / \text{tt}, \text{ref}']]
\]

\wedge

\[
[Q_3 \Rightarrow \exists s : \text{seq Event}; a : \mathbb{P} \text{ Event} \mid \text{tt seqapprox}(e) s \bullet \text{P}_3[s / \text{tt}]]
\]

[expand UTP refinement operator [115] (square brackets here show universal closure)]

In short, Theorem 4.3 gives two verification conditions that distribute the conformance definition over the peri and postconditions of \(Q \). The first condition requires the postconditions \(P_2 \) and \(Q_2 \) to be related by \(\text{conf}(e) \). The second condition makes the same requirement of the postconditions \(P_3 \) and \(Q_3 \) and is simpler because postconditions do not restrict \(\text{ref}' \).

We can discharge these verification conditions using Isabelle and the laws of UTP and establish Equation 4.1 to prove the properties of the segway. For instance, we have proved that “when \(P \) is non-zero, other PID constants are 0, and values greater than or equal to \(\text{maxAngle} \) and less than or equal to \(\text{maxAngle} \) are communicated by the event \(\text{angle} \), the values set by \(\text{setLeftMotorSpeed()} \) and \(\text{setRightMotorSpeed()} \) are equal to the value communicated by \(\text{angle} \) multiplied by \(P' \)”, using the original model of the segway with the \(\text{AnglePID} \) state machine. With our proof of (4.1), we can obtain the same result for the version that uses \(\text{AnglePIDANN} \), but we need to accept an error tolerance \(\epsilon \) for the values set.

Moreover, for the particular case where the conformance that is being proved is of the form (4.1) above, the following theorem maps both conditions to set reachability conditions that can be discharged by ANN verification tools and, in particular, by Marabou. The compromise is that while we can carry out proofs for any input values in Isabelle, Marabou does not have facilities for dealing with universal quantification over real-valued sets. So, we approximate the input range with intervals and form properties based on these intervals.

Theorem 4.4.

\[
\neg \exists x_1, \ldots, x_{\text{insize}} : \text{Value} \bullet \exists y_1, \ldots, y_{\text{outsize}} : \text{Value} \mid p \bullet \exists i : 1 \ldots \text{outsize} \bullet
\]

\[
\{ \text{annoutput}(\text{layerNo}, i, (x_1, \ldots, x_{\text{insize}})) \} \cap \{ x : \mathbb{R} \mid |x - y_i| < \epsilon \} = \emptyset
\]

\[\Rightarrow \[(Q_2 \setminus \text{peri ANNHiddenEvts})[\text{inp}/\text{layerRes}0, \text{out}/\text{layerRes.layerNo}] \Rightarrow
\]

\[
\exists s : \text{seq Event}; a : \mathbb{P} \text{ Event} \mid \text{tt seqapprox}(e) s \land (\alpha P \setminus a) / \text{tt}, \text{ref}' \text{ seqapprox} a \bullet \text{P}_2[s, (\alpha P \setminus a) / \text{tt}, \text{ref}']
\]

\wedge

\[
[(Q_3 \setminus \text{post ANNHiddenEvts})[\text{inp}/\text{layerRes}0, \text{out}/\text{layerRes.layerNo}] \Rightarrow
\]

\[
\exists s \mid \text{tt seqapprox}(e) s \bullet \text{P}_3[s / \text{tt}]
\]

provided \(Q_2 \) is an ANN’s pericondition, \(Q_3 \) is its postcondition, \(P_2 \) is a cyclic Robochart controller’s pericondition, \(P_3 \) is its postcondition, and \(\text{inp} \) and \(\text{out} \) are sequences of events with \(\#\text{inp} = \text{insize} \) and \(\#\text{out} = \text{outsize} \).
CHAPTER 4. VERIFICATION STRATEGY

Proof. Our proof of Theorem 4.4 consists of proving two separate conditions: first, that the antecedent is stronger than our pericondition; second, that the antecedent is stronger than our postcondition. Together, these provide a proof of the complete theorem.

With lemma C.1, we prove that the antecedent is stronger than our pericondition, and we establish that the antecedent is stronger than our postcondition through Lemma C.2. Due to the propositional logic laws of implication, our antecedent is stronger than the conjunction of our pericondition and postcondition. This completes our proof.

Theorem 4.4 states that if an output variable y_i with an error greater than ϵ does not exist when considering all possible input combinations, our verification conditions are discharged. The error, here, refers to the difference between the ANN’s output value, denoted using the expression $\text{annoutput}(l, n, \langle x_1, \ldots, x_{\text{insize}} \rangle)$ (Definition B.2), and our cyclic RoboChart controller’s output value, captured by the variables y_i and the predicate p. We guarantee that output variables y_i have an error less than ϵ by requiring that the intersection between the set $\{\text{annoutput}(\text{layerNo}, i, \langle x_1, \ldots, x_{\text{insize}} \rangle)\}$ and $\{x : \mathbb{R} | |x - y_i| < \epsilon\}$ is empty.

We provide an example below of the reachability conditions we obtain using Theorem 4.4, based on AnglePID\textsubscript{UTP} (Sect. 4.4), capturing the semantics of AnglePID (Fig.3.6).

Example 4.3. The antecedent of Theorem 4.4 for our example is the following verification condition. (Here, i takes just the value 1).

$$\neg \exists \text{currNewError}, \text{currDiff} : \text{Value} \bullet \exists \text{currAngleOut} | \text{currAngleOut} = P \ast \text{currNewError} + D \ast \text{currDiff} \bullet \{\text{annoutput}(\text{layerNo}, 1, \langle \text{currNewError}, \text{currDiff} \rangle)\} \cap \{x : \mathbb{R} | |x - \text{currAngleOut}| < \epsilon\} = \emptyset$$

The verification condition presented above can be encoded as a set of reachability conditions if we define Value as a collection of sets that, together, encompass the complete range of Value: $\bigcup\{n : 0 \ldots c \bullet [\text{min} + n \times c, \text{min} + (n + 1) \times c]\}$. Here, min is a minimum value, and c is a natural number. Given these constants, we can obtain finite conditions to prove in Marabou, as illustrated by the lemma below.

Lemma 4.1. The antecedent of Theorem 4.4 for AnglePID\textsubscript{ANN} is as follows.

$$\neg \exists n_1, n_2 : 0 \ldots c \bullet \exists \text{currNewError}, \text{currDiff} : \mathbb{R} \bullet \exists y : \mathbb{R} | y = \text{annoutput}(\text{layerNo}, 1, \langle \text{currNewError}, \text{currDiff} \rangle) \bullet \text{min} + n_1 \times c \leq \text{currNewError} \leq \text{min} + (n_1 + 1) \times c \land \text{min} + n_2 \times c \leq \text{currDiff} \leq \text{min} + (n_2 + 1) \times c \land y \leq (P \ast (\text{min} + n_1 \times c) + D \ast \text{min} + n_2 \times c) - \epsilon \lor \text{min} + n_1 \times c \leq \text{currNewError} \leq \text{min} + (n_1 + 1) \times c \land \text{min} + n_2 \times c \leq \text{currDiff} \leq \text{min} + (n_2 + 1) \times c \land y \geq (P \ast (\text{min} + n_1 \times c) + D \ast \text{min} + n_2 \times c) + \epsilon$$

Proof.

$$\neg \exists \text{currNewError}, \text{currDiff} : \text{Value} \bullet$$
\[
\exists \text{currAngleOut} \mid \text{currAngleOut} = P \ast \text{currNewError} + D \ast \text{currDiff} \bullet \\
\{ \text{annoutput}\langle \text{layerNo},1,\langle \text{currNewError},\text{currDiff} \rangle \rangle \} \cap \\
\{ x : \mathbb{R} \mid |x - \text{currAngleOut}| < \epsilon \} = \emptyset
\]

\[
= \neg \exists \text{currNewError}, \text{currDiff} : \text{Value} \bullet \\
\{ \text{annoutput}\langle \text{layerNo},1,\langle \text{currNewError},\text{currDiff} \rangle \rangle \} \cap \\
\{ x : \mathbb{R} \mid |x - (P \ast \text{currNewError} + D \ast \text{currDiff})| < \epsilon \} = \emptyset
\]

\[
= \neg \exists \text{currNewError}, \text{currDiff} : \text{Value} \bullet \\
\quad \text{annoutput}\langle \text{layerNo},1,\langle \text{currNewError},\text{currDiff} \rangle \rangle \leq \\
\quad (P \ast \text{currNewError} + D \ast \text{currDiff}) - \epsilon \\
\lor \\
\quad \text{annoutput}\langle \text{layerNo},1,\langle \text{currNewError},\text{currDiff} \rangle \rangle \geq \\
\quad (P \ast \text{currNewError} + D \ast \text{currDiff}) + \epsilon
\]

\[
= \forall S,S_1 : \{ n : 0 \ldots c \bullet [\text{min} + n \times c, \text{min} + (n+1) \times c] \} \bullet \\
\quad \neg \exists \text{currNewError}, \text{currDiff} : S, S_1 \bullet \\
\quad \text{annoutput}\langle \text{layerNo},1,\langle \text{currNewError},\text{currDiff} \rangle \rangle \leq \\
\quad (P \ast \text{currNewError} + D \ast \text{currDiff}) - \epsilon \\
\lor \\
\quad \text{annoutput}\langle \text{layerNo},1,\langle \text{currNewError},\text{currDiff} \rangle \rangle \geq \\
\quad (P \ast \text{currNewError} + D \ast \text{currDiff}) + \epsilon
\]

\[
= \forall S,S_1 : \{ n : 0 \ldots c \bullet [\text{min} + n \times c, \text{min} + (n+1) \times c] \} \bullet \\
\quad \neg \exists \text{currNewError}, \text{currDiff} : \mathbb{R} \bullet \\
\quad \text{currNewError} \in S \land \\
\quad \text{currDiff} \in S_1 \land \\
\quad \text{annoutput}\langle \text{layerNo},1,\langle \text{currNewError},\text{currDiff} \rangle \rangle \leq \\
\quad (P \ast \text{currNewError} + D \ast \text{currDiff}) - \epsilon \\
\lor \\
\quad \text{annoutput}\langle \text{layerNo},1,\langle \text{currNewError},\text{currDiff} \rangle \rangle \geq \\
\quad (P \ast \text{currNewError} + D \ast \text{currDiff}) + \epsilon
\]
where the failure is, and the ANN can be retrained using this counterexample [84].

This verification condition amounts to proving \((c + 1) \times (c + 1)\) conditions: one for each value of \(n_1\) and \(n_2\). If any of these conditions fail, Marabou produces a counterexample, where we identify the assignment of input variables \(x_i\) that causes the error. This tells us exactly where the failure is, and the ANN can be retrained using this counterexample [84].
Lemma 4.1’s constraints form a hyper-rectangle in the domain of an ANN and form a convex polytope, in inequality form, in the range (see Section 2.3.4). We can use these sets to specify properties in NNV, ERAN, and Marabou. In particular, NNV and ERAN can handle non-linear activation functions such as tanh and sigmoid, as well as ReLU. In our approach, we choose the value of ϵ based on the system’s needs. So, even though Marabou cannot find the least upper bound for ϵ, this is not necessary in our work.

This concludes the description and automation of our approach to proving the conformance of robotic systems involving ANN components, defined through the context of RoboChart.

4.7 Final Considerations

This chapter has shown how we can generate, and establish verification conditions concerning systems involving ANN components (defined in Chapter 3). Our approach is to replace RoboChart controllers with ANN components, so we generate a specification for the system based on these RoboChart controllers. We enable this formally by, first, in Sections 4.2 to 4.4, defining reactive contract patterns for ANN components, and those RoboChart controllers that we can replace with ANN components. Afterwards, in Sections 4.5 and 4.6, we discuss how we can generate a specification for the system using these components, and, finally, how to prove that the system conforms to this specification.

In the following, final, chapter, we discuss our conclusions with respect to the entire project.
Chapter 5

Conclusions

In this thesis, we have defined the first framework that enables the modelling, validation, and formal verification of robotic software involving neural network components. We have combined and coordinated multiple notations, tools, and techniques to enable this framework. In this chapter, we provide a summary of our contributions in Section 5.1, we then give concluding remarks in Section 5.2, and, lastly, in Section 5.3, we discuss future work.

5.1 Summary

First, in Chapter 2, Sections 2.1 to 2.5, we have described and analysed the tools and techniques that can be used to verify artificial neural networks in isolation. In particular, we place a focus on approaches that verify ANNs for control, not for recognition, as generating specifications concerning such ANNs is an open problem, and existing specifications are of debatable reliability. To conclude this chapter, in Section 2.6, we perform a novel comparison of verification tools and techniques. Through this investigation, we determine that Marabou is the most appropriate tool to integrate into our framework, as it has a dedicated property specification file, and is both precise and scalable.

We begin the description of our novel framework in Chapter 3, where we discuss how we can integrate components implemented using ANNs into the context of a robotic system. We use the RoboChart domain-specific language to reify our ideas, where we define components whose behaviour is determined by an artificial neural network. We make the following significant modelling decisions in this chapter: we model trained feed-forward, fully connected, ReLU activated neural networks. We model this specific type of ANN because it is widely used and effective for control purposes, and supports tractable verification because of its piecewise-linearity. Moreover, modelling trained ANNs allows for any of the wide, and rapidly evolving, training techniques for ANNs to be used.

We complete our framework in Chapter 4 by defining a verification technique specific to robotic systems involving ANN components as presented in Chapter 3. This technique involves replacing robotic controllers with ANN components. Through theories presented in this chapter, we define a method to show that a robotic system involving ANN components conforms to the behaviour defined by a traditional control algorithm. The limits of this technique are that the system must contain a cyclic controller, that is, a stateful, memoryless controller that receives all input events before engaging in output events, and does not...
CHAPTER 5. CONCLUSIONS

We address our research objectives, as defined in Section 1.2, throughout Chapters 3 and 4. We address our first objective in Section 3.3 through extending RoboChart’s metamodel and defining well-formedness conditions to support this model. Sections 3.4 and 3.5 fulfil our second objective by extending the semantics of RoboChart to support these components. Section 3.6, on the other hand, implements these semantics in JCSP, enabling validation activities to help establish these objectives.

Our third objective states that we should define a technique that can verify the overall system model, which enables the verification of system-level specifications. We have addressed this objective in two stages. First, in Section 4.5, we define and formalise conformance, a property that we can establish about systems involving ANNs. Then in Section 4.6, we define a technique to establish conformance for system models involving ANN components.

Building upon our third objective, our fourth objective states that the verification technique should be automated, taking advantage of existing support for RoboChart. We have defined two automation approaches in Section 4.6. The first takes advantage of existing support for RoboChart, namely, the use of the Isabelle proof assistant, and the reactive contract UTP theory, implemented in the Isabelle/UTP tool. With Theorem 4.3, we define conditions that we can discharge to Isabelle/UTP, constituting the first automation of our verification technique. Through Theorem 4.4, we present verification conditions that can be discharged by SMT solver techniques, enabling automation via these techniques. Finally, through Lemma 4.1, we translate Theorem 4.4 to a format that can be directly interpreted by Marabou, constituting our second automation method, and fulfilling our fourth objective.

This concludes the summary of the contributions we have made in this work, next, we discuss our work in a broader context.

5.2 Discussion

The aim of this project was to develop a technique to verify system-level properties of robotic software involving ANN components, by relating high-level specifications of robotic software to component-level specifications for ANN components. In our work, we have created a general strategy to soundly replace existing controllers with ANN components. The strength of our approach lies in its generality: our strategy can accommodate any stateful behaviour a controller may exhibit, as long as it is memoryless. Moreover, our strategy allows for the ANN components to be of any width or depth, as long as they are fully-connected and ReLU-activated.

Our strategy produces a proof of conformance between a robotic controller and an ANN component: conformance is refinement with an ϵ tolerance on the outputs as discussed in Section 4.5. This conformance relation, however, is not a partial order (it is not antisymmetric or transitive). Due to this, we cannot compare ANN components to other ANN components, and our conformance relation is not compositional, in general.

A partial order relation between ANNs would require defining another UTP theory to accommodate observations that are relevant to machine-learning components. This result could be appealing, as it could even suggest ways of comparing ANNs to other machine learning methods.
CHAPTER 5. CONCLUSIONS

The kernel of the approach we did take is to link formal logic and vector-space theory. We have shown that, under certain circumstances, a predicate on an n-dimensional vector space is stronger than a predicate in the UTP reactive contract theory, which is a type of formal logical theory. Particularly, a reachability condition on a function capturing an ANN’s behaviour is stronger than the conformance relation between controllers and ANN components, as we prove in Theorem 4.4. This link allows us to use a lower-level specification language to soundly establish high-level specifications.

This work represents progress towards bridging the gap between formal verification approaches of software and ANNs. We believe that finding more links between logic and geometry, a geometric profile of logic, is key to generating understandable, usable, and useful specifications for learning software, to enable a richer understanding of our machines that learn. Our work represents steps forward in this direction, but it also suggests the potential for more relations to be found, especially involving retraining and relearning.

Next, we discuss the future work suggested by our thesis.

5.3 Future Work

The future work suggested by this framework can be broadly summarised into three potential directions. First, directly extending this framework to accommodate more types of neural network, and linking more tools to address the properties we create in this work. Second, to generate more techniques to address more types of system-level properties, particularly involving ANNs for perception. Third, to explore dynamic verification of AI systems, how we can verify their learning as they explore and adapt to new environments, which could involve exploring different types of refinement specific to learning components.

An immediate goal is to generalise the ANN components. Our metamodel and semantics can easily accommodate several activation functions and can be extended to cater for convolutional neural networks with minor changes. Various tools and techniques remain applicable because the layer function is piecewise linear. Recurrent neural networks require more changes; fewer techniques and tools are available, although some are emerging [116].

We can extend the tools we use in our framework in numerous ways. For example, we can use ERAN [52] to enable verification via abstract interpretation, which can provide support for a wider variety of ANN types. As another alternative, we can use NNV [19] to carry out analysis via reachability analysis, which we can use to propagate output spaces back to input spaces to refine the property. Moreover, this suggests the possibility of defining a toolchain of ANN-specific tools instead of discharging our proof to a single tool. It would require techniques to reduce the search space and discharge properties using complete techniques. It would allow us to verify more extensive and complex ANNs.

A further possibility is to integrate the work by Brucker and Stell in [117], where they also use Isabelle/HOL, but utilising a different approach to that taken in our work. Their work describes an approach to use Isabelle/HOL to verify the properties of feed-forward ANNs, in isolation. Using this approach instead of Marabou to automate the proofs generated using our framework is feasible, and avoid input and output value restrictions.

Our second direction is generating a verification approach for perception-based ANNs. Developing meaningful specifications for such components is challenging, but there is a growing
body of work to address this [118]. The goal of this approach would be to guarantee against certain behaviours and situations instead of a guaranteed error bound.

Finally, we consider approaches that can support the dynamic verification of ANNs, particularly, new forms of refinement concerning learning components. The work by Dupont et al. [119] describes an approach based on refinement to deal with robotic systems involving continuous behaviours. Their approach enables two methods: upwards approximation, where an approximated system is refined to an exact system; and downwards approximation, where an exact system is refined to an approximated version of that system. Our work is a type of upwards approximation: we refine an approximate system into an exact system. Exploring downwards approximation, and approximate refinement with respect to AI components, however, is an interesting potential future direction.

This work represents progress towards the colossal task of unifying the languages, tools, and techniques required to enable safe, reliable, and transparent RAAI systems. Our work also suggests a new perspective of how to use AI, from an angle not concerned with the details of its creation, but with its form and utility, and contributes to the discussion of how we can use intelligent machines in the future.
Appendix A

Full Meta-model

We describe the following classes as Ecore classes formatted by the tool OCLinEcore. A summary of ECore is available \(^1\), and a summary of OCLinEcore is available \(^2\).

Our additions:

```java
abstract class ANN
{
    property annparameters : ANNParameters[1] { composes };
}
class ANNParameters
{
    property insize : IntegerExp[1] { composes };
    property outsize : IntegerExp[1] { composes };
    property layerstructure : SeqExp[1] { composes };
    property weights : SeqExp[*] { composes };
    property biases : SeqExp[*] { composes };
    property filename : StringExp[*] { composes };
    attribute activationfunction : ActivationFunction[1];
}
enum ActivationFunction { serializable }
{
    literal RELU;
    literal LINEAR;
    literal NOTSPECIFIED;
}
abstract class GeneralController extends Controller;

class ANNController extends ANN,GeneralController
{
    property events : Event[*] { composes };
}
abstract class GeneralOperation extends Operation, OperationSig;
```

\(^1\)https://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
class ANNOperation extends ANN, GeneralOperation
{
 property rInterface : Interface[1];
}

Our modifications to the existing metamodel:

class RCPackage extends BasicPackage
{
 property interfaces : Interface[*] { composes };
 property robots : RoboticPlatformDef[*] { composes };
 property types : TypeDecl[*] { composes };
 property machines : StateMachineDef[*] { composes };
 property controllers : GeneralController[*] { composes };
 property modules : RCModule[*] { composes };
 property operations : GeneralOperation[*] { composes };
 property functions : Function[*] { composes };
}

class OperationDef extends StateMachineBody, GeneralOperation;

class OperationRef extends Operation, Reference
{
 property ref : GeneralOperation[1];
}

class ControllerDef extends Context, GeneralController
{
 property machines : StateMachine[*] { composes };
 property lOperations : Operation[*] { composes };
 property connections : Connection[*] { composes };
}

class ControllerRef extends Controller
{
 property ref : GeneralController[1];
}
Appendix B

UTP Reactive Contract Laws

Here, we present formal material that augments the material presented in Chapter 4. In Section B.1, we present laws and definitions we have defined to support our work, and in Section B.2, we present existing laws that we rely on in our work.

B.1 Supporting Laws

In the function layeroutput, the trace contribution tt appears free (through the reference to input). We would like to reason about the ANN contracts without referring to the complete trace of the process. To this end, we provide a function nodeoutput which defines the output event engaged of a given node, without referring to tt. Its parameters are l, the layer index, n, the node’s index, and in, a numeric sequence of type \mathbb{A}, that captures the input of the ANN component.

Definition B.1 (Node Output Function).

\[
\text{nodeoutput} : \mathbb{Z} \times \mathbb{Z} \times \text{seq} \mathbb{A} \rightarrow \text{Event} \\
\forall l : 1 \ldots \text{layerNo}; \text{in} : \text{seq} \mathbb{A} \bullet \forall n : 1 \ldots \text{layerSize}(l) \bullet \\
\text{nodeoutput}(l, n, \text{in}) = \text{layerRes}.l.n.\text{annoutput}(l, n, \text{in})
\]

We define nodeoutput as the single event $\text{layerRes}.l.n.\text{annoutput}(l, n, \text{in})$. Here, the expression $\text{annoutput}(l, n, \text{in})$ denotes the value communicated by a node indexed by n of layer l. For example, if we evaluate $\text{layeroutput}(1, 2, \langle 1, 1 \rangle)$, we get $\text{layerRes}.1.2.\text{annoutput}(1, 2, \langle 1, 1 \rangle)$.

We note that layercalc calculates the complete event sequence of a layer, while annoutput calculates just the value communicated by the output event engaged in by a single node. To illustrate, $\text{annoutput}(l, n, \text{in})$ is equivalent to $\text{value}(\text{last}(\text{layercalc}(l, n, \text{pl})))$.

We define the function annoutput formally below. It takes identical input parameters as nodeoutput, but annoutput evaluates to a single numeric value instead of an Event.

Definition B.2 (ANN Output Function).
APPENDIX B. UTP REACTIVE CONTRACT LAWS

\[
\text{annoutput} : \mathbb{Z} \times \mathbb{Z} \times \text{seq}A \to A
\]

\[\forall l : 0 \ldots \text{layerNo}; \text{in} : \text{seq}A \implies \forall n : 1 \ldots \text{layerSize}(l) \bullet
\]

\[
\text{annoutput}(0, n, \text{in}) = \text{in} \wedge n
\]

\[
\text{annoutput}(l, n, \text{in}) = \text{relu} \left(\text{dotprod} \left(\{pn : 1 \ldots \text{layerSize}(l - 1) \bullet (pn, \text{annoutput}(l - 1, pn, \text{in})) \}, \right.
ight.

\left. \text{weights } l \ n \right)

\]

\[+ \text{biases } l \ n)\]

We define \text{annoutput} using two equations. The first is for the input layer, that returns the index of the input sequence \text{in} according to the node index \text{n}. The second captures the result of any other node, given by the function \text{relu} applied to the sum of: the weighted output of the previous layer, and the \text{biases } l \ n scalar. Here, the previous layer’s results are captured by the sequence \{pn : 1 \ldots \text{layerSize}(l - 1) \bullet (pn, \text{annoutput}(l - 1, pn, \text{in})) \}, that contains the results, given by \text{annoutput}, of all nodes indexed by \text{pn} of the previous layer \text{l} - 1. We then capture the weighted sum of this sequence via the function \text{dotprod}: given the previous layer’s results, as above, and the sequence \text{weights } l \ n.

As an example, consider a node in an ANN with the following parameters: layer index 1, node index 1, weight vector \langle 2, -1 \rangle, bias scalar 1, and with two input nodes. In this context, \text{annoutput}(1, 1, \langle 2, -1 \rangle) would evaluate to simply 2.

Next, we define a lemma that formalises the relationship between \text{layeroutput} and \text{nodeoutput}, and the assumption we make about the variable \text{input}, that was discussed earlier. That is, the sequence \text{input} contains all input events occurring in order, and the value communicated by each event is from the set \text{Value}. We capture this, below, by introducing separate bound variables \text{x}1, \ldots, \text{x}_{\text{insize}} for each value communicated by an input event.

Lemma B.1. For all layer indices \text{l} \in 1 \ldots \text{layerNo} and node indices \text{n} \in 1 \ldots \text{layerSize}(l), and for a given input sequence \text{input} \in \text{seq Event} the following holds:

\[
\exists x_1, \ldots, x_{\text{insize}} : \text{Value} \bullet
\]

\[
\text{layeroutput}(l, n) =
\]

\[
\wedge/ \text{in} : 1 \ldots \text{insize} \bullet \langle \text{layerRes.0.in.xin} \rangle
\]

\[
\wedge/ \text{p}_l : 1 \ldots l - 1 \bullet
\]

\[
\wedge/ \text{p}_n : 1 \ldots \text{layerSize}(\text{p}_l) \bullet
\]

\[
\langle \text{nodeoutput}(\text{p}_l, \text{p}_n, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle
\]

\[
\wedge/ \text{p}_n : 1 \ldots n \bullet \langle \text{nodeoutput}(l, \text{p}_n, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle
\]

This lemma states that the function \text{layeroutput}(l, n) is equal to the concatenation of three distributed concatenations (denoted by \wedge/). The first represents the \text{input} sequence, and states that all input events occur in order, and are of the form \text{layerRes.0.in.xin}. The second captures the result of all previous layers, layers before the layer \text{l}, where we represent the previous layers index by \text{p}_l, and the previous node’s index by \text{p}_n. Here, we define the events with the expression \text{nodeoutput}(\text{p}_l, \text{p}_n, \langle x_1, \ldots, x_{\text{insize}} \rangle), where \langle x_1, \ldots, x_{\text{insize}} \rangle is the sequence containing the values communicated by all input events. Lastly, our third
distributed concatenation captures all nodes up to and including the node \(n \), on the layer \(l \).

Next, we discuss functions that enable our definitions above.

First, we define our \(\text{relu} \) function below. If \(x < 0 \), then the function evaluates to 0, otherwise \(x \). We define ReLU as a function on \(\mathbb{A} \), which our ANN uses.

Definition B.3 (ReLU).

\[
\text{relu} : \mathbb{A} \to \mathbb{A} \\
\forall x : \text{Value} \Rightarrow \\
(x < 0 \Rightarrow (x, 0) \in \text{relu}) \land \\
(x \geq 0 \Rightarrow (x, x) \in \text{relu})
\]

We define our sequence dot product function below. It takes two sequences as arguments, both containing numeric values and of identical size.

Definition B.4 (Sequence Dot Product Function).

\[
\text{dotprod} : (\text{seq} \mathbb{A} \times \text{seq} \mathbb{A}) \to \mathbb{A} \\
\forall s_1, s_2 : \text{seq} \mathbb{A} \Rightarrow \\
\#s_1 = \#s_2 \Rightarrow \\
\text{dotprod}(\langle \rangle, \langle \rangle) = 0 \\
\land \\
\text{dotprod}(s_1, s_2) = \\
(\text{head}(s_1) \ast \text{head}(s_1)) + \\
\text{dotprod}(\text{tail}(s_1), \text{tail}(s_2))
\]

For example, \(\text{dotprod}(\langle 1, 2, 3 \rangle, \langle 2, 3, 4 \rangle) \) is the scalar value 20 (2 + 6 + 12). The output value of a single ANN node can be expressed as the dot product of the two vectors representing the weights and the previous layer’s output. This dot product is the sum of all elements multiplied element-wise, so, \(\text{dotprod} \) captures the vector dot product operator.

Finally, we define the \(\text{lastn} \) function, which returns a sequence’s last \(n \) elements. This function takes a sequence of a generic type \(X \) and an integer quantity of elements to return, and delivers a sequence of type \(X \) as output.

Definition B.5 (Last \(N \) Elements Function).

\[
\text{lastn} : (\text{seq} X \times \mathbb{Z}) \to \text{seq} X \\
\forall s : \text{seq} X; \ i : \mathbb{N} \Rightarrow i \leq \#s \Rightarrow \\
\text{lastn}(s, i) = (\#s - i \ldots \#s) \mid s
\]

For \(\text{lastn}(s, i) \) to be well-defined, we require that \(i \) is less than or equal to the size of the sequence \(s \). This is because we cannot extract more elements from \(s \) than exist in \(s \).

We define \(\text{lastn} \) as taking all elements from \(s \) indexed from \(\#s - i \) to \(\#s \), the last section of the sequence. For example, \(\text{lastn}(1, 2, 3, 4), 2 \) evaluates to the sequence \((3, 4) \).

The function \(\text{dropseq} \) takes a sequence of \(\text{layerRes} \) events and returns a sequence of arithmetic values corresponding to each \(\text{layerRes} \) event’s value, denoted by \(v \) in \(\text{layerRes}.l.n.v \).
Definition B.6 (Event Drop Function).

\[
\begin{align*}
dropseq &: \text{seq Event} \rightarrow \text{seq}\ A \\
\forall s &: \text{seq Event} \bullet \\
 \hspace{1em} &\hspace{1em} \text{dropseq}(\langle \rangle) = \langle \rangle \\
 &\hspace{1em} \land \hspace{1em} \text{dropseq}(s) = \text{dropseq}(\text{tail}(s)) \stackrel{\langle \text{head}(s).4 \rangle}{\sim}
\end{align*}
\]

In the base case, given the empty sequence, we return the empty sequence. In the recursive case, we take the head of the sequence and return the 4th component of the pair given by the Event. Here, we consider Event to capture layerRes events.

For example, if we evaluate \(\text{dropseq}\) given the sequence below:

\[\langle \text{layerRes}.0.1.1, \text{layerRes}.0.2.1, \text{layerRes}.1.1.6, \text{layerRes}.1.2.6 \rangle\]

We obtain the sequence \((1, 1, 6, 6)\).

Lemma B.2. The pericondition of the reactive contract capturing SANN_Layers is the pericondition of GeneralANNContract: \(SANN_Layers_2 = \text{GeneralANNContract}_2\).

Proof.

\[
(SANN_Layers)_2 \\
= (SANN_InputLayer)_2 \lor \\
 (SANN_InputLayer)_3 ; \\
 (; l : 1 .. layerNo \bullet SANN_Layer(l))_2 \\
= (; i : 1 .. \text{insize} \bullet (SANN_InputNode)_2) \lor \\
 (SANN_InputLayer)_3 ; \\
 (; l : 1 .. layerNo \bullet SANN_Layer(l))_2 \\
= (; i : 1 .. \text{insize} \bullet \Box v : \text{Value} \bullet (\text{Do}(\text{layerRes}.0.i.v) ; \text{Skip}))_2 \lor \\
 (SANN_InputLayer)_3 ; \\
 (; l : 1 .. layerNo \bullet SANN_Layer(l))_2 \\
= (; i : 1 .. \text{insize} \bullet \Box v : \text{Value} \bullet (\text{Do}(\text{layerRes}.0.i.v))_2 \lor \\
 (SANN_InputLayer)_3 ; \\
 (; l : 1 .. layerNo \bullet SANN_Layer(l))_2 \\
= ([true_r \vdash] \\
 \exists s : \text{seq Event} \bullet \#s = \text{insize} \land (\forall i : 1 .. \text{insize} \bullet \exists v : \text{Value} \bullet s i = \text{layerRes}.0.i.v) \bullet \\
 \text{tt prefix s} \land \#tt < \#s \land \text{wait'} \land \text{ref'} \subseteq \{s (\#tt + 1)\} \lor \text{tt} = s \land \neg \text{wait'}))_2 \\
 \lor \\
 (SANN_InputLayer)_3 ; \\
 (; l : 1 .. layerNo \bullet SANN_Layer(l))_2
\]
\[
\begin{aligned}
&= ([\text{true}_r \vdash] \quad \text{[tt = input when \#tt \leq \text{insize}]}) \\
&\quad \exists s : \text{seq Event} \mid \#s = \text{insize} \wedge (\forall i : 1 \ldots \text{insize} \cdot \exists v : \text{Value} \cdot s i = \text{layerRes.0.i.v}) \cdot \\
&\quad \quad \text{input prefix } s \wedge \#\text{input} < \#s \wedge \text{wait}' \wedge \text{ref}' \subseteq \{s(\#\text{input} + 1)\} \wedge \text{tt = input} \lor \\
&\quad \quad \quad \text{tt} = s \wedge \text{tt} = \text{input} \wedge \neg \text{wait}')_2 \\
&\lor \\
&\quad (\text{SANN_InputLayer})_3 ; \\
&\quad (; \cdot l : 1 \ldots \text{layerNo} \cdot \text{SANN_Layer(l)})_2 \\
&= ([\text{true}_r \vdash] \quad \{s(\#\text{input} + 1)\} \subseteq \{\text{layerRes.0.}(\#\text{input} + 1)\}]) \\
&\quad \exists s : \text{seq Event} \mid \#s = \text{insize} \wedge (\forall i : 1 \ldots \text{insize} \cdot \exists v : \text{Value} \cdot s i = \text{layerRes.0.i.v}) \cdot \\
&\quad \quad \text{input prefix } s \wedge \#\text{input} < \#s \wedge \text{wait}' \wedge \text{ref}' \subseteq \{\text{layerRes.0.}(\#\text{input} + 1)\} \\
&\quad \quad \wedge \text{tt = input} \lor \\
&\quad \quad \quad \text{tt} = s \wedge \text{tt} = \text{input} \wedge \neg \text{wait}')_2 \\
&\lor \\
&\quad (\text{SANN_InputLayer})_3 ; \\
&\quad (; \cdot l : 1 \ldots \text{layerNo} \cdot \text{SANN_Layer(l)})_2 \\
&= ([\text{true}_r \vdash] \quad \{\exists \text{distributes through} \lor \}) \\
&\quad \exists s : \text{seq Event} \mid \#s = \text{insize} \wedge (\forall i : 1 \ldots \text{insize} \cdot \exists v : \text{Value} \cdot s i = \text{layerRes.0.i.v}) \cdot \\
&\quad \quad \text{input prefix } s \wedge \#\text{input} < \text{insize} \wedge \text{wait}' \wedge \text{ref}' \subseteq \{\text{layerRes.0.}(\#\text{input} + 1)\} \\
&\quad \quad \wedge \text{tt = input} \lor \\
&\quad \quad \quad \exists s : \text{seq Event} \mid \#s = \text{insize} \wedge (\forall i : 1 \ldots \text{insize} \cdot \exists v : \text{Value} \cdot s i = \text{layerRes.0.i.v}) \cdot \\
&\quad \quad \quad \quad \text{tt} = s \wedge \text{tt} = \text{input} \wedge \neg \text{wait}')_2 \\
&\lor \\
&\quad (\text{SANN_InputLayer})_3 ; \\
&\quad (; \cdot l : 1 \ldots \text{layerNo} \cdot \text{SANN_Layer(l)})_2
\end{aligned}
\]
\(= ([\text{true}_r \vdash \text{predicate calculus}]) \)

\((\exists s : \text{seq Event} \mid \# s = \text{insize} \land (\forall i : 1 \ldots \text{insize} \cdot \exists v : \text{Value} \cdot s i = \text{layerRes.0.i.v} \cdot \text{input prefix s})) \land \#	ext{input} < \text{insize} \land \text{wait}' \land \text{ref}' \subseteq \{ | \text{layerRes.0.}(|\text{input} + 1) | \} \land tt = \text{input} \lor \exists s : \text{seq Event} \mid \# s = \text{insize} \land (\forall i : 1 \ldots \text{insize} \cdot \exists v : \text{Value} \cdot s i = \text{layerRes.0.i.v} \cdot \text{tt} = s \land tt = \text{input} \land \neg \text{wait}') \}_2 \)

\(\lor (\text{SANN_InputLayer})_3; (\; l : 1 \ldots \text{layerNo} \cdot \text{SANN_Layer}(l))_2 \)

\(= ([\text{true}_r \vdash \text{definition of input and propositional calculus}]) \)

\((\exists s : \text{seq Event} \mid \# s = \text{insize} \land (\forall i : 1 \ldots \text{insize} \cdot \exists v : \text{Value} \cdot s i = \text{layerRes.0.i.v} \cdot \text{tt} = s \land tt = \text{input} \land \neg \text{wait}') \}_2 \)

\(\lor (\text{SANN_InputLayer})_3; (\; l : 1 \ldots \text{layerNo} \cdot \text{SANN_Layer}(l))_2 \)

\(= ([\text{true}_r \vdash \text{one-point rule and definition of input}]) \)

\((\exists s : \text{seq Event} \mid \# s = \text{insize} \land (\forall i : 1 \ldots \text{insize} \cdot \exists v : \text{Value} \cdot s i = \text{layerRes.0.i.v} \cdot \text{tt} = s \land tt = \text{input} \land \neg \text{wait}') \}_2 \)

\(\lor (\text{SANN_InputLayer})_3; (\; l : 1 \ldots \text{layerNo} \cdot \text{SANN_Layer}(l))_2 \)

\(= ([\text{true}_r \vdash \text{Def. B.14, Def.B.13, and input definition}]) \)

\((\exists s : \text{seq Event} \mid \# s = \text{insize} \land \mathcal{E}[\text{input}, \{ | \text{layerRes.0.}(|\text{input} + 1) | \}] \land \#	ext{input} < \text{insize} \land \mathcal{E}[\text{input}, \{ | \text{layerRes.0.}(|\text{input} + 1) | \}] \land \text{tt} = \text{input} \land \neg \text{wait}') \}_2 \)

\(\lor (\text{SANN_InputLayer})_3; (\; l : 1 \ldots \text{layerNo} \cdot \text{SANN_Layer}(l))_2 \)

\(= ([\text{true}_r \vdash \text{percondition extraction (Theorem B.3)}]) \)

\((\exists s : \text{seq Event} \mid \# s = \text{insize} \land \mathcal{E}[\text{input}, \{ | \text{layerRes.0.}(|\text{input} + 1) | \}] \land \#	ext{input} < \text{insize} \land \mathcal{E}[\text{input}, \{ | \text{layerRes.0.}(|\text{input} + 1) | \}] \land \text{tt} = \text{input} \land \neg \text{wait}') \}_2 \)

\(\lor (\text{SANN_InputLayer})_3; (\; l : 1 \ldots \text{layerNo} \cdot \text{SANN_Layer}(l))_2 \)

\(= ([\text{true}_r \vdash \text{argument similar to the above}]) \)

\((\exists s : \text{seq Event} \mid \# s = \text{insize} \land \mathcal{E}[\text{input}, \{ | \text{layerRes.0.}(|\text{input} + 1) | \}] \land \#	ext{input} < \text{insize} \land \mathcal{E}[\text{input}, \{ | \text{layerRes.0.}(|\text{input} + 1) | \}] \land \text{tt} = \text{input} \land \neg \text{wait}') \}_2 \)

\(\lor (\text{SANN_InputLayer})_3; (\; l : 1 \ldots \text{layerNo} \cdot \text{SANN_Layer}(l))_2 \)

\(= ([\text{true}_r \vdash \text{argument similar to the above}]) \)

\((\exists s : \text{seq Event} \mid \# s = \text{insize} \land \mathcal{E}[\text{input}, \{ | \text{layerRes.0.}(|\text{input} + 1) | \}] \land \#	ext{input} < \text{insize} \land \mathcal{E}[\text{input}, \{ | \text{layerRes.0.}(|\text{input} + 1) | \}] \land \text{tt} = \text{input} \land \neg \text{wait}') \}_2 \)

\(\lor (\text{SANN_InputLayer})_3; (\; l : 1 \ldots \text{layerNo} \cdot \text{SANN_Layer}(l))_2 \)

\(= ([\text{true}_r \vdash \text{argument similar to the above}]) \)

\((\exists s : \text{seq Event} \mid \# s = \text{insize} \land \mathcal{E}[\text{input}, \{ | \text{layerRes.0.}(|\text{input} + 1) | \}] \land \#	ext{input} < \text{insize} \land \mathcal{E}[\text{input}, \{ | \text{layerRes.0.}(|\text{input} + 1) | \}] \land \text{tt} = \text{input} \land \neg \text{wait}') \}_2 \)

\(\lor (\text{SANN_InputLayer})_3; (\; l : 1 \ldots \text{layerNo} \cdot \text{SANN_Layer}(l))_2 \)

\(= ([\text{true}_r \vdash \text{argument similar to the above}]) \)

\((\exists s : \text{seq Event} \mid \# s = \text{insize} \land \mathcal{E}[\text{input}, \{ | \text{layerRes.0.}(|\text{input} + 1) | \}] \land \#	ext{input} < \text{insize} \land \mathcal{E}[\text{input}, \{ | \text{layerRes.0.}(|\text{input} + 1) | \}] \land \text{tt} = \text{input} \land \neg \text{wait}') \}_2 \)

\(\lor (\text{SANN_InputLayer})_3; (\; l : 1 \ldots \text{layerNo} \cdot \text{SANN_Layer}(l))_2 \)

\(= ([\text{true}_r \vdash \text{argument similar to the above}]) \)

\((\exists s : \text{seq Event} \mid \# s = \text{insize} \land \mathcal{E}[\text{input}, \{ | \text{layerRes.0.}(|\text{input} + 1) | \}] \land \#	ext{input} < \text{insize} \land \mathcal{E}[\text{input}, \{ | \text{layerRes.0.}(|\text{input} + 1) | \}] \land \text{tt} = \text{input} \land \neg \text{wait}') \}_2 \)

\(\lor (\text{SANN_InputLayer})_3; (\; l : 1 \ldots \text{layerNo} \cdot \text{SANN_Layer}(l))_2 \)
\[
\begin{align*}
&= (\#\text{input} \leq \text{insize} \land E[\text{input}, \{ | \text{layerRes}.0.(\#\text{input} + 1) |]]) \\
&\quad \lor \\
&\quad (\#\text{input} = \text{insize} \land \Phi[\text{input}]) \\
&\quad (\forall l : 1 \ldots \text{layerNo} \bullet \exists n : 1 \ldots \text{layerSize}(l) \bullet \forall \text{in} : \text{seq Value} \mid \#\text{in} = \text{insize} \bullet \\
&\quad \text{Do}(\text{layerRes}.l.n.\text{annoutput}(l, n, \text{in})))_2
\end{align*}
\]

[postcondition extraction (Theorem B.3)]

\[
\begin{align*}
&= (\#\text{input} \leq \text{insize} \land E[\text{input}, \{ | \text{layerRes}.0.(\#\text{input} + 1) |]]) \\
&\quad \lor \\
&\quad (\#\text{input} = \text{insize} \land \Phi[\text{input}]) \\
&\quad (\forall l : 1 \ldots \text{layerNo} \bullet \exists n : 1 \ldots \text{layerSize}(l) \bullet \forall \text{in} : \text{seq Value} \mid \#\text{in} = \text{insize} \bullet \\
&\quad \text{Do}(\text{nodeoutput}(l, n, \text{in})))_2
\end{align*}
\]

[unfolding SANN_Layer(l) and SANN_Node, and Skip is a right unit of ;]

\[
\begin{align*}
&= (\#\text{input} \leq \text{insize} \land E[\text{input}, \{ | \text{layerRes}.0.(\#\text{input} + 1) |]}) \\
&\quad \lor \\
&\quad (\#\text{input} = \text{insize} \land \Phi[\text{input}]) \\
&\quad (\forall l : 1 \ldots \text{layerNo} \bullet \exists n : 1 \ldots \text{layerSize}(l) \bullet \forall \text{in} : \text{seq Value} \mid \#\text{in} = \text{insize} \bullet \\
&\quad \text{Do}(\text{nodeoutput}(l, n, \text{in})))_2
\end{align*}
\]

[equivalent to nodeoutput(l, n, in), Def. B.1]

\[
\begin{align*}
&= (\#\text{input} \leq \text{insize} \land E[\text{input}, \{ | \text{layerRes}.0.(\#\text{input} + 1) |]}) \\
&\quad \lor \\
&\quad (\#\text{input} = \text{insize} \land \Phi[\text{input}]) \\
&\quad (\forall l : 1 \ldots \text{layerNo} \bullet \exists n : 1 \ldots \text{layerSize}(l) \bullet \\
&\quad \forall \text{in} : \text{seq Value} \mid \#\text{in} = \text{insize} \bullet \\
&\quad \text{layerSize}(l) \bullet \text{nodeoutput}(l, \text{in}), \text{nodeoutput}(l, n, \text{in}))_2
\end{align*}
\]

[Lemma B.9, here E is layerSize]

\[
\begin{align*}
&= (\#\text{input} \leq \text{insize} \land E[\text{input}, \{ | \text{layerRes}.0.(\#\text{input} + 1) |]}) \\
&\quad \lor \\
&\quad (\#\text{input} = \text{insize} \land \Phi[\text{input}]) \\
&\quad (\exists l : 1 \ldots \text{layerNo} \bullet \exists n : 1 \ldots \text{layerSize}(l) \bullet \forall \text{in} : \text{seq Value} \mid \#\text{in} = \text{insize} \bullet \\
&\quad \text{layerSize}(l) \bullet \text{nodeoutput}(l, \text{in}), \text{nodeoutput}(l, n, \text{in}))_2
\end{align*}
\]

[percondition extraction, Theorem B.3]
\[
\begin{align*}
&= (\#input \leq \text{insize} \land \mathcal{E}[\text{input}, \{ \mid \text{layerRes}.0.(\#input + 1) \}]) \\
&\lor \\
&\#input = \text{insize} \land \\
&\exists l : 1 \ldots \text{layerNo} \cdot \exists n : 1 \ldots \text{layerSize}(l) \cdot \\
&\forall \text{in} : \text{seq Value} \mid \#\text{in} = \text{insize} \cdot \\
&\mathcal{E}[\text{input}] \\
&\quad \land \text{pl} : 1 \ldots (l - 1); \text{pn} : 1 \ldots \text{layerSize}(\text{pl}) \cdot \langle \text{nodeoutput}(\text{pl}, \text{pn}, \text{in}) \rangle \\
&\quad \land \text{cn} : 1 \ldots (n - 1) \cdot \langle \text{nodeoutput}(l, \text{cn}, \text{in}) \rangle, \{ \text{nodeoutput}(l, n, \text{in}) \} \\
&\text{[sequential composition, Theorem B.1]}
\end{align*}
\]

\[
\begin{align*}
&= (\#input \leq \text{insize} \land \mathcal{E}[\text{input}, \{ \mid \text{layerRes}.0.(\#input + 1) \}]) \quad \text{[input assumption]} \\
&\lor \\
&\#input = \text{insize} \land \\
&\exists l : 1 \ldots \text{layerNo} \cdot \exists n : 1 \ldots \text{layerSize}(l) \cdot \\
&\forall \text{in} : \text{seq Value}, \text{x}_1, \ldots, \text{x}_{\text{insize}} : \text{Value} \mid \text{in} = \#\text{insize} \cdot \\
&\mathcal{E}[\text{input}] \\
&\quad \land \text{pl} : 1 \ldots (l - 1); \text{pn} : 1 \ldots \text{layerSize}(\text{pl}) \cdot \langle \text{nodeoutput}(\text{pl}, \text{pn}, \text{in}) \rangle \\
&\quad \land \text{cn} : 1 \ldots (n - 1) \cdot \langle \text{nodeoutput}(l, \text{cn}, \text{in}) \rangle, \{ \text{nodeoutput}(l, n, \text{in}) \} \\
&\text{[in must contain all input variables x]} \\
&= (\#input \leq \text{insize} \land \mathcal{E}[\text{input}, \{ \mid \text{layerRes}.0.(\#input + 1) \}]) \\
&\lor \\
&\#input = \text{insize} \land \\
&\exists l : 1 \ldots \text{layerNo} \cdot \exists n : 1 \ldots \text{layerSize}(l) \cdot \\
&\forall \text{x}_1, \ldots, \text{x}_{\text{insize}} : \text{Value} \cdot \\
&\mathcal{E}[\text{input}] \\
&\quad \land \text{pl} : 1 \ldots (l - 1); \text{pn} : 1 \ldots \text{layerSize}(\text{pl}) \cdot \langle \text{nodeoutput}(\text{pl}, \text{pn}, \text{in}) \rangle \\
&\quad \land \text{cn} : 1 \ldots (n - 1) \cdot \langle \text{nodeoutput}(l, \text{cn}, \text{in}) \rangle, \{ \text{nodeoutput}(l, n, \text{in}) \} \\
&\text{[in must contain all input variables x]} \\
&= (\#input \leq \text{insize} \land \mathcal{E}[\text{input}, \{ \mid \text{layerRes}.0.(\#input + 1) \}]) \\
&\lor \\
&\#input = \text{insize} \land \\
&\exists l : 1 \ldots \text{layerNo} \cdot \exists n : 1 \ldots \text{layerSize}(l) \cdot \\
&\forall \text{x}_1, \ldots, \text{x}_{\text{insize}} : \text{Value} \cdot \\
&\mathcal{E}[\text{input}] \\
&\quad \land \text{pl} : 1 \ldots (l - 1); \text{pn} : 1 \ldots \text{layerSize}(\text{pl}) \cdot \langle \text{nodeoutput}(\text{pl}, \text{pn}, \text{x}_\text{in}) \rangle \\
&\quad \land \text{cn} : 1 \ldots (n - 1) \cdot \langle \text{nodeoutput}(l, \text{cn}, \text{in}) \rangle, \{ \text{nodeoutput}(l, n, \text{in}) \} \\
&\text{[in must contain all input variables x]}
\end{align*}
\]
Lemma B.3. The postcondition of the reactive contract capturing $SANN_Layers$ is the postcondition of GeneralANNContract: $SANN_Layers_3 = GeneralANNContract_3$.

Proof.

\[
(SANN_Layers)_3 = (SANN_InputLayer)_3; \quad \{ l \mapsto \text{layerNo} \} \quad (SANN_Layer(l))_3
\]

[unfolding $SANN_Layers$, law (1)-Theorem B.1, definition of $(P)_3$]

\[
= (; \; l \mapsto \text{layerNo} \; \bullet \; \text{SANN_Layer}(l))_3
\]

[Lemma B.8]

\[
= (; \; l \mapsto \text{layerNo} \; \bullet \; \text{SANN_InputNode})_3; \quad \{ l \mapsto \text{layerNo} \} \quad \text{SANN_Layer}(l)_3
\]

[unfolding $SANN_InputNode$ and converting to UTP notation]

\[
= (; \; l \mapsto \text{layerNo} \; \bullet \; \text{SANN_Layer}(l))_3
\]

[Lemma B.8]

\[
= ([true_r \vdash \exists \; s : \text{seq Event} \; | \; \#s = \text{insize} \; \land \; (\forall \; i : \text{layerSize} \; l \bullet \; \text{E}[\text{front} \; \circ \; \text{layeroutput}(l, n), \{ \text{last} \; \circ \; \text{layeroutput}(l, n) \}])
\]

[Lemma B.1, and $nodeoutput = last \; \circ \; \text{layeroutput}$ in this context]

\[
= \text{GeneralANNContract}_2
\]

[Def. 4.1]
\[
\begin{align*}
\delta_r = & (\text{true}_r \vdash \#s = \text{insize}) \\
& (\exists s : \text{seq Event} \mid \#s = \text{insize} \land (\forall i : 1 \ldots \text{insize} \cdot \exists v : \text{Value} \cdot s \ i = \text{layerRes} .0 .i .v) \cdot \\
& \quad \text{input prefix } s \land \#\text{input} < \text{insize} \land \text{wait}' \land \text{ref}' \subseteq \{ \mid \text{layerRes} .0 .(\#\text{input} + 1) \mid \} \land tt = \text{input} \\
& \quad \lor tt = s \land tt = \text{input} \land \neg \text{wait}')_3 \\
& (; \ l : 1 \ldots \text{layerNo} \cdot \text{SANN}_\text{Layer}(l))_3 \\
= & (\text{true}_r \vdash [\exists \text{ distributes through } \lor] \\
& (\exists s : \text{seq Event} \mid \#s = \text{insize} \land (\forall i : 1 \ldots \text{insize} \cdot \exists v : \text{Value} \cdot s \ i = \text{layerRes} .0 .i .v) \cdot \\
& \quad \text{input prefix } s \land \#\text{input} < \text{insize} \land \text{wait}' \land \text{ref}' \subseteq \{ \mid \text{layerRes} .0 .(\#\text{input} + 1) \mid \} \land tt = \text{input} \\
& \quad \lor \exists s : \text{seq Event} \mid \#s = \text{insize} \land (\forall i : 1 \ldots \text{insize} \cdot \exists v : \text{Value} \cdot s \ i = \text{layerRes} .0 .i .v) \cdot \\
& \quad \text{tt} = s \land tt = \text{input} \land \neg \text{wait}')_3; \\
& (; \ l : 1 \ldots \text{layerNo} \cdot \text{SANN}_\text{Layer}(l))_3 \\
= & (\text{true}_r \vdash [\text{definition of input and propositional calculus}] \\
& \#\text{input} < \text{insize} \land \text{wait}' \land \text{ref}' \subseteq \{ \mid \text{layerRes} .0 .(\#\text{input} + 1) \mid \} \land tt = \text{input} \\
& \quad \lor \exists s : \text{seq Event} \mid \#s = \text{insize} \land (\forall i : 1 \ldots \text{insize} \cdot \exists v : \text{Value} \cdot s \ i = \text{layerRes} .0 .i .v) \cdot \\
& \quad \text{tt} = s \land tt = \text{input} \land \neg \text{wait}')_3; \\
& (; \ l : 1 \ldots \text{layerNo} \cdot \text{SANN}_\text{Layer}(l))_3 \\
= & (\text{true}_r \vdash \text{one-point rule and definition of input, } s \text{ has property of } tt \text{ (input)}] \\
& \#\text{input} < \text{insize} \land \text{wait}' \land \text{ref}' \subseteq \{ \mid \text{layerRes} .0 .(\#\text{input} + 1) \mid \} \land tt = \text{input} \\
& \quad \lor tt = \text{input} \land \neg \text{wait}')_3; \\
& (; \ l : 1 \ldots \text{layerNo} \cdot \text{SANN}_\text{Layer}(l))_3 \\
= & ([\text{true}_r \vdash \#\text{input} < \text{insize} \land \mathcal{E}[\text{input}, \{ \mid \text{layerRes} .0 .(\#\text{input} + 1) \mid \}] \\
& \mid \#\text{input} = \text{insize} \land \Phi[\text{input}])_3; \\
& (; \ l : 1 \ldots \text{layerNo} \cdot \text{SANN}_\text{Layer}(l))_3 \\
= & (\#\text{input} = \text{insize} \land \Phi[\text{input}])_3; \\
& (; \ l : 1 \ldots \text{layerNo} \cdot \text{SANN}_\text{Layer}(l))_3 \\
= & (\#\text{input} = \text{insize} \land \Phi[\text{input}])_3; \\
& (; \ l : 1 \ldots \text{layerNo} \cdot n : 1 \ldots \text{layerSize}(l) \cdot \forall \text{in : seq Event} \mid \#\text{in} = \text{insize} \land \\
& \text{Do}(\text{layerRes} .l .n .\text{annoutput}(l, n, \text{in}))_3 \\
& \text{[unfolding SANN}_\text{Layer}(l), \text{ Skip is a right unit of; and Do is NCSP-healthy]}
\end{align*}
\]
Lemma B.4 (*seqapprox*(*ε*)) reflexivity.

\[∀ s : \text{seq Event} \mid \text{ran } s \subseteq (I \cup O) \bullet \text{seqapprox}(\epsilon) \, s \]
given ϵ is a non-negative real number.

Proof.

\[
\forall s : \text{seq Event} \bullet s \ \text{seqapprox}(\epsilon) \ s
\]

\[
= \forall s_1, s_2, s_3 : \text{seq Event} \ |
\]

\[
(s_1, s_3) \in \text{seqapprox}(\epsilon) \iff
\forall i : \text{dom} s_2 \bullet
\]

\[
(s_2(i) \in I \Rightarrow s_3(i) = s_2(i)) \land
\]

\[
(s_2(i) \in O \Rightarrow ev(s_3(i)) = ev(s_2(i)) \land
\]

\[
\exists r : (\epsilon, \epsilon) \bullet value(s_3(i)) = value(s_2(i)) + r)
\]

\[
s_1 = s
\]

\[
t = s
\]

[unfolding \text{seqapprox}, Definition 4.6]

\[
= \forall s, s_2 : \text{seq Event} \ |
\]

\[
(s, s) \in \text{seqapprox}(\epsilon) \iff
\forall i : \text{dom} s_2 \bullet
\]

\[
(s(i) \in I \Rightarrow s(i) = s_2(i)) \land
\]

\[
(s_2(i) \in O \Rightarrow ev(s(i)) = ev(s_2(i)) \land
\]

\[
\exists r : (\epsilon, \epsilon) \bullet value(s(i)) = value(s_2(i)) + r)
\]

[substitute $|s/s_1|$ and $|s/s_3|$]

[one-point s_2]

\[
= \forall s : \text{seq Event} \bullet
\]

\[
(s, s) \in \text{seqapprox}(\epsilon) \iff
\forall i : \text{dom}(s \upharpoonright (I \cup O)) \bullet
\]

\[
(s(i) \in I \Rightarrow s(i) = (s \upharpoonright (I \cup O))(i)) \land
\]

\[
((s \upharpoonright (I \cup O))(i) \in O \Rightarrow
\]

\[
ev(s(i)) = ev((s \upharpoonright (I \cup O))(i)) \land
\]

\[
\exists r : (\epsilon, \epsilon) \bullet value(s(i)) = value((s \upharpoonright (I \cup O))(i)) + r)
\]

[s \upharpoonright (I \cup O) = s, because ran s \subseteq (I \cup O)]

\[
= \forall s : \text{seq Event} \bullet
\]

\[
(s, s) \in \text{seqapprox}(\epsilon) \iff
\forall i : \text{dom} s \bullet
\]

\[
(s(i) \in I \Rightarrow s(i) = s(i)) \land
\]

\[
(s(i) \in O \Rightarrow ev(s(i)) = ev(s(i)) \land
\]

\[
\exists r : (\epsilon, \epsilon) \bullet value(s(i)) = value(s(i) + r)
\]

[equality]

\[
= \forall s : \text{seq Event} \bullet
\]

\[
(s, s) \in \text{seqapprox}(\epsilon) \iff
\forall i : \text{dom} s \bullet
\]

\[
(s(i) \in I \Rightarrow true \land
\]

\[
(s(i) \in O \Rightarrow ev(s(i)) = ev(s(i)) \land
\]

\[
\exists r : (\epsilon, \epsilon) \bullet value(s(i)) = value(s(i) + r)
\]

[any predicate is stronger than true]

\[
= \forall s : \text{seq Event} \bullet
\]

\[
(s, s) \in \text{seqapprox}(\epsilon) \iff
\forall i : \text{dom} s \bullet
\]

\[
(s(i) \in O \Rightarrow ev(s(i)) = ev(s(i)) \land
\]

\[
\exists r : (\epsilon, \epsilon) \bullet value(s(i)) = value(s(i) + r)
\]
Lemma B.5 \((\text{seqapprox}(\epsilon)\) output events\).

\[
\forall s, s_3 : \text{seq Event} \mid (\text{ran } s \cup \text{ran } s_3) \subseteq O \land \#s = \#s_3 \bullet \\
\quad s \text{ seqapprox}(\epsilon) s_3 \iff \forall i : \text{dom } s \bullet |\text{value}(t(i)) - \text{value}(s(i))| < \epsilon
\]
given \(\epsilon\) is a non-negative real number, and that the event names given by \text{event} are identical for each index.

Proof.

\[
\forall s, s_3 : \text{seq Event} \mid (\text{ran } s \cup \text{ran } s_3) \subseteq O \land \#s = \#s_3 \bullet \\
\quad s \text{ seqapprox}(\epsilon) s_3 \iff \forall i : \text{dom } s \bullet |\text{value}(t(i)) - \text{value}(s(i))| < \epsilon
\]

\[
\forall s, s_3 : \text{seq Event} \mid (\text{ran } s \cup \text{ran } s_3) \subseteq O \land \#s = \#s_3 \bullet \\
\quad s \text{ seqapprox}(\epsilon) s_3 \iff \forall i : \text{dom } s \bullet |\text{value}(t(i)) - \text{value}(s(i))| < \epsilon
\]

\[
\text{Proof.}
\]

\[
\forall s, s_3 : \text{seq Event} \mid (\text{ran } s \cup \text{ran } s_3) \subseteq O \land \#s = \#s_3 \bullet \\
\quad s \text{ seqapprox}(\epsilon) s_3 \iff \forall i : \text{dom } s \bullet |\text{value}(t(i)) - \text{value}(s(i))| < \epsilon
\]

\[
\forall s, s_3 : \text{seq Event} \mid (\text{ran } s \cup \text{ran } s_3) \subseteq O \land \#s = \#s_3 \bullet \\
\quad s \text{ seqapprox}(\epsilon) s_3 \iff \forall i : \text{dom } s \bullet |\text{value}(t(i)) - \text{value}(s(i))| < \epsilon
\]

\[
\forall s, s_3 : \text{seq Event} \mid (\text{ran } s \cup \text{ran } s_3) \subseteq O \land \#s = \#s_3 \bullet \\
\quad s \text{ seqapprox}(\epsilon) s_3 \iff \forall i : \text{dom } s \bullet |\text{value}(t(i)) - \text{value}(s(i))| < \epsilon
\]

\[
\forall s, s_3 : \text{seq Event} \mid (\text{ran } s \cup \text{ran } s_3) \subseteq O \land \#s = \#s_3 \bullet \\
\quad s \text{ seqapprox}(\epsilon) s_3 \iff \forall i : \text{dom } s \bullet |\text{value}(t(i)) - \text{value}(s(i))| < \epsilon
\]

\[
\forall s, s_3 : \text{seq Event} \mid (\text{ran } s \cup \text{ran } s_3) \subseteq O \land \#s = \#s_3 \bullet \\
\quad s \text{ seqapprox}(\epsilon) s_3 \iff \forall i : \text{dom } s \bullet |\text{value}(t(i)) - \text{value}(s(i))| < \epsilon
\]

\[
\forall s, s_3 : \text{seq Event} \mid (\text{ran } s \cup \text{ran } s_3) \subseteq O \land \#s = \#s_3 \bullet \\
\quad s \text{ seqapprox}(\epsilon) s_3 \iff \forall i : \text{dom } s \bullet |\text{value}(t(i)) - \text{value}(s(i))| < \epsilon
\]

\[
\forall s, s_3 : \text{seq Event} \mid (\text{ran } s \cup \text{ran } s_3) \subseteq O \land \#s = \#s_3 \bullet \\
\quad s \text{ seqapprox}(\epsilon) s_3 \iff \forall i : \text{dom } s \bullet |\text{value}(t(i)) - \text{value}(s(i))| < \epsilon
\]

\[
\forall s, s_3 : \text{seq Event} \mid (\text{ran } s \cup \text{ran } s_3) \subseteq O \land \#s = \#s_3 \bullet \\
\quad s \text{ seqapprox}(\epsilon) s_3 \iff \forall i : \text{dom } s \bullet |\text{value}(t(i)) - \text{value}(s(i))| < \epsilon
\]

\[
\forall s, s_3 : \text{seq Event} \mid (\text{ran } s \cup \text{ran } s_3) \subseteq O \land \#s = \#s_3 \bullet \\
\quad s \text{ seqapprox}(\epsilon) s_3 \iff \forall i : \text{dom } s \bullet |\text{value}(t(i)) - \text{value}(s(i))| < \epsilon
\]

\[
\forall s, s_3 : \text{seq Event} \mid (\text{ran } s \cup \text{ran } s_3) \subseteq O \land \#s = \#s_3 \bullet \\
\quad s \text{ seqapprox}(\epsilon) s_3 \iff \forall i : \text{dom } s \bullet |\text{value}(t(i)) - \text{value}(s(i))| < \epsilon
\]

\[
\forall s, s_3 : \text{seq Event} \mid (\text{ran } s \cup \text{ran } s_3) \subseteq O \land \#s = \#s_3 \bullet \\
\quad s \text{ seqapprox}(\epsilon) s_3 \iff \forall i : \text{dom } s \bullet |\text{value}(t(i)) - \text{value}(s(i))| < \epsilon
\]

\[
\forall s, s_3 : \text{seq Event} \mid (\text{ran } s \cup \text{ran } s_3) \subseteq O \land \#s = \#s_3 \bullet \\
\quad s \text{ seqapprox}(\epsilon) s_3 \iff \forall i : \text{dom } s \bullet |\text{value}(t(i)) - \text{value}(s(i))| < \epsilon
\]
\[\forall s, s_3 : \text{seq Event} \mid (\text{ran } s \cup \text{ran } s_3) \subseteq O \land \#s = \#s_3 \]
\[\forall i : \text{dom } s \] \[(s(i) \in O \Rightarrow \exists r : (-\epsilon, \epsilon) \bullet \text{value}(s_3(i)) = \text{value}(s(i)) + r) \]

[given the event names are the same]

\[= \forall s, s_3 : \text{seq Event} \mid (\text{ran } s \cup \text{ran } s_3) \subseteq O \land \#s = \#s_3 \]
\[\forall i : \text{dom } s \] \[\exists r : (\epsilon, \epsilon) \bullet \text{value}(s_3(i)) = \text{value}(s(i)) + r \]

[s(i) \in O always true]

\[= \forall s, s_3 : \text{seq Event} \mid (\text{ran } s \cup \text{ran } s_3) \subseteq O \land \#s = \#s_3 \]
\[\forall i : \text{dom } s \] \[\exists r : \mathbb{R} \bullet \text{value}(s_3(i)) = \text{value}(s(i)) + r \land \]
\[-\epsilon < r < \epsilon \]

[definition of open interval]

\[= \forall s, s_3 : \text{seq Event} \mid (\text{ran } s \cup \text{ran } s_3) \subseteq O \land \#s = \#s_3 \]
\[\forall i : \text{dom } s \] \[\exists r : \mathbb{R} \bullet \text{value}(s_3(i)) = \text{value}(s(i)) + r \land \]
\[-\epsilon < r < \epsilon \]

[existential quantification laws]

\[= \forall s, s_3 : \text{seq Event} \mid (\text{ran } s \cup \text{ran } s_3) \subseteq O \land \#s = \#s_3 \]
\[\forall i : \text{dom } s \] \[\exists r : \mathbb{R} \bullet \text{value}(s_3(i)) - \text{value}(s(i)) < \epsilon \land \]
\[-\epsilon < r < \epsilon \]

[arithmetic]

\[= \forall s, s_3 : \text{seq Event} \mid (\text{ran } s \cup \text{ran } s_3) \subseteq O \land \#s = \#s_3 \]
\[\forall i : \text{dom } s \] \[\exists r : \mathbb{R} \bullet \text{value}(s_3(i)) - \text{value}(s(i)) \leq \epsilon \land \]
\[-\epsilon < r < \epsilon \]

[one-point rule on r]

\[= \forall s, s_3 : \text{seq Event} \mid (\text{ran } s \cup \text{ran } s_3) \subseteq O \land \#s = \#s_3 \]
\[\forall i : \text{dom } s \] \[\exists r : \mathbb{R} \bullet \text{value}(s_3(i)) - \text{value}(s(i)) < \epsilon \land \]
\[-\epsilon < r < \epsilon \]

[arithmetic]

\[\square \]

Lemma B.6 (setapprox(\(\epsilon\)) reflexivity).

\[\forall r : \mathbb{P} \text{ Event} \mid r \subseteq (I \cup O) \bullet r \text{ setapprox}(\epsilon) r \]

given \(\epsilon\) is a non-negative real number.

Proof.

\[r \text{ setapprox}(\epsilon) r \]
\[= \forall r_1, r_2, r : \mathbb{P}\text{Event} | r_2 = r_1 \cap (I \cup O) \land \#r = \#r_2 \bullet \]
\[(r_1, r) \in \text{setapprox}(\epsilon) \iff \forall e : r_2 \bullet \]
\[\begin{align*}
(e \in I \iff e \in r) \land \\
(e \in O \iff \exists e_1 : r \bullet ev(e) = ev(e_1) \land \\
\exists c : (-\epsilon, \epsilon) \bullet value(e) = value(e_1) + c)
\end{align*}
\]
\[r_1 = r\]

[\text{setapprox}(\epsilon) \text{ definition 4.7}]

\[= \forall r, r_2 : \mathbb{P}\text{Event} | r_2 = r \cap (I \cup O) \land \#r = \#r_2 \bullet \]
\[(r, r) \in \text{setapprox}(\epsilon) \iff \forall e : r_2 \bullet \]
\[\begin{align*}
(e \in I \iff e \in r) \land \\
(e \in O \iff \exists e_1 : r \bullet ev(e) = ev(e_1) \land \\
\exists c : (-\epsilon, \epsilon) \bullet value(e) = value(e_1) + c)
\end{align*}\]

\[\text{[equality substitution]}\]

\[= \forall r : \mathbb{P}\text{Event} \bullet \]
\[(r, r) \in \text{setapprox}(\epsilon) \iff \forall e : r \bullet \]
\[\begin{align*}
(e \in I \iff e \in r) \land \\
(e \in O \iff ev(e) = ev(e) \land \\
\exists c : (-\epsilon, \epsilon) \bullet value(e) = value(e) + c)
\end{align*}\]

\[\text{[select witness for } e_1: e\text{]}\]

\[= \forall r : \mathbb{P}\text{Event} \bullet \]
\[(r, r) \in \text{setapprox}(\epsilon) \iff \forall e : r \bullet \]
\[\begin{align*}
(e \in O \iff \exists c : (-\epsilon, \epsilon) \bullet value(e) = value(e) + c)
\end{align*}\]

\[\text{[discharge input constraint and } ev(e) = ev(e)\text{]}\]

\[= \forall r : \mathbb{P}\text{Event} \bullet \]
\[(r, r) \in \text{setapprox}(\epsilon) \iff \forall e : r \bullet \]
\[\begin{align*}
(e \in O \iff value(e) = value(e) + 0)
\end{align*}\]

\[\text{[witness for } c: 0\text{]}\]

\[= \forall r : \mathbb{P}\text{Event} \bullet \]
\[(r, r) \in \text{setapprox}(\epsilon) \iff \forall e : r \bullet \]
\[\begin{align*}
true
\end{align*}\]

\[\text{[arithmetic]}\]
Lemma B.7 \(\text{setapprox}(\epsilon)\) output events.

\[
\forall r_1, r : \text{seq Event} \mid (r_1 \cup r) \subseteq O \land \#r_1 = \#r \bullet r_1 \text{ setapprox}(\epsilon) \iff \forall e : r_1 \bullet \exists e_1 : r \bullet \left| \text{value}(e) - \text{value}(e_1) \right| < \epsilon
\]

given that \(\epsilon\) is a non-negative real number, and that for every event in \(r_1\), there exists a corresponding event in \(r\) with the same identifier as \(r_1\).

Proof.

\[
\forall r_1, r : \text{seq Event} \mid (r_1 \cup r) \subseteq O \land \#r_1 = \#r \bullet r_1 \text{ setapprox}(\epsilon) \iff \forall e : r_1 \bullet \exists e_1 : r \bullet \left| \text{value}(e) - \text{value}(e_1) \right| < \epsilon
\]

[setapprox(\epsilon), Definition 4.7]

\[
\forall r_2 : \mathcal{P}\text{ Event} \mid r_2 = r_1 \cap (I \cup O) \land \#r = \#r_2 \bullet \forall e : r_2 \bullet (e \in I \iff e \in r) \land (e \in O \iff \exists e_1 : r : ev(e) = ev(e_1) \land \exists c : (-\epsilon, \epsilon) \bullet \text{value}(e) = \text{value}(e_1) + c)
\]

[r_2 = r_1, r_1 \subseteq O]

[\text{from predicate } r_1 \subseteq O]

[assumption about event]

[definition of open interval]

[existential quantification laws]
\[\forall r_1, r : \text{seq Event} \mid (r_1 \cup r) \subseteq O \land \#r_1 = \#r \land \forall e : r_1 \bullet \exists e_1 : r \bullet \exists c : \mathbb{R} \bullet c = \text{value}(e) - \text{value}(e_1) \land -\epsilon < c < \epsilon \]

[arithmetic]

\[\forall r_1, r : \text{seq Event} \mid (r_1 \cup r) \subseteq O \land \#r_1 = \#r \land \forall e : r_1 \bullet \exists e_1 : r \bullet -\epsilon < \text{value}(e) - \text{value}(e_1) < \epsilon \]

[one-point rule on c]

\[\forall r_1, r : \text{seq Event} \mid (r_1 \cup r) \subseteq O \land \#r_1 = \#r \land \forall e : r_1 \bullet \exists e_1 : r \bullet |\text{value}(e) - \text{value}(e_1)| < \epsilon \]

Lemma B.8. Given an event \(c \, i \, v \), a communication on the channel \(c \), where \(v \) is of a type \(V \), the following holds for all \(i \in 1 \ldots n \), where \(n \geq 1 \):

\[
; i : 1 \ldots n \bullet \Box v \in V \bullet \text{Do}(c.i.v) = \]

\[\text{[true]}\]

\[
\exists s : \text{seq Event} \mid \#s = n \land (\forall i : 1 \ldots n \bullet \exists v \in V \bullet s \, i = c.i.v) \bullet \]

\[tt \, \text{prefix} \, s \land \#tt < \#s \land \text{wait} \land \text{ref} \subseteq \{s \,(\#tt + 1)\} \land \]

\[tt = s \land \neg \text{wait} \]

Lemma B.9. Given an expression \(e(i, j) \), of type Event, where \(i \in 1 \ldots n \), and \(j \in 1 \ldots E(i) \), where \(E(i) \) is an expression returning a natural number, based on \(i \), where, for all \(n \geq 1 \) and \(m \geq 1 \), the following holds:

\[
; i : 1 \ldots n \bullet (; j : 1 \ldots E(i) \bullet \text{Do}(e(i, j))) = \]

\[\text{[true]}\]

\[
\exists i : 1 \ldots n \bullet \exists j : 1 \ldots E(i) \bullet \]

\[E[(\land / pi : 1 \ldots (i - 1); pj : 1 \ldots E(pi) \bullet (e(pi, pj))) \land \land / cj : 1 \ldots (j - 1) \bullet (e(i, cj)), \]

\[\{e(i, j)\}] \]

\[\Phi[\land / i : 1 \ldots n; j : 1 \ldots E(i) \bullet (e(i, j))] \]

First, though, we define a simple function which hides events from sequences of events.

Definition B.7 (Sequence Hiding).

\[
\forall s : \text{seq } X; E : X \rightharpoonup X \bullet s \, \text{shide} \, E = s \upharpoonright (\text{ran} \, s \setminus E)
\]
To illustrate, consider the expression $\langle a, b, c \rangle \ \text{shide} \ {b}$, here: ran s is $\{a, b, c\}$, E is $\{b\}$, and therefore ran $s \setminus E$ is $\{a, b\}$, so in the definition above, we get $\langle a, b, c \rangle \mid \{a, c\}$, which is $\langle a, c \rangle$.

Given this definition, we now define notation to capture hiding for our ANN contracts. As our hiding is specific to a type of reactive contract, we require a different operator for pre, peri, and postcondition hiding. Still, since we have a true precondition, we only need operators for the peri and postconditions. We denote our hiding operators for the peri and postconditions using \setminus_{peri} and \setminus_{post}, and we present their characteristic predicates below.

Definition B.8 (ANN Contract Event Hiding). Given a hidden event set E, and that no input event is hidden.

$$\begin{align*}
\text{GeneralANNContract}_2 \setminus_{\text{peri}} E \iff & \#\text{input} < \text{insize} \land E[\text{input}, \{\mid \text{layerRes}.0.(\#\text{input} + 1) \}] \\
\lor & \#\text{input} = \text{insize} \land \\
& \exists l : 1..\text{layerNo} \bullet \exists n : 1..\text{layerSize}(l) \bullet \\
& \text{CRR} (tt = (\text{front} \circ \text{layeroutput}(l, n)) \ \text{shide} E \land \text{last} \circ \text{layeroutput}(l, n) \notin E \cup \text{ref}^{'})
\end{align*}$$

$$\text{GeneralANNContract}_3 \setminus_{\text{post}} E \iff \#\text{input} = \text{insize} \land \Phi[\text{layeroutput}(\text{layerNo}, \text{layerSize}(\text{layerNo})) \ \text{shide} E]$$

Our \setminus_{post} definition is fairly straightforward. We apply the shide function to the complete trace of our ANN contracts, given by layeroutput (Definition 4.2), as discussed. For example, suppose we have an ANN with input $\langle 1, 1 \rangle$, $\text{layerNo} = 2$ and one output node.

Example B.1 (Postcondition Hiding Example).

$$\begin{align*}
\#\text{input} &= \text{insize} \land \Phi[\text{layeroutput}(2, 1)] \setminus_{\text{post}} \{\mid \text{layerRes}.1 \} \\
&= \#\text{input} = \text{insize} \land \Phi[\text{layeroutput}(2, 1) \ \text{shide} \ {\mid \text{layerRes}.1}] \\
&= \#\text{input} = \text{insize} \land \Phi[\langle \text{layerRes}.0.1.1, \text{layerRes}.0.2.1, \text{layerRes}.1.1.1, \text{layerRes}.2.1.1 \rangle \ \text{shide} \ {\mid \text{layerRes}.1}] \\
&= \#\text{input} = \text{insize} \land \Phi[\langle \text{layerRes}.0.1.1, \text{layerRes}.0.2.1, \text{layerRes}.1.1.1, \text{layerRes}.2.1.1 \rangle \setminus \{\mid \text{layerRes}.1\}] \\
&= \#\text{input} = \text{insize} \land \Phi[\langle \text{layerRes}.0.1.1, \text{layerRes}.0.2.1, \text{layerRes}.2.1.1 \rangle] \\
&= \#\text{input} = \text{insize} \land \Phi[\langle \text{layerRes}.0.1.1, \text{layerRes}.0.2.1, \text{layerRes}.2.1.1 \rangle]
\end{align*}$$

However, our pericondition hiding operator, denoted by \setminus_{peri}, is more involved. First, we do not permit the hiding of input events, as, in an ANN, this introduces nondeterminism. Moreover, in this context, hiding is used to hide the events of the hidden layers.

In our general pattern, presented in Definition 4.1, we capture each node’s output event by a single predicate formed by the reactive relational operator $E[t, A]$. This operator, as discussed, specifies that $tt = t$ and that no event in the set A is in the refusal set,
meaning those events are accepted. Further, this operator applies the healthiness-condition CRR (Definition B.14) to denote that this relation is a stateful-failure reactive relation; more details are in [28].

When considering hiding, we can remove those hidden events from the trace using \(shide \), as in the postcondition hiding operator. In the refusals, however, if we remove those events in set \(E \) from the acceptance set \(A \), in a state where we only accept hidden events, we obtain a condition of the form \(E[t, \{} \). This is a problem as we now have a state in which no event is accepted, but there is a restriction on \(tt \); in other words, we introduce deadlock. Further, we present a nondeterministic chance of deadlock whenever events are hidden because we hide events from the trace \(t \) using \(shide \).

To address this, we define a new condition to capture each node’s output instead of using \(E \), which is also CRR-healthy. This condition sets \(tt \) to the trace up to this node, given by \(front \circ layeroutput(...) \), with the hidden events removed using \(shide \), as in the postcondition. In this condition, we also specify that the output event of the node, denoted by \(last \circ layeroutput(l, n) \), is not contained within the union of the hidden event set \(E \) and the refusals set \(ref' \). So, when considering a state where the output event of a node is hidden, this condition evaluates to \(false \) instead of evaluating to \(tt = t \wedge {} \notin ref' \), which is deadlock. In other words, this state is no longer considered a stable state of the reactive contract.

We describe, below, an example illustrating the application of \(\peri \) using the same ANN as used in Example B.1 and the same hidden events.

Example B.2 (Pericondition Hiding Example).

\[
\begin{align*}
(#input < insize \land E[input, \{\mid layerRes.0.(#input + 1)\}]) \lor \\
\#input = insize \land \\
\exists l : 1..2 \cdot \exists n : 1..layerSize(l) \cdot \\
E[front \circ layeroutput(l, n), \{last \circ layeroutput(l, n)\}] \\
\backslash post \{\mid layerRes.1\} \\
= (#input < insize \land E[input, \{\mid layerRes.0.(#input + 1)\}]) \lor \\
\#input = insize \land \\
(E[front \circ layeroutput(1, 1), \{last \circ layeroutput(1, 1)\}] \lor \\
E[front \circ layeroutput(2, 1), \{last \circ layeroutput(2, 1)\}]) \\
\backslash post \{\mid layerRes.1\} \\
\text{[unfolding existential quantifiers]} \\
= (#input < insize \land E[input, \{\mid layerRes.0.(#input + 1)\}]) \lor \\
\#input = insize \land \\
(\forall (layerRes.0.1.1, layerRes.0.2.1), \{layerRes.1.1.1\} \lor \\
E[(layerRes.0.1.1, layerRes.0.2.1, layerRes.1.1.1), \{layerRes.2.1.1\}]) \\
\backslash post \{\mid layerRes.1\} \\
\text{[Def.4.2]}
\end{align*}
\]
= \#\text{input} < \text{insize} \land \mathcal{E}[\text{input}, \{ | \text{layerRes}.0.0(\#\text{input} + 1) | \}] \lor \quad \text{[Def.B.8]}
\#\text{input} = \text{insize} \land
(CRR(\text{tt} = (\text{layerRes}.0.1.1, \text{layerRes}.0.2.1) \text{shide} \{ | \text{layerRes}.1 | \} \land
\text{layerRes}.1.1.1 \notin \{ | \text{layerRes}.1 | \} \lor \text{ref}')
\lor
CRR(\text{tt} = (\text{layerRes}.0.1.1, \text{layerRes}.0.2.1, \text{layerRes}.1.1.1)
\text{shide} \{ | \text{layerRes}.1 | \}
\land
\text{layerRes}.1.1.1 \notin \{ | \text{layerRes}.1 | \} \lor \text{ref}')
= \#\text{input} < \text{insize} \land \mathcal{E}[\text{input}, \{ | \text{layerRes}.0.0(\#\text{input} + 1) | \}] \lor \quad \text{[logic]}
\#\text{input} = \text{insize} \land
(CRR(\text{false}) \lor
CRR(\text{tt} = (\text{layerRes}.0.1.1, \text{layerRes}.0.2.1, \text{layerRes}.1.1.1)
\text{shide} \{ | \text{layerRes}.1 | \}
\land
\text{layerRes}.1.1.1 \notin \{ | \text{layerRes}.1 | \} \lor \text{ref}')
= \#\text{input} < \text{insize} \land \mathcal{E}[\text{input}, \{ | \text{layerRes}.0.0(\#\text{input} + 1) | \}] \lor \quad \text{[false is CRR-healthy]}
\#\text{input} = \text{insize} \land
(CRR(\text{tt} = (\text{layerRes}.0.1.1, \text{layerRes}.0.2.1, \text{layerRes}.1.1.1)
\text{shide} \{ | \text{layerRes}.1 | \}
\land
\text{layerRes}.1.1.1 \notin \{ | \text{layerRes}.1 | \} \lor \text{ref}')
= \#\text{input} < \text{insize} \land \mathcal{E}[\text{input}, \{ | \text{layerRes}.0.0(\#\text{input} + 1) | \}] \lor \quad \text{[evaluate shide]}
\#\text{input} = \text{insize} \land
(CRR(\text{tt} = (\text{layerRes}.0.1.1, \text{layerRes}.0.2.1)
\land
\text{layerRes}.1.1.1 \notin \{ | \text{layerRes}.1 | \} \lor \text{ref}')
= \#\text{input} < \text{insize} \land \mathcal{E}[\text{input}, \{ | \text{layerRes}.0.0(\#\text{input} + 1) | \}] \lor \quad \text{[layerRes}.2.1.1 \notin \{ | \text{layerRes}.1 | \} \}
\#\text{input} = \text{insize} \land
(CRR(\text{tt} = (\text{layerRes}.0.1.1, \text{layerRes}.0.2.1)
\land
\text{layerRes}.2.1.1 \notin \text{ref}')
Theorem B.1

\[[\vdash P_2 \mid P_3] \wedge [\vdash Q_2 \mid Q_3] = [\vdash P_2 \mid (P_3 \wedge Q_2)] \mid P_3 \mid Q_3 \]

Definition B.9 (Reactive Operators).

\[
\begin{align*}
Do(a) & \equiv [true, \vdash E[true, \langle \rangle, \{a\}] \mid \Phi[true, id, \langle a\rangle]] \\
Skip & \equiv [true, \vdash false \mid tt = \langle \rangle \wedge st' = st]
\end{align*}
\]

Theorem B.2, Trace Filtering

\[
\begin{align*}
R4(\Phi[s, \sigma, \langle \rangle]) &= false \\
R4(\Phi[s, \sigma, \langle a, \ldots \rangle]) &= \Phi[s, \sigma, \langle a, \ldots \rangle] \\
R5(\mathcal{E}[s, \langle \rangle, E]) &= \mathcal{E}[s, \langle \rangle, E] \\
R5(\mathcal{E}[s, \langle a, \ldots \rangle, E]) &= false
\end{align*}
\]

Definition 6.1 from [113].

The next section presents the laws of the UTP reactive contract calculus that we rely on in this work.

B.2 Existing Laws

Here, we present definitions and theorems from work by Foster et al. in [28] and [113]. All reactive contracts we use in this work are NCSP-healthy, as we use them to capture CSP processes.

First, we present the basic reactive operators used to construct the contracts capturing our CSP processes. These definitions are extracted from Definition 4.7 and Definition 2.10 from [28].

Definition B.9 (Reactive Operators).

\[
\begin{align*}
Do(a) & \equiv [true, \vdash E[true, \langle \rangle, \{a\}] \mid \Phi[true, id, \langle a\rangle]] \\
Skip & \equiv [true, \vdash false \mid tt = \langle \rangle \wedge st' = st]
\end{align*}
\]

Next, we present selected laws for the sequential composition of reactive contracts from Theorem 2.17 and Theorem 4.8 in [28].

Theorem B.1 (Reactive Contract Sequential Composition).

Definition 5.1 from [28].

Definition B.10. Indexed External Choice

\[
\begin{align*}
\square i \in I \cdot [P_1(i) \vdash P_2(i) \mid P_3(i)] & \equiv \\
[\wedge i \in I \cdot P_1(i) \vdash (\wedge i \in I \cdot R5(P_2(i))) \wedge (\exists i \in I \cdot R4(P_2(i))) \mid \wedge i \in I \cdot P_3(i)]
\end{align*}
\]

Theorem 5.2 from [28].

Theorem B.2. Trace Filtering

\[
\begin{align*}
R4(\Phi[s, \sigma, \langle \rangle]) &= false \\
R4(\Phi[s, \sigma, \langle a, \ldots \rangle]) &= \Phi[s, \sigma, \langle a, \ldots \rangle] \\
R5(\mathcal{E}[s, \langle \rangle, E]) &= \mathcal{E}[s, \langle \rangle, E] \\
R5(\mathcal{E}[s, \langle a, \ldots \rangle, E]) &= false
\end{align*}
\]

Definition 6.1 from [113].
Definition B.11. Pre-, Peri- and postcondition extraction functions

\[
\begin{align*}
pre_R(P) & \triangleq \neg_r P[\text{true, false, false/ok, ok', wait}] \\
peri_R(P) & \triangleq P[\text{true, true, false/ok, ok', wait, wait'}] \\
post_R(P) & \triangleq P[\text{true, true, false/ok, ok', wait, wait'}]
\end{align*}
\]

Theorem 6.2 from [28].

Theorem B.3. Condition extraction on reactive contracts

\[
\begin{align*}
pre_R([P_1 \vdash P_2 | P_3]) & = P_1 \\
peri_R([P_1 \vdash P_2 | P_3]) & = P_1 \Rightarrow_r P_2 \\
post_R([P_1 \vdash P_2 | P_3]) & = P_1 \Rightarrow_r P_3
\end{align*}
\]

Given \(P_1, P_2 \) and \(P_3 \) are RR healthy.

Definition B.12. Extraction function abbreviations

\[
\begin{align*}
(P)_1 & \triangleq pre_R(P) \\
(P)_2 & \triangleq peri_R(P) \\
(P)_3 & \triangleq post_R(P)
\end{align*}
\]

Definition 2.12 from [28].

Definition B.13.

\[
[P_1 \vdash P_2 | P_3] \triangleq R_1 \circ R_2 \circ R_{3h}(\text{ok} \land P_1 \Rightarrow \text{ok'} \land (P_2 \triangleleft \text{wait'} \triangleright P_3))
\]

Definition 4.6 from [28].

Definition B.14.

\[
\begin{align*}
I[s(st), t(st)] & \triangleq CRC(s(st) \Rightarrow_r t(st) \leq tt)) \\
E[s(st), t(st)] & \triangleq CRR(s(st) \land tt = t(st) \land (\forall e \in E(st) \bullet e \notin ref')) \\
\Phi[s(st), \sigma, t(st)] & \triangleq CRF(s(st) \land st' = \sigma(st) \land tt = t(st))
\end{align*}
\]

Definition 2.1 from [113].

Definition B.15.

\[
P \sqsubseteq Q \triangleq [Q \Rightarrow P] \text{ where } \alpha(P) = \alpha(Q)
\]

if \(\alpha(P) = \{x_1 \ldots x_n\} \) then \([P] \triangleq (\forall x_1 \ldots x_n \bullet P)

Theorem 2.16 from [28].

Theorem B.4 (Reactive Design Refinement).

\[
[P_1 \vdash P_2 | P_3] \sqsubseteq [Q_1 \vdash Q_2 | Q_3] \text{ if, and only if, } Q_1 \sqsubseteq P_1, \ P_2 \sqsubseteq (Q_2 \land P_1), \text{ and } P_3 \sqsubseteq (Q_3 \land P_1)
\]
Appendix C

ANN Component Conformance Lemmas

Lemma C.1.

\[\neg \exists x_1, \ldots, x_{\text{insize}} : \text{Value} \cdot \exists y_1, \ldots, y_{\text{outsize}} : \text{Value} \cdot \exists i : 1 \ldots \text{outsize} \cdot \{ \text{annoutput}(layerNo, i, (x_1, \ldots, x_{\text{insize}})) \} \cap \{ x : \mathbb{R} \mid |x - y_i| < \epsilon \} = \emptyset \]

\[\Rightarrow [(Q_2 \setminus \text{peri ANNHiddenEvts})[\text{inp}/\text{layerRes}.0, \text{out}/\text{layerRes}.layerNo] \Rightarrow \]

\[\exists s : \text{seq Event}; a : \mathbb{P} \text{ Event} \mid tt \text{ seqapprox}(\epsilon) s \land (\alpha P \setminus \text{ref}') \text{ setapprox}(\epsilon) a \cdot P_2[s, \alpha P \setminus a/tt, \text{ref}']] \]

Proof.

\[[(Q_2 \setminus \text{peri ANNHiddenEvts})[\text{inp}/\text{layerRes}.0, \text{out}/\text{layerRes}.layerNo] \Rightarrow \]

\[\exists s : \text{seq Event}, a : \mathbb{P} \text{ Event} \mid tt \text{ seqapprox}(\epsilon) s \land (\alpha P \setminus \text{ref}') \text{ setapprox}(\epsilon) a \cdot P_2[s, \alpha P \setminus a/tt, \text{ref}']] \]

\[= \forall st, st', wait, wait', ref, ref', ok, ok', tr, tr', tt \cdot \]

\[Q_2 \setminus \text{peri ANNHiddenEvts}[\text{inp}/\text{layerRes}.0, \text{out}/\text{layerRes}.layerNo] \Rightarrow \]

\[\exists s; a \mid tt \text{ seqapprox}(\epsilon) s \land (\alpha P \setminus \text{ref}') \text{ setapprox}(\epsilon) a \cdot P_2[s, \alpha P \setminus a/tt, \text{ref}'] \]

\[= \forall st, st', wait, wait', ref, ref', ok, ok', tr, tr', tt \cdot \]

\[(ok \land ok' \land \neg wait \land wait' \land st' = st \land \#\text{input} < \text{insize} \land E[\text{input}, \{ | \text{layerRes}.0.(\#\text{input} + 1) |]}) \]

\[\lor \]

\[\#\text{input} = \text{insize} \land \exists l : 1..\text{layerNo} \cdot \exists n : 1..\text{layerSize}(l) \cdot \]

\[\text{CRR(tt = (front \circ \text{layeroutput}(l, n)) \text{ shide ANNHiddenEvts } \land } \]

\[\text{last } \circ \text{layeroutput}(l, n) \notin \text{ANNHiddenEvts } \cup \text{ref}') \]

\[)[\text{inp}/\text{layerRes}.0, \text{out}/\text{layerRes}.layerNo] \Rightarrow \]

\[\exists s; a \mid tt \text{ seqapprox}(\epsilon) s \land (\alpha P \setminus \text{ref}') \text{ setapprox}(\epsilon) a \cdot P_2[s, \alpha P \setminus a/tt, \text{ref}'] \]

[unfolding Q2: percondition extraction (_2) and hiding, Definition B.8]
= ∀ st, st', wait, wait', ref, ref', ok, ok', tr, tr', tt •
 (ok \& ok' \& \neg wait \& wait' \& st' = st \&
 #input < insize \& \mathcal{E}[input, \{ | layerRes.0.(#input + 1) |]]
\lor
#input = insize \land
\exists l : 1..layerNo \land \exists n : 1..layerSize(l) •
 CRR(tt = (front \circ layeroutput(l, n)) \shide ANNHiddenEvts \land
 last \circ layeroutput(l, n) \notin ANNHiddenEvts \cup ref')
\lor
\exists s; a | tt seqapprox(e) s \land (\alpha P \setminus ref') setapprox(e) a •
 \exists x_1, \ldots, x_{#inp}; y_1, \ldots, y_{#out} | p •
 (ok \& ok' \& \neg wait \& wait' \& st' = st \land
 \exists i : dom inp • tt = \langle/ j : 1..(i - 1) • \langle inp(j).x_j \rangle \land
 inp(i).x_i \notin ref'
\lor
\exists i : dom out • tt = \langle/ n : dom inp • \langle inp(n).x_n \rangle \langle/ j : 1..(i - 1) • \langle out(j).y_j \rangle \land
 out(i).y_i \notin ref'
\rangle[s, \alpha P \setminus a/ tt, ref']

[unfolding P_2: percondition extraction (_2) and Definition 4.4]

= ∀ ref, ref', tr, tr', tt •
 (#input < insize \& \mathcal{E}[input, \{ | layerRes.0.(#input + 1) |]])
\lor
#input = insize \land
\exists l : 1..layerNo \land \exists n : 1..layerSize(l) •
 CRR(tt = (front \circ layeroutput(l, n)) \shide ANNHiddenEvts \land
 last \circ layeroutput(l, n) \notin ANNHiddenEvts \cup ref')
\lor
\exists s; a | tt seqapprox(e) s \land (\alpha P \setminus ref') setapprox(e) a •
 \exists x_1, \ldots, x_{#inp}; y_1, \ldots, y_{#out} | p •
 (\exists i : dom inp • tt = \langle/ j : 1..(i - 1) • \langle inp(j).x_j \rangle \land
 inp(i).x_i \notin ref'
\lor
\exists i : dom out • tt = \langle/ n : dom inp • \langle inp(n).x_n \rangle \langle/ j : 1..(i - 1) • \langle out(j).y_j \rangle \land
 out(i).y_i \notin ref'
\rangle[s, \alpha P \setminus a/ tt, ref']

[one-point rule on ok, ok', wait, wait', st]
\[
\forall \text{ref}, \text{ref}', tr, tr', tt \cdot
\begin{align*}
(&\#\text{input} < \text{insize} \land tt = \text{input} \land \{ | layerRes.0.(#\text{input} + 1) | \} \cap \text{ref}' = \emptyset) \\
\lor
\#\text{input} = \text{insize} \land \\
\exists l : 1..layerNo \cdot \exists n : 1..layerSize(l) \\
\quad tt = (\text{front} \circ layeroutput(l, n)) \text{shide ANNHiddenEvts} \land \\
\quad \text{last} \circ layeroutput(l, n) \notin \text{ANNHiddenEvts} \cup \text{ref}')
\end{align*}
\]

\[
)\{\text{inp}/layerRes.0, \text{out}/layerRes.layerNo\} \Rightarrow \\
\exists \; a | tt \text{seqapprox}(e) \; s \land (\alpha P \setminus \text{ref}') \text{setapprox}(e) \; a \cdot
\]

\[
\exists x_1, \ldots, x_{#\text{imp}}; y_1, \ldots, y_{#\text{out}} \cdot
\begin{align*}
(\exists i : \text{dom \text{inp}} \cdot \\
\quad tt = \sim/j : 1..(i - 1) \cdot \langle \text{inp}(j).x_j \rangle \land \\
\quad \text{inp}(i).x_i \notin \text{ref}') \\
\lor
\end{align*}
\]

\[
\exists i : \text{dom \text{out}} \cdot \\
\quad tt = \sim/n : \text{dom \text{inp}} \cdot \langle \text{inp}(n).x_n \rangle \land \\
\quad \sim/j : 1..(i - 1) \cdot (\text{out}(j).y_j) \land \\
\quad \text{out}(i).y_i \notin \text{ref}')
\]

\[
)\{s, \alpha P \setminus a/\text{tt}, \text{ref}'\}
\]

[CRR healthiness and unfold E, Definition B.14]

\[
= \forall \text{ref}, \text{ref}', tr, tr', tt \cdot
\begin{align*}
(\exists x_1, \ldots, x_{\text{insize}} \cdot \\
\exists i : 1..\text{insize} \cdot \\
\quad tt = \sim/j : 1..(i - 1) \cdot \langle \text{layerRes.0}.j.x_j \rangle \land \\
\quad \text{layerRes.0}.i.x_i \notin \text{ref}') \\
\lor
\end{align*}
\]

\[
\exists l : 1..layerNo \cdot \exists n : 1..layerSize(l) \\
\quad tt = \text{front} \circ layeroutput(l, n) \text{shide ANNHiddenEvts} \land \\
\quad \text{last} \circ layeroutput(l, n) \notin \text{ANNHiddenEvts} \cup \text{ref}')
\]

\[
)\{\text{inp}/layerRes.0, \text{out}/layerRes.layerNo\} \Rightarrow \\
\exists \; a | tt \text{seqapprox}(e) \; s \land (\alpha P \setminus \text{ref}') \text{setapprox}(e) \; a \cdot
\]

\[
\exists x_1, \ldots, x_{#\text{imp}}; y_1, \ldots, y_{#\text{out}} \cdot
\begin{align*}
(\exists i : \text{dom \text{inp}} \cdot \\
\quad tt = \sim/j : 1..(i - 1) \cdot \langle \text{inp}(j).x_j \rangle \land \\
\quad \text{inp}(i).x_i \notin \text{ref}') \\
\lor
\end{align*}
\]

\[
\exists i : \text{dom \text{out}} \cdot \\
\quad tt = \sim/n : \text{dom \text{inp}} \cdot \langle \text{inp}(n).x_n \rangle \land \\
\quad \sim/j : 1..(i - 1) \cdot (\text{out}(j).y_j) \land \\
\quad \text{out}(i).y_i \notin \text{ref}')
\]

\[
)\{s, \alpha P \setminus a/\text{tt}, \text{ref}'\}
\]

[assumption about \text{input}]

APPENDIX C. ANN COMPONENT CONFORMANCE LEMMAS

142
\[
\forall ref', tr, tr', tt \bullet \\
(\exists x_1, \ldots, x_{\text{insize}} \bullet \\
\exists i : 1..\text{insize} \bullet \\
\quad tt = ^/ j : 1..(i-1) \bullet (\text{layerRes}.0.j.x_j) \wedge \\
\quad \text{layerRes}.0.i.x_i \notin \text{ref}' \\
\lor \\
\exists l : 1..\text{layerNo} \bullet \exists n : 1..\text{layerSize}(l) \bullet \\
\quad tt = \text{front} \circ \text{layeroutput}(l, n) \text{ shide ANNHiddenEvts} \wedge \\
\quad \text{last} \circ \text{layeroutput}(l, n) \notin \text{ANNHiddenEvts} \cup \text{ref}' \\
) \text{[inp/layerRes.0, out/layerRes.layerNo]} \Rightarrow \\
\exists s; a | tt \text{ seqapprox}(e) s \wedge (\alpha P \setminus \text{ref}') \text{ setapprox}(e) a \bullet \\
\exists x_1, \ldots, x_{\#\text{inp}}; y_1, \ldots, y_{\#\text{out}} | p \bullet \\
(\exists i : \text{dom inp} \bullet \\
\quad tt = ^/ j : 1..(i-1) \bullet (\text{ inp}(j).x_j) \wedge \\
\quad \text{inp}(i).x_i \notin \text{ref}' \\
\lor \\
\exists i : \text{dom out} \bullet \\
\quad tt = ^/ n : \text{dom inp} \bullet (\text{inp}(n).x_n)^/ \\
\quad ^/ j : 1..(i-1) \bullet (\text{out}(j).y_j) \wedge \\
\quad \text{out}(i).y_i \notin \text{ref}' \\
) [s, \alpha P \setminus a/\text{tt}, \text{ref}'] \\
\text{[ref not referred to in periconditions, CRR healthiness condition [113]]}
\]
\[\forall \; \text{ref}', \; tr, \; tr', \; tt \bullet \]
\[
 (\exists \; x_1, \ldots, x_{\text{insize}} \bullet \\
 \exists \; i : 1 \ldots \text{insize} \bullet \\
 \quad \quad tt = \sim / j : 1 \ldots (i - 1) \bullet \langle \text{layerRes.0}.j.x_j \rangle \land \\
 \quad \quad \text{layerRes.0}.i.x_i \notin \text{ref}' \land \\
 \quad \quad \forall \; \exists \; l : 1 \ldots \text{layerNo} \bullet \exists \; n : 1 \ldots \text{layerSize}(l) \bullet \\
 \quad \quad \quad tt = \sim / \text{in} : 1 \ldots \text{insize} \bullet \\
 \quad \quad \quad \langle \text{layerRes.0}.\text{in}.x_{\text{in}} \rangle \\
 \quad \quad \quad \sim / \text{p}_l : 1 \ldots l - 1 \bullet \\
 \quad \quad \quad \quad \sim / \text{p}_n : 1 \ldots \text{layerSize}(\text{p}_l) \bullet \\
 \quad \quad \quad \quad \quad \langle \text{nodeoutput}(\text{p}_l, \text{p}_n, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle \\
 \quad \quad \quad \sim / \text{p}_n : 1 \ldots n - 1 \bullet \\
 \quad \quad \quad \langle \text{nodeoutput}(l, \text{p}_n, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle \\
 \quad \quad \quad \text{shide ANNHiddenEvts} \\
 \quad \quad \quad \land \\
 \quad \quad \quad \langle \text{nodeoutput}(l, n, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle \notin \text{ANNHiddenEvts} \cup \text{ref}' \rangle [\text{inp}/\text{layerRes.0}, \text{out}/\text{layerRes.layerNo}] \Rightarrow \\
\]
\[
 \exists \; s; \; a \mid tt \; \text{seqapprox}(\epsilon) \; s \land (\alpha P \setminus \text{ref}') \; \text{setapprox}(\epsilon) \; a \bullet \\
 \exists \; x_1, \ldots, x_{\#\text{inp}}; \; y_1, \ldots, y_{\#\text{out}} \mid p \bullet \\
 \quad (\exists \; i : \text{dom} \; \text{inp} \bullet \quad tt = \sim / j : 1 \ldots (i - 1) \bullet \langle \text{inp}(j).x_j \rangle \land \\
 \quad \quad \text{inp}(i).x_i \notin \text{ref}' \land \\
 \quad \quad \forall \; \exists \; i : \text{dom} \; \text{out} \bullet \quad tt = \sim / n : \text{dom} \; \text{inp} \bullet \langle \text{inp}(n).x_n \rangle \sim \\
 \quad \quad \quad \sim / j : 1 \ldots (i - 1) \bullet \langle \text{out}(j).y_j \rangle \land \\
 \quad \quad \quad \text{out}(i).y_i \notin \text{ref}' \rangle [s, \alpha P \setminus a/tt, \text{ref}']
\]
\[
\forall ref', tr, tr', tt \bullet
(\exists x_1, \ldots, x_{\text{insize}} \bullet
\exists i : 1..\text{insize} \bullet
\begin{align*}
\forall & & \\tt = \searrow j : 1..(i-1) \bullet (\text{layerRes}.0.j.x_j) \land \\
& & \text{layerRes}.0.i.x_i \notin ref' \\
\lor & & \exists l : 1..\text{layerNo} \bullet \exists n : 1..\text{layerSize}(l) \bullet \\
& & \tt = \searrow in : 1..\text{insize} \bullet \\
& & \langle \text{layerRes}.0.in.x_{\text{in}} \rangle \land \\
& & \langle p_l : 1..l - 1 \bullet \\
& & \langle p_n : 1..\text{layerSize}(p_l) \bullet \\
& & \langle \text{layerRes}.p_l.p_n.\text{annoutput}(p_l, p_n, (x_1, \ldots, x_{\text{insize}})) \rangle \land \\
& & \langle p_n : 1..n - 1 \bullet \\
& & \langle \text{layerRes}.l.p_n.\text{annoutput}(l, p_n, (x_1, \ldots, x_{\text{insize}})) \rangle \rangle \\
\land & & \text{shide ANNHiddenEvts} \\
\land & & \langle \text{layerRes}.l.n.\text{annoutput}(l, n, (x_1, \ldots, x_{\text{insize}})) \rangle \notin \text{ANNHiddenEvts} \cup ref' \\
\rangle[\text{inp}/\text{layerRes}.0, \text{out}/\text{layerRes}.\text{layerNo}] \Rightarrow \\
\exists s; a \mid tt \text{ seqapprox}(\epsilon) s \land (\alpha P \setminus ref') \text{ setapprox}(\epsilon) a \bullet \\
(\exists x_1, \ldots, x_{\#\text{inp}}; y_1, \ldots, y_{\#\text{out}} \mid p \bullet \\
(\exists i : \text{dom inp} \bullet \tt = \searrow j : 1..(i-1) \bullet \langle \text{inp}(j).x_j \rangle \land \\
\text{inp}(i).x_i \notin ref' \\
\lor \\
\exists i : \text{dom out} \bullet \tt = \searrow n : \text{dom inp} \bullet \langle \text{inp}(n).x_n \rangle \land \\
\langle j : 1..(i-1) \bullet \langle \text{out}(j).y_j \rangle \land \\
\text{out}(i).y_i \notin ref' \\
\rangle[s, \alpha P \setminus a/\tt, ref']}
\]
∀ ref', tr, tr', tt .
(∃ x₁, ..., x_{insize} •
 ∃ i : 1 .. insize •
 tt = \uparrow/ j : 1..(i − 1) • inp(j)x_j ∧
 inp(i)x_i \notin ref'
 ∨
 ∃ l : 1 .. layerNo − 1 • ∃ n : 1 .. layerSize(l) •
 tt = \uparrow/ in : 1 .. insize •
 inp(in)x_{in} ∧
 \uparrow/ p_l : 1 .. l − 1 •
 \uparrow/ p_n : 1 .. layerSize(p_l) •
 layerRes.p_l.p_n.annoutput(p_l, p_n, \langle x_1, ..., x_{insize}⟩)
 ∧
 \uparrow/ p_n : 1 .. n − 1 •
 \uparrow/ layerNo •
 \uparrow/ out(n).annoutput(layerNo, n, \langle x_1, ..., x_{insize}⟩)

⇒
∃ s; a \mid tt seqapprox(ε) s \land (αP \setminus ref') setapprox(ε) a •
(∃ x₁, ..., x_{#inp}; y₁, ..., y_{#out} •
 (∃ i : dom inp •
 tt = \uparrow/ j : 1..(i − 1) • inp(j)x_j ∧
 inp(i)x_i \notin ref'
 ∨
 ∃ i : dom out •
 tt = \uparrow/ n : dom inp • \langle inp(n).x_n⟩ ∨
 \uparrow/ j : 1..(i − 1) • out(j).y_j ∧
 out(i).y_i \notin ref'
)
)[s, αP \setminus a/tt, ref']
\[
= \forall \text{ref}', \text{tr}, \text{tr}', \text{tt} \cdot \\
(\exists x_1, \ldots, x_{\text{insize}} \cdot \\
 \exists i : 1..\text{insize} \cdot \\
 \quad \text{tt} = \lceil/ \text{tr}' \cdot (\exists j : 1..(i - 1) \cdot \text{inp}(j).x_j \land \text{inp}(i).x_i \notin \text{ref}') \lor \\
 \exists l : 1..\text{layerNo} - 1 \cdot \exists n : 1..\text{layerSize}(l) \cdot \\
 \quad \text{tt} = \lceil/ \text{tr}' \cdot (\exists i : \text{dom}\text{inp} \cdot \text{inp}(i).x_i \notin \text{ref}') \lor \\
 \exists n : 1..\text{layerSize}(\text{layerNo}) \cdot \\
 \quad \text{tt} = \lceil/ \text{tr}' \cdot (\exists i : \text{dom}\text{inp} \cdot \text{inp}(i).x_i \notin \text{ref}') \lor \\
 \exists s; a \mid \text{tt seqapprox}(\epsilon) s \land (\alpha P \setminus \text{ref}') \setapprox(\epsilon) a \cdot \\
 \exists x_1, \ldots, x_{\#\text{inp}}; y_1, \ldots, y_{\#\text{out}} \mid p \cdot \\
 (\exists i : \text{dom} \text{inp} \cdot \text{tt} = \lceil/ \text{tr}' \cdot (\exists j : 1..(i - 1) \cdot \text{inp}(j).x_j \land \text{inp}(i).x_i \notin \text{ref}') \lor \\
 \exists i : \text{dom} \text{out} \cdot \text{tt} = \lceil/ \text{tr}' \cdot (\exists n : \text{dom} \text{inp} \cdot \text{inp}(n).x_n) \land \\
 \quad \lceil/ \text{tr}' \cdot (\exists j : 1..(i - 1) \cdot \text{out}(j).y_j \land \text{out}(i).y_i \notin \text{ref}') \lor \\
 [s, \alpha P \setminus a / \text{tt}, \text{ref}'])
\]

\[\text{[evaluate shide ANNHiddenEvts]}\]
\[
\forall \text{ref}', \text{tr}, \text{tr}', \text{tt} \cdot
\begin{align*}
& (\exists x_1, \ldots, x_{\text{insize}}) \cdot \\
& \exists i : 1 \ldots \text{insize} \\
& \quad tt = \wedge j : 1 \ldots (i - 1) \cdot \langle \text{inp}(j).x_j \rangle \land \\
& \quad \text{inp}(i).x_i \notin \text{ref}' \\
& \lor \\
& \exists l : 1 \ldots \text{layerNo} - 1 \cdot \exists n : 1 \ldots \text{layerSize}(l) \\
& \quad tt = \wedge \text{in} : 1 \ldots \text{insize} \\
& \quad \langle \text{inp}(\text{in}).x_{\text{in}} \rangle \\
& \quad \wedge \\
& \quad \text{false} \\
& \lor \\
& \exists n : 1 \ldots \text{layerSize}(\text{layerNo}) \\
& \quad tt = \wedge \text{in} : 1 \ldots \text{insize} \\
& \quad \langle \text{inp}(\text{in}).x_{\text{in}} \rangle \\
& \quad \wedge \\
& \quad \text{out}(\text{p}_n : 1 \ldots n - 1) \\
& \quad \langle \text{out}(\text{p}_n).\text{annoutput}(\text{layerNo}, \text{p}_n, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle \\
& \quad \land \\
& \quad \text{out}(n).\text{annoutput}(\text{layerNo}, n, \langle x_1, \ldots, x_{\text{insize}} \rangle) \notin \text{ref}' \\
\end{align*}
\]
\[
\Rightarrow \\
\exists s, a \mid \text{tt seqapprox}(\epsilon) s \land (\alpha P \setminus \text{ref}') \text{ setapprox}(\epsilon) a \\
\exists x_1, \ldots, x_{\#\text{inp}}; y_1, \ldots, y_{\#\text{out}} \mid p \\
\quad (\exists i : \text{dom} \text{inp} \cdot \quad tt = \wedge j : 1 \ldots (i - 1) \cdot \langle \text{inp}(j).x_j \rangle \land \\
\quad \text{inp}(i).x_i \notin \text{ref}' \\
\quad \lor \\
\quad \exists i : \text{dom} \text{out} \cdot \quad tt = \wedge n : \text{dom} \text{inp} \cdot \langle \text{inp}(n).x_n \rangle \\
\quad \wedge \\
\quad \text{out}(i).y_i \notin \text{ref}' \\
) [s, \alpha P \setminus a \mid \text{tt}, \text{ref}']
\]
\[
\forall \text{ref}', tr, tr', tt \cdot \\
(\exists x_1, \ldots, x_{\text{insize}} \cdot \\
\exists i : 1 \ldots \text{insize} \cdot \\
\begin{align*}
&tt = \sim/j : 1..(i - 1) \cdot \langle \text{inp}(j).x_j \rangle \\
&\quad \land \\
&\quad \text{inp}(i).x_i \notin \text{ref}' \\
\lor \\
&\exists n : 1 \ldots \text{layerSize}(\text{layerNo}) \cdot \\
&tt = \sim/in : 1..\text{insize} \cdot \\
&\quad \langle \text{inp}(in).x_in \rangle \\
&\quad \sim/p_{-n} : 1 \ldots n - 1 \cdot \\
&\quad \langle \text{out}(p_{-n}).\text{annoutput}(\text{layerNo}, p_{-n}, (x_1, \ldots, x_{\text{insize}})) \rangle \\
&\quad \land \\
&\quad \text{out}(n).\text{annoutput}(\text{layerNo}, n, (x_1, \ldots, x_{\text{insize}})) \notin \text{ref}' \\
\end{align*}
) \\
\Rightarrow \\
(\exists s, a \mid tt \text{ seqapprox}(\epsilon) s \land (\alpha P \setminus \text{ref}') \text{ setapprox}(\epsilon) a \cdot \\
\exists x_1, \ldots, x_{\#\text{inp}}; y_1, \ldots, y_{\#\text{out}} \mid p \cdot \\
(\exists i : \text{dom inp} \cdot \begin{align*}
&tt = \sim/j : 1..(i - 1) \cdot \langle \text{inp}(j).x_j \rangle \\
&\quad \land \\
&\quad \text{inp}(i).x_i \notin \text{ref}' \\
\lor \\
&\exists i : \text{dom out} \cdot \begin{align*}
&tt = \sim/n : \text{dom inp} \cdot \langle \text{inp}(n).x_n \rangle \\
&\quad \sim/j : 1..(i - 1) \cdot \langle \text{out}(j).y_j \rangle \\
&\quad \land \\
&\quad \text{out}(i).y_i \notin \text{ref}' \\
\end{align*}
)\right)\left[s, \alpha P \setminus a / tt, \text{ref}'\right]
\]
\[\forall \text{ref}', \text{tr}, \text{tr}', \text{tt}, x_1, \ldots, x_{\text{insize}} \bullet \]
\[
(\exists i : 1 \ldots \text{insize} \bullet \]
\[tt = \sim j : 1 \ldots (i - 1) \bullet \langle \text{inp}(j).x_j \rangle \land \]
\[\text{inp}(i).x_i \notin \text{ref}' \]
\[\lor \]
\[\exists n : 1 \ldots \text{layerSize}('layerNo') \bullet \]
\[tt = \sim \langle \text{inp}(\text{in}).x_{\text{in}} \rangle \sim \]
\[\sim p_{\text{n}} : 1 \ldots n - 1 \bullet \]
\[\langle \text{out}(p_{\text{n}}).\text{annoutput}('layerNo, p_{\text{n}}, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle \land \]
\[\text{out}(n).\text{annoutput}('layerNo, n, \langle x_1, \ldots, x_{\text{insize}} \rangle) \notin \text{ref}' \]
\[\}
\[\Rightarrow \]
\[\exists s; a \mid tt \text{ seqapprox}(\epsilon) s \land (\alpha P \setminus \text{ref}') \text{ setapprox}(\epsilon) a \bullet \]
\[\exists y_1, \ldots, y_{\#\text{out}} \mid p \bullet \]
\[(\exists i : \text{dom inp} \bullet tt = \sim j : 1 \ldots (i - 1) \bullet \langle \text{inp}(j).x_j \rangle \land \]
\[\text{inp}(i).x_i \notin \text{ref}' \]
\[\lor \]
\[\exists i : \text{dom out} \bullet tt = \sim n : \text{dom inp} \bullet \langle \text{inp}(n).x_n \rangle \sim \]
\[\sim j : 1 \ldots (i - 1) \bullet \langle \text{out}(j).y_j \rangle \land \]
\[\text{out}(i).y_i \notin \text{ref}' \]
\[][s, \alpha P \setminus a/tt, \text{ref}'] \]

[strengthen condition, universally quantify input variables]
\[= \forall ref', tr, tr', tt, x_1, \ldots, x_{\text{insize}} \in \cdot \\
(\exists i : 1..\text{insize} \in \cdot \\
\quad tt = \bigcup j : 1..(i-1) \cdot \langle \text{inp}(j).x_j \rangle \land \\
\quad \text{inp}(i).x_i \notin \text{ref'} \}
\)
\)
\[\Rightarrow \exists s; a \mid tt \ \text{seqapprox}(\epsilon) \ s \land (\alpha P \setminus \text{ref'}) \ \text{setapprox}(\epsilon) \ a \in \cdot \\
(\exists i : \text{dom inp} \in \cdot \\
\quad tt = \bigcup j : 1..(i-1) \cdot \langle \text{inp}(j).x_j \rangle \land \\
\quad \text{inp}(i).x_i \notin \text{ref'} \}
\]
\[\lor \\
(\exists i : \text{dom out} \in \cdot \\
\quad tt = \bigcup n : \text{dom inp} \in \cdot \\
\quad \langle \text{inp}(n).x_n \rangle \land \\
\quad \bigcup j : 1..(i-1) \cdot \langle \text{out}(j).y_j \rangle \land \\
\quad \text{out}(i).y_i \notin \text{ref'} \}
\]
\[\]
\[\forall \text{ref}', \text{tr}, \text{tr}', \text{tt}, x_1, \ldots, x_{\text{insize}} \quad \text{[in the first conjunct, strengthen the disjunction]}\]

\[
\exists i : 1..\text{insize} \quad \text{tt} = \n^j / \text{inp}(j) . x_j \wedge \text{inp}(i).x_i \notin \text{ref}'
\]

\[
\Rightarrow \exists s; a \mid \text{tt seqapprox}(\epsilon) s \wedge (\alpha P \setminus \text{ref}') \text{setapprox}(\epsilon) a \quad \text{[in the first conjunct, strengthen the disjunction]}\]

\[
\exists y_1, \ldots, y_{\#\text{out}} \mid p \\
(\exists i : \text{dom } \text{inp} \quad \text{tt} = \n^j / \text{inp}(j) . x_j \wedge \text{inp}(i).x_i \notin \text{ref}')
\]

\[
\Rightarrow \exists s; a \mid \text{tt seqapprox}(\epsilon) s \wedge (\alpha P \setminus \text{ref}') \text{setapprox}(\epsilon) a \quad \text{[in the first conjunct, strengthen the disjunction]}\]

\[
\exists n : 1..\text{layerSize}(\text{layerNo}) \quad \text{tt} = \n^i / \text{inp}(i) . x_i
\]

\[
\wedge (\exists n : \text{dom } \text{out} \quad \text{tt} = \n^n / \text{out}(n) . \text{annoutput}(\text{layerNo}, \text{nn}, \langle x_1, \ldots, x_{\text{insize}} \rangle))
\]

\[
\Rightarrow \exists s; a \mid \text{tt seqapprox}(\epsilon) s \wedge (\alpha P \setminus \text{ref}') \text{setapprox}(\epsilon) a \quad \text{[in the first conjunct, strengthen the disjunction]}\]

\[
\exists y_1, \ldots, y_{\#\text{out}} \mid p \\
(\exists i : \text{dom } \text{out} \quad \text{tt} = \n^n / \text{out}(n) . \text{annoutput}(\text{layerNo}, \text{nn}, \langle x_1, \ldots, x_{\text{insize}} \rangle))
\]
\[\forall \text{ref}', tr, tr', tt, x_1, \ldots, x_{\text{insize}} \bullet \]

\[
(\exists i : 1..\text{insize} \bullet
tt = \sim/j : 1..(i - 1) \bullet \langle \text{inp}(j).x_j \rangle \land
\text{inp}(i).x_i \notin \text{ref}'
\)
\]

\[
\Rightarrow
\]

\[
\exists s, a \mid tt \text{ seqapprox}(\varepsilon) s \land (\alpha P \setminus \text{ref}') \text{ setapprox}(\varepsilon) a \bullet
\]

\[
\exists y_1, \ldots, y_{\#\text{out}} \mid p \bullet
\]

\[
(\exists i : \text{dom } \text{inp} \bullet s = \sim/j : 1..(i - 1) \bullet \langle \text{inp}(j).x_j \rangle \land
\text{inp}(i).x_i \notin \alpha P \setminus a
\)
\]

\[
\land
\]

\[
(\exists n : 1..\text{layerSize}(\text{layerNo}) \bullet
tt = \sim/in : 1..\text{insize} \bullet
\langle \text{inp}(in).x_{\text{in}} \rangle
\]

\[
\land
\]

\[
\sim/p_{-n} : 1..n - 1 \bullet
\langle \text{out}(p_{-n}).\text{annoutput}(\text{layerNo}, p_{-n}, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle
\]

\[
\land
\]

\[
\text{out}(n).\text{annoutput}(\text{layerNo}, n, \langle x_1, \ldots, x_{\text{insize}} \rangle) \notin \text{ref}'
\)
\]

\[
\Rightarrow
\]

\[
\exists s, a \mid tt \text{ seqapprox}(\varepsilon) s \land (\alpha P \setminus \text{ref}') \text{ setapprox}(\varepsilon) a \bullet
\]

\[
\exists y_1, \ldots, y_{\#\text{out}} \mid p \bullet
\]

\[
(\exists i : \text{dom } \text{inp} \bullet tt = \sim/j : 1..(i - 1) \bullet \langle \text{inp}(j).x_j \rangle \land
\text{inp}(i).x_i \notin \text{ref}'
\)

\[
\lor
\]

\[
\exists i : \text{dom } \text{out} \bullet tt = \sim/n : \text{dom } \text{inp} \bullet \langle \text{inp}(n).x_n \rangle
\]

\[
\sim/j : 1..(i - 1) \bullet \langle \text{out}(j).y_j \rangle \land
\text{out}(i).y_i \notin \text{ref}'
\)

\]

\[
[s, \alpha P \setminus a / tt, \text{ref}']
\]
\[\forall \text{ref}', tr, tr', tt, x_1, \ldots, x_{\text{insize}} \bullet\]
\[\exists s; a \mid tt \text{ seqapprox}(\epsilon) s \land (\alpha P \setminus \text{ref}') \text{ setapprox}(\epsilon) a \bullet\]
\[\exists y_1, \ldots, y_{\#\text{out}} \mid p \bullet\]
\[\exists i : 1 \ldots \text{insize} \bullet\]
\[tt = \checkmark / j: 1..(i - 1) \bullet (\text{inp}(j), x_j) \land\]
\[\text{inp}(i), x_i \notin \text{ref}'\]
\[\Rightarrow\]
\[\exists i : \text{dom } \text{inp} \bullet s = \checkmark / j: 1..(i - 1) \bullet (\text{inp}(j), x_j) \land\]
\[\text{inp}(i), x_i \notin \alpha P \setminus a\]
\[\wedge\]
\[\exists n : 1 \ldots \text{layerSize}(\text{layerNo}) \bullet\]
\[tt = \checkmark / \text{in} : 1..\text{insize} \bullet\]
\[\langle \text{inp}(\text{in}), x_{\text{in}} \rangle\]
\[\checkmark\]
\[\checkmark / \text{p}_{-n} : 1\ldots n - 1 \bullet\]
\[\langle \text{out}(\text{p}_{-n}), \text{annoutput}(\text{layerNo}, \text{p}_{-n}, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle\]
\[\wedge\]
\[\text{out}(n), \text{annoutput}(\text{layerNo}, n, \langle x_1, \ldots, x_{\text{insize}} \rangle) \notin \text{ref}'\]
\[\Rightarrow\]
\[\exists s; a \mid tt \text{ seqapprox}(\epsilon) s \land (\alpha P \setminus \text{ref}') \text{ setapprox}(\epsilon) a \bullet\]
\[\exists y_1, \ldots, y_{\#\text{out}} \mid p \bullet\]
\[\exists i : \text{dom } \text{inp} \bullet tt = \checkmark / j: 1..(i - 1) \bullet (\text{inp}(j), x_j) \land\]
\[\text{inp}(i), x_i \notin \text{ref}'\]
\[\lor\]
\[\exists i : \text{dom } \text{out} \bullet tt = \checkmark / n: \text{dom } \text{inp} \bullet \langle \text{inp}(n), x_n \rangle\]
\[\checkmark / j: 1..(i - 1) \bullet (\text{out}(j), y_j) \land\]
\[\text{out}(i), y_i \notin \text{ref}'\]
\[\Rightarrow[s, \alpha P \setminus a / tt, \text{ref}']\]
\[
= \forall \text{ref}', \text{tr}, \text{tr}', \text{tt}, x_1, \ldots, x_{\text{insize}} \bullet \ \\
\exists s; a \mid \text{tt seqapprox}(\varepsilon) \ s \land (\alpha P \setminus \text{ref}') \ \text{setapprox}(\varepsilon) \ a \bullet \ \\
\exists y_1, \ldots, y_{\#\text{out}}, i : 1 \ldots \text{insize} \mid p \bullet \ \\
\text{tt} = \lceil / j : 1 \ldots (i - 1) \bullet \langle \text{inp}(j).x_j \rangle \land \text{inp}(i).x_i \notin \text{ref}' \ \\
\Rightarrow \ \\
\exists y_1, \ldots, y_{\#\text{out}}, i : 1 \ldots \text{insize} \mid p \bullet \ \\
\text{tt} = \lceil / j : 1 \ldots (i - 1) \bullet \langle \text{inp}(j).x_j \rangle \land \text{inp}(i).x_i \notin \alpha P \setminus a \ \\
\lor \ \\
\exists i : \text{dom} \text{inp} \bullet \ \\
\text{tt} = \lceil / n : \text{dom} \text{inp} \bullet \langle \text{inp}(n).x_n \rangle \land \text{inp}(i).x_i \notin \text{ref}' \ \\
\Rightarrow \ \\
\exists s; a \mid \text{tt seqapprox}(\varepsilon) \ s \land (\alpha P \setminus \text{ref}') \ \text{setapprox}(\varepsilon) \ a \bullet \ \\
\exists y_1, \ldots, y_{\#\text{out}} \mid p \bullet \ \\
\langle \text{inp}(\text{in}).x_{\text{in}} \rangle \ \\
\lor \ \\
\exists i : \text{dom} \text{out} \bullet \ \\
\text{tt} = \lceil / n : \text{dom} \text{inp} \bullet \langle \text{inp}(n).x_n \rangle \land \text{inp}(i).x_i \notin \text{ref}' \ \\
\Rightarrow \ \\
[s, \alpha P \setminus a / \text{tt}, \text{ref}']
\]
\[= \forall ref', tr', tr, tt, x_1, \ldots, x_{\text{insize}} \bullet \]

\[
\exists s; a \bullet \\
\exists y_1, \ldots, y_{\#\text{out}}, i : 1 \ldots \text{insize} | p \bullet \\
\text{tt seqapprox}(\epsilon) s \land \\
(\alpha P \setminus \text{ref}') \text{ setapprox}(\epsilon) a \land \\
(tt = \wedge / j : 1..(i - 1) \bullet \langle \text{inp}(j).x_j \rangle) \land \\
\text{inp}(i).x_i /\notin \text{ref}' \\
\Rightarrow \\
s = \wedge / j : 1..(i - 1) \bullet \langle \text{inp}(j).x_j \rangle \land \\
\text{inp}(i).x_i /\notin \alpha P \setminus a \\
\wedge \\
(\exists n : 1 \ldots \text{layerSize}(\text{layerNo}) \bullet \\
\text{tt} = \wedge / \text{in} : 1..\text{insize} \\
\langle \text{inp}(\text{in}).x_{\text{in}} \rangle \\
\wedge \\
\wedge / \text{p}_{\ldots n} : 1 \ldots n - 1 \bullet \\
\langle \text{out}(\text{p}_{\ldots n}).\text{annoutput}(\text{layerNo}, \text{p}_{\ldots n}, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle \\
\wedge \\
\text{out}(n).\text{annoutput}(\text{layerNo}, n, \langle x_1, \ldots, x_{\text{insize}} \rangle) /\notin \text{ref}' \\
) \]

\[
\Rightarrow \exists s; a | tt \text{ seqapprox}(\epsilon) s \land (\alpha P \setminus \text{ref}') \text{ setapprox}(\epsilon) a \bullet \\
\exists y_1, \ldots, y_{\#\text{out}} | p \bullet \\
(\exists i : \text{dom inp} \bullet tt = \wedge / j : 1..(i - 1) \bullet \langle \text{inp}(j).x_j \rangle \land \\
\text{inp}(i).x_i /\notin \text{ref}' \\
\lor \\
\exists i : \text{dom out} \bullet tt = \wedge / n : \text{dom inp} \bullet \langle \text{inp}(n).x_n \rangle \\
\wedge \\
\wedge / j : 1..(i - 1) \bullet \langle \text{out}(j).y_j \rangle \land \\
\text{out}(i).y_i /\notin \text{ref}' \\
) [s, \alpha P \setminus a/\text{tt}, \text{ref}']
\]
\[= \forall \text{ref}', \text{tr}, \text{tr}', \text{tt}, x_1, \ldots, x_{\text{insize}} \bullet \quad \text{[distribute universal quantifiers ref', tr.. through conjunction]}\]

\[
\exists s; a \bullet \\
\exists y_1, \ldots, y_{\#\text{out}}, i : 1 \ldots \text{insize} \mid p \bullet \\
\text{tt seqapprox}(\epsilon) s \wedge \\
(\alpha P \setminus \text{ref}') \text{ setapprox}(\epsilon) a \wedge \\
(tt = \vdash / j : 1 \ldots (i - 1) \bullet \langle \text{inp}(j).x_j \rangle \wedge \\
\text{inp}(i).x_i \not\in \text{ref}' \\
\Rightarrow \\
\exists s = \vdash / j : 1 \ldots (i - 1) \bullet \langle \text{inp}(j).x_j \rangle \wedge \\
\text{inp}(i).x_i \not\in \alpha P \setminus a) \\
\wedge \\
\forall \text{ref}', \text{tr}, \text{tr}', \text{tt}, x_1, \ldots, x_{\text{insize}} \bullet \\
(\exists n : 1 \ldots \text{layerSize}(\text{layerNo}) \bullet \\
\text{tt} = \vdash / \text{in} : 1 \ldots \text{insize} \bullet \\
\langle \text{inp}(\text{in}).x_{\text{in}} \rangle \\
\wedge \\
\vdash / p_{-n} : 1 \ldots n - 1 \bullet \\
\langle \text{out}(p_{-n}).\text{annoutput}(\text{layerNo}, p_{-n}, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle \\
\wedge \\
\text{out}(n).\text{annoutput}(\text{layerNo}, n, \langle x_1, \ldots, x_{\text{insize}} \rangle) \not\in \text{ref}' \\
) \\
\Rightarrow \\
\exists s; a \mid \text{tt seqapprox}(\epsilon) s \wedge (\alpha P \setminus \text{ref}') \text{ setapprox}(\epsilon) a \bullet \\
\exists y_1, \ldots, y_{\#\text{out}} \mid p \bullet \\
(\exists i : \text{dom} \text{inp} \bullet \text{tt} = \vdash / j : 1 \ldots (i - 1) \bullet \langle \text{inp}(j).x_j \rangle \wedge \\
\text{inp}(i).x_i \not\in \text{ref}' \\
\lor \\
\exists i : \text{dom} \text{out} \bullet \text{tt} = \vdash / n : \text{dom} \text{inp} \bullet \langle \text{inp}(n).x_n \rangle \\
\wedge \\
\vdash / j : 1 \ldots (i - 1) \bullet \langle \text{out}(j).y_j \rangle \wedge \\
\text{out}(i).y_i \not\in \text{ref}' \\
)[s, \alpha P \setminus a / \text{tt}, \text{ref}']\]
= \forall ref', x_1, \ldots, x_{\text{insize}} \bullet
\exists a \bullet
\exists y_1, \ldots, y_{\#out} \mid p \bullet
\land
\wedge
\forall ref', tr, tr', tt, x_1, \ldots, x_{\text{insize}} \bullet
(\exists n : 1 \ldots \text{layerSize}(\text{layerNo}) \bullet
\exists i : \text{dom inp} \bullet
tt = \langle j : 1 \ldots (i - 1) \bullet \langle \text{inp}(j) . x_j \rangle \wedge
\langle \text{inp}(i) . x_i \rangle \notin \text{ref}' \rangle
\wedge
\langle \text{out}(n) . \text{annoutput}(\text{layerNo}, n, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle
\land
\langle \text{out}(n) . \text{annoutput}(\text{layerNo}, n, \langle x_1, \ldots, x_{\text{insize}} \rangle) \notin \text{ref}' \rangle
\)\]
\[
\forall \text{ref}', x_1, \ldots, x_{\text{insize}} \bullet \\
\exists a \bullet \\
\exists y_1, \ldots, y_{\#\text{out}}, i : 1 \ldots \text{insize} \mid p \bullet \\
(\alpha P \setminus \text{ref}') \text{setapprox}(\epsilon) a \land \\
\text{inp}(i).x_i \notin \text{ref}' \\
\implies \\
\text{inp}(i).x_i \notin \alpha P \setminus a \\
\land \\
\forall \text{ref}', tr, tr', tt, x_1, \ldots, x_{\text{insize}} \bullet \\
(\exists n : 1 \ldots \text{layerSize}(layerNo) \bullet \\
\hspace{1cm} tt = \bigcap/ \text{in} : 1..\text{insize} \bullet \\
\hspace{1.5cm} \langle \text{inp}(\text{in}).x_{\text{in}} \rangle \\
\hspace{1.5cm} \bigcap \\
\hspace{1.5cm} \bigcap/ p_{\text{n}} : 1..n - 1 \bullet \\
\hspace{2cm} \langle \text{out}(p_{\text{n}}).\text{annoutput}(layerNo, p_{\text{n}}, (x_1, \ldots, x_{\text{insize}})) \rangle \\
\land \\
\hspace{1.5cm} \text{out}(n).\text{annoutput}(layerNo, n, (x_1, \ldots, x_{\text{insize}})) \notin \text{ref}' \\
\) \\
\implies \\
\exists s; a \mid tt \text{seqapprox}(\epsilon) s \land (\alpha P \setminus \text{ref}') \text{setapprox}(\epsilon) a \bullet \\
\exists y_1, \ldots, y_{\#\text{out}} \mid p \bullet \\
(\exists i : \text{dom inp} \bullet tt = \bigcap/ j : 1..(i - 1) \bullet \langle \text{inp}(j).x_j \rangle \land \\
\hspace{1.5cm} \text{inp}(i).x_i \notin \text{ref}' \\
\lor \\
\exists i : \text{dom out} \bullet tt = \bigcap/ n : \text{dom inp} \bullet \langle \text{inp}(n).x_n \rangle \\
\hspace{1.5cm} \bigcap/ j : 1..(i - 1) \bullet \langle \text{out}(j).y_j \rangle \land \\
\hspace{1.5cm} \text{out}(i).y_i \notin \text{ref}' \\
\) \hspace{0.5cm} [s, \alpha P \setminus a/ tt, \text{ref}'] \\
\]

[all elements in \(I \cup O \), so seqapprox(\epsilon) is reflexive, Lemma B.4]
= ∀ ref', x_1, ..., x_{i_{\text{insize}}} \bullet [\text{rearrange notation, add predicate to universal quantifier}]

∀ a \bullet

∃ y_1, ..., y_{\#_{\text{out}}} \bullet

p \land \text{inp}(i).x_i \notin ref' \bullet

(\alpha P \setminus \text{ref}') \text{ setapprox}(\epsilon) a \land

\text{inp}(i).x_i \notin \alpha \setminus a

∧

∀ ref', tr, tr', tt, x_1, ..., x_{i_{\text{insize}}} \bullet

(\exists n : 1 \ldots \text{layerSize}(\text{layerNo}) \bullet

\begin{align*}
\text{tt} &= \text{\hspace{1mm}} \land / \hspace{1mm} \text{in} : 1 \ldots \text{insize} \bullet \\
&\hspace{1mm} \langle \text{inp}(\text{in}).x_{\text{in}} \rangle \\
&\hspace{1mm} \land \\
&\hspace{1mm} \land / \hspace{1mm} p_{\cdot n} : 1 \ldots n - 1 \bullet \\
&\hspace{1mm} \langle \text{out}(p_{\cdot n}).\text{annoutput}(\text{layerNo}, p_{\cdot n}, (x_1, \ldots, x_{i_{\text{insize}}})) \rangle \\
&\hspace{1mm} \land \\
&\hspace{1mm} \langle \text{out}(n).\text{annoutput}(\text{layerNo}, n, (x_1, \ldots, x_{i_{\text{insize}}})) \notin \text{ref}' \rangle
\end{align*}
)

⇒

∃ s; a \mid tt \text{ seqapprox}(\epsilon) s \land (\alpha P \setminus \text{ref}') \text{ setapprox}(\epsilon) a \bullet

∃ y_1, ..., y_{\#_{\text{out}}} \mid p \bullet

(\exists i : \text{dom \text{inp}} \bullet

\begin{align*}
\text{tt} &= \text{\hspace{1mm}} \land / \hspace{1mm} j : 1 \ldots (i - 1) \bullet \langle \text{inp}(j).x_j \rangle \land \\
&\hspace{1mm} \text{inp}(i).x_i \notin \text{ref}'
\end{align*}

\lor

\exists i : \text{dom \text{out}} \bullet

\begin{align*}
\text{tt} &= \text{\hspace{1mm}} \land / \hspace{1mm} n : \text{dom \text{inp}} \bullet \langle \text{inp}(n).x_n \rangle \\
&\hspace{1mm} \land / \hspace{1mm} j : 1 \ldots (i - 1) \bullet \langle \text{out}(j).y_j \rangle \land \\
&\hspace{1mm} \text{out}(i).y_i \notin \text{ref}'
\end{align*}

)[s, \alpha P \setminus a/\text{tt}, \text{ref}']
\[= \forall ref', x_1, \ldots, x_{\text{insize}} \bullet \exists y_1, \ldots, y_{\#_\text{out}}, i : 1 \ldots \text{insize} \mid p \wedge \text{inp}(i).x_i \notin ref' \bullet (\alpha P \setminus \text{ref}') \text{ setapprox}(\epsilon) \{\text{inp}(i).x_i\} \wedge \text{inp}(i).x_i \notin \alpha P \setminus \{\text{inp}(i).x_i\} \]
\[
\wedge \forall ref', tr, tr', tt, x_1, \ldots, x_{\text{insize}} \bullet (\exists n : 1 \ldots \text{layerSize}(\text{layerNo}) \bullet tt = \searrow / \text{in} : 1 \ldots \text{insize} \bullet \langle \text{inp}(\text{in}).x_{\text{in}}\rangle \\
\searrow / p_{\text{n}} : 1 \ldots n - 1 \bullet \langle \text{out}(p_{\text{n}}).\text{annoutput}(\text{layerNo}, p_{\text{n}}, \langle x_1, \ldots, x_{\text{insize}}\rangle)\rangle \\
\wedge \text{out}(n).\text{annoutput}(\text{layerNo}, n, \langle x_1, \ldots, x_{\text{insize}}\rangle) \notin \text{ref}' \]
\[
\Rightarrow \exists s; a \mid tt \text{ seqapprox}(\epsilon) s \wedge (\alpha P \setminus \text{ref}') \text{ setapprox}(\epsilon) a \bullet \exists y_1, \ldots, y_{\#_\text{out}} \mid p \bullet (\exists i : \text{dom inp} \bullet tt = \searrow / j : 1 \ldots (i - 1) \bullet \langle \text{inp}(j).x_j\rangle \wedge \text{inp}(i).x_i \notin \text{ref}' \]
\[
\vee \exists i : \text{dom out} \bullet tt = \searrow / n : \text{dom inp} \bullet \langle \text{inp}(n).x_n\rangle \searrow / j : 1 \ldots (i - 1) \bullet \langle \text{out}(j).y_j\rangle \wedge \text{out}(i).y_i \notin \text{ref}' \]
\[
\bullet [s, \alpha P \setminus a / tt, \text{ref}']
\]
\[
\forall \text{ref}', x_1, \ldots, x_{\text{insize}} \bullet
\exists y_1, \ldots, y_{\#\text{out}}, i : 1..\text{insize} \mid p \land \text{inp}(i).x_i \notin \text{ref}' \bullet
(\alpha P \setminus \text{ref}') \text{ setapprox}(\varepsilon) \{\text{inp}(i).x_i\}
\wedge
\forall \text{ref}', tr, tr', tt, x_1, \ldots, x_{\text{insize}} \bullet
(\exists n : 1..\text{layerSize}(\text{layerNo}) \bullet
\begin{align*}
\text{tt} &= \begin{cases}
\sim / \text{in} : 1..\text{insize} \bullet \\
\text{inp}(\text{in}).x_{\text{in}}
\end{cases} \\
\sim / \text{p}_n : 1..n-1 \bullet
(\text{out}(\text{p}_n).\text{annoutput}(\text{layerNo}, \text{p}_n, (x_1, \ldots, x_{\text{insize}})))
\end{align*}
\wedge
\text{out}(n).\text{annoutput}(\text{layerNo}, n, (x_1, \ldots, x_{\text{insize}})) \notin \text{ref}'
\}
\]
\[= \neg \exists \text{ref}', x_1,\ldots,x_{\text{insize}} \bullet \]
\[\exists y_1,\ldots,y_{\#\text{out}}, i : 1..\text{insize} \mid p \land \text{inp}(i).x_i \notin \text{ref}' \bullet \]
\[\neg (\alpha P \setminus \text{ref}') \text{ setapprox}(e) \{\text{inp}(i).x_i\} \]
\[\land \forall \text{ref}', tr, tr', tt, x_1,\ldots,x_{\text{insize}} \bullet \]
\[(\exists n : 1..\text{layerSize}(\text{layerNo}) \bullet \]
\[tt = \mapsto / i : 1..\text{insize} \bullet \]
\[\langle \text{inp}(i).x_i \rangle \]
\[\land \]
\[\mapsto / \text{p}_n : 1..n - 1 \bullet \]
\[\langle \text{out}(\text{p}_n).\text{annoutput}(\text{layerNo}, \text{p}_n, (x_1,\ldots,x_{\text{insize}})) \rangle \]
\[\land \]
\[\text{out}(n).\text{annoutput}(\text{layerNo}, n, (x_1,\ldots,x_{\text{insize}})) \notin \text{ref}' \]
\}[double negation on first conjunct]
\[\Rightarrow \exists s; a \mid tt \text{ seqapprox}(e) s \land (\alpha P \setminus \text{ref}') \text{ setapprox}(e) a \bullet \]
\[\forall y_1,\ldots,y_{\#\text{out}} \mid p \bullet \]
\[(\exists i : \text{dom inp} \bullet \]
\[tt = \mapsto / j : 1..(i - 1) \bullet \langle \text{inp}(j).x_j \rangle \land \]
\[\text{inp}(i).x_i \notin \text{ref}' \]
\[\lor \]
\[\exists i : \text{dom out} \bullet \]
\[tt = \mapsto / n : \text{dom inp} \bullet \langle \text{inp}(n).x_n \rangle \land \]
\[\mapsto / j : 1..(i - 1) \bullet \langle \text{out}(j).y_j \rangle \land \]
\[\text{out}(i).y_i \notin \text{ref}' \]
\}[select a witness for \text{ref}' : \alpha P \setminus \{\text{inp}(i).x_i\}] \]
\[\land \forall \text{ref}', tr, tr', tt, x_1,\ldots,x_{\text{insize}} \bullet \]
\[(\exists n : 1..\text{layerSize}(\text{layerNo}) \bullet \]
\[tt = \mapsto / i : 1..\text{insize} \bullet \]
\[\langle \text{inp}(i).x_i \rangle \]
\[\land \]
\[\mapsto / \text{p}_n : 1..n - 1 \bullet \]
\[\langle \text{out}(\text{p}_n).\text{annoutput}(\text{layerNo}, \text{p}_n, (x_1,\ldots,x_{\text{insize}})) \rangle \]
\[\land \]
\[\text{out}(n).\text{annoutput}(\text{layerNo}, n, (x_1,\ldots,x_{\text{insize}})) \notin \text{ref}' \]
\}[select a witness for \text{ref}' : \alpha P \setminus \{\text{inp}(i).x_i\}] \]
\[\Rightarrow \exists s; a \mid tt \text{ seqapprox}(e) s \land (\alpha P \setminus \text{ref}') \text{ setapprox}(e) a \bullet \]
\[\forall y_1,\ldots,y_{\#\text{out}} \mid p \bullet \]
\[(\exists i : \text{dom inp} \bullet \]
\[tt = \mapsto / j : 1..(i - 1) \bullet \langle \text{inp}(j).x_j \rangle \land \]
\[\text{inp}(i).x_i \notin \text{ref}' \]
\[\lor \]
\[\exists i : \text{dom out} \bullet \]
\[tt = \mapsto / n : \text{dom inp} \bullet \langle \text{inp}(n).x_n \rangle \land \]
\[\mapsto / j : 1..(i - 1) \bullet \langle \text{out}(j).y_j \rangle \land \]
\[\text{out}(i).y_i \notin \text{ref}' \]
\}[select a witness for \text{ref}' : \alpha P \setminus \{\text{inp}(i).x_i\}] \]
APPENDIX C. ANN COMPONENT CONFORMANCE LEMMAS

164

= \neg \exists x_1, \ldots, x_{\text{insize}} \bullet
\exists y_1, \ldots, y_{\#_{\text{out}}} \bullet
\neg \{\text{inp}(i).x_i\}_{i=1}^{\text{insize}} \cup p \bullet
\neg \text{setapprox}(e) \{\text{inp}(i).x_i\}_{i=1}^{\text{insize}}
\land
\forall \text{ref}', \text{tr}, \text{tr}', \text{tt}, x_1, \ldots, x_{\text{insize}} \bullet
(\exists n : 1 .. \text{layerSize}(\text{layerNo}) \bullet
\text{tt} = \ldots_{/\text{in}:1..\text{insize}} \bullet
\langle\text{inp}(\text{in}).x_\text{in}\rangle
\land
\ldots_{/p_n:1..n-1} \bullet
\langle\text{out}(p_n).\text{annoutput}(\text{layerNo}, p_n, (x_1, \ldots, x_{\text{insize}}))\rangle
\land
\text{out}(n).\text{annoutput}(\text{layerNo}, n, (x_1, \ldots, x_{\text{insize}})) \notin \text{ref}'
)
\Rightarrow
\exists s; a | \text{tt \ seqapprox}(e) s \land (\alpha P \setminus \text{ref}') \text{ setapprox}(e) a \bullet
\forall y_1, \ldots, y_{\#_{\text{out}}} \bullet
(\exists i : \text{dom inp} \bullet \text{tt} = \ldots_{/j:1..(i-1)} \bullet \langle\text{inp}(j).x_j\rangle \land
\text{inp}(i).x_i \notin \text{ref}'
\lor
\exists i : \text{dom out} \bullet \text{tt} = \ldots_{/n:\text{dom inp}} \bullet \langle\text{inp}(n).x_n\rangle
\land
\ldots_{/j:1..(i-1)} \bullet \langle\text{out}(j).y_j\rangle \land
\text{out}(i).y_i \notin \text{ref}'
)
)[s, \alpha P \setminus a/\text{tt, ref}']

= \neg \exists x_1, \ldots, x_{\text{insize}} \bullet
\exists y_1, \ldots, y_{\#_{\text{out}}} \bullet
\neg \text{true}
\land
\forall \text{ref}', \text{tr}, \text{tr}', \text{tt}, x_1, \ldots, x_{\text{insize}} \bullet
(\exists n : 1 .. \text{layerSize}(\text{layerNo}) \bullet
\text{tt} = \ldots_{/\text{in}:1..\text{insize}} \bullet
\langle\text{inp}(\text{in}).x_\text{in}\rangle
\land
\ldots_{/p_n:1..n-1} \bullet
\langle\text{out}(p_n).\text{annoutput}(\text{layerNo}, p_n, (x_1, \ldots, x_{\text{insize}}))\rangle
\land
\text{out}(n).\text{annoutput}(\text{layerNo}, n, (x_1, \ldots, x_{\text{insize}})) \notin \text{ref}'
)
\Rightarrow
\exists s; a | \text{tt \ seqapprox}(e) s \land (\alpha P \setminus \text{ref}') \text{ setapprox}(e) a \bullet
\forall y_1, \ldots, y_{\#_{\text{out}}} \bullet
(\exists i : \text{dom inp} \bullet \text{tt} = \ldots_{/j:1..(i-1)} \bullet \langle\text{inp}(j).x_j\rangle \land
\text{inp}(i).x_i \notin \text{ref}'
\lor
\exists i : \text{dom out} \bullet \text{tt} = \ldots_{/n:\text{dom inp}} \bullet \langle\text{inp}(n).x_n\rangle
\land
\ldots_{/j:1..(i-1)} \bullet \langle\text{out}(j).y_j\rangle \land
\text{out}(i).y_i \notin \text{ref}'
)
)[s, \alpha P \setminus a/\text{tt, ref}']
\[\begin{align*}
= \text{true} \land \\
\forall \mathbf{ref'}, \mathbf{tr}, \mathbf{tr'}, \mathbf{tt}, \mathbf{x}_1, \ldots, \mathbf{x}_{\text{insize}} \bullet \\
(\exists \mathbf{n} : 1 \ldots \text{layerSize}(\text{layerNo}) \bullet \\
\mathbf{tt} = \langle/ \text{in} : 1..\text{insize} \bullet \\
\langle\text{inp}(\text{in}).\mathbf{x}_{\text{in}}\rangle \land \\
\langle/ \mathbf{p}_n : 1..n-1 \bullet \\
\langle\text{out}(\mathbf{p}_n).\text{annoutput}(\text{layerNo}, \mathbf{p}_n, \langle\mathbf{x}_1, \ldots, \mathbf{x}_{\text{insize}}\rangle)\rangle \rangle \land \\
\text{out}(\mathbf{n}).\text{annoutput}(\text{layerNo}, \mathbf{n}, \langle\mathbf{x}_1, \ldots, \mathbf{x}_{\text{insize}}\rangle) \not\in \mathbf{ref'} \\
) \Rightarrow \\
\exists \mathbf{s}; \mathbf{a} | \mathbf{tt} \seqapprox(\epsilon) \mathbf{s} \land (\alpha P \setminus \mathbf{ref'}) \setapprox(\epsilon) \mathbf{a} \bullet \\
\forall \mathbf{y}_1, \ldots, \mathbf{y}_{\#\text{out}} \mid \mathbf{p} \bullet \\
(\exists \mathbf{i} : \text{dom inp} \bullet \mathbf{tt} = \langle/ \mathbf{j} : 1..(i-1) \bullet \langle\text{inp}(\mathbf{j}).\mathbf{x}_j\rangle \land \\
\langle\text{inp}(\mathbf{i}).\mathbf{x}_i\rangle \not\in \mathbf{ref'} \\
\lor \\
\exists \mathbf{i} : \text{dom out} \bullet \mathbf{tt} = \langle/ \mathbf{n} : \text{dom inp} \bullet \langle\text{inp}(\mathbf{n}).\mathbf{x}_n\rangle \land \\
\langle/ \mathbf{j} : 1..(i-1) \bullet \langle\text{out}(\mathbf{j}).\mathbf{y}_j\rangle \land \\
\langle\text{out}(\mathbf{i}).\mathbf{y}_i\rangle \not\in \mathbf{ref'} \\
) [\mathbf{s}, \alpha P \setminus \mathbf{a} / \mathbf{tt}, \mathbf{ref'}] \\
= \forall \mathbf{ref'}, \mathbf{tr}, \mathbf{tr'}, \mathbf{tt}, \mathbf{x}_1, \ldots, \mathbf{x}_{\text{insize}} \bullet \\
(\exists \mathbf{n} : 1 \ldots \text{layerSize}(\text{layerNo}) \bullet \\
\mathbf{tt} = \langle/ \text{in} : 1..\text{insize} \bullet \\
\langle\text{inp}(\text{in}).\mathbf{x}_{\text{in}}\rangle \land \\
\langle/ \mathbf{p}_n : 1..n-1 \bullet \\
\langle\text{out}(\mathbf{p}_n).\text{annoutput}(\text{layerNo}, \mathbf{p}_n, \langle\mathbf{x}_1, \ldots, \mathbf{x}_{\text{insize}}\rangle)\rangle \rangle \land \\
\text{out}(\mathbf{n}).\text{annoutput}(\text{layerNo}, \mathbf{n}, \langle\mathbf{x}_1, \ldots, \mathbf{x}_{\text{insize}}\rangle) \not\in \mathbf{ref'} \\
) \Rightarrow \\
\exists \mathbf{s}; \mathbf{a} | \mathbf{tt} \seqapprox(\epsilon) \mathbf{s} \land (\alpha P \setminus \mathbf{ref'}) \setapprox(\epsilon) \mathbf{a} \bullet \\
\forall \mathbf{y}_1, \ldots, \mathbf{y}_{\#\text{out}} \mid \mathbf{p} \bullet \\
(\exists \mathbf{i} : \text{dom inp} \bullet \mathbf{tt} = \langle/ \mathbf{j} : 1..(i-1) \bullet \langle\text{inp}(\mathbf{j}).\mathbf{x}_j\rangle \land \\
\langle\text{inp}(\mathbf{i}).\mathbf{x}_i\rangle \not\in \mathbf{ref'} \\
\lor \\
\exists \mathbf{i} : \text{dom out} \bullet \mathbf{tt} = \langle/ \mathbf{n} : \text{dom inp} \bullet \langle\text{inp}(\mathbf{n}).\mathbf{x}_n\rangle \land \\
\langle/ \mathbf{j} : 1..(i-1) \bullet \langle\text{out}(\mathbf{j}).\mathbf{y}_j\rangle \land \\
\langle\text{out}(\mathbf{i}).\mathbf{y}_i\rangle \not\in \mathbf{ref'} \\
) [\mathbf{s}, \alpha P \setminus \mathbf{a} / \mathbf{tt}, \mathbf{ref'}]
\end{align*}\]
\[\forall \text{ref}', tr, tr', tt, x_1, \ldots, x_{\text{insize}} \bullet \]

\[\exists s; a \mid tt \text{ seqapprox}(e) s \land (\alpha P \setminus \text{ref}') \text{ setapprox}(e) a \bullet \]

\[\forall y_1, \ldots, y_{\#\text{out}} \mid p \bullet \]

\[(\exists n : 1 \ldots \text{layerSize}(\text{layerNo}) \bullet \]

\[tt = \bigwedge_{i : 1} \text{insize} \bullet \]

\[\text{inp}(in).x_n \]

\[\bigwedge_{j : 1} \text{p}_n : 1 \ldots n - 1 \bullet \]

\[\langle \text{out}(p_n).\text{annoutput}(\text{layerNo}, p_n, (x_1, \ldots, x_{\text{insize}})) \rangle \]

\[\Rightarrow \]

\[(\exists i : \text{dom } \text{inp} \bullet tt = \bigwedge_{j : 1} (i - 1) \bullet \langle \text{inp}(j).x_j \rangle \land \]

\[\text{inp}(i).x_i \notin \text{ref}' \]

\[\lor \]

\[(\exists i : \text{dom } \text{out} \bullet tt = \bigwedge_{j : 1} (i - 1) \bullet \langle \text{out}(j).y_j \rangle \land \]

\[\text{out}(i).y_i \notin \text{ref}' \]

\[)[s, \alpha P \setminus a / tt, \text{ref}'] \]

\[\Leftarrow \forall \text{ref}', tr, tr', tt, x_1, \ldots, x_{\text{insize}} \bullet \]

\[\exists s; a \mid tt \text{ seqapprox}(e) s \land (\alpha P \setminus \text{ref}') \text{ setapprox}(e) a \bullet \]

\[\forall y_1, \ldots, y_{\#\text{out}} \mid p \bullet \]

\[(\exists n : 1 \ldots \text{layerSize}(\text{layerNo}) \bullet \]

\[tt = \bigwedge_{i : 1} \text{insize} \bullet \]

\[\text{inp}(in).x_n \]

\[\bigwedge_{j : 1} \text{p}_n : 1 \ldots n - 1 \bullet \]

\[\langle \text{out}(p_n).\text{annoutput}(\text{layerNo}, p_n, (x_1, \ldots, x_{\text{insize}})) \rangle \]

\[\Rightarrow \]

\[(\exists i : \text{dom } \text{out} \bullet tt = \bigwedge_{j : 1} (i - 1) \bullet \langle \text{out}(j).y_j \rangle \land \]

\[\text{out}(i).y_i \notin \text{ref}' \]

\[)[s, \alpha P \setminus a / tt, \text{ref}'] \]
\[
= \forall \text{ref}', \text{tr}, \text{tr}', \text{tt}, x_1, \ldots, x_{\text{insize}} \bullet
\exists s; a \mid \text{tt seqapprox}(e) s \land (\alpha P \setminus \text{ref}') \text{ setapprox}(e) a \bullet
\forall y_1, \ldots, y_{\#\text{out}} \mid p \bullet
\exists i : 1 \ldots \text{layerSize}(\text{layerNo}) \bullet
\text{tt} = \lceil/ n : 1..\text{insize} \bullet
\langle \text{inp}(n).x_n \rangle
\lceil/ j : 1..i-1 \bullet
\langle \text{out}(j).\text{annoutput}(\text{layerNo}, j, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle
\land
\text{out}(i).\text{annoutput}(\text{layerNo}, i, \langle x_1, \ldots, x_{\text{insize}} \rangle) \notin \text{ref}'
\)
\Rightarrow
\exists i : \text{dom out} \bullet \text{tt} = \lceil/ n : \text{dom inp} \bullet \langle \text{inp}(n).x_n \rangle \rceil
\lceil/ j : 1..(i-1) \bullet \langle \text{out}(j).y_j \rangle \land
\text{out}(i).y_i \notin \text{ref}'
\)
\)[s, \alpha P \setminus a/\text{tt}, \text{ref}']
\]
\[
\Leftarrow \forall \text{ref}', \text{tr}, \text{tr}', \text{tt}, x_1, \ldots, x_{\text{insize}} \bullet
\exists s; a \mid \text{tt seqapprox}(e) s \land (\alpha P \setminus \text{ref}') \text{ setapprox}(e) a \bullet
\forall y_1, \ldots, y_{\#\text{out}} \mid p \bullet
\forall i : 1 \ldots \text{outsie} \bullet
\text{tt} = \lceil/ n : 1..\text{insize} \bullet
\langle \text{inp}(n).x_n \rangle
\lceil/ j : 1..i-1 \bullet
\langle \text{out}(j).\text{annoutput}(\text{layerNo}, j, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle
\land
\text{out}(i).\text{annoutput}(\text{layerNo}, i, \langle x_1, \ldots, x_{\text{insize}} \rangle) \notin \text{ref}')
\Rightarrow
\langle \text{tt} = \lceil/ n : \text{dom inp} \bullet \langle \text{inp}(n).x_n \rangle \lceil/ j : 1..(i-1) \bullet \langle \text{out}(j).y_j \rangle \land
\text{out}(i).y_i \notin \text{ref}'
\rangle[s, \alpha P \setminus a/\text{tt}, \text{ref}']
\]
\[
\forall \text{ref}', tr, tr', tt, x_1, \ldots, x_{\text{insize}} \bullet
\exists s; a | tt \text{ seqapprox}(e) s \land (\alpha P \setminus \text{ref}') \text{ setapprox}(e) a \bullet
\forall y_1, \ldots, y_{\#\text{out}} | p \bullet
\forall i : 1 \ldots \text{outsize} \bullet
\begin{align*}
&\ (tt = \ \\
&\begin{array}{l}
\sim/ n : 1..\text{insize} \bullet \\
\langle \text{inp}(n).x_n \rangle \\
\end{array}
\begin{array}{l}
\sim/ j : 1..i - 1 \bullet \\
\langle \text{out}(j).\text{annoutput}(\text{layerNo}, j, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle
\end{array}
\end{align*}
\land
\begin{align*}
&\begin{array}{l}
\text{out}(i).\text{annoutput}(\text{layerNo}, i, \langle x_1, \ldots, x_{\text{insize}} \rangle) \notin \text{ref}'
\end{array}
\end{align*}
\Rightarrow
\begin{align*}
&s = \\
&\sim/ n : \text{dom} \text{inp} \bullet \langle \text{inp}(n).x_n \rangle \\
&\begin{array}{l}
\sim/ j : 1..(i - 1) \bullet \langle \text{out}(j).y_j \rangle \\
\end{array}
\end{align*}
\land
\begin{align*}
&\text{out}(i).y_i \notin \alpha P \setminus a
\end{align*}
\]

\[
\forall \text{ref}', x_1, \ldots, x_{\text{insize}} \bullet
\exists s; a | \sim/ n : 1..\text{insize} \bullet \langle \text{inp}(n).x_n \rangle \\
\begin{array}{l}
\sim/ j : 1..i - 1 \bullet \langle \text{out}(j).\text{annoutput}(\text{layerNo}, j, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle
\end{array}
\text{ seqapprox}(e) s
\land
\begin{array}{l}
(\alpha P \setminus \text{ref}') \text{ setapprox}(e) a \bullet
\end{array}
\forall y_1, \ldots, y_{\#\text{out}} | p \bullet
\forall i : 1 \ldots \text{outsize} \bullet
\begin{align*}
&\ (\text{out}(i).\text{annoutput}(\text{layerNo}, i, \langle x_1, \ldots, x_{\text{insize}} \rangle) \notin \text{ref}')
\Rightarrow
\begin{array}{l}
\ (s = \\
\sim/ n : \text{dom} \text{inp} \bullet \langle \text{inp}(n).x_n \rangle \\
\sim/ j : 1..(i - 1) \bullet \langle \text{out}(j).y_j \rangle \\
\text{out}(i).y_i \notin \alpha P \setminus a
\end{array}
\end{align*}
\]

\[
\forall \text{ref}', x_1, \ldots, x_{\text{insize}} \bullet
\exists s; a | \sim/ n : 1..\text{insize} \bullet \langle \text{inp}(n).x_n \rangle \\
\begin{array}{l}
\sim/ j : 1..i - 1 \bullet \langle \text{out}(j).\text{annoutput}(\text{layerNo}, j, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle
\end{array}
\text{ seqapprox}(e) s
\land
\begin{array}{l}
(\alpha P \setminus \text{ref}') \text{ setapprox}(e) a \bullet
\end{array}
\forall y_1, \ldots, y_{\#\text{out}} | i : 1 \ldots \text{outsize} | \\
p \land \text{out}(i).\text{annoutput}(\text{layerNo}, i, \langle x_1, \ldots, x_{\text{insize}} \rangle) \notin \text{ref}' \bullet
\begin{align*}
s &= \\
\sim/ n : \text{dom} \text{inp} \bullet \langle \text{inp}(n).x_n \rangle \\
\sim/ j : 1..(i - 1) \bullet \langle \text{out}(j).y_j \rangle \\
\text{out}(i).y_i \notin \alpha P \setminus a
\end{align*}
\]
\[\forall \text{ref}', x_1, \ldots, x_{\text{insize}} \bullet \]

\[\exists s; a \bullet \]

\[\forall y_1, \ldots, y_{\#\text{out}}; i : 1 \ldots \text{outsize} | \]

\[p \land \text{annoutput}(\text{layerNo}, i, \langle x_1, \ldots, x_{\text{insize}} \rangle) \notin \text{ref}' \]

\[\forall n : 1 \ldots i - 1 \bullet \langle \text{annoutput}(\text{layerNo}, j, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle \]

\[\text{segapprox}(\varepsilon) s \]

\[\land \]

\[(\alpha P \setminus \text{ref}') \text{ setapprox}(\varepsilon) a \land \]

\[\forall \text{ref}', x_1, \ldots, x_{\text{insize}} \bullet \]

\[\exists a \bullet \]

\[\forall y_1, \ldots, y_{\#\text{out}}; i : 1 \ldots \text{outsize} | \]

\[p \land \text{annoutput}(\text{layerNo}, i, \langle x_1, \ldots, x_{\text{insize}} \rangle) \notin \text{ref}' \]

\[\forall n : 1 \ldots i - 1 \bullet \]

\[\langle \text{annoutput}(\text{layerNo}, n, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle - y_n \leq \varepsilon \]

\[\land \]

\[(\alpha P \setminus \text{ref}') \text{ setapprox}(\varepsilon) a \land \]

\[\forall \text{ref}', x_1, \ldots, x_{\text{insize}} \bullet \]

\[\exists a \bullet \]

\[\forall y_1, \ldots, y_{\#\text{out}}; i : 1 \ldots \text{outsize} | \]

\[p \land \text{annoutput}(\text{layerNo}, i, \langle x_1, \ldots, x_{\text{insize}} \rangle) \notin \text{ref}' \]

\[\forall n : 1 \ldots i - 1 \bullet \]

\[\langle \text{annoutput}(\text{layerNo}, n, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle - y_n \leq \varepsilon \]

\[\land \]

\[(\alpha P \setminus \text{ref}') \text{ setapprox}(\varepsilon) \{ \text{out}(i).y_i \} \land \]

\[\forall \text{ref}', x_1, \ldots, x_{\text{insize}} \bullet \]

\[\exists a \bullet \]

\[\forall y_1, \ldots, y_{\#\text{out}}; i : 1 \ldots \text{outsize} | \]

\[p \land \text{annoutput}(\text{layerNo}, i, \langle x_1, \ldots, x_{\text{insize}} \rangle) \notin \text{ref}' \]

\[\forall n : 1 \ldots i - 1 \bullet \]

\[\langle \text{annoutput}(\text{layerNo}, n, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle - y_n \leq \varepsilon \]

\[\land \]

\[(\alpha P \setminus \text{ref}') \text{ setapprox}(\varepsilon) \{ \text{out}(i).y_i \} \land \]

\[\forall \text{ref}', x_1, \ldots, x_{\text{insize}} \bullet \]

\[\exists a \bullet \]

\[\forall y_1, \ldots, y_{\#\text{out}}; i : 1 \ldots \text{outsize} | \]

\[p \land \text{annoutput}(\text{layerNo}, i, \langle x_1, \ldots, x_{\text{insize}} \rangle) \notin \text{ref}' \]

\[\forall n : 1 \ldots i - 1 \bullet \]

\[\langle \text{annoutput}(\text{layerNo}, n, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle - y_n \leq \varepsilon \]

\[\land \]

\[(\alpha P \setminus \text{ref}') \text{ setapprox}(\varepsilon) \{ \text{out}(i).y_i \} \land \]
\[\text{APPENDIX C. ANN COMPONENT CONFORMANCE LEMMAS}\]

\[\neg \exists \text{ref}'_i, x_1, \ldots, x_{\text{insize}} \]

\[\exists y_1, \ldots, y_{\#out}; \ i: 1 \ldots \text{outsize} \mid p \land \text{out}(i).\text{annoutput}(\text{layerNo}, i, \langle x_1, \ldots, x_{\text{insize}} \rangle) \notin \text{ref}' \]

\[\neg (\forall n: 1 \ldots i - 1 \bullet \text{annoutput}(\text{layerNo}, n, \langle x_1, \ldots, x_{\text{insize}} \rangle) - y_n < \varepsilon \]

\[\land \]

\[\text{(}\alpha P \setminus \text{ref}')\text{ setapprox}(\epsilon) \{\text{out}(i).y_i\} \}

\[= \neg \exists x_1, \ldots, x_{\text{insize}} \]

\[\exists y_1, \ldots, y_{\#out}; \ i: 1 \ldots \text{outsize} \mid p \land \text{out}(i).\text{annoutput}(\text{layerNo}, i, \langle x_1, \ldots, x_{\text{insize}} \rangle) \notin \alpha P \setminus \{\text{out}(i).\text{annoutput}(\text{layerNo}, i, \langle x_1, \ldots, x_{\text{insize}} \rangle)\} \bullet \]

\[\neg (\forall n: 1 \ldots i - 1 \bullet \text{annoutput}(\text{layerNo}, n, \langle x_1, \ldots, x_{\text{insize}} \rangle) - y_n < \varepsilon \]

\[\land \]

\[\text{(}\alpha P \setminus \text{out}(i).\text{annoutput}(\text{layerNo}, i, \langle x_1, \ldots, x_{\text{insize}} \rangle)\}\text{ setapprox}(\epsilon) \{\text{out}(i).y_i\} \}

\[\text{[select a witness for ref':} \alpha P \setminus \{\text{out}(i).\text{annoutput}(\text{layerNo}, i, \langle x_1, \ldots, x_{\text{insize}} \rangle)\}] \]

\[= \neg \exists x_1, \ldots, x_{\text{insize}} \]

\[\exists y_1, \ldots, y_{\#out}; \ i: 1 \ldots \text{outsize} \mid p \bullet \]

\[\neg (\forall n: 1 \ldots i - 1 \bullet \text{annoutput}(\text{layerNo}, n, \langle x_1, \ldots, x_{\text{insize}} \rangle) - y_n < \varepsilon \]

\[\land \]

\[\text{\{out}(i).\text{annoutput}(\text{layerNo}, i, \langle x_1, \ldots, x_{\text{insize}} \rangle)\} \text{ setapprox}(\epsilon) \{\text{out}(i).y_i\} \]

\[\text{[output event comparison, using Lemma B.7]} \]

\[= \neg \exists x_1, \ldots, x_{\text{insize}} \]

\[\exists y_1, \ldots, y_{\#out}; \ i: 1 \ldots \text{outsize} \mid p \bullet \]

\[\neg (\forall n: 1 \ldots i - 1 \bullet \text{annoutput}(\text{layerNo}, n, \langle x_1, \ldots, x_{\text{insize}} \rangle) - y_n < \varepsilon \]

\[\land \]

\[\forall e: \{\text{out}(i).\text{annoutput}(\text{layerNo}, i, \langle x_1, \ldots, x_{\text{insize}} \rangle)\} \bullet \]

\[\exists e1: \{\text{out}(i).y_i\} \bullet \text{value}(e) - \text{value}(e1) < \varepsilon \]

\[\text{[singleton sets]} \]

\[= \neg \exists x_1, \ldots, x_{\text{insize}} \]

\[\exists y_1, \ldots, y_{\#out}; \ i: 1 \ldots \text{outsize} \mid p \bullet \]

\[\neg (\forall n: 1 \ldots i - 1 \bullet \text{annoutput}(\text{layerNo}, n, \langle x_1, \ldots, x_{\text{insize}} \rangle) - y_n < \varepsilon \]

\[\land \]

\[\text{value(}\text{out}(i).\text{annoutput}(\text{layerNo}, i, \langle x_1, \ldots, x_{\text{insize}} \rangle)\) \text{ value}(\text{out}(i).y_i) < \varepsilon \]

\[\text{[singleton sets]} \]
\[
\forall x_1, \ldots, x_{\text{insize}} \bullet \exists y_1, \ldots, y_{\#\text{out}} \bullet i : 1 \ldots \text{outsize} | p \bullet \\
\neg (\forall n : 1 \ldots i - 1 \bullet \left| \text{annoutput}(\text{layerNo}, n, \langle x_1, \ldots, x_{\text{insize}} \rangle) - y_n \right| < \epsilon \\
\wedge \left| \text{annoutput}(\text{layerNo}, i, \langle x_1, \ldots, x_{\text{insize}} \rangle) - y_i \right| < \epsilon)
\]

\[
\neg \exists x_1, \ldots, x_{\text{insize}} \bullet \\
\exists y_1, \ldots, y_{\#\text{out}} \bullet i : 1 \ldots \text{outsize} | p \bullet \\
\neg (\forall n : 1 \ldots i \bullet \left| \text{annoutput}(\text{layerNo}, n, \langle x_1, \ldots, x_{\text{insize}} \rangle) - y_n \right| < \epsilon)
\]

Lemma C.2.

\[
\neg \exists x_1, \ldots, x_{\text{insize}} : \text{Value} \bullet \exists y_1, \ldots, y_{\#\text{out}} : \text{Value} | p \bullet \exists i : 1 \ldots \text{outsize} \bullet \\
\{\text{annoutput}(\text{layerNo}, i, \langle x_1, \ldots, x_{\text{insize}} \rangle)\} \cap \{x : \mathbb{R} | |x - y_i| < \epsilon\} = \emptyset
\]

\[
\Rightarrow [(Q_3 \backslash_{\text{post}} \text{ANNHiddenEvts})[\text{inp}/\text{layerRes.0}, \text{out}/\text{layerRes.layerNo}] \Rightarrow \\
\exists s | \text{tt seqapprox}(\epsilon) s \bullet P_3[s/\text{tt}]]
\]

Proof.

\[
[Q_3 \backslash_{\text{post}} \text{ANNHiddenEvts}[\text{inp}/\text{layerRes.0}, \text{out}/\text{layerRes.layerNo}] \Rightarrow \\
\exists s | \text{tt seqapprox}(\epsilon) s \bullet P_3[s/\text{tt}]]
\]

\[
\Rightarrow \forall st, st', \text{wait, wait'}, \text{ref, ref'}, \text{ok, ok'}, \text{tr, tr'}, \text{tt} \bullet \\
Q_3 \backslash_{\text{post}} \text{ANNHiddenEvts}[\text{inp}/\text{layerRes.0}, \text{out}/\text{layerRes.layerNo}] \Rightarrow \\
\exists s' | \text{tt seqapprox}(\epsilon) s' \bullet P_3[s'/\text{tt}]
\]

\[
\Rightarrow \forall st, st', \text{wait, wait'}, \text{ref, ref'}, \text{ok, ok'}, \text{tr, tr'}, \text{tt} \bullet \\
\left(\text{ok} \land \text{ok'} \land \neg \text{wait} \land \neg \text{wait'} \land st' = st \land \\
\#\text{input} = \text{insize} \land \\
\Phi[\text{layeroutput}(\text{layerNo}, \text{layerSize}(\text{layerNo})) \text{ shide ANNHiddenEvts} \\
\)]\Rightarrow \\
\exists s | \text{tt seqapprox}(\epsilon) s \bullet P_3[s/\text{tt}]
\]

[unfolding Q_3: postcondition extraction (\neg_3), Def. B.11 and Definition B.8]
APPENDIX C. ANN COMPONENT CONFORMANCE LEMMAS

\[∀ \text{st, st', wait, wait', ref, ref', ok, ok', tr, tr', tt} \bullet \ \\
\text{[(unfolding } \Phi, \text{ Definition B.14}]}
\]

\[(\text{ok} \land \text{ok'} \land \neg \text{wait} \land \neg \text{wait'} \land \text{st'} = \text{st} \land \]
\#input = \text{insize} \land
\text{tt} = \text{layeroutput}(\text{layerNo}, \text{layerSize}(\text{layerNo})) \text{ shide ANNHiddenEvts}
\]
\)[\text{inp}/\text{layerRes.0, out}/\text{layerRes.layerNo}] \Rightarrow
\]
\[∃ s \mid \text{tt seqapprox}(\epsilon) s \bullet P_3[s/\text{tt}] \]

\[∀ \text{st, st', wait, wait', ref, ref', ok, ok', tr, tr', tt} \bullet \ \\
\text{[(unfolding } P_3: \text{ Definitions 4.4 and B.11}]}
\]

\[(\text{ok} \land \text{ok'} \land \neg \text{wait} \land \neg \text{wait'} \land \text{st'} = \text{st} \land \]
\#input = \text{insize} \land
\text{tt} = \text{layeroutput}(\text{layerNo}, \text{layerSize}(\text{layerNo})) \text{ shide ANNHiddenEvts}
\]
\)[\text{inp}/\text{layerRes.0, out}/\text{layerRes.layerNo}] \Rightarrow
\]
\[∃ s \mid \text{tt seqapprox}(\epsilon) s \bullet
\]
\[∃ x_1, \ldots, x_{\#\text{inp}}; y_1, \ldots, y_{\#\text{out}} \mid p \bullet (\text{ok} \land \text{ok'} \land \neg \text{wait} \land \neg \text{wait'} \land \text{st'} = \text{st} \land
\]
\[\text{tt} = \lceil / i : \text{dom inp} \bullet (\text{inp}(i).x_i)\rceil
\]
\[\lceil / j : \text{dom out} \bullet (\text{out}(j).y_j)\rceil[s/\text{tt}] \]

\[∀ \text{st', ref, ref', tr, tr', tt} \bullet \ \\
\text{[one-point rule on } \text{ok, ok', wait, wait'} \text{ and st}]
\]

\[(\#\text{input} = \text{insize} \land
\text{tt} = \text{layeroutput}(\text{layerNo}, \text{layerSize}(\text{layerNo})) \text{ shide ANNHiddenEvts}
\]
\)[\text{inp}/\text{layerRes.0, out}/\text{layerRes.layerNo}] \Rightarrow
\]
\[∃ s \mid \text{tt seqapprox}(\epsilon) s \bullet
\]
\[∃ x_1, \ldots, x_{\#\text{inp}}; y_1, \ldots, y_{\#\text{out}} \mid p \bullet (\text{tt} = \lceil / i : \text{dom inp} \bullet (\text{inp}(i).x_i)\rceil
\]
\[\lceil / j : \text{dom out} \bullet (\text{out}(j).y_j)\rceil[s/\text{tt}] \]

\[∀ \text{ref, ref', tr, tr', tt} \bullet \ \\
\text{[reflexivity of equality]}
\]

\[(\#\text{input} = \text{insize} \land
\text{tt} = \text{layeroutput}(\text{layerNo}, \text{layerSize}(\text{layerNo})) \text{ shide ANNHiddenEvts}
\]
\)[\text{inp}/\text{layerRes.0, out}/\text{layerRes.layerNo}] \Rightarrow
\]
\[∃ s \mid \text{tt seqapprox}(\epsilon) s \bullet
\]
\[∃ x_1, \ldots, x_{\#\text{inp}}; y_1, \ldots, y_{\#\text{out}} \mid p \bullet (\text{tt} = \lceil / i : \text{dom inp} \bullet (\text{inp}(i).x_i)\rceil
\]
\[\lceil / j : \text{dom out} \bullet (\text{out}(j).y_j)\rceil[s/\text{tt}] \]

\[∀ \text{tr, tr', tt} \bullet \ \\
\text{[no references to } \text{ref or ref'} \text{ in postcondition } (CRF \text{ healthiness condition [28]])}
\]

\[(\#\text{input} = \text{insize} \land
\text{tt} = \text{layeroutput}(\text{layerNo}, \text{layerSize}(\text{layerNo})) \text{ shide ANNHiddenEvts}
\]
\)[\text{inp}/\text{layerRes.0, out}/\text{layerRes.layerNo}] \Rightarrow
\]
\[∃ s \mid \text{tt seqapprox}(\epsilon) s \bullet
\]
\[∃ x_1, \ldots, x_{\#\text{inp}}; y_1, \ldots, y_{\#\text{out}} \mid p \bullet (\text{tt} = \lceil / i : \text{dom inp} \bullet (\text{inp}(i).x_i)\rceil
\]
\[\lceil / j : \text{dom out} \bullet (\text{out}(j).y_j)\rceil[s/\text{tt}] \]
= ∀ tr, tr', tt •
 ∃ x₁,.., xᵢ[ins] • (#input = insize ∧
 tt = /
 \left(\begin{array}{l}
 \land / p_1 : 1.. layerNo - 1 •
 \land / p_n : 1.. layerSize(p_l) •
 \langle nodeoutput(p_l, p_n, \langle x_1,.., xᵢ[ins] \rangle) •
 \land / p_n : 1.. layerSize(layerNo) •
 \langle nodeoutput(layerNo, p_n, \langle x_1,.., xᵢ[ins] \rangle) •
 \end{array}\right)

 shide ANNHiddenEvts
)
\left[\begin{array}{l}
 \exists x_1,.., xₙ[imp]\ y_1,.., yₙ[out] •
 p • (tt = /
 \left(\begin{array}{l}
 \land / i : dom inp • (inp(i).x_i) •
 \land / j : dom out • (out(j).y_j) [s/tt]
 \end{array}\right)

 shide ANNHiddenEvts
)
\left[\begin{array}{l}
 \exists x_1,.., xₙ[ins] • Value •
 tt = /
 \left(\begin{array}{l}
 \land / p_1 : 1.. layerNo - 1 •
 \land / p_n : 1.. layerSize(p_l) •
 \langle nodeoutput(p_l, p_n, \langle x_1,.., xᵢ[ins] \rangle) •
 \land / p_n : 1.. layerSize(layerNo) •
 \langle nodeoutput(layerNo, p_n, \langle x_1,.., xᵢ[ins] \rangle) •
 \end{array}\right)

 shide ANNHiddenEvts
)
\left[\begin{array}{l}
 \exists x_1,.., xₙ[ins] • Value •
 tt = /
 \left(\begin{array}{l}
 \land / p_1 : 1.. layerNo - 1 •
 \land / p_n : 1.. layerSize(p_l) •
 \langle layerRes.p_l.p_n.annoutput(p_l, p_n, \langle x_1,.., xᵢ[ins] \rangle) •
 \land / p_n : 1.. layerSize(layerNo) •
 \langle layerRes.layerNo.p_n.annoutput(layerNo, p_n, \langle x_1,.., xᵢ[ins] \rangle) •
 \end{array}\right)

 shide ANNHiddenEvts
)
\left[\begin{array}{l}
 \exists x_1,.., xₙ[ins] • Value •
 tt = /
 \left(\begin{array}{l}
 \land / p_1 : 1.. layerNo - 1 •
 \land / p_n : 1.. layerSize(p_l) •
 \langle layerRes.p_l.p_n.annoutput(p_l, p_n, \langle x_1,.., xᵢ[ins] \rangle) •
 \land / p_n : 1.. layerSize(layerNo) •
 \langle layerRes.layerNo.p_n.annoutput(layerNo, p_n, \langle x_1,.., xᵢ[ins] \rangle) •
 \end{array}\right)

 shide ANNHiddenEvts
)
\left[\begin{array}{l}
 \exists x_1,.., xₙ[ins] • Value •
 tt = /
 \left(\begin{array}{l}
 \land / p_1 : 1.. layerNo - 1 •
 \land / p_n : 1.. layerSize(p_l) •
 \langle layerRes.p_l.p_n.annoutput(p_l, p_n, \langle x_1,.., xᵢ[ins] \rangle) •
 \land / p_n : 1.. layerSize(layerNo) •
 \langle layerRes.layerNo.p_n.annoutput(layerNo, p_n, \langle x_1,.., xᵢ[ins] \rangle) •
 \end{array}\right)

 shide ANNHiddenEvts
)
\[(\exists x_1, \ldots, x_{\text{insize}} : \text{Value} \bullet tt = \sim \text{ in : 1 .. insize} \bullet \langle \text{layerRes.0.in.x_in} \rangle \sim \]
\[\sim \text{ p.n : 1 .. layerSize(layerNo)} \bullet \langle \text{layerRes.layerNo.p.n.annoutput} \rangle \sim \]
\[\exists s \mid \text{tt seqapprox(ε) s} \Rightarrow \exists x_1, \ldots, x_{\#\text{inp}} ; y_1, \ldots, y_{\#\text{out}} \mid p \bullet (tt = \sim i : \text{dom inp} \bullet \langle \text{inp(i).x_i} \rangle \sim \]
\[\sim j : \text{dom out} \bullet \langle \text{out(j).y_j} \rangle)[s/\text{tt}] \]

= \forall tr, tr', tt \bullet \quad \text{[applying [\text{inp}/\text{layerRes.0}, \text{out}/\text{layerRes.layerNo}]]}
\[(\exists x_1, \ldots, x_{\text{insize}} : \text{Value} \bullet tt = \sim \text{ in : 1 .. insize} \bullet \langle \text{inp.in}.x_in \rangle \sim \]
\[\sim \text{ p.n : 1 .. layerSize(layerNo)} \bullet \langle \text{out(p.n).annoutput} \rangle \sim \]
\[) \Rightarrow \exists s \mid \text{tt seqapprox(ε) s} \bullet \exists x_1, \ldots, x_{\#\text{inp}} ; y_1, \ldots, y_{\#\text{out}} \mid p \bullet (tt = \sim i : \text{dom inp} \bullet \langle \text{inp(i).x_i} \rangle \sim \]
\[\sim j : \text{dom out} \bullet \langle \text{out(j).y_j} \rangle)[s/\text{tt}] \]

= \forall tr, tr', tt \bullet \quad \text{[applying [s/\text{tt}]]}
\[(\exists x_1, \ldots, x_{\text{insize}} : \text{Value} \bullet tt = \sim \text{ in : 1 .. insize} \bullet \langle \text{inp.in}.x_in \rangle \sim \]
\[\sim \text{ p.n : 1 .. layerSize(layerNo)} \bullet \langle \text{out(p.n).annoutput} \rangle \sim \]
\[) \Rightarrow \exists s \mid \text{tt seqapprox(ε) s} \bullet \exists x_1, \ldots, x_{\#\text{inp}} ; y_1, \ldots, y_{\#\text{out}} \mid p \bullet (s = \sim i : \text{dom inp} \bullet \langle \text{inp(i).x_i} \rangle \sim \]
\[\sim j : \text{dom out} \bullet \langle \text{out(j).y_j} \rangle) \]

= \forall tr, tr', tt \bullet \quad \text{[propagate condition of s]}
\[(\exists x_1, \ldots, x_{\text{insize}} : \text{Value} \bullet tt = \sim \text{ in : 1 .. insize} \bullet \langle \text{inp.in}.x_in \rangle \sim \]
\[\sim \text{ p.n : 1 .. layerSize(layerNo)} \bullet \langle \text{out(p.n).annoutput} \rangle \sim \]
\[) \Rightarrow \exists s \bullet \exists x_1, \ldots, x_{\#\text{inp}} ; y_1, \ldots, y_{\#\text{out}} \mid p \bullet \text{tt seqapprox(ε) s} \land \]
\[(s = \sim i : \text{dom inp} \bullet \langle \text{inp(i).x_i} \rangle \sim \]
\[\sim j : \text{dom out} \bullet \langle \text{out(j).y_j} \rangle) \]

= \forall tr, tr', tt \bullet \quad \text{[one-point rule on s]}
\[(\exists x_1, \ldots, x_{\text{insize}} : \text{Value} \bullet tt = \sim \text{ in : 1 .. insize} \bullet \langle \text{inp.in}.x_in \rangle \sim \]
\[\sim \text{ p.n : 1 .. layerSize(layerNo)} \bullet \langle \text{out(p.n).annoutput} \rangle \sim \]
\[) \Rightarrow \exists x_1, \ldots, x_{\#\text{inp}} ; y_1, \ldots, y_{\#\text{out}} \mid p \bullet \text{tt seqapprox(ε) } \sim i : \text{dom inp} \bullet \langle \text{inp(i).x_i} \rangle \sim \]
\[\sim j : \text{dom out} \bullet \langle \text{out(j).y_j} \rangle) \]
\[
\forall \mathit{tr}, \mathit{tr}', \mathit{tt} \bullet
\forall x_1, \ldots, x_{\text{insize}} : \text{Value} \bullet
\forall y_1, \ldots, y_{\#\text{out}} \mid p \bullet
\left(\mathit{tt} = \wedge/\mathit{in} : 1 \ldots \text{insize} \bullet (\mathit{in}(\mathit{in}).x_i) \right)
\wedge/\mathit{p_n} : 1 \ldots \text{layerSize}(\mathit{layerNo}) \bullet
\langle \mathit{out}(\mathit{p_n}).\text{annoutput}(\mathit{layerNo}, \mathit{p_n}, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle
\Rightarrow
\mathit{tt} \text{ seqapprox}(\epsilon) \wedge/\mathit{i} : \text{dom } \mathit{in} \bullet (\mathit{in}(\mathit{i}).x_i) \wedge/\mathit{j} : \text{dom } \mathit{out} \bullet (\mathit{out}(\mathit{j}).y_j)
\]

\[
\forall x_1, \ldots, x_{\text{insize}} : \text{Value} \bullet
\forall y_1, \ldots, y_{\#\text{out}} \mid p \bullet
\left(\wedge/\mathit{in} : 1 \ldots \text{insize} \bullet (\mathit{in}(\mathit{in}).x_i) \right)
\wedge/\mathit{p_n} : 1 \ldots \text{layerSize}(\mathit{layerNo}) \bullet
\langle \mathit{out}(\mathit{p_n}).\text{annoutput}(\mathit{layerNo}, \mathit{p_n}, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle
\text{ seqapprox}(\epsilon)
\wedge/\mathit{i} : \text{dom } \mathit{in} \bullet (\mathit{in}(\mathit{i}).x_i) \wedge/\mathit{j} : \text{dom } \mathit{out} \bullet (\mathit{out}(\mathit{j}).y_j)
\]

\[
\forall x_1, \ldots, x_{\text{insize}} : \text{Value} \bullet
\forall y_1, \ldots, y_{\#\text{out}} \mid p \bullet \mathit{s_1} \text{ seqapprox}(\epsilon) \mathit{t}
\]
\[
\mathit{s_1} = \wedge/\mathit{in} : 1 \ldots \text{insize} \bullet (\mathit{in}(\mathit{in}).x_i)
\wedge/\mathit{p_n} : 1 \ldots \text{layerSize}(\mathit{layerNo}) \bullet
\langle \mathit{out}(\mathit{p_n}).\text{annoutput}(\mathit{layerNo}, \mathit{p_n}, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle
\mathit{t} = \wedge/\mathit{i} : \text{dom } \mathit{in} \bullet (\mathit{in}(\mathit{i}).x_i) \wedge/\mathit{j} : \text{dom } \mathit{out} \bullet (\mathit{out}(\mathit{j}).y_j)
\]

[strengthen condition]

[one-point rule on \(\mathit{tt}\)]

[outsize = \#out]

[introduce bound variables for sequence expressions for clarity]
\[
\forall x_1, \ldots, x_{\text{insize}} : \text{Value} \quad \bullet \\
\forall y_1, \ldots, y_{\text{outsiz}} | p \quad \bullet \\
\forall i : \text{dom } s_2 \quad \bullet \\
(s_2(i) \in I \Rightarrow t(i) = s_2(i)) \land \\
(s_2(i) \in O \Rightarrow ev(t(i)) = ev(s_2(i)) \land \\
\exists r : (-\epsilon, \epsilon) \bullet value(t(i)) = value(s_2(i)) + r)
\]

\[s_1 = \overset{\sim}{/} in : 1 \ldots \text{insize} \bullet (\text{inp}(in).x_{in})\]

\[\overset{\sim}{/} p_{-n} : 1 \ldots \text{layerSize}(\text{layerNo}) \quad \bullet \langle \text{out}(p_{-n}).\text{annoutput}(\text{layerNo}, p_{-n}, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle\]

\[t = \overset{\sim}{/} i : \text{dom imp} \bullet (\text{inp}(i).x_i)\]

\[\overset{\sim}{/} j : \text{dom out} \bullet (\text{out}(j).y_j)\]

\[s_2 = s_1 \upharpoonright (I \cup O)\]

\[\forall x_1, \ldots, x_{\text{insize}} : \text{Value} \quad \bullet \\
\forall y_1, \ldots, y_{\text{outsiz}} | p \quad \bullet \\
\forall i : \text{dom } s_2 \quad \bullet \\
(s_2(i) \in I \Rightarrow t(i) = s_2(i)) \land \\
(s_2(i) \in O \Rightarrow ev(t(i)) = ev(s_2(i)) \land \\
\exists r : (-\epsilon, \epsilon) \bullet value(t(i)) = value(s_2(i)) + r)\]

\[s_1 = \overset{\sim}{/} in : 1 \ldots \text{insize} \bullet (\text{inp}(in).x_{in})\]

\[\overset{\sim}{/} p_{-n} : 1 \ldots \text{layerSize}(\text{layerNo}) \quad \bullet \langle \text{out}(p_{-n}).\text{annoutput}(\text{layerNo}, p_{-n}, \langle x_1, \ldots, x_{\text{insize}} \rangle) \rangle\]

\[t = \overset{\sim}{/} i : \text{dom imp} \bullet (\text{inp}(i).x_i)\]

\[\overset{\sim}{/} j : \text{dom out} \bullet (\text{out}(j).y_j)\]

\[s_2 = s_1 \upharpoonright (I \cup O)\]

\[\forall x_1, \ldots, x_{\text{insize}} : \text{Value} \quad \bullet \\
\forall y_1, \ldots, y_{\text{outsiz}} | p \quad \bullet \\
\forall i : \text{dom } s_2 \quad (s_2(i) \in I \Rightarrow t(i) = s_2(i)) \land \\
\forall i : \text{dom } s_2 \quad (s_2(i) \in O \Rightarrow ev(t(i)) = ev(s_2(i)) \land \\
\exists r : (-\epsilon, \epsilon) \bullet value(t(i)) = value(s_2(i)) + r)\]
\[\forall x_1, \ldots, x_{\text{in}} : \text{Value} \quad \begin{aligned} & \forall y_1, \ldots, y_{\text{out}} \mid p \mid \quad \forall i : \text{dom } s_2 \mid s_2(i) \in I \cdot t(i) = s_2(i) \land \\ & \forall i : \text{dom } s_2 \mid s_2(i) \in O \cdot ev(t(i)) = ev(s_2(i)) \land \\ & \exists r : (\epsilon, \epsilon) \cdot \text{value}(t(i)) = \text{value}(s_2(i)) + r \\ \end{aligned} \]

\[t = \begin{array}{l} \\ \overline{\land} : \text{dom } \text{inp} \cdot (\text{inp}(i), x_i) \\ \overline{\land} : \text{dom } \text{out} \cdot (\text{out}(j), y_j) \\ \overline{\land} / \text{in} : 1 \ldots \text{insize} \cdot (\text{inp}(\text{in}) \cdot \text{xin}) \\ \overline{\land} / \text{p-n} : 1 \ldots \text{layerSize}(\text{layerN}) \cdot \\ \{ \text{out}(\text{p-n}) \cdot \text{annoutput}(\text{layerN}, \text{p-n}, \{x_1, \ldots, x_{\text{insize}}\}) \} \\ \end{array} \]

\[= \forall x_1, \ldots, x_{\text{in}} : \text{Value} \quad \begin{aligned} & \forall y_1, \ldots, y_{\text{out}} \mid p \mid \quad \forall i : 1 \ldots \text{insize} \cdot t(i) = s_2(i) \land \\ & \forall i : \text{insize} + 1 \ldots \text{outsize} \cdot ev(t(i)) = ev(s_2(i)) \land \\ & \exists r : (\epsilon, \epsilon) \cdot \text{value}(t(i)) = \text{value}(s_2(i)) + r \\ \end{aligned} \]

\[t = \begin{array}{l} \\ \overline{\land} : \text{dom } \text{inp} \cdot (\text{inp}(i), x_i) \\ \overline{\land} : \text{dom } \text{out} \cdot (\text{out}(j), y_j) \\ \overline{\land} / \text{in} : 1 \ldots \text{insize} \cdot (\text{inp}(\text{in}) \cdot \text{xin}) \\ \overline{\land} / \text{p-n} : 1 \ldots \text{layerSize}(\text{layerN}) \cdot \\ \{ \text{out}(\text{p-n}) \cdot \text{annoutput}(\text{layerN}, \text{p-n}, \{x_1, \ldots, x_{\text{insize}}\}) \} \\ \end{array} \]

\[= \forall x_1, \ldots, x_{\text{in}} : \text{Value} \quad \begin{aligned} & \forall y_1, \ldots, y_{\text{out}} \mid p \mid \quad \forall i : 1 \ldots \text{insize} \cdot t(i) = s_2(i) \land \\ & \forall i : \text{insize} + 1 \ldots \text{outsize} \cdot ev(t(i)) = ev(s_2(i)) \land \\ & \exists r : (\epsilon, \epsilon) \cdot \text{value}(t(i)) = \text{value}(s_2(i)) + r \\ \end{aligned} \]

\[t = \begin{array}{l} \\ \overline{\land} : \text{dom } \text{inp} \cdot (\text{inp}(i), x_i) \\ \overline{\land} : \text{dom } \text{out} \cdot (\text{out}(j), y_j) \\ \overline{\land} / \text{in} : 1 \ldots \text{insize} \cdot (\text{inp}(\text{in}) \cdot \text{xin}) \\ \overline{\land} / \text{p-n} : 1 \ldots \text{outsize} \cdot \\ \{ \text{out}(\text{p-n}) \cdot \text{annoutput}(\text{layerN}, \text{p-n}, \{x_1, \ldots, x_{\text{insize}}\}) \} \\ \end{array} \]

\[= \forall x_1, \ldots, x_{\text{in}} : \text{Value} \quad \begin{aligned} & \forall y_1, \ldots, y_{\text{out}} \mid p \mid \quad \forall i : 1 \ldots \text{insize} \cdot \text{inp}(i) x_i = \text{inp}(i) x_i \land \\ & \forall i : \text{insize} + 1 \ldots \text{outsize} \cdot ev(t(i)) = ev(s_2(i)) \land \\ & \exists r : (\epsilon, \epsilon) \cdot \text{value}(t(i)) = \text{value}(s_2(i)) + r \\ \end{aligned} \]

\[t = \begin{array}{l} \\ \overline{\land} : \text{dom } \text{inp} \cdot (\text{inp}(i), x_i) \\ \overline{\land} : \text{dom } \text{out} \cdot (\text{out}(j), y_j) \\ \overline{\land} / \text{in} : 1 \ldots \text{insize} \cdot (\text{inp}(\text{in}) \cdot \text{xin}) \\ \overline{\land} / \text{p-n} : 1 \ldots \text{outsize} \cdot \\ \{ \text{out}(\text{p-n}) \cdot \text{annoutput}(\text{layerN}, \text{p-n}, \{x_1, \ldots, x_{\text{insize}}\}) \} \\ \end{array} \]
∀ x₁, ..., x_{\text{insize}} : \text{Value} \bullet \\
∀ y₁, ..., y_{\text{outsize}} \mid p \bullet \\
∀ i : \text{insize} + 1.. \text{outsize} \bullet ev(t(i)) = ev(s_2(i)) \land \\
\exists r : (−\epsilon, \epsilon) \bullet value(t(i)) = value(s_2(i)) + r \\

∀ i : \text{dom imp} \bullet \langle \text{imp}(i).x_i \rangle \\
∀ j : \text{dom out} \bullet \langle \text{out}(j).y_j \rangle \\
s_2 = \small\begin{array}{l}
\forall i : 1.. \text{insize} \bullet \langle \text{imp}(i).x_i \rangle \\
\forall p_n : 1.. \text{outsize} \bullet \\
\langle \text{out}(p_n).\text{annoutput}(\text{layerNo}, p_n, (x_1, ..., x_{\text{insize}})) \rangle
\end{array} \\

∀ x₁, ..., x_{\text{insize}} : \text{Value} \bullet \\
∀ y₁, ..., y_{\text{outsize}} \mid p \bullet \\
∀ i : \text{insize} + 1 .. \text{outsize} \bullet \\
\quad ev(\text{out}(i - \text{insize}).y_{i-\text{insize}}) = \\
\quad ev(\text{out}(i - \text{insize}).\text{annoutput}(\text{layerNo}, (i - \text{insize}), (x_1, ..., x_{\text{insize}})) \land \\
\quad \exists r : (−\epsilon, \epsilon) \bullet value(\text{out}(i - \text{insize}).y_{i-\text{insize}}) = \\
\quad value(\text{out}(i - \text{insize}).\text{annoutput}(\text{layerNo}, (i - \text{insize}), (x_1, ..., x_{\text{insize}}))) + r \\

∀ x₁, ..., x_{\text{insize}} : \text{Value} \bullet \\
∀ y₁, ..., y_{\text{outsize}} \mid p \bullet \\
∀ i : \text{insize} + 1 .. \text{outsize} \bullet \\
\quad out(i - \text{insize}) = out(i - \text{insize}) \land \\
\quad \exists r : (−\epsilon, \epsilon) \bullet y_{i-\text{insize}} = \text{annoutput}(\text{layerNo}, (i - \text{insize}), (x_1, ..., x_{\text{insize}})) + r \\

∀ x₁, ..., x_{\text{insize}} : \text{Value} \bullet \\
∀ y₁, ..., y_{\text{outsize}} \mid p \bullet \\
∀ i : 1 .. \text{outsize} \bullet \\
\quad \exists r : (−\epsilon, \epsilon) \bullet y_{i} = \text{annoutput}(\text{layerNo}, (i), (x_1, ..., x_{\text{insize}})) + r \\

∀ x₁, ..., x_{\text{insize}} : \text{Value} \bullet \\
∀ y₁, ..., y_{\text{outsize}} \mid p \bullet \\
∀ i : 1 .. \text{outsize} \bullet \\
\quad \exists r : \mathbb{R} \mid −\epsilon < r < \epsilon \bullet y_{i} = \text{annoutput}(\text{layerNo}, (i), (x_1, ..., x_{\text{insize}})) + r \\

∀ x₁, ..., x_{\text{insize}} : \text{Value} \bullet \\
∀ y₁, ..., y_{\text{outsize}} \mid p \bullet \\
∀ i : 1 .. \text{outsize} \bullet \\
\quad \exists r : \mathbb{R} \bullet y_{i} = \text{annoutput}(\text{layerNo}, (i), (x_1, ..., x_{\text{insize}})) + r \land \\
\quad −\epsilon < r < \epsilon \\

∀ x₁, ..., x_{\text{insize}} : \text{Value} \bullet \\
∀ y₁, ..., y_{\text{outsize}} \mid p \bullet \\
∀ i : 1 .. \text{outsize} \bullet \\
\quad \exists r : \mathbb{R} \bullet r = y_{i} - \text{annoutput}(\text{layerNo}, (i), (x_1, ..., x_{\text{insize}})) \land \\
\quad −\epsilon < r < \epsilon
APPENDIX C. ANN COMPONENT CONFORMANCE LEMMAS

\[
\begin{align*}
\forall x_1, \ldots, x_{\text{insize}} : \text{Value} & \Rightarrow \\
\forall y_1, \ldots, y_{\text{outsize}} : \text{p} & \Rightarrow \\
\forall i : 1 \ldots \text{outsize} & : \\
-\epsilon < y_i - \text{annoutput}(\text{layerNo}, (i), (x_1, \ldots, x_{\text{insize}})) < \epsilon & \text{[one-point rule on r]} \\
\forall x_1, \ldots, x_{\text{insize}} : \text{Value} & \Rightarrow \\
\forall y_1, \ldots, y_{\text{outsize}} : \text{p} & \Rightarrow \\
\forall i : 1 \ldots \text{outsize} & : \\
|y_i - \text{annoutput}(\text{layerNo}, (i), (x_1, \ldots, x_{\text{insize}}))| < \epsilon & \text{[arithmetic]} \\
\neg \exists x_1, \ldots, x_{\text{insize}} : \text{Value} & \Rightarrow \\
\exists y_1, \ldots, y_{\text{outsize}} : \text{p} & \Rightarrow \\
\exists i : 1 \ldots \text{outsize} & : \\
\neg |y_i - \text{annoutput}(\text{layerNo}, (i), (x_1, \ldots, x_{\text{insize}}))| < \epsilon & \text{[double negate condition]} \\
\neg \exists x_1, \ldots, x_{\text{insize}} : \text{Value} & \Rightarrow \\
\exists y_1, \ldots, y_{\text{outsize}} : \text{p} & \Rightarrow \\
\exists i : 1 \ldots \text{outsize} & : \\
\{\text{annoutput}(\text{layerNo}, (i), (x_1, \ldots, x_{\text{insize}}))\} \cap \{x : \mathbb{R} | |x - y_i| < \epsilon\} = \emptyset & \text{[set theory]}
\end{align*}
\]
List of References

