
U S I N G N L P T O R E S O LV E M I S M AT C H E S B E T W E E N J O B S E E K E R S A N D
P O S I T I O N S I N R E C R U I T M E N T

thomas af green

PhD Thesis

PhD Candidate
Department of Computer Science

Faculty of Engineering
The University of Sheffield

September 2023

Thomas AF Green: Using NLP to Resolve Mismatches Between Jobseekers and Positions in

Recruitment, PhD Thesis, © September 2023

A B S T R A C T

Recruiting through online portals has seen a dramatic increase in recent decades and

it is challenging for job seekers to evaluate the overwhelming amount of data to effi-

ciently identify positions that align with their skills and qualifications. This research

addresses this issue by investigating automatic approaches that leverage recent devel-

opments in Natural Language Processing (NLP) that search, parse, and evaluate the

often unstructured data in order to find appropriate matches. We present the develop-

ment of a benchmark suite consisting of an annotation schema, training corpus and

baseline model for Entity Recognition (ER) in job descriptions, published under a Cre-

ative Commons licence. The dataset contains 18.6k entities comprising five types: Skill;

Qualification; Experience; Occupation; and Domain. We develop a benchmark Conditional

Random Fields (CRF) ER model which achieves an F1 score of 0.59, and our best per-

forming model utilises Bidirectional Encoder Representations from Transformers (BERT)

and achieves an F1 score of 0.73. We consider different ways of framing the matching

problem and develop Machine Learning (ML) models to address each. We propose that

the Natural Language Inference (NLI) paradigm most closely aligns with the matching

problem. Our best performing model utilises decomposable attention and achieves an

F1 score of 0.73 on a job application success prediction task. Finally, we integrate the ER

and success prediction models into a cohesive pipeline that predicts whether a given

job application made by a user will be successful, which can be extended into a system

that recommends suitable jobs to a user. Although we observe poorer results on this

pipeline relative to a more simple input truncation approach, we suggest this may be

limited by the ER component for feature selection and the entity encoding process.

iii

P U B L I C AT I O N S

Green, Thomas AF, Diana Maynard, and Chenghua Lin (2022). “Development of a

Benchmark Corpus to Support Entity Recognition in Job Descriptions.” In: pp. 1201–

1208. url: http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-

1.128.pdf.

v

http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.128.pdf
http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.128.pdf

A C K N O W L E D G M E N T S

This work was supported by the Centre for Doctoral Training in Speech and Language

Technologies and their Applications funded by UK Research and Innovation [grant

number EP/S023062/1].

I would like to express my heartfelt gratitude to my first supervisor, Dr Diana

Maynard, for her unwavering support, guidance, and encouragement throughout

my research. Our weekly meetings, insightful discussions, and her dedication to my

academic growth played a pivotal role in shaping this thesis.

I would also like to acknowledge my second supervisor, Dr Chenghua Lin, and my

Industry Advisor, Dan Kirkland, for their valuable feedback and guidance. I thank

Tribepad for their support and for providing the job application data that made this

research possible.

I extend my sincere thanks to the directors of the CDT, Professors Rob Gaizauskas

and Thomas Hain, as well as the Research Supervisors and associated academics at the

University of Sheffield who fostered and maintained a conducive research environment

to support this academic work. In particular, I would like to thank Dr Stuart Wrigley

for managing the delivery of the CDT programme and for being a jolly participant in

our Friday ‘coffee and catch-ups’.

I would like to thank my CDT cohort for their support and companionship over the

last four years. Their camaraderie, encouragement, and shared experiences have made

this academic journey enjoyable and memorable.

I am deeply grateful to my family for all their support and encouragement over the

last four years: Sara, Stuart, Alice, Joey, Sam, and Jack. My father, Stuart, proofread

this thesis diligently and I thank him for his insightful comments and presentation

suggestions.

Lastly, I want to offer special thanks to my wife and constant supporter, Tasmine. Her

love, patience, and understanding have been my anchor through the most challenging

period of my academic life. Her sacrifices and endless encouragement made this work

possible.

vii

C O N T E N T S

0.1 Acronyms . xix

1 Introduction 1

1.1 Research Motivation . 1

1.2 Research Questions . 4

1.3 Research Contributions . 6

1.4 Thesis Outline . 6

2 Preliminaries 9

2.1 Overview . 9

2.2 Domain-Specific Data Structures . 9

2.2.1 Structure of Job Descriptions . 9

2.2.2 Structure of User Profiles . 11

2.3 Workflow of Online Recruitment . 11

2.4 Introduction to Natural Language Processing 13

2.4.1 TF-IDF . 13

2.4.2 Word Embeddings . 14

2.4.3 Entity Recognition . 22

2.4.4 Text Classification . 23

2.4.5 Natural Language Inference . 23

2.5 Introduction to Machine Learning . 24

2.5.1 Model Structures . 24

2.5.2 Model Training . 35

2.5.3 Model Validation . 36

2.5.4 Model Evaluation . 38

2.6 Introduction to Recommender Systems 40

2.6.1 Content-Based Filtering . 41

2.6.2 Collaborative Filtering . 43

2.6.3 Knowledge-Based Filtering . 46

2.6.4 Hybrid Filtering . 47

2.7 Evaluating Human Annotations . 48

ix

x contents

2.7.1 Accuracy versus Gold Standard 49

2.7.2 Inter-Annotator Agreement . 49

2.8 Equality, Diversity, and Inclusion in Recruitment Algorithms 51

3 Related Work 53

3.1 Overview . 53

3.2 Job Recommendation Systems . 53

3.2.1 RecSys 2016 . 58

3.2.2 Job Recommendation Challenge 61

3.2.3 Content-Based Filtering . 62

3.2.4 Collaborative Filtering . 63

3.2.5 Knowledge-Based Filtering . 64

3.2.6 Hybrid Filtering . 65

3.3 Large Scale Analysis of Job Descriptions 66

3.4 Natural Language Processing in Job Descriptions 68

3.4.1 Word Embeddings . 68

3.4.2 Entity Recognition . 69

3.4.3 Natural Language Inference . 74

4 Extracting Salient Entities from Job Descriptions 77

4.1 Chapter Overview . 77

4.2 Introduction . 77

4.3 Unlabelled Job Description Data Acquisition 79

4.3.1 Discrepancies of Job Description Style and Purpose 79

4.4 Schema Development . 82

4.5 Accuracy Threshold Identification . 98

4.6 Corpus Development . 101

4.7 Corpus Statistics . 101

4.8 Entity Recognition Method Development 107

4.8.1 Data Preprocessing . 107

4.8.2 Baseline CRF Model . 109

4.8.3 BiLSTM-CRF Model . 110

4.8.4 Convolutional Neural Network . 112

4.8.5 Transformer-Based Models . 113

4.9 Entity Recognition Evaluation . 116

contents xi

4.9.1 Baseline CRF Model . 116

4.9.2 Competitive ER Models . 118

4.10 Application of Entity Recognition Models 121

4.11 Ethical Considerations . 122

4.12 Publication of Materials . 123

4.13 Conclusion . 124

5 Matching Candidate Profiles and Job Descriptions 125

5.1 Chapter Overview . 125

5.2 Introduction . 125

5.3 Framing the Matching Problem . 126

5.3.1 Recommendation Problem . 127

5.3.2 Text Classification Problem . 128

5.3.3 Natural Language Inference Problem 128

5.4 Kaggle Job Recommendation Challenge 130

5.4.1 Corpus Analysis . 131

5.4.2 Application Prediction Task . 134

5.5 Tribepad Application Corpus . 141

5.5.1 Corpus Statistics . 142

5.5.2 Application Prediction Task . 145

5.5.3 Status Prediction Task . 147

5.5.4 Using Short-Form Models on Long-Form Input Sequences 161

5.6 Matching Pipeline . 167

5.6.1 Matching Pipeline Overview . 167

5.6.2 Data Selection . 168

5.6.3 Feature Extraction . 170

5.6.4 Embedding Method . 171

5.6.5 Model Architecture . 173

5.6.6 Output Prediction . 174

5.6.7 Evaluation . 174

5.7 Conclusion . 176

6 Concluding Remarks 179

6.1 Assessment of Contributions . 181

6.1.1 Extracting Salient Entities from Job Descriptions 181

xii contents

6.1.2 Matching Candidate Profiles and Job Descriptions 182

6.2 Limitations . 182

6.3 Future Work . 183

6.3.1 Extending the Salient Entity Extraction Systems 183

6.3.2 Extending the Matching Pipeline 184

6.3.3 The Skills Delta . 185

6.4 Impact of Thesis Contributions . 189

a Appendix 191

a.1 Entity Recognition Corpus . 191

a.1.1 Annotation Materials . 191

a.2 ER Model Results . 205

a.3 TribePad Matched User Profile - Job Description Corpus 205

a.3.1 Status Codes . 208

a.3.2 career data . 209

a.3.3 education data . 210

a.3.4 job data . 211

a.3.5 skills data . 213

a.3.6 user data . 214

a.4 Ethical Approval . 215

Bibliography 227

L I S T O F F I G U R E S

Figure 1.1 Sample text from CV A. 3

Figure 1.2 Sample text from CV B. 3

Figure 2.2 Example of a Job Description. 10

Figure 2.3 Flowchart of Pre-Application Online Recruitment. 12

Figure 2.4 Flowchart of Post-Application Online Recruitment. 12

Figure 2.5 Visualisation of Word Embeddings 15

Figure 2.6 Visualisation of Euclidean Distance. 18

Figure 2.7 Visualisation of Manhattan Distance. 19

Figure 2.8 Visualisation of Cosine Similarity. 21

Figure 2.9 Example Named Entity Recognition (NER)-tagged sentence. . . 22

Figure 2.10 Traditional Machine Learning (TML) and Deep Learning (DL)

Model Architecture. 25

Figure 2.11 Diagram of a Perceptron. 28

Figure 2.12 Visualisation of Activation Functions. 30

Figure 2.13 Diagram of a Multi-Layer Perceptron. 32

Figure 2.14 An example of a Recurrent Neural Network (RNN). 32

Figure 2.15 An example of a Long Short-Term Memory (LSTM). 33

Figure 2.16 An example of a Gated Recurrent Unit (GRU). 34

Figure 2.17 An example of a Convolutional Neural Network (CNN). 35

Figure 2.18 Visualisation of Model Overfitting. 37

Figure 2.19 Visualisation of Content-based Filtering job recommendation

system. 42

Figure 2.20 Visualisation of Collaborative Filtering recommendation system. 43

Figure 2.21 Visualisation of Knowledge-based Filtering recommendation

system. 46

Figure 2.22 Visualisation of Hybrid recommendation system. 48

Figure 3.1 Architecture of a generic job matching system. 54

Figure 3.2 Taxonomy of Job Recommendation Systems. 57

Figure 4.1 Visualisation of RQ1 Project Workflow. 78

xiii

Figure 4.2 Example unlabelled Human Intelligence Task (HIT) on the

DataTurks platform. 86

Figure 4.3 Example labelled HIT on the DataTurks platform. 87

Figure 4.4 Example unlabelled HIT on the Amazon SageMaker platform. . 90

Figure 4.5 Example labelled HIT on the Amazon SageMaker platform. . . . 91

Figure 4.6 Random Noise Induction Experiment Results. 99

Figure 4.7 Systematic Noise Induction Experiment Results. 100

Figure 4.8 Qualification Task Results. 102

Figure 4.9 Span token count distribution in the live corpus. 105

Figure 4.10 Visualisation of the CRF model. 110

Figure 4.11 Visualisation of the Bidirectional Long Short-Term

Memory (BiLSTM)-CRF model. 111

Figure 4.12 Visualisation of the CNN model. 112

Figure 4.13 Visualisation of the BERT model. 114

Figure 5.1 Tribepad Corpus Status Transition Graph. 148

Figure 5.2 Application Prediction Model Architecture. 155

Figure 5.3 Token Count Distribution of Tribepad Data. 162

Figure 5.4 Visualisation of the Job Matching Pipeline. 168

Figure 5.5 Visualisation of Feature Extraction Component. 172

Figure 6.1 Visualisation of Job Transition Graph. 188

L I S T O F TA B L E S

Table 2.1 Example Confusion Matrix. 38

Table 2.2 Interpretation of Fleiss’ Kappa. 50

Table 3.1 Inter-Annotator Agreement (IAA) for Stanford Natural Language

Inference Corpus (SNLI) Dataset. 75

Table 4.1 Unlabelled Job Description Corpus Statistics. 80

Table 4.2 Round 1 of corpus annotation development. 85

Table 4.3 Round 2 of corpus annotation development. 89

xiv

list of tables xv

Table 4.4 Round 3 of corpus annotation development. 93

Table 4.5 Example of disagreement in annotation task. 93

Table 4.6 Problems and solutions for the annotation task. 94

Table 4.7 Round 4 of corpus annotation development. 95

Table 4.8 Round 5 of corpus annotation development. 96

Table 4.9 Round 6 of corpus annotation development. 96

Table 4.10 Annotated corpus statistics. 102

Table 4.11 Class distribution for the live, aggregated corpus. 103

Table 4.12 Class distribution for the test set. 103

Table 4.13 IAA on the live corpus. 104

Table 4.14 Frequent entities in the live corpus. 106

Table 4.15 Class distribution for the preprocessed data. 109

Table 4.16 Results for CRF ER model. 116

Table 4.17 Results for the ER task. 119

Table 5.1 Summary of Job Recommendation Challenge data. 132

Table 5.2 Common Majors in the Kaggle Job Recommendation Challenge

(KJRC) Corpus. 133

Table 5.3 Common Job Titles in the KJRC Corpus. 134

Table 5.4 Job Description Challenge Model Results. 137

Table 5.5 Summary of Tribepad data. 141

Table 5.6 Summary of apps data. 142

Table 5.7 Baseline Application Prediction Model Performance on Tribepad

Corpus. 146

Table 5.8 Tribepad Status Prediction, {Hired; Rejected}. 149

Table 5.9 Tribepad Status Prediction, {Interview; No Interview}. 150

Table 5.10 Status Prediction Results on the Tribepad & SNLI corpora. . . . 158

Table 5.11 Truncation method comparison on Tribepad corpus using Hired

dichotomy. 165

Table 5.12 Truncation method comparison on Tribepad corpus using Inter-

viewed dichotomy. 165

Table 5.13 Data Selection for the Job Matching Pipeline. 169

Table 5.14 Encoder Model Attributes for the Job Matching Pipeline. 173

Table 5.15 Results for the Matching Pipeline on the Tribepad corpus. . . . 175

xvi list of tables

Table 5.16 Results for UMAP Experiments on the Matching Pipeline. . . . 177

Table A.1 Results for BERT base uncased ER model. 205

Table A.2 Results for DistilBERT base uncased ER model. 206

Table A.3 Results for BERT base cased ER model. 206

Table A.4 Results for BERT base multilingual cased ER model. 207

Table A.5 Summary of apps data. 208

Table A.6 Summary of career data. 209

Table A.7 Summary of education data. 210

Table A.8 Summary of job data. 212

Table A.9 Summary of skills data. 213

Table A.10 Summary of user data. 214

list of tables xvii

G L O S S A RY

job description the information pertaining to the job. This may be entirely without

coherent structure, and may or may not contain aspects of the job such as

the job title, role description, requirements for applicants in terms of skills or

experience, location, or salary. Unless specified otherwise, this term includes

‘job adverts’, which are descriptions of the job intended to entice the user.

Referred to in related literature as a ‘job listing’, ‘job post’, or simply ‘job’. xvii,

9

skill the attributes of a user in terms of attitudes, knowledge, and competencies that

enable them to complete tasks. Note that this definition is not consistent across

existing literature, where the same term may only refer to a subset of terms

encompassed by the definition given here. xvii, xix

skillset the set of skills. If used in the context of a user then it refers to the skills

that user has. If used in the context of a job then it refers to the skills that job

requires. See skill. xvii

user an individual who submits job applications with the intention of seeking a job.

Referred to in related literature as an ‘applicant’, ‘job seeker’, or ‘candidate’.

xvii

user profile the information pertaining to the user. May include any combination of

the information the user submits (e.g. uploaded CVs) or information obtained

through the user’s engagement on an online platform (e.g. viewed job descrip-

tions). Referred to in related literature as an ‘applicant profile’, ‘candidate pro-

file’, and often used as a synonym of ‘CV’ or ‘resume’. xvii, 11

0.1 acronyms

ai Artificial Intelligence

xix

xx Glossary

amt Amazon Mechanical Turk

auc Area Under the ROC Curve

bert Bidirectional Encoder Representations from Transformers

bigru Bidirectional Gated Recurrent Unit

bilstm Bidirectional Long Short-Term Memory

conll Computational Natural Language Learning

cnn Convolutional Neural Network

crf Conditional Random Fields

dl Deep Learning

esco European Skills/Competences, Qualifications and Occupations Commission

edi Equality, Diversity, and Inclusion

eqf European Qualifications Framework

er Entity Recognition

gbrt Gradient Boosting Regression Tree

0.1 acronyms xxi

glove Global Vectors for Word Representation

gru Gated Recurrent Unit

gpt Generative Pretrained Transformer

hit Human Intelligence Task

iaa Inter-Annotator Agreement

idf Inverse Document Frequency

kjrc Kaggle Job Recommendation Challenge

knn k-Nearest Neighbours

lda Latent Dirichlet Allocation

lm Language Model

lstm Long Short-Term Memory

map Mean Average Precision

mf Matrix Factorisation

ml Machine Learning

xxii Glossary

mlp Multi-Layer Perceptron

ner Named Entity Recognition

nli Natural Language Inference

nlp Natural Language Processing

nltk Natural Language Toolkit

nn Neural Network

oov Out of Vocabulary

pos Part-of-Speech

relu Rectified Linear Unit

rnn Recurrent Neural Network

roc Receiver Operating Characteristic

sgd Stochastic Gradient Descent

sota state-of-the-art

snli Stanford Natural Language Inference Corpus

0.1 acronyms xxiii

svd Singular Value Decomposition

tf Term Frequency

tf-idf Term Frequency - Inverse Document Frequency

ti Temporal Intensity

tml Traditional Machine Learning

umap Uniform Manifold Approximation and Projection

xgboost eXtreme Gradient Boosting

1
I N T R O D U C T I O N

1.1 research motivation

Recruiting through online portals has seen a dramatic increase in recent decades, both

in terms of the number of recruiters advertising job roles on online portals and the

number of job seekers applying to them (Petre, Osoian, and Zaharie, 2016). One of

the issues that job seekers and recruiters face is that there is an overwhelmingly large

amount of data that needs to be reviewed in order to find ideal jobs or candidates,

causing an information overload problem (Dhameliya and Desai, 2019). Alternatively, this

problem can be seen as a filter failure problem (Shirky, 2008), in that the issue facing

job seekers and recruiters is not solely due to the large amount of data, but rather

the difficulty associated with effectively filtering the data to find appropriate jobs or

candidates. The lack of efficient data parsing and filtering methods make the task of

identifying appropriate jobs and candidates a costly and time-consuming process. For

reference, the median cost per hire for Senior Managers is approximately £5,000 for

senior level positions, and £2,000 for other positions1.

To facilitate the job/candidate seeking process, automatic approaches have been

developed that search, parse, and evaluate the available data in order to find appropriate

matches (Balog et al., 2012). Although simplistic methods such as keyword matching are

still used, these approaches will exclude suitable candidates if their profiles use different

keywords or phrases to express the same concepts as those selected for matching.

Contemporary solutions to matching problems tend to leverage recent advancements

in the field of NLP and ML that are able to utilise the semantic properties of concepts

(for example, the semantic similarity between the terms building and constructing) as

opposed to purely morphological properties (for example, the sub-word java in the

term javascript), and involve the evaluation of applicant profile - job description matches

1 From a 2020 Chartered Institute of Personnel and Development survey. Figures include in-house resourcing
time, advertising costs, agency or search fees. https://www.cipd.org/uk/knowledge/reports

1

https://www.cipd.org/uk/knowledge/reports

2 introduction

to produce a ranked list of suitable recommendations (Malherbe, Cataldi, and Ballatore,

2015).

The dynamic nature of the job market necessitates continuous adaptation to evolving

skill requirements by jobseekers and recruiting agents alike; new job vacancies emerge

which require new skills, and candidate skill sets change over time (Petre, Osoian, and

Zaharie, 2016). In this way, the job matching task itself is constantly changing, and

automated processes that facilitate the matching task need to account for the evolution

of the domain.

An NLP-driven matching solution would need to replicate the decision-making

process of a human agent in order to function effectively. In order to accomplish this it

is important that candidate and job selection preferences are understood. Attributes

shown to be important for job seekers to varying extents include remuneration, job

responsibilities, work style, geographical region, work culture, company values, and the business

model (Iacovou and Thompson (2002); Poll (2020)). Some of these attributes can be

represented numerically (for example, remuneration) and some can be extracted or

inferred from text contained in job descriptions or associated metadata (for example,

job responsibilities or geographical region), which make them suitable fields of data for

consideration in an automatic matching solution. However, other important attributes

are abstract and inherently subjective and cannot be represented in a way that can

be considered by automatic matching solutions (for example, the work culture of a

company or the personability of a candidate). For this reason, the hiring process cannot

be entirely automatic in that it requires a human intelligence component beyond the

initial stages. Although Although these components are not suitable for automation,

a system using NLP and ML can significantly augment the initial filtering process,

presenting ranked recommendations that align with the preferences of job seekers

and recruiting companies. This research project focuses on the experimentation and

development of the processes and algorithms that contribute to the efficacy of such a

system. Beyond the application of this research to online job portals, the investigation

of skill demands and the alignment of skills with job adverts can offer valuable insights

into the dynamic nature of the job market.

There are three main challenges associated with developing an applicant profile-job

description matching solution that have been investigated to varying extents by existing

research in this field. Firstly, the format in which recruiting agents construct their job

1.1 research motivation 3

Figure 1.1: Sample text from CV A.

Skills and Experience:

• Market Analysis

• Marketing Plans

• Stock Management

Figure 1.2: Sample text from CV B.

Solely responsible for identifying new
product development opportunities
by analysing market requirement in-
formation, creating specific market-
ing plans, and stock management of
around 50 product ranges.

descriptions and the format in which job seekers provide their personal information

(for example, their CV) is non-uniform and often entirely without coherent structure.

Key information the author seeks to convey may be noted explicitly in bullet points or

embedded in free text. Figures 1.1 and 1.2 show the way in which the same information

may be represented in different surface forms across two different CVs. An effective

matching solution would need to be able to extract the relevant information from

non-uniform and potentially unstructured text.

The second challenge associated with developing an applicant profile-job description

matching solution is that it is not clear which aspects of the job description or applicant

profile are important when a candidate makes the decision to apply to a particular role

or when a recruiter decides to invite a particular applicant to interview. Furthermore, it

is not clear to what extent some aspects are more important than others. Although the

information required for human agents to make these decisions is contained within

the items to review, the specific details, and the relative importance of each, can only

be found through empirical research. An effective matching solution would need

to calculate the overall suitability of a given job description or candidate profile by

considering each of the important aspects with its corresponding importance weighting.

Finally, the evaluation of matching solutions is difficult for a number of reasons. It is

difficult to know how good a system is intrinsically, given the lack of data that can be

used to evaluate an individual applicant profile-job description match. Although an

application to a job listing made by a candidate may be seen as a possible indicator of

a good fit for the applicant to the job, and the acceptance of an interview or job offer

may be better indicators still, subsequent employment longevity may be limited for a

4 introduction

number of reasons, and it is infeasible to obtain an applicant’s rating of the job after

their engagement with the recruitment portal has ended. Given this lack of data, it is

difficult to qualify any match as truly successful.

Given that intrinsic evaluation is difficult, artificial evaluation is generally used via

matched applicant profile-job description datasets. However, the issue of subjectivity

regarding the correctness of a given match persists. Furthermore, there is a lack of public

data that can be used to compare different systems. Privacy concerns and protection of

the data used to develop matching solutions (in particular, candidate profile data in

the form of CVs) precludes the sharing of data between researchers and the academic

community, which makes comparing the effectiveness of different matching solutions a

difficult task.

Ultimately, a matching solution could be used to develop an online portal to assist

jobseekers and recruiters. Jobseekers would be able to upload their CV and immediately

view a ranked list of appropriate job matches, and similarly recruiting agents would be

able to list their job opening and view a ranked list of suitable candidates. Since the

matching problem is bilateral in that a good recommendation for a jobseeker is a job

that is not only suitable for them, but a job for which they are also suitable, an effective

matching solution would address both job recommendations for users and candidate

recommendations for recruiters and therefore a single online portal that encompasses

both forms of recommendation is preferable to separate platforms for each.

1.2 research questions

There are two main research questions this thesis aims to address. The first concerns

the parsing of applicant profile and job description data in order to extract relevant

information. The second involves utilising deep insight from available data combined

with existing matching methodologies in order to develop a state-of-the-art applicant

profile-job description matching solution.

RQ1 How can salient entities in applicant profiles and job descriptions be identified and

extracted for use in an applicant profile-job description matching solution?

At the time of writing, there is no consensus regarding which entities within applicant

profiles and job descriptions are important for developing matching solutions, and

1.2 research questions 5

there are discrepancies in term definitions (for example, the inconsistent definitions of

skills, discussed in §3.4.2). Additionally, prior to the work described by this thesis, there

were no public, labelled datasets that could be used in the development of a system

for identifying and extracting salient elements. Formal definitions for these entities

were required, as well as a public, labelled dataset for the purpose of developing entity

extraction systems.

Using this dataset, various methods of feature extraction are developed and evaluated

to establish benchmark performance. We compare the performance of CRF, BiLSTM, CNN,

and transformer-based models on this task.

The scientific contributions of this research question are:

• A list of entity classifications and their definitions in the form of an annotation

schema

• A public, labelled dataset for the development and evaluation of entity extraction

systems

• A state-of-the-art system for extracting salient entities from applicant profiles and

job descriptions

RQ2 How can deeper understanding of the candidate and job be used to influence a candidate

profile-job description matching solution?

The second research question seeks to develop a novel matching solution by utilising

the rich data contained within applicant profiles, job descriptions, and associated

metadata. The investigation centres on job recommendation techniques, employing a

publicly available corpus of job applications and a proprietary corpus provided by

sponsor company Tribepad. Initial research involves framing the task as an application

prediction problem, whereby models are trained to predict which job listings a

candidate would engage with. This problem is then framed as a status prediction

challenge, whereby models are trained to predict the outcome of job applications made

by users for specific job positions. This bilateral approach allows for the investigation

of job recommendation from distinct angles, and provides insights and methodologies

that will shape future research and practical implementations within the recruitment

domain.

The scientific contributions of this research question are:

6 introduction

• A novel approach to applicant profile-job description matching that leverages

deep insight of applicant profiles and job descriptions

1.3 research contributions

The main scientific contributions of this thesis, aligned with their corresponding re-

search questions, are:

• A list of entity classifications and their definitions in the form of an annotation

scheme for salient entities within applicant profiles and job descriptions, made

publicly available (RQ1)

• A public, labelled dataset for the development and evaluation of entity extraction

systems (RQ1)

• A state-of-the-art system for extracting salient entities from applicant profiles and

job descriptions (RQ1)

• A novel approach to applicant profile-job description matching that leverages

deep insight of applicant profiles and job descriptions (RQ2)

These scientific contributions necessitate research, adaptation, and development of

various feature extraction methods, matching and ranking components, modelling

techniques, and the use of appropriate traditional machine learning and deep learning

approaches.

1.4 thesis outline

Chapter 1 serves as the Introduction chapter, complete with the motivation of this

thesis, the research questions this thesis aims to address, and the contributions of this

research, and an outline of the thesis chapters.

Chapter 2 covers the Preliminaries required to understand the methods and contri-

butions discussed in this thesis. This includes a basic description of the structure of the

main sources of data: the Job Description and the Candidate Profiles, a brief introduc-

tion to NLP, ML algorithms discussed in this thesis, and Recommender Systems.

1.4 thesis outline 7

Chapter 3 contains the Related Work section, providing in-depth analysis of the

literature used during the development of this thesis. This is divided into sections

according to content, covering papers on Job Recommendation Systems, ER in Job

Descriptions, and the KJRC.

Chapter 4 is the first original contribution chapter, and contains the experiments

and contributions for Extracting Salient Entities from Job Descriptions. We describe

the development of the annotation task and associated schema, and details of the

live corpus. We present statistics describing the corpus, and describe methods for

developing an Entity Recognition (ER) model trained on this data. We evaluate various

ER models using this data, and detail the publication of these resources for use by the

academic community.

Chapter 5 is the second original contribution chapter, and contains the experiments

and contributions for Matching Candidate Profiles and Job Descriptions. In this

chapter we define the matching problem and offer three lenses through which it can be

viewed. We describe the public corpus used for job recommendation experiments,

followed by more in-depth corpus analysis and initial application prediction

experiments. We then describe the private corpus of job applications with in-depth

corpus analysis, and present experiments in application prediction. We then describe

experiments in status prediction and summarise our findings and contributions in job

recommendation.

Chapter 6 contains the Concluding Remarks. We draw on the conclusions made

in the original contribution chapters, assessing the contributions and discussing the

limitations of this work. We end the thesis by proposing novel areas of future work that

would expand on the work described by this thesis and discussing the impact of its

contributions.

2
P R E L I M I N A R I E S

2.1 overview

This chapter provides a foundational framework for understanding the experimental

research described in this thesis, and encompasses essential concepts, methodologies,

and terminologies. First, we describe the structure and form of the data specific to

the recruitment domain in §2.2, and show the workflow of online recruitment in

§2.3 to situate our work in context. We provide a brief overview of Natural Language

Processing (NLP) in §2.4 and Machine Learning (ML) in §2.5 which includes a description

of both Traditional Machine Learning (TML) in §2.5.1.1 and Deep Learning (DL) in

§2.5.1.2. We describe common recommender systems in §2.6, and provide overview of

human annotation evaluation in §2.7 and a brief description of Equality, Diversity, and

Inclusion (EDI) considerations for research in this domain in §2.8.

2.2 domain-specific data structures

2.2.1 Structure of Job Descriptions

A job description is defined in this thesis as the collection of details pertaining to a single

job. Therefore, the term may include the following attributes:

• Job Title

• Job Summary

• List of responsibilities and duties

• Skill requirements

• Qualification requirements

9

10 preliminaries

Licensed Real Estate Assistant - Computer savvy, Boca, Delray Area.
Job Title LocationSkill Requirement

Figure 2.2: An example job description with multiple elements concatenated in one text field.

• Experience requirements

• Description of the ideal candidate

• Advertisement for candidates

• Salary and benefits

• Location

• Start date

• Contract type

Generally, there are three main components to a job description, some of which may

be absent due to the context of publication:

• A technical document detailing the job, for internal use

• A marketing document detailing the job, for external review

• Additional details, such as location, salary

There is no uniform structure to a job description, and discrepancies in format will

exist even within a given repository of job descriptions (for example, on job search

engines such as Indeed1).

Often, several of these elements are embedded in a single text field as opposed to

appearing in delimited and separate fields. Consider the text extracted from a job

description in Figure 2.2, in which the job title Licensed Real Estate Assistant is shown in

a single text field along with a single skill requirement computer savvy and the location

of the role Boca, Delray Area (an area of Boca Raton, Florida, USA).

Since these fields are concatenated and not explicitly delimited or labelled, methods

are required for the identification and classification of these elements in text fields.

1 https://indeed.com

https://indeed.com

2.3 workflow of online recruitment 11

2.2.2 Structure of User Profiles

A user profile is defined in this thesis as the collection of details pertaining to a single

candidate. Therefore, the term may include the following attributes:

• Candidate name

• Candidate summary

• Contact information

• Employment history

• Education history

• List of acquired qualifications

• List of skills

• List of hobbies and interests

• References

• Location

Some online portals will require candidates to upload a CV when signing up to the

platform2, and others will require candidates to fill out multiple designated fields to

appropriately segment the information contained in their CV3. Therefore, the elements

that compose a candidate’s profile may be in pre-defined and labelled fields, or other-

wise contained in the text of a CV document.

2.3 workflow of online recruitment

In order to gain an understanding of the application of the automatic matching solutions

presented in this thesis, it is important to contextualise them within the workflow of

the online recruitment process.

2 for example, https://www.cv-library.co.uk/
3 for example, https://www.totaljobs.com

https://www.cv-library.co.uk/
https://www.totaljobs.com

12 preliminaries

Create
User Profile

Search &
Filter Jobs

Generate
Ranked List

Focus of
Current Work

Review
Top n

Create
Applications

Figure 2.3: Flowchart of Pre-Application Online Recruitment.

Incomplete Shortlisted Interview Offered Accepted

Hired

Rejected
In Review

Figure 2.4: Flowchart of Post-Application Online Recruitment inferred from Tribepad hiring
data.

Figure 2.3 visualises the typical initial stages of the online recruitment process from

the creation of the user profile through to the point at which the job application is

made. The highlighted section generate ranked list indicates the point at which our

proposed matching solutions are implemented, whereby the remaining universe of

job descriptions is evaluated to suggest the most appropriate items after applying

user-defined filters.

Although the post-application stages will likely vary between online portals and

applicant tracking systems employed by recruiting agents, Figure 2.4 visualises one

example of the post-application stages used by Tribepad. Job application data that

includes these application statuses or status transition sequences can be used to better

inform matching solutions in that a successful application (for example, where the

applicant was eventually hired) can be distinguished from an unsuccessful application

(for example, where the applicant was rejected).

2.4 introduction to natural language processing 13

Transition arrows in Figure 2.4 are drawn from an analysis of status transition

sequences from historic application data. The use of specific statuses varies between

organisations using the Tribepad platform, which leads to some conceptually unusual

transitions such as Accepted → Rejected. In this instance, it is possible that the Accepted

status is equivalent to Hired, pending background checks, and the subsequent transition to

the Rejected status indicates that these checks failed.

2.4 introduction to natural language processing

NLP is a sub-field of computer science and artificial intelligence and refers to the

automatic analysis, understanding, and generation of human language.

Using NLP, we are able to create systems that replicate human decision-making for

language-specific tasks. Typically, the advantages for doing so are described in terms of

their speed and their reduced rate of random errors. Additionally, by delegating tasks

to automated computer systems we are able to alleviate human workload.

Although the field of NLP encompasses several research topics, this thesis focuses on

Term Frequency - Inverse Document Frequency (TF-IDF) (§2.4.1), a common method of

evaluating word relevance in a document; word embeddings (§2.4.2), which are methods

that generate mathematical representations of word semantics; Entity Recognition

(§2.4.3), which refers to the identification, extraction, and classification of salient entities

from text; Text Classification (§2.4.4), which refers to the prediction of class labels for

text documents; and Natural Language Inference (§2.4.5), which refers to methods that

infer entailment or contradiction between a premise and hypothesis.

2.4.1 TF-IDF

Term Frequency - Inverse Document Frequency (TF-IDF) (Sparck Jones, 1988) is a

measure that evaluates the relevance of a word relative to a document in a corpus.

It is the product of the Term Frequency (TF) (Equation 2.1), which is the number of

times the word appears in the document compared to the total number of words in

the document, and the Inverse Document Frequency (IDF) (Equation 2.2), which is the

proportion of documents in the corpus that contain the word. The addition of 1 to the

14 preliminaries

denominator, while not strictly necessary, avoids division by zero errors when the term

does not appear in the corpus.

TF =
frequency of term in document

total number of terms in document
(2.1)

IDF = log
(

total number of documents in corpus
1 + total number of documents that contain the term

)
(2.2)

Boolean TF is a variant of TF which sets the TF to 1 if the term is present in the

document. This approach tends to be useful in contexts where it is important to capture

the presence or absence of terms across a collection of documents, and where the

frequency of those terms within documents is of less importance.

2.4.2 Word Embeddings

Word embeddings are methods for generating mathematical representations of text

(Turney and Pantel, 2010). These ML methods learn vector representations for a fixed-

length vocabulary from a corpus of text where vector values are based on how each

word in the vocabulary appears in context. The resultant vector representations capture

semantic relationships between words and can be used to calculate word similarities.

Figure 2.5 shows a simplified example of vector represented words, in which the words

prince and woman are shown in 3-dimensional space represented by vectors (1, 2, 4) and

(5, 4, 1) respectively. In this example, the three axes represent royalty, gender, and age,

although typically word embeddings are of considerably higher dimensionality and

dimensions are not as easily human-interpretable.

Methods that create vector representations of words (for example, word2vec (Mikolov

et al., 2013)) can be extended to create vector representations of variable-length pieces

of text, such as sentences, paragraphs, or documents (for example, doc2vec (Le and

Mikolov, 2014)).

These vector word representations can theoretically have any number of dimensions,

but typically feature 50, 100, 200, or 300 dimensions (Pennington, Socher, and Christo-

pher D Manning, 2014). In n-dimensional vector space, words that appear in similar

contexts will be close together.

2.4 introduction to natural language processing 15

prince
woman

Royalty

Age

Figure 2.5: Visualisation of Word Embeddings, in which the words prince and woman are
represented as vectors (1, 2, 4) and (5, 4, 1) respectively.

16 preliminaries

Since word embeddings aim to capture word semantics in vector form, they are

useful in NLP tasks where the understanding of word meaning is important.

Although there are several established methods that can be used to train word em-

beddings, a popular option in academic research involves using pretrained word embed-

dings; large, publicly accessible files containing vector representations of a vocabulary

of words, typically trained on a large amount of data using powerful computational

resources. These pretrained word embeddings can be applied directly, or fine-tuned

on a smaller dataset for a particular task. There are three notable advantages of using

pretrained word embeddings in contemporary NLP research and applications. Firstly,

using pretrained embeddings reduces the total computational resource cost of the task,

given that training word embeddings is no longer required and that fine-tuning is con-

siderably less computationally expensive than training directly. Secondly, there is an

assurance that the trained embeddings are capturing semantic content given that they

are ubiquitous in contemporary NLP research, and thirdly, they facilitate comparison

between different models where the same embedding method has been applied; differ-

ences in performance across models can be reliably attributed to the models themselves

rather than to variances in how the embeddings were created. The disadvantages of

using pretrained model embeddings include the limited vocabulary; since pretrained

word embeddings are essentially a dictionary of terms and their associated vector rep-

resentations, words which were absent or infrequent in the documents used for pre-

training will not be included, which necessitates an extra method for handling these

Out of Vocabulary (OoV) words4.

Pretrained word embeddings available for academic use can be downloaded freely

from online repositories567, which detail the training process, training corpora, vocabu-

lary size, and the dimensionality of the resultant vectors.

2.4.2.1 Similarity Metrics

Words that have similar meanings will correspond to word embeddings that are close

together in vector space. This principle extends to sentences and documents that are

4 Typically, OoV words are ignored, although some embedding methods account for OoV words by using
substrings (for example, https://fasttext.cc).

5 http://vectors.nlpl.eu/repository/
6 https://nlp.stanford.edu/projects/glove/
7 https://fasttext.cc/docs/en/english-vectors.html

https://fasttext.cc
http://vectors.nlpl.eu/repository/
https://nlp.stanford.edu/projects/glove/
https://fasttext.cc/docs/en/english-vectors.html

2.4 introduction to natural language processing 17

represented in vector space, in that similarity of semantic content will result in clustered

embeddings. Similarity metrics are used to calculate the extent to which two words (or

sentences etc.) are similar. These include: the length of the most direct path between

the two points in vector space (Euclidean Distance); the length of the path from one

point to another travelling perpendicularly (Manhattan Distance); a generalisation of

the Euclidean and Manhattan Distance metrics (Minkowski Distance); or the size of the

angle measured between the two vectors (Cosine Similarity).

euclidean distance

The Euclidean distance metric measures the distance between two points represented in

vector-space. A small Euclidean distance between two points is an indicator of similarity

between two word embeddings. The formula for calculating Euclidean distance between

two points X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn) ∈ Rn is shown in equation 2.3.

d(X, Y) =

√
n

∑
i=1

(xi − yi)2 (2.3)

To illustrate the Euclidean distance metric, Figure 2.6 shows this distance between

two vectors.

manhattan distance

A similar metric for evaluating vector similarity is the Manhattan distance metric, which

is the distance between two points in vector-space measured along axes at right angles.

The formula for calculating Manhattan distance is shown in equation 2.4.

d1(X, Y) =
n

∑
i=1

|xi − yi| (2.4)

To illustrate the Manhattan distance metric, Figure 2.7 shows the distance between

two vectors.

18 preliminaries

0 1 2 3 4 5
0

1

2

3

4

5

0

1

2

3

4

5

Euclidean Distance
vector (1, 2, 4)
vector (5, 4, 1)
Euclidean Distance

Figure 2.6: Visualising the Euclidean Distance between vectors (1, 2, 4) and (5, 4, 1).

2.4 introduction to natural language processing 19

0 1 2 3 4 5
0

1

2

3

4

5

0

1

2

3

4

5

Manhattan Distance
vector (1, 2, 4)
vector (5, 4, 1)
Manhattan Distance

Figure 2.7: Visualising the Manhattan Distance between vectors (1, 2, 4) and (5, 4, 1).

20 preliminaries

minkowski distance

The Minkowski distance is a generalisation of both the Euclidean distance and Man-

hattan distance metrics, and varies depending on the chosen order of p; when p = 1,

this is equivalent to the Manhattan distance, and when p = 2 it is equivalent to the Eu-

clidean distance. The formula for calculating Euclidean distance is shown in equation

2.5. When applying these metrics to machine learning tasks, C. Aggarwal, Hinneburg,

and Keim (2001) suggest it may be preferable to use lower values of p for problems

with high dimensionality, and so the Manhattan distance (p = 1) is preferred over the

Euclidean distance (p = 2) as dimensionality of the data increases.

D(X, Y) =

(
n

∑
i=1

|xi − yi|p
) 1

p

(2.5)

cosine similarity

A limitation of distance metrics (Euclidean, Manhattan, and Minkowski) for calculating

similarity between two vectors is that they are not scale invariant. In the context of word

or document embeddings, a short document with few words will be distant from a long

document with many words even if the content of the documents is very similar. This

can be addressed by using similarity metrics such as cosine similarity which remove

the effect of document length.

Cosine similarity measures the similarity between two vectors by calculating the

cosine of the angle between the two vectors. A high cosine (and therefore a small angle)

between two vectors is an indicator of high similarity. The formula for calculating cosine

similarity is shown in equation 2.6. Cosine similarity is ubiquitous in NLP research

topics, particularly in cases where there is high variation in text length (Singhal, 2001).

cos(θ) = ∑n
i=1 xiyi√

∑n
i=1 x2

i

√
∑n

i=1 y2
i

(2.6)

To illustrate the cosine similarity metric, Figure 2.8 shows the angle between two

vectors.

2.4 introduction to natural language processing 21

0 1 2 3 4
0

1

2

3

4

0

1

2

3

4

Cosine Similarity

vector (1, 2, 3)

vector (4, 3, 1)

θ

Figure 2.8: Visualising the cosine similarity between vectors (1, 2, 3) and (4, 3, 1).

22 preliminaries

Apple CEO Tim Cook bought a penthouse in New York for $46 million.

Organisation Person Location Money

Figure 2.9: An example sentence with Named Entities identified and classified.

pearson correlation coefficient

The Pearson correlation coefficient (Freedman, Pisani, and Purves, 2007), given by

Equation 2.7, is also used as a similarity metric. It is essentially equivalent to the

cosine similarity between word embedding vectors, but there are cases where it is

inappropriate and cosine similarity is preferable (Zhelezniak et al., 2019).

rxy =

n

∑
i=1

(xi − x̄)(yi − ȳ)√
n

∑
i=1

(xi − x̄)2

√
n

∑
i=1

(yi − ȳ)2

(2.7)

2.4.3 Entity Recognition

ER is a subtask of NLP that concerns the automatic identification and classification of

entities in text. In this thesis we make the distinction between NER and ER by defining

the former a specific application of the latter; Named Entities are standardised categories

such as People, Locations, and Organisations, and NER methods identify and classify these

Named Entities, whereas ER methods are not limited to standard entity classifications

and may vary by task and schema.

Figure 2.9 shows an example sentence with Named Entities identified and classified.

Typically, the best-performing ER systems are developed using a supervised machine

learning approach which requires a large dataset of human-annotated examples (Yadav

and Bethard, 2019).

ER is used in several applications of NLP such as retrieving documents relevant to a

search query (document retrieval), reducing a large article into its most salient points

(automatic summarisation), and even for identifying the key elements that should be

used as input into another NLP model (feature extraction). In this thesis, ER is used for

2.4 introduction to natural language processing 23

the latter purpose; for the extraction of salient entities in job descriptions and candidate

profiles to be used as input to a model that is able to recommend appropriate jobs for

users and vice versa.

2.4.4 Text Classification

Text classification is a subtask of NLP that involves the automatic categorisation of text

documents into one or more predefined classes. This is distinct from ER since a text

document may contain several entities, but a text classification model is typically used

to assign a single class to the entire document.

Typically, the best-performing text classification models are developed using a super-

vised machine learning approach which requires a large dataset of labelled examples

(Q. Li et al., 2022).

Text classification models may be configured to accept any form of input, such as

the documents themselves, or the features extracted from the text documents using a

feature extraction method such as ER.

2.4.5 Natural Language Inference

NLI is a subtask of NLP that concerns the task of identifying the relationship between a

given premise and an associated conclusion (MacCartney and Christopher D. Manning,

2008). Consider the following premise: a man wearing blue jeans is painting his garage. A

conclusion that could logically be drawn from this premise, such as the man is painting, is

said to entail this hypothesis. Conversely, a conclusion that can be shown to be incorrect,

such as the man is building a shed, is said to contradict the hypothesis. A conclusion that

neither entails nor contradicts the premise, such as the paint is blue, is considered neutral.

The goal of an NLI model is to automatically predict the relationship between premise

and conclusion and to select an appropriate classification from a set of possible labels,

typically one of {entail; contradict; neutral}.

Contemporary NLI models utilise pretrained word embeddings (§2.4.2) and feature

some form of fusion layer in their model architecture, whereby the encoded representa-

tions of the premise and conclusion are compared, and it is the comparison of premise

24 preliminaries

and conclusion that drives model prediction as opposed to the encoded inputs them-

selves (Storks, Gao, and Chai, 2020).

2.5 introduction to machine learning

ML refers to the computer models and systems that are able to improve their perfor-

mance on a given task for which they have not been explicitly programmed. This is

achieved by applying statistical methods that are able to identify patterns and infer in-

formation from training data. ML can be applied to tasks that are conceptually simple,

such as drawing a line of best fit through a data set (regression analysis), and tasks that

are conceptually extremely complex, such as object detection in self-driving vehicles.

Although ML is a distinct sub-field of Artificial Intelligence (AI) from NLP, ML methods

have revolutionised the field of NLP and are ubiquitous in modern approaches to

language-oriented tasks (Nagarhalli, Vaze, and Rana, 2021).

2.5.1 Model Structures

There are two general approaches to ML. The first is referred to in this thesis as Tra-

ditional Machine Learning, and pertains to the use of standardised statistical models

applied to structured data. The second is referred to in this thesis as Deep Learning,

which pertains to the use of Neural Networks (NNs) applied to large volumes of un-

structured data. A further distinction between the two approaches is that, when a TML

algorithm generates a series of incorrect predictions, intervention is necessary and man-

ual model adjustments are required, but conversely, when DL models generate incor-

rect predictions, the model itself can determine inaccuracies and self-adjust accordingly,

learning features and model structure from unstructured data and self-improving with-

out manual intervention.

Figure 2.10 shows a high-level summary of the architecture of TML and DL methods.

While a TML model typically requires a data preprocessing step to parse and form input

data into a usable format, and a feature extraction step to further identify the aspects of

the data that contain the salient information the model should draw inference from in

order to make predictions, a DL model does not require these explicit steps since they

2.5 introduction to machine learning 25

Input Data

Data
Preprocessing

Feature
Extraction

Deep
Learning

Model
Established

Output

Traditional Machine Learning Method

Deep Learning Method

Figure 2.10: An illustration of the difference in model architecture between TML and DL.

are contained in the model training process; the DL model learns the features directly

from the unstructured data.

While DL offers several advantages over TML in terms of its higher performance in

cases of large volumes of training data and the lack of an explicit feature extraction

step (which makes DL models desirable when the salient features of the input data are

unknown), they are unsuitable in many cases, and in these cases, TML methods are

more appropriate.

DL is unsuitable in cases where the volume of available training data is limited, and

in cases where it is not acceptable to employ an automatic solution in the absence of

clear reasoning as to how a given prediction or recommendation has been made; since

DL models are typically complex, featuring large numbers of nodes and connections

between them, it is exceptionally difficult to understand exactly which aspect of the

data each part of the model is extracting and abstracting, and the reasoning behind a

prediction made by a DL model is often inextricable. This is true to a lesser extent in TML

models, which may be more transparent in comparison. Research into the explainability

of DL models is a popular area of AI research (Saranya and Subhashini, 2023) as it

addresses the critical need for transparency and interpretability in AI systems, making

them more accessible and their predictions more trustworthy.

26 preliminaries

In this thesis, we investigate methods of evaluating candidate-job fit and making

data-driven recommendations, and to this end, a method that is not entirely understood

does not constitute an acceptable solution since it could not be implemented without

risking violation of the principles of EDI. This is discussed in more detail in §2.8.

2.5.1.1 Traditional Machine Learning

TML refers to the use of standardised statistical models applied to structured data. It is

distinct from DL in that TML algorithms do not use hidden layer architectures. The two

main advantages of TML over DL are:

• improved performance in cases where data is limited; DL methods outperform

TML methods when vast amounts of data are available, but perform poorly when

data is limited.

• comparatively greater model transparency; since TML methods do not involve

hidden layers, it is relatively simpler to interpret why a model has made a

particular prediction or recommendation. However, interpreting the processes of

a TML model may still be difficult for a non-expert, and so there are still inherent

risks for the users of these systems.

conditional random fields

CRF (Lafferty, Mccallum, and Fernando Pereira, 1999) is a type of TML model and is

commonly applied to structured prediction tasks, such as ER, to model structural de-

pendencies. Due to its simplicity and adequate performance, CRF presents an appro-

priate benchmark setting for sequence prediction tasks such as ER. In CRF, the feature

function captures the compatibility between a particular output sequence and the input

observations. Its formula is shown in Equation 2.8, where X is the set of input observa-

tions, yi is the label at data point i, Z(X) is the normalisation, and λ is the learned fea-

ture function weights. CRF is a probabilistic graph model that takes neighboring sample

context into account when making predictions.

p(y|X, λ) =
1

Z(X)
exp

n

∑
i=1

∑
j

λj fi(X, i, yi−1, yi) (2.8)

2.5 introduction to machine learning 27

The Natural Language Toolkit (NLTK)8, a popular toolkit for NLP tasks, selects word

features for CRF including word identity, suffix, shape, and Part-of-Speech (POS) tags,

as well as information from adjacent words in the sequence.

logistic regression

Logistic Regression (McCullagh and Nelder, 1989) is a TML model applied to binary

classification tasks. The model calculates the hyperplane, which is the linear boundary in

the feature space that maximises the separation between the data associated with each

of the binary classes. The sigmoid function, given by equation 2.9, is used to transform

the combination of input features and model parameters to a score between 0 and 1.

This score indicates the probability that the item belongs to one class or the other.

σ(z) =
1

1 + e−z (2.9)

2.5.1.2 Deep Learning

DL algorithms learn features and model structure from unstructured data and self-

improve without manual intervention. NNs are frameworks for DL and allow for the

processing of complex data inputs. Typically, an NN consists of connected networks of

perceptrons which simulate human neurons. The anatomy of a perceptron is shown in

Figure 2.11.

The perceptron combines inputs xi with weights wi which modifies the effect of each

input feature according to its predictive importance. The products are then summed

and an activation function (§2.5.1.2) is applied which determines the extent to which

the signal should progress through the network and its effect on the overall output,

yielding an output of 1 or 0. A layer in a neural network is a series of perceptrons.

Multiple layers can be stacked together, such that the output of one layer becomes the

input of the next. The ultimate goal of a NN is to minimise the loss function, which is

the calculable error rate of the task to which the NN has been applied. The weights

(wi) of the network are updated each iteration over the training data (epoch) in order

8 https://www.nltk.org/

https://www.nltk.org/

28 preliminaries

inputs weights

activation
function

x0

x1

Σ

w0

w1

x2 w2

xn wn

Figure 2.11: Diagram of a perceptron.

2.5 introduction to machine learning 29

to minimise the loss function, and in this way the performance of the NN on the task

improves over subsequent iterations.

activation functions

Activation functions define the output of a perceptron given a set of inputs, and the

choice of activation function in the hidden layers has an impact on the ability of the

model to learn patterns from the input data. A variety of activation functions are used

in DL (Nwankpa et al., 2018), four of which are visualised in Figure 2.12.

Each activation function is associated with specific strengths and weaknesses. For

example, the output of tanh is centered about zero, which allows for output values to

be mapped as strongly negative, neutral, or strongly positive. However, tanh suffers

from the vanishing gradient problem (Kolen and Kremer, 2001); compared to inputs, the

derivatives are small (between 0 and 1), which leads to updated weight values that

are very similar to the previous values, hindering model convergence. Rectified Linear

Unit (ReLU), on the other hand, counters the vanishing gradient problem with constant

derivative for positive or negative inputs. However, ReLU suffers from the dying ReLU

problem (Agarap, 2019); if most of the inputs are negative, outputs may continually

output zeroes, resulting in poor model performance.

Typically, one activation function is chosen and used throughout the model as

opposed to varying the function by layer. In contemporary NLP research, ReLU is usually

chosen as the activation function (Goodfellow, Bengio, and Courville, 2016), although

some models (for example, RNNs and LSTMs) use sigmoid for recurrent connections and

tanh for output.

output activation functions

The final layer of an NN is the output layer which outputs a prediction. This thesis

focuses on classification tasks (in which the task of the model is to predict one of a

series of possible class labels for each input), where the output layer forms a probability

distribution across the class labels, and the most likely class label is predicted.

For classification tasks, the choice of activation function is dependent on the number

of classes: for binary classification tasks, the sigmoid activation function (Figure 2.12) is

used, whereas the softmax activation function is used for multiclass classification tasks.

30 preliminaries

0

0

1 -1 -1

1

z

f

0

0

1-1-1

1

z

f

0

0

3-3-1

1

z

f

0

0

6-6 -1

1

z

f

f = e z−e− z

e z+e− z

f = 1
1+e−z f =z

f = max(0, z)

ReLU() tanh()

Sigmoid() Linear()

Figure 2.12: Visualisation of various activation functions. Adapted from https://www.
herongyang.com.

https://www.herongyang.com
https://www.herongyang.com

2.5 introduction to machine learning 31

Softmax is a generalisation of the sigmoid function for multiple classes, and converts

an input vector of numbers into an output vector of probabilities proportional to the

relative scale of each input vector value. An example of the softmax function applied to

an input vector is shown in Equation 2.10.


1.2

0.9

0.6

−0.3

 −→ σ(z)i =
ezi

∑n
j=1 ezj

−→


0.398

0.295

0.218

0.089


Input Vector Softmax Function Output Vector

(2.10)

multi-layer perceptrons

A Multi-Layer Perceptron (MLP) model is an example of an NN. Typically, an MLP is

composed of at least three layers: a single input layer, one or more hidden layers, and

an output layer, as shown in Figure 2.13.

The advantage of using an MLP over a single perceptron is that, when applied to

classification tasks, they are able to distinguish classes that are non-linearly separable.

There is no standard architecture for MLP models, and larger models (with larger and

more numerous hidden layers) can typically interpret and classify more complex data,

but are more computationally expensive to train.

recurrent neural networks

RNNs are types of neural networks that are particularly suited to sequence-based tasks.

Information from previous segments of the input sequence is used to influence later

states.

A simple RNN is visualised in Figure 2.14, where the activation function tanh is

applied to the weighted input state x at time t combined with the weighted output

state at time t − 1 to produce the output state at time t.

The formula for the activation function tanh is shown in Equation 2.11, where Wx

and Wh are the weights for the input neuron and recurrent neuron respectively.

32 preliminaries

Input #1

Input #2

Input #3

Input #4

Input
layer

Hidden
layer

Output
layer

Output

Figure 2.13: Diagram of a Multi-Layer Perceptron with one hidden layer.

tanh

xt

ht

xt+1

ht+1ht−1

xt−1

RNN RNN

Figure 2.14: An example of a RNN. Diagram inspired by http://colah.github.io.

ht = tanh(Wxxt + Whht−1) (2.11)

http://colah.github.io

2.5 introduction to machine learning 33

long-short term memory models

Long Short-Term Memory (LSTM) models are a form of RNN that are better suited

for capturing long-range dependencies. They contain memory that is able to store and

output information, and gates that control incoming and outgoing information. These

gates use the sigmoid (σ) activation function, which allows the network to selectively

retain information.

The structure of an LSTM cell is visualised in Figure 2.15.

tanh

xt

ht

xt+1

ht+1ht−1

xt−1

LSTM
σ

tanh

σ σ

× +

×
×

tanhσ

tanh

σ σ

× +

×
× LSTM

tanhσ

tanh

σ σ

× +

×
×

Figure 2.15: An example of a LSTM. Diagram inspired by http://colah.github.io.

Bidirectional Long Short-Term Memory (BiLSTM) models feature two layers of LSTM

cells where the sequence direction of the first is mirrored in the second. This allows

the model to capture sequential dependencies in both directions, and typically BiLSTM

models outperform LSTM models at structured prediction tasks (Z. Huang, Xu, and

K. Yu, 2015).

gated recurrent units

Gated Recurrent Unit models are functionally simplified versions of LSTMs. Compared

to the three gates in LSTMs, GRUs contain a single update gate which determines how

much data should be passed on to subsequent cells, and a reset gate which determines

how much data should be forgotten.

Generally, GRU models are simpler to implement and train faster than LSTM models,

but are less able to capture long-term dependencies and tend to yield inferior results.

http://colah.github.io

34 preliminaries

xt

ht

xt+1

ht+1ht−1

xt−1

GRU ×
σ σ tanh

×1−

× +

×
σ σ tanh

×1−

× +

GRU×
σ σ tanh

×1−

× +

Figure 2.16: An example of a GRU. Diagram inspired by http://colah.github.io.

Identical in principle to the augmentation from LSTM to BiLSTM, Bidirectional Gated

Recurrent Units (BiGRUs) are models with two layers of GRU cells where the sequence

direction of the first is mirrored in the second, which capture structural dependencies

in both directions and typically outperform their unidirectional counterparts.

convolutional neural networks

A CNN is an example of an MLP that contains convolution and pooling layers. Convolution

is the process whereby two functions are combined to form one function which is an

expression of how the shape of one is modified by the other, and a convolution layer

uses this process rather than general matrix multiplication. Since convolution layers

take advantage of the spatial coherence of the input, they are able to reduce the number

of required parameters by sharing weights. ’Pooling’ layers essentially compress the

output of the previous layer while still preserving enough salient information, and are

often placed directly after convolution layers. Figure 2.17 shows an example architecture

of a simple CNN.

When applied to ML tasks, effective CNN models are often very large and computa-

tionally more expensive to train than MLP models.

transformers

The Transformer model, proposed by Vaswani et al. (2017), is an NN that uses attention to

increase both model performance and the speed at which the model trains. Essentially, a

http://colah.github.io

2.5 introduction to machine learning 35

Convolution
Layer

Pooling
Layer

Dense
Layer

Output
Layer

Word
Embeddings

Figure 2.17: An example of a CNN. In this model, the convolution layer is followed by a pooling
layer.

transformer model contains a stack of encoder components with connections to a stack

of an equal number of decoder components. Each encoder and decoder component

contains an attention layer, which allows the model to consider other positions in the

input sequence when generating an encoding of the current item. In this way, the

transformer model incorporates information about the most relevant other words in an

input sequence (for example, which entity the pronoun it refers to in a sentence).

Due to their improved training times and relatively superior performance versus

RNN and CNN models on NLP tasks, transformers are prevalent in the field and have

been used to great effect in many tasks.

BERT (Devlin et al., 2019) and Generative Pretrained Transformer (GPT) (Radford and

Narasimhan, 2018) are two examples of transformer models. Open-source pretrained

models are available for academic use9 and can be downloaded and fine-tuned to a

particular language task.

2.5.2 Model Training

In order to train a machine learning model, a training set is required, consisting of:

• Training Data; containing the data to be analysed and used in decision-making;

for example, the text in an email

9 https://huggingface.co/

https://huggingface.co/

36 preliminaries

• Training Labels; containing the correct identity of each item in the training data;

for example, whether the email is spam or not spam

In addition to the model architecture and training set, there are a number of param-

eters associated with the model that can be altered to modify the way in which the

model trains, referred to as hyperparameters:

• Layer Configuration; in a neural model, the number of hidden layers and the

number of neurons in each layer can be increased which may improve model

performance at the cost of computational complexity.

• Learning Rate; the value which modifies the magnitude of each update in the

learning process. If the learning rate is small, the model will converge slowly, but

if set too large, the model may converge quickly to a suboptimal solution.

• Number of Epochs; the number of passes over the training data made by the

model. If the number of epochs is too low, the model may not be optimised, but if

too large, the model may overfit and suffer reduced performance on unseen data.

• Batch Size; the amount of training data passed to the network at one time. If the

batch size is too small, the model may be slow to converge, but if too large, the

model may suffer from poor generalisation (Wilson and Martinez, 2003).

There is little insight in the literature as to how the values for these hyperparame-

ters should be selected. A common approach is to test different sets of hyperparameter

values at a time, and values associated with better-performing values are used in subse-

quent tests. This process can be performed automatically, or an automatic parameter

selection method can be employed (for example, random search).

2.5.3 Model Validation

During each epoch of training, the neural network internal weights and biases are

updated to improve the performance of the model with respect to the training data.

After each epoch, the network validates by reviewing the extent to which the model is

learning. This validation step is performed using the validation set, which is a separate

set of data from the training set, consisting of validation data and validation labels. It

2.5 introduction to machine learning 37

20 40 60 80 100
Epochs

0

20

40

60

80

100

Ac
cu

ra
cy

Training and Validation Accuracy
Training Data
Validation Data

Figure 2.18: Example plot of accuracy over several epochs. Overfitting occurs after 50 epochs.

is important that this data is only accessed by the model during the validation step

(in that it is not seen during training), since the purpose of model validation is to

simulate model performance on novel data. The model makes predictions using this

validation data and compares the predicted labels to the validation labels using the loss

function, which produces a metric of error that can be used to evaluate the network.

In addition to the loss, the accuracy of the model is often computed as a measure of

model performance. Ideally, the model is able to learn salient features of the training

data over multiple epochs, and validation accuracy will increase as a result. Overfitting

occurs when validation accuracy decreases after reaching a local maximum because the

model maximises performance on the training data at the cost of generalisability. A

visual example of overfitting is shown in Figure 2.18.

Two main ways of preventing overfitting are early stopping and dropout. Early stopping

refers to the automatic termination of model training when validation accuracy starts

to decrease, even when the maximum specified epoch limit has not yet been reached.

38 preliminaries

Dropout refers to ignoring a specified proportion of neurons in a NN during training.

By doing so, the NN is forced to utilise all available neurons, as opposed to just a few,

and prevents the NN from becoming too dependent on any particular set of features in

the input data.

2.5.4 Model Evaluation

The process of evaluating a model is similar to the validation step; unseen test data is

given as input to the model, and predicted labels are compared against the true labels.

However, unlike model validation, testing occurs once at the end of model training.

There are a number of metrics that can be used to evaluate model performance,

including accuracy, precision, recall, F1, Receiver Operating Characteristic (ROC) and

Area Under the ROC Curve (AUC). When evaluating classification tasks (i.e. where

the task is to predict pre-defined labels for a set of items), it is common to generate a

confusion matrix of predicted labels versus correct labels, as shown in Table 2.1.

Predicted Label
Positive Negative

True Label
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Table 2.1: Confusion Matrix to Visualise Prediction Success and Error Types

2.5.4.1 Accuracy

Accuracy, shown in Equation 2.12, represents the proportion of correctly classified

items.

Accuracy =
TP + TN

TP + FP + TN + FN
(2.12)

Although accuracy is a commonly reported metric, it is not suitable in cases where

true class labels are unbalanced; a model that predicts class 1 for every item will yield

2.5 introduction to machine learning 39

an accuracy of .9 if the evaluation set contains 90% items with class 1. Accuracy is often

reported alongside metrics such as precision, recall, and F1 score.

2.5.4.2 Precision

Precision, shown in Equation 2.13, represents the proportion of correct predictions out

of all instances where a given class was predicted.

Precision =
TP

TP + FP
(2.13)

A model with a high precision makes few False Positive errors. It is often reported

alongside recall, which shows the proportion of False Negative errors, and F1, a type of

average between precision and recall.

Mean Average Precision (MAP)@k is an extension of precision typically used for

evaluating recommendation tasks. ‘Precision @k’ is the fraction of relevant items in

the top k recommended results, and ‘Average Precision @k’ is the sum of precision@k

divided by the total number of relevant items in the top k results. MAP@k is the mean

of the Average Precision @k over the entire dataset. The advantage of MAP@k for

recommendation tasks is that it not only indicates whether predicted recommendations

are relevant, but also whether the most relevant recommendations are recommended

preferentially.

2.5.4.3 Recall

Recall, shown in Equation 2.14, represents the proportion of correct predictions out of

all instances of a given class.

Recall =
TP

TP + FN
(2.14)

A model with high recall makes few False Negative errors. It is often reported

alongside precision, which shows the proportion of False Positive errors, and F1, a type

of average between precision and recall.

40 preliminaries

2.5.4.4 F1

F1 score, shown in Equation 2.15, is the harmonic mean of precision and recall. It is a

type of average between the two metrics that penalises low values of either.

F1 = 2 × Precision × Recall
Precision + Recall

(2.15)

F1 is a commonly used metric for evaluating classification models since it is sensitive

to low values of either precision or recall. Models with a high F1 score tend to have

both high precision and high recall.

In multi-class classification tasks (i.e. where there are more than two possible classes

in the data), F1 across all classes can be averaged using macro, micro, or weighted methods.

Macro averaging is the unweighted mean of F1 scores; after F1 is calculated for each

class, the average of F1 scores is the macro average. In this way, it is insensitive to

class imbalance, and treats all classes equally regardless of the number of cases in the

evaluation data. Micro averaging is performed by computing F1 on the global level (as

opposed to the class level). In multi-class classification tasks, micro F1 is equivalent to

the accuracy. Weighted averaging is calculated by multiplying the per-class F1 score by

the relevant proportion of data in the evaluation set. In this way, it is sensitive to class

imbalance, and gives higher weighting to F1 scores for classes that were more prevalent

in the evaluation data.

2.6 introduction to recommender systems

As mentioned in Chapter 1, a common approach to addressing the information overload

(Dhameliya and Desai, 2019) or filter failure (Shirky, 2008) problems is through the use

of recommender systems, which are automatic methods of generating personalised

item recommendations to a user, often utilising a combination of user engagement

history and item popularity statistics. Generally, approaches to developing

recommender systems fall into one of the following distinct categories based on the

aspect of data that inference is drawn from: content-based filtering (§2.6.1), which

generates recommendations based on the similarity of new items to the items that the

user has previously interacted with; collaborative filtering (§2.6.2), which generates

2.6 introduction to recommender systems 41

recommendations based on the interactions of similar users; knowledge-based filtering

(§2.6.3), which generates recommendations based on inferred connection between the

user and recommended items; and hybrid systems (§2.6.4), which combine one or

more of the aforementioned approaches in an ensemble system.

2.6.1 Content-Based Filtering

Content-based filtering approaches, visualised in Figure 2.19, recommend items with

similar content to the content the user has previously engaged with (Mooney and Roy,

2000).

It is worth noting that related work into the specific application of content-based

filtering for job recommendation often conflates the content-based approach with

knowledge-based filtering (Tripathi, Agarwal, and Vashishtha, 2016), which involves

recommending items with similar content to the user, which is extracted either from

user data or queried through a series of prompts. In this thesis, we treat these as

distinct approaches, since each is associated with a unique set of advantages and

disadvantages. To clarify this distinction, content-based filtering can be summarised as

item-item filtering, in that similarities between items are inferred, but we do not infer

direct connection between user and item; conversely, knowledge-based filtering can

be summarised as user-item filtering, in that connections between users and items are

inferred, but we do not infer connection between different items.

The two key components of a content-based filtering system are the user profile,

which represents the features of the user after extracting information about their

engagement with the recommender system, and the item representation, which contains

the information about each item that can be used for calculating similarity to the user’s

preference.

One advantage of the content-based filtering approach to building job recommender

systems is that it works well with implicit feedback when explicit rating is difficult

(Al-Otaibi and Ykhlef, 2012). Although users may not be able to rate the jobs they

are applying for, there are other observable measures of engagement such as whether

the user clicks on a job description on the online portal (presumably to learn more

about the listing), whether they submit an application, or whether a recruiter tags

a candidate to a job (Nigam et al., 2019). Furthermore, as the user profile expands

42 preliminaries

Figure 2.19: The content-based filtering job recommendation system uses a job’s attributes to
recommend jobs that have similar attributes to those Alice has applied to in the
past (adapted from Almalis, Tsihrintzis, Karagiannis, and Strati (2016)).

Alice

Recommender
System

Job
A

Job
B

Job
C

Job
X

Job
X

: Applied To
: Recommended
: Similar Content

through prolonged engagement with the system, the quality of the system improves

given that the available data from which the model can draw inference is continually

augmented through user engagement (Al-Otaibi and Ykhlef, 2012).

A disadvantage of the content-based filtering approach is overspecialisation, which

refers to cases where users receive recommendations that are too similar to their user

profile and do not receive recommendations that are diverse. This may be an issue for

users who seek a job that is a side-step from their current and previous roles, as the

system will show only the jobs that are most similar to their profile.

The cold-start problem affects content-based filtering systems as they rely entirely

on the user’s engagement with the system. Because these systems require user-item

interactions before making recommendations, they are of limited use for new users for

which the system has no developed user profile (Yuan et al., 2016). Furthermore, it is

difficult to identify the salient features driving the user’s decision to engage with a

particular item which should be used to recommend similar items.

2.6 introduction to recommender systems 43

2.6.2 Collaborative Filtering

Collaborative filtering approaches, visualised in Figure 2.20, recommend items based

on what similar users have previously preferred (Rafter, Bradley, and Smyth, 2000).

Figure 2.20: Bob applied to jobs A, B, C, and X. Alice applied to A and B. The collaborative
filtering job recommendation system will recommend job X to Alice since her
choices are similar (although not identical) to those of Bob (adapted from Almalis,
Tsihrintzis, Karagiannis, and Strati (2016)).

Bob

Alice

Recommender
System

Job
A

Job
B

Job
C

Job
X...

Job
X

: Applied To
: Recommended

The assumption of the collaborative filtering approach is that users who rate items

similarly will have similar preferences in the future. A collaborative filtering job rec-

ommender system creates a rating matrix by combining the preferences of all its users

(based on their engagement with the system), and converts this to a prediction matrix

which is used to produce recommendations. The method by which the prediction ma-

trix is created further classifies systems using the collaborative filtering approach; mem-

ory based algorithms compute predictions using the rating matrix directly on the basis

of similarity measures such as the Pearson Correlation coefficient (Freedman, Pisani,

and Purves, 2007) or cosine similarity, whereas model based algorithms compute pre-

dictions by reducing the dimensionality of the rating matrix through Matrix Factori-

44 preliminaries

sation (MF) (Koren, Bell, and Volinsky, 2009) or Singular Value Decomposition (SVD)

(Wall, Rechtsteiner, and Rocha (2003); Parhi, Pal, and M. Aggarwal (2017)).

Advantages of job recommender systems using the collaborative filtering approach

with memory-based algorithms for generating predictions include the simplicity of

system architecture (given that calculating the similarity metric is the only step between

collating the rating matrix and returning the ranked prediction matrix) and the fact that

there is no need to generate profiles for job descriptions since similarity is calculated

between users and not job descriptions. However, since similarity metrics are calculated

using all the available user data to generate predictions, these systems can be slow

when datasets are large, and scale poorly.

Advantages of job recommender systems using the collaborative filtering approach

with model-based algorithms for generating predictions include the ability to be scaled

easily. Since dimension reduction is performed to create the model for prediction

generation, large pools of user data do not slow these systems, which makes them

an appropriate choice for real time applications. However, creating the model is a

complex and computationally expensive process that requires careful parameter tuning

for optimisation (Dhameliya and Desai, 2019).

A disadvantage of both memory-based and model-based collaborative filtering sys-

tems is that they tend to suffer from the cold-start problem, in that the system generates

poorer recommendations for new users with little engagement on the platform, and

new job descriptions featured on the system will not be recommended to users because

they have no user engagement associated with them.

2.6.2.1 Matrix Factorisation

MF is the process by which a matrix is decomposed into two or more smaller matrices.

In the context of collaborative filtering, MF is used to decompose a user-job interaction

matrix M into two matrices: a user matrix U and a job matrix V. A more robust model

of interaction may include a global mean µ to center matrix M, and bias terms bU and

bV for users and jobs respectively. The MF equation is shown in Equation 2.16.

M ≈ U · VT + µ + bU + bV (2.16)

2.6 introduction to recommender systems 45

The user matrix represents the user’s preferences for different features of the jobs,

while the job matrix represents the features of the jobs themselves. The dot product of

the user and job matrices combined with the global mean and bias terms yields the

predicted interaction for each user-job pair.

Matrices U and V are fitted by initialising them with random numbers and iteratively

updating them until convergence is reached.

singular value decomposition

SVD is a variant of MF. The process of SVD decomposes a matrix into three matrices as

shown in Equation 2.17, where M is the initial matrix, U is a matrix representing the

left singular vectors of matrix M, Σ is a diagonal matrix containing the singular values

of matrix M, and VT is a matrix representing the right singular vectors of the original

matrix.

M = U · Σ · VT (2.17)

In the field of job recommender systems, SVD is used as a collaborative filtering

method and has been shown to be particularly effective when applied to

recommendation tasks (Wall, Rechtsteiner, and Rocha (2003); Parhi, Pal, and

M. Aggarwal (2017)). SVD involves decomposing the user-job interaction matrix into its

constituent parts, and then using these parts to make predictions about the user’s

interactions with new jobs. The user-job interaction matrix is a matrix where each row

represents a user, each column represents a job, and each cell contains the interaction

between the user and job (for example, one of {Applied; Did Not Apply}).

After decomposing the user-job interaction matrix using SVD, the resultant matrices

U, Σ, and VT can be used to predict the user’s interaction with a new item as follows:

the user’s row in matrix U is multiplied by the diagonal matrix Σ to create a vector of

weights. This weight vector is multiplied by the relevant job column in the VT matrix

to generate a predicted interaction term for the job.

46 preliminaries

2.6.3 Knowledge-Based Filtering

Knowledge-based filtering approaches, visualised in Figure 2.21, recommend items

based on inferences about the user’s suitabilities and preferences which are extracted

from user data or queried through a series of prompts.

Figure 2.21: Knowledge-based filtering job recommendation systems recommend jobs to Alice
by comparing the attributes of Alice (for example, the skills in their skillset) with
the attributes of the jobs (for example, the skills the job requires).

Alice

Recommender
System

Job
X

: Recommended
: Similar Content

Alice's Skillset
Skill

A

Job X

Skill
B

Skill
C

Job Requirements

Skill
A

Skill
B

Skill
Y...

Job recommender systems that use a knowledge-based filtering approach are distinct

from other approaches in that they have functional knowledge (Burke, 2002); they have

knowledge about how a particular job meets a particular user’s need and can reason

about the relationship between a suitability or preference and a possible

recommendation. Ramezani et al. (2008) note three ways in which systems reason in

this way: conversational case-based reasoning systems elicit a job seeker’s query

incrementally through an interactive dialogue with the user. Constraint-based

reasoning systems provide recommendations based on a set of constraints gathered

2.6 introduction to recommender systems 47

from the user. Rule-based systems provide recommendations to users using explicit

rules that map between the user’s needs and job positions. However, as discussed in

§2.6.1, there is an additional method of knowledge-based filtering which related

literature tends to classify as content-based filtering, and that is the method of providing

recommendations to users based on connections that can be inferred from the

properties associated with the user and the properties associated with the items for

recommendation.

In knowledge-based filtering approaches, the user profile may be any knowledge

structure that supports this inference, such as the set of skills associated with a user

extracted from their CV (shown in Figure 2.21), demographics, engagement with jobs

on an online portal (for example, jobs clicked on, jobs applied to), or ontologies about

job categories and hiring company information (Lee and Brusilovsky, 2007).

An advantage of knowledge-based filtering is that systems using this approach tend

to avoid the cold-start problem which limits the content-based and collaborative filtering

approaches. Since users are usually required to give explicit information regarding their

preferences before using the service (or provide a source that they can be extracted

from, such as a CV), informed recommendations can be made immediately. However,

this requires a knowledge acquisition process which needs to be carefully designed to

extract meaningful insights from user-provided data (for example, extracting salient

entities from candidate CVs) in order to be able to reason about the relationship between

a user’s suitability for various jobs and generated recommendations.

2.6.4 Hybrid Filtering

Hybrid approaches, visualised in Figure 2.22, use a combination of collaborative

filtering, content-based filtering, and knowledge-based filtering methods.

Job recommender systems utilising a hybrid approach tend to combine content-

based filtering methods with either collaborative filtering methods or knowledge-based

methods (Dhameliya and Desai, 2019), and can be further classified depending on the

hybridization method. This may involve: weighting different methods before combining

them; switching between methods depending on context; or running one method

directly after another using the output of one method to influence the other (Burke,

2002).

48 preliminaries

Figure 2.22: Hybrid recommendation systems combine two or more techniques to provide better
recommendations to Alice (Almalis, Tsihrintzis, Karagiannis, and Strati, 2016).

Alice

Recommender
System

Job
X

: RecommendedContent-Based
Filtering

Algorithm

Collaborative
Filtering

Algorithm
Knowledge-Based

Algorithm

Since hybrid methods combine various other approaches, they tend to share some of

the advantages and disadvantages of their component methods but overcome some of

the issues associated with single approaches. For example, content-based recommender

systems may suffer from overspecialisation in that users may receive job recommendations

that are too similar to their user profile. This can be can be overcome by combining the

content-based approach with the collaborative filtering approach in a hybrid system, so

users are also shown jobs that may be less similar to their own profile but found to be

good recommendations for similar users.

2.7 evaluating human annotations

Since many NLP tasks aim to replicate human behaviour, it is common practice in the

field to develop and train models on datasets that have been annotated manually by

human agents according to a specific schema or adhering to a set of rules. When sourc-

ing annotations, it may be necessary to evaluate individual annotator’s contributions; it

2.7 evaluating human annotations 49

is not uncommon for annotations to be of low quality as a consequence of poor task

comprehension, poor compensation, or the absence of a feedback mechanism that pe-

nalises poor quality contribution. Methods of evaluation are necessary to ensure that

annotations are representative of human ability. There are two main facets of human

annotation evaluation: accuracy versus a gold standard; and IAA.

2.7.1 Accuracy versus Gold Standard

Accuracy is calculated in the same way as described in §2.5.4.1. Although this is an

informative metric to evaluate the competence of individual annotators, it is only

calculable when a gold standard has been defined and established. For many complex

tasks for which automatic NLP solutions are sought, it is not feasible to create a gold

standard until the task has sufficiently been defined and communicated to annotators,

and annotators can be shown to generally agree on the correct classification of items. In

these instances, IAA is a more informative metric than accuracy versus a gold standard.

2.7.2 Inter-Annotator Agreement

IAA refers to the extent to which annotators agree with one another. There are several

ways to measure IAA, including Cohen’s κ, Fleiss’ κ, and F1.

Cohen’s κ is calculated as shown in equation 2.18, where po is the relative observed

agreement among two raters, and pe is the hypothetical probability of chance agreement.

Since Cohen’s κ can only be calculated between two raters, Cohen’s κ can be calculated

between each annotator pair and then averaged to show agreement between multiple

raters (referred to as pairwise κ), or Fleiss’ κ can be used, which is shown in equation 2.19,

where P̄ is the mean of relative observed agreement and P̄e is the mean of hypothetical

probabilities of chance agreement. In cases where there are multiple raters and each

item is annotated by exactly two independent raters, pairwise Cohen’s κ and Fleiss’ κ

are equivalent.

50 preliminaries

Cohen’s κ =
po − pe

1 − pe
(2.18)

Fleiss’ κ =
P̄ − P̄e

1 − P̄e
(2.19)

κ ranges between 0 and 1, and higher values of κ statistics indicate greater agreement

between annotators. Landis and Koch (1977) put forward a widely-accepted interpreta-

tion of the κ statistic which is summarised in Table 2.2.

Kappa (κ) Interpretation

< 0 Poor
0.01 − 0.20 Slight
0.21 − 0.40 Fair
0.41 − 0.60 Moderate
0.61 − 0.80 Substantial
0.81 − 1.00 Almost perfect

Table 2.2: Interpretation of Fleiss’ Kappa (Landis and Koch, 1977).

Krippendorff’s α (Hayes and Krippendorff, 2007), given by equation 2.20, is an

alternative measurement for IAA that addresses multiple categories, as in the case of ER

tasks. Additionally, the α statistic ignores incomplete or missing annotations, which is

suitable when individual items have only been annotated by a subset of of the annotator

pool. However, the α statistic is particularly sensitive to extreme disagreement, and

there is no academic consensus regarding its interpretation, and for this reason it is

often reported in conjunction with the κ statistic.

α = 1 − observed disagreement
expected disagreement

(2.20)

2.8 equality, diversity, and inclusion in recruitment algorithms 51

2.8 equality, diversity, and inclusion in recruitment algorithms

EDI refers to the principles and policies that ensure fair treatment and opportunities for

all. When designing automatic solutions that have an impact on people, in this case job

seekers and recruitment personnel, it is imperative that active steps are taken to ensure

that biases are addressed and mitigated.

The hiring process has long been fraught with bias and discrimination which still

persists (Quillian et al., 2017). Bias can be based on race, gender, age, disability, and

other characteristics which may limit the employment opportunities for historically

excluded groups.

Institutional bias occurs when hiring processes unfairly advantage or disadvantage

certain workers. For example, under the guise of culture fit, companies may be selec-

tively hiring from a homogeneous pool of privileged individuals and rejecting equally

capable candidates with diverse backgrounds.

Systemic bias occurs when prejudices are embedded within the hiring process, dis-

advantaging those from historically excluded groups. For example, by only considering

applicants from top universities (that typically intake high proportions of privileged

individuals), companies may reject capable candidates that did not have access to suffi-

cient education resources prior to university application.

Automation bias occurs when individuals give undue weight to information that is

perceived to have come from an algorithm. This is particularly important to consider

when designing algorithms that influence human decision-making; any recommenda-

tion given by a model must be explicable in understandable terms to the user so that

they may consider it with an appropriate level of importance.

One particular high-profile example of bias in hiring algorithms is that of the discon-

tinued AI recruiting tool developed by Amazon which was shown to be biased against

women (Dastin, 2018). The model was trained on applications made to the company

over the previous 10 years which were particularly male-dominated, reflecting patterns

across the technology domain. As a consequence of this biased training data, terms

such as women’s (for example, women’s chess club captain) negatively affected the likeli-

hood of application success when using the recruiting tool. A further example of bias

in hiring algorithms is that of an undisclosed company selling a CV screening tool that

gave disproportionately strong weighting to features in the text that should not have

52 preliminaries

been considered, such as the forename Jared or whether the candidate played high school

lacrosse (Gershgorn, 2018).

It is important to note that, without active measures in place to mitigate them, biases

will arise in recruitment algorithms by default (Bogen and Rieke, 2018). Furthermore,

although an essential process, it is not enough to just remove or obscure sensitive

characteristics of users such as gender and ethnicity, since this will not prevent models

from reflecting patterns of bias.

In order to develop recruitment algorithms with EDI in mind, the following bias

mitigation methods should be considered: removing all sensitive characteristics from

input data; investigating associations and correlations between sensitive characteristics

removed from input data and the balance of data; and ensuring that each component of

a modular job recommendation system is transparent and explicable in function, so any

output can be queried by a user who wants to know why any given recommendation

was made.

Methods such as feature importance analysis can be used to provide insight into the

relative significance of different elements or criteria in job recommendation algorithms.

For TML models such as Logistic Regression, this process is relatively straightforward as

learned feature importance weights are readily accessible and interpretable. However,

this process is considerably more difficult with DL approaches as levels of abstraction

preclude simple inference of relative feature importance. Model interpretability is an

ongoing research problem in the field of NLP, and libraries have been developed to

facilitate human understanding of NNs (Kokhlikyan et al., 2020) and attention-based

models such as BERT (Chefer, Gur, and Wolf, 2021).

3
R E L AT E D W O R K

3.1 overview

This chapter describes related work to the field of the thesis. First we describe research

into job recommendation systems in §3.2, detailing two open challenges Recsys 2016

and the Kaggle Job Recommendation Challenge, and we organise previous literature by

general approach. We then describe research in Natural Language Processing (NLP)

that has influenced the direction of this thesis in §3.4, specifically in word embeddings,

Entity Recognition (ER), and Natural Language Inference (NLI).

3.2 job recommendation systems

A common approach to solving the information overload problem (explained in more

detail in §1.1) in the field of applicant profile-job description matching is through the use

of Job Recommender Systems (Gugnani and Misra (2020); S. Yang et al. (2017); Özcan

and Öguducu (2017)). A recommender system is a tool that generates recommendations

of items for a user, often without an explicit set of criteria from the user. A more detailed

explanation of recommender systems can be found in §2.6. Figure 3.1 shows the basic

architecture of a job recommender system with relevant sections of this chapter shown

in parentheses.

In the past decade, recommender systems have been used to great effect in several

domains (Ricci et al., 2010). Notable examples of commercial recommender systems

include Netflix1 for recommending films and television programmes to a viewer

(Bennett and Lanning, 2007) and Amazon2 for recommending products to online

shoppers (Linden, B. Smith, and York, 2003).

1 https://netflix.com
2 https://amazon.co.uk

53

https://netflix.com
https://amazon.co.uk

54 related work

Input:
User Data

Input:
Job Data

Parse
User Data

Parse
Job Data

Matching
Solution

(Ch. 5)

Output:
Recommendation

Feature Extraction (Ch. 4)

Job Recommender System (Ch. 5)

Figure 3.1: Architecture of a generic matching system. Relevant sections of the related work are
shown in parentheses.

Job recommender systems, such as the system integrated with employment-focused

social media platform LinkedIn3, are similar to generic recommendation systems

where job seekers are the users of the system and the job listings are the items for

recommendation. Although there are many similarities between generic recommender

systems and job recommender systems, modifications to system design are required

in order to overcome field-specific challenges. Dhameliya and Desai (2019) note three

such challenges: reduced feedback mechanisms, timeliness, and bilateral matching.

Reduced feedback mechanisms refers to the limited opportunities for which job

recommender systems are able to receive feedback on generated recommendations

compared to standard recommender systems. For example, while shoppers on Amazon

may leave a written review for a purchased product along with a rating on a five-star

scale, job seekers using online portals are often not able to rate the jobs to which

they have submitted their applications, resulting in reduced feedback mechanisms.

To address this, alternative measures of feedback are required, often implied through

the user’s engagement with the online platform. Sections 3.2.3 through 3.2.6 discuss

alternative measures of feedback in more detail.

3 https://www.linkedin.com/

https://www.linkedin.com/

3.2 job recommendation systems 55

The second challenge of job recommender systems is the issue of timeliness, which

refers to the transient nature of job listings; while products on Amazon may be listed

indefinitely, job listings tend to have a relatively short lifespan, and will exist on a

platform for as long as the recruiting agents dictate. This may be as short as a few days

for time-sensitive roles. In the field of e-commerce, customers with similar preferences

to another customer can be identified by finding comparisons between the products

each customer has liked or bought. In this way, recommendations can be based on

previous matches between the product and the customer. If customers A and B have

bought similar sets of products, and customer A then buys product X, then X may be a

good recommendation for customer B. This approach, known as collaborative filtering,

is discussed in more detail in §3.2.4. However, in many cases this cannot be directly

applied to the field of job recommendation due to the issue of timeliness; for example,

at the time B actively seeks job recommendations, job X may no longer be available on

the online portal. To overcome this challenge, job recommendation systems may need

to utilise data from historical, inactive job listings and compare and apply this data to

live job listings in order to generate effective recommendations for active jobs.

The third challenge noted by Dhameliya and Desai (2019) is that of the bilateral

matching requirement, which refers to the fact that a match is only successful when

the job applicant is a good fit for a job listing and vice versa. Recommender systems in

domains such as e-commerce usually only require unilateral matching; if a product

is suitable for a customer then the customer may choose to purchase the product,

and it is not usually necessary to consider if the customer is a suitable owner for the

product. However, the set of jobs that are suitable for a candidate may be limited

by the requirements or hiring preferences of the jobs or recruiting agents. If a job

is recommended to a candidate because the details of the job meet their personal

requirements, but the candidate does not meet the requirements of the job listing, then

the recommendation is poor since the candidate is unlikely to progress with their

application. To address this challenge, jobs recommended to a given candidate must

either be filtered to include only those for which they meet the requirements (which

may be difficult given that qualifications and requirements may be embedded in free

text), or alternatively the job recommender system should be driven by data from

successful applications (i.e. where an offer is made to the candidate post-application),

rather than unsuccessful applications or applications where the outcome is unknown.

56 related work

Related to the issue of bilateral matching is the issue that, although the same job may

be recommended to multiple candidates while it is open for accepting applications on

the online platform, in many cases only one candidate can ultimately be successful

in their application. A candidate suitable for a job may make an application which is

unsuccessful due to the presence of another, more suitable candidate who made an

application. In this way, the ultimate outcome of a given application may not be an

absolute indication of the candidate’s suitability for the job. To address this issue, it

may be pragmatic to consider alternative indications of suitability in application data,

for example, whether the candidate was invited to interview or not. Experimentation

and discussion of this particular issue are detailed in §5.5.3.1.

Several survey papers review different approaches to building job recommender

systems (Dhameliya and Desai (2019); Siting et al. (2012); Al-Otaibi and Ykhlef (2012);

Tripathi, Agarwal, and Vashishtha (2016)), where the function of the system is purely

to recommend jobs to candidates and not vice versa. Approaches to constructing job

recommender systems tend to fall into one of four categories; content-based filtering

(§3.2.3), collaborative filtering (§3.2.4), knowledge-based filtering (§3.2.5), and hybrid

approaches (§3.2.6). Related work in job recommender systems in visualised in a

taxonomy in Figure 3.2.

Additionally, there are two historic challenges regarding job recommendation: the

2012 Job Recommendation Challenge hosted on Kaggle4 and the 2016 RecSys

Challenge5. These challenges invited participants to develop and submit job

recommendation solutions that were to be trained and evaluated on provided data.

Although no submitted solutions to the Kaggle Job Recommendation Challenge were

subsequently published, several submissions to the 2016 RecSys challenge were

detailed in published research papers which are analysed in this review of related

work.

4 https://www.kaggle.com/c/job-recommendation
5 http://2016.recsyschallenge.com/

https://www.kaggle.com/c/job-recommendation
http://2016.recsyschallenge.com/

3.2 job recommendation systems 57

Knowledge-Based Filtering (§3.2.5)

Collaborative Filtering (§3.2.4)

Content-Based Filtering (§3.2.3)

Xiao et
al., 2016

(§3.2.6)

Rafter, Bradley,
and Smyth, 2000;

Ahmed et al., 2016

Ahmed et al., 2016;
Choudhary et al., 2016;

Schmitt, Caillou, and Sebag, 2016

Pacuk et al., 2016;
Ahmed et al., 2016

Lee and Brusilovsky, 2007;
Almalis, Tsihrintzis,

and Karagiannis, 2014;
Bansal, Srivastava,
and Arora, 2017;

Maheshwary and Misra, 2018;
Gugnani and Misra, 2020;

José-García et al., 2022

Figure 3.2: Taxonomy of Job Recommendation Systems.

58 related work

3.2.1 RecSys 2016

The 2016 RecSys challenge6 was a competition co-hosted by XING7, a career-oriented

social networking site and competitor of LinkedIn8.

Participants in the challenge were issued the following task: given a XING user

and their associated user features, predict which job postings the user will positively

interact with (for example, clicking on them, or bookmarking them for later review).

Specifically, at most 30 recommendations were to be generated for each of the 150k

target users, and competing systems were evaluated using a bespoke scoring metric

which combined precision, recall, and user success as shown in Equation 3.1. Although

it is not known why such a non-standard scoring metric was chosen, according to the

competition organisers this metric reflects typical use cases on the XING platform.

score(S, T) = ∑
(u,t)∈T

20 × (P2 + P4 + R + userSuccess)

+10 × (P6 + P20)

(3.1)

where:

• S represents the predicted set of 150, 000 (u, r) tuples, where r is the ordered list

of recommended items for user u.

• T represents the test set of 150, 000 (u, t) tuples, where t is the ground truth set

of relevant items for user u.

• Pk calculates the precision at position k between the recommended list r and the

relevant item set t.

• R calculates the recall between the recommended list r and the relevant item set t.

• userSuccess calculates whether at least one relevant item was recommended for

user u, described by Equation 3.2.

6 http://2016.recsyschallenge.com/
7 https://www.xing.com/
8 https://www.linkedin.com

http://2016.recsyschallenge.com/
https://www.xing.com/
https://www.linkedin.com

3.2 job recommendation systems 59

userSuccess(r, t) =

1, if r ∩ t ̸= ∅

0, otherwise
(3.2)

The systems developed to compete in the RecSys challenge are of particular interest to

the field of job recommendation given that they can be relatively evaluated; differences

in model performance can be reliably attributed to model architecture since models

were trained and tested on the same data. However, there is one particular caveat that

concerns the use of the RecSys challenge in job matching research; the task structure

does not account for the issue of bilateral matching (described in more detail in §3.2).

In short, systems are rewarded for predicting with high precision which jobs a given

user will apply to, but the suitability of the user for the job is not considered. It may

be the case that candidates interact (click on, bookmark, etc) with jobs that are not

suitable for them, and although this job would be a poor recommendation for the user,

the interaction is classified as positive in the RecSys challenge data and systems are

encouraged to recommend that job to the user.

Additionally, the data for the RecSys challenge is no longer accessible to the academic

community, so novel methods of job recommendation cannot be reliably compared to

those submitted as part of the RecSys challenge.

Nonetheless, there are several insights regarding feature engineering and model

architecture that can be drawn from candidate systems for the RecSys challenge that

may influence research into a job matching solution.

Xiao et al. (2016) achieved first place in the challenge with a hybrid model that

combined knowledge-based filtering, content-based filtering, and collaborative filtering

with an ensemble model. In addition, Hawkes Process (Hawkes, 1971) was used, which

models the temporal patterns of users’ historic activity to predict the items the user

will interact with next. The overall recommendation model features ensemble learning

from four different components, each of which calculates a relevance score for a user-

item pair. The relevance scores from each component are combined in an ensemble

Gradient Boosting Regression Tree (GBRT) layer. The four components comprise a

Logistic Regression model, a GBRT model, an eXtreme Gradient Boosting (XGBOOST)

model, and a Temporal Intensity (TI) model using Hawkes Process. The TI model

60 related work

formulates user activity history as a time sequence (i.e. {t1, t2, . . . , tn}), and models

a conditional intensity function λ(t) using a temporal point process to calculate the

probability that the next user interaction will happen at time t (where t > tn). The

temporal intensity function for user-item pairs (u, i) is shown in Equation 3.3, where

λu,i
0 and αu,i are the (u, i)-th entries of the base intensity matrix Λ and self-exciting9

matrix A respectively, and the summation of γ(t, tu,i
j) over time gives the dependency

of the user’s historical activities.

λu,i(t) = λu,i
0 + αu,i ∑

j
γ(t, tu,i

j) (3.3)

This model uses TF-IDF to identify and extract keywords in both user and item

features and applies a method of topic modelling, Latent Dirichlet Allocation (LDA), to

extract latent topics. Cosine similarity is applied to these topics to calculate user-user,

item-item, and user-item similarities. The justification for developing the ensemble

model proposed by Xiao et al. (2016) is that the combined process is able to capture

both semantic relevance of user-item interactions as well as modelling the temporal

characteristics of those interactions, and that the knowledge-based filtering approaches

(achieved by calculating the similarity of user and item features) are able to address the

cold-start problem associated with content-based and collaborative filtering approaches.

Pacuk et al. (2016) achieved second place in the challenge with a primarily content-

based recommender system which used XGBOOST to compute the probabilities that a

given user u would interact with item i. Of the identified feature groups contributing

to the model’s F1 score, event based features were shown to have the most importance,

which were percentages of items from the set of items a user had interacted with that

had some property corresponding to item i. The second most important listed feature

was item global popularity, which refers to the total number of interactions corresponding

to item i across all users. Although collaborative filtering most similar is listed as the third

most important feature set in this model, this not only includes features calculating

similarity between users by comparing item sets they interacted with, but also similarity

between item i and the items that user u has interacted with, which is in fact a form of

content-based filtering.

9 Matrix A is self-exciting in that the occurrence of past points makes the occurrence of future points more
probable (Reinhart, 2018).

3.2 job recommendation systems 61

Bansal, Srivastava, and Arora (2017) propose a knowledge-based filtering approach

(defined as content-based filtering in the original study, but reclassified here as per our

definitions outlined in §2.6.1) to job recommendation. This model applies LDA to job

data to extract topics, which are then matched with mentioned job roles in user data

using two feature similarity techniques: cosine similarity (see §2.4.2.1) and flexible string

matching, the latter of which is ostensibly the size of the intersection between extracted

terms from each user and job10. Given that string matches appear to be performed using

the entire morphological form of the term, it is not clear which part of this process is

flexible, given that terms expressed in different ways will cause this matching process

to fail. The authors do not provide the results of their system using the established

scoring metric shown in Equation 3.1, nor do they provide code to replicate their work,

so it is infeasible to evaluate the performance of their contribution relative to the model

submitted by the challenge winners.

3.2.2 Job Recommendation Challenge

The Kaggle Job Recommendation Challenge (KJRC)11 was hosted on data-science com-

munity site Kaggle in 2012. Sponsored by employment website CareerBuilder12, the

challenge required competitors to predict which jobs users applied to based on their

previous applications, demographic information, and work history. Insights discovered

from the data were to be used to allow CareerBuilder to improve its job recommenda-

tion algorithm, said to be a core part of its website and a key element in improving

user experience.

The challenge provided clearly documented training, development and evaluation

data as part of the challenge, which is still available for download by any Kaggle user

on the challenge page.

Unfortunately, there are no papers nor code repositories associated with successful

entries. Various methods are suggested and discussed by competitors in the challenge

discussion forum, from which it may be inferred which approaches were more suc-

cessful than others (for example, collaborative filtering is mentioned many times in the

10 This appears to be the case from the description in §5.1, although the provided example appears to
contradict this.

11 https://kaggle.com/c/job-recommendation/
12 https://www.careerbuilder.co.uk/

https://kaggle.com/c/job-recommendation/
https://www.careerbuilder.co.uk/

62 related work

discussion), but competitors appear reluctant to share intricate details about success-

ful models (for example, the 4
th place competitor provides a high-level approach for

overcoming cold-start issues, but refers to the technique as ‘black magic’).

Although the data is useful for training and testing an applicant profile-job descrip-

tion matching solution, it is limited in that it can only provide unidirectional recom-

mendations; there is no data to indicate whether an application was successful, and

therefore it is not possible to evaluate the strength of an individual application. How-

ever, the leaderboard associated with the KJRC provides an appropriate target for an

applicant profile-job description matching solution developed as part of this research

project.

3.2.3 Content-Based Filtering

As defined in §2.6.1, content-based filtering methods leverage item-item similarities

in order to recommend unseen items to a given user that are similar to the items the

user has rated favourably (or in implicit systems, items that user has interacted with).

Methods that calculate item-user similarities (for example, using extracted skill terms)

are classified in this thesis as knowledge-based filtering methods, although work in this

area often conflates both item-item and user-item approaches as content-based filtering

methods.

Related work that focuses solely on content-based filtering techniques is scarce,

which may in part be due to the comparatively greater performance of hybrid systems,

even in cases where data sparsity is high. Ahmed et al. (2016) compare the

performance of item-item, user-user, and hybrid models at varying levels of data

sparsity using the XING job recommendation data described in §3.2.1. Although low

sparsity (10%) yields comparable results for item-item and user-user methods (using

the XING scoring equation for evaluation, Equation 3.1), sparsity between 30% and

90% yields considerably stronger results (between 2× and 3.5×) for item-item based

methods. However, hybrid methods outperform even the stronger of the two singular

methods (also between 2× and 3.5×), which suggests that ensemble methods are

better able to predict candidate-job interactions, even when sparsity is high.

3.2 job recommendation systems 63

3.2.4 Collaborative Filtering

As defined in §2.6.2, collaborative filtering methods leverage user-user similarities in

order to recommend unseen items to a given user that a similar user has interacted

with favourably (or in implicit systems, items that a similar user has interacted with).

The collaborative filtering job recommender system developed by Choudhary et al.

(2016) creates clusters of users based on skill-terms extracted from user profiles13 and

uses the Euclidean Distance and Pearson Coefficient to calculate similarities between

skill terms. Although Choudhary et al. (2016) claim that the system is successful in

recommending jobs based on a user’s current skill set by combining it with similar

skills in the global dataset, it is not clear how recommendation performance varies

across candidates who may be in the centre of user clusters or on the periphery, where

recommendation may be poorer. Nonetheless, the principle of leveraging preferences

of similar users to guide recommendations for other users is potentially very powerful,

and will likely feature in a successful hybrid solution that combines the collaborative

approach with the content-based approach (discussed in §3.2.6).

Schmitt, Caillou, and Sebag (2016) developed MAJORE (MAtching JObs and

REsumes), a collaborative filtering job recommendation system with a dedicated

module for overcoming the cold-start problem. The corpus, which was not made

publicly available, contains job posts on an online portal, user CVs, and instance where

users had clicked on the job description, subset to include only users and items that had

made or received at least 5 clicks. The authors found that convolutional metrics may, in

part, compensate for the sparsity of the user-item interaction matrix. However, the

authors design a bespoke experimental task and goal (for each job: remove a click

(user-item interaction); rank all CVs; calculate the rank of the CV with the removed

click; calculate recall over 20 independent samples of click removal), which precludes

the interpretation of the effectiveness of MAJORE compared to other job

recommendation systems.

13 The process by which skill terms were extracted by Choudhary et al. (2016) is not detailed. This is
discussed in chapter 4.

64 related work

3.2.5 Knowledge-Based Filtering

As defined in §2.6.3, knowledge-based filtering methods leverage user-item connections

in order to recommend unseen items to a given user that feature attributes which are

associated with the attributes of the user.

Proactive, the knowledge-based job recommender system developed by Lee and

Brusilovsky (2007), utilises five components: a web spider, an ontology checker, a profile

analyzer, a preference analyzer, and a user interface generator. The web spider acquires

and parses job information from external sources and outputs to an ontology checker.

Two kinds of ontology are used: the first about job category, and the second about

company information (for example, the industry or domain, number of employees).

The profile analyzer component generates job recommendations by comparing the

differences of distance in the weights between an explicitly selected favourite job and

open job positions. The authors do not state where these weights are extracted from,

but note that the ontological relationships between jobs help calculate the weight values

and provide structural understanding of a user’s interest which reduces initial efforts to

acquire knowledge about users. The preference analyzer component interprets explicitly

defined user preference and refines the recommendations generated by the profile

analyzer component, and the user interface generator extracts further information

about user engagement with the system in order to enhance the user profile.

Although the research conducted by Almalis, Tsihrintzis, and Karagiannis (2014)

defines itself as a content-based filtering approach, because it utilises skills extracted

from candidate CVs, this thesis considers this a knowledge-based filtering approach

(see §2.6.1 for a more detailed explanation). This work uses the skills contained in

job positions as a structural representation of each of the items, converted into an

n-dimensional vector with each element (the skills) mapped to an attribute with a value

(the required skill level) and weight (the importance of that skill to the job position). It

is implied that there is an automatic process that converts the unstructured content of

the job description into the structured form based on attributes, values, and weights,

but this is not stated explicitly. The user profile, which consists of the candidate CV

only, is similarly converted to an n-dimensional vector, and the Minkowski distance at

p values of 0.5, 1, 2, and 4 was used as a metric of similarity between each user profile

and item representation.

3.2 job recommendation systems 65

José-García et al. (2022) developed C3-IoC14; a tool that matches user skill profiles

to relevant job roles. The tool uses keyword extraction to identify technical skills in a

user’s uploaded CV by matching against a technical skill bank constructed through a

combination of web scraping, ‘text mining techniques’, and the O*NET15 skill database.

Additionally, a questionnaire was provided to the user in order to derive the level

at which the user embodied non-technical skills, which was manipulable by the user

through radar charts. User skill profiles and job roles were represented as skill vectors

weighted by the skill level the user embodied or the level at which the job required

that skill. Similarity between user u and job j skill weightings were calculated using

the bespoke metric shown in equation 3.4, where S is the fixed set of N skills, S =

{s1, s2, . . . , sN}, and higher similarity indicated a better match between user and job.

sim(u, j) = 1 −

√
∑
s∈S

max(js − us, 0)√
∑
s∈S

js
(3.4)

The advantage of C3-IoC over similar job recommendation systems is that it incor-

porates the relative strength of skills. This is an important part of the recommenda-

tion process that is neglected by systems that treat the presence or lack of skill terms as

binary values. For example, a user who states they are a novice at the programming

language Python may be shown they have the necessary skillset to qualify for a Senior

Software Development position that lists expertise in Python as a requirement for the job

if skill levels are not taken into consideration.

3.2.6 Hybrid Filtering

An example of a job recommender system using a hybrid approach is CASPER (Rafter,

Bradley, and Smyth, 2000) which features both content-based filtering and collaborative

filtering methods. In this system, an automated collaborative filtering component

gathers data regarding job listings a user has viewed, how long the user viewed the

14 Originally hosted at https://www.c3-ioc.co.uk/, now accessible only through the Internet Archive
https://web.archive.org

15 https://onetonline.org/

https://www.c3-ioc.co.uk/
https://web.archive.org
https://onetonline.org/

66 related work

listing, and which listings the user returned to view at a later date. This data is combined

with data from a personalised case retrieval (PCR) module, which performs a two-stage

process to produce job recommendations. Stage one of the PCR module finds suitable

job matches by calculating the weighted sum of the individual feature similarities

between a target job description (provided by the user) and other job descriptions.

Stage two of the PCR module personalises the retrieval results to the user by using a

form of k-nearest neighbour (Cunningham and Delany, 2020) to calculate relevance of

the recommendation to the user, and suppresses recommendations that are shown to be

not relevant. Rafter, Bradley, and Smyth (2000) show the strength of the hybrid approach

over singular approaches, and show that a combination of collaborative and content-

based recommendation techniques can be leveraged to improve recommendations.

3.3 large scale analysis of job descriptions

Alabdulkareem et al. (2018) perform large scale analysis of job adverts to investigate

the distinction between high- and low-wage occupations in terms of skill requirements.

No definition of skills is provided, but the authors use the O*NET database of skills

in their analysis. The authors identify two skill clusters using a variant of relative

frequency analysis, and interpret these as ‘social-cognitive’, associated with high-wage

occupations, and ‘sensory-physical’, associated with low-wage occupations. The authors

reason that this polarisation constrains the ‘career mobility’ of workers, since low-skill

workers are ‘stuck’ relying on a low-wage skill set, and propose that strategies need to

be developed to mitigate the negative aspects of automation that replaces a proportion

of low-wage occupations.

Fareri et al. (2020) develop a quantitative measure to gauge the readiness of employees

within a large firm with respect to the Industry 4.0 paradigm, which refers to the

sociotechnical revolution of technology in the workforce. The authors consider a variety

of structured databases for job profile characterisation, including ESCO and O*NET,

and compute summary statistics for 6 groups of skills: everyday execution, operational

skills, and functional skills for both 4.0 profiles and non-4.0 profiles. The authors show

that the 4.0-ready profiles are more adequate to carry out operative activities through

the relevant support of their soft skills. Additionally, 4.0-ready profiles are stronger

on transversal skills, and the authors propose that, for managing the introduction of

3.3 large scale analysis of job descriptions 67

new technologies, there should be an important soft component, which is becoming

increasingly central in the digital era.

Lyu and Jin Liu (2021) perform a large scale analysis of job adverts in the US energy

sector, and find an increasing demand from 2010 to 2019 for soft skills, including

social, cognitive, people management, project management, and customer service

skills. No formal definition of a skill term is given, but the authors note that skills

are pre-identified in the supplied data (provided by Burning Glass Technologies, an

employment analytics firm), and provide a count of 13,565 unique skills in the data. A

further trend the authors identify is that of the relatively flat requirement for hard skills

over the same time period in which soft skill requirements increase. The authors show

that products and marketing skills are the most valuable to energy firms, and contribute

the highest to firm productivity. However, these same skills are the least commonly

required in the energy sector, which highlights a potential change in strategy that firms

may need to address when hiring employees.

Junhua Liu, Ng, Wood, et al. (2020) developed the Industrial and Professional

Occupation Dataset (IPOD), composed of 475k job titles associated with around 200k

users on occupational social network LinkedIn16. Each job title is annotated with its

level of seniority, domain of work, and location. Subsequently, this corpus was used to

develop Title2vec (Junhua Liu, Ng, Gui, et al., 2022), a contextual job title vector

representation. By using Title2vec, the authors conducted large scale analysis of job

adverts, focusing on discrepancies between employee-job interaction in Asia

(Singapore) and the US (Denver, CO). The researchers found that, in both regions,

employees tend to stay between 2 to 3 years at a given position, but job retention tends

to be higher in the US. Linear regression was performed to determine whether the

number of years in education is able to predict the length of employment, which

showed a significant effect for Asia but no significant effect for the US.

Piróg and Hibszer (2022) performed large scale analysis of job adverts to determine

the extent to which employers require the experience listed in job adverts. Data used

for analysis comprised 17k job adverts in the environmental sciences domain across

six European countries. In this particular domain, approximately half of job adverts

required some work experience (between a few weeks to a year), and the remainder re-

quired considerable experience (at least one year). However, this requirement varied by

16 https://www.linkedin.com/

https://www.linkedin.com/

68 related work

the language in which the job advert was written; for example, job adverts written in

Polish expressed the lowest requirement for professional experience, with over 90% of

job adverts in this field listing no required experience. Conversely, English job adverts

listed higher requirements, and German job adverts required the highest professional

experience requirements of those included in analysis. Word co-occurrence statistics

were computed to show the words associated with certain groups of professions, which

were then ranked by importance. For example, in Polish adverts, the strongest relation-

ship between the word experience was interpersonal [skills], and the researchers suggest

that employers look for documented professional competences, and interpersonal skills

acquired primarily through collaboration with people using a foreign language. In Ger-

man adverts, however, the word experience most strongly related to the words analytical,

responsibility, and inter-disciplinary, and the researchers suggest that employers who ad-

vertise in German seek candidates experienced with working with geographic infor-

mation systems, performing analyses where data sources and knowledge from Earth

science-related disciplines is utilised. The researchers conclude that work experience

capital is not a basic condition for finding employment related to a candidate’s degree,

but can enhance candidates’ competitiveness on the labour market.

3.4 natural language processing in job descriptions

3.4.1 Word Embeddings

Word-level and document-level embeddings have been used in the field of applicant

profile-job description matching for different purposes. Gugnani and Misra (2020)

utilised both word2vec and doc2vec models in a proposed matching system. Vector

representations of words were used to calculate the probability that a word appearing

in a resume was a skill term, which were considered by the authors to be an important

aspect in evaluating the strength of a job recommendation17. Vector representations of

documents were used in a separate part of the matching system for finding similar job

descriptions to a given job description.

Maheshwary and Misra (2018) reported greater accuracy and F1-score on an

applicant profile-job description matching task when using doc2vec to create vector

17 The role of skill terms in matching solutions is discussed in more detail in §3.4.2.

3.4 natural language processing in job descriptions 69

representations for applicant profiles and job descriptions compared to using a

bag-of-means approach where average word2vec embeddings were used as a feature

set, which suggests that document embeddings are better at representing the

document as a whole than taking the average of word embeddings.

E. Smith, Weiler, and Braschler (2021) used word embeddings in a skill-extraction

task to identify semantically related words to known skill terms. Word2vec was trained

on 10,000 unlabelled job descriptions, and mean similarity between unknown terms

and skill terms, and in a separate method, between syntactic headwords and skill terms,

where syntactic headwords were defined as the terms that indicate the presence of a nearby

skill-phrase, for example the term degree in in the skill phrase degree in business adminis-

tration, or the experience in the phrase project management experience. The authors found

that simple syntactic methods such as dependency tree parsing outperformed word

embeddings, but noted that this was a ‘small-data problem’, in that word embeddings

typically perform well in tasks where large amounts of training data are available. It

appears that the authors did not leverage pretrained word embeddings for this par-

ticular task, and chose instead to train from first principles on their small dataset. It

is possible that leveraging pretrained word embeddings, which have been exposed to

large quantities of natural language, may be more effective at ER, especially after fine-

tuning on a smaller, more task-specific dataset. Nonetheless, this research does support

the notion that simpler algorithms may be more suitable to this particular application

of ER, and it is worth including them in experimentation even though larger, more com-

plex language modelling methods such as word embeddings, are available.

3.4.2 Entity Recognition

In traditional machine learning approaches, feature extraction refers to the process of

building derived values (features) from initial data to facilitate the subsequent learning

and model establishment steps. In the context of applicant profile-job description

matching, this involves parsing unstructured text and extracting salient details from

applicant profiles or job descriptions that are used as input to a recommendation model.

Applicant profile-job description matching systems that use feature extraction tend

to use the skillset contained in the input data as the features to be extracted and used

as input to a recommendation model (Almalis, Tsihrintzis, and Karagiannis (2014);

70 related work

Choudhary et al. (2016); Hoang et al. (2018); Gugnani and Misra (2020)). The underlying

assumption is that a high similarity between the set of skills an applicant has compared

with the set of skills a job description requires is a strong indicator of a good fit.

However, there are two main issues in existing literature regarding skill extraction

for feature selection. Firstly, there is no academic consensus on the definition of a

skill-term, which makes the comparison of different extraction methods a difficult task.

Secondly, there is no agreed-upon optimal method for the extraction of skill-terms from

applicant profiles or job descriptions, so there is a need for research into the evaluation

of different methods.

Literature regarding the extraction of skill-terms from applicant profiles and job de-

scriptions tends to utilize one of three approaches to defining the problem. The first

approach is to avoid problem definition entirely by offering no explicit definition for a

skill-term. Bastian et al. (2014) allows the users of a service (LinkedIn) to define skill-

terms themselves without explicit guidance from the researchers nor a formal defini-

tion. Other work avoids problem definition by assuming that anything contained in

a user-defined Skills section of an applicant profile qualifies as a skill-term (Mahesh-

wari, Abhishek, and Reddy (2010); Kivimäki et al. (2020); Karakatsanis et al. (2017)).

Other work employs field experts to annotate terms as skills, and terms with high inter-

annotator agreement are classified as skill-terms (Gugnani and Misra, 2020). In some

cases, research into the extraction of skill-terms from applicant profiles and job descrip-

tions offers no explanation of what a skill is whatsoever (Gugnani, Kasireddy, and Pon-

nalagu (2019); Choudhary et al. (2016)).

The second approach to problem definition in skills extraction research is to provide

the reader with examples of skill-terms in lieu of a formal definition. Shi et al. (2020)

show an annotated Key Qualifications section with skill-terms highlighted, such as

machine learning and natural language processing. However, some terms that could be

perceived as skill-terms appear in the example and are not highlighted (for example,

generative and discriminative models), which is evidence of the ambiguity of this method

of problem definition. Hoang et al. (2018) use the same method of problem definition

by providing an example annotated job listing, but in this example they include parts

of job titles in the annotations (for example, financial in financial accountant) and exclude

other terms that could be perceived as skill terms (for example, in the phrase monitoring

3.4 natural language processing in job descriptions 71

budgets, developing forecasts, and investigating variances, only the terms budgets and forecasts

are classified as skill terms; the associated verbs and investigating variances are excluded).

The third approach to problem definition is to refer to public databases of skill terms

such as O*NET18 or those defined in the official frameworks such as the European

Qualifications Framework (EQF), part of the European Skills/Competences,

Qualifications and Occupations Commission (ESCO) (Khobreh et al., 2016). This

framework defines skills as the ability that enables the learner to apply knowledge and use

know-how to perform tasks, and makes the distinction between skills and competences,

which are defined as the proven abilities to use knowledge, skills and personal, social and/or

methodological abilities, in work or study situations and in professional and personal

development. As at February 2021, the ESCO database contains 13,485 skills and

competences. The main limitation of using public databases of skill terms is that they

are not effective for detecting new skills or detecting known skills expressed in new

ways, and require continual updating in order to retain their usefulness. In areas of

industry that feature constant development of new techniques, for example, machine

learning or computer programming, new methods and techniques will elude skill

databases until they have been identified by the database maintenance team and added.

ESCO is updated with new terms annually19 which means that skill extraction

methods using this database may be up to a year out of date.

There are several methods for skill extraction that have been proposed. Gugnani and

Misra (2020) found that a mixed-method approach was the most effective, combining a

dictionary match method, a part-of-speech tagging method, a named entity recognition

method, and a word embedding method to generate a probability that a given word or

phrase in a candidate profile was a skill term.

Dictionary matching is the most straightforward of the approaches, and involves the

compilation of one or more skills dictionaries. Words and phrases are checked against

these dictionaries, and if there is a match, the term is likely to be a skill term. In the

Gugnani and Misra (2020) system, skill dictionaries were compiled from online sources

such as Wikipedia20, O*NET, Hope21, and various other uncited online public dataset

resources with terms identified as skills. Cumulatively, the skill dictionaries contained

18 https://onetonline.org/
19 Changes to ESCO are detailed in the changelog at https://ec.europa.eu/esco/portal/escopedia/ESCO_

v1.
20 https://www.wikipedia.org/
21 https://www.computerhope.com/

https://onetonline.org/
https://ec.europa.eu/esco/portal/escopedia/ESCO_v1
https://ec.europa.eu/esco/portal/escopedia/ESCO_v1
https://www.wikipedia.org/
https://www.computerhope.com/

72 related work

53,293 terms, and a feedback loop was included in the overall system architecture so

that new terms that were eventually classified as skills were added to the dictionaries.

Associated with each of these terms was a weight value corresponding to the likelihood

of the term being a skill, but the process by which this weight value is assigned for the

original skill terms is not described in the paper.

POS tagging is the process of assigning part of speech tags, such as noun and verb,

to words in a sentence (Toutanova et al., 2003). POS tags can be used to influence the

likelihood of a term being classified as a skill. Gugnani and Misra (2020) combined a

POS tagging system with hard-coded rules such as if a sentence has a comma separated list

of nouns, where one or more nouns is a skill then the other set of nouns are probably skills.

NER is the process of identifying and classifying named entities in text into pre-defined

categories (for example, organisation, person) (Ratinov and Roth, 2009). Some services,

such as IBM Watson NLU22, also identify keywords, entities, and concepts from text,

which can be leveraged to aid in the classification of skill terms. Gugnani and Misra

(2020) used Watson NLU to parse candidate profiles, and extracted the terms that

were identified as keywords, entities, and/or concepts. Alongside this list of terms,

weights were assigned to each based on how many of these services extracted the term

(for example, a term identified as both a keyword and an entity is assigned a greater

weighting than a term only identified as a concept).

Word embedding methods are explained in detail in §2.4.2. Using similarity metrics

such as cosine similarity on word embeddings, it is possible to quantify the semantic

similarity between two words. If a term has high similarity to a known skill term, that

term is likely to also be a skill term. Gugnani and Misra (2020) trained a word2vec

model on a corpus consisting of 1.1 million job descriptions from a variety of domains

and the Wikipedia pages of all the terms in the skill dictionaries. In the embedded

word2vec space, new terms were compared to each term in the skill dictionaries, and

the highest cosine similarity was taken as the likelihood that the term was also a skill

term. In the case of multi-word phrases (for example, computer programming, ability to

work under pressure), an average of the word vectors for each word was taken as the

embedding for the skill phrase.

The terms and their weightings extracted from the dictionary match, POS tagger, NER,

and word2vec methods were combined with additional parameter weights in a formula

22 https://cloud.ibm.com/docs/natural-language-understanding/categories.html

https://cloud.ibm.com/docs/natural-language-understanding/categories.html

3.4 natural language processing in job descriptions 73

to calculate a relevance score for each term, which was the likelihood that the term was

a skill term. Terms with a relevance greater than 0.35 were considered relevant, and

therefore skill terms. The additional parameter weights and the relevance threshold

were reported to have been derived from empirical evaluation, but no further details

were given to support this.

Shi et al. (2020) utilise attention-based methods in the development of Job2Skills, a

salience and market-aware skill extraction method which was shown to improve the

quality of LinkedIn job targeting skill suggestions and job recommendation.

Attention-based methods such as the Transformer (Vaswani et al., 2017) have been

firmly established as state of the art approaches in sequence modelling, language

modelling, and machine translation. They mimic the cognitive attention process of

enhancing salient parts of input data. In doing so, they overcome some of the issues

associated with RNNs and CNNs, such as the sequential processing limitation and

difficulty learning long-range dependencies between associated words. Job2Skills (Shi

et al., 2020) first uses an in-house skill tagger to find all possible skill mentions and uses

a feature-based regression model to link these possible skills to known skill entities,

although the details are not provided for either the skill tagger or the feature-based

regression model. Attention-based methods such as BERT (Devlin et al., 2019) were

used to encode the skill terms and the sentences in which they appear in order to train

a gradient descent model on a classification task, where skill terms were classified as

either salient and market-aware for that particular job posting or not. Although Shi et al.

(2020) show that attention-based methods can be used to great effect in skill extraction,

they treat the initial problem of isolating and classifying skills as solved and

out-of-scope, although the related work described in this section suggests that this

claim is made prematurely. However, attention-based methods have been shown to be

particularly effective, which suggests that these methods should be considered when

developing a feature extraction system.

It is clear there is a need for a formal definition of each of the salient entities in

applicant profiles and job descriptions, and a public, labelled dataset that can be used

to develop and evaluate feature extraction systems. The first research question of this

thesis focuses entirely on this aspect, and involves a list of entity classifications and

their definitions in the form of an annotation scheme, as well as the construction of a

public dataset of job descriptions with salient entities identified and labelled.

74 related work

Towards the end of our research, and thus too late to be of use in our experiments,

the SkillSpan (M. Zhang, Kristian Nørgaard Jensen, et al., 2022b) data was also

published which shares methodology similar to ours. The authors present a dataset for

skill extraction consisting of 14.5k sentences (12.5k annotated spans). Sentences were

compiled from three web sources: an unnamed large job platform; the Danish Agency

for Labour Market and Recruitment; and StackOverflow23 jobs, which features job

listings exclusively in the technology domain. Annotations were conducted by three

annotators over the course of eight months, whereby job descriptions were reviewed

and Skill and Knowledge spans were identified according to ESCO definitions. Using this

data, various Transformer-based architectures were applied for ER. The most successful

of these, ‘JobBERT’, was a BERT model that had been pre-trained on 3.2M unlabelled

sentences from job descriptions. F1 scores for this model on the combined task (that is,

the identification of both Skill and Knowledge spans) approached .60.

3.4.3 Natural Language Inference

To our knowledge, there has not yet been any research dedicated to addressing the

job matching problem using the NLI paradigm, which frames the job description as

the premise and the user profile as the conclusion, and aims to predict the relationship

between the two. However, there is a wide body of research into the general problem of

NLI, which serves as a useful foundation for our work into the job matching problem.

The SNLI corpus (Samuel R. Bowman et al., 2015) is a collection of 570, 000 human-

written English sentence pairs, each labelled with a single classification denoting the

relationship between hypothesis and conclusion: {Entailment; Contradiction; Neutral}.

The dataset is accessible online24 under a CC-BY-4.0 license. During data collection,

approximately 2,500 human annotators on the Amazon Mechanical Turk (AMT) platform

were presented with a photograph and an accompanying caption, and asked to produce

three alternative captions: one that is true, one that could be true if more information

were available, and one that is false. The photographs accompanying the sentence

pairs are not available in the SNLI corpus. Approximately 60, 000 sentence pairs were

subsequently annotated in a validation task, where 4 annotators (not including the

23 https://stackoverflow.com/
24 https://huggingface.co/datasets/snli

https://stackoverflow.com/
https://huggingface.co/datasets/snli

3.4 natural language processing in job descriptions 75

original hypothesis author) labelled each sentence pair. IAA statistics are shown in Table

3.1.

Label Fleiss κ

Contradiction .77
Entailment .72
Neutral .60

Overall .70

Table 3.1: IAA for the SNLI Dataset (Samuel R. Bowman et al., 2015).

The attention-based neural architecture proposed by Parikh et al. (2016) decomposes the

NLI problem into sub-problems that may be solved in parallel, vastly decreasing training

and evaluation times compared to standard neural architectures. Attention mechanisms

are described in more detail in §2.5.1.2. After embedding the input sentences, they are

softly aligned using attention, and the soft alignment is decomposed into sub-problems

which are solved separately and subsequently merged to produce the final classification.

This approach is referred to as decomposable attention since the approach decomposes

the problem in this way. The feed-forward networks accept the softly aligned input

sequences separately, which leads to linear complexity (length of premise + length

of hypothesis) as opposed to quadratic complexity (length of premise × length of

hypothesis). The decomposable attention model was trained and evaluated on the SNLI

data, and outperformed LSTM models which featured many more parameters (382K vs.

3.0M). It is important to note that the SNLI corpus features three classes for prediction

rather than two, since a limitation of the decomposable attention model is its reduced

ability to distinguish neutral relationships between sentence pairs. When applying the

NLI paradigm to job matching, there is no corresponding neutral relationship; either

a user is suitable for a given job, or they are not. Therefore, the application of a

similar attention-based neural architecture may perform well in the dichotomy of job

application status prediction. Experiments on this topic are discussed in §5.5.3.3.

The neural architecture proposed by R. Yang et al. (2019) utilises the same decom-

position technique as Parikh et al. (2016), but modifies several components that were

deemed slow and unnecessary, such as multi-way alignment mechanisms and dense

76 related work

connections between stacked blocks. The proposed model encompassed three compo-

nents which collectively give its name, RE2: residual vectors, which are the previously

aligned features between input sequences, embedding vectors, which are the original

point-wise features, and encoded vectors, which are the contextual features. The imple-

mentation of each layer is kept as simple and lightweight as possible, and the residual

connections between consecutive blocks are augmented to provide richer features for

the alignment process; the three parts in the input of alignment and fusion layers are:

the original point-wise features (embedding vectors), previously aligned features pro-

cessed and refined by previous blocks (residual vectors), and the contextual features

from the encoder layer (encoded vectors). With this approach, the authors demonstrate

improved performance on the SNLI corpus compared to a variety of NLI models, includ-

ing the decomposable attention model proposed by Parikh et al. (2016). By reducing

complexity and training times while achieving comparable or greater performance, this

model architecture is a suitable choice for NLI tasks.

One particular challenge associated with developing ER systems on human-labelled

data is the lack of perfect agreement between annotators, and methods are required to

resolve disagreement between given labels (IAA is discussed in more detail in section

2.7.2). Rodrigues and Francisco Pereira (2017) proposed a method for addressing

disagreement that does not require label aggregation methods; the Crowd Layer, which

allows a model to learn directly from noisy annotations. The Crowd Layer accepts as

input the output layer of the NN and learns an annotator-specific mapping from the

output layer to the labels of the different annotators, which captures annotator-specific

reliabilities and biases. The addition of the Crowd Layer was shown by Rodrigues

and Francisco Pereira (2017) to increase the performance of a model on an NER task

compared with the same model without the Crowd Layer using a variety of label

aggregation methods. The performance of a CNN with the Crowd Layer was shown

to be comparable to a CRF model, while considerably reducing training time (a few

minutes versus several hours).

4
E X T R A C T I N G S A L I E N T E N T I T I E S F R O M J O B D E S C R I P T I O N S

4.1 chapter overview

This chapter addresses the first research question of this project:

RQ1 How can salient entities in applicant profiles and job descriptions be identified and

extracted for use in an applicant profile-job description matching solution?

Section 4.2 explains the necessity for a public dataset of job descriptions with salient

entities identified with an associated schema in order to develop automatic solutions

for ER. Section 4.3 describes the process of selecting a corpus of job descriptions to

form the foundation of the labelled dataset. Section 4.4 details the process by which

the schema for the annotation task was developed over six rounds of testing, making

incremental changes to task delivery and ancillary materials in order to improve

annotator accuracy and inter-rater reliability. Section 4.5 describes the process by

which an accuracy threshold was chosen, where Workers who met or exceeded this

threshold on a task were invited to contribute to the live corpus, which is described

in §4.6. Section 4.7 provides some statistics and analysis of the live corpus. Section 4.8

describes the different methods applied for ER, which are evaluated in §4.9. Section

4.10 discusses the application of ER methods beyond the current task in the context

of job recommendation systems. Section 4.11 discusses the ethical implications of the

research contained in this chapter. Section 4.12 details the publication of materials.

Finally, section 4.13 summarises the research described in Chapter 4.

4.2 introduction

The progression of research addressing RQ1 is represented visually in Figure 4.1.

Time-consuming tasks, such as reading and evaluating many articles of text, are suit-

able candidates for developed automatic methods. These methods aim to replicate the

77

78 extracting salient entities from job descriptions

Source Dataset of
Job Descriptions

§4.3

Schema & Task
Development

§4.4

Accuracy Threshold
Identification

§4.5

Task Deployment
§4.6

Annotated
Data Analysis

§4.7

Data Preprocessing
§4.8.1

ER System
Development

§4.8

Material
Publication

§4.12

Conclusion
& Next Steps

§4.13

Figure 4.1: The flow of the research project dedicated to address Research Question 1.

human decision-making process at a much greater speed, and make fewer random er-

rors in doing so as such tasks are highly susceptible to human errors when performed

manually. The task of evaluating whether a job description is an appropriate recom-

mendation for a candidate (or vice versa) is one such human task suitable for replace-

ment with an automatic method. However, a prerequisite for this process is the ability

to identify which components of a job description or candidate profile are important

when evaluating whether a given job or candidate is a good recommendation or not.

With the added difficulty that job descriptions and candidate profiles are non-uniform

and often unstructured, methods are required to parse text, and to identify and extract

the salient entities within.

The identification and extraction of salient entities in job descriptions and candidate

profiles can be considered an Entity Recognition (ER) task. In order to develop an ER

system, the following items are required:

• a dataset of job descriptions and/or candidate profiles with tagged salient entities

• a machine learning algorithm suited to ER that can be trained to recognise the

salient entities in free text

Prior to this research project, there were no publicly available datasets of job descrip-

tions with tagged salient entities. Given that this data is a requirement for developing

4.3 unlabelled job description data acquisition 79

an ER system for extracting salient entities, the first step to address this research prob-

lem was to create and publish such a dataset by sourcing annotations.

The following components involved in creating a labelled ER dataset in this domain

mark the first of our original contributions:

• A publicly available unlabelled dataset to form the foundation for the labelled

dataset

• A list of entity classifications and their definitions in the form of an annotation

schema for salient entities

• A process by which annotations are collected, usually by distributing the task to

human annotators on a crowd-sourcing platform

• A benchmark ER system trained on this data to act as a baseline of comparison

for future work

Firstly, a dataset of job descriptions was sourced to form the foundation of the human

labelled dataset. This process is detailed in §4.3.

4.3 unlabelled job description data acquisition

The dataset that was selected for the current research was the collection of job descrip-

tions that was published on data sharing site Kaggle1. This is available under a Cre-

ative Commons license.

Although this data contained several data fields pertaining to the job descriptions

(such as Job Title, Location, Contract Type, and Domain), only the Full Description field for

each was retained, since the task of identifying and extracting entities focuses solely on

this text field. Summary statistics for the unlabelled dataset are shown in Table 4.1.

4.3.1 Discrepancies of Job Description Style and Purpose

Job descriptions in this dataset span a wide variety of domains, and include both tech-

nical and non-technical, permanent and part-time, entry-level and high-level positions.

1 https://kaggle.com/airiddha/trainrev1

https://kaggle.com/airiddha/trainrev1

80 extracting salient entities from job descriptions

Number of items 244, 768
Average Token Count per item 244.9
Token Count Standard Deviation 130.3
Token Count Minimum 4
Token Count First Quartile (Q1) 154
Token Count Median (Q2) 226
Token Count Third Quartile (Q3) 312
Token Count Maximum 2, 125

Table 4.1: Unlabelled Job Description Corpus Statistics.

The tone, structure, and style of job descriptions broadly fall into one of two cate-

gories. The first category employs a formal style, and tends to list responsibilities and

requirements clearly with little to no superfluous text. The second category has a more

informal style, often addressing the reader directly, and includes superfluous phrases

and colloquialisms.

Job Description 4.1 is an example from this dataset that falls into the first category.

Job Description 4.1: An example Job Description with a formal tone.

A subsea engineering company is looking for an experienced Subsea Cable Engineer who

will be responsible for providing all issues related to cables. They will need someone who has

at least 10-15 years of subsea cable engineering experience with significant experience within

offshore oil and gas industries. The qualified candidate will be responsible for developing new

modelling methods for FEA and CFD. You will also be providing technical leadership to all

staff therefore you must be an expert in problem solving and risk assessments. You must also

be proactive and must have strong interpersonal skills. You must be a Chartered Engineer

or working towards the qualification. The company offers an extremely competitive salary,

health care plan, training, professional membership sponsorship, and relocation package.

In this Job Description, the responsibilities and skill requirements are listed clearly,

for example: developing new modelling methods, providing technical leadership, problem

4.3 unlabelled job description data acquisition 81

solving. Additionally, the qualification requirements and domain of industry are clear,

and there are no unnecessary details.

By comparison, Job Description 4.2 is an example from the dataset that falls into the

second category.

Job Description 4.2: An example Job Description with an informal tone.

Do you have a passion for Swimming? Can you motivate others to improve their skills? If

the answer is yes and you have a ASA UKCC Level 2 or STA Full Qualification, this could

be the job for you! We are looking to develop and grow our existing swimming instructor

program for both children and adults and we are looking for a enthusiastic individuals [sic]

to join our team on a self-employed basis and become part of our Swim Academy programme

across our sites. We are actively seeking individuals who can teach swimming including

a wide range of disciplines including Coaching, Triathlon, Adult and Child, Disabilities,

Synchro, Waterpolo, and Diving. You will stand out because of your motivational and fun

style of teaching, passion for Swimming and your ability to inspire people, ensuring pupils

enjoy your sessions week on week. You will be a vibrant presence in our facilities and willing

to go that extra mile. To apply for this opportunity you will need to have proof of your

qualification and public liability insurance. An Enhanced Criminal Record Bureau CRB

Disclosure is required for these posts.

Here, skill and qualification requirements are embedded in questions directed at the

user (for example, do you have a passion for Swimming?, can you motivate others...?) and

conversational phrasing (for example, You will stand out because of your motivational

and fun style of teaching).

The distinction between job descriptions written as technical documents and those

written as marketing materials is made internally by Tribepad, who define the two

categories of document as Internal and External job summaries respectively. However,

in many online sources of job descriptions, the distinction is not made clearly and

both styles are prevalent, and some documents are written employing aspects of both

types. This represents a key complexity in the task of extracting salient entities from job

descriptions; since both categories are valid job descriptions and evident in the corpus,

82 extracting salient entities from job descriptions

an automatic solution for entity extraction needs to be equally effective across both

categories of job descriptions.

4.4 schema development

In the field of NLP, an annotation schema is a collection of entity classifications and their

definitions which can be used to develop documentation and training materials that

enable human annotators to perform a labelling task, ensuring consistency and accuracy

in the process. Creating a labelled dataset requires some degree of human annotation.

Given that the final dataset needs to be large enough to train machine-learning models,

a number of human annotators are required, and annotation crowdsourcing platforms

such as Amazon Mechanical Turk (Le and Mikolov, 2014) have been developed to

streamline the process of recruiting, training, and distributing work to annotators.

The classifications of entities to be extracted in the data annotation task, and their

definitions, were defined through an iterative process of performing the annotation task

in conjunction with definitions from previous work (Gugnani and Misra (2020); Shi

et al. (2020); Hoang et al. (2018)), and the European Skills, Competences, Qualifications

and Occupations (Commission, Directorate-General for Employment, and Inclusion,

2019), which is part of the European Qualifications Framework (Khobreh et al., 2016).

The definition of the Skill classification proposed here combines the Skill, Knowledge,

Language skills and knowledge, and Transversal skills classifications used by ESCO. Our

motivation to remove the distinction between these subcategories was largely due to the

difficulty posed to non-experts in reliably identifying the correct category, and several

borderline cases exist that could conceptually be included in multiple categories. For

example, the current ESCO dataset2 lists the term use communication techniques as a

Skill, but the term communication skills is listed as a Transversal skill. By removing the

distinction between subcategories of Skill, we eliminate the requirement of domain

expertise for the annotation task.

Five distinct entity classifications were defined after a period of task development.

However, these classes are difficult to define, and even with the definitions shown

below, borderline cases exist. These ambiguities, and our methods of resolving them,

are discussed later in this section.

2 v1.1.1, accessed 2023

4.4 schema development 83

• Skills

– Examples: computer programming, French, data analysis, Microsoft Word, leader-

ship, unloading cargo, problem solving, honesty, graduate recruitment strategy

– They are:

* Tasks that can be performed (for example, unloading cargo)

* Attributes pertaining to an individual (for example, honesty)

* Abilities that enable people to perform tasks (for example, problem solv-

ing)

– Includes domain-specific hard skills and domain-general soft skills

– Includes specific knowledge (for example, understanding of marketing strate-

gies)

– May be validated with a qualification or experience, but these are not part

of the Skill (for example, in the sentence a Bachelor’s degree and two years

experience in data analysis, only the term data analysis is a Skill)

• Qualifications

– Examples: Bachelor’s Degree, chartership, National Pool Lifeguard Qualification,

three A-levels

– They are official certifications obtained through taking a course or passing

an exam or appraisal

– Includes driving licenses and security clearance

• Experience

– Examples: 2 years experience, minimum of 5 years experience

– They are quantified by length of time

– Does not include what the experience is of or in - for example, in the sentence

this job requires at least 10 years of experience as a CEO, only the words at least

10 years of experience are the Experience

• Occupations

– Examples: Teaching Assistant, CEO, Data Analyst, Chef de partie

84 extracting salient entities from job descriptions

– These are job titles

– Includes abbreviations and acronyms - for example, both Chief Executive

Officer, and CEO, are Occupations

• Domains

– Examples: aerospace, oil industry, education, human resources

– These are areas of industry in which someone might have knowledge or

experience

Worked examples showing labelled entities in sentences from job descriptions are

included in Appendix A.1.1.

These entity classes and their definitions, along with a series of clarification

questions and worked examples (Appendix A.1.1), were delivered to a number of

human annotators over six iterations. In each iteration, modifications to the task, the

entity classifications, the delivery mechanisms, and supporting materials were made in

order to minimise inter-annotator disagreement. Human annotators and the work

items assigned to them were different across testing rounds in order to ensure that the

task was not affected by annotators recalling earlier versions of task instructions or

items they had already annotated. Details of the annotation rounds are described in the

following sections.

round 1

In the initial testing round of annotations, 3 human annotators3 were given the first

edition of labelling instructions and 5 items (referred to as a Human Intelligence

Task (HIT)) for annotation. Each HIT required the annotator to read the given text,

identify the salient entities contained within as defined in the ancillary instructional

material, highlight the full span of each entity, and choose the relevant label for each

entity span. DataTurks4 was used as the annotation platform due to its relatively simple

setup procedure and easily navigable interface. Figure 4.2 shows one example HIT as it

appeared to the annotators, and Figure 4.3 shows the same item labelled according to

the concurrently supplied instructional material.

3 Annotators during initial testing rounds were colleagues of the author and recruited through word-of-
mouth.

4 https://github.com/DataTurks

https://github.com/DataTurks

4.4 schema development 85

Workforce Classification Private
Classes 6
Annotators 3
Platform DataTurks
Item Description Job Descriptions
Work Items 5
Average # Sentences per Work Item 10.6
Total # Tokens 1, 098
Instruction Details Class Descriptions Only
Annotator F1 0.3589
κ with O label 0.3806
κ without O label 0.5885

Table 4.2: Summary statistics of the first round of the annotation process.

8
6

e
x

t
r

a
c

t
i
n

g
s

a
l

i
e

n
t

e
n

t
i
t

i
e

s
f

r
o

m
j
o

b
d

e
s

c
r

i
p

t
i
o

n
s

Figure 4.2: Example unlabelled HIT on the DataTurks platform.

4.
4

s
c

h
e

m
a

d
e

v
e

l
o

p
m

e
n

t
8

7

Figure 4.3: Example labelled HIT on the DataTurks platform. Labels are for illustrative purposes only, and do not necessarily reflect the
correct entity spans or classifications.

88 extracting salient entities from job descriptions

Results from Round 1 are shown in Table 4.2. Although Cohen’s κ, or Fleiss’ κ

when adjusted for multiple raters, is a widely used measure of IAA (see §2.7.2 for an

explanation of IAA), there have been several issues raised regarding its application in

specifically entity annotation tasks (Hripcsak and Rothschild, 2005), in particular in

cases where class distribution is unbalanced and where unannotated tokens (that is,

tokens that do not fall under any given entity classification and are consequently left

without annotation, including stop words such as and and the) are more prevalent than

annotated tokens. In these cases, κ is calculated twice under two separate conditions:

evaluating all tokens in the data, and evaluating only the annotated tokens in the data.

Pairwise F1 calculated on annotated tokens only has been suggested as a better

measure for agreement in annotation labelling tasks (Deleger et al., 2012). We thus

compute the micro F1 on annotated tokens as the focal method of IAA, but Fleiss’ κ

statistics are provided to give additional insight.

Using Landis and Koch (1977)’s interpretation of the κ statistic (see Table 2.2), results

from Round 1 show Fair agreement between annotators. However, annotators reported

feeling overwhelmed by the density of the work item (on average, 10.6 sentences per

item), which may have led to poorer engagement with the task and consequently a

greater error rate. To address this feedback, work items were reduced from full job

descriptions to individual sentences from job descriptions. Although this alleviates the item

density problem, it was necessary to investigate the effect this had on errors introduced

by the lack of context. It is possible that annotators used information from preceding

sentences when classifying a given sentence, and by removing this context we may be

inadvertently reducing annotator performance.

Round 2, detailed in the next section, was conducted to investigate this effect.

round 2

Results from Round 2 are shown in Table 4.3. Including splitting work items by sentence

to reduce work item density, three changes in total were made between Rounds 1 and 2

to facilitate annotation and reduce task ambiguity. The annotation platform Amazon

SageMaker Ground Truth5 was used as an alternative to DataTurks, since the live

task was planned to be hosted on the SageMaker platform, and keeping the interface

consistent between the testing phase and live data collection phase would make test

5 https://aws.amazon.com/sagemaker/groundtruth/

https://aws.amazon.com/sagemaker/groundtruth/

4.4 schema development 89

Workforce Classification Private
N classes 6
n annotators 3
Platform Amazon SageMaker
Item Description Sentences from Job Descriptions
Work Items 53
Average # Sentences per Work Item 1
Total # Tokens 1, 177
Instruction Details Class Descriptions, 3 Worked Examples
Annotator F1 0.4064
κ with O label 0.5443
κ without O label 0.4729

Table 4.3: Summary statistics of the second round of the annotation process.

results more representative of live results. Examples of unlabelled and labelled HITs

on the SageMaker platform are shown in Figures 4.4 and 4.5 respectively. Secondly,

worked examples were created and included in the instruction document to improve

the clarity of task instructions and address some consistent annotation errors.

9
0

e
x

t
r

a
c

t
i
n

g
s

a
l

i
e

n
t

e
n

t
i
t

i
e

s
f

r
o

m
j
o

b
d

e
s

c
r

i
p

t
i
o

n
s

Figure 4.4: Example unlabelled HIT on the Amazon SageMaker platform.

4.
4

s
c

h
e

m
a

d
e

v
e

l
o

p
m

e
n

t
9

1

Figure 4.5: Example labelled HIT on the Amazon SageMaker platform.

92 extracting salient entities from job descriptions

Although IAA increased from Round 1 to Round 2, κ statistics failed to reach levels

beyond the lower class boundary of moderate agreement (Landis and Koch, 1977). This

may, in part, have between due to the ambiguity regarding the distinction between the

entity classes Hard Skill and Soft Skill. Although the supplied annotation instructions

defined Hard Skill as a domain-specific skill that one could attain a qualification for, and a

Soft Skill as a domain-general skill that could only be supported with anecdote or experience,

annotators reported uncertainty when deciding whether a term belonged to either

category. For example, the terms organise and attend site visits and contribute to quality

improvement projects were classified as Hard Skills by one annotator and Soft Skills by

another. In other cases, uncertainty regarding the definition of terms makes it difficult

to classify as either Hard Skill or Soft Skill - for example, the term performing FAT under

formal witnessed conditions is not simple to classify given that FAT is an acronym of

Factory Acceptance Tests that only annotators with specific knowledge of that area of

industry would know.

The distinction between the Hard Skill and Soft Skill classes was originally made

in line with previous work in the field of skill extraction (Qin et al., 2020), since the

distinction serves as an indicator of salience; typically, Hard Skills (for example, Python)

weighted more heavily in terms of importance to a recruiting agent compared with

Soft Skills (for example, communication skills), and consequently the two entity classes

should not be treated with the same weighting in an applicant profile-job description

matching solution. However, there are alternative methods that can be employed to

evaluate the relative importance of a given skill term that do not require an explicit

distinction between Hard Skills and Soft Skills at the annotation level, such as the use

of deep learning methods and market supply signals using engineered features to

model skill salience (Shi et al., 2020). To minimise task difficulty and maximise IAA, the

distinction between the Hard Skill and Soft Skill entity classifications was removed in

subsequent rounds of annotation task development.

round 3

Round 3 results, shown in Table 4.4, saw slight overall improvement to IAA.

Subsequently, a series of informal interviews were conducted with the development

annotators which provided some insight into the rationalisation behind inter-annotator

disagreement. In addition to the informal interviews, deeper text analysis of

4.4 schema development 93

Workforce Classification Private
N classes 5 (merged Hard Skill and Soft Skill)
n annotators 5
Platform Amazon SageMaker
Item Description Sentences from Job Descriptions
Work Items 43
Average # Sentences per Work Item 1
Total # Tokens 1, 037
Instruction Details Class Descriptions, 5 Worked Examples
Annotator F1 0.4116
κ with O label 0.4442
κ without O label 0.6937

Table 4.4: Summary statistics of the third round of the annotation process.

Gold Standard We seek applications from talented engineers with significant

experience in Process Engineering within the nuclear sector.

Annotator #1 We seek applications from talented engineers with significant

experience in Process Engineering within the nuclear sector.

Annotator #2 We seek applications from talented engineers with significant

experience in Process Engineering within the nuclear sector.

Annotator #3 We seek applications from talented engineers with significant

experience in Process Engineering within the nuclear sector .

Annotator #4 We seek applications from talented engineers with significant

experience in Process Engineering within the nuclear sector .

Annotator #5 We seek applications from talented engineers with

significant experience in Process Engineering within the

nuclear sector .

Table 4.5: An example of disagreement in the third round of the annotation task.
Classification colours: Skill , Occupation , Domain , Experience

94 extracting salient entities from job descriptions

Problem Solution

Annotators are not reading the instruc-
tion document, and are using their
own class definitions for the classifi-
cation task.

→ Include the phrase Please read the in-
structions document carefully in all pos-
sible locations, and add a clarifying
paragraph to appreciate that terms
may conflict with annotators’ own
definitions, and to use task definitions.

Annotators are over-classifying in
work items where no entities exist,
because "there must be one in here
somewhere".

→ Include a worked example that con-
tains no entities to show that this is a
possible scenario.

Annotators are ignoring terms that are
not relevant to the job itself.

→ Include a clarification question to ex-
plain that all entities should be clas-
sified.

Annotators are including the applica-
tion of the Skill in the classification.

→ Include a clarification question to ex-
plain where classification should start
and end.

Table 4.6: A few examples of identified problems causing inter-annotator disagreement in the
annotation task, and formulated solutions to address them.

disagreement was performed in order to understand its causes, with a view to

compiling a list of actionable changes to mitigate disagreement. An example of a

disagreement from this round is shown in Table 4.5.

Where consistent disagreements between annotators were identified, an interpretation

of the cause of the discrepancy was formulated, and for each identified issue, a solution

was developed to address it in the form of amending the task instructions and ancillary

documentation. A shortlist of these is shown in Table 4.6. These changes were made

prior to Round 4 of the annotation development task.

round 4

Results from Round 4, shown in Table 4.7, outperformed those of previous rounds, and

concluded the private testing phase. Disagreement between annotators in annotation

tasks on some level is inevitable, no matter how clear the definitions and supporting

material, and a method for disagreement handling is required. There are several

4.4 schema development 95

Workforce Classification Private
N classes 5
n annotators 5
Platform Amazon SageMaker
Item Description Sentences from Job Descriptions
Work Items 60
Average # Sentences per Work Item 1
Total # Tokens 1, 056
Instruction Details Detailed Class Descriptions, 8 Worked Exam-

ples
Annotator F1 0.5145
κ with O label 0.6126
κ without O label 0.6500

Table 4.7: Summary statistics of the fourth round of the annotation process.

methods of addressing disagreement, such as majority agreement, simply removing

the items containing disagreements, or probabilistic aggregation methods in which

annotators are identified as trustworthy or otherwise on gold-standard tasks and

weighting their annotations accordingly (Hovy et al., 2013). Alternatively, rather than

extracting the single objective classification for each entity through agreement

resolution methods, it may be possible to learn a classifier directly from the

annotations by assigning a distribution score to each label (Rodrigues and

Francisco Pereira, 2017). This is discussed in more detail in §4.8.

round 5

Round 5 began the first of two rounds of testing with Workers recruited through the

Amazon Mechanical Turk platform. In total, 20 Workers completed the annotation task

that was composed of the work items from Rounds 3 and 4 combined.

Results for Round 5 are shown in Table 4.8. Agreement statistics here were poor, and

disagreement was more prevalent compared to the private rounds of testing. There

could be a number of reasons for this - one possibility is that, since the SageMaker

platform does not allow any kind of Worker screening, nor is there any option of

96 extracting salient entities from job descriptions

Workforce Classification Public
n annotators 20
Platform Amazon SageMaker
Pay per HIT $0.48
Required Qualifications None (not available)
Annotator F1 0.0918
κ with O label 0.2124
κ without O label 0.1281

Table 4.8: Summary statistics of the fifth round of the annotation process.

Workforce Classification Public
n annotators 29
Platform Amazon Mechanical Turk
Pay per HIT $0.08
Required Qualifications Number of HITS Approved > 5, 000, Approval Rate > 95%
Annotator F1 0.0400
κ with O label 0.1849
κ without O label 0.1828

Table 4.9: Summary statistics of the sixth round of the annotation process.

rejecting an individual Worker’s contribution, Workers are not incentivised to follow

the instructions nor make any effort to provide a considered contribution. This theory

is supported by several Workers whose contributions contain no extracted entities,

despite the presence of several entities in the assigned items.

For this reason, the annotation platform SageMaker was rejected in favour of the

standard AMT platform which offers several possibilities for Worker screening and

evaluation.

4.4 schema development 97

round 6

Round 6 of the annotation task was deployed on AMT using a bespoke interface that

was developed to closely resemble the platform used in the latter stages of private

development. An interactive example of this interface can be found in the repository in

which the published data is located6.

Participation in this round was limited to AMT Workers who had at least 5,000 HITs

approved in previous tasks on the platform, and had achieved at least a 95% approval

rate on their contributions. These requirements are in line with standard practice for

ensuring data quality (Peer, Vosgerau, and Acquisti, 2014).

Results for Round 6 are shown in Table 4.9. Although IAA remained comparatively

low, deeper analysis of individual Worker response showed that there were some

capable annotators in the workforce who had made a useful contribution to the task,

and others who had evidently not read the instructions or had severely misunderstood

the task.

One method of ensuring that only Workers who have read and understood the

instructions contribute to the live task is by including a qualification round; a series of

work items for which the gold standard has been established and can therefore be used

to appropriately evaluate the contribution of the Worker. Workers who take part in this

qualification round and score above a given threshold are given a bespoke qualification

on the AMT platform and can be invited to take part in the live task.

However, there is no academic consensus regarding an appropriate accuracy level to

require from Workers, especially for ER tasks where there are many methods for evalu-

ating worker performance. The higher the threshold is set, the greater the confidence

one has in the quality of the contribution of the Workers, but higher thresholds limit

the diversity of the Worker pool and can make the collection of data dependent on the

sustained efforts of a small workforce, which leads to overall slower data collection

rates.

§4.5 details the process by which we identified an accuracy threshold through exper-

imentation and investigation into the relationship between average Worker accuracy

and resultant Entity Recognition model performance.

6 https://github.com/acp19tag/skill-extraction-dataset

https://github.com/acp19tag/skill-extraction-dataset

98 extracting salient entities from job descriptions

4.5 accuracy threshold identification

Experimentation was performed using a standard dataset used in ER tasks; the CoNLL-

2003 Shared Task: Language Independent Named Entity Recognition (NER) (Sang and

Meulder, 2003).

The premise of this investigation was that recently developed ER models are able to

learn directly from noisy human annotation, eliminating the need for label aggregation

(Rodrigues and Francisco Pereira, 2017), and that examining the relationship between

Worker performance (varied by artificially inducing noise) and resultant model perfor-

mance may yield an appropriate threshold to require of Workers before admitting them

to contribute to the live corpus.

Two distinct types of noise were investigated based on the cause of annotator mis-

classification: random noise, where annotators make random errors (that is, where any

incorrect classification is equally likely to be selected); and systematic noise, where an-

notators make consistent errors (for example, by consistently misclassifying class A as

class B). We also investigate the effect of reducing noise by artificially correcting anno-

tated labels to simulate higher performance. This method can only be implemented to

simulate random de-noise, and doing so allows us to observe the effect of annotators

performing at higher levels of accuracy than observed in the data, which is the likely

consequence of increasing the minimum accuracy level required of Workers.

We induced both forms of noise and random de-noise from proportions of 0 to 1

in increments of 0.02 which yielded simulated corpora with average Worker accuracy

(versus gold standard) between 0 and 100%. A separate model was trained on each

simulated corpus using a CNN with the Crowd Layer proposed by Rodrigues and

Francisco Pereira (2017) (discussed in more detail in section 3.4.3), and we observe the

relationship between average Worker accuracy and resultant model performance. Code

for reproducing these experiments is made publicly available7.

Model F1 is shown at varying levels of Worker accuracy in Figures 4.6 and 4.7. We

observe a lower threshold of Worker performance at around 40% Worker accuracy,

below which resultant model performance is poor (< 50 model F1). This is especially

prevalent when inducing systematic noise (See Figure 4.7), which shows a steep drop in

model performance when Worker accuracy is below 40%. Model performance increases

7 https://github.com/acp19tag/conll_noise_induction

https://github.com/acp19tag/conll_noise_induction

4.5 accuracy threshold identification 99

0 20 40 60 80 100
Average Worker Accuracy (%)

0

10

20

30

40

50

60

70

80

M
od

el
Pe

rf
or

m
an

ce
(F

1)

Combined R andom Noise/Denoise Induct ion
Thresholds
Random Noise
De-Noise

Figure 4.6: Graph to show the relationship between average Worker accuracy (%) and resultant
trained model F1 after artificially inducing and removing random noise in Worker
annotations.

100 extracting salient entities from job descriptions

0 20 40 60 80 100
Average Worker Accuracy (%)

0

10

20

30

40

50

60

70

80

M
od

el
Pe

rf
or

m
an

ce
(F

1)

Systemat ic Noise Induct ion
Threshold
Systematic Noise

Figure 4.7: Graph to show the relationship between average Worker accuracy (%) and resultant
trained model F1 after artificially inducing systematic noise in Worker annotations.

4.6 corpus development 101

steadily with increasing Worker accuracy when noise is artificially reduced above actual

Worker performance (shown in yellow in Figure 4.6), and begins to plateau between

70% and 80% Worker accuracy. This guided our decision to use 70% as our threshold.

An additional consideration is that actual Worker accuracy increases with increased

observations; correctly identifying no entities in one HIT may yield perfect Worker

accuracy, but this does not provide any evidence that the Worker has sufficiently

understood and applied the entity classifications as defined by the schema. For this

reason, we also required Workers to have annotated at least 100 of the 140 non-O

label tokens in the Qualification set in order to reasonably evaluate their performance.

Although Workers were encouraged to complete all HITs in the Qualification set, many

Workers did not.

4.6 corpus development

Results from the Qualification task are shown in Figure 4.8. Of the 178 Workers who

took part in the Qualification task, 39 achieved an accuracy greater than 70% on the

qualification task and had annotated more than 100 tokens, and consequently only

these Workers were invited to contribute to the live task.

Annotations were collected over a three week period in July 2021, and collection

terminated when all 10,000 sentences had each received annotations from two separate

Workers. Task allocation was managed by the AMT platform, and tasks were assigned

ad hoc to qualified Workers with no limit imposed on how many items each individual

Worker could accept.

Communication with active Workers during this period was monitored, but no

queries were received concerning the task instructions or ancillary material.

4.7 corpus statistics

Table 4.10 lists general statistics of the annotated corpus, and Table 4.11 shows the

distribution of class labels in the annotated corpus after aggregation to yield one label

per token. Similarly, Table 4.12 shows the distribution of class labels for the test set

generated by the author of the annotation schema. We observe a similar distribution in

both corpora.

102 extracting salient entities from job descriptions

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0
Tokens Annotated (exc luding O label)

0

2 0

4 0

6 0

8 0

1 0 0

Ac
cu

ra
cy

 (F
1

w
ith

ou
t O

 la
be

l)
Qualification Task Results

Figure 4.8: Graph to show the Results for the Qualification Task. Chosen criteria thresholds of
100 annotated tokens and 70% accuracy are shown in green. Workers who met these
criteria are shown in blue, and Workers who did not are shown in red.

Sentences 10, 000
Tokens 245, 606
Avg. tokens per sentence 24.6
Annotation spans (post aggregation) 18, 617
Annotated tokens (post aggregation) 79, 826
Avg. tokens per annotation 4.3
Number of independent Annotators 25

Table 4.10: Annotated corpus statistics.

4.7 corpus statistics 103

Label Frequency Proportion

Skill 66, 732 28.56%
Occupation 6, 117 2.62%
Domain 3, 705 1.59%
Experience 1, 328 0.57%
Qualification 1, 944 0.83%
None 153, 802 65.83%

Total 233, 628

Table 4.11: Class distribution for the live, aggregated corpus (one label per token).

Label Frequency Proportion

Skill 2, 136 25.19%
Occupation 306 3.61%
Domain 100 1.18%
Experience 29 0.34%
Qualification 68 0.80%
None 5, 839 68.87%

Total 8, 478

Table 4.12: Class distribution for the test set.

104 extracting salient entities from job descriptions

Cohen’s κ on all tokens 0.49
Cohen’s κ on annotated tokens only 0.73
Krippendorff’s α 0.55
F1 on annotated tokens only 0.90

Table 4.13: IAA on the live corpus, calculated by averaging pairwise comparisons between all
combinations of annotators where both annotators labelled a shared item.

As discussed in section 4.4, although Cohen’s κ (see section 2.7.2) is the standard

measure of inter-annotator agreement, there have been several issues raised regarding

its application in entity annotation tasks (Hripcsak and Rothschild, 2005), especially in

cases where class distribution is unbalanced and where unannotated tokens are much

more common than annotated tokens. In these cases, Cohen’s κ is calculated twice

under two separate conditions: evaluating all tokens in the data, and evaluating only

the annotated tokens in the data.

Typically, including None labels in the calculation would show an inflated value of κ

since the None label is by far the most prevalent, and the high frequency of cases in

which neither annotator has labelled a token tends to raise the observed agreement

level. However, this is not the case in our data. Distribution of Worker contribution is

neither uniform nor Gaussian, and the intersection of work between the majority of

worker pairs is small (< 10 sentences or < 250 tokens). Since κ is calculated between

each pair of annotators that contributed to at least one shared item and averaged across

all pairs, there are several pairs of annotators that show an indeterminate κ agreement;

if both annotators in a given pair have identified no entities across all reviewed tokens,

the expected agreement pe will be equal to 1, and κ will be indeterminate with a

denominator of 0. For the κ statistics shown here, a case of indeterminate kappa

between annotator pair i, j is interpreted as perfect agreement (κij = 1).

Pairwise F1 on annotated tokens only has been suggested as a better measure for

agreement in ER tasks (Deleger et al., 2012). We thus compute the micro F1 on annotated

tokens as the focal method of IAA, but Cohen’s κ and Krippendorff’s α statistics are

provided to give additional insight (see Table 4.13).

Table 4.14 shows the top 5 most frequent entities for each class after label aggregation,

and Figure 4.9 shows the distribution of token counts for annotated spans for each

4.7 corpus statistics 105

2

4

6

8

10

12

14

16

Skill

To
ke

n
Co

un
t

Occupation Domain Experience Qualification
Entity Classification

Figure 4.9: Annotated span token count distribution by class in the live corpus after label
aggregation.

106 extracting salient entities from job descriptions

Skill Occupation Domain Experience Qualification

experienced sous chef sales experience graduate
communication general manager marketing 2 years experience driving licence
experience manager business 5 years acca
enthusiastic sales executive recruitment 2 years aca
communication skills project manager it at least 2 years degree

Table 4.14: Frequent entities of each class in the live corpus after label aggregation.

class after label aggregation. As expected, the most frequent Skill terms appear to be

terms considered Soft Skills (for example, communication), which tend to be evident

across job descriptions of several domains. The distribution of token counts within

Skill spans appear to be positively skewed, and token counts greater than the modal

single-token count become decreasingly prevalent. Assuming that class annotations

are largely correct, this indicates that Skill terms are typically only a few tokens in

length, but longer token spans of up to around 17 tokens are still evident (for example,

ensure all risk information across the group is consistent and reported in a clear and timely

fashion). The existence of spans with large token counts further supports the need for

span identification methods more sophisticated than simple word banks and keyword

matches; with increasing numbers of tokens within spans, it is less likely that an exact

match will be found in the corresponding span bank.

Token count distributions for the Occupation and Domain classes are similar in

that lengths tend to vary by only 1 or 2 tokens about the modal count. Likewise,

the Experience and Qualification classes show similar positively skewed token count

distributions. It is possible that some of the spans that comprise several tokens have

been misclassified as a single entity. For example, in the Qualification span AAT, ACA,

CIMA, or ACCA part qualification or working toward one, this multi-token span should,

according to our proposed schema, be a sequence of four independent single-token

Qualification entities: AAT, ACA, CIMA, and ACCA.

4.8 entity recognition method development 107

4.8 entity recognition method development

All entities were labelled using the BIO scheme, where each labelled entity is prefixed

with either a B, denoting the beginning of a span, or I, denoting that entity is inside a

span. Tokens not assigned a label are assigned an O label. Although error is inevitable

in human labelling tasks, it is feasible to mitigate some aspects. Preliminary analysis

suggested that there were three sources of noise that could be mitigated prior to

model training (referred to here as preprocessing): label aggregation; reclassification of

Experience spans; and splitting multi-term spans.

Preprocessed data is included alongside raw data in the public repository associated

with this research project8.

4.8.1 Data Preprocessing

label aggregation

There are several established methods of label aggregation, such as majority agreement,

simply removing items containing disagreements, or probabilistic aggregation methods

in which annotators are identified as trustworthy or otherwise on gold-standard tasks

and weighting their annotations accordingly (Hovy et al., 2013). Alternatively, rather

than extracting the single objective classification for each entity through agreement

resolution methods, it is possible to learn a classifier directly from the annotations by

assigning a distribution score to each label (Rodrigues and Francisco Pereira, 2017).

Since each token is annotated by two independent Workers, a simplification of the

method of Hovy et al. (2013) was used for disagreement, where labels were assigned

preferentially from higher-performing Workers inferred from qualification task results.

reclassification of experience spans

Preliminary analysis yielded a number of insights. According to the schema, Experience

spans must be quantified by length of time (for example, 2 years experience). A number

of spans classified as Experience did not meet this criteria (for example, experience

managing clients), but did meet the criteria for the Skill classification.

8 https://github.com/acp19tag/skill-extraction-dataset

https://github.com/acp19tag/skill-extraction-dataset

108 extracting salient entities from job descriptions

A re-classification step was therefore added to the preprocessing pipeline in order to

identify and correct these errors. Regular expression and inflect9 Python packages were

utilised to identify all spans that did not contain an expression of time (in word or

number form) and reclassify the entire span from Experience to Skill. This reduced the

number of Experience spans from 239 to 144 (40% reduction), which were manually

checked. No other classes were affected.

splitting multi-term spans

A second finding from preliminary analysis was that annotators tended not to split lists

of entities into separate spans, choosing instead to identify everything included in the

list as one single span of the relevant entity type. For example, the sequence Asbestos

Surveyors, Lead Asbestos Surveyors, Asbestos Analysts was annotated as one single entity,

whereas this should be three distinct entities with commas denoting the boundaries.

This was addressed clearly in one of the worked examples contained in the ancillary

materials, so it is possible that this particular error was made in order to reduce overall

HIT time commitment rather than due to a fundamental misunderstanding of the task

instructions.

The correct splitting of entities is important for our task for two reasons. Firstly, it

represents an issue for model training, in that if the training data does not reflect the

correct distinction between multiple consecutive entities of the same type, it is unlikely

that the resultant model will be able to, and will achieve poor performance when

evaluated on the test set which features accurate entity separation.

Secondly, the intended use of a system trained to identify and extract entities from

job descriptions is for feature extraction in a larger system developed to match applicant

profiles and job descriptions (RQ2). For this purpose, it is important that entities are

discrete to ensure that each are evaluated independently to more accurately represent

the requirements of a job from its description or an applicant from their profile.

All instances of punctuation were re-classified with the None label, and in cases

where this split an annotated span, the following tokens became the start of a new span.

Affected items were then manually checked to ensure legibility. The class distribution

for the data after the preprocessing steps is shown in Table 4.15.

9 https://github.com/jaraco/inflect

https://github.com/jaraco/inflect

4.8 entity recognition method development 109

Label Token Freq. Token Prop. Span Freq. Span Prop.

Skill 65, 632 28.09% 13, 663 69.98%
Occupation 5, 964 2.55% 2, 735 14.01%
Domain 3, 628 1.55% 2, 284 11.70%
Experience 800 0.34% 248 1.27%
Qualification 1, 716 0.73% 595 3.05%
None 155, 888 66.72% - -

Total 233, 628 19, 525

Table 4.15: Class distribution for the preprocessed data.

4.8.2 Baseline CRF Model

CRF (Lafferty, Mccallum, and Fernando Pereira, 1999), as described in §2.5.1.1, was

implemented as the baseline model for this task for a number of reasons. Firstly, CRF

models are well-suited for sequential data, which is the case in ER tasks which involve

identifying entities in sequences of text, and CRF models are able to incorporate the

dependencies between neighbouring words when generating predictions. Furthermore,

CRF models are able to capture both local contexts (such as features pertaining to a

single word) as well as global contexts (such as features that consider the sequence

of words), which aids the modelling of dependencies between words and captures

long-range patterns in input sequences.

A visualisation of the CRF model for the ER task is shown in Figure 4.10.

CRF models allow for the incorporation of various local and global features which

can improve model performance. For this experiment, the NLTK10 method of feature

preparation was used, which includes syntactic features such as POS tags as well as

morphological features of words along with the same features for neighbouring words.

The CRF model was trained over 100 epochs using L1 and L2 regularization coeffi-

cients found during parameter optimisation through Randomized Search.

10 https://www.nltk.org/

https://www.nltk.org/

110 extracting salient entities from job descriptions

hiring a Junior Developer proficient in PythonInput
Sequence

O O B-Occ I-Occ B-Skill O B-Skill

Feature
Vectors

Output
Labels

Output
Sequence

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

CRF
Layer

Figure 4.10: A visualisation of the CRF model for ER. The output sequence shown includes entity
classifications with their BIO tags, for example B-Occ refers to the Beginning of an
Occupation entity span.

4.8.3 BiLSTM-CRF Model

The BiLSTM-CRF model (Z. Huang, Xu, and K. Yu, 2015) is essentially an augmentation

of the previously described CRF model with a BiLSTM model. The underlying principle

behind this augmentation is that the BiLSTM leverages deeper language meaning while

the subsequent CRF layer handles the sequential logic of the labelling process.

The BiLSTM-CRF model is visualised in Figure 4.11.

On the Computational Natural Language Learning (CoNLL) dataset NER task (Sang

and Meulder, 2003), the BiLSTM-CRF was shown to marginally outperform CRF, LSTM,

BiLSTM, and LSTM-CRF models (Z. Huang, Xu, and K. Yu, 2015), which makes this a

suitable model for inclusion in this experiment as an augmentation on the established

baseline CRF model.

The keras11 implementation of BiLSTM-CRF was used in the current experiment, which

featured the following layers:

1. An input layer with dimensionality equal to the length of the maximum sequence

length in the training data

2. A 300-dimensional word embedding layer

11 https://keras.io/

https://keras.io/

4.8 entity recognition method development 111

hiring a Junior Developer proficient in PythonInput
Sequence

O O B-Occ I-Occ B-Skill O B-Skill

Forward
LSTM

Backward
LSTM

Output
Sequence

BiLSTM
Layer

CRF
Layer

LSTM LSTM

CRF CRF CRF CRF CRF CRF CRF

LSTM LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM LSTM LSTM LSTM

Word
Embedding

Word
Features

Figure 4.11: A visualisation of the BiLSTM-CRF model for ER. The output sequence shown includes
entity classifications with their BIO tags, for example B-Occ refers to the Beginning
of an Occupation entity span.

112 extracting salient entities from job descriptions

Convolution
Layer

Pooling
Layer

Dense
Layer

Output
Layer

Word
Embeddings

Figure 4.12: A visualisation of the CNN model for ER.

3. An LSTM layer

4. A second LSTM layer with bidirectionality configured

5. A Time Distributed dense layer with ReLU activation

6. A CRF layer

4.8.4 Convolutional Neural Network

CNN models (LeCun, Bengio, and Hinton, 2015) are able to capture local patterns and

features in data without the need for explicit feature engineering, and have been shown

to perform well at NER tasks (X. Zhang and LeCun, 2016). Typically, CNN models are

large, multi-layered NNs that recognise and extract high level features from data. The

CNN model is visualised in Figure 4.12.

The particular issue that we aim to address with CNN is that of the noise associated

with disagreement between annotators. As described in §4.8.1, models tend to rely on

label aggregation methods to produce a single output label for each token in the data.

In our experiments, we use the Qualification task results to guide label aggregation;

the annotations from the Worker who scored more highly on this task are accepted

preferentially. However, in applying label aggregation in cases of annotator disagree-

4.8 entity recognition method development 113

ment, we are rejecting the information contained in the annotations supplied by the

second annotator; If the cause of the disagreement was a mistake or misunderstanding

of the entity classes on behalf of the second annotator then applying label aggregation

in this way correctly eliminates noise that would otherwise harm the model training

process. However, if the cause of disagreement was that an entity span was ambigu-

ous, or one annotator leveraged domain knowledge to guide classification (for example,

that the term certhe is an acronym for certificate of higher education, and is therefore a

Qualification), then applying label aggregation removes this insight.

As implemented in §4.5, the Crowd Layer (Rodrigues and Francisco Pereira, 2017)

was appended to the CNN model in this setting, which enables the model to learn

directly from noisy annotations rather than relying on label aggregation methods for

the ER task. The Crowd Layer is discussed in more detail in section 3.4.3.

The architecture used in the current experiment was constructed to match the

architecture used by Rodrigues and Francisco Pereira (2017):

1. a 300-dimensional word embedding layer initialised with pre-trained weights

of 6B Global Vectors for Word Representation (GloVe) (Pennington, Socher, and

Christopher D Manning, 2014)

2. a 5x5 convolutional layer with 512 features

3. a GRU cell with a 50d hidden state

4. a fully connected layer with softmax activation

5. a crowd layer, which is removed during evaluation

4.8.5 Transformer-Based Models

An explanation of transformer models such as BERT is detailed in §2.5.1.2. Training a

transformer model from first principles requires a considerable amount of

computational resources, time, and data. Fine-tuning a pre-trained model, significantly

reduces the time and resource requirement, and can often converge faster on small

datasets (Radford and Narasimhan, 2018). Fine-tuned pre-trained BERT models have

achieved state-of-the-art (SOTA) performance on many NLP tasks, including NER

(Luoma and Pyysalo (2020); Xinyu Wang et al. (2021) Şapcı et al. (2023)) largely due to

114 extracting salient entities from job descriptions

hiring a Junior Developer proficient in PythonInput
Sequence

O O B-Occ I-Occ B-Skill O B-SkillOutput
Sequence

Word
Embedding

...

...

...

...

BERT

Figure 4.13: A visualisation of the BERT model for ER.

their use of contextual word embeddings (§2.4.2) and bidirectional attention

mechanisms.

The BERT model applied to the ER task is visualised in Figure 4.13.

Five configurations for BERT were included in this experiment: the cased and uncased

variants of the base model, the multilingual variant, and two distilled variants DistilBERT

and ALBERT. These variants are explained in the following sections.

BERT, base , uncased

The BERT-base-uncased model (Devlin et al., 2019) is the most commonly applied variant

of BERT12, and can be fine-tuned for ER tasks. The uncased attribute indicates that text

is converted to lowercase before tokenisation, which effectively halves the size of the

12 When considering historic download counts from HuggingFace https://huggingface.co/
bert-base-uncased

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased

4.8 entity recognition method development 115

vocabulary and has been shown to achieve more stable performances relative to cased

variants (M. Jiang et al., 2020).

BERT, base , cased

The BERT-base-cased model (Devlin et al., 2019) is identical to the uncased version,

but lowercase conversion is not applied prior to tokenisation. In tasks where case

information is helpful (for example, NER), the cased variant of BERT often outperforms

the uncased variant, which is why this variant was selected for inclusion in this

experiment.

BERT, base , multilingual

The BERT-base-multilingual model (Devlin et al., 2019) was pretrained on the 104

languages that had the largest Wikipedia corpora. Although the training and test data

for this experiment is entirely English, the syntax and form are atypical for natural

language, and feature unusual sentence forms such as unpunctuated lists of skill terms

in lieu of descriptive sentences. Multilingual BERT, having been trained on a large

number of different languages with different sentence forms, may perform well on job

description data and was therefore chosen for inclusion in this experiment.

distilbert

DistilBERT (Sanh et al., 2020) uses knowledge distillation during model pre-training to

reduce the size of BERT by 40% (66M vs 110M) while retaining 97% of its language

understanding capabilities and being 60% faster. Its inclusion in this experiment was

motivated largely by the reduced size; smaller models are preferable when performance

is comparable.

albert

ALBERT (Lan et al., 2020) is similar to BERT in that it uses a transformer encoder, but

with three main distinctions that allow for greater parameter efficiency: the factorisation

of embedding parameters, cross-layer parameter sharing, and inter-sentence coherence

loss. ALBERT was shown by Lan et al. (2020) to perform equally well as BERT-base on a

116 extracting salient entities from job descriptions

variety of NLP tasks at a considerably lower parameter count (12M vs 110M). Similarly

to the DistilBERT model, the inclusion of ALBERT in this experiment was largely due

to the reduced size.

4.9 entity recognition evaluation

Models were evaluated using precision, recall, and F1 score (§2.5.4) on all entity classes

with the exception of the None (O) label, consistent with standard ER tasks. Unless

otherwise stated, F1 averages are calculated using the micro method, which aggregates

the contributions of all classes and is preferable in cases where there is class imbalance.

4.9.1 Baseline CRF Model

Label P R F1 Support

B-Skill 0.69 0.37 0.48 676
I-Skill 0.53 0.71 0.61 1429
B-Qualification 0.72 0.50 0.59 26
I-Qualification 0.39 0.23 0.29 40
B-Occupation 0.90 0.65 0.75 137
I-Occupation 0.93 0.71 0.81 164
B-Experience 0.86 0.67 0.75 9
I-Experience 0.42 0.76 0.54 17
B-Domain 0.53 0.40 0.46 60
I-Domain 0.34 0.28 0.31 39

micro avg 0.58 0.60 0.59 2597
macro avg 0.63 0.53 0.56 2597
weighted avg 0.61 0.60 0.58 2597

Table 4.16: Results for CRF model (trained on preprocessed data). Precision, Recall, and F1-Score
are presented.

4.9 entity recognition evaluation 117

4.9.1.1 Error Analysis

We observe instances of errors in classification from the baseline CRF model and identify

two main sources of error: specific versus general application of the skill classification,

and the misclassification of multi-entity spans.

specific vs . general applications of skills

Our annotation schema states that, when a Skill is applied to a particular task, the

details of the task should only be contained in the skill-term if it is a specific application

(for example, creating technical documentation) and not a general application (for example,

cleaning kitchens, where only cleaning should be classified as a Skill). The CRF model

is largely unable to distinguish between specific and general applications, and tends

to include the application in either case. Examples of this are shown below, with the

general application of the skill in parentheses, where the model incorrectly treats all

tokens in each example as part of a classified span:

• taking responsibility for the kitchen (in the absence of the senior chefs)

• training and developing new members (of the brigade)

• leading continuous improvement in business operations (with attention to our warehouse

team and suppliers)

multi-entity span classifications

As part of data preprocessing, large annotated spans that contain multiple discrete

entities were split by punctuation (see §4.8.1). However, the CRF model often fails to

split entities appropriately, and includes multiple entities of the same entity type within

one span. This is true in particular of the Skills class, and contributes to the poor recall

of the B-Skill label (see Table 4.16). Examples of this are shown below, where the CRF

model has identified the entirety of each example as one span, but the correct divisions

are notated by parentheses:

• (communication) and (influencing) skills, ability to (embrace and apply leading practice

tools and techniques), proven (customer service) orientation and (collaborative) approach

118 extracting salient entities from job descriptions

• (assessing patient cases) and (devising and advising care plans)

• (respond to internal and external stakeholder queries) in a timely manner and (proactively

seek to resolve stakeholder issues)

4.9.1.2 Implications and Solutions

These two sources of error appear to be failures of the CRF model caused by an inability

to correctly terminate an identified span. If the entities were used as features for a

job recommendation system, these limitations would have the effect of reducing the

number of features, which might present an issue for some recommendation algorithms

(for example, a bipartite graph matching approach).

A potential solution to these issues would be to use contextualised word embeddings

(Turney and Pantel, 2010), which assign each token a single vector based on its context

and, to some extent, capture the semantics of the word. An ER model that takes the

semantics of words into account may be better able to distinguish between specific

and general applications of skills, and may be better suited to identifying sensible

termination points for spans to prevent multi-entity span classifications.

4.9.2 Competitive ER Models

Model results are summarised in Table 4.17, and full score breakdowns are included in

Appendix A.2.

transformer architectures

All BERT variations were shown to outperform the CRF baseline (.73; .72; .65 vs .59 F1),

which reflects common patterns in contemporary NLP research. The cased variant of BERT-

base outperformed both the uncased and multilingual variants (.73 vs .72; .65), indicating

that case information is of particular importance in the ER task in that it contains

information that is evidently useful for distinguishing between entity classifications.

For example, in the phrase looking for an experienced General Nurse, the casing of the

term General is an indicator that this term is part of the Occupation span General Nurse.

Additionally, pretraining BERT on multilingual data does not appear to confer any

4.9 entity recognition evaluation 119

Model Precision Recall F1

CRF (baseline) 0.58 0.60 0.59
BERT base cased 0.70 0.75 0.73
BERT base multilingual cased 0.72 0.72 0.72
BERT base uncased 0.63 0.67 0.65
CNN w/ Crowd Layer 0.71 0.55 0.62
DistilBERT base uncased 0.55 0.55 0.55
BiLSTM CRF 0.53 0.45 0.49
ALBERT 0.48 0.50 0.49

Table 4.17: Results for the ER task. Precision, Recall, and F1-Score are presented.

particular advantage, which is perhaps unsurprising given that the entirety of the

corpus is in English.

Results for the two low-parameter transformer architectures, DistilBERT and ALBERT,

are considerably poorer, and fail to meet benchmark-level performance (.55; .49 vs .59).

It is important to note that the reason for this cannot be reliably be attributed to the

lack of data available for fine-tuning; both of these models were shown to approximate

BERT-base performance after being fine-tuned on comparatively smaller corpora on

a variety of tasks, including the Corpus of Linguistic Acceptability (CoLA) which

contains a training set of 8.5k items (Warstadt, Singh, and Samuel R Bowman, 2018),

the Microsoft Research Paraphrase Corpus (MRPC) which contains a training set of

3.7k items (Mohamed, Eldesoky, and Ali, 2015), the Recognising Textual Entailment

corpora (RTE) which contains a cumulative training set of 2.5k items (A. Wang et al.,

2018), and the Winograd Schema Challenge corpus (WNLI) which contains a training

set of just 643 items (Levesque, Davis, and Morgenstern, 2012). For comparison, the

current corpus features a training set of 10k items.

It is possible that the relatively poor performance of the low-parameter transformer

architectures is in part due to the choice of task; although these architectures have been

shown to perform comparably with BERT-base on a wide variety of tasks including

sentiment analysis, paraphrasing, sentence similarity, and NLI (Sanh et al. (2020), Lan

et al. (2020)), the current task of ER requires token classification as opposed to single-

sentence classification or multi-sentence inference, and may be unsuitable for these

120 extracting salient entities from job descriptions

low-parameter transformer architectures. It appears that the knowledge distillation

process of DistilBERT and the methods of increasing parameter efficiency of ALBERT

relative to BERT-base do so at the cost of performance on token-level tasks such as ER.

cnn and the crowd layer

The CNN model with the inclusion of the Crowd Layer exceeded baseline performance

by a small margin (.62 vs .59 F1). Interestingly, there was an unusual discrepancy

between the precision and recall for the CNN model, with a relatively high precision

(.71) and a relatively low recall (.55), indicating that the model was generally poor at

detecting entity classes, but entities that were detected were generally classified correctly.

This pattern is reflected in the original implementation of the CNN with Crowd Layer

model proposed by Rodrigues and Francisco Pereira (2017), which similarly displayed

a relatively high precision (.71) and a relatively low recall (.47) when applied to the

CoNLL NER dataset.

One of the main advantages of the inclusion of the crowd layer to the CNN model is

that it enables the model to learn class labels directly from noisy data without requiring

label aggregation methods. However, the current dataset features two annotations per

token, which is considerably fewer than the number of annotations per token in the

CoNLL data, which contained between 1 and 8 annotations per token (median 5.0).

Hence, although there may be several datasets for which the inclusion of a crowd layer

would offer a significantly stronger performance, the current dataset does not benefit

in the same way, and offers comparable performance to the CRF baseline.

bilstm-crf

Although the BiLSTM-CRF is a direct augmentation of the CRF baseline model, its results

are relatively poorer (.49 vs .59). There are a number of reasons why this may be the

case. Firstly, the amount of training data is relatively small (10,000 sentences; between

248 and 13,663 instances of each class), which may not be enough to allow the BiLSTM

layer to learn class-indicative features of language at the same level as the CRF model

which captures contextual information from pre-defined features (§4.8.2). Although

visualisation of development accuracies by training epoch show that the BiLSTM-CRF

models were not overfitting, it is possible that the hyperparameters chosen for this

4.10 application of entity recognition models 121

experiment were sub-optimal; a range of learning rates, embedding layer dimensions,

and hidden layer dimensions were chosen for hyperparameter tuning but the width

of testing bands was limited by time and available resources, since sequential models

such as LSTM cannot be parallelised beyond batches and are consequently slow to train

(Vaswani et al., 2017).

4.10 application of entity recognition models

Although ER in job descriptions and user profiles is certainly useful in its own right

for tasks such as the identification of global skill requirements, skill shortages, and

predicting future trends, the purpose of ER described in this thesis is primarily to

facilitate the automatic matching of user profiles and job descriptions using NLP. In

this chapter, we evaluate the performance of various ER models by comparing the

set of token labels that the models have predicted with the set of token labels that

are contained in the test set, which were human-labelled according to the annotation

schema. During training, models learnt patterns in the input sequences that aided the

identification and classification of token spans, and this aspect of the model is evaluated

and used to rank model performance. Although the ability to extract term sequences

according to our schema is likely to be useful when evaluating the fit between a given

user profile and job description, it is possible that some pertinent entities are missed as

a result of an inexhaustive or incomplete schema. Furthermore, the models proposed in

this chapter that have been developed to extract the listed entities may be inadequate,

by design or by insufficient training, for the purpose of feature extraction in a job

recommendation system.

Typically, feature extraction processes accept raw data as input and return a struc-

tured set of features which are used for model training and inference. In doing so, the

information contained in the input data that was not selected as part of a feature is lost.

Ideally, this is either noise or features that are unsuitable for model inference due to

irrelevance or bias. If feature extraction performs poorly, however, this process may

inadvertently exclude useful information which will hinder the ability of the model to

learn and result in a less useful model.

The alternative to using feature extraction in a TML model for job recommendation

is to use a DL approach, which requires no explicit feature extraction process, and the

122 extracting salient entities from job descriptions

model learns which features are salient during the training process, and selects or

attends to these accordingly. The main disadvantage of this approach is that, especially

in the case of job descriptions, the input sequences are long (approximately 300 tokens),

and many DL methods are poorly equipped to handle input sequences of this size, and

attention computation and memory requirements scale quadratically with respect to the

length of the input sequence (Fournier, Caron, and Aloise, 2023). For the application of

these models, a method is required to address this, whether through feature extraction,

input sequence truncation, or through the use of a model specifically designed to

handle large input sequences. Experimentation and discussion on this particular issue

is detailed in §5.5.4.

4.11 ethical considerations

The main ethical consideration for this research is the use of crowdsourcing data. Sabou

et al. (2014) raise three issues regarding the use of crowdsourcing in research: how to

acknowledge contributions; how to ensure contributor privacy and well-being; and

how to deal with consent and licensing issues.

Since data was crowdsourced through the AMT platform, Workers were anonymised

through the use of a unique Worker ID, and their details were restricted with the

exception of general statistics regarding their past performance on the platform, and

the general location (for example, EU West). Worker IDs were removed from the

published data to ensure that their contribution to this data does not affect their future

assigned work on the AMT platform.

To ensure Worker well-being, all contributions were compensated at a rate equivalent

to UK minimum wage (at time of data collection); during task development, the time

it took annotators to complete each HIT was recorded and averaged to calculate an

estimate for the live task.

A further ethical consideration of this research is that models trained to identify and

classify salient entities in CVs and job descriptions may rely on conventional linguis-

tic norms, which introduces the possibility of misinterpretation, bias, or inequitable

exclusion of candidates from underrepresented backgrounds. For example, the articu-

lation of skills and qualifications in candidate CVs may exhibit varying linguistic nu-

ances that are associated with their cultural or socioeconomic background, and models

4.12 publication of materials 123

trained to detect these terms may be less proficient at recognising diverse expressions,

consequently placing minority candidates at a disadvantage if those terms are then

used as input for a job recommendation system. Our approach, which involves train-

ing ER models to detect skill terms expressed in a variety of ways in natural language,

addresses this issue to a greater extent than methods that rely on gazetteers or word-

banks of known terms, but is still limited by the prevalence of diverse expressions in

the available training data.

4.12 publication of materials

A public GitHub repository13 was created which contains the following:

• The annotated dataset described in this chapter, following 2003 CoNLL NER con-

ventions

• Individual Worker responses, Worker ID, and associated accuracies on the qualifi-

cation task

• The schema for the annotation task, with annotation guidelines, worked examples,

and Frequently Asked Questions section

• The Python script for data preprocessing (described in §4.8.1)

• The Python script for aggregating Worker responses into a single label with

user-specified aggregation methods

• The Python script for training and evaluating the CRF model on the provided data

• The Python script for loading a trained CRF model to extract entities from a user

prompt

These materials are published under a no rights reserved Creative Commons BY

license14, allowing for commercial and academic use with attribution.

13 https://github.com/acp19tag/skill-extraction-dataset
14 https://creativecommons.org/licenses/by/4.0/

https://github.com/acp19tag/skill-extraction-dataset
https://creativecommons.org/licenses/by/4.0/

124 extracting salient entities from job descriptions

4.13 conclusion

In this chapter, we have presented a novel corpus for ER in the recruitment domain,

annotated with five entity types: Skill; Qualification; Occupation; Experience; and Domain.

These types are not available in standard NER corpora, but are the most relevant to this

domain for tasks such as job recommendation. This data is an ideal training set for the

ER task and is a suitable size for fine-tuning a pre-trained model. This corpus is our

first original contribution to the field of NLP in online recruitment.

Additionally, we have presented an annotation schema to facilitate the collection

of additional data, and a baseline CRF model for ER, and have suggested methods for

schema development, task construction, and corpus creation. All resources associated

with this paper are made publicly available15 under a Creative Commons BY license.

Included in these resources is a Datasheet (Gebru et al., 2018) that fully describes the

data and the method of its collection.

Our published dataset has been used in contemporary NLP research to develop skill

extraction systems (M. Zhang, Goot, and Plank, 2023), and has been cited several times

in the field of skill extraction and job recommendation (M. Zhang, Kristian Nørgaard

Jensen, et al. (2022a); T. Yu et al. (2023); N. Li, Kang, and De Bie (2023); Naik, Patel, and

Kannan (2023)).

To improve upon the baseline CRF, we also present a number of competitive ER models

and discuss their performance on the supplied data. We find that transformer-based

architectures offer the greatest performance on this task, at least in part due to their use

of contextual word embeddings and bidirectional attention mechanisms. We show that

models that are able to learn token labels directly from noisy annotations improve upon

baseline performance but are unable to match the performance of transformer-based

methods.

We apply the ER models as feature extraction methods for the task of job recommen-

dation, discussed in Chapter 5.

15 https://github.com/acp19tag/skill-extraction-dataset

https://github.com/acp19tag/skill-extraction-dataset

5
M AT C H I N G C A N D I D AT E P R O F I L E S A N D J O B D E S C R I P T I O N S

5.1 chapter overview

This chapter addresses the second research question of this project:

RQ2 How can deeper understanding of the candidate and job be used to influence a candidate

profile-job description matching solution?

Section 5.2 introduces the matching problem. Section 5.3 discusses three ways the

matching problem can be framed: as a recommendation problem; a text classification

problem; or an NLI problem. Section 5.4 describes the KJRC and the description and

evaluation of various recommendation algorithms on the associated corpus. Section 5.5

describes the Tribepad corpus and the description of evaluation of various algorithms

for the task of predicting applications made by users and the task of predicting the

outcome status of applications. Section 5.6 describes the pipeline, or the end-to-end

system, of job matching that combines the ER systems developed as in Chapter 4 and

the findings from §5.5 to predict application success. Finally, section 5.7 summarises

the research described in Chapter 5.

5.2 introduction

Where RQ1 involved the identification and extraction of salient entities in job descrip-

tions and candidate profiles, RQ2 centers on how these entities (and other information)

can be used to develop a matching system; an automatic process that evaluates the qual-

ity of match between users and jobs. This process can be extended to provide a ranked

list of n job descriptions with the highest quality match to a given candidate profile (or

n candidate profiles for a given job description), and could be developed into a tool

that helps candidates find suitable jobs and vice versa. The task of developing a match-

ing solution is referred to hereafter as the matching problem.

125

126 matching candidate profiles and job descriptions

Although previous work into job recommendation systems (§3.2) serves as an ap-

propriate foundation, the research outlined in this thesis explores the matching prob-

lem by framing it in different ways according to different NLP paradigms: as a recom-

mendation problem (§5.3.1); a text classification problem (§5.3.2); and as a NLI problem

(§5.3.3).

Crucially, there are two key issues that will be addressed as part of this research:

firstly, the issue of bilateral matching; it is not enough to solely consider unidirectional

data when developing models for evaluating candidate-job pairs (for example, when

a candidate applies to a job), and bilateral data is required (for example, when a

candidate applies to a job, and is accepted). To clarify, a job recommender system trained

on unidirectional data would treat an application made by a candidate to a particular

job as an indicator of a good match for the candidate-job pair, even if that application

was subsequently rejected by the recruiting agent due to poor suitability.

The second issue that must be addressed is that of model interpretability; a model

that is able to match candidates to jobs with high precision is of little value if the

user cannot interpret why a particular job was recommended to them. Therefore, for

a matching solution to merit implementation in a deployed matching system, any

prediction must be able to be queried to generate human-understandable reasoning

explaining how and why the prediction was made.

5.3 framing the matching problem

The ultimate goal of research into the matching problem is to develop algorithms that

are able to alleviate the human processes of jobseekers selecting jobs to apply to and

recruiting agents selecting applicants to invite to interview, which can be achieved by

ranking the universe of potential items in descending order of suitability. However, the

matching problem itself can be viewed through a number of different lenses, each of

which frame the goal of the task and the methods that can be developed to address it

in different ways.

Firstly, the task can be viewed through the lens of the recommendation problem

(§5.3.1), where the task is to recommend n jobs to a user, which can be addressed via

the development of a job recommender system and evaluated by comparing the set of

recommended jobs with the set of jobs that a user applied to.

5.3 framing the matching problem 127

Secondly, the task can be viewed through the lens of the text classification problem

(§5.3.2), where the task is to predict the outcome status of a given application by treating

the concatenated user and job features as the document for analysis, which can be

evaluated by comparing the predicted outcome statuses with the observed outcome

statuses.

Thirdly, the task can be viewed through the lens of the NLI problem (§5.3.3), where

the task is to predict if the attributes of the user entail (agree with) the attributes of the

job, or otherwise if the attributes of the user contradict (do not agree with) the attributes

of the job, which can be evaluated by comparing the predicted statuses with those

observed.

Across the three paradigms, let U denote the set of users, and J the set of jobs. The

dataset D is a set of applications by users to jobs, i.e. D = {auj : u ∈ U , j ∈ J }, where

a is either 1 denoting an application was made1, or a vector of categorical variables

a = {a1, a2, ..., an} denoting the status transitions of application a (for example, {In

Review → Shortlisted → Interview → Offered → Hired}.

We divide D into a training set R, validation set V , and test set T .

5.3.1 Recommendation Problem

By framing the matching problem as a recommendation problem, the task becomes:

Given a user and their associated details, learn a function that is able to select the n most

appropriate jobs for the user.

More formally, the task is to learn a function r̂(u, j), which predicts the probability

that user u will interact with job j. For a given user ux, find argmaxn
i=1r̂(ux, ji).

Although, theoretically, the positions of users and jobs as users and items in the

recommender system paradigm are reversible, the research outlined in this thesis

focuses on the recommendation of jobs to users, and not the recommendation of users

to jobs.

1 Used in corpora where the outcome of the application is unknown. In this case, training data may be
augmented with randomly sampled negative applications, i.e. where an applicant did not apply to a job
(auj = 0, auj /∈ D).

128 matching candidate profiles and job descriptions

Framing the matching problem as a recommendation problem necessitates a recom-

mendation system for its solution. An overview of recommender systems can be found

in §2.6 and §3.2.

5.3.2 Text Classification Problem

By framing the matching problem as a text classification problem, the task becomes:

Given a job application made by a user to a job, learn a function that is able to predict the label

associated with the application.

The label referred to may be any discrete variable associated with the application.

For example, a label set {Applied; Did Not Apply} could be used to develop a model

to predict whether a user is likely to apply to a particular job or not, or a label of

{Hired; Rejected} could be used to develop a model to predict whether a user that

made an application is likely to be successful or not, or a label of {Interviewed; Not

Interviewed} could be used to develop a model to predict whether a user that made an

application is likely to be given an interview for the job or not.

More formally, the goal of the matching problem framed as a text classification task

is to learn a function f which can be represented as a mapping from the space of

applications to the space of outcome labels: f : A → Y . In this paradigm, training

dataset R is represented as a set of pairs (Ai,Yi), where Ai is the application which

may contain features pertaining to the user and job, and Yi the outcome label associated

with that application.

5.3.3 Natural Language Inference Problem

While the text classification problem treats the application made by a candidate to a

job as a single entity to be classified (as a concatenation of the relevant user and job

features), the NLI problem treats the user and job features as two distinct inputs which

need to be aligned and analysed as a pair in order to make a label prediction.

Typically, NLI problems in the field of NLP involve logical reasoning. Consider the

following example from the SNLI2 task:

2 https://nlp.stanford.edu/projects/snli/

https://nlp.stanford.edu/projects/snli/

5.3 framing the matching problem 129

• Premise: A football game with multiple males playing.

• Hypothesis: Some men are playing a sport.

• Classifications: {Entailment; Contradiction; Neutral}

In this example, the model would receive the premise and hypothesis as two separate

inputs, and would need to reason whether the latter was a logical conclusion that

could be drawn from the former (indicating entailment), a direct contradiction, or neither

(neutral).

By framing the matching problem as a NLI problem, the premise is composed of

the job features represented as text, the hypothesis is composed of the user features

represented as text, and the classifications are the labels associated with the application

(for example, {Applied; Did Not Apply}; {Hired; Rejected}).

More formally, the goal of the matching problem framed as an NLI task is to learn a

function f which can be represented as a mapping from the space of user profiles and

job descriptions to the space of outcome labels: f : (U × J) → Y . In this paradigm,

training dataset R is represented as a set of triples (Ui,Ji,Yi) where Ui is the user

profile, Ji is the job description, and Yi is the outcome label associated with that

application.

The motivation for framing the matching problem as an NLI task is that human

recruiting agents take on a conceptually similar task during the initial stages of the

recruitment process, specifically: does the information contained in this candidate’s profile

justify offering the candidate the role, an interview for the role, or neither? Therefore, the

reasoning of whether the candidate profile entails the job description is suitable for an

automatic matching process that frames the problem as an NLI task.

It is important to note that the candidate’s performance in an interview, which can

certainly be inferred from the application status transitions after the Interviewed status,

is not necessarily evident in the user features in the input data. This is discussed in

more detail in §5.5.3.1.

One particular way in which this application of the NLI paradigm deviates from

typical applications is the relatively large input length. Typically, NLI datasets feature

premises and hypotheses that consist of only a few tokens. For example, the average

length of premises in the SNLI dataset is 16.9 tokens, and hypotheses are 9.5 tokens. Text

features associated with job descriptions are typically considerably longer, and in many

130 matching candidate profiles and job descriptions

cases longer than typical maximum sequence lengths for Language Models (LMs). This

presents an additional issue precluding straightforward application of NLI methods,

since these established methods truncate input sequences to their maximum, and

this approach may not be appropriate for the current application. Primarily, this is

because user profiles and job descriptions are not typically written with a token limit

consideration, and content appropriate for evaluation when determining the suitability

of a match may not be distributed in a way conducive to truncation. For example, if

jobs list the skills desired of applicants towards the end of the content contained in the

job description, truncation would risk eliminating this important content. In order to

address this, an additional consideration is required: rather than using raw text features

as input, a preceding operation may be implemented which identifies the most salient

components and extracts these to use as input. A method that could be applied here is

ER, as discussed in Chapter 4, or alternative truncation methods (§5.5.4).

5.4 kaggle job recommendation challenge

The Kaggle Job Recommendation Challenge (KJRC) and associated corpus was chosen

to address the matching problem as framed as a recommendation problem. This was a

competitive challenge proposed by US employment website CareerBuilder3 and hosted

on data science competition website Kaggle4. For this challenge, candidates were invited

to develop an algorithm that would be able to predict the jobs that a user applied to given

user features, job features, and historic application data. The KJRC, and the systems

designed to address it, are described in more detail in §3.2.2. Although the competition

of the KJRC concluded in October 2012, challenge data and associated details remain

hosted on the site and can be accessed with a free user account.

The KJRC was chosen to use in this research because it contains real-life observations

of applications made by users to jobs, it is accessible to the academic community, and it

is of sufficient size to train and evaluate TML models. The 2016 RecSys challenge data5,

although similarly structured, is no longer available to the academic community, and

could not be used as part of this research.

3 https://careerbuilder.com/
4 https://kaggle.com/competitions/job-recommendation/
5 http://2016.recsyschallenge.com/

https://careerbuilder.com/
https://kaggle.com/competitions/job-recommendation/
http://2016.recsyschallenge.com/

5.4 kaggle job recommendation challenge 131

The data associated with the challenge was delivered in four distinct files: informa-

tion regarding job applications on the CareerBuilder platform; information regarding

individual users and their demographics; information regarding employment history

pertaining to users; and information pertaining to jobs advertised on the platform.

Although the corpus contains a large number of users (390k) and jobs (1.1M), it

is important to note that not all users are eligible for every job. For example, a job

with a listed closing date that precedes the date the user created their account is not a

valid recommendation for the user since it was not possible for the user to make an

application for the job. The KJRC addresses this by assigning all users and jobs to one

of 7 ‘time windows’ (referred to as windows) according to the time period in which the

majority of its applications were made or received. Model performance, measured using

MAP@150, was only calculated using items of the matching window. To clarify, although

training data included applications made by users to jobs with different windows, the

test data only included applications with matching windows between users and the

jobs they applied to. This particular feature of the KJRC is worth noting due to its effect

on the difficulty of the task; when making predictions about which jobs a user applied

to, the pool of jobs could theoretically be reduced to approximately one-seventh of the

available universe, thereby reducing the difficulty of the task relative to a task more

closely aligned with a live implementation, where reducing the available universe of

jobs for recommendation in such a way would be neither feasible nor appropriate.

However, by keeping the conditions for the current research project consistent with

those outlined in the KJRC, the supplied baseline models can be readily applied and

evaluated.

Unfortunately, the leaderboard of historic contributions to the KJRC uses a scoring

metric that was not made publicly available after the completion of the challenge,

so the given baseline methods are the only available method of reliably comparing

approaches.

5.4.1 Corpus Analysis

Table 5.1 contains a summary of the supplied data for the KJRC.

132 matching candidate profiles and job descriptions

Table Name Description Number of Rows

apps Applications made by users to jobs 1, 603, 111
users User demographics 389, 708
user_history User employment histories 1, 753, 901
jobs Job details 1, 091, 923

Table 5.1: A summary of the Job Recommendation Challenge corpus.

applications

There are a number of key aspects regarding the supplied application data that influence

the way the prediction task should be approached. Firstly, each record in the application

set contains a user id, a job id, and the assigned window id; there is no data available to

indicate the strength of the application in the form of a status denoting the outcome of

the application, nor a rating of any kind indicating the candidate’s evaluation of the job

as a good fit for them. This data, which only denotes that an application was made by

the user to the job, is referred to in related literature as implicit data, and unless negative

sampling is applied, only modelling techniques that are able to process implicit data

effectively will be of use. For example, standard user-item matrix solutions (such as

SVD) would not be feasible for generating predictions.

Secondly, approximately half of the users in the application test set do not feature in

the application training set. This is a notable characteristic of the data since the KJRC is

constructed, in terms of the task design and model evaluation procedure, to emulate a

recommendation system challenge (explained in more detail in §2.6). However, common

approaches to building recommender systems often utilise collaborative filtering (§2.6.2;

§3.2.4) which tend to suffer from the cold-start problem, in that new users with no

item interaction history will generally receive recommendations of poorer quality until

patterns of interaction have been established, and subsequent recommendations are of

higher quality. Since the current corpus features a relatively large quantity of users with

no interaction history, it is likely that pure collaborative filtering methods will perform

poorly, since they will only generate effective recommendations for approximately 50%

of users.

5.4 kaggle job recommendation challenge 133

Major Frequency

Business Administration 12, 414
Accounting 7, 576
Business Management 5, 971
General Studies 5, 201
Psychology 4, 784

Table 5.2: Frequency counts for the top 5 most common majors in the Job Recommendation
Challenge corpus.

Thirdly, there is very little overlap between users and jobs in terms of applications;

individual users typically only apply to a few jobs (x̄ = 4.99), and individual jobs

typically receive only a few applications from users (x̄ = 4.38). The sparsity of an

interaction matrix, as defined by Sarwar et al. (2000), is shown in Equation 5.1, where

high sparsity denotes a large proportion of elements with no user-item interaction.

sparsity = 1 − number of non-zero elements
total number of elements

(5.1)

The sparsity of the current dataset is extremely high (99.999%; 1, 603, 111 non-zero

elements in a 366, 000 × 321, 235 matrix), which limits the effectiveness of methods that

infer similarities between users and jobs by evaluating the extent to which applications

overlap.

These challenges will need to be addressed in order to develop a model that is able

to effectively predict the jobs that a given user has applied to.

users & jobs

The KJRC corpus features users from all across the USA, and lists a variety of degree

types (for example, High School, Bachelor’s) and majors (for example, Anthropology,

Agricultural Business). The five most common majors (ignoring Not Applicable) are

shown in Table 5.2.

134 matching candidate profiles and job descriptions

Job Title Frequency

Administrative Assistant 4, 232
Customer Service Representative 4, 175
Own Your Own Franchise! 3, 701
Sales Representative 3, 537
Mobile Tool Sales / Franchise Distributor 3, 275

Table 5.3: Frequency counts for the top 5 most common job titles in the Job Recommendation
Challenge corpus.

The Job Title field associated with the user accounts contains a wide variety of jobs

across multiple domains, indicating that this data is not limited to a particular area of

industry.

Although job domains are not isolated as fields in this data, analysis of the Job Title

reveals that jobs span a wide variety of domains, including Hospitality, Healthcare, and

Technology. The five most common jobs (using exact matches of the Job Title field) are

shown in Table 5.3.

5.4.2 Application Prediction Task

For each user in the pre-partitioned test set, the task is to predict the top 150 jobs that

the user was most likely to have applied to. Mean Average Precision (MAP) is calculated

on all 150 predictions.

5.4.2.1 Baselines

The baseline for the KJRC task was proposed by CareerBuilder and published alongside

the challenge data. It is a simplistic rule-based algorithm that fills the job prediction

list of 150 using the following criteria, exhausting each in order before moving onto

the next, and terminates when either the prediction list is full or all criteria have been

exhausted:

1. Most popular jobs that share the user’s city, state, and window

2. Most popular jobs that share the user’s state and window

5.4 kaggle job recommendation challenge 135

The popularity of a job is calculated by counting the number of applications to that job

in the training data.

We also include a setting that ignores location and simply predicts the 150 most

popular jobs in the corresponding window.

5.4.2.2 Methods

The following sections describe our methods for addressing the KJRC. We implement

four algorithms for job recommendation: k-Nearest Neighbours; MF; Item Similarity,

and YouTube Ranking. We select the former two algorithms for their ubiquity in

recommendation tasks (§3.2) and the latter to address a characteristic feature of the

KJRC data.

k-nearest neighbours

k-Nearest Neighbours (kNN) is an example of a collaborative filtering method, which

compares past behaviour of users to similar users to generate recommendations. A

more in-depth explanation of collaborative filtering is described in §2.6.2 and 3.2.4.

kNN was implemented using the SciPy and scikit-learn libraries and utilised the

compressed sparse row matrix class6, which complemented the sparse data in the

corpus; interaction between user and jobs was binary (that is, {Applied; Did Not

Apply}) and the corpus contained a large number of zero-valued elements. The k-

nearest neighbour jobs of each target user were identified based on similarity scores.

Interactions between users and jobs were aggregated to generate predictions for the

target user’s interaction with each job in the prediction set, and the top 150 were sorted

in descending order of application likelihood.

For the approximately 50% of users in the test set with no interaction history, predic-

tions were made using the baseline heuristic which incorporated location information.

matrix factorisation

MF is another example of a collaborative filtering approach. It aims to factorise the

user-job interaction matrix into two lower-dimensional matrices which can be used

to make predictions about how a user might interact with a job they have not yet

6 https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html

136 matching candidate profiles and job descriptions

interacted with. The two matrices represent the latent features of users and jobs which

capture preferences and characteristics. MF has been shown to be a powerful method

for item recommendation as it is able to incorporate sparse and large-scale user-item

interaction data and capture complex relationships between users and items. A more

in-depth explanation of MF is detailed in §2.6.2.1.

MF was implemented using the TuriCreate library7 which was adapted for implicit

data. The default Stochastic Gradient Descent (SGD) method was used, where unob-

served items (where users did not apply to a job) were sampled alongside observed

items and treated as negative examples.

We include three separate settings of MF: one setting with no side information, a

second setting with user and job location data as side information, and a third setting

with all available user and job features as side information.

item similarity

Item similarity is a variation of collaborative filtering (see §2.6.2, §3.2.4) that makes

recommendations based on the similarity between the items that target users interact

with and other items. Item similarity may be preferable to the standard user-based

collaborative filtering in cases where data is sparse (Galron et al., 2018), which makes it

an appropriate algorithm for consideration in the KJRC.

Item similarity was implemented using the TuriCreate library8. The similarity score

between each user and job was calculated by computing the similarity between the

job data for each column, then taking a weighted average of per-column similarities to

compute the final similarity.

youtube ranking

The YouTube Ranking system is a re-implementation of the system described by Cov-

ington, Adams, and Sargin (2016). This system was designed to generate recommenda-

tions to users on the video-sharing platform YouTube9, and address difficulties associ-

ated with the platform, specifically the large user base and corpus, responsiveness to

new content uploaded to the site, and high sparsity. These particular challenges are

7 https://github.com/apple/turicreate
8 https://github.com/apple/turicreate
9 https://youtube.com/

https://github.com/apple/turicreate
https://github.com/apple/turicreate
https://youtube.com/

5.4 kaggle job recommendation challenge 137

Mean Average Precision @ k

Recommendation Method 5 10 50 100 150

Matrix Factorisation, Location Only 0.0600 0.0515 0.0518 0.0565 0.0591
k-Nearest Neighbours 0.0585 0.0504 0.0533 0.0501 0.0544
Baseline, Location 0.0530 0.0499 0.0475 0.0509 0.0530
Item Similarity 0.0201 0.0173 0.0175 0.0188 0.0199
YouTube Ranking 0.0055 0.0051 0.0053 0.0059 0.0063
Matrix Factorisation, No Features 0.0027 0.0021 0.0019 0.0021 0.0023
Baseline, No Location 0.0004 0.0003 0.0003 0.0004 0.0004
Matrix Factorisation, All Features 0.0000 0.0000 0.0000 0.0000 0.0000

Table 5.4: Job Description Challenge Model Results. Mean Average Precision at k intervals is
shown for each of the implemented models. Model results are sorted by decreasing
values of MAP at 150.

shared with the KJRC corpus, which makes the YouTube Ranking system suitable for

consideration.

The system contains two NNs: the former designed for candidate generation, the

latter designed for ranking. The candidate generation network accepts user history and

coarse features as inputs, and includes a collaborative filtering module. The ranking

network uses logistic regression to predict expected watch time.

Since high sparsity is a key issue the YouTube Recommender algorithm addresses,

and this is also a feature of the KJRC corpus, this algorithm is a suitable candidate for

job recommendation.

The LibRecommender10 implementation of the algorithm was used, with text-based

user features included as side data.

5.4.2.3 Evaluation

Results for the KJRC task are shown in Table 5.4, where MAP is shown to four decimal

places to more clearly distinguish between similarly-performing models.

Using the KJRC metric of MAP@150, only two settings outperformed the baseline

heuristic that included location data: MF using location information as side data,

10 https://github.com/massquantity/LibRecommender

https://github.com/massquantity/LibRecommender

138 matching candidate profiles and job descriptions

and kNN. These results seem to indicate that the models are largely unable to infer

meaningful insight from text data to aid the prediction of job applications made by

users, and relied almost exclusively on similarity between users inferred from previous

applications and location data.

It is perhaps surprising that the YouTube Ranking algorithm (Covington, Adams,

and Sargin, 2016) performed poorly relative to the baseline given that it was developed

specifically to address the joint issues of a large user base and corpus and high

sparsity, both of which are shared with the KJRC. However, our implementation of

the algorithm was unable to leverage its full capacity as two particular aspects of the

original architecture proposed by Covington, Adams, and Sargin (2016) were missing

or limited: the watch vector, which was an average of the embedded video watches in

the user’s watch history on the YouTube platform; and the search vector, which was an

average of the embedded search tokens in the user’s search history. In the context of job

recommendation, the watch vector would be an average of job embeddings that the user

has applied to or interacted with on the online job portal, and the search vector would

be an average of the embedded search tokens included in the user’s search history on

the portal. Unfortunately, the KJRC does not include search history in the available data,

and users tended to apply to very few jobs, which resulted in a sparsely populated

watch vector. It is also likely that the embedding process which formed the watch vector

was unable to capture semantic attributes of the job descriptions, and certainly did not

capture the location attributes of the user, which ultimately led to poor performance

relative to the baseline heuristic.

It should be noted that the higher performing of the two baselines leveraged two

key features of the data: the popularity of the job as observed by the frequency of

applications to that job in the training data, and the rough proximity of the job to the

user, which was performed using simple keyword matching: first on city and state, then

on state. The underlying assumption for the proximity aspect of the baseline heuristic is

that candidates are more likely to apply to jobs that are close to their current location.

This is supported by the significantly stronger results when location is included in

the baseline heuristic, as well as a trend of low proximity between users and jobs for

observed applications.

However, proximity of the user and job as implemented in the baseline is simplistic,

and could be improved to give a more accurate measure of the distance between the

5.4 kaggle job recommendation challenge 139

user and job. For example, a user based in San Diego, CA, a job listing based in Los

Angeles, approximately 2 hours away, would be predicted with equal confidence using

this baseline method to a job listing based in San Francisco, approximately 8 hours

away. Since the available data features location data at the city level at its most granular,

two approaches are possible for improvement. The first is to convert each city, state

combination into longitude and latitude coordinates11 and use the Pythagorean formula

to give the distance between a pair of coordinates as shown in Equation 5.2, where ϕ

represents the latitude and λ the longitude. The haversine distance, shown in Equation

5.312, accounts for the curvature of the Earth which increases the accuracy of the metric

in cases of exceptionally long distance, although the two distance metrics only deviate

significantly when the two locations are far enough apart that proximity is unlikely to

be a factor, and it may be that the added computational complexity of the haversine is

not worthwhile in practice.

distance =
√
(ϕ2 − ϕ1)2 + (λ2 − λ1)2 (5.2)

distance = arcsin

(√
sin2

(
ϕ2 − ϕ1

2

)
+ cos ϕ1 × cos ϕ2 × sin2

(
λ2 − λ1

2

))
(5.3)

The second approach addresses the inaccuracies of using as the crow flies distance

metrics to approximate commute times by incorporating transit limitations. This can be

achieved with the Google Maps API13, and can be more informative when the direct

distance calculated between a user and a job does not account for significant obstacles

such as rivers, lack of roads, or otherwise impassable terrain. For each application,

the commute time could be calculated and used as input to the model. By giving

models a more accurate representation of proximity between the user and the job,

model performance may improve.

We have shown that, by incorporating collaborative filtering approaches combined

with location information, model results can exceed baseline performance. However,

11 https://github.com/kelvins/US-Cities-Database
12 The haversine formula should account for the approximate diameter of the Earth (i.e. ×12, 742), but since

this is true of all distance calculations it can be safely ignored here.
13 https://developers.google.com/maps

https://github.com/kelvins/US-Cities-Database
https://developers.google.com/maps

140 matching candidate profiles and job descriptions

there are notable limitations of the available data which should be addressed. Firstly,

there are important features of users and jobs that are omitted from this data, such

as renumeration which has been shown to be an important aspect for jobseekers (Poll,

2020). Including this data, along with the current salary of users, would be of particular

benefit to models addressing the application prediction task; users may be more likely

to apply to jobs that offer a greater salary than their current role, which could be

incorporated into models to increase the accuracy of predictions.

A further limitation of the data used for the application prediction task is the lack of

visibility regarding the filters that users applied when viewing the list of available jobs.

CareerBuilder14, the US employment website that proposed the KJRC and provided the

associated data, offers four options for job filtering on its online portal: job type; date

posted; pay; and distance. In the KJRC, the universe of jobs that can be recommended

to each user is restricted to the set of jobs that share the same window id, where this

feature was drawn from the time window where the user or job were at their most

active. However, if the user chose to apply one or more of the aforementioned filters, the

user would not have seen some of the jobs in this universe, which considerably reduces

the likelihood of their application. Since these filters would be activate at the point at

which the user makes a job application, this information should be able to be queried

and would influence the universe of jobs that could be recommended to the user.

Beyond the limitations of the KJRC corpus, there is a fundamental issue concerning

the task of application prediction and its suitability as a framing of the matching problem,

and that is in the distinction between the goal of the task and the desired application

of a matching solution. The goal of the application prediction task is to predict the jobs

a given user will apply to, whereas the desired application of a matching solution is to

recommend suitable jobs to a given user. The suitability of the application prediction task for

the matching problem relies on the assumption that users will apply to suitable jobs.

This is not necessarily the case for two reasons. Firstly, on existing jobseeking portals,

there are no restrictions placed on the jobs that a user can apply to or the number of

applications they can make; a user can make an application to a job for which they are

wholly unsuitable (for example, they meet none of the listed essential criteria in the job

description), and may do so for a large number of jobs. In cases where this occurs, there

is clear divergence between the suitability of a given job (which is relatively low) and

14 https://www.careerbuilder.com

https://www.careerbuilder.com

5.5 tribepad application corpus 141

Table Name Description Number of Rows

apps Contains information on each application that was
made on the system.

23, 177, 003

career Describes the employment history of users. Multi-
ple rows may pertain to a single user.

1, 334, 843

education Describes the education history of users. Multiple
rows may pertain to a single user.

1, 212, 718

job Contains information about each job. 183, 882
skills Describes the skills of users (extracted by Tribepad).

Multiple rows may pertain to a single user.
5, 637, 756

user Contains information about each user. 4, 235, 600

Table 5.5: A summary of data provided by Tribepad.

the likelihood of application (relatively high). Secondly, the matching problem is bilateral,

in that a good job recommendation for a user is a job which is both suitable for the user

and a job for which the user is a suitable candidate. The application prediction task is

unilateral, and provides no evidence to support that a given user is a good candidate

for a given job. The implication of this is that an online portal that utilises models

developed for the task of predicting which jobs users will apply to may not provide useful

information to its users.

5.5 tribepad application corpus

The Tribepad corpus contains applications collected on the Tribepad recruitment plat-

form along with anonymised user information, job description details, and metadata.

Crucially, the Tribepad corpus contains information on the outcome of each application,

which is necessary for addressing the bilateral matching challenge (§5.2). A summary

of the Tribepad corpus is shown in Table 5.5.

We present statistics of the corpus in §5.5.1, and describe our experiments framing

the matching problem as an application prediction task in §5.5.2 and a status prediction

task in §5.5.3.

142 matching candidate profiles and job descriptions

Field Description

application_id The unique id associated with each application.
user_id The id of the user that made the application.
job_id The id of the job that the application was for.
status The sequence of status codes associated with the application.
modified_time The date of the most recent modification to the application.

Table 5.6: A summary of data fields in the apps dataset.

5.5.1 Corpus Statistics

In the following sections we describe each of the components of the Tribepad corpus

shown in Table 5.5.

application data

The application data file contains information pertaining to applications made on the

Tribepad platform between 2015 and 2022. A summary of the fields contained in this

file is shown in Table 5.6.

The status field contains the full sequence of status codes that show the transitions on

the Tribepad platform as each application matured, for example: Shortlisted → Interview

→ Offered → Accepted → Hired. The full list of status codes along with their descriptions

can be found in §A.3.1.

There are some elements that may have been present during the original application

that do not feature as part of this data, for example: cover letters; supporting documen-

tation; or answers to role-specific pre-screening questions. However, even if these ele-

ments were to exist, they would not necessarily be included as part of the user features

in the current research project; the matching problem seeks to alleviate the information

overload and filter failure problems that exist in the job and candidate seeking processes,

and at this stage of the process the aforementioned features would not yet have been

created or addressed. However, the content of such features would likely influence the

decision made by the recruiting agent as to whether the candidate should be offered an

interview or a job offer. This is discussed in §5.5.3.4.

5.5 tribepad application corpus 143

user data

The user file contains data on the location and creation time of individual users. A

summary of this file can be found in the Appendix A.3.6.

Although the career, education, and skills files also contain data pertaining to users,

the intersection of users in each of these files is incomplete; of the 4,235,600 user ids:

• 3,876,386 (91.5%) are also in apps.

• 324,791 (7.7%) are also in career.

• 427,926 (10.1%) are also in skills.

• 427,926 (10.1%) are also in education.

• 174,222 (4.1%) are in all of the above.

Note that, where user data within any file has been redacted via an explicit redacted

label in place of data, the user associated with the redacted data is omitted from all

analysis. Users included in the above intersection statistics do not include those with

redacted features.

Intersection analyses yield some notable findings. Most importantly, only a small

minority of user profiles are associated with features in all three of career history,

education history, and skills datasets. Given that users are aware that recruiting agents

take these features into consideration when making their initial hiring decisions, it is

unusual that so few users (4.1%) choose to populate this information in their profiles,

and yet the majority of users subsequently make applications on the platform (91.5%).

Initially, it was theorised that this small proportion may in part be due to the general

inexperience of the user base, who may be relatively junior in their stages of career and

may not have any career history to list. However, considering the small proportion of

users who have listed any skill terms on their profiles (10.1%), it is more likely that

the lack of populated features associated with users is due to job search fatigue, and the

disinclination that users have for spending time populating their profiles on the online

portal when they have already invested time and effort in compiling their CV. It is

important to note that this data does not contain any protected attributes (for example,

sex, race, physical or mental disability), and all personal data was anonymised by

Tribepad prior to handover. Additionally, this data is not fully representative of CV

144 matching candidate profiles and job descriptions

documents, which were not made available due to data protection restrictions. Features

pertaining to the user that are contained in this and other datasets in the Tribepad

corpus are those that have either been extracted from the CV documents or populated

by the users themselves when signing up to the online portal.

user career data

The career file contains data on the employment history of users, where multiple rows

may refer to a single user. A summary of this file can be found in the Appendix A.3.2.

The text description on each row is non-uniform, indicating that it has been entered by

the user without preprocessing. This presents a challenge in that salient information is

embedded in free text, and methods are required for extracting the relevant information.

user education data

The education file contains data on the education history of users, where multiple rows

may refer to a single user. A summary of this file can be found in the Appendix A.3.3.

The text description on each row is non-uniform, indicating that it has been entered

by the user without preprocessing.

user skills data

The skills file contains data on the skills of users, where multiple rows may refer to a

single user. A summary of this file can be found in the Appendix A.3.5.

Skill terms were extracted using Tribepad’s in-house methods which are not publicly

available for analysis or comment. Due to the sensitive nature of the data, the original

documents from which skill terms were extracted were inaccessible.

job description data

The job file contains data on the job postings on the platform. A summary of this file

can be found in the Appendix A.3.4.

5.5 tribepad application corpus 145

5.5.2 Application Prediction Task

Given a particular user, along with a set of features pertaining to that user, the applica-

tion prediction task is to predict which jobs the user applied to.

This task is identical to that proposed by the KJRC (§5.4). Although the form and

structure of the corpus is largely the same, there is one crucial exception that needs

to be addressed, and that is the window-based segmentation that exists in the KJRC

corpus but not in the Tribepad corpus. The KJRC corpus segmented users and jobs into 7

windows based on the periods where they were most active and predicted applications

were to be limited to jobs in the corresponding window. The Tribepad corpus features

no such window-based segmentation. In practice, the pool of potential jobs that could

be recommended to a user is restricted to those with a closing date after the current

date, and within the scope of this task this would be the creation date of the user

account. It would not be feasible in a live online job portal to assign a specific window to

a new user in the same way as the KJRC, and the system should not prevent jobs being

recommended to the user purely because the job was posted on the platform too many

days prior, as long as the job is still accepting applications. Furthermore, by artificially

reducing the pool of potential jobs to recommend as part of this task, the difficulty of

the task is reduced, and the performance of models trained and evaluated on this data

would be overstated relative to the performance of the same model implemented in

production.

Table 5.7 shows the results of the baseline heuristic from the KJRC applied to the

Tribepad corpus at different numbers of segmentation windows, where each segment

contains approximately 1
n of the applications. As described in §5.4.2.1, the baseline

heuristic recommends the 150 most popular jobs in the matching window for each user,

where popularity is equivalent to the frequency of applications to that job observed in

the training data. Although the inclusion of location was included as a separate baseline

setting, the location fields for both users and jobs appeared do not appear to have

been collected via a dropdown question, and are often misspelled (for example, londoln,

presumably a misspelling of London), refer to a suburb within a city rather than the

city itself (for example, Shelfield Walsall, where Shelfield is a suburb of Aldridge and

Pelsall in the borough of Wallsall in the West Midlands, England), or contain a full or

partial postcode (for example, Dublin 8, which is a postal district in Dublin, Ireland).

146 matching candidate profiles and job descriptions

Mean Average Precision @ k

n Windows 5 10 50 100 150

1 0.0064 0.0032 0.0006 0.0003 0.0002
2 0.0093 0.0047 0.0009 0.0005 0.0003
3 0.0116 0.0058 0.0012 0.0006 0.0004
4 0.0135 0.0068 0.0014 0.0007 0.0005
5 0.0155 0.0078 0.0016 0.0008 0.0005
6 0.0181 0.0091 0.0018 0.0009 0.0006
7 0.0185 0.0093 0.0019 0.0009 0.0006
8 0.0212 0.0106 0.0021 0.0011 0.0007
9 0.0229 0.0115 0.0023 0.0011 0.0008

Table 5.7: Results for the baseline model (popularity only) on the Tribepad Corpus for the
Application Prediction task with different numbers of segmentation windows.

For this reason, applying the baseline heuristic with location achieves equivalent results

to the baseline without location, since matches between user and job location on the

city level are considerably less common and the heuristic resorts to popularity alone

when the location cannot be matched.

MAP@150 scores for the baseline heuristic at each of the values of n segmentation

windows are poor compared to those achieved by the same heuristic applied to the

KJRC data (Table 5.4; 0.0530 @ 7 windows). This is likely due in part to the high sparsity

of applications in the Tribepad corpus relative to the already sparse KJRC corpus.

We observe an increase in MAP with increasing numbers of n segmentation windows.

This increase is due to the simplification of the task as evaluated using the given

evaluation metric; specifically, MAP is calculated using only positive cases (that is,

only same-window applications are included in the test set, and only same-window

applications may be presented as part of this heuristic), and the probability of success

expected by chance increases with increased granularity of window segmentation.

Furthermore, with increased segmentation the task becomes less representative of an

online setting, in which assigning windows to users and jobs is unsuitable. For example,

at 9 windows, only 67.9% of applications in the Tribepad corpus were featured a user

and job with the same assigned window.

5.5 tribepad application corpus 147

As discussed in §5.4.2.3, there is a fundamental issue concerning the task of application

prediction which is the discrepancy between between predicting which jobs a user will

apply to and recommending suitable jobs to a user. A tool that could predict which jobs a

user will apply to will have little value to a user if the jobs they apply to are unsuitable,

or jobs for which they are unsuitable as a candidate. A more useful tool for a user

would be one that could predict the likelihood of application success for a job, given the

attributes of both the user and the job. The task of status prediction is described in §5.5.3.

5.5.3 Status Prediction Task

Given a particular application made by an individual user to a particular job, along

with a set of features pertaining to the user, the job, and the application, the status

prediction task is to predict the status associated with that application.

The status for prediction is one of the following binary classifications: {Hired;

Rejected}, or {Interviewed; Not Interviewed}. The reasoning behind these dichotomies

is explained in §5.5.3.1.

The status prediction task is only possible with data describing the historic status

codes of individual applications. The current research utilises application data supplied

by Tribepad, which includes a sequence of one or more status codes pertaining to each

application, denoting the historic status transitions of that application (see A.3.1 for a

description of individual status codes). Figure 5.1 shows the statuses with probabilistic

transitions between states drawn from the Tribepad corpus.

By utilising the status codes for historic applications, we are able to distinguish

between successful and unsuccessful applications and directly address the bilateral

matching problem (Dhameliya and Desai, 2019). Our work represents a significant

original contribution to the field of NLP in online recruitment; to our knowledge, no

related work in this field has utilised the outcome status associated with historic job

applications in this way. This is likely due to the inaccessibility of this data to the

academic community due to data protection and organisation-specific restrictions.

However, by virtue of our partnership with recruitment software company Tribepad,

we are able to access and utilise this data as part of this research project.

In addition to standard text preprocessing (for example, html tag removal), applica-

tions were further subset to only include those made by candidates with at least one

148 matching candidate profiles and job descriptions

Incomplete Shortlisted Interview Offered Accepted

Hired

Rejected
In Review

W W W W W

W

.02 .38 .49

.12 .02 .03 .16 .05 .02 .30 .18 .78 .92

.05.02 .71 .04 .09 .48 .04 .03

.01

.55
.43

.01 .05

Figure 5.1: Graph to show probabilistic status transitions in the Tribepad corpus. W statuses
represent withdrawal of the application. Transition line widths are proportional to
the probabilities.

Skill listed; since the focus of this research is on the use of skill terms and how they can

inform the quality of job recommendation, applications made by candidates with no

listed skills were omitted.

Some of the models trained on this data utilise pre-trained word embeddings (see

§2.4.2). In these cases, GloVe embeddings trained on Wikipedia data were used (6B

tokens, 400K vocab, uncased, 300d). Frequency analyses revealed that > 97% of non-

stop-word tokens in the input data were evident in the pre-trained word embeddings,

and consequently OoV words were ignored.

5.5.3.1 Status Classification Types

Each application made by a user account to a job in the corpus is associated with

a series of statuses denoting the sequence of stages in the hiring process. Although

several data codes pertaining to the state of the application are evident in the data, not

all of them are suitable for inclusion in the status prediction task. Applications that

terminate with a Hired status clearly represent successful bilateral matches as this status

indicates that the recruiting agents have evaluated the candidate favourably, evidenced

by the candidate being offered the job, and the candidate has subsequently accepted

5.5 tribepad application corpus 149

Subdivision Label Size

Train Hired 91, 895
Train Rejected 91, 895
Validation Hired 5, 430
Validation Rejected 5, 430
Test Hired 5, 455
Test Rejected 5, 455

Table 5.8: Data sampled from Tribepad Matched Data for the Status Prediction task, using the
{Hired; Rejected} dichotomy.

the offer of employment. Conversely, applications that terminate with a Rejected status

clearly represent unsuccessful bilateral matches; although the candidate has indicated

their interest in the job by making an application (indicative of a unilateral match), the

recruiting agent has evaluated them poorly, or at least less desirable relative to other

candidates, and consequently rejected the application.

However, applications that terminate with Withdrawn or Incomplete statuses preclude

inference of the suitability of the match since we cannot reasonably ascertain the reason

for application withdrawal or failure to complete the application. Similarly, the In

Review and Shortlisted status codes preclude inference of match suitability since they

indicate the application is immature, and it is infeasible to infer a bilateral match or

otherwise while the application is in progress. An application made by a candidate

to a job for which they are wholly unsuitable, in that they have no relevant skills

or experience and do not meet the minimum listed requirements, will eventually be

assigned a Rejected label, but the application may also be assigned the Incomplete status

if they failed to complete the application, the In Review status if the recruiting agent

has not yet reviewed the application, or the Withdrawn status if the candidate decides

to withdraw their application.

{hired ; rejected}

The use of the {Hired; Rejected} dichotomy is perhaps the more comprehensible of the

two dichotomies investigated as part of this research. Applications with the Hired status

150 matching candidate profiles and job descriptions

Subdivision Label Size

Train Interviewed 181, 623
Train Not Interviewed 181, 623
Validation Interviewed 10, 592
Validation Not Interviewed 10, 592
Test Interviewed 10, 673
Test Not Interviewed 10, 673

Table 5.9: Data sampled from Tribepad Matched Data for the Status Prediction task, using the
{Interview; No Interview} dichotomy.

are clearly indicative of a bilateral match, and applications with the Rejected status are

clearly unsuccessful.

By using this dichotomy for the status prediction task, we aim to develop a model

that is able to consider an application made by a specific candidate to a specific job,

and predict whether the application is likely to be successful (Hired) or unsuccessful

(Rejected).

Data was subset to include all available applications that terminate with a Hired

status code and an equal number of applications that terminate with a Rejected status

code were sampled. The corpus was then divided into training, validation, and testing

sets using a 90% : 5% : 5% split. Although 80% : 10% : 10% is typical for ML (Gholamy,

Kreinovich, and Kosheleva, 2018), the former split is suitable in cases where the dataset

is small.

Frequency counts for the data are shown in Table 5.8.

{interviewed ; not interviewed}

Beyond the self-explanatory {Hired; Rejected} dichotomy of applications, we are able

to infer some level of application success through the Interview status code which

often appears as a precursor to either the Hired or Rejected status codes. Application

status transition sequences that contain an Interview status indicate that, following the

candidate expressing an interest in the job by making an application, the recruiting

agent evaluated the candidate favourably enough to extend an offer of an interview.

5.5 tribepad application corpus 151

More specifically, from the recruiting agent’s perspective, the information contained

in the candidate profile was sufficient to merit an interview for that job. The ultimate

post-interview decision may not be a suitable focus for this particular task because

the human decision-making process that governs the subsequent part of the hiring

process incorporates information that cannot be inferred from the candidate profile (for

example, how well the candidate answered interview questions, or the extent to which

their personality was deemed a good fit for the company).

By using the {Interviewed; Not Interviewed} dichotomy for the status prediction

task, we develop a model that is able to consider an application made by a specific

candidate to a specific job, and predict whether the user is likely to be offered an

interview for the position (Interviewed) or not (Not Interviewed).

Data was subset to include all available applications that contained an Interview status

code in their status transition sequences, regardless of whether the status transition

sequence terminated with a Hired or Rejected status codes (or neither). An equal number

of applications that met both of the following criteria were sampled: the application

must not contain an Interview status code, and also must terminate with a Rejected status

code (indicating that the application was rejected without interview). Applications that

did not include an Interview status code but did include a Hired code were included in

the former category since this indicates that the candidate was sufficiently suitable for

the position that no interview was required.

The corpus was then divided into training, validation, and testing sets. Frequency

counts for the data are shown in Table 5.9.

The total universe in the {Interviewed; Not Interviewed} dichotomy is larger than

the {Hired; Rejected} universe simply because the Interviewed class is a superset of

the Hired class and there is an abundance of negative classes in either dichotomy to

sample from to match the quantity of the positive class. However, approximately 30%

of the Interviewed class is populated by applications which terminate in a Rejected

status (but feature an Interviewed status), and a further 5% of this class is populated

by applications that do not contain a Hired nor Rejected status. As a result of this, the

two dichotomies are not equivalent, and there is an intersection between negative

classes of the {Hired; Rejected} dichotomy and positive classes of the {Interviewed;

Not Interviewed} dichotomy that is not negligible, and for this reason the two are

152 matching candidate profiles and job descriptions

considered distinct data selection approaches and models incorporating either are

trained and evaluated separately.

5.5.3.2 Baselines

random rate classifier

The Random Rate Classifier is a baseline procedure for classification algorithms, where

the predicted label for any given item is sampled from the label distribution observed

from the training data. For example, if label y1 is seen in 20% of the data, y2 in 30%,

and y3 in 50%, then each item in the test set will have a 20% chance of having the label

y1 predicted, 30% for y2, and a 50% chance of having the label y3 predicted.

Note that the features of the item for which the label is predicted have no influence

on the predicted label.

Random Rate is an effective baseline for classification tasks; if a classification model

scores lower than Random Rate then it is of no value to the application domain.

5.5.3.3 Methods

The following sections describe the methods implemented to address the status predic-

tion task on the Tribepad corpus.

There are a number of practical constraints of training ML models, and in practice,

there is a need to make simplifications so that computation is tractable within the con-

straints of available resources. For example, the memory and complexity of transformer

models scale quadratically with increasing input sequence length, and sequences be-

yond a certain limit cannot be processed without modifications to the models or the

data.

Experiments were conducted on a secure, remote virtual machine with the following

specifications:

• Operating System: Linux v5.15

• CPU count: 2

• GPU count: 1

• GPU type: GRID A100-4-20C

5.5 tribepad application corpus 153

• RAM: 16GB

• VRAM: 20GB

In order to allow for all chosen models to train on the available resources, inputs for

the user and job features were each truncated to the first 128 tokens before being passed

to the model. We adopt this method as it is the simplest, and allows us to investigate

the relative performances of models on the same data. However, alternative truncation

methods are possible and may be more suitable. These are discussed in more detail in

§5.5.4.

cosine similarity threshold

A simple theory of job suitability is that the more closely semantically related the user

profile and job description, the higher the likelihood of application success. This can

be observed through the use of word embeddings and cosine similarity thresholds,

whereby user features and job features are represented in vector space and the cosine

similarity between each observed user-job pair is calculated. Then, a continuous space

hill climbing algorithm (Yuret and Winston, 1994) is applied to find the highest F1 on

the data in the train and validation sets, and this cosine threshold value is applied to

the test set during evaluation.

logistic regression

Logistic Regression is a standard supervised learning model for binary classification

tasks. Section 2.5.1.1 provides a more detailed explanation of Logistic Regression. Here,

the scikit-learn implementation of logistic regression is trained on a TF-IDF feature array

in one of three settings:

• Hadamard; Element-wise multiplication (known as the Hadamard product) of

TF-IDF vectors for user sequence and job sequence

• Euclidean; Euclidean distance between TF-IDF vectors for user sequence and job

sequence

• Concatenated; concatenated TF-IDF vectors for user sequence and job sequence

154 matching candidate profiles and job descriptions

Logistic Regression was then performed on the TF-IDF feature array using the Broyden-

Fletcher-Goldfarb-Shanno algorithm (Shanno, 1985), which has been shown to be a

powerful method for solving unconstrained optimisation problems (T. Yang, P. Li, and

Xiaoliang Wang, 2020).

bilstm , bigru, sumemeddings , & avgembeddings

The following four models were implemented using identical model architectures:

• BiLSTM, a detailed description of which can be found in §2.5.1.2

• BiGRU, a detailed description of which can be found in §2.5.1.2

• SumEmbeddings, where the output of the previous layer is summed

• AvgEmbeddings, where the output of the previous layer is averaged

These models were calibrated for the NLI framing of the matching problem and

accepted the user and job text input sequences as two separate inputs. Tensorflow

implementation of the models was used, and the common architecture of the models is

shown in Figure 5.2, where the λ layer was replaced as above.

Pretrained GloVe word embeddings were used in the embedding layer, and hyperpa-

rameters such as LSTM/GRU unit count, learning rate, and dropout were optimised via

grid search.

bert

Bidirectional Encoder Representations from Transformers (BERT) for text classification

was fine-tuned and applied for the status prediction task. A more detailed description

of BERT can be found in §2.5.1.2.

We include two experimental settings of pretrained BERT models: BERT-base, which

features 110M parameters; and BERT-large, which features 340M parameters.

In order to fit the encoded representations of input sequences in memory, inputs

for the user and job features were each truncated to the first 128 tokens before being

passed to the model. This truncation process, and alternatives, is discussed in more

detail in §5.5.4.

5.5 tribepad application corpus 155

User Input
[128]

Job Input
[128]

Embedding Layer
[128 × 300]

Embedding Layer
[128 × 300]

TimeDistributed
Dense Layer
[128 × 300]

TimeDistributed
Dense Layer
[128 × 300]

λ Layer
[128]

λ Layer
[128]

Concatenate
[256]

Dense Layer
[600]

Dense Layer
[600]

Dense Layer
[600]

Output Layer
[2]

Figure 5.2: Architecture of the BiLSTM, BiGRU, AvgEmbeddings, and SumEmbeddings models
for the Application Prediction task on the Tribepad corpus. The λ layer is unique to
each setting. Dimensionality of layers is shown in square brackets.

156 matching candidate profiles and job descriptions

re2

RE2 (R. Yang et al., 2019), named after the components Residual vectors, Embedding

vectors, and Encoded vectors, is a neural architecture for text matching applications and

is described in more detail in §3.4.3.

The implementation of each layer is kept as simple and lightweight as possible,

and the residual connections between consecutive blocks are augmented to provide

richer features for the alignment process; the three parts in the input of alignment

and fusion layers are: the original point-wise features (embedding vectors), previously

aligned features processed and refined by previous blocks (residual vectors), and the

contextual features from the encoder layer (encoded vectors). With this approach, the

authors demonstrate improved performance on the SNLI corpus compared to a variety

of NLI models, including the decomposable attention model proposed by Parikh et al.

(2016). By reducing complexity and training times while achieving comparable or

greater performance, this model architecture is a suitable choice for NLI tasks.

The model architecture in our experiments was constructed to match that proposed

by R. Yang et al. (2019), and input sequences were each truncated to 128 tokens before

being passed to the embedding layer.

decomposable attention

The current implementation of decomposable attention is based on the work by Parikh

et al. (2016), which has shown to be particularly effective when applied to NLI tasks.

The model is comprised of three main components which are trained concurrently:

• An Attention component, which aligns the elements of the encoded representa-

tions of the user features and job features.

• A Comparison component, which compares each aligned term to produce a set

of vectors for the user features and job features separately, where each vector is a

non-linear combination of the term and its corresponding aligned term.

• An Aggregation component, which aggregates the vectors produced by the

Comparison component and uses these to predict the output label.

There are three particular advantages of the decomposable attention model when

applied to the status prediction task. Firstly, the input sequences of user features and

5.5 tribepad application corpus 157

job features are directly aligned using a variant of neural attention, and each aligned

subphrase is compared, which is conceptually appropriate for the task of comparing

individual skill requirements in the job features with the skills in the skillset contained

in the user features.

The second advantage is that of the reduced algorithmic complexity as a result

of the decomposition component; unlike transformer based architectures such as BERT,

the complexity of decomposable attention scales linearly with input sequence length

as opposed to quadratically. Combined with the parallelisable feature of the model,

decomposable attention models take a relatively short time to train until convergence.

The third advantage of the decomposable attention model is that it can be queried

and interpreted, and the aligned subphrases that influence prediction can be visualised,

which may be of particular use in the status application task. For example, a user who

views a job on an online portal may not only benefit from a score indicating how likely

they are to be hired for the role, but also the accompanying information that shows the

user which parts of their profile were important when calculating their given score.

5.5.3.4 Evaluation

Due to data protection concerns given the personal nature of the user features, experi-

ments were conducted on a secure, remote virtual machine with the following specifi-

cations:

• Operating System: Linux v5.15

• CPU count: 2

• GPU count: 1

• GPU type: GRID A100-4-20C

• RAM: 16GB

• VRAM: 20GB

Results for the Status Prediction task on both dichotomies of Tribepad data are shown

in Table 5.10, along with the performance of the same models trained and evaluated on

the SNLI corpus.

158 matching candidate profiles and job descriptions

Micro F1 Score

Model {H; R} {I; I‘} SNLI

BiLSTM 0.72 0.72 0.76
BiGRU 0.72 0.72 0.79
Decomposable Attention 0.71 0.71 0.82
SumEmbeddings 0.72 0.71 0.80
AvgEmbeddings 0.71 0.71 0.78
BERT base 0.71 0.71 0.78
BERT large 0.71 0.71 0.86
Logistic Regression, Concatenated 0.71 0.71 0.63
RE2 0.68 0.69 0.89
Logistic Regression, Hadamard 0.58 0.58 -
Logistic Regression, Euclidean 0.55 0.55 -
Cosine Similarity 0.54 0.53 -
Random Rate 0.50 0.50 0.33

Table 5.10: Results for the Status Prediction task on the Tribepad and SNLI corpora. Micro
F1-Scores are presented for each of the models on each of the dichotomies: {Hired;
Rejected} and {Interviewed; Not Interviewed}, as well as the established SNLI
corpus which features 3 classes.

5.5 tribepad application corpus 159

There are several notable aspects of the results from the status prediction task.

Firstly, each of the methods improves on the Random Rate baseline, although the

Cosine Similarity Threshold method shows a very minor improvement on baseline

performance. The implication of this is that, although this method is theoretically

leveraging the semantic content of the user profile and job description, it is too simple

a method and does not take into consideration the relative importance of each term

when evaluating the strength of the match and is therefore unsuitable for this task.

With the exception of the RE2 method, the balance of the models show relatively

similar performance on both dichotomies of Tribepad data, ranging between 0.71 and

0.72 F1 scores. The range of scores for the same models on the SNLI data is considerably

more diverse, with scores ranging between 0.63 and 0.89. There are a number of

different reasons that could be contributing to the diversity of scores between the

two corpora, for example the difference in the number of labels; the Tribepad corpus

features a dichotomy of classes, whereas the SNLI corpus features a trichotomy ({Entail;

Contradict; Neutral}). Methods that learn a hyperplane to separate data points, such

as Logistic Regression, can be more readily applied to binary classification tasks than

multi-class tasks, which may be a contributing factor to the relative success of Logistic

Regression on the Tribepad corpus over the comparatively weaker performance on the

SNLI corpus.

A further notable aspect of the status prediction task results is the comparative

performance of the concatenated setting of Logistic Regression compared to more

complex attention-based models when, across contemporary NLP tasks, attention-based

models typically outperform TML such as Logistic Regression. When feature engineered

models outperform more complex approaches, it is typically because the differences

between classes is easily identifiable from extracted features. In this case, it may be a

combination of multiple reasons, including the divergence of form from the natural

language data that the complex language models have been trained on; while BERT was

originally pre-trained on the whole of English Wikipedia, which features syntactically

sound text from which the model can learn language rules, the Tribepad corpus features

non-uniformly constructed text fields that have been concatenated and therefore lack

syntactic cohesion. Although BERT encodes sequential and temporal relationships

between words, this model performs comparably to Logistic Regression with TF-IDF

features.

160 matching candidate profiles and job descriptions

An explanation for the performance of Logistic Regression relative to more complex

models is that it may be more closely aligned with the process that recruiting agents

are performing when selecting candidates to interview or hire. In the task of NLI, the

semantic content of the premise and hypothesis needs to be understood in such a

way that the model is able to distinguish between entailment and contradiction. When

the matching problem is framed as an NLI task, we assume that the recruiting agent

evaluates the user profile in a similar way before deciding whether to accept or reject

the candidate. However, this may not an accurate representation of the process and it

is possible that the real process is much more simplistic, perhaps relying on keyword

matching methods, for example, if the user profile contains the skill Java for a Java

Developer role. If this were the case, the matching problem is a comparatively simpler

problem than the generic NLI task, and in a large enough dataset common patterns of

favoured terms can be identified and leveraged for the classification task, which may

explain why a relatively simple model such as Logistic Regression is able to perform

comparably with more complex models.

As referred to in §5.5.1, there are some elements that may have been present during

the original job application that do not feature as part of this corpus, for example: cover

letters; supporting documentation; or answers to role-specific pre-screening questions.

Given that the status prediction task is to predict the outcome status associated with a

given application, it is likely that this information would aid the model in its reasoning;

a cover letter may be constructed to very specifically target the essential requirements

of a job, suggesting further skills or experience that strengthen the application, or

conversely a poor score on a pre-screening questionnaire may weaken an application

that appears strong when considering only the content of the user profile. Furthermore,

if the aim of such a model is to replicate the human decision-making process of the

recruiting agent evaluating the strength of an application, it stands to reason that the

model should consider the same evidence that the human agent would have access

to. However, the stage at which these systems would be applied precedes the stage

at which supporting documentation is constructed and pre-screening questionnaires

would be answered. Given that this information does not yet exist at the point at which

the user requires the available universe of job descriptions to be evaluated relative

to their profile and sorted by suitability, it is not appropriate to include this data in

the training and evaluation of matching solutions as we seek to apply them in this

5.5 tribepad application corpus 161

thesis. Should this data exist, however, it may be interesting to view the extent to which

supporting documentation, or lack thereof, impacts the decision for a candidate to be

invited to interview, hired, or rejected.

5.5.4 Using Short-Form Models on Long-Form Input Sequences

As referred to in §4.10, the transformer-based architectures described in §5.5.3.3 share

one crucial limitation; the memory and complexity of transformer models scale

quadratically with increasing input sequence length. These experiments were limited

by the computational resources available (§5.5.3.4) which necessitated the truncation of

input sequences (i.e. job descriptions and user profiles) to 128 tokens each. User

profiles were largely unaffected as 15.5% of user profiles were shorter than the 128

token limit. However, job descriptions were severely impacted by this sequence limit,

and 99.8% of items exceeded the 128 token limit and were consequently truncated.

Figure 5.3 visualises the distribution of token counts for user profiles and job

descriptions in the Tribepad data with the sequence limit threshold.

Intuitively, a CV seems to be a longer document than a job description. However,

this is not reflected in the Tribepad corpus for two reasons. Firstly, user profiles are not

direct transcriptions from candidate CVs, but rather a combination of free-text fields

that have been populated by the user when signing up to the Tribepad portal (a more

detailed description of user data can be found in §5.5.1). It is possible that, in doing so,

the word count relative to the original document is reduced. No such contraints appear

to have been imposed on the recruiting agents in the construction of the job description.

In the Tribepad corpus, the job description is comprised of four distinct text fields

with contribute to the length of the documents: the external job summary; the internal job

summary; the ideal candidate description; and the description of job responsibilities. Although

the internal job summary was not made visible to the users when making applications, it

is likely that this information was used by the recruiting agents in conjunction with

the balance of data fields when evaluating applications that had been made, and is

therefore included in our status prediction experiments.

Salient semantic content in natural language has been shown to be non-uniformly

distributed across sentence positions (S. Yu et al., 2016). The same is likely true of job

descriptions, in which salient semantic content (for example, the list of required skills

162 matching candidate profiles and job descriptions

User Profiles
Job Descriptions

0
0

100 200 300 400 500 600 700
Token Count

Fr
eq

ue
nc

y

20000

40000

60000

80000

100000

Figure 5.3: Distribution of Token Counts for User Profiles and Job Descriptions in the Tribepad
data. The input sequence threshold of 128 tokens is shown in red.

5.5 tribepad application corpus 163

or qualifications) is unlikely to be distributed evenly across the document, and it is

more likely to feature spans of rich semantic content in certain parts of the document.

However, since the structure of job descriptions is non-uniform, it is not clear whether

these areas of semantic content are generally situated at the front or rear end of the

documents, or somewhere in-between.

To investigate this, we compare four truncation methods and their subsequent effect

on model performance: truncation from the front, truncation from the back, random

selection, and in descending order of IDF and TF-IDF values.

front

In this setting, we select the first 128 tokens in the input sequence. This is the default

truncation method in many implementations of short-form models, and was used for

the experiments described in §5.5.3.3. Front truncation is ideal if documents tend to be

front-loaded with semantic content; in the context of job descriptions, if the information

necessary for effective job recommendation is generally at the start of the document (for

example, the list of attributes pertaining to an ideal candidate), then front truncation

will be more effective than other truncation methods at capturing important semantic

content, which will ultimately result in a better performing model.

back

In this setting, we select the last 128 tokens in the input sequence. This is the reverse of

the front method, and will outperform similar truncation methods if job descriptions

tend to feature important semantic content at the rear end of the document, such as the

list of required skills.

random

In this setting, we randomly sample 128 tokens without replacement from the input

sequence. We include this setting as a benchmark to compare to other methods of

truncation; if the resultant model using random truncation performs comparably with

all other methods of truncation, then it is unlikely that there is any advantage to

manipulating the truncation process of applying short-form models to long-form data.

164 matching candidate profiles and job descriptions

The process of random sampling is performed once, and models were trained on the

same truncated corpus.

idf & tf-idf

Term Frequency - Inverse Document Frequency (TF-IDF) (Sparck Jones, 1988) is a

measure that evaluates the relevancy of a word relative to a document in a corpus. It is

the product of the term frequency and the inverse document frequency. A more detailed

explanation of TF-IDF and its components can be found in §2.4.1.

TF-IDF is a common metric in NLP for roughly evaluating the relative importance of

terms in documents. In this setting, we calculate the TF-IDF metric for each word in the

corpus and select the 128 tokens with the highest value for each document. To avoid

data leakage we do not include the test or validation data in TF-IDF calculation for the

training data.

Similarly to the random truncation method, the TF-IDF method loses all sequential

attributes of the input text, although capturing the most ‘important’ terms in the input

sequence may compensate for this. Methods that do not leverage positional information

of tokens in the input sequences should not be affected.

In addition to standard TF-IDF, we include a setting using boolean term frequency which

sets the TF to 1 if the term is present in the document. This approach tends to be useful

in contexts where it is important to capture the presence or absence of terms across a

collection of documents, and where the frequency of those terms within documents is

of less importance. Since this setting removes the variability of the TF component, it is

referred to as IDF.

5.5.4.1 Results

Results for the experiments are shown in Tables 5.11 and 5.12 using the {Hired;

Rejected} and {Interview; No Interview} dichotomies respectively.

5.5.4.2 Discussion

The results show a common trend of TF-IDF truncation method leading to marginally

greater model performance for the BiLSTM and Decomposable Attention models rela-

tive to other truncation methods, and less consistent results for the various truncation

5.5 tribepad application corpus 165

{Hired; Rejected} Truncation Method

Model Front Back Random IDF TF-IDF

Average Embeddings 0.7106 0.7159 0.7038 0.6882 0.7131
BiGRU 0.7225 0.7126 0.6920 0.6885 0.7122
BiLSTM 0.7218 0.7100 0.6929 0.7005 0.7255
Decomposable Attention 0.7120 0.7062 0.6838 0.7045 0.7389
Sum Embeddings 0.7201 0.7132 0.7017 0.6924 0.7117

Table 5.11: F1 scores for truncation method experiments using the Tribepad corpus with {Hired;
Rejected} status dichotomy. The best performing truncation method for each model
is shown in bold.

{Interviewed; Not Interviewed} Truncation Method

Model Front Back Random IDF TF-IDF

Average Embeddings 0.7082 0.6908 0.7019 0.6824 0.7067
BiGRU 0.7166 0.7045 0.6880 0.6826 0.7043
BiLSTM 0.7108 0.7060 0.6804 0.6945 0.7137
Decomposable Attention 0.7102 0.6443 0.6838 0.6985 0.7313
Sum Embeddings 0.7082 0.6943 0.7135 0.6863 0.7022

Table 5.12: F1 scores for truncation method experiments using the Tribepad corpus with
{Interview; No Interview} status dichotomy. The best performing truncation method
for each model is shown in bold.

166 matching candidate profiles and job descriptions

methods on the balance of models. This trend suggests that the BiLSTM and Decom-

posable Attention models are better able to represent job descriptions when the most

relevant terms are used, which leads to greater model performance.

The relatively poor performance of models trained on data using the IDF truncation

method is particularly notable. In several cases, this method is outperformed by the

random method, which would suggest that the terms selected through IDF appear to

be of lesser predictive importance than average. IDF is equivalent to boolean TF-IDF, in

that the presence of a term in a document, no matter how many times it appears,

yields a term frequency value of 1. This seems more conceptually appropriate in job

descriptions, where the reference of a particular skill term or domain, even if it is of

particular importance to the job, may only be included once. However, our experimental

setting of the job description included up to four concatenated components: the external

job summary; the internal job summary; the ideal candidate description; and the description of

job responsibilities. If a term is of particular importance to a job, it is likely that it will

appear in multiple of these components, which may explain the relative improvement

of the TF-IDF setting over the IDF setting, since there is valuable information that can be

inferred from the frequency of terms in the combined document.

In conclusion, when we are unable to fit all tokens in the input sequence into the

model, selecting the most appropriate terms for model input leads to greater model

performance. In our experiments, selecting the terms with the greatest TF-IDF weighting

as input to the Decomposable Attention model leads to the greatest model performance.

However, there are two aspects of this process that may be improved. Firstly, in our

experiments, tokens were treated independently and in isolation as input to models

that did not make use of the position of words in sentences, whereas in job descriptions

this is not always the case, as important skill terms may be multi-word phrases (for

example, data science; machine learning; technical product management), and treating these

tokens independently neglects the important semantic content of the combined term.

Models may be improved by the incorporation of methods that capture multi-word

entities within the text. Secondly, letting TF-IDF (or any other truncation method, for

that matter) effectively decide which tokens the model receives as input results in an

overall loss of information. Ideally, the terms that are not selected are those that have

no use as part of the decision-making process for the matching problem, but there is

no guarantee that this is the case, and uncommon terms or those that appear once

5.6 matching pipeline 167

within a job description but are of particular importance will be ignored. Models may

be improved by a learned process that selects the most appropriate terms as input for

the model, as opposed to simple truncation of input sequences.

Section 5.6 describes experiments that were constructed to address these particular

issues, combining the ER process detailed in Chapter 4 for feature selection with the

Decomposable Attention model developed in §5.5.3.

5.6 matching pipeline

5.6.1 Matching Pipeline Overview

The second research question this thesis addresses is as follows:

RQ2 How can deeper understanding of the candidate and job be used to influence a candidate

profile-job description matching solution?

To effectively address this question, we have conducted thorough research into each

of the components that comprise an applicant profile-job description matching solution.

In this section we bring together the individual components in a novel pipeline that

accepts raw data as input and produces recommendations or predictions as an output.

Figure 5.4 visualises the pipeline architecture.

The combination of the ER and matching algorithm components into a cohesive

framework represents a novel scientific contribution of this research. While entities

within user profiles and job descriptions have been utilised to evaluate the strength of

an application (specifically the skillset as described in §3.4.2), to our knowledge there

has not yet been work dedicated to integrating a trained ER system into a matching

solution. Additionally, adapting these extracted entities for an NLI task to predict

the outcome status associated with the application is a novel contribution, and the

composition of the two components in a matching pipeline enhances the efficiency of job

recommendation and lays the foundation for a more informed and streamlined online

recruitment system.

168 matching candidate profiles and job descriptions

Raw
User Data

Raw
Job Data

Extracted
User

Features

Extracted
Job

Features

Encoded
User

Features

Encoded
Job

Features

Fusion
Layer

Predictive
Model

Output
Prediction

§5.6.6

Data
Selection

§5.6.2

Feature
Extraction

§5.6.3

Embedding
Method
§5.6.4

Model
Architecture

§5.6.5

Figure 5.4: Architecture of the proposed job matching pipeline. Relevant sections are shown in
parentheses.

5.6.2 Data Selection

Data Selection refers to the process by which certain fields in the available data are

included or excluded from processing. Over-inclusion of available data fields will, at

best, increase model training and evaluation times, increase model size, and increase

complexity for little or no increase in model performance. At worst, over-inclusion

may result in a predictive model that draws inference from unintended features, and

consequently risks propagating systematic and institutional biases (Bogen and Rieke,

2018). Conversely, under-inclusion of available data may result in a model with little

predictive power, or a system that disadvantages certain candidates or jobs.

Data eligible for selection as part of this process required legitimate reasoning

supporting its potential role in a matching process. Essentially, the following question

was considered for each attribute of the job and candidate profile data: would a human

agent consider this attribute when deciding if the candidate is a good fit for this job, or vice versa?

Ultimately, attributes such as the candidate’s listed skills, education and employment

history were included, but those related to the candidate’s demographics, such as

current location and names of educational institutions, were omitted. Although we

have demonstrated that location is an important feature for consideration (see §5.4),

5.6 matching pipeline 169

User Features Job Features

Skills External Job Summary
Education History Internal Job Summary
Employment History Ideal Candidate Description

Description of Job Responsibilities

Table 5.13: Data Selection for the Job Matching Pipeline.

this is only relevant when predicting which jobs a candidate will apply to, since closer

proximity between user and job has been shown to be associated with a higher rate of

application. The focus of the current matching pipeline does not include application

prediction, but rather: given that an application has been made, predict the outcome status

associated with the application. Furthermore, the inclusion of demographic features may

result in a system that leverages unintended latent features to aid predictions, reflecting

patterns of biases observed from live training data. For example, candidates with listed

home locations that are less socio-economically developed or feature high density of

minority groups may be unfairly disadvantaged.

Selected data pertaining to jobs includes information that is available to the candidate

at the point of application as well as information withheld from the candidate. Notably,

both forms of the job summary are included: the external job summary, which typically

resembles an advertisement, intended to entice candidates to apply, and the internal job

summary, which is a more technical and specific document describing the job.

Selected features of the candidate profiles and job descriptions as part of this process

are listed in Figure 5.13.

To simplify the pipeline architecture, all features pertaining to each unique user

and job were concatenated into a single document before being passed to the next

component of the pipeline.

In summary, the Data Selection component of the pipeline yields the following

datasets:

• a dataset D represented as a set of triples (Ui,Ji,Yi), where Ui is the user profile,

Ji is the job description, and Yi is the outcome label associated with that applica-

tion (described in §5.6.6)

170 matching candidate profiles and job descriptions

• a dataset containing documents of concatenated data fields associated with each

user profile

• a dataset containing documents of concatenated data fields associated with each

job description

5.6.3 Feature Extraction

Feature Extraction refers to the process by which salient entities are automatically

extracted from data. Here, we employ the findings from Chapter 4; using the entity

schema of Skills, Qualifications, Occupations, and Domains, we select our

best-performing model (BERT) as the ER method for feature extraction.

Formally, this component of the pipeline associates a variable length set of salient

entities with each user id and job id. For example, the user with id i would be associated

with entity set {ε1, ε2, . . . , εy}, where y is the number of entities extracted for user ui.

The text preprocessing method performed before applying ER was identical to that

used when performing ER experiments in Chapter 4 (specifically, §4.8.1); HTML tags,

whitespace, and accented characters were removed, contractions were expanded, and

text was converted to lower case.

The Feature Extraction component of the pipeline takes two datasets as input: the

dataset containing documents of concatenated data fields associated with each user

profile, and a dataset containing documents of concatenated data fields associated with

each job description. The method applied to both datasets was consistent. Text fields

passed through the ER model were first split into sentences, using periods, question

marks, and exclamation marks as sentence delimiters. Although theoretically this is

unnecessary, given that subdividing the text into smaller documents does not affect

the entities contained therein, this process was performed in order to keep input data

consistent with the form and structure of data observed by the ER models during

training and evaluation.

Although our trained ER methods identify and extract five entity classes from text

data (Skill, Experience, Qualification, Occupation, Domain), we exclude any Experience

entities from passing to the next component of the pipeline. Since these are periods of

time (for example, two years experience), they have little value in the absence of explicit

information indicating which entity or entities they refer to.

5.6 matching pipeline 171

In summary, the Feature Extraction component of the pipeline yields the following

artefacts:

• a set of key-value pairs associating each entity id with the original entity text

• a memory-mapped file containing the set of entity ids corresponding to each user

and job id

• a set of key-value pairs associating each user id and job id with the corresponding

index in the memory-mapped file

This process is visualised in Figure 5.5.

5.6.4 Embedding Method

Embedding refers to the creation of mathematical representations of word meanings

(see §2.4.2). The embedding method of the pipeline encodes the extracted features

passed from the previous component of the pipeline to yield an n-dimensional vector

for each entity. Entity embeddings created as part of this process will be closer in

vector-space if they are similar in meaning.

This component of the pipeline is separate from the model architecture component

(§5.6.5) in order to reduce the operational cost of the overall process. By encoding all

extracted entities in the data in a single dedicated process, the computational cost

is minimised since encoding is performed once for each unique entity extracted as

part of the feature extraction component. An alternative method would be to encode

entities as they are processed during model training, but this method necessitates

either encoding entities as required (which will result in the same entity undergoing

the encoding process multiple times) or including a logical check each time an entity

requires encoding to check if it has been seen before. Performing the embedding process

once, and constructing a dictionary of entities and their corresponding embeddings,

reduces the total cost of computing resources. Furthermore, keeping this component

modular enables us to experiment with different encoding methods which form a

critical part of the pipeline.

We select four different encoding models for generating entity embeddings for this

component of the pipeline, which are shown in Table 5.14. MiniLM, MPNet, and BERT

172 matching candidate profiles and job descriptions

job1: We seek applications from talented engineers with
significant experience in Process Engineering nuclear sector.

Input from Data Selection Component

job1: We seek applications from talented
engineers with significant experience in

Process Engineering within the nuclear sector.

ER Applied

job1:
{ Domain: [nuclear],

Experience: [],
Occupation: [engineers],

Qualification: [],
Skill: [talented, process engineering] }

Entities Extracted

job1 : index1,

··
·

jobn : indexn

Item ID to
Item Indexentity1: nuclear,

entity2: engineers,
entity3: talented,
entity4: process

engineering,

··
·

Entity ID
to Text

index1: [entity1,
entity2, entity3,

entity4],

··
·

Item Index
to Entity ID List

Figure 5.5: Visualisation of the Feature Extraction Pipeline Component.

5.6 matching pipeline 173

Model Name Embedding Dim. Max Seq. Encoding Speed
Method Length (sent/sec)

GloVe Wiki Gigaword Token 100 - -
MiniLM L6 V2 Span 384 256 14200
MPNet V2 Span 768 384 2800
BERT NLI Mean Tokens Span 768 128 34000

Table 5.14: Encoder Model Attributes for the Job Matching Pipeline.

NLI Mean Tokens (Reimers and Gurevych, 2019) are sentence embedding methods, which

convert sentences and paragraphs into n-dimensional vector space and are hosted on

the HuggingFace Model Hub15. In addition, we include token-level GloVe (Pennington,

Socher, and Christopher D Manning, 2014) embeddings as a setting to compare the

effectiveness of sentence embedding methods versus simple token-by-token encoding.

In this setting, rather than generating a vector representation for each extracted entity

span, we split each entity span by token and encode each token separately.

With the exception of GloVe, all methods are pre-trained on NLI data and have

been extensively evaluated for their quality to embedded sentences, queries, and

paragraphs16.

5.6.5 Model Architecture

We use the Decomposable Attention model as described in §5.5.3.3 for two reasons.

Firstly, it is the most conceptually suitable to the matching task of our proposed models,

since it aligns and compares subphrases in the user profile and job description to make

predictions. Secondly, after using a more effective truncation method for the input

sequences, it is the best performing of all our models on the status prediction task

(F1 = 0.73).

15 https://huggingface.co/sentence-transformers
16 https://www.sbert.net/docs/pretrained_models.html

https://huggingface.co/sentence-transformers
https://www.sbert.net/docs/pretrained_models.html

174 matching candidate profiles and job descriptions

5.6.6 Output Prediction

§5.5.3.1 discusses the classification types for the status prediction task. We retain and

compare both paradigms here. The selection of classification type alters the outcome

label Yi, which is associated with application triple (Ui,Ji,Yi), where Ui is the user

profile, Ji is the job description, and Yi is the outcome label associated with that

application (described in §5.6.6).

{hired ; rejected}

Yi =

1, if status transition sequence terminates with Hired

0, if status transition sequence terminates with Rejected
(5.4)

{interviewed ; not interviewed}

Yi =

1, if Interview or Hired in status transition sequence

0, if otherwise, and Rejected in status transition sequence
(5.5)

5.6.7 Evaluation

Due to data protection concerns given the personal nature of the user features, experi-

ments were conducted on a secure, remote virtual machine with the following specifi-

cations:

• Operating System: Linux v5.15

• CPU count: 2

• GPU count: 1

• GPU type: GRID A100-4-20C

• RAM: 16GB

• VRAM: 20GB

5.6 matching pipeline 175

Embedding Micro F1 Score

Encoder Model Method {H; R} {I; I‘}

GloVe Wiki Gigaword Token 0.6903 0.6624
MiniLM L6 V2 Span 0.6192 0.5880
MPNet V2 Span 0.6059 0.5870
BERT NLI Mean Tokens Span 0.6058 0.5870

Table 5.15: Results for the Matching Pipeline on the Tribepad corpus. Micro F1-Scores are
presented for each of the encoder models and embedding methods on each of the
dichotomies: {Hired; Rejected} and {Interviewed; Not Interviewed}.

Hyperparameter tuning of batch size, dropout rate, and learning rate was performed

separately for each setting. Results for the Matching Pipeline experiments are shown in

Table 5.15.

Overall, results for the Matching Pipeline are notably poorer than those of the

truncated settings described in §5.5.3.4 and §5.5.4 (max F1 = 0.73). There are two

components of the matching pipeline that may be contributing to this result: the ER

process for feature selection; or the embedding process of extracted features.

The ER process for feature selection identifies and extracts the salient entities from

the input sequences according to the developed schema described in §4.4 and was

trained on a human-labelled corpus. In theory, this process should outperform simple

truncation in terms of selecting suitable features for the model, but the results do not

appear to reflect this. It is possible that the ER model is unable to properly extract

these features from the input sequences due to their asyntactic property resulting from

concatenating many separate fields on the user profile or job description. It may also be

that this feature extraction process is neglecting certain important features in the input

sequences, which would necessitate greater training and optimisation of the ER model

developed to identify and extract them.

It is also possible that the embedding process of extracted features is a limiting factor

of the matching pipeline in that the selected methods are not effectively encoding

and representing the semantic properties of the extracted features. The discrepancy

in status prediction results across embedding method shows that this component has

an impact on the overall performance of the pipeline. It is notable that the embedding

176 matching candidate profiles and job descriptions

method that led to the highest performance, MiniLM, had the lowest dimensionality

of the implemented methods (384 vs 768, see Table 5.14). Word embeddings of 300

dimensions are common in NLP research (Mikolov et al. (2013); Pennington, Socher, and

Christopher D Manning (2014); Bojanowski et al. (2017)), but there is no clear trend for

sentence embeddings, which typically range from 100 to 1000 dimensions. In a study

of fine-grained analysis of sentence embeddings on various prediction tasks, Adi et al.

(2017) found that higher dimensionality did not always result in better performance,

and sentence embeddings of 300 and 750 dimensions were shown to be ideal for

different tasks. This suggests that higher dimensionality does not necessarily equate to

richer semantic representations, and that lower-dimensional sentence embeddings may

capture the most salient semantic relationships, resulting in more meaningful sentence

representations that the model can interpret.

It may also be possible that the chosen model was unable to leverage the high

dimensionality of sentence embeddings, and performance suffered as a result. In model

architectures where this is the case, sentence embeddings can be projected into a lower

dimensional space using processes such as Uniform Manifold Approximation and

Projection (UMAP) (McInnes, Healy, and Melville, 2020), which has been shown to

retain semantic properties of sentences for NLP tasks (Z. Zhang et al., 2022). To address

this, we conducted experiments whereby MiniLM sentence embeddings were projected

onto a lower dimensionality space of values between 2 and 300 using UMAP. Table 5.16

shows the results of these experiments, which appear to show uniformly poor results

across projected dimensionalities that marginally exceed chance level. The results

seem to indicate that the encoded representation of extracted entities in the Tribepad

corpus lose important semantic content when projected to a lower dimensionality via

UMAP, which suggests this is not an effective solution for addressing the issue of high

dimensionality of sentence embeddings.

5.7 conclusion

In this chapter, we have presented our proposed methods of addressing the matching

problem. First, we frame the matching problem as a recommendation problem, where

the task is to recommend n jobs to a user. We investigate various recommender systems

5.7 conclusion 177

Dimensions Micro F1 Score

2 0.5045
5 0.5395

20 0.5319
100 0.5063
200 0.5147
300 0.5288

384 0.6192

Table 5.16: Results for the UMAP Experiments on the Matching Pipeline on the {Hired;
Rejected} Tribepad corpus. Micro F1-Scores are presented for each of the dimen-
sionalities projected by UMAP. MiniLM L6 V2 was used as the sentence embedding
method. The original dimensionality, 384d, is shown for reference.

in line with related work to exceed baseline performance on the KJRC corpus and apply

the models to the live Tribepad corpus.

We suggest that framing the matching problem as a recommendation problem is flawed

in that it is tangential to its fundamental purpose, and that predicting which jobs a user

will apply to is disparate from recommending suitable jobs to a user.

We propose that framing the matching problem as a text classification or NLI problem

is much more closely aligned with the fundamental purpose of the matching problem,

and suggest that learning a function to predict the outcome status of a given application

of a user to a job is of more value than a function that predicts that the application was

made. We detail our investigation into the status prediction task and show performance

far exceeding baseline over two dichotomies of application success with a variety of TML

and DL models. We observe that job descriptions in particular are composed of long

sequences, exceeding the typical sequence limit of attention-based model architectures,

and investigate alternative truncation methods for selecting the most salient tokens

in the input sequences. We show that TF-IDF truncation yields the strongest model

performance of those implemented.

We combine the ER models described in Chapter 4 with the Decomposable Attention

model attuned to the status prediction task in a matching pipeline and experiment with

methods of encoding the entities extracted as part of feature selection. We observe

178 matching candidate profiles and job descriptions

poorer results relative to the more simplistic model architectures that use truncation

to reduce the input sequences to the maximum sequence limit, and further observe a

poorer result when sentence encoding methods are used to encode each entity span into

vector representation as opposed to encoding each token in the entity span separately.

An important quality of an implemented job recommendation system is transparency,

which refers to the ability for a non-expert to query any recommendation that has

been generated by the system and understand why that decision has been made

(discussed in more detail in section 2.8). The models described in this chapter feature

varying degrees of transparency. For example, feature importance in Logistic Regression

models is relatively straightforward, and if this were to be implemented as part of

an online portal for job recommendation then it would be relatively trivial to convert

feature weights to an interpretable and user-friendly interface for interactive analysis to

facilitate understanding. Conversely, model interpretability for NNs and large attention-

based models such as BERT is considerably more complex, although tools have been

developed to facilitate human understanding (Kokhlikyan et al. (2020); Chefer, Gur, and

Wolf (2021)). In any case, systems that employ job recommendation algorithms outlined

in this chapter should be implemented with transparency capabilities available in the

associated user interface; without this intervention, the system would risk propagating

automation bias, leading users to give undue weight to information that may be erroneous

or ill-conceived purely because it has been perceived to come from an algorithm.

In conclusion, the development of automatic matching solutions described in this

chapter represents a novel contribution to the field of NLP in recruitment. The developed

systems and methodologies may be integrated in online portals, benefitting jobseekers

and recruiting agents alike with increased accuracy of job recommendations, saving

time and resources in the pursuit of suitable jobs and candidates.

6
C O N C L U D I N G R E M A R K S

This thesis addresses the matching problem which is defined as the task of developing an

automatic system that recommends jobs to jobseekers. This research was motivated by

the joint issues of the information overload problem (Dhameliya and Desai, 2019) and

filter failure problem (Shirky, 2008), whereby the amount of data available to jobseekers

in the form of job listings is too large to review and that it is difficult to effectively filter

the data to find appropriate matches.

In Chapters 2 and 3 we explained preliminary concepts necessary to understand the

methods and contributions of this novel research, and described related work in the

fields of job recommendation and NLP to show how our research fits into the landscape

of established literature.

In Chapter 4 we described the process by which we iteratively developed and

refined the annotation schema and accompanying task for creating a human-labelled

dataset of job descriptions with annotated salient entities, with which we trained and

evaluated ER systems to identify and extract these entities automatically as part of a

matching solution. We found that, by performing artificial noise induction experiments

on a similarly constructed ER dataset with models that were able to learn directly

from noisy annotations, we were able to propose an accuracy threshold at which we

could confidently accept or reject Worker contributions on a qualification task before

admitting the top-performing Workers to contribute to the live corpus. We analysed

and commented on the corpus and the tagged entities within, and observed substantial

agreement between annotators.

We developed, trained, and evaluated a baseline CRF model for ER on the constructed

dataset and investigated its consistent errors in classification. We used this insight to

develop a number of competitive models on the ER task, including BiLSTM, transformer

architectures such as BERT, and CNN with the inclusion of a Crowd Layer (Rodrigues and

Francisco Pereira, 2017) that enables the model to learn directly from noisy annotations

without the need for label aggregation methods. The strongest performing model was

179

180 concluding remarks

shown to be pretrained BERT incorporating text case information which achieved an F1

score of 0.73.

In Chapter 5 we described our research into the matching problem. We considered

three ways the matching problem can be framed: as a recommendation problem, in line

with related work on the subject, whereby the task is to recommend the top n jobs for

a user, and can be used to develop a job recommender system that is able to predict

which jobs a user will apply to; as a text classification problem, whereby the task is to

predict the status associated with a given application, and can be used to develop a

job recommender system that is able to predict the outcome of the application; and as

a NLI problem, which is similar in task and purpose to the text classification framing

but treats the user features and job features as premise and conclusion and considers

whether the latter entails the former or contradicts it. We described the KJRC and how

it frames the matching problem as a recommendation problem, and developed models

that were able to marginally exceed baseline performance. We observed that location (or

rather, proximity) was a strong indicator of whether an application has been made by a

user for a job.

We described the Tribepad corpus and showed that the data pertaining to the outcome

status of each job application affords an opportunity to develop a matching solution

more closely aligned with the ultimate goal of the problem, in that we can use this

information to train a model that is able to predict whether a user will be successful

in their application or not, which could be extended to give a more useful set of job

recommendations to a user. We showed that poor results were obtained when applying

application prediction models to the Tribepad corpus, most likely due to the insufficient

location information contained in the data.

We presented two dichotomies for defining application success as part of the status

prediction problem: {Hired; Rejected}, whereby an application is successful if the

candidate is Hired and unsuccessful if Rejected; and {Interviewed; Not Interviewed},

whereby an application is successful if the candidate was invited for interview, and

unsuccessful otherwise. Using both dichotomies, we developed, trained, and evaluated

models for status prediction, including TML models such as Logistic Regression,

BiLSTM, and BiGRU, and attention-based DL model architectures including

Decomposable Attention and BERT. We observed that Logistic Regression with TF-IDF

features of the concatenated input sequences, although relatively simplistic in design,

6.1 assessment of contributions 181

performed comparably with the more complex DL models. We hypothesised that the

truncation of the input sequence length in the more complex models may be limiting

predictive power. We showed support for this hypothesis in the investigation of

alternative truncation methods, which showed that selecting the top n tokens by

descending TF-IDF weight yielded the strongest model results.

We then combined our strongest status prediction model (Decomposable Attention)

with our strongest ER model (BERT) in an end-to-end matching pipeline to predict the

outcome status of a given application. We observed poorer results for the matching

pipeline relative to our status prediction experiments and considered two reasons for

this: the suboptimal performance of the ER component for feature selection; and the

suboptimal encoding process whereby fixed-length vector representations for extracted

entities were generated and used as input to the predictive model.

6.1 assessment of contributions

6.1.1 Extracting Salient Entities from Job Descriptions

The first research question this thesis aims to address is as follows:

RQ1 How can salient entities in applicant profiles and job descriptions be identified and

extracted for use in an applicant profile-job description matching solution?

The scientific contributions of addressing this research question are:

• A list of entity classifications and their definitions in the form of an annotation

schema

• A public, labelled dataset for the development and evaluation of entity extraction

systems

• A state-of-the-art system for extracting salient entities from applicant profiles and

job descriptions

Our published dataset has been used in contemporary NLP research to develop skill

extraction systems (M. Zhang, Goot, and Plank, 2023), and has been cited several times

in the field of skill extraction and job recommendation (M. Zhang, Kristian Nørgaard

182 concluding remarks

Jensen, et al. (2022a); T. Yu et al. (2023); N. Li, Kang, and De Bie (2023); Naik, Patel, and

Kannan (2023)).

6.1.2 Matching Candidate Profiles and Job Descriptions

The second research question this thesis aims to address is as follows:

RQ2 How can deeper understanding of the candidate and job be used to influence an candidate

profile-job description matching solution?

The scientific contributions of addressing this research question are:

• A novel approach to applicant profile-job description matching that leverages

deep insight of applicant profiles and job descriptions

6.2 limitations

Given that the systems described and developed in this thesis are to the benefit of

jobseekers and recruiting agents in reducing the time and effort of the initial stages of the

hiring process, it would have been ideal to include human evaluation of these systems.

For example, the matching solutions described in Chapter 5 could be implemented in

an online portal that evaluates the suitability of jobs and shows a ranked list to the

user in descending likelihood of application success. We would then be able to receive

feedback from live users of the system in terms of how confident they were with the

recommendations and whether they seemed sensible and appropriate. Furthermore, it

may be possible to infer further information from the length of engagement of users on

the platform, indicating the time taken to find an appropriate match, or perhaps a more

direct metric of system quality would be the average number of applications made in a

certain time frame. In the absence of human evaluation we are not able to conclude

that the developed models reduce the time and effort associated with the initial stages

of the hiring process, although we provide evidence in terms of F1 that the models we

develop outperform more simple models for identifying suitable matches.

In Chapter 4 we described our efforts in developing ER systems that are able to

identify and extract salient entities in job descriptions. These systems were trained and

6.3 future work 183

evaluated on our developed corpus of job descriptions with human-labelled entities.

As such, the models are calibrated to the distinctive syntax (or lack thereof) of job

descriptions, including those written formally, in the style of technical documents, or

informally, in the style of advertisements. However, for data protection issues, it was

not feasible to include CVs and resumes in the corpus to be annotated. As a result of

their omission from the corpus, trained models may be unsuited to the identification of

salient entities from candidate CVs. This issue was circumnavigated in our investigation

into the development of matching solutions described in Chapter 5, since the Tribepad

corpus included features from candidate profiles that had been extracted through

other means; by the in-house ER systems employed by Tribepad, or by users populating

distinct fields during the sign-up process on the Tribepad platform. The implementation

of matching solutions in live settings may require a similar process, or alternatively an

ER system trained on a corpus of candidate CVs with salient entities identified.

A further limitation of this research is the difficulty in comparing our developed

systems with others. We were able to frame the matching problem as a status prediction

problem (that is, where the task was to predict whether a given application would be

successful or not) because of the corpus that Tribepad were able to provide, which

showed the transition of status codes associated with each user-job application. As far

as we are aware, there are no similar corpora available for academic use nor described

by related work in this field. In the absence of similar datasets, it is difficult to compare

our systems to other job recommendation systems.

6.3 future work

6.3.1 Extending the Salient Entity Extraction Systems

In Chapter 4 we developed models for ER in job descriptions, identifying spans as Skill,

Qualification, Experience, Occupation, Domain, or None. Our best-performing system was

used for feature selection in a developed matching solution, described in Chapter 5.

However, the ER system could be extended to provide utility beyond feature selection.

For example, the ER model could be used to provide information about the broader

landscape of job descriptions, identifying emerging domains or new skills or the

prevalence of certain qualification requirements. This insight could be leveraged to

184 concluding remarks

inform workforce development strategies, and to influence new courses that develop

certain skills or award certain qualifications. Additionally, in industries with specific

regulatory or certification requirements, an extension of the ER system could assist

organisations in ensuring that listed job descriptions comply and align with legal

and industry standards. Future work regarding the extraction of salient entities in job

descriptions may investigate other ways in which insights from extracted entities can

be applied.

When applied as feature selection, the ER systems described in Chapter 4 convert the

text of a job description (more specifically, a concatenation of all text fields pertaining

to the job) into a hierarchical data structure composed of each of the defined entity

classes. An extension of this process would be a system that performs this process in

reverse; a system that converts a list of key entities into a job description document.

The advantage of this process is that it may help to avoid bias in the generation of the

job description document. Tools such as textio1 have been developed to aid recruiting

agents avoid biased and gendered terms in the creation of job documentation to ensure

inclusivity. A natural language generation tool that converts a list of salient entities

into a job description may be preferable to the current human-generated process, as

the content in the document can be generated to minimise bias while including the

necessary terms.

6.3.2 Extending the Matching Pipeline

In section 5.3 we described three ways in which the matching problem can be framed.

By framing the matching problem as a recommendation problem (§5.3.1) we generate a list

of n jobs that a user is most likely to apply to. In order to achieve this, we essentially

evaluate the suitability of each eligible job for recommendation (that is, those within

the same time window as assigned by the KJRC) and return the top n jobs of highest

suitability. By framing the matching problem as a text classification problem (5.3.2) or

NLI problem (5.3.3) we evaluate the suitability of each job and predict a label of 1 or 0,

indicating a likely successful application (that is, Hired or Interviewed) or an unsuccessful

application (Rejected or Not Interviewed). There is a slight modification that is required

to this process before it could be implemented in a live system: before selecting the

1 https://textio.com

https://textio.com

6.3 future work 185

more likely of the two binary classes, the models calculate the probability that a given

application belongs to either class. This probability can be interpreted as a confidence of

classification suitability, and therefore jobs can be ranked in decreasing confidence of

application success. With this modification, the top n jobs of highest suitability can be

shown to the user. Future work may investigate the effectiveness of this application of

the matching pipeline.

Of the salient entity classifications extracted in feature selection of the matching

pipeline by ER systems, Experience spans were the only spans that were withheld from

the model. Since Experience spans are measures of time (for example, at least two years

in the sentence at least two years experience as Project Manager) In the absence of clear

information as to which Experience entity refers to which Skill, Occupation or Domain

entity, they are of little value to a matching system. Future work may focus on how

these extracted Experience entities can be used to better inform a matching solution,

similar to the work conducted by José-García et al. (2022) (§3.2.5) which incorporated

self-evaluated skill proficiency levels into the user-job similarity calculation.

The advantage of TML and Decomposable Attention models when applied to the

matching problem is that they can be queried. Future work may focus on developing

a clear interface for users to query any decision or recommendation given by the

matching system. This may take the form of a visual tool that shows the extracted

salient entities from both the job description and the user profile and visualises the

relative importance of matches, displaying which are driving the decision to classify

the job as a good or poor recommendation.

6.3.3 The Skills Delta

The skills delta, a concept suggested by the industry sponsor of this project, Tribepad2,

refers to the change in skillset a candidate would need in order to qualify for (or become

an ideal candidate for) a particular job position.

Investigation of the skills delta could enrich a candidate’s understanding of their

current position relative to another position and could be used to create a training

system to suggest courses for skill development. This process could be extended

beyond immediate career progression to suggest several steps consisting of professional

2 https://tribepad.com

https://tribepad.com

186 concluding remarks

development programmes and stepping-stone roles which could be concatenated to

create a career transition graph, showing the route a candidate could take in order to

qualify for a desired high-level position. As far as we are aware, this topic has not

been studied in existing literature, although previous research into applicant profile-job

description matching solutions has suggested that this may be a promising avenue for

future research (Gugnani and Misra, 2020), and puts forward the use of skill graphs of

an applicant profile to provide additional recommendations to the user, including the

cost of acquiring a new skill and suggesting novel skills for development.

Bañeres and Conesa (2017) developed a recommender system that uses NLP tech-

niques to infer the knowledge a user should acquire to be able to perform a given job.

Additionally, the system is able to identify academic programmes and subjects where

the user can acquire the missing skills. The methodology is simplistic, and involves

performing keyword matching on the user profile (extracted from the user’s LinkedIn

profile through an API) and a given job’s requirements to find the acquired skills and

lacking skills. Then, the user would be shown the list of lacking skills, and recommended

courses at the Universitat Oberta de Catalunya that were known to teach these skills.

However, this system is unable to quantify the level at which a skill is required; for ex-

ample, a user who states they are a novice at the programming language Python may be

shown they have the necessary skillset to qualify for a Senior Software Development

position that lists expertise in Python as a requirement for the job. Furthermore, recom-

mendations were ranked by the number of matched terms between the user profile and

the job offer. This method is too simplistic to be effective, as it assumes that jobs with

the same number of lacking skills are equally recommendable, whereas in fact the differ-

ence in acquisition cost of the specific skills may be vastly different, for example, a user

may lack the easy-to-acquire skill teamworking for one job, and the more difficult-to-

acquire skill financial software development for another, but both jobs are recommended

with the same rank. This system could have benefited from a vector-space approach,

where user profiles and job descriptions are represented in vector space, and insight

could be drawn from the skills delta to rank job recommendations and suggest courses

for skill development.

The work described in this thesis could be extended to address the skills delta. In

order to identify the change in skillset a candidate would need in order to qualify for a

particular job position, it is first necessary to identify the skillset the candidate currently

6.3 future work 187

has, and the level at which those skills can be exercised. This may be accomplished as

an extension of the research described in Chapter 4, which focused on the identification

and extraction of salient entities in job descriptions. Similar to the work conducted

by José-García et al. (2022), it is first necessary to quantify the level at which skills

in the candidate skillset are embodied by the candidate. Although José-García et al.

(2022) considered user-manipulable radar charts in a visual interface to gauge the level

at which users embodied skills, this approach appears to rely on both the honesty

and realistic self-inference of users rather than supporting evidence in the form of

experience spans or qualifications. Our research includes the analysis and extraction of

these experiences and qualifications, and future work may consider linking these to the

corresponding skills as a measure of the level at which that skill has been attained.

Additionally, the research described in Chapter 5 could be extended to address the

skills delta. In order to evaluate the skills and experiences associated with an ‘ideal’

candidate for a given role, it may be necessary to consider previous hiring data to

identify the particular attributes embodied by the successful candidate(s) in order to

develop a function that can generate an ideal candidate profile given a job description. The

matching solutions developed in Chapter 5 represent the first step toward this goal as

they learn the features of the user profile and job descriptions that are most indicative

of a successful application. Given the user profile and the artificially generated ‘ideal’

profile, the positive distance (that is, where the ideal profile exceeds the user profile)

on each dimension could be conceptualised in terms of a skills delta. This could be

integrated with an online portal in an extension of the work conducted by Bañeres and

Conesa (2017) to recommend appropriate academic courses in which certain skills or

qualifications could be obtained, or intermediary job roles to accrue experience in a

certain occupation or domain.

Recommendations for addressing the skills delta could be concatenated from position

to position to map job transition graphs, illustrated in Figure 6.1. Novel transition graphs

could be created for candidates in the early stages of their career; given a desired ‘dream

job’, stepping-stone jobs could be found that create a path from a user’s current position

to their desired position, and training courses and qualifications could be shown that

satisfy the skills delta between each step and the next.

Previous work has focused on skills gaps and career advice, particularly with a view

to enhancing resilience to labour market disruption and supporting career transitions.

188 concluding remarks

Educatio
n Level

0
1

2

02

3
4

5

Experience

0
5

1 0
1 5

Leadership Level
0

2

4

6

8

1 0

Example Job Transition Graph
HR Assistant
HR Generalist
HR Manager
HR Director
Chief HR Officer
Progression Pathway

Figure 6.1: An illustration of a job transition graph. Jobs are represented in three-dimensional
vector space. Stepping-stone jobs are found between the entry-level HR Assistant role
and the end goal of the desired Chief HR Officer job. The dotted line represents
the progression pathway which is the concatenation of skills deltas between each
transition.

6.4 impact of thesis contributions 189

Kanders et al. (2020) note that AI-driven labour-displacing technology disproportion-

ately and drastically affects certain occupations, places, and demographic groups, and

emphasise the importance of developing practical strategies to help those impacted

by automation. The authors generate feature vectors of jobs that capture the relative

intensity of work activities in occupations (based on the ESCO skills categories), and

compare representations to measure occupation similarity. The underlying assumption

of this approach is that similar feature vectors represent viable job transitions, which

can be used to recommend career paths for those in job sectors at risk of disruption as

a result of AI. Additionally, the authors propose an approach for identifying workers’

skills gaps, conceptually similar to the skills delta, which may need to be filled as they

move from one occupation to another. Poor matching scores between skill pairs across

the origin and destination occupations highlight large skill gaps, which can be used to

focus re-skilling efforts. Although the skills gap is a potentially informative and useful

metric for jobseekers, the method proposed does not quantify the extent to which a skill

is required, nor does it consider the cost associated with acquiring that skill. The au-

thors conclude that the insights from this research may guide policy making and can

be used to develop strategies to help people and places build resilience to uncertainty

and change in the labour market.

6.4 impact of thesis contributions

The research described in this thesis has an impact on both academic knowledge and

practical applications. Firstly, the iterative processes described in Chapter 4 by which

our ER corpus and annotation schema were developed lay the foundation for future

academic work collecting annotation data of good quality. Repeatedly improving task

clarity and delivery to maximise annotator agreement ensures comprehensibility of

task instructions and minimises systematic noise resulting from human error.

Additionally, through noise induction experiments described in Chapter 4, this

research considers the relationship between AMT Worker performance and resultant ML

model performance. The novel process by which we defined acceptable AMT Worker

thresholds is an original contribution that enhances the reliability of annotations and

has practical implications for quality control in crowdsourced data.

190 concluding remarks

The development of ER systems developed for the identification and extraction of

salient entities in job descriptions described in Chapter 4 represents a contribution to

the field of NLP in recruitment, and has an additional impact on online portals. These

systems can be implemented into internal systems with relative ease and will improve

upon more simplistic keyword extraction systems.

Finally, the novel matching systems described in Chapter 5 have an impact on real-

world applications of NLP in recruitment. With the integration of these systems and

methodologies in online portals, jobseekers and recruiting agents will benefit from the

increased accuracy of job recommendations, saving time and resources in the pursuit

of suitable jobs and candidates.

In conclusion, the impact of this thesis extends beyond academic research and directly

impacts applications of NLP in recruitment. By introducing novel methodologies of

corpora construction, ER in job descriptions, and automatic matching solutions, the

research described in this thesis facilitates the collection of good and unbiased data,

more efficient and successful recruitment through online portals, and contributes to the

academic advancement of NLP in recruitment.

A
A P P E N D I X

a.1 entity recognition corpus

a.1.1 Annotation Materials

191

Annotation Task
Classify all relevant entities mentioned in a job description.

Note: Please read this document carefully. The definitions that we offer here

for terms such as ‘Skill’ and ‘Domain’ may conflict with your own definitions. In

this case, we ask that you use our definitions to complete this task.

In this task, you will be shown job descriptions from a recruitment website. For

each of the job descriptions, please identify all the words in the text that

belong to one of the ‘Classifications’ shown below.

Sometimes, a classification can contain multiple words – for example, the

words ‘Teaching Assistant’ should together be classified as an ‘Occupation’.

Classifications

● Skill

● Qualification

● Experience

● Occupation

● Domain

Classification Definitions
● Skills

○ Examples: ‘computer programming’, ‘French’, ‘data analysis’, ‘Microsoft
Word’, ‘leadership’, ‘unloading cargo’, ‘problem solving’, ‘honesty’,
‘graduate recruitment strategy’

○ They are tasks that can be performed, or the attributes and abilities that
enable people to perform tasks

○ Includes descriptions of tasks (e.g. ‘unloading cargo’)
○ Includes both domain-specific ‘hard skills’ and domain-general ‘soft skills’
○ Includes specific knowledge (e.g. ‘understanding of marketing strategies’)
○ May be validated with a qualification or experience

● Qualifications

○ Examples: ‘Bachelor’s Degree’, ‘chartership’, ‘National Pool Lifeguard
Qualification’, ‘three A-levels’

○ They are official certifications obtained through taking a course or passing an
exam or an appraisal

○ Includes driving licenses and security clearance

● Experience

○ Examples: ‘2 years experience’, ‘minimum of 5 years experience’
○ They are quantified by length of time
○ Does not include what the experience is of or in - for example, in the sentence

‘this job requires at least 10 years of experience as a CEO’, only the words ‘at
least 10 years of experience’ are the Experience

● Occupations

○ Examples: ‘Teaching Assistant’, ‘CEO’, ‘Data Analyst’, ‘Chef de partie’
○ These are job titles
○ Includes abbreviations - for example, both ‘Chief Executive Officer’ and ‘CEO’

are Occupations

● Domains

○ Examples: ‘aerospace’, ‘oil industry’, ‘education’, ‘human resources’
○ These are areas of industry in which someone might have knowledge or

experience

Clarification Questions

● If a skill refers to the organisation rather than the candidate (e.g. 'our
client is a company that specialises in 'software development'), should
this be classified as a Skill?

○ Yes. Skills should be classified as Skills whether they refer to the
candidate the job is looking for or the organisation that is offering
the job. In this example, the term ‘software development’ should
be classified as a Skill.

● Can a Job Title contain a Skill? (e.g. ‘Data Analysis Specialist’)

○ No, these are NOT classified as Skills. The job title in its entirety
is classified as an Occupation.

● How should 'background in...' sentences be classified?

○ When the background is in a skill, the Skill should be classified
(e.g. 'background in teaching' - 'teaching’ is classified as a Skill).

○ When the background is in a domain, the Domain should be
classified (e.g. 'background in education’ - 'education’ is classified
as a Domain).

○ The same is true for 'experience in...' sentences - if the
experience is of a skill, the Skill should be classified.

● When a skill is applied to a particular task, should the details of the task
be contained in the skill-term?

○ Only if it is a specific application (e.g. 'creating technical
documentation') and not a general application (e.g. ‘cleaning
kitchens’, where only ‘cleaning’ should be classified as a Skill).

● How do you classify a sentence where Skills are split by a conjunction?
(e.g. ‘construction and maintenance of databases’)

○ In these cases, the classification extends across all skills, and
includes the application if it is relevant (in the above case,
‘construction and maintenance of databases’ would be classified
as a Skill in its entirety).

● If a skill is modified by a word like ‘good’ or ‘excellent’, is this part of the
skill classification? (e.g. ‘excellent computing skills’, ‘good time
management’)

○ No, the modifier (in the above examples, ‘excellent’, and ‘good’)
are NOT part of the classification. In the phrase ‘excellent
computing skills’, only ‘computing’ is the skill.

Job Description Annotation Task
Worked Examples

Example #1

Key responsibilities include: Develop demand plans at product, location and

channel levels Develop monthly demand consensus and integrated Business

Planning information packs Manage monthly demand meetings Analysis and

review of demand plans with Sales, Marketing and Finance Analysis of historical

data / trends / seasonality using forecasting models Collaboration with Finance,

Sales and Marketing to develop long range and strategic plans.

These are Skills because they are tasks that can be performed
or abilities that help people perform tasks. Although they are not
separated with punctuation, capital letters mark the boundaries.

These are Domains because they are areas
of industry in which one might have skills or
experience.

Example #2

Our client is recruiting for an additional experienced Microsoft

Analyst/Programmer to work on a variety of interesting business software

development and support contracts for corporate and public sector customers

working within existing skilled teams.

This is a Skill because it is an attribute that helps people perform
tasks.

These are Skills because they are tasks to
be performed or abilities that help people
perform tasks. The conjunction ‘and’
separates two separate classifications.

These are Domains because they are areas of industry
in which one might have skills or experience.

These are Occupations because they are job
titles. The forward slash separates two separate
classifications.

Example #3

This role is based at our clients’ North London office, with flexibility to work at

customer sites in London and surrounding counties as required.

There are no entities in this example.

These are Skills because they are tasks to be
performed or abilities that help people perform
tasks.

This is an Occupation because it is a job title. It
doesn’t matter that it is not the job title that this job
advert is for.

Example #4

Work with the Financial Reporting Manager to prepare monthly

IFRS Reporting and improve efficiency in the process.

Example #5

This position will be working within a fast paced environment

and the successful candidate will have at least 6 months

experience within a similar role.

This is an Experience because it is quantified by a
length of time. It does not include the subject of the
experience (here, ‘within a similar role’).

This is a Skill because it is a task to be performed.

Example #6

Are you a talented, ambitious, experienced and high

performing sales professional?

This is an Occupation because it is a job title. If the
term ‘Sales’ were on its own, then this might be
classified as a Domain, but here it is an Occupation as
it paired with the term ‘Professional’.

These are Skills because they are abilities or attributes
that help people perform tasks.

Example #7

We work with a number of market leading and blue chip

organisations to help shape and deliver their graduate

recruitment strategy.

This is a Skill because it is a task that can be
performed. The term ‘Graduate’ is included in this
classification because it is a specific application (see
FAQ document for more clarification).

The term ‘blue chip’ may seem like a Domain, but it is
not an area of industry in which someone might have
knowledge or experience. It is therefore left
unclassified.

Example #8

Key responsibilities will include: Identifying opportunities,

implementing and embedding change to deliver best practice.

This is not part of the Skill classification because it is a
general application of the skill (see FAQ document for
more clarification).

These are Skills because they are tasks that can be
performed.

A.2 er model results 205

Label P R F1 Support

B-Skill 0.71 0.52 0.60 796
I-Skill 0.60 0.77 0.67 1439
B-Qualification 0.75 0.58 0.65 31
I-Qualification 0.52 0.59 0.56 37
B-Occupation 0.80 0.68 0.74 142
I-Occupation 0.85 0.75 0.80 159
B-Experience 0.88 0.54 0.67 13
I-Experience 0.57 1.00 0.72 17
B-Domain 0.35 0.55 0.43 60
I-Domain 0.26 0.26 0.26 39

micro avg 0.63 0.67 0.65 2733
macro avg 0.63 0.62 0.61 2733
weighted avg 0.65 0.67 0.65 2733

Table A.1: Results for BERT base ‘uncased’ model (fine-tuned on preprocessed data). Precision,
Recall, and F1-Score are presented.

a.2 er model results

Tables A.1 through A.4 show the full class breakdown of ER model results.

a.3 tribepad matched user profile - job description corpus

206 appendix

Label P R F1 Support

B-Skill 0.62 0.45 0.52 796
I-Skill 0.54 0.65 0.59 1439
B-Qualification 0.57 0.55 0.56 31
I-Qualification 0.38 0.32 0.35 37
B-Occupation 0.57 0.42 0.48 142
I-Occupation 0.62 0.52 0.56 159
B-Experience 0.75 0.23 0.35 13
I-Experience 0.50 0.59 0.54 17
B-Domain 0.31 0.32 0.31 60
I-Domain 0.25 0.23 0.24 39

micro avg 0.55 0.55 0.55 2733
macro avg 0.51 0.43 0.45 2733
weighted avg 0.56 0.55 0.55 2733

Table A.2: Results for DistilBERT base ‘uncased’ model (fine-tuned on preprocessed data).
Precision, Recall, and F1-Score are presented.

Label P R F1 Support

B-Skill 0.80 0.60 0.69 971
I-Skill 0.64 0.84 0.73 1595
B-Qualification 0.82 0.63 0.71 49
I-Qualification 0.51 0.47 0.49 40
B-Occupation 0.93 0.86 0.90 216
I-Occupation 0.93 0.89 0.91 241
B-Experience 0.60 0.46 0.52 13
I-Experience 0.64 0.78 0.70 18
B-Domain 0.51 0.59 0.55 93
I-Domain 0.45 0.55 0.50 56

micro avg 0.70 0.75 0.73 3292
macro avg 0.68 0.67 0.67 3292
weighted avg 0.72 0.75 0.73 3292

Table A.3: Results for BERT base ‘cased’ model (fine-tuned on preprocessed data). Precision,
Recall, and F1-Score are presented.

A.3 tribepad matched user profile - job description corpus 207

Label P R F1 Support

B-Skill 0.79 0.59 0.68 1046
I-Skill 0.66 0.80 0.72 1660
B-Qualification 0.77 0.61 0.68 54
I-Qualification 0.61 0.58 0.60 43
B-Occupation 0.92 0.84 0.88 220
I-Occupation 0.95 0.82 0.88 254
B-Experience 0.78 0.54 0.64 13
I-Experience 0.70 0.78 0.74 18
B-Domain 0.50 0.60 0.55 99
I-Domain 0.52 0.53 0.52 57

micro avg 0.72 0.72 0.72 3464
macro avg 0.72 0.67 0.69 3464
weighted avg 0.73 0.72 0.72 3464

Table A.4: Results for BERT base ‘multilingual cased’ model (fine-tuned on preprocessed data).
Precision, Recall, and F1-Score are presented.

2
0

8
a

p
p

e
n

d
i
x

a.3.1 Status Codes

Status Code Short Description Frequency Proportion Description

0 Incomplete 8, 682, 446 37.5% Candidate started an application
but did not submit it. May be a
complete application bar submis-
sion or entirely incomplete.

1 Shortlisted 3, 015, 556 13.0% The Recruiter or System has short-
listed the candidate because they
passed pre-screening assessments.

2 Rejected 5, 841, 138 25.2% The Recruiter or System rejected
the candidate as unsuitable.

3 Hired 221, 321 1.0% Candidate was offered the position
and accepted.

4 Interview 462, 491 2.0% Candidate was selected for inter-
view, or has been interviewed and
awaiting decision.

5 Offered 114, 599 0.5% Candidate offered the role but not
yet accepted.

6 Assessment 0 0.0% Candidate required to pass be-
spoke assessment for position.

7 Accepted 48, 335 0.2% Candidate offered the role and
accepted.

8 In Review 4, 597, 105 19.8% No single definition. Generally
means the candidate passed pre-
screening but the Recruiter has not
yet made a decision or full review.
Pre-interview but may be pre or
post shortlist.

9 Withdrawn 194, 012 0.8% The Candidate or Recruiter has
withdrawn the Candidate’s appli-
cation.

Table A.5: A summary of data fields in the apps dataset.

A
.
3

t
r

i
b

e
p

a
d

m
a

t
c

h
e

d
u

s
e

r
p

r
o

f
i
l

e
-

j
o

b
d

e
s

c
r

i
p

t
i
o

n
c

o
r

p
u

s
2

0
9

Field Description

user_id The id of the user that the career item refers to.
jobtitle The job title of the career item.
description The description of the career item.
employer The name of the company for the career item.
startdate The date the career item started.
enddate The date the career item ended.

Table A.6: A summary of data fields in the career dataset.

a.3.2 career data

2
1

0
a

p
p

e
n

d
i
x

Field Description

user_id The id of the user that the education item refers to.
qualification The short description of education item, if applicable.
description The description of the education item.
educationlevel The level of the education item (e.g. Bachelors, Secondary).
institution The institution at which the education item was attained.
startdate The date the education item started.
enddate The date the education item ended.

Table A.7: A summary of data fields in the education dataset.

a.3.3 education data

A
.
3

t
r

i
b

e
p

a
d

m
a

t
c

h
e

d
u

s
e

r
p

r
o

f
i
l

e
-

j
o

b
d

e
s

c
r

i
p

t
i
o

n
c

o
r

p
u

s
2

1
1

a.3.4 job data

2
1

2
a

p
p

e
n

d
i
x

Field
D

escription

job_id
T

he
unique

id
of

the
job.

job_title
T

he
title

of
the

job.
sum

m
ary_external

The
sum

m
ary

of
the

job
intended

for
C

andidates.
sum

m
ary_internal

The
sum

m
ary

of
the

job
intended

for
internaluse.

m
ain_responsibilities

A
description

of
the

job
responsibilities.

ideal_candidate
A

description
of

the
idealcandidate

for
the

job.
location_city

T
he

city
in

w
hich

the
job

is
located.

location_county
T

he
county

in
w

hich
the

job
is

located.
location_country

T
he

country
in

w
hich

the
job

is
located.

no_of_positions
T

he
num

ber
of

open
positions

for
the

job.
open_date

The
date

from
w

hich
the

job
started

collected
applications.

closed_date
The

date
at

w
hich

the
job

ceased
accepting

applications.
salary_frequency

T
he

code
denoting

frequency
of

pay,e.g.‘per
hour’,‘per

annum
’.

salary_from
T

he
low

er
bound

of
salary.U

sed
in

conjunction
w

ith
salary_frequency.

salary_to
T

he
upper

bound
of

salary.U
sed

in
conjunction

w
ith

salary_frequency.
shift_hours

T
he

num
ber

of
hours

per
shift,if

applicable.

Table
A

.
8:A

sum
m

ary
of

data
fields

in
the

job
dataset.

A
.
3

t
r

i
b

e
p

a
d

m
a

t
c

h
e

d
u

s
e

r
p

r
o

f
i
l

e
-

j
o

b
d

e
s

c
r

i
p

t
i
o

n
c

o
r

p
u

s
2

1
3

Field Description

user_id The id of the user associated with the skill. Duplicate skills across multiple users are
contained in unique skill items.

skill The skill term extracted from the user profile.

Table A.9: A summary of data fields in the skills dataset.

a.3.5 skills data

2
1

4
a

p
p

e
n

d
i
x

Field Description

user_id The id of the user.
created_time The date the user profile was created.
address_city The city in which the user is currently located.
address_county The county in which the user is currently located.
address_country The country in which the user is currently located.

Table A.10: A summary of data fields in the user dataset.

a.3.6 user data

A.4 ethical approval 215

a.4 ethical approval

The following documents are included here:

• Ethics Application Form - includes all details of the submitted ethics application

for this research project.

• Ethics Approval Letter - confirmation of the approval of the ethics application

form.

• Ethics Post-Approval Edit - an email chain describing requested amendments to

the approved ethics application as well as approval from the ethics committee.

216 appendix

a.4.0.1 Ethics Application Form

Application 036039

Section A: Applicant details

Date application started:
Fri 17 July 2020 at 09:51

First name:
Thomas

Last name:
Green

Email:
tafgreen1@sheffield.ac.uk

Programme name:
PhD Project

Module name:
PhD Project
Last updated:
24/08/2020

Department:
Computer Science

Applying as:
Postgraduate research

Research project title:
Using NLP to Resolve Mismatches Between Jobseekers and Positions in Recruitment

Has your research project undergone academic review, in accordance with the appropriate process?
Yes

Similar applications:
- not entered -

Section B: Basic information

Supervisor

Name Email

Diana Maynard d.maynard@sheffield.ac.uk

Proposed project duration

3: Project code (where applicable)

Start date (of data collection):
Thu 1 October 2020

Anticipated end date (of project)
Sun 1 October 2023

Project code
- not entered -

Suitability

Indicators of risk

Takes place outside UK?
No

Involves NHS?
No

Health and/or social care human-interventional study?
No

ESRC funded?
No

Likely to lead to publication in a peer-reviewed journal?
Yes

Led by another UK institution?
No

Involves human tissue?
No

Clinical trial or a medical device study?
No

Involves social care services provided by a local authority?
No

Is social care research requiring review via the University Research Ethics Procedure
No

Involves adults who lack the capacity to consent?
No

Involves research on groups that are on the Home Office list of 'Proscribed terrorist groups or organisations?
No

Involves potentially vulnerable participants?
No
Involves potentially highly sensitive topics?
No

Section C: Summary of research

1. Aims & Objectives

Nearly everyone has a CV (or at least a career and/or education history).
Nearly every non-sole trader business recruits people.
Most people want to progress from the job they are in - over 60% of people are always at
least passively looking for a job.
CV-to-Job Spec matching technologies are generally underperforming right now, but there is
plenty of data available for machine learning solutions to improve performance. This would
improve the quality and objectivity of recruitment, reduce the number of irrelevant
applications recruiters receive, reduce the likelihood that a good candidate is overlooked,
save time and lead to faster filling of open positions, and enhance the candidate experience.
One challenge is that job seekers are reluctant to provide structured data about themselves,
and prefer to “throw” a CV over to the recruiter and then “throw” their CV over to the next
recruiter at the next company and so on. Because of this, the data from a job seeker is often
not in structured form. Similarly, a lot of the data the recruiter gives about the job is also
unstructured - provided in a number of paragraphs of text. Yet all the key information is
available to match someone. The job description specifies key skills in the text, the ideal
candidate, the soft skills, the must-haves, the skills that are beneficial but not essential, and

so on.
This project will involve researching a ‘matching solution’ that takes all of the above into
consideration - the unstructured data needs to be parsed using Natural Language
Processing (NLP) techniques, the key components extracted, and fed into a machine
learning algorithm to determine how close someone is for a job and what the key differences
are. This could help people see what skills they need to acquire in order to progress (their
‘skills delta’), and that data could eventually feed into a training system to suggest courses
(college, university or other).

2. Methodology

A wide range of Information Extraction methods (including knowledge-engineering and
supervised learning methods) will be explored to tackle parsing of unstructured CV and job
specification data, and both shallow-learning and deep-learning methods will be considered
for the ‘matching’ component of the CV-job spec matching solution.

3. Personal Safety

Have you completed your departmental risk assessment procedures, if appropriate?

Yes

Raises personal safety issues?

No

It is not necessary for researchers to work outside normal hours, conduct activities off University premises, work with
potentially threatening people, nor conduct activities in a potentially dangerous environment.

All contributions to this project can be made on a desktop PC in a safe office environment on University premises.

Section D: About the participants

1. Potential Participants

Rather than identifying potential participants, this project will require obtaining a large number of job descriptions from
recruitment sites and a large number of candidate CVs. Some of this data will be supplied by the industry partner,
TribePad. Permissions for the sharing of data have already been given by candidates to the respective recruitment sites
and explicit permission will be sought from recruitment sites before any personal data is obtained.

2. Recruiting Potential Participants

We will seek explicit, specific permission from each provider to use data obtained from their platform, and adhere to their
policies regarding the use of data for research in existing agreements with their customers.

2.1. Advertising methods

Will the study be advertised using the volunteer lists for staff or students maintained by CiCS? No

- not entered -

3. Consent

Will informed consent be obtained from the participants? (i.e. the proposed process) No

Since data is acquired from a provider and not from the individual themselves (for instance, in the context of candidate
CVs, these are obtained from a recruitment site API rather than the CV authors themselves), we will not be seeking
informed consent from the individuals. We will, however, seek explicit, specific permission from each provider to use data
obtained from their platform, and adhere to their policies regarding the use of data for research in existing agreements
with their customers.

4. Payment

Will financial/in kind payments be offered to participants? No

5. Potential Harm to Participants

What is the potential for physical and/or psychological harm/distress to the participants?

None. Data will be anonymised by the researchers prior to any analysis to eliminate the risk of individuals being
personally identified.

How will this be managed to ensure appropriate protection and well-being of the participants?

Data will be anonymised by the researchers prior to any analysis to eliminate the risk of individuals being personally
identified. However, we acknowledge that during this process, researchers will have access to personal information such
as name and DOB. There is, therefore, a risk of data breach associated with handling this sensitive data. Encryption and
storage of sensitive data is detailed in a later section.

In order to address potential biases in the data such as EDI issues, institutional bias, and systemic biases, special
attention will be paid during the course of this project to implementing active measures within a CV-Job Spec matching
system, and to ensure that this system promotes diversity and equity goals.

Section E: About the data

1. Data Processing

Which organisation(s) will act as Data Controller?

University of Sheffield only

2. Legal basis for processing of personal data

The University considers that for the vast majority of research, 'a task in the public interest' (6(1)(e)) will be the most
appropriate legal basis. If, following discussion with the UREC, you wish to use an alternative legal basis, please provide
details of the legal basis, and the reasons for applying it, below:

- not entered -

3. Data Confidentiality

What measures will be put in place to ensure confidentiality of personal data, where appropriate?

Data supplied by the industry partner will be anonymised prior to data handover, and all data acquired from other
sources will be anonymised by the researcher.

4. Data Storage and Security

In general terms, who will have access to the data generated at each stage of the research, and in what form

Data supplied by the industry partner will be anonymised prior to data handover, and so the PhD candidate and their
supervisory team will have access to this data in its anonymised form.
Data acquired through other sources will be anonymised by the PhD candidate and this will be stored in anonymised
form for access by the supervisory team and industry partner.

What steps will be taken to ensure the security of data processed during the project, including any identifiable personal
data, other than those already described earlier in this form?

Data will be stored on an encrypted laptop and backed up to two locations:
1) the University of Sheffield Google Drive, and
2) University of Sheffield research data storage,
both of which can only be accessed by authorised members of the project.
Any sensitive data (as defined by the GDPR) that is stored on portable electronic devices will be protected by encryption
software to ISO IEC 27001 standard. Any sensitive data that needs to be transmitted electronically will first be encrypted.
The University's Information Security Policies as well as the industry partner's Data Protection and Retention Policies will
be abided by at all times.
An incremental copy of data is automatically taken every night (and kept for 28 days) and a full copy is taken every
month. Backup integrity will be tested every month by restoring the data to a virtual machine and running a spot check
and macro test to match against the production database.

Will you be processing (i.e. collecting, recording, storing, or otherwise using) personal data as part of this project? (Personal data
is any information relating to an identified or identifiable living person).
Yes

Will you be processing (i.e. collecting, recording, storing, or otherwise using) 'Special Category' personal data?
No

Please outline when this will take place (this should take into account regulatory and funder requirements).

Data supplied by our industry partner will be destroyed upon completion of the project to ensure that any data under
their ownership is not accessed by external parties. The industry partner will be free to retain any of this data in
accordance with their internal policies.
Data obtained freely through other methods will be prepared for future sharing and potential secondary analysis, and
made available for at least 10 years as per UKRI guidelines. Data will be deposited for archiving and re-use with the UKRI
data service provider, UKDA, at the end of the project. Data will be available on request only.

Will all identifiable personal data be destroyed once the project has ended?
Yes

Section F: Supporting documentation

Information & Consent

Participant information sheets relevant to project?
No

Consent forms relevant to project?
No

All versions

Additional Documentation

Document 1081827 (Version 1)
This is the data management plan for the project which describes how data will be acquired, processed, stored, and
archived in greater detail.

External Documentation

- not entered -

Section G: Declaration

Signed by:
Thomas AF Green
Date signed:
Thu 13 August 2020 at 14:13

Offical notes

- not entered -

222 appendix

a.4.0.2 Ethics Approval Letter

Downloaded: 21/01/2021
Approved: 24/08/2020

Thomas Green
Registration number: 190185826
Computer Science
Programme: PhD Project

Dear Thomas

PROJECT TITLE: Using NLP to Resolve Mismatches Between Jobseekers and Positions in Recruitment
APPLICATION: Reference Number 036039

On behalf of the University ethics reviewers who reviewed your project, I am pleased to inform you that on 24/08/2020 the
above-named project was approved on ethics grounds, on the basis that you will adhere to the following documentation
that you submitted for ethics review:

University research ethics application form 036039 (form submission date: 13/08/2020); (expected project end date:
01/10/2023).

If during the course of the project you need to deviate significantly from the above-approved documentation please inform
me since written approval will be required.

Your responsibilities in delivering this research project are set out at the end of this letter.

Yours sincerely

Com Ethics
Ethics Administrator
Computer Science

Please note the following responsibilities of the researcher in delivering the research project:

The project must abide by the University's Research Ethics Policy:
https://www.sheffield.ac.uk/rs/ethicsandintegrity/ethicspolicy/approval-procedure
The project must abide by the University's Good Research & Innovation Practices Policy:
https://www.sheffield.ac.uk/polopoly_fs/1.671066!/file/GRIPPolicy.pdf
The researcher must inform their supervisor (in the case of a student) or Ethics Administrator (in the case of a member
of staff) of any significant changes to the project or the approved documentation.
The researcher must comply with the requirements of the law and relevant guidelines relating to security and
confidentiality of personal data.
The researcher is responsible for effectively managing the data collected both during and after the end of the project
in line with best practice, and any relevant legislative, regulatory or contractual requirements.

224 appendix

a.4.0.3 Ethics Post-Approval Edit

The following changes to the ethics application form were made after its approval,

on 30th November 2020. These changes were acknowledged and approved on 2nd

December 2020.

section c : summary of research

2. Methodology (to be added)

This research will include the construction of a labelled dataset of job descriptions,

which will involve human annotation of job descriptions.

section d : about the participants

1. Potential Participants (this has been rewritten)

This research will include human annotation of job descriptions for the construction of

a labelled dataset. For this task, participants will be registered Workers on the

crowdsourcing website Amazon Mechanical Turk (MTurk; https://www.mturk.com).

Additionally, this research will require obtaining a large number of job descriptions

from recruitment sites and a large number of candidate CVs. Some of this data will be

supplied by the industry partner, TribePad. Permissions for the sharing of data have

already been given by candidates to the respective recruitment sites and explicit

permission will be sought from recruitment sites before any personal data is obtained.

3. Consent (this has been rewritten)

Answer: Yes.

For annotation data sourced through Amazon Mechanical Turk, registered Workers

will be required to give their consent before participating. Workers who click on this

job through the AMT platform will be immediately taken to the standard Amazon

Mechanical Turk Informed Consent Form which must be read and accepted before they

are permitted to work on the task. For data acquired through other means, we will not

https://www.mturk.com

A.4 ethical approval 225

be seeking informed consent from the individuals themselves (for instance, in the

context of candidate CVs, this data is obtained from recruitment site APIs rather than

the CV authors themselves). We will, however, seek explicit, specific permission from

each provider to use data obtained from their platform, and adhere to their policies

regarding the use of data for research in existing agreements with their customers.

4. Payment (this has been rewritten)

Answer: Yes.

For annotation data sourced through Amazon Mechanical Turk, Workers will be

remunerated according to the standard pricing structure using the UK minimum wage

(£8.72 per hour at time of writing) as a guideline.

5. Potential Harm to Participants (to be added)

For annotation data sourced through Amazon Mechanical Turk, there is very little risk

of harm or discomfort to participants in the annotation task. The user interface for this

task will be clear and simple, instructions will be easy to follow and unambiguous, and

participants can withdraw at any point and will be compensated for their contribution.

section e : about the data

3. Data Confidentiality (to be added)

Human annotated data acquired through Amazon Mechanical Turk is anonymised by

Amazon prior to data handover; each worker is assigned a unique worker ID which

ensures that no personally identifiable information is accessible to the requester.

In answer to the Lead Ethics Reviewer’s questions:

• Question: What kind of annotations are expected from the human annotators?

What is exactly what they will be asked to do?

– Answer: Human annotators will be provided with sentences from job de-

scriptions sourced from a public dataset of job descriptions published un-

der a CC0 license. Through the MTurk platform, annotators will be asked to

226 appendix

read a short task instructions sheet and highlight entities within a sentence,

assigning each of them a unique classification (Hard Skill, Soft Skill, Qualifi-

cation, Experience, Occupation, Domain) or state that no entities exist within

the sentence. Annotators will be compensated for each annotated sentence,

regardless of their performance or number of annotated sentences.

• Question: If a Public dataset is going to be built from this data, what will be the

conditions for the Public to have access to the dataset?

– Answer: The public dataset will be published under a CC0 license and will

be available to everyone to use, copy, modify, or distribute without having to

seek explicit permission. Publishing under a Creative Commons license is

standard procedure for similar corpora published on data science community

site Kaggle (https://www.kaggle.com).

https://www.kaggle.com

B I B L I O G R A P H Y

Adi, Yossi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, and Yoav Goldberg (2017).

“Fine-grained Analysis of Sentence Embeddings Using Auxiliary Prediction Tasks.”

In: arXiv: 1608.04207 [cs.CL].

Agarap, Abien Fred (2019). Deep Learning using Rectified Linear Units (ReLU). arXiv:

1803.08375 [cs.NE].

Aggarwal, Charu, Alexander Hinneburg, and Daniel A. Keim (2001). “On the surprising

behavior of distance metrics in high dimensional space.” In: Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics) 1973, pp. 420–434. issn: 16113349. doi: 10.1007/3-540-44503-x_27.

Ahmed, Shibbir, Mahamudul Hasan, Md. Nazmul Hoq Salim, and

Muhammad Abdullah Adnan (Oct. 2016). “User interaction analysis to recommend

suitable jobs in career-oriented social networking sites.” In: pp. 1–6. doi:

10.1109/ICODSE.2016.7936143.

Alabdulkareem, Ahmad, Morgan R. Frank, Lijun Sun, Bedoor AlShebli, César Hidalgo,

and Iyad Rahwan (2018). “Unpacking the polarization of workplace skills.” In: Science

Advances 4.7, eaao6030. doi: 10.1126/sciadv.aao6030.

Almalis, Nikolaos D., George A. Tsihrintzis, and Nikolaos Karagiannis (July 2014). “A

content based approach for recommending personnel for job positions.” In: IEEE,

pp. 45–49. isbn: 978-1-4799-6171-9. doi: 10.1109/IISA.2014.6878720. url: http:

//ieeexplore.ieee.org/document/6878720/.

Almalis, Nikolaos D., George A. Tsihrintzis, Nikolaos Karagiannis, and Aggeliki D.

Strati (2016). “FoDRA - A new content-based job recommendation algorithm for job

seeking and recruiting.” In: IISA 2015 - 6th International Conference on Information,

Intelligence, Systems and Applications. doi: 10.1109/IISA.2015.7388018.

Balog, Krisztian, Yi Fang, Maarten de Rijke, Pavel Serdyukov, and Luo Si (2012).

“Expertise Retrieval.” In: Foundations and Trends® in Information Retrieval 6.2–3, pp. 127–

256. issn: 1554-0669. doi: 10.1561/1500000024. url: http://dx.doi.org/10.1561/

1500000024.

227

https://arxiv.org/abs/1608.04207
https://arxiv.org/abs/1803.08375
https://doi.org/10.1007/3-540-44503-x_27
https://doi.org/10.1109/ICODSE.2016.7936143
https://doi.org/10.1126/sciadv.aao6030
https://doi.org/10.1109/IISA.2014.6878720
http://ieeexplore.ieee.org/document/6878720/
http://ieeexplore.ieee.org/document/6878720/
https://doi.org/10.1109/IISA.2015.7388018
https://doi.org/10.1561/1500000024
http://dx.doi.org/10.1561/1500000024
http://dx.doi.org/10.1561/1500000024

228 bibliography

Bañeres, David and Jordi Conesa (2017). “A Life-long learning recommender system to

Promote Employability.” In: International Journal of Emerging Technologies in Learning

12 (6), pp. 77–93. issn: 18630383. doi: 10.3991/ijet.v12i06.7166.

Bansal, Shivam, Aman Srivastava, and Anuja Arora (Jan. 2017). “Topic Modeling Driven

Content Based Jobs Recommendation Engine for Recruitment Industry.” In: Procedia

Computer Science 122, pp. 865–872. issn: 1877-0509. doi: 10.1016/J.PROCS.2017.11.

448.

Bastian, Mathieu, Matthew Hayes, William Vaughan, Sam Shah, Peter Skomoroch, and

Hyungjin Kim (2014). “Linked in skills: Large-scale topic extraction and inference.” In:

RecSys 2014 - Proceedings of the 8th ACM Conference on Recommender Systems (October),

pp. 1–8. doi: 10.1145/2645710.2645729.

Bennett, James and Stan Lanning (2007). “The Netflix Prize.” In: KDD Cup and Workshop,

pp. 3–6. issn: 1554351X.

Bogen, Miranda and Aaron Rieke (2018). “Help Wanted: An Examination of Hiring

Algorithms, Equity, and Bias.” In: Upturn (December), pp. 40–73.

Bojanowski, Piotr, Edouard Grave, Armand Joulin, and Tomas Mikolov (2017).

“Enriching Word Vectors with Subword Information.” In: Transactions of the

Association for Computational Linguistics 5, pp. 135–146. issn: 2307-387X. doi:

10.1162/tacl_a_00051.

Bowman, Samuel R., Gabor Angeli, Christopher Potts, and Christopher D. Manning

(2015). “A large annotated corpus for learning natural language inference.” In:

Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing

(EMNLP). Association for Computational Linguistics.

Burke, Robin (2002). “Hybrid Recommender Systems: Survey and Experiments.” In:

User Modeling and User-Adapted Interaction 12. issn: 02545330. doi: 10 . 1023 / A :

1021240730564.

Chefer, Hila, Shir Gur, and Lior Wolf (2021). Generic Attention-model Explainability for

Interpreting Bi-Modal and Encoder-Decoder Transformers. arXiv: 2103.15679 [cs.CV].

Choudhary, Savita, Siddanth Koul, Shridhar Mishra, Anunay Thakur, and Rishabh Jain

(2016). “Collaborative job prediction based on Naïve Bayes Classifier using python

platform.” In: 2016 International Conference on Computation System and Information

Technology for Sustainable Solutions, CSITSS 2016, pp. 302–306. doi: 10.1109/CSITSS.

2016.7779375.

https://doi.org/10.3991/ijet.v12i06.7166
https://doi.org/10.1016/J.PROCS.2017.11.448
https://doi.org/10.1016/J.PROCS.2017.11.448
https://doi.org/10.1145/2645710.2645729
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1023/A:1021240730564
https://doi.org/10.1023/A:1021240730564
https://arxiv.org/abs/2103.15679
https://doi.org/10.1109/CSITSS.2016.7779375
https://doi.org/10.1109/CSITSS.2016.7779375

bibliography 229

Commission, European, Social Affairs Directorate-General for Employment, and Inclu-

sion (2019). ESCO handbook – European skills, competences, qualifications and occupations.

Publications Office. doi: doi/10.2767/451182.

Covington, Paul, Jay Adams, and Emre Sargin (2016). “Deep neural networks for

youtube recommendations.” In: Proceedings of the 10th ACM conference on recommender

systems, pp. 191–198.

Cunningham, Pádraig and Sarah Jane Delany (2020). “k-Nearest neighbour classifiers

2nd edition (with python examples).” In: arXiv (1), pp. 1–22. issn: 23318422.

Dastin, Jeffrey (Oct. 11, 2018). “Amazon scraps secret AI recruiting tool that showed bias

against women.” In: Thomson Reuters. url: https://www.reuters.com/article/us-

amazon-com-jobs-automation-insight-idUSKCN1MK08G (visited on 09/06/2023).

Deleger, Louise, Q. Li, Todd Lingren, Megan Kaiser, Katalin Molnar, Laura Stouten-

borough, Michal Kouril, Keith Marsolo, and Imre Solti (2012). “Building gold stan-

dard corpora for medical natural language processing tasks.” In: AMIA ... Annual

Symposium proceedings / AMIA Symposium. AMIA Symposium 2012, pp. 144–153. issn:

1942597X.

Devlin, Jacob, Ming Wei Chang, Kenton Lee, and Kristina Toutanova (2019). “BERT:

Pre-training of deep bidirectional transformers for language understanding.” In:

NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies - Proceedings of the Conference 1

(Mlm), pp. 4171–4186.

Dhameliya, Juhi and Nikita Desai (2019). “Job Recommender Systems: A Survey.” In:

2019 Innovations in Power and Advanced Computing Technologies, i-PACT 2019, pp. 1–5.

doi: 10.1109/i-PACT44901.2019.8960231.

Fareri, S., G. Fantoni, F. Chiarello, E. Coli, and A. Binda (2020). “Estimating Industry

4.0 impact on job profiles and skills using text mining.” In: Computers in Industry 118,

p. 103222. issn: 0166-3615. doi: https://doi.org/10.1016/j.compind.2020.103222.

Fournier, Quentin, Gaé tan Marceau Caron, and Daniel Aloise (July 2023). “A Practical

Survey on Faster and Lighter Transformers.” In: ACM Computing Surveys 55.14s,

pp. 1–40. doi: 10.1145/3586074. url: https://doi.org/10.11452F3586074.

Freedman, David, Robert Pisani, and Roger Purves (2007). “Statistics (international

student edition).” In: Pisani, R. Purves, 4th edn. WW Norton & Company, New York.

https://doi.org/doi/10.2767/451182
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G
https://doi.org/10.1109/i-PACT44901.2019.8960231
https://doi.org/https://doi.org/10.1016/j.compind.2020.103222
https://doi.org/10.1145/3586074
https://doi.org/10.11452F3586074

230 bibliography

Galron, Daniel A., Yuri M. Brovman, Jin Chung, Michal Wieja, and Paul Wang (2018).

“Deep Item-based Collaborative Filtering for Sparse Implicit Feedback.” In: CoRR

abs/1812.10546. arXiv: 1812.10546. url: http://arxiv.org/abs/1812.10546.

Gebru, Timnit, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan,

Hanna Wallach, Hal Daumé, and Kate Crawford (2018). “Datasheets for Datasets.”

In: issn: 2331-8422. url: http://arxiv.org/abs/1803.09010.

Gershgorn, Dave (Oct. 22, 2018). “Companies are on the hook if their hiring algorithms

are biased.” In: Quartz. url: https://qz.com/1427621/companies-are-on-the-

hook-if-their-hiring-algorithms-are-biased (visited on 09/06/2023).

Gholamy, Afshin, Vladik Kreinovich, and Olga Kosheleva (2018). “Why 70/30 or 80/20

Relation Between Training and Testing Sets: A Pedagogical Explanation.” In: url:

https://api.semanticscholar.org/CorpusID:7467506.

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep Learning. Adaptive computation

and machine learning. MIT Press. isbn: 9780262035613. url: https://books.google.

co.in/books?id=Np9SDQAAQBAJ.

Gugnani, Akshay, Vinay Kumar Reddy Kasireddy, and Karthikeyan Ponnalagu (2019).

“Generating unified candidate skill graph for career path recommendation.” In: IEEE

International Conference on Data Mining Workshops, ICDMW 2018-Novem, pp. 328–333.

issn: 23759259. doi: 10.1109/ICDMW.2018.00054.

Gugnani, Akshay and Hemant Misra (Apr. 2020). “Implicit Skills Extraction Using

Document Embedding and Its Use in Job Recommendation.” In: Proceedings of the

AAAI Conference on Artificial Intelligence 34 (08), pp. 13286–13293. issn: 2374-3468.

doi: 10.1609/aaai.v34i08.7038. url: https://aaai.org/ojs/index.php/AAAI/

article/view/7038.

Hawkes, Alan G. (1971). “Spectra of Some Self-Exciting and Mutually Exciting Point

Processes.” In: Biometrika 58.1, pp. 83–90. issn: 00063444. url: http://www.jstor.

org/stable/2334319.

Hayes, Andrew F. and Klaus Krippendorff (2007). “Answering the Call for a Standard

Reliability Measure for Coding Data.” In: Communication Methods and Measures 1.1,

pp. 77–89. doi: 10.1080/19312450709336664.

Hoang, Phuong, Thomas Mahoney, Faizan Javed, and Matt McNair (2018). “Large-scale

occupational skills normalization for online recruitment.” In: AI Magazine 39 (1),

pp. 5–14. issn: 07384602. doi: 10.1609/aimag.v39i1.2775.

https://arxiv.org/abs/1812.10546
http://arxiv.org/abs/1812.10546
http://arxiv.org/abs/1803.09010
https://qz.com/1427621/companies-are-on-the-hook-if-their-hiring-algorithms-are-biased
https://qz.com/1427621/companies-are-on-the-hook-if-their-hiring-algorithms-are-biased
https://api.semanticscholar.org/CorpusID:7467506
https://books.google.co.in/books?id=Np9SDQAAQBAJ
https://books.google.co.in/books?id=Np9SDQAAQBAJ
https://doi.org/10.1109/ICDMW.2018.00054
https://doi.org/10.1609/aaai.v34i08.7038
https://aaai.org/ojs/index.php/AAAI/article/view/7038
https://aaai.org/ojs/index.php/AAAI/article/view/7038
http://www.jstor.org/stable/2334319
http://www.jstor.org/stable/2334319
https://doi.org/10.1080/19312450709336664
https://doi.org/10.1609/aimag.v39i1.2775

bibliography 231

Hovy, Dirk, Taylor Berg-Kirkpatrick, Ashish Vaswani, and Eduard Hovy (2013). “Learn-

ing Whom to Trust with MACE.” In: Proceedings of the 2013 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language Tech-

nologies, pp. 1120–1130. issn: 00021369.

Hripcsak, George and Adam S. Rothschild (2005). “Agreement, the F-measure, and

reliability in information retrieval.” In: Journal of the American Medical Informatics

Association 12 (3), pp. 296–298. issn: 10675027. doi: 10.1197/jamia.M1733.

Huang, Zhiheng, Wei Xu, and Kai Yu (2015). Bidirectional LSTM-CRF Models for Sequence

Tagging. arXiv: 1508.01991 [cs.CL].

Iacovou, Charalambos L and Vermont Ronald L Thompson (2002). “Job Selection

Preferences Of Business Students.” In: Journal of Applied Business Research 20 (1),

pp. 87–98.

Jiang, Ming, Jennifer D’Souza, Sören Auer, and J. Stephen Downie (2020). Improving

Scholarly Knowledge Representation: Evaluating BERT-based Models for Scientific Relation

Classification. arXiv: 2004.06153 [cs.DL].

José-García, Adán, Alison Sneyd, Ana Melro, Ollagnier Anaïs, Georgina Tarling,

Haiyang Zhang, Mark Stevenson, Richard Everson, and Rudy Arthur (Dec. 2022).

“C3-IoC: A Career Guidance System for Assessing Student Skills using Machine

Learning and Network Visualisation.” In: International Journal of Artificial Intelligence

in Education. doi: 10.1007/s40593-022-00317-y.

Kanders, K, J Djumalieva, C Sleeman, and J Orlik (2020). Mapping Career Causeways:

Supporting Workers at Risk. Tech. rep. Nesta.

Karakatsanis, Ioannis, Wala AlKhader, Frank MacCrory, Armin Alibasic, Mohammad

Atif Omar, Zeyar Aung, and Wei Lee Woon (Apr. 2017). “Data mining approach to

monitoring the requirements of the job market: A case study.” In: Information Systems

65, pp. 1–6. issn: 03064379. doi: 10.1016/j.is.2016.10.009.

Khobreh, Marjan, Fazel Ansari, Madjid Fathi, Reka Vas, Stefan T. Mol, Hannah A.

Berkers, and Krisztian Varga (2016). An Ontology-Based Approach for the Semantic

Representation of Job Knowledge. doi: 10.1109/TETC.2015.2449662.

Kivimäki, Ilkka, Alexander Panchenko, Adrien Dessy, Dries Verdegem, Pascal Francq,

Cédrick Fairon, Hugues Bersini, and Marco Saerens (2020). “A graph-based approach

to skill extraction from text.” In: Proceedings of TextGraphs@EMNLP 2013: The 8th

Workshop on Graph-Based Methods for Natural Language Processing (October), pp. 79–87.

https://doi.org/10.1197/jamia.M1733
https://arxiv.org/abs/1508.01991
https://arxiv.org/abs/2004.06153
https://doi.org/10.1007/s40593-022-00317-y
https://doi.org/10.1016/j.is.2016.10.009
https://doi.org/10.1109/TETC.2015.2449662

232 bibliography

Kokhlikyan, Narine et al. (2020). Captum: A unified and generic model interpretability library

for PyTorch. arXiv: 2009.07896 [cs.LG].

Kolen, John F. and Stefan C. Kremer (2001). “Gradient Flow in Recurrent Nets: The

Difficulty of Learning LongTerm Dependencies.” In: A Field Guide to Dynamical

Recurrent Networks, pp. 237–243. doi: 10.1109/9780470544037.ch14.

Koren, Yehuda, Robert Bell, and Chris Volinsky (2009). “Matrix Factorization Techniques

for Recommender Systems.” In: IEEE COMPUTER. doi: 10.1.1.147.8295.

Lafferty, John, Andrew Mccallum, and Fernando Pereira (1999). “Conditional Random

Fields : Probabilistic Models for Segmenting and Labeling Sequence Data Abstract.”

In: 2001 (June), pp. 282–289.

Lan, Zhenzhong, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma,

and Radu Soricut (2020). ALBERT: A Lite BERT for Self-supervised Learning of Language

Representations. arXiv: 1909.11942 [cs.CL].

Landis, J. Richard and Gary G. Koch (1977). “The Measurement of Observer Agreement

for Categorical Data.” In: Biometrics 33 (1), p. 159. issn: 0006341X. doi: 10.2307/

2529310.

Le, Quoc and Tomas Mikolov (2014). “Distributed representations of sentences and doc-

uments.” In: 31st International Conference on Machine Learning, ICML 2014 4, pp. 2931–

2939.

LeCun, Yann, Y. Bengio, and Geoffrey Hinton (May 2015). “Deep Learning.” In: Nature

521, pp. 436–44. doi: 10.1038/nature14539.

Lee, Danielle H. and Peter Brusilovsky (2007). “Fighting information overflow with

personalized comprehensive information access: A proactive job recommender.” In:

3rd International Conference on Autonomic and Autonomous Systems, ICAS’07 (May 2014).

doi: 10.1109/CONIELECOMP.2007.76.

Levesque, Hector J., Ernest Davis, and Leora Morgenstern (2012). “The Winograd

Schema Challenge.” In: Proceedings of the Thirteenth International Conference on Principles

of Knowledge Representation and Reasoning. KR’12. Rome, Italy: AAAI Press, pp. 552–561.

isbn: 9781577355601.

Li, Nan, Bo Kang, and Tijl De Bie (2023). “SkillGPT: a RESTful API service for skill

extraction and standardization using a Large Language Model.” In: arXiv preprint

arXiv:2304.11060.

https://arxiv.org/abs/2009.07896
https://doi.org/10.1109/9780470544037.ch14
https://doi.org/10.1.1.147.8295
https://arxiv.org/abs/1909.11942
https://doi.org/10.2307/2529310
https://doi.org/10.2307/2529310
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/CONIELECOMP.2007.76

bibliography 233

Li, Qian, Hao Peng, Jianxin Li, Congying Xia, Renyu Yang, Lichao Sun, Philip Yu, and

Lifang He (Apr. 2022). “A Survey on Text Classification: From Traditional to Deep

Learning.” In: ACM Transactions on Intelligent Systems and Technology 13, pp. 1–41. doi:

10.1145/3495162.

Linden, G., B. Smith, and J. York (Jan. 2003). “Amazon.com recommendations: item-

to-item collaborative filtering.” In: IEEE Internet Computing 7 (1), pp. 76–80. issn:

1089-7801. doi: 10.1109/MIC.2003.1167344. url: http://ieeexplore.ieee.org/

document/1167344/.

Liu, Junhua, Yung Chuen Ng, Zitong Gui, Trisha Singhal, Lucienne T M Blessing, Kristin

L Wood, and Kwan Hui Lim (2022). “Title2Vec: a contextual job title embedding for

occupational named entity recognition and other applications.” In: doi: 10.1186/

s40537-022-00649-5. url: https://doi.org/10.1186/s40537-022-00649-5.

Liu, Junhua, Yung Chuen Ng, Kristin L. Wood, and Kwan Hui Lim (2020). “IPOD:

A large-scale industrial and professional occupation dataset.” In: Proceedings of the

ACM Conference on Computer Supported Cooperative Work, CSCW, pp. 323–328. doi:

10.1145/3406865.3418329.

Luoma, Jouni and Sampo Pyysalo (2020). “Exploring Cross-sentence Contexts for

Named Entity Recognition with BERT.” In.

Lyu, Wenjing and Jin Liu (2021). “Soft skills, hard skills: What matters most? Evidence

from job postings.” In: Applied Energy 300, p. 117307. issn: 0306-2619. doi: https:

//doi.org/10.1016/j.apenergy.2021.117307.

MacCartney, Bill and Christopher D. Manning (Aug. 2008). “Modeling Semantic Con-

tainment and Exclusion in Natural Language Inference.” In: Proceedings of the 22nd

International Conference on Computational Linguistics (Coling 2008). Ed. by Donia Scott

and Hans Uszkoreit. Manchester, UK: Coling 2008 Organizing Committee, pp. 521–

528. url: https://aclanthology.org/C08-1066.

Maheshwari, Sumit, Sainani Abhishek, and Polepalli Krishna Reddy (2010). “An Ap-

proach to Extract Special Skills to Improve the Performance of Resume Selection.”

In: Conference: Databases in Networked Information Systems, 6th International Workshop,

DNIS 2010 (March 2010). issn: 03029743. doi: 10.1007/978-3-642-12038-1.

Maheshwary, Saket and Hemant Misra (2018). “Matching Resumes to Jobs via Deep

Siamese Network.” In: pp. 87–88. doi: 10.1145/3184558.3186942.

https://doi.org/10.1145/3495162
https://doi.org/10.1109/MIC.2003.1167344
http://ieeexplore.ieee.org/document/1167344/
http://ieeexplore.ieee.org/document/1167344/
https://doi.org/10.1186/s40537-022-00649-5
https://doi.org/10.1186/s40537-022-00649-5
https://doi.org/10.1186/s40537-022-00649-5
https://doi.org/10.1145/3406865.3418329
https://doi.org/https://doi.org/10.1016/j.apenergy.2021.117307
https://doi.org/https://doi.org/10.1016/j.apenergy.2021.117307
https://aclanthology.org/C08-1066
https://doi.org/10.1007/978-3-642-12038-1
https://doi.org/10.1145/3184558.3186942

234 bibliography

Malherbe, Emmanuel, Mario Cataldi, and Andrea Ballatore (2015). “Bringing Order to

the Job Market : Efficient Job Offer Categorization in E-Recruitment.” In: (Sirip).

McCullagh, P. and J.A. Nelder (1989). Generalized Linear Models, Second Edition. Chapman

and Hall/CRC Monographs on Statistics and Applied Probability Series. Chapman

& Hall. isbn: 9780412317606.

McInnes, Leland, John Healy, and James Melville (2020). “UMAP: Uniform Manifold

Approximation and Projection for Dimension Reduction.” In: arXiv: 1802.03426

[stat.ML].

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean (2013). “Efficient estimation

of word representations in vector space.” In: 1st International Conference on Learning

Representations, ICLR 2013 - Workshop Track Proceedings, pp. 1–12.

Mohamed, Asmaa, Ali Eldesoky, and Hesham Ali (Feb. 2015). “Exploiting Semantic

Annotations and Q-Learning for Constructing an Efficient Hierarchy/Graph Texts

Organization.” In: TheScientificWorldJournal 2015, p. 136172. doi: 10.1155/2015/

136172.

Mooney, Raymond J. and Loriene Roy (2000). “Content-based book recommending

using learning for text categorization.” In: ACM Press, pp. 195–204. isbn: 158113231X.

doi: 10.1145/336597.336662. url: http://portal.acm.org/citation.cfm?doid=

336597.336662.

Nagarhalli, Tatwadarshi P., Vinod Vaze, and N. K. Rana (2021). “Impact of Machine

Learning in Natural Language Processing: A Review.” In: 2021 Third International

Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV),

pp. 1529–1534. doi: 10.1109/ICICV50876.2021.9388380.

Naik, Varsha, Purvang Patel, and Rajeswari Kannan (2023). “Legal Entity Extraction:

An Experimental Study of NER Approach for Legal Documents.” In: International

Journal of Advanced Computer Science and Applications 14.3.

Nigam, Amber, Aakash Roy, Hartaran Singh, and Aabhas Tonwer (2019). “Job recom-

mendation through progression of job selection.” In: arXiv, pp. 212–216.

Nwankpa, Chigozie, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall (2018).

Activation Functions: Comparison of trends in Practice and Research for Deep Learning.

arXiv: 1811.03378 [cs.LG].

https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1802.03426
https://doi.org/10.1155/2015/136172
https://doi.org/10.1155/2015/136172
https://doi.org/10.1145/336597.336662
http://portal.acm.org/citation.cfm?doid=336597.336662
http://portal.acm.org/citation.cfm?doid=336597.336662
https://doi.org/10.1109/ICICV50876.2021.9388380
https://arxiv.org/abs/1811.03378

bibliography 235

Al-Otaibi, Shaha T. and Mourad Ykhlef (2012). “A survey of job recommender systems.”

In: International Journal of the Physical Sciences 7 (29). issn: 1992-1950. doi: 10.5897/

ijps12.482.

Özcan, Gözde and Sule Günduz Öguducu (2017). “Applying different classification

techniques in reciprocal job recommender system for considering job candidate

preferences.” In: 2016 11th International Conference for Internet Technology and Secured

Transactions, ICITST 2016, pp. 235–240. doi: 10.1109/ICITST.2016.7856703.

Pacuk, Andrzej, Piotr Sankowski, Karol Węgrzycki, Adam Witkowski, and

Piotr Wygocki (Sept. 2016). “RecSys Challenge 2016.” In: Proceedings of the

Recommender Systems Challenge. ACM. doi: 10.1145/2987538.2987544.

Parhi, Prateek, Ashish Pal, and Manuj Aggarwal (2017). “A survey of methods of

collaborative filtering techniques.” In: Proceedings of the International Conference on

Inventive Systems and Control, ICISC 2017, pp. 1–7. doi: 10.1109/ICISC.2017.8068603.

Parikh, Ankur P., Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit (2016). A De-

composable Attention Model for Natural Language Inference. arXiv: 1606.01933 [cs.CL].

Peer, Eyal, Joachim Vosgerau, and Alessandro Acquisti (Dec. 2014). “Reputation as

a sufficient condition for data quality on Amazon Mechanical Turk.” In: Behavior

Research Methods 46 (4), pp. 1023–1031. issn: 15543528. doi: 10.3758/s13428-013-

0434-y.

Pennington, Jeffrey, Richard Socher, and Christopher D Manning (2014). GloVe: Global

Vectors for Word Representation.

Petre, A., C. Osoian, and M. Zaharie (2016). Applicants’ Perceptions On Online Recruitment.

English. Copyright - Copyright Babes Bolyai University, Faculty of Economics and

Business Administration 2016.

Piróg, Danuta and Adam Hibszer (2022). “Do employers really require experience?

An analysis of online job adverts and the implications for HE policy.” In: Studies in

Higher Education 47.11, pp. 2138–2160. doi: 10.1080/03075079.2021.2020747.

Poll, Glassdoor Harris (2020). 30+ HR and Recruiting Stats for 2020. url: https://

www.glassdoor.co.uk/employers/resources/40-hr-and-recruiting-stats-for-

2020/.

Qin, Chuan, Hengshu Zhu, Tong Xu, Chen Zhu, Chao Ma, Enhong Chen, and Hui

Xiong (Feb. 2020). “An Enhanced Neural Network Approach to Person-Job Fit in

https://doi.org/10.5897/ijps12.482
https://doi.org/10.5897/ijps12.482
https://doi.org/10.1109/ICITST.2016.7856703
https://doi.org/10.1145/2987538.2987544
https://doi.org/10.1109/ICISC.2017.8068603
https://arxiv.org/abs/1606.01933
https://doi.org/10.3758/s13428-013-0434-y
https://doi.org/10.3758/s13428-013-0434-y
https://doi.org/10.1080/03075079.2021.2020747
https://www.glassdoor.co.uk/employers/resources/40-hr-and-recruiting-stats-for-2020/
https://www.glassdoor.co.uk/employers/resources/40-hr-and-recruiting-stats-for-2020/
https://www.glassdoor.co.uk/employers/resources/40-hr-and-recruiting-stats-for-2020/

236 bibliography

Talent Recruitment.” In: ACM Transactions on Information Systems 38 (2). issn: 15582868.

doi: 10.1145/3376927.

Quillian, Lincoln, Devah Pager, Ole Hexel, and Arnfinn H. Midtbøen (Oct. 2017). “Meta-

analysis of field experiments shows no change in racial discrimination in hiring over

time.” In: Proceedings of the National Academy of Sciences of the United States of America

114 (41), pp. 10870–10875. issn: 10916490. doi: 10.1073/pnas.1706255114.

Radford, Alec and Karthik Narasimhan (2018). “Improving Language Understanding

by Generative Pre-Training.” In: url: https://api.semanticscholar.org/CorpusID:

49313245.

Rafter, Rachael, Keith Bradley, and Barry Smyth (2000). “Personalised Retrieval for On-

line Recruitment Services.” In: Proceedings of the 22nd Annual Colloquium on Informa-

tion Retrieval (IRSG 2000) (April 2000), pp. 151–163. url: http://citeseerx.ist.psu.

edu/viewdoc/download?doi=10.1.1.121.1619&rep=rep1&type=pdf.

Ramezani, Maryam, Lawrence Bergman, Rich Thompson, Robin Burke, and Bamshad

Mobasher (2008). “Selecting and applying recommendation technology.” In: IUI-08

Workshop on Recommendation and Collaboration (ReColl2008), pp. 1–9. url: http://maya.

cs.depaul.edu/~mobasher/papers/Recommender-technology-ReColl08.pdf.

Ratinov, Lev and Dan Roth (2009). “Design Challenges and Misconceptions in NER.”

In: Proceedings of the Thirteenth Conference on Computational Natural Language Learning

(CoNLL-2009) (June), pp. 1–66. url: http://www.usaidbest.org/docs/Burundi%5C_

2013%5C_Report%5C_Final%5C_508.pdf.

Reimers, Nils and Iryna Gurevych (Nov. 2019). “Sentence-BERT: Sentence Embeddings

using Siamese BERT-Networks.” In: Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing. Association for Computational Linguistics.

url: http://arxiv.org/abs/1908.10084.

Reinhart, Alex (2018). “A Review of Self-Exciting Spatio-Temporal Point Processes

and Their Applications.” In: Statistical Science 33.3. doi: 10.1214/17-sts629. url:

https://doi.org/10.1214%2F17-sts629.

Ricci, Francesco, Lior Rokach, Shapira Bracha, and Paul B. Kantor (2010). Recommender

Systems Handbook. 1st. Springer-Verlag. isbn: 0387858199. doi: 10.5555/1941884.

Rodrigues, Filipe and Francisco Pereira (Sept. 2017). “Deep learning from crowds.” In:

(July). url: http://arxiv.org/abs/1709.01779.

https://doi.org/10.1145/3376927
https://doi.org/10.1073/pnas.1706255114
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.1619&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.1619&rep=rep1&type=pdf
http://maya.cs.depaul.edu/~mobasher/papers/Recommender-technology-ReColl08.pdf
http://maya.cs.depaul.edu/~mobasher/papers/Recommender-technology-ReColl08.pdf
http://www.usaidbest.org/docs/Burundi%5C_2013%5C_Report%5C_Final%5C_508.pdf
http://www.usaidbest.org/docs/Burundi%5C_2013%5C_Report%5C_Final%5C_508.pdf
http://arxiv.org/abs/1908.10084
https://doi.org/10.1214/17-sts629
https://doi.org/10.1214%2F17-sts629
https://doi.org/10.5555/1941884
http://arxiv.org/abs/1709.01779

bibliography 237

Sabou, Marta, Kalina Bontcheva, Leon Derczynski, and Arno Scharl (2014). “Corpus

annotation through crowdsourcing: Towards best practice guidelines.” In: Proceedings

of the 9th International Conference on Language Resources and Evaluation, LREC 2014

(2010), pp. 859–866.

Sang, Erik F. Tjong Kim and Fien De Meulder (2003). “Introduction to the CoNLL-2003

Shared Task: Language-Independent Named Entity Recognition.” In: Proceedings of

the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, pp. 142–147.

url: https://aclanthology.org/W03-0419.

Sanh, Victor, Lysandre Debut, Julien Chaumond, and Thomas Wolf (2020). DistilBERT,

a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv: 1910.01108 [cs.CL].

Şapcı, Ali Osman Berk, Hasan Kemik, Reyyan Yeniterzi, and Oznur Tastan (June 2023).

“Focusing on potential named entities during active label acquisition.” In: Natural

Language Engineering, pp. 1–23. issn: 1351-3249. doi: 10.1017/S1351324923000165.

url: https://www.cambridge.org/core/product/identifier/S1351324923000165/

type/journal_article.

Saranya, A. and R. Subhashini (2023). “A systematic review of Explainable Artificial

Intelligence models and applications: Recent developments and future trends.” In:

Decision Analytics Journal 7, p. 100230. issn: 2772-6622. doi: https://doi.org/10.

1016/j.dajour.2023.100230. url: https://www.sciencedirect.com/science/

article/pii/S277266222300070X.

Sarwar, Badrul, George Karypis, Joseph Konstan, and John Riedl (Aug. 2000). “Applica-

tion of Dimensionality Reduction in Recommender System – A Case Study.” In.

Schmitt, Thomas, Philippe Caillou, and Michèle Sebag (Sept. 2016). “Matching Jobs and

Resumes: a Deep Collaborative Filtering Task.” In: GCAI 2016 - 2nd Global Conference

on Artificial Intelligence. Vol. 41. GCAI 2016. 2nd Global Conference on Artificial

Intelligence. Berlin, Germany. url: https://hal.inria.fr/hal-01378589.

Shanno, D F (1985). “An example of numerical nonconvergence of a variable-metric

method.” In: Journal of optimization theory and applications 46.1, pp. 87–94. issn: 0022-

3239.

Shi, Baoxu, Jaewon Yang, Feng Guo, and Qi He (Aug. 2020). “Salience and Market-

aware Skill Extraction for Job Targeting.” In: Association for Computing Machinery,

pp. 2871–2879. isbn: 9781450379984. doi: 10.1145/3394486.3403338.

https://aclanthology.org/W03-0419
https://arxiv.org/abs/1910.01108
https://doi.org/10.1017/S1351324923000165
https://www.cambridge.org/core/product/identifier/S1351324923000165/type/journal_article
https://www.cambridge.org/core/product/identifier/S1351324923000165/type/journal_article
https://doi.org/https://doi.org/10.1016/j.dajour.2023.100230
https://doi.org/https://doi.org/10.1016/j.dajour.2023.100230
https://www.sciencedirect.com/science/article/pii/S277266222300070X
https://www.sciencedirect.com/science/article/pii/S277266222300070X
https://hal.inria.fr/hal-01378589
https://doi.org/10.1145/3394486.3403338

238 bibliography

Shirky, Clay (2008). It’s Not Information Overload. It’s Filter Failure. url: https://youtu.

be/LabqeJEOQyI.

Singhal, Amit (2001). “Modern Information Retrieval: A Brief Overview.” In: IEEE Data

Engineering Bulletin 24. issn: 1461-3557.

Siting, Zheng, Hong Wenxing, Zhang Ning, and Yang Fan (July 2012). “Job

recommender systems: A survey.” In: IEEE, pp. 920–924. isbn: 978-1-4673-0242-5. doi:

10.1109/ICCSE.2012.6295216.

Smith, Ellery, Andreas Weiler, and Martin Braschler (2021). “Skill Extraction for

Domain-Specific Text Retrieval in a Job-Matching Platform.” In: Experimental IR

Meets Multilinguality, Multimodality, and Interaction. Ed. by K. Selçuk Candan,

Bogdan Ionescu, Lorraine Goeuriot, Birger Larsen, Henning Müller, Alexis Joly,

Maria Maistro, Florina Piroi, Guglielmo Faggioli, and Nicola Ferro. Cham: Springer

International Publishing, pp. 116–128. isbn: 978-3-030-85251-1.

Sparck Jones, Karen (1988). “A Statistical Interpretation of Term Specificity and Its Ap-

plication in Retrieval.” In: Document Retrieval Systems. GBR: Taylor Graham Publish-

ing, pp. 132–142. isbn: 0947568212.

Storks, Shane, Qiaozi Gao, and Joyce Y. Chai (2020). Recent Advances in Natural

Language Inference: A Survey of Benchmarks, Resources, and Approaches. arXiv:

1904.01172 [cs.CL].

Toutanova, Kristina, Dan Klein, Christopher D. Manning, and Yoram Singer (Oct. 2003).

“Feature-rich part-of-speech tagging with a cyclic dependency network.” In: vol. 1.

Association for Computational Linguistics, pp. 173–180. doi: 10.3115/1073445.

1073478.

Tripathi, Pooja, Ruchi Agarwal, and Tanushi Vashishtha (2016). “Review of job recom-

mender system using big data analytics.” In: Proceedings of the 10th INDIACom; 2016

3rd International Conference on Computing for Sustainable Global Development, INDIA-

Com 2016, pp. 3773–3777.

Turney, Peter D. and Patrick Pantel (2010). “From frequency to meaning: Vector space

models of semantics.” In: Journal of Artificial Intelligence Research 37, pp. 141–188. issn:

10769757. doi: 10.1613/jair.2934.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Łukasz Kaiser, and Illia Polosukhin (2017). “Attention is all you need.” In:

https://youtu.be/LabqeJEOQyI
https://youtu.be/LabqeJEOQyI
https://doi.org/10.1109/ICCSE.2012.6295216
https://arxiv.org/abs/1904.01172
https://doi.org/10.3115/1073445.1073478
https://doi.org/10.3115/1073445.1073478
https://doi.org/10.1613/jair.2934

bibliography 239

Advances in Neural Information Processing Systems 2017-Decem (Nips), pp. 5999–6009.

issn: 10495258.

Wall, Michael E., Andreas Rechtsteiner, and Luis M. Rocha (2003). Singular Value

Decomposition and Principal Component Analysis. Kluwer: Norwell, MA, pp. 91–109.

Wang, Alex, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel

Bowman (Nov. 2018). “GLUE: A Multi-Task Benchmark and Analysis Platform for

Natural Language Understanding.” In: Proceedings of the 2018 EMNLP Workshop

BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. Brussels, Belgium:

Association for Computational Linguistics, pp. 353–355. doi: 10.18653/v1/W18-5446.

url: https://aclanthology.org/W18-5446.

Wang, Xinyu, Yong Jiang, Nguyen Bach, Tao Wang, Zhongqiang Huang, Fei Huang,

and Kewei Tu (2021). “Improving Named Entity Recognition by External Context

Retrieving and Cooperative Learning.” In: url: https://github.com/Alibaba-

NLP/CLNER..

Warstadt, Alex, Amanpreet Singh, and Samuel R Bowman (2018). “Neural Network

Acceptability Judgments.” In: arXiv preprint arXiv:1805.12471.

Wilson, D. Randall and Tony R. Martinez (2003). “The general inefficiency of batch

training for gradient descent learning.” In: Neural Networks 16 (10), pp. 1429–1451.

issn: 08936080. doi: 10.1016/S0893-6080(03)00138-2.

Xiao, Wenming, Xiao Xu, Kang Liang, Junkang Mao, and Jun Wang (2016). “Job Recom-

mendation with Hawkes Process: An Effective Solution for RecSys Challenge 2016.”

In: Proceedings of the Recommender Systems Challenge. RecSys Challenge ’16. Boston,

Massachusetts, USA: Association for Computing Machinery. isbn: 9781450348010.

doi: 10.1145/2987538.2987543. url: https://doi.org/10.1145/2987538.2987543.

Yadav, Vikas and Steven Bethard (2019). “A Survey on Recent Advances in Named

Entity Recognition from Deep Learning models.” In: arXiv: 1910.11470 [cs.CL].

Yang, Runqi, Jianhai Zhang, Xing Gao, Feng Ji, and Haiqing Chen (2019). “Simple

and Effective Text Matching with Richer Alignment Features.” In: Association for

Computational Linguistics (ACL).

Yang, Shuo, Mohammed Korayem, Khalifeh AlJadda, Trey Grainger, and

Sriraam Natarajan (2017). “Combining content-based and collaborative filtering for

job recommendation system: A cost-sensitive Statistical Relational Learning

https://doi.org/10.18653/v1/W18-5446
https://aclanthology.org/W18-5446
https://github.com/Alibaba-NLP/CLNER.
https://github.com/Alibaba-NLP/CLNER.
https://doi.org/10.1016/S0893-6080(03)00138-2
https://doi.org/10.1145/2987538.2987543
https://doi.org/10.1145/2987538.2987543
https://arxiv.org/abs/1910.11470

240 bibliography

approach.” In: Knowledge-Based Systems 136, pp. 37–45. issn: 09507051. doi:

10.1016/j.knosys.2017.08.017.

Yang, Tianshan, Pengyuan Li, and Xiaoliang Wang (Aug. 2020). “Convergence Analysis

of an Improved BFGS Method and Its Application in the Muskingum Model.” In:

Mathematical Problems in Engineering 2020, pp. 1–9. doi: 10.1155/2020/4519274.

Yu, Shuiyuan, Jin Cong, Junying Liang, and Haitao Liu (2016). “The distribution of

information content in English sentences.” In: arXiv: 1609.07681 [cs.CL].

Yu, Tianyu, Chengyue Jiang, Chao Lou, Shen Huang, Xiaobin Wang, Wei Liu, Jiong Cai,

Yangning Li, Yinghui Li, Kewei Tu, et al. (2023). “SeqGPT: An Out-of-the-box Large

Language Model for Open Domain Sequence Understanding.” In: arXiv preprint

arXiv:2308.10529.

Yuan, Jianbo, Walid Shalaby, Mohammed Korayem, David Lin, Khalifeh AlJadda, and

Jiebo Luo (Nov. 2016). “Solving Cold-Start Problem in Large-scale Recommendation

Engines: A Deep Learning Approach.” In: Proceedings - 2016 IEEE International Confer-

ence on Big Data, Big Data 2016, pp. 1901–1910. doi: 10.1109/BigData.2016.7840810.

url: http://arxiv.org/abs/1611.05480.

Yuret, Deniz and Henry Winston (Mar. 1994). “From Genetic Algorithms To Efficient

Optimization.” PhD thesis. Massachusetts Institute of Technology.

Zhang, Mike, Rob van der Goot, and Barbara Plank (2023). ESCOXLM-R: Multilingual

Taxonomy-driven Pre-training for the Job Market Domain. arXiv: 2305.12092 [cs.CL].

Zhang, Mike, Kristian Nørgaard Jensen, Rob van der Goot, and Barbara Plank (2022a).

“Skill extraction from job postings using weak supervision.” In: arXiv preprint

arXiv:2209.08071.

Zhang, Mike, Kristian Nørgaard Jensen, Sif Dam Sonniks, and Barbara Plank (Apr.

2022b). “SkillSpan: Hard and Soft Skill Extraction from English Job Postings.” In:

url: http://arxiv.org/abs/2204.12811.

Zhang, Xiang and Yann LeCun (2016). Text Understanding from Scratch. arXiv: 1502.01710

[cs.LG].

Zhang, Zihan, Meng Fang, Ling Chen, and Mohammad Reza Namazi Rad (July 2022).

“Is Neural Topic Modelling Better than Clustering? An Empirical Study on

Clustering with Contextual Embeddings for Topics.” In: Proceedings of the 2022

Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies. Seattle, United States: Association for Computational

https://doi.org/10.1016/j.knosys.2017.08.017
https://doi.org/10.1155/2020/4519274
https://arxiv.org/abs/1609.07681
https://doi.org/10.1109/BigData.2016.7840810
http://arxiv.org/abs/1611.05480
https://arxiv.org/abs/2305.12092
http://arxiv.org/abs/2204.12811
https://arxiv.org/abs/1502.01710
https://arxiv.org/abs/1502.01710

bibliography 241

Linguistics, pp. 3886–3893. doi: 10 . 18653 / v1 / 2022 . naacl - main . 285. url:

https://aclanthology.org/2022.naacl-main.285.

Zhelezniak, Vitalii, Aleksandar Savkov, April Shen, and Nils Y. Hammerla (2019).

Correlation Coefficients and Semantic Textual Similarity. arXiv: 1905.07790 [cs.CL].

https://doi.org/10.18653/v1/2022.naacl-main.285
https://aclanthology.org/2022.naacl-main.285
https://arxiv.org/abs/1905.07790

D E C L A R AT I O N

I declare that the work in this dissertation was carried out in accordance with the re-

quirements of the University of Sheffield’s Regulations and Code of Practice for Re-

search Degree Programmes and that it has not been submitted for any other academic

award. Except where indicated by specific reference in the text, the work is the candi-

date’s own work. Work done in collaboration with, or with the assistance of, others, is

indicated as such. Any views expressed in the dissertation are those of the author.

Sheffield, United Kingdom, September 2023

Thomas AF Green

	Abstract
	Publications
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Nomenclature
	0.1 Acronyms
	1 Introduction
	1.1 Research Motivation
	1.2 Research Questions
	1.3 Research Contributions
	1.4 Thesis Outline

	2 Preliminaries
	2.1 Overview
	2.2 Domain-Specific Data Structures
	2.2.1 Structure of Job Descriptions
	2.2.2 Structure of User Profiles

	2.3 Workflow of Online Recruitment
	2.4 Introduction to Natural Language Processing
	2.4.1 TF-IDF
	2.4.2 Word Embeddings
	2.4.3 Entity Recognition
	2.4.4 Text Classification
	2.4.5 Natural Language Inference

	2.5 Introduction to Machine Learning
	2.5.1 Model Structures
	2.5.2 Model Training
	2.5.3 Model Validation
	2.5.4 Model Evaluation

	2.6 Introduction to Recommender Systems
	2.6.1 Content-Based Filtering
	2.6.2 Collaborative Filtering
	2.6.3 Knowledge-Based Filtering
	2.6.4 Hybrid Filtering

	2.7 Evaluating Human Annotations
	2.7.1 Accuracy versus Gold Standard
	2.7.2 Inter-Annotator Agreement

	2.8 Equality, Diversity, and Inclusion in Recruitment Algorithms

	3 Related Work
	3.1 Overview
	3.2 Job Recommendation Systems
	3.2.1 RecSys 2016
	3.2.2 Job Recommendation Challenge
	3.2.3 Content-Based Filtering
	3.2.4 Collaborative Filtering
	3.2.5 Knowledge-Based Filtering
	3.2.6 Hybrid Filtering

	3.3 Large Scale Analysis of Job Descriptions
	3.4 Natural Language Processing in Job Descriptions
	3.4.1 Word Embeddings
	3.4.2 Entity Recognition
	3.4.3 Natural Language Inference

	4 Extracting Salient Entities from Job Descriptions
	4.1 Chapter Overview
	4.2 Introduction
	4.3 Unlabelled Job Description Data Acquisition
	4.3.1 Discrepancies of Job Description Style and Purpose

	4.4 Schema Development
	4.5 Accuracy Threshold Identification
	4.6 Corpus Development
	4.7 Corpus Statistics
	4.8 Entity Recognition Method Development
	4.8.1 Data Preprocessing
	4.8.2 Baseline CRF Model
	4.8.3 BiLSTM-CRF Model
	4.8.4 Convolutional Neural Network
	4.8.5 Transformer-Based Models

	4.9 Entity Recognition Evaluation
	4.9.1 Baseline CRF Model
	4.9.2 Competitive ER Models

	4.10 Application of Entity Recognition Models
	4.11 Ethical Considerations
	4.12 Publication of Materials
	4.13 Conclusion

	5 Matching Candidate Profiles and Job Descriptions
	5.1 Chapter Overview
	5.2 Introduction
	5.3 Framing the Matching Problem
	5.3.1 Recommendation Problem
	5.3.2 Text Classification Problem
	5.3.3 Natural Language Inference Problem

	5.4 Kaggle Job Recommendation Challenge
	5.4.1 Corpus Analysis
	5.4.2 Application Prediction Task

	5.5 Tribepad Application Corpus
	5.5.1 Corpus Statistics
	5.5.2 Application Prediction Task
	5.5.3 Status Prediction Task
	5.5.4 Using Short-Form Models on Long-Form Input Sequences

	5.6 Matching Pipeline
	5.6.1 Matching Pipeline Overview
	5.6.2 Data Selection
	5.6.3 Feature Extraction
	5.6.4 Embedding Method
	5.6.5 Model Architecture
	5.6.6 Output Prediction
	5.6.7 Evaluation

	5.7 Conclusion

	6 Concluding Remarks
	6.1 Assessment of Contributions
	6.1.1 Extracting Salient Entities from Job Descriptions
	6.1.2 Matching Candidate Profiles and Job Descriptions

	6.2 Limitations
	6.3 Future Work
	6.3.1 Extending the Salient Entity Extraction Systems
	6.3.2 Extending the Matching Pipeline
	6.3.3 The Skills Delta

	6.4 Impact of Thesis Contributions

	A Appendix
	A.1 Entity Recognition Corpus
	A.1.1 Annotation Materials

	A.2 ER Model Results
	A.3 TribePad Matched User Profile - Job Description Corpus
	A.3.1 Status Codes
	A.3.2 career data
	A.3.3 education data
	A.3.4 job data
	A.3.5 skills data
	A.3.6 user data

	A.4 Ethical Approval

	 Bibliography
	Declaration

