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Abstract

The aim of this thesis is to investigate the Betti diagrams of squarefree monomial

ideals in polynomial rings. Betti diagrams encode information about the mini-

mal free graded resolutions of these ideals, and are therefore important algebraic

invariants.

Computing resolutions is a difficult task in general, but in our case there are

tools we can use to simplify it. Most immediately, the Stanley-Reisner Correspon-

dence assigns a unique simplicial complex to every squarefree monomial ideal, and

Hochster’s Formula ([Hoc77] Theorem 5.1) allows us to compute the Betti dia-

grams of these ideals from combinatorial properties of their corresponding com-

plexes. This reduces the algebraic problem of computing resolutions to the (often

easier) combinatorial problem of computing homologies. As such, most of our work

is combinatorial in nature.

The other key tool we use in studying these diagrams is Boij-Söderberg The-

ory. This theory views Betti diagrams as vectors in a rational vector space, and

investigates them by considering the convex cone they generate. This technique

has proven very instructive: it has allowed us to classify all Betti diagrams up to

integer multiplication. This thesis applies the theory more narrowly, to the cones

generated by diagrams of squarefree monomial ideals.

In Chapter 2 we introduce all of these concepts, along with some preliminary

results in both algebra and combinatorics we will need going forward. Chapter 3

presents the dimensions of our cones, along with the vector spaces they span.

Chapters 4 and 5 are devoted to the pure Betti diagrams in these cones (mo-

tivated in part by [BH94] and [BH98b]), and the combinatorial properties of their

associated complexes. Finally Chapter 6 builds on these results to prove a partial

analogue of the first Boij-Söderberg conjecture for squarefree monomial ideals, by

detailing an algorithm for generating pure Betti diagrams of squarefree monomial

ideals of any degree type.
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Chapter 1

Introduction

Throughout this thesis we fix a field K of arbitrary characteristic and a positive

integer n, and we set R to be the polynomial ring K[x1, . . . , xn]. Our aim is to

investigate both the squarefree monomial ideals of R and simplicial complexes on

the vertex set [n] = {1, . . . , n}, which are related via the Stanley-Reisner Corre-

spondence. More specifically we wish to study an important algebraic invariant of

squarefree monomial ideals: their Betti diagrams.

Betti diagrams are an invariant of any graded R-module M ; they are defined

as the matrix of exponents βi,d in a minimal free graded resolution of M ,

0 →
⊕
d∈Z

R(−d)βp,d → ... →
⊕
d∈Z

R(−d)β1,d →
⊕
d∈Z

R(−d)β0,d → M → 0.

and they encode a lot of important information about their respective modules:

in particular, the Krull-dimension, projective dimension, Hilbert polynomial, and

Castelnuovo-Mumford regularity of a module can all be computed from its Betii

diagram.

Unfortunately there does not, in general, exist an efficient way of computing

Betti diagrams for arbitrary modules. However, in the case of monomial ideals,

there are often combinatorial properties of the ideal which we can exploit to help

us compute its Betti diagram.

More specifically, in the case of squarefree monomial ideals, the Stanley-Reisner

correspondence assigns the ideal a unique simplicial complex; and a seminal theo-

rem of Hochster’s ([Hoc77] Theorem 5.1) reframes the Betti numbers of the ideal

in terms of homological data from its corresponding complex. Hochster’s Formula

has proven to be an incredibly powerful tool in the study of Betti diagrams. It

has been successfully used to compute diagrams of many families of squarefree

monomial ideals – in particular, the edge ideals of certain families of graphs, such

as in [Ram12] Theorem 2.3.3 (complements of cyclic graphs) or [Jac04] Theorem

5.3.8 (complete multipartite graphs) – and to find combinatorial bounds for other

algebraic invariants (such as Theorem 6.7 in [HV08], which gives a bound on the

regularity of an edge ideal in terms of matchings in its corresponding graph).

1



2 CHAPTER 1. INTRODUCTION

Note that every Betti diagram of a monomial ideal can be realised as the

Betti diagram of a squarefree monomial ideal, via the process of polarisation (see

[MPSW20] Definition 2.1). Thus, restricting our attention to the squarefree case

does not in fact require us to neglect any Betti diagrams of arbitrary monomial

ideals.

This thesis is particularly focussed on those complexes whose Stanley-Reisner

ideals have pure Betti diagrams – these are Betti diagrams arising from pure res-

olutions of the form

0 → R(−cp)
βp,cp → ... → R(−c1)

β1,c1 → R(−c0)
β0,c0 → I → 0.

Put simply, a Betti diagram is pure if it has only a single nonzero entry in each

column. Stanley-Reisner ideals with pure resolutions have been investigated ex-

tensively in the literature. Most notably, [BH98b], [Frö90] and [BH94] all include a

number of results in this area. Between them they classify all the Stanley-Reisner

ideals with pure resolutions corresponding to 1-dimensional complexes (Propo-

sition 2.2 of [BH98b]); Cohen-Macaulay posets (Theorem 3.6 of [BH98b]); and

clique complexes of graphs (Theorem 1 in [Frö90] and Theorem 2.1 in [BH94]). In

the case of clique complexes, [ES13] builds on Theorem 1 of [Frö90] to show that

any 2-linear diagrams arising from a clique complex has a unique corresponding

threshold graph.

Our specific interest is in the possible shapes of pure diagrams of Stanley-

Reisner ideals – that is, the positions of their nonzero entries. This is equivalent

to the notion of shift type given in [BH94] (page 1203), defined as the sequence

(cp, . . . , c0) of shifts in the resolution. The authors of this paper give a number

of examples of, and restrictions on, the possible shift types of pure resolutions of

Stanley-Reisner ideals (see e.g. Theorem 3.1 and Propositions 3.2 and 3.3).

One reason pure diagrams have enjoyed particular attention in the literature

comes from Boij-Söderberg Theory, which is a central motivation for our work.

This theory (originally expounded in [BS08]) envisages all Betti diagrams of R-

modules as vectors lying in the infinite-dimensional rational vector space Vn =⊕
d∈ZQn+1, and studies the cone generated by the positive rational rays spanned

by these diagrams. The central insight of Boij and Söderberg was that every ray in

this cone can be decomposed into the sum of rays corresponding to pure diagrams

of Cohen-Macaulay modules (and these pure rays can be easily computed). This

result amounts to a complete classification of all Betti diagrams of R-modules up

to multiplication by a positive rational.

In the case of monomial ideals, there has been considerable interest in obtaining

combinatorial descriptions of the Boij-Söderberg decomposition described above.

This avenue has proven very fruitful in certain cases (see e.g. [NS12] Theorem

3.6, which looks at Ferrers ideals, or [FJS17] Theorem 3.2, which looks at Borel
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ideals). However, there is a significant obstacle to this goal in general: while

we know that there exists a pure Betti diagram of any given shift type (this

is the first Boij-Söderberg conjecture, [Flø12] Theorem 1.9), this pure diagram

need not be the diagram of a monomial ideal. Hence, the decomposition of the

diagram of a monomial ideal β(I) will often contain pure diagrams which do not

correspond to monomial ideals themselves (and thus do not lend themselves readily

to combinatorial manipulation).

This raises a natural question: to what extent does the first Boij-Söderberg con-

jecture apply to the cone generated by diagrams of squarefree monomial ideals?

Or put more simply, for which shift types does there exist a squarefree monomial

ideal with a pure resolution of that shift type? This question is the central moti-

vation for our study of pure Betti diagrams of Stanley-Reisner ideals in Chapters

4, 5 and 6.

Another way to navigate the obstacle above would be to obtain a decomposition

of β(I) into the rational sum of diagrams of other squarefree monomial ideals. This

would require a description of the extremal rays of the cone generated by Betti

diagrams of squarefree monomial ideals. We study this cone in Chapter 3, along

with three notable subcones. While a complete description of these cones may

currently be out of reach, we present some important properties, which may be of

use in future classifications: in particular, we present and prove formulae for their

dimensions, and describe the minimal subspaces of Vn that they span.

For the avoidance of ambiguity we now present a brief overview of our substan-

tial new results, broken down by chapter. It is worth noting that none of these

results depend upon the characteristic of K.

Chapter 2: Background Material

Our first chapter is a survey of relevant algebraic and combinatorial background

material from the literature, to provide context and motivation for our main re-

sults, as well as a number of key tools that will help us in proving them. This

includes a brief overview of topics surrounding Betti diagrams, Boij-Söderberg

Theory, Stanley-Reisner and edge ideals, and Hochster’s Formula. As such, none

of the results in this chapter are new (with the possible exception of Lemma 2.63

– a result detailing a condition under which a face may be deleted from a complex

while preserving homotopy – which we have been unable to find in the literature).

Chapter 3: Dimensions of Betti Cones

This chapter details our work on the dimensions of Betti cones generated exclu-

sively by diagrams of squarefree monomial ideals. The chapter is built around the
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proofs of four key theorems.

• Theorem 3.2 on the dimension of the Betti cone Dn generated by the dia-

grams of all squarefree monomial ideals in R.

• Theorem 3.3 on the dimension of the Betti cone Cn generated by the diagrams

of edge ideals in R.

• Theorem 3.4 on the dimension of the Betti cone Dh
n generated by the dia-

grams of squarefree monomial ideals in R of a given height h.

• Theorem 3.5 on the dimension of the Betti cone Ch
n generated by the diagrams

of edge ideals in R of a given height h.

While proving Theorems 3.2 and 3.4 we also demonstrate how they can be altered

slightly to compute the dimensions of the cones D̃n and D̃h
n, generated by diagrams

squarefree monomial ideals of degree at least 2 (equivalently, these are the diagrams

corresponding to simplicial complexes with no missing vertices).

Our proofs for each of these theorems involve constructing the minimal vector

spaces containing the cone. We construct these spaces in each case by compiling a

list of restrictions that the diagrams in the cone must satisfy, most of which can be

found in the literature. Hence, the first part of each of our proofs (the ‘upper bound ’

section) consists predominantly of a compilation of existing results. The new part

of each theorem, and the bulk of each proof (the ‘lower bound ’ section), is that the

vector spaces carved out by these restrictions are the minimal spaces containing

their respective cones. This demonstrates that (up to linear combination) these

restrictions represent the only linear relations satisfied by every diagram in the

cone, and in that sense they are best possible.

Chapter 4: PR Complexes and Degree Types

This chapter begins our investigation into pure resolutions of squarefree monomial

ideals by introducing the family of PR complexes – simplicial complexes ∆ whose

dual Stanley-Reisner ideals I∆∗ have pure Betti diagrams. We present an entirely

combinatorial description of these complexes (Corollary 4.8) which follows from the

Alexander Dual variant of Hochster’s Formula, ADHF (Proposition 1 in [ER98]).

While this description is an elementary consequence of ADHF, we have not yet

come across a treatment of these complexes in the literature.

A central result of Eagon and Reiner in [ER98] (Theorem 3) is that the dual

Stanley-Reisner ideal I∗∆ of a complex ∆ has a linear resolution if and only if the

Stanley-Reisner ring K[∆] is Cohen-Macaulay. Thus PR complexes are a gener-

alisation of the family of Cohen-Macaulay complexes. Combinatorially speaking,
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Cohen-Macaulay complexes are defined as complexes whose links have homology

only at the highest possible degree (this is Reisner’s criterion, in e.g. [MS05] Theo-

rem 5.53). The PR condition is a relaxation of the Cohen-Macaulay one, requiring

only that the homology of each non-acyclic link is a function of the size of its

corresponding face. Cohen-Macaulay complexes are the subject of a large amount

of literature, ranging from largely algebraic investigations (see e.g. [IMSW21]) to

almost entirely combinatorial ones (see e.g. [DGL22]).

Of particular note in this chapter is the concept of maximal intersections in

Section 4.3.1, particularly Proposition 4.54, which details the conditions under

which the second column of the Betti diagram β(I∆∗) is pure; and the link poset

(Definition 4.56), which is a poset structure that can be imposed on the links of

a simplicial complex to help us identify whether its dual Stanley-Reisner ideal

admits a pure resolution.

Chapter 5: Some Families of PR Complexes

This chapter presents a number of highly symmetric families of PR complexes,

and proves that they satisfy the PR property. These include the following.

• The family of cycle complexes Ca,b given in Definition 5.11; Theorem 5.14

states that the complex Ca,b is PR with degree type (a, b).

• The family of intersection complexes I(m) given in Definition 5.18; Theorems

5.29 and 5.30 state that these complexes are PR, and detail their degree types

and Betti diagrams.

• The family of partition complexes P(a, p,m) given in Definition 5.43; Theo-

rem 5.57 states that the complex P(a, p,m) is PR with degree types of the

form (

p︷ ︸︸ ︷
1, . . . , 1, a, 1, . . . , 1︸ ︷︷ ︸

m

).

Chapter 6: Pure Resolutions of Any Degree Type

This chapter is devoted to the proof of our most significant result, which is the

following.

• Theorem 4.7 states that there exist squarefree monomial ideals with pure

resolutions of any given degree type.

We define the degree type of a pure resolution explicitly in Chapter 4 – the ter-

minology is borrowed from [BH94] (page 1203), although it should be noted that

our definition differs slightly from theirs. In essence, the degree type contains all
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the information of the shift type (cp, . . . , c0) except for the value of the initial shift

c0. Thus, Theorem 4.7 can be seen as a slightly weaker variant of the first Boij-

Söderberg conjecture, for the cone generated by diagrams of squarefree monomial

ideals.

In proving this result, we construct a number of operations on simplicial com-

plexes which preserve the purity of the corresponding Betti diagrams, while altering

the diagram’s degree type.

• The operations {ϕi : i ∈ Z+} in Definition 6.9 map PR complexes of degree

type (dp, . . . , di, 1, . . . , 1) to PR complexes of degree type (dp, . . . , di+1, di +

1, 1, . . . , 1) (this is Theorem 6.14)

• The operations fλ and f free in Definitions 6.1 and 6.5 have similar PR pre-

serving properties, as shown in Corollaries 6.3 and 6.7.

. Our work in this chapter also involves a brief investigation in to the barycentric

subdivision B(∆) of arbitrary simplicial complexes ∆. There are a number of

results in the literature on the combinatorial effects of the barycentric subdivision

process (for instance, [BW08] contains a number of results on its effects on f - and

h-vectors, such as Theorems 2.2 and 3.1). The central results of Section 6.5, which

we believe to be new, demonstrate the effects of the process on links, homologies

of links, and both the PR and Cohen-Macaulay properties.

• Proposition 6.27 is a description of the links in B(∆) in terms of links in ∆.

• Corollary 6.28 is a description of the homologies of these links in terms of

the homologies of the links in ∆.

• Proposition 6.30 is an equivalence statement about the conditions under

which the barycentric subdivision of ∆ is PR (in particular, this occurs if

and only if ∆ is Cohen-Macaulay).

Chapter 7: Future Directions

This final chapter is a brief account of possible future research directions that could

be explored based on our main results. As such, it does not contain any substantial

new results, but it presents a number of open questions and conjectures.



Chapter 2

Background Material

We begin by presenting some preliminary results from the literature which we will

need going forward.

Our most central tool, the Stanley-Reisner correspondence, provides a bridge

between the fields of algebra and combinatorics; as such, this introductory chapter

will be split into two sections: Results from Algebra and Results from Combina-

torics. The former of these will include a brief exposition of Betti diagrams, before

moving on to Boij-Söderberg theory, and detailing how this theory allows us to

classify all Betti diagrams up to multiplication by an integer. The latter will de-

scribe the Stanley-Reisner Correspondence, as well as presenting some important

preliminary results concerning simplicial complexes, and graph theory.

The latter section also reviews some key results from simplicial homology, but

does not contain an overview of the topic; an overview can be found in [Hat02]

Chapter 2.1. All of the homology we consider in this thesis will be reduced homol-

ogy over our arbitrary field K, and we use the notation H̃i(∆) to denote the ith

reduced homology group of ∆ with coefficients in K. None of our results depend

upon the characteristic of K.

Wherever possible we define all notation we use; any exceptions to this can be

found in the List of Symbols and Notation section at the end of the thesis.

2.1 Results from Algebra

2.1.1 Free Resolutions and Betti Diagrams

We fix a finitely generated graded R-module M (this thesis is only concerned with

graded modules, so from now on we will often simply use the term ‘module’ to

mean ‘graded module’). Consider a minimal free resolution of M , given by

0 → Rβp → · · · → Rβ0 → M → 0 . (2.1)

7



8 CHAPTER 2. BACKGROUND MATERIAL

Remark 2.1. The length p of this resolution is equal to the projective dimension

of M , pdimM . By Hilbert’s Syzygy Theorem ([Eis95] Corollary 19.7), we have

pdimM ≤ n.

Definition 2.2. We call the ranks βi of the free modules in this resolution the

total Betti numbers of M , and often write them as βi(M).

Note that while, in general, M will admit many distinct free resolutions, the

Betti numbers of M are an invariant. They also encode a lot of information about

M . In particular, β0 is the minimal size of a generating set for M , because the

image of any basis of Rβ0 under the map Rβ0 → M in (2.1) generates M . Similarly,

β1 is equal to the minimal number of generators for the first syzygy module of M ;

and more generally, βi is equal to the minimal number of generators of the ith

syzygy module.

Informally, we can think of this as follows: β0 tells us the number of generators

of the module, β1 tells us the number of relations between those generators, β2

tells us the number of relations between those relations, and so on.

One significant limitation of total Betti numbers is that they contain no infor-

mation about the grading of M . Ideally, we would like an invariant that encodes

not just the number of generators of M and its syzygy modules, but also the

degrees of those generators.

To construct such an invariant we now consider a minimal graded free resolution

of M , given by

0 →
⊕
d∈Z

R(−d)βp,d → ... →
⊕
d∈Z

R(−d)β1,d →
⊕
d∈Z

R(−d)β0,d → M → 0 (2.2)

where R(−d) denotes the graded R-module with grading given by [R(−d)]a = Ra−d

for a ∈ Z. For each i, the integers d for which βi,d ̸= 0 are called shifts (at

homological degree i). The resolution (2.2) is graded in the sense that the maps

in the resolution send elements of degree d in one module to elements of degree d

in the next. Note that the nonzero entries in the matrices representing these maps

all have positive degree.

Definition 2.3. We call the exponents βi,d in (2.2) the graded Betti numbers of

M (or in this thesis, usually simply the Betti numbers of M). We often write them

as βi,d(M).

Example 2.4. Suppose n = 4. The squarefree monomial ideal I of R generated

by x1x4 and x1x2x3 admits the following minimal graded free resolution.

0 R(−4) R(−2)⊕R(−3) I 0.

x2x3

−x4

 (
x1x4 x1x2x3

)

The nonzero Betti numbers of I are β0,2(I) = β0,3(I) = β1,4(I) = 1.
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Just as the total Betti number β0(M) is equal to the minimum number of

generators ofM , the graded Betti number β0,d(M) is equal to the minimum number

of generators of M of degree d. Similarly βi,d(M) is equal to the minimum number

of generators of the ith syzygy module of M of degree d.

The total Betti numbers and graded Betti numbers of M are related via the

equations

βi =
∑
d∈Z

βi,d for each 0 ≤ i ≤ n .

Definition 2.5. The Betti diagram of M , denoted β(M), is a matrix containing

the graded Betti numbers of M . In order to reduce the number of rows of this

matrix, the standard notational convention (which we adopt for this thesis) is to

write β(M) as a matrix (aij) with aij = βj,i+j, as shown.
...

...
...

β0,0 β1,1 . . . βn,n

β0,1 β1,2 . . . βn,n+1

...
...

...


Note that while this matrix is infinite, only finitely many of the entries are

nonzero.

We also occasionally write Betti diagrams in table notation as follows.

Notation 2.6. Suppose β is a Betti diagram of an R-module. We can write β as

a table in the following way.

0 1 . . . n

0 β0,0 β1,1 . . . βn,n

1 β0,1 β1,2 . . . βn,n+1

...
...

...
...

...

Example 2.7. The table

0 1 2

4 8 9 1

5 . . 1

denotes a Betti diagram β for which β0,4 =

8, β1,5 = 9, β2,6 = β2,7 = 1, and all other Betti numbers are zero.

Just as the projective dimension of a module can be seen as the “length” of its

Betti diagram, the following property can be seen as the Betti diagram’s “width”.

Definition 2.8. LetM be anR-module with Betti diagram β(M). The (Castelnuovo-

Mumford) regularity of M is given by reg(M) = max{d− i : βi,d(M) ̸= 0}.

We have a number of important constraints on the Betti numbers of R-modules.

The following is perhaps one of the most famous, and the most important for our

work going forward. It holds for all R-modules of a given codimension h (for a

proof, see e.g. [Flø12] Section 1.3).
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Lemma 2.9 (Herzog-Kühl Equations). Let M be a graded R-module of codimen-

sion h, and let β = β(M). We have∑
i,d

(−1)idjβi,d = 0 for each 0 ≤ j ≤ h− 1.

Notation 2.10. For convenience, for each 0 ≤ j ≤ h − 1, we use the notation

HKj(β) to represent the expression
∑

i,d(−1)idjβi,d. In this notation, the Herzog-

Kühl equations for modules of codimension h can be rephrased as the statement

HKj(β) = 0 for each 0 ≤ j ≤ h− 1.

All of the R-modules we care about in this thesis are ideals, so we end this

section with two key observations about the Betti diagrams of ideals.

Remark 2.11. Let I be an ideal in R of height h. This means that the quotient

R/I has codimension h, and therefore, setting M = R/I in Lemma 2.9 gives us

HKj(β(R/I)) = 0 for each 0 ≤ j ≤ h − 1. We can use this to find similar linear

dependency relations for the diagram β(I).

Specifically, if

0 →
⊕
d∈Z

R(−d)βp,d → ... →
⊕
d∈Z

R(−d)β1,d →
⊕
d∈Z

R(−d)β0,d → I → 0

is a minimal graded free resolution of I, then

0 →
⊕
d∈Z

R(−d)βp,d → ... →
⊕
d∈Z

R(−d)β1,d →
⊕
d∈Z

R(−d)β0,d → R(0) → R/I → 0

is a minimal graded free resolution of R/I.

This means that the Betti diagrams of R and R/I are directly related via

βi,d(R/I) =


βi−1,d(I) if i > 0

1 if (i, d) = (0, 0)

0 otherwise.

Hence, for any j ≥ 0, we have

HKj(β(R/I)) =
∑
i,d

(−1)idjβi,d(R/I)

= 0j +
∑
i,d

(−1)idjβi−1,d(I)

= 0j −
∑
i,d

(−1)idjβi,d(I)

=

1− HKj(β(I)) if j = 0

−HKj(β(I)) otherwise.

Thus, for any ideal I of height h, the Herzog-Kühl equations tell us that

HK0(β(I)) = 1 and HKj(β(I)) = 0 for each 1 ≤ j ≤ h− 1.



2.1. RESULTS FROM ALGEBRA 11

Remark 2.12. Suppose I is an ideal in R, and let

F• : 0 →
⊕
d∈Z

R(−d)βp,d → ... →
⊕
d∈Z

R(−d)β1,d →
⊕
d∈Z

R(−d)β0,d → I → 0

be a minimal free graded resolution for I as an R-module.

Let S denote the polynomial ring R[xn+1], and consider the ideal IS in S.

Because S is a free R-module, it is also faithfully flat, and hence

F• ⊗R S : 0 →
⊕
d∈Z

S(−d)βp,d → ... →
⊕
d∈Z

S(−d)β1,d →
⊕
d∈Z

S(−d)β0,d → IS → 0

is a minimal free graded resolution for IS as an S-module.

In particular, any generating set for I as an R-ideal is also a generating set for

IS as an S-ideal. Hence the Betti diagram of I is dependent only on its generators,

and not on the number of variables in its ambient polynomial ring.

2.1.2 Boij-Söderberg Theory and Betti Cones

One of the most significant advances in our understanding of Betti Diagrams came

from a paper put on the Arxiv by Boij and Söderberg (and later published in 2008

as [BS08]), which laid out two important conjectures about the Betti diagrams of

Cohen-Macaulay modules, both of which have since been proven. In this section

we give a brief exposition of these two conjectures, and the surrounding theory; a

more comprehensive overview can be found in [Flø12] Section 1.

The aim of [BS08] was a classification result for Betti diagrams of R-modules;

but instead of trying to classify all such Betti diagrams directly, the authors set

themselves the task of classifying them up to multiplication by a positive ratio-

nal (or equivalently, by a positive integer, because all of the diagrams have in-

teger values). Their central insight was that any Betti diagram of an R-module

may be viewed as a vector in the infinite-dimensional rational vector space Vn =⊕
d∈Z Qn+1, and thus their goal was to classify the positive rational rays spanned

by the diagrams in this space.

Note in particular that for any two R-modulesM1 andM2, and any two positive

integers q1 and q2, we have q1β(M1) + q2β(M2) = β(M q1
1 ⊕M q2

2 ). It follows that

the set of positive rational rays spanned by the Betti diagrams in Vn form a cone.

The task, therefore, was to describe the cone.

Boij and Söderberg initially restricted their attention to cones generated by

diagrams of Cohen-Macaulay R-modules of a given codimension h, for some fixed

h ≤ n. Recall that Cohen-Macualay modules are defined in terms of the Krull-

dimension and depth of a module as follows (see [BH98a] Section 2.1 for more

details).

Definition 2.13. AnR-moduleM is Cohen-Macaulay if we have dimM = depthM .
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We can find the projective dimensions of these modules from the Auslander-

Buchsbaum formula for graded rings (see e.g. [Eis95] Exercise 19.8), which is the

following.

Theorem 2.14 (Auslander-Buchsbaum Formula for Graded Rings). Let S be a

graded ring and let M be a finitely generated graded S-module of finite projective

dimension. We have

pdimM = depthS − depthM.

Corollary 2.15 (Auslander-Buchsbaum Formula for the polynomial Ring R). Let

M be a finitely generated graded R-module. We have

pdimM = n− depthM.

Proof. The polynomial ring R is Cohen-Macaulay with depth and Krull-dimension

both equal to n, and all finitely generated R-modules have finite projective dimen-

sion.

In the case where M is a Cohen-Macaulay R-module of codimension h we have

pdimM = n− dimM = codimM = h.

More generally, if M is an arbitrary R-module we have depthM ≤ dimM , and

hence pdimM ≥ codimM . Thus the diagrams of Cohen-Macaulay modules are

the ones with minimal length for their given codimension.

The cone generated by all Cohen-Macaulay R-modules of codimension h is

infinite-dimensional, which makes it difficult to work with. For this reason, Boij

and Söderberg restricted their attention further to finite dimensional subcones

generated by Betti diagrams within a given window. We lay out how to build

these cones below.

For the rest of this section we fix two strictly decreasing sequences of integrs

a = (ah, . . . , a0) and b = (bh, . . . , b0) in Zh+1, such that ai ≤ bi for each 0 ≤ i ≤ h.

Note that this condition imposes a partial order on the sequences in Zh+1, which

we will henceforth denote by a ≤ b.

Definition 2.16. We define

1. I(a,b) = {(i, d) ∈ {0, . . . , h} × Z : ai ≤ d ≤ bi}.

2. V(a,b) =
⊕

(i,d)∈I(a,b) Q ⊂ Vn.

3. C(a,b) to be the cone of positive rational rays t · β for Betti diagrams β of

Cohen-Macaulay R-modules of codimension h which lie inside the subspace

V(a,b).
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Boij and Söderberg’s key aim was to find the extremal rays of the cone C(a,b).

These are vectors v1, . . . , vm in the cone such that

• Every vector in the cone can be written as a positive rational sum of the

form λ1v1 + . . . λmvm.

• For each 1 ≤ i ≤ m there do not exist linearly independent vectors u and w

in the cone such that vi = u+ w.

It turns out that these extremal rays come from so-called pure Betti diagrams,

defined as follows.

Definition 2.17. Let M be an R-module. We say the Betti diagram β(M) is pure

if for every 0 ≤ i ≤ n there is at most a single value of c such that the diagram

βi,c(M) is nonzero.

In this case, M admits a graded resolution of the form

0 → R(−cp)
βp,cp → ... → R(−c1)

β1,c1 → R(−c0)
β0,c0 → M.

We call such a resolution a pure resolution, and we say it has shift type (cp, ..., c0)

(after the terminology of [BH94] page 1203).

Let c = (ch, . . . , c0) be a strictly decreasing sequence such that a ≤ c ≤ b.

Any pure Betti diagram β of shift type c corresponding to a Cohen-Macaulay

module of codimension h must satisfy the Herzog-Kühl equations HK0(β) = · · · =
HKh−1(β) = 0. This gives us a system of h linearly independent equations in the

h + 1 variables β0,c0 , . . . , βh,ch , and hence there is only a single ray of solutions

in Vn. We denote the smallest integer solution on this ray by π(c), and we can

compute it as follows (see [BS08], Section 2.1).

Proposition 2.18. Let π = π(c) ∈ Vn be the smallest pure integer solution to the

Herzog-Kühl equations HK0(β) = · · · = HKh−1(β) = 0. We have

πi,ci = Π0̸=k ̸=i
ck − c0
ck − ci

.

To show that the rays spanned by these pure diagrams are the extremal rays

of the cone C(a,b), we need to prove two things. First, we need to show that

they actually lie in the cone: that is, for every decreasing sequence c in Zh+1 with

a ≤ c ≤ b the ray t · π(c) actually contains a Betti diagram of a Cohen-Macaulay

module of codimension h (this is not immediate from the above discussion; Propo-

sition 2.18 shows that any pure diagram of shift type c corresponding to a Cohen-

Macaulay module of height h must lie on the ray t · π(c) if it exists, but does not
guarantee the existence of such a diagram).

Second, we must show that the diagrams π(c) satisfy the conditions of extremal

rays. It is easy to see that π(c) cannot be decomposed into the sum of two linearly
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independent vectors in the cone (indeed, if π(c) = β1+β2 then β1 and β2 must also

lie on the ray t · π(c) by considering the position of zero entries), so what remains

to show is that the diagram of any Cohen-Macaulay module of codimension h can

be decomposed into a rational sum of pure diagrams.

The two claims above are the Boij-Söderberg conjectures (Theorems 1.9 and

1.11 in [Flø12]). The first conjecture was subsequently proven by Eisenbud, Fløystad

and Weyman in [EFW11],and the second by Eisenbud and Schreyer in [ES08].

Theorem 2.19 (First Boij-Söderberg Conjecture). For any strictly decreasing

sequence of integers c = (ch, . . . , c0), there exists a Cohen-Macaulay graded R-

module M of codimension h with a pure resolution of shift type c.

Theorem 2.20 (Second Boij-Söderberg Conjecture). Let M be a Cohen-Macaulay

graded R-module of codimension h whose Betti diagram lies inside V(a,b). There

exist positive rational numbers qi and a chain of decreasing sequences c1 < · · · < cr

in Zh+1 such that

β(M) = q1π(c
1) + · · ·+ qrπ(c

r).

Boij and Söderberg later extended this second result to the non-Cohen-Macaulay

case ([BS12] Theorem 2). In order to state this revised result, we will use the no-

tation Z≤n+1 to denote the set of integer sequences of length at most n + 1. We

can extend our earlier partial order on Zh+1 to this set by stipulating that a ≤ b

for sequences a = (ap1 , . . . , a0) and b = (bp2 , . . . , b0) in Z≤n+1 whenever p1 ≥ p2

and ai ≤ bi for each 0 ≤ i ≤ p1 .

Theorem 2.21 (Second Boij-Söderberg Conjecture for Arbitrary Modules). Let

M be an arbitrary R-module. There exist positive rational numbers qi and a chain

of decreasing sequences c1 < · · · < cr in Z≤n+1 such that

β(M) = q1π(c
1) + · · ·+ qrπ(c

r).

Together, Theorem 2.19 and Theorem 2.21 provide a complete classification

of all Betti diagrams of R-modules up to multiplication by a positive integer.

Theorem 2.19 also allows us to classify the vector space spanned by the cone

C(a,b).

Definition 2.22. We define

1. VHK(a,b) = {β ∈ V(a,b) : HK0(β) = · · · = HKh−1(β) = 0}.

2. W(a,b) to be the subspace of V(a,b) generated by the diagrams in C(a,b).

The former space VHK(a,b) has a basis consisting of pure diagrams π(c) (this

is Proposition 1.8 in [Flø12]).
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Proposition 2.23. For any maximal chain a = c1 < · · · < cr = b in Zh+1, the

diagrams π(c1), . . . , π(cr) form a basis for VHK(a,b).

The latter space W(a,b) must be a subspace of VHK(a,b), because all of its

generating Betti diagrams satisfy the Herzog-Kühl Equations. In fact, it is a

consequence of the first Boij-Söderberg conjecture that these two spaces are equal

(this is Corollary 1.10 in [Flø12]).

Corollary 2.24. The spaces W(a,b) and VHK(a,b) are equal.

Proof. By Theorem 2.19, the space W(a,b) contains all the diagrams π(c) for

strictly decreasing sequences c in Zh+1 with a ≤ c ≤ b, and these diagrams

generate VHK(a,b) by Proposition 2.23

The key results of this thesis (Theorems 3.2, 3.3, 3.4 and 3.4 im Chapter 3,

and Theorem 4.7 in Chapter 4) can be seen as analogues of either the first Boij-

Söderberg conjecture or its above corollary, for Betti cones generated exclusively

by diagrams of squarefree monomial ideals.

In order to study the diagrams of squarefree monomial ideals, we must now

delve into the world of combinatorics.

2.2 Results from Combinatorics

2.2.1 Simplicial Complexes and Stanley-Reisner Ideals

Simplicial complexes are important combinatorial and topological objects, defined

as follows.

Definition 2.25. A simplicial complex ∆ on vertex set V is a set of subsets of V

such that for any G ⊆ F ⊆ V , if F is in ∆ then G is also in ∆.

We often denote the vertex set of a complex ∆ as V (∆).

Remark 2.26. For our purposes the vertex set V will always be finite.

Definition 2.27. Let ∆ be a simplicial complex on a vertex set V of size n.

1. We refer to the elements of ∆ as simplices or faces.

2. A facet of ∆ is a face of ∆ that is maximal with respect to inclusion.

3. A minimal nonface of ∆ is a subset of V that is not a face of ∆ and is

minimal with this property with respect to inclusion. Note that ∆ need not

contain every singleton subset of V . A singleton minimal nonface of ∆ is

called a missing vertex.

4. A vertex in V which is contained in only one facet of ∆ is called a free vertex.
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5. The dimension of a face σ in ∆, denoted dimσ, is |σ| − 1. The dimension

of ∆, denoted dim∆, is the dimension of its largest facet. If all facets of ∆

have the same dimension, we say ∆ is pure.

6. The codimension of ∆, denoted codim∆, is n− dim∆− 1.

7. For a face σ ∈ ∆ we define the link of σ in ∆ to be the complex

link∆ σ = {τ ∈ ∆ : σ ∩ τ = ∅, σ ∪ τ ∈ ∆}.

8. We define the Alexander Dual of ∆ to be the complex

∆∗ = {F ⊆ V : V − F /∈ ∆}.

9. For two complexes ∆1 and ∆2 on disjoint vertex sets V1 and V2 we define the

join of ∆1 and ∆2 on vertex set V1 ⊔ V2 as

∆1 ∗∆2 = {σ1 ⊔ σ1 : σ1 ∈ ∆1, σ2 ∈ ∆2}.

10. The join of ∆ with a single vertex is called the cone over ∆. We denote it

by C∆.

11. The join of ∆ with two disjoint vertices is called the suspension of ∆. We

denote it by S∆.

We often write simplicial complexes in facet notation, as follows.

Notation 2.28. For subsets F1,...,Fm in a vertex set V , we use ⟨F1, ..., Fm⟩ to

denote the smallest simplicial complex on V containing F1,...,Fm. Note that if the

set {F1, ..., Fm} is irredundant (i.e. no pair of subsets Fi and Fj satisfy Fi ⊆ Fj),

then this is the same as the complex on V with facets F1, ..., Fm.

Remark 2.29. Suppose σ is a face in a simplicial complex ∆, and F1, . . . , Fm are

all the facets of ∆ which contain σ. We have link∆ σ = ⟨F1 − σ, . . . , Fm − σ⟩.

Example 2.30. Suppose ∆ is the complex ⟨{1, 2, 3}, {3, 4}⟩ on vertex set [4]. We

can draw ∆ as follows.

1

2

3 4

• This complex has dimension 2, but it is not pure because it also has a facet

of dimension 1.
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• The minimal nonfaces of ∆ are {1, 4} and {2, 4}, and hence the Alexander

dual ∆∗ has facets [4]− {1, 4} = {2, 3} and [4]− {2, 4} = {1, 3}.

• The cone C∆ looks like the following.

5

1

2

3

4

We now review some key subcomplex constructions.

Definition 2.31. Let ∆ be a simplicial complex on vertex set V .

1. For a subset U ⊂ V , we define the induced subcomplex of ∆ on U to be the

complex

∆U = {σ ∈ ∆ : σ ⊆ U}.

2. For a face g in ∆ we define the deletion of g from ∆ to be the complex

∆− g = {σ ∈ ∆ : σ ⊉ g}.

Remark 2.32. We will sometimes denote the induced subcomplex ∆U as ∆|U to

avoid ambiguity.

The complex ∆ − g is the largest subcomplex of ∆ that does not contain g.

Note that, except in the case where g is a vertex, this is larger than the induced

subcomplex ∆V−g, because it contains all faces of ∆ which intersect with g strictly

along its boundary. The following example illustrates the difference between the

two constructions.

Example 2.33. Let ∆ be the complex

1
2

3

4 5

6

on vertex set [6], and let g denote the edge {2,4}.
The complex ∆− g is equal to
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1
2

3

4 5

6

whereas the induced subcomplex ∆[6]−g is equal to

1 3

5

6

We now review some examples of important complexes, which will be crucial

to our work going forward.

Definition 2.34. There are two trivial simplicial complexes on any vertex set.

1. The irrelevant complex is the set {∅}.

2. The void complex is the empty set ∅.

Remark 2.35. Note that the irrelevant complex and the void complex are not the

same complex. The former has a single face, of dimension −1, while the latter has

no faces at all. In particular, the former complex has (−1)st reduced homology,

while the latter is acyclic.

Definition 2.36. Let j ≥ −1 be an integer, and let V be a vertex set of size j+1.

1. The full simplex on vertex set V is the complex whose faces are every subset

of V . We often call ∆ the j-simplex, and denote it by ∆j.

2. The boundary of the simplex on vertex set V is the complex whose faces are

every proper subset of V . We often call ∆ the boundary of the j-simplex,

and denote it by ∂∆j.

Remark 2.37. Technically speaking, the j-simplex and its boundary are actually

isomorphsim classes of complexes rather than individual complexes, because they

can be defined on any vertex set of size j +1. By convention, we will assume they

are defined on vertex set [j + 1] unless otherwise stated.
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Definition 2.38. Let r be an integer greater than or equal to −1, and let ∆ be

any complex. We define the r-skeleton of ∆ to be the complex

Skelr(∆) = {σ ∈ ∆ : dim σ ≤ r}

If ∆ is a full simplex on vertex set V we often denote this as Skelr(V ).

Remark 2.39. 1. The j-simplex ∆j is equal to Skelj([j + 1]).

2. The boundary of the j-simplex ∂∆j is equal to Skelj−1([j + 1]).

3. For any complex ∆ and any r ≥ dim∆ we have Skelr(∆) = ∆.

4. For any complex ∆ we have Skel−1(∆) is the irrelevant complex {∅} on V (∆),

and for r < −1 we have that Skelr(∆) is the void complex ∅.

Example 2.40. The 3-simplex ∆3 on vertex set [4] has the following nontrivial

skeleton complexes.

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

Skel3(∆
3) = ∆3 Skel2(∆

3) = ∂∆3 Skel1(∆
3) Skel0(∆

3)

The darker shading of the image of Skel3(∆
3) indicates that this complex contains

the 3-dimensional face {1, 2, 3, 4}, while the lighter shading for Skel2(∆
3) indicates

that this complex only contains the bounding 2-simplices of the face {1, 2, 3, 4}.

Definition 2.41. The d-dimensional cross polytope (also known as the d-dimensional

orthoplex ) is the simplicial complex Od, defined recursively for d ≥ −1 as follows:

O−1 = {∅}
Od+1 = S(Od).

Example 2.42. The cross polytopes of dimensions −1, 0, 1 and 2 are shown

below.
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{∅}

O−1 O0

(Irrelevant complex) (Disjoint vertices)

O1 O2

(Square) (Octahedron)

Having reviewed some key examples of simplicial complexes, we now move on

to the Stanley-Reisner correspondence. For any simplicial complex on vertex set

[n], we may assign a unique corresponding squarefree monomial ideal.

Definition 2.43. Let ∆ be a simplicial complex on vertex set [n]. We define the

Stanley-Reisner ideal of ∆ to be

I∆ = ⟨xσ : σ ⊆ [n], σ /∈ ∆⟩

where xσ denotes the squarefree monomial
∏

i∈σ xi in R.

We define the Stanley-Reisner ring of ∆ to be

K[∆] = R/I∆.

Remark 2.44. We also extend this definition to complexes ∆ on arbitrary vertex

set V of size n by first choosing an ordering on V , which allows us to define an

isomorphism from ∆ to a complex on [n]. Technically this makes the Stanley-

Reisner ideal dependent on the specific ordering we choose, but we still use the

phrase ‘the’ Stanley-Reisner ideal anyway, because all possible orderings give us

the same ideal up to isomorphism.

For a simplicial complex ∆ the minimal generators of I∆ correspond to the

minimal nonfaces of ∆. In particular, note that every squarefree monomial ideal

is uniquely determined by its minimal generators, and similarly every simplicial

complex is uniquely determined by its minimal nonfaces. Thus, the assignment

∆ 7→ I∆ gives us a one-to-one correspondence from simplicial complexes on [n] to

squarefree monomial ideals in R (this is Theorem 1.7 in [MS05]).

Proposition 2.45. The assignment ∆ 7→ I∆ gives a bijection

{Simplicial complexes on [n]} ∼→ {Squarefree monomials in R}.
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This one-to-one correspondence allows us to reframe algebraic properties of

Stanley-Reisner ideals and rings in terms of combinatorial properties of their cor-

responding complexes, and vice versa. For example, we can compute the height

of the ideal I∆, and hence the Krull-dimension of the ring K[∆], respectively from

the codimension and dimension of ∆.

Lemma 2.46. For any simplicial complex ∆ on vertex set [n], we have

ht I∆ = n− dim∆− 1 = codim∆.

Proof. For a face F of ∆ of size d+1, we define PF to be the ideal in R generated

by the vertices xi where i ∈ [n]−F . This is a monomial prime ideal in R of height

n− d− 1, and because every nonface of ∆ shares at least one vertex with [n]− F

we must have PF ⊇ I∆.

Conversely, any monomial prime ideal P in R containing I∆ is of the form

⟨xi1 , . . . , xih⟩ for some 1 ≤ i1 < · · · < ih ≤ n such that each nonface of ∆ contains

at least one of the vertices xi1 , . . . , xih . Thus the set FP = [n]− {xi1 , . . . , xih} is a

face of ∆.

This gives us a one-to-one correspondence between faces of ∆ and monomial

prime ideals in R containing I∆, which sends faces of dimension d to ideals of height

n − d − 1. Under this correspondence, facets of maximum dimension are sent to

monomial primes containing I∆ of minimal height. Because I∆ is a squarefree

monomial ideal then all of the minimal primes of I∆ are monomial (see [HH11]

Corollary 1.3.6), and the result follows.

Corollary 2.47. For any simplicial complex ∆, we have

dimK[∆] = dim∆ + 1.

Proof. For any ideal I in R we have dimR/I = n − ht I, so this follows directly

from Lemma 2.46.

For our purposes the most important example of this combinatorial reframing

is Hochster’s Formula, which is the subject of the following section.

2.2.2 Hochster’s Formula and Simplicial Homology

As we have seen already, the Stanley-Reisner construction allows us to translate

algebraic problems into combinatorial ones, and vice versa, by reframing the alge-

braic invariants of squarefree monomial ideals in terms of combinatorial invariants

of their corresponding complexes.

In this section we present a crucial result of Hochster’s, which reframes the Betti

diagrams of Stanley-Reisner ideals in terms of simplicial homology. As mentioned

already, all of our homology is over K, and we use the notation H̃i(∆) to denote

the ith reduced homology group of ∆ with coefficients in K.
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Theorem 2.48 (Hochster’s Formula). Let ∆ be a simplicial complex on a vertex

set V of size n. For any integers 0 ≤ i ≤ n and d, we have

βi,d(I∆) =
∑

U∈(Vd)

dimK H̃d−i−2(∆U)

where
(
V
d

)
denotes the subsets of V of size d.

For a proof of Hochster’s Formula see [HH11], Theorem 8.1.1.

Remark 2.49. Hochster’s Formula shows us that the Betti numbers of the form

βi,i+1(I∆) come from induced subcomplexes of ∆ with (−1)st reduced homology.

The only simplicial complex which has (−1)st reduced homology is the irrelevant

complex {∅}, and for any nonempty subset U ⊆ V , we have ∆U = {∅} if and only

if U consists solely of missing vertices of ∆. In particular, if ∆ has m missing

vertices, then for any 0 ≤ i ≤ n− 1 we have

βi,i+1(I∆) =
∑

U∈( V
i+1)

dimK H̃−1(∆U)

= #

{
U ∈

(
V

i+ 1

)
: ∆U = {∅}

}
=

(
m

i+ 1

)
.

Sometimes it will be more useful for us to study squarefree monomial ideals

using a dual Stanley-Reisner construction, which we lay out below.

Note that every simplicial complex ∆ is equal to the Alexander dual of its own

Alexander dual ∆∗ (i.e. we have (∆∗)∗ = ∆). In particular, this means that every

squarefree monomial ideal in R can be viewed uniquely as the dual Stanley-Reisner

ideal I∆∗ of some complex ∆.

Proposition 2.50. Let ∆ be a simplicial complex on vertex set [n]. The dual

Stanley-Reisner ideal I∆∗ is given by

I∆∗ = ⟨xσ : σ ⊆ [n], [n]− σ ∈ ∆⟩

where xσ denotes the squarefree monomial
∏

i∈σ xi in R.

Proof. By construction, the nonfaces of the complex ∆∗ are the complements of

the faces of ∆. The result follows from Definition 2.43.

Notation 2.51. We sometimes denote the dual Stanley-Reisner ideal I∆∗ of ∆ by

I∗∆.

There is an Alexander dual variant of Hochster’s Formula, due to Eagon and

Reiner, which allows us to compute the Betti numbers of the dual Stanley-Reisner
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ideal I∆∗ directly using combinatorial and homological data from the complex ∆

(this is [ER98] Proposition 1, rephrased in terms of Betti numbers of Stanley-

Reisner ideals as opposed to Betti polynomials of Stanley-Reisner rings; see this

article for a proof).

Theorem 2.52 (Hochster’s Formula, Alexander Dual Variant). Let ∆ be a sim-

plicial complex on a vertex set V of size n. For any integers 0 ≤ i ≤ n and d, we

have

βi,d(I∆∗) =
∑

σ∈∆,|σ|=n−d

dimK H̃i−1(link∆ σ)

Remark 2.53. Let ∆ be a simplicial complex.

1. We have link∆ ∅ = ∆, which tells us that βi,n(I∆∗) = H̃i−1(∆) for any integer

1 ≤ i ≤ n.

2. For any facet F of ∆ we have link∆ F = {∅}, which has only (−1)st homology

of dimension 1. Thus for any integer d, the Betti number β0,d(I∆∗) is equal

to the number of facets of ∆ of size n−d. In particular, the minimum degree

of a generator of I∆∗ is equal to the codimension of ∆.

Both Hochster’s Formula and its Alexander Dual variant will be fundamental

to our work going forwards, and for this reason most of our proofs centre around

the computation of simplicial homology. We devote the rest of this section to some

important results which can simplify these computations.

Firstly, note that for any j ≥ −1, the definition of the homology group H̃j(∆)

(as given in e.g. [Hat02], pages 104-6) relies solely on the faces of ∆ of dimension

j + 1 and j, and this data is contained in the skeleton complex Skelr(∆) for any

r > j. This gives us the following lemma.

Lemma 2.54. Let ∆ be a simplicial complex, and let r > j ≥ −1 be two integers.

We have H̃j(∆) = H̃j(Skelr(∆)).

Next we introduce two important results which allow us to compute the ho-

mology of certain complexes from the homologies of their subcomplexes. Both

of these results have more general topological analogues, regarding the singular

homology of any topological space; but we present only the cases where the space

in question is a simplicial complex. For a proof of the Mayer-Vietoris Sequence

see [Hat02] pages 149-150; for a proof of the Künneth Formula see [Hat02] page

276, Corollary 3B.7.

Proposition 2.55 (Reduced Mayer-Vietoris Sequence for Simplicial Complexes).

Let ∆ be a simplicial complex and suppose we have ∆ = A∪B for two subcomplexes

A and B with nonempty intersection. There is a long exact sequence

· · · → H̃r+1(∆) → H̃r(A ∩B) → H̃r(A)⊕ H̃r(B) → H̃r(∆) → . . .

· · · → H̃0(∆) → 0.
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Proposition 2.56 (Künneth Formula for Joins of Simplicial Complexes). Let ∆

be a simplicial complex and suppose we have ∆ = A ∗ B for two subcomplexes A

and B. For any integer r ≥ −1 we have an isomorphism

H̃r+1(∆) ∼=
∑
i+j=r

H̃i(A)⊗ H̃j(B).

Many of the results in this thesis are about the shapes of Betti diagrams of

Stanley-Reisner ideals (i.e. the indices for which the Betti numbers are nonzero)

rather than the values of specific Betti numbers. Thus we will often be more

interested in the degrees at which a complex has nontrivial homology than in

what those nontrivial homologies are. For this reason, we sometimes make use of

the following notation.

Definition 2.57. Let ∆ be a simplicial complex. We define the homology index

set of ∆ as h(∆) = {i ∈ Z : H̃i(∆) ̸= 0}.

Remark 2.58. We may add homology index sets A and B together using the rule

A + B = {i + j : i ∈ A, j ∈ B}. If A and B are both singletons, then this is

the same as adding the elements of those singletons together; and if either set is

empty then the resulting sum is also empty.

Using this notation we have the following corollary to the Künneth Formula.

Corollary 2.59. Let ∆1, . . . ,∆m be simplicial complexes, and let ⊛m
j=1∆j denote

the join of all of them. We have that h(⊛m
j=1∆j) =

∑m
j=1 h(∆j) + {m− 1}.

Proof. We prove this by induction on m ≥ 1. For the base case m = 1, there is

nothing to prove. For the inductive step, assuming that h(⊛m
j=1∆j) =

∑m
j=1 h(∆j)+

{m− 1}, we have

h(⊛m+1
j=1 ∆i) = h((⊛m

j=1∆j) ∗∆m+1)

= h(⊛m
j=1∆j) + h(∆m+1) + {1} by Prop. 2.56

= (
m∑
j=1

h(∆j) + {m− 1}) + h(∆m+1) + {1} by ind. hyp.

=
m+1∑
j=1

h(∆j) + {m}.

Another crucial tool for computing homology comes from the following result

(see e.g. [Hat02], Corollary 2.11).

Proposition 2.60. If two topological spaces are homotopy equivalent, they are

homology equivalent.
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In particular, every deformation retraction is a homotopy equivalence, and for

this reason we will often make use of deformation retractions when computing

homology. As an example, this allows us to find the homology of cones and sus-

pensions.

Corollary 2.61. Let ∆ be a simplicial complex. The cone C∆ is acyclic.

Proof. The cone C∆ is the join of ∆ with a single vertex v, and it deformation

retracts on to the vertex v, which is acyclic.

Corollary 2.62. Let ∆ be a simplicial complex. For any integer i ≥ −1 the

suspension S∆ has homology H̃i(S∆) = H̃i−1(∆).

Proof. The suspension S∆ is the join of ∆ with the complex consisting of two

disjoint vertices u and v. We can decompose ∆ into the subcomplexes A ∪ B

where ∆ ∗ {u} and B = ∆ ∗ {v}. Both of these subcomplexes are cones and are

hence acyclic by Corollary 2.61. They intersect at ∆ itself, and hence for each

i ≥ −1, the Mayer-Vietoris sequence gives us the isomorphism

0 → H̃i(S∆) → H̃i−1(∆) → 0.

We end this section by presenting a particularly useful lemma for finding de-

formation retracts. It provides sufficient conditions for ensuring that a complex ∆

deformation retracts on to ∆− g, for a given face g ∈ ∆ (recall that ∆− g is the

deletion of g from ∆, as defined in Definition 2.31). We suspect this lemma exists

in the literature, but have been unable to find it.

Lemma 2.63. Let ∆ be a simplicial complex, and let g ⫋ f be faces of ∆ such that

every facet of ∆ that contains g also contains f . There is a deformation retraction

∆⇝ ∆− g, obtained by identifying g with a vertex in f − g.

Proof. Suppose ∆ has n vertices v1, . . . , vn with g = {v1, . . . , vk} and vk+1 in f−g.

Let X = X∆ be the geometric realization of ∆ in Rn and X∆−g the geo-

metric realization of ∆ − g. For each nonempty face σ = {vi1 , . . . , vir} of ∆,

we define Xσ to be the set
{
λ1ei1 + . . . λreir : λ1, . . . , λr > 0,

∑r
j=1 λj = 1

}
⊂ X,

where {e1, . . . , en} is the canonical basis of Rn. Note that X =
⋃

σ∈∆ Xσ, while

X∆−g =
⋃

σ∈∆,σ⊉g Xσ.

Let p be a point in X. We may write it as p =
∑n

j=1 λjej where the coefficients

λj are all nonnegative and sum to 1. In particular, p lies inside Xσ for some σ ∈ ∆

containing g if and only if all of λ1, . . . , λk are positive.

We define λ = min{λ1, . . . , λk}. This allows us to rewrite the point p as

p = λ(e1 + · · ·+ ek) +
k∑

i=1

(λi − λ)ei + λk+1ek+1 + y (2.3)
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for some y in the span of {ek+2, . . . , en}. Note that the coefficients (λi − λ) are all

nonnegative, and (by the definition of λ) at least one of them is zero. Note also

that λ itself is nonzero if and only if all of λ1, . . . , λk are positive, which occurs if

and only if p is in Xσ for some σ containing g. In other words, we have λ = 0 if

and only if p lies inside X∆−g.

Using this notation for the points inX, we can define a function φ : X×[0, 1] →
Rn as follows. For p as in Equation (2.3) and 0 ≤ t ≤ 1 we define

φ(p, t) = λ(1− t)(e1 + · · ·+ ek) +
k∑

i=1

(λi − λ)ei + (λk+1 + kλt)ek+1 + y. (2.4)

We claim that φ is a deformation retraction from X to X∆−g.

First, note that φ is continuous. Indeed, the function λ = min{λ1, . . . , λk} is

continuous in the variables λi, and hence so is each summand in Equation (2.4).

Each summand is also continuous in t.

Next, we note that φ(∗, 0) is the identity on X. Moreover, for p in X∆−g we

have λ = 0, and hence φ(p, t) = p for every 0 ≤ t ≤ 1.

It remains to show that the image of φ(∗, t) lies inside X for every value of t,

and in particular that the image of φ(∗, 1) is X∆−g.

For the former claim, we note that the sum of the coefficients of e1, . . . , en in

the decomposition of φ(p, t) is the same as the sum of these coefficients in the

decomposition of p (which is 1), and all of these coefficients are nonnegative. We

may assume that p lies inside Xσ for some face σ in ∆ containing g (otherwise

p lies inside X∆−g and we are already done). By our assumption on g and f we

have that σ ∪ {vk+1} is also a face of ∆. If σ = {v1, . . . , vk, vi1 , . . . , vir} for some

k < i1 < · · · < ir ≤ n, then the vectors in the decomposition of φ(p, t) with

strictly positive coefficients are all contained in {e1, . . . , ek, ei1 , . . . , eir} ∪ {ek+1}.
We conclude that φ(p, t) lies inside Xτ for some τ ⊆ σ ∪ {vk+1}, and hence inside

X.

For the latter claim, we note that the coefficients of the vectors e1, . . . , ek in

φ(p, 1) are λ1 − λ, . . . , λk − λ, and at least one of these must be zero by the

definition of λ. Thus φ(p, 1) lies inside X∆−g.

In particular we have the following corollary, which will be sufficient for our

needs in most (but not all) cases.

Corollary 2.64. Let ∆ be a simplicial complex, and let a and b be distinct vertices

of ∆ satisfying the following conditions.

1. There is at least one facet of ∆ containing a (i.e. it is not a missing vertex).

2. Every facet of ∆ containing a also contains b.

There is a deformation retraction ∆ ; ∆− {a} given by the map a 7→ b.
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Proof. This comes from Lemma 2.63, setting g = {a} and f = {a, b}. Note that g
is a face of ∆ by assumption (1), and f is a face of ∆ by assumption (2).

2.2.3 Graphs and Edge Ideals

A 1- or 0-dimensional simplicial complex with no missing vertices contains the

same data as a graph. The following graph-theoretic definitions are standard, and

fundamental to our work going forwards.

Definition 2.65. A graph G = (V,E) consists of a set of vertices V and a set of

edges E consisting of subsets of V of size 2.

We often denote the vertex set and edge set of a graph G as V (G) and E(G)

respectively.

Definition 2.66. Let G = (V,E) be a graph, and m any positive integer.

1. We define the complement Gc of G to be the graph on vertex set V with

edge set {{x, y} : x, y ∈ V {x, y} /∈ E}.

2. For a subset U ⊂ V we define the induced subgraph of G to be the graph on

vertex set U with edge set {{x, y} : x, y ∈ U, {x, y} ∈ E}.

3. A vertex cover for G is a subset U ⊂ V such that for every edge e ∈ E we

have e ∩ U ̸= ∅.

4. A matching in G is a collection M of pairwise disjoint edges in G. We say

M is a maximal matching if it is maximal with respect to inclusion.

5. A cycle of length m inG (also called anm-cycle) is a sequence of edges inG of

the form {v1, v2}, . . . , {vm−1, vm}, {vm, v1} for some vertices v1, . . . , vm ∈ V .

6. We say a vertex v ∈ V is isolated in G if it is contained in no edges of G.

We say v is universal in G if it is contained in every edge of G.

Example 2.67. Let G be the graph on vertex set [5] with edges {1, 2}, {1, 4},
{2, 3}, {2, 4} and {3, 4}. We can draw G as follows.

1

2 3

4

5

• Every edge in G contains either 2 or 4 so the set {2, 4} is a vertex cover for

G.

• The edges {1, 2} and {3, 4} form a maximal matching in G, as do the edges

{1, 4} and {2, 3}.
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• G contains two 3-cycles (the cycles {1, 2}, {2, 4}, {4, 1} and {2, 3}, {3, 4}, {4, 2})
and one 4-cycle (the cycle {1, 2}, {2, 3}, {3, 4}, {4, 1}).

• The complement Gc of G is the graph with edges {1, 5}, {2, 5}, {3, 5}, {4, 5}
and {1, 3}, which we can draw as follows.

1

23

4

5

• Note that the vertex 5 is isolated in G, and therefore universal in Gc.

As mentioned above, a graph may be viewed as a 1-dimensional simplicial com-

plex with no missing vertices. However, there are (at least) two other important

ways of associating complexes to graphs, as laid out below.

Definition 2.68. Let G = (V,E) be a graph.

1. We define the complex of cliques of G, Cl(G), to be the complex on V whose

faces are the cliques in V - i.e. those subsets {v1, . . . , vr} ⊂ V such that for

each 1 ≤ i < j ≤ r we have {vi, vj} ∈ E.

2. We define the independence complex of G, Ind(G), to be the complex on

V whose faces are all the independent subsets of V - i.e. those subsets

{v1, . . . , vr} ⊂ V such that for each 1 ≤ i < j ≤ r we have {vi, vj} /∈ E.

Remark 2.69. The independence complex of G is equal to the complex of cliques

of Gc (i.e. Ind(G) = Cl(Gc)).

We now review some examples of important graphs, which will be crucial to

our work going forward.

Definition 2.70. Let m be any positive integer.

1. The complete graph on m vertices, denoted Km, is the graph on vertex set

[m] with all possible edges (i.e. its edge set is
(
[m]
2

)
= {U ⊆ [m] : |U | = 2}).

We sometimes denote the graph K2, consisting of a single edge, as L.

2. The empty graph on m vertices, denoted Em, is the graph on vertex set [m]

with no edges (i.e. its edge set is ∅).

3. The cyclic graph of order m, denoted Cm, is the graph on vertex set [m] with

edge set {{1, 2}, {2, 3}, . . . , {m− 1,m}, {m, 1}} (i.e. the edges of Cm form a

single cycle of length m).
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Remark 2.71. Just as with our convention for the vertex sets of ∆j and ∂∆j in

Remark 2.37, our convention for the vertex sets of the graphs Km, Em and Cm is

arbitrary. Again, these graphs are better understood as isomorphism classes, and

we could have chosen a graph on any vertex set of size m as our representative for

these classes. Similarly, we could have chosen any m-cycle for the edges of Cm.

Example 2.72. For the case m = 5 we have

K5 E5 C5

Just as the Stanley-Reisner correspondence allows us to assign a unique square-

free monomial ideal to every simplicial complex, there is a similar assignment of

ideals to graphs.

Definition 2.73. Let G be a graph on vertex set [n]. We define the edge ideal of

G to be the ideal

I(G) = ⟨xixj : {i, j} ∈ E(G)⟩

Remark 2.74. As with Stanley-Reisner ideals we extend this definition to graphs

G on arbitrary vertex sets V of size n by first choosing an ordering on V . Again,

all possible orderings give us the same ideal up to isomorphism, which we refer to

as ‘the’ edge ideal.

While Stanley-Reisner ideals account for all squarefree monomial ideals, edge

ideals account for all squarefree monomial ideals generated entirely in degree 2.

Because the edge ideal of a graph is a squarefree monomial ideal, Proposition 2.45

tells us that it must be the Stanley-Reisner ideal of some complex. In fact, it is

the Stanley-Reisner ideal of the independence complex of the graph.

Proposition 2.75. Let G be a graph on vertex set [n]. We have

I(G) = IInd(G)

Proof. The nonfaces of Ind(G) are all the sets U ⊆ V which contain an edge of G.

Thus the minimal nonfaces of Ind(G) are the edges of G. The result follows.
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Chapter 3

Dimensions of Betti Cones

In this chapter we study the dimensions of the Betti cones on Stanley-Reisner

ideals and Edge ideals, which we denote by Dn and Cn respectively. We also

fix a positive integer h < n, and introduce the subcones Dh
n and Ch

n, generated

respectively by Stanley-Reisner ideals and edge ideals of height h. Recall that

these cones live inside the infinite-dimensional vector space Vn =
⊕

d∈ZQn+1.

We make use of some notational short-hands throughout: for a complex ∆ we

use β(∆) to denote the Betti diagram β(I∆); and similarly for a graph G we use

β(G) to denote the Betti diagram β(I(G)).

Remark 3.1. As observed at the start of Section 2.2.3, every graph is a 1- or 0-

dimensional simplicial complex. Nevertheless, using the notation β(G) to represent

the diagram of the edge ideal of G (as opposed to the Stanley-Reisner ideal ob-

tained from viewing G as a simplicial complex) should not result in ambiguity. It

will usually be clear both from context and from our choice of notation whether we

are viewing the structure in question as a graph or a complex, and hence whether

its corresponding ideal is obtained using the edge ideal or Stanley-Reisner con-

struction. In the few cases where there is a genuine risk of misinterpretation we

will use the notation β(I∆) and β(I(G)) for clarity.

Specifically we prove the following results about our four cones.

Theorem 3.2. Let Dn be the Betti cone generated by all Betti diagrams of Stanley-

Reisner ideals in R. We have

dimDn =
n(n+ 1)

2
.

Theorem 3.3. Let Cn be the Betti cone generated by all Betti diagrams of edge

ideals in R. We have

dimCn =

r2 if n = 2r

r2 + r if n = 2r + 1.

31
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Theorem 3.4. Let Dh
n be the Betti cone generated by all Betti diagrams of Stanley-

Reisner ideals in R of height h. We have

dimDh
n =

n(n− 1)

2
− h(h− 1)

2
+ 1.

Theorem 3.5. Let Ch
n be the Betti cone generated by all Betti diagrams of edge

ideals in R of height h. We have

dimCh
n = h(n− h− 1) + 1.

Remark 3.6. Some definitions of simplicial complexes require that the complexes

have no missing vertices. This is equivalent to requiring that the generators of

the corresponding Stanley-Reisner ideals have degree at least two. We do not use

this convention in this thesis, and as such, our cones Dn and Dh
n contain diagrams

corresponding to Stanley-Reisner ideals with generators of degree one.

However, for the benefit of readers who prefer this convention, we denote the

cone generated by diagrams of Stanley-Reisner ideals whose generators have degree

at least two by D̃n. The dimension of this slightly smaller cone can be computed

as

dim D̃n = dimDn − n =
n(n− 1)

2
.

Similarly, we let D̃h
n denote the cone generated by diagrams of Stanley-Reisner

ideals of height h whose generators have degree at least two. The dimension of

this cone is given by

dim D̃h
n = dimDh

n − h =
n(n− 1)

2
− h(h+ 1)

2
+ 1.

Note that the generators of edge ideals all have degree exactly two, and thus

we have the following inclusion of cones.

Cn D̃n Dn

Ch
n D̃h

n Dh
n

⊂ ⊂

⊂

⊂

⊂

⊂

⊂

We will show how our proof for the dimension of Dn can be modified to account

for the subcone D̃n in remarks along the way; and we will present our proofs for

the cones Dh
n and D̃h

n together.

3.1 Motivation

There are a number of motivations for finding the dimensions of these cones. Most

immediately, computing dimension is a crucial first step in understanding any cone:

not only because the cone’s dimension is a fundamental property in itself, but also
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because it may prove useful in further classifications. Specifically, any cone C in Vn

can be classified as the intersection of a number of defining halfspaces (see [Brø83],

Theorem 4.5). These are halfspaces H of Vn of the form {β ∈ Vn : f(β) ≥ 0} for

some linear form f(β), such that

• C is completely contained in H.

• The intersection of C with the boundary of H (that is, the hyperplane {β ∈
Vn : f(β) = 0}) has dimension dimC− 1.

To determine whether a given halfspace H of Vn is a defining halfspace for C, we

need to check whether it satifies these two properties; and for the latter property,

this is far easier to do if we know the dimension of C.

Moreover, our proofs for these results will, in each case, require us to find the

cone’s minimal ambient vector space (i.e. the minimal subspace of Vn containing

the cone). In this sense our four theorems above can be seen as analogues to

Corollary 2.24 of the first Boij-Söderberg Conjecture, which told us the minimal

subspace of Vn containing the cone C(a,b).

Corollary 2.24 is, in essence, a result about the linear dependency relations

satisfied by the diagrams in the cone C(a,b). Indeed, it tells us that (up to linear

combination) the Herzog-Kühl Equations are the only relations satisfied by all

diagrams of Cohen-Macaulay modules of codimension h. Similarly, in finding the

minimal subspaces for our cones, we will present (again, up to linear combination)

every linear dependency relation which is satisfied by all diagrams in the cone.

3.2 Key Tools

Our proofs for all four results will proceed in roughly the same way: first, we

bound the dimension from above by finding a finite-dimensional subspace of Vn =⊕
d∈ZQn+1 containing the cone; then we bound it from below by exhibiting an

appropriately sized linearly independent set of Betti diagrams lying in the cone

(thus, in the process, showing that the subspace we found is in fact minimal). We

begin by presenting some key tools which will help us in constructing our linearly

independent sets of Betti diagrams.

3.2.1 Diagrams of Specific Families of Complexes and Graphs

In this section we present the Betti diagrams of some specific families of complexes

and graphs, along with an important proposition and corollary (Lemma 3.17 and

Corollary 3.18) which help us construct Betti diagrams of slightly more complicated

complexes and graphs.
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In what follows, we use the notation ∆j, ∂∆j and Skelr(V ) from Definitions

2.36 and 2.38, for integers j ≥ 0 and r ≥ −1 and vertex set V ; and the notation

Km, Em, Cm and L from Definition 2.70, for positive integers m. We also write

the disjoint union of graphs and complexes in additive notation, so for example

we would use C5 + 2L to denote the graph

We begin by finding the homology (and hence the Betti diagrams) of skeleton

complexes, which will allow us to derive the diagrams of a number of other families

of complexes and graphs.

Lemma 3.7. Let m and r be integers and set ∆ = Skelr([m]) with m ≥ 1 and

r ≥ −1. For any integer i ≥ −1 we have

dimK H̃i(∆) =


(
m−1
r+1

)
if i = r

0 otherwise.

Proof. We proceed by double induction on r ≥ −1 and m ≥ 1. Note that for any

m ≥ 1, the complex Skel−1([m]) is equal to the irrelevant complex {∅}, which has

only (−1)st homology of dimension
(
m−1
0

)
= 1. And for any r ≥ 0, the complex

Skelr([1]) is a single point. This is acyclic, which means it has rth homology of

dimension
(

0
r+1

)
= 0. This proves the result in the base cases r = −1 and m = 1.

Now suppose that m > 1, and define, for ∆ = Skelr([m]),

A = ⟨σ ∈ ∆ : m ∈ σ⟩
B = ⟨σ ∈ ∆ : m /∈ σ⟩

so that ∆ decomposes into the union A ∪ B. Note that A is a cone over the

vertex m, and is therefore acyclic. Also B contains every subset of [m − 1] of

dimension less than or equal to r, so it is equal to Skelr([m − 1]). By induction

this has only rth homology of dimension
(
m−2
r+1

)
. Meanwhile the intersection A∩B

contains every subset of [m − 1] of dimension less than or equal to r − 1, so it is

equal to Skelr−1([m − 1]), which has only (r − 1)st homology of dimension
(
m−2
r

)
by induction.

The Mayer-Vietoris Sequence (Proposition 2.55) gives us the following short

exact sequence

0 → H̃r(B) → H̃r(∆) → H̃r−1(A ∩B) → 0 .

Thus ∆ has only rth homology, and the dimension of this homology is
(
m−2
r+1

)
+(

m−2
r

)
=
(
m−1
r+1

)
.
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Lemma 3.8. Let m and r be integers and set ∆ = Skelr([m]). For any integers i

and d, we have

βi,d(∆) =


(

m
i+r+2

)(
i+r+1
r+1

)
if 0 ≤ i ≤ m− r − 2 and d = i+ r + 2

0 otherwise.

In particular, the diagram β(Skelr([m])) has the following shape.[
β0,r+2 . . . βm−r−2,m

]
Proof. For any subset U ⊆ [m] of size d, the induced subcomplex ∆U is isomorphic

to Skelr([d]). Thus Hochster’s Formula tells us that

βi,d(I∆) =
∑

U∈([m]
d )

dimK H̃d−i−2(Skelr([d])).

By Lemma 3.7, this must be zero unless d = r + i + 2, in which case we have(
m

r+i+2

)
subsets U of [m] of size d, each of which gives us an induced subcomplex

with homology of dimension
(
i+r+1
r+1

)
. The result follows.

Corollary 3.9. Let j be a nonnegative integer, and let ∆j and ∂∆j denote, re-

spectively, the j-simplex and its boundary, on vertex set [j + 1]. We have

1. β(∆j) = 0.

2. βi,d(∂∆
j) =

1 if (i, d) = (0, j + 1)

0 otherwise.

In particular, β(∂∆j) has the shape
[
β0,j+1

]
.

Proof. These results follow immediately from Lemma 3.8, noting that ∆j = Skelj([j+

1]) and ∂∆j = Skelj−1([j + 1]).

Remark 3.10. These results can also be seen from the fact that ∆j has no missing

faces and hence its Stanley-Reisner ideal is the zero ideal; and ∂∆j has a single

missing face of degree j+1 and hence its Stanley-Reisner ideal admits the resolution

R(−(j + 1)) → I∂∆j .

We now move on to the Betti diagrams of our three important families of

graphs.

Proposition 3.11. Let m be a positive integer, and let Em denote the empty graph

on m vertices. We have β(Em) = 0.

Proof. The independence complex of Em is ∆m−1, so the result follows from Corol-

lary 3.9.
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Remark 3.12. Again, this result can also be seen directly from the fact that the

edge ideal of Em is the zero ideal.

Proposition 3.13. Let m be a positive integer, and let Km denote the complete

graph on m vertices. For any integers i and d, we have

βi,d(Km) =

(i+ 1)
(

m
i+2

)
if 0 ≤ i ≤ m− 2 and d = i+ 2

0 otherwise.

In particular, the diagram β(Km) has the following shape.[
β0,2 . . . βm−2,m

]
Proof. The independence complex ofKm is equal to Skel0([m]), so the result follows

from Lemma 3.8.

Proposition 3.14. Let m be a positive integer, and suppose G is the complement

of the cyclic graph on m vertices, Cm. For any integers i and d, we have

βi,d(G) =


m(i+1)
m−i−2

(
m−2
i+2

)
if 0 ≤ i ≤ m− 4 and d = i+ 2

1 if (i, d) = (m− 3,m)

0 otherwise.

In particular, the diagram β((Cm)
c) has the following shape.[

β0,2 . . . βm−4,m−2

βm−3,m

]

Proof. See Theorem 2.3.3 in [Ram12].

We end with some results about how the operations of coning and suspension

affect (or rather, in the former case do not affect) Betti diagrams. In particular,

Lemma 3.17 and Corollary 3.18 will be crucial to our construction of Betti diagrams

in this section, as they allow us to take a diagram we understand already and

increase its regularity by exactly 1.

Lemma 3.15. Let ∆ be a simplicial complex and C∆ the cone over ∆. We have

β(∆) = β(C∆).

Proof. The minimal nonfaces of C∆ are the same as the minimal nonfaces of ∆.

This means that their Stanley-Reisner ideals have the same generators, and thus

have the same Betti diagrams by Remark 2.12.

Corollary 3.16. Let G be a graph and let G + v denote the graph obtained by

adding a single isolated vertex v to G. We have β(G+ v) = β(G).
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Proof. The independence complex Ind(G+ v) is equal to C Ind(G), so this follows

from Lemma 3.15.

Lemma 3.17. Let ∆ be a simplicial complex and S∆ the suspension of ∆. For

any integers 0 ≤ i ≤ n and d, we have

βi,d(S∆) =

β0,2(∆) + 1 if (i, d) = (0, 2)

βi,d(∆) + βi−1,d−2(∆) otherwise.

Proof. Let i and d be integers with 0 ≤ i ≤ n, and let V denote the vertex set

of ∆. We can denote the vertex set of S∆ as Ṽ = V ∪ {x, y} for some additional

vertices x and y.

Suppose U is a subset of Ṽ of size d. If exactly one of the vertices x or y is in

U , then (S∆)|U is a cone over this vertex, and is hence acyclic. Thus in order for

(S∆)|U to have homology, it must either contain neither of the vertices x and y,

or both of them. In the former case, the induced subcomplex (S∆)|U is equal to

∆U . In the latter, it is equal to S(∆U−{x,y}).

Thus, by Hochster’s Formula and Corollary 2.62, we have

βi,d(S∆) =
∑

U∈(Vd)

dimK H̃d−i−2(∆U) +
∑

U∈( V
d−2)

dimK H̃d−i−2(S(∆U))

= βi,d(∆) +
∑

U∈( V
d−2)

dimK H̃d−i−3(∆U)

= βi,d(∆) +
∑

U∈( V
d−2)

dimK H̃(d−2)−(i−1)−2(∆U)

=

β0,2(∆) + 1 if (i, d) = (0, 2)

βi,d(∆) + βi−1,d−2(∆) otherwise.

Corollary 3.18. Let G be a graph, and L the graph consisting of a single edge

between two vertices. For any integers i and d, we have

βi,d(G+ L) =

β0,2(G) + 1 if (i, d) = (0, 2)

βi,d(G) + βi−1,d−2(G) otherwise.

Proof. The independence complex Ind(G+L) is equal to S Ind(G), so this follows

from Lemma 3.17.

3.2.2 Indexing Sets and Initiality

In the following sections, we establish formulae for the dimensions of our cones.

Our proofs proceed by showing that the formulae given are both upper and lower

bounds for the dimensions of the cones.
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To find a lower bound l for the dimension of a convex cone C, it suffices to find

a linearly independent set of l vectors lying in C, as this shows that the smallest

vector space containing C must have dimension at least l. In this section, for ease

of explanation, we present terminology for a simple condition that ensures linear

independence. We then describe our general method for finding the dimensions of

our cones, using this condition.

Suppose C lives inside the rational vector space V =
⊕

i∈IQ for some finite

indexing set I. For a vector v in V and an index i ∈ I, let vi denote the ith

coordinate of v. Also suppose we have a strict total ordering ≺ on I.

Definition 3.19. Let v ∈ V and i ∈ I. We say v is i-initial with respect to ≺
(which we often write as i≺-initial, or just i-initial when doing so does not result

in ambiguity) if

1. The component vi is nonzero;

2. For every j ∈ I such that i ≺ j, the component vj equals zero.

Example 3.20. The rational vector space Q3 can be thought of as
⊕

i∈[3]Qei,

where {e1, e2, e3} is the canonical basis of Q3. Ordering the indexing set [3] in the

standard way with 1 ≺ 2 ≺ 3, we have that the vector (1, 0, 0) is 1≺-initial, the

vector (1, 1, 0) is 2≺-initial, and the vector (1, 1, 1) is 3≺-initial.

If X = {vi}i∈I is a set of vectors lying in C such that for each i ∈ I, vi is

i≺-initial, then X must be linearly independent. So to find a linearly independent

set of vectors in C, it suffices to define an order ≺ on some appropriately sized

subset J ⊆ I, and find an i≺-initial vector lying in C for each i in J.
In our case, all of our cones live inside the infinite dimensional vector space

Vn =
⊕

d∈ZQn+1. Thus we use the following method to find their dimensions.

Method 3.21. Let C be a cone lying inside Vn. The following suffices to

demonstrate that dimC = D.

1. Find a finite indexing set I(C) ⊂ {0, . . . , n}×Z such that C ⊂
⊕

(i,d)∈I(C) Q.

2. Find a subspace W(C) ≤
⊕

(i,d)∈I(C)Q containing C, with dimW(C) = D

(this shows that dimC ≤ D).

3. Define an ordering ≺ on I(C).

4. Find a subset J ⊆ I(C) of size D, and a set of diagrams {Bi,d : (i, d) ∈ J}
inside C such that for each (i, d) ∈ J, the diagram Bi,d is (i, d)≺-initial

(this shows that dimC ≥ D).
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3.3 Dimension of Dn

In this section, we prove Theorem 3.2 on the dimension of the cone Dn, generated

by all diagrams of Stanley-Reisner ideals.

3.3.1 Upper Bound

We start by bounding the dimension from above, by following the first two steps

of Method 3.21. In particular we work towards finding a finite indexing set

I(Dn) ⊂ {0, ..., n} × Z of size n(n+1)
2

such that for every diagram β ∈ Dn, and

any pair of integers 0 ≤ i ≤ n and d with (i, d) /∈ I(Dn), we have βi,d = 0. This

will demonstrate that Dn actually lies inside the finite-dimensional vector space

W(Dn) =
⊕

(i,d)∈I(Dn)
Q, and hence we have dimDn ≤ dimW(Dn) =

n(n+1)
2

.

We begin with the following well-known restrictions on the Betti diagrams of

Stanley-Reisner ideals.

Proposition 3.22. Let ∆ be a simplicial complex on vertex set [n] and fix β =

β(∆). Suppose i and d are integers with 0 ≤ i ≤ n. We have βi,d = 0 if either of

the following conditions hold:

1. d > n

2. d ≤ i

Proof. Both of these conditions are immediate results of Hochster’s Formula.

1. There are no subsets of [n] of size greater than n.

2. If d ≤ i then d− i− 2 ≤ −2, so no induced subcomplex of ∆ has homology

at degree d− i− 2.

Remark 3.23. Part (2) of this result can also be seen from more elementary con-

siderations. Specifically, the degrees of the generators of a squarefree monomial

ideal are at least one, so the result must hold for i = 0; and the degrees of the

maps in any minimal free resolution are at least one, so the general result follows

by induction on i.

These inequalities give us a much clearer picture of the shape of the Betti

diagrams in Dn. In particular they look like the following.

β0,1 β1,2 . . . . . . . . . βn−1,n

β0,2 β1,3 . . . . . . βn−2,n

β0,3 β1,4 . . . βn−3,n

...
...

...

β0,n−1 β1,n

β0,n


(3.1)



40 CHAPTER 3. DIMENSIONS OF BETTI CONES

Thus, we may define our indexing set I(Dn) and subspace W(Dn) as follows.

Definition 3.24. We define

1. I(Dn) := {(i, d) ∈ {0, ..., n} × Z : 0 ≤ i < d ≤ n}.

2. W(Dn) :=
⊕

(i,d)∈I(Dn)
Q.

By Proposition 3.22, the cone Dn must lie in W(Dn) as desired.

For ease of explanation, it will sometimes be useful for us to refer to individual

rows of I(Dn).

Definition 3.25. Let (i, d) ∈ I(Dn). We say (i, d) is in row ρ if we have d−i−1 =

ρ.

We can arrange the elements of I(Dn) in rows as in Equation (3.1).

(0, 1) (1, 2) . . . . . . . . . (n− 1, n)

(0, 2) (1, 3) . . . . . . (n− 2, n)

(0, 3) (1, 4) . . . (n− 3, n)
...

...
...

(0, n− 1) (1, n)

(0, n)

We can see that row 0 of I(Dn) has n elements, row 1 has n− 1 elements, and

so on. In general, for each 0 ≤ i ≤ n− 1, row i of I(Dn) has n− i elements. Hence

we have

|I(Dn)| =
n−1∑
i=0

(n− i)

=
n(n+ 1)

2

which means that the expression in Theorem 3.3 is an upper bound for dimDn.

Remark 3.26. We can modify the above argument to find an indexing set for the

cone D̃n, generated by diagrams of complexes with no missing vertices. Specifically,

if ∆ is a complex with no missing vertices, then for any nonempty subset ∅ ≠ U ⊂
V (∆), the induced subcomplex ∆U cannot be equal to {∅}, and hence H̃−1(∆U) =

0. By Hochster’s formula this means that β0,1(∆) = β1,2(∆) = ... = βn−1,n(∆) = 0.

Thus for diagrams in the cone D̃n, the top row of Betti numbers in Equation (3.1)

are all zero. In particular the indexing set I(D̃n) is equal to I(Dn)−{(0, 1), . . . , (n−
1, n)}, which has size n(n−1)

2
.
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3.3.2 Lower Bound

To complete our proof of Theorem 3.2, we need to show that the space W(Dn) is

in fact the minimal subspace of Vn containing Dn, by following the last two steps

of Method 3.21.

In particular we present an ordering ≺ on I(Dn) and a set of (i, d≺)-initial

diagrams in Dn for each (i, d) in I(Dn). The ordering we choose is as follows.

Definition 3.27. For any two pairs (i, d) and (i′, d′) in I(Dn) we write (i, d) ≺
(i′, d′) if d− i < d′ − i′, or d− i = d′ − i′and i < i′.

Remark 3.28. In other words we say (i, d) ≺ (i′, d′) if (i, d) lies in a lower numbered

row, or if they both lie in the same row with i < i′.

For convenience, we extend the terminology of Definition 3.19 by declaring a

complex ∆ to be (i, d)≺-initial if the diagram β(∆) is (i, d)≺-initial.

Thus we need to find a set of (i, d)≺-initial complexes on vertex set [n]. The

following lemma will be helpful in this, because it allows us to broaden our search

from complexes with exactly n vertices to complexes with at most n vertices.

Lemma 3.29. For any positive integer m < n, we have Dm ⊂ Dn.

Proof. If ∆ is a complex on vertex set [m], then by Lemma 3.15, we can extend it

to a graph on [n] by taking a cone over it a total of n−m times, without affecting

its Betti diagram. This means the diagram β(∆) lies inside Dn, and the result

follows.

There is now an obvious candidate for our family of (i, d)≺-initial complexes.

Proposition 3.30. Let the ordering ≺ on I(Dn) be as in Definition 3.27, and let

(i, d) ∈ I(Dn). The complex Skeld−i−2([d]) is (i, d)≺-initial.

Proof. By Lemma 3.8 the complex Skelr([m]) is (m− r− 2,m)-initial. The result

follows from substituting d = m and i = m− r − 2.

Example 3.31. Suppose we have n = 4. The following diagram depicts, for each

index (i, d) ∈ I(D4), an (i, d)-initial complex on up to 4 vertices (we use a ×
symbol to denote missing vertices).
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× × × × ×
×

× ×
× ×

Skel−1([1]) Skel−1([2]) Skel−1([3]) Skel−1([4])

(0, 1)-initial (1, 2)-initial (2, 3)-initial (3, 4)-initial

Skel0([2]) Skel0([3]) Skel0([4])

(0, 2)-initial (1, 3)-initial (2, 4)-initial

Skel1([3]) Skel2([4])

(0, 3)-initial (1, 4)-initial

Skel2([4])

(0, 4)-initial

Note that while many of these complexes have fewer than 4 vertices, their Betti

diagrams all still lie inside D4 by Lemma 3.29.

Putting these results together we can now prove Theorem 3.2.

Proof of Theorem 3.2. We have already seen that

dimDn ≤ |I(Dn)| =
n(n+ 1)

2
.

We can show that dimDn ≥ |I(Dn)| by finding a linearly independent set of

diagrams in Dn of size |I(Dn)|.
To that end, let (i, d) be an index in I(Dn) and define the ordering ≺ on I(Dn)

as in Definition 3.27. Proposition 3.30 tells us that the complex Skeld−i−2([d]) is

(i, d)≺-initial. It also has d vertices, and because d ≤ n, Lemma 3.29 tells us that

its diagram lies inside Dn. Thus we have an (i, d)-initial diagram in Dn for each

(i, d) in I(Dn). This completes the proof.

Remark 3.32. If we restrict the ordering ≺ to the subset I(D̃n) ⊂ I(Dn) (as

defined in Remark 3.26), the above proof also shows that the cone D̃n con-

tains an (i, d)-initial diagram for every index (i, d) in I(D̃n), and hence we have

dim D̃n = |I(D̃n)| = n(n−1)
2

. This is because all of the (i, d)-initial complexes cho-

sen for the indices (i, d) in I(D̃n) are r-skeletons for some r ≥ 0, and therefore

have no missing vertices, so their diagrams also lie inside D̃n.
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Before we move on to finding the dimension of our three subcones ofDn we note

the following important lemma, which we can use to construct (i, d)≺-initial dia-

grams in Dn recursively. While we did not require this lemma to demonstrate the

dimension of Dn, analogous results will be crucial in demonstrating the dimensions

of the three subcones we are about to consider.

Lemma 3.33. Let ≺ be as in Definition 3.27, suppose n > 2, and let (i, d) be an

index in I(Dn) with d − i ≥ 2. If ∆ is an (i − 1, d − 2)≺-initial complex then the

complex S∆ is (i, d)≺-initial.

Proof. By Lemma 3.17, we have βi,d(S∆) = βi,d(∆) + βi−1,d−2(∆). By the (i −
1, d− 2)-initiality of β(∆), we have βi−1,d−2(∆) ̸= 0, so βi,d(S∆) must be nonzero

too.

Now let (i′, d′) ∈ I(Dn) with (i, d) ≺ (i′, d′). Again, by Lemma 3.17 we have

βi′,d′(S∆) = βi′,d′(∆)+ βi′−1,d′−2(∆). We must have (i− 1, d− 2) ≺ (i′ − 1, d′ − 2),

and also (i′ − 1, d′ − 2) ≺ (i′, d′) because they are in different rows. Hence, by the

(i− 1, d− 2)-initiality of β(∆), both the terms βi′,d′(∆) and βi′−1,d′−2(∆) are zero,

and βi′,d′(S∆) is zero too.

This shows that β(S∆) is (i, d)≺-initial as required.

3.4 Dimension of Cn

In this section, we prove Theorem 3.3, on the dimension of the subcone Cn ⊂ Dn

generated by diagrams of edge ideals.

3.4.1 Upper Bound

As before, we start by bounding the dimension from above, by finding an appro-

priately sized indexing set I(Cn) at which the diagrams of Cn are all nonzero, and

hence a vector space W(Cn) containing Cn of the appropriate dimension. Note

that we must have I(Cn) ⊆ I(Dn) and hence W(Cn) ≤ W(Dn) because every edge

ideal is a Stanley-Reisner ideal. Moreover, every generator of an edge ideal has

degree two, and hence we have that I(Cn) is actually a subset of I(D̃n), so it does

not contain the indices (0, 1), . . . , (n− 1, n).

To find our indexing set I(Cn), we need to obtain further restrictions on the

positions of the nonzero values of the diagrams in Cn. The following result turns

out to be sufficient.

Proposition 3.34. Let G be a graph on vertex set [n], and set β = β(G). For

any integers i and d with d > 2i+ 2, we have βi,d = 0.

Proof. This is Lemma 2.2 in [Kat05].
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This additional inequality gives us a clearer picture of the shape of the Betti

diagrams in Cn. Specifically, if n = 2r is even, then the diagrams β ∈ Cn look like

this. 
β0,2 β1,3 β2,4 . . . . . . βn−3,n−1 βn−2,n

β1,4 β2,5 . . . . . . βn−3,n

. . .

βr−1,2r

 (3.2)

If n = 2r + 1 is odd, then they look like this.
β0,2 β1,3 β2,4 . . . . . . . . . βn−3,n−1 βn−2,n

β1,4 β2,5 . . . . . . . . . βn−3,n

. . .

βr−1,2r βr,2r+1

 (3.3)

Thus, we may define our indexing set I(Cn) and subspace W(Cn) as follows.

Definition 3.35. We define

1. I(Cn) := {(i, d) ∈ {0, ..., n} × Z : i+ 2 ≤ d ≤ min{2i+ 2, n}}.

2. W(Cn) :=
⊕

(i,d)∈I(Cn)
Q.

By Proposition 3.34, the cone Cn must lie in W(Cn) as desired.

Just as with I(Dn) we can arrange the elements of I(Cn) in rows to match the

above Betti diagrams (we number the rows of I(Cn) using the same convention we

used for the rows of I(Dn) in Definition 3.25). So if n = 2r then the rows of I(C2r)

look like the following.

(0, 2) (1, 3) (2, 4) . . . . . . (n− 3, n− 1) (n− 2, n)

(1, 4) (2, 5) . . . . . . (n− 3, n)
. . .

(r − 1, 2r)

And if n = 2r + 1 then the rows of I(C2r+1) look like the following.

(0, 2) (1, 3) (2, 4) . . . . . . . . . (n− 3, n− 1) (n− 2, n)

(1, 4) (2, 5) . . . . . . . . . (n− 3, n)
. . .

(r − 1, 2r) (r, 2r + 1)

We can see that row 1 of I(Cn) has n− 1 elements, row 2 has n− 3 elements,

and so on. In general, for each 1 ≤ i ≤ r, row i of I(Cn) has n− 2i+ 1 elements.
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Hence we have

|I(C2r)| =
r∑

i=1

(2r − 2i+ 1)

=
r∑

i=1

(2r)−
r∑

i=1

(2i− 1)

= 2r2 − r2

= r2

and

|I(C2r+1)| =
r∑

i=1

(2r + 1− 2i+ 1)

=
r∑

i=1

(2r + 1)−
r∑

i=1

(2i− 1)

= (2r2 + r)− r2

= r2 + r .

Therefore, the expressions in Theorem 3.3 are upper bounds for dimCn.

3.4.2 Lower Bound

We are left with the task of showing that the space W(Cn) is in fact the minimal

subspace of W(Dn) containing the cone Cn, which we do by finding an appro-

priately sized linearly independent set of diagrams in Cn, following Method 3.21.

Many of the constructions and lemmas we need are analogues of the ones we

employed for the cone Dn.

For our ordering ≺ on I(Cn) we simply take the restriction of the ordering

on I(Dn) given in Definition 3.27. And just as we did with complexes, we now

extend the terminology of Definition 3.19 to graphs by declaring a graph G to be

(i, d)≺-initial if the diagram β(G) is (i, d)≺-initial.

The cone Cn also admits a direct analogue of Lemma 3.29, which allows us to

broaden our search from graphs with exactly n vertices to graphs with at most n

vertices.

Lemma 3.36. For any positive integer m < n, we have Cm ⊂ Cn.

Proof. If G is a graph on vertex set [m], then by Corollary 3.16, we can extend

it to a graph on [n] by adding some isolated vertices, without affecting its Betti

diagram. This means the diagram β(G) lies inside Cn, and the result follows.

Unfortunately we cannot use the diagrams of skeleton complexes as our (i, d)-

initial diagrams in Cn, because not all skeleton complexes are independence com-

plexes of graphs, and hence the majority of the (i, d)-initial diagrams we found in

the last section do not lie in the cone Cn.
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However, the diagrams of the 0-skeletons Skel0([m]) do lie in Cn, because we

have Ind(Km) = Skel0([m]). Thus we can find (i, d)-initial diagrams for every (i, d)

in row 1 of I(Cn). To find the rest, we use the following analogue of Lemma 3.33.

Lemma 3.37. Let ≺ be as in Definition 3.27, suppose n > 2, and let (i, d) be an

index in I(Cn) with with d− i ≥ 3. If ∆ is an (i− 1, d− 2)≺-initial graph then the

graph G+ L is (i, d)≺-initial.

Proof. This follows directly from Lemma 3.33 because Ind(G+L) = S Ind(G).

Before we explain the procedure for finding (i, d)-initial graphs in the general

case, we present a specific example to illustrate the basic principle.

Example 3.38. The set I(C6) has size 32 = 9, and it looks like the following.

(0, 2) (1, 3) (2, 4) (3, 5) (4, 6)

(1, 4) (2, 5) (3, 6)

(2, 6)

So we want to find nine linearly independent diagrams in C6, one for each

(i, d) ∈ I(C6). The ordering ≺ on I(C6) is (0, 2) ≺ (1, 3) ≺ (2, 4) ≺ (3, 5) ≺
(4, 6) ≺ (1, 4) ≺ (2, 5) ≺ (3, 6) ≺ (2, 6).

By Proposition 3.13, we see that the complete graph on 2 vertices, K2, is (0, 2)-

initial. Similarly, K3 is (1, 3)-initial, K4 is (2, 4)-initial, K5 is (3, 5)-initial and K6

is (4, 6)-initial.

From the above, and Lemma 3.37, we also find that K2 + L is (1, 4)-initial,

K3 + L is (2, 5)-initial and K4 + L is (3, 6)-initial. Similarly, we can see that

K2 + 2L is (2, 6)-initial.

So placing each graph in its corresponding position in I(Cn), we get the follow-

ing.

K2 K3 K4 K5 K6

(0, 2)-initial (1, 3)-initial (2, 4)-initial (3, 5)-initial (4, 6)-initial

K2 + L K3 + L K4 + L

(1, 4)-initial (2, 5)-initial (3, 6)-initial

K2 + 2L

(2, 6)-initial
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All of the graphs K2, K3, K4, K6, K2 + L,K3 + L,K4 + L and K2 + 2L have 6

vertices or fewer, so by Lemma 3.36, their diagrams all lie in C6 as required.

In the above example, the graphs associated to the top row of I(Cn) were the

complete graphs on n or fewer vertices, and we found graphs for each subsequent

row by adding disjoint edges to the graphs we had already found. We can generalise

this process to arbitrary values of n, and thus prove Theorem 3.3, as below.

Proof of Theorem 3.3. We have already seen that

dimCn ≤ |I(Cn)| =

r2 if n = 2r

r2 + r if n = 2r + 1.

We now show that dimCn ≥ |I(Cn)| by exhibiting a set of graphs {Gi,d :

(i, d) ∈ I(Cn)} such that for each (i, d) ∈ I(Cn), Gi,d is (i, d)-initial (with respect

to the ordering ≺ given in Definition 3.27) and has d vertices (by Lemma 3.36

this is sufficent to ensure that the diagrams β(Gi,d) lie in Cn, because for each

(i, d) ∈ I(Cn) we have d ≤ n).

We proceed by induction on n ≥ 1. The set I(C1) is empty, so for the base case

n = 1 there is nothing to prove.

For the inductive step, suppose that n > 1 and that we have a set {Gi,d : (i, d) ∈
I(Cn−1)} where each Gi,d is an (i, d)-initial graph on d vertices. The set I(Cn−1) is

a subset of I(Cn), so we can extend our set of graphs to a set {Gi,d : (i, d) ∈ I(Cn)}
by adding graphs Gi,d for the values of (i, d) in I(Cn)− I(Cn−1).

By Proposition 3.13, the complete graph Kn is (n − 2, n)-initial and has n

vertices, so we set Gn−2,n = Kn. For every other value of (i, d) in I(Cn)− I(Cn−1),

the index (i − 1, d − 2) is in I(Cn−1), and hence we define Gi,d = Gi−1,d−2 + L.

This graph has (d− 2) + 2 = d vertices and by Lemma 3.37, we know it must be

(i, d)-initial. This completes the proof.

3.5 Dimension of Dh
n

Now that we have found the dimension of our larger cones Dn and Cn, we turn our

attention to the subcones Dh
n and Ch

n generated by diagrams of ideals of height h.

We begin with the cone Dh
n generated by diagrams of Stanley-Reisner ideals

of height h (or equivalently, all complexes of codimension h), and work towards

proving Theorem 3.4.

3.5.1 Upper Bound

As before, we begin by searching for an indexing set I(Dh
n) and a minimal subspace

W(Dh
n).
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Recall that the diagrams β(∆) that generate this cone come from complexes of

codimension h, by Lemma 2.46. This allows us to derive the two following results.

Proposition 3.39. Let ∆ be a complex on vertex set [n] of codimension h, and

set β = β(∆). For any integers i and d with d− i > n− h+ 1, we have βi,d = 0.

Proof. The fact that codim∆ = h means that ∆, along with all of its induced

subcomplexes, has no faces of dimension higher than n− h− 1. In particular, for

any subset U ⊆ [n] and any j > n − h − 1, we must have H̃j(∆U) = 0. Thus by

Hochster’s Formula, we have that βi,d = 0 whenever d − i − 2 > n − h − 1. The

result follows.

Proposition 3.40. Let ∆ be a complex on vertex set [n] of codimension h, and

set β = β(∆). For any integers h ≤ i ≤ n− 1 we have βi,i+1 = 0.

Proof. Because ∆ has codimension h it must have a facet of size n − h. Thus

it can have at most h missing vertices, which means that the Betti numbers

βh,h+1, . . . , βn−1,n must all be zero by Remark 2.49.

These inequalities give us a much clearer picture of what the diagrams in Dh
n

look like. 

β0,1 . . . βh−1,h

β0,2 . . . βh−1,h+1 . . . . . . . . . βn−2,n

β0,3 . . . βh−1,h+2 . . . . . . βn−3,n

...
...

...
...

...

β0,n−h . . . βh−1,n−1 βh,n

β0,n−h+1 . . . βh−1,n


(3.4)

We have now found all the restriction we need in order to define our indexing

set I(Dh
n).

Definition 3.41. We define

I(Dh
n) := {(i, d) ∈ I(Dn) : d− i ≤ n− h+ 1} − {(h, h+ 1), . . . , (n− 1, n)} .

Unlike in the cases of the cones Cn and Dn, the minimal subspace W(Dh
n)

containing the cone Dh
n is not simply the space carved out by this indexing set,⊕

(i,d)∈I(Dh
n)
Q. This is because, as well as satisfying the conditions of Propositions

3.39 and 3.40, we know from Remark 2.11 that the diagrams β in Dh
n must also

satisfy the Herzog-Kühl equations HK1(β) = · · · = HKh−1(β) = 0. Thus the space

W(Dh
n) is actually equal to the following.

Definition 3.42. We define

W(Dh
n) :=

β ∈
⊕

(i,d)∈I(Dh
n)

Q : HK1(β) = · · · = HKh−1(β) = 0

 .
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To prove that the formula given in Theorem 3.4 is an upper bound for dimDh
n,

we need to show that dimW(Dh
n) =

n(n−1)
2

− h(h−1)
2

+ 1. This is the content of the

following proposition.

Proposition 3.43. Let I(Dh
n) and W(Dh

n) be as in Definitions 3.41 and 3.42. We

have

1. |I(Dh
n)| =

n(n−1)
2

− h(h−1)
2

+ h.

2. dimW(Dh
n) =

n(n−1)
2

− h(h−1)
2

+ 1.

Proof. For part (1), we start by arranging the elements of I(Dh
n) in rows as in

Equation (3.4).

(0, 1) . . . (h− 1, h)

(0, 2) . . . (h− 1, h+ 1) . . . . . . . . . (n− 2, n)

(0, 3) . . . (h− 1, h+ 2) . . . . . . (n− 3, n)
...

...
...

...
...

(0, n− h) . . . (h− 1, n− 1) (h, n)

(0, n− h+ 1) . . . (h− 1, n)

Labelling the rows of this set as in Definition 3.25 we see that row 0 of I(Dh
n) has

h elements. Also row 1 has n− 1 elements, row 2 has n− 2 elements, and so on.

In general, for each 1 ≤ i ≤ n− h, row i of I(Dh
n) has n− i elements. This means

we have

|I(Dh
n)| = h+

n−h∑
i=1

(n− i)

= h+
n−1∑
i=h

i

= h+
n−1∑
i=1

i−
h−1∑
i=1

i

=
n(n− 1)

2
− h(h− 1)

2
+ h.

For part (2), we need to show that the Herzog-Kühl equations satisfied by the

diagrams in Dh
n are linearly independent. To this end we define, for a diagram β

in Dh
n and for each 1 ≤ d ≤ n, the variable

td =
∑
i

(−1)iβi,d.

This allows us to express the relations HK1(β) = ... = HKh−1(β) = 0 as

(t1, ..., tn)


1 . . . 1

2 . . . 2h−1

...
...

...

n . . . nh−1

 = 0 .
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The matrix of coefficients given above is a Vandermonde matrix with distinct rows,

which means in particular that all of its columns are linearly independent.

Thus we have

dim(W(Dh
n)) = |I(Dh

n)| − (h− 1)

=
n(n− 1)

2
− h(h− 1)

2
+ 1 .

Remark 3.44. The above proof can be modified for the cone D̃h
n, generated by

diagrams of complexes with no missing vertices and codimension h. As noted in

Remark 3.26, if ∆ is a complex with no missing vertices, then the Betti num-

bers β0,1(∆), . . . , βh−1,h(∆) are all zero. Thus the indexing set I(D̃h
n) is equal

to I(Dh
n) − {(0, 1), . . . , (h − 1, h)}, which has cardinality |I(Dh

n)| − h. Conse-

quently the dimension of the minimal subspace W(D̃h
n) containing D̃h

n is equal

to dimW(Dh
n)− h, which is n(n−1)

2
− h(h+1)

2
+ 1.

3.5.2 Lower Bound, h = 1 Case

Once again, we now need to show that the space W(Dh
n) is the minimal subspace

of W(Dn) containing Dh
n, by following the last two steps of Method 3.21. Thus we

search for a linearly independent set of diagrams in Dh
n of size n(n−1)

2
− h(h−1)

2
+ 1.

For reasons that will become apparent, we will treat the cases h = 1 and

h > 1 separately. The majority of this section is devoted solely to the h = 1 case.

However we begin with two lemmas that hold for any value of h, starting with

the following analogue of Lemma 3.29, which allows us to broaden our search from

complexes with exactly n vertices to complexes with at most n vertices, just as we

did with our larger cone Dn.

Lemma 3.45. For any positive integer m < n, we have Dh
m ⊂ Dh

n.

Proof. If ∆ is a complex on vertex set [m], then by Lemma 3.15 the cone Cn−m(∆)

is a complex on vertex set [n] with the same Betti diagram as ∆. Moreover we

have

codimCn−m(∆) = n− dimCn−m(∆)− 1

= n− (n−m+ dim∆)− 1

= m− dim∆− 1

= codim∆ .

Thus the diagram β(∆) lies inside Dh
n.
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An identical proof shows that for an integer m < n the cone D̃h
m lies inside the

cone D̃h
n. In fact the following lemma allows us to restrict our attention solely to

the cone D̃h
n.

Lemma 3.46. Let D̃h
n denote the cone generated by diagrams of complexes on n

vertices, with codimension h and no missing vertices. Let B̃ be a linearly indepen-

dent set of diagrams in the cone D̃h
n. We may extend B̃ to a linearly independent

set of diagrams in the cone Dh
n of size |B| = |B̃|+ h.

Proof. We fix an arbitrary ordering ≺ on I(D̃h
n) and extend it to an odering on

I(Dh
n) = I(D̃h

n) ∪ {(0, 1), . . . , (h − 1, h)} by stipulating that for any index (i, d) ∈
I(D̃h

n) we have (i, d) ≺ (0, 1) ≺ · · · ≺ (h− 1, h).

It suffices to find an (i, d)≺-initial diagram in Dh
n for each index (i, d) in

{(0, 1), . . . , (h − 1, h)}. To this end, we fix an integer 1 ≤ d ≤ h, and consider

the diagram β corresponding to the complex ∆n−h−1 + Skel0([d− h]) on a vertex

set of size n. This complex has codimension h. It also has d missing vertices, so

by Remark 2.49 the Betti numbers β0,1, . . . , βd−1,d are all nonzero, while the Betti

numbers βd,d+1, . . . , βh−1,h are all zero. Thus β is a (d−1, d)≺-initial diagram lying

in the cone Dh
n, and the result follows.

In particular Lemma 3.46 allows us to extend any basis for the vector space

W(D̃h
n) to a basis for W(Dh

n). Thus, to find an appropriately sized linearly in-

dependent set of diagrams in Dh
n, it suffices to find a linearly independent set of

diagrams in the subcone D̃h
n which spans W(D̃h

n).

We now proceed to finding these diagrams in the case where h = 1. In this

case, we define our ordering on the indexing set I(D̃1
n) to be the restriction of the

ordering ≺ on I(Dn) given in Definition 3.27.

Note that the indexing set I(D̃1
n) is the same as the indexing set I(D̃n), which

means it contains the following indices.

(0, 2) (1, 3) . . . . . . (n− 2, n)

(0, 3) (1, 4) . . . (n− 3, n)
...

...
...

(0, n− 1) (1, n)

(0, n)

Note also that for any h we have dimW(D̃h
n) = |I(D̃h

n)| − (h − 1), and so in

particular we have that dimW(D̃1
n) = |I(D̃1

n)|. Thus we are looking for (i, d)≺-

initial complexes corresponding to every index (i, d) in I(D̃1
n) (in the general case

we will be searching for complexes corresponding to all but h− 1 of the indices in

I(D̃h
n)).

To build these complexes we use the following elegant construction from [Kli07]

page 3.
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Definition 3.47. Let r ≥ −1 be an integer, and let ∆ be a simplicial complex

on vertex set V . For an additional vertex v outside of V , we define the starred

complex

∆starr v := ∆ ∪ {σ ∪ {v} : σ ∈ ∆, |σ| = r}

on vertex set V ∪ {v}.

Remark 3.48. The operation starr v is a generalisation of the coning operation.

In particular, if dim∆ = d, then ∆ stard+1 v is equal to the join ∆ ∗ v, which is

just the cone C(∆). We list some other specific cases below for clarity.

1. The complex ∆ star−1 v is obtained from ∆ by adding a single missing vertex

v to ∆ (i.e. the vertex v is not a face of ∆ star−1 v but it is an element of

the vertex set of ∆ star−1 v).

2. The complex ∆ star0 v is obtained by adding a single isolated vertex v to ∆

(i.e. we have ∆ star0 v = ∆+ v).

3. The complex ∆ star1 v is obtained by adding the vertex v to ∆, along with

every edge {x, v} for vertices x in ∆.

Example 3.49. Suppose ∆ is the boundary of the 2-simplex (which has dimension

1). We depict the complexes ∆ starr v below, for r ∈ {−1, 0, 1, 2}. As always, we

denote missing vertices with a × symbol.

×

∆star−1 v ∆star0 v

∆star1 v ∆star2 v

To work out how the starring operation affects Betti diagrams, we must first

look at how it affects homology. The following lemma allows us to compute the

homology of ∆ starr v in particular cases, which will be sufficient for our needs.

Lemma 3.50. Let ∆ be a simplicial complex on vertex set V and define Γ =

∆starr v for some integer r ≥ 0.

1. For any j < r we have H̃j(Γ) = 0.

2. For any j > r we have H̃j(Γ) = H̃j(∆).
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3. If ∆ is acyclic we have H̃r(Γ) = H̃r−1(Skelr−1(∆)).

Proof. For part (1), fix some j < r. By Lemma 2.54 we know that the jth homology

of Γ is dependent only on the r-skeleton of Γ, which is the same as the r-skeleton

of the cone C∆. Thus we have

H̃j(Γ) = H̃j(Skelr(Γ))

= H̃j(Skelr(C∆))

= H̃j(C∆)

= 0.

Now we move on to parts (2) and (3). We begin by decomposing Γ into the

union ∆ ∪ A where A is the subcomplex of Γ generated by all faces containing v.

This latter subcomplex of Γ is a cone over v and is therefore acyclic. Moreover,

the intersection ∆∩A consists of all the faces σ of ∆ whose union with v is a face

of Γ. By the definition of the starr v operation, σ ∪ {v} is contained in Γ if and

only if dimσ ≤ r − 1. Thus we have ∆ ∩ A = Skelr−1(∆).

The Mayer-Vietoris sequence gives us an exact sequence

→ H̃j(∆) → H̃j(Γ) → H̃j−1(Skelr−1(∆)) → H̃j−1(∆) → H̃j−1(Γ) → . . . (3.5)

For j ≥ r, we have H̃j(Skelr−1(∆)) = 0. This means that for each j > r we

have the exact sequence

0 → H̃j(∆) → H̃j(Γ) → 0

which proves part (2). The Mayer-Vietoris sequence in Equation (3.5) also includes

the maps

· · · → H̃r(∆) → H̃r(Γ) → H̃r−1(Skelr−1(∆)) → H̃r−1(∆) → . . .

so if ∆ is acyclic this tells us that H̃r(Γ) is isomorphic to H̃r−1(Skelr−1(∆)), proving

part (3).

Using this result we can find the homology, and hence the Betti diagrams, of

the starred complex ∆m starr v for integers 0 ≤ r ≤ m ≤ n− 2 (where ∆m denotes

the m-simplex). These complexes will give us our (i, d)≺-initial diagrams for the

cone D̃1
n.

Corollary 3.51. Let m and r be integers with 0 ≤ r ≤ m ≤ n − 2, and define

Γ = ∆m starr v. For any integer j ≥ −1 we have

dimK H̃j(Γ) =


(
m
r

)
if j = r

0 otherwise.
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Proof. The complex ∆m is acyclic, so by Lemma 3.50 we have that H̃r(Γ) =

H̃r−1(Skelr−1(∆
m)), and all other homogies are zero. Note that Skelr−1(∆

m) can

be rewritten as Skelr−1([m + 1]), which has (r − 1)st homology of dimension
(
m
r

)
by Lemma 3.7.

Corollary 3.52. Let m and r be integers with 0 ≤ r ≤ m ≤ n − 2, and define

Γ = ∆m starr v. For any index (i, d) ∈ I(D̃1
n) we have

1. βi,d(Γ) =


(
m+1
d−1

)(
d−2
r

)
if 0 ≤ i ≤ m− r and d = i+ r + 2

0 otherwise.

In particular the diagram β(Γ) has the following shape.[
β0,r+2 . . . βm−r,m+2

]
2. The Betti diagram of the complex ∆d−2 stard−i−2 v is an (i, d)≺-initial dia-

gram lying inside D̃1
n.

Proof. Fix some index (i, d) ∈ I(D̃1
n), and pick some vertex set V for ∆m of size

m+ 1. Hochster’s Formula gives us that

βi,d(Γ) =
∑

U∈(V ∪{v}
d )

dimK H̃d−i−2(ΓU).

In particular for any subset U ⊂ V of size d we have ΓU = ∆m|U , which is the full

simplex on the vertices of U , and is hence acyclic.

Thus the only subsets of V ∪ {v} which contribute to the Betti numbers of Γ

are the ones that contain v, so we have

βi,d(Γ) =
∑

U∈( V
d−1)

dimK H̃d−i−2(ΓU∪{v}).

Note that for any subset U ⊆ V of size d− 1 we have ΓU∪{v} = ∆m|U starr v, and

∆m|U is isomorphic to the (d− 2)-simplex ∆d−2.

Hence by Corollary 3.51, the induced subcomplex ΓU has homology only at

degree r and this homology has dimension
(
d−2
r

)
. The number of subsets of U ⊆ V

of size d− 1 is equal to
(
m+1
d−1

)
. This proves claim (1).

If our integers m and r satisfy (m− r,m+ 2) = (i, d), then the Betti diagram

of Γ is (i, d)≺-initial. The values m = d−2 and r = d− i−2 satisfy this condition.

Moreover the complex ∆d−2 stard−i−2 v has codimension 1 and d vertices (so in

particular it has no more than n vertices). Thus its Betti diagram lies inside D1
n.

This proves claim (2).

Example 3.53. In the case where n = 4, we have the following (i, d)≺-initial

diagrams in the cone D̃1
4.
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∆0 star0 v ∆1 star0 v ∆2 star0 v

(0, 2)-initial (1, 3)-initial (2, 4)-initial

∆1 star1 v ∆2 star1 v

(0, 3)-initial (1, 4)-initial

∆2 star2 v

(0, 4)-initial

We have now found (i, d)≺-initial diagrams for every index (i, d) in I(D̃1
n), which

is sufficient to prove Theorem 3.4 in the case where h = 1. We proceed to the

general case.

3.5.3 Lower Bound, h > 1 Case

For this section we assume that h > 1. We wish to find an ordering on the

index set I(D̃h
n), and a set of (i, d)-initial diagrams for all but h− 1 of the indices

(i, d) ∈ I(D̃h
n) with respect to this ordering.

However, in this case we will no longer be able to use the restriction of the

ordering ≺ we used for I(Dn). Instead we define the following refined ordering ≺h

on I(D̃h
n).

Definition 3.54. For any two pairs (i, d) and (i′, d′) in I(D̃h
n) we write (i, d) ≺h

(i′, d′) (i, d) ≺h (i′, d′) if and only if any one of the following conditions hold.

1. d− i < d′ − i′.

2. d− i = d′ − i′ = 2 and i < i′

3. d− i = d′ − i′ > 2, i′ ≥ h, and i < i′.

4. d− i = d′ − i′ > 2, i, i′ < h and i > i′.

Remark 3.55. 1. The ordering ≺h is the same as the ordering ≺ except that for

all rows after row 1 we reverse the ordering of the first h elements (i.e. those

for which 0 ≤ i ≤ h− 1).
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For example, the indexing set I(D̃3
6) contains the elements

(0, 2) (1, 3) (2, 4) (3, 5) (4, 6)

(0, 3) (1, 4) (2, 5) (3, 6)

(0, 4) (1, 5) (2, 6)

and the ordering ≺3 agrees with the ordering ≺ for row 1, so we have

(0, 2) ≺3 (1, 3) ≺3 (2, 4) ≺3 (3, 5) ≺3 (4, 6).

Then for rows 2 and 3 we reverse the ordering of the first three elements, so

we get

(2, 5) ≺3 (1, 4) ≺3 (0, 3) ≺3 (3, 6)

and

(2, 6) ≺3 (1, 5) ≺3 (0, 4).

2. We also extend this ordering to the h = 1 case. Note that in this case the

ordering ≺1 is in fact the same as the ordering ≺. Crucially, this means that

the complexes we found in the last section are (i, d)-initial with respect to

the ordering ≺1.

The ordering ≺h may initially seem a little counter-intuitive, but it is actually

well-suited to our purposes. The main reason it is useful to us comes from a

proposition later on in this section (Proposition 3.59) which details how we can

adjust the shape of the Betti diagram β(∆) by adding a number of isolated vertices

to ∆. This allows us to increase the codimension of ∆ while only adding nonzero

entries in the Betti diagram to the right of pre-existing nonzero entries.

For example suppose ∆ is the codimension 2 complex

which has the following Betti diagram.

0 1

2 2 .

3 . 1

The only nonzero entry in row 2 of this diagram is β1,4, and there are no nonzero

entries in lower rows. This means the diagram is (1, 4)-initial with respect to every

ordering we have considered so far.

Now suppose we want to use ∆ to construct a new (1, 4)-initial complex of

codimension 3. We can obtain a complex of codimension 3 by adding a single

isolated vertex, giving us the following.
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This has the Betti diagram

0 1 2 3

2 6 8 4 1

3 . 1 1 .

which means it is (1, 4)-initial with respect to ≺3 but not with respect to our

original ordering ≺.

Proposition 3.59 will make this idea precise. Before we present it, however, we

first note the following two results. The latter result is an analogue of Lemma 3.33

for the ordering ≺h.

Lemma 3.56. Let ≺h be as in Definition 3.54 and let (i, d) be an index in I(D̃h
n)

such that

1. d− i ≥ 3.

2. i ̸= 0.

3. (i, d) /∈ {(1, 4), (2, 5), . . . , (h− 1, h+ 2)}.

For any other index (i′, d′) in I(D̃h
n) such that i′ ̸= 0 and (i, d) ≺h (i′, d′), we have

(i− 1, d− 2) ≺h−1 (i
′ − 1, d′ − 2)

Proof. By the first condition we cannot have d− i = d′ − i′ = 2, so this leaves us

with three possible cases.

• Suppose first that d − i < d′ − i′. This means we have (d − 2) − (i − 1) <

(d′ − 2)− (i′ − 1), and hence (i− 1, d− 2) ≺h−1 (i
′ − 1, d′ − 2).

• Next, suppose we have d − i = d′ − i′ ≥ 3, i′ ≥ h and i < i′. In this case

we have (d − 2) − (i − 1) = (d′ − 2) − (i′ − 1) ≥ 2, i′ − 1 ≥ h − 1 and

i − 1 < i′ − 1. Regardless of the precise value of (d − 2) − (i − 1), we have

(i− 1, d− 2) ≺h−1 (i
′ − 1, d′ − 2).

• Finally, suppose d− i = d′ − i′ ≥ 3, i, i′ < h and i > i′. Because (i, d) is not

contained in the set {(1, 4), . . . , (h−1, h+2)}, and we know i < h, we must in

fact have d−i ≥ 4. This gives us that (d−2)−(i−1) = (d′−2)−(i′−1) ≥ 3,

i′−1 ≥ h−1 and i−1 < i′−1, and therefore (i−1, d−2) ≺h−1 (i
′−1, d′−2)

as desired.

Lemma 3.57. Let ≺h be as in Definition 3.54 and let (i, d) be an index in I(D̃h
n)

satisfying the three conditions of Lemma 3.56. If ∆ is an (i− 1, d− 2)≺h−1
-initial

complex of codimension h− 1 then the complex S∆ is (i, d)≺h
-initial and has codi-

mension h.
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Proof. Taking the suspension of a complex increases its dimension by 1 but its

number of vertices by 2, and hence it increases the codimension by 1. So S∆ must

have codimension h.

By the assumptions on (i, d) we know (i, d) ̸= (0, 2), and hence by Lemma 3.17

we have βi,d(S∆) = βi−1,d−2(∆) + βi,d(∆). By the (i− 1, d− 2)≺h−1
-initality of ∆,

we have βi−1,d−2(∆) ̸= 0 and hence βi,d(∆) must be nonzero as well.

Now fix some index (i′, d′) in I(D̃h
n) with (i, d) ≺h (i′, d′). This condition ensures

that (i′, d′) ̸= (0, 2) and hence Lemma 3.17 tells us that βi′,d′(S∆) = βi′−1,d′−2(∆)+

βi′,d′(∆). By Lemma 3.56 we have (i − 1, d − 2) ≺h−1 (i′ − 1, d′ − 2) ≺h−1 (i′, d′)

(unless i′ is equal to zero, in which case βi′−1,d′−2(∆) is also equal to zero by

definition). Thus by the (i, d)≺h−1
-initiality of ∆, the Betti numbers βi′−1,d′−2(∆)

and βi′,d′(∆) are both zero, so their sum must also be zero.

Remark 3.58. A crucial aspect of Lemma 3.57 (which is perhaps easy to overlook

on a first reading) is that the initiality properties of the complexes ∆ and S∆ are

with respect to two different orderings. The complex ∆ is (i−1, d−2)-initial with

respect to ≺h−1, while its suspension S∆ is (i, d)-initial with respect to ≺h.

We can use Lemma 3.57 to construct a linearly independent set of diagrams

in D̃h
n recursively from linearly independent diagrams in D̃h−1

n , as long as we can

also find (i, d)≺h
-initial diagrams for indices (i, d) which do not satisfy the three

conditions of Lemma 3.56.

Before we demonstrate how to do this, recall that we do not need to find

(i, d)≺h
-initial diagrams for every index in I(D̃h

n). We need to find diagrams for all

but h− 1 of them (to show that dim D̃h
n = |I(D̃h

n)| − (h− 1)).

In fact, due to the way we have constructed the ordering ≺h, the cone D̃h
n

contains no (i, d)≺h
-initial diagrams for the indices (i, d) ∈ {(0, 2), (1, 3), . . . , (h−

1, h + 1)}. This is because every diagram β in the cone must have projective

dimension of at least h by the Auslander-Buchsbaum Formula (Corollary 2.15),

and hence must have βi,d ̸= 0 for some (i, d) ∈ I(D̃h
n) with (0, 2) ≺h (1, 3) ≺h · · · ≺h

(h − 1, h + 1) ≺h (i, d). For this reason we search for (i, d)≺h
-initial diagrams for

indices (i, d) in I(D̃h
n)− {(0, 2), (1, 3), . . . , (h− 1, h+ 1)}.

So the indices (i, d) in I(D̃h
n) for which we still need to find (i, d)≺h

-initial

diagrams are

1. The indices (d− 2, d) for h+ 1 ≤ d ≤ n, in row 1.

2. The indices (0, d) for 3 ≤ d ≤ n− h+ 1, in column 0.

3. The indices (d− 3, d) for 4 ≤ d ≤ h+ 2, in row 2.

We now introduce Proposition 3.59, which we can use to construct diagrams

for all three of the above cases.
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Proposition 3.59. Let m and l be positive integers. Suppose ∆ is a complex on

a vertex set of size m, and let β = β(I∆). We define ∆̃ = ∆ + Skel0([l]) and

β̃ = β(I∆̃).

1. for every 0 ≤ i ≤ m+ l − 2, we have β̃i,i+2 ̸= 0.

2. for every (i, d) in I(Dn) with d− i ≥ 3, we have β̃i,d =
∑i

j=0

(
l

i−j

)
βj,j+d−i.

Remark 3.60. Note that Skel0([l]) is the complex consisting of l isolated vertices. In

other words, it contains the same data as the empty graph El. We use the notation

Skel0([l]) to indicate that we are viewing the structure as a complex rather than a

graph, and hence the corresponding ideal I∆̃ is obtained using the Stanley-Reisner

construction rather than the edge ideal construction (i.e. it is obtained from I∆

by adding generators corresponding to the nonfaces of Skel0([l])).

Proof. We label the vertex set of ∆ as V and the vertex set of ∆̃ = ∆+ Skel0([l])

as Ṽ = V ⊔ [l].

For part (1), we note that for any subset U ⊆ Ṽ that contains both a vertex in

∆ and a vertex in Skel0([l]), the complex ∆̃U must be disconnected. By Hochster’s

Formula, we get that the Betti numbers β̃0,2, ..., β̃m+l−2,m+l are all nonzero.

For part (2), suppose (i, d) ∈ I(Dn) with d − i ≥ 3. The addition of isolated

vertices to ∆ has no effect on homologies of degree greater than zero. This means

that for a subset U ⊆ Ṽ , the only part of U that contributes to the (d− i− 2)nd

homology of ∆̃U is U ∩ V , and so we have H̃d−i−2(∆̃U) = H̃d−i−2(∆U∩V ). This

homology is zero if r = |U ∩ V | < d− i. Meanwhile, for each d− i ≤ r ≤ d there

are precisely
(

l
d−r

)
ways of extending a subset S ⊆ V of size r to a subset S̃ ⊆ Ṽ

of size d. Thus, by Hochster’s Formula, we get

β̃i,d =
∑

U∈(Ṽr)

dimK H̃d−i−2(∆̃U)

=
d∑

r=d−i

∑
U∈(Ṽd)
|U∩V |=r

dimK H̃d−i−2(∆̃U)

=
d∑

r=d−i

∑
U∈(Vr)

(
l

d− r

)
dimK H̃d−i−2(∆U)

=
d∑

r=d−i

∑
U∈(Vr)

(
l

d− r

)
dimK H̃r−(r−(d−i))−2(∆U)

=
d∑

r=d−i

(
l

d− r

)
βr−(d−i),r

=
i∑

j=0

(
l

i− j

)
βj,j+d−i .
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Corollary 3.61. Suppose d is a positive integer with h + 1 ≤ d ≤ n. Let ∆d−h−1

be the (d−h−1)-simplex on a vertex set of size d−h. For ∆̃ = ∆d−h−1+Skel0([h])

we have

β(I∆̃) =
[
β0,2 . . . βd−2,d

]
.

In particular β(I∆̃) is (d− 2, d)≺h
-initial.

Proof. By Corollary 3.9 we know that the Betti diagram of ∆d−h−1 is zero. The

result follows from Proposition 3.59.

Corollary 3.62. Suppose d is a positive integer with 3 ≤ d ≤ n − h + 1. Let

∂∆d−1 be the boundary of the (d − 1)-simplex on a vertex set of size d. For ∆̃ =

∂∆d−1 + Skel0([h− 1]) we have

β(I∆̃) =


β0,2 . . . . . . . . . βd+h−3,d+h−1

β0,d . . . βh−1,d+h−1

 .

In particular β(I∆̃) is (0, d)≺h
-initial.

Proof. By Corollary 3.9 we know the only nonzero Betti number of ∂∆d−1 is β0,d.

The result follows from Proposition 3.59.

Corollary 3.63. Suppose that h ≤ n − 2 and that d is a positive integer with

4 ≤ d ≤ h + 2. Let Cd be the cyclic graph on d vertices. For ∆̃ = Cl(Cd) +

Skel0([h+ 2− d]) we have

β(I∆̃) =

[
β0,2 . . . . . . . . . βh−1,h+1 βh,h+2

βd−3,d . . . βh−1,h+2

]
.

In particular β(I∆̃) is (d− 3, d)≺h
-initial.

Remark 3.64. For d ≥ 4, the clique complex Cl(Cd) contains no additional faces to

the graph Cd, so its facets are simply the edges of Cd. As in Remark 3.60, our reason

for using the notation Cl(Cd) here rather than Cd is to indicate that we are viewing

this structure as a complex rather than a graph, and hence the corresponding ideal

I∆̃ is constructed using the Stanley-Reisner construction rather than the edge ideal

construction (i.e. it is obtained from I∆ by adding generators corresponding to

the nonfaces of Cl(Cd)).
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Proof. Suppose G is the complement of the graph Cd. We have Cl(Cd) = Ind(G)

by Remark 2.69. From Proposition 3.14 we know that the edge ideal I(G) has

Betti diagram

[
β0,2 . . . βd−4,d−2

βd−3,d

]

and hence so does the Stanley-Reisner ideal ICl(Cd) by Proposition 2.75. The result

follows from Proposition 3.59.

Example 3.65. Consider the cone D̃3
6. For this cone we need to find ten complexes

Γ3
i,d, for indices (i, d) ∈ I(D̃3

6) such that the diagram β(Γ3
i,d) is (i, d)≺3-initial. We

need these complexes to have codimension 3, and no more than 6 vertices. Table

3.1 shows ten such complexes.

For each index (i, d) ∈ I(D̃3
6) the table also shows the shape of the diagram

β(Γ3
i,d), chiefly to demonstrate that it is indeed (i, d)-inital as required. In order to

demonstrate this fact more clearly we denote the Betti number βi,d itself in bold.

For most of our diagrams, there are indices (i′, d′) ∈ I(D̃3
6) for which the entry

βi′,d′ is zero even though (i′, d′) ≺3 (i, d) (and hence (i, d)≺3-initiality would permit

βi′,d′ to be nonzero). We denote these entries in the Betti diagram by a − sign.
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(i, d) Complex Γ3
i,d Image of Γ3

i,d Shape of Betti Diagram β(Γ3
i,d)

(2, 4) ∆0 + Skel0([3])
[
β0,2 β1,3 β2,4

]

(3, 5) ∆1 + Skel0([3])
[
β0,2 β1,3 β2,4 β3,5

]

(4, 6) ∆2 + Skel0([3])
[
β0,2 β1,3 β2,4 β3,5 β4,6

]

(2, 5) Cl(C5)

[
β0,2 β1,3 − − −

β2,5

]

(1, 4) Cl(C4) + Skel0([1])

[
β0,2 β1,3 β2,4 β3,5 −

β1,4 β2,5

]

(0, 3) ∂∆2 + Skel0([2])

[
β0,2 β1,3 β2,4 β3,5 −
β0,3 β1,4 β2,5

]

(3, 6) S(∆1 + Skel0([2]))

[
β0,2 β1,3 β2,4 β3,5 β4,6

− β1,4 β2,5 β3,6

]

(2, 6) S2(∆0 star0 v)

β0,2 − − − −
− β1,4 − −

β2,6



(1, 5) S(∂∆2 + Skel0([1]))

β0,2 β1,3 β2,4 − −
β0,3 β1,4 β2,5 β3,6

β1,5 β2,6



(0, 4) ∂∆3 + Skel0([2])

β0,2 β1,3 β2,4 β3,5 β4,6

− − − −
β0,4 β1,5 β2,6


Table 3.1: (i, d)≺3-initial complexes with diagrams in the cone D̃3

6
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We now have all the ingredients we need to prove Theorem 3.4.

Proof of Theorem 3.4. We have already seen that

dimDh
n ≤ dim(W(Dh

n)) =
n(n− 1)

2
− h(h− 1)

2
+ 1.

We can show that dimDh
n ≥ dim(W(Dh

n)) by finding a linearly independent set of

diagrams in Dh
n of size |I(Dh

n)| − (h− 1). In fact, by Lemma 3.46 it suffices to find

a linearly independent set of diagrams in D̃h
n of size |I(D̃h

n)| − (h− 1).

To this end, we work towards exhibiting a set of complexes {Γh
i,d : (i, d) ∈

I(D̃h
n)−{(0, 2), . . . , (h−2, h)}} such that for each (i, d) ∈ I(D̃h

n)−{(0, 2), . . . , (h−
2, h)}, the complex Γh

i,d has at most n vertices, codimension h, and is (i, d)-initial

with respect to the ordering ≺h given in Definition 3.27. In particular, for each

index (i, d) ∈ I(D̃h
n)− {(0, 2), . . . , (h− 2, h)}), we will show that the complex Γh

i,d

has a vertex set either of size d (which is less than or equal to n by Proposition

3.22) or of size h+ d− i− 1 (which is less than or equal to n by Proposition 3.39).

We proceed by induction on h ≥ 1. For any index (i, d) in I(D̃1
n) the complex

∆d−2 stard−i−2 v is (i, d)≺1-initial by Corollary 3.51. Moreover it has d vertices and

codimension 1. This proves the base case h = 1.

Now assume h > 1, and pick some index (i, d) ∈ I(D̃h
n)−{(0, 2), . . . , (h−2, h)}.

There are four cases to consider.

First, if (i, d) is in row 1 (i.e. d− i = 2) with h+ 1 ≤ d ≤ n, we define Γh
i,d to

be the complex ∆d−h−1 + Skel0([h]). This has d vertices and codimension h, and

it is (i, d)≺h
-initial by Corollary 3.61.

Next, if (i, d) is in column 0 (i.e. i = 0) with 3 ≤ d ≤ n+ h− 1, we define Γh
i,d

to be the complex ∂∆d−1 + Skel0([h − 1]). This has d + h − 1 vertices (which is

the same as d+ h− i− 1 vertices because i = 0) and codimension h. Moreover it

is (i, d)≺h
-initial by Corollary 3.62.

Next, if (i, d) is in row 2 (i.e. d− i = 3) with 4 ≤ d ≤ h + 2, we define Γh
i,d to

be the complex Cl(Cd) + Skel0([h + 2− d]). This has h + 2 vertices (which is the

same as d+ h− i− 1 vertices because d− i = 3) and codimension h. Moreover it

is (i, d)≺h
-initial by Corollary 3.63.

Finally, for all other indices (i, d) in I(D̃h
n)− {(0, 2), . . . , (h− 2, h)}, the index

(i− 1, d− 2) lies inside the indexing set I(D̃h−1
n )−{(0, 2), . . . , (h− 3, h− 1)}, and

hence by induction we have already found an (i − 1, d − 2)≺h−1
-initial complex

Γh−1
i−1,d−2 with codimension h − 1 on a vertex set whose size is either d − 1 or

(h− 1) + (d− 2)− (i− 1)− 1. We define

Γh
i,d = SΓh−1

i−1,d−2.

By Lemma 3.57 this complex has codimension h and is (i, d)≺h
-initial. Also it has

exactly two more vertices than Γh−1
i−1,d−2 which means it has either d vertices or

h+ d− i− 1 vertices, as required. This completes the proof.
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3.6 Dimension of Ch
n

We now arrive at our final cone Ch
n, generated by the diagrams of edge ideals of

height h. Note that this is a subcone of all the other cones we’ve studied so far.

We work towards proving Theorem 3.5 on the cone’s dimension.

3.6.1 Upper Bound

Once again, we begin by searching for an indexing subset I(Ch
n) ⊂ I(Cn), and hence

a minimal subspace W(Ch
n) containing Ch

n.

To find our indexing subset, we need to obtain some additional restrictions on

the positions of the nonzero values of the diagrams in Ch
n. To help us with this,

we need two important lemmas (these are, respectively, Theorem 4.4 in [Hà14]

and Corollary 7.2.4 in [Vil01]). Before reading these lemmas, it may be helpful to

recall the concepts of vertex covers and matchings as given in Definition 2.66, and

of regularity as given in Definition 2.8.

Lemma 3.66. Let G be a graph. The following are equivalent.

1. The height of I(G) is equal to h.

2. G has a minimally sized vertex cover of size h.

Lemma 3.67. Let G be a graph, and let α be the minimum size of a maximal

matching in G. We have reg I(G) ≤ α + 1.

Using these two lemmas, we can prove the following proposition.

Proposition 3.68. Consider β ∈ Ch
n. For every (i, d) ∈ Sn satisfying d−i > h+1,

we have βi,d = 0.

Proof. Let G be a graph on n vertices whose edge ideal has height h. We need

to show that reg I(G) ≤ h + 1. By Lemma 3.66, there is a minimal vertex cover

{xi1 , ..., xih} for G, which means that every edge in E(G) contains at least one

of xi1 , ...xih . Hence, no matching in G can consist of more than h edges, so the

minimal size of a maximal matching in G must be less than or equal to h. By

Lemma 3.67, we have reg I(G) ≤ h+ 1.

Because Ch
n ⊂ Dh

n, we already know from Proposition 3.39 that the diagrams

β in Ch
n satisfy βi,d = 0 whenever d − i > n − h + 1. Along with Proposition

3.68 this tells us that in fact βi,d = 0 whenever d − i > min{h, n − h} + 1. This

gives us a much clearer picture of what the diagrams in Ch
n look like. Setting

m = min{h, n− h}, the diagrams β ∈ Ch
n look like the following.β0,2 . . . . . . . . . . . . . . . βn−2,n

. . .

βm−1,2m . . . βn−m−1,n

 (3.6)
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Thus, we may define our indexing set I(Ch
n) and our subspaces (W h

n )
′ and W h

n

as follows.

Definition 3.69. We define

I(Ch
n) := {(i, d) ∈ I(Cn) : d− i ≤ min{h, n− h}+ 1} .

As with the cone Dh
n, we know that as well as living inside the vector space

carved out by this indexing set, the diagrams β in Ch
n must also satisfy the Herzog-

Kühl equations HK1(β) = · · · = HKh−1(β) = 0 by Remark 2.11. Thus we define

our vector space W(Ch
n) as follows.

Definition 3.70. We define

W(Ch
n) :=

β ∈
⊕

(i,d)∈I(Ch
n)

Q : HK1(β) = · · · = HKh−1(β) = 0

 .

To prove that the fomula given in Theorem 3.5 is an upper bound for dimCh
n,

we need to show that dim(W(Ch
n)) = h(n− h− 1) + 1, which we do below.

Proposition 3.71. Let I(Ch
n) and W(Ch

n) be as in Definitions 3.69 and 3.70. We

have

1. |I(Ch
n)| = h(n− h).

2. dimW(Dh
n) = h(n− h− 1) + 1.

Proof. For part (1), we set m = min{h, n− h}, and arrange the elements of I(Ch
n)

in rows as in Equation (3.6).

(0, 2) . . . . . . . . . . . . . . . (n− 1, n)
. . .

(m− 1, 2m) . . . (n−m− 1, n)

As noted in Section 3.4.1, for each 1 ≤ i ≤ m, row i of I(Ch
n) has n − 2i + 1

elements, and hence we have

|I(Ch
n)| =

m∑
i=1

(n− 2i+ 1)

=
m∑
i=1

n−
m∑
i=1

(2i− 1)

= nm−m2

= m(n−m)

= h(n− h) .
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For part (2), as noted in the proof of Proposition 3.43, the Herzog-Kühl equa-

tions HK1(β) = 0, ...,HKh−1(β) = 0 are linearly independent, and so we have

dim(W(Ch
n)) = |I(Ch

n)| − (h− 1)

= h(n− h)− h+ 1

= h(n− h− 1) + 1 .

3.6.2 Lower Bound

To complete our proof of Theorem 3.5, it only remains to show that the space

W(Ch
n) is the minimal subspace of W(Cn) containing Ch

n, by finding an appropri-

ately sized linearly independent set of diagrams lying in the cone Ch
n.

In fact we have already found these diagrams: for every index (i, d) in I(Ch
n)−

{(0, 2), . . . , (h−2, h)} we will show that the (i, d)≺h
-initial diagram we found inside

Dh
n in the previous section actually lies inside the cone Ch

n as well. We proceed to

the proof immediately.

Proof of Theorem 3.5. We have already seen that

dimCh
n ≤ dim(W(Ch

n)) = h(n− h− 1) + 1.

We can show that dimCh
n ≥ dim(W(Ch

n)) by finding a linearly independent set of

diagrams in Ch
n of size |I(Ch

n)| − (h− 1).

In our proof on the dimension of the cone Dh
n, we constructed, for each index

(i, d) ∈ I(Dh
n)−{(0, 2), . . . , (h− 2, h)}, an (i, d)≺h

-initial complex Γh
i,d of codimen-

sion h on at most n vertices. Thus to find our linearly independent diagrams in Ch
n

it suffices to show that for each index (i, d) ∈ I(Ch
n){(0, 2), . . . , (h− 1, h + 1)} the

complex Γh
i,d is in fact the independence complex of some graph Gh

i,d, and hence

lies inside Ch
n. We will demonstrate this in some cases by showing that Γh

i,d is the

complex of cliques of some graph, which is the same as the independence complex

of the graph’s complement by Remark 2.69.

We proceed by induction on h ≥ 1. Suppose first that our index (i, d) lies in

{(h − 1, h + 1), . . . , (n − 2, n)}. In this case we defined the complex Γh
i,d to be

∆d−h−1 + Skel0([h]), which is equal to the complex of cliques Cl(Kd−h + Eh), so

we set Gh
i,d = (Kd−h + Eh)

c. Note that this is true even for the base case h = 1,

where we defined Γ1
i,d to be the starred complex ∆d−2 star0 v, because this complex

is equal to the disjoint union ∆d−2 + Skel0([1]). In particular, the indexing set

I(C1
n) contains only the indices (0, 2), . . . , (n− 2, n), so this proves the base case.

Next suppose we have (i, d) ∈ {(1, 4), . . . , (h− 1, h+ 2)}. Here we defined the

complex Γh
i,d to be Cl(Cd) + Skel0([h + 2− d]). This is equal to Cl(Cd + Eh+2−d),

so we set Gh
i,d = (Cd + Eh+2−d)

c.
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For every other index (i, d) in I(Ch
n), we defined the complex Γh

i,d to be the

suspension S(Γh−1
i−1,d−2). By induction the complex Γh−1

i−1,d−2 is equal to Ind(G
h−1
i−1,d−2)

for some graph Gh−1
i−1,d−2 and hence we may define Gh

i,d = Gh−1
i−1,d−2 + L.

Remark 3.72. Note that the indices (0, d) in I(D̃h
n) with 3 ≤ d ≤ n−h+1, for which

we found the complexes Γh
i,d = ∂∆d−1 + Skel0([h− 1]), lie outside the indexing set

I(Ch
n) (by Proposition 3.34). Thus it does not present an issue to this proof that

their corresponding complexes are not independence complexes of graphs.

3.7 Concluding Remarks

Our proofs for these results demonstrate, up to linear combination, all the linear

dependency relations that are satisfied by every diagram in the cone. For each cone

C we started by finding the cone’s indexing set I(C), which showed us the possible

shapes of the diagrams in the cone, and thus gave us cofinitely many relations of

the form βi,d = 0 for indices (i, d) outside of I(C). For the cones Dn, D̃n and Cn,

these relations are the only ones we have. For the cones Dh
n, D̃

h
n and Ch

n we also

have the Herzog-Kühl equations HK1(β) = · · · = HKh−1(β) = 0.
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Chapter 4

PR Complexes and Degree Types

Our aim over the next three chapters is to investigate the possible shapes of pure

Betti diagrams arising from Stanley-Reisner ideals. In particular, we work towards

proving Theorem 4.7, stated below, which is a partial analogue to the first Boij-

Söderberg Conjecture, for the cone Dn.

By the ‘shape’ of a Betti diagram, we mean the possible positions of its nonzero

entries. Formally, we can define a Betti diagram’s shape as follows.

Definition 4.1. The shape of a Betti diagram β is the set

S(β) = {(i, d) ∈ {0, . . . , n} × Z : βi,d ̸= 0} .

We have already found some restrictions on the shapes of the diagrams in Dn

in Chapter 3 (specifically, they are all subsets of I(Dn)). Now we narrow our

attention slightly to the pure diagrams in the cone. Our goal is to answer the

following question.

Question 4.2. What are the possible shapes of pure diagrams arising from Stanley-

Reisner ideals?

In the case of pure diagrams, the shape of the diagram contains the same

information as its shift type (as given in Definition 2.17). This allows us to revise

Question 4.2 as follows.

Question 4.3. For a given strictly decreasing sequence c = (cp, . . . , c0) of positive

integers, can we find a Stanley-Reisner ideal I such that β(I) is pure with shift

type c?

As it turns out, the answer to this question is no, in general. For example, the

results of the previous chapter demonstrate that no Stanley-Reisner ideal can have

a pure resolution with shift type (5, 2). Indeed, any such ideal I would have to be

generated in degree 2, which would make it an edge ideal. But the index (1, 5) lies

outside of I(Cn), so we must have β1,5(I) = 0.

69
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However we can ask a broader question. We start by introducing some new

terminology, loosely mirroring terminology found in [BH94] (page 1203), which is

also focussed on classifying the pure diagrams of Stanley-Reisner ideals.

Definition 4.4. Suppose we have a Stanley-Reisner ideal I with a pure resolution

0 → R(−cp)
βp,cp → ... → R(−c1)

β1,c1 → R(−c0)
β0,c0 → I.

We say that this pure resolution (and the corresponding Betti diagram) has degree

type (cp − cp−1, ..., c1 − c0).

Remark 4.5. Our notion of degree type differs slightly from that found in [BH94],

which defines it as the sequence (cp − cp−1, ..., c1 − c0, c0). This is the sequence

of degrees of the maps in the resolution (i.e. the degrees of the elements in the

matrices representing those maps). Our version of degree type records the degrees

of all of these maps except for R(−c0)
β0,c0 → I.

The degree type of a pure resolution contains slightly less information than its

shift type, but the shift type is uniquely determined by the degree type and the

value of c0. Thus Question 4.3 could be widened as follows.

Question 4.6. For a given sequence d = (dp, . . . , d1) of positive integers, can we

find a Stanley-Reisner ideal I such that β(I) is pure with degree type d?

Answering Question 4.6 would still go a significant way towards classifying the

possible shapes of pure Betti diagrams of Stanley-Reisner ideals. We will show

that the answer to this question is, in fact, yes, by proving the following theorem.

Theorem 4.7. Let d = (dp, . . . , d1) be any sequence of positive integers. There

exists a simplicial complex ∆ such that the Betti diagram β(I∆) is pure with degree

type d.

Over the next three chapters we work towards proving Theorem 4.7. In this

chapter we introduce the family of PR complexes, complexes whose dual Stanley-

Reisner ideals have pure resolutions; in Chapter 5 we look at some interesting

subfamilies of PR complexes, along with their corresponding degree types and

Betti diagrams; and finally, in Chapter 6, we prove Theorem 4.7 by presenting an

algorithm for generating a PR complex of any given degree type.

4.1 Motivation

We came to study this topic through reading the results of [BH94], which is also

focussed on the construction of Stanley-Reisner ideals with pure resolutions, and



4.1. MOTIVATION 71

itself builds on earlier work from [Frö90] and [BH98b] (this latter article was com-

pleted in 1993 but later published in 1998). We hope that our work adds something

to these efforts.

One reason the study of pure Betti diagrams is of particular interest in general is

because of the Boij-Söderberg conjectures: as we saw in Section 2.1.2, the extremal

rays of the cone C(a,b) are the pure diagrams corresponding to Cohen-Macaulay

modules; and these are also the extremal rays of the wider Betti cone generated

by all diagrams of R-modules in the same window.

It should be noted, however, that the same is not true for the cone Dn. While

the pure diagrams in Dn which correspond to Cohen-Macaulay modules must

be extremal rays of Dn (because they are extremal in the wider cone generated

by all R-modules, in some appropriately sized window containing the index set

I(Dn)), many pure diagrams inDn do not correspond to Cohen-Macaulay modules.

Moreover, as a proper subcone of the wider cone generated by all R-modules, many

of the extremal rays of Dn are not extremal in the wider cone. In general, there

are many extremal rays of Dn which are not pure (see Example 7.11 in Section

7.4), and many pure diagrams which are not extremal (see Example 7.12 in Section

7.4).

Nevertheless, classifying the possible shapes of pure diagrams in Dn can still

help us in understanding its extremal rays. Most notably, if Dn contains a pure

diagram of shape S then it must contain an extremal ray of shape S.

To see why, suppose we were to write a diagram β in Dn as a sum of extremal

rays β =
∑

j α
j. This gives us that S(β) =

⋃
j S(α

j). Hence, for every j, we

have S(αj) ⊆ S(β), and moreover, every index (i, d) in S(β) must be contained

in at least one of the sets S(αj). Suppose now that β is pure, and choose αj

such that S(αj) contains the index (i, d) for which i is maximal. It follows that

S(αj) = S(β).

Thus, by finding the shapes of the pure diagrams in Dn we find the shapes of

some of its extremal rays.

Perhaps more significantly, studying the shapes of the pure diagrams of Stanley-

Reisner ideals also allows us to investigate the extent to which the Boij-Söderberg

conjectures hold true of the cones generated by these diagrams. As mentioned at

the start of this chapter, our key theorem (Theorem 4.7) can be seen as a partial

analogue to the first Boij-Söderberg Conjecture (Theorem 2.19) for Betti diagrams

of Stanley-Reisner ideals. However, there are two key differences between the two

theorems. The first is that Theorem 4.7 is a result about degree types rather than

shift types (we have already noted that the shift type analogue of Theorem 4.7 is

not true). The second is that Theorem 4.7 places no conditions on the number of

vertices of the complex ∆, so it doesn’t give us a specific value of n for which the

diagram β(I∆) is contained in the cone Dn. What it tells us is that there is some
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value of n for which there exists a pure Betti diagram of degree type d in Dn (and

thus in all the cones Dm for m ≥ n).

4.2 An Introduction to PR Complexes

Our aim going forward is to construct Stanley-Reisner ideals with pure resolutions

of varying degree types. In particular we wish to construct simplicial complexes

whose dual Stanley-Reisner ideals have pure Betti diagrams.

The Alexander Dual version of Hochster’s Formula (Theorem 2.52, or ADHF

for short) gives us a combinatorial description of these complexes, as shown below.

Corollary 4.8. Let ∆ be a simplicial complex on [n]. The diagram β = β(I∆∗) is

pure if and only if ∆ satisfies the following condition:

For every i ≥ −1, and every face σ, τ ∈ ∆, if H̃i(link∆ σ) ̸= 0 ̸= H̃i(link∆ τ)

then |σ| = |τ |.

Proof. The diagram β is pure if and only if for every i, there exists at most one

ci such that βi,ci ̸= 0. By ADHF, this holds if and only if there are no two faces

of different sizes in ∆ whose links both have nontrivial homology at the same

degree.

Definition 4.9. We refer to complexes which satisfy the condition in Corollary

4.8 as PR complexes (over K), where PR stands for Pure Resolution.

Remark 4.10. All of our work in this thesis is done over the arbitrary field K.

Hence, for the rest of this thesis we will simply use the phrase ‘PR’ to mean ‘PR

over K’. While the PR condition is generally dependent on our choice of field, it is

worth remarking that every PR complex presented in this thesis satisfies the PR

condition over any field.

We will examine some key properties of PR examples in due course, but for

now, we observe the following immediate result of the PR condition.

Lemma 4.11. All PR complexes are pure (i.e. their facets all have the same

dimension).

Proof. The link of a facet is the irrelevant complex {∅} which has nontrivial (−1)st

homology. Thus a PR complex cannot have two facets of different sizes.

The following standard lemma will be particularly helpful to us when studying

the links in PR complexes.

Lemma 4.12. Let ∆ be a simplicial complex, σ a face of ∆ and τ ⊆ σ. We have

link∆ σ = linklink∆ τ (σ − τ).
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Proof. For any face f of ∆ we have

f ∈ link∆ σ ⇔ f ⊔ σ ∈ ∆

⇔ f ⊔ (σ − τ) ⊔ τ ∈ ∆

⇔ f ⊔ (σ − τ) ∈ link∆ τ

⇔ f ∈ linklink∆ τ (σ − τ) .

This lemma shows that links can be computed piecewise, and in any order we

choose. More specifically, to compute the link of a face σ in a complex ∆, we can

start by computing the link L = link∆ x for some vertex x ∈ σ, and then compute

the link of σ − x in L. This technique lends itself readily to inductive arguments,

and often allows us to restrict our attention to the links of vertices.

The PR property is a condition on the homology of links. For this reason it

will be useful for us to extend the concept of homology index sets (Definition 2.57)

in the following way.

Definition 4.13. Let ∆ be a simplicial complex.

• For a face σ in ∆ we define the homology index set of ∆ at σ to be the set

h(∆, σ) = {i ∈ Z : H̃i(link∆ σ) ̸= 0}. Note that under this definition, we

have h(∆) = h(∆, ∅).

• For a natural number m we define the complete homology index set of ∆ at

m as ĥ(∆,m) =
⋃

σ∈∆,|σ|=m h(∆, σ).

Using this notation for homology index sets, we can present an alternate defi-

nition for PR complexes.

Proposition 4.14. Let ∆ be a simplicial complex. The following are equivalent.

1. ∆ is PR.

2. For any σ and τ in ∆ with |σ| ≠ |τ |, we have h(∆, σ) ∩ h(∆, τ) = ∅.

3. For any distinct integers m1 ̸= m2, we have ĥ(∆,m1) ∩ ĥ(∆,m2) = ∅.

Proof. This is a rephrasing of the PR condition in terms of homology index sets.

We can also use ADHF to derive an entirely combinatorial description of the

degree type of a PR complex. In order to do this thoroughly, it will be useful to

examine the homology index sets of PR complexes in more depth.
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4.2.1 Homology Index Sets and Degree Types

In this section we investigate the homology index sets of PR complexes as given in

Definition 4.13. Our aim is to provide a combinatorial reframing of degree types,

and then use this reframing to give a concrete description of the homology index

sets of PR complexes with a given degree type. We also introduce the notion of

the offset of a PR complex, which is the minimum size of a face whose link has

homology.

We begin with the following elementary observation: for any face σ in an

arbitrary simplicial complex ∆, the dimension of link∆ σ is at most dim∆ − |σ|.
This dimension gives us an upper bound on the degrees of nontrivial homologies

for link∆ σ, which means, very roughly speaking, that as the size of σ increases,

the degrees of the nontrivial homologies of link∆ σ tend to decrease. The following

lemma makes this idea more precise.

Lemma 4.15. Let ∆ be any simplicial complex. Suppose we have some face σ in

∆ such that H̃j(link∆ σ) ̸= 0 for some j ≥ 0. There exists a chain of simplices

σ = τj ⫋ τj−1 ⫋ · · · ⫋ τ0 ⫋ τ−1 in ∆ such that for each −1 ≤ i ≤ j, we have

H̃i(link∆ τi) ̸= 0.

Proof. We prove this algebraically, setting β = β(I∆∗). It suffices to show that

there is some face σ ⫋ τ ∈ ∆ for which H̃j−1(link∆ τ) ̸= 0. The result then follows

by induction on j.

By replacing ∆ with link∆ σ (and using Lemma 4.12), we may assume that

σ = ∅, and thus we need only find a nonempty face τ in ∆ whose link has (j − 1)st

homology. To find a candidate for τ , note that by ADHF we have that βj+1,n ̸= 0.

Hence there must be some d < n such that βj,d ̸= 0. This means (again, by

ADHF) that there exists some nonempty face τ in ∆ of size n − d for which

H̃j−1(link∆ σ) ̸= 0, as required.

Corollary 4.16. Let ∆ be a PR complex. Every link in ∆ has at most one

nontrivial homology.

Proof. Let σ be a face of ∆ and suppose for contradiction that H̃i(link∆ σ) ̸= 0 ̸=
H̃j(link∆ σ) for some i < j. By Lemma 4.15, there exists some τ ⫌ σ such that

H̃i(link∆ τ) ̸= 0. But this contradicts the fact that ∆ is PR, because |τ | > |σ|.

Remark 4.17. In particular, the complex ∆ is equal to link∆ ∅, so it must have at

most one nontrivial homology itself.

Another way of phrasing Corollary 4.16 is that for PR complexes ∆, the ho-

mology index sets h(∆, σ) are all either empty or singletons. Moreover, as the next

corollary demonstrates, the indices in the nonempty homology index sets h(∆, σ)

decrease as |σ| increases (making our observation at the start of this section exact,

for PR complexes).
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Corollary 4.18. Let ∆ be a PR complex, and suppose σ1 and σ2 are faces of ∆

with h(∆, σ1) = {i1} and h(∆, σ2) = {i2}. If |σ1| < |σ2| then i1 > i2.

Proof. We cannot have i1 = i2 as this directly contradicts the PR condition. If

i1 < i2, then by Lemma 4.15 we can find some face σ3 of ∆ strictly containing

σ2 such that H̃i1(link∆ σ3) ̸= 0, which also contradicts the PR property because

|σ3| > |σ1|.

Using these results about the homology index sets of PR complexes, we are

now able to give an entirely combinatorial description of the degree type of a PR

complex ∆, which agrees with the degree type of the Betti diagram β(I∆∗).

Definition 4.19. Let ∆ be a PR Complex, and let p be the maximum index for

which there exists some face σ in ∆ such that H̃p−1(link∆ σ) ̸= 0.

For each 0 ≤ i ≤ p, we define si to be the size |σ| of the faces σ of ∆ for which

H̃i−1(link∆ σ) ̸= 0, and for each 1 ≤ i ≤ p, we define di = si−1 − si.

We call the sequence (dp, . . . , d1) the degree type of ∆.

Remark 4.20. The integers sp−1, . . . , s0 are well-defined by Lemma 4.15, and form

a strictly decreasing sequence by Corollary 4.18. Thus the degree type (dp, . . . , d1)

must consist of positive integers.

To see why this notion of the degree type is the same as the degree type of the

pure diagram β(I∆∗), suppose that

0 → R(−cp)
βp,cp → ... → R(−c1)

β1,c1 → R(−c0)
β0,c0 → I∆∗

is a minimal graded free resolution of I∆∗ . By definition the degree type of this

resolution is the sequence (dp, . . . , d1) where for each 1 ≤ i ≤ p we define di =

ci − ci−1. By ADHF, for each 1 ≤ i ≤ p we have ci = n− si and ci−1 = n− si−1,

and hence we have di = (n− si)− (n− si−1) = si−1 − si.

Definition 4.21. Let ∆ be a PR complex and let s0, . . . , sp be as in Definition

4.19 above. We call the value sp (i.e. the minimum size of a face of ∆ whose link

has homology) the offset of ∆.

Note that a PR complex ∆ has offset 0 if and only if it has nontrivial homology

itself (because link∆ ∅ is equal to ∆). Taken together, the degree type and offset

of a PR complex ∆ determine its dimension, as shown below.

Proposition 4.22. Let ∆ be a PR complex with degree type d and offset s. We

have dim∆ = s+
∑

d− 1.

Proof. Using the notation of Definition 4.19 we have
∑

d =
∑p

i=1 di =
∑p

i=1(si −
si−1) = s0 − sp. The value sp is the offset of ∆ (i.e. s = sp), and the value s0

is the size of the facets of ∆ (all of which are the same by Lemma 4.11). Thus

dim∆ = s0 − 1 = sp + (s0 − sp)− 1 = s+
∑

d− 1.
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Proposition 4.22 shows us that PR complexes with offset 0 are minimal PR

complexes, in the sense that they are the PR complexes of their given degree type

with minimal dimension. In fact, they are minimal in an even stronger sense:

namely, any PR complex with degree type d contains a link with the same degree

type and offset 0. To explain why, we require the following lemma, which shows

that any link in a PR complex is also PR.

Lemma 4.23. Let ∆ be a PR complex with degree type d = (dp, . . . , d1) and offset

s, and let σ be a face of ∆. The complex link∆ σ is also PR, with degree type d′

and offset s′ such that

1. d′ = (dj, . . . , d1) is a subsequence of d.

2. s′ satisfies s′ +
∑

d′ + |σ| = s+
∑

d.

Proof. We assume ∆ has a vertex set of size n, and we set δ = link∆ σ for notational

convenience. Let 0 ≤ i ≤ p and d be integers. From ADHF, we have

βi,d(I
∗
δ ) =

∑
τ∈δ

|τ |=n−|σ|−d

dimK H̃i−1(linkδ τ).

By Lemma 4.12, the complex linkδ τ is equal to link∆(τ ⊔ σ), and hence the sum

on the right-hand side of this equation is equal to∑
f∈∆
σ⊆f

|f |=n−d

dimK H̃i−1(link∆ f)

which appears as a summand in the ADHF decomposition of βi,d(I
∗
∆). We conclude

that βi,d(I
∗
δ ) ≤ βi,d(I

∗
∆). Thus β(I∗δ ) is pure and its degree type is a subsequence

of the degree type of β(I∗∆).

For the second part of the lemma, suppose d′ and s′ are the degree type and

offset of link∆ σ. By Proposition 4.22 we have

s′ +
∑

d′ − 1 = dim(link∆ σ)

= dim∆− |σ|

= s+
∑

d− 1− |σ|

and the result follows.

Corollary 4.24. Let ∆ be a PR complex with degree type d. There exists a face

σ ∈ ∆ such that link∆ σ is PR with degree type d and offset 0.

Proof. Suppose ∆ has offset s. By definition this means that there exists some

face σ ∈ ∆ of size s such that H̃p−1(link∆ σ) ̸= 0. By Lemma 4.23 the complex
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link∆ σ is PR, and its degree type is some subsequence d′ of d. Also link∆ σ has

offset 0 because it has homology. Thus, from the second part of Lemma 4.23, we

have
∑

d′ + |σ| = s+
∑

d. Because |σ| = s, this gives us
∑

d′ =
∑

d, and hence

d′ = d.

We end this section by demonstrating how the complete homology sets of a PR

complex can be computed from its degree type and offset.

Proposition 4.25. Let ∆ be a simplicial complex. The following are equivalent.

1. ∆ is a PR complex with degree type (dp, . . . , d1) and offset s.

2. ĥ(∆,m) =

{r − 1} if m = s+
∑p

j=r+1 dj for some 0 ≤ r ≤ p

∅ otherwise.

Proof. Let ∆ be a PR complex of the specified degree type and offset. Let sp <

· · · < s0 be as in Definition 4.19 (so that sp = s). We know from Corollary

4.16 that every homology index set of ∆ is either a singleton or empty, and from

Corollary 4.18 we deduce that the same is true of the complete homology index

sets. By definition of sp, . . . , s0, the nonempty complete homology index sets are

precisely the sets ĥ(∆, sp), . . . , ĥ(∆, s0).

Specifically, for each 0 ≤ r ≤ p, the set ĥ(∆, sr) is the singleton {r − 1}, and
we have sr = sp + (sp−1 − sp) + · · ·+ (sr − sr+1) = s+

∑p
j=r+1 dj.

Conversely, if ∆ satisfies condition (2), then ∆ must be PR by Proposition

4.14, and we can recover its degree type and offset from the values of m for which

ĥ(∆,m) are nonempty.

Before we proceed to look at some specific examples of PR complexes, we take

a brief detour to talk about the relationship between the PR condition and the

Cohen-Macaulay condition due to Reisner.

4.2.2 PR Complexes and Cohen-Macaulay Complexes

Readers familiar with Reisner’s Criterion for Cohen-Macaulay complexes may well

notice a striking similarity between this criterion and the PR condition, and this

is not a coincidence.

Reisner’s Criterion is the following (this is [MS05] Theorem 5.53, rephrased in

terms of homology index sets; for a proof see [MS05] Theorem 13.37).

Theorem 4.26 (Resiner’s Criterion for Cohen-Macaulayness). Let ∆ be a sim-

plicial complex. The Stanley-Reisner ring K[∆] is Cohen-Macaulay if and only if

for any σ in ∆, the homology index set h(∆, σ) is either empty or the singleton

{dim∆− |σ|}.
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Definition 4.27. We refer to complexes that satisfy Reisner’s Criterion as Cohen-

Macaulay complexes (over K).

Remark 4.28. Just as with PR complexes, we will henceforth omit the phrase ‘over

K’ when talking about Cohen-Macaulay complexes.

Every Cohen-Macaulay complex satisfies the PR condition, and hence Cohen-

Macaulay complexes are a subfamily of PR complexes. We can see this both

combinatorially and algebraically.

From a combinatorial perspective, suppose we have two differently sized faces

σ and τ of a Cohen-Macaulay complex ∆. We have dim∆ − |σ| ̸= dim∆ − |τ |,
and hence the homology index sets h(∆, σ) and h(∆, τ) are disjoint. Thus ∆ is

PR by Proposition 4.14.

From an algebraic perspective, the result comes from the following theorem of

Eagon and Reiner (see [ER98] Theorem 3).

Theorem 4.29 (Eagon-Reiner Theorem). Let ∆ be a simplicial complex. The

following are equivalent.

1. K[∆] is Cohen-Macaulay.

2. I∆∗ has a linear resolution.

A linear resolution is a pure resolution of degree type (1, ..., 1). Hence we can

rephrase the Eagon-Reiner Theorem as follows.

Corollary 4.30. Let ∆ be a simplicial complex. The following are equivalent.

1. ∆ is Cohen-Macaulay.

2. ∆ is PR with degree type (1, . . . , 1).

Using this description of Cohen-Macaulay complexes we can recover Reisner’s

Criterion from Proposition 4.25.

Corollary 4.31. Let ∆ be a simplicial complex. The following are equivalent.

1. ∆ is a PR complex with degree type (1, . . . , 1)︸ ︷︷ ︸
p

and offset s.

2. ĥ(∆,m) =

{dim∆−m} if s ≤ m ≤ s+ p

∅ otherwise.

Proof. From Proposition 4.25, we know that condition (1) is satisfied if and only

if the nonempty complete homology index sets ĥ(∆,m) occur only at the values

m = s + p − r for 0 ≤ r ≤ p, and are equal to {r − 1}. Equivalently, they occur

only for values of m between s and s + p, and are equal to {s + p −m − 1}. By

Proposition 4.22 we have dim∆ = s+ p− 1. The result follows.
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Remark 4.32. A substantially identical proof shows us that if ∆ has offset s

and degree type (dp, . . . , di, 1, . . . , 1), then for any m > s +
∑p

j=i dj we have

ĥ(∆,m) = {dim∆ − m}. This will be crucial to our proof of Theorem 4.7 in

Chapter 6.

Corollary 4.30 tells us that we can determine whether a PR complex is Cohen-

Macaulay purely from its degree type. In fact, if we also know the offset of the

complex, we have enough information to recover both the depth and dimension of

the Stanley-Reisner ring (note that we are talking about the Stanley-Reisner ring

of the complex itself here, rather than the dual Stanley-Reisner ring).

Lemma 4.33. Let ∆ be a PR complex with degree type d = (dp, . . . , d1) and offset

s. We have the following.

1. dimK[∆] = s+
∑

d.

2. depthK[∆] = s+ p.

Proof. Recall from Corollary 2.47 that dimK[∆] is equal to dim∆+1, so part (1)

follows immediately from Proposition 4.22.

For part (2), suppose ∆ has n vertices. The Auslander-Buchsbaum Formula

(Theorem 2.14) tells us that depthK[∆] = n − pdimK[∆]. Moreover, Theorem

5.99 of [MS05] tells us that pdimK[∆] = reg I∆∗ .

Let β = β(I∆∗). Because ∆ is PR of degree type (dp, . . . , d1), we know the

nonzero Betti numbers of I∆∗ are β0,c0 , . . . , βp,cp with the shifts c0, . . . , cp given by

cp = n − s and ci−1 = ci − di for each p ≥ i ≥ 1. Recall from Definition 2.8 that

reg I∆∗ is the maximum value of c − i such that βi,c(I∆∗) ̸= 0, which is cp − p.

Hence we have depthK[∆] = n− (cp − p) = n− (n− s− p) = s+ p.

In particular, the difference between the dimension and the depth of K[∆] is∑
d − p =

∑p
i=1(di − 1), which is wholly dependent on the degree type of ∆.

Hence, the degree type of a PR complex contains a measure of the extent to which

that complex fails to be Cohen-Macaulay. Seen in this light, Theorem 4.7 tells us

that there exist PR complexes which are arbitrarily far away from satisfying the

Cohen-Macaulay property.

4.2.3 Examples of PR Complexes

We now consider a few examples of PR complexes, along with their correspond-

ing Betti diagrams and degree types. All of these examples will be integral in

motivating the constructions of PR complexes going forward.

Example 4.34. Let ∆ be the boundary of the 3-simplex on vertex set [4], and let

β = β(I∆∗).
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4

3

2

1

This complex has only 2nd homology. It has four vertices with links of the form

, six edges with links of the form , and four 2-dimensional facets.

Using ADHF we get that β is equal to

0 1 2 3

1 4 6 4 1

which means ∆ is PR with shift type (4, 3, 2, 1) and degree type (1, 1, 1).

The above example generalises as follows.

Example 4.35. Let ∆ be the boundary of the n-simplex ∂∆n on vertex set [n+1],

and let β = β(I∆∗). For any integer 1 ≤ d ≤ n + 1 there are
(
n+1
d

)
faces of ∆ of

size n + 1 − d, and for any such face σ, the complex link∆ σ is the boundary of

the (n− |σ|)-simplex on vertex set [n+1]− σ, which has homology only at degree

n− |σ| − 1 = d− 2 (and this homology has dimension 1). Thus, β is equal to

0 . . . n− 1 n

1
(
n+1
1

)
. . .

(
n+1
n

) (
n+1
n+1

)
which means ∆ is PR with degree type (1, . . . , 1︸ ︷︷ ︸

n

) (i.e. it is Cohen-Maculay).

Hence we can obtain PR complexes with degree type (1, . . . , 1︸ ︷︷ ︸
n

) for any n.

Remark 4.36. We can compute a minimal resolution of the ideal in Example 4.35

directly using the Koszul complex construction, as discussed below.

If ∆ is the the boundary of the (n−1)-simplex ∂∆n−1 on vertex set [n], then its

dual Stanley-Reisner ideal I∆∗ is the maximal ideal ⟨x1, . . . , xn⟩ in the polynomial

ring R = K[x1, . . . , xn].

The sequence x1, . . . , xn is regular, and so its corresponding Koszul complex

is a minimal free resolution of R/I∆∗ (see [BH98a] Corollary 1.6.14). The corre-

sponding resolution of I∆∗ is

0 R(−n) R(−(n− 1))(
n

n−1) . . . R(−1)(
n
1) I∆∗ 0.d d d d

The free modules R(−i)(
n
i) are the exterior algebras

∧iRn of Rn. If{e1, . . . , en} is a
basis for Rn, then

∧i Rn has a basis consisting of elements of the form er1∧· · ·∧eri
for r1 < · · · < ri, and the differential maps d are given by

d(er1 ∧ · · · ∧ eri) =
i∑

j=1

(−1)j+1er1 ∧ · · · ∧ êrj ∧ · · · ∧ eri
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where the symbol êrj represents that the element erj is omitted from this product.

For more details on exterior algebras and Koszul complexes, see [BH98a] Section

1.6.

Remark 4.37. In fact Example 4.35 is an instance of another even more general

result, namely that every simplicial sphere is Cohen-Macaulay (see [BH98a] Section

5.4), and more specifically, any simplicial n-sphere has degree type (1, . . . , 1︸ ︷︷ ︸
n

).

Next we turn our attention to a special case of Example 4.35: the boundary

of the 1-simplex. This is the complex consisting of two disjoint vertices, and it is

PR with corresponding Betti diagram
0 1

1 2 1
and degree type (1). This special

case admits another generalisation, as follows.

Example 4.38. Let ∆ be the complex ∆n + ∆n consisting of two disjoint n-

simplices, and let β = β(I∆∗). The complex itself has only 0th homology, and all

of its proper links are acyclic, except for the links of its two facets, each of which

has size n+ 1. Thus β is equal to

0 1

n+ 1 2 .
... . .

2n+ 1 . 1

which means ∆ is PR with degree type (n+ 1)

Hence we can obtain PR complexes with degree type (n) for any n.

Remark 4.39. Just as with Example 4.35 we can compute the ideal in Example 4.38

directly using the Koszul complex. Specifically, if ∆ is the disjoint union of two

(n−1)-simplices ∆n−1+∆n−1 on vertex set [2n] then its dual Stanley-Reisner ideal

I∆∗ is the ideal ⟨x1 . . . xn, xn+1 . . . x2n⟩ in the polynomial ring R = K[x1, . . . , x2n].

For notational convenience, we set f = x1 . . . xn+1 and g = xn+1 . . . x2n. Because

f, g is a regular sequence in R, its corresponding Koszul complex is a minimal free

resolution of R/I∆∗ . The corresponding resolution of I∆∗ is

0 R(−2n) R(−n)2 I∆∗ 0.

 g

−f

 (
f g

)

The following three examples are of PR complexes with more interesting degree

types.
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Example 4.40. Let ∆ be the complex

2 3 4

1 5

6

on vertex set [6], and let β = β(I∆∗).

This complex has only 1st homology. It has three vertices with links of the

form , three facets of size 3, and the links of all of its other faces are acyclic.

Using ADHF we see that β is equal to

0 1 2

3 3 . .

4 . 3 1

which means ∆ is PR, with shift type (6, 5, 3) and degree type (1, 2).

Example 4.41. Let ∆ be the complex on vertex set [9], consisting of three tetra-

hedra, connected together at vertices as shown below.

2 4 5

1 7

8

3 6

9

Let β = β(I∆∗). This complex has only 1st homology. It has three vertices with

links of the form , three facets of size 4, and the links of all of its other faces

are acyclic. Using ADHF we see that β is equal to

0 1 2

5 3 . .

6 . . .

7 . 3 1

which means ∆ is PR, with shift type (9, 8, 5) and degree type (1, 3).
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Example 4.42. Let ∆ be the complex

5

3

4

1 2

6

on vertex set [6], and let β = β(I∆∗). This complex has only 1st homology. It has

six edges with links of the form , six facets of size 6, and the links of all of its

other faces are acyclic. Thus using ADHF, we see that β is equal to

0 1 2

3 6 6 .

4 . . 1

which means ∆ is PR, with shift type (6, 4, 3) and degree type (2, 1).

All of the above examples of PR complexes have nontrivial homology at some

degree, and therefore have offset 0. The following is an example of a PR complex

with a nonzero offset.

Example 4.43. Let ∆ be the complex

1

2

3

4

5

6

on vertex set [6], and let β = β(I∆∗). This complex has three edges with links of

the form and four facets of size 3. The links of all of its other faces are acyclic.

Thus using ADHF, we see that β is equal to

0 1

3 4 3

which means ∆ is PR, with shift type (4, 3), degree type (1). It also has offset 2

because the smallest faces whose links have homology have size 2.

We end this section by considering some non-examples. The following three

complexes are almost PR, in the sense that their corresponding Betti diagrams

only have a single column with multiple entries, and hence they only fail to be PR

in one aspect.
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Example 4.44. Let ∆ be the complex

1 2

43

on vertex set [4], and let β = β(I∆∗).

This complex is not pure, because it has one 2-dimensional facet and two 1-

dimensional facets. Thus it cannot be PR, because there are multiple faces of

different sizes whose links have (−1)st homology. The Betti diagram β is equal to

0 1 2

1 1 . .

2 2 3 1

Example 4.45. Let ∆ be the complex

5 3 4

1 2

6

7

on vertex set [7], and let β = β(I∆∗).

This complex is pure, but the intersections between adjacent facets are not all

of the same size: the facets {1, 6, 7} and {2, 6, 7} intersect at a line, while all other

adjacent facets intersect at vertices. This means that ∆ has one disconnected link

corresponding to a face of size 2, and three corresponding to faces of size 1. Thus

it cannot be PR, because there are multiple faces of different sizes whose links

have 0th homology. The Betti diagram β is equal to

0 1 2

4 4 1 .

5 . 3 1

Example 4.46. Let ∆ be the complex

5

3

4

1 2

6

7
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on vertex set [7], and let β = β(I∆∗).

This complex is pure, and all disconnected links correspond to faces of the same

size, but both the complex itself and the the link of the vertex 7 have nontrivial

1st homology, so it is not a PR complex. The Betti diagram β is equal to

0 1 2

4 8 9 1

5 . . 1

4.3 Tools for Studying PR Complexes

In this section we consider two tools for studying PR complexes: maximal inter-

sections and the link poset.

4.3.1 Maximal Intersections

One of the first combinatorial properties we noted about PR complexes was that

they are pure (i.e. all of their facets have the same size). In fact, this property is

equivalent to the condition that column 0 of β(I∆∗) has at most a single nonzero

entry. In other words, for any complex ∆ we have that ∆ is pure if and only if

the total Betti number β0(I∆∗) is pure, where the purity of a total Betti number

is defined as follows.

Definition 4.47. Let β be a Betti diagram. We say the total Betti number βi is

pure if there only exists at most a single integer c such that βi,c ̸= 0.

In this section we examine the necessary and sufficient conditions for β1(I∆∗)

to be pure, for an arbitrary fixed complex ∆ (in particular, these are conditions

satisfied by every PR complex). We begin with the following definition.

Definition 4.48. A maximal intersection in ∆ is a face σ ∈ ∆ that is an intersec-

tion of more than one facet of ∆, and is maximal with this property with respect

to inclusion.

Remark 4.49. It is possible for a maximal intersection to be empty, if no two facets

of ∆ intersect.

Note that if σ = F1 ∩ · · · ∩ Fn is a maximal intersection, then for every 1 ≤
i < j ≤ n we have σ ⊆ Fi ∩ Fj, and hence by maximality σ = Fi ∩ Fj. Thus every

maximal intersection can always be expressed as the intersection of two facets.

Definition 4.50. Whenever F1 ∩F2 is a maximal intersection we say that F1 and

F2 are adjacent.
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Example 4.51. In the complex

1

2

3

4

5

F1

F2

F3

the facets F1 and F2 are adjacent (because they intersect at the maximal intersec-

tion {2, 3}) as are the facets F2 and F3 (which intersect at the maximal intersection

{3, 4}). The facets F1 and F3 intersect at the vertex {3} but this intersection is

not maximal, so these two facets are not adjacent.

The following proposition gives us a second characterisation of maximal inter-

sections.

Proposition 4.52. Let σ be a face of ∆. The following are equivalent.

1. σ is a maximal intersection.

2. link∆ σ is a disjoint union of multiple simplices.

Proof. Suppose σ is a maximal intersection, and let F1, . . . , Fn be all of the facets

which contain it, so that σ = F1 ∩ · · · ∩ Fn. This means that link∆ σ = ⟨F1 −
σ, . . . , Fn − σ⟩. Note that for any 1 ≤ i < j ≤ n we have σ = Fi ∩ Fj and hence

(Fi − σ) ∩ (Fj − σ) = ∅. Thus the defining facets of link∆ σ are pairwise disjoint.

Now suppose that link∆ σ is a disjoint union of multiple simplices τ1, . . . , τn,

and for each 1 ≤ i ≤ n, define Fi = τi ⊔ σ. We have σ = F1 ∩ · · · ∩ Fn, and the

only way to extend σ to a larger face σ̃ of ∆ is to add vertices from one of the

simplices τi, in which case σ̃ would be contained in only the facet Fi. Thus σ is a

maximal intersection.

Corollary 4.53. Let ∆ be a simplicial complex, and let σ be in ∆. A face τ of

L = link∆ σ is a maximal intersection in L if and only if τ ⊔ σ is a maximal

intersection in ∆.

Proof. Note that linkL τ = link∆(τ ⊔ σ), so this follows directly from Proposition

4.52.

Proposition 4.52 shows that for any maximal intersection σ in ∆, we have that

H̃0(link∆ σ) ̸= 0. In fact, in the case where β1(I∆∗) is pure, we have more than

this.

Proposition 4.54. The total Betti number β1(I∆∗) is pure if and only if ∆ satisfies

the following two conditions.



4.3. TOOLS FOR STUDYING PR COMPLEXES 87

1. The only disconnected links in ∆ are the links of maximal intersections.

2. All maximal intersections in ∆ have the same size.

Proof. Suppose β1(I∆∗) is pure, and let σ ∈ ∆ be a face whose link is disconnected.

In particular, σ must be an intersection of multiple facets of ∆, and is therefore

contained in a maximal intersection τ . If the containment were strict then we

would have two faces of ∆ of different sizes both of which have links with nontrivial

0th homology, which would contradict the purity of β1(I∆∗). We cannot have two

maximal intersections of different sizes for the same reason.

Conversely, suppose that the only faces of ∆ with disconnected links are max-

imal intersections, and all of these have size s. Then by ADHF we have that

β1,d(I∆∗) is nonzero if and only if d = n− s, where n is the number of vertices of

∆.

Proposition 4.55. Suppose that ∆ is a complex with more than one facet, and

that β1(I∆∗) is pure. Let F be a facet of ∆ and τ a face contained in F and at least

one other facet. There exists some maximal intersection M such that τ ⊆ M ⫋ F .

In particular, every facet of ∆ contains a maximal intersection.

Proof. Let G1 be another facet containing τ , so that τ ⊆ F ∩G1. If L = link∆(F ∩
G1) is disconnected, then F ∩ G1 must be a maximal intersection by Proposition

4.54. Otherwise L is connected, which means there must be some other facet G2

containing F∩G1 such that G2−F∩G1 has nonempty intersection with F−F∩G1.

Hence we have F ∩G1 ⫋ F ∩G2.

Continuing in this way we obtain a sequence τ ⊆ F ∩G1 ⫋ F ∩G2 ⫋ F ∩G3 ⫋
. . . , and this sequence must terminate, because ∆ only has a finite number of

facets. The sequence can only terminate when we have found a facet Gm such

that link∆(F ∩ Gm) is disconnected, which means M = F ∩ Gm is a maximal

intersection satisfying τ ⊆ M ⫋ F .

Note that Proposition 4.55 is not true in general for arbitrary complexes. For

instance, in the complex

1

2

5

3 4

6

F1

F2

F3

the facet F1 contains no maximal intersections, because while it intersects with

both of the other two facets at the vertex {3}, this intersection is strictly contained

in the maximal intersection {3, 4}. In other words, F1 is not adjacent to any other

facets.
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4.3.2 The Link Poset

In the final part of this chapter we present a poset structure that has arisen nat-

urally from our studies of PR complexes.

We have found this structure to be particularly useful in developing an intuition

about the PR condition. For this reason we will give examples of the link posets

for a number of the complexes we look at in the next chapter.

Definition 4.56. Let ∆ be a simplicial complex. We define the link poset P∆ of

∆ to be the set of complexes link∆ σ for σ ∈ ∆. We impose a poset structure on

this set by defining δ1 ≥ δ2 whenever there is some τ ∈ δ1 such that δ2 = linkδ1 τ .

Notation 4.57. When representing link posets pictorially we will often use δ1 →
δ2 to denote the relation δ1 ≥ δ2, and more specifically δ1

τ→ δ2 to denote the

relation linkδ1 τ = δ2. We will sometimes indicate which complexes in the chain

have homology by enclosing them in a rectangle. When we do this, we will make a

note of the degree(s) of the nontrivial homologies directly below the complex, and

denote acyclic complexes with a × symbol. For example the following diagram

δ1 δ2

H̃0 ×

τ

denotes that δ2 = linkδ1 τ , and H̃0(δ1) ̸= 0, while δ2 is acyclic.

Remark 4.58. In general, a complex may contain multiple faces which have the

same link, and hence there may be multiple options for the face τ in the notation

δ1
τ→ δ2. For example, if ∆ is the complex

x y

z

then the vertices x and y both have the same link in ∆, and hence we could denote

the relation

x y

z
z

as either

x y

z x z

or

x y

z y z
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Note that for any complex ∆, the link poset P∆ contains both a maximal

element ∆ (which is link∆ ∅) and a minimal element {∅} (which is link∆ F for any

facet F in ∆).

Definition 4.59. We say a chain ∆ = δ0 > ... > δm = {∅} in P∆ is maximal if for

each 1 ≤ i ≤ m, there is some vertex vi in δi such that δi = linkδi−1
vi.

By Lemma 4.12, every chain in P∆ can be extended to a maximal chain. Note

that for any facet F of ∆, an ordering v1, . . . , vm of the elements of F corresponds

to a maximal chain ∆ > link∆{v1} > link∆{v1, v2} > · · · > link∆{v1, ..., vm} = {∅}
in P∆. However this correspondence between ordered facets and maximal chains

is not bijective, because it is possible for two distinct ordered facets to correspond

to the same maximal chain. For example, if ∆ is the complex presented in Remark

4.58, then the maximal chain

x y

z
z

{∅}

corresponds to both the facets {x, z} and {y, z}.
Our definitions of purity, degree type and offset extend naturally to maximal

chains in P∆ as follows.

Definition 4.60. Let ∆ = δ0 > ... > δm = {∅} be a maximal chain in P∆. We

say this chain is pure if it satisfies the following two conditions.

1. For each 0 ≤ i ≤ m, the homology index set h(δi) is either empty or a

singleton.

2. If δip > · · · > δi0 are all the complexes in the chain with homology, the

degrees of these homologies form a decreasing sequence.

If the decreasing sequence of homology degrees in condition (2) is consecutive (i.e.

if it is the sequence p− 1, p− 2, . . . , 0,−1) we say the chain is totally pure. In this

case we define the degree type of the chain to be (ip−1 − ip, . . . , i0 − i1), and the

offset to be ip.

It should be noted that while every maximal chain in the link poset of a PR

complex is pure, they need not all be totally pure. Moreover, in the case where

the offset of the complex is nonzero, the link poset may even contain totally pure

chains of a different degree type and offset to the complex itself.

Example 4.61. The complex in Example 4.40 has degree type (1, 2) and offset 0.

Its link poset contains the maximal chain
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2 3 4

1 5

6

H̃1

2

1

3

×

1 3

×

3 {∅}

H̃−1

which is pure, because the homology index sets of its constituent complexes are ei-

ther empty or singletons, and the degrees in the singleton sets form the descending

sequence 1,−1. But this sequence is not consecutive, so the chain is not totally

pure. However, if we swap the order in which we take links of the vertices 1 and

2 we obtain the maximal chain

2 3 4

1 5

6

H̃1

1

2

3

5

6

H̃0

2 3

×

3 {∅}

H̃−1

which is totally pure, with the same degree type and offset as the complex itself

(i.e. degree type (1, 2) and offset 0). We can compute the degree type of the chain

by counting the number of arrows separating the complexes with homology: there

is one arrow separating the complex with 1st homology from the complex with 0th

homology, and there are two arrows separating the complex with 0th homology

from the complex with (−1)st homology.

Example 4.62. The PR complex

1 2

3

4

has offset 1 and degree type (1, 1). This is because the complex itself is acyclic,

and all of its faces have acyclic links except for one vertex ({4}) with a link of

the form , three edges ({1, 4}, {2, 4} and {3, 4}) with links of the form , and

three facets of size 3.
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However it contains the totally pure maximal chain

1 2

3

4

×

3

1 2

4

×

4

1 2

H̃0

2 {∅}

H̃−1

which has offset 2 and degree type (1). As in Example 4.61, we can compute this

offset and degree type by counting arrows: there are two arrows before the first

complex in the chain with homology, and one arrow separating the complex with

0th homology from the complex with (−1)st homology.

Proposition 4.63. Let ∆ be a PR complex with degree type d = (dp, . . . , d1) and

offset s. We have the following.

1. Every maximal chain in P∆ is pure.

2. P∆ contains a totally pure maximal chain of degree type d and offset s.

3. Every totally pure maximal chain in P∆ has degree type some subsequence d′

of d and offset s′ ≥ s such that s′ +
∑

d′ = s+
∑

d.

4. If s = 0 then every totally pure maximal chain in P∆ has degree type d and

offset 0.

Proof. All of the homology index sets of the complexes in P∆ are either empty or

singletons by Corollary 4.16, and the nonempty ones form a decreasing sequence

by Corollary 4.18. This proves part (1).

By the definition of offset, P∆ must contain the complex δs = link∆ σ for some

face σ ∈ ∆ of size s such that h(δs) = {p − 1}. Lemma 4.15 gives us a chain of

simplices σ = τp ⫋ · · · ⫋ τ0 such that h(∆, τj) = {j − 1}. For each 0 ≤ j ≤ p we

define ij = |τj| and δij = link∆ τj. We can extend the sequence δip > · · · > δi0 in

P∆ to a totally pure maximal chain ∆ = δ0 > ... > δm = {∅} by Lemma 4.12, and

by construction this chain has degree type d = (ip−1 − ip, . . . , i0 − i1) and offset

s = ip. This proves part (2).

Now suppose ∆ = ε0 > ... > εm = {∅} is a totally pure maximal chain in

P∆ with degree type d′ and offset s′. Note in particular that it must have the

same length as the chain ∆ = δ0 > ... > δm = {∅}, because all facets of ∆ have

the same size, and this length is equal to the sum of the offset and degree type,

which gives us s′ +
∑

d′ = s +
∑

d. Let εi′r > · · · > εi′0 be the complexes in the

chain with homology, with the degrees of these homologies forming the consecutive

decreasing sequence r − 1, . . . ,−1. By the PR condition we must have ij = i′j for
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each 1 ≤ j ≤ r, and hence r ≤ p. Thus d′ is equal to (ir−1 − ir, . . . , i0 − i1), which

is a subsequence of d, and s′ is equal to ir, which is greater than or equal to s = ip.

This proves part (3).

Moreover, if s = 0, then ∆ itself has (p− 1)st homology, and hence we have

r = p and εir = εir = ∆. In particular this means s′ = ip = 0 and d′ = d, proving

part (4).

The degree type of a PR complex can therefore be defined as the longest degree

type of the totally pure maximal chains in its link poset; and the offset as the

smallest offset of the totally pure maximal chains.



Chapter 5

Some Families of PR Complexes

In this chapter we present some interesting families of highly symmetric PR com-

plexes, along with their Betti diagrams and degree types. In particular, we intro-

duce the family of cycle complexes, which have degree types of projective dimension

2; the family of intersection complexes, whose degree types are all those increasing

sequences of positive integers for which every difference sequence is also increas-

ing; and the family of partition complexes, which have degree types of the form

(

p︷ ︸︸ ︷
1, . . . , 1 a, 1, . . . , 1︸ ︷︷ ︸

m

), for positive integers a, p and m.

5.1 Motivation

Our motivation for presenting these families is twofold. Firstly, providing more

examples of PR complexes allows us to highlight some more of the combinatorial

properties common to many complexes in this family, along with methods for

proving that the PR condition is satisfied, all of which will (we hope) help the

reader to develop an intuition about PR complexes.

Secondly, they help us to investigate the following question.

Question 5.1. Let d be a sequence of positive integers. What is the lowest value

of n for which the cone Dn contains a pure diagram of degree type d?

Our proof for Theorem 4.7, which we will present in the next chapter, is a

procedure for generating PR complexes of any given degree type, and hence gives

us upper bounds for n in Question 5.1 for every degree type. However, in general,

our procedure produces complexes on very large numbers of vertices, so we suspect

these upper bounds are far greater than necessary. In contrast, the families we

present in this chapter have a very low number of vertices for their given degree

types. In most cases, they are the lowest we have currently found, and in a few

cases, we will prove they are the lowest possible. Thus they allow us to considerably

lower these bounds for n in Question 5.1 for certain degree types.

93
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In order for a PR complex to have a minimal number of vertices for its given

degree type, it must have offset zero (i.e. it must have nontrivial homology at

some degree). This is a consequence of Corollary 4.24: any PR complex ∆ with a

nonzero offset contains a nonempty face whose link has the same degree type and

offset zero, and this link has fewer vertices than ∆ itself. For this reason, all of

the PR complexes we present in this section will have offset zero.

Finding the minimal number of vertices of a PR complex with degree type d

also tells us all the possible shift types of PR complexes with that degree type (as

discussed below). This means that an answer to Question 5.1 for any given degree

type d gives us an answer to Question 4.3 for all shift types with d as their differ-

ence sequence; and a complete answer to Question 5.1 for every degree type would

demonstrate all of the possible shift types of PR complexes, and thus provide a

full analogue of the first Boij-Söderberg conjecture for squarefree monomial ideals.

To see why Questions 5.1 and 4.3 are in fact equivalent, suppose we have

found a minimal PR complex ∆ of degree type d, on n(d) vertices. BY ADHF

the initial shift c0(d) of the diagram β(I∆∗) at degree 0 is given by the equation

c0(d) = n(d)− dim∆− 1 = n(d)−
∑

d. This is the minimal possible initial shift

for a PR complex of degree type d, and along with d it fully determines the shift

type of ∆.

Recall from Remark 2.53 that the initial shift c0 of a PR complex ∆ is equal to

its codimension. Thus if ∆ is a PR complex with shift type (cp, . . . , c0), then adding

a missing vertex to ∆ gives us a PR complex with shift type (cp + 1, . . . , c0 + 1)

(because it increases the codimension of the complex by 1). For example, the

boundary of the 2-simplex

has Betti diagram

0 1 2

1 3 3 1

and hence has shift type (3, 2, 1). Adding a missing vertex to this complex gives

us the complex

×

which has Betti diagram

0 1 2

2 3 3 1

and hence shift type (4, 3, 2).

It follows that if there exists a PR complex of degree type d and initial shift c0,

then there exists a PR complex of degree type d and initial shift c for any c ≥ c0.
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Therefore we can determine all possible shift types of PR complexes with degree

type d by finding minimal initial shift c0(d) for a PR complex with that degree

type, or equivalently the minimal number of vertices n(d).

5.2 Constructing Complexes With Group Actions

Many of the PR complexes we have seen already are highly symmetric. With this

in mind, we now present a useful tool for constructing symmetric complexes using

groups and group actions, along with some relevant notation.

Suppose we have a group G acting on a set V . For any subset F ⊆ V and any

element g ∈ G, we define the subset gF ⊆ V to be the set {gx : x ∈ F}. This

allows us to define the following notation.

Notation 5.2. For subsets F1, . . . , Fm in V , and a group G acting on V , we use

⟨F1, . . . , Fm⟩G to denote the complex ⟨gFi|1 ≤ i ≤ m, g ∈ G⟩.

The following lemma shows how we can exploit the symmetries of complexes

constructed in this way to help us understand their links.

Lemma 5.3. Let F1, . . . , Fm ⊂ V and let G be a group acting on V . Define

∆ = ⟨F1, . . . , Fm⟩G, and let σ ∈ ∆ and g ∈ G. We have an isomorphism of

complexes link∆ σ ∼= link∆ gσ.

Proof. If F is a facet of ∆ containing σ then gF is a facet of ∆ containing gσ.

Conversely, for any facet F of ∆ containing gσ, we must have that g−1F is a facet

of ∆ containing σ. Thus, g gives us a bijection between the facets of ∆ containing σ

and the facets of ∆ containing gσ, and therefore provides an isomorphism between

link∆ σ and link∆ gσ.

5.3 PR Complexes of Projective Dimensions 1

and 2

In this section we fix two positive integers a and b, and present PR complexes of

degree type (a) and (a, b) with offset 0.

5.3.1 Projective Dimension 1: Disjoint Simplices

Suppose ∆ is a PR complex of degree type (a).

This means that I∆∗ has projective dimension 1, and hence none of the links

in ∆ can have homology at a degree higher than 0. Thus the only links in ∆

which have homology are the links of maximal intersections and the links of facets.

Moreover, if ∆ has offset 0, it must be disconnected itself, and hence it has only
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a single maximal intersection, namely the empty set ∅. This observation leads to

the following result.

Proposition 5.4. If ∆ is a PR complex of degree type (a) with a minimal number

of vertices n then it must be of the form given in Example 4.38, consisting of two

disjoint (a− 1)-simplices. In particular, we have n = 2a.

Proof. In order for ∆ to have a minimal number of vertices, it must have offset 0

by Corollary 4.24. Thus we have dim∆ = a− 1, and H̃0(∆) ̸= 0.

By Proposition 4.54, the only disconnected links in ∆ are the links of maximal

intersections. Thus, because ∆ itself is disconnected, the only maximal intersection

in ∆ is the empty set. This means that no two facets of ∆ intersect, and hence ∆

is a disjoint union of facets. By minimality, it is a disjoint union of exactly two

facets. This proves the result.

Example 5.5. Suppose ∆ is the disjoint union of two 2-simplices ∆2+∆2, which

is PR with degree type (3) and offset 0. Up to isomorphism, the maximal chains

in the link poset P∆ all look like the following.

{∅}

∆2 +∆2 ∆1 ∆0 ∆−1

H̃0 × × H̃−1

Remark 5.6. More generally, the PR complexes with degree type (a) and offset 0

are all disjoint unions of (a− 1)-simplices.

5.3.2 Projective Dimension 2: Cycle Complexes

Now we search for PR complexes of degree type (a, b) with a minimal number of

vertices. Once again, Corollary 4.24 tells us that any such complex must have

offset 0.

Suppose ∆ is such a complex. Because I∆∗ has projective dimension 2 and ∆

has offset 0, we have h(∆) = {1}. Moreover, the only links of nonempty faces in

∆ which have homology are the links of maximal intersections (which have size a)

and the links of facets (which have size a+ b).

In this section we present the family of cycle complexes, which satisfy these

properties for all values of a and b. Our basic construction is straightforward: the

cycle complex of type (a, b) is generated by a single face F of size a+ b, under the

action of some cyclic group H = ⟨h⟩, chosen such that the intersection F ∩hF has

size a. More specifically, if we choose n to be a sufficiently large multiple of b, and

let F denote the subset {1, . . . , a+b} in [n], then we can choose our cyclic group to

be the subgroup of the symmetric group Sn generated by the element gb where g
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denotes the n-cycle g = (1 . . . n). In this case we have F ∩gbF = {1+b, . . . , a+b},
which has size a as required.

Remark 5.7. For this construction to work, n must be a multiple of b. This is

because the cyclic group generated by gb in Sn contains ghcf(b,n), and if we have

h = hcf(b, n) < b then F ∩ ghF has size greater than a.

Before we can define the cycle complexes explicitly, we will have to be more

explicit about what constitutes a sufficiently large multiple of b in this context.

The central constraint is that our resulting complex must have 1st homology.

Suppose we have found integers m and r with 1 ≤ r ≤ b such that a = mb+ r.

As the following lemma shows, the smallest value of n for which our construction

has 1st homology turns out to be (2m+ 3)b.

Remark 5.8. Note we are choosing r to satisfy 1 ≤ r ≤ b here, rather than 0 ≤
r ≤ b− 1 (which is the standard practice for Euclidean division). In particular, if

a divides b, our value for r would be b rather than 0; and our value for m would

be a
b
− 1 rather than a

b
.

Lemma 5.9. Suppose a = mb + r for some integers m ≥ 0 and 1 ≤ r ≤ b, and

define n = kb for some positive integer k. Define g to be the n-cycle (1 . . . n) in

the symmetric group Sn. Also define F0 to be the subset {1, . . . , a + b} ⊆ [n] and

Fi to be the set gibF0 for each integer i. For ∆ = ⟨Fi : i ∈ Z⟩, we have

H̃1(∆) =

0 if k ≤ 2m+ 2

K if k ≥ 2m+ 3.

Proof. The permutation g acts on F0 by adding 1 to each of its elements (modulo

n). Thus for any integer i we have

Fi = {ib+ 1, . . . , ib+ (a+ b)} = {ib+ 1, . . . , (m+ i+ 1)b+ r}

where the elements of this set are read modulo n.

In particular, we have that for any 0 ≤ i ≤ m + 1, the set Fi contains the

element a + b = (m + 1)b + r. By symmetry, any consecutive sequence of m + 2

facets Fi, Fi+1, . . . , Fi+m+1 contains a common element.

Note that ∆ has exactly k facets, namely F0, . . . , Fk−1. This means that if

k ≤ m + 2, all of the facets of ∆ contain a common element, and so ∆ is acyclic.

Thus we may assume that k ≥ m + 3, and decompose ∆ into the union of two

subcomplexes

A = ⟨F0, . . . , Fm+1⟩
B = ⟨Fm+2, . . . , Fk−1⟩.
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As noted above, the facets of A all contain a common element, so A must be

acyclic. The facets of B satisfy the conditions of Lemma 5.13 below, and so B is

also acyclic. Thus the Mayer-Vietoris Sequence contains an isomorphism

0 → H̃1(∆) → H̃0(A ∩B) → 0

so it suffices to prove that

H̃0(A ∩B) =

0 if k ≤ 2m+ 2

K if k ≥ 2m+ 3.

We begin by noting that the vertices of B can be arranged in the (modulo n)

consecutive sequence (m+2)b+1, . . . , n, 1, . . . , a. In particular, this means that B

contains none of the vertices a+1, . . . , (m+2)b, and hence A∩B also contains none

of these vertices. However, A ∩ B does contain the faces F0 ∩ Fk−1 = {1, . . . , a}
and Fm+1 ∩ Fm+2 = {(m+ 2)b+ 1, . . . , (2m+ 2)b+ r}.

Suppose first that k ≤ 2m+ 2. In this case, we have (2m+ 2)b+ r > n. This

means that the faces F0 ∩ Fk−1 and Fm+1 ∩ Fm+2 between them contain all the

vertices of B, and thus all the vertices of A∩B. Moreover the two faces intersect,

because they both contain the vertex 1. It follows that A ∩B is connected.

Now suppose that k ≥ 2m + 3. We can arrange the vertices of A in the

consecutive sequence 1, . . . , (2m + 2)b + r, and in particular we now have (2m +

2)b+r < n. This means that A contains none of the vertices (2m+2)b+r+1, . . . , n.

Once again we conclude that the faces F0 ∩ Fk−1 and Fm+1 ∩ Fm+2 taken together

comprise all the vertices of A ∩ B. However, in this case, these two faces are

disjoint. We claim that A ∩ B is equal to the disjoint union of F0 ∩ Fk−1 and

Fm+1 ∩ Fm+2, and hence that H̃0(A ∩B) = K.

Suppose for contradiction that A∩B is not equal to the disjoint union of these

two faces. Because A ∩ B contains no vertices outside of these two faces, it must

contain an edge connecting a vertex x ∈ F0 ∩ Fk−1 to a vertex y ∈ Fm+1 ∩ Fm+2.

The edge {x, y} must be contained both in a facet Fi of A for some 0 ≤ i ≤ m+1

and a facet Fm+2+j of B for some 0 ≤ j ≤ k −m− 3. As before, we have

Fi = {ib+ 1, . . . , (m+ i+ 1)b+ r}
Fm+2+j = {(m+ 2 + j)b+ 1, . . . , n, 1, . . . , jb+ r}

which gives us both ib+1 ≤ x ≤ jb+r and (m+2+ j)b+1 ≤ y ≤ (m+ i+1)b+r.

But this is a contradiction, because the former equation implies that i ≤ j and

the latter implies that i > j.

The above lemma does not prove that (2m+3)b is the smallest possible number

of vertices for a complex of degree type (a, b); only that it is the smallest possible
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number of vertices for such a complex constructed in this particular way. How-

ever, based partly on computational evidence from the software system Macaulay2

([GS]), we strongly suspect that it is also the minimal number needed to obtain

a degree type of (a, b). We prove this explicitly below for the case where a ≤ b,

by showing that a PR complex of degree type (a, b) must have at least 3b ver-

tices (this proves the a ≤ b case because in this case we have m = 0 and hence

(2m+ 3)b = 3b).

Proposition 5.10. Suppose a and b are positive integers and let ∆ be a PR com-

plex of degree type (a, b) on vertex set [n]. We must have n ≥ 3b.

Proof. Let F1 and F2 be adjacent facets of ∆ (i.e. facets such that the intersection

F1 ∩ F2 is maximal). We may assume that ∆ has offset 0, and hence H̃1(∆) ̸= 0.

Because ∆ has 1st homology, it must have at least three facets, so we may choose

some other facet F3. We have

n ≥ |F1|+ |F2|+ |F3| − |F1 ∩ F2| − |F1 ∩ F3| − |F2 ∩ F3|+ |F1 ∩ F2 ∩ F3|.

We know that |F1| = |F2| = |F3| = a+b, and by assumption we have |F1∩F2| = a.

Also, all maximal intersections in ∆ have size a, so no intersection of facets of ∆

can have size greater than a. This gives us

n ≥ 2a+ 3b− |F1 ∩ F3| − |F2 ∩ F3|+ |F1 ∩ F2 ∩ F3|
≥ 3b+ |F1 ∩ F2 ∩ F3|
≥ 3b.

Now that we have found the minimum necessary value for n for our construction

to work, we can define the cycle complexes.

Definition 5.11. Suppose a = mb + r for some integers m ≥ 0 and 1 ≤ r ≤ b.

We let

• n denote the number (2m+ 3)b.

• F denote the subset {1, . . . , a+ b} ⊂ [n].

• g denote the n-cycle (1 . . . n) in the symmetric group Sn.

• H denote the cyclic subgroup of Sn generated by gb (which has a natural

action on [n], inherited from Sn).

We define the cycle complex of type (a, b) to be the complex

Ca,b = ⟨F ⟩H

on vertex set [n].
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Example 5.12. 1. The cycle complex C1,1 has facets {1, 2}, {2, 3} and {3, 1}.
This is the boundary of the 2-simplex, which is PR with degree type (1, 1).

2. The cycle complex C1,2 has facets {1, 2, 3}, {3, 4, 5} and {5, 1, 2}. This is

Example 4.40, which is PR with degree type (1, 2).

3. The cycle complex C1,3 has facets {1, 2, 3, 4}, {4, 5, 6, 7} and {7, 8, 9, 1}. This
is Example 4.41, which is PR with degree type (1, 3).

4. The cycle complex C2,1 is the complex

1

2

3

4

5

1

2

which is a triangulation of the Möbius strip, and is PR with degree type

(2, 1). Note that it has one fewer vertex than the complex in Example 4.42.

5. The cycle complex C3,2 has facets {1, 2, 3, 4, 5}, {3, 4, 5, 6, 7}, {5, 6, 7, 8, 9},
{7, 8, 9, 10, 1} and {9, 10, 1, 2, 3}. This complex is PR with degree type (3, 2).

We want to prove that the cycle complex Ca,b is always PR with degree type

(a, b). In order to do this, we prepare the following lemma (which we also appealed

to in the proof of Lemma 5.9).

Lemma 5.13. Let ∆ be a complex with facets F0, . . . , Fk such that for every 0 ≤
i < j ≤ k we have

1. Fi ∩ Fi+1 ̸= ∅.

2. Fi ∩ Fj ⊆ Fj−1.

There is a deformation retraction of ∆ on to the acyclic complex ⟨F0⟩.

Proof. First assume k > 0. By our assumption on the intersections of the facets

of ∆ we have Fk ∩ (∆−Fk) = Fk ∩Fk−1. Thus all of the vertices of Fk −Fk−1 are

free vertices, which means that we can deform Fk on to Fk ∩ Fk−1 using Lemma

2.63. The result follows by induction on k ≥ 0.

Theorem 5.14. Let a and b be positive integers. The cycle complex Ca,b is PR

with degree type (a, b).
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Proof. We define the integers m, r and n, the subset F ⊆ [n], the permutation

g ∈ Sn, and the subgroup H ≤ Sn, all as in Definition 5.11. The facets of Ca,b are

the sets F, gbF, . . . , g(2m+2)bF . For convenience, we use Fi to denote the facet gibF ,

so we can rewrite these facets as F0, . . . , F2m+2 (note that we use this notation even

for all integers i, so for instance we have F−1 = F2m+2).

By construction all of these facets have size a+ b, so we have −1 ∈ ĥ(∆, a+ b).

Moreover, for any 0 ≤ k ≤ 2m + 2, the intersection of the facets Fk ∩ Fk+1 is

maximal and has size a, so we have 0 ∈ ĥ(∆, a). We also have H̃1(∆) ̸= 0 by

Lemma 5.9, so 1 ∈ ĥ(∆, 0).

It only remains to show that the link of any other nonempty face of ∆ is acyclic:

this will demonstrate that ∆ satisfies the PR property, and we can conclude that

it has degree type (a, b) by Proposition 4.25.

To this end, suppose σ is a nonempty simplex in ∆ which is neither a facet

nor a maximal intersection. Because σ cannot be contained in every facet of

∆, there must be some integer i such that we have σ ⊆ Fi and σ ⊈ Fi−1. By

symmetry, we may assume that i = 0, and hence that σ is contained in the

facet F0 = {1, . . . , a + b} = {1, . . . , (m + 1)b + r} but not fully contained in

F−1∩F0 = {1, . . . , a} = {1, . . . ,mb+r}. Let k be the largest integer below 2m+3

such that σ is contained in Fk = {kb + 1, . . . , (m + k + 1)b + r}. We must have

that k ≤ m+ 1, because otherwise the intersection Fk ∩ F0 would be contained in

F−1∩F0. Thus we have that σ is contained in F0∩Fk = {kb+1, . . . , (m+1)b+r},
which is itself contained in Fi for every 0 ≤ i ≤ k. We conclude that the facets of

∆ containing σ can be ordered consecutively as F0, . . . , Fk, for some k ≤ m+ 1.

Thus link∆ σ is equal to the complex ⟨F0 − σ, . . . , Fk − σ⟩. Pick two integers

0 ≤ i < j ≤ k. Because σ is not a maximal intersection, the intersection of

adjacent facets (Fi − σ) ∩ (Fi+1 − σ) must be nonempty; and the intersection

(Fi−σ)∩ (Fj −σ) is equal to {jb+1, . . . , (m+ i+1)b+ r}−σ, which is contained

in Fj−1 − σ. Hence the facets of link∆ σ satisfy the conditions of Lemma 5.13,

which means that link∆ σ is acyclic.

We can compute the Betti diagrams of cycle complexes exactly, as shown below.

Corollary 5.15. Let a and b be positive integers, with a = mb+r for some integers

m ≥ 0 and 1 ≤ r ≤ b, and let n = (2m + 3)b. The nonzero entries of the Betti

diagram β = β(I∗Ca,b
) are β0,n−a−b = β1,n−b = 2m+ 3 and β2,n = 1.

Proof. The cycle complex Ca,b has 2m + 3 facets (each of size a + b), and 2m + 3

maximal intersections (each of size a, and each contained in only two facets, en-

suring that their links have 0th homology of dimension 1). It also has 1st homology

of dimension 1.
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5.4 Intersection Complexes

In this section we construct another infinite family of PR complexes. The key

motivation for this construction comes from the following lemma.

Lemma 5.16. Let ∆ be a simplicial complex. If σ ∈ ∆ is such that link∆ σ has

homology, then σ is an intersection of facets in ∆.

Proof. We prove the contrapositive. Suppose that σ is not an intersection of facets

of ∆ and let F1, . . . , Fm be all the facets of ∆ that contain σ. The intersection⋂m
i=1 Fi must contain σ. Because σ is not an intersection of facets, there must be

some vertex v ∈
⋂m

i=1 Fi − σ. This means that link∆ σ is a cone over v, and is

therefore acyclic.

In particular, Lemma 5.16 tells us that the only faces of a complex ∆ that

contribute towards the Betti numbers of I∆∗ are the ones that are intersections of

facets. Due to this observation, we may expect many PR complexes to exhibit some

kind of symmetry around the points where their facets intersect. The following

definition gives us one such symmetry condition on facet intersections.

Definition 5.17. Let ∆ be a complex with facets F1, . . . , Fn. We say that ∆ is

intersectionally symmetric if for any 1 ≤ k ≤ n and any permutation α in Sn, we

have

1. |F1 ∩ · · · ∩ Fk| = |Fα(1) ∩ · · · ∩ Fα(k)|

2. link∆(F1 ∩ · · · ∩ Fk) ∼= link∆(Fα(1) ∩ · · · ∩ Fα(k)).

Intersectional symmetry is a very strict property. None-the-less it is a property

exhibited by many of the examples we saw in Section 4.2.3, including Examples

4.35, 4.38, 4.40 and 4.41.

Prima facie, there is good reason to hope that many intersectionally symmetric

complexes are also PR complexes. Indeed, in order for a complex ∆ to be PR we

must have that for any intersection of its facets σ = F1 ∩ · · · ∩ Fk, the degrees of

the homologies of link∆ σ are dependent on the size of σ; and for complexes with

intersectional symmetry, both of these statistics are functions of a third factor -

the value of k.

In fact, as we will show in this section, all complexes with intersectional symme-

try turn out to be PR complexes. We begin by presenting an explicit construction

of intersectionally symmetric complexes.

5.4.1 Defining the Complexes

In this section, we define the intersection complexes, the family of all complexes

with intersectional symmetry, along with some examples.
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Definition 5.18. Let m = (m1, . . . ,mn) be a sequence of nonnegative integers.

We define the intersection complex I(m) as follows.

1. The vertices of I(m) are all symbols of the form vrS where S is a subset of

[n] and 1 ≤ r ≤ m|S|.

2. The facets of I(m) are the sets F1, . . . , Fn where

Fj =
{
vrS : S ⊆ [n], j ∈ S, 1 ≤ r ≤ m|S|

}
.

Remark 5.19. 1. The integer mi is equal to the number of vertices contained in

the intersection F1 ∩ · · · ∩ Fi (or any other intersection of i facets) that are

not contained in an intersection of i+ 1 facets.

2. For any subset S ⊆ [n] of size j and any 1 ≤ i ≤ n, the vertices v1S, . . . , v
mj

S

are in the facet Fi if and only if we have i ∈ S.

Remark 5.20. Note that we could also define intersection complexes in group no-

tation as in Notation 5.2. Specifically, Sn acts on the vertex vrS via α(vrS) = vrαS,

and hence we may define the intersection complex I(m) to be the complex ⟨F1⟩Sn .

By construction, all intersection complexes have intersectional symmetry. To

see that the converse also holds, suppose that ∆ is a complex with intersectional

symmetry and let F1, ..., Fn be the facets of ∆. Define mn to be the number of

vertices in all n facets, and label these vertices v1[n], . . . , v
mn

[n] . Now define mn−1

to be the number of vertices in F1 ∩ · · · ∩ Fn−1 but not in Fn, and label these

vertices v1[n−1], . . . , v
mn−1

[n−1] . By symmetry we know that any intersection of n − 1

facets contains mn−1 vertices outside of F1 ∩ · · · ∩ Fn, and we can label each

of these accordingly. Now we define mn−2 to be the number of vertices in the

intersection F1 ∩ · · · ∩Fn−2 which are not in the intersection of a larger number of

facets. Proceeding in this way we can find a sequence (m1, . . . ,mn) of nonnegative

integers such that ∆ is isomorphic to the intersection complex I(m1, . . . ,mn).

Thus the family of intersection complexes as defined above is the family of all

complexes with intersectional symmetry.

Example 5.21. The boundary of the 3-simplex in Example 4.34 can be thought

of as the intersection complex I(0, 0, 1, 0), as shown below.

v1{1,2,3}

v1{1,2,4}

v1{1,3,4}

v1{2,3,4}
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Remark 5.22. In fact, Example 5.21 is a special case of a more general observation:

for any p, the boundary of the p-simplex ∂∆p is equal to the the intersection

complex I(0, . . . , 0, 1︸ ︷︷ ︸
p

, 0).

Example 5.23. The 2-dimensional complex in Example 4.40 can be thought of

as the intersection complex I(1, 1, 0), as shown below.

v1{1} v1{1,2} v1{2}

v1{1,3} v1{2,3}

v1{3}

F1 F2

F3

Example 5.24. The 3-dimensional complex in Example 4.41 can be thought of

as the intersection complex I(2, 1, 0), as shown below.

v1{1} v1{1,2} v1{2}

v1{1,3} v1{2,3}

v1{3}

v2{1} v2{2}

v2{3}

Example 5.25. Examples 5.23 and 5.24 are in fact special cases of the following

result: for any positive integers a and b with a ≤ b, the cycle complex Ca,b has

exactly three facets, and is isomorphic to the intersection complex I(b− a, a, 0).

Example 5.26. The intersection complex I(0, 1, 0, 0) is

v1{1,2}

v1{1,4}

v1{1,3}

v1{2,4} v1{3,4}

v1{2,3}
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Example 5.27. There are some trivial cases of intersection complexes where the

defining facets F1, . . . , Fn are all equal. Namely, for any m ≥ 0, the complex

∆ = I(0, . . . , 0︸ ︷︷ ︸
n−1

,m) contains only the m vertices v1[n], ..., v
m
[n], each of which is in

every set F1, . . . , Fn. Thus ∆ is the full simplex on these m vertices.

As a special case of this, the complex ∆ = I(0, . . . , 0︸ ︷︷ ︸
n

) contains no vertices, so

the sets F1, . . . , Fn are all empty, which means ∆ is the irrelevant complex {∅}.

We can find the size of the intersection of any i facets of an intersection complex

as follows.

Lemma 5.28. Let m = (m1, . . . ,mn) be a sequence of nonnegative integers, and

let ∆ = I(m) be the corresponding intersection complex with facets F1, . . . , Fn.

Suppose σi = F1 ∩ · · · ∩ Fi for some 1 ≤ i ≤ n. Then |σi| =
∑n−i

j=0

(
n−i
j

)
mi+j.

Proof. Let S be a subset of [n] and let 1 ≤ r ≤ m|S|. The vertex vrS is contained in

the intersection F1∩ · · ·∩Fi if and only if we have S ⊇ [i]. For each 0 ≤ j ≤ n− i,

there are
(
n−i
j

)
subsets of [n] containing [i] of size i + j (one for each choice of j

elements from the set {i+ 1, ..., n}). The result follows.

We now state our key theorems about intersection complexes, concerning the

purity of their corresponding Betti diagrams, and their degree types and Betti num-

bers. In what follows, we fix a sequence of nonnegative integers m = (m1, . . . ,mn)

such that mn = 0 but m ̸= 0. We also let p denote the maximum value of

1 ≤ i ≤ n− 1 for which mi ̸= 0. We define ∆ = I(m) and β = β(I∆∗).

Note that ifmn > 0, then every facet of I(m) contains the vertices v1[n], . . . , v
mn

[n] ,

which means I(m) is a multi-cone over I(m1, . . . ,mn−1, 0), and so the two com-

plexes have the same Betti diagram. The condition mn = 0 is therefore harmless.

We wish to prove the following two theorems.

Theorem 5.29. Let m = (m1, . . . ,mn) be a sequence of nonnegative integers with

mn = 0, and define p = max{j ∈ [n] : mj ̸= 0}. The intersection complex

∆ = I(m) is PR with degree type (dp, . . . , d1) where for each 1 ≤ i ≤ p, di =∑n−i−1
j=0

(
n−i−1

j

)
mi+j.

In particular, the degree types of these intersection complexes are all the posi-

tive integer sequences s for which every difference sequence of s is monotonically

increasing.

Theorem 5.30. Let ∆ and β be as in Theorem 5.29, and suppose β has nonzero

Betii numbers β0,c0 , . . . ., βp,cp. We have the following result.

βi,ci =


(

n
i+1

)
if 1 ≤ i ≤ p− 1(

n−1
p

)
if i = p .
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Our proof for these theorems proceeds as follows. First, we make use of some

deformation retractions to allow us to restrict our attention to intersection com-

plexes of a particularly simple form. Next we show that these simple intersection

complexes each have only a single nontrivial homology group. And then we assem-

ble these pieces together to show that all intersection complexes are PR complexes

with the desired degree types and Betti numbers.

5.4.2 Deformation Retractions and Links

For the rest of this section we let eni denote the sequence (

n︷ ︸︸ ︷
0, . . . , 0, 1︸ ︷︷ ︸

i

, 0, . . . , 0) (that

is, the sequence of length n whose only nonzero term is a 1 at position i). We will

also use en0 to denote the zero sequence of length n.

The following result shows that all intersection complexes deformation retract

on to an intersection complex of the form I(eji ) for some i and j.

Proposition 5.31. Let m = (m1, . . . ,mn) be a nonzero sequence in Zn
≥0 with

mn = 0, and define p = max{i ∈ [n − 1] : mi ̸= 0}. We have a deformation

retraction I(m) ; I(enp ).

Proof. Let vrS be a vertex of I(m), with S a subset of [n] of size less than or equal

to p, and 1 ≤ r ≤ m|S|. Choose any subset S ′ ⊆ [n] of size p which contains S. The

vertex v1S′ lies inside I(enp ), and any facet of I(m) containing vrS must also contain

v1S′ . Thus by Corollary 2.64 there is a deformation retraction I(m) ; I(enp )

obtained by identifying every vertex vrS in I(m) with an appropriate vertex v1S′ in

I(enp ).

Example 5.32. For the intersection complex I(2, 1, 0) in Example 5.24 we have

the deformation retraction

v1{1} v1{1,2} v1{2}

v1{1,3} v1{2,3}

v1{3}

v2{1} v2{2}

v2{3}

v1{1,3} v1{2,3}

v1{1,2}

I(2, 1, 0) ⇝ I(0, 1, 0)

In fact, not only does the intersection complex I(m) itself deformation retract

onto a complex of the form I(eji ), but the link of any intersections of facets in

I(m) also deformation retracts onto a complex of this form. By symmetry (or

more explicitly, by Lemma 5.3) it suffices to consider facet intersections of the

form σi = F1 ∩ · · · ∩ Fi.



5.4. INTERSECTION COMPLEXES 107

Proposition 5.33. Let m = (m1, . . . ,mn) be a nonzero sequence in Zn
≥0 with

mn = 0, and let ∆ = I(m) be the corresponding intersection complex with facets

F1, . . . , Fn. Suppose σi = F1∩ · · ·∩Fi for some 1 ≤ i ≤ p. We have a deformation

retraction link∆ σi ; I(eii−1).

Proof. The complex I(eii−1) contains precisely those vertices of the form v1[i]−{j} for

1 ≤ j ≤ i. All of these vertices are contained in exactly i−1 of the facets F1, . . . , Fi,

which means none of them is contained in σi and all are therefore contained in

link∆ σi = ⟨F1 − σi, . . . , Fi − σi⟩.
Let vrS be any vertex in link∆ σi, with S a subset of [n] and 1 ≤ r ≤ m|S|.

Because vrS does not lie in σi, there must be some 1 ≤ j ≤ i for which vrS does not

lie in the facet Fj. This means that we have j /∈ S, and hence S ∩ [i] ⊆ [i]− {j}.
Thus every facet of link∆ σi containing vrS must also contain v1[i]−{j}.

Thus by Corollary 2.64 there is a deformation retraction link∆ σi ; I(eii−1)

given by identifying every vertex vrS in link∆ σi with an appropriate vertex v1[i]−{j}

in I(eii−1).

Example 5.34. For the intersection complex ∆ = I(2, 1, 0) in Example 5.24 we

have σ2 = F1 ∩ F2 = {v11,2}, and we get the following deformation retraction.

v1{1} v2{1}

v1{1,3}

v1{2}v2{2}

v1{2,3}

v1{1} v1{2}

link∆ v1{1,2}
∼= I(3, 0) ⇝ I(1, 0)

These two deformation retractions allow us to restrict our attention solely to

the homologies of the complexes I(enp ) for p = 1, . . . , n−1. To find the homologies,

we will make use of the following lemma.

Note that the vertex set of I(enp ) contains exactly one vertex v1S for each subset

S in [n] of size p. For ease of notation, we label this vertex as vS rather than v1S.

Lemma 5.35. Let ∆ be the complex I(enp ) for some 1 ≤ p ≤ n − 1, with facets

F1, ..., Fn.

Define A to be the subcomplex of ∆ generated by F1, ..., Fn−1 and B to be the

subcomplex of ∆ generated by Fn. We have the following results.

1. A deformation retracts on to I(en−1
p ).

2. A ∩B is homeomorphic to I(en−1
p−1 ).

Proof. For part (1), note that A contains the complex I(en−1
p ), and the only ver-

tices in A outside of I(en−1
p ) are those of the form vS where S is a subset in [n] of

size p containing n. For any such S, we may choose some l ∈ [n] − S. All of the
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facets F1, ..., Fn−1 containing the vertex vS must also contain the vertex vS∪{l}−{n},

which lies inside I(en−1
p ), and hence we may identify the vertex vS with the vertex

vS∪{l}−{n}. This gives us a deformation retract ∆ on to its subcomplex I(en−1
p ).

For part (2), note that A∩B = ⟨F1 ∩Fn, ...., Fn−1 ∩Fn⟩. Hence the vertices in
A∩B are all those of the form vS where S is a subset in [n] of size p containing n.

Thus there is a bijection from the vertex set of A ∩B to the vertex set of I(en−1
p−1 )

given by vS 7→ vS−{n}. This bijection takes each facet Fi∩Fn to a facet of I(en−1
p−1 ),

and hence it is a homeomorphism.

Using Lemma 5.35, we can find the homology of the complex I(enp ).

Proposition 5.36. For all 0 ≤ p ≤ n − 1, the complex I(enp ) has only (p− 1)st

homology, of dimension
(
n−1
p

)
.

Proof. We proceed by induction on n ≥ 1 and p ≥ 0. For the base cases, if p = 0,

the complex I(enp ) = {∅} has only (−1)st homology, of dimension 1. Similarly if

n = 1, then we must have p = 0, so the same reasoning applies.

Now suppose n ≥ 2 and 1 ≤ p ≤ n−1, and let ∆ = I(enp ), with facets F1, ..., Fn.

We define the subcomplexes A and B of ∆ as in Lemma 5.35. Note that B consists

of a single facet and is therefore acyclic.

By Lemma 5.35, we have thatA deformation retracts on to I(en−1
p ). If p = n−1,

then I(en−1
p ) is a full simplex and is therefore acyclic. Otherwise, by the inductive

hypothesis, it has only (p−1)st homology, of dimension
(
n−2
p

)
. Either way we have

that dimK H̃p−1(I(e
n−1
p )) =

(
n−2
p

)
and all other homologies are zero.

We also have that A ∩ B is homeomorphic to I(en−1
p−1 ). By the inductive hy-

pothesis, this has only (p− 2)nd homology, of dimension
(
n−2
p−1

)
.

Thus the Mayer-Vietoris Sequence yields an exact sequence

0 → H̃p−1(A) → H̃p−1(∆) → H̃p−2(A ∩B) → 0

which means that ∆ has only (p−1)st homology, and this homology has dimension(
n−2
p

)
+
(
n−2
p−1

)
=
(
n−1
p

)
.

Lemma 5.16 has allowed us to restrict our attention to the links of intersection

of facets; however, before we move on to the proof of Theorems 5.29 and 5.30, it

is worth taking a moment to consider the links of arbitrary faces in intersection

complexes. Notably, it turns out that every link in an intersection complex is also

an intersection complex, making this the only family of complexes presented in this

chapter which is closed under the operation of taking links. To prove this, it suffices

to consider the links of vertices, by Lemma 4.12; and by symmetry considerations

we need only consider those vertices of the form vmi

[i] for some integer 1 ≤ i ≤ n.
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Lemma 5.37. Let m = (m1, . . . ,mn) be a nonzero sequence in Zn
≥0. Fix some

integer 1 ≤ i ≤ n, and let v denote vertex vmi

[i] in the intersection complex ∆ =

I(m). There is an isomorphism of complexes

link∆ v ∼= I(k1, . . . , ki)

where for each 1 ≤ l ≤ i we define

kl =


∑n−i

j=0

(
n−i
j

)
mj+l if 1 ≤ l ≤ i− 1∑n−i

j=0

(
n−i
j

)
mj+l − 1 if l = i.

.

Proof. The facets of ∆ containing v are F1, . . . , Fi, and hence we have L =

link∆ v = ⟨F1 − v, . . . , Fi − v⟩. For any subset S of [i], the size of the intersection⋂
j∈S(Fj −v) is |

⋂
j∈S1

Fj|−1, which is wholly dependent on the size of S; and the

link of
⋂

j∈S(Fj −v) in L is equal to the link of
⋂

j∈S1
Fj in ∆, which is also wholly

dependent on the size of S. This shows that L is intersectionally symmetric, and

thus must be an intersection complex I(k) for some sequence k(k1, . . . , ki) in Zn
≥0.

Pick some 1 ≤ l ≤ i. As observed in Remark 5.19, the value kl is the number

of vertices contained in the intersection (F1∩ · · · ∩Fl)− v which are not contained

in an intersection of l + 1 facets of L. These are the vertices of the form vrS for

subsets S ⊆ [n] such that S ∩ [i] = [l].

For each 0 ≤ j ≤ n − i, there are
(
n−i
j

)
such subsets of [n] of size l + j (one

for each choice of j elements from the set {i + 1, ..., n}). Each such subset S has

mj+l corresponding vertices v1S, . . . , v
mj+l

S in L, except in the case where l = i and

S = [i], in which case L contains only the mi − 1 vertices v1S, . . . , v
mi−1
[i] (because

the vertex v = vmi

[i] is not in L). The result follows.

In particular, every complex in the link poset of an intersection complex is

another intersection complex. We give a few examples of the link posets of in-

tersection complexes below. All the complexes I(m1, . . . ,mn) in the chain with

mn ̸= 0 are cones, and therefore acyclic; and by Propositions 5.31 and 5.36,

the rest of the complexes have homology index set h(I(m)) = {p − 1} where

p = max{i ∈ [n− 1] : mi ̸= 0}.

Example 5.38. Consider the intersection complex ∆ = I(0, 1, 0, 0) in Example

5.26. The maximal chains in the link poset P∆ all look like the following.

{∅}

I(0, 1, 0, 0) I(2, 0) I(1) I(0)

H̃1 H̃0 × H̃−1
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This diagram demonstrates that I(0, 1, 0, 0) has degree type (1, 2).

Example 5.39. Consider the intersection complex ∆ = I(0, 1, 1, 0). Without

needing to draw the complex, we can use Lemma 5.37 to find all the possible

chains in the link poset P∆. In the below diagram we take δ1
i→ δ2 to denote that

δ1 = linkδ1 v
j
S for some set S of size i (i.e. it denotes taking the link of a vertex

which lies inside exactly i facets).

I(0, 1, 1, 0) I(2, 1, 0)

I(3, 2) I(3, 1) I(3, 0)

I(4) I(3) I(2) I(1) I(0)

H̃2 H̃1 × H̃0 × × H̃−1

2

3

1

2

1

2

1

2

1

1 1 1 1

This diagram demonstrates that I(0, 1, 1, 0) has degree type (1, 2, 3).

5.4.3 Proving Theorems 5.29 and 5.30

We now have all the ingredients we need to prove Theorems 5.29 and 5.30. We

prove both theorems together below.

Proof of Theorems 5.29 and 5.30. As in Proposition 5.33, we define σi to be the

intersection of facets F1 ∩ · · · ∩ Fi for 1 ≤ i ≤ p. We also define σp+1 = F1 ∩ · · · ∩
Fp+1 = ∅. Propositions 5.31, 5.33 and 5.36 show that for 1 ≤ i ≤ p + 1, the link

link∆ σi has only (i− 1)st homology.

We wish to show that ∆ = I(m) is a PR complex with the desired degree type

and Betti numbers.

To see that ∆ is a PR complex, suppose we have two faces τ1 and τ2 of ∆ whose

links both have nontrivial homology at the same degree. By Lemma 5.16, τ1 and

τ2 must be intersections of facets. By the intersectional symmetry of ∆ we may

assume that τ1 = σj1 and τ2 = σj2 for some 1 ≤ j1, j2 ≤ p+1, and thus their links

have (j1−1)st homology and (j2−1)st homology respectively. This means j1 = j2,

and in particular |τ1| = |τ2|.
We now move on to the degree type. For any 1 ≤ i ≤ p, the value di as

in Definition 4.19 is given by di = |σi| − |σi+1|. Proposition 5.28 tells us that
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|σi| =
∑n−i

j=0

(
n−i
j

)
mi+j, and hence we have

di =
n−i∑
j=0

(
n− i

j

)
mi+j −

n−i−1∑
j=0

(
n− i− 1

j

)
mi+j+1

=
n−i∑
j=0

(
n− i

j

)
mi+j −

n−i∑
j=0

(
n− i− 1

j − 1

)
mi+j

=
n−i∑
j=0

(

(
n− i

j

)
−
(
n− i− 1

j − 1

)
)mi+j

=
n−i∑
j=0

(
n− i− 1

j

)
mi+j

Finally we look at the Betti numbers β0,c0 , . . . , βp,cp . First we note that βp,cp is

equal to dimK H̃p−1(∆), which is
(
n−1
p

)
by Propositions 5.31 and 5.36. Let 0 ≤ i ≤

p− 1. For any face τ of ∆, the complex link∆ τ has nontrivial (i− 1)st homology

if and only if it is an intersection of i+ 1 facets, in which case this homology has

dimension
(
i−1
i−1

)
= 1 by Propositions 5.33 and 5.36. Thus, by Theorem 2.52, the

Betti number βi,ci is equal to the number of intersections of i+1 facets in ∆, which

is
(

n
i+1

)
.

Remark 5.40. In general, intersection complexes do not have minimal vertex sets

for their given degree type. This can be seen from the fact that many distinct

intersection complexes have the same degree type, despite having different numbers

of vertices. For example both the intersection complex I(2, 1, 0) from Example 5.24

and the intersection complex I(1, 1, 0, 0) (which can be obtained from the complex

I(0, 1, 0, 0) in Example 5.26 by adding an additional free vertex to every facet)

have degree type (3, 1), but the latter complex has 10 vertices while the former

has only 9.

However, it seems extremely likely that intersection complexes of the form

I(m1, . . . ,mn−1, 0) for which mn−1 ̸= 0 are minimal for their given degree type.

These are the intersection complexes which deformation retract onto the boundary

of a simplex, by Proposition 5.31. Certainly these complexes have a minimal

number of facets for their given degree type; indeed, I(m1, . . . ,mn−1, 0) has the

same number of facets as the (n − 1)-simplex, which is the minimum number

required for a complex to have homology at degree n− 2.

5.5 Partition Complexes

In this section we construct another infinite family of PR complexes, which we

call partition complexes. Just as every intersection complex has a corresponding
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sequence of nonnegative integers m, every partition complex has three correspond-

ing integers a, p and m, and we denote them accordingly as P(a, p,m). We show

that when a ≥ 2, and 1 ≤ m ≤ p the partition complex P(a, p,m) has degree type

(

p︷ ︸︸ ︷
1, . . . , 1 a, 1, . . . , 1︸ ︷︷ ︸

m

).

Just like intersection complexes, partition complexes can be seen as general-

isations of the boundary complexes of simplices. Specifically, we saw in the last

section that for any sequence of nonnegative integers m = (m1, . . . ,mp−1, 0) with

mp−1 ̸= 0, the intersection complex I(m) deformation retracts onto the boundary

of the p-simplex. The same is also true for the partition complex P(a, p,m) for

any integers a ≥ 2 and 1 ≤ m ≤ p.

Unlike most of the complexes we have seen so far in this chapter, however,

we do not suspect partition complexes of being minimal examples of their given

degree type in general. In fact, in a number of cases we know explicitly that they

are not minimal (for example, the partition complex of degree type (2, 1) is the

complex in Example 4.42, which has six vertices, whereas the Cycle Complex C2,1

in Example 5.12 has only five vertices).

However we include their construction anyway, for two reasons. The first is

that, in most cases, they are still the smallest PR complexes of their given degree

type that we have been able to find so far, and so they allow us to lower the bounds

for n in Question 5.1. The second is that the construction of partition complexes

bears a strong similarity to the key construction we will present in Chapter 6 to

prove Theorem 4.7, and thus may help to illuminate some of the most important

steps in that proof.

5.5.1 Defining the Complexes

In this section we define the family of partition complexes along with some ex-

amples, and present some preliminary results about them. For any integer p ≥ 0

the partition complex P(a, p,m) admits a natural symmetry under the action of

the symmetric group Sym{0, . . . , p} (which is isomorphic to Sp+1). For notational

convenience we will denote the group Sym{0, . . . , p} by S0
p .

It is worth noting that our main theorem on the degree types of the partition

complex P(a, p,m) (Theorem 5.57) holds only for integers a ≥ 2 and 1 ≤ m ≤ p.

However, we define our complexes below slightly more broadly, to include the

additional cases p ∈ {−1, 0} and m ∈ {0, p + 1}. We do not care about these

fringe cases of partition complexes for their own sake, but their construction will

be crucial to our proof of Theorem 5.57, because they occur as links in the partition

complexes that we do care about.

Definition 5.41. For two integers a ≥ 2 and p ≥ −1. We define the vertex set
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V a
p to be the set consisting of vertices of the form xi and yji for 0 ≤ i ≤ p and

1 ≤ j ≤ a− 1. For convenience, we often write y1i simply as yi.

We will sometimes partition V a
p into subsets Xp ⊔ Y a

p with Xp = {xi}0≤i≤p and

Y a
p = {yji }0≤i≤p,1≤j≤a−1. For reasons that will become apparent we refer to the

vertices in Xp as boundary vertices and the vertices in Y a
p as partition vertices. We

sometimes make a further distinction between those partition vertices yji for which

j ≥ 2 and those for which j = 1, by referring to them respectively as upper and

lower partition vertices.

For p ≥ 0 the symmetry group S0
p = Sym{0, . . . , p} acts on V a

p via the action

σ(xi) = xσ(i)

σ(yji ) = yjσ(i)

Definition 5.42. Let a, p and i be integers with a ≥ 2, p ≥ −1 and 1 ≤ i ≤ p+1.

Let P(a, i) denote the set of partitions λ = (λ1, ..., λi) of a + i− 2 into i parts

(i.e. λ1 ≥ · · · ≥ λi > 0 and
∑i

j=1 λj = a+ i− 2).

For λ = (λ1, ..., λi) ∈ P(a, i), we define the λ-generating set Gλ
p,i as follows.

• Gp,i = {xi, . . . , xp} ⊂ Xp.

• Gλ
p,i = Gp,i ⊔ {yjr : 0 ≤ r ≤ i− 1, 1 ≤ j ≤ λr+1} ⊂ V a

p .

Definition 5.43. Let a and p be integers with a ≥ 2, p ≥ −1. For a third integer

1 ≤ m ≤ p+ 1 we define the partition complex P(a, p,m) on vertex set V a
p to be

P(a, p,m) =
〈
Gλ

p,i : 1 ≤ i ≤ m,λ ∈ P(a, i)
〉
S0
p
.

We also define the partition complex P(a, p, 0) to be the irrelevant complex {∅}
on vertex set V a

p .

By definition, partition complexes are symmetric under the action of S0
p .

Remark 5.44. For every 1 ≤ i ≤ m and every partition λ ∈ P(a, i), the λ-generating
set Gλ

p,i contains the lower partition vertices y11, . . . , y
1
i . This means that it must

also contain exactly a − 2 upper partition vertices. Thus for m ≥ 1 and p ≥ 0,

every facet of the partition complex P(a, p,m) contains exactly a−2 upper partition

vertices.

We now consider some special cases and examples to help illustrate the con-

struction. We begin with the cases for small values of p.

Example 5.45. The case p = −1:

The vertex set V a
−1 is empty, and we have P(a,−1, 0) = {∅}, by definition.
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Example 5.46. The case p = 0:

The vertex set V a
0 is equal to {x0, y

1
0, . . . , y

a−1
o }. The complex P(a, 0, 0) is the

irrelevant complex just as above, and we also have

P(a, 0, 1) = ⟨G(a−1)
0,1 ⟩ = ⟨{y10, . . . , ya−1

0 }⟩.

Example 5.47. The case p = m = 1:

The partition complex P(a, 1, 1) has precisely two facets, namely the facets

{y10, . . . , ya−1
0 , x1} and {y11, . . . , ya−1

1 , x0}. Thus it comprises of two disjoint (a− 1)-

simplices, so it is PR with degree type (a).

In the above example, the complex P(a, 1, 1) deformation retracts on to the

boundary of the full simplex on X1 = {x0, x1}, ∂⟨X1⟩. In fact we will see in the

next section that for any 1 ≤ m ≤ p, the partition complex P(a, p,m) always

deformation retracts onto the boundary of the full simplex on Xp, ∂⟨Xp⟩.

Example 5.48. The case a = 2:

The vertex set V 2
p is the set {x0, . . . , xp, y0, . . . , yp}. For any positive integer

i, there is only one partition of 2 + i − 2 = i into i parts, namely the partition

(1, . . . , 1)︸ ︷︷ ︸
i

. Thus for any integers m and p with 1 ≤ m ≤ p + 1, the generating

facets of P(2, p,m) are the sets

G
(1)
p,1 = {y0, x1, . . . , xp}

G
(1,1)
p,2 = {y0, y1, x2 . . . , xp}

...

G(1,...,1)
p,m = {y0, . . . , ym−1, xm, . . . , xp}.

The facets generated by these sets under the action of S0
p are all the sets F =

{ε0, . . . , εp} such that εi ∈ {xi, yi} for each 0 ≤ i ≤ p and the number of partition

vertices in F is less than or equal to m.

We have seen two examples of this already in Section 4.2.3. Namely, the com-

plex in Examples 4.40 and 4.42 are, respectively, the partition complexes P(2, 2, 1)

and P(2, 2, 2), as shown below.

y1 x0 y2

x2 x1

y0

y1

x0

y2

x2 x1

y0
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Example 5.49. For a sequence m = (a− 1, 0, . . . , 0, 1︸ ︷︷ ︸
p

, 0), the intersection com-

plex I(m) is equal to the partition complex P(a, p, 1). If p = 2, this is also equal

to the cycle complex C1,a.

Example 5.50. The case m = p+ 1:

As mentioned at the start of this section, we are not interested in this case for

its own sake; we include it only because complexes of this form occur as links in

other partition complexes.

Unlike the cases where 1 ≤ m ≤ p we will see in the next section that the

complex P(a, p, p+1) is always acyclic. It may be helpful to think of P(a, p, p+1) as

the complex P(a, p, p) but with some additional facets which ‘fill in’ the homology.

For example, as we saw in Example 5.47, the complex P(3, 1, 1) consists of two

disjoint 2-simplices.

x1

y20

y10

y11

y21

x0

Meanwhile, the complex P(3, 1, 2) has two additional facets containing only par-

tition vertices, which ‘bridge the gap’ between these two disjoint simplices, thus

making the resulting complex acyclic.

x1

y20

y10

y11

y21

x0

Similarly, the complex P(2, 2, 2) can be drawn as

x2

y0

x1

y1 y2

x0

while the complex P(2, 2, 3) contains the additional facet {y1, y2, y3} which ‘fills
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in’ the hole at the centre, once again making the complex acyclic.

x2

y0

x1

y1 y2

x0

(Note we have adjusted our earlier picture of P(2, 2, 2) in Example 5.48 here, by

drawing the boundary vertices on the outside of the complex; both depictions of

this complex will be useful to us, and we frequently switch between them).

The complex P(a, p, p + 1) can be obtained from P(a, p, p) by adding faces

consisting entirely of partition vertices. In a similar way, the following construction

adds a face consisting entirely of boundary vertices.

Definition 5.51. Let a, p and m be integers with a ≥ 2 and 0 ≤ m ≤ p+ 1. We

define the closed partition complex P̂(a, p,m) on vertex set V a
p to be the complex

P(a, p,m) ∪ ⟨Xp⟩.

Remark 5.52. In the case m = 0 the closed partition complex P̂(a, p, 0) is equal to

the full simplex on the set Xp. Note that this is acyclic in all cases except for the

case p = −1. In the case p = −1 the set X−1 is empty so the full simplex on X−1

is simply the irrelevant complex {∅}.

Just as with partition complexes of the form P(a, p, p+1), we are interested in

closed partition complexes only because they occur in the links of regular partition

complexes, and our theorem on the degree types of partition complexes (Theorem

5.57) does not extend to them. In fact, closed partition complexes are not even PR

in general, except in the case where a = 2. In all other cases the additional facet

Xp = {x0, . . . , xp} is of lower dimension than all the other facets of P(a, p,m), and

so P̂(a, p,m) is not pure.

We will see in the next section that the closure operation essentially acts as a

kind of ‘switch’ for the homology of a partition complex. Indeed, for every 1 ≤ m ≤
p the partition complex P(a, p,m) deformation retracts onto the boundary ∂⟨Xp⟩,
which means it has homology; whereas the closed partition complex P̂(a, p,m)

contains Xp itself as a face, which means it deformation retracts on to the full

simplex ⟨Xp⟩, and is hence acyclic. Meanwhile the partition complex P(a, p, p+1)

is acyclic, while its closure P̂(a, p, p+ 1) has homology.

Example 5.53. In the case a = p = 2 we have the following partition complexes

and closed partition complexes.
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y1 x0 y2

x2 x1

y0

y1

x0

y2

x2 x1

y0 x2

y0
x1

y1 y2

x0

P(2, 2, 1) P(2, 2, 2) P(2, 2, 3)

y1 x0 y2

x2 x1

y0

y1

x0

y2

x2 x1

y0

x1

x2

y1

y2

x0

y0

P̂(2, 2, 1) P̂(2, 2, 2) P̂(2, 2, 3)

We now introduce some key notation and terminology which will help us to

discuss the faces of partition complexes going forward.

Notation 5.54. Let a, p and m be integers with a ≥ 2 and 0 ≤ m ≤ p + 1, and

let σ be a subset of V a
p . We use

1. σX to denote the intersection σ ∩Xp.

2. σY to denote the intersection σ ∩ Y a
p .

We also define the support of σ to be the set

Supp(σ) =
{
i ∈ {0, . . . , p} : xi ∈ σ or yji ∈ σ for some 1 ≤ j ≤ a− 1

}
.

Definition 5.55. Let a, p and m be integers with a ≥ 2 and 0 ≤ m ≤ p+ 1, and

let F be a subset of the vertex set V a
p . We say

1. F is partition complete if for every partition vertex yji in σ, the vertices

y1i , . . . , y
j−1
i are also in σ.

2. F is separated if for each 0 ≤ i ≤ p, F contains at most one of the vertices xi

or yi. We say it is totally separated if for each 0 ≤ i ≤ p it contains exactly

one of the vertices xi or yi.

By construction every face of a partition complex is separated, and every facet

is both totally separated and partition complete. In fact we have more than this.

Lemma 5.56. Let a, p and m be integers with a ≥ 2 and 0 ≤ m ≤ p+1. A subset

F ⊆ V a
p is a facet of the partition complex P(a, p,m) if and only if it satisfies the

following four conditions.
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1. F is partition complete.

2. F is totally separated.

3. |F | = a+ p− 1.

4. 1 ≤ | Supp(FY )| ≤ m.

Proof. Every facet of P(a, p,m) must satisfy these four conditions, because the

generating facets Gλ
p,i satisfy them by construction, and all four conditions are

invariant under the action of S0
p .

Conversely, suppose F is a totally separated, partition complete subset of V a
p

of size a + p − 1 with | Supp(FY )| = i for some 1 ≤ i ≤ m. We can permute the

vertices of F to ensure that Supp(FY ) = {0, . . . , i− 1} for some g ∈ S0
p . Because

F is totally separated we must therefore have FX = {xi, . . . , xp} = Gp,i.

This leaves us with a total of (a+p−1)−(p+1−i) = a+i−2 partition vertices

in F . For each 0 ≤ r ≤ i − 1 we let jr denote the maximum integer between 1

and a− 1 such that the partition vertex yjrr is in F . Once again, we can permute

the vertices of F to ensure that the sequence λ = (j0, . . . , ji−1) is monotonically

decreasing. The sequence λ is a partition of a+ i− 2 into i parts, and because F

is partition complete we have (after our permutations of vertices) that F is equal

to the generating facet Gλ
p,i.

Now that we have demonstrated the construction of partition complexes, and

built up the tools we will need to talk about them, we present our main result.

Theorem 5.57. Let a, p and m be positive integers with a ≥ 2 and 1 ≤ m ≤ p.

The partition complex P(a, p,m) is PR with degree type (

p︷ ︸︸ ︷
1, . . . , 1 a, 1, . . . , 1︸ ︷︷ ︸

m

).

In the next section we will make use of some deformation retractions to find

the homology of both partition complexes and their closures. We also show how

all of the links in partition complexes with homology can be built out of smaller

partition complexes and closed partition complexes. Then in Section 5.5.3 we will

put these results together to prove Theorem 5.57.

5.5.2 Deformation Retractions and Links

Just as with intersection complexes, we can find the homology of the links in

partition complexes by using some deformation retractions. Once again, our main

tools for this are Lemma 2.63 and Corollary 2.64.

Proposition 5.58. Let a, p and m be integers with a ≥ 2 and 1 ≤ m ≤ p + 1.

There is a deformation retraction P(a, p,m)⇝ P(2, p,m) given by the vertex maps

yji 7→ y1i . There is a similar deformation retraction P̂(a, p,m)⇝ P̂(2, p,m).
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Proof. Let yji be a partition vertex of P(a, p,m) for some j ≥ 2. By construction,

every facet of P(a, p,m) which contains the vertex yji also contains the vertex

y1i . Thus Corollary 2.64 gives us a deformation retraction of P(a, p,m) on to the

complex obtained by deleting every partition vertex yji for j ≥ 2, by identifying

each of these vertices with the corresponding vertex y1i . The complex obtained

from these deletions is P(2, p,m). The proof for P̂(a, p,m) is identical.

Proposition 5.59. Let p and m be positive integers with 1 ≤ m ≤ p. There

is a deformation retraction P(2, p,m) ⇝ ∂⟨Xp⟩. There is a similar deformation

retraction P̂(2, p,m)⇝ ⟨Xp⟩.

Proof. As noted in Example 5.48, all the facets of P(2, p,m) contain no more than

m partition vertices. Thus if F is any facet with exactly m partition vertices

yi1 , . . . , yim , it must be the only facet containing the face {yi1 , . . . , yim}. Because

m ≤ p, we know F strictly contains {yi1 , . . . , yim}, and hence Lemma 2.63 allows

us to delete the face {yi1 , . . . , yim} from the complex. The complex obtained by

deleting all faces consisting of m partition vertices from P(2, p,m) is P(2, p,m−1).

By induction onm ≥ 1 we obtain a series of deformation retractions P(2, p,m)⇝

P(2, p,m− 1) ⇝ · · · ⇝ P(2, p, 1). The facets of P(2, p, 1) are all the totally sepa-

rated subsets of V 2
p with only a single partition vertex, and so once again we may

use Lemma 2.63 to delete these partition vertices. This leaves us with a complex

with facets of the form {x0, . . . , xp} − {xi} for 0 ≤ i ≤ p. This is ∂⟨Xp⟩.
The proof for P̂(2, p,m) is identical, except because P̂(2, p,m) also contains the

face Xp, it deformation retracts onto the full simplex ⟨Xp⟩.

Example 5.60. In the case p = m = 2 we have the following deformation retrac-

tion.

y1

x0

y2

x2 x1

y0

y1
x0

y2

x2 x1

y0

x0

x2 x1

P(2, 2, 2) ⇝ P(2, 2, 1) ⇝ ∂⟨X2⟩

Proposition 5.61. For any integer p ≥ 0, the partition complex P(2, p, p + 1) is

acyclic.

Proof. Our proof for this result is very similar to our proof for Proposition 5.59

above. In that proof, we used Lemma 2.63 to remove all of the partition vertices

y0, . . . , yp from the complex. In this case, we use the same lemma to remove the

boundary vertices x0, . . . , xp.
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Note that while ∆ = P(2, p, p + 1) contains the facet {y0, . . . , yp} (which has

p + 1 partition vertices), no facet of ∆ contains more than p boundary vertices.

Thus if F is a facet of ∆ containing p boundary vertices xi1 , . . . , xip , it must be

the only facet containing all of those vertices; and once again, because it strictly

contains them, Lemma 2.63 allows us to delete the face {xi1 , . . . , xip} from the

complex. Proceeding in this way, we may remove all faces consisting of boundary

vertices from ∆, beginning with the ones of size p and continuing in decreasing

order of size. Thus we obtain a deformation retraction of P(2, p, p + 1) on to the

complex generated by the single facet {y0, . . . , yp}, which is acyclic.

Example 5.62. In the case p = 2, m = 3 we have the following deformation

retraction.

x2

y0
x1

y1 y2

x0

x2

y0
x1

y1 y2

x0

y0

y1 y2

P(2, 2, 3) ⇝ ⇝ ⟨{y0, y1, y2}⟩

Proposition 5.63. Let p ≥ −1 be an integer. The closed partition complex

P̂(2, p, p+ 1) is isomorphic to the cross-polytope Op.

Proof. The minimal nonfaces of the cross polytope Op consist of p pairwise disjoint

edges. Meanwhile, the faces of P̂(2, p, p+ 1) are all the separated subsets of V 2
p =

{x0, . . . , xp, y0, . . . , yp} (including both the sets {x0, . . . , xp} and {y0, . . . , yp}), and
so its minimal nonfaces are the p pairwise disjoint edges {x0, y0}, . . . , {xp, yp}. The
result follows.

Taken together these results are enough to give us the homology of all partition

complexes and closed partition complexes.

Corollary 5.64. Let a, p and m be integers with a ≥ 2, p ≥ −1 and 0 ≤ m ≤ p+1.

Let ∆ = P(a, p,m) and ∆̂ = P̂(a, p,m).

1. h(∆) =


{−1} if m = 0

{p− 1} if 1 ≤ m ≤ p

∅ if m = p+ 1 and p ̸= −1

and in the first two cases, the dimension of the nontrivial homology is 1.

2. h(∆̂) =


∅ if m = 0 and p ̸= −1

∅ if 1 ≤ m ≤ p

{p} if m = p+ 1
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and in the final case, the dimension of the nontrivial homology is 1.

Proof. We consider them = 0 cases together first. The partition complex P(a, p, 0)

is defined to be the irrelevant complex {∅} which has only (−1)st homology. Mean-

while the closed partition complex P̂(a, p, 0) is the full p-simplex ⟨Xp⟩, which is

acyclic except in the case where p = −1. We now proceed to the other cases.

For part (1), if 1 ≤ m ≤ p, then Propositions 5.58 and 5.59 give us a deforma-

tion retraction from P(a, p,m) on to ∂⟨Xp⟩, which is the boundary of a p-simplex,

and hence has only (p− 1)st homology of dimension 1. If m = p+ 1 and p ̸= −1,

then Proposition 5.58 gives us a deformation retraction from P(a, p, p + 1) on to

P(2, p, p+ 1), which is acyclic by Proposition 5.61.

For part (2), if 1 ≤ m ≤ p, then Propositions 5.58 and 5.59 give us a defor-

mation retraction from P̂(a, p,m) to ⟨Xp⟩, which is a full p-simplex, and is hence

acyclic. If m = p+1, then Proposition 5.58 gives us a deformation retraction from

P̂(a, p,m) on to P̂(2, p,m). By Proposition 5.63 this is isomorphic to the cross

polytope Op, which has only pth homology, of dimension 1.

We now examine the links in partition complexes. Suppose σ is a face of a

partition complex P(a, p,m). We can partition σ into σX ⊔ σY (as defined in

Notation 5.54). We first consider the case σY = ∅. In fact, it suffices to consider

the subcase where σ is equal to the boundary vertex xp.

Lemma 5.65. Let a, p and m be integers with a ≥ 2 and 1 ≤ m ≤ p+ 1, and let

∆ = P(a, p,m). We have

link∆ xp =

P(a, p− 1,m) if 1 ≤ m ≤ p

P(a, p− 1, p) if m = p+ 1.

Proof. We begin with the case where 1 ≤ m ≤ p. Let F be a facet of ∆ containing

xp. We know F is of the form gGλ
p,i for some permutation g ∈ S0

p , some integer

1 ≤ i ≤ m and some partition λ ∈ P(a, i).
Because xp is in F we may assume that g(xp) = xp (if not, we may decompose

g into cycles and remove p + 1 from its cycle without affecting gGλ
p,i). Thus we

have

F − xp = gGλ
p,i − xp

= g(Gλ
p,i − xp)

= gGλ
p−1,i

which is a facet of P(a, p− 1,m).

Conversely, for any generating facetGλ
p−1,i of P(a, p−1,m) and any permutation

h in S0
p−1 we can view h as a permutation in S0

p which fixes p, and hence we have

hGλ
p−1,i ⊔ {xp} = hGλ

p,i, which is a facet of P(a, p,m).
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For the m = p + 1 case note that the set Gp,p+1 is empty, and therefore for

every partition λ ∈ P(a, p + 1) the generating facet Gλ
p,p+1 contains no partition

vertices. Thus the only facets of P(a, p, p + 1) which contain xp are those of the

form gGλ
p,i for 1 ≤ i ≤ p and permutations g ∈ S0

p . The remainder of the proof is

identical to the earlier case.

Corollary 5.66. Let a, p and m be integers with a ≥ 2 and 1 ≤ m ≤ p + 1, and

let ∆ = P(a, p,m). Let σ be a face of ∆ of size α contained entirely inside Xp.

We have an isomorphism of complexes

link∆ σ ∼=

P(a, p− α,m) if 0 ≤ α ≤ p−m

P(a, p− α, p+ 1− α) otherwise.

Proof. We proceed by induction on α ≥ 0. The base case α = 0 is immediate.

Now suppose α ≥ 1. By symmetry we may assume that xp ∈ σ: indeed, if it is

not we may choose some permutation g ∈ S0
p such that xp ∈ gσ, and we have that

link∆ σ ∼= link∆ gσ by Lemma 5.3.

We consider the two cases separately. First we assume that 1 ≤ α ≤ p − m.

In particular this means that m ≤ p − 1, and hence Lemma 5.65 tells us that

link∆ xp = P(a, p−1,m). Thus link∆ σ is equal to linkP(a,p−1,m)(σ−xp). Note that

0 ≤ α− 1 ≤ (p− 1)−m, and so the inductive hypothesis gives us an isomorphism

linkP(a,p−1,m)(σ − xp) ∼= P(a, p− α,m).

Now suppose α > p − m. By Lemma 5.65, we know that link∆ σ is equal to

either linkP(a,p−1,m)(σ− xp) or linkP(a,p−1,p)(σ− xp). We know that α− 1 is greater

than both (p− 1)−m and (p− 1)− p, so in either case the inductive hypothesis

gives us an isomorphism link∆ σ ∼= P(a, p− α, p+ 1− α).

Corollary 5.66 allows us to restrict to the case where σX = ∅, because it shows
us that the link of σX is also a partition complex, and thus the link of σ in P(a, p,m)

is isomorphic to the link of σY in a smaller partition complex.

The following lemma allow us to restrict our attention even further.

Lemma 5.67. Let a, p and m be positive integers with m ≤ p + 1, and let ∆ =

P(a, p,m). If σ is a face of ∆ which is not partition complete then link∆ σ is

acyclic.

Proof. Suppose σ ∈ ∆ is not partition complete. This means there exist some

1 ≤ i ≤ p and 1 ≤ j < j′ ≤ a − 1 such that the parition vertex yj
′

i is in σ but yji
is not. Because every facet of ∆ is partition complete, every facet of ∆ containing

σ also contains yji . Thus link∆ σ is a cone over yji .

It now only remains for us to consider the case where σ is a nonempty partition

complete face of ∆ contained entirely in Y a
p .
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Lemma 5.68. Let a, p and m be positive integers with m ≤ p + 1, and let ∆ =

P(a, p,m). Fix some σ ∈ ∆. For each 1 ≤ i ≤ p + 1 we define φ(σ, i) = min{1 ≤
j ≤ a−1 : yji /∈ σ}. There is a deformation retraction Φ of link∆ σ onto a complex

Γ obtained by identifying every partition vertex yji with the partition vertex y
φ(σ,i)
i .

Proof. Let yji be a partition vertex in link∆ σ. For any facet F of link∆ σ containing

yji , we have that F⊔σ is a facet of ∆. This means F⊔σ must be partition complete,

and must therefore also contain the vertex y
φ(σ,i)
i . But y

φ(σ,i)
i /∈ σ by definition,

and so it must be in F . The result follows from Corollary 2.64.

Proposition 5.69. Let a, p and m be positive integers with m ≤ p + 1, and

let ∆ = P(a, p,m). Let σ be a nonempty partition complete face of ∆ contained

entirely inside Y a
p , and set β = |{yji ∈ σ : j = 1}| and γ = |{yji ∈ σ : j > 1}|. We

have a deformation retraction

link∆ σ ⇝ P̂(2, p− β,m− β) ∗ Skela−γ−3([β]).

Proof. We begin by decomposing link∆ σ into the disjoint union of two subcom-

plexes A and B defined as

A = {τ ∈ link∆ σ : Supp(τ) ∩ Supp(σ) = ∅}
B = {τ ∈ link∆ σ : Supp(τ) ⊆ Supp(σ)}.

In particular note that | Supp(σ)| = β because σ is partition complete and thus

must contain the partition vertex y1i for every i ∈ Supp(σ). Without loss of

generality we will assume that Supp(σ) = {p− β + 1, . . . , p}.
We apply the deformation retraction Φ from Lemma 5.68 on to the complex

link∆ σ to get a new complex Γ whose only partition vertices are the vertices

y
φ(0,σ)
0 , . . . , y

φ(p,σ)
p , and denote the images of A and B under Φ by A′ and B′ re-

spectively. Note that we have Γ = A′ ⊔B′.

We aim to show the following.

1. A′ = P̂(2, p− β,m− β).

2. B′ = Skela−γ−3(S) where S denotes the set {yφ(i,σ)i : i ∈ Supp(σ)}.

3. Γ = A′ ∗B′.

For part (1), note first that by our assumption on Supp(σ), we have φ(i, σ) = 1

for each 0 ≤ i ≤ p − β. Thus, the only partition vertices of A′ are the vertices

y10, . . . , y
1
p−β. Hence the complex A′ has vertex set V 2

p−β, so it is equal to the

induced subcomplex of A on this vertex set. Suppose τ is a face of the complex

A. Because σ ⊔ τ is a face of ∆, we must have | Supp(σY ⊔ τY )| ≤ m. We know

| Supp(σY )| = β so this means | Supp(τY )| ≤ m − β. Thus the faces of A′ are all
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the separated subsets τ of V 2
p−β such that 0 ≤ | Supp(τY )| ≤ m− β (including the

subset {x0, . . . , xp−β}). These are precisely the faces of P̂(2, p− β,m− β).

Now we move on to part (2). Because σ consists entirely of partition vertices,

the faces of B must also consist entirely of partition vertices (otherwise their union

with σ would not be separated). In particular, this means that every face of B′

must be a subset of S, and so B′ is equal to the induced subcomplex B|S. From

Remark 5.44 we know B must contain all subsets of S whose union with the upper

partition vertices of σ has size up to a− 2. Thus B′ contains every subset of S of

size up to a− γ − 2 (i.e. dimension at most a− γ − 3).

Finally we consider part (3). For any two faces τ ∈ A′ and ρ ∈ B′, the disjoint

union τ ⊔ ρ ⊔ σ is partition complete and separated. From the above discussion

we also have that |τY | ≤ m − β and |ρY | ≤ a − γ − 2. This means both that

|τY ⊔ ρY ⊔ σ| ≤ a +m − 2 and | Supp(τY ⊔ ρY ⊔ σ)| ≤ m. We conclude that the

disjoint union τ ⊔ ρ ⊔ σ is a face of ∆, which shows that τ ⊔ ρ is a face of Γ. The

result follows.

Example 5.70. The complex P(2, p,m) contains no upper partition vertices so

in this case the Skeleton complex Skela−γ−2([β]) as given in the above proposition

would be Skel−1([β]), which is the irrelevant complex {∅}. It follows that the links
in P(2, p,m) are all either partition complexes or closed partition complexes.

The following diagram shows all possible maximal chains in the link poset of

P(2, 3, 2). We use
x→ to denote taking the links of boundary vertices and

y→ to

denote taking the links of (lower) partition vertices.

P(2, 3, 2) P(2, 2, 2) P(2, 1, 2) P(2, 0, 1)

P̂(2, 2, 1) P̂(2, 1, 1) P̂(2, 0, 1) P̂(2,−1, 0)

P̂(2, 1, 0) P̂(2, 0, 0) P̂(2,−1, 0)

H̃2 H̃1 × H̃0 H̃−1

y

x

y

x

y

x

y

y

x

y

x

y

x

x x

The homologies of these complexes can be computed from Corollary 5.64. We can

see from the diagram that the complex P(2, 3, 2) is PR with degree type (1, 2, 1).

5.5.3 Proving Theorem 5.57

We now have all the ingredients we need to prove Theorem 5.57. We start by

proving the following corollaries to our results about the links of ∆ in the last

section.
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Corollary 5.71. Let a, p and m be integers with a ≥ 2 and 1 ≤ m ≤ p + 1, and

let ∆ = P(a, p,m). Let σ be a face of ∆ contained entirely inside Xp. We have

h(∆, σ) =

{p− |σ| − 1} if 0 ≤ |σ| ≤ p−m

∅ otherwise.

Proof. We set α = |σ|. By corollary 5.66, link∆ σ is isomorphic to P(a, p − α,m)

if 0 ≤ α ≤ p−m or P(a, p−α, p+1−α) otherwise. By Corollary 5.64, the former

of these has (p− α− 1)st homology while the latter is acyclic.

Corollary 5.72. Let a, p and m be integers with a ≥ 2 and 1 ≤ m ≤ p + 1, and

let ∆ = P(a, p,m). Let σ be a partition complete face of ∆ with σY ̸= ∅. We have

h(∆, σ) =

{a+ p− |σ| − 2} if |σX | ≥ p−m+ 1 and |σY | ≥ a− 1

∅ otherwise.

Proof. We set α = |σX |, β = |{yji ∈ σY : j = 1}| and γ = |{yji ∈ σY : j > 1}|.
Because σ is partition complete and σY ̸= ∅, we know β > 0.

First suppose that 0 ≤ α ≤ p − m. Corollary 5.66 tells us that link∆ σX is

isomorphic to P(a, p−α,m). Therefore, by Proposition 5.69, there is a deformation

retraction

link∆ σ ⇝ P̂(2, p− α− β,m− β) ∗ Skela−γ−3([β]).

The complex P̂(2, p − α − β,m − β) is acyclic by Corollary 5.64, and thus so is

link∆ σ.

Now suppose that α ≥ p − m + 1. Corollary 5.66 tells us that link∆ σX is

isomorphic to P(a, p − α, p + 1 − α), and hence by Proposition 5.69, there is a

deformation retraction

link∆ σ ⇝ P̂(2, p− α− β, p+ 1− α− β) ∗ Skela−γ−3([β]).

The complex P̂(2, p − α − β, p + 1 − α − β) has only (p− α− β)th homology,

by Corollary 5.64. Meanwhile the complex Skela−γ−3([β]) has only (a− γ − 3)rd

homology so long as a − γ − 3 < β − 1 (otherwise it is equal to the full simplex

on [β], which is acyclic). Thus, link∆ σ has nontrivial homology if and only if

β + γ ≥ a − 1, and in this case we have (by Corollary 2.59) h(∆, σ) = {p − α −
β}+ {a− γ − 3}+ {1} = {a+ p− |σ| − 2}.

With these two corollaries in our toolkit, we now proceed to the proof of The-

orem 5.57.

Proof of Theorem 5.57. Let a, p and m be positive integers with m ≤ p and set

∆ = P(a, p,m). Fix a face σ ∈ ∆.
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By Lemma 5.67, link∆ σ is acyclic unless σ is partition complete. In the case

where σ is partition complete, Corollaries 5.71 and 5.72 tell us that

h(∆, σ) =


{p− |σ| − 1} if 0 ≤ |σX | ≤ p−m and |σY | = 0

{a+ p− |σ| − 2} if |σX | ≥ p−m+ 1 and |σY | ≥ a− 1

∅ otherwise.

In particular, this means that for any integer k, we have

ĥ(∆, k) =


{p− k − 1} if 0 ≤ k ≤ p−m

{a+ p− k − 2} if a+ p−m ≤ k ≤ a+ p− 1

∅ otherwise.

This proves ∆ is PR with degree type (

p︷ ︸︸ ︷
1, . . . , 1 a, 1, . . . , 1︸ ︷︷ ︸

m

), by Proposition 4.25.



Chapter 6

Pure Resolutions of Any Degree

Type

This chapter is devoted to the proof of Theorem 4.7. Our method for this proof is

focussed around finding operations on simplicial complexes which preserve the PR

property while altering the degree types of PR complexes in specified ways. This

reduces the problem of generating PR complexes of an arbitrary degree type d to

the problem of generating PR complexes with degree types which can be altered

to d under these operations.

We begin by presenting two examples of such operations to illustrate the general

principle. We then introduce an infinite family of PR-preserving operations {ϕi :

i ∈ Z+} which allow us to generate PR complexes of any given degree type.

6.1 Operations on Degree Types

In this section we present two examples of operations on simplicial complexes

which preserve the PR property while altering degree types. We begin with the

scalar multiple operation fλ as defined below.

Definition 6.1. Let ∆ be a complex on vertex set V with facets F1, . . . , Fm, and

let λ be a positive integer.

We define the vertex set V λ to be the set {u1
x, . . . , u

λ
x : x ∈ V }. There is a

natural map

fλ : P(V ) → P(V λ)

S 7→ {u1
x, . . . , u

λ
x : x ∈ S}.

We define fλ(∆) to be the complex on V λ with facets fλ(F1), . . . f
λ(Fm).

We claim that if ∆ is PR with degree type d, then fλ(∆) is also PR, with

degree type λd. This is a consequence of the following three-part lemma.

127
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Lemma 6.2. Let ∆ be a simplicial complex on vertex set V , and define ∆̃ = fλ(∆)

on vertex set V λ.

1. ∆̃ deformation retracts on to a complex isomorphic to ∆.

2. For any face σ ∈ ∆ we have link∆̃ fλ(σ) = fλ(link∆ σ).

3. For any face τ ∈ ∆̃ which is not of the form fλ(σ) for some σ ∈ ∆, the

complex link∆̃ τ is acyclic.

Proof. 1. We identify ∆ with the induced subcomplex of fλ(∆) on vertex set

U = {u1
x ∈ Ṽ : x ∈ V } ⊂ V λ. For every x ∈ V and every 2 ≤ i ≤ λ, the

vertex ui
x ∈ Ṽ is contained in exactly the same facets of fλ(∆) as the vertex

u1
x. Thus Corollary 2.64 gives us a deformation retraction ∆̃⇝ ∆̃|U ∼= ∆.

2. If Fi1 , . . . , Fik are the facets of ∆ containing σ, then the facets of ∆̃ containing

fλ(σ) are fλ(Fi1),. . . ,f
λ(Fik). The result follows.

3. Because τ is not of the form fλ(σ) for some σ ∈ ∆, there must be some x ∈ V

and some 1 ≤ i ̸= j ≤ λ such that ui
x ∈ τ but uj

x /∈ τ . This means that every

facet of fλ(∆) containing τ must also contain uj
x, and hence linkfλ(∆) τ is a

cone over uj
x.

Corollary 6.3. Suppose ∆ is a PR complex on vertex set V with degree type

d = (dp, . . . , d1). Let λ be a positive integer, and let the operation fλ be as in

Definition 6.1. The complex fλ(∆) is PR with degree type λd.

Proof. Let τ be a face of ∆̃ = fλ(∆). By part (3) of Lemma 6.2, the complex

link∆̃ τ is acyclic unless we have τ = fλ(σ) for some face σ ∈ ∆. In this case,

we have |τ | = λ|σ|, and the complex link∆̃ τ is equal to fλ(link∆ σ) (by part (2)),

which deformation retracts onto a complex isomorphic to link∆ σ (by part (1)).

Thus for any integer m ≥ 0, we have ĥ(fλ(∆), λm) = ĥ(∆,m), and if λ does not

divide m we have ĥ(fλ(∆),m) = ∅. The result follows from Proposition 4.25.

Remark 6.4. It should be clear from this proof that the operation fλ does not

affect the values in each column of the Betti diagram β(I∆)
∗, only the shifts at

which those values occur. In other words, for any integer i and any complex ∆ we

have βi(I
∗
fλ(∆)

) = βi(I
∗
∆).

The operation fλ allows us to take a degree type and scale it up by a fac-

tor of λ. This reduces the problem of finding PR complexes of arbitrary degree

types to the problem of finding PR complexes of degree type (dp, . . . , d1) where

hcf(dp, . . . , d1) = 1.

We now consider a second PR-preserving operation, the free vertex operation

f free, as defined below.
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Definition 6.5. Let ∆ be a complex on vertex set V with facets F1, . . . , Fm.

We define the vertex set Ṽ to be the set V ∪ {uF1 , . . . , uFm}, and we define

f free(∆) to be the complex on Ṽ with facets F1 ∪ {uF1}, . . . , Fm ∪ {uFm}.

The operation f free acts on a complex by adding an additional free vertex uF

to each of its facets uF . We claim that if ∆ is PR with degree type (dp, . . . , d1),

then f free(∆) is also PR, with degree type (dp, . . . , d2, d1 + 1). Once again, our

proof requires three key elements, as laid out in the following lemma.

Lemma 6.6. Let ∆ be a simplicial complex on vertex set V , and define ∆̃ =

f free(∆) on vertex set Ṽ .

1. ∆̃ deformation retracts on to ∆, unless we have ∆ = {∅}.

2. For any face σ ∈ ∆ we have an ismorphism link∆̃ σ ∼= f free(link∆ σ).

3. For any face τ ∈ ∆̃ containing a free vertex uF for some facet F of ∆, either

τ is a facet of ∆̃ or link∆̃ τ is acyclic.

Proof. 1. Each vertex uF ∈ Ṽ − V is contained in only a single facet of ∆̃.

If we have ∆ ̸= {∅}, then we know this facet of ∆̃ must contain at least

one other vertex aside from uF . Thus Corollary 2.64 allows us to delete all

of the vertex uF from ∆̃. Deleting all such vertices gives us a deformation

retraction ∆̃⇝ ∆.

2. If Fi1 , . . . , Fik are the facets of ∆ containing σ, then the facets of ∆̃ containing

σ are Fi1 ∪ {uFi1
} . . . , Fik ∪ {uFik

}. The result follows.

3. The only facet of ∆̃ containing the vertex uF is F ∪ {uF}, and hence τ

must also be contained in this facet. Thus the complex link∆̃ τ is equal to

⟨F ∪ {uf}− τ⟩, which is acyclic unless τ is equal to F ∪ {uF} (in which case

it is the irrelevant complex {∅}).

Corollary 6.7. Suppose ∆ is a PR complex on vertex set V with degree type

d = (dp, . . . , d1). Let λ be a positive integer, and let the operation f free be as in

Definition 6.5. The complex f free(∆) is PR with degree type (dp, . . . , d2, d1 + 1).

Proof. Let σ be a face of ∆̃ = f free(∆). By part (3) of Lemma 6.6, the complex

link∆̃ σ is acyclic unless σ is either a face of ∆ or a facet of ∆̃. In the former

case, the complex link∆̃ τ is isomorphic to f free(link∆ σ) by part (2). If σ is a facet

of ∆, then link∆ σ = {∅} and f free(link∆ σ) = {uσ}, which is acyclic. Otherwise,

f free(link∆ σ) deformation retracts onto link∆ σ by part (1). Thus for any simplex
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σ ∈ ∆̃ we have

h(∆̃, σ) =


h(∆, σ) if σ ∈ ∆ but σ is not a facet of ∆

{−1} if σ is a facet of ∆̃

∅ otherwise.

and in particular, the size of the facets of ∆̃ is one greater than the size of the

facets of ∆. The result follows from Proposition 4.25.

Remark 6.8. Once again, this proof also demonstrates that the operation f free does

not affect the total Betti numbers of the ideal I∗∆. That is, for any integer i and

any complex ∆ we have βi(I
∗
f free(∆)

) = βi(I
∗
∆).

The operation f free allows us to take a degree type and add 1 to its final value.

Repeated application of this operation allows us to add any positive integer to the

final value of a degree type. This reduces the problem of finding PR complexes

of arbitrary degree types to the problem of finding PR complexes of degree type

(dp, . . . , d2, 1).

The ϕi operations we are about to introduce in the next section have a similar

effect on degree types to f free (in fact, as we will discuss, the operation ϕ1 acts

identically to f free on PR complexes).

Before we proceed to the next section, we will look briefly at how the families

of complexes we studied in Chapter 5 behave under the operations fλ and f free.

The operation fλ:

1. fλ preserves group symmetries.

Specifically, if ∆ is symmetric under the action of a group G, then we can

extend this group action to fλ(∆) by setting g(ui
x) = ui

gx.

2. The family of disjoint simplices is closed under fλ.

Specifically, if ∆ is the complex consisting of two disjoint simplices of size a,

then fλ(∆) is the complex consisting of two disjoint simplices of size λa.

3. The family of intersection complexes is closed under fλ.

Specifically, we have fλ(I(m)) = I(λm).

4. The family of cycle complexes is closed under fλ.

Specifically, we have fλ(Ca,b) = Cλa,λb.

5. The family of partition complexes is not closed under fλ (for

λ > 1).
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We can see this because for any partition complex P(a, p,m) the complex

fλ(P(a, p,m)) has a degree type of form (

p︷ ︸︸ ︷
λ, . . . , λ λa, λ, . . . , λ︸ ︷︷ ︸

m

), which cannot

be degree type of a partition complex except in the case where λ = 1.

The operation f free:

1. f free preserves group symmetries.

Specifically, if ∆ is symmetric under the action of a group G, then we can

extend this group action to f free(∆) by setting g(uF ) = ugF .

2. The family of disjoint simplices is closed under f free.

Specifically, if ∆ is the complex consisting of two disjoint simplices of size a,

then f free(∆) is the complex consisting of two disjoint simplices of size a+1.

3. The family of intersection complexes is closed under f free.

Specifically, we have f free(I(m1, . . . ,mn)) = I(m1 + 1,m2, . . . ,mn).

4. The family of cycle complexes is not closed under f free.

If a ≤ b (i.e. in the case where Ca,b is also an intersection complex) we have

f free(Ca,b) = Ca,b+1, but this is not the case when a > b. For example, the

complex C2,1 which we saw in Example 5.12 has five facets, while the complex

C2,2 has only three facets. Thus C2,2 cannot be equal to f free(C2,1).

5. The family of partition complexes is not closed under f free.

In the case wherem = 1 (i.e. when P(a, p,m) is also an intersection complex)

we have f free(P(a, p, 1)) = P(a+1, p, 1), but this is not the case form > 1. We

can see this from the fact that in all other cases, f free(P(a, p,m)) has degree

type (

p︷ ︸︸ ︷
1, . . . , 1 a, 1, . . . , 1, 2︸ ︷︷ ︸

m

), which cannot be the degree type of a partition

complex.

6.2 The ϕi Operations

In this section we introduce a family of PR-preserving operations which we can

use to prove Theorem 4.7.

Specifically, we will construct a family of operations on simplicial complexes

{ϕi : i ∈ Z+} with the property that for each i ∈ Z+, and any PR complex ∆

with degree type (dp, . . . , di, 1, . . . , 1︸ ︷︷ ︸
i−1

) for some p ≥ i, the complex ϕi(∆) is PR
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with degree type (dp, . . . , di−1, di + 1, 1, . . . , 1︸ ︷︷ ︸
i−1

). If ∆ is PR with a degree type of a

different form, then ϕi(∆) will not be PR.

To see why the existence of such a family is sufficient to prove Theorem 4.7,

suppose we wish to construct a PR complex of degree type d = (dp, . . . , d1). We

can do so by taking a PR complex ∆ of degree type (1, . . . , 1︸ ︷︷ ︸
p

) (such as the boundary

of the p-simplex in Example 4.35), and applying each of the operations ϕi to ∆ a

total of (di − 1) times.

In other words, if ∆ is the boundary of the p-simplex, then the complex

ϕd1−1
1 . . . ϕ

dp−1
p (∆) is a PR complex of degree type (dp, . . . , d1).

We define the operation ϕi below.

Definition 6.9. Let ∆ be a simplicial complex on vertex set V , and fix a positive

integer i. The complex ϕi(∆) is defined as follows.

1. Si
∆ := {uσ : σ ∈ ∆, |σ| ≥ dim∆ + 2− i}.

2. ϕi(∆) is the complex on vertex set V ⊔Si
∆ obtained by adding to ∆ all those

faces σ ⊔ {uτ1 , . . . uτr} for each sequence σ ⊆ τ1 ⊂ · · · ⊂ τr in ∆ for which

the vertices uτ1 , . . . , uτr are in Si
∆.

Remark 6.10. If m = dim∆+2 then for any i > m we have ϕi(∆) = ϕm(∆). Note

also that m is the smallest integer for which the set Sm
∆ contains the vertex u∅.

Example 6.11. The complex ϕ1(∆) is obtained from ∆ by adding the faces F ∪
{uF} for each facet F in ∆ of maximal dimension. In other words, ϕ1 acts on

a complex by adding an additional free vertex uF to each facet F of maximal

dimension. In particular, if ∆ is PR then all of its facets have maximal dimension

by Lemma 4.11, so ϕ1 acts on ∆ identically to the free vertex operation f free from

Definition 6.5.

Example 6.12. Let ∆ be the boundary of the 2-simplex on vertex set {x, y, z}:

x y

z

This is PR with degree type (1, 1).

The complex ϕ1(∆) is
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x y

z

u{x,y}

u{y,z}u{x,z}

which is PR with degree type (1, 2).

The complex ϕ2(∆) is

x y

z

u{x} u{y}

u{z}

u{x,y}

u{y,z}u{x,z}

which is PR with degree type (2, 1).

And the complex ϕ3(∆) is

x y

z

u∅

Note that the addition of the facets containing u∅ makes this complex acyclic.

Remark 6.13. It may help the reader to consider the parallels between the ϕi

operations defined above and the partition complex construction.

Recall that we can obtain P(2, p, 1) by introducing some additional partition

vertices and adding additional facets to the boundary of the p-simplex on the

vertex set Xp = {x0, . . . , xp}, ∂⟨Xp⟩ (in fact, P(2, p, 1) is the result of applying

the operation ϕ1 to ∂⟨Xp⟩). Moreover, we can obtain P(2, p, 2) from P(2, p, 1)

by adding additional facets, and we can obtain P(2, p, 3) from P(2, p, 2) similarly,

and so on. Thus we get an inclusion of partition complexes ∂⟨Xp⟩ ⊆ P(2, p, 1) ⊆
P(2, p, 2) ⊆ · · · ⊆ P(2, p, p+ 1), with the final complex in this chain being acyclic,

and all the others having (p− 1)st homology.
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This is analogous to how we can obtain ϕ1(∆) from ∆ by introducing the

vertices in S1
∆ and adding additional facets, and then ϕ2(∆) from ϕ1(∆) by intro-

ducing more vertices and facets, and so on. This gives us an inclusion of complexes

∆ ⊆ ϕ1(∆) ⊆ ϕ2(∆) ⊆ · · · ⊆ ϕdim∆+2(∆), which mirrors the inclusion of partition

complexes above.

Indeed, as topological spaces, the complexes ϕ1(∆), ϕ2(∆) and ϕ3(∆) in Ex-

ample 6.12 are homeomorphic to the partition complexes P(2, 2, 1), P(2, 2, 2) and

P(2, 2, 3) (shown in Example 5.53). And more generally, if ∆ is the boundary of a

p-simplex, then for any 1 ≤ i ≤ p+ 1, the complex ϕi(∆) is homeomorphic to the

partition complex P(2, p, i).

The benefit that the ϕi operations have over partition complexes, as we will see,

is that they can be applied to any PR complex of degree type (dp, . . . , di, 1, . . . , 1)

and still preserve the PR property (in contrast, partition complexes all use the

boundaries of simplices as their starting point). This is a significant benefit (as

discussed above, we can exploit it to prove Theorem 4.7), but it comes at the

cost of adding a very large number of additional vertices. In general, partition

complexes have far fewer vertices than the corresponding complex of their degree

type obtained from repeated use of the ϕi operations.

We wish to prove the following theorem about the operation ϕi.

Theorem 6.14. Let ∆ be a PR complex on vertex set V , with degree type of the

form (dp, . . . , di, 1, . . . , 1︸ ︷︷ ︸
i−1

) for some p ≥ i ≥ 1. The complex ∆̃ = ϕi(∆) on vertex

set V ⊔ S is a PR complex with degree type (dp, . . . , di + 1, 1, . . . , 1︸ ︷︷ ︸
i−1

)

The following lemma will turn out to be particularly crucial, because it shows

us that ϕi commutes with taking links of faces in ∆.

Lemma 6.15. Let ∆ be a simplicial complex on vertex set V , let i ≥ 1 and let

σ ∈ ∆. We have an isomorphism of complexes linkϕi(∆) σ ∼= ϕi(link∆ σ).

Proof. We claim that the map of vertices uτ 7→ uτ−σ gives a well-defined bijection

between the facets of linkϕi(∆) σ and the facets of ϕi(link∆ σ).

The facets of linkϕi(∆) σ are all of the form G − σ for some facet G of ϕi(∆)

containing σ. Let G = τ1 ∪ {uτ1 , . . . , uτr} be one such facet of ϕi(∆), for some

τ1 ⊂ · · · ⊂ τr in ∆ with |τj| ≥ dim∆ + 2 − i for each 1 ≤ j ≤ r. Because G

contains σ, we must have σ ⊆ τ1. Hence, for each 1 ≤ j ≤ r, the simplex τj − σ is

a face of link∆ σ, and we have

|τj − σ| = |τj| − |σ|
≥ dim∆ + 2− i− |σ|
= dim(link∆ σ) + 2− i
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which shows that uτj−σ is a vertex of Si
link∆ σ. Thus the map of vertices uτ 7→

uτ−σ gives us a unique corresponding facet G̃ = (τ1 − σ) ∪ {uτ1−σ, . . . , uτr−σ} of

ϕi(link∆ σ).

Conversely, suppose H = ρ1 ∪ {uρ1 , . . . , uρr} is a facet of ϕi(link∆ σ), for some

ρ1 ⊂ · · · ⊂ ρr in link∆ σ with |ρj| ≥ dim(link∆ σ) + 2 − i for each 1 ≤ j ≤ r. By

the definition of link∆ σ we know that for each 1 ≤ j ≤ r, ρj ⊔ σ is a face of ∆.

Moreover, we have

|ρj ⊔ σ| = |ρj|+ |σ|
≥ dim(link∆ σ) + 2− i+ |σ|
= dim(∆) + 2− i

which shows that uρj−σ is a vertex of Si
∆. Thus the map of vertices uρ 7→ uρ⊔σ gives

us a unique corresponding facet Ĥ = ρ1 ∪ {uρ1⊔σ, . . . , uρr⊔σ} of linkϕi(∆) σ.

Remark 6.16. Lemma 6.15 can be seen as an analogue to Corollary 5.66 about

partition complexes, which told us that the link of any face in a partition complex

consisting entirely of boundary vertices x0, . . . , xp is a smaller partition complex.

In the following sections we work towards proving Theorem 6.14 (and hence

also Theorem 4.7). The structure will be as follows.

Section 6.3 introduces the barycentric subdivision of ∆, a standard combina-

torial construction which is an important subcomplex of ϕi(∆) in the case where

i ≥ dim∆ + 1. Section 6.4 examines some deformation retractions of ϕi(∆), to

help us in finding its homology. Section 6.5 is devoted to the homologies of links

in the barycentric subdivision of ∆. And finally Section 6.6 assembles all of these

results together to prove the theorem.

6.3 Barycentric Subdivision

Let ∆ be a simplicial complex on vertex set {v1, . . . , vn}, and let X∆ be its

geometric realization in the space Rn with canonical basis {e1, . . . , en}. Recall

(e.g. from the proof of Lemma 2.63) that we define X∆ to be the union of

the sets Xσ for each nonempty face σ = {vi1 . . . , vir}, each of which is given

by Xσ =
{∑r

j=1 λieji : λ1, . . . , λr > 0,
∑r

j=1 λj = 1
}
.

For a face σ = {vi1 , . . . , vir} in ∆, we define the barycenter bσ of Xσ to be the

vector
∑r

j=1
1
r
eij (this is the unique vector in Xσ whose nonzero coordinates are

all equal). We may use these barycenters to divide X∆ up into subsimplices in

a process known as barycentric subdivision. Specifically, we can view X∆ as the

union of all the convex hulls of vertex sets of the form {bσ1 , . . . ,bσr} for some

inclusion of faces σ1 ⊂ · · · ⊂ σr in ∆.

For example if ∆ is the 2-simplex, its geometric realization in R3 is
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1

2

3
O x

y

z

and its barycentric subdvision is

b{1}

b{2}

b{3}

b{1,2}

b{1,3}

b{2,3}

x

y

z

b{1,2,3}

It is also possible to define this barycentric subdivision entirely combinatorially

(see e.g. the introduction to [BW08]), on the complex ∆ itself rather than on the

geometric realization of ∆. In the combinatorial context, instead of defining the

barycenter of σ as a vector bσ in Rn, we simply introduce a new vertex uσ. This

gives us the following definition.

Definition 6.17. We define the barycentric subdivision of ∆ to be the complex

B(∆) on vertex set S∆ = {uσ : σ ∈ ∆− {∅}}, with faces {uσ1 , . . . , uσr} whenever

σ1 ⊂ · · · ⊂ σr.

Significantly, note that barycentric subdivision does not affect the topology of a

simplicial complex. In other words, the complexes B(∆) and ∆ are homeomorphic

as topological spaces. In particular, this means that for any integer j ≥ −1 we

have

H̃j (B(∆)) = H̃j(∆).

This fact will be particularly useful to us.

Note that if i is chosen such that the vertex set Si
∆ given in Definition 6.9

contains vertices uσ corresponding to every simplex σ in ∆ except ∅, then the

induced subcomplex ϕi(∆)|Si
∆
is equal to B(∆). This happens when i = dim∆+1

(and when i ≥ dim∆+2, the induced subcomplex ϕi(∆)|Si
∆
is equal to B(∆)∗u∅).

For example, if ∆ is the boundary of the 2-simplex, as in Example 6.12, its

barycentric subdivision B(∆) is
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u{x} u{y}

u{z}

u{x,y}

u{y,z}u{x,z}

which is an induced subcomplex of the complex ϕ2(∆).

x y

z

Thus for i = dim∆+ 1 we can view the operation ϕi as a kind of prism operator,

with ∆ at one end of the prism and B(∆) at the other end (and for i > dim∆+1,

the complex ϕi(∆) is a prism with ∆ at one end, and the cone B(∆) ∗ u∅ at the

other end).

6.4 Deformation Retractions

To find the homologies of the links in ϕi(∆), we will make use of some deformation

retractions.

In particular, we use Lemma 2.63 to obtain two deformation retractions of ∆̃:

one “vertex-first” deformation from ∆̃ on to ∆, and one “facet-first” deformation

from ∆̃ on to B(∆). The latter deformation only holds in the specific case where

i = dim∆ + 1. For each deformation we provide an example before detailing the

general result. We begin with the vertex-first deformation.

Example 6.18. Let ∆ be the boundary of the 2-simplex on vertex set {x, y, z}
as in Example 6.12. We show that there is a deformation retraction ϕ2(∆)⇝ ∆.

Note that every facet of ϕ2(∆) which contains u{x} also contains x. Thus, if

we set g = {u{x}} and f = {x, u{x}}, Lemma 2.63 allows us to remove the vertex

u{x} from ϕ2(∆). Similarly we may remove the vertices u{y} and u{z}. This gives

us a deformation retraction ϕ2(∆)⇝ ϕ1(∆).

The same reasoning now allows us to remove the vertices u{x,y}, u{x,z} and u{y,z}

from ϕ1(∆) to obtain a deformation retraction ϕ1(∆)⇝ ∆.

Diagrammatically, we have the deformation retractions:
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x y

z

x y

z

x y

z

ϕ2(∆) ⇝ ϕ1(∆) ⇝ ∆

where each deformation retraction is obtained by identifying the vertices uσ for

which |σ| is minimal with the face σ in ∆.

This example generalises as follows:

Lemma 6.19. Let ∆ be a pure simplicial complex on vertex set V , i ≤ dim∆+1,

and ∆̃ = ϕi(∆) on vertex set V ⊔ Si
∆. There is a deformation retraction ∆̃ ⇝

∆̃|V = ∆.

Proof. Let σ be a minimally sized face of ∆ such that uσ is in Si
∆. Note that

|σ| ≥ dim∆+2− i ≥ dim∆+2− (dim∆+1) = 1, so in particular σ is not empty.

By construction, because |σ| is minimal, every facet of ∆ that contains uσ also

contains σ. Thus, setting g = {uσ} and f = σ ∪ {uσ}, Lemma 2.63 gives us a

deformation retraction ∆̃⇝ ∆̃− {uσ}.
Continuing in this way we may remove every vertex uσ in Si

∆ from ∆̃ - in

increasing order of the size of σ - and thus obtain a deformation retraction ∆̃ ⇝

∆̃|V = ∆.

We now proceed to the facet-first deformation.

Example 6.20. Let ∆ be the boundary of the 2-simplex on vertex set {x, y, z} as

in Example 6.12. We show that there is a deformation retraction ϕ2(∆)⇝ B(∆).

Note that the edge {x, y} of ∆ occurs only in the facet {x, y, u{x,y}}. Thus, if

we set g = {x, y} and f = {x, y, u{x,y}}, Lemma 2.63 allows us to remove the edge

{x, y} from ϕ2(∆). Similarly we may remove the edges {x, z} and {y, z}.
The same reasoning now allows us to remove the vertices x, y and z from ϕ2(∆)

to obtain a deformation retraction ϕ2(∆)⇝ ϕ2(∆)|S2
∆
= B(∆).

Diagrammatically, we have the deformation retractions:

x y

z

x y

z

u{x} u{y}

u{z}

u{x,y}

u{y,z}u{x,z}

ϕ2(∆) ⇝ ⇝ B(∆)
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where each deformation retraction is obtained by identifying the faces σ of ∆ for

which |σ| is maximal with the vertex uσ in B(∆).

Once again this example admits a generalisation:

Lemma 6.21. Let ∆ be a simplicial complex on vertex set V , i = dim∆+ 1, and

∆̃ = ϕi(∆) on vertex set V ⊔ Si
∆. There is a deformation retraction ∆̃⇝ ∆̃|Si

∆
=

B(∆).

Proof. The condition on the value of i here means that Si
∆ contains vertices uσ for

every face σ of ∆ such that |σ| ≥ dim∆ + 2 − (dim∆ + 1) = 1. In other words,

every nonempty face σ of ∆ has a corresponding vertex uσ in Si
∆, but u∅ is not in

Si
∆. In particular this means that ∆̃|Si

∆
= B(∆).

Let σ be a maximally sized face of ∆ (i.e. a facet of dimension dim∆). By

construction, because |σ| is maximal, every facet of ∆̃ that contains σ also contains

uσ. Thus, setting g = σ and f = σ ∪ {uσ}, Lemma 2.63 gives us a deformation

retraction ∆̃⇝ ∆̃− σ.

Because every nonempty face σ of ∆ has a corresponding vertex in Si
∆, then

we may continue in this way to remove every nonempty face σ of ∆ from ∆̃ -

in decreasing order of the size of σ - and thus obtain a deformation retraction

∆̃⇝ ∆̃|Si
∆
= B(∆).

The deformation in Lemma 6.21 has the following important corollary.

Corollary 6.22. Let ∆ be a simplicial complex on vertex set V , and i > dim∆+1.

The complex ∆̃ = ϕi(∆) is acyclic.

Proof. The condition on the value of i here means that every face σ of ∆ has a

corresponding vertex uσ in Si
∆, including the empty set. By Remark 6.10 we also

have that ∆̃ is equal to ϕm(∆) where m = dim∆+ 2.

We can decompose ∆̃ into those facets F which contain u∅ and those which do

not. Note that we have u∅ /∈ F if and only if F is a facet of ϕm−1(∆); and u∅ ∈ F

if and only if F −{u∅} is a facet of B(∆). Thus ∆̃ may be expressed as the union

of ϕm−1(∆) and B(∆) ∗ {u∅}, and these two subcomplexes intersect at B(∆).

By Lemma 6.21 we have a deformation retraction ϕm−1(∆) ⇝ B(∆), which

extends to a deformation retraction ∆̃⇝ B(∆) ∗ {u∅}. The complex B(∆) ∗ {u∅}
is a cone over u∅, and is thus acyclic.

Example 6.23. Once again, let ∆ be the boundary of the 2-simplex on vertex

set {x, y, z} as in Example 6.12. Corollary 6.22 gives us a deformation retraction

ϕ3(∆)⇝ B(∆).
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x y

z

u{x} u{y}

u{z}

u{x,y}

u{y,z}u{x,z}

u∅

ϕ3(∆) ⇝ B(∆) ∗ {u∅} ⇝ {u∅}
Remark 6.24. The deformation retractions given in these last few lemmas can be

seen as analogues to the deformation retractions given in Propositions 5.59 and

5.61 for partition complexes P(2, p,m).

Lemma 6.25. Let ∆ be a simplicial complex on vertex set V , i ≤ dim∆+1, and

∆̃ = ϕi(∆) on vertex set V ⊔Si
∆. For any nonempty face σ of ∆̃ contained entirely

in Si
∆, the complex link∆̃ σ is acyclic.

Proof. Suppose σ = {uτ1 , . . . , uτr} for some faces τ1 ⊂ · · · ⊂ τr of ∆. The condition

on i implies that τ1 ̸= ∅.
We must have τ1 ∈ link∆̃ σ because τ1 ⊔ {uτ1 , . . . , uτr} is a face of ∆̃. Also, no

vertex in V −τ1 can be contained in link∆̃ σ, because by construction, for any facet

G of ∆̃ containing uτ1 , we have G∩ V ⊆ τ1. We claim that there is a deformation

retraction link∆̃ σ ⇝ link∆̃ σ|V = ⟨τ1⟩, which is acyclic.

We start by removing every vertex uρ in link∆̃ σ and Si
∆ for which ρ ⊂ τ1.

Suppose uρ is any such vertex with |ρ| minimal. By the minimality of |ρ|, we know
that every facet of ∆̃ containing uρ must also contain ρ. Thus every facet of link∆̃ σ

containing uρ must also contain ρ. Setting g = {uρ} and f = {uρ} ∪ ρ, Lemma

2.63 gives us a deformation retraction link∆̃ σ ⇝ link∆̃ σ − {uρ}. Continuing in

this way we may remove every vertex uρ in Si
∆ from link∆̃ σ, in increasing order of

the size of ρ.

Now we remove the vertices uρ in link∆̃ σ and Si
∆ for which ρ ⊃ τ1. Suppose

uρ is any such vertex. Because ρ contains τ1, every facet of ∆̃ containing uρ and σ

must also contain τ1. Thus every facet of link∆̃ σ containing uρ must also contain

τ1. Setting g = {uρ} and f = {uρ} ∪ τ1, Lemma 2.63 allows us to remove uρ from

link∆̃ σ.

6.5 Links in B(∆)

Let ∆ be a simplicial complex and i > dim∆ + 1, and set ∆̃ = ϕi(∆). The

condition on i ensures that u∅ is a vertex in Si
∆.

In this section, we examine the links of those faces σ of ∆̃ for which ∅ ≠ σ ⊆ Si
∆

(i.e. the nonempty faces in the induced subcomplex ∆̃|Si
∆
). We begin by showing
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that for any such σ, we can express the homology of link∆̃ σ in terms of the

homology of link∆̃(σ ∪ {u∅}). As we will explain, this allows us to restrict our

attention to the links in the barycentric subdivision complex B(∆).

Proposition 6.26. Let ∆ be a simplicial complex and i > dim∆ + 1, and set

∆̃ = ϕi(∆). Suppose ∅ ̸= σ ⊆ Si
∆ is a face of ∆̃ with u∅ /∈ σ. For every j ≥ −1

we have an isomorphism H̃j(link∆̃ σ) ∼= H̃j−1(link∆̃(σ ∪ {u∅})).

Proof. As in the proof of Corollary 6.22, we may decompose link∆̃ σ into a sub-

complex A consisting of facets which contain u∅ and a subcomplex B consisting of

those which do not. The intersection of these subcomplexes consists of those faces

f in link∆̃ σ for which u∅ is not in f but f ⊔ {u∅} is a face of ∆̃. In other words,

we have A ∩B = link∆̃(σ ∪ {u∅}).
The subcomplex A is a cone over u∅, and is therefore acyclic. For every face

f in B, the intersection of f and Si
∆ contains only vertices uτ for which τ is

nonempty. All of these are faces of ϕm(∆) where m = dim∆ + 1, and hence we

have B = linkϕm(∆) σ, which is also acyclic by Lemma 6.25.

Thus for every j ≥ −1, the Mayer-Vietoris Sequence gives us an exact sequence

0 → H̃j(link∆̃ σ) → H̃j−1(link∆̃(σ ∪ {u∅})) → 0

as required.

Proposition 6.26 allows us to restrict our attention to those faces of ∆̃|Si
∆
which

contain u∅. Note we have link∆̃ u∅ = B(∆), and hence the link of any face of ∆̃

which contains u∅ must be a link in B(∆). For this reason, we devote the rest of

this section to investigating the links of B(∆).

Proposition 6.27. Let σ = {uτ1 , . . . , uτr} ∈ B(∆) for some faces τ1 ⊂ · · · ⊂ τr

of ∆. We have an isomorphism of complexes

linkB(∆) σ ∼= B(link∆ τr) ∗B(link∂τr τr−1) ∗ · · · ∗B(link∂τ2 τ1) ∗B(∂τ1).

Proof. For notational convenience, we set τ0 = ∅, so that B(∂τ1) may be rewritten

as B(link∂τ1 τ0).

Let Ar denote the induced subcomplex of B(∆) on vertices of the form uf where

f contains τr; and for each 0 ≤ j ≤ r − 1, let Aj denote the induced subcomplex

of B(∆) on vertices of the form uf for which we have τj ⊂ f ⊂ τj+1. Note that

Ar, . . . , A0 are pairwise disjoint subcomplexes of B(∆).

We claim that linkB(∆) σ = Ar ∗ Ar−1 ∗ · · · ∗ A0. This is sufficient to prove our

proposition because the complex Ar is isomorphic to B(link∆ τr) via the vertex

map uf 7→ uf−τr , and for each 0 ≤ j ≤ r − 1, the complex Aj is isomorphic to

B(link∂τj+1
τj) via the vertex map uf 7→ uf−τj .
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Let ρ = ρr ⊔ · · · ⊔ ρ0 be a face of Ar ∗ · · · ∗A0, with ρj ∈ Aj for each 0 ≤ j ≤ r.

For each 0 ≤ j ≤ r − 1, the face ρj must be of the form {uf1 , . . . , ufm} for some

sequence of faces τj ⊂ f1 ⊂ · · · ⊂ fm ⊂ τj+1 of ∆. Similarly the face ρr must

be of the form {uf1 , . . . , ufm} for some sequence of faces τr ⊂ f1 ⊂ · · · ⊂ fm of

∆. In particular, none of the vertices uτ1 , . . . , uτr are contained in ρ, so we have

ρ ∩ σ = ∅. Moreover, the faces of ∆ corresponding to vertices in ρ ⊔ σ may be

arranged in a strict sequence by inclusion, which means that ρ ⊔ σ ∈ B(∆). Thus

ρ is a face of linkB(∆) σ.

Conversely, suppose ρ = {uf1 , . . . , ufm} is any face of linkB(∆) σ. We may

decompose ρ into the disjoint union ρr ⊔ · · · ⊔ ρ0, where for each 0 ≤ j ≤ r− 1 the

face ρj contains all the vertices uf in ρ for which we have τj ⊂ f ⊂ τj+1, making ρj

a face of Aj; and the face ρr contains all the vertices uf in ρ for which f contains

τr, making ρr a face of Ar. Thus ρ is a face of Ar ∗ · · · ∗ A0.

In particular, Proposition 6.27 has the following important corollaries.

Corollary 6.28. Let ∆ and σ = {uτ1 , . . . , uτr} ∈ B(∆) be as in Proposition 6.27.

We have h(B(∆), σ) = h(∆, τr) + {|τr| − r}.

Proof. Just as in the proof of Proposition 6.27, we set τ0 = ∅ for notational conve-

nience. Using this proposition and Corollary 2.59, we can compute the homology

of linkB(∆) σ from the homologies of B(link∆ τr),B(link∂τr τr−1), . . . ,B(link∂τ1 τ0).

To compute these homologies, first recall from Section 6.3 that we have, for

any integer i ≥ −1,

H̃i(B(∆)) = H̃i(∆). (6.1)

Next, note that for each 0 ≤ j ≤ r − 1, the complex ∂τj+1 is the boundary of

the (|τj+1| − 1)-simplex. As observed in Example 4.35, the link of any face τ in

the boundary of the p-simplex is the boundary of the (p− |τ |)-simplex, which has

homology only at degree p− |τ | − 1. Thus we have

h(link∂τj+1
τj) = {|τj+1| − |τj| − 2}. (6.2)

Putting these results together, we find

h(B(∆), σ) = h(B(link∆ τr) ∗⊛r−1
j=0B(link∂τj+1

τj)) by Prop. 6.27

= h(B(link∆ τr)) +
r−1∑
j=0

h(B(link∂τj+1
τj)) + {r} by Cor. 2.59

= h(link∆ τr) +
r−1∑
j=0

h(link∂τj+1
τj) + {r} by Equ. 6.1

= h(∆, τr) +
r−1∑
j=0

{|τj+1| − |τj| − 2}+ {r} by Equ. 6.2

= h(∆, τr) + {|τr| − r}.
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Corollary 6.29. Let ∆ be a PR complex with degree type (1, . . . , 1). For any

σ ∈ B(∆) we have that h(B(∆), σ) is either empty or equal to {dim∆− |σ|}

Proof. For σ = ∅ we have h(B(∆), ∅) = h(B(∆)) = h(∆), because B(∆) is home-

omorphic to ∆. Thus h(B(∆), ∅) is empty, unless ∆ has homology, in which case

it is equal to {dim∆} by Corollary 4.31.

Now assume σ = {uτ1 , . . . , uτr} for some τ1 ⊂ · · · ⊂ τr in ∆. From Corollary

6.28, we know that h(B(∆), σ) = h(∆, τr) + {|τr| − |σ|}. If h(∆, τr) is empty (i.e.

link∆ τr is acyclic) then this sum is empty. Otherwise, by Corollary 4.31 we have

h(∆, τr) = {dim∆− |τr|}, and hence h(B(∆), σ) = {dim∆− |τr|}+ {|τr| − |σ|} =

{dim∆− |σ|}.

It follows from Corollary 6.29 that if ∆ is Cohen-Macaulay (i.e. PR with

degree type (1, . . . , 1)), then B(∆) is also Cohen-Macaulay. In fact, this turns out

to be the only condition under which B(∆) is PR, as the following proposition

demonstrates. This proposition will not be strictly necessary for our proof of

Theorem 6.14, but it helps to illuminate why the operation ϕi preserves the PR

property for PR complexes of degree type (dp, . . . , di, 1, . . . , 1), and why it fails to

do so for PR complexes of other degree types.

Proposition 6.30. Let ∆ be a simplicial complex. The following are equivalent.

1. B(∆) is PR.

2. B(∆) is Cohen-Macaulay (i.e. PR with degree type (1, . . . , 1)).

3. ∆ is Cohen-Macaulay (i.e. PR with degree type (1, . . . , 1)).

Proof. (3)⇒(2) follows from Corollary 6.29, and (2)⇒(1) is immediate. To prove

(1)⇒(3), we show the contrapositive.

First assume that ∆ is not PR. This means that ∆ has two faces τ1 and

τ2 of different sizes such that the intersection h(∆, τ1) ∩ h(∆, τ2) is nonempty.

Suppose ι is an index in both h(∆, τ1) and h(∆, τ2). By Corollary 6.28, we have

h(B(∆), uτ1) = h(∆, τ1) + {|τ1| − 1} and h(B(∆), uτ2) = h(∆, τ2) + {|τ2| − 1}.
Thus the complete homology index set ĥ(B(∆), 1) contains both ι + |τ1| − 1 and

ι + |τ2| − 1, and therefore cannot be a singleton. This means B(∆) is not PR by

Corollary 4.16.

Now assume that ∆ is PR of degree type (dp, . . . , d1) where dj > 1 for some

1 ≤ j ≤ p. By Proposition 4.25, ∆ must have two faces τ1 and τ2 such that

|τ2| = |τ1| + dj and h(∆, τ1) = {ι} while h(∆, τ2) = {ι − 1} for some index ι.

By Corollary 6.28, we have h(B(∆), uτ1) = {ι} + {|τ1| − 1} = {ι + |τ1| − 1}, and
h(B(∆), uτ2) = {ι − 1} + {|τ2| − 1} = {ι + |τ2| + dj − 2}. In particular, because
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dj > 1, we have dj − 2 > −1 and hence these two sets are not equal. Thus, once

again, the complete homology index set ĥ(B(∆), 1) is not a singleton, and so B(∆)

cannot be PR by by Corollary 4.16.

6.6 Proving Theorem 6.14

In this section, we bring together all of the results of the previous sections to prove

Theorem 6.14.

Proof of Theorem 6.14. Let ∆ be a PR complex with offset s and degree type

(dp, . . . , di, 1, . . . , 1︸ ︷︷ ︸
i−1

) for some p ≥ i ≥ 1, and set ∆̃ = ϕi(∆). We aim to prove that

∆̃ is PR with degree type (dp, . . . , di + 1, 1, . . . , 1).

By Proposition 4.25, the only nonempty complete homology index sets are the

ones given in Table 6.1 below. By the same proposition, we can show that ∆̃

is PR with the desired degree type by proving that its only nonempty complete

homology index sets are the ones given in Table 6.2.

Table 6.1: Homology Table 6.2: Required Homology

Index Sets of ∆ Index Sets of ∆̃

ĥ(∆,m) m

{p− 1} s

{p− 2} s+ dp
...

...

{i− 1} s+
∑p

j=i+1 dj

{i− 2} s+
∑p

j=i dj

{i− 3} s+
∑p

j=i dj + 1
...

...

{0} s+
∑p

j=i dj + (i− 2)

{−1} s+
∑p

j=i dj + (i− 1)

ĥ(∆̃,m) m

{p− 1} s

{p− 2} s+ dp
...

...

{i− 1} s+
∑p

j=i+1 dj

{i− 2} s+
∑p

j=i dj + 1

{i− 3} s+
∑p

j=i dj + 2
...

...

{0} s+
∑p

j=i dj + (i− 1)

{−1} s+
∑p

j=i dj + i

Thus it suffices to show that for any natural number 0 ≤ m ≤ s+
∑p

j=i dj + i, we

have

ĥ(∆̃,m) =


ĥ(∆,m) if m < s+

∑p
j=i dj

∅ if m = s+
∑p

j=i dj

ĥ(∆,m− 1) if m > s+
∑p

j=i dj.

(6.3)

To this end, we fix a face σ of ∆̃ of size |σ| = m, and investigate the homology

index set h(∆̃, σ).

We start by decomposing σ into σ = σV ⊔ σS, where σV is a subset of V (and

is thus in ∆) and σS is a subset of Si
∆ (and is thus in B(∆)).
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Note that link∆̃ σ = linklink
∆̃
σV

σS. Thus, using the isomorphism in Lemma

6.15, we may view link∆̃ σ as a link in the complex ϕi(link∆ σV ), and then apply

the results of Sections 6.4 and 6.5 to this link.

To work out which results to apply, we will need to determine whether i is less

than, equal to, or greater than dim(link∆ σV ) + 1. By Proposition 4.22 we know

dim∆ = s+
∑p

j=i dj + i− 2, which means we have

dim(link∆ σV ) + 1 = s+

p∑
j=i

dj + i− 1− |σV |. (6.4)

We now examine a number of different cases.

• Case 1: Assume σS = ∅ (i.e. σ ∈ ∆). By Lemma 6.15, we have an

isomorphism of complexes link∆̃ σ ∼= ϕi(link∆ σ).

Case 1.1: If |σV | < s+
∑p

j=i dj, then by Equation (6.4) above, we have

i ≤ dim(link∆ σ) + 1. Thus Lemma 6.19 gives us a deformation retraction

ϕi(link∆ σ)⇝ link∆ σ, which means we have h(∆̃, σ) = h(∆, σ) ⊆ ĥ(∆,m).

Case 1.2: If |σV | ≥ s+
∑p

j=i dj, then by Equation (6.4) above, we have

i > dim(link∆ σ) + 1. By Corollary 6.22, the complex ϕi(link∆ σ) is acyclic,

so we have h(∆̃, σ) = ∅.

• Case 2: Assume σS ̸= ∅ (i.e. σ /∈ ∆). As mentioned above we use Lemma

6.15 to reinterpret link∆̃ σ as a link in ϕi(link∆ σV ). Specifically we have

link∆̃ σ = linkϕi(link∆ σV ) τ for some nonempty face τ contained in Si
link∆ σV

,

obtained by relabelling the vertices of σS under the isomorphism given in

Lemma 6.15. In particular we have |σS| = |τ |.

Case 2.1: If |σV | < s +
∑p

j=i dj, then by Equation (6.4) above, we

have i ≤ dim(link∆ σV ) + 1. By Lemma 6.25, the complex linkϕi(link∆ σV ) τ is

acyclic, so we have h(∆̃, σ) = ∅.

Case 2.2: Now let |σV | ≥ s +
∑p

j=i dj. By Equation (6.4) above, we

have i > dim(link∆ σV ) + 1 which means u∅ ∈ Si
link∆ σV

. We also have that

link∆ σV is PR with degree type (1, . . . , 1︸ ︷︷ ︸
j

) for some 0 ≤ j ≤ i− 1.

First we assume u∅ ∈ τ . In this case we have

h(∆̃, σ) = h(ϕi(link∆ σV ), τ) by Lemma 6.15

= h(B(link∆ σV ), τ − {u∅}) linkϕi(Γ) u∅ = B(Γ)

⊆ {dim(link∆ σV )− |τ |+ 1} by Corollary 6.29

= {dim∆− |σV | − |σS|+ 1} |τ | = |σS|
= {dim∆−m+ 1} by definition of m

= ĥ(∆,m− 1) by Remark 4.32.
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Now we assume u∅ /∈ τ . In this case we have

h(∆̃, σ) = h(ϕi(link∆ σV ), τ) by Lemma 6.15

= h(ϕi(link∆ σV ), τ ⊔ {u∅}) + {1} by Prop. 6.26

⊆ ĥ(∆,m) + {1} by the u∅ ∈ τ case

= {dim∆−m}+ {1} by Remark 4.32.

= ĥ(∆,m− 1) by Remark 4.32.

This exhausts all the possible cases for σ, and it is sufficent to prove that

Equation (6.3) is satisfied, because

– For m < s+
∑p

j=i dj, any face of ∆̃ of size m falls under case 1.1 or 2.1,

and hence ĥ(∆̃,m) = ĥ(∆,m).

– For m = s+
∑p

j=i dj, any face of ∆̃ of size m falls under case 1.2 or 2.1,

and hence ĥ(∆̃,m) = ∅.

– For n > s+
∑p

j=i dj, any face of ∆̃ of size m falls under case 1.2, 2.1 or

2.2, and hence ĥ(∆̃,m) = ĥ(∆,m− 1).



Chapter 7

Future Directions

We end by briefly considering a number of future avenues of research arising from

the topics we have presented.

7.1 Minimal Numbers of Vertices and Shift Types

Question 5.1 still remains unsolved for most degree types. That is, for an arbitrary

given degree type d we do not know the minimum value of n for which there exists

a PR complex of degree type d on n vertices.

Recall (from the discussion in Section 5.1) that this is in fact equivalent to Ques-

tion 4.3, because an answer to this question for any given degree type d also tells us

all of the possible shift types of pure resolutions arising from Stanley-Reisner ide-

als that have d as their difference sequence. Thu, answering this question entirely

would provide a full analogue of the first Boij-Söderberg conjecture for squarefree

monomial ideals.

Our procedure in Chapter 6 gives us upper bounds for n for any given degree

type, but in general (as noted already), these bounds seem to be far greater than

necessary. As an illustration of quite how excessive these bounds are, consider

using the procedure to generate a PR complex of degree type (3, 1). To do this,

we start with the boundary of the 2-simplex ∆ which has degree type (1, 1), and

apply the operation ϕ2 to ∆ twice. The complex ϕ2(∆), as shown below,

has 9 vertices. It also has 9 facets and 9 edges, each of which has a corresponding

vertex in the set S2
ϕ2(∆). Thus the set S

2
ϕ2(∆) contains 18 vertices, and the complex

147
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ϕ2
2(∆) on vertex set V ⊔ S2

∆ ⊔ S2
ϕ2(∆) has a total of 27 vertices. Meanwhile, the

cycle complex C3,1 has only 7 vertices.

The families of PR complexes presented in Chapter 5 lower the bounds for n

for their given degree types; and in a few simple cases they even resolve Question

5.1 entirely. As noted in Sections 5.3.2 and 5.4, we strongly suspect that cycle

complexes and intersection complexes have minimal numbers of vertices for their

given degree types; we hope to find proofs for these statements in due course.

Answering Question 5.1 in general for arbitrary degree types may be currently

out of reach; however answers for some other specific cases should be manageable.

For example we could restrict our attention to degree types of projective dimension

3; or attempt to improve the bounds for n given by partition complexes, for degree

types of the form (

p︷ ︸︸ ︷
1, . . . , 1, a, 1, . . . , 1︸ ︷︷ ︸

m

).

7.2 Ideals Generated in Degree d

Edge ideals are Stanley-Reisner ideals generated in degree 2. It may be of interest

to consider whether results about their Betti diagrams can be generalised to the

case of Stanley-Reisner ideals generated in some arbitrary degree d; or at least to

see if similar results can be obtained for specific higher degrees.

For example, we could search for analogues of Theorems 3.3 and 3.5 on the

dimensions of the cones Cn and Ch
n, for cones generated by squarefree monomial

ideals generated in higher degrees. It is possible that the formulae given in Theo-

rems 3.3 and 3.5 may turn out to be instances of a more general result.

Another result about edge ideals which might admit a generalisation is the

classification of all edge ideals with pure resolutions, due to Fröberg, Bruns and

Hibi. To state it, we require the following terminology.

Definition 7.1. Let C be a cycle of edges {v1, v2}, . . . , {vm−1, vm}, {vm, v1} in

a graph G. A chord for C is an edge of G of the form {vi, vj} for some non-

consecutive 1 ≤ i < j ≤ m. We say G is chordal if all of its cycles of length at

least 4 have a chord.

The classification is as follows. The first of these three cases comes from The-

orem 1 in [Frö90]; the latter two come from Theorem 2.1 in [BH94]. Note that the

requirement that G has no isolated vertices is harmless, by Corollary 3.16.

Theorem 7.2. Let G be a graph with no isolated vertices. The edge ideal I(G)

has a pure resolution if and only if the complement Gc is of one of the following

three forms.

1. Gc is chordal, in which case I(G) has a pure resolution with shift type degree

type (1, . . . , 1).
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2. Gc is cyclic, in which case I(G) has a pure resolution with degree type

(2, 1, . . . , 1).

3. Gc is the 1-skeleton of a cross polytope, in which case I(G) has a pure reso-

lution with degree type (2, . . . , 2).

Remark 7.3. We also know all of the possible Betti diagrams arising from the

three families of graphs presented in Theorem 7.2. For graphs of the first form,

[ES13] proves that all corresponding Betti diagrams can be obtained from thresh-

old graphs (Theorem 4.4) and enumerated accordingly (Proposition 4.11). We

have seen the Betti diagram of the complement of the cyclic graph Cm already in

Proposition 3.14; and by repeated application of Lemma 3.17 we can compute the

Betti numbers of the cross polytope Om as βi,2i+2(O
m) =

(
m+1
i+1

)
for 0 ≤ i ≤ m.

This classification raises a natural question.

Question 7.4. For a given positive integer d, what are the possible pure resolu-

tions of Stanley-Reisner ideals generated in degree d?

Recall that the degree in which such an ideal I is generated is equal to the

value of c0 for which β0,c0(I) is nonzero. Thus Question 7.4 is similar to Question

5.1, but in reverse: instead of fixing a degree type of a pure resolution and asking

what the possible values of n and c0 could be for PR complexes of that degree

type, we fix a value for c0 and ask which pure resolutions we can get which have

that value of c0 as their initial shift. Due to this similarity it may be useful to

attack these two problems in tandem.

As observed in Remark 2.53, the minimum degree of the generators of I∗∆ is

equal to the codimension of ∆. Thus our problem can be reframed as the task of

finding all PR complexes of a given codimension.

If we are to reframe the problem in this light, it would be useful to obtain a

restatement of Theorem 7.2 in terms of PR complexes. This would require finding

the Alexander duals of the complexes corresponding to the three cases of graphs

above. We present the duals of cross polytopes below.

Lemma 7.5. The dual of the d-dimensional cross polytope Od can be obtained by

applying the scalar multiple operation f 2 from Definition 6.1 to the boundary of

the d-simplex ∂∆d. That is,

(Od)∗ = f 2(∂∆d).

Proof. The minimal nonfaces of the cross polytopeOd consist of d+1 disjoint edges.

Thus we can think of Od as the complex on vertex set V = {u1
i , u

2
i : 1 ≤ i ≤ d+1}

whose minimal nonfaces are the edges ei = {u1
i , u

2
i } for each i ∈ [d+1]. The facets

of its Aleander dual are the faces V − ei for each i ∈ [d+1]. Meanwhile the facets

of the complex ∂∆d on vertex set [d+1] are the sets [d+1]−{i} for each i ∈ [d+1],

which are mapped to V − ei under the operation f 2.
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We do not currently know of a concrete description for the Alexander duals of

clique complexes of cyclic and chordal graphs.

7.3 Homology-preserving Subcomplexes of B(∆)

Let ∆ be a simplicial complex. Recall from the discussion in Section 6.3 that ∆

is homeomorphic to its barycentric subdivision B(∆) and hence both complexes

have identical homology. Recall also (from the same section) that B(∆) is equal

to the induced subcomplex ϕm(∆)|S∆
when m = dim∆+ 1.

While investigating the ϕi operations as given in Definition 6.9, it came to our

attention that even for smaller values of i, the induced subcomplex ϕi(∆)|Si
∆
seems

to have identical homologies to ∆ up to a certain degree. This leads to a natural

question.

Question 7.6. What is the smallest subcomplex of B(∆) that preserves the ho-

mological data of ∆ up to a given degree?

Proposition 6.27 demonstrates that B(∆) preserves a lot of information about

the homology of the links in ∆. This observation led us to consider the following

subcomplexes of B(∆).

Definition 7.7. Let i ≥ −1 be an integer, and let Li(∆) be the induced subcom-

plex of B(∆) on vertex set {uσ ∈ S∆ : H̃j(link∆ σ) ̸= 0 for some j ≤ i}.

Definition 7.8. Let L(∆) be the induced subcomplex of B(∆) on vertex set

{uσ ∈ S∆ : h(∆, σ) ̸= ∅} (i.e. L(∆) =
⋃

iLi(∆)).

Based on some experimental data from the software system Macaulay2 ([GS]),

our belief is that the homology of the complex Li(∆) agrees with the homology of

∆ up to degree i. In other words, we make the following conjecture.

Conjecture 7.9. For each −1 ≤ j ≤ i we have H̃j (Li(∆)) = H̃j(∆).

In particular, L(∆) is equal to Li(∆) for some sufficiently large i, so a proof of

Conjecture 7.9 would also prove the following slightly weaker conjecture.

Conjecture 7.10. For every j ≥ −1 we have H̃j (L(∆)) = H̃j(∆).

7.4 Extremal rays and Defining Halfspaces

A complete description of the cone Dn, or any of its subcones, would require a

classification either of extremal rays or of defining halfspaces. We hope that the

results in Chapter 3, on the dimensions of these cones and their minimal ambient

vector spaces, might prove useful in attempts to establish defining halfspaces.



7.4. EXTREMAL RAYS AND DEFINING HALFSPACES 151

Classifying the extremal rays of Dn for arbitrary n is a difficult task. As noted

in Section 4.1, these rays are not all given by pure diagrams, nor is every pure

diagram in Dn extremal.

Example 7.11. If ∆ is the complex

on 5 vertices, then the diagram β = β(I∆) of its Stanley-Reisner ideal is

0 1 2

2 4 2 .

3 . 3 2

which is not pure. However, using the ‘Polyhedra’ ([BK]) and ‘BoijSoederberg ’

([EGSSS]) packages on the software system Macaulay2 we found that this diagram

is in fact an extremal ray of Dn. We will not prove this explicitly here; instead we

show simply that it cannot be decomposed into a rational sum of pure diagrams

in Dn, which demonstrates that Dn must contain at least some non-pure extremal

ray.

Suppose for contradiction that our diagram β can be decomposed into a rational

sum of pure diagrams
∑

i qiα
i. In particular, β2,5 is nonzero, so at least one of the

pure diagrams α in this decomposition must satisfy α2,5 ̸= 0. Our two options

for the shift type of α are (5, 4, 2) and (5, 3, 2). The first option would require a

pure diagram of degree type (1, 2), but we saw in Section 5.3.2 (Proposition 5.10)

that the smallest PR complex of degree type (1, 2) is the cycle complex C1,2 on

6 vertices. So α must instead have shift type (5, 4, 2), and the only option is the

diagram corresponding to the the cycle complex C2,1, which is

0 1 2

2 5 5 .

3 . . 1

Because we have β2,5 = 2 = 2α2,5, the coefficient of α in the decomposition must

be 2. But this is a contradiction because 2α0,2 = 10, which is greater than β0,2.

Thus D5 contains some extremal rays which are not pure.

Example 7.12. If ∆ is the complex
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on 3 vertices, then the diagram β = β(I∆) of its Stanley-Reisner ideal is

0 1

2 2 1

This diagram is pure, but it can be expressed as a sum of smaller pure diagrams

in D3. Specifically, using the notation β(∆) to stand in for β(I∆) as in Chapter 3,

we have

β

  = 1
2
β

  + 1
2
β

 
0 1

2 2 1
= 1

2

(
0

2 1

)
+ 1

2

(
0 1

2 3 2

)
Thus β is a pure diagram in D3 which is not extremal.

Of course, as a consequence of the Boij-Söderberg conjectures, all pure diagrams

in Dn which correspond to Cohen-Macaulay complexes are extremal rays of the

wider Betti cone generated by all R-modules, and hence of Dn itself. This gives

us the following proposition.

Proposition 7.13. If ∆ is a complex of any of the following forms, then the Betti

diagram β(I∆) lies on an extremal ray of the cone Dn.

1. The skeleton complex Skelr([m]) for some −1 ≤ r < m ≤ n.

2. The d-dimensional cross polytope Od for some d ≤ n
2
− 1.

3. The 1-dimensional cycle Cm for some m ≤ n.

Proof. For part (1), the complex Skelr([m]) has a pure Betti diagram by Lemma

3.8, and it satisfies Reisner’s criterion for Cohen-Macaulay complexes (this can be

shown by an inductive argument on r ≥ −1, using the fact that the link of any

vertex in Skelr([m]) is equal to Skelr−1([m− 1])).

For parts (2) and (3), we saw that both the complexes Od and Cm have pure

Betti diagrams in Theorem 7.2, and they are both boundaries of simplicial spheres,

which means they are Cohen-Macaulay by Remark 4.37.

Remark 7.14. The above proposition is not an exhaustive list of the pure extremal

rays of the cone Dn. However, these diagrams do account for all pure extremal

rays of Dn of their particular shift types. To see why, suppose (for example) that β

is a pure diagram in Dn with the same shift type c = (cp, . . . , c0) as the diagram of

a skeleton complex. The second Boij-Söderberg Theorem allows us to decompose

the ray t ·β into a sum of rays of the form t ·π(c′) for subsequences c′ = (cr, . . . , c0)

of c; and for every such subsequence c′ there is a corresponding skeleton complex
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on up to n vertices whose diagram lies on the ray t · π(c′), which means that all of

these rays lie in Dn. A similar argument holds for pure diagrams with the same

shift type as cross polytopes or cyclic graphs.

Thus the diagrams of skeleton complexes are the only linear extremal rays

in Dn; and the diagrams of cross polytopes and cyclic graphs are, respectively,

the only pure extremal rays with shift types of the form (2r, 2r − 2, . . . , 4, 2) and

(m + 2,m,m − 1, . . . , 3, 2). In particular, this accounts for all the pure extremal

rays in Cn, by Theorem 7.2.

Using Macaulay2 we have found the extremal rays of Dn for low values of n,

but we have so far failed to establish any patterns for the non-pure examples. We

hope that further investigation with Macaulay2 might yield some examples of non-

pure rays that occur for arbitrary values of n (although a complete description of

the extremal rays of Dn is probably too ambitious).
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List of Symbols and Notation

Notation Description

[n] The set {1, . . . , n}
Vn The rational vector space

⊕
d∈ZQn+1 containing all Betti

diagrams of R-modules

pdimM The projective dimension of the R-module M

regM The Castelnuovo-Mumford Regularity of the R-module M

dimM The Krull-dimension of the R-module M (not the dimension of M

as a K-vector space)

codimM The codimension of the R-module M (i.e. n− dimM)

depthM The depth of the R-module M

HKj(β) The expression
∑

i,d(−1)idjβi,d, from the Herzog-Kühl equations

⟨g1, . . . , gm⟩ The ideal in R generated by the polynomials g1, . . . , gm

ht I The height of the ideal I

V (∆) The vertex set of the complex ∆

dim∆ The dimension of the complex ∆

codim∆ The codimension of the complex ∆ (i.e. n− dim∆− 1)

link∆ σ The link of the face σ in the complex ∆

∆∗ The Alexander Dual of the complex ∆

∆1 ∗∆2 The join of the complexes ∆1 and ∆2

⊛m
i ∆i The join of the complexes ∆1, . . . ,∆m

C∆ The cone of the complex ∆

S∆ The suspension of the complex ∆

⟨F1, . . . , Fm⟩ The complex generated by the sets F1, . . . , Fm

⟨F1, . . . , Fm⟩G The complex generated by the sets of the form gFi for 1 ≤ i ≤ m

and g an element of the group G

∆U ,∆|U The induced subcomplex of ∆ on vertex set U

∆− g The deletion of the face g from the complex ∆ (i.e. the largest

subcomplex of ∆ that does not contain g)

∆ stard v The complex obtained by starring the vertex v on to the complex

∆ in dimension d, as laid out in Definition 3.47, after [Kli07]

xσ The product
∏

i∈σ xi in R of variables indexed by the set σ ⊆ [n]
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160 List of Symbols and Notation

Notation Description

I∆ The Stanley-Reisner ideal of the complex ∆

I∗∆ The dual Stanley-Reisner ideal of the complex ∆

K[∆] The Stanley-Reisner ring of the complex ∆

∆j The complete j-simplex

∂∆j The boundary of the j-simplex

Skelr(∆) The r-skeleton of the complex ∆

Od The d-dimensional cross polytope

H̃i(∆) The ith reduced homolgy of ∆ with coefficients in K
h(∆) The set of degrees at which the complex ∆ has non-trivial

homologies over K
h(∆, σ) The set of degrees at which the complex link∆ σ has non-trivial

homologies over K
ĥ(∆,m) The union of the sets h(∆, σ) for which σ has cardinality m

V (G) The vertex set of the graph G

E(G) The edge set of the graph G

Gc The complement of the graph G

Cl(G) The complex of cliques of the graph G

Ind(G) The independence complex of the graph G

L The graph consisting of a single edge

Km The complete graph on m vertices

Em The empty graph on m vertices

Cm The cyclic graph of order m

I(G) The edge ideal of the graph G

C(a,b) The Betti cone generated by all diagrams of Cohen-Macaulay

R-modules of codimension h whose shifts are bounded by the

sequences a and b

π(c) The smallest integer-valued Betti diagram of shift type c

belonging to a Cohen-Macaulay module

Dn The Betti cone generated by Stanley-Reisner ideals in R

Dh
n The Betti cone generated by Stanley-Reisner ideals in R of height

h

D̃n The Betti cone generated by Stanley-Reisner ideals in R of height

h and degree at least 2

D̃h
n The Betti cone generated by Stanley-Reisner ideals in R of height

h and degree at least 2

Cn The Betti cone generated by edge ideals in R

Ch
n The Betti cone generated by edge ideals in R of height h



List of Symbols and Notation 161

Notation Description

I(C) The set of indices (i, d) for which the Betti cone C contains

diagrams β with βi,d ̸= 0

W(C) The minimal subspace of Vn containing the cone C

S(β) The shape of the Betti diagram β (i.e. the set of indices for which

we have βi,d ̸= 0)

P∆ The link poset of the complex ∆, as given in Definition 4.56

δ1
τ→ δ2 The complexes δ1 and δ2 in the link poset P∆ satisfy δ2 = linkδ1 τ

Sym(V ) The symmetric group on the set V

Sn The symmetric group on the set [n]

S0
p The symmetric group on the set {0, . . . , p}

Ca,b The cycle complex of type (a, b) as given in Definition 5.11

I(m) The intersection complex associated to the sequence m as given in

Definition 5.18

P(a, p,m) The partition complex associated to the sequence (a, p,m) as

given in Definition 5.43

P̂(a, p,m) The closed partition complex associated to the sequence (a, p,m)

as given in Definition 5.51

V a
p The vertex set for the partition complex P(a, p,m)

Xp The set of boundary vertices for the partition complex P(a, p,m)

Y a
p The set of partition vertices for the partition complex P(a, p,m)

P(a, i) The set of partitions of a+ i− 2 into i parts

Gλ
p,i The λ-generating set of the partition complex P(a, p,m) for some

partition λ ∈ P(a, i), as given in Definition 5.42

σX The set of boundary vertices in the subset σ ⊆ V a
p

σY The set of partition vertices in the subset σ ⊆ V a
p

Supp(σ) The set of indices 0 ≤ i ≤ p such that σ contains a vertex of the

form xi or y
j
i

Si
∆ The set of symbols of the form uσ where σ is a face of the complex

∆ of size at least dim∆ + 2− i

B(∆) The barycentric subdivision of the complex ∆

A+B,A ⊔B The disjoint union of the structures A and B

∆1 ⇝ ∆2 A deformation retraction between the complexes ∆1 and ∆2

A
∼→ B A bijection between the sets A and B

A ∼= B An isomorphism between the structures A and B

a 7→ b A map sending the element a in one structure to the element b in

another
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