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Abstract 

Sleep plays an important role in how we process and deal with our emotions on a daily 

basis. As emotion regulation difficulties are a key predictor of poorer mental health, 

understanding the mechanisms by which sleep supports emotion regulation and mental health 

is of the upmost importance to further our understanding of psychiatric vulnerability. This 

thesis aims to investigate the cognitive mechanisms by which sleep supports emotion 

regulation and mental health. Specifically, three components of emotion regulation are 

examined: cognitive emotion regulation (CER), emotional reactivity, and emotional inertia. 

The first empirical chapter (Chapter 2) investigates whether the benefits of adaptive CER 

strategies (to lower depression and anxiety) are contingent on high sleep quality. The second 

empirical chapter (Chapter 3) examines whether sleep deprivation (versus a night of sleep) 

influences the evolution of arousal responses during exposure to ambiguous threat, as well as 

the reciprocal influence of slow wave activity (SWA) on affect regulation. The third empirical 

chapter (Chapter 4) explores whether the benefits of adaptive CER strategy use (to lower 

emotional inertia) are contingent on high sleep quality. Our findings suggest that: 1) greater 

use of adaptive CER strategies and high sleep quality independently promote resilience to 

depression, 2) a night of sleep (versus sleep deprivation) promotes the regulation of affect in 

response to prolonged ambiguous threat; however, SWA is not associated with this regulation, 

and 3) greater use of adaptive CER strategies and high sleep quality independently reduce the 

persistence of negative emotions over time. In light of these findings, cognitive control is 

proposed as one critical mechanism underlying the association between sleep and emotion 

regulation. Altogether, this thesis provides important insights into the cognitive mechanisms 

by which sleep supports emotion regulation, and mental health, and points towards modifiable 

mechanisms that may buffer against psychiatric vulnerability.  
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Chapter 1: Introduction  

1.1 Overview  

Sleep problems are a common co-occurrence in nearly all psychiatric conditions and 

are a strong risk factor for both initial and recurrent episodes (Baglioni, Spiegelhalder, et al., 

2010; Bi & Chen, 2022; Chellappa & Aeschbach, 2022; Freeman et al., 2017; Harvey, 2001). 

Reciprocally, improving sleep quality leads to greater improvements in mental health outcomes 

such as depression, anxiety, and stress (Kudrnáčová & Kudrnáč, 2023; A. J. Scott et al., 2021). 

A growing body of research suggests that sleep plays an important role in emotion processing 

in both clinical and non-clinical populations (Tempesta et al., 2018). Since emotion 

dysregulation is a key predictor of poorer mental health (Gross, 2014; Kring, 2010), 

understanding the mechanisms by which sleep supports emotion processing is of the upmost 

importance for learning more about not only clinical-level psychiatric vulnerability but also 

daily fluctuations in emotion states in non-clinical populations.  

Thus, the overarching aim of this thesis is to address this gap in understanding. To do 

this, I take an integrated approach by examining the cognitive mechanisms through which sleep 

contributes to various aspects of emotion processing (see Figure 1.1). To isolate and examine 

the basic mechanisms underlying this association, whilst minimising other confounding 

variables (e.g. interventions, medication, symptom severity), I primarily focus on individuals 

without any current psychiatric disorders. 

1.1.1 Emotion regulation  

When we encounter affective experiences, we modulate our emotional responses 

through emotion regulation. Emotion regulation involves processes that influence which 

emotions we have, when we have them, and how we experience and express them (Gross, 1998; 

Gross & Feldman Barrett, 2011). Emotion regulation distinguishes between voluntary and 

involuntary regulation as well as between adaptive and maladaptive regulation (Kohn et al., 

2014). This thesis examines three components of emotion regulation: cognitive emotion 

regulation (CER; i.e. the thought strategies that individuals employ to deal with negative 

events), emotional reactivity (i.e. the quality and/or intensity of an initial response to an event), 

and emotional inertia (i.e. the persistence of emotion states from one moment to the next).  
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1.1.2 Cognitive emotion regulation  

The preponderance of research on emotion regulation focuses on the strategies that 

individuals employ to modify their emotion states (Gross, 2015). CER strategies are the 

cognitive thought processes that an individual engages in after being exposed to an emotional 

experience that attempt to modify an individual’s response to the event (Aldao & Nolen-

Hoeksema, 2010; Garnefski et al., 2001). Specific CER strategies have been categorised as 

either adaptive or maladaptive (Aldao et al., 2010). Adaptive CER strategies have been 

conceptualised as more ‘positive-focused’, whereas maladaptive strategies have been 

conceptualised as more ‘negative-focused’ (Garnefski et al., 2001). Greater use of adaptive 

CER strategies have been associated with lower levels of depression and anxiety in both 

clinical and non-clinical samples (Domaradzka & Fajkowska, 2018; Kirschbaum-Lesch et al., 

2021; Min et al., 2013). Therefore, greater use of these positive focused strategies may be an 

important safeguard against the development of psychiatric disturbance when enduring 

unpleasant and stressful experiences in everyday life. Reciprocally, psychological well-being 

may promote the use of adaptive CER strategies. Nonetheless, most studies have focused on 

how people deploy adaptive CER strategies in response to laboratory-induced stimuli. In these 

situations, artificial stressors are briefly presented and individuals may be explicitly taught or 

encouraged to use different strategies. As a result, we know little about how adaptive CER 

strategies are used spontaneously in the context of real-world, chronic stressors. 

Unsurprisingly, poor sleep impairs people’s ability to effectively deploy adaptive CER 

strategies (Mauss et al., 2013; Parsons et al., 2021; Tamm et al., 2019; Zhang et al., 2019). 

Given that the brain mechanisms underlying the successful use of adaptive CER strategies are 

contingent on good sleep (R. Gruber & Cassoff, 2014; Palmer & Alfano, 2017), sleep may 

moderate the effectiveness of adaptive CER strategies. However, whether sleep moderates the 

effectiveness of adaptive CER strategies following sustained stress remains unknown.  

1.1.3 Emotional reactivity  

Emotional reactivity can be defined as one’s initial affective response to an event 

(Koval, Brose, et al., 2015). It is the starting point of an emotional experience and is causally 

related to the ability to regulate emotions as the experience unfolds (Becerra & Campitelli, 

2013). Greater emotional reactivity, particularly in response to potential threats, has been 

associated with exacerbated anxiety (Goldin et al., 2009; Grillon, 2002; Nock et al., 2008). 

Inadequate sleep is a potentiating factor in emotional reactivity and threat perception (Baglioni, 

Lombardo, et al., 2010; Franzen et al., 2009; Tempesta et al., 2018). Conversely, certain 
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properties of sleep, namely slow wave activity (SWA), have been associated with the 

restoration of brain mechanisms that are critical for affect regulation (Bishop, 2007; Bishop et 

al., 2004; M. J. Kim et al., 2011; Simmons et al., 2008). However, previous studies have 

assessed emotional reactivity at only single moments in time in response to short, static threats 

(e.g. images or film clips). Real-world threatening environments often evolve over time and 

include uncertainty regarding the presence of threat, the nature of the threat, and how to best 

respond to the threat (i.e. ambiguity; McCall et al., 2022). We know little about how sleep 

deprivation (versus sleep) influences the evolution of emotional reactivity during exposure to 

ambiguous threat.  

1.1.4 Emotional inertia  

Emotional inertia is another aspect of emotional experience. Emotional inertia refers to 

the persistence of an emotion state over time (Koval et al., 2016; Kuppens, Allen, et al., 2010). 

Inflexibility in emotional responding (i.e. high emotional inertia) is considered a hallmark of 

many psychiatric disorders (Kuppens, Allen, et al., 2010). Less frequent use of adaptive CER 

strategies and greater use of maladaptive CER strategies have also been associated with higher 

emotional inertia (Bean et al., 2021; Blanke et al., 2022; Koval, Butler, et al., 2015; Koval et 

al., 2012; Kuppens, Oravecz, et al., 2010). Unlike the other by-products of emotion regulation, 

few studies have examined how sleep influences emotional inertia. However, given that sleep 

promotes the effectiveness of adaptive CER strategies and appropriately modulates emotional 

reactivity, it is likely that sleep affects the persistence of emotion states over time. Current 

research on sleep and emotional inertia is in its infancy and prior studies have produced mixed 

findings (Frérart et al., 2023; Minaeva et al., 2021; X. Wen et al., 2020). Therefore, more 

research is needed to elucidate the association between sleep and emotional inertia.  

1.1.5 Thesis chapters  

This thesis addresses these gaps in understanding across three chapters, each of which 

presents an empirical study (see Box 1 for an overview of each research question). Each chapter 

examines the cognitive mechanisms by which sleep supports emotion regulation (CER, 

emotional reactivity, and emotional inertia) and mental health. This introductory chapter 

(Chapter 1) reviews the role of sleep in emotion regulation. Synthesised evidence for the role 

of sleep in CER, emotional reactivity, and emotional inertia from behavioural, physiological, 

and functional neuroimaging (fMRI) studies will be examined. The first empirical chapter 

(Chapter 2) examines whether the positive benefits of adaptive CER strategies (for reducing 
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depression and anxiety) are contingent on good sleep quality during a real-world chronic 

stressor, the COVID-19 pandemic. Given that the COVID-19 pandemic was a prolonged and 

unique source of stress for people across the world, it offered a unique context in which to 

study the effects of adaptive CER strategy use and sleep on mental health. Chapter 3 

investigates how sleep deprivation (versus a night of sleep) influences the evolution of 

emotional reactivity during ambiguous threat exposure. This study built on previous work that 

assessed emotional reactivity in response to predictable threats at only single moments in time. 

In a complementary manner, I also examined whether specific properties of sleep (namely 

SWA) restore affect regulation processes during exposure to ambiguous threat. Chapter 4 

examines the associations between adaptive CER strategies, sleep quality, and emotional 

inertia. Only a handful of studies have investigated the association between sleep and emotional 

inertia and have produced conflicting findings. However, given the influence of sleep on other 

components of emotion regulation, I wanted to further explore this association. Notably, in 

each chapter, I consider how emotion regulation unfolds over time (i.e. in response to a chronic 

stressor, during exposure to prolonged ambiguous threat, and how emotion states persist over 

time). Together, these chapters offer new insights into the role of sleep in emotion regulation 

and mental health. Ultimately, the work presented will help us better understand the 

mechanisms contributing to poorer mental health in individuals with inadequate sleep.   

 

Figure 1.1. Overview of the cognitive mechanisms linking sleep and emotion processing. 

Cognitive emotion regulation refers to the thought processes that an individual voluntarily 

engages in after exposure to an emotional experience. Chapter 2 addresses how sleep supports 

cognitive emotion regulation with regard to its influence on depression and anxiety outcomes. 
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Emotional reactivity is an individual’s initial affective response to an emotional event. Chapter 

3 examines the impact of sleep deprivation (versus a night of sleep) on the evolution of 

emotional reactivity during ambiguous threat exposure. Emotional inertia is the persistence of 

an emotion state over time. Chapter 4 investigates the influence of sleep on emotional inertia.  

 

1.2 Cognitive emotion regulation  

CER involves the conscious use of strategies that attempt to modify responses to an 

emotion-eliciting experience (Aldao & Nolen-Hoeksema, 2010; Gross, 2015). The 

employment of CER strategies can influence the intensity, duration, and/or quality of emotional 

responses (Gross, 2013). Most commonly, CER strategies are employed to decrease negative 

emotions, including sadness and anxiety (Gross et al., 2006), or enhance positive emotions, 

such as happiness (Quoidbach et al., 2010). Less frequently, individuals try to increase negative 

emotions (Sutton, 1991) or decrease positive ones (J. Gruber et al., 2011). 

Depending on an individual’s goals, CER strategies can be differentiated based on their 

ability to foster adaptive or maladaptive emotional outcomes (Aldao & Nolen-Hoeksema, 

2010). Garnefski et al. (2001) proposed nine CER strategies (see Table 1.1): positive 

reappraisal, refocus on planning, positive refocusing, putting into perspective, acceptance, 

rumination, self-blame, other-blame and catastrophising. The first five strategies have been 

conceptualised as adaptive, and the latter four have been conceptualised as maladaptive 

(Domínguez-Sánchez et al., 2013; Garnefski & Kraaij, 2006; Garnefski et al., 2001). However, 

Martin and Dahlen (2005) argue that acceptance is a maladaptive CER strategy, as it has been 

positively associated with depression, stress, and maladaptive anger suppression, and may 

therefore reflect a degree of hopelessness. Expression suppression is another CER strategy 

thought to foster maladaptive emotional outcomes (Dryman & Heimberg, 2018). 

Box 1. Research questions addressed in this thesis:  

1. Chapter 2: Investigating the influence of cognitive emotion regulation strategy use and 

sleep quality on changes in mental health (i.e. depression and anxiety) in the context of a 

unique and protracted stressor, the COVID-19 pandemic.  

2. Chapter 3: Using virtual reality to investigate the influence of sleep deprivation (versus 

a night of sleep) on the evolution of emotional reactivity during exposure to prolonged 

ambiguous threat.  

3. Chapter 4: Investigating the influence of cognitive emotion regulation strategy use and 

sleep quality on emotional inertia. 
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Table 1.1. Definitions of cognitive emotion regulation strategies. 

Strategy Definition 

Adaptive CER strategies   

Positive reappraisal Re-evaluating an event as either more positive or 

less negative. 

Refocus on planning Thinking about the next steps and how to handle 

an event. 

Positive refocusing Turning thoughts towards joyful and pleasant 

matters following an event.  

Putting into perspective Downregulating the seriousness of an event and 

comparing it to other events. 

Acceptance Resigning to what happened following an event. 

Maladaptive CER strategies   

Rumination Tendency to dwell on the negative feelings or 

thoughts associated with an event. 

Self-blame Blaming oneself for what they have experienced 

following an event. 

Other-blame Blaming others for what they have experienced 

following an event. 

Catastrophising Overemphasising the negative parts of an event. 

Expressive suppression  Suppression of outward emotional expressions.  

 

Greater use of adaptive CER strategies has been negatively associated with 

psychopathology (Aldao & Nolen-Hoeksema, 2012a; Aldao et al., 2010) and is thought to 

promote psychological well-being in the long-term (Kirschbaum-Lesch et al., 2021). The most 

common adaptive CER strategy examined in the literature is positive reappraisal. Positive 
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reappraisal is defined as re-evaluating an event as more positive (or less negative) to decrease 

negative emotions and increase positive ones (Aldao & Nolen-Hoeksema, 2010). For example, 

an individual might get made redundant. To reduce the negative emotions associated with this, 

they may appraise the situation positively by seeing it as an opportunity to complete various 

side projects that they have not yet managed to do. The implementation of positive reappraisal 

has been associated with adaptive outcomes, such as reduced negative affect (NA) and 

decreased amygdala and insula responses when exposed to negative film clips (Goldin et al., 

2008; McRae, 2016). Conversely, less frequent use of positive reappraisal has been associated 

with higher levels of both depression and anxiety symptoms (Aldao & Nolen-Hoeksema, 2010; 

Domaradzka & Fajkowska, 2018; Garnefski et al., 2002; Martin & Dahlen, 2005). Previous 

studies have predominantly focused on how individual adaptive CER strategies such as positive 

reappraisal are associated with mental health outcomes. However, more recently, Domaradzka 

and Fajkowska (2018) demonstrated that higher scores on a composite measure of adaptive 

CER strategy use was associated with lower depression and anxiety. Promoting the use of 

adaptive CER strategies is also an important theme in traditional Cognitive Behavioural 

Therapy (CBT) for depression and anxiety (Hayes, 2008; S. G. Hofmann & Asmundson, 2008; 

Moser et al., 2014). Collectively, these studies suggest a role for adaptive CER strategies in 

buffering against the development of psychopathology and promoting psychological well-

being.  

Given the positive benefits of adaptive CER strategy use, it is important to uncover the 

cognitive mechanisms that govern their success. Adaptive CER strategies enlist a number of 

executive functions. Executive functions are higher-order cognitive processes that are 

necessary for the cognitive control of behaviour (Schmeichel & Tang, 2015). Three related but 

separable executive functions have been proposed (Friedman & Miyake, 2017; Miyake & 

Friedman, 2012). These include a) inhibition (i.e. resisting inappropriate behaviours), b) 

updating (i.e. holding information in mind in order to act on the basis of it), and c) shifting (i.e. 

quickly and flexibly adapting to changing situations). Engaging in adaptive CER strategy use 

involves inhibition of prepotent responses, memory updating, and flexible task switching 

(Joormann & Tanovic, 2015; McRae et al., 2012; Ochsner & Gross, 2005). Therefore, it is 

likely that executive functions are necessary for successful adaptive CER strategy use.  

On a neurobiological level, adaptive CER strategy use involves interactions between 

regions of the prefrontal cortex (PFC) that implement control processes, and subcortical and 

posterior cortical regions that encode and represent emotional information (R. Gruber & 
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Cassoff, 2014; Kohn et al., 2014). It is thought that prefrontal regions enable individuals to 

selectively use executive functions that allow them to successfully utilise adaptive CER 

strategies (Etkin et al., 2015; R. Gruber & Cassoff, 2014; Ochsner et al., 2012). In support of 

this view, the use of positive reappraisal (both instructed positive reappraisal and habitual 

positive reappraisal in daily life) has been associated with greater prefrontal activity and 

reduced amygdala activation when viewing emotion-eliciting stimuli (Drabant et al., 2009; S. 

H. Kim & Hamann, 2007; Ochsner et al., 2002, 2004; Phan et al., 2005; van Reekum et al., 

2007). Taken together, these findings suggest that the effectiveness of adaptive CER strategies 

relies on prefrontal functioning.   

Conversely, greater use of maladaptive CER strategies has been associated with the 

aetiology and maintenance of psychopathology (Aldao & Nolen-Hoeksema, 2012a; Aldao et 

al., 2010). Maladaptive CER strategies provide only short-term respite (Campbell-Sills & 

Barlow, 2007) and can even amplify affective disturbances in the long term (Aldao et al., 2010; 

Garnefski et al., 2001; Nolen-Hoeksema et al., 2008). One of the most common maladaptive 

CER strategies investigated in previous studies is rumination. Rumination is defined as the 

tendency to dwell on negative feelings or thoughts associated with an event (McRae et al., 

2012). Returning to the example of an individual being made redundant, rumination would 

involve the individual excessively thinking about why they got made redundant and how they 

might never get another job as a result of this. Greater use of rumination has been associated 

with psychological maladjustment, including increased negative affect, as well as diminished 

autonomic flexibility (Blanke et al., 2022; Carnevali et al., 2018; McRae et al., 2012; Radstaak 

et al., 2011). Furthermore, greater use of rumination has been positively associated with 

depression and anxiety (Aldao & Nolen-Hoeksema, 2010; Domaradzka & Fajkowska, 2018; 

Garnefski et al., 2002; Martin & Dahlen, 2005). Higher scores on a composite measure of 

maladaptive CER strategy use have also been associated with greater depression and anxiety 

severity (Domaradzka & Fajkowska, 2018; Garnefski et al., 2001). Together, these studies 

support an association between maladaptive CER strategy use and the development and 

maintenance of psychopathology.  

Most research on adaptive and maladaptive CER strategy use focuses on the frequency 

with which individuals use different strategies in response to naturally occurring emotional 

events. This is typically assessed using standardised self-report questionnaires, such as the 

Cognitive Emotion Regulation Questionnaire- Short version (CERQ-short; Garnefski & Kraaij, 

2006) and the Emotion Regulation Questionnaire (ERQ; Gross & John, 2003). Both the CERQ-
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short and ERQ have demonstrated good psychometric properties (Ioannidis & Siegling, 2015; 

Ireland et al., 2017). The use of CER strategies has also been experimentally examined. In these 

studies, participants are often explicitly instructed or encouraged to use a specific strategy in 

response to artificially induced stressors. The success of each CER strategy is then assessed by 

measuring the degree to which the strategy modifies an individual’s subjective and/or 

physiological emotional responses (McRae, 2016). Therefore, CER strategies can be deployed 

and measured implicitly (i.e. in response to an event) but can also be modified through explicit 

instruction, implying that they can be used flexibly and are amenable to intervention.  

1.2.1 Sleep and cognitive emotion regulation 

Sleep difficulties have a detrimental impact on people’s ability to effectively use 

adaptive CER strategies (Mauss et al., 2013; Stenson et al., 2021; Tamm et al., 2019; Zhang et 

al., 2019). Poor sleep quality diminishes the ability to reduce self-reported sadness when 

participants are instructed to reinterpret the context of a negative picture to feel emotionally 

neutral (Mauss et al., 2013). Another study examining daily fluctuations in self-reported sleep 

quality found that poor sleep quality was associated with decreased next-day use of adaptive 

CER strategies (Parsons et al., 2021). Furthermore, the deleterious effect of sleep deprivation 

on the use of positive reappraisal has been evidenced through the impairment of an 

electroencephalography (EEG) marker of emotion regulation, the late positive potential (LPP). 

Emotionally valanced stimuli tend to elicit larger LPPs than neutral stimuli, and prior studies 

have demonstrated a reduction in LPP amplitude following positive reappraisal (Foti & Hajcak, 

2008; Hajcak et al., 2006; Hajcak & Nieuwenhuis, 2006; MacNamara et al., 2011). Therefore, 

reappraisal-related reductions in LPP are thought to reflect a shift in interpretation (Foti & 

Hajcak, 2008; Lazarus, 1991). Zhang et al. (2019) found that sleep deprivation, compared to a 

night of sleep, disrupted the attenuation of LPP amplitudes when participants were instructed 

to think about the situation in a more positive light following the presentation of sad film clips. 

This suggests that sleep deprivation impairs the reinterpretation of negative events. Together, 

these findings point to a potential mechanism linking inadequate sleep and psychopathology, 

whereby the utility of adaptive CER strategies (i.e. for decreasing negative affect and 

promoting psychological well-being) is contingent on good sleep.  

Findings from neuroimaging studies help elucidate the mechanisms by which sleep loss 

impairs adaptive CER strategy use. Sleep loss decreases the connectivity between prefrontal 

and subcortical regions, such as the amygdala, when participants are exposed to negative 

emotional stimuli (Gujar, McDonald, et al., 2011; Simon et al., 2015; Yoo et al., 2007). Along 
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with these findings, poor sleep quality has been associated with hypoactivation in the PFC 

during reappraisal implementation (Minkel et al., 2012). Therefore, inadequate sleep is thought 

to compromise the top-down inhibitory control of the PFC over amygdala driven emotional 

responses (Gujar, Yoo, et al., 2011; Yoo et al., 2007), resulting in global deficits in executive 

functioning and regulatory control (Palmer & Alfano, 2017). As the executive functions 

required for successful adaptive CER strategy use, such as inhibition, working memory, and 

attention, are depleted by sleep loss (Drummond et al., 1999; Mograss et al., 2009; Nilsson et 

al., 2005; Qi et al., 2010; Skurvydas et al., 2020), this suggests that poor sleep may undercut 

the positive benefits that adaptive CER strategies typically provide.  

Poor sleep quality has also been associated with increased use of maladaptive CER 

strategies (Boon et al., 2023; Latif et al., 2019). Boon et al. (2023) found that participants 

reported higher use of rumination following a night of sleep fragmentation (as assessed by 

frequent awakenings throughout the night), compared to a normal night of sleep. This finding 

suggests that disrupted sleep makes it difficult to disengage attention from negative thoughts. 

One explanation for this is a lack of motivation. Poor sleep impairs motivation (Fairholme & 

Manber, 2015; Palmer & Alfano, 2017), meaning that individuals may be willing to exert less 

cognitive effort to modify their emotional response. As adaptive CER strategies are more 

cognitively demanding in the long term than maladaptive CER strategies (Sheppes & Levin, 

2013), they may alternatively resort to maladaptive CER strategies. Together, these findings 

imply that sleep loss results in greater use of maladaptive CER strategies in response to 

negative events.  

Importantly, most research on sleep and CER strategy use is limited to the laboratory. 

In the real world, individuals spontaneously deploy (or fail to deploy) CER strategies in 

response to aversive experiences in the absence of explicit instruction. Relatedly, 

experimentally induced stressors in these laboratory contexts often take the form of aversive 

images or film clips, which lack the enduring quality of stressful life changes. Real-world 

stressors often arise unexpectedly and are chronic in nature. Consequently, they generally 

require continuous input from CER strategies to modify frequent emotional responses. Recent 

work in adolescents demonstrated that higher emotion regulation ability attenuates the 

association between stressful real-life events and depressive symptoms (Liu et al., 2023), 

suggesting that high emotion regulation ability may buffer against the development of mental 

health problems when encountering real-world stressful life events. Nevertheless, little is 

known about how individuals deploy adaptive CER strategies spontaneously in a real-world 
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context. As such, Chapter 2 examines the influence of adaptive CER strategy use and sleep 

quality on changes in mental health (i.e. depression and anxiety) in the context of a unique and 

protracted stressor, the COVID-19 pandemic.  

1.2.2 Interim conclusion  

To summarise, CER refers to the use of strategies to modify an individual’s response 

to an emotional experience. These strategies have been characterised as adaptive or 

maladaptive, with higher use of the former safeguarding against the development of mental 

health problems in the long term. Sleep loss has been associated with a reduced ability to 

effectively use adaptive CER strategies. Additionally, some studies have shown that poor sleep 

results in increased maladaptive CER strategy use. Together, these findings suggest a potential 

mechanistic link between sleep and mental health, whereby the benefits of adaptive CER 

strategy use are contingent on obtaining high quality sleep. However, our current understanding 

of the role of sleep in CER strategy use is confined to laboratory contexts, where participants 

are often explicitly instructed to use one type of CER strategy and/or images or film clips are 

used as experimental stressors. Therefore, Chapter 2 addresses the relationship between 

adaptive CER strategy use, sleep quality, and mental health outcomes in response to a real-

world chronic stressor.  

1.3 Emotional reactivity  

Emotional reactivity refers to a person’s initial affective response to an event (Koval, 

Brose, et al., 2015). These emotional responses prepare individuals for action, allowing them 

to discriminate between pleasant and unpleasant stimuli and produce appropriate behavioural 

responses (Becerra & Campitelli, 2013). Emotional reactivity has been theorised to consist of 

three components. These include the magnitude of the stimulus required to trigger an emotional 

response, how strongly the emotional response manifests, and how long the emotional response 

persists before returning to baseline (R. J. Davidson, 1998; Nock et al., 2008). Conceptually, 

these have been termed activation, intensity, and duration, respectively (Becerra & Campitelli, 

2013). Emotional reactivity appears to be a multifaceted phenomenon that leads to changes in 

subjective experience, psychophysiology, and behavioural responses.  

Emotional reactivity has been associated with CER strategy use (Aldao et al., 2010). 

For example, it has been suggested that individuals who ruminate more frequently experience 

heightened emotional reactivity to affective events, which may persist for longer periods of 

time compared to those who ruminate less frequently (Nolen-Hoeksema et al., 2008). 
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Additionally, rumination has been associated with impaired cardiovascular recovery (e.g. heart 

rate) following an evocative event, leading to sustained physiological arousal (Brosschot et al., 

2006). In contrast, greater use of positive reappraisal has been shown to reduce physiological 

arousal measures, including skin conductance response (SCR; Feeser et al., 2014) and facial 

corrugator electromyographic (EMG) responses (S. H. Kim & Hamann, 2012). These findings 

suggest that maladaptive CER strategy use increases emotional reactivity, and that adaptive 

CER strategy use decreases emotional reactivity in response to an affective event.  

Several theoretical models have highlighted an association between heightened 

emotional reactivity and the development and maintenance of psychopathology (R. J. 

Davidson, 2003; Gross, 2002; Porges et al., 1994). Emotional hyperactivity is a salient feature 

of clinical anxiety (Cisler et al., 2010; Grillon, 2002). Although heightened emotional reactivity 

can be adaptive in unfamiliar and uncertain environments, symptoms of anxiety result from 

inappropriate activation of normally adaptive defensive responses (Grillon, 2002; Robinson et 

al., 2013).  

Prior studies have explored the neural underpinnings of emotional reactivity. These 

findings reveal an important role for ventral emotion detection/generation-related limbic 

regions, including the amygdala, insula, and anterior cingulate cortex (ACC; Goldin et al., 

2009). Moreover, PFC regions (e.g. ventromedial cortex and dorsomedial PFC) have also been 

implicated in the processing of valence and emotional intensity (Goldin et al., 2009). It is 

important to note that the involvement of emotion-related limbic regions and the PFC in the 

appropriate modulation of emotional reactivity overlaps with the brain regions involved in 

adaptive CER strategy use.  

Emotional reactivity can be measured by assessing arousal (calm-excited) and valence 

(unpleasant-pleasant) responses to affective stimuli (Bradley & Lang, 2007; LaBar & Cabeza, 

2006) using subjective or objective measures. Subjective ratings of emotional reactivity are 

commonly captured using the Self-Assessment Manikin (SAM), a Likert scale that asks 

participants to rate how excited (arousal) and pleasant (valence) they feel in response to a 

stimulus (Bradley & Lang, 1994). Objective measures of emotional reactivity include 

physiological indices, such as skin conductance, heart rate (HR), EMG, and pupillometry. 

These measures specifically focus on capturing state levels of emotional reactivity. However, 

convergent changes in subjective and objective measures of emotional reactivity in response 

to an emotional event are not always observed (Tempesta et al., 2018), alluding to the 
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possibility that these measures might tap into different constructs and/or have different levels 

of sensitivity, as discussed in further detail below.   

1.3.1 Sleep and emotional reactivity  

A wealth of evidence demonstrates that emotional reactivity is influenced by sleep 

(Tempesta et al., 2018). Inadequate sleep amplifies negative emotions and blunts positive ones 

(Kahn et al., 2013; Zohar et al., 2005). Sleep loss has also been shown to promote negative 

bias. For example, sleep deprived individuals judge neutral stimuli to be more negative than 

sleep rested individuals (Pilcher et al., 2015; Tempesta et al., 2010; van der Helm et al., 2010). 

This negative bias effect was also observed when examining sleep quality. Tempesta et al. 

(2015) found that poor sleepers rated positive and neutral images as more negative compared 

to good sleepers. The potentiating effects of sleep loss on emotional reactivity have also been 

measured physiologically. Sleep-deprived participants showed greater pupillary reactivity in 

response to negative emotional stimuli compared to those who had a normal night of sleep 

(Franzen et al., 2008, 2009). However, Franzen et al. (2009) reported equivalent subjective 

arousal ratings in those who were sleep-deprived and those who had slept in response to these 

negative stimuli. One reason for this discrepancy is that physiological measures capture fine-

grained implicit emotional responses whereas subjective measures are often coarse and require 

cognitive introspection (Bradley & Lang, 2007; Cunningham et al., 2014; Franzen et al., 2009; 

Tempesta et al., 2020). Therefore, physiological measures may be more appropriate for 

measuring emotional reactivity. Nonetheless, these findings support the idea that sleep loss 

promotes negative bias in the categorisation of positive and neutral stimuli and increases 

physiological reactivity to negative stimuli.  

A lack of sleep also enhances the perception and generalisation of threats (Barber & 

Budnick, 2015; Goldstein-Piekarski et al., 2015; Zenses et al., 2020). Goldstein-Piekarski et al. 

(2015) found that participants judged significantly more stimuli as threatening, and less stimuli 

as non-threatening, when sleep deprived compared to sleep rested. Moreover, sleep deprivation 

impaired the autonomic-cardiac discrimination (as indexed by changes in HR) of non-

threatening and threatening stimuli (Goldstein-Piekarski et al., 2015). Therefore, sleep 

deprivation may impose a negative bias on threat discrimination, resulting in heightened threat 

sensitivity.  

Evidence from functional imaging provides important insights into the mechanisms by 

which sleep loss amplifies emotional reactivity. Sleep deprivation results in heightened activity 
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in emotion-related limbic brain regions, such as the amygdala and ACC, each of which has 

been associated with greater reactivity to negative and neutral emotional stimuli (Ben Simon 

et al., 2020; Goldstein et al., 2013; Simon et al., 2015; van der Helm & Walker, 2012; Yoo et 

al., 2007). Sleep loss is also associated with decreased activity in the medial prefrontal cortex 

(mPFC), as well as decreased connectivity between the amygdala and mPFC when viewing 

negative images (Yoo et al., 2007). This neural composition reflects a complementary 

mechanism to that underlying adaptive CER strategy use, whereby sleep loss leads to a 

breakdown of top-down inhibitory control of emotional responses, resulting in amplified 

emotional reactivity (Ben Simon et al., 2020; van der Helm & Walker, 2012; Yoo et al., 2007). 

Moreover, another study demonstrated that impaired discrimination of threat and safety 

following sleep loss was associated with a generalised anticipatory response in the amygdala 

and insula (Goldstein et al., 2013). Taken together, it appears that sleep loss impairs the brain 

pathways thought to underlie adaptive threat responding (Grillon, 2002). 

Despite evidence of heightened threat sensitivity in the absence of sleep, prior research 

has assessed emotional reactivity using one-shot ratings of aversive stimuli, such as images 

and film clips. There are two key drawbacks to this approach. First, emotional experiences 

often fluctuate in their intensity over a long period (Hildebrandt et al., 2016). However, 

previous studies have only focused on how sleep loss influences emotional reactivity during 

initial exposure to short, static threats. Consequently, there is a need to examine how sleep loss 

not only influences initial reactivity in response to a threatening experience but also the ability 

to return to calm over time and between disturbing events. Second, when an individual 

encounters a negative emotional experience, the exact nature of the threat is not always clear 

(McCall et al., 2022). For example, if we went to the theatre then had to walk through a dark 

alleyway on our way home, we might anticipate someone jumping out and mugging us. 

Temporal unpredictability (i.e. when will a threat occur) is a feature of most ambiguously 

threatening experiences and shapes our emotional responses (McCall et al., 2022). Heightened 

emotional reactivity to ambiguously threatening stimuli, including difficulty disengaging from 

those stimuli, may result in pathological anxiety (Grillon, 2008; McCall et al., 2022). Despite 

the threats and uncertainties we face in our day-to-day lives, we know very little about how 

sleep loss influences emotional reactivity in response to ambiguous threat. To address this, 

Chapter 3 investigates whether sleep deprivation amplifies emotional reactivity when 

participants are exposed to an unfolding emotional experience designed to elicit ambiguous 

threat.  
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Given the potentiating effects of sleep deprivation on emotional reactivity, a reciprocal 

question concerns the components of sleep that modulate emotional reactivity. Rapid eye 

movement (REM) sleep is one property of sleep thought to be important for reducing the 

affective tone of emotional memories. The “Sleep to remember, sleep to forget” hypothesis 

supports the role of REM sleep in reducing mnemonic arousal (Greenberg et al., 1972; Gujar, 

McDonald, et al., 2011; Hutchison et al., 2021; Rosales-Lagarde et al., 2012; van der Helm et 

al., 2011). Further work suggests that REM sleep provides a mechanism by which emotion-

related limbic and prefrontal regions can reset to restore affective responding (Goldstein & 

Walker, 2014). Simon et al. (2015) demonstrated that sleep deprivation, compared to a night 

of sleep, resulted in enhanced activity in the right dorsolateral PFC and left amygdala to neutral 

distractor information during a working memory task. This was coupled with a significant 

decrease in connectivity between the amygdala and prefrontal regions, suggesting a generic 

reduction in the threshold for emotional activation following sleep loss. Importantly, decreased 

prefrontal connectivity was associated with lower amounts of overnight REM sleep (Simon et 

al., 2015), highlighting an important role for REM sleep in the discrimination of emotional and 

neutral stimuli. Previous models have suggested that the recalibration of noradrenergic tone 

during REM sleep promotes the appropriate modulation of both amygdala and PFC activations 

to salient emotional events, resulting in appropriate next-day reactivity (Goldstein & Walker, 

2014; Simon et al., 2015). Thus, REM sleep helps promote the accurate discrimination of 

emotional and non-emotional stimuli.   

Other properties of sleep also play a critical role in affect regulation, which may enable 

individuals to respond adaptively to threat. Individuals with anxiety disorders often 

demonstrate reductions in non-rapid eye movement (NREM) sleep including slow wave sleep 

(SWS) and slow wave activity (SWA; EEG power density 0.5–4 Hz), with the latter being one 

of the hallmarks of SWS (Arriaga & Paiva, 1990; Baglioni et al., 2016; Forbes et al., 2008; 

Fuller et al., 1997). In contrast, greater amounts of SWA has been associated with the overnight 

reduction of state anxiety (Ben Simon et al., 2020; Chellappa & Aeschbach, 2022). Moreover, 

SWA enhancement has been associated with improved executive functions including working 

memory and reasoning (Wilckens et al., 2016, 2018). The amount of SWA an individual 

obtains is the best-characterised marker of sleep intensity (Borbély et al., 2016). Research 

suggests that increased sleep intensity may facilitate cortical plasticity in brain regions that 

support executive functioning (Huber et al., 2008; Tononi, 2009). In support of this view, 

greater NREM SWA has been associated with greater next-day restoration of prefrontal 
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mechanisms (Ben Simon et al., 2020; Campbell-Sills et al., 2011) that are critical for affect 

regulation during threat-related information processing (Bishop, 2007; Bishop et al., 2004; M. 

J. Kim et al., 2011; Simmons et al., 2008). Taken together, these findings imply that SWA may 

promote regulatory control when adaptively responding to threat. To substantiate this 

argument, Chapter 3 also examines whether SWA supports the regulation of emotional 

reactivity in response to ambiguous threat.   

The evolution of emotional reactivity can be mapped using virtual reality (VR) 

methodology. VR is a tool that provides a powerful means of eliciting emotions as it accounts 

for the surrounding context and allows exposure to multisensory information (Barrett et al., 

2011; Gendron & Feldman Barrett, 2009; S. M. Hofmann et al., 2021; Marcolin et al., 2021; 

Marín-Morales et al., 2020; McCall et al., 2016). Critically, VR allows for the creation of an 

enduring and unfolding emotional experience, during which real-time physiological 

measurements can be recorded to capture emotional reactivity. As a result, Chapter 3 uses VR 

to investigate the aforementioned research questions. As the VR environment transitions 

between two ambiguously threatening and two non-threatening environments, this enabled me 

to examine how sleep deprivation (compared to a night of sleep) influences physiological 

arousal during exposure to ambiguous threat. 

1.3.2 Interim conclusion  

In summary, sleep loss enhances negative bias and promotes heightened threat 

sensitivity, likely as a result of impaired top-down inhibitory control of emotional responses. 

Furthermore, the specific properties of NREM sleep (namely SWA) may help protect the 

integrity of this top-down control. Previous work often adopts sleep deprivation designs which 

help determine the mechanisms underlying the association between sleep and emotional 

reactivity. However, the use of static and predictable threatening stimuli limits our 

understanding of how sleep deprivation (versus a night of sleep) influences emotional reactivity 

beyond initial reactivity to threat. Moreover, in our day-to-day lives, we often face uncertainties 

regarding the nature of threat. As a result, very little is known about how sleep deprivation 

(versus a night of sleep) influences the evolution of emotional reactivity during exposure to 

ambiguous threat. Chapter 3 addresses this research question and reciprocally examines the 

influence of SWA on affect regulation.  
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1.4 Emotional inertia  

Emotional inertia is defined as the autocorrelation between an individual’s current 

emotion state and their previous emotion state (Koval et al., 2016; Kuppens, Allen, et al., 2010). 

In other words, emotional inertia reflects the persistence of emotion states over time. Emotional 

inertia is typically operationalised using a first-order autoregressive [AR(1)] model, in which 

a person’s emotion state at each occasion (t) is regressed on to their emotion state at the 

previous occasion (t − 1). Therefore, the AR slope captures the degree to which emotions are 

self-predictable or persist across time, with more positive AR slopes indicating greater 

persistence of emotion states over time (Koval et al., 2021).  

Emotional inertia is measured on a continuum, from high to low. In individuals with 

higher emotion inertia, emotion states are highly predictable from one moment to the next. 

Moreover, these individuals are relatively resistant to both internal (e.g. regulatory efforts) and 

external (e.g. environmental events) influences, reflecting emotional rigidity. In contrast, 

among individuals with lower emotion inertia, emotion states are far less predictable from one 

moment to the next. These individuals are more malleable to both internal and environmental 

influences, reflecting emotional flexibility (Koval et al., 2016; Kuppens, Allen, et al., 2010). 

Theoretically, high emotional inertia is thought to capture both dampened emotional reactivity, 

reflecting disengagement from psychological and environmental demands, and impaired 

emotion regulation skills, reflecting a diminished ability to recover following negative events 

(Kuppens, Allen, et al., 2010). Some studies have attempted to determine the extent to which 

each of these processes are involved in emotional inertia. For instance, Koval, Brose, et al. 

(2015) found that impaired recovery from negative events, but not blunted reactivity to events, 

was associated with higher inertia of negative emotions, suggesting that emotional inertia is 

driven primarily by impaired recovery following negative events.  

Emotional inertia has also been associated with the use of CER strategies. With regard 

to maladaptive CER strategy use, greater use of rumination has been associated with higher 

NA inertia (Blanke et al., 2022; Koval et al., 2012). Few studies have examined the association 

between the use of adaptive CER strategies and emotional inertia. Kuppens, Oravecz et al. 

(2010) found that greater use of positive reappraisal was associated with a steeper decline back 

to baseline following an emotional event, which is considered inversely associated with 

emotional inertia. However, other studies have found no association between positive 

reappraisal and NA inertia (Bean et al., 2021; Koval, Butler, et al., 2015). Nonetheless, no 
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studies have yet examined how composite measures of adaptive and maladaptive CER strategy 

use are associated with emotional inertia.  

The ability to flexibly adapt to both internal and external influences has been shown to 

be an important indicator of psychological well-being. Studies have demonstrated higher 

inertia (and thus rigidity of emotional responding) may be characteristic of psychopathology. 

This is particularly true for the inertia of negative emotions (e.g. depression, sadness; Houben 

et al., 2015) and may result from failures in the emotion regulation process aimed at altering 

negative emotion states (Kuppens, Allen, et al., 2010). Heightened emotional inertia has been 

positively associated with depression (Kuppens, Allen, et al., 2010; Kuppens et al., 2012; 

Minaeva et al., 2021), anxiety (Bosley et al., 2019; Gilbert et al., 2019; Seidl et al., 2023), 

psychosis (Westermann et al., 2017), borderline personality disorder (Ebner-Priemer et al., 

2015), post-traumatic stress disorder (Simons et al., 2021), and eating disorders (Williams-

Kerver et al., 2020).  

At the sub-clinical level, higher emotion inertia has also been positively correlated with 

neuroticism (Koval et al., 2016; Suls et al., 1998; Waugh et al., 2017), depressive symptoms 

(Brose et al., 2015; Koval & Kuppens, 2012; Koval et al., 2012, 2013), rumination (Koval et 

al., 2016; Waugh et al., 2017), and NA (Koval & Kuppens, 2012; Koval et al., 2016). 

Conversely, heightened emotional inertia has been negatively correlated with self-esteem 

(Houben et al., 2015; Koval & Kuppens, 2012; Koval et al., 2016; Kuppens, Allen, et al., 2010) 

and positive affect (PA; Houben et al., 2015). Furthermore, the association between higher 

emotional inertia and lower psychological well-being is stronger for the inertia of negative 

emotions than for positive ones (e.g. happiness, excitement; Houben et al., 2015). This finding 

implies that the rigidity of negative and not positive emotions results in a higher likelihood of 

psychological maladjustment. Taken together, higher levels of negative emotional inertia may 

be a transdiagnostic risk factor for poor mental health.  

Two fMRI studies have attempted to uncover the neural mechanisms underlying 

emotional inertia. First, Waugh et al. (2017) investigated whether changes in cerebral blood 

flow before and after an emotional task were associated with emotional inertia in response to 

daily events the following week. During the emotional task, participants viewed and rated the 

intensity of emotions elicited by self-relevant statements. This task has previously been shown 

to induce mood changes (Velten, 1968). They found that individuals who showed increased 

activation in the lateral prefrontal cortex (lPFC) during the emotional task (suggesting greater 

recruitment of emotion-regulatory neural systems) showed lower emotional inertia in daily life. 
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Thus, it was suggested that increased lPFC activity from before to after the emotional task 

enabled participants to inhibit the persistence of emotional intensity from one self-relevant 

statement to the next. Similarly, these participants may also recruit the lPFC in daily life to 

inhibit emotional responses to a prior event and prevent them from carrying over to the next 

event (Waugh et al., 2017). Building on these findings, Provenzano et al. (2018) examined how 

changes in neural activation in response to a socio-emotional laboratory task are associated 

with emotional inertia in daily life over the course of two weeks. They found that greater 

activity in the right parahippocampal gyrus (PHG) and right lateral orbitofrontal cortex (lOFC) 

in response to negative feedback in the socio-emotional laboratory task was associated with 

higher inertia of negative emotions (Provenzano et al., 2018). Taken together, these studies do 

not provide converging evidence regarding the specific brain regions involved in emotional 

inertia. Nonetheless, it seems that the PFC plays an important role in emotional inertia, 

potentially by preventing emotional responses spilling over from one event to the next. 

Many studies investigating emotional inertia have used experience sampling 

methodology (ESM; Csikszentmihalyi & Larson, 2014). ESM involves asking participants 

several times a day, over a period of time (e.g. days, week), to report their current emotion 

states, and how intensely they feel these emotion states (Kuppens, Allen, et al., 2010). From 

these ratings, AR modelling is used to calculate emotional inertia (Kuppens, Allen, et al., 

2010). Recent studies have also used observational paradigms (e.g. family interactions) or have 

exposed participants to emotional stimuli in the laboratory to assess emotional inertia. Using a 

dual-method approach, some studies have combined ESM and laboratory paradigms to 

capitalise on high ecological validity and control for the emotional events that participants 

experience. For example, one study used ESM to examine emotional inertia in daily life before 

and after experimentally manipulating anticipatory social stress (Koval & Kuppens, 2012). 

They found that higher emotional inertia in daily life was associated with higher depression, 

higher fear of negative evaluation, and lower self-esteem. However, when anticipating a 

socially stressful situation, emotional inertia was reduced, highlighting the importance of 

context when studying emotional functioning. Although the majority of studies use self-report 

ratings of emotion states to calculate emotional inertia, others have used observational 

paradigms to assess second-by-second affective behaviours during emotional episodes or 

physiological indices, such as heart rate variability (HRV). For example, De Longis et al. 

(2020) found that higher persistence of negative emotions at work (i.e. higher emotional inertia) 
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was associated with lower HRV, suggesting that HRV may be a physiological indicator of 

emotional flexibility.  

1.4.1 Sleep and emotional inertia  

Given that sleep loss impairs the effectiveness of adaptive CER strategies (Mauss et al., 

2013; Parsons et al., 2021; Tamm et al., 2019; Zhang et al., 2019) and potentiates emotional 

reactivity (Franzen et al., 2008, 2009), there is clear motivation to understand how a lack of 

sleep influences emotional inertia. This area of research is in its infancy, with only three studies 

to date investigating the association between sleep and emotional inertia. The findings of these 

studies are mixed. The first study used ESM to assess negative and positive affect over a 7-day 

period and used actigraphy to record total sleep duration from night to night. They found that 

shorter sleep duration was associated with higher inertia of a depressive mood state over this 

7-day period (X. Wen et al., 2020). However, the two other studies found no significant 

associations between either subjective sleep duration or sleep quality and the persistence of 

negative emotion states both overnight (i.e. from evening to morning) and during the day (i.e. 

from morning to evening; Frérart et al., 2023; Minaeva et al., 2021).  

These contrasting findings may be due to methodological differences between these 

studies. X. Wen et al. (2020) measured sleep duration objectively, whereas Minaeva et al. 

(2021) and Frérart et al. (2023) subjectively assessed sleep duration and sleep quality using 

single-item daily questionnaires. Moreover, Minaeva et al. (2021) and Frérart et al. (2023) 

focused primarily on the change in affect from evening to morning (i.e. overnight emotional 

inertia), which may be affected by circadian influences. For instance, prior work has 

demonstrated that evening-type individuals reported later peaks in PA and lower PA overall 

compared to morning-type individuals on work versus non-work days (M. A. Miller et al., 

2015). Therefore, evening types may experience higher overnight inertia than morning types 

because they experience lower PA in the morning.   

The studies investigating sleep and emotional inertia have used ESM to track emotion 

states over time outside of a laboratory context (Houben et al., 2015; Koval et al., 2016). 

Although ESM allows for a naturalistic assessment of emotional responding in daily life, it 

does not account for the context within which the emotional reaction takes place (Koval et al., 

2013; Kuppens et al., 2022). Previous studies have found an association between NA inertia 

and the self-reported intensity of emotional events experienced in daily life. For instance, 

Koval, Brose, et al. (2015) found that individuals who encounter more intense negative events 
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(but not more frequent negative events) in daily life display higher levels of negative emotional 

inertia. This association can be problematic as it prevents us from determining whether 

individual differences in emotional inertia are a result of environment differences (e.g. 

encountered events) or internal differences in emotional reactivity and regulation (Koole, 2009; 

Koval et al., 2013). To help rule out exogenous influences on emotional inertia, individuals 

need to be exposed to the same emotional experiences  

To address this limitation, prior studies have used a standardised mood induction 

procedure (MIP) to expose participants to a fixed order sequence of emotional events in the 

laboratory. This paradigm controls for the events participants experience and allows the 

assessment of emotional inertia over shorter timescales (e.g. seconds and minutes) than ESM 

(e.g. hours and days). In this task, participants are asked to rate how they feel on several 

emotion dimensions after the presentation of film clips and again after a subsequent rest period 

following each of the film clips (Koval et al., 2013, 2016). These studies found that higher 

negative emotional inertia was associated with higher depressive symptoms, greater use of 

rumination, and greater NA, thus replicating studies using ESM paradigms (Koval, Brose, et 

al., 2015; Koval et al., 2013, 2016). Nonetheless, it has been argued that using staged film clips 

reduces the ability to accept the events depicted in the film as real (Rottenberg et al., 2007; 

Samson et al., 2016). This can be difficult when attempting to elicit strong emotional responses. 

In light of this, in Chapter 4, the approach of Koval et al. (2016) was adopted to examine the 

influence of CER strategy use and sleep quality on emotional inertia. This helped to control for 

the events that the participants encountered. Furthermore, amateur film clips depicting real-life 

events were used to produce emotional responses akin to those experienced in daily life.  

Although previous work has demonstrated that both adaptive CER strategy use and 

sleep independently contribute to emotional inertia, no studies have yet examined their 

synergistic association. Greater use of adaptive CER strategies has been shown to decrease 

emotional inertia (Kuppens, Oravecz, et al., 2010). However, a lack of sleep reduces the 

effectiveness of adaptive CER strategies (Mauss et al., 2013; Zhang et al., 2019). Together, 

these findings suggest a potential mechanistic link between adaptive CER strategy use and 

emotional inertia, whereby the successful implementation of adaptive CER strategies (to 

reduce the persistence of negative emotion states) is contingent on high quality sleep. However, 

empirical studies examining whether lower emotional inertia results from the association 

between adaptive CER strategy use and sleep quality have not yet been conducted. Therefore, 
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Chapter 4 also investigates the extent to which the association between adaptive CER strategies 

and emotional inertia is influenced by sleep quality. 

1.4.2 Interim conclusion 

In summary, emotional inertia refers to the persistence of an emotion state from one 

moment to the next. Higher levels of (mainly negative) emotional inertia have been associated 

with vulnerability to and the development of psychopathology. Moreover, higher emotional 

inertia is thought to reflect impaired recovery following negative events. Emotional inertia has 

also been associated with CER strategies such as rumination and positive reappraisal. With 

regard to the neural mechanisms, increased prefrontal activity in response to emotional 

laboratory tasks has been shown to play an important role in emotional inertia in daily life, 

potentially through the inhibition of emotional responses. To date, only a handful of studies 

have investigated the relationship between sleep and emotional inertia with mixed findings. 

One study found that decreased sleep duration was associated with the maintenance of a 

depressed state over time. The other two studies found no associations between subjective 

measures of sleep and the inertia of negative emotions during the day, or night. As these latter 

studies assessed emotional inertia overnight, they may have been confounded by circadian 

factors. Moreover, prior work has used ESM paradigms to examine the association between 

sleep and emotional inertia, which cannot control for contextual factors (i.e. differential 

exposure to daily events across participants). Given the association between adaptive CER 

strategies and sleep, a potential mechanistic link is proposed, whereby the use of adaptive CER 

strategies (to reduce the persistence of negative emotion states) is contingent on high quality 

sleep. To help control for contextual factors and examine this mechanistic association, Chapter 

4 adopts a controlled laboratory paradigm to investigate whether the association between 

adaptive CER strategy use and emotional inertia is influenced by sleep quality. 

1.5 Conclusion 

In summary, the overarching aim of this thesis is to examine the cognitive mechanisms 

by which sleep supports emotion regulation and mental health. First, I examine whether the 

positive benefits of adaptive CER strategies (to reduce depression and anxiety) are contingent 

on high quality sleep (Chapter 2). I address the limitations of previous work by examining how 

individuals deploy adaptive CER strategies in the context of a protracted real-world stressor. 

Second, I investigate whether sleep deprivation (versus a night of sleep) influences emotional 

reactivity during exposure to prolonged ambiguous threat (Chapter 3). Reciprocally, I examine 
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whether SWA influences the regulation of emotional reactivity during this exposure. 

Importantly, I focus on how sleep deprivation influences emotional reactivity as it unfolds over 

time, rather than in response to short, static threats. Finally, I explore whether the positive 

benefits of adaptive CER strategy use (to lower emotional inertia) are contingent on high 

quality sleep. To do this, I adopt a task which helps controls for the emotional events 

participants encounter whilst exposing participants to stimuli depicting real-world events. 

Across these three research questions, I consider the temporal aspect of emotion regulation and 

utilise a range of methodological approaches (i.e. large-scale individual differences and sleep 

deprivation designs). To uncover the basic mechanisms by which sleep supports emotion 

regulation, I predominantly focus on non-clinical samples. Together, the findings from each of 

these studies provide important insights into the mechanisms by which poor sleep contributes 

to emotion dysregulation and poorer mental health and conversely, how good sleep contributes 

to emotion regulation and psychological well-being.   

1.6 Reproducibility statement   

Reproducibility and open science are the mainstays of the work presented in this thesis. 

In each of the thesis chapters, analysis plans were pre-registered and power analyses were 

conducted. All of the data and analysis code used in Chapter 2 has been made publicly available 

(on the Open Science Framework), and data and analysis code pertaining to Chapters 3 and 4 

will also be made publicly available following the completion of the thesis.  

  

https://osf.io/x952b/
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Chapter 2: The Influence of Emotion Regulation Strategies and Sleep 

Quality on Depression and Anxiety 

 

This chapter is adapted from a published article: 
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Abstract  

Chronic stress is a major risk factor for a number of mental health disorders, including 

depression and pathological anxiety. Adaptive cognitive emotion regulation (CER) strategies 

(i.e. positively-focused thought processes) can help to prevent psychiatric disturbance when 

enduring unpleasant and stressful experiences, but little is known about the inter-individual 

factors that govern their success. Sleep plays an important role in mental health, and may 

moderate the effectiveness of adaptive CER strategies by maintaining the executive 

functions on which they rely. In this study, we carried out a secondary analysis of self-reported 

mental health and sleep data acquired during a protracted and naturally-occurring stressor – the 

COVID-19 pandemic – to firstly test the hypothesis that adaptive CER strategy use is 

associated with positive mental health outcomes and secondly, that the benefits of adaptive 

CER strategy use for mental health are contingent on high-quality sleep. Using established self-

report tools, participants estimated their depression (N = 551) and anxiety (N = 590)1 levels, 

sleep quality and tendency to engage in adaptive and maladaptive CER strategies during the 

Spring and Autumn of 2020. Using a linear mixed modelling approach, we found that greater 

use of adaptive CER strategies and higher sleep quality were independently associated with 

lower self-reported depression and anxiety. However, adaptive CER strategy use was not a 

significant predictor of self-reported anxiety when accounting for sleep quality in our final 

model. The positive influence of adaptive CER strategy use on depression was observed at 

different levels of sleep quality. These findings highlight the importance of adaptive CER 

strategy use and good sleep quality in promoting resilience to depression and anxiety when 

experiencing chronic stress. 

2.1 Introduction  

Chronic stress is a well-known risk factor for mental illness. However, not all 

individuals who experience chronic stress go on to experience psychological disturbance. 

These divergent effects of chronic stress are thought to arise from pre-existing vulnerabilities, 

which vary between individuals (Marin et al., 2011). Understanding the factors that contribute 

 
1
 Due to a minor coding error that resulted in an incorrectly computed predictor measure, we have more missing 

data than was originally reported in our Stage 1 Registered Report. Our total sample size therefore differs from 

that reported in our Stage 1 Registered Report for both the pilot study (from n = 118 to n = 117 for the depression 

sample and from n = 123 to n = 122 for the anxiety sample) and the main study (from n = 562 to n = 551 for the 

depression sample and from n = 604 to n = 590 for the anxiety sample). These corrections received editorial 

approval on 30th November 2022. 
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to the onset of mental health problems when undergoing stressful life events is thus an 

important step towards reducing the global burden of mental illness. 

Psychological responses to stress are influenced by cognitive emotion regulation (CER) 

strategies, which are thought processes that an individual voluntarily engages in to regulate 

emotional experiences (Garnefski & Kraaij, 2006; Garnefski et al., 2001). CER strategies can 

be categorised as adaptive (e.g. positive reappraisal) or maladaptive (e.g. rumination; Aldao & 

Nolen-Hoeksema, 2010) and these subtypes are associated with distinct mental health 

outcomes. Whereas adaptive CER strategies tend to improve psychological well-being in the 

long term (Kirschbaum-Lesch et al., 2021), maladaptive CER strategies provide only short-

term respite (Campbell-Sills & Barlow, 2007) and can even amplify affective disturbances 

(Aldao et al., 2010; Garnefski et al., 2001; Nolen-Hoeksema et al., 2008). Indeed, among 

clinical populations, more frequent use of self-blame, rumination and catastrophising 

(maladaptive CER strategies) and less frequent use of positive reappraisal (an adaptive CER 

strategy) have all been shown to significantly predict higher levels of both depression and 

anxiety (Aldao & Nolen-Hoeksema, 2010; Domaradzka & Fajkowska, 2018; Garnefski et al., 

2002; Martin & Dahlen, 2005). Adaptive CER strategy use thus appears to be an important 

safeguard against the development of mental health problems when undergoing chronic stress. 

Adaptive CER strategy use enlists a number of executive functions such as memory 

updating, flexible task switching and inhibition of prepotent responses (Joormann & Tanovic, 

2015; McRae et al., 2012; Ochsner & Gross, 2005). It is therefore likely that factors influencing 

executive control also impact on our ability to deploy adaptive CER strategies effectively. 

Consistent with this view, previous work has shown that executive control deficits are 

associated with less frequent and unsuccessful use of adaptive CER strategies (Joormann, 2010; 

Joormann & Gotlib, 2010; Malooly et al., 2013; Pe et al., 2013; Schmeichel & Tang, 2015; 

Schmeichel et al., 2008), potentially undercutting the positive mental health outcomes that they 

typically afford. 

Poor sleep quality is widely associated with executive control deficits (Drummond et 

al., 1999; Mograss et al., 2009; Nilsson et al., 2005; Qi et al., 2010; Skurvydas et al., 2020) 

and emotion dysregulation (Ben Simon et al., 2020; Harrington, Ashton, Sankarasubramanian, 

et al., 2021; Harrington & Cairney, 2021; Yoo et al., 2007). Moreover, empirical findings 

suggest that sleep disturbances are causally related to mental health problems (Baglioni, 

Spiegelhalder, et al., 2010; Bi & Chen, 2022; Freeman et al., 2017), with a recent meta-analysis 

showing that improving sleep quality leads to a reduction in self-reported symptoms of 
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depression and anxiety (A. J. Scott et al., 2021). Unsurprisingly, sleep difficulties also have a 

negative impact on people's ability to deploy adaptive CER strategies effectively (Mauss et al., 

2013; Parsons et al., 2021; Tamm et al., 2019; Zhang et al., 2019). These findings point to a 

potential mechanistic link between disordered sleep and psychological disturbance, wherein 

the benefits of adaptive CER strategies (i.e. for downregulating negative emotions and thus 

preserving mental well-being) are contingent on ample and good quality sleep (Mauss et al., 

2013; Parsons et al., 2021; Tamm et al., 2019; Zhang et al., 2019). Whether mental health 

outcomes following a sustained period of stress can be attributed to the relationship between 

sleep and adaptive CER strategy use, however, has yet to be established. 

Stressful experiences often arise unexpectedly and evolve over long periods of time. 

Yet, research on sleep and adaptive CER strategy use is typically limited to the laboratory, 

where artificial stressors (e.g. aversive images or videos) are presented very briefly. 

Participants in laboratory experiments are also trained on how to deploy an array of CER 

strategies, whereas people in the real world must respond to aversive experiences in the absence 

of any explicit instruction. Hence, although findings from the laboratory have laid an important 

foundation for understanding the relationship between sleep, adaptive CER strategy use and 

mental health outcomes, a crucial next step is to address this question in the context of a 

naturally-occurring and chronic stressor. 

The COVID-19 pandemic has been a prolonged and unique source of stress for people 

across the entire world. Although many studies have reported significant increases in mental 

health problems during the pandemic (Morin et al., 2021), others have shown no change or 

even improvements in psychological well-being (Bottary et al., 2021; Cunningham, Fields, 

Garcia, et al., 2021; Cunningham, Fields, & Kensinger, 2021; Fields et al., 2021; Rezaei & 

Grandner, 2021; Robbins et al., 2021; Tyson & Wild, 2021), highlighting the divergent impacts 

of sustained emotional hardship. Given the unexpected and protracted nature of COVID-19, it 

offers a unique context with which to study the influence of adaptive CER strategy use on 

mental health outcomes when enduring a naturally-occurring and chronic stressor, as well as 

the moderating role of sleep. 

In this study, we capitalised on a longitudinal dataset acquired during the first nine 

months of the COVID-19 pandemic (Cunningham, Fields, Garcia, et al., 2021; Cunningham, 

Fields, & Kensinger, 2021) to investigate the influence of adaptive CER strategy use and sleep 

quality on changes in self-reported depression and anxiety. 
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A sample of N = 1600 healthy adults provided self-reported scores of depression, 

anxiety, sleep quality and CER strategy use at multiple time points between March and 

November of 2020. Our planned analyses of this data allowed us to address two research 

questions. 

1) Is adaptive CER strategy use associated with positive mental health outcomes? 

2) Are the mental health benefits of adaptive CER strategy use contingent on good quality 

sleep? 

We tested the following hypotheses using a null hypothesis significance testing 

framework: 

(1) Greater use of adaptive CER strategies will be associated with: 

(a) Decreased self-reported depression.  

(b) Decreased self-reported anxiety.   

(2) Higher sleep quality will be associated with: 

(a) Decreased self-reported depression.  

(b) Decreased self-reported anxiety. 

(3) Use of adaptive CER strategies will be moderated by sleep quality such that: 

(a) The relationship between greater use of adaptive CER strategies and decreased 

self-reported depression will be stronger at higher levels of sleep quality.  

(b) The relationship between greater use of adaptive CER strategies and decreased 

self-reported anxiety will be stronger at higher levels of sleep quality. 

2.2 Methods  

We report how we determined our sample size, all data exclusions, all 

inclusion/exclusion criteria, whether inclusion/exclusion criteria were established prior to data 

analysis, all manipulations, and all measures in the study. 

2.2.1 Measures and design 

The accepted Stage 1 manuscript of this Registered Report was registered on the Open 

Science Framework (OSF). This study was a secondary analysis of data collected by 

Cunningham, Fields, and Kensinger, (2021). The cited data descriptor contains additional 

information on the data collection process (beyond that described below), should it be required. 

https://osf.io/fxtvg
https://osf.io/fxtvg
https://osf.io/gpxwa/
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See Table 2.1 for our study design table and Figure 2.1 for an overview of the data collection 

periods for each of the measures included in our analysis. 
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Table 2.1. Hypotheses, sampling plan, analysis plan, and interpretations for each of our primary research questions. 

Aim Hypothesis Sampling plan Analysis plan Interpretation given different outcomes 

1. Is adaptive CER strategy 

use associated with positive 

mental health outcomes?   

 

1a. Greater use of adaptive 

CER strategies will be 

associated with decreased 

self-reported depression.   

Power analyses have been computed 

to calculate the minimum effect sizes 

which can be detected at 90% power 

and 0.02 alpha level for each fixed 

effect and interaction effect in Model 

2, addressing hypotheses 1a (Table 

2.2). 

We will perform a linear mixed effects analysis of the 

relationship between adaptive CER strategy use and 

depression over time, as indexed by the change from 

baseline to follow-up. As fixed effects, we will enter: 1) 

time as a categorical predictor and 2) adaptive CER 

strategy use as a continuous predictor (grand-mean 

centred). We will also include a random intercept for 

participants. Age, biological sex and mental health 

diagnosis will be included as covariates along with the 

interactions between covariates and the predictors.  

 

Depression ~ 1 + time*age + time*biological sex + 

time*mental health diagnosis + adaptive CER strategy 

use*age + adaptive CER strategy use*biological sex + 

adaptive CER strategy use*mental health diagnosis + 

time*adaptive CER strategy use + (1 | participant).  

Significant: If there is a main effect of time it 

can be concluded that depression changes 

from baseline to follow-up. If there is a main 

effect of adaptive CER strategy use it can be 

concluded that adaptive CER strategy use 

influences depression. If there is an interaction 

between time and adaptive CER strategy use it 

can be concluded that adaptive CER strategy 

use leads to a change in depression from 

baseline to follow-up. If there is a main effect 

of age it can be concluded that age influences 

depression. If there is a main effect of sex it 

can be concluded that sex (female/male) 

influences depression. If there is a main effect 

of mental health diagnosis it can be concluded 

that mental health diagnosis (yes/no) 

influences depression. 

1. Is adaptive CER strategy 

use associated with positive 

mental health outcomes?   

 

1b. Greater use of adaptive 

CER strategies will be 

associated with decreased 

self-reported anxiety. 

Power analyses have been computed 

to calculate the minimum effect sizes 

which can be detected at 90% power 

and 0.02 alpha level for each fixed 

effect and interaction effect in Model 

2, addressing hypotheses 1b (Table 

2.2). 

We will perform a linear mixed effects analysis of the 

relationship between adaptive CER strategy use and 

anxiety over time, as indexed by the change from baseline 

to follow-up. As fixed effects, we will enter: 1) time as a 

categorical predictor and 2) adaptive CER strategy use as 

a continuous predictor (grand-mean centred). We will also 

include a random intercept for participants. Age, 

biological sex and mental health diagnosis will be included 

as covariates along with the interactions between 

covariates and the predictors. 

 

Anxiety ~ 1 + time*age + time*biological sex + 

time*mental health diagnosis + adaptive CER strategy 

Significant: If there is a main effect of time it 

can be concluded that anxiety changes from 

baseline to follow-up. If there is a main effect 

of adaptive CER strategy use it can be 

concluded that adaptive CER strategy use 

influences anxiety. If there is an interaction 

between time and adaptive CER strategy use it 

can be concluded that adaptive CER strategy 

use leads to a change in anxiety from baseline 

to follow-up. If there is a main effect of age it 

can be concluded that age influences anxiety. 

If there is a main effect of sex it can be 

concluded that sex (female/male) influences 

anxiety. If there is a main effect of mental 
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use*age + adaptive CER strategy use*biological sex + 

adaptive CER strategy use*mental health diagnosis + 

time*adaptive CER strategy use + (1 | participant). 

health diagnosis it can be concluded that 

mental health diagnosis (yes/no) influences 

anxiety. 

2. Are the mental health 

benefits of adaptive CER 

strategy use contingent on 

good quality sleep? 

 

2a. Higher sleep quality 

will be associated with 

decreased self-reported 

depression. 

3a.  Use of adaptive CER 

strategies will be 

moderated by sleep quality 

such that the relationship 

between greater use of 

adaptive CER strategies 

and decreased self-

reported depression will 

be stronger at higher levels 

of sleep quality. 

 

Power analyses have been computed 

to calculate the minimum effect sizes 

which can be detected at 90% power 

and 0.02 alpha level for each fixed 

effect and interaction effect in Model 

3i, addressing hypothesis 2a and 3a 

(Table 2.2). 

We will perform a linear mixed effects analysis of the 

moderating role of sleep quality on the relationship 

between adaptive CER strategy use and depression over 

time, as indexed by the change from baseline to follow-up. 

As fixed effects, we will enter: 1) time as a categorical 

predictor and 2) adaptive CER strategy use and 3) sleep 

quality as continuous predictors (grand-mean centred). We 

will also include a random intercept for participants. Age, 

biological sex and mental health diagnosis will be included 

as covariates along with the interactions between 

covariates and the predictors. 

 

Depression ~ 1 + time*adaptive CER strategy use*age + 

time*adaptive CER strategy use*biological sex + 

time*adaptive CER strategy use*mental health diagnosis 

+ time*sleep quality*age + time*sleep quality*biological 

sex + time*sleep quality*mental health diagnosis + 

adaptive CER strategy use*sleep quality*age + adaptive 

CER strategy use*sleep quality*biological sex + adaptive 

CER strategy use*sleep quality*mental health diagnosis + 

time*adaptive CER strategy use*sleep quality + (1 | 

participant). 

Significant: If there is a main effect of sleep 

quality it can be concluded that sleep quality 

influences depression. If there is an interaction 

between time and sleep quality it can be 

concluded that sleep quality leads to a change 

in depression from baseline to follow-up. If 

there is an interaction between adaptive CER 

strategy use and sleep quality it can be 

concluded that sleep quality influences the 

relationship between adaptive CER strategy 

use and depression. If there is an interaction 

between adaptive CER strategy use, sleep 

quality and time it can be concluded that sleep 

quality influences the relationship between 

adaptive CER strategy use and the change in 

depression from baseline to follow-up. 

2. Are the mental health 

benefits of adaptive CER 

strategy use contingent on 

good quality sleep? 

 

2b. Higher sleep quality 

will be associated with 

decreased self-reported 

anxiety. 

3b. Use of adaptive CER 

strategies will be 

moderated by sleep quality 

such that the relationship 

Power analyses have been computed 

to calculate the minimum effect sizes 

which can be detected at 90% power 

and 0.02 alpha level for each fixed 

effect and interaction effect in Model 

3ii, addressing hypothesis 2b and 3b 

(Table 2.2). 

 

We will perform a linear mixed effects analysis of the 

moderating role of sleep quality on the relationship 

between adaptive CER strategy use and anxiety over time, 

as indexed by the change from baseline to follow-up. As 

fixed effects, we will enter: 1) time as a categorical 

predictor and 2) adaptive CER strategy use and 3) sleep 

quality as continuous predictors (grand-mean centred). We 

will also include a random intercept for participants. Age, 

biological sex and mental health diagnosis will be included 

Significant: If there is a main effect of sleep 

quality it can be concluded that sleep quality 

influences anxiety. If there is an interaction 

between time and sleep quality it can be 

concluded that sleep quality leads to a change 

in anxiety from baseline to follow-up. If there 

is an interaction between adaptive CER 

strategy use and sleep quality it can be 

concluded that sleep quality influences the 
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between greater use of 

adaptive CER strategies 

and decreased self-

reported anxiety will be 

stronger at higher levels of 

sleep quality. 

as covariates along with the interactions between 

covariates and the predictors. 

 

Anxiety ~ 1 + time*adaptive CER strategy use*age + 

time*adaptive CER strategy use*biological sex + 

time*adaptive CER strategy use*mental health diagnosis 

+ time*sleep quality*age + time*sleep quality*biological 

sex + time*sleep quality*mental health diagnosis + 

adaptive CER strategy use*sleep quality*age + adaptive 

CER strategy use*sleep quality*biological sex + adaptive 

CER strategy use*sleep quality*mental health diagnosis + 

time*adaptive CER strategy use*sleep quality + (1 | 

participant). 

relationship between adaptive CER strategy 

use and anxiety. If there is an interaction 

between adaptive CER strategy use, sleep 

quality and time it can be concluded that sleep 

quality influences the relationship between 

adaptive CER strategy use and the change in 

anxiety from baseline to follow up.   
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Figure 2.1. Schematic of the study timeline. The PSQI and CERQ were administered once between May and August 2020. PHQ-9 responses were 

collected between March and May 2020 (Baseline) and again between October and November 2020 (Follow-Up). GAD-7 responses were collected 

between May and June 2020 (Baseline) and again between September and November 2020 (Follow-Up). For the purpose of our analyses, March 

to June 2020 is referred to as the early data collection period (Spring 2020) and September to November 2020 is referred to as the late data 

collection period (Autumn 2020). 
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All participants provided consent via an online form and were invited to complete the 

following. 

2.2.1.1 Demographic survey 

The demographic survey included the following items: age, biological sex, gender 

identity, ethnicity, race, current residence and previous diagnoses of mental health disorders. 

2.2.1.2 Cognitive emotion regulation  

The Cognitive Emotion Regulation Questionnaire- Short version (CERQ-

short; Garnefski & Kraaij, 2006) is an eighteen-item, self-report questionnaire designed to 

identify the emotion regulation strategies that individuals use after experiencing a negative 

event or situation. Participants are asked to rate how often they use nine conceptually different 

CER strategies (two questionnaire items per strategy) on a scale ranging from 1 (almost never) 

to 5 (almost always). Individual scores for each CER strategy are obtained by summing the two 

questionnaire items associated with each strategy to form an overall score (ranging from 2 to 

10). The higher the overall score, the more a CER strategy is used. CER strategies can be 

dichotomised as adaptive and maladaptive (Aldao et al., 2010; Garnefski et al., 2001). Adaptive 

CER strategies include refocus on planning (i.e. thinking about the next steps and how to 

handle the negative event), positive refocusing (i.e. turning thoughts towards joyful and 

pleasant matters), positive reappraisal (i.e. attaching a positive meaning to an event) 

and putting into perspective (i.e. downregulating the seriousness of the event and comparing it 

to other events). Although acceptance (i.e. coming to terms with the situation that has 

occurred) has been previously classified as an adaptive CER strategy, there are concerns that 

it may only be adaptive under certain circumstances (Martin & Dahlen, 2005). Consequently, 

it is not considered as either an adaptive or maladaptive CER strategy in the current study. 

Maladaptive CER strategies include self-blame (i.e. blaming oneself for what they have 

experienced), other-blame (i.e. blaming others for what they have 

experienced), rumination (i.e. dwelling on the negative feelings or thoughts associated with an 

event) and catastrophising (i.e. overemphasising the negative parts of an experience). Overall, 

the CERQ-short has demonstrated good validity and reliability in the general population 

(Araujo et al., 2020; Garnefski & Kraaij, 2006). In the current dataset, the CERQ-short was 

administered once in Spring 2020, between 19th May and 26th August. 

To assess adaptive CER strategy use, we created a composite score by summing the 

scores for all adaptive items on the CERQ-short (positive refocusing, refocus on planning, 
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positive reappraisal, putting into perspective). Scores ranged from 8 to 40 (two questionnaire 

items per adaptive CER strategy), with higher scores indicating more frequent use of adaptive 

CER strategies. Higher scores on this composite measure of adaptive CER strategy use have 

been associated with positive mental health outcomes in previous work (e.g. lower prevalence 

of depression and anxiety; Domaradzka & Fajkowska, 2018; Garnefski et al., 2001).  

We also assessed maladaptive CER strategy use (for inclusion in exploratory analyses). 

To do so, we created a composite score by summing the scores for all maladaptive items on the 

CERQ-short (self-blame, other-blame, rumination, catastrophising). Scores ranged from 8 to 

40 (two questionnaire items per maladaptive CER strategy), with higher scores indicating more 

frequent use of maladaptive CER strategies. Higher scores on this composite measure of 

maladaptive CER strategy use have been associated with negative mental health outcomes in 

previous work (e.g. higher prevalence of depression and anxiety; Domaradzka & Fajkowska, 

2018; Garnefski et al., 2001).  

2.2.1.3 Sleep quality  

The Pittsburgh Sleep Quality Index (PSQI; Buysse et al., 1989) is a self-report 

questionnaire designed to assess sleep quality over the preceding month. The questionnaire 

consists of nineteen items, which are grouped to form seven sub-scores: (1) subjective sleep 

quality, (2) sleep latency, (3) sleep duration, (4) sleep efficiency, (5) sleep disturbance, (6) use 

of sleep medication and (7) daytime dysfunction. Each sub-score ranges from 0 to 3, with 3 

reflecting the poorest sleep quality. Sub-scores are then summed to produce a global score, 

which ranges from 0 to 21. Higher global scores indicate poorer sleep quality. The PSQI has 

demonstrated strong reliability and validity in both clinical and non-clinical samples (Buysse 

et al., 1989; Mollayeva et al., 2016). In the current dataset, the PSQI was administered once in 

Spring 2020, between 19th May and 26th August. 

2.2.1.4 Depression  

The Patient Health Questionnaire (PHQ-9; Kroenke et al., 2001) is a nine-item self-

report questionnaire designed to measure depression severity. Participants report how often 

they have been bothered by nine core symptoms of depression over the preceding fortnight. 

Each item is rated on a Likert scale from 0 (not at all) to 3 (nearly every day). Usually, all nine 

items are summed to create a total score ranging from 0 to 27. However, the suicidality item 

was omitted during data collection, and so we summed the remaining eight items to create a 

modified score ranging from 0 to 24. A higher modified score indicates higher depression 
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severity. Prior evidence indicates that the PHQ-9 has excellent internal reliability in both 

clinical (Cronbach's α = .89) and non-clinical (Cronbach's α = .87) samples (Kocalevent et al., 

2013; Kroenke et al., 2001).  

The PHQ-9 was assessed across two time periods: Spring and Autumn 2020 (both five 

weeks in duration). For the Spring 2020 data collection period, depression data was collected 

between 21st March and 1st May, and for the Autumn 2020 data collection period, depression 

data was collected between 1st October and 14th November. Participants were invited to 

complete the PHQ-9 on two days of each assessment week. The PHQ-9 was administered 

pseudorandomly such that the randomly selected days in the first week were then eliminated 

from choice in the following week until the PHQ-9 had been assessed on each day of the week 

before starting over. This ensured that the days of the week were sampled evenly. There were 

some weeks where the PHQ-9 was administered more than twice a week. Firstly, in the first 

week of the Spring period, when the study launched, participants were invited to complete the 

PHQ-9 on all seven days of the assessment week (21/03/2020-27/03/2020) before this was 

dropped down to two times a week to reduce participant burden. Secondly, the PHQ-9 was 

administered four times a week instead of two times a week during the fortnight around the US 

election (31/10/2020-14/11/2020). The PHQ-9 was therefore administered more frequently 

than the PSQI, CERQ, and the GAD-7, with the PSQI and CERQ being administered only once 

in Spring, and the GAD-7 being administered once in Spring and once again in Autumn (see 

below). All PHQ-9 scores (modified total score of 0–24) collected in the Spring period were 

averaged to create a mean baseline depression index. Similarly, all PHQ-9 scores collected in 

the Autumn period were averaged to create a mean follow-up depression index. 

2.2.1.5 Anxiety  

The Generalised Anxiety Disorder Questionnaire (GAD-7; Spitzer et al., 2006) is a 

seven-item self-report questionnaire designed to measure anxiety severity. Participants report 

how often they have been bothered by seven core symptoms of generalised anxiety disorder 

over the preceding fortnight. Items are scored from 0 (not at all) to 3 (nearly every day) and a 

total score is obtained by summing across all individual items. The total score ranges from 0 to 

21, with higher scores indicating a higher severity of generalised anxiety. The GAD-7 has 

excellent internal reliability in both clinical (Cronbach's α = 0.92) and non-clinical 

(Cronbach's α = 0.89) samples (Löwe et al., 2008; Spitzer et al., 2006).  
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The GAD-7 was assessed in Spring and Autumn 2020 (once at each time point). For 

the Spring 2020 data collection period, anxiety data was collected between 19th May and 30th 

June, and for the Autumn 2020 data collection period, anxiety data was collected between 28th 

September and 9th November. The Spring data collection period was therefore slightly later 

for the anxiety data than the depression data, whereas the Autumn data collection period was 

highly overlapping for the anxiety and depression data. The GAD-7 score collected in the 

Spring formed a baseline anxiety index, whereas the GAD-7 score collected in the Autumn 

formed a follow-up anxiety index. 

2.2.2 Participants  

N = 1600 participants (77.0% females, age M = 35.05 years, SD = 15.03 years) 

completed the initial demographic survey. Our final samples (for depression and anxiety) were 

obtained after applying the exclusion procedures described below (see Exclusion Criteria). 

Because the PHQ-9 and GAD-7 were collected at different times in the Spring and Autumn of 

2020, the final sample sizes differ for each measure (depression N = 551: 457 female, 

age M = 39.12, SD = 17.07 years; anxiety N = 590: 489 female, 

age M = 38.49, SD = 16.89). Of the depression sample, 98.7% of participants were also 

included in the anxiety sample. Likewise, of the anxiety sample, 92.2% of participants were 

also included in the depression sample2. See the Supplementary Material (Table A.1) for a 

detailed overview of demographics in our depression and anxiety samples. 

Participants were entered into raffles to receive gift cards. Ethical approval for the 

original study was obtained by the Institutional Review Board at Boston College, United States 

(US), and the current study has been approved by the Research Ethics Committee of the 

Department of Psychology at the University of York, UK. 

2.2.3 Exclusion criteria 

Because COVID-19 restrictions (e.g. nationwide lockdowns) varied according to 

country, we excluded participants who were not residing in the US at the time of data collection. 

Non-US participants were used instead in our pilot analyses (see Statistical Analysis). 

Participants with missing item data on the CERQ or PSQI (predictor measures) were excluded 

from all analyses. Participants with missing item data on the PHQ-9 and/or GAD-7 (outcome 

measures) during both assessment periods (Spring and Autumn) were excluded from the 

 
2
 Due to a minor coding error, our total sample size has changed. See footnote 1 for further details. 
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analysis of depression and/or anxiety, respectively. Participants who fully completed the PHQ-

9 and/or GAD-7 at one of the two assessment periods (Spring or Autumn) were, however, 

included in the respective analysis of depression and/or anxiety. For the depression 

sample, N = 226 completed time point one only, N = 44 completed time point two only, 

and N = 281 completed both time points. For the anxiety sample, N = 239 completed time point 

one only, N = 16 completed time point two only and N = 335 completed both time points3. A 

full breakdown on how we reached our final sample sizes, for both the depression and anxiety 

outcomes, can be found in the Supplementary Material (Figures A.1 and A.2). 

2.2.4 Statistical analysis 

Our predictor measures were the CERQ (adaptive CER strategies composite score) and 

PSQI (total score). Our outcome measures were the PHQ-9 (mean modified total score) and 

the GAD-7 (total score) at baseline (Spring) and follow-up (Autumn). 

To formulate our analysis pipeline and conduct a power analysis, we created a pilot 

dataset using the non-US participants (excluded from our main analysis). Sample sizes for our 

pilot analyses of depression and anxiety were N = 117 and N = 122, respectively4.  

2.2.4.1 Self-certification of data blindness  

All authors remained blind to the data from the US participants that was used in our 

planned analyses prior to in principal acceptance of the manuscript. 

2.2.4.2 Planned analyses 

All hypotheses were tested using linear mixed effects models with a random intercept 

for participants. We carried out two models per hypothesis (corresponding to the two outcome 

measures of depression and anxiety) with an alpha threshold of 0.05 (corrected for the false 

discovery rate). To quantify the evidence in support of the experimental (H1) or null hypotheses 

(H0), we calculated Bayes Factors for each effect of interest (Wetzels & Wagenmakers, 2012) 

using Jeffreys (1961) conventional cut-offs to determine the strength of the evidence. 

We included age and biological sex as covariates in all models because they have been 

found to influence both emotion regulation (Costa Martins et al., 2016; Ford, DiBiase, & 

Kensinger, 2018; Ford, DiBiase, Ryu, et al., 2018) and sleep quality in previous work (Buysse 

et al., 1991; Madrid-Valero et al., 2017; Middelkoop et al., 1996). Specifically, older age has 

 
3
 For reasons noted in footnote 1, our total sample size has changed. 

4
 Our pilot sample size has also changed. 
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been associated with an increased focus on the positive aspects of emotional events (Ford, 

DiBiase, & Kensinger, 2018; Ford, DiBiase, Ryu, et al., 2018), lower depression 

symptomatology over the initial course of the COVID-19 pandemic (Cunningham, Fields, 

Garcia, et al., 2021; Cunningham, Fields, & Kensinger, 2021; Fields et al., 2021) and poorer 

sleep quality (Buysse et al., 1991; Madrid-Valero et al., 2017), suggesting that the link between 

sleep quality and adaptive CER strategy use might be tempered in older relative to younger 

adults. Along similar lines, females report less frequent use of adaptive CER strategies (Costa 

Martins et al., 2016; Kelly et al., 2008) and poorer sleep quality than males (Buysse et al., 1991; 

Middelkoop et al., 1996), meaning that the link between sleep quality and adaptive CER use 

may be stronger in females than males. We also included the interactions between these 

covariates and our variables of interest [Time, PSQI, CERQ] in each of our models. See Table 

2.1 for an overview of each model. 

Standard assumptions of linear mixed models (i.e. linearity, homogeneity of variance, 

multicollinearity, normality of residuals, and influential data points) were checked throughout 

the modelling process. We used a decision tree to check model assumptions and carry out 

appropriate transformations of the data in the event that any assumptions were violated (see 

Figure A.3 in the Supplementary Material). Because linear models are relatively robust to 

violations of distributional assumptions (such as normality of residuals; Schielzeth et al., 

2020), any model issues that were not satisfactorily resolved are reported and the results 

interpreted with necessary caution. All continuous predictors and covariates in the linear mixed 

models were grand mean-centred to enhance the interpretability of model intercepts (Enders & 

Tofighi, 2007). We used simple slopes analysis with Johnson-Neyman intervals to probe any 

significant two-way and three-way interactions in Model 2 and Model 3, respectively (Carden 

et al., 2017; Lin, 2020). In case non-convergence issues arose in our final dataset, we produced 

a workflow outlining the steps we would take to address such matters. This is illustrated in the 

Supplementary Material (Figure A.4). 

All analyses were conducted using R (v.4.0.2) with the R packages lme4 (Bates et al., 

2014), lmerTest (Kuznetsova et al., 2017) and afex (Singmann et al., 2021). These packages 

were used to model regressions and calculate p-values using Satterthwaite approximations. 

Plots were created with the R package ggplot2 (Wickham, 2016). The code for our linear mixed 

effects models has been adapted from Rodriguez-Seijas et al. (2020) and can be found on the 

OSF.  

https://osf.io/ur27h/
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Model 1, baseline model investigating the effect of time on self-reported depression 

and anxiety. Model 1 was used as a baseline model to investigate the effect of time on 

depression (PHQ-9 mean modified total score) and anxiety (GAD-7 total score), as indexed by 

the change from baseline to follow-up. From this model, we were able to determine whether 

depression and/or anxiety change from Spring to Autumn 2020 in the absence of any predictor 

variables. Accordingly, the only fixed effect was time, which was added as a categorical 

predictor alongside the covariates. Time-bin was simple coded (early = −0.5, late = 0.5). 

Previous studies using the same dataset as ours (and similar models) have shown a significant 

effect of time on depression during the early to later months of the pandemic (i.e. a reduction 

in PHQ-9 scores; Fields et al., 2021; Rodriguez-Seijas et al., 2020). The effect of time on 

anxiety has yet to be investigated in this dataset, but findings from other COVID-19 datasets 

have indicated that anxiety has followed a similar trajectory to depression (Carr et al., 2022; 

Fancourt et al., 2020; Kujawa et al., 2020; O’Connor et al., 2020; van der Velden et al., 2021).  

Model 2, testing hypotheses 1a and 1b: greater use of adaptive CER strategies will 

be associated with decreased self-reported depression and anxiety over time. Model 2 

addressed the effect of adaptive CER strategy use on depression and anxiety. The adaptive 

CER strategies (composite) score was added as a continuous fixed effect, alongside the 

interaction between the adaptive CER strategies score and time. Support for our hypotheses 

will be indicated by a significant interaction between the adaptive CER strategies score and 

time on self-reported depression and/or anxiety (p < .05), such that greater use of adaptive CER 

strategies will be associated with a decrease in depression and/or anxiety from baseline. 

Model 3 (i), testing hypotheses 2a and 2b: higher sleep quality will be associated 

with decreased self-reported depression and anxiety over time. Model 3 addressed the 

effect of sleep quality on depression and anxiety. The sleep quality (PSQI) score was added to 

the baseline model as a continuous fixed effect, alongside the interaction between the sleep 

quality score and time. Support for our hypotheses will be indicated by a significant interaction 

between time and the sleep quality score on self-reported depression and/or anxiety (p < .05), 

such that higher sleep quality will be associated with a decrease in depression and/or anxiety 

from baseline. 

Model 3 (ii), testing hypotheses 3a and 3b: the relationship between greater use of 

adaptive CER strategies and decreased self-reported depression and anxiety will be 

stronger at higher levels of sleep quality. The three-way interaction between sleep quality 

score, adaptive CER strategies score and time was added to Model 3 to investigate whether 
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sleep quality moderates the relationship between adaptive CER strategy use and either 

depression or anxiety. Support for our hypotheses will be indicated by a significant three-way 

interaction between time, adaptive CER strategies score and sleep quality score on depression 

and/or anxiety (p < .05), such that the relationships described for Model 2 will be stronger at 

higher (above average) levels of sleep quality. 

2.2.4.3 Missing data 

Maximum likelihood was used to handle missing outcome data (e.g. when PHQ-9 

and/or GAD-7 data is only available for the early or late time point). Consistent with ordinary 

least squares regression, maximum likelihood uses all of the available outcome data – complete 

and incomplete – to identify parameter values that maximise the fit of the model with the 

observed data (Baraldi & Enders, 2010; Brown, 2021). Note that the PHQ-9 was administered 

numerous times within each assessment period (with a mean score calculated across all scores 

within that period), meaning that participants must have fully completed the PHQ-9 at least 

once during the Spring or Autumn to be included in the analysis of depression. 

2.2.5 Power analysis 

The sample size for this study was already determined by the secondary data available. 

However, it is important to determine whether the data available can provide a sufficiently 

powered test of our key hypotheses. We used a data simulation approach to calculate the 

minimum effect sizes that we were able to detect with 90% power, an alpha threshold of 0.02 

and the sample available for each analysis (depression N = 551; anxiety N = 590)5. If these 

minimum effect sizes are comparable to or smaller than those expected in the context of the 

current literature, we can be reassured that the data provide a suitable means of addressing of 

our research questions. Please note that the 90% power and alpha threshold of 0.02 were 

selected in accordance with Cortex's Registered Report guidelines for power analyses. We 

chose an alpha threshold of 0.05 for our main analyses to protect against overly conservative p-

values when controlling for the false discovery rate. 

Simulated datasets were generated from the model parameters extracted from the pilot 

analyses (depression N = 117; anxiety N = 122; see Table A.2 in the Supplementary 

Material)6. For each hypothesis, we varied the size of the associated model coefficient that 

generated the simulated data, ranging from 0 (i.e. a null effect) to the maximum effect size 

 
5
 For reasons noted in footnote 1, our total sample size has changed. 

6
 Our pilot sample size has also changed. 
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indicated by the 95% confidence intervals. By generating and analysing 1000 datasets at 

varying effect sizes in this range, we calculated the minimum effect size at which 90% of the 

tests were statistically significant at p < .02 (see Table 2.2). 

Although we report non-standardised coefficients in our main analyses – allowing 

direct interpretation of the model coefficients in relation to unit changes in the measures – we 

computed standardised coefficients to examine the minimum detectable effect sizes within the 

context of the current literature. There is a limited literature on which to base reasonable effect 

size estimates for the moderating role of sleep on adaptive CER strategy use and mental health 

outcomes. A recent cross-sectional study examined the influence of adaptive CER strategy use 

and sleep quality on depression, using a structural equation modelling approach (Nicholson et 

al., 2021) and estimated a standardised path coefficient of 0.12. Our simulations for the 

interaction between adaptive CER strategy use and sleep quality on depression (Model 3) 

estimated that we have sufficient power to test an effect of similar magnitude (β = 0.19)7.  

To determine the sensitivity of our models to false positives, we ran an additional 

simulation analysis with all beta coefficients for the effects of interest set to 0. Because Model 

3 includes all of our effects of interest, we deemed it reasonable to carry out this simulation on 

Model 3 alone (separately for depression and anxiety). These simulations confirmed that the 

proportion of false positives produced by the models was in line with the alpha level of 0.02 

(see Table A.3 in the Supplementary Material).

 
7
 For reasons outlined in footnote 1, the minimum detectable effect size for the interaction between adaptive CER 

strategy use and sleep quality on depression has changed. 
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Table 2.2. Minimum detectable effect sizes and 95% confidence intervals based on a simulated dataset with 90% power and 0.02 alpha level. 

 Depression Anxiety 

Effect Size (ES) B [CIs] β [CIs] B [CIs] β [CIs] 

Model 2  

 
Time 0.66 [0.65–0.68] 0.11 [0.11–0.11] 0.83 [0.78–0.87] 0.15 [0.15–0.16] 

Adaptive CER Strategy Use 0.17 [0.16–0.18] 0.19 [0.18–0.20] 0.16 [0.15–0.17] 0.19 [0.18–0.20] 

Time × Adaptive CER Strategy Use 0.07 [0.07–0.08] 0.09 [0.09–0.09] 0.11 [0.10–0.11] 0.11 [0.11–0.12] 

Model 3 

Time 0.72 [0.70–0.74] 0.12 [0.11–0.13] 1.02 [1.01–1.04] 0.19 [0.18–0.19] 

Adaptive CER Strategy Use 0.17 [0.18–0.18] 0.17 [0.16–0.17] 0.16 [0.15–0.17] 0.16 [0.15–0.16] 

Sleep Quality 0.31 [0.30–0.32] 0.17 [0.16–0.17] 0.36 [0.34–0.37] 0.20 [0.19–0.21] 

Time × Adaptive CER Strategy Use 0.08 [0.07–0.08] 0.12 [0.11–0.12] 0.18 [0.17–0.19] 0.16 [0.16–0.17] 

Time × Sleep Quality 0.03 [0.03–0.04] 0.14 [0.14–0.14] 0.46 [0.45–0.48] 0.22 [0.21–0.22] 

Adaptive CER Strategy Use × Sleep Quality  0.08 [0.07–0.08] 0.19 [0.18–0.19] 0.08 [0.08–0.08] 0.19 [0.18–0.20] 

Time × Adaptive CER Strategy Use × Sleep Quality 0.03 [0.03–0.04] 0.09 [0.09–0.10] 0.05 [0.05–0.05] 0.12 [0.12–0.13] 

B = Non-standardised ES, β = Standardised ES8.

 
8
 For reasons noted in footnote 1, our pilot sample size has changed and, as such, our minimum detectable effect sizes and 95% confidence intervals have changed. 



58 

 

2.3 Results 

2.3.1 Pre-registered analysis 

The data files and scripts for our pre-registered and exploratory analyses can be found 

on the OSF. Both the depression and anxiety outcome measures violated the assumptions of 

linearity and homoskedascity. An initial log(10) transformation did not resolve these violations 

so we applied a Box–Cox transformation and report the results using these transformed 

outcome variables. To control for multiple comparisons, we report p-values adjusted for 

the false discovery rate (FDR; Benjamini & Hochberg, 1995). Cohen's d for each effect of 

interest was calculated using the R package EMAtools (Kleiman, 2021). Bayes Factors were 

computed using the R package BayesFactor (Morey & Rouder, 2022) and can be interpreted 

in line with Jeffreys criterion (Jeffreys, 1961). 

Table 2.3 shows the descriptive statistics for the depression and anxiety datasets. Table 

2.4 shows correlations among all examined variables for the (a) self-reported depression 

models and (b) self-reported anxiety models. We found a significant negative association 

between adaptive CER strategy use and both depression (rs = −.24, p < .001) and anxiety 

(rs = −.19, p < .001), such that greater use of adaptive CER strategies was associated with lower 

depression and anxiety scores. There was also a significant positive association between sleep 

quality and both depression (rs = .51, p < .001) and anxiety (rs = .44, p < .001); with lower 

scores on the PSQI reflecting higher sleep quality. Thus, higher sleep quality was associated 

with lower depression and anxiety scores. Furthermore, there was a significant negative 

association between sleep quality and adaptive CER strategy use in both the depression 

(rs = −.22, p < .001) and anxiety datasets (rs = −.21, p < .001), such that higher sleep quality 

was associated with greater use of adaptive CER strategies.

https://osf.io/x952b/
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Table 2.3. Descriptive statistics (a) for PHQ-9, GAD-7, CERQ adaptive composite score and PSQI total score. (b) Distribution of depression and 

anxiety severity levels, based on cut-off scores for the PHQ-9 and GAD-7 during Spring and Autumn 2020. Early and late time point PHQ-9 and 

GAD-7 total scores are reported for each of the depression and anxiety datasets, respectively. CERQ adaptive composite score and PSQI total 

score are reported for both the depression and anxiety datasets. None-minimal indicates no or minimal depression and/or anxiety symptomatology. 

Mild to severe indicates respective levels of depression and/or anxiety symptomatology. 

(a) Depression dataset Anxiety dataset 

 PHQ-9*^ GAD-7* 

Time bin Early Late Early Late 

Mean [SD] 6.24 [4.30] 5.42 [4.25] 6.14 [4.84] 6.11 [4.83] 

Median [IQR] 5.50 [5.52] 4.67 [5.67] 5.00 [7.00] 5.00 [5.50] 

Range   0–23 0–20.30 0–21 0–21 

 CERQ 

(Adaptive) 

PSQI CERQ 

(Adaptive) 

PSQI 

Mean [SD] 22.66 [5.89] 6.17 [3.24] 22.63 [5.92] 6.14 [3.25] 

Median [IQR] 22.00 [8.25] 5.50 [4.00] 22.00 [9.00] 6.00 [4.00] 

Range   9–40 0–16 9–40 0–16 

(b) PHQ-9* GAD-7* 

Time bin Early Late Early Late 

None-minimal  182 143 256 156 

Mild 213 128 191 126 

Moderate 84 38 91 37 

Moderately severe 23 15 NA NA 
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Severe 5 1 36 32 

*Descriptive statistics and cut-off scores were calculated on the non-transformed outcome variables to facilitate interpretation. ̂ PHQ-9 scores were modified due to the omission 

of the suicidality item so total score ranges from 0–24 instead of the typical 0–27. 
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Table 2.4. Spearman’s correlations (rs) between all examined variables for (a) self-reported depression and (b) self-reported anxiety. Statistically 

significant correlations are shown in bold. Multiple comparisons correction was applied using Holm’s method (Hochberg, 1988). 

(a)  Time Age Biological 

Sex 

Mental 

Health 

Diagnosis 

Adaptive 

CER 

Strategy 

Use 

Sleep 

Quality 

PHQ-9* 

Time  -       

Age .04 -      

Biological Sex −.01 .07 -     

Mental Health Diagnosis .02 .13 .09 -    

Adaptive CER Strategy Use <.01 .11 .02 .10 -   

Sleep Quality   .01 .05 –.03 −.19 −.22 -  

PHQ-9* −.10 –.11 –.03 −.25 −.24 .51 - 

(b) Time Age Biological 

Sex 

Mental 

Health 

Diagnosis 

Adaptive 

CER 

Strategy 

Use 

Sleep 

Quality 

GAD-7* 

Time  -       

Age .05 -      

Biological Sex −.02 .09 -     

Mental Health Diagnosis .01 .10 .10 -    

Adaptive CER Strategy Use .02 .10 .02 .10 -   
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Sleep Quality   .01 .06 −.06 −.19 −.21 -  

GAD-7* <.01 −.13 −.10 −.24 −.19 .44 - 

*Total scores after Box-Cox transformation. 
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Model 1, effect of time: Coefficients and inferential statistics for Model 1 are shown 

for depression and anxiety in Table 2.5. These outcomes are also illustrated in Figure 2.2. There 

was a main effect of time on depression (B = −0.25 [−0.37, −0.14], p < .001, d = 0.46), such 

that depression decreased from Spring to Autumn 2020. However, there was no main effect of 

time on anxiety (B = 0.04 [−0.08, 0.16], p = .777, d = 0.07). Age significantly predicted both 

depression (B = −0.01 [−0.01, 0.00], p = .045, d = 0.22) and anxiety (B = −0.01 [−0.02, 

−0.01], p = .001, d = 0.31), such that increased age was associated with lower depression and 

anxiety, consistent with prior work (Cunningham, Fields, Garcia, et al., 2021; Cunningham, 

Fields, & Kensinger, 2021). There was no main effect of biological sex (female/male) on 

depression (B = −0.03 [−0.33, 0.27], p = .940, d = 0.02) or anxiety (B = −0.24 [−0.54, 

0.06], p = .392, d = 0.13). For both datasets, there was a main effect of current mental health 

diagnosis (depression: B = −0.76 [−1.03, −0.49], p < .001, d = 0.45; anxiety: B = −0.74 [−1.01, 

−0.46], p < .001, d = 0.42): individuals with a currently diagnosed mental health condition had 

significantly higher depression and anxiety than individuals without diagnosed mental illness. 
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Table 2.5. Model 1 coefficients with 95% confidence intervals. Model 1 included participant variables (age, biological sex and mental health 

diagnosis) and time (period during which self-reported depression or anxiety measures were collected). Separate models were run for depression 

(PHQ-9) and anxiety (GAD-7). Statistically significant coefficients are shown in bold.   

 PHQ-9* GAD-7* 

 B  [CIs] β [CIs] p B  [CIs] β [CIs] p 

Intercept 2.70 [2.59, 2.81] −0.02 [−0.10, 0.05] - 2.62 [2.51, 2.73] 0.01 [−0.07, 0.08] - 

Age −0.01 [−0.01, 0.00] −0.10 [−0.18, −0.02] .045 −0.01 [−0.02, −0.01] −0.15 [−0.22, −0.07] .001 

Biological Sex −0.03 [−0.33, 0.27] −0.01 [−0.09, 0.07] .940 −0.24 [−0.54, 0.06] −0.06 [−0.13, 0.01] .392 

Mental Health Diagnosis −0.76 [−1.03, −0.49] −0.22 [−0.30, −0.14] <.001 −0.74 [−1.01, −0.46] −0.20 [−0.28, −0.13] <.001 

Time −0.25 [−0.37, −0.14] −0.18 [−0.26, −0.09] <.001 0.04 [−0.08, 0.16] 0.03 [−0.05, 0.11] .777 

B = Non-standardised coefficients, β = Standardised coefficients 

*PHQ-9 and GAD-7 outcome variables were transformed using the Box-Cox transformation 
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Figure 2.2. Effect of time on depression and anxiety. Changes in a) self-reported depression and b) self-reported anxiety over time (Model 1). 

Depression significantly decreased from Spring to Autumn 2020. However, there was no significant change in anxiety from Spring to Autumn 

2020. Non-transformed outcomes are shown for visualisation purposes. ** p < .01, ns = non-significant (p > .05). 
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Model 2, effect of time and adaptive CER strategy use: Coefficients and inferential 

statistics for Model 2 are shown in Table 2.6. These outcomes are also illustrated in Figure 2.3. 

For depression, there was a main effect of adaptive CER strategy use (B = −0.05 [−0.07, 

−0.03], p < .001, d = 0.48, BF10 > 100) but no significant interaction between adaptive CER 

strategy use and time (B = −0.01 [−0.03, 0.01], p = .441, d = 0.12, BF10 = 0.14). Therefore, 

greater use of adaptive CER strategies was associated with lower depression, irrespective of 

time. For anxiety, there was also a main effect of adaptive CER strategy use (B = −0.04 [−0.05, 

−0.02], p = .002, d = 0.30, BF10 > 100) but, again, no significant interaction between adaptive 

CER strategy use and time (B = 0.00 [−0.02, 0.02], p = .876, d = 0.03, BF10 = 0.12). The 

significant effect of mental health diagnosis reported in Model 1 remained significant in both 

the depression (B = −0.71 [−0.98, −0.44], p < .001, d = 0.43) and anxiety models (B = −0.72 

[−1.00, −0.45], p < .001, d = 0.41). The main effect of age reported in Model 1 remained 

significant for anxiety (B = −0.01 [−0.02, 0.00], p = .004, d = 0.28) but was no longer a 

significant predictor of depression (B = −0.01 [−0.01, 0.00], p = .137, d = 0.18). 
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Table 2.6. Model 2 coefficients with 95% confidence intervals. Model 2 included participant variables (age, biological sex and mental health 

diagnosis), time (period during which self-reported depression or anxiety responses were collected) and adaptive CER strategy use. Separate 

models were run for depression (PHQ-9) and anxiety (GAD-7). Statistically significant coefficients are shown in bold. 

 PHQ-9* GAD-7* 

 B  [CIs] β [CIs] p B  [CIs] β [CIs] p 

Intercept 2.71 [2.60, 2.82] −0.02 [−0.10, 0.06] - 2.63 [2.52, 2.74] 0.01 [−0.06, 0.09] - 

Age −0.01 [−0.01, 0.00] −0.08 [−0.16, −0.01] .137 −0.01 [−0.02, 0.00] −0.13 [−0.21, −0.06] .004 

Biological Sex −0.01 [−0.30, 0.27] −0.00 [−0.08, 0.07] .989 −0.24 [−0.53, 0.06] −0.06 [−0.13, 0.01] .392 

Mental Health Diagnosis −0.71 [−0.98, −0.44] −0.20 [−0.28, −0.13] <.001 −0.72 [−1.00, −0.45] −0.20 [−0.27, −0.12] <.001 

Time −0.25 [−0.37, −0.14] −0.18 [−0.26, −0.10] <.001 0.04 [−0.07, 0.16] 0.03 [−0.05, 0.11] .777 

Adaptive CER Strategy Use −0.05 [−0.07, −0.03] −0.22 [−0.30, −0.14] <.001 −0.04 [−0.05, −0.02] −0.14 [−0.21, −0.07] .002 

Time × Adaptive CER Strategy Use −0.01 [−0.03, 0.01] −0.05 [−0.13, 0.03] .441 0.00 [−0.02, 0.02] 0.01 [−0.07, 0.09] .876 

B = Non-standardised coefficients, β = Standardised coefficients  

*PHQ-9 and GAD-7 outcome variables were transformed using the Box-Cox transformation.  
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Figure 2.3. Effect of adaptive CER strategy use on depression and anxiety. Greater use of 

adaptive CER strategies was significantly associated with a) lower depression and b) lower 

anxiety across both timepoints (Spring and Autumn 2020). There was no significant interaction 

between adaptive CER strategy use and time for c) depression or d) anxiety (black line = Spring 

2020; dashed line = Autumn 2020). Grey areas represent 95% confidence intervals. Non-

transformed outcomes are shown for visualisation purposes. 
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Model 3, effect of time, adaptive CER strategy use and sleep quality: Coefficients 

and inferential statistics for Model 3 are shown in Table 2.7. These outcomes are also illustrated 

in Figure 2.4. The significant effect of adaptive CER strategy use on depression reported in 

Model 2 remained significant in this expanded model (B = −0.03 [−0.05, −0.01], p = .002, 

d = 0.31). However, the significant effect of adaptive CER strategy use on anxiety reported in 

Model 2 was no longer significant (B = −0.02 [−0.04, 0.00], p = .180, d = 0.17). There was a 

main effect of sleep quality on both depression (B = 0.21 [0.18, 0.24], p < .001, d = 1.17, 

BF > 100) and anxiety (B = 0.19 [0.15, 0.22], p < .001, d = 0.93, BF10 > 100), such that higher 

sleep quality was associated with lower depression and anxiety. There was no interaction 

between sleep quality and time or sleep quality and adaptive CER strategy use on either 

depression (B = −0.03 [−0.07, 0.01], p = .277, d = 0.16, BF10 = 0.13; B = 0.00 [−0.01, 

0.00], p = .842, d = 0.03, BF10 = 0.12, respectively) or anxiety (B = −0.05 [−0.09, 

−0.01], p = .065, d = 0.25, BF10 = 1.88; B = 0.00 [0.00, 0.01], p = .876, d = 0.02, BF10 = 0.18, 

respectively). In addition, there was no significant three-way interaction between time, 

adaptive CER strategy use and sleep quality on depression (B = 0.00 [−0.01, 0.00], p = .439, 

d = 0.12, BF10 < .01) or anxiety (B = 0.00 [−0.01, 0.00], p = .821, d = 0.05, BF10 < .01). The 

significant effects of mental health diagnosis reported in Model 2 remained significant for 

depression (B = −0.45 [−0.69, −0.21], p = .002, d = 0.30) and anxiety (B = −0.51 [−0.77, 

−0.25], p = .001, d = 0.31). Age was also a significant predictor of depression (B = −0.01 

[−0.01, 0.00], p = .007, d = −0.28) and anxiety (B = −0.01 [−0.02, −0.01], p < .001, d = 0.37) 

in this expanded model.
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Table 2.7. Model 3 coefficients with 95% confidence intervals. Model 3 included participant variables (age, biological sex and mental health 

diagnosis), time (period during which self-reported depression or anxiety responses were collected), adaptive CER strategy use and sleep quality. 

Separate models were run for depression (PHQ-9) and anxiety (GAD-7). Statistically significant coefficients are shown in bold. 

 PHQ-9* GAD-7* 

 B  [CIs] β [CIs] p B  [CIs] β [CIs] p 

Intercept 2.70 [2.61, 2.79] −0.03 [−0.09, 0.04] - 2.64 [2.54, 2.74] 0.02 [−0.05, 0.09] - 

Age −0.01 [−0.01, 0.00] −0.11 [−0.18, −0.04] .007 −0.01 [−0.02, −0.01] −0.16 [−0.23, −0.09] <.001 

Biological Sex 0.02 [−0.23, 0.27] 0.01 [−0.06, 0.07] .942 −0.18 [−0.45, 0.09] −0.04 [−0.11, 0.02] .604 

Mental Health Diagnosis −0.45 [−0.69, −0.21] −0.13 [−0.20, −0.06] .002 −0.51 [−0.77, −0.25] −0.14 [−0.21, −0.07] .001 

Time −0.27 [−0.39, −0.15] −0.19 [−0.27, −0.10] <.001 0.04 [−0.08, 0.16] 0.03 [−0.05, 0.11] .777 

Adaptive CER Strategy Use −0.03 [−0.05, −0.01] −0.13 [−0.20, −0.06] .002 −0.02 [−0.04, 0.00] −0.08 [−0.15, −0.01] .180 

Sleep Quality 0.21 [0.18, 0.24] 0.48 [0.41, 0.54] <.001 0.19 [0.15, 0.22] 0.40 [0.33, 0.47] <.001 

Time × Adaptive CER Strategy Use −0.02 [−0.04, 0.00] −0.07 [−0.15, 0.02] .277 0.00 [−0.02, 0.02] 0.00 [−0.08, 0.08] .997 

Time × Sleep Quality −0.03 [−0.07, 0.01] −0.07 [−0.15, 0.02] .277 −0.05 [−0.09, −0.01] −0.10 [−0.18, −0.02] .065 

Adaptive CER Strategy Use × Sleep Quality 0.00 [−0.01, 0.00] −0.01 [−0.08, 0.06] .842 0.00 [0.00, 0.01] 0.01 [−0.06, 0.08] .876 

Time × Adaptive CER Strategy Use × Sleep Quality 0.00 [−0.01, 0.00] −0.06 [−0.15, 0.04] .439 0.00 [−0.01, 0.00] −0.02 [−0.10, 0.06] .821 

B = Non-standardised coefficients, β = Standardised coefficients 

*PHQ-9 and GAD-7 outcome variables were transformed using the Box-Cox transformation. 
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Figure 2.4. Effect of adaptive CER strategy use and sleep quality on depression and anxiety. 

PSQI scores have been inverted for visualisation purposes such that higher scores represent 

higher quality sleep. Higher sleep quality was significantly associated with a) lower depression 

and b) anxiety over time (black line = Spring 2020; dashed line = Autumn 2020). There was 

no significant interaction between adaptive CER strategy use, sleep quality and time on either 

c) self-reported depression or d) anxiety. Data are plotted at different levels of sleep quality 

(mean and +/− 1 SD). Grey areas represent 95% confidence intervals. Non-transformed 

outcomes are shown for visualisation purposes. 
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2.3.2 Exploratory analyses 

Although our primary objective was to investigate the influence of adaptive CER 

strategies and sleep quality on mental health outcomes, we also conducted several exploratory 

analyses. First, given that poor sleep quality has been shown to increase the use of maladaptive 

CER strategies (Latif et al., 2019), we also investigated the influence of maladaptive CER 

strategies and sleep quality on depression and anxiety. Second, because higher levels of 

depression and anxiety have been reported among Black, Hispanic and Asian communities (as 

compared to White communities) during the COVID-19 pandemic (Czeisler et al., 2020; Wu 

et al., 2021), we explored the influence of race in our models. Moreover, because we included 

participants with and without a current mental health diagnosis in our main analysis, we ran an 

exploratory analysis to examine whether our findings differed when excluding individuals with 

a diagnosed mental health disorder. Finally, to determine how people's experience of the 

pandemic influenced our findings, we ran our models again but only included individuals who 

reported that COVID-19 had, on the whole, had a negative impact on their lives. We report 

these findings in the Supplementary Material.  

2.4 Discussion  

Previous research has suggested that the mental health benefits of using adaptive CER 

strategies are contingent on good quality sleep (Mauss et al., 2013; Parsons et al., 2021; Tamm 

et al., 2019; Zhang et al., 2019). We tested this possibility by investigating whether mental 

health outcomes arising during a prolonged period of stress (the COVID-19 pandemic) were 

dependent on adaptive CER strategy use and sleep quality, as well as the interaction of these 

predictors. We found that greater use of adaptive CER strategies and higher levels of sleep 

quality were independently associated with lower levels of depression and anxiety. However, 

only sleep quality was a significant predictor of self-reported anxiety in our final model. The 

benefits of adaptive CER strategy use for depression were not influenced by naturally varying 

levels of sleep quality. 

The results of our baseline model indicate that depression decreased significantly from 

Spring to Autumn 2020, as observed in previous work (Fields et al., 2021; Rodriguez-Seijas et 

al., 2020). However, in contrast to earlier findings (Carr et al., 2022; Fancourt et al., 2020; 

Kujawa et al., 2020; O’Connor et al., 2020; van der Velden et al., 2021), anxiety did not 

significantly change across the same time period. The uncertainty surrounding COVID-19 

during the Spring and Autumn of 2020 (e.g. job insecurity, new COVID-19 variants, lack of 
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an approved vaccine) might have contributed to sustained anxiety symptoms. Further support 

for this possibility comes from evidence that anxiety was persistently worse across the first-

year of the COVID-19 pandemic, as compared to before, even when lockdown measures were 

eased (Patel et al., 2022). It is nevertheless important to note that anxiety data was collected 

only once at each of the Spring and Autumn timepoints, whereas depression data was collected 

several times across both timepoints, meaning that the trajectory of mental health outcomes 

might be better captured in the depression dataset. 

Greater use of adaptive CER strategies was associated with lower depression and 

anxiety in Model 2, supporting hypotheses 1a and 1b. This association was independent of 

time, demonstrating a stable relationship between adaptive CER strategy use and mental health 

outcomes. Our findings are well aligned with those reported in previous studies (Aldao & 

Nolen-Hoeksema, 2010; Cardi et al., 2021; Dimanova et al., 2022; Domaradzka & Fajkowska, 

2018; Garnefski et al., 2002; Jungmann & Witthöft, 2020; Martin & Dahlen, 2005; Muñoz-

Navarro et al., 2021; K. Wang et al., 2021; Waterschoot et al., 2022) and have potentially 

important clinical implications (e.g. deploying adaptive CER strategies could be utilised as a 

preventative measure when confronted with real-world emotional turmoil). It has been 

suggested that adaptive CER strategy use promotes well-being by reducing negative affect 

(Cardi et al., 2021), potentially via similar mechanisms to those underpinning the 

downregulation of intrusive thoughts (Engen & Anderson, 2018; Harrington & Cairney, 2021). 

Maintaining such self-directed and adaptive inputs to one's affective composition might be 

particularly important for psychological well-being when enduring chronic periods of stress. It 

should be noted, however, that adaptive CER strategy use was not a significant predictor of 

anxiety when we added sleep quality to our final model. This is in keeping with prior work 

showing that cognitive regulation of emotion may be less crucial in the context of anxiety than 

depression (Domaradzka & Fajkowska, 2018).  

Higher levels of sleep quality were associated with lower depression and anxiety, 

supporting hypotheses 2a and 2b. This association was also independent of time, suggesting a 

stable relationship between sleep quality and mental health outcomes. Our findings are in 

keeping with previous work (Alqahtani et al., 2022; Baglioni, Spiegelhalder, et al., 2010; Bi & 

Chen, 2022; Franceschini et al., 2020; Freeman et al., 2017; French et al., 2022; Randall et al., 

2019; A. J. Scott et al., 2021; Varma et al., 2021) and highlight sleep's role in maintaining 

affective well-being (Bower et al., 2010). Sleep supports cognitive processes that often go awry 

in mood disorders, such as emotion regulation and memory consolidation (Ashton et al., 2020; 
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Cairney et al., 2018; Fairholme & Manber, 2015; Guttesen et al., 2023; Harrington, Ashton, 

Sankarasubramanian, et al., 2021; Palmer & Alfano, 2017), which might represent mechanistic 

pathways linking sleep quality to mental health. It is noteworthy that many of the pandemic-

related sources of sleep disruption (e.g. reduced outdoor activity and increased screen time; 

Landry et al., 2021) would have remained fairly constant during the study period, potentially 

nullifying any impact of time in our models. 

There was no two-way interaction between sleep quality and adaptive CER strategy 

use, and no three-way interaction between sleep quality, adaptive CER strategy use and time 

for either depression or anxiety, refuting hypotheses 3a and 3b. Similar patterns have been 

observed in previous work; for example, insomnia and emotion dysregulation both predict 

symptom severity in depression and anxiety disorder, but show no interaction (Fairholme et 

al., 2013). Together with our other findings, these null effects suggest that high sleep quality 

and adaptive CER strategies independently support resilience to depression, as the association 

between adaptive CER strategy use and depression was similar at different levels of sleep 

quality. The same cannot be said for anxiety, however, as adaptive CER strategy use was not a 

significant predictor of anxiety outcomes in this final model that accounted for sleep quality. 

Nevertheless, because the observed effect sizes for the interactions in Models 2 and 3 were 

considerably smaller than the effect sizes for which the study was powered to detect, it is 

possible that the dataset was underpowered to detect any interaction effects, should they have 

existed. 

It is worth noting that our data revealed a significant correlation between sleep quality 

and adaptive CER strategy use; whereby greater use of adaptive CER strategies was associated 

with higher sleep quality. Although there may be a bidirectional relationship between these 

variables, the observed correlation is aligned with prior work showing that poor quality sleep 

can negatively impact on people's ability to deploy adaptive CER strategies effectively (Mauss 

et al., 2013; Parsons et al., 2021; Tamm et al., 2019; Zhang et al., 2019), potentially via the 

disruption of cognitive control processes supported by the prefrontal cortex (Mauss et al., 

2013). Overall, these data suggest that good quality sleep is tightly linked to the tendency to 

deploy adaptive CER strategies, but these variables do not have a synergistic influence upon 

depression or anxiety outcomes. 

Each of our models controlled for age, biological sex and mental health diagnosis. We 

found that age was a significant predictor of mental health outcomes, with older adults 

experiencing fewer depression and anxiety symptoms than younger adults. Recent work on the 
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same dataset has shown that younger adults felt more inconvenienced and frustrated with stay-

at-home orders than older adults, resulting in a greater mental health burden (Cunningham, 

Fields, Garcia, et al., 2021; Cunningham, Fields, & Kensinger, 2021; Fields et al., 2021). We 

also found that an existing diagnosis of a mental health condition (versus no diagnosis) was 

associated with higher levels of depression and anxiety, as observed previously (Fancourt et 

al., 2020; Gémes et al., 2022; Jia et al., 2022). Contrary to evidence that females are more likely 

to experience depression and anxiety than males (Carr et al., 2022; Fancourt et al., 2020; French 

et al., 2022; Jia et al., 2022), there was no effect of biological sex on depression or anxiety 

outcomes in our dataset. It is important to note, however, that our sample was predominantly 

female (82.9% for both depression and anxiety), which may have precluded any effect of 

biological sex from emerging (should one exist in the context of depression and anxiety 

outcomes during the COVID-19 pandemic). 

This is the first study to investigate the ways in which adaptive CER strategies and sleep 

quality influence mental health outcomes when experiencing a real-world, chronic stressor. 

Nevertheless, there were several limitations with our study design that might have contributed 

to the null effects observed in our final model. First, we relied on subjective reports to index 

emotion regulation and sleep quality. Previous research has shown that discrepancies exist 

between affective responses assessed subjectively and objectively (Zhang et al., 2019), and 

self-reported sleep quality is often lower than that indicated by objective measures of sleep 

continuity or wake-after-sleep-onset (Buysse et al., 2008; Grandner et al., 2006). Future 

research examining sleep and mental health in the context of real-world chronic stressors can 

address this limitation by combining objective and subjective assessments of sleep quality and 

emotion regulation, potentially through the use of wearables tracking sleep and physiological 

arousal (e.g. heart rate variability). Relatedly, in the data we had available, adaptive CER 

strategy use and sleep quality were measured only once (May 2020), whereas depression and 

anxiety were measured twice (Spring and Autumn 2020). Consequently, we were unable to 

assess any changes in adaptive CER strategy use or sleep quality that may have arisen during 

the initial months of the pandemic. 

Second, although our decision to use a composite measure of adaptive CER strategy 

use allowed us to investigate how sleep quality and generalised positive thought processes 

influenced mental health outcomes, it prevented us from determining whether a specific 

strategy (or smaller combination of strategies) was particularly effective in this regard. For 

example, some studies have shown that positive reappraisal is a strong predictor of depression 
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and anxiety (Aldao & Nolen-Hoeksema, 2010; Cardi et al., 2021; Dimanova et al., 2022; 

Garnefski et al., 2002; Martin & Dahlen, 2005; Muñoz-Navarro et al., 2021), while others have 

indicated that resilience to mental health problems is supported by a finely-tuned balance of 

adaptive and maladaptive strategies (Waterschoot et al., 2022). Our pre-registered analyses 

were unable to address whether specific (or different combinations of) adaptive CER strategies 

interact with sleep quality to support affective well-being and this will be an important 

endeavour for future work. 

A more general limitation of our study was the lack of socio-demographic diversity in 

the data that we had available. Participants were predominantly female, white, well-educated 

individuals all residing in the US (Cunningham, Fields, Garcia, et al., 2021; Cunningham, 

Fields, & Kensinger, 2021). As a result, we were unable to provide appropriate control for other 

relevant covariates that may have influenced depression and anxiety (e.g. socioeconomic 

status). Furthermore, because the data were collected in an online setting, only individuals with 

access to a PC, tablet or smartphone were able to participate. Despite the diversity in scores on 

the self-report measures, our findings cannot be easily generalised to different societies, 

environments and cultures, and replication across broader populations will be a crucial next 

step. 

Finally, the COVID-19 pandemic was a very unique and complex stressor, which was 

associated with a number of factors that may have affected depression and anxiety symptoms 

(e.g. job security, living situation). It is therefore difficult to draw comparisons between the 

impacts of COVID-19 and other prolonged stressors on mental health outcomes. 

In conclusion, we found that, during the initial months of the COVID-19 pandemic, 

greater use of adaptive CER strategies was associated with lower depression, whereas higher 

sleep quality was associated with lower depression and anxiety. The relationship between 

adaptive CER strategy use and mental health outcomes was not contingent on good quality 

sleep, however. Building on a large body of laboratory-based research, our findings call 

attention to the potential transdiagnostic benefits of targeting sleep quality and adaptive CER 

strategy use when enduring chronic periods of emotional hardship. 
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Chapter 3: The Influence of Sleep Deprivation on the Evolution of 

Arousal During Exposure to Ambiguous Threat 

Abstract 

Sleep deprivation amplifies next-day state anxiety and impairs threat-related 

information processing. However, little is known about how sleep loss affects the evolution of 

arousal over the course of a threatening experience. In the current study, we combined virtual 

reality (VR) and psychophysiology to test the hypothesis that sleep deprivation amplifies in-

the-moment arousal responses when exposed to prolonged ambiguous threat. Likewise, we 

expected sleep deprivation to amplify retrospective reports of subjective arousal. We also 

predicted that sleep deprivation would impair the recovery of arousal after the threat had 

dissipated. Reciprocally, certain properties of sleep, namely slow wave activity (SWA) has 

been shown to reduce next-day state anxiety, but again, whether SWA influences the evolution 

of arousal in response to prolonged threat remains to be established. We predicted that greater 

SWA would be associated with reduced arousal in response to ambiguous threat. Following a 

night of polysomnography (PSG)-monitored sleep or total sleep deprivation, N = 54 adults 

entered an immersive VR world that cycled between threatening and non-threatening 

environments, during which their skin conductance level (SCL) and heart rate (HR) were 

monitored. Participants then watched a replay of their VR experience and retrospectively rated 

their subjective arousal at each moment. First, we found that SCL (but not HR or subjective 

arousal ratings) attenuated across the threatening parts in the sleep rested condition but 

remained elevated in the sleep deprivation condition. However, SWA was not associated with 

this attenuation. Second, we found no significant differences between the sleep rested and sleep 

deprivation conditions in arousal responses following the dissipation of threat. Together, these 

findings indicate that a night of sleep is important for reducing physiological arousal in 

response to prolonged ambiguous threat. We propose that sleep supports cognitive control and 

fear learning processes that promote affect regulation.  

3.1 Introduction  

State anxiety can be defined as a transitory emotional state consisting of feelings of 

apprehension, nervousness, and physiological arousal, such as increased heart rate (HR) or 

respiration (Spielberger, 1979). State anxiety tends to arise in direct response to or anticipation 

of an emotional experience, whereas trait anxiety reflects a relatively chronic state of anxiety 

(Hutchins & Young, 2018). In healthy individuals, one night of sleep deprivation has been 
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shown to amplify next-day state anxiety (Babson et al., 2010; Ben Simon et al., 2020; Goldstein 

et al., 2013). Disrupted sleep continuity (through forced awakenings during the night) has also 

been shown to increase next-day state anxiety (Reid et al., 2023). These findings were further 

corroborated in a meta-analysis of 24 experiments, which demonstrated that sleep deprivation 

(total or partial) is associated with a significant increase in self-reported next-day state anxiety 

(Pires et al., 2016). Furthermore, sleep disruption is a common complaint in those with clinical 

anxiety disorders, with insufficient sleep contributing to elevated anxiety (Breslau et al., 1996; 

Chellappa & Aeschbach, 2022; Harvey et al., 2011; Mellman, 2006; Neckelmann et al., 2007; 

Papadimitriou & Linkowski, 2005; Uhde et al., 2009). Together, these findings demonstrate 

the anxiogenic impact of sleep loss in both clinical and non-clinical populations.  

An absence of sleep is also known to disrupt threat-related information processing. 

Compared to a night of sleep, total sleep deprivation increases physiological reactivity to 

negative stimuli (Franzen et al., 2008, 2009). Furthermore, sleep deprivation enhances threat 

perception (Barber & Budnick, 2015; Goldstein-Piekarski et al., 2015; Zenses et al., 2020). For 

example, Goldstein-Piekarski et al. (2015) demonstrated that sleep deprived individuals 

categorised more face stimuli as threatening, and fewer face stimuli as non-threatening 

compared to their sleep rested counterparts. Moreover, sleep deprivation impaired the cardiac 

discrimination of threatening from non-threatening face stimuli (Goldstein-Piekarski et al., 

2015). However, prior research has only assessed threat-related information processing through 

one-shot ratings of aversive stimuli (e.g. images and film clips). In the real world, emotional 

experiences often fluctuate in their intensity over prolonged periods of time (Hildebrandt et al., 

2016). Moreover, when an individual encounters a negative emotional experience, sometimes 

the exact nature of the threat is not always clear (McCall et al., 2022). For example, if we went 

to the theatre, then had to walk through a dark alleyway on our way home, this can be highly 

threatening despite the nature of the threat being uncertain. Ambiguously threatening 

environments result in states of hypervigilance, which, if becomes chronic, may take the form 

of pathological anxiety (Grillon, 2008; McCall et al., 2022). Although many individuals 

encounter prolonged periods of uncertain threat in their day-to-day lives, we know very little 

about how sleep deprivation influences the evolution of arousal, as ambiguously threatening 

experiences unfold. 

Nevertheless, emotional responses have been shown to attenuate following prolonged 

exposure to threat-relevant stimuli (Johnson et al., 2019; Olatunji et al., 2012; Olatunji, 

Wolitzky-Taylor, Ciesielski, et al., 2009; Olatunji, Wolitzky-Taylor, Willems, et al., 2009; 
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Zaback et al., 2019, 2022). This not only highlights the need to understand how sleep influences 

this evolving process, but also suggests that individuals are able to effectively regulate their 

threat response as it unfolds in real time. The ability to adaptively respond to threat in the 

moment may rely on cognitive control (e.g. attention, working memory, and reappraisal; 

Ochsner & Gross, 2005; Ochsner et al., 2012). Sleep deprivation has been shown to impair 

cognitive control processes, such as attention, working memory, inhibition, and task-goal 

switching (Krause et al., 2017; Kusztor et al., 2019; Skurvydas et al., 2020; Slama et al., 2018; 

Zhang et al., 2019). Electroencephalography (EEG) markers of regulatory success, such as 

P300 and Pe amplitudes, are also disrupted following sleep deprivation (Kusztor et al., 2019). 

Taken together, it is plausible that sleep rested individuals can regulate their response to threat 

through cognitive control processes. However, because these processes are disrupted following 

sleep deprivation, an individual’s ability to regulate their threat response may be impaired, 

resulting in amplified arousal.  

Neuroimaging studies of neurotypical adults demonstrate that total sleep deprivation is 

associated with a neural profile analogous to that presented in highly anxious individuals. For 

example, lack of sleep increases activity in brain regions associated with greater reactivity to 

negative emotional stimuli, such as the amygdala, dorsal anterior cingulate cortex (dACC), and 

insula (Ben Simon et al., 2020; Goldstein et al., 2013; van der Helm & Walker, 2012; Yoo et 

al., 2007). Moreover, when individuals are sleep deprived, they display hypoactivity in the 

medial prefrontal cortex (mPFC) as well as impaired mPFC-amygdala connectivity when 

viewing aversive images or film clips (Ben Simon et al., 2020; van der Helm & Walker, 2012; 

Yoo et al., 2007). This neural composition is thought to reflect impaired top-down control of 

emotional brain regions, and thus disrupted affect regulation (Ben Simon et al., 2020; van der 

Helm & Walker, 2012; Yoo et al., 2007). The mPFC is also involved in the engagement of 

cognitive control processes (E. K. Miller, 2000; Niendam et al., 2012; Ridderinkhof et al., 

2004). Together, these findings lend neurological support to the idea that sleep deprivation 

disrupts cognitive mechanisms that are important for adaptively responding to threat. 

Individual differences in threat responses emerge not only during exposure to threat, 

but also in an individual’s ability to return to calm over time and between disturbing events. 

For example, Hildebrandt et al. (2016) demonstrated that participants with higher self-reported 

resilience and higher heart rate variability (HRV; variability in time between adjacent 

heartbeats) had lower subjective arousal ratings, than those with lower resilience and lower 

HRV, when immersed in a threatening and evolving virtual reality (VR) environment. 
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Critically, they showed that this effect only emerged at the first opportunity to regulate, 

following the dissipation of intermittent threats (e.g. explosions), suggesting that these markers 

of flexible regulation play a pivotal role in the recovery of arousal. High HRV has been 

associated with enhanced executive functioning (Cattaneo et al., 2021; Forte et al., 2019; Gillie 

et al., 2014; Thayer & Lane, 2009) and successful emotion regulation (Appelhans & Luecken, 

2006). Moreover, HRV and resilience have been associated with greater use of adaptive 

cognitive emotion regulation (CER) strategies (i.e. positive thought processes that 

downregulate negative emotions; Hildebrandt et al., 2016; Min et al., 2013; Volokhov & 

Demaree, 2010). Adaptive CER strategy use enlists a number of executive functions, such as 

memory updating, inhibition of prepotent responses, and flexible task switching (Joormann & 

Tanovic, 2015; McRae et al., 2012; Ochsner & Gross, 2005). Moreover, executive control 

deficits have been associated with less frequent and unsuccessful use of adaptive CER 

strategies (Joormann, 2010; Joormann & Gotlib, 2010; Malooly et al., 2013; Pe et al., 2013; 

Schmeichel & Tang, 2015; Schmeichel et al., 2008). Given that sleep deprivation impairs 

executive functions, as described above (Krause et al., 2017; Kusztor et al., 2019; Skurvydas 

et al., 2020; Slama et al., 2018; Zhang et al., 2019), it is possible that sleep deprivation prevents 

individuals from being able to downregulate their arousal back to baseline levels following 

threat. Taken together, we tested the hypothesis that sleep deprivation impairs affect regulation, 

leading to both (i) amplified arousal during exposure to threat and (ii) impaired recovery 

following the dissipation of threat.  

One challenge in studying responses to prolonged stressors is measurement. Self-report 

assessments of affect often require participants to summarise an entire experience, thereby 

collapsing the unfolding of an experience into one measurement. Such summary measures may 

incur memory bias for the final moments of an experience (Kahneman et al., 1993; McCall et 

al., 2015). To avoid such bias, one approach is to have participants provide retrospective 

subjective arousal ratings continuously whilst watching a recording of an emotional experience 

(Hildebrandt et al., 2016; McCall et al., 2015). This can then be compared with physiological 

measures, which also provide continuous measurement. Prior work suggests we reliably 

encode in-the-moment arousal for an experience. Indeed, retrospective reports of subjective 

arousal are more coherent with physiological arousal during the original event (i.e. past-present 

coherence) than physiological arousal at the moment of recall (Mauss et al., 2005; McCall et 

al., 2015). Physiological arousal has been shown to be a key feature of a threat response 

(Hildebrandt et al., 2016). For example, skin conductance is higher when viewing threatening 
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versus non-threatening images (Bradley et al., 2001). As such, the use of physiological 

measures, along with continuous subjective arousal ratings, provides a more complete picture 

of how arousal responses unfold during exposure to ambiguous threat.   

Given the impact of sleep loss on threat regulation, a complementary question concerns 

the specific properties of sleep that restore affect regulatory processes. Individuals with anxiety 

disorders demonstrate reductions in non-rapid eye movement (NREM) sleep, slow wave sleep 

(SWS), and slow wave activity (SWA; 0.5–4 Hz), which is one of the hallmarks of SWS 

(Arriaga & Paiva, 1990; Baglioni et al., 2016; Forbes et al., 2008; Fuller et al., 1997). 

Conversely, experimental studies have shown that greater amounts of NREM SWA support 

the overnight reduction of state anxiety (Ben Simon et al., 2020; Chellappa & Aeschbach, 

2022). Importantly, this association holds when controlling for trait anxiety and changes in 

mood (Ben Simon et al., 2020). Moreover, SWA enhancement has been shown to benefit 

memory consolidation and other cognitive processes, including executive functions such as 

working memory and reasoning (Wilckens et al., 2016, 2018). On a neural level, greater SWA 

has been associated with increased next-day restoration of cingulate regions (e.g. the ACC), 

and prefrontal mechanisms (Ben Simon et al., 2020; Campbell-Sills et al., 2011), both of which 

have been shown to be critical for the regulation of affect during threat-related information 

processing (Bishop, 2007; Bishop et al., 2004; M. J. Kim et al., 2011; Simmons et al., 2008). 

Although these findings point towards an anxiolytic benefit of SWA, how SWA influences the 

evolution of arousal in response to ambiguous threat remains unknown. Given that SWA is 

thought to be involved in cognitive processes and the restoration of brain mechanisms integral 

to affect regulation, we tested the hypothesis that SWA would be associated with reduced 

arousal in response to ambiguous threat.  

To address whether sleep deprivation impaired affect regulation during ambiguous 

threat exposure, we examined physiological arousal responses whilst participants navigated 

through an immersive threatening VR world following a night of sleep or total sleep 

deprivation. Participants were then played back the world via a standard desktop computer and 

retrospectively rated how aroused they felt during every moment to index subjective arousal. 

Critically, the VR world cycled between ambiguously threatening (akin to walking through a 

dark alleyway) and non-threatening parts (akin to walking down a well-lit street). This allowed 

us to examine whether sleep deprivation amplified physiological and subjective arousal during 

prolonged exposure to ambiguous threat and impaired recovery following the dissipation of 
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threat. The sleep rested condition included polysomnography (PSG) monitoring to examine 

whether SWA was associated with reduced arousal in response to ambiguous threat.  

To examine whether the evolution of arousal across a threatening experience was 

influenced by markers of efficient executive functioning, we conducted an exploratory analysis 

to probe the influence of adaptive CER strategy use and HRV on arousal responses following 

a night of sleep or sleep deprivation. 

3.2 Methods 

The study methods and analyses were pre-registered on the Open Science Framework.  

3.2.1 Participants  

All participants were recruited via a publicly open university-based system (SONA). 

Based on a pre-study screening session (N = 85), participants were selected only if they 

reported no history of neurological, psychiatric, attention, or sleep disorders. Participants were 

excluded if they scored within the clinical range for depression or anxiety on the Beck 

Depression Index (BDI-II > 18; Beck et al., 1996) and/or the Beck Anxiety Inventory (BAI > 

16; Beck et al., 1988), if they had extreme diurnal preference (score of < 31 or > 69) as assessed 

by the Morningness-Eveningness Questionnaire (MEQ; Horne & Östberg, 1976), poor sleep 

quality (score of > 6) as assessed by the Pittsburgh Sleep Quality Index (PSQI; Buysse et al., 

1989) or had a regular bedtime of later than 2:00 am (Porcheret et al., 2015). In addition, they 

must have typically risen by 8:00 am after at least six hours of sleep, as indicated by self-report. 

None of the participants were taking any medications with the exception of the female 

contraceptive pill. Following standard procedures in our laboratory (Ashton et al., 2019; 

Harrington, Ashton, Ngo, et al., 2021; Harrington, Ashton, Sankarasubramanian, et al., 2021; 

Strachan et al., 2020), participants were asked to refrain from caffeine and alcohol consumption 

for 24 and 48 hours, respectively, before the main study sessions. Participants were given an 

Actiwatch on the morning of the main experimental session to ensure that they did not nap 

during the day and that participants assigned to the sleep deprivation condition adhered to the 

study protocol. All participants provided written informed consent. Ethical approval for this 

study was obtained by the Department of Psychology Research Ethics Committee at the 

University of York  

64 participants completed the main experimental sessions (sleep deprivation: N = 36; 

sleep rested: N = 28; mean age [SD] = 19.94 years [2.18 years]). Of these 64, N = 8 were 

excluded as they did not adhere to the sleep deprivation protocol (> 2 hours of sleep), as 

https://osf.io/g4fte


83 

 

indicated by self-report and/or actigraphy data. A further N = 1 was excluded as they felt 

nauseated by the VR environment and N = 1 was excluded due to sleeping < 4 hours in the 

sleep rested condition. Therefore, our final sample size included 54 participants (27 sleep 

rested: mean [SD] age= 20.30 [2.27] years, 15 females; 27 sleep deprivation: mean [SD] age = 

19.59 [2.06] years, 18 females). To avoid any possible influence of dispositional anxiety, 

participants in each condition were matched on trait anxiety levels as measured by the State-

Trait Anxiety Inventory- Trait version (STAI-T; Spielberger, 1983; t[52] = 0.45, p = .652). 

Participants received £90 or bachelor’s-level psychology course credit for participating in the 

study. To reduce demand characteristics, the study was advertised and framed to investigate 

the effects of sleep on memory.  

Sample size was determined using a power analysis. Our estimated effect size was 

based on a study that examined the association between SWA and next-day state anxiety using 

the State-Trait Anxiety Inventory- State version (STAI-S; Ben Simon, Rossi, et al., 2020). The 

effect size reported for the influence of sleep deprivation on next-day state anxiety was larger 

than the effect size reported for the association between SWA and state anxiety (ɳ² = 0.34; Ben 

Simon, Rossi, et al., 2020), meaning that we would only need N = 8 for 90% power at α = 0.05. 

Therefore, it was necessary that our sleep rested condition was adequately powered to examine 

whether SWA influences the evolution of arousal. Using an effect size of r = .53 for the 

association between SWA and state anxiety, for 90% power at α = 0.05 (one-tailed), we needed 

27 participants in the sleep rested condition to detect an association between SWA and arousal. 

Altogether, our final sample size was N = 54 (N = 27 in each of the sleep rested and sleep 

deprived conditions). Excluded participants were replaced to meet this sample size for our main 

research questions.  

3.2.2 Procedure and measures  

A schematic overview of the study procedure is shown in Figure 3.1. Participants 

completed three sessions in total.  

3.2.2.1 Session one 

In session one, participants completed an online screening questionnaire and carried 

out a “taster” session to ensure that they were comfortable with the VR setup. During this taster 

session, participants navigated through a neutral version of the VR world used in session three. 

Skin conductance level (SCL) and HR were also recorded to check for non-responding (e.g. 

failure to elicit a skin conductance orienting response) in the SCL data and to ensure that no 
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electrocardiography (ECG) abnormalities were present in the HR data. Session one was 

conducted at least 24 hours before session two. 

3.2.2.2 Session two  

At 9 am on the morning of session two, participants collected an Actiwatch which they 

wore until the end of the study (end of session three). During session two (~8:30 pm), 

participants completed a 5-minute recording of their resting HR before completing several 

questionnaires including the STAI-S (Spielberger, 1983), Stanford Sleepiness Scale (SSS; 

Hoddes et al., 1973), Cognitive Emotion Regulation Questionnaire– Short version (CERQ-

short; Garnefski & Kraaij, 2006), and a psychomotor vigilance task (PVT). They were then 

informed whether they had been assigned to the sleep rested or sleep deprivation condition. 

When two participants were present in the laboratory on the same night, they were both 

assigned to either the sleep rested or sleep deprivation condition.  

3.2.2.3 Overnight interval  

Sessions two and three were separated by an overnight interval during which 

participants either slept in the sleep laboratory with PSG or remained awake at home. 

Electrodes were attached to participants in the sleep rested condition following the completion 

of session two. Lights were turned off at ~11 pm and participants were woken up at ~7 am 

(after ~8 hours of PSG-monitored sleep). If participants were assigned to the sleep deprivation 

condition, they were sent home and permitted to communicate, read, use electronic devices, 

watch TV, or play games. In addition, participants in the sleep deprivation condition were 

administered a questionnaire to complete overnight (from 11 pm to 6:30 am), which involved 

answering a general knowledge question every 30 minutes. This was to ensure that they were 

engaged in an activity throughout the night. Adherence to the sleep deprivation protocol was 

also verified with actigraphy, allowing for an objective assessment of whether participants had 

remained awake during the overnight interval. Participants were instructed to refrain from 

consuming caffeine and return to the laboratory the following morning for session three (after 

> 24 hours of sleep deprivation).  

3.2.2.4 Session three  

In session three (the following morning at ~8:30 am), participants repeated all the 

questionnaires (except the CERQ-short) and the PVT. If participants were assigned to the sleep 

deprivation condition, they also completed a questionnaire probing the activities that they 

engaged in throughout the night (see Table 3.1) as well as whether they had dozed or consumed 



85 

 

caffeine. All participants then experienced the VR world whilst we measured their SCL and 

HR. This VR world cycled between parts that were ambiguously threatening and designed to 

induce anxiety, and parts that were non-threatening and designed to reduce anxiety following 

exposure to threat. Next, participants were played back the VR world via a standard desktop 

computer and were instructed to retrospectively rate “how aroused they felt” during every 

moment of the experience, using a joystick to continuously mark how they felt on an affect 

grid of valence and arousal. Arousal ratings were collected to index subjective arousal for the 

main analysis, and valence ratings were collected as part of an exploratory analysis not reported 

here. At the end of the experiment, participants returned their Actiwatch and were fully 

debriefed regarding the nature of the study.   

 

Figure 3.1. Schematic overview of study procedure. During session one, participants came to 

the laboratory to complete a screening questionnaire and taster session to ensure they were 

comfortable in a virtual reality (VR) environment. On the morning of session two, participants 

came to collect an Actiwatch to wear during the remaining study period. In the evening of 

session two, all participants came to the sleep laboratory and completed a 5-minute recording 

of their resting heart rate (HR) along with several questionnaires and the psychomotor vigilance 

task (PVT). At the end of session two, participants were informed whether they had been 

assigned to the sleep rested or sleep deprivation condition. Those in the sleep rested condition 

slept overnight in the laboratory with polysomnography (PSG), whereas those in the sleep 

deprivation condition went home and were instructed to stay awake overnight. In session three, 

all participants returned to the laboratory and repeated the 5-minute measure of resting HR, 

questionnaires, and the PVT. Following this, they were immersed in a VR world, whilst their 

skin conductance level (SCL) and HR were continuously monitored. They were then played 

back their experience in the VR world via a standard desktop computer and were instructed to 

retrospectively rate how aroused they felt during every moment. 
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Table 3.1. A list of activities those in the sleep deprivation condition reported engaging in 

during the overnight interval. These categories were based on self-report and are therefore data-

driven.  

N = 27. 

3.2.2.5 VR world  

In the VR world, participants navigated through a series of rooms, each with their own 

unique features. Critically, the nature of these rooms deviated between ambiguously 

threatening and non-threatening environments. Ambiguously threatening rooms (e.g. hospital 

room, storage room, autopsy room) were designed to elicit anxiety and harnessed 

environmental features from psychological research and horror game design (McCall et al., 

2022). For example, participants viewed these rooms through a dim torchlight (Habel & 

Kooyman, 2014), and each room contained occluded areas where an assailant may hide (Rigoli 

et al., 2016). Moreover, ambient audio was used to prime fear of the unknown (Roberts, 2014), 

as well as discrete sounds to allude to the presence of an assailant (e.g. footsteps, screams; 

Demarque & de Lima, 2013). Non-threatening rooms (e.g. office rooms) were designed to 

reduce anxiety. They included features such as ample light, open spaces, and neutral music. 

Importantly, the rooms designed to induce anxiety were navigated through sequentially to 

create an ambiguously threatening environment. From this, we were able to examine the 

influence of sleep deprivation (versus a night of sleep) on the magnification of arousal 

responses during exposure to ambiguous threat. Moreover, the non-threatening environments 

Self-reported activity  Percentage of participants who self-

reported engaging in the activity  

 

during the night 

Watching TV  88.89 

University work  48.15 

Organising/cleaning 44.44 

Exercising  37.04 

Preparing/eating food  37.04 

Gaming 33.33 

Recreational activities  29.63 

Browsing social media  29.63 

Socialising with friends  29.63 

Self-care  18.52 

Other 7.41 
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always followed the threatening environments. This allowed us to examine the influence of 

sleep deprivation (versus a night of sleep) on the attenuation of arousal responses following the 

dissipation of threat. Participants navigated through two threatening and two non-threatening 

environments during the VR world (see Figure 3.2a). Each environment consisted of three 

rooms in total, with the exception of the second non-threatening environment, which consisted 

of only one room.  

Before beginning, participants listened to a prelude that set the scene for the VR world. 

This prelude explained to participants that they were about to enter a research lab which was 

working on a new drug to eradicate evil. Participants were informed that a terrible event had 

occurred and the researchers were being held captive by a group of evil masterminds wanting 

to destroy their new drug. To encourage participants to move around and explore the 

ambiguously threatening rooms, they were instructed to collect cannisters that appeared 

sequentially throughout each room by walking into them. Participants were told to collect all 

of the cannisters in order to save the researchers and defeat the evil mastermind.  

Participants started in a neutral office room, and their average arousal response in this 

room was used to index their baseline levels of arousal. A freight elevator then took participants 

down to the basement level, where they experienced the first set of threatening rooms (P1theat). 

After finishing the first threatening environment, participants navigated through a series of 

neutral office rooms during the first non-threatening environment (P1non-threat), before returning 

to a final set of threatening rooms during the second threatening environment (P2threat). The 

freight elevator then took participants back to a brightly lit upper level where they entered the 

last neutral office room during the second non-threatening environment (P2non-threat) before the 

experience ended (see Figure 3.2b for sample images, and a video of the VR world can be 

viewed online). Participants took on average 10.53 minutes to navigate through the VR world 

(SD = 0.77 minutes).  

https://drive.google.com/drive/folders/1yieLe3T9rPkgLtgLvcGDNOUNwOqXObX4?usp=share_link
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a) 

 

b) 

  

Figure 3.2. VR environment. a) Critical parts of the VR world. Participants began in a neutral 

room to index their baseline arousal (Baseline). They then navigated through three 

ambiguously threatening rooms which formed the first threatening environment (P1threat). 

Following this, they navigated through three neutral rooms which formed the first non-

threatening environment (P1non-threat). Next, they navigated through three ambiguously 

threatening rooms again, which formed the second threatening environment (P2threat) before 

Baseline 

Threatening 
Environment 

Part One 
(P1threat)

Non-
threatening 

Environment 
Part One 

(P1non-threat)

Threatening 
Environment 

Part Two 
(P2threat)

Non-
threatening 

Environment 
Part Two 

(P2non-threat)



89 

 

finishing in a neutral room comprising the second non-threatening environment (P1non-threat). b) 

Screenshots from the VR environment. Coloured circles, corresponding to figure part a, 

symbolise which part of the VR world is shown in the image. 

3.2.2.6 VR playback 

Participants were instructed to watch a first-person recording of their experience and 

continuously rate how aroused they felt during every moment in the VR world using a joystick 

(McCall et al., 2015). Specifically, they were instructed to remember how they felt during the 

VR world and not how they felt while watching back the experience. Participants rated how 

they felt on an affect grid (Russell, 1980) with valence (unpleasant – pleasant) on the x-axis 

and arousal (excited – not at all excited) on the y-axis (see Figure 3.3). The magnitude of each 

axis varied from −100 to 100. A moving circle depicted the current position of the joystick. 

The position of the joystick was sampled at a rate of 20 Hz. At the beginning, this moving 

circle was in the middle of the scale, and participants were instructed to move the circle to the 

appropriate position on the affect grid once the recording had begun. 

 

Figure 3.3. Overview of the playback task. Participants used a joystick to continuously rate 

how they felt using the affect grid of valence (unpleasant - pleasant) and arousal (excited - not 

at all excited) whilst watching a playback of their experience in the VR world.  

3.2.2.7 Self-reported anxiety  

Participants completed the State-Trait Anxiety Inventory- State version (STAI-S; 

Spielberger, 1983). They completed this in the evening and again in the morning prior to 

experiencing the VR world. The STAI-S consists of 20 items and measures a participant’s 

feelings of anxiety in the current moment. Responses on each item vary from 1 (not at all) to 

4 (very much so). Total state anxiety scores range from 20–80, with higher scores reflecting 

higher levels of state anxiety. To assess the internal consistency of this total score, we computed 

Cronbach’s alpha, which was estimated to be very good (α = 0.90). 
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3.2.2.8 Adaptive CER strategy use 

Participants completed the Cognitive Emotion Regulation Questionnaire– Short version 

(CERQ-short; Garnefski & Kraaij, 2006). In this eighteen-item self-report questionnaire, 

participants were asked to rate how often they use nine conceptually different strategies (two 

items per strategy) after experiencing a negative event or situation, on a scale ranging from 1 

(almost never) to 5 (almost always). Individual scores for each CER strategy are then obtained 

by summing the two questionnaire items associated with each strategy to form an overall score 

(ranging from 2–10). The higher the score, the more a CER strategy is used. The CER strategies 

defined in this questionnaire were dichotomised as adaptive or maladaptive (Garnefski et al., 

2001). Adaptive CER strategies include refocus on planning (i.e. thinking about the next steps 

and how to handle the negative event), positive refocusing (i.e. turning thoughts towards joyful 

and pleasant matters), positive reappraisal (i.e. attaching a positive meaning to an event), and 

putting into perspective (i.e. downregulating the seriousness of the event and comparing it to 

other events).  

To assess adaptive CER strategy use, a composite score was created by summing the 

scores for all adaptive items in the CERQ-short (positive refocusing, refocus on planning, 

positive reappraisal, and putting into perspective). Scores ranged from 8–40 (two questionnaire 

items per adaptive CER strategy), with higher scores indicating more frequent use of adaptive 

CER strategies. Internal consistency of this composite measure was estimated to be acceptable 

(α = 0.68). 

3.2.2.9 HRV  

To index basal HRV, a 5-minute ECG measure was obtained during session two. 

Following electrode placement, participants sat still for 7-minutes. The first 2-minutes were 

excluded due to an acclimatisation period. They were then instructed to relax for 5-minutes 

without closing their eyes or crossing their feet. We calculated the root mean square of 

successive difference (RMSSD) between normal heartbeats (a measure of vagally mediated 

HRV). RMSSD was chosen because it is the primary time-domain measure to estimate HRV 

(Shaffer & Ginsberg, 2017) and has been shown to be reliable for short recordings 

(Nussinovitch et al., 2011). 

3.2.2.10 Alertness  

A psychomotor vigilance task (PVT) was administered to assess participants alertness 

levels (Khitrov et al., 2014). Participants were instructed to respond as fast as possible with a 

https://pcpvt.bhsai.org/pcpvt/register.xhtml
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mouse click when a digital counter appeared on the screen. The inter-stimulus interval (ISI) 

varied from 2 to 10 seconds and participants received immediate feedback on their response 

time. The task lasted 3-minutes in total with this duration showing high reliability and validity 

in detecting nuances as a result of sleep loss in previous research (Benderoth et al., 2021). 

Participants also completed the Standard Sleepiness Scale (SSS; Hoddes et al., 1973) to assess 

subjective sleepiness.  

3.2.3 Equipment  

3.2.3.1 VR environment 

The VR environment was adapted from the Underwood Project, a modular virtual 

environment kit built in the Unity game creation environment (version 2020.3.21f1), using 

standard packages with C# scripting (McCall et al., 2022). 3D models within the Underwood 

Project kit were developed in 3ds Max 2017. Participants experienced the world through an 

HTC Vive head-mounted display (HMD) unit with an integrated Dual AMOLED 3.6-inch 

diagonal screen with a resolution of 1080 × 1200 pixels per eye, a refresh rate of 90 Hz, and a 

110° field of view. A wireless Vive controller was used so that participants could navigate 

around the VR world using the dual-stage trigger. Audio was played through DOQUAS 

wireless headphones from a standard desktop computer. Subjective arousal was assessed with 

a “playback” of the VR world (see “VR playback” described above). The recorded experience 

(including audio) was played back to participants on a standard desktop computer using the 

open-source software DARMA (Girard & Wright, 2018). Participants rated how they felt 

during every moment using the joystick of an Xbox wireless controller.  

3.2.3.2 Physiological equipment  

While participants were in the VR world, physiological signals were recorded using 

AcqKnowledge 5.0 software (Biopac Systems Inc., Santa Barbara, CA) and Biopac MP160 

acquisition system. All physiological signals were sampled at 2000 Hz. SCL was recorded 

using a wireless Biopac BioNomadix amplifier (BN-PPGED) with a BioNomadix dual 

electrode lead and disposable Ag/AgCl foam electrodes (Biopac, EL507a). The electrodes were 

attached to the middle phalanges of the left middle and index fingers using an isotonic electrode 

paste (Biopac Gel 101a). HR was recorded using a wireless Biopac BioNomadix ECG (BN-

RSPEC) amplifier with a three-lead set and disposable Ag/AGCl foam electrodes (Biopac, 

EL503). Electrodes were placed on the sternal end of the right clavicle, left mid-clavicle 

(ground electrode), and lower left rib cage. Event related timestamps were recorded on the 
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rendering computer and onset time of physiological acquisition was recorded on the 

physiological acquisition computer (along with subsequent event related timestamps). The 

system clocks on both computers were synced, which allowed us to align these data series.  

To measure resting HR (to calculate basal HRV), data were recorded using a BioPac 

MP36R data acquisition system and AcqKnowledge (ACQ) 4.4.1 software.  

3.2.3.3 PSG 

PSG was recorded in the sleep rested condition to ensure that participants obtained a 

sufficient amount of sleep and to characterise sleep physiology. This was recorded using an 

Embla N7000 PSG system (Embla Systems, Broomfield, CO, USA). The scalp was cleaned 

with NuPrep exfoliating agent before gold-plated electrodes were attached at eight standard 

locations according to the international 10-20 system (Homan et al., 1987): F3, F4, C3, C4, P3, 

P4, O1, and O2, each referenced to the contralateral mastoid (A1 or A2). Left and right 

electrooculogram, left, right, and upper electromyogram, and a ground electrode (forehead) 

were also attached. All electrodes were verified to have a connection impedance of < 5 kΩ. All 

signals were digitally sampled at 200 Hz.  

3.2.3.4 Actigraphy  

Participants wore wristwatch actigraphy devices (Actiwatch 2, Philips Respironics, 

United States) throughout the study, allowing us to monitor their sleep outside the laboratory.   

3.2.4 Pre-processing  

3.2.4.1 SCL 

Data was first visually inspected for the presence of artefacts. All artefacts < 2 seconds 

were retained. The raw data was then exported into R studio and downsampled to 500 Hz. 

Event markers were also exported into R studio. Aggregated SCL data was then computed over 

each of the threatening and non-threatening environments in the VR world.  

3.2.4.2 HR and HRV 

R-peaks (the maximum amplitude of an R wave in a QRS complex of an ECG) were 

identified using Acqknowledge software. The R-R tachograms were then visually inspected for 

the presence of artefacts. Artefacts > 2 seconds were removed from the analysis (seven artefacts 

across 5 participants). Next, we removed any misclassified R peaks and added missing R peaks 

(e.g. labelled peaks that fell below the algorithm threshold). A list of R-peaks was then exported 

into R studio. Instantaneous HR was then calculated using the R package RHRV (Rodriguez-
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Linares et al., 2022). HR data was then aggregated over each of the threatening and non-

threatening environments in the VR world.  

To calculate our measure of HRV during session two, R-peaks were automatically 

detected using Acqknowledge software and visually inspected for accuracy, as described 

above. The interbeat interval time series was then exported into Kubios HRV Standard 3.5.0 

Software (Tarvainen et al., 2014). To obtain a time domain-specific index of HRV, the RMSSD 

was obtained, with a higher value representing higher HRV.   

3.2.4.3 Subjective arousal ratings  

Subjective arousal ratings obtaining during the playback task were exported into R 

studio. Subjective arousal ratings were then aggregated over each of the threatening and non-

threatening environments in the VR world. 

3.2.4.4 PSG 

Using RemLogic 3.4, PSG data were partitioned into 30 second epochs and scored as 

wakefulness, N1, N2, N3 (SWS), or rapid eye movement (REM) sleep according to 

standardised criteria (Iber et al., 2007). Epochs scored as N2 and N3 were exported to 

MATLAB 2019a using the FieldTrip toolbox (Oostenveld et al., 2011, v10/04/18) for spectral 

analysis. Artefacts were identified and removed using Fieldtrip’s data browser and noisy 

channels (identified at scoring) were removed (seven channels across 6 participants). A band-

pass filter between 0.3 Hz and 30 Hz was applied to the remaining data. 

Our spectral analysis of the PSG data included frontal (F3 and F4), central (C3 and C4), 

and parietal (P3 and P4) channels. Using functions from the Fieldtrip toolbox, artefact-free N2 

and N3 epochs were applied to a Fast Fourier Transformation with a 10.24 second Hanning 

window and 50% overlap. Spectral power was determined across standard PSG frequency 

bands: delta (0.8–4.6 Hz), theta (4.8–8.0 Hz), alpha (8.2–12.0 Hz), sigma (12.25–15.0 Hz), slow 

beta (15.2–20.0 Hz), fast beta (20.2–35.0 Hz), and gamma (35.2–45 Hz). Values were divided 

by absolute power across all frequency bands to produce normalised spectral power values. 

Normalised power values were averaged across three channel derivations: frontal (F3 and F4), 

central (C3 and C4), and posterior (P3 and P4). Normalised power values in the delta band 

(0.8–4.6 Hz) were used as our index of SWA, in accordance with previous work (Ben Simon 

et al., 2020).   
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3.3 Statistical analysis 

Unless otherwise specified, all analyses were run in R 4.2.3 (64), and all plots were 

created using the R package ggplot2 (Wickham, 2016). To quantify the evidence in support of 

the experimental (H1) or null hypotheses (H0), Bayes Factors were calculated for each effect of 

interest (Wetzels & Wagenmakers, 2012) using Jeffreys (1961) conventional cut-offs to 

determine the strength of the evidence.  

To address our first research question (i.e. Does sleep deprivation amplify arousal 

during exposure to ambiguous threat?), we ran a mixed ANOVA to measure physiological 

(SCL and HR) and subjective arousal during the two ambiguously threatening environments in 

the VR world. The between-subjects factor was Condition (Sleep rested/Sleep deprivation). 

The within-subjects factor was Part (One/Two), with part one corresponding to the first 

threatening environment (P1threat) and part two corresponding to the second threatening 

environment (P2threat). To index the magnification of arousal during exposure to ambiguous 

threat we calculated change scores by subtracting mean arousal in the first neutral room 

(Baseline) from mean arousal in threat part one (P1threat − Baseline) and threat part two (P2threat 

− Baseline). Separate ANOVAs were performed for each outcome measure (SCL, HR, and 

subjective arousal ratings), resulting in three ANOVAs in total. In the case of a significant 

interaction between Condition and Part, post-hoc two-sided t-tests with Bonferroni corrected 

p-values were run. All ANOVAs and post-hoc tests were analysed using the R package rstatix 

(Kassambara, 2023).   

To address our second research question (i.e. Does sleep deprivation impair the 

recovery of arousal following the dissipation of threat?), we performed a similar ANOVA to 

above. However, physiological (SCL and HR) and subjective arousal were measured during 

the two non-threatening parts of the VR world. To index the recovery of arousal following the 

dissipation of threat, we calculated change scores. To calculate our first recovery index, we 

subtracted mean arousal during threat part one (P1threat) from mean arousal during non-threat 

part one (P1non-threat − P1threat). To calculate our second recovery index, we subtracted mean 

arousal during threat part two (P2threat) from mean arousal during non-threat part two (P2non-

threat − P2threat). As such, negative scores correspond to a reduction in arousal. Separate 

ANOVAs were carried out for each outcome measure (SCL, HR, and subjective arousal 

ratings), resulting in three ANOVAs in total. All ANOVAs and post-hoc tests were analysed 

as above. 
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To address our final research question (i.e. Is SWA associated with reduced arousal in 

response to ambiguous threat?), six correlational analyses were conducted. The first three 

examined the association between SWA and arousal during threat part one (P1 threat) for each 

outcome measure (SCL, HR, and subjective arousal ratings). The second three examined the 

association between SWA and arousal during threat part two (P2threat) for each outcome 

measure (SCL, HR, and subjective arousal ratings). To account for multiple comparisons, 

Bonferroni correction was applied to the resulting p-values from these correlations. All 

correlations were analysed using the R package Hmisc (Harrell, 2023). 

To address our exploratory research questions, we ran linear mixed models (LMMs). 

All LMMs were fitted using the R packages lme4 (Bates et al., 2014) and lmerTest (Kuznetsova 

et al., 2017). We obtained p-values for F and t-tests using the lmerTest ANOVA function using 

Satterthwaite’s method. Estimated marginal means were calculated using the R package 

emmeans (Lenth et al., 2023). Post-hoc pairwise comparisons were also calculated using 

emmeans corrected for the false discovery rate (FDR). LMMs were conducted for each 

outcome measure (SCL, HR, and subjective arousal ratings). Each of these models predicted 

arousal using a fixed effect for Condition (Sleep rested/Sleep deprivation) and Room (Room 

in the VR world, see Figure 3.2b for sample images of each room). A random effect for 

participant intercept was also included in each model. To examine the influence of adaptive 

CER strategy use and HRV on arousal responses, these predictors were added as additional 

fixed effects in separate LMMs. Adaptive CER Strategy Use and HRV were categorised into 

high and low groups based on a median split and were thus entered into the LMMs as 

categorical predictors.  

3.3.1 Deviations from the pre-registration  

Here, we note several deviations from our pre-registration. First, we stated that SCL 

obtained during the VR world would be square-root transformed due to the possibility of a non-

normal distribution. However, SCL values were instead z-scored within-participants to 

maintain consistency with our other outcome measures (HR and subjective arousal ratings). 

Second, we stated that for each of the threatening and non-threatening parts of the VR world, 

arousal (as indexed by SCL, HR, and subjective arousal ratings) would be calculated by 

subtracting mean arousal in each part from mean arousal in the preceding part (as is the case 

for research question 2). However, to address research question 1, we wanted to track the 

magnification of arousal during exposure to ambiguous threat relative to participants’ initial 

arousal levels. To do this, we instead subtracted mean arousal during the first neutral room 

https://osf.io/g4fte
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(Baseline) from mean arousal during threat part one (P1threat − Baseline) and threat part two 

(P2threat − Baseline). Finally, for our correlational analysis, we stated that we would examine 

the associations between SWA and arousal during P1threat and P1non-threat. Because we are 

primarily interested in the magnification of arousal in response to prolonged threat, we instead 

examined the relationships between SWA and arousal during P1threat and P2threat.  

3.4 Results  

3.4.1 Does sleep deprivation increase next-day state anxiety? 

When examining self-reported state anxiety, as assessed by the STAI-S, a 2 (Condition: 

Sleep rested/Sleep deprivation) × 2 (Session: Evening/Morning) mixed ANOVA demonstrated 

a main effect of Session (F(1, 52) = 13.84, p = .001, ɳ² = 0.21, BF10 = 5.01), such that across 

all participants, state anxiety was significantly higher in the morning than the evening. There 

was also a main effect of Condition (F(1, 52) = 8.98, p = .004, ɳ² = 0.15, BF10 = 9.32), such 

that state anxiety was significantly higher in the sleep deprivation condition than the sleep 

rested condition. There was also a significant interaction between Session and Condition (F(1, 

52) = 45.28, p < .001, ɳ² = 0.47, BF10 > 100). Post-hoc tests indicated that participants had 

equivalent levels of state anxiety in the evening (t(51.7) = 0.27, p = .788, d = 0.07). However, 

the following morning, state anxiety levels were significantly higher in the sleep deprivation 

condition, compared to the sleep rested condition (t(44.8) = 5.07, p < .001, d = 1.38; see Table 

3.2). Notably, whereas state anxiety significantly decreased overnight in sleep rested 

participants (t(26) = 2.74, p = .011, d = 0.53), state anxiety significantly increased overnight in 

sleep deprived participants (t(26) = 6.25, p < .001, d = 1.20; see Figure 3.4). These results 

replicate previous studies showing that acute sleep deprivation amplifies next-day state anxiety, 

as assessed using the STAI-S (Ben Simon et al., 2020; Goldstein et al., 2013; Pires et al., 2016). 
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Table 3.2. Means and standard errors for STAI-S total score across sessions. 

STAI-S = State Trait Anxiety Inventory– State version.  

 

Figure 3.4. State anxiety (STAI-S) separated by Session (evening and morning) and Condition 

(sleep rested versus sleep deprivation). Whereas there was no difference between conditions in 

the evening session, sleep deprived individuals experienced greater state anxiety than sleep 

rested individuals in the morning session. The violin plot illustrates the kernel probability 

density i.e. the width of the shaded area represents the proportion of data located there. 

Boxplots depict the minimum, first quartile, median, third quartile, and maximum values.  

3.4.2 Does sleep deprivation amplify arousal during exposure to ambiguous threat? 

3.4.2.1 SCL 

Next, we examined the hypothesis that individuals who are sleep deprived (versus sleep 

rested) exhibit amplified arousal during exposure to ambiguous threat. For SCL, a 2 

(Condition) × 2 (Part) mixed ANOVA revealed a significant main effect of Part (F(1,52) = 

24.75, p < .001, ɳ² = 0.32, BF10 > 100), such that across all participants, SCL was higher in the 

first threatening part relative to the second. Although sleep deprived participants had higher 

SCL compared to sleep rested participants, the main effect of Condition did not reach statistical 

significance (F(1,52) = 3.95, p = .052, ɳ² = 0.07, BF10 = 1.54). However, there was a significant 

Condition Sleep rested  

(N = 27) 

Sleep deprivation  

(N = 27) 

STAI-S M [SE] M [SE] 

Evening 32.26 [1.31] 31.78 [1.21] 

Morning 29.59 [1.23] 41.04 [1.89] 
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interaction between Part and Condition (F(1,52) = 4.98, p = .030, ɳ² = 0.09, BF10 = 1.89). Post-

hoc tests indicated that SCL significantly decreased from threat part one to threat part two in 

the sleep rested condition (t(26) = 5.58, p < .001, d = 1.07; see Table 3.3). However, those in 

the sleep deprivation condition had statistically similar levels of SCL in threat part one and two 

(t(26) = 1.80, p = .084, d = 0.35). These results suggest that well-rested participants could 

regulate their physiological arousal during exposure to ambiguous threat, whereas sleep 

deprived participants could not (see Figure 3.5a).  

3.4.2.2 HR 

For HR, we found a significant main effect of Part (F(1, 52) = 4.83, p = .032, ɳ² = 0.01, 

BF10 = 1.61), such that across participants, HR was lower in threat part one compared to threat 

part two. However, we found no significant effect of Condition (F(1,52) = 0.31, p = .580, ɳ²  < 

0.01, BF10 = 0.41) and no significant interaction between Part and Condition (F(1,52) = 0.31, 

p = .580, ɳ² < 0.01, BF10 = 0.32; see Table 3.3). These results demonstrate that HR did not 

significantly differ between the sleep rested and sleep deprivation conditions during exposure 

to ambiguous threat (see Figure 3.5b).   

3.4.2.3 Subjective arousal ratings  

Subjective arousal ratings were obtained during the playback task with participants 

retrospectively rating their arousal levels. We found a significant main effect of Part (F(1,52) 

= 8.07, p = .006, ɳ² = 0.13, BF10 = 6.19), such that across all participants, subjective arousal 

ratings were higher in threat part one compared to threat part two. However, we found no 

significant effect of Condition (F(1,52) = 0.96, p = .331, ɳ²  = 0.02, BF10 = 0.67), nor a 

significant interaction between Part and Condition (F(1,52) = 0.08, p = .777, ɳ²  < 0.01, BF10 = 

0.27; see Table 3.3). These findings indicate no significant difference in subjective arousal 

ratings between the sleep rested and sleep deprivation conditions during exposure to ambiguous 

threat (see Figure 3.5c).  
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Table 3.3. Means and standard errors for SCL, HR and subjective arousal ratings across the 

threatening parts of the VR world. 

Condition Sleep rested  

(N = 27) 

Sleep deprivation  

(N = 27) 

Arousal Measure  M [SE] M [SE] 

SCL  
 

Threat Part One 0.58 [0.23] 1.05 [0.25] 

Threat Part Two −0.42 [0.31] 0.67 [0.35] 

HR 

Threat Part One 0.38 [0.11] 0.40 [0.13] 

Threat Part Two 0.55 [0.12] 0.50 [0.11] 

Subjective arousal ratings 

Threat Part One 0.25 [0.20] 0.59 [0.22] 

Threat Part Two 0.10 [0.24] 0.40 [0.26] 

SCL = Skin conductance level. HR = Heart rate (BPM). SCL, HR and subjective arousal ratings were z-scored.  
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Figure 3.5. Arousal during prolonged exposure to threat. a) Skin conductance level (SCL) 

significantly declined from threat one to threat two in the sleep rested but not the sleep 

deprivation condition, b) there was no significant difference between the sleep rested and sleep 

deprivation conditions in heart rate (HR) during threat one and threat two, and c) there was no 

significant difference between the sleep rested and sleep deprivation conditions in subjective 

arousal ratings during threat one and threat two. All outcome measures were z-scored.  

3.4.3 Does sleep deprivation impair the recovery of arousal following the dissipation of 

threat? 

Next, we examined the hypothesis that individuals who are sleep deprived (versus sleep 

rested) exhibit impaired recovery from a threatening experience after the threat has dissipated. 

Recovery was calculated as the change in arousal from the threatening to the non-threatening 

parts of the VR world. As negative arousal responses correspond to a reduction in arousal, 

lower values indicate a greater arousal recovery following the dissipation of threat. 
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3.4.3.1 SCL 

For SCL, a 2 (Condition) × 2 (Part) mixed ANOVA revealed a significant main effect 

of Part (F(1,52) = 7.83, p = .007, ɳ² = 0.13, BF10 = 6.96), such that across all participants, 

recovery of SCL was greater during the first non-threatening part relative to the second. 

However, there was no significant main effect of Condition (F(1,52) = 0.72, p = .400, ɳ² = 0.01, 

BF10 = 0.32), nor was there a significant interaction between Part and Condition (F(1,52) = 

2.98, p = .090, ɳ² = 0.05, BF10 = 0.96; see Table 3.4). These findings indicate that SCL did not 

significantly differ between sleep rested and sleep deprived participants when recovering from 

threat (see Figure 3.6a).   

3.4.3.2 HR 

For HR, there was also a significant main effect of Part (F(1,52) = 4.25, p = .044, ɳ² = 

0.08, BF10 = 1.27), such that recovery of HR was greater during the first non-threatening part 

compared to the second. However, we found no significant main effect of Condition (F(1,52) 

= 0.18, p = .677, ɳ² < 0.01, BF10 = 0.39), nor a significant interaction between the Part and 

Condition (F(1,52) = 0.26, p = .610, ɳ² = 0.01, BF10 = 0.29; see Table 3.4). These results 

demonstrate that sleep rested and sleep deprived participants do not significantly differ in HR 

when recovering from threat (see Figure 3.6b).  

3.4.3.3 Subjective arousal ratings  

Finally, for subjective arousal ratings, we found no significant main effect of Part 

(F(1,52) = 1.03, p = .316, ɳ² = 0.02, BF10 = 0.32) or Condition (F(1,52) = 0.57, p = .453, ɳ² = 

0.01, BF10 = 0.48). We also found no significant interaction between Part and Condition 

(F(1,52) = 0.00, p = .950, ɳ² < 0.01, BF10 = 0.27; see Table 3.4). The data here suggest that 

subjective arousal levels do not significantly differ between sleep rested and sleep deprived 

participants when recovering from threat (see Figure 3.6c). 
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Table 3.4. Means and standard errors for SCL, HR and subjective arousal ratings across the 

non-threatening parts of the VR world. 

SCL = Skin conductance level. HR = Heart rate (BPM). SCL, HR and subjective arousal ratings were z-scored.  

Condition Sleep rested  

(N = 27) 

Sleep deprivation  

(N = 27) 

Arousal Measure  M [SE] M [SE] 

SCL  

Non-threat Part One −0.88 [0.15] −0.50 [0.15] 

Non-threat Part Two −0.26 [0.15] −0.36 [0.16] 

HR 

Non-threat Part One 0.04 [0.10] 0.01 [0.10] 

Non-threat Part Two 0.20 [0.12] 0.11 [0.10] 

Subjective arousal ratings 

Non-threat Part One −1.05 [0.18] −0.82 [0.22] 

Non-threat Part Two −1.19 [0.27] −0.94 [0.28] 
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Figure 3.6. Recovery of arousal following the dissipation of threat. There were no significant 

differences between the sleep rested and sleep deprived individuals when recovering from 

threat for a) SCL, b) HR, and c) subjective arousal ratings. All outcome measures were z-

scored. 

3.4.4 Is SWA associated with reduced arousal in response to ambiguous threat? 

We found no significant association between SWA and state anxiety, either for morning 

STAI-S scores or overnight change in these scores (see Table 3.5). This result is at odds with 

previous work demonstrating a significant association between greater SWA and lower next-

day state anxiety, as well as a greater overnight reduction in state anxiety (Ben Simon et al., 

2020).  

Next, we tested our hypothesis that greater SWA would be associated with reduced 

arousal during exposure to initial (P1 threat) and repeated threat (P2threat). SWA was examined 

across different electrode clusters given the topographical effects reported in previous work 

(Ben Simon et al., 2020). For each of our outcome measures (SCL, HR, and subjective arousal 
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ratings), we found no significant association between SWA and P1threat or SWA and P2threat (see 

Table 3.5)9. These findings suggest that, although sleep attenuated physiological arousal (SCL) 

during exposure to ambiguous threat, SWA was not significantly associated with this reduction.   

As part of an exploratory analysis, we also examined whether arousal responses during 

initial threat (P1threat) and repeated threat (P2threat) were associated with the amount of time 

spent in REM sleep. We examined these associations because previous work demonstrates an 

important role for REM sleep in the regulation of arousal responses (Greenberg et al., 1972; 

Gujar, McDonald, et al., 2011; Hutchison et al., 2021; Rosales-Lagarde et al., 2012; 

van der Helm et al., 2011). However, for each of our outcome measures (SCL, HR, and 

subjective arousal ratings), we found no significant relationship between REM sleep duration 

and P1threat, or REM sleep duration and P2threat (see Table 3.5). 

 

 

 

9 We also investigated whether greater SWA was associated with reduced arousal following the dissipation of initial (P1non-

threat) and repeated threat (P2non-threat). Again, for each of our outcome measures (SCL, HR, and subjective arousal ratings), we 

found no significant associations between SWA and P1non-threat or SWA and P2non-threat.  
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Table 3.5. Correlations between SWA and anxiety, as indexed by the STAI-S and arousal responses during threatening parts one and two of the 

VR world. 

STAI-S = State Trait Anxiety Inventory- State version. SCL = Skin conductance level, HR = Heart rate, P1 = Part one, P2 = Part two, threat = Threatening VR environment, 

SWA = Slow wave activity. REM = Rapid eye movement sleep. BF10 are the Bayes Factors for each correlation. All p values were Bonferroni corrected and were > .05. ^ 

indicates non-parametric Spearman’s rank correlations were run instead of Pearson’s due to violation of the normality assumption.  

Variable Frontal SWA  

(% power) 

Central SWA  

(% power) 

Posterior SWA  

(% power) 

REM  

(minutes) 

STAI-S Morning  −.05, BF10 = 0.43 .06, BF10 = 0.43 .15, BF10  = 0.53 .30, BF10  = 1.10 

STAI-S Overnight Change −.05, BF10 = 0.43 .07, BF10 = 0.44 .20, BF10  = 0.64 .00, BF10  = 0.42 

SCL P1threat .09, BF10  = 0.45 .12, BF10  = 0.49 .11, BF10  = 0.48 −.16, BF10  = 0.55 

SCL P2threat .01, BF10  = 0.42 .09, BF10  = 0.45 .03, BF10  = 0.42 −.21, BF10  = 0.68 

HR P1threat −.04, BF10  = 0.43 .00, BF10  = 0.42 .02, BF10  = 0.42 −.09, BF10  = 0.46 

HR P2threat −.14, BF10  = 0.51 −.15, BF10  = 0.53 −.13, BF10  = 0.50 −.12, BF10  = 0.49 

Subjective arousal P1threat .11, BF10  = 0.48 .08, BF10  = 0.45 .11, BF10  = 0.48 .17, BF10  = 0.58 

 Subjective arousal P2threat .29^, BF10  = 0.63 .31^, BF10  = 0.61 .32^, BF10  = 0.72 .25^, BF10  = 0.67 
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3.4.5 Alertness 

The influence of sleep deprivation (versus restful sleep) on alertness levels was 

examined using the psychomotor vigilance task (PVT) and the Stanford Sleepiness Scale 

(SSS). For the PVT, a 2 (Condition: Sleep rested/Sleep deprivation) × 2 (Session: 

Evening/Morning) mixed ANOVA revealed a main effect of Session (F(1, 52) = 19.36, p < 

.001, ɳ² = 0.27, BF10 > 100), such that all participants were significantly slower at responding 

in the morning compared to the evening. There was no significant effect of Condition (F(1, 52) 

= 2.29, p = .136, ɳ² = 0.04, BF10 = 0.75) but there was a significant interaction between Session 

and Condition (F(1,52) = 11.94, p = .001, ɳ² = 0.19, BF10 = 26.97). Post-hoc tests showed 

equivalent response times between conditions in the evening session (t(45.3) = 0.14, p = .887, 

d = 0.04). However, sleep deprived participants were slower at responding in the morning 

session compared to sleep rested participants (t(51.8) = 2.58, p = .013, d = 0.70; see Table 3.6). 

For the SSS, the ANOVA indicated a main effect of Session (F(1, 52) = 22.49, p < .001, ɳ² = 

0.13, BF10 = 31.74), such that all participants felt sleepier in the morning compared to the 

evening. The results also revealed a main effect of Condition (F(1, 52) = 27.11, p < .001, ɳ² = 

0.25, BF10 > 100), such that sleep deprived participants reported feeling sleepier than sleep 

rested participants. Finally, there was a significant interaction between Session and Condition 

(F(1,52) = 59.38, p < .001, ɳ² = 0.29, BF10 > 100). Post-hoc tests revealed equivalent levels of 

self-reported sleepiness in the evening (t(51.9) = 0.38, p = .788, d = 0.10), whereas in the 

morning, participants in the sleep deprivation condition reported greater feelings of sleepiness 

relative to participants in the sleep rested condition (t(48.3) = 8.16, p < .001, d = 2.22; see Table 

3.6). 
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Table 3.6. Means and standard errors for alertness measures (PVT and SSS) across sessions.  

PVT = Psychomotor vigilance task as assessing by examining response times in milliseconds. SSS = Stanford 

Sleepiness Scale (maximum score 7). 

3.4.6 Exploratory analysis 

3.4.6.1 Adaptive CER strategy use  

In an exploratory analysis, we examined whether the evolution of arousal following a 

night of sleep or sleep deprivation was influenced by the tendency to engage in adaptive CER 

strategies. To do this, we ran LMMs with Room, Condition and Adaptive CER Strategy Use 

as fixed effects.  

SCL. There was no significant main effect of Adaptive CER Strategy Use (F(1, 50) = 

0.43, p = .516, ɳ² < 0.01), nor a significant interaction between Condition and Adaptive 

Strategy Use (F(1, 50) = 3.43, p = .070, ɳ² = 0.01). Interestingly, there was a significant 

interaction between Room and Adaptive Strategy Use (F(9, 450) = 2.91, p = .002, ɳ² = 0.06), 

indicating that high adaptive CER strategy users had higher SCL than low adaptive CER 

strategy users, particularly during the later rooms (see Figure 3.7a). However, pairwise 

comparisons revealed no significant differences in SCL between high- and low- adaptive CER 

strategy users in any of the rooms. We also found no significant three-way interaction between 

Room, Condition and Adaptive CER Strategy Use (F(9, 450) = 0.49, p = .880, ɳ² = 0.01). 

Consistent with our ANOVA results, we found a significant main effect of Room (F(9, 450) = 

21.24, p < .001, ɳ² = 0.30). We also found a significant main effect of Condition (F(1, 50) = 

4.08, p = .049, ɳ² = 0.01), such that across all rooms, and in both high and low adaptive CER 

strategy user groups, sleep deprived individuals had higher SCL than sleep rested individuals. 

Condition Sleep rested  

(N = 27) 

Sleep deprivation   

(N = 27) 

Alertness Measure  M [SE] M [SE] 

PVT 

Evening 273.85 [7.82] 272.51 [5.22] 

Morning 278.21 [8.10] 308.76 [8.65] 

SSS 

Evening 2.70 [0.21] 2.59 [0.20] 

Morning 2.15 [0.21] 4.93 [0.27] 
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However, we did not find a significant interaction between Room and Condition (F(9, 450) = 

1.75, p = .077, ɳ² = 0.03).  

HR. We found no significant effect of Adaptive CER Strategy Use (F(1, 50.21) = 0.82, 

p = .369, ɳ² < 0.01), nor a significant two-way interaction between Condition and Adaptive 

CER Strategy Use (F(1, 50.21) = 0.82, p = .369, ɳ² < 0.01), or Adaptive CER Strategy Use and 

Room (F(9, 427.31) = 1.87, p = .055, ɳ² = 0.04). There was also no significant three-way 

interaction between Room, Condition and Adaptive CER Strategy Use (F(9, 427.31) = 1.10, p 

= .361, ɳ² = 0.02, see Figure 3.7b). Consistent with our ANOVA findings, there was a 

significant main effect of Room (F(9, 427.31) = 3.63, p < .001, ɳ² = 0.07), but no significant 

main effect of Condition (F(1, 50.21) = 0.32, p = .574, ɳ² < 0.01), nor a significant two-way 

interaction between Room and Condition (F(9, 427.31) = 0.39, p = .940, ɳ² = 0.01).  

Subjective arousal ratings. We found no significant main effect of Adaptive CER 

Strategy Use (F(1, 50) = 2.11, p = .152, ɳ² = 0.01). We also found no significant two-way 

interaction between Condition and Adaptive CER Strategy Use (F(1, 50) = 0.36, p = .551, ɳ² < 

0.01), and Adaptive CER Strategy Use and Room (F(9, 450) = 0.30, p = .976, ɳ² = 0.01). 

Interestingly, there was a significant three-way interaction between Condition, Room and 

Adaptive Strategy Use (F(9, 450) = 3.05, p = .001, ɳ² = 0.06). Pairwise comparisons revealed 

that first, for low adaptive CER strategy users, subjective arousal ratings were significantly 

higher in the sleep deprivation condition compared to the sleep rested condition in two of the 

non-threatening rooms (office 3 and office 4 (t(139) = 2.13, p = .035, d = 1.17; t(139) = 2.33, 

p = .022, d = 1.28, respectively). Second, for high adaptive strategy users, subjective arousal 

ratings were significantly higher in the sleep deprivation condition compared to the sleep rested 

condition during a different non-threatening room: office 2 (t(139) = 2.09, p = .039, d = 1.24). 

In summary, these results suggest that low adaptive CER strategy users suffer more following 

sleep deprivation during the parts of the VR world when they are trying to recover (i.e. the non-

threatening parts; see Figure 3.7c). However, these comparisons were no longer significant 

after adjusting for the FDR. Consistent with our main analysis, we also found a significant 

effect of Room (F(9, 450) = 20.87, p < .001, ɳ² = 0.29), but not Condition (F(1, 50) = 3.53, p 

= .066, ɳ² = 0.01), and no significant two-way interaction between Room and Condition (F(9, 

450) = 0.62, p = .779, ɳ² = 0.01).  
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Figure 3.7. Linear mixed models (LMMs) for Adaptive CER Strategy Use. Estimated marginal 

means and 95% confidence intervals for a) SCL, b) HR, and c) subjective arousal ratings in 

each room of the VR world. Adaptive CER strategies are separated by low and high use based 

on a median split. The order of the rooms (x axis) is chronological. Shaded areas signify the 

ambiguously threatening parts of the VR world. All outcome measures have been z-scored.   
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3.4.6.2 HRV 

We also examined whether the evolution of arousal responses following a night of sleep 

or sleep deprivation was associated with HRV. To do this, we ran LMMs with Room, Condition 

and HRV as fixed effects.  

SCL. There was no significant main effect of HRV (F(1, 50) = 0.69, p = .411, ɳ² < 

0.01), nor a significant two-way interaction between Room and HRV (F(9, 450) = 0.54, p = 

.846, ɳ² = 0.01), or Condition and HRV (F(1, 50) = 1.75, p = .192, ɳ² < 0.01). We also found 

no significant three-way interaction between Room, Condition and HRV (F(9, 450) = 0.66, p 

= .746, ɳ² = 0.01; see Figure 3.8a). Consistent with our ANOVA findings, there was a 

significant main effect of Room (F(9,450) = 19.65, p < .001, ɳ² = 0.28) and a significant 

interaction between Condition and Room (F(9, 450) = 2.30, p = .016, ɳ² = 0.04). We also found 

a significant main effect of Condition (F(1, 50) = 4.27, p = .044, ɳ² = 0.01), such that across all 

rooms, and low and high HRV groups, sleep deprived individuals had higher SCL than sleep 

rested individuals. 

Subjective arousal ratings. Although we found no significant main effect of HRV 

(F(1, 50) = 0.11, p = .737, ɳ² < 0.01), there was a significant interaction between Condition and 

HRV (F(1, 50) = 8.40, p = .006, ɳ² = 0.02). Pairwise comparisons revealed that subjective 

arousal ratings were significantly higher in the sleep deprivation condition compared to the 

sleep rested condition among participants with low HRV (t(50) = 3.48, p = .002, d = 1.43), 

whereas there was no significant difference in subjective arousal ratings between the sleep 

rested and sleep deprivation conditions among participants with high HRV (t(50) = 0.62, p = 

.541, d = 0.25). These findings suggest that sleep deprivation has the greatest impact on 

subjective arousal responses among individuals with low HRV (see Figure 3.8b). However, we 

found no significant two-way interaction between Room and HRV (F(9,450) = 0.37, p = .948, 

ɳ² = 0.01), nor a significant three-way interaction between Room, Condition and HRV 

(F(9,450) = 1.49, p = .148, ɳ² = 0.03). Consistent with our main analysis, there was a significant 

main effect of Room (F(9,450) = 22.72, p < .001, ɳ² = 0.31) and no significant interaction 

between Room and Condition (F(9,450) = 0.78, p = .640, ɳ² = 0.02). However, there was a 

main effect of Condition (F(1, 50) = 4.11, p = .048, ɳ² = 0.01), such that across all rooms, and 

low and high HRV groups, subjective arousal ratings were higher when participants were sleep 

deprived compared to sleep rested.  
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Figure 3.8. Linear mixed models (LMMs) for HRV. Estimated marginal means and 95% 

confidence intervals for a) SCL and b) subjective arousal ratings in each room of the VR world. 

HRV is separated by low and high based on a median split analysis. The order of the rooms (x 

axis) is chronological. Shaded areas signify the ambiguously threatening parts of the VR world. 

All outcome measures have been z-scored.   

3.5 Discussion  

Prior work indicates that sleep deprivation increases next-day state anxiety and impairs 

threat-related information processing. However, these studies have only assessed threat-related 

information processing at discrete moments in time and in response to direct threat. Resultantly, 

little is known about how arousal responses unfold during exposure to ambiguous threat and 

how this might be influenced by an absence of sleep. We addressed this gap in the literature by 

examining how sleep deprivation, compared to a night of sleep, influences physiological and 

subjective arousal responses to ambiguous threat. Following a night of sleep deprivation or 

sleep, participants navigated through an immersive VR world that cycled between ambiguously 

threatening and non-threatening environments. During this time, their SCL and HR were 

continuously monitored to provide physiological indices of arousal. Participants then watched 

a playback of their navigation through the emotional experience and continuously rated how 
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aroused they remembered feeling during every moment, providing a subjective measure of 

arousal. Participants who had a night of sleep were monitored with PSG to index SWA. Our 

pre-registered analyses focused on whether sleep deprivation amplified arousal during 

exposure to ambiguous threat and impaired recovery following the dissipation of threat. We 

also examined whether greater SWA was associated with reduced arousal when exposed to 

ambiguous threat, given that greater amounts of SWA support the overnight reduction of state 

anxiety in prior work.  

First, our findings replicated previous work showing that sleep deprivation increases 

next-day state anxiety, as assessed using the STAI-S (Ben Simon et al., 2020; Goldstein et al., 

2013; Pires et al., 2016; Reid et al., 2023). Indeed, we found that state anxiety significantly 

increased overnight in the sleep deprivation condition. We also found that state anxiety 

significantly decreased overnight in the sleep rested condition, demonstrating the anxiety-

reducing benefit of sleep. Such findings support the high comorbidity of sleep disturbances and 

clinical anxiety (Breslau et al., 1996; Chellappa & Aeschbach, 2022; Harvey et al., 2011; 

Mellman, 2006; Neckelmann et al., 2007; Papadimitriou & Linkowski, 2005; Uhde et al., 2009) 

and demonstrate that sleep loss can directionally elevate next-day state anxiety levels in the 

absence of a clinical anxiety disorder. Conversely, these findings also support the therapeutic 

potential of sleep for reducing next-day state anxiety levels.  

Next, we examined whether sleep deprivation amplifies arousal when individuals are 

exposed to ambiguous threat. Our data showed that SCL increased during initial threat 

exposure in both the sleep rested and sleep deprivation conditions. However, sleep rested 

individuals demonstrated a reduction in SCL during prolonged threat exposure. Conversely, 

SCL remained elevated in those who were sleep deprived. These findings supported our 

hypothesis that those who were sleep deprived would show amplified arousal during prolonged 

exposure to ambiguous threat.  

These between-condition differences may be explained by the influence of sleep 

deprivation on cognitive control mechanisms. Sleep deprivation has been shown to impair 

cognitive control functions that are important for adaptively responding to threat (Ochsner & 

Gross, 2005; Ochsner et al., 2012), such as attention, working memory, task switching, and 

inhibition (Krause et al., 2017; Kusztor et al., 2019; Slama et al., 2018). Furthermore, sleep 

loss has been associated with lower self-reported distress tolerance (i.e. an individual’s ability 

to withstand unpleasant, aversive, or uncomfortable emotions; Kechter & Leventhal, 2019; 

Reitzel et al., 2017; Short et al., 2016; L. J. Smith et al., 2019). Together, these findings support 
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the suggestion that those who slept were better able to regulate their affective response to threat 

than those who were sleep deprived, resulting in attenuated physiological arousal during 

prolonged threat exposure.   

Alternatively, these between-condition differences may be explained by the effects of 

sleep deprivation on fear learning mechanisms. The ability to learn and remember that a 

stimulus is no longer threatening is pivotal for affect regulation (Britton et al., 2011; Foa & 

McLean, 2016). Sleep deprivation has been shown to curtail the formation of fear memories 

(Menz et al., 2013) and impair the recall of extinguished fear (P. Davidson & Pace-Schott, 

2020; Straus et al., 2017). Therefore, those who had slept, relative to those who were sleep 

deprived, may have been able to effectively learn and remember the nature of the environment 

during initial threat exposure. Thus, when presented with a similar threatening environment a 

second time, well-rested individuals knew what to expect and were better able to regulate their 

affective response to threat. Nonetheless, it is important to note that regulatory control and fear 

learning explanations are not mutually exclusive. In fact, it is likely that impaired fear learning 

mechanisms arise from poor regulatory control, and vice versa.   

Our finding that SCL was reduced in sleep rested, but not sleep deprived, individuals 

during exposure to prolonged ambiguous threat aligns with the theoretical framework linking 

sleep loss to exacerbated anxiety (Ben Simon et al., 2020). Sleep deprivation has been 

associated with decreased mPFC activity (Ben Simon et al., 2020; van der Helm & Walker, 

2012; Yoo et al., 2007), a critical brain region that is important in the top-down regulation of 

affect (Ben Simon et al., 2020; Bishop et al., 2004; M. J. Kim et al., 2011). The mPFC is also 

thought to support cognitive control and adaptive fear learning processes (Feng et al., 2018; 

Giustino & Maren, 2015; E. K. Miller, 2000; Ridderinkhof et al., 2004). Together, these 

findings support the assumption that well-rested participants, in comparison to sleep deprived 

participants, were able to restore prefrontal brain networks overnight, allowing for next-day 

regulation of affect in response to repeated threat. To corroborate this claim, future work should 

examine whether mPFC activity and mPFC-amygdala connectivity are associated with reduced 

arousal responses during prolonged threat exposure.  

The above effects of sleep deprivation on threat responses could also be explained by 

differences in recovery. However, we found no significant difference between sleep rested and 

sleep deprived participants in arousal responses following the dissipation of threat. These 

findings do not support our hypothesis that those who were sleep deprived would show 

impaired recovery of arousal following the dissipation of threat. Nonetheless, recovery values 
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were negative for both SCL and subjective arousal ratings, suggesting that all participants were 

able to recover to some extent following the dissipation of threat.  

Despite these null results, our exploratory analysis demonstrated that adaptive CER 

strategy use and HRV moderated the effect of sleep deprivation on the recovery of arousal 

responses. First, we found that lower habitual adaptive CER strategy users had higher 

subjective arousal ratings when they were sleep deprived compared to sleep rested following 

the dissipation of threat. This result suggests that low habitual adaptive CER strategy users 

suffer more from sleep deprivation than their sleep rested counterparts when trying to recover 

following threat. This finding aligns with previous work showing that those who use the 

adaptive CER strategy positive reappraisal less frequently were more likely to hyper-focus on 

negative emotional stimuli following sleep deprivation, compared to those who use positive 

reappraisal more frequently (Cote et al., 2015). We also found that participants in the low HRV 

group had higher subjective arousal ratings when sleep deprived compared to when they were 

sleep rested following the dissipation of threat. However, no such difference was observed 

among participants in the high HRV group. Similar to the above, these findings imply that sleep 

deprivation impairs the ability to recover from threat among participants with low HRV. 

Greater use of adaptive CER strategies and higher HRV have been associated with lower 

anxiety (Hildebrandt et al., 2016; Mather & Thayer, 2018; Schäfer et al., 2017; Sullivan et al., 

2023) and superior executive functioning (Cattaneo et al., 2021; Forte et al., 2019; Gillie et al., 

2014; Joormann & Tanovic, 2015; Mather & Thayer, 2018; McRae et al., 2012; Ochsner & 

Gross, 2005). Therefore, it is possible that these individual differences safeguard against the 

subjective effects of threat under sleep deprivation, enabling individuals to recover following 

threat.  

Given the impact of sleep loss on threat regulation, in a complementary analysis, we 

examined whether SWA restored affect regulation processes. We found no significant 

relationship between SWA and self-reported state anxiety, neither when examining morning 

state anxiety nor overnight change in state anxiety. We also found no significant association 

between SWA and arousal responses during initial or repeated exposure to ambiguous threat, 

irrespective of whether arousal was assessed with SCL, HR, or subjective arousal ratings. 

These findings did not support our hypothesis that greater SWA would be associated with 

reduced arousal in response to ambiguous threat and is at odds with previous work 

demonstrating that greater amounts of NREM SWA support the overnight reduction of next-

day state anxiety (Ben Simon et al., 2020; Chellappa & Aeschbach, 2022), Given that SWA 
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has been shown to support executive functioning and restore the brain regions integral for affect 

regulation (Bishop, 2007; Bishop et al., 2004; M. J. Kim et al., 2011; Simmons et al., 2008; 

Wilckens et al., 2018), our results are surprising. One interpretation of these null results is that 

sleep might exert a broader influence on regulatory control (beyond the SWA mechanism). 

This is supported by our findings that a night of sleep promoted the overnight reduction of state 

anxiety, along with the attenuation of physiological arousal following exposure to prolonged 

ambiguous threat. However, in our exploratory analysis, we found no significant association 

between REM sleep duration and arousal responses. Therefore, future work should consider a 

broader range of sleep properties.  

We did not find any significant effects of sleep deprivation on HR. It has been argued 

that arousal is more closely associated with increased SCL than HR (Barry & Sokolov, 1993). 

Moreover, whereas SCL reflects sympathetic activity (i.e. fight or flight), HR reflects a 

combination of both sympathetic and parasympathetic activity (i.e. rest and digest; Mauss & 

Robinson, 2009). Given that parasympathetic activity is associated with relaxation, HR 

measures may not capture amplified arousal in response to threat.  In addition, although HR 

generally increases in response to threat (Croft et al., 2004; Kreibig et al., 2007; Williams et 

al., 2017), this response may be preceded by deceleration of HR immediately after threat onset 

(Bradley et al., 1996), particularly in highly anxious individuals (Murakami et al., 2010). As 

this study intended to measure subtle changes in physiological arousal across several minutes, 

SCL is arguably a more reliable measure of physiological responding than HR.  

Subjective arousal ratings were captured retrospectively during the playback task. In 

this task, participants were instructed to report their remembered arousal during the VR world. 

Retrospective reports of arousal have demonstrated strong coherence with physiological 

arousal (skin conductance and HR) measured during a VR experience (i.e. past-present 

coherence; McCall et al., 2015). These findings accord with the arousal-encoding hypothesis 

which proposes that memory is able to reliably encode physiological signals during an 

experience (McCall et al., 2015). However, a lack of sleep prior to encoding decreases the 

ability to encode negative events and results in worse subsequent retention (Kaida et al., 2015; 

Krause et al., 2017; Yoo et al., 2007). Consequently, it is possible that encoding deficits 

following a night of sleep deprivation impaired participants’ ability to encode physiological 

signals and/or retrieve their remembered arousal accurately. Although subjective data revealed 

the effects of sleep deprivation when controlling for adaptive CER strategy use and HRV, we 

cannot tease apart whether sleep deprivation influenced the encoding of physiological signals 



116 

 

during the emotional experience and/or the ability to retrospectively retrieve these signals. 

Future work should therefore incorporate study designs that allow us to delineate these memory 

processes to examine whether they influence subjective arousal ratings when participants are 

sleep deprived.  

This is the first study to move beyond assessing arousal responses at a single point in 

time and examine the impact of sleep deprivation on the evolution of arousal during exposure 

to ambiguous threat. However, several limitations should be noted. First, participants in the 

sleep deprivation condition were sent home and instructed to stay awake overnight. Although 

they were given explicit instructions, there was limited experimental control over what 

activities they engaged in and whether they refrained from consuming caffeine. However, 

given that actigraphy data indicated that participants did not sleep during the overnight period, 

we can be confident that all participants were acutely sleep deprived. We also have a clear 

record of the activities participants engaged in during the night, which conformed to the study 

instructions (see Table 3.1). Although this study design allowed participants in the sleep 

deprivation condition to remain awake in the comfort of their own home and reduced 

experimenter burden, future work should replicate this study with participants being sleep 

deprived in the laboratory to allow for more stringent experimental control.   

Second, although we had two non-threatening parts in our VR world, the second non-

threatening part consisted of only one room, whereas all the other parts contained three rooms. 

Consequently, as participants only navigated through one room, there may not have been 

sufficient time to capture recovery. To address this, in future work using this VR world, two 

non-threatening rooms could be added to the end of the experience. This would ensure that 

participants spend equivalent amounts of time in each of the non-threatening parts and allow 

us to map the recovery of arousal across similar time intervals.  

In conclusion, we found that physiological expressions of arousal in response to 

ambiguous threat were reduced in those who had slept but remained elevated in those who were 

sleep deprived. However, greater SWA was not associated with this reduction. Moreover, sleep 

deprivation, relative to a night of sleep, did not impair the recovery of arousal following the 

dissipation of threat. A potential interpretation for these findings is that those who slept were 

better able to regulate their affective response to threat than those who were sleep deprived. 

Exploratory analyses highlight greater adaptive CER strategy use and higher basal HRV as two 

variables of interest for further study that may buffer the subjective effects of threat under sleep 

deprivation. These novel findings provide important insights into how a night of sleep regulates 
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arousal in response to threat, helping us understand how sleep (or a lack of sleep) influences 

anxiety when encountering the threats and uncertainties we face in our day-to-day lives.  
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Chapter 4: The Influence of Emotion Regulation and Sleep Quality on 

Emotional Inertia  

Abstract 

Emotional inertia reflects the tendency for emotions to persist over time. Higher 

persistence of negative affect (i.e. higher emotional inertia) has consistently been associated 

with lower well-being. Yet, we know little about the mechanisms underlying this association. 

Prior work suggests that frequent use of adaptive cognitive emotion regulation (CER) strategies 

(i.e. positive thought processes) reduces the persistence of negative affect (NA) over time. 

Moreover, recent studies have begun to examine the association between sleep and emotional 

inertia but have produced mixed findings. This study examined the combined influence of 

adaptive CER strategy use and sleep quality on emotional inertia. Specifically, we examined 

whether the association between greater adaptive CER strategy use and lower NA inertia is 

contingent on high quality sleep. Participants (N = 245) watched a series of emotionally 

negative, positive, and neutral film clips in a fixed order and rated how they felt on both 

negative (sad, angry, depressed, and anxious) and positive dimensions (relaxed and happy). 

They provided these ratings following the presentation of each film clip and again after a 

subsequent rest period which followed each of the film clips. They then completed standardised 

questionnaires to index the frequency with which they typically employed CER strategies and 

sleep quality levels. Using an autoregressive modelling approach, which modelled the 

association between NA at each time point (t) and NA at the preceding time point (t − 1), we 

found that greater use of adaptive CER strategies and high sleep quality were independently 

associated with lower NA inertia. However, the association between greater adaptive CER 

strategy use and lower NA inertia was observed at different levels of sleep quality. Together, 

these findings highlight the importance of both adaptive CER strategies and sleep quality in 

predicting NA persistence over time.   

4.1 Introduction  

Emotions are not static experiences (Dejonckheere et al., 2019; Frijda & Mesquita, 

1998; Kuppens & Verduyn, 2017), but instead vary substantially throughout our daily lives. 

These emotional fluctuations may be driven by the experiences we encounter. For example, 

one morning we might feel sad as a result of an argument with a loved one; then, several hours 

later, we might feel happy after a friend bought us a coffee. However, on another day, we might 

continue to feel sad, despite our friend buying us a coffee. The extent to which an emotion state 
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persists from one time point to the next is defined as emotional inertia (Koval et al., 2021). If 

an individual’s emotional inertia is high, their emotion state (e.g. sadness) will likely persist 

from one moment to the next and they will be relatively resistant to internal and external 

influences (Kuppens, Allen, et al., 2010). Conversely, if an individual’s emotional inertia is 

low, their emotion state will likely be highly variable from one moment to the next, and they 

will be more susceptible to psychological and environmental demands (Kuppens, Allen, et al., 

2010). The ability to adapt flexibly to these demands has been shown to be an important 

indicator of well-being and mental health. For example, higher inertia of negative affect (NA) 

has been associated with depressive symptomatology (Brose et al., 2015; Koval & Kuppens, 

2012; Koval et al., 2012, 2013), the onset of depression (Kuppens et al., 2012; van de Leemput 

et al., 2014), neuroticism (Suls et al., 1998), and low self-esteem (Kuppens, Allen, et al., 2010). 

However, we know relatively little about the mechanisms underlying the association between 

NA inertia and mental health outcomes (Houben et al., 2015; Koval et al., 2016)  

Cognitive emotion regulation (CER) strategies may play an important role in the 

maintenance and modification of emotion states over time (i.e. emotional inertia; Gross, 2014; 

Koval, Butler, et al., 2015). Indeed, higher NA inertia has been associated with difficulties 

regulating emotions effectively (Brose et al., 2015; Koval & Kuppens, 2012; Koval et al., 2012, 

2013). For instance, greater use of maladaptive CER strategies, such as expressive suppression 

(Bean et al., 2021; Koval, Butler, et al., 2015) and rumination (Blanke et al., 2022; Koval et 

al., 2012), have been associated with higher NA inertia. It has been suggested that using 

maladaptive CER strategies contributes to the maintenance and even enhancement of NA, 

thereby promoting the rigidity of NA over time (Koval, Butler, et al., 2015; Koval et al., 2012). 

In addition, more frequent use of maladaptive CER strategies has been associated with greater 

depression and anxiety symptoms when encountering emotional hardship (Sullivan et al., 

2023), suggesting that, overall, these strategies are ineffective at regulating NA following an 

emotional event, leading to higher NA inertia.  

Given that maladaptive CER strategies are associated with higher NA inertia, a 

reciprocal question concerns whether adaptive CER strategies are related to lower NA inertia. 

Some studies have demonstrated a negative association between dispositional mindfulness, a 

technique thought to downregulate NA as well as facilitate and strengthen the capacity for 

positive reappraisal, and NA inertia (Keng & Tong, 2016; Rowland et al., 2020). Moreover, 

greater use of positive reappraisal has been associated with a more rapid decline of NA 

following an emotional experience (Kuppens, Oravecz, et al., 2010). Nonetheless, other studies 
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have shown no or only a weak association between positive reappraisal and NA inertia (Bean 

et al., 2021; Koval, Butler, et al., 2015). Importantly, previous studies have examined only how 

individual adaptive (i.e. positive reappraisal) and maladaptive (i.e. rumination) CER strategies 

influence NA inertia. Therefore, in this study, we aimed to expand this work and determine 

how adaptive and maladaptive CER strategies are associated with emotional inertia using 

composite measures that encompass a range of adaptive and maladaptive CER strategies.  

Sleep is another factor that may influence emotional inertia. Given that sleep loss 

contributes to mood disturbance (Fairholme & Manber, 2015), emotion dysregulation (Ben 

Simon et al., 2020; Harrington, Ashton, Sankarasubramanian, et al., 2021; Harrington & 

Cairney, 2021; Yoo et al., 2007) and the development of mental health conditions (Baglioni, 

Spiegelhalder, et al., 2010; Bi & Chen, 2022; Freeman et al., 2017), it is expected that sleep 

loss would be associated with higher NA inertia. Indeed, X. Wen et al. (2020) found that shorter 

sleep duration (measured with actigraphy) was associated with higher persistence of depressive 

mood states over one week. However, no studies have yet found an association between sleep 

(either duration or quality) and NA inertia more broadly (Frérart et al., 2023; Minaeva et al., 

2021; X. Wen et al., 2020).  

 One explanation for the lack of a significant association between sleep and NA inertia 

in previous work may be due to emotional inertia being measured using experience sampling 

methodology (ESM; Houben et al., 2015; Koval et al., 2016). ESM involves asking participants 

several times a day over a period of days or weeks to report how they feel on a range of emotion 

states (Kuppens, Allen, et al., 2010). Although studying emotion fluctuations in an individual’s 

daily life affords high ecological validity and provides insights on a fine temporal scale, it is 

caveated by limited control over environmental factors. This makes it difficult to determine 

whether individual differences in emotional inertia result from endogenous processes (e.g. 

emotion regulation), exogenous factors (e.g. exposure to different life events), or both. Indeed, 

individuals who encounter more intense negative life events (but not more frequent negative 

life events) display higher levels of NA inertia in ESM paradigms (Koval, Brose, et al., 2015). 

Given that CER strategy use and sleep have been associated with individual differences in 

emotional inertia, we cannot rule out the possibility that emotional inertia was driven by 

differences in the intensity of emotional events that participants encountered.   

To address this issue, a mood induction procedure (MIP) has been developed to 

measure emotional inertia by exposing participants to an identical sequence of emotional 

events. During this MIP, participants watch a series of film clips in a fixed order and are 
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instructed to rate how they feel after the presentation of each film clip and again after a 

subsequent rest period, following each of the film clips (Koval, Brose, et al., 2015; Koval et 

al., 2013, 2016). The findings from these studies replicated ESM paradigms, as heightened NA 

inertia was associated with higher scores on negative indicators of well-being such as 

depressive symptoms, ruminative tendencies, and neuroticism (Koval et al., 2013, 2016). 

Therefore, we used this MIP to investigate the independent influence of CER strategy use and 

sleep quality on NA inertia.   

It has been argued that the use of staged film clips decreases a participant’s ability to 

accept the event depicted in the film as real, which is paramount for inducing strong emotional 

responses (Rottenberg et al., 2007; Samson et al., 2016). Critically, the film clips used in 

previous studies were obtained from films with scripted actors, special effects, and intensive 

editing (Koval, Brose, et al., 2015; Koval et al., 2013, 2016). To address this issue, we used 

amateur recordings of real-life events to assimilate emotional responses to naturalistic events 

occurring in one’s daily life (Samson et al., 2016).  

To date, no study has examined whether emotional inertia can be attributed to the 

interaction between CER strategies and sleep quality. Poor sleep has been shown to increase 

the use of maladaptive CER strategies (Latif et al., 2019) and reduce the effectiveness of 

adaptive CER strategies (Mauss et al., 2013; Zhang et al., 2019). These findings point to a 

potential mechanism linking adaptive CER strategies and emotional inertia, wherein the 

effective deployment of adaptive CER strategies (to reduce the persistence of NA) is contingent 

on obtaining good sleep quality. Therefore, we tested the hypothesis that the relationship 

between CER strategy use and NA inertia is influenced by sleep quality.   

In this study, 245 participants completed our MIP to assess emotional inertia. They also 

completed standardised questionnaires to index the frequency with which they employed CER 

strategies and their sleep quality levels. As pre-registered, we first hypothesised that greater 

use of adaptive CER strategies and high sleep quality would be independently associated with 

lower NA inertia. Second, we predicted that the relationship between greater use of adaptive 

CER strategies and lower NA inertia would be stronger among individuals with high sleep 

quality.  

In addition to our main research questions, we were interested in several exploratory 

avenues. First, as greater adaptive CER strategy use, lower maladaptive CER strategy use, and 

high sleep quality have all been shown to increase positive affect (PA; Bower et al., 2010; 

https://doi.org/10.17605/OSF.IO/QZG5A
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Brans et al., 2013; Ong et al., 2017; Tugade & Fredrickson, 2007), we investigated whether 

CER strategy use and sleep quality were associated with PA inertia. Second, in accordance 

with previous studies (Houben et al., 2015), we examined whether greater depression and 

anxiety symptomatology were associated with higher inertia of NA. 

4.2 Methods 

Our study methods and analysis plans were pre-registered on the Open Science 

Framework.   

4.2.1 Participants 

We initially recruited N = 259 participants from Prolific.co. Of these 259 participants, 

N = 14 were excluded: N = 13 for self-reporting that they did not complete the study in a quiet 

low-lit room with headphones, and N = 1 as the proportion of film clip trials for which they 

made a response was less than 90%. Therefore, our final sample size included N = 245 

participants (79 female, 164 male, 2 undisclosed), aged between 18 and 30 years (M ± SD age 

= 25.77 ± 3.33 years). Participants reported no history of neurological, psychiatric, or sleep 

disorders and declared that they had never worked for the emergency services (e.g. paramedic, 

firefighter, police), armed forces, or in healthcare (e.g. nurse, doctor). Participants received £8 

as compensation for completing the study. Ethical approval was obtained from the Department 

of Psychology Research Ethics Committee at the University of York. 

The sample size was determined by power analysis using the method described by 

Murayama et al. (2020). Effect size estimates were obtained from Koval et al. (2016), as this 

study included a MIP similar to the one we used. We chose an effect size from their meta-

analysed results from study one (N = 100) and two (N = 202) regarding the association between 

trait rumination and NA inertia. We converted the effect size of r = .19 (raw emotion ratings) 

to a t-value (t = 3.35), and determined that we needed a sample size of 245 to achieve 85% 

power (α = 0.05). Excluded participants were replaced to meet the required sample size.  

4.2.2 Procedure  

Participants completed the study online via Qualtrics. They were instructed to 

undertake the study in a quiet low-lit room whilst wearing headphones. They first completed 

the MIP to index NA inertia, followed by standardised questionnaires to measure CER strategy 

use and sleep quality levels. 

https://doi.org/10.17605/OSF.IO/QZG5A
https://doi.org/10.17605/OSF.IO/QZG5A
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4.2.3 Measures  

4.2.3.1 Mood induction procedure  

At the beginning of the task, participants were asked to rate how they felt on four 

negative dimensions (sad, angry, depressed, and anxious) and two positive dimensions 

(relaxed and happy), on a scale from 0 [not at all] to 6 [very much]. This served as a baseline 

assessment of affect. Participants then watched several film clips that were emotionally 

negative, positive, or neutral. They viewed a total of 11 film clips. The film clips were shown 

in the following fixed order: neutral (practice trial), negative, negative, neutral, positive, 

neutral, negative, positive, positive, negative, and positive. Exposing participants to a series of 

emotional film clips in a fixed order helped rule out individual differences in event exposure 

(Koval et al., 2013). Descriptions of the film clips can be found in the Supplementary Material 

(see Table A.4). All film clips were validated in a pilot study (see “Stimulus validation”). The 

MIP is a modified version of the tasks described by Koval et al. (Koval, Brose, et al., 2015; 

Koval et al., 2013, 2016). 

Following the presentation of each film clip, participants were instructed to indicate 

how the clip made them feel on each of the dimensions described above. There was a 10 second 

time limit for each rating. Participants were explicitly instructed to rate how each clip made 

them feel, as opposed to how they felt in general, or how they thought they should feel. Between 

each film clip, participants viewed a neutral image (a ball of string) for 20 seconds before rating 

their feelings again (see Figure 4.1). In total, they rated their feelings on 21 occasions (at 

baseline, following each of the ten film clips, and following each of the ten rest periods). For 

each participant, ratings on the four negative dimensions (sad, angry, depressed, and anxious) 

were averaged at each occasion to compute a composite NA rating. To assess the internal 

consistency of our composite NA rating, we estimated within-person reliability using 

multilevel structural equation modelling (Koval et al., 2016; Nezlek, 2012). The estimated 

coefficient omega for our composite NA rating was good (0.92).
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Figure 4.1. Mood induction procedure (MIP). a) Participants rated how they felt on four negative dimensions (sad, angry, depressed, and anxious) 

and two positive dimensions (relaxed and happy), from 0 [not at all] to 6 [very much]. b) Participants watched a series of negative, positive, and 

neutral film clips presented in a fixed order. After each film clip, participants rated how they felt on each of the negative and positive dimensions. 

Following each film clip, participants viewed a neutral image before providing the same ratings again. Arrows depict the order of presentation. 
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4.2.3.2 Stimulus validation 

The film clips were validated through a pilot experiment. An independent set of 

participants (N = 31) were randomly assigned to one of two film clip subsets (12 in each subset). 

These clips included amateur footage of real-life negative, positive, and neutral events, sourced 

from YouTube. Following each of the film clips, participants were instructed to rate how 

pleasant they felt in response to the film, from 1 [unpleasant] to 9 [pleasant], and how excited 

they felt in response to the film, from 1 [calm] to 9 [excited], using the Self-Assessment 

Manikin (SAM; Bradley & Lang, 1994). Participants also indicated whether they had seen each 

film clip before. 

Film clips that were familiar to > 30% of the participants were excluded from the 

analysis (3 in total). Of the remaining 21 film clips, we selected four positive film clips with 

the highest valence rating (mean > 6), four negative film clips with the lowest valence rating 

(mean < 3), and two neutral film clips (mean 4–6) for the MIP (see Figure 4.2).  

 

 

Figure 4.2. Mean valence and arousal ratings for each film clip in the pilot experiment. Film 

clips are separated by film type, which was defined when selecting the initial film clips for 

validation. The film clips chosen for the mood induction procedure (MIP) are outlined in bold. 
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4.2.3.3 Cognitive emotion regulation 

CER strategy use was assessed using the Cognitive Emotion Regulation Questionnaire-

short version (CERQ-short; Garnefski & Kraaij, 2006). The CERQ-short is an eighteen-item, 

self-report questionnaire designed to identify the emotion regulation strategies that people use 

after experiencing a negative event or situation. Participants were asked to rate how often they 

use nine conceptually different CER strategies (two questionnaire items per strategy) on a scale 

ranging from 1 (almost never) to 5 (almost always). Individual scores for each CER strategy 

are obtained by summing the two questionnaire items associated with each strategy to form an 

overall score (ranging from 2–10). The higher the overall score, the more a CER strategy is 

used.  

CER strategies were dichotomised as either adaptive or maladaptive (Aldao et al., 2010; 

Garnefski et al., 2001). Adaptive CER strategies include refocus on planning (i.e. thinking 

about the next steps and how to handle the negative event), positive refocusing (i.e. turning 

thoughts towards joyful and pleasant matters), positive reappraisal (i.e. attaching a positive 

meaning to an event), and putting into perspective (i.e. downregulating the seriousness of the 

event and comparing it to other events). Although acceptance (i.e. coming to terms with the 

situation that has occurred) has been previously classified as an adaptive CER strategy, there 

are concerns that it may only be adaptive under certain circumstances (Martin & Dahlen, 2005). 

Consequently, it was not considered as an adaptive or maladaptive CER strategy in the current 

study. Maladaptive CER strategies include self-blame (i.e. blaming oneself for what they have 

experienced), other-blame (i.e. blaming others for what they have experienced), rumination 

(i.e. dwelling on the negative feelings or thoughts associated with an event), and 

catastrophising (i.e. overemphasising the negative parts of an experience).  

To compute a composite measure of adaptive CER strategy use, the scores for all 

adaptive items on the CERQ-short were summed. Scores ranged from 8–40 (two questionnaire 

items per adaptive CER strategy), with higher scores indicating more frequent use of adaptive 

CER strategies. To assess the internal consistency of this composite measure, we computed 

Cronbach’s alpha, which was estimated to be good (α = 0.80). Scores for all maladaptive items 

on the CERQ-short were also summed to create a composite score of maladaptive CER strategy 

use. Again, scores ranged from 8–40 (two questionnaire items per maladaptive CER strategy), 

with higher scores indicating more frequent use of maladaptive CER strategies. The internal 

consistency of this composite measure was estimated to be good (α = 0.76). 
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4.2.3.4 Sleep quality 

Sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI; Buysse et 

al., 1989), a self-report questionnaire designed to assess sleep quality over the preceding month. 

The questionnaire consists of 19 items, grouped to form seven sub-scores: (1) subjective sleep 

quality, (2) sleep latency, (3) sleep duration, (4) sleep efficiency, (5) sleep disturbance, (6) use 

of sleep medication, and (7) daytime dysfunction. Each sub-score ranges from 0–3, with 3 

indicating the poorest sleep quality. Sub-scores were then summed to produce a global score, 

which ranged from 0–21. Higher global scores indicate poorer sleep quality. The internal 

consistency of this global score was estimated to be acceptable (α = 0.67). 

4.2.3.5 Depression 

As part of an exploratory analysis, we assessed depression severity using the Beck 

Depression Index (BDI-II; Beck et al., 1996). The BDI-II is a 21-item self-report instrument 

intended to assess the existence and severity of symptoms of depression over the preceding two 

weeks. Each of the 21 items corresponds to a symptom of depression and is rated on a four-

point Likert scale from 0 (not at all) to 3 (severely). The BDI-II was scored by summing the 

ratings for the 21 items. Total score ranges from 0–63. A total score of 0–13 is considered 

minimal depression, 14–19 is considered mild depression, 20–28 is considered moderate 

depression, and 29–63 is considered severe depression.  

4.2.3.6 Anxiety  

We also assessed anxiety severity as part of our exploratory analysis using the Beck 

Anxiety Inventory (BAI; Beck et al., 1988). The BAI is a self-report inventory that is used to 

measure anxiety symptom severity. It consists of 21 items, each of which describes a common 

symptom of anxiety. Participants are asked to rate how much they have been bothered by each 

symptom over the past week on a four-point Likert scale ranging from 0 (not at all) to 3 

(severely). Total score is computed by summing scores across all items and ranges from 0–63. 

A total score of 0–7 suggests minimal anxiety, 8–15 suggests mild anxiety, 16–25 suggests 

moderate anxiety, and 26–63 suggests severe anxiety.  

4.3 Statistical analysis 

4.3.1 Statistical modelling 

We ran multilevel mixed models to test our hypotheses using the lme4 (Bates et al., 

2014) and lmerTest (Kuznetsova et al., 2017) R packages (R version 4.2.3). These packages 
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were used to model regressions and calculate Satterthwaite-adjusted p-values. Plots were 

created with the R package ggplot2 (Wickham, 2016). We ran separate analyses modelling NA 

inertia using raw and within-person standardised NA ratings for each research question. Each 

model included a random intercept and a random (autoregressive) slope. It is important to note 

that some of our models did not converge with this maximal effects structure. In this case, we 

removed the random slope and re-ran the model. Our findings were generally robust when we 

replicated the model without the random slope. Therefore, we retained the random slope in our 

main analysis and report the model estimates without the random slope in the Supplementary 

Material (see Tables A.5 and A.6). The standard p < .05 criteria was used to determine if our 

statistical tests suggested that the results were significantly different from those expected under 

the null hypothesis. We report p-values adjusted for the false discovery rate (FDR) to control 

for multiple comparisons (Benjamini & Hochberg, 1995). Cohen's d for each effect of interest 

was calculated using the R package EMAtools (Kleiman, 2021). To quantify the evidence in 

support of the experimental (H1) or null hypotheses (H0), we calculated Bayes Factors for each 

effect of interest (Wetzels & Wagenmakers, 2012) using the Bayesian information criterion 

(BIC) approximation method (Wagenmakers, 2007).  

Standard assumptions of multilevel mixed models (i.e. linearity, homogeneity of 

variance, multicollinearity, normality of residuals, and influential data points) were checked 

throughout the modelling process. As multilevel mixed models are relatively robust to 

violations of distributional assumptions (such as normality of residuals; Schielzeth et al., 2020), 

any model issues that were not satisfactorily resolved were reported, and the results were 

interpreted with necessary caution.  

4.3.1.1 Raw emotion ratings 

 First, we modelled NA inertia using raw NA ratings obtained from the MIP (Koval et 

al., 2016). A composite score of NA was computed by averaging across all NA ratings (sad, 

angry, depressed, and anxious) at each time point. At Level-1 (across time points), we 

modelled the autoregressive slope of emotions (representing emotional inertia) as shown in (1).  

NAti = π0i + π1i (NAt−1i) +  eti 

( 1 ) 

In the above equation, the outcome measure at Level-1 (NAti) reflects participant i’s 

level of NA at time t. The lagged predictor (NAt−1i) represents participant i’s level of NA at 

time t − 1. The autoregressive slope (π1i) assesses how strongly participant i’s level of NA at 
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time t is associated with their level of NA at time t – 1. This autoregressive slope is comparable 

to an autocorrelation and typically ranges between 0 and 1 (Hamaker, 2012; Koval et al., 2016).  

To obtain unbiased estimates of NA inertia in a preliminary analysis, the lagged 

predictor (NAt−1i) was added to the multilevel model in the absence of any Level-2 predictors. 

For the main analysis, the lagged predictor was person-mean centred to remove individual 

differences from Level-1 parameter estimates (Enders & Tofighi, 2007; Hamaker & Grasman, 

2015; Koval et al., 2016). Therefore, the Level-1 intercept (π0i) reflects each participant’s mean 

NA level across all time points. In other words, each participant’s ‘NA baseline’. The Level-1 

intercept and (autoregressive) slope were allowed to randomly vary across participants at 

Level-2.  

At Level-2 (across participants) we first examined the association between CER 

strategy use and NA inertia (RQ1), as shown in (2) and (3). Adaptive and maladaptive CER 

strategy use composite scores were standardised before being entered as Level-2 predictors in 

the model (Koval, Brose, et al., 2015; Koval et al., 2016). In this model, the Level-2 intercept 

(β10) represents the average level of NA inertia at the mean value of adaptive/maladaptive CER 

strategy use. The Level-2 slope (β11) reflects the association between adaptive/maladaptive 

CER strategy use and NA inertia. Thus, a significant interaction between the lagged predictor 

and adaptive/maladaptive CER strategy use would provide evidence for an association between 

adaptive/maladaptive CER strategy use and NA inertia.  

π1i = β10 + β11 (ZAdaptive CER Strategy Usei) + r1i 

 ( 2 ) 

π1i = β10 + β11 (ZMaladaptive CER Strategy Usei) + r1i 

 ( 3 ) 

Second, at Level-2, we examined the association between sleep quality and NA inertia 

(RQ2), as shown in (4). PSQI total score was standardised before being added as a Level-2 

predictor to the model (Koval, Brose, et al., 2015; Koval et al., 2016). In this model, the Level-

2 intercept (β10) represents the average level of NA inertia at the mean value of sleep quality 

and the Level-2 slope (β11) reflects the association between sleep quality and NA inertia. A 

significant interaction between the lagged predictor and sleep quality would provide evidence 

for an association between sleep quality and NA inertia.  

π1i = β10 + β11 (ZSleep Qualityi) + r1i 
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 ( 4 ) 

Finally, to examine the moderating role of sleep quality on the association between 

adaptive/maladaptive CER strategy use and NA inertia (RQ2), we added adaptive/maladaptive 

CER strategy use and sleep quality as Level-2 predictors to the model, as shown in (5) and (6). 

Here, the Level-2 slope (β13) reflects the three-way association between adaptive/maladaptive 

CER strategy use, sleep quality, and NA inertia. A significant three-way interaction between 

the lagged predictor, adaptive/maladaptive CER strategy use, and sleep quality would provide 

evidence for a moderating role of sleep quality on the association between 

adaptive/maladaptive CER strategy use and NA inertia, or likewise, a moderating role of 

adaptive/maladaptive CER strategy use on the association between sleep quality and NA 

inertia.  

π1i = β10 + β11 (zAdaptive Strategy Usei) + β12 (zSleep Qualityi) + β13 (zAdaptive Strategy 

Usei * zSleep Qualityi) + r1i 

 ( 5 ) 

π1i = β10 + β11 (zMaladaptive Strategy Usei) + β12 (zSleep Qualityi) + β13 (zMaladaptive 

Strategy Usei * zSleep Qualityi) + r1i 

 ( 6 ) 

In each of the models described above, Level-2 slopes can be interpreted as 

standardised regression weights. For example, for equation (2), if β11 = −0.05, a participant 

scoring 1 standard deviation (SD) above the sample-mean on adaptive CER strategy use is 

predicted to have a NA inertia level 0.05 units lower than the sample average, whereas a 

participant scoring 1 SD below the sample-mean on adaptive strategy use is predicted to have 

a NA inertia level 0.05 units higher than the sample average.  

4.3.1.2 Standardised emotion ratings 

We re-ran our multilevel models using within-person standardised NA ratings, which 

hold constant individual differences in mean levels and variability of NA (i.e. SD of NA over 

time; Koval et al., 2013, 2016; Moeck et al., 2022). To compute our standardised NA ratings, 

raw NA ratings were z-scored within-person. These standardised NA ratings were analysed 

using the multilevel models described above. Because standardisation removes individual 

differences in mean level and variability of NA, the lagged predictor was not person-mean 

centered in these models (Koval et al., 2016). The inclusion of both raw and standardised 
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ratings allowed us to run an analysis that is commonplace within the literature and thus compare 

our findings with those of other studies.  

4.3.1.3 Deviations from the pre-registration 

In the pre-registration, we stated that we would examine NA inertia using only 

standardised emotion ratings. However, in our analysis, we ran an additional non-preregistered 

analysis to model NA inertia using raw ratings. We decided to do this as most previous research 

modelling NA inertia uses raw ratings, therefore we wanted our results to be comparable 

(Koval et al., 2016; Kuppens, Allen, et al., 2010; Suls et al., 1998). Moreover, the inclusion of 

both raw and standardised ratings allowed us to run our pre-registered analysis and ensure that 

individual differences in mean levels and variability of NA were held constant in our models.  

4.4 Results 

4.4.1 Descriptive statistics  

Descriptive statistics and correlations between adaptive/maladaptive CER strategy use 

and sleep quality are presented in Table 4.1. We found a significant negative association 

between adaptive CER strategy use and maladaptive CER strategy use (r = −.09, p < .001), 

such that greater use of adaptive CER strategies was associated with less frequent use of 

maladaptive CER strategies. Furthermore, there was a significant negative association between 

adaptive CER strategy use and sleep quality (r = −.26, p < .001); with lower PSQI scores 

reflecting higher sleep quality. Thus, greater use of adaptive CER strategies was associated 

with higher sleep quality. Conversely, there was a significant positive association between 

maladaptive CER strategy use and sleep quality (r = .23, p < .001), such that greater use of 

maladaptive CER strategies was associated with poorer sleep quality. 

Table 4.1. Mean, standard deviations, and correlations between all Level-2 predictors included 

in the main analysis. 

Predictor M SD Range 
Adaptive CER 

Strategy Use 

Maladaptive CER 

Strategy Use 

Adaptive CER Strategy Use 22.75 5.78 10–40   

Maladaptive CER Strategy Use 21.52 5.31 9–37 −.09***, BF10  > 100  

Sleep Quality  5.37 2.71 0–14 −.26***, BF10  > 100 .23***, BF10  > 100 

M and SD represent the mean and standard deviation, respectively. Adaptive and maladaptive CER strategy use 

were computed using the Cognitive Emotion Regulation Questionnaire-short version (CERQ-short), sleep quality 

was computed using the Pittsburgh Sleep Quality Index (PSQI). *** indicates p < .001. Multiple comparison 

correction was applied using Holm’s method (Hochberg, 1988).  

https://doi.org/10.17605/OSF.IO/QZG5A
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4.4.2 Preliminary analysis 

In a preliminary analysis, we estimated average levels of NA inertia using multilevel 

models without Level-2 predictors (Koval et al., 2016). Following recommendations (Hamaker 

& Grasman, 2015; Koval et al., 2016), the lagged predictor (NA rating at t – 1) was entered 

into each of our models uncentred. We found a significant positive association between NA 

ratings at time t and NA ratings at time t − 1 when NA inertia was modelled using both raw (β 

= 0.22, [0.19,  0.25], p < .001, d = 1.75, BF10 > 100) and standardised ratings (β = 0.16, [0.14, 

0.19], p < .001, d = 0.33, BF10 > 100; see Table 4.2). These results demonstrate that NA showed 

significant moment-to-moment predictability (see Figure 4.3).  

Table 4.2. Coefficients and 95% confidence intervals from the preliminary multilevel model 

estimating average levels of negative affect (NA) inertia across the sample in the absence of 

Level-2 predictors. 

 Fixed effect 

Model Estimate (SE) 95% CIs p 

NA Inertia (Raw) 0.22 (0.02) 0.19–0.25 < .001 

NA Inertia (Standardised)  0.16 (0.01) 0.14–0.19 < .001 

NA = Negative affect. SE = Standard error of the mean. 

 

Figure 4.3. Autoregressive slope plotting the association between mean negative affect (NA) 

rating at time t and mean NA rating at time t − 1 (i.e. the lagged NA predictor). NA inertia was 

modelled using raw ratings. Steeper slopes reflect a stronger association between NA at time t 

and NA at the previous time point (t − 1) (i.e. higher NA inertia). We found a significant 

positive association between mean NA at time t and NA at the previous time point (t − 1), 
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indicating that NA inertia showed significant moment-to-moment predictability. Grey areas 

represent 95% confidence intervals. 

4.4.3 Is there an association between CER strategy use and NA inertia? 

Next, we investigated the association between CER strategy use and NA inertia. First, 

we added adaptive CER strategy use as a Level-2 predictor to our models. We found a 

significant negative association between adaptive CER strategy use and NA inertia when NA 

inertia was modelled using raw ratings (β = −0.03, [−0.06, 0.00], p = .041, d = 0.17, BF10 = 

0.14), but not when NA inertia was modelled using standardised ratings (β = −0.02 [−0.05, 

0.01], p = .197, d = 0.04, BF10 = 0.04; see Table 4.3). These results revealed that greater use of 

adaptive CER strategies was associated with lower persistence of NA for raw ratings only (i.e. 

lower NA inertia; see Figure 4.4a). Similarly, when maladaptive CER strategy use was added 

as a Level-2 predictor in our models, we found a significant positive association between 

maladaptive CER strategy use and NA inertia when NA inertia was modelled using raw ratings 

(β = 0.03, [0.00, 0.06], p = .031, d = 0.28, BF10 = 0.14), but not when NA inertia was modelled 

using standardised ratings (β = 0.03, [0.00, 0.05], p = .149, d = 0.05, BF10 = 0.07). These 

findings indicate that greater use of maladaptive CER strategies was associated with higher 

persistence of NA for raw ratings only (i.e. higher NA inertia; see Figure 4.4b). 
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Table 4.3. Coefficients and 95% confidence intervals from the multilevel models examining the associations between CER strategy use and 

negative affect (NA) inertia. 

 Fixed effect 

Model Estimate (SE) 95% CI p 

Adaptive CER Strategy Use 

NA Inertia (Raw) −0.03 (0.02) −0.06–0.00 .041 

NA Inertia (Standardised)  −0.02 (0.01) −0.05–0.01 .197 

Maladaptive CER Strategy Use 

NA Inertia (Raw) 0.03 (0.02) 0.00–0.06 .031 

NA Inertia (Standardised)  0.03 (0.01) 0.00–0.05 .149 

NA = Negative affect. SE = Standard error of the mean. Statistically significant coefficients are shown in bold. 
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Figure 4.4. Association between CER strategy use and NA inertia. a) Greater adaptive CER 

strategy use was associated with lower NA inertia, b) Greater use of maladaptive CER 

strategies was associated with higher NA inertia. Mean NA ratings at t − 1 (x-axis) were person-

mean centred to remove between-person differences from Level-1 parameter estimates. 

Therefore, 0 on the x-axis represents each participant’s mean NA level. Data are plotted at 

different levels of adaptive/maladaptive CER strategy use (mean and +/− 1 SD). 

4.4.4 Is the association between CER strategy use and NA inertia influenced by sleep 

quality? 

We were also interested in determining whether there was an association between sleep 

quality and NA inertia. To probe this question, we included sleep quality as a Level-2 predictor 

in our models. We found a significant positive association between sleep quality and NA inertia 

when NA inertia was modelled using both raw (β = 0.03, [0.00, 0.06], p = .044, d = 0.25, BF10 

= 0.11) and standardised ratings (β = 0.04, [0.01, 0.07], p = .007, d = 0.08, BF10 = 0.99; see 

Table 4.4). These findings indicate that higher sleep quality (i.e. lower PSQI scores) was 

associated with lower NA inertia (see Figure 4.5a).  

Because CER strategy use and sleep quality were both associated with NA inertia, in a 

final analysis, we were also interested in whether the association between CER strategy use 

and NA inertia was influenced by sleep quality, or vice versa. To investigate this, we first added 

adaptive CER strategy use and sleep quality as Level-2 predictors in our models. Our results 

showed no significant three-way interaction between adaptive CER strategy use, sleep quality, 

and NA inertia when NA inertia was modelled using either raw (β = −0.03, [−0.06, 0.00], p = 

.122, d = 0.13, BF10 < 0.01) or standardised ratings (β = −0.02, [−0.05, 0.00], p = .230, d = 

0.05, BF10 < 0.01; see Figure 4.5b). Next, we added maladaptive CER strategy use and sleep 
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quality as Level-2 predictors in our models. Again, we found no significant three-way 

interaction between maladaptive CER strategy use, sleep quality, and NA inertia when NA 

inertia was modelled using either raw (β = 0.02, [−0.01, 0.04], p = .331, d = 0.13, BF10 < 0.01) 

or standardised ratings (β = 0.01, [−0.02, 0.04], p = .783, d = 0.02, BF10 < 0.01; see Figure 

4.5c). Given that all Bayes Factors in support of the null (BF01) were > 100, these findings 

suggest that the associations between greater adaptive CER strategy use and lower NA inertia 

and greater maladaptive CER strategy use and higher NA inertia were unaffected by sleep 

quality.   
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Table 4.4. Coefficients and 95% confidence intervals from the multilevel models examining the associations between CER strategy use, sleep 

quality and negative affect (NA) inertia. 

  Fixed effect 

Model Estimate (SE) 95% CI p 

Sleep Quality 

NA Inertia (Raw) 0.03 (0.02) 0.00–0.06 .044 

NA Inertia (Standardised)  0.04 (0.01) 0.01–0.07 .007 

Adaptive CER Strategy Use × Sleep Quality 

NA Inertia (Raw) −0.03 (0.02) −0.06–0.00 .122 

NA Inertia (Standardised)  −0.02 (0.01) −0.05–0.00 .230 

Maladaptive CER Strategy Use × Sleep Quality 

NA Inertia (Raw) 0.02 (0.02) −0.01–0.04 .331 

NA Inertia (Standardised)  0.01 (0.01) −0.02–0.04 .783 

NA = Negative affect. SE = Standard error of the mean. Statistically significant coefficients are shown in bold.  
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Figure 4.5. Association between CER strategy use, sleep quality and NA inertia. a) Higher 

sleep quality was associated with lower NA inertia. b) The association between greater use of 

adaptive CER strategies and lower NA inertia was unaffected by sleep quality. c) Similarly, 

the association between greater use of maladaptive CER strategies and higher NA inertia was 

unaffected by sleep quality. Data are plotted at different levels of sleep quality (mean and +/− 

1 SD).  

4.4.5 Exploratory analysis 

4.4.5.1 CER strategy use, sleep quality, and PA inertia  

Previous research has demonstrated a significant association between higher PA inertia 

and lower well-being, albeit to a lesser extent than NA inertia (Houben et al., 2015; Koval et 

al., 2016). To corroborate this relationship, in an exploratory analysis, we examined whether 

CER strategy use and sleep quality were associated with PA inertia.  

A composite score for PA was computed by averaging across the two positive 

dimensions (happy and relaxed) at each time point. As mentioned above, we estimated within-

person reliability of our composite PA rating using multilevel structural equation modelling. 
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The estimated coefficient omega for our composite PA rating was good (0.87). In a preliminary 

analysis, we estimated average levels of PA inertia using multilevel models in the absence of 

Level-2 predictors. Autoregressive slopes were positive and significant when PA inertia was 

modelled using both raw (β = 0.27, [0.24, 0.30], p < .001, d = 2.01, BF10 > 100) and standardised 

ratings (β = 0.20, [0.17, 0.23], p < .001, d = 0.41, BF10 > 100), demonstrating that PA showed 

significant moment-to-moment predictability (see Table 4.5).  

Table 4.5. Coefficients and 95% confidence intervals from the preliminary multilevel model 

estimating average levels of positive affect (PA) inertia across the sample in the absence of 

Level-2 predictors. 

 Fixed effect 

Model Estimate (SE) 95% CIs p 

PA Inertia (Raw) 0.27 (0.02) 0.24–0.30 < .001 

PA Inertia (Standardised)  0.20 (0.01) 0.17–0.23 < .001 

PA = Positive affect. SE = Standard error of the mean.  

Next, we examined whether CER strategy use was associated with PA inertia by adding 

adaptive CER strategy use as a Level-2 predictor to our models. The data indicated no 

significant association between adaptive CER strategy use and PA inertia when PA inertia was 

modelled using either raw (β = −0.02, [−0.05, 0.02], p = .291, d = 0.13, BF10 = 0.03) or 

standardised ratings (β = −0.02, [−0.04, 0.01], p = .306, d = 0.03, BF10 = 0.03; see Table 4.6). 

In a similar manner, when maladaptive CER strategy use was added as Level-2 predictor to our 

models, we found no significant association between maladaptive CER strategy use and PA 

inertia when PA inertia was modelled using either raw (β = 0.01, [−0.03, 0.04], p = .651, d = 

0.06, BF10 = 0.02) or standardised ratings (β = −0.01, [−0.03, 0.02], p = .958, d = 0.01, BF10 = 

0.02; see Table 4.6).  

We also found no significant association between sleep quality and PA inertia when PA 

inertia was modelled using either raw (β = 0.01, [−0.02, 0.04], p = .513, d = 0.08, BF10 = 0.02) 

or standardised ratings (β = 0.02, [−0.01, 0.04], p = .371, d = 0.03, BF10 = 0.03). Consistent 

with our main analysis, we also found no significant three-way interaction between adaptive 

CER strategy use, sleep quality and PA inertia when PA inertia was modelled using either raw 

(β = −0.01, [−0.04, 0.03], p = .773, d = 0.05, BF10 < 0.01) or standardised ratings (β = −0.01, 

[−0.03, 0.02], p = .906, d = 0.01, BF10 < 0.01). Likewise, we found no significant interaction 

between maladaptive CER strategy use, sleep quality and PA inertia when PA inertia was 
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modelled using either raw (β = −0.01, [−0.04, 0.02], p = .576, d = 0.09, BF10 < 0.01) or 

standardised ratings (β = 0.00, [−0.02, 0.03], p = .974, d = 0.01, BF10 < 0.01; see Table 4.6).  
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Table 4.6. Coefficients and 95% confidence intervals from the multilevel models examining the associations between CER strategy use, sleep 

quality and positive affect (PA) inertia. 

 Fixed effect 

Model Estimate (SE) 95% CI p 

Adaptive CER Strategy Use 

PA Inertia (Raw) −0.02 (0.02) −0.05–0.02 .291 

PA Inertia (Standardised)  −0.02 (0.01) −0.04–0.01 .306 

Maladaptive CER Strategy Use 

PA Inertia (Raw) 0.01 (0.02) −0.03–0.04 .651 

PA Inertia (Standardised)  −0.01 (0.01) −0.03–0.02 .958 

Sleep Quality 

PA Inertia (Raw) 0.01 (0.02) −0.02–0.04 .513 

PA Inertia (Standardised)  0.02 (0.01) −0.01–0.04 .371 

Adaptive CER Strategy Use × Sleep Quality 

PA Inertia (Raw) −0.01 (0.02) −0.04–0.03 .773 

PA Inertia (Standardised)  −0.01 (0.01) −0.03–0.02 .906 

Maladaptive CER Strategy Use × Sleep Quality 

PA Inertia (Raw) –0.01 (0.02) −0.04–0.02 .576 

PA Inertia (Standardised)  0.00 (0.01) −0.02–0.03 .974 
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PA = Positive affect. SE = Standard error of the mean. 
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4.4.5.2 Depression severity and NA inertia 

We also sought to replicate the positive association between depression severity and 

NA inertia using our MIP. To do this, we added depression severity (measured using the BDI-

II) as a Level-2 predictor to our models. We found a significant positive association between 

depressive severity and NA inertia when NA inertia was modelled using raw (β = 0.03, [0.01, 

0.06], p = .022, d = 0.30, BF10 = 0.19) and standardised ratings (β = 0.04, [0.01, 0.06], p = .028, 

d = 0.07, BF10 = 0.29; see Table 4.7), demonstrating that greater depression severity was 

associated with higher NA inertia (see Figure 4.6a). However, we found no significant 

interaction between depression severity, adaptive CER strategy use, and NA inertia when NA 

inertia was modelled using either raw (β = −0.02, [−0.05, 0.01], p = .158, d = 0.12, BF10 < 0.01) 

or standardised ratings (β = −0.02, [−0.04, 0.01], p = .322, d = 0.04, BF10 < 0.01). Similarly, 

we found no significant association between depression severity, maladaptive CER strategy 

use, and NA inertia when NA inertia was modelled using either raw (β = 0.01, [−0.02, 0.04], p 

= .465, d = 0.10, BF10 < 0.01) or standardised ratings (β = 0.01, [−0.01, 0.04], p = .772, d = 

0.03, BF10 < 0.01). We also found no significant association between depression severity, sleep 

quality and NA inertia when NA inertia was modelled using either  raw (β = 0.01, [−0.01, 0.04], 

p = .477, d = 0.12, BF10 < 0.01) or standardised ratings (β = 0.01, [−0.02, 0.03], p = .831, d = 

0.02, BF10 < 0.01; see Table 4.7).  

4.4.5.3 Anxiety severity and NA inertia 

We also examined whether there was an association between anxiety severity and NA 

inertia. To address this question, we added anxiety severity (measured using the BAI) as a 

Level-2 predictor to our models. We found a significant positive association between anxiety 

severity and NA inertia when NA inertia was modelled using raw (β = 0.04, [0.01, 0.07], p = 

.005, d = 0.35, BF10 = 0.71) and standardised ratings (β = 0.04, [0.01, 0.07], p = .013, d = 0.08, 

BF10 = 0.60), such that greater anxiety severity was associated with higher NA inertia (see 

Figure 4.6b). However, there was no significant association between anxiety severity, adaptive 

CER strategy use, and NA inertia when NA inertia was modelled using either raw (β = −0.02, 

[−0.04, 0.01], p = .183, d = 0.11, BF10 < 0.01) or standardised ratings (β = −0.02, [−0.05, 0.00], 

p = .255, d = 0.05, BF10 < 0.01). Similarly, there was no significant association between anxiety 

severity, maladaptive CER strategy use, and NA inertia when NA inertia was modelled using 

either raw (β = 0.02, [−0.01, 0.05], p = .239, d = 0.17, BF10 < 0.01) or standardised ratings (β 

= 0.02, [0.00, 0.05], p = .331, d = 0.05, BF10 < 0.01). Moreover,  there was no significant 

association between anxiety severity, sleep quality, and NA inertia when NA inertia was 
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modelled using either raw (β = 0.00, [−0.02, 0.03], p = .837, d = 0.02, BF10 < 0.01) or 

standardised ratings (β = 0.00, [−0.02, 0.02], p = .955, d < 0.01, BF10 < 0.01; see Table 4.8).  
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Table 4.7. Coefficients and 95% confidence intervals from the multilevel models examining the associations between depression severity and 

negative affect (NA) inertia. 

  Fixed effect 

Model  Estimate (SE) 95% CI p 

Depression  

NA Inertia (Raw) 0.03 (0.02) 0.01–0.06 .022 

NA Inertia (Standardised)  0.04 (0.01) 0.01–0.06 .028 

Depression × Adaptive CER Strategy Use 

NA Inertia (Raw) −0.02 (0.01) −0.05–0.01 .158 

NA Inertia (Standardised) −0.02 (0.01) −0.04–0.01 .322 

Depression × Maladaptive CER Strategy Use 

NA Inertia (Raw) 0.01 (0.01) −0.02–0.04 .465 

NA Inertia (Standardised) 0.01 (0.01) −0.01–0.04 .772 

Depression × Sleep Quality 

NA Inertia (Raw) 0.01 (0.01) −0.01–0.04 .477 

NA Inertia (Standardised)  0.01 (0.01) −0.02–0.03 .831 

NA = Negative affect. SE = Standard error of the mean. Statistically significant coefficients are shown in bold. 
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Table 4.8. Coefficients and 95% confidence intervals from the multilevel models examining the associations between anxiety severity and negative 

affect (NA) inertia.  

NA = Negative affect. SE = Standard error of the mean. Statistically significant coefficients are shown in bold.  

  Fixed effect 

Model Estimate (SE) 95% CI p 

Anxiety 

NA Inertia (Raw) 0.04 (0.01) 0.01–0.07 .005 

NA Inertia (Standardised)  0.04 (0.01) 0.01–0.07 .013 

Anxiety × Adaptive CER Strategy Use 

NA Inertia (Raw) −0.02 (0.01) −0.04–0.01 .183 

NA Inertia (Standardised) −0.02 (0.01) −0.05–0.00 .255 

Anxiety × Maladaptive CER Strategy Use 

NA Inertia (Raw) 0.02 (0.01) −0.01–0.05 .239 

NA Inertia (Standardised) 0.02 (0.01) 0.00–0.05 .331 

Anxiety × Sleep Quality 

NA Inertia (Raw) 0.00 (0.01) −0.02–0.03 .837 

NA Inertia (Standardised)  0.00 (0.01) −0.02–0.02 .955 
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Figure 4.6. Association between depression severity, anxiety severity and NA inertia. Greater 

depression (a) and anxiety (b) symptomatology were associated higher NA inertia. Data are 

plotted at different levels of depression and anxiety (mean and +/− 1 SD).
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4.5 Discussion  

The present study examined whether composite measures of adaptive and maladaptive 

CER strategy use are differentially associated with NA inertia. We also investigated whether 

the association between greater adaptive CER strategy use and lower NA inertia is contingent 

on obtaining high sleep quality. Although previous studies have found no association between 

poor sleep and heightened NA inertia, they used ESM to index NA inertia. As a result, they 

cannot rule out the possibility that NA inertia is driven by individual differences in the intensity 

of emotional events that participants encounter in daily life. To address this, we employed a 

MIP to help control for differences in emotional event exposure. Given that the rigidity of NA 

appears to be more characteristic of poorer mental health than the rigidity of PA (Houben et 

al., 2015; Koval et al., 2016; A. Wen & Yoon, 2019), our main analysis focused on the 

associations between CER strategies, sleep quality, and NA inertia. 

Greater use of adaptive CER strategies was significantly associated with lower NA 

inertia, thus supporting our first hypothesis. This finding is at odds with previous studies that 

found no association between the adaptive CER strategy positive reappraisal and NA inertia 

(Bean et al., 2021; Koval, Butler, et al., 2015). This discrepancy may result from previous 

studies focusing on the association between only one adaptive CER strategy (positive 

reappraisal) rather than the use of several adaptive CER strategies. It is possible that greater 

use of a combination of adaptive CER strategies is more predictive of lower NA inertia than 

greater use of one adaptive CER strategy alone. Moreover, prior work used ESM to measure 

NA inertia, whereas we used a MIP, exposing participants to the same sequence of emotional 

events. Therefore, the lack of an association in prior work may be obscured by differences in 

the emotional events that participants encountered in their daily life.   

Mindfulness interventions have been thought to promote adaptive CER strategy use by 

increasing trait mindfulness, self-compassion, and meta-awareness while decreasing emotional 

reactivity and rumination in response to unpleasant experiences (Guendelman et al., 2017). 

Therefore, our findings are also consistent with those of studies demonstrating an association 

between trait mindfulness and lower NA inertia (Keng & Tong, 2016; Rowland et al., 2020), 

suggesting that adaptive CER strategy use might rely on similar mechanisms to reduce the 

persistence of NA. Taken together, our findings provide evidence to support the argument that 

greater use of adaptive CER strategies results in a steeper decline in NA, back to one’s 

emotional baseline, following an emotional experience (i.e. lower NA inertia; Kuppens, Allen, 

et al., 2010).  
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In contrast, greater use of maladaptive CER strategies was associated with higher NA 

inertia, again supporting our first hypothesis. This finding is consistent with previous studies 

using ESM, which have demonstrated an association between both expressive suppression and 

rumination (maladaptive CER strategies), and higher NA inertia (Bean et al., 2021; Blanke et 

al., 2022; Koval, Butler, et al., 2015; Koval et al., 2012). It has been suggested that maladaptive 

CER strategies contribute to the maintenance and enhancement of NA through various 

mechanisms (Koval, Butler, et al., 2015; Koval et al., 2012). For instance, rumination may 

impede the ability to engage in problem-solving strategies (i.e. adaptive CER strategies) critical 

for reducing NA (Blanke et al., 2022), thereby promoting the rigidity of NA over time. Other 

studies have suggested that engaging with maladaptive CER strategies, such as expressive 

suppression, is cognitively demanding and depletes cognitive resources (Franchow & Suchy, 

2015; Y. Wang et al., 2014). This can impair an individual’s ability to respond flexibly and 

adaptively to both internal and external demands (Koval, Butler, et al., 2015). Maladaptive 

CER strategy use may thus promote heightened NA inertia through the impairment of problem 

solving and the consumption of cognitive resources that would otherwise be used for flexible 

responding. As previous work has focused on the use of only rumination and expressive 

suppression, this is the first study to find that greater use of a combination of maladaptive CER 

strategies is also associated with higher NA inertia. 

Despite the foregoing findings, it is important to acknowledge that the above 

associations were not significant when NA inertia was modelled using within-person 

standardised ratings. The analysis of standardised NA ratings holds constant individual 

differences in both mean levels and variability of NA (Koval et al., 2016; Moeck et al., 2022). 

Given that the association between both adaptive and maladaptive CER strategies and NA 

inertia became non-significant when NA inertia was modelled using standardised ratings, it is 

possible that the associations between CER strategy use and NA inertia may be partly driven 

by mean levels and/or variability of NA. Therefore, although CER strategy use and NA inertia 

are related, CER strategy use may also influence mean and/or variability of NA. Consequently, 

more work is needed to examine how strongly mean levels and variability of NA are associated 

with CER strategy use (Koval et al., 2016; Wenzel & Brose, 2023). This can be achieved 

through autoregressive models that allow for simultaneous estimation of mean levels, 

variability, and inertia of NA in relation to CER strategy use and sleep quality (Jongerling et 

al., 2015; Koval et al., 2016).  
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Higher sleep quality was significantly associated with lower NA inertia when modelled 

using both raw and standardised ratings, such that obtaining good sleep quality was associated 

with lower persistence of NA, thus supporting our hypothesis. This finding aligns with previous 

work demonstrating an association between shorter sleep duration and higher inertia of a 

depressed affect state using ESM (X. Wen et al., 2020). We expanded on this finding by 

demonstrating an association between high sleep quality and lower NA inertia as a composite 

of sadness, anger, depression, and anxiety. More broadly, this result is in accordance with prior 

work suggesting that good sleep quality can help people regulate their emotion states back to 

baseline levels (Goldstein & Walker, 2014), whereas poor sleep contributes to emotion 

dysregulation (Ben Simon et al., 2020; Harrington, Ashton, Sankarasubramanian, et al., 2021; 

Harrington & Cairney, 2021; Yoo et al., 2007).  

It is possible that the association between sleep quality and NA inertia is underpinned 

by executive functions. Waugh et al. (2017) postulated that lower NA inertia reflects the ability 

to inhibit negative emotion states, preventing them from spilling over to the next event. As 

poor sleep is associated with executive control deficits (Drummond et al., 1999; Mograss et al., 

2009; Nilsson et al., 2005; Qi et al., 2010; Skurvydas et al., 2020), including impaired 

inhibitory control (Breimhorst et al., 2008; Harrington, Ashton, Sankarasubramanian, et al., 

2021; Lowe et al., 2017), it is possible that poor sleep prevents the ability to inhibit negative 

emotion states, leading to higher NA inertia. This idea is supported by neuroimaging work 

highlighting that poor sleep disrupts the functional connectivity between the medial prefrontal 

cortex (mPFC) and amygdala (Vandekerckhove & Wang, 2017; Walker & van der Helm, 2009; 

Yoo et al., 2007), potentially compromising top-down inhibitory control of emotion states 

(Harrington, Ashton, Sankarasubramanian, et al., 2021). Together, these findings imply that 

poor sleep quality makes it more difficult to downregulate NA in response to emotional events, 

promoting the persistence of NA over time.  

It is important to note that our findings do not align with studies that found no 

association between sleep quality and NA inertia (Frérart et al., 2023; Minaeva et al., 2021). 

This discrepancy can be attributed to several factors. First, Frérart et al. (2023) only assessed 

affect twice in a 12-hour period (i.e. once in the morning and once in the evening). This meant 

that they were unable to map more subtle changes in affect across the day, when participants 

presumably encountered a multitude of emotional experiences. They also did not consider how 

individual differences in circadian rhythms may have influenced morning and evening affect. 

For instance, prior work has demonstrated that on work days, evening-type individuals report 
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a delayed peak PA and lower PA compared to morning-type individuals (M. A. Miller et al., 

2015). Consequently, those who are evening-types may display lower morning PA compared 

to those who are morning-types, suggesting that overnight inertia may be moderated by 

chronotype. In addition, in both studies, sleep quality was assessed using only one daily item: 

Minaeva et al. (2021) asked participants to rate their sleep quality the previous night from 1 

(not at all) to 7 (very well), and Frérart et al. (2023) asked participants to indicate their sleep 

quality from 1 (good) to 4 (very bad/not at all). The use of only one item to index sleep quality 

may not capture sleep quality as comprehensively as the PSQI. Finally, because these studies 

used ESM paradigms, they were unable to control for individual differences in the intensity of 

the emotional events encountered (Koval, Brose, et al., 2015). This lack of experimental control 

may have tempered any association between sleep quality and NA inertia. Given these 

inconsistencies, future studies are required to corroborate the association between sleep quality 

and NA inertia found in this study.  

An absence of sleep can reduce the effectiveness of adaptive CER strategies (Mauss et 

al., 2013; Zhang et al., 2019) and increase the use of maladaptive CER strategies (Latif et al., 

2019). Therefore, we also investigated whether the association between greater use of adaptive 

CER strategies and lower persistence of NA was stronger among individuals with high sleep 

quality. However, we found no significant interaction between adaptive CER strategy use, 

sleep quality, and NA inertia when NA inertia was modelled using either raw or standardised 

ratings, not corroborating our hypothesis. We also found no significant interaction between 

maladaptive CER strategy use, sleep quality, and NA inertia for either raw or standardised 

ratings. The absence of a significant interaction suggests that CER strategies and sleep quality 

are independently associated with NA inertia. This aligns with similar work demonstrating that 

greater use of adaptive CER strategies, less frequent use of maladaptive CER strategies, and 

high sleep quality independently support resilience to depression (Sullivan et al., 2023). 

Furthermore, consistent with Sullivan et al. (2023), we found a significant correlation between 

adaptive/maladaptive CER strategy use and sleep quality, such that greater use of adaptive CER 

strategies was associated with higher sleep quality and greater use of maladaptive CER 

strategies was associated with lower sleep quality. Together, these findings suggest that sleep 

quality is closely tied to CER strategy use but that these variables do not have an interdependent 

influence on NA inertia. Therefore, it is possible that interventions targeting the improvement 

of adaptive CER strategies (e.g. mindfulness interventions) might be relatively safeguarded 

against poor sleep.  
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Previous studies have suggested a weak association between heightened PA inertia and 

lower psychological well-being (Houben et al., 2015; Koval et al., 2016) whilst other studies 

have linked higher PA inertia to greater well-being (Höhn et al., 2013; Poerio et al., 2016; L. 

N. Scott et al., 2020). In an exploratory analysis, we investigated the associations between CER 

strategy use, sleep quality, and PA inertia. Although PA showed significant moment-to-

moment predictability, we did not find any significant relationships between adaptive or 

maladaptive CER strategy use and PA inertia, nor did we find a significant association between 

sleep quality and PA inertia, when PA inertia was modelled using either raw or standardised 

ratings. Therefore, CER strategy use and sleep quality may be more predictive of NA 

persistence than PA persistence. One reason for the lack of an association between CER 

strategy use and PA inertia is that the strategies assessed in the CERQ-short focus on regulating 

affect in response to negative rather than positive events (Heiy & Cheavens, 2014; Wenzel et 

al., 2022). As a result, our composite measures of adaptive and maladaptive CER strategy use 

may not have captured individuals who primarily focused on regulating PA in response to 

positive events. Because strategies that predominantly focus on up-regulating PA, such as 

savouring (i.e. the ability to generate, maintain, or enhance PA) and capitalising (i.e. 

communicating and celebrating positive events), have been associated with greater well-being 

(Bryant, 2003; Gable et al., 2004; Quoidbach et al., 2010), future work should examine the 

association between these strategies and PA inertia. It should also be noted that PA was 

calculated by aggregating across only two items (relaxed and happy), whereas NA was 

calculated by aggregating across four items. As reported above, our composite PA measure had 

a lower within-person reliability estimate than our composite NA measure. Consequently, we 

cannot rule out that the lack of association with PA inertia is due to measurement error.  

We found a significant association between greater depression severity and higher NA 

inertia, which is consistent with the results of previous studies (Brose et al., 2015; Koval et al., 

2012, 2013, 2016). Moreover, these findings are in keeping with the emotion context 

insensitivity account of depression (Rottenberg et al., 2005), which postulates that depression 

is characterised by a lack of flexible responding across NA (Bylsma et al., 2008). Our findings 

can be interpreted in the context of this model as they suggest that heightened depression 

severity is associated with NA inflexibility. Alternatively, others have suggested that the 

association between greater depression severity and heightened NA inertia may be underpinned 

by greater use of maladaptive CER strategies, such as rumination, resulting in an NA pattern 

that is more resistant to change over time (Bean et al., 2021; Kashdan & Rottenberg, 2010; 
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Kuppens, Allen, et al., 2010). However, we found no significant associations between 

depression severity, maladaptive CER strategy use, and NA inertia.  

Greater anxiety severity was also associated with higher NA inertia. Although anxiety 

disorders have a higher lifetime prevalence than mood disorders, little is known about the 

association between NA inertia and anxiety (Kessler et al., 2005). Our findings are at odds with 

previous studies showing no association between anxiety and NA inertia (Bosley et al., 2019; 

Houben et al., 2015). However, individuals diagnosed with anxiety disorders have been shown 

to display higher inertia of specific components of NA, such as anger and negative thought 

patterns, than those without anxiety disorders (Seidl et al., 2023). Moreover, higher NA inertia 

has been associated with greater anxious arousal (Gilbert et al., 2019). As affective inflexibility 

is characteristic of internal psychopathology (Bluett et al., 2014; Gilbert et al., 2019; Kashdan 

& Rottenberg, 2010; McEvoy et al., 2019), heightened NA inertia may be a transdiagnostic 

predictor of depression and anxiety. Moreover, given that rumination is associated with greater 

anxiety symptomatology (McLaughlin & Nolen-Hoeksema, 2011), greater use of maladaptive 

CER strategies might underpin the association between heightened NA inertia and greater 

anxiety severity. However, consistent with our depression findings, we found no significant 

three-way interaction between anxiety severity, maladaptive CER strategy use, and NA inertia.  

This study is the first to investigate the associations between CER strategy use, sleep 

quality, and NA inertia. One of the major strengths was that we validated a sample of 

naturalistic film clips that involved amateur recordings of real-life emotional events, as 

opposed to staged film clips used in previous studies (Koval et al., 2013, 2016; Zupan & Eskritt, 

2020). This enabled participants to view close-to-reality experiences, thereby eliciting strong 

affective responses which we were able to map the trajectory of over time (Rottenberg et al., 

2007; Samson et al., 2016).   

Despite these strengths, this study has several limitations. First, we relied on subjective 

reports to index CER strategy use, sleep quality, and NA inertia. Previous research has shown 

that discrepancies exist between subjective and objective affective responses (Zhang et al., 

2019), and self-reported sleep quality is often lower than that indicated by objective measures 

of sleep continuity or wake-after-sleep onset (Buysse et al., 2008; Grandner et al., 2006). 

Objective components of sleep, such as interrupted REM sleep, have previously been 

associated with higher inertia of emotional distress (Wassing et al., 2019). Therefore, 

subjective measures of sleep may result in different associations with NA inertia compared 

with objective measures of sleep (Frérart et al., 2023). Subjective measures may also be unable 
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to capture differences in sleep quality that influence the association between CER strategy use 

and NA inertia. Likewise, the assessment of NA during the MIP relied on subjective ratings. 

Affect states also involve changes in behaviour and physiology (Koval et al., 2016), and 

previous studies have demonstrated that these measures are differentially associated with 

emotional inertia. For example, Koval, Butler, et al. (2015) found that positive reappraisal was 

associated with higher inertia of heart rate, but not inertia of subjective feelings. Future work 

can address this limitation by combining objective and subjective assessments of sleep quality 

and emotion regulation, potentially through the use of wearables that track sleep and 

physiological arousal (e.g. heart rate variability or skin conductance level). Finally, it is 

important to note that the MIP was delivered online, as opposed to the laboratory. This may 

have reduced experimental control, as we cannot be sure that the participants paid full attention 

to each of the videos and refrained from distractions. Therefore, future studies should replicate 

these findings under controlled laboratory conditions.  

To examine the influence of CER strategies and sleep quality on the inertia of negative 

emotions more broadly, we computed a composite NA rating by combining the ratings of 

sadness, anger, depression, and anxiety. However, each of these NA components has been 

shown to have distinct associations with psychological well-being (see Consedine & 

Moskowitz, 2007 for a review). Moreover, previous work examining the association between 

sleep quality and NA inertia examined NA components separately, finding an association only 

with depressed affect (X. Wen et al., 2020). Relatedly, although our decision to use a composite 

measures of adaptive and maladaptive CER strategy use allowed us to investigate how a broad 

range of CER strategies were associated with NA inertia, we were unable to decipher whether 

a specific strategy (or a smaller combination of strategies) was particularly effective in driving 

this association. For example, previous studies have shown links between NA inertia and 

specific CER strategies, such as positive reappraisal (Koval, Butler, et al., 2015), expressive 

suppression (Bean et al., 2021; Koval, Butler, et al., 2015), and rumination (Blanke et al., 2022; 

Koval et al., 2012). Other work demonstrates that using a small combination of CER strategies 

predicts lower NA (Wenzel et al., 2022). Given that poor sleep impacts the use of specific CER 

strategies (Mauss et al., 2013; Zhang et al., 2019), it is possible that specific (or different 

combinations of) CER strategies and sleep quality may interact with one (or more) of the 

components of NA inertia. To address this, future work should examine whether there is an 

association between specific (or other combinations of) CER strategies and one (or more) of 

the components of NA inertia, and whether these associations are influenced by sleep quality.  
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Finally, our current analysis examined the associations between CER strategy use, sleep 

quality, and NA inertia in those without a mental health diagnosis. Minaeva et al. (2021) found 

that higher NA inertia was associated with lower sleep quality in those who were currently 

depressed, but not those who were previously depressed or not depressed, demonstrating 

different associations between sleep quality and NA inertia based on depression status. To 

obtain a diverse sample with regard to psychological well-being, previous studies have focused 

on recruiting participants using stratified sampling of depression measurements (Koval, Brose, 

et al., 2015). Therefore, an important endeavour for future work would be to adopt this 

approach and replicate the current findings in those with a mental health diagnosis, such as 

depression and/or anxiety.  

In conclusion, using a MIP to help control for external influences on NA inertia, we 

found that both greater use of adaptive CER strategies and high sleep quality were associated 

with lower NA inertia, whereas greater use of maladaptive CER strategies was associated with 

higher NA inertia. However, the associations between CER strategies and NA inertia were 

similar at different levels of sleep quality. Building on studies using ESM paradigms, these 

findings highlight the importance of adaptive CER strategies and sleep quality as potential 

transdiagnostic targets for alleviating mental health problems by lowering NA persistence.  
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Chapter 5: General discussion 

5.1 Overview  

Sleep plays a pivotal role in our ability to process emotions (Tempesta et al., 2018). 

Given that difficulties with emotion regulation are a prominent feature of many psychiatric 

disorders, including depression and anxiety (Gross, 2014; Kring, 2010), understanding the 

underlying processes by which sleep supports emotion regulation is critical for learning about 

the development and aetiology of mental health problems. This thesis contributes to the 

literature by addressing key theoretical questions regarding the cognitive mechanisms by which 

sleep supports emotion regulation and mental health.  

Across each empirical chapter, this thesis focused on three components of emotion 

regulation. First, Chapter 2 examined whether resilience to depression and anxiety was 

attributed to the association between adaptive cognitive emotion regulation (CER) strategies 

and sleep quality. The results demonstrated that greater use of adaptive CER strategies and 

high sleep quality independently supported resilience to depression, but not anxiety. However, 

using adaptive CER strategies to reduce depression was not contingent on high sleep quality. 

Next, Chapter 3 investigated whether sleep deprivation influenced the evolution of arousal 

responses during exposure to an environment where there was uncertainty regarding the nature 

of the threat. The findings demonstrated that in sleep rested individuals, physiological arousal 

was attenuated when exposed to prolonged ambiguous threat, whereas physiological arousal 

remained elevated in sleep deprived individuals. A complementary analysis also examined 

whether slow wave activity (SWA) was associated with affect regulation during the course of 

this threatening experience. However, there was no significant association between SWA and 

arousal regulation. Finally, Chapter 4 examined whether the association between adaptive CER 

strategy use and negative affect (NA) inertia was influenced by sleep quality. The findings 

revealed that greater (lower) use of adaptive (maladaptive) CER strategies and high sleep 

quality were independently associated with lower NA inertia. However, using adaptive CER 

strategies to lower NA inertia was not dependent on high sleep quality. 

 In this concluding chapter (Chapter 5), I will summarise the empirical findings before 

considering the key methodological and theoretical contributions of this thesis. Finally, I 

acknowledge the overarching limitations of this work and propose several future research 

avenues for further exploration. 
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5.2 Summary of empirical work  

5.2.1 Chapter 2 

Prior work supports a critical role for sleep in the success of adaptive CER strategy use 

(Mauss et al., 2013; Parsons et al., 2021; Tamm et al., 2019; Zhang et al., 2019), potentially 

due to its reliance on executive functions, such as working memory, inhibition and task 

switching (McRae et al., 2012; Schmeichel & Demaree, 2010; Schmeichel & Tang, 2015; 

Schmeichel et al., 2008). For example, working memory has shown to be important during 

positive reappraisal, when the alternative interpretation needs to be actively retained (Sperduti 

et al., 2017). As greater use of adaptive CER strategies has been associated with improved 

psychological well-being (Kirschbaum-Lesch et al., 2021), these findings suggest a potential 

mechanistic link whereby the positive benefits of using adaptive CER strategies (for reducing 

depression and anxiety) are dependent on good sleep quality (Mauss et al., 2013; Parsons et 

al., 2021; Tamm et al., 2019; Zhang et al., 2019). However, research on adaptive CER strategy 

use and sleep has typically been confined to laboratory contexts, where participants may be 

explicitly taught or encouraged to use a specific CER strategy in response to aversive images 

or film clips. However, in the real world, individuals need to employ CER strategies 

spontaneously to cope with salient emotional events. Moreover, laboratory-induced stressors 

often lack the enduring quality of real-world emotional events, which often necessitates 

continuous input from adaptive CER strategies in order for emotional responses to be modified 

successfully. Taken together, we know little about how individuals use adaptive CER strategies 

spontaneously in response to a real-world protracted stressor and whether this is influenced by 

sleep quality. This question was addressed by investigating whether mental health outcomes 

across a prolonged period of stress (i.e. the COVID-19 pandemic) were dependent on adaptive 

CER strategy use and sleep quality as well as the interaction between these predictors. Using 

self-report questionnaires, participants estimated their depression and anxiety levels, tendency 

to engage in adaptive CER strategies, and sleep quality levels during the initial months of the 

COVID-19 pandemic.   

Greater use of adaptive CER strategies and higher sleep quality were significantly 

associated with lower levels of depression and anxiety. Such findings supported the hypothesis 

that greater adaptive CER strategy use and higher sleep quality would be associated with lower 

depression and anxiety, and aligns with previous work (Aldao & Nolen-Hoeksema, 2010; 

Baglioni, Spiegelhalder, et al., 2010; Domaradzka & Fajkowska, 2018; Freeman et al., 2017; 

Garnefski et al., 2002; Martin & Dahlen, 2005; A. J. Scott et al., 2021). However, adaptive 
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CER strategy use was not a significant predictor of self-reported anxiety when accounting for 

sleep quality in the final model. Moreover, the positive benefits of adaptive CER strategies on 

depression did not depend on obtaining high sleep quality. This finding did not support the 

hypothesis that the association between greater use of adaptive CER strategies and lower 

depression would be stronger in those with high quality sleep. Taken together, these findings 

build on a large body of laboratory-based work and highlight the potential transdiagnostic 

benefits of improving both adaptive CER strategy use and sleep quality when enduring periods 

of prolonged stress.  

5.2.2 Chapter 3 

A night of sleep deprivation has been shown to increase next-day state anxiety (Babson 

et al., 2010; Ben Simon et al., 2020; Goldstein et al., 2013), heighten physiological arousal 

(Franzen et al., 2008, 2009), and enhance sensitivity to perceived threat (Barber & Budnick, 

2015; Goldstein-Piekarski et al., 2015; Zenses et al., 2020). However, previous studies have 

captured threat-related processing at only single points in time and in response to short static 

threats (e.g. aversive images or film clips). In the real world, emotional experiences often 

fluctuate in intensity (Hildebrandt et al., 2016), and the nature of threat is not always clear 

(McCall et al., 2022). Ambiguously threatening environments elicit states of hypervigilance, 

which may be adaptive in the moment, but if not appropriately regulated following the 

dissipation of threat, results in pathological anxiety (Grillon, 2008; McCall et al., 2022). We 

currently know very little about how physiological and subjective arousal unfolds during 

exposure to prolonged ambiguous threat, and how this might be influenced by sleep deprivation 

(versus a night of sleep). To address this gap in understanding, real-time physiological arousal 

was recorded whilst participants navigated through an immersive virtual reality (VR) 

environment that cycled between periods of ambiguous threat and safety following sleep 

deprivation or a night of sleep. Subjective arousal responses were also measured during a 

playback of the experience. By mapping the evolution of arousal over the course of the 

emotional experience, I examined whether sleep deprivation not only influenced initial 

reactivity to ambiguous threat but also impaired recovery following the dissipation of threat.  

Physiological arousal (as indexed by skin conductance level [SCL]) increased in 

response to initial threat in both the sleep rested and sleep deprivation conditions. However, 

during prolonged exposure to threat, SCL remained elevated in sleep deprived individuals 

whereas SCL declined in sleep rested individuals. This finding supported the hypothesis that 

sleep deprivation would amplify arousal when exposed to ambiguous threat. However, there 
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were no differences in heart rate (HR) or subjective arousal ratings in those who were sleep 

deprived compared to sleep rested during exposure to prolonged threat. Interestingly, there 

were also no differences between sleep deprived and sleep rested participants in the recovery 

of arousal following ambiguous threat, despite recovery being evident in both conditions. This 

finding did not support the hypothesis that those who were sleep deprived would show impaired 

recovery following the dissipation of threat.   

Reciprocally, I investigated whether specific properties of sleep restore affect 

regulation processes. Greater amounts of SWA have been shown to support the overnight 

reduction of state anxiety (Ben Simon et al., 2020; Chellappa & Aeschbach, 2022) and restore 

the brain mechanisms critical for affect regulation (Ben Simon et al., 2020; Campbell-Sills et 

al., 2011). As a result, I examined whether SWA (as quantified using polysomnography [PSG]) 

was associated with physiological and subjective arousal when participants were exposed to 

prolonged ambiguous threat.  

The findings revealed no associations between SWA and physiological and subjective 

arousal responses during exposure to prolonged ambiguous threat. This finding did not support 

the hypothesis that greater SWA would be associated with reduced arousal during exposure to 

prolonged ambiguous threat and does not align with prior work, which demonstrated an 

association between SWA and state anxiety (Ben Simon et al., 2020; Chellappa & Aeschbach, 

2022). Nonetheless, these findings provide important insights into how a night of sleep 

regulates physiological arousal in response to threat, improving our understanding of how sleep 

(or lack of sleep) influences affect regulation when faced with ambiguity regarding the nature 

of threat. 

5.2.3 Chapter 4  

Emotional inertia refers to the persistence of an emotional state from one time point to 

the next. Higher emotional inertia, particularly of negative emotions, has been associated with 

poorer psychological well-being, including greater depressive and anxiety symptoms (Houben 

et al., 2015). However, we know little about the mechanisms underlying this association. Prior 

work suggests that CER strategies play an important role in NA inertia. Greater use of 

maladaptive CER strategies has been associated with higher NA inertia (Bean et al., 2021; 

Blanke et al., 2022; Koval et al., 2012). Conversely, frequent use of adaptive CER strategies 

have been associated with lower emotional inertia (Koval, Butler, et al., 2015). Sleep is another 

factor which may influence emotional inertia. Although recent studies have begun to examine 
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the association between sleep and emotional inertia (Frérart et al., 2023; Minaeva et al., 2021; 

X. Wen et al., 2020), these studies have produced mixed findings. One explanation for this 

might be that studies to date have examined NA inertia using experience sampling 

methodology (ESM). As ESM affords limited control over the context within which emotional 

reactions takes place (Koval et al., 2013; Kuppens et al., 2022), we cannot rule out the 

possibility that individual differences in emotional inertia arise from differences in the intensity 

of the life events that participants encounter. To address this, I adopted a mood induction 

procedure (MIP) used in previous work which enabled me to expose participants to a sequence 

of emotional events, in a fixed order. Building on previous studies, amateur film clips depicting 

real-life events were used to expose participants to emotional events that they were likely to 

encounter in the real world. Using this MIP, I examined whether NA inertia was dependent on 

adaptive CER strategy use and sleep quality as well as the interaction between these predictors. 

To index NA inertia, participants watched the film clips in a fixed order and rated their NA 

following each film clip and again after a subsequent rest period following each of the film 

clips. Using self-report questionnaires, participants estimated their tendency to engage in CER 

strategies and sleep quality levels to index adaptive and maladaptive CER strategy use and 

sleep quality, respectively.  

Greater use of adaptive CER strategies and high sleep quality were associated with 

lower NA inertia. Such findings supported the hypothesis that greater use of adaptive CER 

strategies and high sleep quality would be associated with lower NA inertia, and aligns with 

prior work (Kuppens, Allen, et al., 2010; X. Wen et al., 2020). Moreover, greater use of 

maladaptive CER strategies was associated with higher NA inertia. Again this finding supports 

the hypothesis that greater use of maladaptive CER strategies would be associated with higher 

NA inertia, and accords with previous studies (Bean et al., 2021; Blanke et al., 2022; Koval, 

Butler, et al., 2015; Koval et al., 2012). However, the positive benefits of adaptive CER 

strategies (to lower NA inertia) did not depend on obtaining good sleep quality. This finding 

did not support the hypothesis that the association between greater use of adaptive CER 

strategies and lower NA inertia would be stronger among individuals with high sleep quality. 

The absence of an interaction between adaptive CER strategy use and sleep quality aligns with 

the findings from Chapter 2. Building on prior work examining NA inertia using ESM, the 

findings from this study highlight the importance of greater adaptive CER strategy use and 

high sleep quality as potential targets for reducing the persistence of NA, an important 

precursor of poorer mental health.  
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5.3 Theoretical and methodological contributions  

The empirical findings from this thesis provide important theoretical and 

methodological contributions to the literature on emotion regulation and sleep in a number of 

ways outlined below.  

5.3.1 Central role for cognitive control in emotion regulation  

The findings from this empirical work support theoretical models that posit a central 

role for cognitive control in emotion regulation (Ochsner & Gross, 2005; Ochsner et al., 2012). 

Cognitive control is thought to encompass three distinct executive functioning processes: 

updating, inhibition and switching (Friedman & Miyake, 2017; Miyake & Friedman, 2012). It 

can be postulated that each of these is important for the emotion regulation components 

investigated in this thesis. The findings from Chapter 2 demonstrated the important role of 

adaptive CER strategies in promoting resilience to depression and anxiety. This association is 

likely underpinned by the involvement of executive functions to help downregulate negative 

emotions when adaptive CER strategies are successfully implemented. In particular, evidence 

supports a role for working memory (i.e. updating) capacity when reappraising negative 

emotional stimuli (Schmeichel & Demaree, 2010; Schmeichel et al., 2008). This is because 

during positive reappraisal, individuals need to keep the alternative (less negative) 

interpretation in mind in order to effectively downregulate negative responses (Sperduti et al., 

2017). Relatedly, the findings from Chapter 4 demonstrated an important role for adaptive CER 

strategies in reducing the persistence of NA over time (i.e. lower emotional inertia). Again, this 

association may be underpinned by executive functions. As higher NA inertia reflects a 

tendency for emotions to be resistant to change over time, greater use of adaptive CER 

strategies may promote the inhibition of negative emotion states, preventing them from spilling 

over into the next event (Waugh et al., 2017). Together, the findings from this work support a 

central role for updating and inhibition in adaptive CER strategy use.   

Furthermore, the findings from Chapter 3 demonstrated that those who had a night of 

sleep were better able to regulate their affective response to threat, compared to those who were 

sleep deprived. From this, it was proposed that sleep supports affect regulation through the 

involvement of executive functions. Particularly in this context, switching may be important to 

flexibly regulate arousal when navigating between periods of ambiguous threat and safety. 

Switching difficulties (i.e. an exaggerated focus on threatening stimuli and a difficultly 

disengaging from those stimuli) are characteristic of threat bias found in anxiety (Cisler & 
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Koster, 2010; Hildebrandt et al., 2016). Furthermore, Hildebrandt et al. (2016) demonstrated 

that participants who had lower switching costs when evaluating the valence of positive stimuli 

showed better regulation of physiological arousal following the dissipation of threat in a VR 

world. Together, these findings support the idea that switching may play a pivotal role in affect 

regulation when responding to and disengaging from threat.  

Furthermore, neuroimaging findings support the idea that sleep promotes affect 

regulation through the involvement of executive functions. Neuroimaging studies on affect 

regulation consistently report the involvement of prefrontal regions (Buhle et al., 2014; Suzuki 

& Tanaka, 2021). Critically, sleep deprivation, compared to a night of sleep, decreases medial 

prefrontal cortex (mPFC) activity, as well as the connectivity between the mPFC and amygdala 

when viewing negative aversive images or film clips (Ben Simon et al., 2020; van der Helm & 

Walker, 2012; Yoo et al., 2007). Given that the mPFC is involved in the engagement of 

cognitive control processes (E. K. Miller, 2000; Niendam et al., 2012; Ochsner & Gross, 2005; 

Ridderinkhof et al., 2004), it can be argued that sleep deprivation disrupts the prefrontal 

mechanisms important for cognitive control. Therefore, those who are sleep deprived may be 

unable to flexibly adapt when exposed to prolonged ambiguous threat.  

Given that sleep loss is widely associated with executive control deficits (Drummond 

et al., 1999; Mograss et al., 2009; Nilsson et al., 2005; Qi et al., 2010; Skurvydas et al., 2020), 

I expected that the same theoretical framework would underlie the association between sleep 

and adaptive CER strategy use in Chapters 2 and 4. However, there was no synergistic 

association between these two predictors in relation to mental health outcomes (Chapter 2) or 

NA inertia (Chapter 4). Therefore, the positive benefits of adaptive CER strategies were not 

continent on obtaining good sleep quality. These discrepancies may result from examining the 

influence of sleep quality rather than sleep deprivation. Prior work has primarily focused on 

the effects of acute sleep deprivation on executive function performance, with little work 

supporting a link between poorer sleep quality and impaired executive functioning in 

neurotypical adults (Minkel et al., 2012). Therefore, sleep quality may have a more nuanced 

association with emotion regulation compared to sleep deprivation. Alternatively, self-report 

measures were used to index sleep quality and emotion regulation, rather than objective 

measures, such as PSG and psychophysiology. The use of objective measures is thought to 

capture implicit components of emotion regulation, which may be more sensitive to the effects 

of sleep loss (e.g. physiological arousal) than subjective measures. Nonetheless, the importance 



163 

 

of using both subjective and objective measures is discussed in detail in the “Multimethod 

assessment of emotion regulation and sleep” section. 

5.3.2 Cognitive emotion regulation and sleep quality as transdiagnostic predictors of 

mental health  

The findings of this thesis also shed light on the independent influence of adaptive CER 

strategies and sleep quality on mental health outcomes and NA inertia. Chapter 2 demonstrated 

that despite greater use of adaptive CER strategies being significantly correlated with higher 

sleep quality, these predictors independently promoted resilience to depression when enduring 

prolonged stress. Likewise, the findings from Chapter 4 revealed a significant correlation 

between greater use of adaptive CER strategy and higher sleep quality; however, these 

predictors independently contributed to lower NA inertia. Theorists have proposed that sleep 

disturbance and emotion dysregulation might be reciprocally related factors (Fairholme et al., 

2013). On the one hand, sleep disturbance increases negative mood, blunts positive mood and 

impairs ones’ ability to use adaptive CER strategies effectively. Conversely, impaired adaptive 

CER strategy use and heightened negative mood may increase sleep disturbance (Harvey et al., 

2011). This proposal aligns with the mutual maintenance hypothesis, which argues that sleep 

disturbance and emotion dysregulation might be mutually maintaining factors, with each 

contributing uniquely to the aetiology and maintenance of psychopathology (Fairholme et al., 

2013; Harvey et al., 2011).  

Practically, these findings encourage the development of prevention and intervention 

programmes focussed on improving adaptive CER strategy use and sleep quality. For example, 

techniques such as cognitive behavioural therapy (CBT) and cognitive behavioural therapy for 

insomnia (CBT-I) may be potential therapeutic avenues for promoting both adaptive CER 

strategy use (Hayes, 2008; S. G. Hofmann & Asmundson, 2008) and sleep quality (Muench et 

al., 2022). Importantly, these treatment programmes have potentially broad diagnostic 

applicability given the relevance of these factors across a range of psychopathology symptoms. 

5.3.3 Multimethod assessment of emotion regulation and sleep 

A multimethod approach was adopted in this thesis, using subjective and objective 

measures to index both emotion regulation and sleep. Previous studies have found only weak-

to-moderate associations between subjective experiences and physiological responses to 

emotion-eliciting stimuli (Hollenstein & Lanteigne, 2014; Mauss & Robinson, 2009). 

Moreover, Mauss and Robinson (2009) stated that both subjective and objective measures are 
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important for understanding emotional responding and cannot be assumed to be 

interchangeable. Subjective reports of emotion regulation are important for capturing 

individual differences outside of the laboratory. However, they may require an element of 

cognitive introspection if retrospective (Mauss & Robinson, 2009). On the other hand, 

objective measures tend to capture fine-grained implicit emotion regulation processes in 

response to laboratory based stimuli (Bradley & Lang, 2007; Cunningham et al., 2014; Franzen 

et al., 2009; Tempesta et al., 2020). Therefore, these measures likely tap into different 

constructs and have different levels of sensitivity. In Chapter 2, emotion regulation was indexed 

using a self-report questionnaire (CERQ-short). This allowed me to examine whether 

individual differences in self-reported adaptive CER strategy use in daily life were associated 

with sleep quality and mental health outcomes. In Chapter 3, emotion regulation was indexed 

by measuring real-time physiological and subjective arousal responses, allowing the 

assessment of implicit and retrospective reports of arousal, respectively, in response to 

prolonged threat. The findings from this study suggested that physiological arousal was more 

sensitive to the effects of sleep deprivation than subjective arousal. Finally, in Chapter 4, 

emotion regulation was measured using in-the-moment self-report ratings of affect to index 

NA inertia. From this, I examined whether individual differences in NA inertia in response to 

naturalistic film clips were associated with adaptive CER strategies and sleep quality. Overall, 

the use of multiple measures to assess emotion regulation has advanced our knowledge of how 

individual differences in emotion regulation and implicit emotion regulation processes are 

influenced by sleep.  

With regard to sleep measures, prior work has demonstrated that self-reported sleep 

quality is often lower than that indicated by objective measures of sleep continuity or wake-

after-sleep onset (Baker et al., 1999; Buysse et al., 2008; Grandner et al., 2006). However, long 

periods of sustained wakefulness are rare in real-world settings; therefore, measuring 

subjective sleep quality helps capture individual differences in sleep that are commonly 

experienced day-to-day (Minkel et al., 2012). Nonetheless, sleep deprivation paradigms can 

uncover various aspects of sleep function per se as well as provide valuable insights into the 

influence of sleep loss on emotion regulation. In Chapters 2 and 4, self-report questionnaires 

were used to index sleep quality (PSQI). This enabled me to examine whether the associations 

between adaptive CER strategies and mental health outcomes (Chapter 2) and NA inertia 

(Chapter 4) were influenced by individual differences in naturally varying levels of sleep 

quality. In Chapter 3, PSG was employed to measure SWA. From this, I was able to examine 
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the impact of acute sleep loss on affect regulation as well as the mechanistic role of SWA in 

regulatory control. Therefore, the inclusion of multiple methods to measure sleep has led to a 

broader understanding of how individual differences in sleep quality, certain properties of 

sleep, and acute sleep loss influence emotion regulation and mental health.  

5.3.4 Capturing the dynamic nature of emotion regulation  

Emotion dynamics involves studying how the physiological, subjective, and 

behavioural components of emotion fluctuate over time (Kuppens & Verduyn, 2015). Despite 

the dynamic nature of emotions, studies have largely assessed emotion regulation at single 

points in time (Kuppens & Verduyn, 2015, 2017). However, in this thesis I examined how 

emotional responses unfold over time, as outlined below.   

In Chapter 2, I examined adaptive CER strategy use over several months in response to 

a protracted stressor. It was expected that this stressor would require continuous input from 

adaptive CER strategies in order for emotional responses to be modified successfully. The 

findings revealed that the associations between greater adaptive CER strategy use, high sleep 

quality and lower depression and anxiety remained stable during the initial months of the 

COVID-19 pandemic. Such findings demonstrate the robust positive impacts of adaptive CER 

strategies and sleep quality on mental health outcomes when dealing with sustained emotional 

hardship.   

In Chapter 3, real-time measurements of physiological and subjective arousal were 

collected whilst participants were exposed to a prolonged threatening experience that cycled 

between periods of ambiguous threat and safety. From this, I examined not only initial arousal 

responses to prolonged threat but also arousal responses once the initial threat has dissipated. I 

found that a night of sleep (versus sleep deprivation) promotes the regulation of physiological 

arousal when exposed to prolonged threat but does not influence the recovery of arousal 

following the dissipation of threat. The findings from this study provide important insights into 

the regulation of arousal over the course of an emotional experience.  

Finally, in Chapter 4, I examined one of the key features of the emotion trajectory, 

emotional inertia. This study assessed the degree to which an emotion state carried over from 

one time point to the next when participants were exposed to a standardised sequence of 

emotional events. The findings demonstrated that greater use of adaptive CER strategies and 

high sleep quality were associated with lower NA inertia. This study highlights the importance 

of adaptive CER strategies and sleep quality when predicting the persistence of negative 
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emotion states over time. Collectively, the findings from this thesis have advanced our 

understanding of the mechanisms by which sleep supports emotion regulation as it unfolds over 

time.  

5.4 Limitations and future directions 

Although each chapter acknowledges the limitations of the associated work, several 

general limitations should be noted. Nonetheless, these limitations highlight interesting 

avenues for future research.   

5.4.1 Dichotomisation of adaptive and maladaptive CER strategies  

Throughout this thesis, CER strategies were dichotomised as putatively adaptive or 

maladaptive using composite scores. Whilst this provided a useful framework for examining 

how sleep is associated with CER strategy use, there are situations in which what is considered 

adaptive or maladaptive may vary.  

According to the strategy-situation-fit hypothesis, CER strategies are adaptive only 

when used in appropriate contexts (Aldao et al., 2015; Bonanno & Burton, 2013; McRae, 

2016). For instance, the effectiveness of positive reappraisal (an adaptive CER strategy) may 

depend on the controllability of the situation (Haines et al., 2016; Troy et al., 2013, 2017). Troy 

et al. (2013) demonstrated that positive reappraisal success was associated with lower levels of 

depression when participants’ recent life stressors were relatively uncontrollable (e.g. a loved 

one’s illness). However, when recent life stressors were relatively controllable (e.g. potential 

job loss due to poor performance), positive reappraisal success was associated with higher 

levels of depression (Troy et al., 2013). These findings suggest that positive reappraisal may 

only be adaptive when modifying emotional responses to an uncontrollable stressor.  

In relation to this thesis, in Chapter 2, adaptive CER strategy use was examined within 

the context of the COVID-19 pandemic. The initial months of the COVID-19 pandemic were 

characterised by both uncontrollable (e.g. being made redundant, contracting the virus) and 

controllable (e.g. staying connected to family and friends, exposure to media coverage of the 

virus) stressors (Coiro et al., 2021). If participants were using adaptive CER strategies, 

including positive reappraisal, following controllable stressors this may have increased 

depression and anxiety levels, relative to if they were using adaptive CER strategies in response 

to uncontrollable stressors. Although the results showed that greater adaptive CER strategy use 

was associated with lower depression and anxiety, this association was not contingent on high 

sleep quality. As the ‘adaptiveness’ of emotion regulation was not fully captured, as I did not 
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account for the controllability of stressors, this may have tempered any association with sleep 

quality.  

The effectiveness of CER strategies may also depend on the nature of the emotion to 

be regulated. For example, positive reappraisal tends to be less effective when dealing with 

high-intensity emotional situations (Sheppes & Levin, 2013; Sheppes & Meiran, 2007; 

Sheppes et al., 2014). Sheppes and Meiran (2007) found that positive reappraisal is less 

effective at downregulating negative emotions in highly intense emotional situations. In 

addition, Sheppes et al. (2014) revealed that in high (versus low) intensity negative situations, 

participants preferred to use distraction over positive reappraisal. Accordingly, it has been 

suggested that during positive reappraisal, conflict arises between the initial (often negative) 

appraisal and the new less negative appraisal. Therefore, as the intensity of an emotional 

situation increases, it becomes more difficult to override the initial appraisal of the situation 

(Ortner et al., 2016). Together, these findings suggest that positive reappraisal may only be 

adaptive in response to low-intensity stressors.  

In the context of this work, in Chapter 3, arousal responses were measured as 

participants navigated through threatening and non-threatening environments following a night 

of sleep or sleep deprivation. It is possible that sleep deprived participants found the threatening 

parts more emotionally intense than the non-threatening parts. As adaptive CER strategy use 

is less effective when dealing with high-intensity emotional situations, this may explain why 

there was no influence of adaptive CER strategy use on arousal regulation during the 

threatening parts of the VR world but there was a buffering effect of adaptive CER strategy use 

on arousal responses in the non-threatening parts. Moreover, in Chapter 4, participants were 

exposed to a mixture of negative, positive and neutral film clips. It is possible that the use of 

adaptive CER strategies was less effective at reducing NA in response to the highly negative 

film clips compared to the positive and neutral film clips as they were more emotionally 

intense. Similar to the findings from Chapter 2, although there was as association between 

greater adaptive CER strategy use and lower NA inertia, this association was not contingent on 

high sleep quality, again suggesting that this association may have been tempered. 

To address these issues, future research could examine how sleep supports the 

flexibility of adaptive CER strategy use (i.e. the ability to implement and adjust CER strategies 

based on context; Aldao et al., 2015; Bonanno & Burton, 2013). For example, Battaglini et al. 

(2022) found that greater context sensitivity and greater responsivity to feedback in the 

selection of adaptive CER strategies was associated with adaptive affective outcomes such as 
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reduced NA. The flexibility of adaptive CER strategy use could be examined using daily diaries 

where participants are not only asked about the CER strategies they use in response to a 

negative event, but also about the type of events they experience, the controllability of the 

perceived events and the intensity of the events encountered. These could then be used as 

moderators when examining the associations between adaptive CER strategy use, sleep and 

mental health. For example, it could be hypothesised that in Chapter 2, controllability of a 

stressor would moderate the association between adaptive CER strategy use and depression 

and anxiety and that this association would be stronger among those with high levels of sleep 

quality.  

In addition, the categorisation of adaptive and maladaptive CER strategies prevented 

us from determining whether a specific strategy (or a smaller combination of strategies) 

influenced mental health outcomes (Chapter 2), arousal regulation (Chapter 3), and/or NA 

inertia (Chapter 4). As such, future work should examine naturally occurring combinations of 

CER strategies (i.e. CER repertoires). For example, in each of my studies, statistical analysis 

methods, such as hierarchical K-means clustering could be used to identify the most common 

CER strategy combinations, which could be added as predictors to the linear mixed models 

(LMMs). From this, it could be established whether certain cluster profiles are more strongly 

associated with mental health outcomes, as in previous work (Waterschoot et al., 2022), arousal 

regulation, and NA inertia, and whether these predictors are influenced by sleep. This analysis 

allows us to consider the interplay between different CER strategies, beyond the constraints of 

classifying them as putatively adaptive or maladaptive.  

5.4.2 Reciprocal mechanisms by which emotion regulation supports sleep 

This thesis has focused on the mechanisms by which sleep supports emotion regulation 

and mental health. Nonetheless, evidence suggests a bidirectional association between sleep 

and emotion regulation, with poor sleep impairing emotion regulation ability and emotion 

dysregulation leading to disrupted sleep (R. Gruber & Cassoff, 2014).  

Some studies have demonstrated that CER strategy use influences subsequent sleep 

(Guastella & Moulds, 2007; Thomsen et al., 2003; Vandekerckhove et al., 2012). For instance, 

Thomsen et al. (2003) found that greater use of habitual rumination was significantly associated 

with poorer sleep quality. Importantly, this association remained significant after controlling 

for negative mood. Guastella and Moulds (2007) advanced on this work by instructing 

participants to ruminate about a negative event prior to sleep. They found that individuals in 
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the rumination condition, who also had high levels of trait rumination, reported poorer sleep 

quality than low-trait ruminators. Furthermore, Vandekerckhove et al. (2012) used PSG to 

compare the effects of using an experiential CER strategy (focusing on downregulating the 

feelings associated with the emotional experience) versus an analytical CER strategy (focusing 

on cognitive thinking instead of the feelings associated with an emotional experience) 

following negative feedback prior to a night of sleep. Although participants in the experiential 

CER strategy condition had a longer sleep latency, they had fewer awakenings, longer sleep 

duration, and higher sleep efficiency compared to those in the analytical CER strategy 

condition. Together, these findings suggest that using maladaptive CER strategies, such as an 

analytic CER strategy, negatively impacts sleep quality, whereas using adaptive CER 

strategies, such as an experiential CER strategy, increases sleep latency but reduces subsequent 

sleep disturbance.  

Heightened emotional reactivity can also negatively influence sleep (Fairholme & 

Manber, 2015). Evidence for this comes from research examining responses to stressful events 

that elicit negative valence and high arousal. Stress has been shown to increase sleep latency 

and night awakenings, decrease sleep efficiency, and decrease SWS and rapid eye movement 

(REM) sleep duration (Fairholme & Manber, 2015; E. J. Kim & Dimsdale, 2007). Furthermore, 

the induction of pre-sleep arousal results in longer sleep latency and shorter sleep duration 

following a nap period (Tang & Harvey, 2004). Collectively, these findings suggest that 

heightened emotional reactivity contributes to poor sleep quality and duration.  

No studies have directly examined the influence of emotional inertia on sleep. 

However, evening mood has been shown to influence overnight sleep (Takano et al., 2012, 

2014; Vandekerckhove et al., 2011). Vandekerckhove et al. (2011) found that induced negative 

mood was associated with increased sleep fragmentation and decreased sleep efficiency. 

Moreover, higher levels of repetitive thoughts in the evening have been associated with reduced 

sleep quality (Takano et al., 2012, 2014). In light of these findings, we would expect higher 

NA inertia to negatively impact sleep.   

As the influence of emotion regulation on sleep has received much less attention than 

vice versa, it would be fruitful to examine these pathways concurrently in future work. Given 

the significant correlations between adaptive CER strategy use and sleep quality reported in 

Chapters 2 and 4, there is clear motivation to explore these associations. Moving beyond 

examining unidirectional associations in LMMs, a more complex methodology, such as 

structural equation modelling (SEM), would allow us to simultaneously estimate the 
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relationships between emotion regulation and sleep, as well as bidirectional associations. For 

example, in Chapter 4, the use of SEM would help establish whether there is a unidirectional 

or bidirectional association between NA inertia and sleep quality.  

5.4.3 Individual differences as critical moderators of the association between sleep and 

emotion regulation  

Individual differences can influence how sleep supports emotion regulation. Below, I 

discuss how age and sex are likely to serve as critical moderators in this relationship.  

First, age may moderate the association between sleep and emotion regulation. Older 

age has been associated with poorer sleep quality (Buysse et al., 1991; Madrid-Valero et al., 

2017). Nonetheless, older adults tend to use adaptive CER strategies, such as positive 

reappraisal, more frequently compared to younger adults (Gross & John, 2003). McRae et al. 

(2012) also found improvements in emotion regulation ability with age. Alongside this, they 

also demonstrated age-related increases in activation of the left ventrolateral PFC and left 

inferior frontal gyrus during a positive reappraisal task. These results imply that the ability to 

implement positive reappraisal improves with age due to increased activation of prefrontal 

brain regions during emotion regulation (Schmeichel & Tang, 2015). In addition, D. P. Smith 

et al. (2005) found that older adults, compared to younger adults, subjectively rated images as 

more arousing and had an increased startle blink in response to negative images. However, 

physiological reactivity to these images (i.e. electromyography [EMG] activity and heart rate 

deceleration [HRD]) was lower than that of younger adults. It is possible that older adults 

experienced heightened subjective arousal and startle-blink responses as they found negative 

images (e.g. images of threat and grief) to be more personally relevant, whereas lower 

physiological responses may reflect a decline in cardiovascular physiology (D. P. Smith et al., 

2005). Older adults have also been shown to display lower NA inertia but higher positive affect 

(PA) inertia than younger adults in a study which assessed the day-to-day persistence of self-

reported affect (Hamaker et al., 2018). Taken together, age seems to influence not only sleep 

but also the components of emotion regulation investigated in this thesis. In Chapter 2, the 

participant sample encompassed a broad age range (18–90 years). However, the participant 

samples in Chapters 3 and 4 only included young adults (aged 18–30 years). Therefore, further 

research is needed establish the moderating influence of age when examining associations 

between sleep, emotional reactivity, and NA inertia.  
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Sex is another factor which may moderate the association between sleep and emotion 

regulation. Sleep problems are more prevalent in females compared to males (Buysse et al., 

1991; Middelkoop et al., 1996). It has also been demonstrated that females use adaptive CER 

strategies, such as positive reframing, less frequently than males do (Costa Martins et al., 2016; 

Kelly et al., 2008). With regard to emotional reactivity, females have been shown to display 

higher levels of subjective arousal, greater HRD, and larger startle responses to unpleasant 

stimuli compared to males (Bianchin & Angrilli, 2012). This heightened emotional reactivity 

in females is thought to reflect greater susceptibility to negative life events and lower mood 

(Bianchin & Angrilli, 2012). Sex was also found to moderate the association between 

depression and PA inertia, such that the persistence of PA over time (i.e. higher PA inertia) 

was higher among depressed compared to non-depressed females, whereas there was no 

difference in PA inertia between depressed and non-depressed males (Nelson et al., 2020). 

However, sex did not significantly influence the inertia of NA. These sex differences may be 

explained by differences in brain activation in emotion-related limbic and prefrontal regions, 

which are critical for affect regulation. For example, Domes et al. (2010) showed greater 

amygdala activity in response to aversive stimuli along with increased activity in small clusters 

of the prefrontal cortex (PFC) and temporal cortex in females than in males. Moreover, females 

demonstrate lower activation than males in the orbitofrontal cortex, anterior cingulate cortex 

(ACC), and dorsolateral PFC when instructed to decrease emotional reactions (Domes et al., 

2010). As sleep deprivation has been shown to increase amygdala activity and reduce PFC 

activity when viewing aversive images and film clips (Ben Simon et al., 2020; van der Helm 

& Walker, 2012; Yoo et al., 2007), it is possible that females are more sensitive to the effects 

of poor sleep than males, resulting in a greater loss of regulatory control in response to 

emotional events. Although sex was added as a covariate to the LMMs in Chapter 2, the sample 

was highly skewed towards female participants (80%), meaning that we were unlikely to find 

any effects if they did exist. Therefore, as females appear to have poorer sleep quality and 

greater difficulties with emotion regulation, it would be fruitful for future work to examine 

possible sex influences on the association between sleep and emotion regulation.  

5.4.4 Influence of sleep on other emotion dynamics  

It is important to note that Dejonckheere et al. (2019) identified 16 different indicators 

of emotion dynamics; however, only emotional inertia was examined in this thesis. Two of the 

most common indices of emotion dynamics, which are often contrasted with emotional inertia, 

are the standard deviation (SD) and the mean squared successive difference (MSSD). The SD 
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is considered a measure of variability and reflects the extent to which an individual’s emotion 

state fluctuates from its emotional baseline over a given period of time (Koval et al., 2021). In 

contrast, the MSSD assesses the average magnitude of moment-to-moment fluctuations in an 

individual’s emotion state and is considered a measure of instability (Koval et al., 2021).  

Although the interrelations between these emotion dynamics are relatively complex, higher 

levels of instability seem to result from a combination of high variability and low inertia (Jahng 

et al., 2008).  

Several studies have examined the association between sleep and emotional variability, 

and, as with the literature on emotional inertia, they have produced mixed findings (Leger et 

al., 2019; Song et al., 2023; X. Wen et al., 2020). For example, Leger et al. (2019) found that 

both greater NA and PA variability were associated with poorer sleep. However, when 

adjusting for mean NA levels, NA variability was no longer significantly associated with 

poorer sleep. Similarly, X. Wen et al. (2020) demonstrated no significant association between 

NA variability and sleep duration. However, Song et al. (2023) found that higher NA variability 

was associated with poor sleep quality beyond daily levels of NA. These discrepant findings 

may be due to use of ESM to measure emotional inertia. As discussed in Chapter 4, ESM does 

not consider the emotional events that participants encounter day-to-day which may contribute 

to individual differences in NA inertia. Interestingly, no studies have yet examined the 

association between emotional instability and sleep. Based on prior work and the findings from 

Chapter 4, it is likely that higher NA instability is associated with poor sleep. Nonetheless, this 

highlights an important gap that should be addressed in future research. The association 

between sleep and other emotion dynamics, such as NA instability, could be examined using 

the same MIP employed in Chapter 4 to help control for the emotional events that participants 

encounter.  

Furthermore, different measures of affect dynamics often tend to be studied in isolation, 

as emotional inertia was in Chapter 4. It has been argued that this may lead to inconsistent 

conclusions regarding what aspects of emotion dynamics contribute to psychological 

maladjustment (Dejonckheere et al., 2019); is it higher emotional inertia, greater emotional 

variability or higher emotional instability? These measures were independently associated with 

lower mental health outcomes in a previous meta-analysis (Houben et al., 2015). In a similar 

vein, future work should examine which indicators of emotion dynamics are more strongly 

associated with sleep by using techniques such as multilevel meta-analysis, which compares 

the predictive accuracy of various multilevel models (Dejonckheere et al., 2019).  
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5.5 Conclusion 

Across each empirical chapter, this thesis explored the cognitive mechanisms by which 

sleep supports emotion regulation and mental health. First, I investigated whether sleep 

supports mental health through adaptive CER strategy use, finding that greater use of adaptive 

CER strategies and high sleep quality independently promoted resilience to depression, but not 

anxiety (Chapter 2). However, the positive benefits of adaptive CER strategy use on depression 

was not contingent on high sleep quality. Second, I examined whether sleep supports emotion 

regulation through emotional reactivity, demonstrating that sleep promotes the regulation of 

physiological arousal during exposure to prolonged ambiguous threat (Chapter 3). However, 

SWA was not associated with this regulatory control. Finally, I examined whether sleep 

supports emotion regulation through emotional inertia, finding that greater use of adaptive CER 

strategies and high sleep quality independently predicted lower NA inertia (Chapter 4). 

However, the positive benefits of adaptive CER strategy use on NA inertia was not contingent 

on high sleep quality. The theoretical and methodological contributions discussed in this 

chapter offer new insights into the underlying processes by which sleep contributes to 

successful emotion regulation and optimum mental health, and conversely, how poor sleep 

contributes to emotion dysregulation and mental ill-health. The limitations discussed outline 

key issues that can be addressed in future research. Other interesting avenues for future research 

were also discussed. Given the links between sleep, emotion regulation, and mental health, the 

findings from this thesis point towards modifiable mechanisms, such as promoting the use of 

adaptive CER strategies and improving sleep quality, which can help alleviate poorer mental 

health outcomes, particularly in relation to depression and anxiety.  
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Appendices  

Supplementary Materials: Chapter 2 

Table A.1. Additional demographic characteristics of the depression and anxiety samples. 

 Depression 

sample 

Anxiety 

sample 

N 551 590 

Age 

Mean 39.12 38.49 

Standard deviation 17.07 16.89 

Biological sex 

Female 457 489 

Male 94 101 

Gender 

Female 449 481 

Male 89 96 

Non-binary/third-gender 2 2 

Prefer to self-describe 4 4 

Prefer not to say 1 1 

Unknown 6 6 

Race 

African American 9 11 

Asian 37 45 

White 458 487 

Hispanic/Latinx 10 10 

More than one race/Prefer to self-describe 31 32 

Prefer not to say 4 3 

Unknown 2 2 

Ethnicity 

Hispanic 24 27 

Not Hispanic 519 554 
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Prefer not to say 7 7 

Unknown 1 2 

Mental Health Disorder* 

Yes 119 126 

No 432 464 

Serious Medical Problems 

 Yes 49 50 

No 502 540 

Highest Education Level 

Some high school 1 1 

High school diploma/GED 10 10 

Some college 64 72 

Bachelor’s degree 148 160 

Some post-bachelor education 54 56 

Graduate, medical or professional degree 274 291 

Marital Status 

Single 154 172 

In a relationship 138 149 

Married 217 225 

Divorced/separated 28 30 

Widowed 14 14 

Student 

Yes 111 124 

No 440 466 

Currently employed (if not student) 

 Yes 342 363 

No 98 103 

Household Income 

$0-$25,000 30 33 

$25,001-$50,000 89 92 
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$50,001-$75,000 99 107 

$75,001-$100,000 89 101 

$100,001-$150,000 106 112 

$150,001-$250,000 80 88 

$250,000+ 58 57 

*Mental health disorder is not limited to depression and anxiety.  
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Figure A.1. Flow chart outlining participant exclusions for the depression sample. 
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Figure A.2. Flow chart outlining participant exclusions for the anxiety sample. 
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Figure A.3. Flowchart of how each assumption of linear mixed models was investigated and which transformation was applied if an assumption 

was violated. 
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Figure A.4. Workflow for non-convergence. This is ordered hierarchically such that if one step did not solve the convergence problem, we moved 

on to the next. 
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Table A.2. Non-standardised and standardised parameter estimates entered into the power analysis simulations (obtained from the pilot sample).  

 Depression Anxiety 
 

B [SE] β [SE] B [SE] β [SE] 

Model 2   

Intercept 8.15 [0.72] 0.17 [0.13] 7.78 [0.74] 0.18 [0.13] 

Age −0.10 [0.04] −0.25 [0.09] −0.08 [0.04] −0.18 [0.09] 

Sex −0.39 [1.19] −0.07 [0.22] 0.74 [1.25] 0.14 [0.23] 

Mental Health Diagnosis −3.70 [1.23] −0.69 [0.23] −2.94 [1.22] −0.54 [0.22] 

Time −1.80 [0.54] −0.33 [0.10] −1.49 [0.73] −0.27 [0.13] 

Adaptive CER Strategy Use −0.09 [0.14] −0.11 [0.16] 0.06 [0.14] 0.07 [0.16] 

Time × Adaptive CER Strategy Use −0.04 [0.06] −0.04 [0.07] 0.01 [0.08] 0.01 [0.09] 

Model 3 

Intercept 7.65 [0.69] 0.08 [0.13] 8.11 [0.72] 0.24 [0.13] 

Age −0.03 [0.03] −0.08 [0.09] 0.01 [0.04] 0.03 [0.09] 

Sex −0.42 [1.03] −0.08 [0.19] 0.11 [1.14] 0.02 [0.21] 

Mental Health Diagnosis −1.68 [1.20] −0.31 [0.22] −1.28 [1.19] −0.23 [0.22] 

Time −1.62 [0.67] −0.30 [0.12] −1.17 [0.85] −0.21 [0.15] 

Adaptive CER Strategy Use −0.05 [0.15] −0.06 [0.17] −0.05 [0.16] −0.06 [0.18] 

Sleep Quality 1.15 [0.24] 0.65 [0.14] 1.08 [0.26] 0.63 [0.15] 

Time × Adaptive CER Strategy Use −0.18 [0.12] −0.21 [0.13] −0.15 [0.18] −0.17 [0.20] 
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B = Non-standardised ES, β = Standardised ES.  

Time × Sleep Quality 0.02 [0.25] 0.01 [0.14] −0.09 [0.31] −0.05 [0.18] 

Adaptive CER Strategy Use × Sleep Quality −0.09 [0.06] −0.33 [0.19] −0.13 [0.06] −0.48 [0.20] 

Time × Adaptive CER Strategy Use × Sleep Quality −0.05 [.03] −0.16 [0.09] −0.06 [0.03] −0.20 [0.11] 
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Table A.3. Proportion and 95% confidence interval of the number of times that the Model 3 simulation analysis produced a false positive when 

excluding the effect sizes of interest. Values are shown for both the non-standardised and standardised models.  

 Depression Anxiety 

Proportion of false positives  Non-standardised 

[CIs] 

Standardised  

[CIs] 

Non-standardised 

[CIs] 

Standardised  

[CIs] 

Model 3 

 Time 0.02 [0.01–0.03] 0.02 [0.01–0.03] 0.01 [0.01–0.02] 0.02 [0.01–0.03] 

Adaptive CER Strategy Use 0.02 [0.01–0.02] 0.02 [0.01–0.03] 0.01 [0.01–0.02] 0.02 [0.01–0.03] 

Sleep Quality 0.02 [0.01–0.03] 0.02 [0.01–0.02] 0.03 [0.02–0.04] 0.02 [0.01–0.03] 

Time × Adaptive CER Strategy Use 0.02 [0.01–0.03] 0.02 [0.01–0.03] 0.02 [0.01–0.03] 0.02 [0.01–0.02] 

Time × Sleep Quality 0.03 [0.02–0.04] 0.02 [0.01–0.03] 0.02 [0.01–0.03] 0.02 [0.01–0.02] 

Adaptive CER Strategy Use × Sleep Quality 0.02 [0.01–0.03] 0.01 [0.01–0.02] 0.07 [0.05–0.08] 0.03 [0.02–0.04] 

Time × Adaptive CER Strategy Use × Sleep Quality 0.02 [0.01–0.02] 0.02 [0.01–0.03] 0.01 [0.01–0.02] 0.01 [0.01–0.02] 



184 

 

Maladaptive CER strategies 

In this exploratory analysis, we included maladaptive CER strategy use and sleep 

quality as predictors of depression and anxiety. The statistical analysis was identical to our 

main analysis except that maladaptive CER strategy use was entered as a predictor in Models 

2 and 3 instead of adaptive CER strategy use. Correlational analyses indicated no significant 

relationship between the frequency of adaptive CER strategy use and maladaptive CER 

strategy use in either the depression (rs = .06, p = 1) or anxiety datasets (rs = .06, p = 1; see 

Figure A.5).  However, there was a significant association between maladaptive CER strategy 

use and sleep quality in both the depression and anxiety datasets (rs = .14, p = .001; rs = .17, p 

< .001, respectively), such that greater use of maladaptive CER strategies was associated with 

poorer sleep quality (higher scores on the PSQI).  

Model 1, effect of time: There was a main effect of time on depression (B = −0.25 

[−0.37, −0.14], p < .001, d = 0.46), such that depression decreased from Spring to Autumn 

2020. However, there was no main effect of time on anxiety (B = 0.04 [−0.08, 0.16], p = .706, 

d = 0.07). Age significantly predicted both depression (B = −0.01 [−0.01, 0.00], p = .045, d = 

0.22) and anxiety (B = −0.01 [−0.02, −0.01], p = .001, d = 0.31), such that increased age was 

associated with lower depression and anxiety symptoms. There was no main effect of 

biological sex (female/male) on either depression (B = −0.03 [−0.33, 0.27], p = .898, d = 0.02) 

or anxiety (B = −0.24 [−0.54, 0.06], p = .331, d = 0.13). For both depression and anxiety, there 

was a main effect of current mental health diagnosis (yes/no; B = −0.76 [−1.03, −0.49], p < 

.001, d = 0.45; B = −0.74 [−1.01, −0.46], p < .001, d = 0.42, respectively): those with a 

diagnosed mental health condition had significantly higher depression and anxiety compared 

to those without diagnosed mental illness.  
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Model 2, effect of time and maladaptive CER strategy use: The outcomes for Model 

2 are illustrated in Figure A.6. For depression, there was a main effect of maladaptive CER 

strategy use (B = 0.08 [0.05, 0.10], p < .001, d = 0.55, BF10 > 100), but no significant interaction 

between maladaptive CER strategy use and time (B = −0.01 [−0.03, 0.02], p = .752, d = 0.05, 

BF10 = 0.23). Therefore, greater use of maladaptive CER strategies was associated with higher 

depression, irrespective of time. For anxiety, there was also a main effect of maladaptive CER 

strategy use (B = 0.08 [0.16, 0.10], p < .001, d = 0.59, BF10 > 100) and a significant interaction 

between maladaptive CER strategy use and time (B = −0.04 [−0.06, −0.01], p = .014, d = 0.30, 

BF10 = 16.95), such that greater use of maladaptive CER strategies was associated with higher 

anxiety, and this relationship was most pronounced in the initial stages of the pandemic (Spring 

2020). These findings are consistent with previous work demonstrating a link between greater 

use of maladaptive CER strategies and higher levels of depression and anxiety (Aldao & Nolen-

Hoeksema, 2012b; Aldao et al., 2010; Domaradzka & Fajkowska, 2018; Garnefski et al., 2002; 

McLaughlin & Nolen-Hoeksema, 2011; Nolen-Hoeksema et al., 2008).  

Model 3, effect of time, maladaptive CER strategy use and sleep quality: The 

outcomes for Model 3 are illustrated in Figure A.7. The effect of maladaptive CER strategy 

use on depression and anxiety reported in Model 2 remained significant (B = 0.05 [0.03, 0.07], 

p < .001, d = 0.39; B = 0.06 [0.04, 0.08], p < .001, d = 0.43, respectively). There was a main 

effect of sleep quality on both depression (B = 0.21 [0.18, 0.24], p < .001, d = 1.13, BF > 100) 

and anxiety (B = 0.17 [0.14, 0.21], p < .001, d = 0.87, BF10 > 100), such that higher sleep 

quality was associated with lower depression and anxiety. There was no interaction between 

sleep quality and time or sleep quality and maladaptive CER strategy use on either depression 

(B = −0.02 [−0.06, 0.02], p =.571, d = 0.11, BF10 = 0.15; B = 0.00 [−0.01, 0.00], p = .635, d = 

0.07, BF10 = 0.18, respectively) or anxiety (B = −0.04 [−0.07, 0.00], p = .255, d = 0.18, BF10 = 

2.12; B = 0.00 [−0.01, 0.01], p = .889, d = 0.02, BF10 = 0.14, respectively). In addition, there 

was no significant three-way interaction between time, maladaptive CER strategy use and sleep 

quality on depression (B = 0.00 [−0.01, 0.01], p = .740, d = 0.06, BF10 < .01) or anxiety (B = 

0.00 [−0.01, 0.00], p = .430, d = 0.12, BF10 = 0.87). These results complement our main study 

findings and suggest that both adaptive and maladaptive CER strategies contribute to 

depression and anxiety symptoms. However, the association between emotion regulation 

strategy use and mental health outcomes (depression and anxiety) does not appear to be 

influenced by naturally varying levels of sleep quality.
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Figure A.5. There was no significant association between adaptive CER strategy use and maladaptive CER strategy use in either a) the depression 

or b) anxiety dataset. Grey areas represent 95% confidence intervals. Multiple comparisons correction was applied using Holm’s method 

(Hochberg, 1988).
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Figure A.6. Greater use of maladaptive CER strategies was significantly associated with a) 

higher depression and b) anxiety across both timepoints (Spring and Autumn 2020). There was 

no significant interaction between maladaptive CER strategy use and time on c) depression, 

but a significant interaction between maladaptive CER strategy use and time did emerge for d) 

anxiety (black line = Spring 2020; dashed line = Autumn 2020). The relationship between 

maladaptive CER strategy use and anxiety was more pronounced in the initial stages of the 

pandemic (Spring 2020), as compared to the later stages (Autumn 2020). Grey areas represent 

95% confidence intervals. Non-transformed outcomes are shown for visualisation purposes.  
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Figure A.7. Higher sleep quality was significantly associated with a) lower depression and b) 

anxiety over time (black line = Spring 2020; dashed line = Autumn 2020). Sleep quality scores 

have been inverted for visualisation purposes such that higher scores represent higher sleep 

quality. There was no significant interaction between maladaptive CER strategy use, sleep 

quality and time on c) self-reported depression or d) anxiety. Data are plotted at different levels 

of sleep quality (mean and at + 1 SD). Grey areas represent 95% confidence intervals. Non-

transformed outcomes are shown for visualisation purposes.  
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Race 

Given the influence of race on mental health outcomes during the COVID-19 pandemic 

(Czeisler et al., 2020; Wu et al., 2021), we re-ran our models but included race as a covariate. 

Because there were a low number of participants from different racial minorities, race was 

dichotomised into white and non-white. For our depression dataset, 16.9% were non-white 

(83.1% white) and for our anxiety dataset 17.5% were non-white (82.5% white).  

Model 1, effect of time: There was a main effect of time on depression (B = −0.25 

[−0.37, −0.13], p < .001, d = 0.46), such that depression decreased from Spring to Autumn 

2020. However, there was no main effect of time on anxiety (B = 0.04 [−0.08, 0.16], p = .785, 

d = 0.07). Age did not significantly predict depression (B = −0.01 [−0.02, 0.00], p = .078, d = 

0.21) but was a significant predictor of anxiety (B = −0.01 [−0.02, −0.01], p = .001, d = 0.33), 

such that increased age was associated with lower anxiety symptoms. There was no main effect 

of biological sex (female/male) on either depression (B = −0.03 [−0.33, 0.27], p = .987, d = 

0.02) or anxiety (B = −0.24 [−0.53, 0.06], p = .524, d = 0.12). For both depression and anxiety, 

there was a main effect of current mental health diagnosis (yes/no; B = −0.76 [−1.04, −0.49], 

p < .001, d = 0.45; B = −0.73 [−1.01, −0.46], p < .001, d = 0.42, respectively): those with a 

diagnosed mental health condition had significantly higher depression and anxiety than 

individuals without diagnosed mental illness. There was no main effect of race (white/non-

white) on depression or anxiety (B = 0.01 [−0.30, 0.32], p = .987, d < 0.01; B = −0.14 [−0.45, 

0.17], p = .785, d = 0.07, respectively). 

Model 2, effect of time and adaptive CER strategy use: For depression, there was a 

main effect of adaptive CER strategy use (B = −0.05 [−0.07, −0.03], p < .001, d = 0.47, BF10 > 

100) but no significant interaction between adaptive CER strategy use and time (B = −0.01 

[−0.03, 0.01], p = .518, d = 0.12, BF10 = 0.16). For anxiety, there was also a main effect of 

adaptive CER strategy use (B = −0.03 [−0.05, −0.02], p = .003, d = 0.29, BF10 > 100) but, 

again, no significant interaction between adaptive CER strategy use and time (B = 0.00 [−0.02, 

0.02], p = .911, d = 0.02, BF10 = 0.14). Therefore, greater use of adaptive CER strategies was 

associated with lower depression and anxiety, irrespective of time. Race was not a significant 

predictor of depression (B = 0.04 [−0.27, 0.34], p = .987, d = 0.02) or anxiety (B = −0.11 [−0.42, 

0.19], p = .785, d = 0.06).  

Model 3, effect of time, adaptive CER strategy use and sleep quality: For 

depression, the effect of adaptive CER strategy use reported in Model 2 remained significant 
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in this expanded model (B = −0.03 [−0.05, −0.01], p = .004, d = 0.29). However, for anxiety, 

the effect of adaptive CER strategy use was no longer significant (B = −0.02 [−0.03, 0.00], p = 

.366, d = 0.15). There was a main effect of sleep quality on both depression (B = 0.21 [0.18, 

0.24], p < .001, d = 1.18, BF10 > 100) and anxiety (B = 0.19 [0.16, 0.22], p < .001, d = 0.93, 

BF10 > 100), such that higher sleep quality was associated with lower depression and anxiety. 

There was no interaction between sleep quality and time or sleep quality and adaptive CER 

strategy use on either depression (B = −0.03 [−0.07, 0.01], p =.332, d = 0.17, BF10 = 0.14; B = 

0.00 [−0.01, 0.00], p = .809, d = 0.05, BF10 = 0.13, respectively) or anxiety (B = −0.05 [−0.08, 

−0.01], p = .112, d = 0.23, BF10 = 2.05; B = 0.00 [−0.01, 0.01], p = .912, d = 0.01, BF10 = 0.18, 

respectively). In addition, there was no significant three-way interaction between time, 

adaptive CER strategy use and sleep quality on either depression (B = −0.01 [−0.01, 0.00], p = 

.332, d = 0.16, BF10 < 0.01) or anxiety (B = 0.00 [−0.01, 0.01], p = .862, d = 0.04, BF10 < 0.01). 

In sum, our models were not influenced by participant race. However, as our sample was 

predominantly white (83.1% for depression and 82.5% for anxiety), we are limited in the extent 

to which we were able to capture the experiences of individuals from racial minorities.  

Mental health diagnosis 

We ran an exploratory analysis excluding individuals who reported having a diagnosed 

mental health condition. Our models were identical to those performed in the main analysis, 

with the exception that current mental health diagnosis was removed as a covariate. The sample 

sizes for the depression and anxiety datasets were N = 432 and N = 464, respectively.  

Model 1, effect of time: For depression, there was a main effect of time (B = −0.19 

[−0.31, −0.07], p = .012, d = 0.38), such that depression decreased from Spring to Autumn 

2020. However, for anxiety, there was no main effect of time (B = 0.06 [−0.06, 0.18], p = .695, 

d = 0.11). Age significantly predicted both depression (B = −0.01 [−0.02, 0.00], p = .037, d = 

0.26) and anxiety (B = −0.01 [−0.02, −0.01], p = .001, d = 0.37), such that increased age was 

associated with lower depression and anxiety. There was no main effect of biological sex 

(female/male) on either depression (B = −0.04 [−0.33, 0.26], p = .942, d = 0.02) or anxiety (B 

= −0.21 [−0.50, 0.08], p = .455, d = 0.13).  

Model 2, effect of time and adaptive CER strategy use: For depression, there was a 

main effect of adaptive CER strategy use (B = −0.06 [−0.08, −0.04], p < .001, d = 0.56, BF10 > 

100) but no significant interaction between adaptive CER strategy use and time (B = −0.02 

[−0.04, 0.00], p = .274, d = 0.20, BF10 = 0.38). For anxiety, there was also a main effect of 
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adaptive CER strategy use (B = −0.04 [−0.06, −0.02], p = .001, d = 0.35, BF10 > 100) but, 

again, no significant interaction between adaptive CER strategy use and time (B = 0.00 [−0.02, 

0.02], p = .899, d = 0.02, BF10 = 0.13). Thus, greater use of adaptive CER strategies was 

associated with lower depression and anxiety over time when not accounting for mental health 

diagnosis.  

Model 3, effect of time, adaptive CER strategy use and sleep quality: The effect of 

adaptive CER strategy use on depression reported in Model 2 remained significant (B = −0.04 

[−0.05 −0.02], p < .001, d = 0.41). However, the effect of adaptive CER strategy use on anxiety 

was no longer significant in this expanded model (B = −0.02 [−0.04, 0.00], p = .103, d = 0.22). 

There was a main effect of sleep quality on both depression (B = 0.19 [0.16, 0.22], p < .001, d 

= 1.16, BF10 > 100) and anxiety (B = 0.17 [0.14, 0.20], p < .001, d = 0.94, BF10 > 100), such 

that higher sleep quality was associated with lower depression and anxiety. There was no 

interaction between sleep quality and time or sleep quality and adaptive CER strategy use on 

either depression (B = −0.02 [−0.06, 0.01], p =.487, d = 0.14, BF10 = 0.10; B = 0.00 [0.01, 

0.00], p = .942, d = 0.03, BF10 = 0.13, respectively) or anxiety (B = −0.03 [−0.07, 0.00], p = 

.288, d = 0.20, BF10 = 0.28; B = 0.00 [−0.01, 0.00], p = .899, d = 0.03, BF10 = 0.15, 

respectively). In addition, there was no significant three-way interaction between time, 

adaptive CER strategy use and sleep quality on either depression (B = 0.00 [−0.01, 0.00], p = 

.487, d = 0.13, BF10 < 0.01) or anxiety (B = 0.00 [−0.01, 0.00], p = .772, d = 0.10, BF10 < 0.01). 

In sum, these results demonstrate that our study findings did not differ when those with a 

current mental health diagnosis were excluded from the analyses.  

Negative experience of the pandemic  

We also conducted an exploratory analysis on only participants who reported having a 

negative experience of the pandemic. This information was collected from a one-time survey 

administered between 26th February 2021 and the 7th April 2021. Participants were asked to 

rate their experience during the COVID-19 pandemic from 1 [Entirely Negative] to 7 [Entirely 

Positive]. Only participants with scores of < 3 on this item were included in our analyses. Our 

sample sizes were N = 156 (20.5% reported a current diagnosed mental health condition) for 

the depression dataset and N = 155 (20.6% reported a current diagnosed mental health 

condition) for the anxiety dataset. We ran the same models as in our main analysis with this 

subset of participants.   
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Model 1, effect of time: There was no main effect of time on depression (B = −0.20 

[−0.39, −0.01], p = .286, d = 0.37) or anxiety (B = −0.01 [−0.27, 0.25], p = .987, d = 0.01). Age 

was not a significant predictor of depression (B = −0.01 [−0.02, 0.00], p = .472, d = 0.20) or 

anxiety (B = −0.01 [−0.03, 0.00], p = .514, d = 0.25). There was no main effect of biological 

sex (female/male) on depression (B = 0.32 [−0.24, 0.87], p = .543, d = 0.18) or anxiety (B = 

−0.31 [−0.99, 0.37], p = .657, d = 0.14). For the depression, there was a main effect of current 

mental health diagnosis (yes/no; B = −0.90 [−1.40, −0.41], p = .008, d = 0.57). Those with a 

diagnosed mental health condition had significantly higher depression compared to those with 

no mental illness. However, there was no main effect of current mental health diagnosis on 

anxiety (B = −0.87 [−1.48, −0.26], p = .095, d = 0.46).  

Model 2, effect of time and adaptive CER strategy use: For depression, there was 

no significant effect of adaptive CER strategy use (B = −0.04 [−0.08, 0.00], p = .297, d = 0.31, 

BF10 = 1.59) and no significant interaction between adaptive CER strategy use and time (B = 

−0.01 [−0.05, 0.03], p = .953, d = 0.08, BF10 = 0.21). For anxiety, there was no significant 

effect of adaptive CER strategy use (B = −0.03 [−0.08, 0.02], p = .596, d = 0.20, BF10 = 0.70) 

and, again, there was no significant interaction between adaptive CER strategy use and time (B 

= −0.02 [−0.07, 0.03], p = .657, d = 0.15, BF10 = 0.29). Therefore, frequency of adaptive CER 

strategy use was no longer a significant predictor of depression and anxiety, unlike our main 

analysis.  

Model 3, Effect of time, adaptive CER strategy use and sleep quality: For 

depression and anxiety, the effect of adaptive CER strategy use remained non-significant (B = 

−0.03 [−0.07, 0.00], p = .297, d = 0.32; B = −0.03 [−0.07, 0.01], p = .596, d = 0.22, 

respectively). There was a main effect of sleep quality on both depression (B = 0.21 [0.17, 

0.26], p < .001, d = 1.44, BF10 > 100) and anxiety (B = 0.23 [0.16, 0.29], p < .001, d = 1.10, 

BF10 > 100), such that higher sleep quality was associated with lower depression and anxiety. 

There was no interaction between sleep quality and time or sleep quality and adaptive CER 

strategy use on either depression (B = 0.00 [−0.05, 0.06], p =.953, d = 0.02, BF10 = 0.12; B = 

0.00 [−0.01, 0.01], p = .905, d = 0.08, BF10 = 0.22, respectively) or anxiety (B = −0.08 [−0.15, 

0.00], p = .415, d = 0.32, BF10 = 1.08; B = 0.00 [−0.02, 0.01], p = .907, d = 0.06, BF10 = 0.27, 

respectively). In addition, there was no significant three-way interaction between time, 

adaptive CER strategy use and sleep quality on either depression (B = 0.00 [−0.01, 0.01], p = 

.953, d = 0.01, BF10 < 0.01) or anxiety (B = −0.01 [−0.03, 0.01], p = .625, d = 0.19, BF10 = 

0.03).  
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Supplementary Materials: Chapter 4 

Table A.4. Description of amateur film clips used in the mood induction procedure.  

Selected film 

clip 

Novel or 

existing 

database 

Film 

duration 

(in seconds) 

One sentence film 

description 

Mean 

valence 

(1-9) 

Mean 

arousal 

(1-9) 

Mean 

familiarit

y (prop) 

YouTube link 

San Francisco 

sidewalk 

(practice trial - 

neutral) 

Novel 31 Footage walking down a 

sidewalk in San Francisco. 

5.13 3.88 0.00 https://youtu.be/hXCzAAYl

6zo  

1. School boy 

recounting 

bullying 

(negative) 

Novel 44 Tearful son recounting 

being bullied at middle 

school. 

2.00 6.13 0.07 https://youtu.be/kz1xzBYpp

W8?si=pSziNSh9BM-

yV5BQ 

2. Nepal 

earthquake 

(negative) 

Novel 43 Multiple perspectives from 

the moment the devastating 

earthquake hit Nepal. 

2.40 6.00 0.00 https://youtu.be/pfMMWzv8

9m0  

3. BART train 

(neutral) 

Novel 17 San Francisco Bay Area 

Rapid Transit (BART) 

pulling in to a station. 

4.73 

 

4.27 0.00 https://youtu.be/nMqUQdHz

Iy8  

4. Baby evil 

eye (positive) 

Existing 18 Baby in high chair makes 

evil look at everyone and 

starts laughing only to do it 

again. 

7.40 3.87 0.07 https://youtu.be/MLVfBYw

nXq4  

https://youtu.be/hXCzAAYl6zo
https://youtu.be/hXCzAAYl6zo
https://youtu.be/kz1xzBYppW8?si=pSziNSh9BM-yV5BQ
https://youtu.be/kz1xzBYppW8?si=pSziNSh9BM-yV5BQ
https://youtu.be/kz1xzBYppW8?si=pSziNSh9BM-yV5BQ
https://youtu.be/pfMMWzv89m0
https://youtu.be/pfMMWzv89m0
https://youtu.be/nMqUQdHzIy8
https://youtu.be/nMqUQdHzIy8
https://youtu.be/MLVfBYwnXq4
https://youtu.be/MLVfBYwnXq4
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5. London 

underground 

(neutral) 

Novel 32 Doors closing and the tube 

departing from 

Embankment station. 

4.80 4.33 0.00 https://youtu.be/d2g9HlwoC

-s  

6. Starving 

children 

Yemen 

(negative) 

Novel 26 BBC news report on 

starving children in Yemen. 

1.87 6.07 0.00 https://youtu.be/J_6fDCo1R

EI?si=-ckOXFNUkchixXlh  

7. Thirsty 

baby drinks 

(positive) 

Existing 22 Baby tries to drink from a 

garden hose. 

7.33 4.40 0.07 https://youtu.be/a5lKucggtuI  

8. Singing dog 

(positive) 

Existing 28 Dog is singing to melody 

from iPad. 

7.13 4.40 0.00 https://youtu.be/Mk4bmK-

acEM  

9. Tsunami 

Indonesia 

(negative) 

Novel 44 Footage of a tsunami 

slamming into the 

Indonesian city of Palu on 

Sulawesi island after a 

major earthquake. 

2.60 6.00 0.00 https://youtu.be/T7r6ex4Wn

kQ  

10. Boy fails 

hula hoop 

(positive) 

Existing 19 Baby tries to hula hoop 

without the hula hoop - just 

wiggles hips around while 

everyone laughs. 

6.80 4.33 0.00 https://youtu.be/bK1EKdDC

OX0  

The database for the existing film clips can be found here: Samson, A. C., Kreibig, S. D., Soderstrom, B., Wade, A. A., & Gross, J. J. (2016). Eliciting positive, negative and 

mixed emotional states: A film library for affective scientists. Cognition and emotion, 30(5), 827-856. https://doi.org/10.1080/02699931.2015.1031089  

https://youtu.be/d2g9HlwoC-s
https://youtu.be/d2g9HlwoC-s
https://youtu.be/J_6fDCo1REI?si=-ckOXFNUkchixXlh
https://youtu.be/J_6fDCo1REI?si=-ckOXFNUkchixXlh
https://youtu.be/a5lKucggtuI
https://youtu.be/Mk4bmK-acEM
https://youtu.be/Mk4bmK-acEM
https://youtu.be/T7r6ex4WnkQ
https://youtu.be/T7r6ex4WnkQ
https://youtu.be/bK1EKdDCOX0
https://youtu.be/bK1EKdDCOX0
https://doi.org/10.1080/02699931.2015.1031089
https://doi.org/10.1080/02699931.2015.1031089
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Table A.5. Coefficients and 95% confidence intervals from the raw multilevel models for 

which the random slope was removed due to non-convergence.  

NA indicates model converged with the inclusion of random slopes. Statistically significant coefficients are shown 

in bold. 

 Fixed effect 

Model  Estimate (SE) 95% CI p 

Preliminary  

NA Inertia (Raw) 0.24 (0.01) 0.21–0.27 < .001 

Adaptive CER Strategy Use 

NA Inertia (Raw) −0.04 (0.01) −0.07–−0.01 .010 

Maladaptive CER Strategy Use 

NA Inertia (Raw) NA NA NA 

Sleep Quality  

NA Inertia (Raw) NA NA NA 

Adaptive CER Strategy Use × Sleep Quality  

NA Inertia (Raw) −0.03 (0.01) −0.05–0.00 .101 

Maladaptive CER Strategy Use × Sleep Quality 

NA Inertia (Raw) NA NA NA 
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Table A.6. Coefficients and 95% confidence intervals from the standardised multilevel models 

for which the random slope was removed due to non-convergence. 

Note. For each of our standardised models, a random effects structure encompassing both the random slope and 

intercept yielded a singular fit. Removal of the random slope still resulted in a singular fit due to the random 

intercept exhibiting negligible variance, implying a lack of participant-specific variability. Despite this, we 

retained the random intercept to align with the within-person design, acknowledging that it did not affect model 

estimates. This inclusion of the random intercept ensures that the model appropriately reflects the study design 

without compromising estimation accuracy and ensures that the same model was used for both the raw and 

standardised models. Statistically significant coefficients are shown in bold.  

  

 Fixed effect 

Model  Estimate (SE) 95% CI p 

Preliminary  

NA Inertia (Standardised)  0.16 (0.01) 0.14–0.19 < .001 

Adaptive CER Strategy Use 

NA Inertia (Standardised)  −0.02 (0.01) −0.05–0.01 .197 

Maladaptive CER Strategy Use 

NA Inertia (Standardised)  0.03 (0.01) 0.00–0.05 .149 

Sleep Quality  

NA Inertia (Standardised)  0.04 (0.01) 0.01–0.07 .007 

Adaptive CER Strategy Use × Sleep Quality  

NA Inertia (Standardised)  −0.02 (0.01) −0.05−0.00 .230 

Maladaptive CER Strategy Use × Sleep Quality    

NA Inertia (Standardised)  0.01 (0.01) −0.02–0.04 .783 



197 

 

References  

Aldao, A., & Nolen-Hoeksema, S. (2010). Specificity of cognitive emotion regulation strategies: A 

transdiagnostic examination. Behaviour Research and Therapy, 48(10), 974–983. 

https://doi.org/10.1016/j.brat.2010.06.002 

Aldao, A., & Nolen-Hoeksema, S. (2012a). The influence of context on the implementation of adaptive 

emotion regulation strategies. Behaviour Research and Therapy, 50(7), 493–501. 

https://doi.org/10.1016/j.brat.2012.04.004 

Aldao, A., & Nolen-Hoeksema, S. (2012b). When are adaptive strategies most predictive of 

psychopathology? Journal of Abnormal Psychology, 121(1), 276–281. 

https://doi.org/10.1037/a0023598 

Aldao, A., Nolen-Hoeksema, S., & Schweizer, S. (2010). Emotion-regulation strategies across 

psychopathology: A meta-analytic review. Clinical Psychology Review, 30(2), 217–237. 

https://doi.org/10.1016/j.cpr.2009.11.004 

Aldao, A., Sheppes, G., & Gross, J. J. (2015). Emotion Regulation Flexibility. Cognitive Therapy and 

Research, 39(3), 263–278. https://doi.org/10.1007/s10608-014-9662-4 

Alqahtani, J. S., AlRabeeah, S. M., Aldhahir, A. M., Siraj, R., Aldabayan, Y. S., Alghamdi, S. M., 

Alqahtani, A. S., Alsaif, S. S., Naser, A. Y., & Alwafi, H. (2022). Sleep Quality, Insomnia, 

Anxiety, Fatigue, Stress, Memory and Active Coping during the COVID-19 Pandemic. 

International Journal of Environmental Research and Public Health, 19(9), Article 9. 

https://doi.org/10.3390/ijerph19094940 

Appelhans, B. M., & Luecken, L. J. (2006). Heart Rate Variability as an Index of Regulated Emotional 

Responding. Review of General Psychology, 10(3), 229–240. https://doi.org/10.1037/1089-

2680.10.3.229 

Araujo, A. P. D. C., Gadelha, M. J. N., Melo, R. L. P. D., Araujo, A. P. D. C., Gadelha, M. J. N., & 

Melo, R. L. P. D. (2020). Evidence of validity, reliability and psychometric parameters of the 

items of the Cognitive Emotion Regulation Questionnaire-Short (CERQ-Short). Psico-USF, 

25(3), 547–559. https://doi.org/10.1590/1413-82712020250312 



198 

 

Arriaga, F., & Paiva, T. (1990). Clinical and EEG Sleep Changes in Primary Dysthymia and 

Generalized Anxiety: A Comparison with Normal Controls. Neuropsychobiology, 24(3), 109–

114. https://doi.org/10.1159/000119471 

Ashton, J. E., Harrington, M. O., Guttesen, A. á V., Smith, A. K., & Cairney, S. A. (2019). Sleep 

Preserves Physiological Arousal in Emotional Memory. Scientific Reports, 9(1), Article 1. 

https://doi.org/10.1038/s41598-019-42478-2 

Ashton, J. E., Harrington, M. O., Langthorne, D., Ngo, H.-V. V., & Cairney, S. A. (2020). Sleep 

deprivation induces fragmented memory loss. Learning & Memory, 27(4), 130–135. 

https://doi.org/10.1101/lm.050757.119 

Babson, K. A., Trainor, C. D., Feldner, M. T., & Blumenthal, H. (2010). A test of the effects of acute 

sleep deprivation on general and specific self-reported anxiety and depressive symptoms: An 

experimental extension. Journal of Behavior Therapy and Experimental Psychiatry, 41(3), 

297–303. https://doi.org/10.1016/j.jbtep.2010.02.008 

Baglioni, C., Lombardo, C., Bux, E., Hansen, S., Salveta, C., Biello, S., Violani, C., & Espie, C. A. 

(2010). Psychophysiological reactivity to sleep-related emotional stimuli in primary insomnia. 

Behaviour Research and Therapy, 48(6), 467–475. https://doi.org/10.1016/j.brat.2010.01.008 

Baglioni, C., Nanovska, S., Regen, W., Spiegelhalder, K., Feige, B., Nissen, C., Reynolds, C. F., & 

Riemann, D. (2016). Sleep and mental disorders: A meta-analysis of polysomnographic 

research. Psychological Bulletin, 142(9), 969–990. https://doi.org/10.1037/bul0000053 

Baglioni, C., Spiegelhalder, K., Lombardo, C., & Riemann, D. (2010). Sleep and emotions: A focus on 

insomnia. Sleep Medicine Reviews, 14(4), 227–238. 

https://doi.org/10.1016/j.smrv.2009.10.007 

Baker, F. C., Maloney, S., & Driver, H. S. (1999). A comparison of subjective estimates of sleep with 

objective polysomnographic data in healthy men and women. Journal of Psychosomatic 

Research, 47(4), 335–341. https://doi.org/10.1016/S0022-3999(99)00017-3 

Baraldi, A. N., & Enders, C. K. (2010). An introduction to modern missing data analyses. Journal of 

School Psychology, 48(1), 5–37. https://doi.org/10.1016/j.jsp.2009.10.001 



199 

 

Barber, L. K., & Budnick, C. J. (2015). Turning molehills into mountains: Sleepiness increases 

workplace interpretive bias. Journal of Organizational Behavior, 36(3), 360–381. 

https://doi.org/10.1002/job.1992 

Barrett, L. F., Mesquita, B., & Gendron, M. (2011). Context in Emotion Perception. Current Directions 

in Psychological Science, 20(5), 286–290. https://doi.org/10.1177/0963721411422522 

Barry, R. J., & Sokolov, E. N. (1993). Habituation of phasic and tonic components of the orienting 

reflex. International Journal of Psychophysiology, 15(1), 39–42. https://doi.org/10.1016/0167-

8760(93)90093-5 

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting Linear Mixed-Effects Models using 

lme4. arXiv:1406.5823 [Stat]. http://arxiv.org/abs/1406.5823 

Battaglini, A. M., Rnic, K., Jameson, T., Jopling, E., Albert, A. Y., & LeMoult, J. (2022). The 

Association of Emotion Regulation Flexibility and Negative and Positive Affect in Daily Life. 

Affective Science, 3(3), 673–685. https://doi.org/10.1007/s42761-022-00132-7 

Bean, C. A. L., Heggeness, L. F., & Ciesla, J. A. (2021). Ruminative Inertia, Emotion Regulation, and 

Depression: A Daily-Diary Study. Behavior Therapy, 52(6), 1477–1488. 

https://doi.org/10.1016/j.beth.2021.04.004 

Becerra, R., & Campitelli, G. (2013). Emotional Reactivity: Critical Analysis and Proposal of a New 

Scale. International Journal of Applied Psychology. 

Beck, A. T., Epstein, N., Brown, G., & Steer, R. A. (1988). An inventory for measuring clinical anxiety: 

Psychometric properties. Journal of Consulting and Clinical Psychology, 56(6), 893–897. 

https://doi.org/10.1037/0022-006X.56.6.893 

Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Manual for the beck depression inventory-II. 

Psychological Corporation. 

Ben Simon, E., Rossi, A., Harvey, A. G., & Walker, M. P. (2020). Overanxious and underslept. Nature 

Human Behaviour, 4(1), Article 1. https://doi.org/10.1038/s41562-019-0754-8 

Benderoth, S., Hörmann, H.-J., Schießl, C., & Elmenhorst, E.-M. (2021). Reliability and validity of a 

3-min psychomotor vigilance task in assessing sensitivity to sleep loss and alcohol: Fitness for 



200 

 

duty in aviation and transportation. Sleep, 44(11), zsab151. 

https://doi.org/10.1093/sleep/zsab151 

Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful 

Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B 

(Methodological), 57(1), 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x 

Bi, K., & Chen, S. (2022). Sleep profiles as a longitudinal predictor for depression magnitude and 

variability following the onset of COVID-19. Journal of Psychiatric Research, 147, 159–165. 

https://doi.org/10.1016/j.jpsychires.2022.01.024 

Bianchin, M., & Angrilli, A. (2012). Gender differences in emotional responses: A psychophysiological 

study. Physiology & Behavior, 105(4), 925–932. 

https://doi.org/10.1016/j.physbeh.2011.10.031 

Bishop, S. (2007). Neurocognitive mechanisms of anxiety: An integrative account. Trends in Cognitive 

Sciences, 11(7), 307–316. https://doi.org/10.1016/j.tics.2007.05.008 

Bishop, S., Duncan, J., Brett, M., & Lawrence, A. D. (2004). Prefrontal cortical function and anxiety: 

Controlling attention to threat-related stimuli. Nature Neuroscience, 7(2), 184–188. 

https://doi.org/10.1038/nn1173 

Blanke, E. S., Neubauer, A. B., Houben, M., Erbas, Y., & Brose, A. (2022). Why do my thoughts feel 

so bad? Getting at the reciprocal effects of rumination and negative affect using dynamic 

structural equation modeling. Emotion, 22(8), 1773–1786. 

https://doi.org/10.1037/emo0000946 

Bluett, E. J., Homan, K. J., Morrison, K. L., Levin, M. E., & Twohig, M. P. (2014). Acceptance and 

commitment therapy for anxiety and OCD spectrum disorders: An empirical review. Journal 

of Anxiety Disorders, 28(6), 612–624. https://doi.org/10.1016/j.janxdis.2014.06.008 

Bonanno, G. A., & Burton, C. L. (2013). Regulatory Flexibility: An Individual Differences Perspective 

on Coping and Emotion Regulation. Perspectives on Psychological Science, 8(6), 591–612. 

https://doi.org/10.1177/1745691613504116 



201 

 

Boon, M. E., van Hooff, M. L. M., Vink, J. M., & Geurts, S. A. E. (2023). The effect of fragmented 

sleep on emotion regulation ability and usage. Cognition and Emotion, 0(0), 1–12. 

https://doi.org/10.1080/02699931.2023.2224957 

Borbély, A. A., Daan, S., Wirz-Justice, A., & Deboer, T. (2016). The two-process model of sleep 

regulation: A reappraisal. Journal of Sleep Research, 25(2), 131–143. 

https://doi.org/10.1111/jsr.12371 

Bosley, H. G., Soyster, P. D., & Fisher, A. J. (2019). Affect Dynamics as Predictors of Symptom 

Severity and Treatment Response in Mood and Anxiety Disorders: Evidence for Specificity. 

Journal for Person-Oriented Research, 5(2), 101–113. https://doi.org/10.17505/jpor.2019.09 

Bottary, R., Fields, E. C., Kensinger, E. A., & Cunningham, T. J. (2021). Age and chronotype influenced 

sleep timing changes during the first wave of the COVID-19 pandemic. Journal of Sleep 

Research, e13495. https://doi.org/10.1111/jsr.13495 

Bower, B., Bylsma, L. M., Morris, B. H., & Rottenberg, J. (2010). Poor reported sleep quality predicts 

low positive affect in daily life among healthy and mood-disordered persons. Journal of Sleep 

Research, 19(2), 323–332. https://doi.org/10.1111/j.1365-2869.2009.00816.x 

Bradley, M. M., Codispoti, M., Cuthbert, B. N., & Lang, P. J. (2001). Emotion and motivation I: 

Defensive and appetitive reactions in picture processing. Emotion, 1(3), 276–298. 

https://doi.org/10.1037/1528-3542.1.3.276 

Bradley, M. M., Cuthbert, B. N., & Lang, P. J. (1996). Picture media and emotion: Effects of a sustained 

affective context. Psychophysiology, 33(6), 662–670. https://doi.org/10.1111/j.1469-

8986.1996.tb02362.x 

Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: The self-assessment manikin and the 

semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49–

59. https://doi.org/10.1016/0005-7916(94)90063-9 

Bradley, M. M., & Lang, P. J. (2007). The International Affective Picture System (IAPS) in the study 

of emotion and attention. In Handbook of emotion elicitation and assessment (pp. 29–46). 

Oxford University Press. 



202 

 

Brans, K., Koval, P., Verduyn, P., Lim, Y. L., & Kuppens, P. (2013). The regulation of negative and 

positive affect in daily life. Emotion, 13(5), 926–939. https://doi.org/10.1037/a0032400 

Breimhorst, M., Falkenstein, M., Marks, A., & Griefahn, B. (2008). The relationship between poor sleep 

and inhibitory functions indicated by event-related potentials. Experimental Brain Research, 

187(4), 631–639. https://doi.org/10.1007/s00221-008-1333-9 

Breslau, N., Roth, T., Rosenthal, L., & Andreski, P. (1996). Sleep disturbance and psychiatric disorders: 

A longitudinal epidemiological study of young Adults. Biological Psychiatry, 39(6), 411–418. 

https://doi.org/10.1016/0006-3223(95)00188-3 

Britton, J. C., Lissek, S., Grillon, C., Norcross, M. A., & Pine, D. S. (2011). Development of anxiety: 

The role of threat appraisal and fear learning. Depression and Anxiety, 28(1), 5–17. 

https://doi.org/10.1002/da.20733 

Brose, A., Schmiedek, F., Koval, P., & Kuppens, P. (2015). Emotional inertia contributes to depressive 

symptoms beyond perseverative thinking. Cognition and Emotion, 29(3), 527–538. 

https://doi.org/10.1080/02699931.2014.916252 

Brosschot, J. F., Gerin, W., & Thayer, J. F. (2006). The perseverative cognition hypothesis: A review 

of worry, prolonged stress-related physiological activation, and health. Journal of 

Psychosomatic Research, 60(2), 113–124. https://doi.org/10.1016/j.jpsychores.2005.06.074 

Brown, V. A. (2021). An Introduction to Linear Mixed-Effects Modeling in R. Advances in Methods 

and Practices in Psychological Science, 4(1), 2515245920960351. 

https://doi.org/10.1177/2515245920960351 

Bryant, F. (2003). Savoring Beliefs Inventory (SBI): A scale for measuring beliefs about savouring. 

Journal of Mental Health, 12(2), 175–196. https://doi.org/10.1080/0963823031000103489 

Buhle, J. T., Silvers, J. A., Wager, T. D., Lopez, R., Onyemekwu, C., Kober, H., Weber, J., & Ochsner, 

K. N. (2014). Cognitive Reappraisal of Emotion: A Meta-Analysis of Human Neuroimaging 

Studies. Cerebral Cortex, 24(11), 2981–2990. https://doi.org/10.1093/cercor/bht154 

Buysse, D. J., Hall, M. L., Strollo, P. J., Kamarck, T. W., Owens, J., Lee, L., Reis, S. E., & Matthews, 

K. A. (2008). Relationships Between the Pittsburgh Sleep Quality Index (PSQI), Epworth 



203 

 

Sleepiness Scale (ESS), and Clinical/Polysomnographic Measures in a Community Sample. 

Journal of Clinical Sleep Medicine, 04(06), 563–571. https://doi.org/10.5664/jcsm.27351 

Buysse, D. J., Reynolds, I. C. F., Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The Pittsburgh 

sleep quality index: A new instrument for psychiatric practice and research. Psychiatry 

Research, 28(2), 193–213. https://doi.org/10.1016/0165-1781(89)90047-4 

Buysse, D. J., Reynolds, I. C. F., Monk, T. H., Hoch, C. C., Yeager, A. L., & Kupfer, D. J. (1991). 

Quantification of Subjective Sleep Quality in Healthy Elderly Men and Women Using the 

Pittsburgh Sleep Quality Index (PSQI). Sleep, 14(4), 331–338. 

https://doi.org/10.1093/sleep/14.4.331 

Bylsma, L. M., Morris, B. H., & Rottenberg, J. (2008). A meta-analysis of emotional reactivity in major 

depressive disorder. Clinical Psychology Review, 28(4), 676–691. 

https://doi.org/10.1016/j.cpr.2007.10.001 

Cairney, S. A., Lindsay, S., Paller, K. A., & Gaskell, M. G. (2018). Sleep preserves original and 

distorted memory traces. Cortex, 99, 39–44. https://doi.org/10.1016/j.cortex.2017.10.005 

Campbell-Sills, L., & Barlow, D. H. (2007). Incorporating Emotion Regulation into Conceptualizations 

and Treatments of Anxiety and Mood Disorders. In Handbook of emotion regulation (1st ed., 

pp. 542–559). The Guilford Press. 

Campbell-Sills, L., Simmons, A. N., Lovero, K. L., Rochlin, A. A., Paulus, M. P., & Stein, M. B. (2011). 

Functioning of neural systems supporting emotion regulation in anxiety-prone individuals. 

NeuroImage, 54(1), 689–696. https://doi.org/10.1016/j.neuroimage.2010.07.041 

Carden, S. W., Holtzman, N. S., & Strube, M. J. (2017). CAHOST: An Excel Workbook for Facilitating 

the Johnson-Neyman Technique for Two-Way Interactions in Multiple Regression. Frontiers 

in Psychology, 8. https://www.frontiersin.org/article/10.3389/fpsyg.2017.01293 

Cardi, V., Albano, G., Gentili, C., & Sudulich, L. (2021). The impact of emotion regulation and mental 

health difficulties on health behaviours during COVID19. Journal of Psychiatric Research, 

143, 409–415. https://doi.org/10.1016/j.jpsychires.2021.10.001 



204 

 

Carnevali, L., Thayer, J. F., Brosschot, J. F., & Ottaviani, C. (2018). Heart rate variability mediates the 

link between rumination and depressive symptoms: A longitudinal study. International Journal 

of Psychophysiology, 131, 131–138. https://doi.org/10.1016/j.ijpsycho.2017.11.002 

Carr, E., Oetzmann, C., Davis, K., Bergin-Cartwright, G., Dorrington, S., Lavelle, G., Leightley, D., 

Polling, C., Stevelink, S. A. M., Wickersham, A., Vitiello, V., Razavi, R., & Hotopf, M. (2022). 

Trajectories of mental health among UK university staff and postgraduate students during the 

pandemic. Occupational and Environmental Medicine. https://doi.org/10.1136/oemed-2021-

108097 

Cattaneo, L. A., Franquillo, A. C., Grecucci, A., Beccia, L., Caretti, V., & Dadomo, H. (2021). Is Low 

Heart Rate Variability Associated with Emotional Dysregulation, Psychopathological 

Dimensions, and Prefrontal Dysfunctions? An Integrative View. Journal of Personalized 

Medicine, 11(9), Article 9. https://doi.org/10.3390/jpm11090872 

Chellappa, S. L., & Aeschbach, D. (2022). Sleep and anxiety: From mechanisms to interventions. Sleep 

Medicine Reviews, 61, 101583. https://doi.org/10.1016/j.smrv.2021.101583 

Cisler, J. M., & Koster, E. H. W. (2010). Mechanisms of attentional biases towards threat in anxiety 

disorders: An integrative review. Clinical Psychology Review, 30(2), 203–216. 

https://doi.org/10.1016/j.cpr.2009.11.003 

Cisler, J. M., Olatunji, B. O., Feldner, M. T., & Forsyth, J. P. (2010). Emotion Regulation and the 

Anxiety Disorders: An Integrative Review. Journal of Psychopathology and Behavioral 

Assessment, 32(1), 68–82. https://doi.org/10.1007/s10862-009-9161-1 

Coiro, M. J., Watson, K. H., Ciriegio, A., Jones, M., Wolfson, A. R., Reisman, J., & Compas, B. E. 

(2021). Coping with COVID-19 stress: Associations with depression and anxiety in a diverse 

sample of U.S. adults. Current Psychology (New Brunswick, N.j.), 1–13. 

https://doi.org/10.1007/s12144-021-02444-6 

Consedine, N. S., & Moskowitz, J. T. (2007). The role of discrete emotions in health outcomes: A 

critical review. Applied and Preventive Psychology, 12(2), 59–75. 

https://doi.org/10.1016/j.appsy.2007.09.001 



205 

 

Costa Martins, E., Freire, M., & Ferreira-Santos, F. (2016). Examination of Adaptive and Maladaptive 

Cognitive Emotion Regulation Strategies as Transdiagnostic Processes: Associations with 

Diverse Psychological Symptoms in College Students. Studia Psychologica, 58(1), 59–73. 

https://doi.org/10.21909/sp.2016.01.707 

Cote, K., Jancsar, C., & Hunt, B. (2015). Event-related neural response to emotional picture stimuli 

following sleep deprivation. Psychology & Neuroscience, 8(1), 102–113. 

https://doi.org/10.1037/h0100354 

Croft, R. J., Gonsalvez, C. J., Gander, J., Lechem, L., & Barry, R. J. (2004). Differential relations 

between heart rate and skin conductance, and public speaking anxiety. Journal of Behavior 

Therapy and Experimental Psychiatry, 35(3), 259–271. 

https://doi.org/10.1016/j.jbtep.2004.04.012 

Csikszentmihalyi, M., & Larson, R. (2014). Validity and Reliability of the Experience-Sampling 

Method. In M. Csikszentmihalyi (Ed.), Flow and the Foundations of Positive Psychology: The 

Collected Works of Mihaly Csikszentmihalyi (pp. 35–54). Springer Netherlands. 

https://doi.org/10.1007/978-94-017-9088-8_3 

Cunningham, T. J., Crowell, C. R., Alger, S. E., Kensinger, E. A., Villano, M. A., Mattingly, S. M., & 

Payne, J. D. (2014). Psychophysiological arousal at encoding leads to reduced reactivity but 

enhanced emotional memory following sleep. Neurobiology of Learning and Memory, 114, 

155–164. https://doi.org/10.1016/j.nlm.2014.06.002 

Cunningham, T. J., Fields, E. C., Garcia, S. M., & Kensinger, E. A. (2021). The relation between age 

and experienced stress, worry, affect, and depression during the spring 2020 phase of the 

COVID-19 pandemic in the United States. Emotion, 21(8), 1660–1670. 

https://doi.org/10.1037/emo0000982 

Cunningham, T. J., Fields, E. C., & Kensinger, E. A. (2021). Boston College daily sleep and well-being 

survey data during early phase of the COVID-19 pandemic. Scientific Data, 8(1), Article 1. 

https://doi.org/10.1038/s41597-021-00886-y 



206 

 

Czeisler, M. É., Lane, R. I., Petrosky, E., Wiley, J. F., Christensen, A., Njai, R., Weaver, M. D., 

Robbins, R., Facer-Childs, E. R., Barger, L. K., Czeisler, C. A., Howard, M. E., & Rajaratnam, 

S. M. W. (2020). Mental Health, Substance Use, and Suicidal Ideation During the COVID-19 

Pandemic—United States, June 24–30, 2020. Morbidity and Mortality Weekly Report, 69(32), 

1049–1057. https://doi.org/10.15585/mmwr.mm6932a1 

Davidson, P., & Pace-Schott, E. (2020). The role of sleep in fear learning and memory. Current Opinion 

in Psychology, 34, 32–36. https://doi.org/10.1016/j.copsyc.2019.08.016 

Davidson, R. J. (1998). Affective Style and Affective Disorders: Perspectives from Affective 

Neuroscience. Cognition and Emotion, 12(3), 307–330. 

https://doi.org/10.1080/026999398379628 

Davidson, R. J. (2003). Affective neuroscience and psychophysiology: Toward a synthesis. 

Psychophysiology, 40(5), 655–665. https://doi.org/10.1111/1469-8986.00067 

De Longis, E., Alessandri, G., & Ottaviani, C. (2020). Inertia of emotions and inertia of the heart: 

Physiological processes underlying inertia of negative emotions at work. International Journal 

of Psychophysiology, 155, 210–218. https://doi.org/10.1016/j.ijpsycho.2020.06.007 

Dejonckheere, E., Mestdagh, M., Houben, M., Rutten, I., Sels, L., Kuppens, P., & Tuerlinckx, F. (2019). 

Complex affect dynamics add limited information to the prediction of psychological well-

being. Nature Human Behaviour, 3(5), Article 5. https://doi.org/10.1038/s41562-019-0555-0 

Demarque, T. C., & de Lima, E. S. (2013). Auditory Hallucination: Audiological Perspective for Horror 

Games. São Paulo. 

Dimanova, P., Borbás, R., Schnider, C. B., Fehlbaum, L. V., & Raschle, N. M. (2022). Prefrontal 

cortical thickness, emotion regulation strategy use and COVID-19 mental health. Social 

Cognitive and Affective Neuroscience, nsac018. https://doi.org/10.1093/scan/nsac018 

Domaradzka, E., & Fajkowska, M. (2018). Cognitive Emotion Regulation Strategies in Anxiety and 

Depression Understood as Types of Personality. Frontiers in Psychology, 9. 

https://doi.org/10.3389/fpsyg.2018.00856 



207 

 

Domes, G., Schulze, L., Böttger, M., Grossmann, A., Hauenstein, K., Wirtz, P. H., Heinrichs, M., & 

Herpertz, S. C. (2010). The neural correlates of sex differences in emotional reactivity and 

emotion regulation. Human Brain Mapping, 31(5), 758–769. 

https://doi.org/10.1002/hbm.20903 

Domínguez-Sánchez, F. J., Lasa-Aristu, A., Amor, P. J., & Holgado-Tello, F. P. (2013). Psychometric 

Properties of the Spanish Version of the Cognitive Emotion Regulation Questionnaire. 

Assessment, 20(2), 253–261. https://doi.org/10.1177/1073191110397274 

Drabant, E. M., McRae, K., Manuck, S. B., Hariri, A. R., & Gross, J. J. (2009). Individual Differences 

in Typical Reappraisal Use Predict Amygdala and Prefrontal Responses. Biological Psychiatry, 

65(5), 367–373. https://doi.org/10.1016/j.biopsych.2008.09.007 

Drummond, S. P. A., Brown, G. G., Stricker, J. L., Buxton, R. B., Wong, E. C., & Gillin, J. C. (1999). 

Sleep deprivation-induced reduction in cortical functional response to serial subtraction. 

NeuroReport, 10(18), 3745–3748. https://doi.org/10.1097/00001756-199912160-00004 

Dryman, M. T., & Heimberg, R. G. (2018). Emotion regulation in social anxiety and depression: A 

systematic review of expressive suppression and cognitive reappraisal. Clinical Psychology 

Review, 65, 17–42. https://doi.org/10.1016/j.cpr.2018.07.004 

Ebner-Priemer, U. W., Houben, M., Santangelo, P., Kleindienst, N., Tuerlinckx, F., Oravecz, Z., 

Verleysen, G., Van Deun, K., Bohus, M., & Kuppens, P. (2015). Unraveling affective 

dysregulation in borderline personality disorder: A theoretical model and empirical evidence. 

Journal of Abnormal Psychology, 124(1), 186–198. https://doi.org/10.1037/abn0000021 

Enders, C. K., & Tofighi, D. (2007). Centering predictor variables in cross-sectional multilevel models: 

A new look at an old issue. Psychological Methods, 12(2), 121–138. 

https://doi.org/10.1037/1082-989X.12.2.121 

Engen, H. G., & Anderson, M. C. (2018). Memory Control: A Fundamental Mechanism of Emotion 

Regulation. Trends in Cognitive Sciences, 22(11), 982–995. 

https://doi.org/10.1016/j.tics.2018.07.015 



208 

 

Etkin, A., Büchel, C., & Gross, J. J. (2015). The neural bases of emotion regulation. Nature Reviews 

Neuroscience, 16(11), Article 11. https://doi.org/10.1038/nrn4044 

Fairholme, C. P., & Manber, R. (2015). Chapter 3 - Sleep, Emotions, and Emotion Regulation: An 

Overview. In K. A. Babson & M. T. Feldner (Eds.), Sleep and Affect (pp. 45–61). Academic 

Press. https://doi.org/10.1016/B978-0-12-417188-6.00003-7 

Fairholme, C. P., Nosen, E. L., Nillni, Y. I., Schumacher, J. A., Tull, M. T., & Coffey, S. F. (2013). 

Sleep disturbance and emotion dysregulation as transdiagnostic processes in a comorbid 

sample. Behaviour Research and Therapy, 51(9), 540–546. 

https://doi.org/10.1016/j.brat.2013.05.014 

Fancourt, D., Steptoe, A., & Bu, F. (2020). Trajectories of anxiety and depressive symptoms during 

enforced isolation due to COVID-19: Longitudinal analyses of 36,520 adults in England. 

medRxiv, 2020.06.03.20120923. https://doi.org/10.1101/2020.06.03.20120923 

Feeser, M., Prehn, K., Kazzer, P., Mungee, A., & Bajbouj, M. (2014). Transcranial Direct Current 

Stimulation Enhances Cognitive Control During Emotion Regulation. Brain Stimulation, 7(1), 

105–112. https://doi.org/10.1016/j.brs.2013.08.006 

Feng, P., Becker, B., Feng, T., & Zheng, Y. (2018). Alter spontaneous activity in amygdala and vmPFC 

during fear consolidation following 24 h sleep deprivation. NeuroImage, 172, 461–469. 

https://doi.org/10.1016/j.neuroimage.2018.01.057 

Fields, E. C., Kensinger, E. A., Garcia, S. M., Ford, J. H., & Cunningham, T. J. (2021). With age comes 

well-being: Older age associated with lower stress, negative affect, and depression throughout 

the COVID-19 pandemic. Aging & Mental Health, 0(0), 1–9. 

https://doi.org/10.1080/13607863.2021.2010183 

Foa, E. B., & McLean, C. P. (2016). The Efficacy of Exposure Therapy for Anxiety-Related Disorders 

and Its Underlying Mechanisms: The Case of OCD and PTSD. Annual Review of Clinical 

Psychology, 12, 1–28. https://doi.org/10.1146/annurev-clinpsy-021815-093533 

Forbes, E. E., Bertocci, M. A., Gregory, A. M., Ryan, N. D., Axelson, D. A., Birmaher, B., & Dahl, R. 

E. (2008). Objective Sleep in Pediatric Anxiety Disorders and Major Depressive Disorder. 



209 

 

Journal of the American Academy of Child & Adolescent Psychiatry, 47(2), 148–155. 

https://doi.org/10.1097/chi.0b013e31815cd9bc 

Ford, J. H., DiBiase, H. D., & Kensinger, E. A. (2018). Finding the good in the bad: Age and event 

experience relate to the focus on positive aspects of a negative event. Cognition and Emotion, 

32(2), 414–421. https://doi.org/10.1080/02699931.2017.1301387 

Ford, J. H., DiBiase, H. D., Ryu, E., & Kensinger, E. A. (2018). It gets better with time: Enhancement 

of age-related positivity effect in the six months following a highly negative public event. 

Psychology and Aging, 33(3), 419–424. https://doi.org/10.1037/pag0000250 

Forte, G., Favieri, F., & Casagrande, M. (2019). Heart Rate Variability and Cognitive Function: A 

Systematic Review. Frontiers in Neuroscience, 13. 

https://www.frontiersin.org/article/10.3389/fnins.2019.00710 

Foti, D., & Hajcak, G. (2008). Deconstructing Reappraisal: Descriptions Preceding Arousing Pictures 

Modulate the Subsequent Neural Response. Journal of Cognitive Neuroscience, 20(6), 977–

988. https://doi.org/10.1162/jocn.2008.20066 

Franceschini, C., Musetti, A., Zenesini, C., Palagini, L., Scarpelli, S., Quattropani, M. C., Lenzo, V., 

Freda, M. F., Lemmo, D., Vegni, E., Borghi, L., Saita, E., Cattivelli, R., De Gennaro, L., Plazzi, 

G., Riemann, D., & Castelnuovo, G. (2020). Poor Sleep Quality and Its Consequences on 

Mental Health During the COVID-19 Lockdown in Italy. Frontiers in Psychology, 11. 

https://doi.org/10.3389/fpsyg.2020.574475 

Franchow, E. I., & Suchy, Y. (2015). Naturally-occurring expressive suppression in daily life depletes 

executive functioning. Emotion, 15(1), 78–89. https://doi.org/10.1037/emo0000013 

Franzen, P. L., Buysse, D. J., Dahl, R. E., Thompson, W., & Siegle, G. J. (2009). Sleep deprivation 

alters pupillary reactivity to emotional stimuli in healthy young adults. Biological Psychology, 

80(3), 300–305. https://doi.org/10.1016/j.biopsycho.2008.10.010 

Franzen, P. L., Siegle, G. J., & Buysse, D. J. (2008). Relationships between affect, vigilance, and 

sleepiness following sleep deprivation. Journal of Sleep Research, 17(1), 34–41. 

https://doi.org/10.1111/j.1365-2869.2008.00635.x 



210 

 

Freeman, D., Sheaves, B., Goodwin, G. M., Yu, L.-M., Nickless, A., Harrison, P. J., Emsley, R., Luik, 

A. I., Foster, R. G., Wadekar, V., Hinds, C., Gumley, A., Jones, R., Lightman, S., Jones, S., 

Bentall, R., Kinderman, P., Rowse, G., Brugha, T., … Espie, C. A. (2017). The effects of 

improving sleep on mental health (OASIS): A randomised controlled trial with mediation 

analysis. The Lancet Psychiatry, 4(10), 749–758. https://doi.org/10.1016/S2215-

0366(17)30328-0 

French, M. T., Mortensen, K., & Timming, A. R. (2022). Changes in self-reported health, alcohol 

consumption, and sleep quality during the COVID-19 pandemic in the United States. Applied 

Economics Letters, 29(3), 219–225. https://doi.org/10.1080/13504851.2020.1861197 

Frérart, L., Bilsen, L., Dejonckheere, E., & Kuppens, P. (2023). Overnight emotional inertia in relation 

to depressive symptomatology and subjective sleep quality. SLEEP Advances, 4(1), zpac048. 

https://doi.org/10.1093/sleepadvances/zpac048 

Friedman, N. P., & Miyake, A. (2017). Unity and diversity of executive functions: Individual 

differences as a window on cognitive structure. Cortex, 86, 186–204. 

https://doi.org/10.1016/j.cortex.2016.04.023 

Frijda, N. H., & Mesquita, B. (1998). The Analysis of Emotions. In M. F. Mascolo & S. Griffin (Eds.), 

What Develops in Emotional Development? (pp. 273–295). Springer US. 

https://doi.org/10.1007/978-1-4899-1939-7_11 

Fuller, K. H., Waters, W. F., Binks, P. G., & Anderson, T. (1997). Generalized Anxiety and Sleep 

Architecture: A Polysomnographic Investigation. Sleep, 20(5), 370–376. 

https://doi.org/10.1093/sleep/20.5.370 

Gable, S. L., Reis, H. T., Impett, E. A., & Asher, E. R. (2004). What Do You Do When Things Go 

Right? The Intrapersonal and Interpersonal Benefits of Sharing Positive Events. Journal of 

Personality and Social Psychology, 87(2), 228–245. https://doi.org/10.1037/0022-

3514.87.2.228 



211 

 

Garnefski, N., & Kraaij, V. (2006). Cognitive emotion regulation questionnaire – development of a 

short 18-item version (CERQ-short). Personality and Individual Differences, 41(6), 1045–

1053. https://doi.org/10.1016/j.paid.2006.04.010 

Garnefski, N., Kraaij, V., & Spinhoven, P. (2001). Negative life events, cognitive emotion regulation 

and emotional problems. Personality and Individual Differences, 30(8), 1311–1327. 

https://doi.org/10.1016/S0191-8869(00)00113-6 

Garnefski, N., Legerstee, J., Kraaij, V., Van den kommer, T., & Teerds, J. (2002). Cognitive coping 

strategies and symptoms of depression and anxiety: A comparison between adolescents and 

adults. Journal of Adolescence, 25(6), 603–611. https://doi.org/10.1006/jado.2002.0507 

Gémes, K., Bergström, J., Papola, D., Barbui, C., Lam, A. I. F., Hall, B. J., Seedat, S., Morina, N., 

Quero, S., Campos, D., Pinucci, I., Tarsitani, L., Deguen, S., van der Waerden, J., Patanè, M., 

Sijbrandij, M., Acartürk, C., Burchert, S., Bryant, R. A., & Mittendorfer-Rutz, E. (2022). 

Symptoms of anxiety and depression during the COVID-19 pandemic in six European countries 

and Australia – Differences by prior mental disorders and migration status. Journal of Affective 

Disorders, 311, 214–223. https://doi.org/10.1016/j.jad.2022.05.082 

Gendron, M., & Feldman Barrett, L. (2009). Reconstructing the Past: A Century of Ideas About 

Emotion in Psychology. Emotion Review, 1(4), 316–339. 

https://doi.org/10.1177/1754073909338877 

Gilbert, K. E., Tonge, N. A., & Thompson, R. J. (2019). Associations between depression, anxious 

arousal and manifestations of psychological inflexibility. Journal of Behavior Therapy and 

Experimental Psychiatry, 62, 88–96. https://doi.org/10.1016/j.jbtep.2018.09.006 

Gillie, B. L., Vasey, M. W., & Thayer, J. F. (2014). Heart Rate Variability Predicts Control Over 

Memory Retrieval. Psychological Science, 25(2), 458–465. 

https://doi.org/10.1177/0956797613508789 

Girard, J. M., & Wright, A. C. G. (2018). DARMA: Software for dual axis rating and media annotation. 

Behavior Research Methods, 50(3), 902–909. https://doi.org/10.3758/s13428-017-0915-5 



212 

 

Giustino, T. F., & Maren, S. (2015). The Role of the Medial Prefrontal Cortex in the Conditioning and 

Extinction of Fear. Frontiers in Behavioral Neuroscience, 9. 

https://www.frontiersin.org/articles/10.3389/fnbeh.2015.00298 

Goldin, P. R., Manber, T., Hakimi, S., Canli, T., & Gross, J. J. (2009). Neural Bases of Social Anxiety 

Disorder: Emotional Reactivity and Cognitive Regulation During Social and Physical Threat. 

Archives of General Psychiatry, 66(2), 170–180. 

https://doi.org/10.1001/archgenpsychiatry.2008.525 

Goldin, P. R., McRae, K., Ramel, W., & Gross, J. J. (2008). The Neural Bases of Emotion Regulation: 

Reappraisal and Suppression of Negative Emotion. Biological Psychiatry, 63(6), 577–586. 

https://doi.org/10.1016/j.biopsych.2007.05.031 

Goldstein, A. N., Greer, S. M., Saletin, J. M., Harvey, A. G., Nitschke, J. B., & Walker, M. P. (2013). 

Tired and Apprehensive: Anxiety Amplifies the Impact of Sleep Loss on Aversive Brain 

Anticipation. Journal of Neuroscience, 33(26), 10607–10615. 

https://doi.org/10.1523/JNEUROSCI.5578-12.2013 

Goldstein, A. N., & Walker, M. P. (2014). The Role of Sleep in Emotional Brain Function. Annual 

Review of Clinical Psychology, 10(1), 679–708. https://doi.org/10.1146/annurev-clinpsy-

032813-153716 

Goldstein-Piekarski, A. N., Greer, S. M., Saletin, J. M., & Walker, M. P. (2015). Sleep Deprivation 

Impairs the Human Central and Peripheral Nervous System Discrimination of Social Threat. 

Journal of Neuroscience, 35(28), 10135–10145. https://doi.org/10.1523/JNEUROSCI.5254-

14.2015 

Grandner, M. A., Kripke, D. F., Yoon, I.-Y., & Youngstedt, S. D. (2006). Criterion validity of the 

Pittsburgh Sleep Quality Index: Investigation in a non-clinical sample. Sleep and Biological 

Rhythms, 4(2), 129–136. https://doi.org/10.1111/j.1479-8425.2006.00207.x 

Greenberg, R., Pillard, R., & Pearlman, C. (1972). The Effect of Dream (Stage REM) Deprivation on 

Adaptation to Stress. Psychosomatic Medicine, 34(3), 257–262. 



213 

 

Grillon, C. (2002). Startle reactivity and anxiety disorders: Aversive conditioning, context, and 

neurobiology. Biological Psychiatry, 52(10), 958–975. https://doi.org/10.1016/S0006-

3223(02)01665-7 

Grillon, C. (2008). Models and mechanisms of anxiety: Evidence from startle studies. 

Psychopharmacology, 199(3), 421–437. https://doi.org/10.1007/s00213-007-1019-1 

Gross, J. J. (1998). The Emerging Field of Emotion Regulation: An Integrative Review. Review of 

General Psychology, 2(3), 271–299. https://doi.org/10.1037/1089-2680.2.3.271 

Gross, J. J. (2002). Emotion regulation: Affective, cognitive, and social consequences. 

Psychophysiology, 39(3), 281–291. https://doi.org/10.1017/S0048577201393198 

Gross, J. J. (2013). Emotion regulation: Taking stock and moving forward. Emotion, 13(3), 359–365. 

https://doi.org/10.1037/a0032135 

Gross, J. J. (2014). Emotion regulation: Conceptual and empirical foundations. In Handbook of emotion 

regulation, 2nd ed (pp. 3–20). The Guilford Press. 

Gross, J. J. (2015). Emotion Regulation: Current Status and Future Prospects. Psychological Inquiry, 

26(1), 1–26. https://doi.org/10.1080/1047840X.2014.940781 

Gross, J. J., & Feldman Barrett, L. (2011). Emotion Generation and Emotion Regulation: One or Two 

Depends on Your Point of View. Emotion Review, 3(1), 8–16. 

https://doi.org/10.1177/1754073910380974 

Gross, J. J., & John, O. P. (2003). Individual differences in two emotion regulation processes: 

Implications for affect, relationships, and well-being. Journal of Personality and Social 

Psychology, 85(2), 348–362. https://doi.org/10.1037/0022-3514.85.2.348 

Gross, J. J., Richards, J. M., & John, O. P. (2006). Emotion Regulation in Everyday Life. In Emotion 

regulation in couples and families: Pathways to dysfunction and health (pp. 13–35). American 

Psychological Association. https://doi.org/10.1037/11468-001 

Gruber, J., Mauss, I. B., & Tamir, M. (2011). A Dark Side of Happiness? How, When, and Why 

Happiness Is Not Always Good. Perspectives on Psychological Science, 6(3), 222–233. 

https://doi.org/10.1177/1745691611406927 



214 

 

Gruber, R., & Cassoff, J. (2014). The Interplay Between Sleep and Emotion Regulation: Conceptual 

Framework Empirical Evidence and Future Directions. Current Psychiatry Reports, 16(11), 

500. https://doi.org/10.1007/s11920-014-0500-x 

Guastella, A. J., & Moulds, M. L. (2007). The impact of rumination on sleep quality following a 

stressful life event. Personality and Individual Differences, 42(6), 1151–1162. 

https://doi.org/10.1016/j.paid.2006.04.028 

Guendelman, S., Medeiros, S., & Rampes, H. (2017). Mindfulness and Emotion Regulation: Insights 

from Neurobiological, Psychological, and Clinical Studies. Frontiers in Psychology, 8. 

https://www.frontiersin.org/articles/10.3389/fpsyg.2017.00220 

Gujar, N., McDonald, S. A., Nishida, M., & Walker, M. P. (2011). A Role for REM Sleep in 

Recalibrating the Sensitivity of the Human Brain to Specific Emotions. Cerebral Cortex, 21(1), 

115–123. https://doi.org/10.1093/cercor/bhq064 

Gujar, N., Yoo, S.-S., Hu, P., & Walker, M. P. (2011). Sleep Deprivation Amplifies Reactivity of Brain 

Reward Networks, Biasing the Appraisal of Positive Emotional Experiences. Journal of 

Neuroscience, 31(12), 4466–4474. https://doi.org/10.1523/JNEUROSCI.3220-10.2011 

Guttesen, A. á V., Gaskell, M. G., Madden, E. V., Appleby, G., Cross, Z. R., & Cairney, S. A. (2023). 

Sleep loss disrupts the neural signature of successful learning. Cerebral Cortex, 33(5), 1610–

1625. https://doi.org/10.1093/cercor/bhac159 

Habel, C., & Kooyman, B. (2014). Agency mechanics: Gameplay design in survival horror video 

games. Digital Creativity, 25(1), 1–14. https://doi.org/10.1080/14626268.2013.776971 

Haines, S. J., Gleeson, J., Kuppens, P., Hollenstein, T., Ciarrochi, J., Labuschagne, I., Grace, C., & 

Koval, P. (2016). The Wisdom to Know the Difference: Strategy-Situation Fit in Emotion 

Regulation in Daily Life Is Associated With Well-Being. Psychological Science, 27(12), 1651–

1659. https://doi.org/10.1177/0956797616669086 

Hajcak, G., Moser, J. S., & Simons, R. F. (2006). Attending to affect: Appraisal strategies modulate the 

electrocortical response to arousing pictures. Emotion, 6(3), 517–522. 

https://doi.org/10.1037/1528-3542.6.3.517 



215 

 

Hajcak, G., & Nieuwenhuis, S. (2006). Reappraisal modulates the electrocortical response to unpleasant 

pictures. Cognitive, Affective, & Behavioral Neuroscience, 6(4), 291–297. 

https://doi.org/10.3758/CABN.6.4.291 

Hamaker, E. L. (2012). Why researchers should think ‘within-person’: A paradigmatic rationale. In 

Handbook of research methods for studying daily life (pp. 43–61). The Guilford Press. 

Hamaker, E. L., Asparouhov, T., Brose, A., Schmiedek, F., & Muthén, B. (2018). At the Frontiers of 

Modeling Intensive Longitudinal Data: Dynamic Structural Equation Models for the Affective 

Measurements from the COGITO Study. Multivariate Behavioral Research, 53(6), 820–841. 

https://doi.org/10.1080/00273171.2018.1446819 

Hamaker, E. L., & Grasman, R. P. P. P. (2015). To center or not to center? Investigating inertia with a 

multilevel autoregressive model. Frontiers in Psychology, 5. 

https://www.frontiersin.org/articles/10.3389/fpsyg.2014.01492 

Harrell, F. (2023). Hmisc: Harrell Miscellaneous (5.1-0) [Computer software]. https://cran.r-

project.org/web/packages/Hmisc/index.html 

Harrington, M. O., Ashton, J. E., Ngo, H.-V. V., & Cairney, S. A. (2021). Phase-locked auditory 

stimulation of theta oscillations during rapid eye movement sleep. Sleep, 44(4), zsaa227. 

https://doi.org/10.1093/sleep/zsaa227 

Harrington, M. O., Ashton, J. E., Sankarasubramanian, S., Anderson, M. C., & Cairney, S. A. (2021). 

Losing Control: Sleep Deprivation Impairs the Suppression of Unwanted Thoughts. Clinical 

Psychological Science, 9(1), 97–113. https://doi.org/10.1177/2167702620951511 

Harrington, M. O., & Cairney, S. A. (2021). Sleep Loss Gives Rise to Intrusive Thoughts. Trends in 

Cognitive Sciences. https://doi.org/10.1016/j.tics.2021.03.001 

Harvey, A. G. (2001). INSOMNIA: SYMPTOM OR DIAGNOSIS? Clinical Psychology Review, 21(7), 

1037–1059. https://doi.org/10.1016/S0272-7358(00)00083-0 

Harvey, A. G., Murray, G., Chandler, R. A., & Soehner, A. (2011). Sleep disturbance as transdiagnostic: 

Consideration of neurobiological mechanisms. Clinical Psychology Review, 31(2), 225–235. 

https://doi.org/10.1016/j.cpr.2010.04.003 



216 

 

Hayes, S. C. (2008). Climbing Our Hills: A Beginning Conversation on the Comparison of Acceptance 

and Commitment Therapy and Traditional Cognitive Behavioral Therapy. Clinical Psychology: 

Science and Practice, 15(4), 286–295. https://doi.org/10.1111/j.1468-2850.2008.00139.x 

Heiy, J. E., & Cheavens, J. S. (2014). Back to basics: A naturalistic assessment of the experience and 

regulation of emotion. Emotion, 14(5), 878–891. https://doi.org/10.1037/a0037231 

Hildebrandt, L. K., McCall, C., Engen, H. G., & Singer, T. (2016). Cognitive flexibility, heart rate 

variability, and resilience predict fine-grained regulation of arousal during prolonged threat. 

Psychophysiology, 53(6), 880–890. https://doi.org/10.1111/psyp.12632 

Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika, 

75(4), 800–802. https://doi.org/10.1093/biomet/75.4.800 

Hoddes, E., Zarcone, V., Smythe, H., Phillips, R., & Dement, W. C. (1973). Quantification of 

Sleepiness: A New Approach. Psychophysiology, 10(4), 431–436. 

https://doi.org/10.1111/j.1469-8986.1973.tb00801.x 

Hofmann, S. G., & Asmundson, G. J. G. (2008). Acceptance and mindfulness-based therapy: New wave 

or old hat? Clinical Psychology Review, 28(1), 1–16. https://doi.org/10.1016/j.cpr.2007.09.003 

Hofmann, S. M., Klotzsche, F., Mariola, A., Nikulin, V., Villringer, A., & Gaebler, M. (2021). 

Decoding subjective emotional arousal from EEG during an immersive virtual reality 

experience. eLife, 10, e64812. https://doi.org/10.7554/eLife.64812 

Höhn, P., Menne-Lothmann, C., Peeters, F., Nicolson, N. A., Jacobs, N., Derom, C., Thiery, E., van Os, 

J., & Wichers, M. (2013). Moment-to-Moment Transfer of Positive Emotions in Daily Life 

Predicts Future Course of Depression in Both General Population and Patient Samples. PLOS 

ONE, 8(9), e75655. https://doi.org/10.1371/journal.pone.0075655 

Hollenstein, T., & Lanteigne, D. (2014). Models and methods of emotional concordance. Biological 

Psychology, 98, 1–5. https://doi.org/10.1016/j.biopsycho.2013.12.012 

Homan, R. W., Herman, J., & Purdy, P. (1987). Cerebral location of international 10–20 system 

electrode placement. Electroencephalography and Clinical Neurophysiology, 66(4), 376–382. 

https://doi.org/10.1016/0013-4694(87)90206-9 



217 

 

Horne, J. A., & Östberg, O. (1976). A self-assessment questionnaire to determine morningness-

eveningness in human circadian rhythms. International Journal of Chronobiology, 4, 97–110. 

Houben, M., Van Den Noortgate, W., & Kuppens, P. (2015). The relation between short-term emotion 

dynamics and psychological well-being: A meta-analysis. Psychological Bulletin, 141(4), 901–

930. https://doi.org/10.1037/a0038822 

Huber, R., Määttä, S., Esser, S. K., Sarasso, S., Ferrarelli, F., Watson, A., Ferreri, F., Peterson, M. J., 

& Tononi, G. (2008). Measures of Cortical Plasticity after Transcranial Paired Associative 

Stimulation Predict Changes in Electroencephalogram Slow-Wave Activity during Subsequent 

Sleep. The Journal of Neuroscience, 28(31), 7911–7918. 

https://doi.org/10.1523/JNEUROSCI.1636-08.2008 

Hutchins, B. E., & Young, S. G. (2018). State Anxiety. In V. Zeigler-Hill & T. K. Shackelford (Eds.), 

Encyclopedia of Personality and Individual Differences (pp. 1–3). Springer International 

Publishing. https://doi.org/10.1007/978-3-319-28099-8_1919-1 

Hutchison, I. C., Pezzoli, S., Tsimpanouli, M.-E., Abdellahi, M. E. A., & Lewis, P. A. (2021). Targeted 

memory reactivation in REM but not SWS selectively reduces arousal responses. 

Communications Biology, 4(1), Article 1. https://doi.org/10.1038/s42003-021-01854-3 

Iber, C., Ancoli-Israel, S., Chesson, A. L., & Quan, S. F. (2007). The AASM manual for the scoring of 

sleep and associated events: Rules, terminology and technical specifications. American 

Academy of Sleep Medicine. 

Ioannidis, C. A., & Siegling, A. B. (2015). Criterion and incremental validity of the emotion regulation 

questionnaire. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.00247 

Ireland, M. J., Clough, B. A., & Day, J. J. (2017). The cognitive emotion regulation questionnaire: 

Factorial, convergent, and criterion validity analyses of the full and short versions. Personality 

and Individual Differences, 110, 90–95. https://doi.org/10.1016/j.paid.2017.01.035 

Jahng, S., Wood, P. K., & Trull, T. J. (2008). Analysis of affective instability in ecological momentary 

assessment: Indices using successive difference and group comparison via multilevel modeling. 

Psychological Methods, 13(4), 354–375. https://doi.org/10.1037/a0014173 



218 

 

Jeffreys, H. (1961). The Theory of Probability. OUP Oxford. 

Jia, R., Ayling, K., Chalder, T., Massey, A., Gasteiger, N., Broadbent, E., Coupland, C., & Vedhara, K. 

(2022). The prevalence, incidence, prognosis and risk factors for symptoms of depression and 

anxiety in a UK cohort during the COVID-19 pandemic. BJPsych Open, 8(2), e64. 

https://doi.org/10.1192/bjo.2022.34 

Johnson, K. J., Zaback, M., Tokuno, C. D., Carpenter, M. G., & Adkin, A. L. (2019). Repeated exposure 

to the threat of perturbation induces emotional, cognitive, and postural adaptations in young 

and older adults. Experimental Gerontology, 122, 109–115. 

https://doi.org/10.1016/j.exger.2019.04.015 

Jongerling, J., Laurenceau, J.-P., & Hamaker, E. L. (2015). A Multilevel AR(1) Model: Allowing for 

Inter-Individual Differences in Trait-Scores, Inertia, and Innovation Variance. Multivariate 

Behavioral Research, 50(3), 334–349. https://doi.org/10.1080/00273171.2014.1003772 

Joormann, J. (2010). Cognitive Inhibition and Emotion Regulation in Depression. Current Directions 

in Psychological Science, 19(3), 161–166. https://doi.org/10.1177/0963721410370293 

Joormann, J., & Gotlib, I. H. (2010). Emotion regulation in depression: Relation to cognitive inhibition. 

Cognition and Emotion, 24(2), 281–298. https://doi.org/10.1080/02699930903407948 

Joormann, J., & Tanovic, E. (2015). Cognitive vulnerability to depression: Examining cognitive control 

and emotion regulation. Current Opinion in Psychology, 4, 86–92. 

https://doi.org/10.1016/j.copsyc.2014.12.006 

Jungmann, S. M., & Witthöft, M. (2020). Health anxiety, cyberchondria, and coping in the current 

COVID-19 pandemic: Which factors are related to coronavirus anxiety? Journal of Anxiety 

Disorders, 73, 102239. https://doi.org/10.1016/j.janxdis.2020.102239 

Kahn, M., Sheppes, G., & Sadeh, A. (2013). Sleep and emotions: Bidirectional links and underlying 

mechanisms. International Journal of Psychophysiology, 89(2), 218–228. 

https://doi.org/10.1016/j.ijpsycho.2013.05.010 



219 

 

Kahneman, D., Fredrickson, B. L., Schreiber, C. A., & Redelmeier, D. A. (1993). When More Pain Is 

Preferred to Less: Adding a Better End. Psychological Science, 4(6), 401–405. 

https://doi.org/10.1111/j.1467-9280.1993.tb00589.x 

Kaida, K., Niki, K., & Born, J. (2015). Role of sleep for encoding of emotional memory. Neurobiology 

of Learning and Memory, 121, 72–79. https://doi.org/10.1016/j.nlm.2015.04.002 

Kashdan, T. B., & Rottenberg, J. (2010). Psychological flexibility as a fundamental aspect of health. 

Clinical Psychology Review, 30(7), 865–878. https://doi.org/10.1016/j.cpr.2010.03.001 

Kassambara, A. (2023). rstatix: Pipe-Friendly Framework for Basic Statistical Tests (0.7.2) [Computer 

software]. https://cran.r-project.org/web/packages/rstatix/index.html 

Kechter, A., & Leventhal, A. M. (2019). Longitudinal Association of Sleep Problems and Distress 

Tolerance During Adolescence. Behavioral Medicine, 45(3), 240–248. 

https://doi.org/10.1080/08964289.2018.1514362 

Kelly, M. M., Tyrka, A. R., Price, L. H., & Carpenter, L. L. (2008). Sex differences in the use of coping 

strategies: Predictors of anxiety and depressive symptoms. Depression and Anxiety, 25(10), 

839–846. https://doi.org/10.1002/da.20341 

Keng, S.-L., & Tong, E. M. W. (2016). Riding the tide of emotions with mindfulness: Mindfulness, 

affect dynamics, and the mediating role of coping. Emotion, 16(5), 706–718. 

https://doi.org/10.1037/emo0000165 

Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). Lifetime 

Prevalence and Age-of-Onset Distributions of DSM-IV Disorders in the National Comorbidity 

Survey Replication. Archives of General Psychiatry, 62(6), 593–602. 

https://doi.org/10.1001/archpsyc.62.6.593 

Khitrov, M. Y., Laxminarayan, S., Thorsley, D., Ramakrishnan, S., Rajaraman, S., Wesensten, N. J., & 

Reifman, J. (2014). PC-PVT: A platform for psychomotor vigilance task testing, analysis, and 

prediction. Behavior Research Methods, 46(1), 140–147. https://doi.org/10.3758/s13428-013-

0339-9 



220 

 

Kim, E. J., & Dimsdale, J. E. (2007). The Effect of Psychosocial Stress on Sleep: A Review of 

Polysomnographic Evidence. Behavioral Sleep Medicine, 5(4), 256–278. 

https://doi.org/10.1080/15402000701557383 

Kim, M. J., Gee, D. G., Loucks, R. A., Davis, F. C., & Whalen, P. J. (2011). Anxiety Dissociates Dorsal 

and Ventral Medial Prefrontal Cortex Functional Connectivity with the Amygdala at Rest. 

Cerebral Cortex, 21(7), 1667–1673. https://doi.org/10.1093/cercor/bhq237 

Kim, S. H., & Hamann, S. (2007). Neural Correlates of Positive and Negative Emotion Regulation. 

Journal of Cognitive Neuroscience, 19(5), 776–798. 

https://doi.org/10.1162/jocn.2007.19.5.776 

Kim, S. H., & Hamann, S. (2012). The effect of cognitive reappraisal on physiological reactivity and 

emotional memory. International Journal of Psychophysiology, 83(3), 348–356. 

https://doi.org/10.1016/j.ijpsycho.2011.12.001 

Kirschbaum-Lesch, I., Holtmann, M., & Legenbauer, T. (2021). Deficits in Emotion Regulation Partly 

Mediate the Relation Between Sleep Problems and Depressive Symptoms in Adolescent 

Inpatients With Depression. Frontiers in Psychiatry, 12. 

https://doi.org/10.3389/fpsyt.2021.622833 

Kleiman, E. M. (2021). EMAtools: Data Management Tools for Real-Time Monitoring/Ecological 

Momentary Assessment Data. (0.1.4.) [R Studio.]. https://CRAN.R-

project.org/package=EMAtools 

Kocalevent, R.-D., Hinz, A., & Brähler, E. (2013). Standardization of the depression screener Patient 

Health Questionnaire (PHQ-9) in the general population. General Hospital Psychiatry, 35(5), 

551–555. https://doi.org/10.1016/j.genhosppsych.2013.04.006 

Kohn, N., Eickhoff, S. B., Scheller, M., Laird, A. R., Fox, P. T., & Habel, U. (2014). Neural network 

of cognitive emotion regulation—An ALE meta-analysis and MACM analysis. NeuroImage, 

87, 345–355. https://doi.org/10.1016/j.neuroimage.2013.11.001 

Koole, S. L. (2009). The psychology of emotion regulation: An integrative review. Cognition and 

Emotion, 23(1), 4–41. https://doi.org/10.1080/02699930802619031 



221 

 

Koval, P., Brose, A., Pe, M. L., Houben, M., Erbas, Y., Champagne, D., & Kuppens, P. (2015). 

Emotional inertia and external events: The roles of exposure, reactivity, and recovery. Emotion, 

15(5), 625–636. https://doi.org/10.1037/emo0000059 

Koval, P., Burnett, P. T., & Zheng, Y. (2021). Emotional Inertia: On the Conservation of Emotional 

Momentum. In C. E. Waugh & P. Kuppens (Eds.), Affect Dynamics (pp. 63–94). Springer 

International Publishing. https://doi.org/10.1007/978-3-030-82965-0_4 

Koval, P., Butler, E. A., Hollenstein, T., Lanteigne, D., & Kuppens, P. (2015). Emotion regulation and 

the temporal dynamics of emotions: Effects of cognitive reappraisal and expressive suppression 

on emotional inertia. Cognition and Emotion, 29(5), 831–851. 

https://doi.org/10.1080/02699931.2014.948388 

Koval, P., & Kuppens, P. (2012). Changing emotion dynamics: Individual differences in the effect of 

anticipatory social stress on emotional inertia. Emotion, 12(2), 256–267. 

https://doi.org/10.1037/a0024756 

Koval, P., Kuppens, P., Allen, N. B., & Sheeber, L. (2012). Getting stuck in depression: The roles of 

rumination and emotional inertia. Cognition and Emotion, 26(8), 1412–1427. 

https://doi.org/10.1080/02699931.2012.667392 

Koval, P., Pe, M. L., Meers, K., & Kuppens, P. (2013). Affect Dynamics in Relation to Depressive 

Symptoms: Variable, Unstable or Inert? Emotion, 13(6), 1132–1141. 

https://doi.org/10.1037/a0033579 

Koval, P., Sütterlin, S., & Kuppens, P. (2016). Emotional Inertia is Associated with Lower Well-Being 

when Controlling for Differences in Emotional Context. Frontiers in Psychology, 6. 

https://doi.org/10.3389/fpsyg.2015.01997 

Krause, A. J., Simon, E. B., Mander, B. A., Greer, S. M., Saletin, J. M., Goldstein-Piekarski, A. N., & 

Walker, M. P. (2017). The sleep-deprived human brain. Nature Reviews Neuroscience, 18(7), 

404–418. https://doi.org/10.1038/nrn.2017.55 



222 

 

Kreibig, S. D., Wilhelm, F. H., Roth, W. T., & Gross, J. J. (2007). Cardiovascular, electrodermal, and 

respiratory response patterns to fear- and sadness-inducing films. Psychophysiology, 44(5), 

787–806. https://doi.org/10.1111/j.1469-8986.2007.00550.x 

Kring, A. M. (2010). The Future of Emotion Research in the Study of Psychopathology. Emotion 

Review, 2(3), 225–228. https://doi.org/10.1177/1754073910361986 

Kroenke, K., Spitzer, R. L., & Williams, J. B. W. (2001). The PHQ-9. Journal of General Internal 

Medicine, 16(9), 606–613. https://doi.org/10.1046/j.1525-1497.2001.016009606.x 

Kudrnáčová, M., & Kudrnáč, A. (2023). Better sleep, better life? Testing the role of sleep on quality of 

life. PLOS ONE, 18(3), e0282085. https://doi.org/10.1371/journal.pone.0282085 

Kujawa, A., Green, H., Compas, B. E., Dickey, L., & Pegg, S. (2020). Exposure to COVID-19 pandemic 

stress: Associations with depression and anxiety in emerging adults in the United States. 

Depression and Anxiety, 37(12), 1280–1288. https://doi.org/10.1002/da.23109 

Kuppens, P., Allen, N. B., & Sheeber, L. B. (2010). Emotional Inertia and Psychological 

Maladjustment. Psychological Science, 21(7), 984–991. 

https://doi.org/10.1177/0956797610372634 

Kuppens, P., Dejonckheere, E., Kalokerinos, E. K., & Koval, P. (2022). Some Recommendations on 

the Use of Daily Life Methods in Affective Science. Affective Science, 3(2), 505–515. 

https://doi.org/10.1007/s42761-022-00101-0 

Kuppens, P., Oravecz, Z., & Tuerlinckx, F. (2010). Feelings change: Accounting for individual 

differences in the temporal dynamics of affect. Journal of Personality and Social Psychology, 

99(6), 1042–1060. https://doi.org/10.1037/a0020962 

Kuppens, P., Sheeber, L. B., Yap, M. B. H., Whittle, S., Simmons, J. G., & Allen, N. B. (2012). 

Emotional inertia prospectively predicts the onset of depressive disorder in adolescence. 

Emotion, 12(2), 283–289. https://doi.org/10.1037/a0025046 

Kuppens, P., & Verduyn, P. (2015). Looking at Emotion Regulation Through the Window of Emotion 

Dynamics. Psychological Inquiry, 26(1), 72–79. 

https://doi.org/10.1080/1047840X.2015.960505 



223 

 

Kuppens, P., & Verduyn, P. (2017). Emotion dynamics. Current Opinion in Psychology, 17, 22–26. 

https://doi.org/10.1016/j.copsyc.2017.06.004 

Kusztor, A., Raud, L., Juel, B. E., Nilsen, A. S., Storm, J. F., & Huster, R. J. (2019). Sleep deprivation 

differentially affects subcomponents of cognitive control. Sleep, 42(4), zsz016. 

https://doi.org/10.1093/sleep/zsz016 

Kuznetsova, A., Brockhoff, P., & Christensen, R. (2017). lmerTest Package: Tests in Linear Mixed 

Effects Models. https://doi.org/10.18637/JSS.V082.I13 

LaBar, K. S., & Cabeza, R. (2006). Cognitive neuroscience of emotional memory. Nature Reviews 

Neuroscience, 7(1), Article 1. https://doi.org/10.1038/nrn1825 

Landry, C. E., Bergstrom, J., Salazar, J., & Turner, D. (2021). How Has the COVID-19 Pandemic 

Affected Outdoor Recreation in the U.S.? A Revealed Preference Approach. Applied Economic 

Perspectives and Policy, 43(1), 443–457. https://doi.org/10.1002/aepp.13119 

Latif, I., Hughes, A. T. L., & Bendall, R. C. A. (2019). Positive and Negative Affect Mediate the 

Influences of a Maladaptive Emotion Regulation Strategy on Sleep Quality. Frontiers in 

Psychiatry, 10. https://doi.org/10.3389/fpsyt.2019.00628 

Lazarus, R. S. (1991). Cognition and motivation in emotion. American Psychologist, 46(4), 352–367. 

https://doi.org/10.1037/0003-066X.46.4.352 

Leger, K. A., Charles, S. T., & Fingerman, K. L. (2019). Affect variability and sleep: Emotional ups 

and downs are related to a poorer night’s rest. Journal of Psychosomatic Research, 124, 

109758. https://doi.org/10.1016/j.jpsychores.2019.109758 

Lenth, R. V., Bolker, B., Buerkner, P., Giné-Vázquez, I., Herve, M., Jung, M., Love, J., Miguez, F., 

Riebl, H., & Singmann, H. (2023). emmeans: Estimated Marginal Means, aka Least-Squares 

Means (1.8.6) [Computer software]. https://cran.r-

project.org/web/packages/emmeans/index.html 

Lin, H. (2020). Probing Two-way Moderation Effects: A Review of Software to Easily Plot Johnson-

Neyman Figures. Structural Equation Modeling: A Multidisciplinary Journal, 27(3), 494–502. 

https://doi.org/10.1080/10705511.2020.1732826 



224 

 

Liu, T., Zou, H., Tao, Z., Qiu, B., He, X., Chen, Y., Wang, S., & Zhang, W. (2023). The relationship 

between stressful life events, sleep, emotional regulation, and depression in freshmen college 

students. Psychology in the Schools, n/a(n/a). https://doi.org/10.1002/pits.23002 

Löwe, B., Decker, O., Müller, S., Brähler, E., Schellberg, D., Herzog, W., & Herzberg, P. Y. (2008). 

Validation and Standardization of the Generalized Anxiety Disorder Screener (GAD-7) in the 

General Population. Medical Care, 46(3), 266–274. 

Lowe, C. J., Safati, A., & Hall, P. A. (2017). The neurocognitive consequences of sleep restriction: A 

meta-analytic review. Neuroscience & Biobehavioral Reviews, 80, 586–604. 

https://doi.org/10.1016/j.neubiorev.2017.07.010 

MacNamara, A., Ochsner, K. N., & Hajcak, G. (2011). Previously reappraised: The lasting effect of 

description type on picture-elicited electrocortical activity. Social Cognitive and Affective 

Neuroscience, 6(3), 348–358. https://doi.org/10.1093/scan/nsq053 

Madrid-Valero, J. J., Martínez-Selva, J. M., Couto, B. R. D., Sánchez-Romera, J. F., & Ordoñana, J. R. 

(2017). Age and gender effects on the prevalence of poor sleep quality in the adult population. 

Gaceta Sanitaria, 31, 18–22. https://doi.org/10.1016/j.gaceta.2016.05.013 

Malooly, A. M., Genet, J. J., & Siemer, M. (2013). Individual differences in reappraisal effectiveness: 

The role of affective flexibility. Emotion, 13(2), 302–313. https://doi.org/10.1037/a0029980 

Marcolin, F., Wally Scurati, G., Ulrich, L., Nonis, F., Vezzetti, E., Dozio, N., & Ferrise, F. (2021). 

Affective Virtual Reality: How to Design Artificial Experiences Impacting Human Emotions. 

IEEE Computer Graphics and Applications, 41(6), 171–178. 

https://doi.org/10.1109/MCG.2021.3115015 

Marin, M.-F., Lord, C., Andrews, J., Juster, R.-P., Sindi, S., Arsenault-Lapierre, G., Fiocco, A. J., & 

Lupien, S. J. (2011). Chronic stress, cognitive functioning and mental health. Neurobiology of 

Learning and Memory, 96(4), 583–595. https://doi.org/10.1016/j.nlm.2011.02.016 

Marín-Morales, J., Llinares, C., Guixeres, J., & Alcañiz, M. (2020). Emotion Recognition in Immersive 

Virtual Reality: From Statistics to Affective Computing. Sensors (Basel, Switzerland), 20(18). 

https://doi.org/10.3390/s20185163 



225 

 

Martin, R. C., & Dahlen, E. R. (2005). Cognitive emotion regulation in the prediction of depression, 

anxiety, stress, and anger. Personality and Individual Differences, 39(7), 1249–1260. 

https://doi.org/10.1016/j.paid.2005.06.004 

Mather, M., & Thayer, J. (2018). How heart rate variability affects emotion regulation brain networks. 

Current Opinion in Behavioral Sciences, 19, 98–104. 

https://doi.org/10.1016/j.cobeha.2017.12.017 

Mauss, I. B., Levenson, R. W., McCarter, L., Wilhelm, F. H., & Gross, J. J. (2005). The Tie That Binds? 

Coherence Among Emotion Experience, Behavior, and Physiology. Emotion, 5(2), 175–190. 

https://doi.org/10.1037/1528-3542.5.2.175 

Mauss, I. B., & Robinson, M. D. (2009). Measures of emotion: A review. Cognition & Emotion, 23(2), 

209–237. https://doi.org/10.1080/02699930802204677 

Mauss, I. B., Troy, A. S., & LeBourgeois, M. K. (2013). Poorer sleep quality is associated with lower 

emotion-regulation ability in a laboratory paradigm. Cognition and Emotion, 27(3), 567–576. 

https://doi.org/10.1080/02699931.2012.727783 

McCall, C., Hildebrandt, L. K., Bornemann, B., & Singer, T. (2015). Physiophenomenology in 

retrospect: Memory reliably reflects physiological arousal during a prior threatening 

experience. Consciousness and Cognition, 38, 60–70. 

https://doi.org/10.1016/j.concog.2015.09.011 

McCall, C., Hildebrandt, L. K., Hartmann, R., Baczkowski, B. M., & Singer, T. (2016). Introducing the 

Wunderkammer as a tool for emotion research: Unconstrained gaze and movement patterns in 

three emotionally evocative virtual worlds. Computers in Human Behavior, 59, 93–107. 

https://doi.org/10.1016/j.chb.2016.01.028 

McCall, C., Schofield, G., Halgarth, D., Blyth, G., Laycock, A., & Palombo, D. J. (2022). The 

underwood project: A virtual environment for eliciting ambiguous threat. Behavior Research 

Methods. https://doi.org/10.3758/s13428-022-02002-3 

McEvoy, P. M., Salmon, K., Hyett, M. P., Jose, P. E., Gutenbrunner, C., Bryson, K., & Dewhirst, M. 

(2019). Repetitive Negative Thinking as a Transdiagnostic Predictor of Depression and Anxiety 



226 

 

Symptoms in Adolescents. Assessment, 26(2), 324–335. 

https://doi.org/10.1177/1073191117693923 

McLaughlin, K. A., & Nolen-Hoeksema, S. (2011). Rumination as a transdiagnostic factor in depression 

and anxiety. Behaviour Research and Therapy, 49(3), 186–193. 

https://doi.org/10.1016/j.brat.2010.12.006 

McRae, K. (2016). Cognitive emotion regulation: A review of theory and scientific findings. Current 

Opinion in Behavioral Sciences, 10, 119–124. https://doi.org/10.1016/j.cobeha.2016.06.004 

McRae, K., Jacobs, S. E., Ray, R. D., John, O. P., & Gross, J. J. (2012). Individual differences in 

reappraisal ability: Links to reappraisal frequency, well-being, and cognitive control. Journal 

of Research in Personality, 46(1), 2–7. https://doi.org/10.1016/j.jrp.2011.10.003 

Mellman, T. A. (2006). Sleep and Anxiety Disorders. Psychiatric Clinics, 29(4), 1047–1058. 

https://doi.org/10.1016/j.psc.2006.08.005 

Menz, M. M., Rihm, J. S., Salari, N., Born, J., Kalisch, R., Pape, H. C., Marshall, L., & Büchel, C. 

(2013). The role of sleep and sleep deprivation in consolidating fear memories. NeuroImage, 

75, 87–96. https://doi.org/10.1016/j.neuroimage.2013.03.001 

Middelkoop, H. A. M., Smilde-van den Doel, D. A., Neven, A. K., Kamphuisen, H. A. C., & Springer, 

C. P. (1996). Subjective Sleep Characteristics of 1,485 Males and Females Aged 50–93: Effects 

of Sex and Age, and Factors Related to Self-Evaluated Quality of Sleep. The Journals of 

Gerontology: Series A, 51A(3), M108–M115. https://doi.org/10.1093/gerona/51A.3.M108 

Miller, E. K. (2000). The prefontral cortex and cognitive control. Nature Reviews Neuroscience, 1(1), 

Article 1. https://doi.org/10.1038/35036228 

Miller, M. A., Rothenberger, S. D., Hasler, B. P., Donofry, S. D., Wong, P. M., Manuck, S. B., Kamarck, 

T. W., & Roecklein, K. A. (2015). Chronotype predicts positive affect rhythms measured by 

ecological momentary assessment. Chronobiology International, 32(3), 376–384. 

https://doi.org/10.3109/07420528.2014.983602 



227 

 

Min, J.-A., Yu, J. J., Lee, C.-U., & Chae, J.-H. (2013). Cognitive emotion regulation strategies 

contributing to resilience in patients with depression and/or anxiety disorders. Comprehensive 

Psychiatry, 54(8), 1190–1197. https://doi.org/10.1016/j.comppsych.2013.05.008 

Minaeva, O., George, S. V., Kuranova, A., Jacobs, N., Thiery, E., Derom, C., Wichers, M., Riese, H., 

& Booij, S. H. (2021). Overnight affective dynamics and sleep characteristics as predictors of 

depression and its development in women. Sleep, 44(10). https://doi.org/10.1093/sleep/zsab129 

Minkel, J. D., McNealy, K., Gianaros, P. J., Drabant, E. M., Gross, J. J., Manuck, S. B., & Hariri, A. R. 

(2012). Sleep quality and neural circuit function supporting emotion regulation. Biology of 

Mood & Anxiety Disorders, 2(1), 22. https://doi.org/10.1186/2045-5380-2-22 

Miyake, A., & Friedman, N. P. (2012). The Nature and Organization of Individual Differences in 

Executive Functions: Four General Conclusions. Current Directions in Psychological Science, 

21(1), 8–14. https://doi.org/10.1177/0963721411429458 

Moeck, E. K., Mortlock, J., Onie, S., Most, S. B., & Koval, P. (2022). Blinded by and Stuck in Negative 

Emotions: Is Psychological Inflexibility Across Different Domains Related? Affective Science, 

3(4), 836–848. https://doi.org/10.1007/s42761-022-00145-2 

Mograss, M. A., Guillem, F., Brazzini-Poisson, V., & Godbout, R. (2009). The effects of total sleep 

deprivation on recognition memory processes: A study of event-related potential. Neurobiology 

of Learning and Memory, 91(4), 343–352. https://doi.org/10.1016/j.nlm.2009.01.008 

Mollayeva, T., Thurairajah, P., Burton, K., Mollayeva, S., Shapiro, C. M., & Colantonio, A. (2016). 

The Pittsburgh sleep quality index as a screening tool for sleep dysfunction in clinical and non-

clinical samples: A systematic review and meta-analysis. Sleep Medicine Reviews, 25, 52–73. 

https://doi.org/10.1016/j.smrv.2015.01.009 

Morey, R. D., & Rouder, J. N. (2022). Computation of Bayes Factors for Common Designs (0.9.12-4.4) 

[R Studio.]. https://CRAN.R-project.org/package=BayesFactor 

Morin, C. M., Bjorvatn, B., Chung, F., Holzinger, B., Partinen, M., Penzel, T., Ivers, H., Wing, Y. K., 

Chan, N. Y., Merikanto, I., Mota-Rolim, S., Macêdo, T., De Gennaro, L., Léger, D., Dauvilliers, 

Y., Plazzi, G., Nadorff, M. R., Bolstad, C. J., Sieminski, M., … Espie, C. A. (2021). Insomnia, 



228 

 

anxiety, and depression during the COVID-19 pandemic: An international collaborative study. 

Sleep Medicine, 87, 38–45. https://doi.org/10.1016/j.sleep.2021.07.035 

Moser, J. S., Hartwig, R., Moran, T. P., Jendrusina, A. A., & Kross, E. (2014). Neural markers of 

positive reappraisal and their associations with trait reappraisal and worry. Journal of Abnormal 

Psychology, 123(1), 91–105. https://doi.org/10.1037/a0035817 

Muench, A., Vargas, I., Grandner, M. A., Ellis, J. G., Posner, D., Bastien, C. H., Drummond, S. P., & 

Perlis, M. L. (2022). We know CBT-I works, now what? Faculty Reviews, 11, 4. 

https://doi.org/10.12703/r/11-4 

Muñoz-Navarro, R., Malonda, E., Llorca-Mestre, A., Cano-Vindel, A., & Fernández-Berrocal, P. 

(2021). Worry about COVID-19 contagion and general anxiety: Moderation and mediation 

effects of cognitive emotion regulation. Journal of Psychiatric Research, 137, 311–318. 

https://doi.org/10.1016/j.jpsychires.2021.03.004 

Murakami, H., Matsunaga, M., & Ohira, H. (2010). Phasic heart rate responses for anticipated threat 

situations. International Journal of Psychophysiology, 77(1), 21–25. 

https://doi.org/10.1016/j.ijpsycho.2010.03.012 

Murayama, K., Usami, S., & Sakaki, M. (2020). Summary-statistics-based power analysis: A new and 

practical method to determine sample size for mixed-effects modelling. OSF Preprints. 

https://doi.org/10.31219/osf.io/6cer3 

Neckelmann, D., Mykletun, A., & Dahl, A. A. (2007). Chronic Insomnia as a Risk Factor for 

Developing Anxiety and Depression. Sleep, 30(7), 873–880. 

https://doi.org/10.1093/sleep/30.7.873 

Nelson, J., Klumparendt, A., Doebler, P., & Ehring, T. (2020). Everyday emotional dynamics in major 

depression. Emotion, 20(2), 179–191. https://doi.org/10.1037/emo0000541 

Nezlek, J. B. (2012). Multilevel modelling analyses of diary-style data. In Handbook of Research 

Methods for Studying Daily Life (pp. 357–372). Guildford Press. 

https://jbnezl.people.wm.edu/Reprints/2012-MLM-Chapter-Daily-Life-Handbook.pdf 



229 

 

Nicholson, L. R., Lewis, R., Thomas, K. G., & Lipinska, G. (2021). Influence of poor emotion 

regulation on disrupted sleep and subsequent psychiatric symptoms in university students. 

South African Journal of Psychology, 0081246320978527. 

https://doi.org/10.1177/0081246320978527 

Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-

analytic evidence for a superordinate cognitive control network subserving diverse executive 

functions. Cognitive, Affective & Behavioral Neuroscience, 12(2), 241–268. 

https://doi.org/10.3758/s13415-011-0083-5 

Nilsson, J. P., Söderström, M., Karlsson, A. U., Lekander, M., Åkerstedt, T., Lindroth, N. E., & 

Axelsson, J. (2005). Less effective executive functioning after one night’s sleep deprivation. 

Journal of Sleep Research, 14(1), 1–6. https://doi.org/10.1111/j.1365-2869.2005.00442.x 

Nock, M. K., Wedig, M. M., Holmberg, E. B., & Hooley, J. M. (2008). The Emotion Reactivity Scale: 

Development, Evaluation, and Relation to Self-Injurious Thoughts and Behaviors. Behavior 

Therapy, 39(2), 107–116. https://doi.org/10.1016/j.beth.2007.05.005 

Nolen-Hoeksema, S., Wisco, B. E., & Lyubomirsky, S. (2008). Rethinking Rumination. Perspectives 

on Psychological Science, 3(5), 400–424. 

Nussinovitch, U., Elishkevitz, K. P., Katz, K., Nussinovitch, M., Segev, S., Volovitz, B., & 

Nussinovitch, N. (2011). Reliability of Ultra-Short ECG Indices for Heart Rate Variability. 

Annals of Noninvasive Electrocardiology, 16(2), 117–122. https://doi.org/10.1111/j.1542-

474X.2011.00417.x 

Ochsner, K. N., Bunge, S. A., Gross, J. J., & Gabrieli, J. D. E. (2002). Rethinking Feelings: An fMRI 

Study of the Cognitive Regulation of Emotion. Journal of Cognitive Neuroscience, 14(8), 

1215–1229. https://doi.org/10.1162/089892902760807212 

Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 

9(5), 242–249. https://doi.org/10.1016/j.tics.2005.03.010 

Ochsner, K. N., Ray, R. D., Cooper, J. C., Robertson, E. R., Chopra, S., Gabrieli, J. D. E., & Gross, J. 

J. (2004). For better or for worse: Neural systems supporting the cognitive down- and up-



230 

 

regulation of negative emotion. NeuroImage, 23(2), 483–499. 

https://doi.org/10.1016/j.neuroimage.2004.06.030 

Ochsner, K. N., Silvers, J. A., & Buhle, J. T. (2012). Functional imaging studies of emotion regulation: 

A synthetic review and evolving model of the cognitive control of emotion. Annals of the New 

York Academy of Sciences, 1251, E1-24. https://doi.org/10.1111/j.1749-6632.2012.06751.x 

O’Connor, R. C., Wetherall, K., Cleare, S., McClelland, H., Melson, A. J., Niedzwiedz, C. L., O’Carroll, 

R. E., O’Connor, D. B., Platt, S., Scowcroft, E., Watson, B., Zortea, T., Ferguson, E., & Robb, 

K. A. (2020). Mental health and well-being during the COVID-19 pandemic: Longitudinal 

analyses of adults in the UK COVID-19 Mental Health & Well-being study. The British Journal 

of Psychiatry, 1–8. https://doi.org/10.1192/bjp.2020.212 

Olatunji, B. O., Ciesielski, B. G., Wolitzky-Taylor, K. B., Wentworth, B. J., & Viar, M. A. (2012). 

Effects of Experienced Disgust on Habituation During Repeated Exposure to Threat-Relevant 

Stimuli in Blood-Injection-Injury Phobia. Behavior Therapy, 43(1), 132–141. 

https://doi.org/10.1016/j.beth.2011.04.002 

Olatunji, B. O., Wolitzky-Taylor, K. B., Ciesielski, B. G., Armstrong, T., Etzel, E. N., & David, B. 

(2009). Fear and disgust processing during repeated exposure to threat-relevant stimuli in spider 

phobia. Behaviour Research and Therapy, 47(8), 671–679. 

https://doi.org/10.1016/j.brat.2009.04.012 

Olatunji, B. O., Wolitzky-Taylor, K. B., Willems, J., Lohr, J. M., & Armstrong, T. (2009). Differential 

habituation of fear and disgust during repeated exposure to threat-relevant stimuli in 

contamination-based OCD: An analogue study. Journal of Anxiety Disorders, 23(1), 118–123. 

https://doi.org/10.1016/j.janxdis.2008.04.006 

Ong, A. D., Kim, S., Young, S., & Steptoe, A. (2017). Positive affect and sleep: A systematic review. 

Sleep Medicine Reviews, 35, 21–32. https://doi.org/10.1016/j.smrv.2016.07.006 

Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: Open source software for 

advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational 

Intelligence and Neuroscience, 2011, 156869. https://doi.org/10.1155/2011/156869 



231 

 

Ortner, C. N. M., Marie, M. S., & Corno, D. (2016). Cognitive Costs of Reappraisal Depend on Both 

Emotional Stimulus Intensity and Individual Differences in Habitual Reappraisal. PLOS ONE, 

11(12), e0167253. https://doi.org/10.1371/journal.pone.0167253 

Palmer, C. A., & Alfano, C. A. (2017). Sleep and emotion regulation: An organizing, integrative review. 

Sleep Medicine Reviews, 31, 6–16. https://doi.org/10.1016/j.smrv.2015.12.006 

Papadimitriou, G. N., & Linkowski, P. (2005). Sleep disturbance in anxiety disorders. International 

Review of Psychiatry, 17(4), 229–236. https://doi.org/10.1080/09540260500104524 

Parsons, C. E., Schofield, B., Batziou, S. E., Ward, C., & Young, K. S. (2021). Sleep quality is 

associated with emotion experience and adaptive regulation of positive emotion: An experience 

sampling study. Journal of Sleep Research, 31(4), e13533. https://doi.org/10.1111/jsr.13533 

Patel, K., Robertson, E., Kwong, A. S. F., Griffith, G. J., Willan, K., Green, M. J., Gessa, G. D., 

Huggins, C. F., McElroy, E., Thompson, E. J., Maddock, J., Niedzwiedz, C. L., Henderson, M., 

Richards, M., Steptoe, A., Ploubidis, G. B., Moltrecht, B., Booth, C., Fitzsimons, E., … 

Katikireddi, S. V. (2022). Psychological Distress Before and During the COVID-19 Pandemic 

Among Adults in the United Kingdom: Coordinated Analyses of 11 Longitudinal Studies (p. 

2021.10.22.21265368). medRxiv. https://doi.org/10.1101/2021.10.22.21265368 

Pe, M. L., Raes, F., & Kuppens, P. (2013). The Cognitive Building Blocks of Emotion Regulation: 

Ability to Update Working Memory Moderates the Efficacy of Rumination and Reappraisal on 

Emotion. PLOS ONE, 8(7), e69071. https://doi.org/10.1371/journal.pone.0069071 

Phan, K. L., Fitzgerald, D. A., Nathan, P. J., Moore, G. J., Uhde, T. W., & Tancer, M. E. (2005). Neural 

substrates for voluntary suppression of negative affect: A functional magnetic resonance 

imaging study. Biological Psychiatry, 57(3), 210–219. 

https://doi.org/10.1016/j.biopsych.2004.10.030 

Pilcher, J. J., Callan, C., & Posey, J. L. (2015). Sleep deprivation affects reactivity to positive but not 

negative stimuli. Journal of Psychosomatic Research, 79(6), 657–662. 

https://doi.org/10.1016/j.jpsychores.2015.05.003 



232 

 

Pires, G. N., Bezerra, A. G., Tufik, S., & Andersen, M. L. (2016). Effects of acute sleep deprivation on 

state anxiety levels: A systematic review and meta-analysis. Sleep Medicine, 24, 109–118. 

https://doi.org/10.1016/j.sleep.2016.07.019 

Poerio, G. L., Totterdell, P., Emerson, L.-M., & Miles, E. (2016). Social Daydreaming and Adjustment: 

An Experience-Sampling Study of Socio-Emotional Adaptation During a Life Transition. 

Frontiers in Psychology, 7. https://www.frontiersin.org/articles/10.3389/fpsyg.2016.00013 

Porcheret, K., Holmes, E. A., Goodwin, G. M., Foster, R. G., & Wulff, K. (2015). Psychological Effect 

of an Analogue Traumatic Event Reduced by Sleep Deprivation. Sleep, 38(7), 1017–1025. 

https://doi.org/10.5665/sleep.4802 

Porges, S. W., Doussard-Roosevelt, J. A., & Maiti, A. K. (1994). Vagal Tone and the Physiological 

Regulation of Emotion. Monographs of the Society for Research in Child Development, 

59(2/3), 167–186. https://doi.org/10.2307/1166144 

Provenzano, J., Bastiaansen, J. A., Verduyn, P., Oldehinkel, A. J., Fossati, P., & Kuppens, P. (2018). 

Different Aspects of the Neural Response to Socio-Emotional Events Are Related to Instability 

and Inertia of Emotional Experience in Daily Life: An fMRI-ESM Study. Frontiers in Human 

Neuroscience, 12. https://doi.org/10.3389/fnhum.2018.00501 

Qi, J.-L., Shao, Y.-C., Miao, D., Fan, M., Bi, G.-H., & Yang, Z. (2010). The Effects of 43 Hours of 

Sleep Deprivation on Executive Control Functions: Event-Related Potentials in a Visual Go/No 

Go Task. Social Behavior and Personality: An International Journal, 38(1), 29–42. 

https://doi.org/10.2224/sbp.2010.38.1.29 

Quoidbach, J., Berry, E. V., Hansenne, M., & Mikolajczak, M. (2010). Positive emotion regulation and 

well-being: Comparing the impact of eight savoring and dampening strategies. Personality and 

Individual Differences, 49(5), 368–373. https://doi.org/10.1016/j.paid.2010.03.048 

Radstaak, M., Geurts, S. A. E., Brosschot, J. F., Cillessen, A. H. N., & Kompier, M. A. J. (2011). The 

role of affect and rumination in cardiovascular recovery from stress. International Journal of 

Psychophysiology, 81(3), 237–244. https://doi.org/10.1016/j.ijpsycho.2011.06.017 



233 

 

Randall, C., Nowakowski, S., & Ellis, J. G. (2019). Managing Acute Insomnia in Prison: Evaluation of 

a ‘One-Shot’ Cognitive Behavioral Therapy for Insomnia (CBT-I) Intervention. Behavioral 

Sleep Medicine, 17(6), 827–836. https://doi.org/10.1080/15402002.2018.1518227 

Reid, M. J., Omlin, X., Espie, C. A., Sharman, R., Tamm, S., & Kyle, S. D. (2023). The effect of sleep 

continuity disruption on multimodal emotion processing and regulation: A laboratory-based, 

randomised, controlled experiment in good sleepers. Journal of Sleep Research, 32(1), e13634. 

https://doi.org/10.1111/jsr.13634 

Reitzel, L. R., Short, N. A., Schmidt, N. B., Garey, L., Zvolensky, M. J., Moisiuc, A., Reddick, C., 

Kendzor, D. E., & Businelle, M. S. (2017). Distress Tolerance Links Sleep Problems with Stress 

and Health in Homeless. American Journal of Health Behavior, 41(6), 760–774. 

https://doi.org/10.5993/AJHB.41.6.10 

Rezaei, N., & Grandner, M. A. (2021). Changes in sleep duration, timing, and variability during the 

COVID-19 pandemic: Large-scale Fitbit data from 6 major US cities. Sleep Health: Journal of 

the National Sleep Foundation, 0(0). https://doi.org/10.1016/j.sleh.2021.02.008 

Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., & Nieuwenhuis, S. (2004). The Role of the Medial 

Frontal Cortex in Cognitive Control. Science, 306(5695), 443–447. 

https://doi.org/10.1126/science.1100301 

Rigoli, F., Ewbank, M., Dalgleish, T., & Calder, A. (2016). Threat visibility modulates the defensive 

brain circuit underlying fear and anxiety. Neuroscience Letters, 612, 7–13. 

https://doi.org/10.1016/j.neulet.2015.11.026 

Robbins, R., Affouf, M., Weaver, M. D., Czeisler, M. É., Barger, L. K., Quan, S. F., & Czeisler, C. A. 

(2021). Estimated Sleep Duration Before and During the COVID-19 Pandemic in Major 

Metropolitan Areas on Different Continents: Observational Study of Smartphone App Data. 

Journal of Medical Internet Research, 23(2), e20546. https://doi.org/10.2196/20546 

Roberts, R. (2014). Fear of the Unknown: Music and Sound Design in Psychological Horror Games. In 

Music In Video Games. Routledge. 



234 

 

Robinson, O. J., Vytal, K., Cornwell, B. R., & Grillon, C. (2013). The impact of anxiety upon cognition: 

Perspectives from human threat of shock studies. Frontiers in Human Neuroscience, 7, 203. 

https://doi.org/10.3389/fnhum.2013.00203 

Rodriguez-Linares, L., Vila, X., Lado, M. J., Mendez, A., Otero, A., Garcia, C. A., & Lassila, M. (2022). 

RHRV: Heart Rate Variability Analysis of ECG Data (4.2.7) [Computer software]. 

https://cran.r-project.org/web/packages/RHRV/index.html 

Rodriguez-Seijas, C., Fields, E. C., Bottary, R., Kark, S. M., Goldstein, M. R., Kensinger, E. A., Payne, 

J. D., & Cunningham, T. J. (2020). Comparing the Impact of COVID-19-Related Social 

Distancing on Mood and Psychiatric Indicators in Sexual and Gender Minority (SGM) and 

Non-SGM Individuals. Frontiers in Psychiatry, 11. https://doi.org/10.3389/fpsyt.2020.590318 

Rosales-Lagarde, A., Armony, J. L., del Río-Portilla, Y., Trejo-Martínez, D., Conde, R., & Corsi-

Cabrera, M. (2012). Enhanced emotional reactivity after selective REM sleep deprivation in 

humans: An fMRI study. Frontiers in Behavioral Neuroscience, 6. 

https://doi.org/10.3389/fnbeh.2012.00025 

Rottenberg, J., Gross, J. J., & Gotlib, I. H. (2005). Emotion Context Insensitivity in Major Depressive 

Disorder. Journal of Abnormal Psychology, 114(4), 627–639. https://doi.org/10.1037/0021-

843X.114.4.627 

Rottenberg, J., Ray, R., & Gross, J. (2007). Emotion Elicitation Using Films. The Handbook of Emotion 

Elicitation and Assessment, 9–28. 

Rowland, Z., Wenzel, M., & Kubiak, T. (2020). A mind full of happiness: How mindfulness shapes 

affect dynamics in daily life. Emotion, 20(3), 436–451. https://doi.org/10.1037/emo0000562 

Russell, J. A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39, 

1161–1178. https://doi.org/10.1037/h0077714 

Samson, A. C., Kreibig, S. D., Soderstrom, B., Wade, A. A., & Gross, J. J. (2016). Eliciting positive, 

negative and mixed emotional states: A film library for affective scientists. Cognition and 

Emotion, 30(5), 827–856. https://doi.org/10.1080/02699931.2015.1031089 



235 

 

Schäfer, J. Ö., Naumann, E., Holmes, E. A., Tuschen-Caffier, B., & Samson, A. C. (2017). Emotion 

Regulation Strategies in Depressive and Anxiety Symptoms in Youth: A Meta-Analytic 

Review. Journal of Youth and Adolescence, 46(2), 261–276. https://doi.org/10.1007/s10964-

016-0585-0 

Schielzeth, H., Dingemanse, N. J., Nakagawa, S., Westneat, D. F., Allegue, H., Teplitsky, C., Réale, 

D., Dochtermann, N. A., Garamszegi, L. Z., & Araya-Ajoy, Y. G. (2020). Robustness of linear 

mixed-effects models to violations of distributional assumptions. Methods in Ecology and 

Evolution, 11(9), 1141–1152. https://doi.org/10.1111/2041-210X.13434 

Schmeichel, B. J., & Demaree, H. A. (2010). Working memory capacity and spontaneous emotion 

regulation: High capacity predicts self-enhancement in response to negative feedback. Emotion, 

10(5), 739–744. https://doi.org/10.1037/a0019355 

Schmeichel, B. J., & Tang, D. (2015). Individual Differences in Executive Functioning and Their 

Relationship to Emotional Processes and Responses. Current Directions in Psychological 

Science, 24(2), 93–98. https://doi.org/10.1177/0963721414555178 

Schmeichel, B. J., Volokhov, R. N., & Demaree, H. A. (2008). Working memory capacity and the self-

regulation of emotional expression and experience. Journal of Personality and Social 

Psychology, 95(6), 1526–1540. https://doi.org/10.1037/a0013345 

Scott, A. J., Webb, T. L., Martyn-St James, M., Rowse, G., & Weich, S. (2021). Improving sleep quality 

leads to better mental health: A meta-analysis of randomised controlled trials. Sleep Medicine 

Reviews, 60, 101556. https://doi.org/10.1016/j.smrv.2021.101556 

Scott, L. N., Victor, S. E., Kaufman, E. A., Beeney, J. E., Byrd, A. L., Vine, V., Pilkonis, P. A., & 

Stepp, S. D. (2020). Affective Dynamics Across Internalizing and Externalizing Dimensions of 

Psychopathology. Clinical Psychological Science, 8(3), 412–427. 

https://doi.org/10.1177/2167702619898802 

Seidl, E., Venz, J., Ollmann, T. M., Voss, C., Hoyer, J., Pieper, L., & Beesdo-Baum, K. (2023). 

Dynamics of affect, cognition and behavior in a general population sample of adolescents and 

young adults with current and remitted anxiety disorders: An Ecological Momentary 



236 

 

Assessment study. Journal of Anxiety Disorders, 93, 102646. 

https://doi.org/10.1016/j.janxdis.2022.102646 

Shaffer, F., & Ginsberg, J. P. (2017). An Overview of Heart Rate Variability Metrics and Norms. 

Frontiers in Public Health, 5, 258. https://doi.org/10.3389/fpubh.2017.00258 

Sheppes, G., & Levin, Z. (2013). Emotion regulation choice: Selecting between cognitive regulation 

strategies to control emotion. Frontiers in Human Neuroscience, 7. 

https://doi.org/10.3389/fnhum.2013.00179 

Sheppes, G., & Meiran, N. (2007). Better Late Than Never? On the Dynamics of Online Regulation of 

Sadness Using Distraction and Cognitive Reappraisal. Personality and Social Psychology 

Bulletin, 33(11), 1518–1532. https://doi.org/10.1177/0146167207305537 

Sheppes, G., Scheibe, S., Suri, G., Radu, P., Blechert, J., & Gross, J. J. (2014). Emotion regulation 

choice: A conceptual framework and supporting evidence. Journal of Experimental 

Psychology: General, 143(1), 163–181. https://doi.org/10.1037/a0030831 

Short, N. A., Babson, K. A., Schmidt, N. B., Knight, C. B., Johnson, J., & Bonn-Miller, M. O. (2016). 

Sleep and affective functioning: Examining the association between sleep quality and distress 

tolerance among veterans. Personality and Individual Differences, 90, 247–253. 

https://doi.org/10.1016/j.paid.2015.10.054 

Simmons, A., Matthews, S. C., Feinstein, J. S., Hitchcock, C., Paulus, M. P., & Stein, M. B. (2008). 

Anxiety vulnerability is associated with altered anterior cingulate response to an affective 

appraisal task. Neuroreport, 19(10), 1033–1037. 

https://doi.org/10.1097/WNR.0b013e328305b722 

Simon, E. B., Oren, N., Sharon, H., Kirschner, A., Goldway, N., Okon-Singer, H., Tauman, R., 

Deweese, M. M., Keil, A., & Hendler, T. (2015). Losing Neutrality: The Neural Basis of 

Impaired Emotional Control without Sleep. Journal of Neuroscience, 35(38), 13194–13205. 

https://doi.org/10.1523/JNEUROSCI.1314-15.2015 



237 

 

Simons, J. S., Simons, R. M., Grimm, K. J., Keith, J. A., & Stoltenberg, S. F. (2021). Affective dynamics 

among veterans: Associations with distress tolerance and posttraumatic stress symptoms. 

Emotion, 21(4), 757–771. https://doi.org/10.1037/emo0000745 

Singmann, H., Bolker, B., Westfall, J., Aust, F., Ben-Shachar, M. S., Højsgaard, S., Fox, J., Lawrence, 

M. A., Mertens, U., Love, J., Lenth, R., & Christensen, R. H. B. (2021). afex: Analysis of 

Factorial Experiments (1.0-1) [Computer software]. https://CRAN.R-

project.org/package=afex 

Skurvydas, A., Zlibinaite, L., Solianik, R., Brazaitis, M., Valanciene, D., Baranauskiene, N., 

Majauskiene, D., Mickeviciene, D., Venckunas, T., & Kamandulis, S. (2020). One night of 

sleep deprivation impairs executive function but does not affect psychomotor or motor 

performance. Biology of Sport, 37(1), 7–14. https://doi.org/10.5114/biolsport.2020.89936 

Slama, H., Chylinski, D. O., Deliens, G., Leproult, R., Schmitz, R., & Peigneux, P. (2018). Sleep 

Deprivation Triggers Cognitive Control Impairments in Task-Goal Switching. Sleep, 41(2), 

zsx200. https://doi.org/10.1093/sleep/zsx200 

Smith, D. P., Hillman, C. H., & Duley, A. R. (2005). Influences of Age on Emotional Reactivity During 

Picture Processing. The Journals of Gerontology: Series B, 60(1), P49–P56. 

https://doi.org/10.1093/geronb/60.1.P49 

Smith, L. J., Bartlett, B. A., Tran, J. K., Gallagher, M. W., Alfano, C., & Vujanovic, A. A. (2019). Sleep 

Disturbance Among Firefighters: Understanding Associations with Alcohol Use and Distress 

Tolerance. Cognitive Therapy and Research, 43(1), 66–77. https://doi.org/10.1007/s10608-

018-9955-0 

Song, J., Crawford, C. M., & Fisher, A. J. (2023). Sleep Quality Moderates the Relationship Between 

Daily Mean Levels and Variability of Positive Affect. Affective Science. 

https://doi.org/10.1007/s42761-022-00177-8 

Sperduti, M., Makowski, D., Arcangeli, M., Wantzen, P., Zalla, T., Lemaire, S., Dokic, J., Pelletier, J., 

& Piolino, P. (2017). The distinctive role of executive functions in implicit emotion regulation. 

Acta Psychologica, 173, 13–20. https://doi.org/10.1016/j.actpsy.2016.12.001 



238 

 

Spielberger, C. D. (1979). Understanding stress and anxiety. Haprer & Row. 

Spielberger, C. D. (1983). State-Trait Anxiety Inventory. A Comparative Bibliography. 

https://ci.nii.ac.jp/naid/10009554879/ 

Spitzer, R. L., Kroenke, K., Williams, J. B. W., & Löwe, B. (2006). A Brief Measure for Assessing 

Generalized Anxiety Disorder: The GAD-7. Archives of Internal Medicine, 166(10), 1092. 

https://doi.org/10.1001/archinte.166.10.1092 

Stenson, A. R., Kurinec, C. A., Hinson, J. M., Whitney, P., & Dongen, H. P. A. V. (2021). Total sleep 

deprivation reduces top-down regulation of emotion without altering bottom-up affective 

processing. PLOS ONE, 16(9), e0256983. https://doi.org/10.1371/journal.pone.0256983 

Strachan, J. W. A., Guttesen, A. á V., Smith, A. K., Gaskell, M. G., Tipper, S. P., & Cairney, S. A. 

(2020). Investigating the formation and consolidation of incidentally learned trust. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 46(4), 684. 

https://doi.org/10.1037/xlm0000752 

Straus, L. D., Acheson, D. T., Risbrough, V. B., & Drummond, S. P. A. (2017). Sleep Deprivation 

Disrupts Recall of Conditioned Fear Extinction. Biological Psychiatry: Cognitive Neuroscience 

and Neuroimaging, 2(2), 123–129. https://doi.org/10.1016/j.bpsc.2016.05.004 

Sullivan, E. C., James, E., Henderson, L.-M., McCall, C., & Cairney, S. A. (2023). The influence of 

emotion regulation strategies and sleep quality on depression and anxiety. Cortex, 166, 286–

305. https://doi.org/10.1016/j.cortex.2023.06.001 

Suls, J., Green, P., & Hillis, S. (1998). Emotional Reactivity to Everyday Problems, Affective Inertia, 

and Neuroticism—Jerry Suls, Peter Green, Stephen Hillis, 1998. Personality and Social 

Psychology Bulletin, 24(2). https://doi.org/10.1177/0146167298242002 

Sutton, R. I. (1991). Maintaining Norms about Expressed Emotions: The Case of Bill Collectors. 

Administrative Science Quarterly, 36(2), 245–268. https://doi.org/10.2307/2393355 

Suzuki, Y., & Tanaka, S. C. (2021). Functions of the ventromedial prefrontal cortex in emotion 

regulation under stress. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-

021-97751-0 



239 

 

Takano, K., Iijima, Y., & Tanno, Y. (2012). Repetitive Thought and Self-Reported Sleep Disturbance. 

Behavior Therapy, 43(4), 779–789. https://doi.org/10.1016/j.beth.2012.04.002 

Takano, K., Sakamoto, S., & Tanno, Y. (2014). Repetitive Thought Impairs Sleep Quality: An 

Experience Sampling Study. Behavior Therapy, 45(1), 67–82. 

https://doi.org/10.1016/j.beth.2013.09.004 

Tamm, S., Nilsonne, G., Schwarz, J., Golkar, A., Kecklund, G., Petrovic, P., Fischer, H., Åkerstedt, T., 

& Lekander, M. (2019). Sleep restriction caused impaired emotional regulation without 

detectable brain activation changes—A functional magnetic resonance imaging study. Royal 

Society Open Science, 6(3). https://doi.org/10.1098/rsos.181704 

Tang, N. K. Y., & Harvey, A. G. (2004). Effects of Cognitive Arousal and Physiological Arousal on 

Sleep Perception. Sleep, 27(1), 69–78. https://doi.org/10.1093/sleep/27.1.69 

Tarvainen, M. P., Niskanen, J.-P., Lipponen, J. A., Ranta-Aho, P. O., & Karjalainen, P. A. (2014). 

Kubios HRV--heart rate variability analysis software. Computer Methods and Programs in 

Biomedicine, 113(1), 210–220. https://doi.org/10.1016/j.cmpb.2013.07.024 

Tempesta, D., Alessandro, C., Giuseppe, C., Fabio, M., Cristina, M., Luigi, D. G., & Michele, F. (2010). 

Lack of sleep affects the evaluation of emotional stimuli. Brain Research Bulletin, 82(1), 104–

108. https://doi.org/10.1016/j.brainresbull.2010.01.014 

Tempesta, D., De Gennaro, L., Natale, V., & Ferrara, M. (2015). Emotional memory processing is 

influenced by sleep quality. Sleep Medicine, 16(7), 862–870. 

https://doi.org/10.1016/j.sleep.2015.01.024 

Tempesta, D., Salfi, F., Gennaro, L. D., & Ferrara, M. (2020). The impact of five nights of sleep 

restriction on emotional reactivity. Journal of Sleep Research, 29(5), e13022. 

https://doi.org/10.1111/jsr.13022 

Tempesta, D., Socci, V., De Gennaro, L., & Ferrara, M. (2018). Sleep and emotional processing. Sleep 

Medicine Reviews, 40, 183–195. https://doi.org/10.1016/j.smrv.2017.12.005 



240 

 

Thayer, J. F., & Lane, R. D. (2009). Claude Bernard and the heart–brain connection: Further elaboration 

of a model of neurovisceral integration. Neuroscience & Biobehavioral Reviews, 33(2), 81–88. 

https://doi.org/10.1016/j.neubiorev.2008.08.004 

Thomsen, D. K., Yung Mehlsen, M., Christensen, S., & Zachariae, R. (2003). Rumination—

Relationship with negative mood and sleep quality. Personality and Individual Differences, 

34(7), 1293–1301. https://doi.org/10.1016/S0191-8869(02)00120-4 

Tononi, G. (2009). Slow Wave Homeostasis and Synaptic Plasticity. Journal of Clinical Sleep 

Medicine, 5(2 suppl), S16–S19. https://doi.org/10.5664/jcsm.5.2S.S16 

Troy, A. S., Ford, B. Q., McRae, K., Zarolia, P., & Mauss, I. B. (2017). Change the things you can: 

Emotion regulation is more beneficial for people from lower than from higher socioeconomic 

status. Emotion, 17(1), 141–154. https://doi.org/10.1037/emo0000210 

Troy, A. S., Shallcross, A. J., & Mauss, I. B. (2013). A Person-by-Situation Approach to Emotion 

Regulation: Cognitive Reappraisal Can Either Help or Hurt, Depending on the Context. 

Psychological Science, 24(12), 2505–2514. https://doi.org/10.1177/0956797613496434 

Tugade, M. M., & Fredrickson, B. L. (2007). Regulation of Positive Emotions: Emotion Regulation 

Strategies that Promote Resilience. Journal of Happiness Studies, 8(3), 311–333. 

https://doi.org/10.1007/s10902-006-9015-4 

Tyson, G., & Wild, J. (2021). Post-Traumatic Stress Disorder Symptoms among Journalists Repeatedly 

Covering COVID-19 News. International Journal of Environmental Research and Public 

Health, 18(16), Article 16. https://doi.org/10.3390/ijerph18168536 

Uhde, T. W., Cortese, B. M., & Vedeniapin, A. (2009). Anxiety and sleep problems: Emerging concepts 

and theoretical treatment implications. Current Psychiatry Reports, 11(4), 269–276. 

https://doi.org/10.1007/s11920-009-0039-4 

van de Leemput, I. A., Wichers, M., Cramer, A. O. J., Borsboom, D., Tuerlinckx, F., Kuppens, P., van 

Nes, E. H., Viechtbauer, W., Giltay, E. J., Aggen, S. H., Derom, C., Jacobs, N., Kendler, K. S., 

van der Maas, H. L. J., Neale, M. C., Peeters, F., Thiery, E., Zachar, P., & Scheffer, M. (2014). 

Critical slowing down as early warning for the onset and termination of depression. 



241 

 

Proceedings of the National Academy of Sciences, 111(1), 87–92. 

https://doi.org/10.1073/pnas.1312114110 

van der Helm, E., Gujar, N., & Walker, M. P. (2010). Sleep Deprivation Impairs the Accurate 

Recognition of Human Emotions. Sleep, 33(3), 335–342. 

https://doi.org/10.1093/sleep/33.3.335 

van der Helm, E., & Walker, M. P. (2012). Sleep and Affective Brain Regulation. Social and 

Personality Psychology Compass, 6(11), 773–791. https://doi.org/10.1111/j.1751-

9004.2012.00464.x 

van Reekum, C. M., Johnstone, T., Urry, H. L., Thurow, M. E., Schaefer, H. S., Alexander, A. L., & 

Davidson, R. J. (2007). Gaze fixations predict brain activation during the voluntary regulation 

of picture-induced negative affect. NeuroImage, 36(3), 1041–1055. 

https://doi.org/10.1016/j.neuroimage.2007.03.052 

Vandekerckhove, M., Kestemont, J., Weiss, R., Schotte, C., Exadaktylos, V., Haex, B., Verbraecken, 

J., & Gross, J. J. (2012). Experiential Versus Analytical Emotion Regulation and Sleep: 

Breaking the Link Between Negative Events and Sleep Disturbance. Emotion, 12(6), 1415–

1421. https://doi.org/10.1037/a0028501 

Vandekerckhove, M., & Wang, Y. (2017). Emotion, emotion regulation and sleep: An intimate 

relationship. AIMS Neuroscience, 5(1), 1–17. https://doi.org/10.3934/Neuroscience.2018.1.1 

Vandekerckhove, M., Weiss, R., Schotte, C., Exadaktylos, V., Haex, B., Verbraecken, J., & Cluydts, 

R. (2011). The role of presleep negative emotion in sleep physiology. Psychophysiology, 

48(12), 1738–1744. https://doi.org/10.1111/j.1469-8986.2011.01281.x 

van der Helm, E., Yao, J., Dutt, S., Rao, V., Saletin, J. M., & Walker, M. P. (2011). REM Sleep 

Depotentiates Amygdala Activity to Previous Emotional Experiences. Current Biology, 21(23), 

2029–2032. https://doi.org/10.1016/j.cub.2011.10.052 

Varma, P., Burge, M., Meaklim, H., Junge, M., & Jackson, M. L. (2021). Poor Sleep Quality and Its 

Relationship with Individual Characteristics, Personal Experiences and Mental Health during 



242 

 

the COVID-19 Pandemic. International Journal of Environmental Research and Public Health, 

18(11), Article 11. https://doi.org/10.3390/ijerph18116030 

Velden, P. G. van der, Hyland, P., Contino, C., Gaudecker, H.-M. von, Muffels, R., & Das, M. (2021). 

Anxiety and depression symptoms, the recovery from symptoms, and loneliness before and 

after the COVID-19 outbreak among the general population: Findings from a Dutch population-

based longitudinal study. PLOS ONE, 16(1), e0245057. 

https://doi.org/10.1371/journal.pone.0245057 

Velten, E. (1968). A laboratory task for induction of mood states. Behaviour Research and Therapy, 

6(4), 473–482. https://doi.org/10.1016/0005-7967(68)90028-4 

Volokhov, R. N., & Demaree, H. A. (2010). Spontaneous emotion regulation to positive and negative 

stimuli. Brain and Cognition, 73(1), 1–6. https://doi.org/10.1016/j.bandc.2009.10.015 

Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems ofp values. Psychonomic 

Bulletin & Review, 14(5), 779–804. https://doi.org/10.3758/BF03194105 

Walker, M. P., & van der Helm, E. (2009). Overnight Therapy? The Role of Sleep in Emotional Brain 

Processing. Psychological Bulletin, 135(5), 731–748. https://doi.org/10.1037/a0016570 

Wang, K., Goldenberg, A., Dorison, C. A., Miller, J. K., Uusberg, A., Lerner, J. S., Gross, J. J., Agesin, 

B. B., Bernardo, M., Campos, O., Eudave, L., Grzech, K., Ozery, D. H., Jackson, E. A., Garcia, 

E. O. L., Drexler, S. M., Jurković, A. P., Rana, K., Wilson, J. P., … Moshontz, H. (2021). A 

multi-country test of brief reappraisal interventions on emotions during the COVID-19 

pandemic. Nature Human Behaviour, 5(8), 1089–1110. https://doi.org/10.1038/s41562-021-

01173-x 

Wang, Y., Yang, L., & Wang, Y. (2014). Suppression (but Not Reappraisal) Impairs Subsequent Error 

Detection: An ERP Study of Emotion Regulation’s Resource-Depleting Effect. PLOS ONE, 

9(4), e96339. https://doi.org/10.1371/journal.pone.0096339 

Wassing, R., Benjamins, J. S., Talamini, L. M., Schalkwijk, F., & Van Someren, E. J. W. (2019). 

Overnight worsening of emotional distress indicates maladaptive sleep in insomnia. Sleep, 

42(zsy268). https://doi.org/10.1093/sleep/zsy268 



243 

 

Waterschoot, J., Morbée, S., Vermote, B., Brenning, K., Flamant, N., Vansteenkiste, M., & Soenens, 

B. (2022). Emotion regulation in times of COVID-19: A person-centered approach based on 

self-determination theory. Current Psychology. https://doi.org/10.1007/s12144-021-02623-5 

Waugh, C. E., Shing, E. Z., Avery, B. M., Jung, Y., Whitlow, C. T., & Maldjian, J. A. (2017). Neural 

predictors of emotional inertia in daily life. Social Cognitive and Affective Neuroscience, 12(9), 

1448–1459. https://doi.org/10.1093/scan/nsx071 

Wen, A., & Yoon, K. L. (2019). Depression and affective flexibility: A valence-specific bias. Behaviour 

Research and Therapy, 123, 103502. https://doi.org/10.1016/j.brat.2019.103502 

Wen, X., An, Y., Li, W., Du, J., & Xu, W. (2020). How could physical activities and sleep influence 

affect inertia and affect variability? Evidence based on ecological momentary assessment. 

Current Psychology. https://doi.org/10.1007/s12144-020-00803-3 

Wenzel, M., Blanke, E. S., Rowland, Z., & Kubiak, T. (2022). Emotion regulation dynamics in daily 

life: Adaptive strategy use may be variable without being unstable and predictable without 

being autoregressive. Emotion, 22(7), 1487–1504. https://doi.org/10.1037/emo0000967 

Wenzel, M., & Brose, A. (2023). Addressing measurement issues in affect dynamic research: Modeling 

emotional inertia’s reliability to improve its predictive validity of depressive symptoms. 

Emotion, 23(2), 412–424. https://doi.org/10.1037/emo0001108 

Westermann, S., Grezellschak, S., Oravecz, Z., Moritz, S., Lüdtke, T., & Jansen, A. (2017). Untangling 

the complex relationships between symptoms of schizophrenia and emotion dynamics in daily 

life: Findings from an experience sampling pilot study. Psychiatry Research, 257, 514–518. 

https://doi.org/10.1016/j.psychres.2017.08.023 

Wetzels, R., & Wagenmakers, E.-J. (2012). A default Bayesian hypothesis test for correlations and 

partial correlations. Psychonomic Bulletin & Review, 19(6), 1057–1064. 

https://doi.org/10.3758/s13423-012-0295-x 

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis (2nd ed.). Springer International 

Publishing. https://doi.org/10.1007/978-3-319-24277-4 



244 

 

Wilckens, K. A., Ferrarelli, F., Walker, M. P., & Buysse, D. J. (2018). Slow-Wave Activity 

Enhancement to Improve Cognition. Trends in Neurosciences, 41(7), 470–482. 

https://doi.org/10.1016/j.tins.2018.03.003 

Wilckens, K. A., Hall, M. H., Nebes, R. D., Monk, T. H., & Buysse, D. J. (2016). Changes in Cognitive 

Performance Are Associated with Changes in Sleep in Older Adults With Insomnia. Behavioral 

Sleep Medicine, 14(3), 295–310. https://doi.org/10.1080/15402002.2014.1002034 

Williams, S. E., Veldhuijzen van Zanten, J. J. C. S., Trotman, G. P., Quinton, M. L., & Ginty, A. T. 

(2017). Challenge and threat imagery manipulates heart rate and anxiety responses to stress. 

International Journal of Psychophysiology: Official Journal of the International Organization 

of Psychophysiology, 117, 111–118. https://doi.org/10.1016/j.ijpsycho.2017.04.011 

Williams-Kerver, G. A., Wonderlich, S. A., Crosby, R. D., Cao, L., Smith, K. E., Engel, S. G., Crow, 

S. J., Peterson, C. B., Mitchell, J. E., & Le Grange, D. (2020). Differences in Affective 

Dynamics Among Eating-Disorder Diagnostic Groups. Clinical Psychological Science, 8(5), 

857–871. https://doi.org/10.1177/2167702620917196 

Wu, C., Qian, Y., & Wilkes, R. (2021). Anti-Asian discrimination and the Asian-white mental health 

gap during COVID-19. Ethnic and Racial Studies, 44(5), 819–835. 

https://doi.org/10.1080/01419870.2020.1851739 

Yoo, S.-S., Gujar, N., Hu, P., Jolesz, F. A., & Walker, M. P. (2007). The human emotional brain without 

sleep—A prefrontal amygdala disconnect. Current Biology, 17(20), R877–R878. 

https://doi.org/10.1016/j.cub.2007.08.007 

Zaback, M., Adkin, A. L., & Carpenter, M. G. (2019). Adaptation of emotional state and standing 

balance parameters following repeated exposure to height-induced postural threat. Scientific 

Reports, 9(1), Article 1. https://doi.org/10.1038/s41598-019-48722-z 

Zaback, M., Adkin, A. L., Chua, R., Inglis, J. T., & Carpenter, M. G. (2022). Facilitation and 

Habituation of Cortical and Subcortical Control of Standing Balance Following Repeated 

Exposure to a Height-related Postural Threat. Neuroscience, 487, 8–25. 

https://doi.org/10.1016/j.neuroscience.2022.01.012 



245 

 

Zenses, A.-K., Lenaert, B., Peigneux, P., Beckers, T., & Boddez, Y. (2020). Sleep deprivation increases 

threat beliefs in human fear conditioning. Journal of Sleep Research, 29(3), e12873. 

https://doi.org/10.1111/jsr.12873 

Zhang, J., Lau, E. Y. Y., & Hsiao, J. H. (2019). Using emotion regulation strategies after sleep 

deprivation: ERP and behavioral findings. Cognitive, Affective, & Behavioral Neuroscience, 

19(2), 283–295. https://doi.org/10.3758/s13415-018-00667-y 

Zohar, D., Tzischinsky, O., Epstein, R., & Lavie, P. (2005). The effects of sleep loss on medical 

residents’ emotional reactions to work events: A cognitive-energy model. Sleep, 28(1), 47–54. 

https://doi.org/10.1093/sleep/28.1.47 

Zupan, B., & Eskritt, M. (2020). Eliciting emotion ratings for a set of film clips: A preliminary archive 

for research in emotion. The Journal of Social Psychology, 160(6), 768–789. 

https://doi.org/10.1080/00224545.2020.1758016 

 


	Abstract
	List of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Author’s declarations
	Chapter 1: Introduction
	1.1 Overview
	1.1.1 Emotion regulation
	1.1.2 Cognitive emotion regulation
	1.1.3 Emotional reactivity
	1.1.4 Emotional inertia
	1.1.5 Thesis chapters

	1.2 Cognitive emotion regulation
	1.2.1 Sleep and cognitive emotion regulation
	1.2.2 Interim conclusion

	1.3 Emotional reactivity
	1.3.1 Sleep and emotional reactivity
	1.3.2 Interim conclusion

	1.4 Emotional inertia
	1.4.1 Sleep and emotional inertia
	1.4.2 Interim conclusion

	1.5 Conclusion
	1.6 Reproducibility statement

	Chapter 2: The Influence of Emotion Regulation Strategies and Sleep Quality on Depression and Anxiety
	Abstract
	2.1 Introduction
	2.2 Methods
	2.2.1 Measures and design
	2.2.1.1 Demographic survey
	2.2.1.2 Cognitive emotion regulation
	2.2.1.3 Sleep quality
	2.2.1.4 Depression
	2.2.1.5 Anxiety

	2.2.2 Participants
	2.2.3 Exclusion criteria
	2.2.4 Statistical analysis
	2.2.4.1 Self-certification of data blindness
	2.2.4.2 Planned analyses
	2.2.4.3 Missing data

	2.2.5 Power analysis

	2.3 Results
	2.3.1 Pre-registered analysis
	2.3.2 Exploratory analyses

	2.4 Discussion

	Chapter 3: The Influence of Sleep Deprivation on the Evolution of Arousal During Exposure to Ambiguous Threat
	Abstract
	3.1 Introduction
	3.2 Methods
	3.2.1 Participants
	3.2.2 Procedure and measures
	3.2.2.1 Session one
	3.2.2.2 Session two
	3.2.2.3 Overnight interval
	3.2.2.4 Session three
	3.2.2.5 VR world
	3.2.2.6 VR playback
	3.2.2.7 Self-reported anxiety
	3.2.2.8 Adaptive CER strategy use
	3.2.2.9 HRV
	3.2.2.10 Alertness

	3.2.3 Equipment
	3.2.3.1 VR environment
	3.2.3.2 Physiological equipment
	3.2.3.3 PSG
	3.2.3.4 Actigraphy

	3.2.4 Pre-processing
	3.2.4.1 SCL
	3.2.4.2 HR and HRV
	3.2.4.3 Subjective arousal ratings
	3.2.4.4 PSG


	3.3 Statistical analysis
	3.3.1 Deviations from the pre-registration

	3.4 Results
	3.4.1 Does sleep deprivation increase next-day state anxiety?
	3.4.2 Does sleep deprivation amplify arousal during exposure to ambiguous threat?
	3.4.2.1 SCL
	3.4.2.2 HR
	3.4.2.3 Subjective arousal ratings

	3.4.3 Does sleep deprivation impair the recovery of arousal following the dissipation of threat?
	3.4.3.1 SCL
	3.4.3.2 HR
	3.4.3.3 Subjective arousal ratings

	3.4.4 Is SWA associated with reduced arousal in response to ambiguous threat?
	3.4.5 Alertness
	3.4.6 Exploratory analysis
	3.4.6.1 Adaptive CER strategy use
	3.4.6.2 HRV


	3.5 Discussion

	Chapter 4: The Influence of Emotion Regulation and Sleep Quality on Emotional Inertia
	Abstract
	4.1 Introduction
	4.2 Methods
	4.2.1 Participants
	4.2.2 Procedure
	4.2.3 Measures
	4.2.3.1 Mood induction procedure
	4.2.3.2 Stimulus validation
	4.2.3.3 Cognitive emotion regulation
	4.2.3.4 Sleep quality
	4.2.3.5 Depression
	4.2.3.6 Anxiety


	4.3 Statistical analysis
	4.3.1 Statistical modelling
	4.3.1.1 Raw emotion ratings
	4.3.1.2 Standardised emotion ratings
	4.3.1.3 Deviations from the pre-registration


	4.4 Results
	4.4.1 Descriptive statistics
	4.4.2 Preliminary analysis
	4.4.3 Is there an association between CER strategy use and NA inertia?
	4.4.4 Is the association between CER strategy use and NA inertia influenced by sleep quality?
	4.4.5 Exploratory analysis
	4.4.5.1 CER strategy use, sleep quality, and PA inertia
	4.4.5.2 Depression severity and NA inertia
	4.4.5.3 Anxiety severity and NA inertia


	4.5 Discussion

	Chapter 5: General discussion
	5.1 Overview
	5.2 Summary of empirical work
	5.2.1 Chapter 2
	5.2.2 Chapter 3
	5.2.3 Chapter 4

	5.3 Theoretical and methodological contributions
	5.3.1 Central role for cognitive control in emotion regulation
	5.3.2 Cognitive emotion regulation and sleep quality as transdiagnostic predictors of mental health
	5.3.3 Multimethod assessment of emotion regulation and sleep
	5.3.4 Capturing the dynamic nature of emotion regulation

	5.4 Limitations and future directions
	5.4.1 Dichotomisation of adaptive and maladaptive CER strategies
	5.4.2 Reciprocal mechanisms by which emotion regulation supports sleep
	5.4.3 Individual differences as critical moderators of the association between sleep and emotion regulation
	5.4.4 Influence of sleep on other emotion dynamics

	5.5 Conclusion

	Appendices
	Supplementary Materials: Chapter 2
	Supplementary Materials: Chapter 4

	References

