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Abstract

In this thesis, we provide a separation of variables for quantum Gaudin models
associated to low rank matrix Lie algebras, and a description of the finite
classical Gaudin model for any semisimple Lie algebra from a gauge theory.

We separate the variables for the quantum sl2-Gaudin model with irregular
singularities, producing an explicit coordinate change and comparing this to the
known solution provided by the Bethe Ansatz. We also produce a separation of
variables of the gl3-Gaudin model with irregular singularities following previous
work separating the variables in the XXX-chain. We do this both by directly
taking the limit of the XXX case, and by working only in the Gaudin setting.

The affine Gaudin model, associated with an untwisted affine Kac-Moody
algebra, is known to arise from a certain gauge fixing of 4-dimensional mixed
topological-holomorphic Chern-Simons theory in the Hamiltonian framework.
We show that the finite classical Gaudin model, associated with a finite-
dimensional semisimple Lie algebra, can likewise be obtained from a similar
gauge fixing of 3-dimensional mixed BF theory with certain line defects in the
Hamiltonian framework.
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1

Introduction: The Gaudin Model and
Integrability

1.1 Introduction

The Gaudin model, first introduced by Michel Gaudin in 1976 [32], was ini-
tially conceived as an N -site quantum integrable spin chain with long range
interactions, based on the Lie algebra sl2. Its dynamics are governed by the
N commuting Gaudin Hamiltonians, which are given in terms of the standard
basis {e, f, h} by

Hi ∶=
N

∑
j=1
j≠i

1
2h
(i)h(j) + e(i)f (j) + f (i)e(j)

zi − zj

,

for sites zi ∈ C. It was later realised that the construction can be adapted
for any finite-dimensional and reductive Lie algebra g [33], and furthermore
that one can define a classical version of the model. There later came further
variations, such as affine Gaudin models, dihedral [66], and cyclotomic Gaudin
models [70], as well as adaptions such as adding in irregular singularities to
the Lax matrix. Though originally conceived as a spin system specifically, the
Gaudin model (and its generalisations) turns out to include a broad class of
integrable systems with linear Lax relations

[L1(z), L2(w)] = [
C12

z −w
,L1(z) +L2(w)].

That is, by choosing a specific representation of the underlying Lie algebra, one
can obtain for example the Neumann model which describes the movement of
particles on a sphere subject to harmonic forces [3, §2.11]. For this model we

9



10 Chapter 1. Introduction: The Gaudin Model and Integrability

can take a classical Gaudin model with a double pole at infinity and apply the
representation described in [68, §5.4].

In particular, classical affine Gaudin models, based on affine Kac-Moody
algebras, are currently an active area of study - in part due to their ingrained
description of various 2-dimensional integrable field theories [66], and their
recent connections to gauge theory [65], which, as we will see, is not unrelated.
This thesis, on the other hand, focuses on Gaudin models constructed from
finite-dimensional Lie algebras - or "finite Gaudin models" - which are in
many ways better understood, particularly with regards to their quantisation.
Another reason to study this more straightforward case is therefore its potential
as a toy model by which we can learn more about the affine Gaudin model.

To solve the original sl2 version of his model (by which we mean finding the
joint spectrum and common eigenvectors of the Gaudin Hamiltonians), Gaudin
used the reliable and widely known technique of the Bethe Ansatz [31, 32],
which has since been extended to Gaudin models constructed from arbitrary
simple Lie algebras [31]. By this method one can construct multiple joint
eigenvectors of the Gaudin Hamiltonians inductively from a starting reference
vector, with dependence on some parameters subject to certain equations -
known as the Bethe roots and Bethe equations respectively. While the Bethe
Ansatz has been successfully applied to a wide range of models [43], it does
have a few limitations; for instance, in order to guarantee the existence of
the reference vector we are restricted to highest weight representations of the
Gaudin model, which narrows the scope. However, a critical shortcoming of
the Bethe Ansatz in the Gaudin model is that it has been shown not to provide
a complete set of eigenvectors beyond rank 2 [47].

The Bethe Ansatz corresponds to a deeper story underlying the Gaudin
model in terms of opers [29], which we might loosely describe as equivalence
classes of certain connections of the underlying Lie algebra g. Each eigenvector
provided by the Bethe Ansatz corresponds to a particular type of oper, known as
a Miura oper. With a more complex set up, involving machinery such as vertex
algebras and affine Kac-Moody algebras, it has recently been shown directly
that there is a one-to-one correspondence between opers and the eigenspaces of
the Gaudin model [55]; in other words, unlike the Bethe Ansatz, the oper story
is complete.

Another approach to solving integrable models, developed by Sklyanin for
a large number of systems [60] in the late 20th century including the quantum
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sl2-Gaudin model [58], is Separation of Variables, which is the subject of the
first part of this thesis. Though the phrase is widely used in the context
of decoupling multivariate differential equations, here we specifically mean
Separation of Variables in the sense of solving integrable systems - in either
case, the key idea is to reduce a multidimensional problem to a set of one-
dimensional problems. Initially, this idea strictly referred to an explicit change
of variables from a differential operator realisation of the model in question to
some new coordinates in which the eigenvalue equations (for the quantum case)
decouple. Later the notion was extended to include defining some variables
{qi}Di=1 for which we can factorise our wavefunction Ψ into functions dependent
on a single variable. That is,

Ψ(q1, . . . , qD) = ψ1(q1)ψ2(q2)⋯ψD(qD). (1.1)

Though it has been around for longer than the oper perspective, Sklyanin’s
Separation of Variables for the Gaudin model miraculously produces a dif-
ferential equation in each variable that exactly corresponds to the universal
oper

cdet (∂z +L(z)) , (1.2)

where "cdet" denotes the column-ordered determinant, which we will define
later. This strongly suggests that it also provides a complete solution. Hence
Separation of Variables has the potential to provide something of a middle-
ground between the usability of the Bethe Ansatz and the completeness of the
oper story, if this were to extend to other versions of the Gaudin model such
as those associated to higher rank matrix Lie algebras.

Separately from notions of solving models, another recent advance is the
perspective on integrability provided by gauge theories, put forward by Costello
[13]. This seemingly unlikely connection can be motivated by noticing the
visual similarity between a pictorial representation of the quantum Yang Baxter
equation (which underlies the integrability of the XXX spin chain)

=
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and an allowed move in knot theory (c.f. Jones and others), with the additional
structure of the lines being specified to cross "over" or "under" [71],

=

whose invariants are described by a 3-dimensional Chern-Simons theory. Due to
the additional dependence on a complex spectral parameter, one must instead
use a 4-dimensional version of the theory to describe the XXX chain - this idea
was solidified alongside Witten and Yamazaki [14, 15]. This gauge theoretic
perspective could not only offer a new perspective on problems in integrability,
but perhaps provide us with a systematic method of defining new integrable
systems.

4-dimensional Cherns-Simons Theory has also been shown [16, 40, 20] to
admit a description of 2-dimensional integrable field theories; the equations of
motion turn out to be the zero curvature equation, which is also the requirement
of the Lax connection of an integrable field theory. Given the alternative
algebraic description of integrable field theories from affine Gaudin models, this
naturally led to the study of a link between this gauge theory and affine Gaudin
models by Vicedo [66]. In a certain gauge, the Lax algebra of the affine Gaudin
model may be found as the Dirac bracket on the theory. A noticeable missing
link is therefore an analogous description of the finite classical Gaudin model
from a gauge theory, which we will see later turns out to be 3-dimensional mixed
BF Theory with certain defects. Since we understand the quantisation of the
Gaudin model, we would hope that considering this from the 3-dimensional BF
Theory perspective could lead to a framework for quantising other integrable
models.

Let us discuss how we will approach these two topics within this thesis.

1.1.1 Plan of thesis

This thesis is split into three main parts. In this Chapter we introduce the
quantum and classical Gaudin models and discuss integrability using these as
examples. We describe the commuting quantum Hamiltonians and the Lax
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formulation of the model. We spend some time looking at the quantum gln

Gaudin model in particular, and introducing higher order singularities via the
machinery of Takiff Lie algebras - including a double pole at infinity. We touch
on related models, the Hitchin system and the XXX-chain, which appear on
the peripheries of the results of this thesis.

Part I, which includes Chapters 2 and 3, concerns Separation of Variables
for quantum Gaudin models associated to matrix Lie algebras. In Chapter 2
we look at the sl2-Gaudin model and extend Sklyanin’s Separation of Variables
[58] to cover Gaudin models with irregular singularities, producing an explicit
change of variables from an initial differential operator realisation. We compare
this to the solution provided by the Bethe Ansatz for a version of the model
with highest weight representations. We then briefly discuss how both methods
relate to the underlying oper story, and what this means for completeness.

Then, in Chapter 3 we move to the rank 3 case, initially constructing the
new variables and separated equation as a limit of the Separation of Variables
of the XXX chain, as Ribault does in [52]. We then go on to recreate this
directly in the Gaudin setting, though without the explicit change of variables
we had in the sl2 case. We discuss several avenues for generalising this to higher
rank Gaudin models, and the pitfalls we have found in each.

Part II of this thesis, which contains Chapter 4 only, concerns the gauge
theoretic perspective of integrability. In particular we present the results of the
paper [67] in which we gauge fix 3-dimensional mixed topological holomorphic
BF Theory and perform a Hamiltonian analysis to obtain the Lax algebra of the
finite classical Gaudin model. To motivate this, we give a brief overview of the
more recent development of this point of view in 4 dimensional Chern-Simons
theory in particular - both by Costello, Witten, and Yamazaki for the XXX
chain and integrable field theories [14, 15, 16], and by Vicedo for the affine
Gaudin model [65]. We finish by suggesting future directions by which we might
better understand the correspondence between gauge theories and integrable
models.

We also include an appendix detailing the method by which we constructed
the realisations of Takiff Lie algebras we use in Part I. We go through the
method in full for the Takiff Lie algebra sl2[ε]/ετ , and then state the outcome
of the same method for gl3 and gl3[ε]/ετ .
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1.2 The finite Gaudin model and linear Lax relations

We define the finite Gaudin Model, and discuss the linear Lax relations. We
begin with the quantum Gaudin model and later take the classical limit to
define the classical version, though one could equally do this in reverse, see for
example [41, §7.1].

1.2.1 The Quantum Gaudin model

We can consider the quantum finite Gaudin model as spin-particles at different
points in the plane or on the complex sphere with the strength of interaction
dependent on the distance between them. For a more concrete definition, let g

be a finite dimensional complex reductive Lie algebra, fix N ∈ Z≥1 and then fix
N distinct complex numbers zi ∈ C. To each of these points, we attach a copy
of g such that we have N copies overall, as represented in the following image
for N = 3.

z1

z2
z3

CP 1

g(1)

g(2)

g(3)

Taking all these copies together, we have the algebra of observables for the
Gaudin model ⊗N

i=1U(g), where U(g) is the universal enveloping algebra of g.
For any X ∈ g, we denote by X(i) the element in ⊗N

i=1U(g) given by taking X
on the ith factor of g and the multiplicative identity of U(g) on all others

X(i) = 1⊗ ⋅ ⋅ ⋅ ⊗X ⊗ ⋅ ⋅ ⋅ ⊗ 1. (1.3)

Let {Ia} be a basis for our Lie algebra g, and we will also require a basis {Ia}
dual to it with respect to some non-degenerate symmetric bilinear form. This
straightforwardly extends to a basis {Ia(i)} for ⊕N

i=1 g with a Lie bracket that
vanishes across two different sites

[Ia(i), Ib(j)] = [Ia, Ib](i)δij. (1.4)
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The quantum g-Gaudin model is then an integrable system whose commuting
integrals of motion are the quadratic Gaudin Hamiltonians,

Hi ∶=
N

∑
j=1
j≠i

Ia(i)I
(j)
a

zi − zj

, (1.5)

which govern the dynamics - here we are implicitly summing over the repeated
index a. We can think of the factor (zi − zj) in the denominator as encoding
a greater interaction between sites that are closer together, with minimal
contribution from sites that are very far apart. The Gaudin Hamiltonians are
contained within a large commutative subalgebra of ⊗N

i=1U(g) and here the
notion of "solving" the model is the problem of finding the joint spectrum and
simultaneous eigenstates of the Gaudin Hamiltonians Hi on the spin chain - for
example by use of the Bethe-Ansatz or the Separation of Variables method we
discuss in Part I. As required for integrability, the Hamiltonians all mutually
commute

[Hi,Hj] = 0, i, j = 1, . . .N. (1.6)

Let Mi for i = 1, . . . ,N be a collection of g-modules, then ⊗N
i=1Mi is the

"spin chain" of the g-Gaudin model, likening the action of g on the module Mi

to that of the algebra of spin ladder operators.

1.2.1.1 The Lax algebra

It is often more convenient to study integrable systems using the Lax formalism,
where we package the symmetries together into one object, the Lax matrix,
which in this case has an additional dependence on a complex spectral parameter
z ∈ C.

The Lax matrix of the Gaudin model is rational in this parameter z and
valued in g⊗⊕N

i=1 g

L(z) =
N

∑
i=1

Ia ⊗ I(i)a

z − zi

, (1.7)

the Ia with no label are in the auxiliary copy of g and not attached to any
particular site - or alternatively we can think of them as being attached to the
site z. We can represent the auxiliary factor in some matrix representation, in
which case L(z) takes the form of a matrix, the entries of which are valued in
⊕N

i=1 g and therefore not necessarily commutative.
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The Lie bracket of L(z) obeys the following linear Lax relations for two
spectral parameters z,w ∈ C

[L1(z), L2(w)] = [r(z,w), L1(z) +L2(w)] (1.8)

where L1 = L(z)⊗ 1 and L2(w) = 1⊗L(w) - the index indicating which factor
the auxiliary copy of g in L(z) sits on. The r-matrix of the Gaudin model, on
the right-hand side of (1.8) is antisymmetric and given by

r(z,w) = C12

z −w
, (1.9)

where C12 = Ia ⊗ Ia is the split Casimir.
The bracket (1.8) satisfies the Jacobi identity when the r-matrix satisfies

the classical Yang-Baxter equation

[r12(z1, z2), r13(z1, z3)] = [r23(z2, z3), r12(z1, z2)] − [r32(z3, z2), r13(z1, z3)].
(1.10)

The Lax matrix still encodes the commuting Gaudin Hamiltonians (1.5),
and we can recover them by considering the invariants of L(z). For example
if we take the bilinear form of L(z) with itself, applied only in the auxiliary
factor of g, we find the Gaudin Hamiltonians as the residues at z = zi;

Resz=zi

1
2⟨L(z), L(z)⟩ = Resz=zi

N

∑
i,j=1

1
2
⟨Ia, Ib⟩I(i)a I

(j)
b

(z − zi)(z − zj)

= Resz=zi

N

∑
i,j=1

1
2

Ia(i)I
(j)
a

(z − zi)(z − zj)
(1.11)

= Resz=zi

⎛
⎜⎜
⎝

N

∑
i=1

C
(i)
12

(z − zi)2
+

N

∑
i=1

1
2

1
z − zi

N

∑
j=1
j≠i

Ia(i)I
(j)
a

z − zj

⎞
⎟⎟
⎠
=Hi,

where C
(i)
12 is defined as 1

2I
a(i)Ia(i). If we represent g in terms of matrices,

⟨L(z), L(z)⟩ might be TrL2(z) or the Killing form.

1.2.1.2 gln-Gaudin Models

In the first part of this thesis we will have a particular focus on quantum
Gaudin models associated with matrix Lie algebras, where we will be solving
these using the technique of Separation of Variables. Let us introduce the
gln-Gaudin model for arbitrary rank n ∈ Z≥2.
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Recall the standard basis {Ea
b }n

a,b=1 of gln, whose Lie brackets are given by

[Ea
b ,E

c
d] = δc

bE
a
d − δa

dE
c
b , (1.12)

and hence the centre of the algebra is spanned by ∑n
a=1E

a
a and the elements

Ea
b and Eb

a are dual to one another with respect to some non-degenerate
symmetric bilinear form (⋅, ⋅) ∶ gln ⊗ gln → C, which is given here by the trace
(A,B) = Tr(AB).

As discussed for the general case, we extend this basis to gl⊕N
n , denoting

basis elements in the ith copy by E
a(i)
b for a, b = 1, . . . , n, whose Lie brackets

for i, j = 1, . . . ,N read

[Ea(i)
b ,E

c(j)
d ] = δij (δc

bE
a(i)
d − δa

dE
c(i)
b ) . (1.13)

Again we fix N distinct zi ∈ C and define the Lax matrix of the gln-Gaudin
model associated to the direct sum gln ⊗ gl⊕N

n

L(z) ∶=
N

∑
a,b=1

Ea
b ⊗La

b(z) (1.14)

where elements without an indicated copy of gln in the direct sum are in the
auxiliary tensor factor, and the La

b(z) are rational in z

La
b(z) =

N

∑
i=1

E
b(i)
a

z − zi

. (1.15)

When the auxiliary factor is viewed in the natural matrix representation
π ∶ gln → Matn×n(C), representing the basis elements as π(Ea

b ) = (δa
c δ

d
b )nc,d=1

(i.e. the matrix with 1 in the (a, b)th component and zeroes elsewhere) the
Lax matrix is then represented as an n × n matrix whose (a, b)th component is
La

b(z). We remark that this matrix has non-commutative entries and therefore
we cannot necessarily apply well-known results for matrices with commutative
entries.

The Lax algebra in this case is defined by the Lie bracket of the components
of the Lax matrix which, for two different spectral parameters z,w ∈ C is given
by

[La
b(z), Lc

d(w)] = δc
b

La
d(z) −La

d(w)
z −w

− δa
d

Lc
b(z) −Lc

b(w)
z −w

, (1.16)

and for the same spectral parameter by

[La
b(z), Lc

d(z)] = δc
bL

a′
d (z) − δa

dL
c′
b (z), (1.17)
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where La′
b (z) denotes differentiation of the Lax matrix component La

b(z) with
respect to z.

We can compute this directly from the Lie brackets of gln

[La
b(z), Lc

d(w)] =
N

∑
i,j=1

[Eb(i)
a ,E

d(j)
c ]

(z − zi)(w − zj)
=

N

∑
i=1
( 1
w − zi

− 1
z − zi

)
δa

dE
b(i)
c

z −w

= δc
b

La
d(z) −La

d(w)
z −w

− δa
d

Lc
b(z) −Lc

b(w)
z −w

.

The statement (1.17) for the case where both components have the same
spectral parameter follows by taking the limit w → z of both sides.

Note that this is consistent with equation (1.8), for r-matrix

r(z,w) = C12

z −w
,

in the sense that the components of the matrix [r12(z,w), L1(z) +L2(w)]
correspond to the right-hand side of (1.16) for respective values of a, b, c, and
d. For example, in sl2 we have that

[La
b(z), Lc

d(w)] = [r12(z,w), L1(z) +L2(w)](a+2c−2,b+2d−2).

Generating Functions and Manin Matrices In the theory of classical integrable
systems, the Poisson bracket used in (1.38) satisfies the Jacobi identity

{L1,{L2, L3}} + {L3,{L1, L2}} + {L2,{L3, L1}} = 0,

if and only if the corresponding r-matrix satisfies the classical Yang-Baxter
equation (1.10), both of which we will introduce later. We can see that this is
indeed the case for the r-matrix of the Gaudin model, r(z,w) = C12

z−w . Hence in
this quantum setting, we have seen that traces of powers of L(z) generate the
integrals of motion, take for example sl2, where we have

ŝ1(z) =
1
2 TrL2(z) =

N

∑
i=1

C(i)

(z − zi)2
+ Hi

z − zi

. (1.18)

In general we might find a combination of different traces of powers and
derivatives, for example in gl2

ŝ1(z) = +
1
2 (TrL(z))2 − 1

2 TrL2(z) + 1
2 TrL′(z). (1.19)

These generating functions can be derived from the matrix (∂z + L(z))
where ∂z is multiplied by the n × n identity matrix. Note that in this matrix
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we have non-commuting entries, as we have seen in (1.16). It does however
have the property of being a Manin matrix (see, for example [11, 10]), that is,
a matrix A with entries in a ring R such that for i, j, k, l = 1, . . . , n

[Ai
j,A

i
k] = 0, (1.20a)

[Ai
j,A

k
l ] = [Ak

j ,A
i
l], (1.20b)

i.e. if we take a rectangle of 4 elements across any two rows and two columns
in the matrix, diagonal corners will have the same commutator. An advantage
of Manin matrices is that we can retain some expected properties of matrices
which we would otherwise lose with non-commuting elements. For example, we
can define the column-ordered determinant of an n × n matrix A to be given
such that the elements are ordered by column as the name suggests:

cdetA = ∑
σ∈Sn

(−1)σAσ(1)
1 A

σ(2)
2 ⋯Aσ(n)

n . (1.21)

Note that if A is Manin then we may swap the columns with the same effect
on the determinant as we would have in a matrix with commutative entries.

To see that ∂z +L(z) is Manin, note firstly that it follows straightforwardly
from (1.17) that

[δi
j∂z +Li

j(z), δi
l∂z +Li

l(z)] = δi
lL

i′
j (z) − δi

jL
i′
l (z) + δi

jL
i′
l (z) − δi

lL
i′
j (z) = 0 (1.22)

and similarly that

[δi
j∂z +Li

j(z), δk
l ∂z +Lk

l (z)] = δi
jL

k′
l (z) − δk

l L
i′
j (z) + [Li

j(z), Lk
l (z)]

= [Lk
j (z), Li

l(z)] + δk
jL

i′
l (z) − δi

lL
k′
j (z)

= [δk
j ∂z +Lk

j (z), δi
l∂z +Li

l(z)],

as required.
These generating functions appear as the coefficients of ∂z in the expansion

of cdet (∂z +L(z)), that is

cdet(∂z +L(z)) =
n

∑
i=0
ŝi(z)∂ n−i

z . (1.23)

For matrix Lie algebras, we will make use of the concept of minors of the
Lax matrix, that is ordered determinants of sub-matrices written as

La1...ak

b1...bk
(z) = ∑

σ∈Sk

(−1)σLa1
bσ(1)
(z)La2

bσ(2)
(z)⋯Lak

bσ(k)
(z) (1.24)
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where ai, bi ∈ 1, . . . , n for i = 1, . . . , k. If the minor is of length n note that (1.24)
is the determinant of L(z).

For gl3, we therefore have three generating functions:

ŝ1(z) = L1
1(z) +L2

2(z) +L3
3(z) = TrL(z) (1.25a)

ŝ2(z) = L12
12(z) +L13

13(z) +L23
23(z) + 2L1′

1 (z) +L2′
2 (z) (1.25b)

ŝ3(z) = −L123
123(z) − (L12

12(z))′ −L1
1(z)L3′

3 (z) +L1
3(z)L3′

1 (z) +L1′′
1 (z). (1.25c)

In sl3, we apply the condition TrL(z) = 0 and these become

ŝ1(z) = 0, (1.26a)

ŝ2(z) =
1
2 TrL2(z), (1.26b)

ŝ3(z) =
1
3 TrL3(z). (1.26c)

1.2.1.3 Gaudin models with irregular singularities

So far we have introduced the most straightforward case of simple poles with no
additional structure, but there exist further generalisations such as dihedral and
cyclotomic Gaudin models [70, 69] or Gaudin models with irregular singularities.
Let us consider the latter of these, predominantly focusing on the gln case.

To extend to a model with poles of arbitrary strength, we replace each copy
of the Lie algebra g with a corresponding Takiff Lie algebra. To define this,
fix a Takiff degree τi ∈ Z≥1 for each site i = 1, . . . ,N and consider polynomials
with coefficients in g in some formal variables εi which are truncated at power
τi − 1. That is, at each site we will see the space g[εi] = g⊗C[εi] quotiented by
the ideal ετi

i g[εi] = g⊗ ετi
i C[εi] - this, denoted g[εi]/ετi

i is the Takiff Lie algebra
at site i. For X ∈ g, we will denote the element Xε r

i for r = 0, . . . ,N by X(i)
[r]

and say is has mode r. The basis {Ia} of g can then be extended to a basis
{Ia(i)

[r]
= Iaεr

i ∣r = 0 . . . , τi − 1}N
i=1 of g[εi]/ετi

i .
This construction is also a Lie algebra with bracket for g[ε]/ετ very similar

to those of g; if the basis elements Ia and Ib have structure constants αab
c ∈ C

such that
[Ia, Ib] = αab

c I
c, (1.27)

(where we are summing over the repeated index c) then the analogue in the
Takiff algebra would be

[Ia
[r], I

b
[s]] = [Ia, Ib]εrεs = αab

c I
cεr+s = αab

c I
c
[r+s] (1.28)
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with the implicit condition that X[r] = 0 if r ≥ τi due to the quotient. Therefore
we will always have an embedded copy of g found by taking all the elements of
mode 0, and we can return to the simple poles case by setting the Takiff degree
τi = 1.

For example, in the gln-Gaudin model with irregular singularities, whose Lax
matrix is associated to the direct sum ⊕N

i=1 gln[ε]/ετi , we have the commutation
relations

[Ea(i)

b[r]
,E

c(j)

d[s]
] = δij (δc

bE
a(i)

d[r+s]
− δa

dE
c(i)

b[r+s]
) . (1.29)

Having this additional distinction of higher modes allow us to add in higher
poles in the Lax matrix at every site, with each basis element Ia(i)

[r]
being

accompanied by a pole of strength r + 1 at z = zi respectively. We build the
Lax matrix of the g-Gaudin model with irregular singularities as before and
using this idea to introduce the higher order poles, altogether arriving at the
expression

L(z) =
N

∑
i=1

τi−1
∑
r=0

Ia ⊗ I(i)
a[r]

(z − zi)r+1 . (1.30)

Note that in the auxiliary factor we still use the usual (non-Takiff) version of
g, and so we can still represent the Lax operator as a matrix. For instance,
in the gln-Gaudin model with irregular singularities, (1.30) tells us that (with
the auxiliary factor represented in the natural representation) the (a, b)th
component of the Lax matrix is given by

La
b(z) =

N

∑
i=1

τi−1
∑
r=0

E
b(i)

a[r]

(z − zi)r+1 . (1.31)

The purpose of this construction is to add the higher order poles while
still retaining linear Lax relations with the same r-matrix as the simple poles
case. This means that any result that follows directly from the Lax relations
is automatically applicable to a Gaudin model with higher order singularities
as well. We will make great use of this for the gl3-Gaudin model in the first
part of this thesis in particular, where we use the Lax algebra to construct a
Separation of Variables for certain Gaudin models.

Let us prove below these new Lax matrix elements also satisfy (1.16). From
(1.31) it is immediate that

[La
b(z), Lc

d(w)] =
N

∑
i,j=1

τi−1
∑
r=0

τj−1

∑
s=0

[Eb(i)

a[r]
,E

d(j)

c[s]
]

(z − zi)r+1(w − zj)s+1 . (1.32)
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From the Lie bracket (1.29) in ⊕N
i=1 gln[ε]/ετi we see that we can remove the

second sum over the sites (indexed by j) as anything on separate sites commute
with one another. This leaves us with

[La
b(z), Lc

d(w)] =
N

∑
i=1

τi−1
∑

r,s=0

δa
dE

b(i)

c[r+s]
− δc

bE
d(i)

a[r+s]

(z − zi)r+1(w − zi)s+1

=
N

∑
i=1

τi−1
∑
p=0

p

∑
r=0

δa
dE

b(i)

c[p]
− δc

bE
d(i)

a[p]

(z − zi)r+1(w − zi)p−r+1 ,

where in the last equality we have relabelled to summation variable p = r + s.
We will now use the following useful identity

p

∑
r=0

1
(z − zi)r+1(w − zi)p−r+1 =

−1
(z −w)

( 1
(z − zi)p+1 −

1
(w − zi)p+1) (1.33)

which can be proved by induction on p, though we will not go into the details
here. The base case is effectively that used in the proof of (1.16). From here it
is straightforward to rearrange into the expected expression;

[La
b(z), Lc

d(w)] =
1

z −w

N

∑
i=1

τi−1
∑
p=0
(δc

bE
d(i)

a[p]
− δa

dE
b(i)

c[p]
)( 1
(z − zi)p+1 −

1
(w − zi)p+1)

= 1
z −w

⎛
⎝
δc

b

N

∑
i=1

τi−1
∑
p=0

E
d(i)

a[p]

(z − zi)p+1 −
E

d(i)

a[p]

(w − zi)p+1

− δa
d

N

∑
i=1

τi−1
∑
p=0

E
b(i)

c[p]

(w − zi)p+1 −
E

b(i)

c[p]

(z − zi)p+1
⎞
⎠

= δb
c

La
d(z) −La

d(w)
z −w

− δa
d

Lc
b(z) −Lc

b(w)
z −w

.

As before, taking the w → z limit gives us the expression for the same spectral
parameter, which is once again the same as we found in (1.17) in the previous
section.

Double pole at infinity It will be convenient, when we come to the details of
the Separation of Variables chapters, to have one more pole in the Lax matrix
in addition to those at the sites zi - namely a double pole placed at the point
infinity as described in [68]. This will make certain processes run a little more
smoothly; allowing us to have a clearer notion of "inverting" certain Lax matrix
elements on the one hand and also to treat our variables more equivalently and
avoiding further "twisting" steps on the other.
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To include this, we add to our direct sum an abelian copy of our Lie algebra
g - that is an isomorphic copy of the vector space but endowed with the
trivial Lie bracket - which we denote gcomm, equivalently this is also isomorphic
to ε∞g[ε∞]/ε2

∞ for formal variable ε∞, a conception that fits more smoothly
into the irregular singularities setting. The Lax matrix will now instead be
associated to the direct sum

gcomm ⊕
N

⊕
i=1

g[εi]/ετi
i , (1.34)

with elements at this double pole denoted X(∞) for X ∈ g. The Lie bracket is
entirely unaltered since the additional copy of g is commutative.

We can add this to the elements of our initial Lax matrix with simple poles
as follows,

La
b(z) = E

b(∞)
a +

N

∑
i=1

τi−1
∑
r=0

E
b(i)
a

(z − zi)r+1 . (1.35)

Since a double pole at infinity turns up as a constant term in the Lax matrix,
it will vanish on differentiating with respect to the spectral parameter, as is
consistent with the Lax algebra relations.

For the Gaudin model with irregular singularities, it is perhaps more fitting
to use the latter conception of gcomm as a Takiff Lie algebra to better align
with the rest, we note that objects in ε∞g[ε∞]/ε2

∞ may only have mode r = 1.
Therefore the (a, b)th element of the Lax matrix is given by

La
b(z) = E

b(∞)

a[1] +
N

∑
i=1

τi−1
∑
r=0

E
b(i)

a[r]

(z − zi)r+1 . (1.36)

1.2.2 Finite Classical Gaudin models

The second part of this thesis concerns the classical field theory known as
BF theory, and how it may be gauge fixed such that the equations of motion
resemble the Lax equation of a classical integrable model. We will then move
to the Hamiltonian formalism to confirm that the r-matrix that arises is indeed
that of a classical version of the Gaudin model.

To take a classical limit of the quantum Gaudin model we have just described,
we will need to introduce the parameter h̵ and then take the h̵→ 0 limit. Recall
that the algebra of observables of the quantum Gaudin model consists of copies
of the universal enveloping algebra U(g), which we may think of as the tensor
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algebra T (g) of all tensor products with the additional condition that the Lie
bracket of any X,Y ∈ g is the same as their commutator,

U(g) = T (g)/(X ⊗ Y − Y ⊗X − [X,Y ]).

We introduce h̵ as a factor in front of the Lie bracket, and denote this algebra
Uh̵(g);

Uh̵(g) = T (g)/(X ⊗ Y − Y ⊗X − h̵[X,Y ]),

effectively in the previous section we had set h̵ to 1. If we now take the h̵→ 0
limit we are setting all the commutators to zero

T (g)/(X ⊗ Y − Y ⊗X) = S(g),

and we are left with N copies of the symmetric algebra S(g)⊗N , i.e. our
observables now commute and we have a classical model. The dynamical
variables will be the basis elements across the copies of our Lie algebra, Ia(i) ∈
g⊕N .

We need to interpret the Lie bracket of g, for the basis elements Ia(i) ∈
S(g)⊗N as a Poisson bracket,

{Ia(i), Ib(j)} = δij[Ia, Ib](i), (1.37)

and extend this bracket to the rest of the observables in S(g)⊗N , using linearity
of the bracket along with the Leibniz rule.

1.2.2.1 Classical Lax algebra

The discussion of the classical Lax algebra largely follows early chapters of [3]
and the lecture notes [51].

In the classical case, our linear Lax relations take the form

{L1(z), L2(w)} = [(r(z,w), L1(z) +L2(w)] (1.38)

where the r-matrix is r12(z,w) = C12
z−w as before and the right hand side is

a commutator of matrices. We introduce for convenience a new quantity
J(i) ∈ g⊗ g⊕N defined as

J(i) = Ia ⊗ Ia(i)

where we implicitly sum over the index a. As before the Gaudin Lax matrix is
meromorphic with the same simple poles at the points zi ∈ C

L(z) =
N

∑
i=1

J(i)

z − zi

. (1.39)
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The classical Lax matrix L(z) satisfies (1.38) because the J(i) now satisfy
the Kostant-Kirillov bracket

{J(i)1 , J
(j)
2 } = −[C12, J

(i)
2 ]δij (1.40)

where C12 = Ia ⊗ Ia is the split Casimir.
The basis of the classical Lax formalism is that L(z) obeys the Lax equation

d
dtL(z) = [L(z),M(z)] (1.41)

for similar matrix M(z) made up of functions on the phase space, and the
right-hand side is again a matrix commutator.

Solutions to (1.41) are given by conjugations of L(z, t = 0) by some time-
dependent invertible matrix g(t)

L(z, t) = g(t)L(z, t = 0)g(t)−1, (1.42)

and correspondingly
M(z) = dg

dt g(t)
−1. (1.43)

These solutions preserve the spectrum of L(z) in time, meaning that the Lax
equation is isospectral. The integrals of motion are therefore found using
adjoint-invariant polynomials P,Q ∶ g→ C, where the polynomial is applied to
the auxiliary part of L(w) for some fixed w ∈ C. By (1.42),

P (L(w)) = P (g(t)L(w, t = 0)g(t)−1) = P (L(w, t = 0)), (1.44)

one of which will be the Hamiltonian.
For Liouville integrability, we also require that any two such integrals of

motion P (L(w) and Q(L(z)) are in involution with one another,

{P (L(w)),Q(L(z))} = 0.

We show this for a matrix representation of g. Let P (L(w)) = Tr (L(n))n

and Q(L) = Tr (L(z))m for m,n ∈ Z≥1 - the generalisation to sums of such
polynomials is straightforward. Let us take (1.38) and apply P to the second
tensor factor of g on both sides, using the Leibniz rule we see that

{L1(z), P (L2(w))} = Tr2 ([r12(z,w)(L2(w))
n−1
, L1(z) +L2(w)])

= [Tr2 (r12(z,w)(L2(w))
n−1) ,Tr2L1(z)],
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as Tr2 (L2(w)) is a multiple of the identity and hence commutative. Here Tr2

denotes taking the trace over the second tensor factor of g only. We repeat
the same process when applying Q to the first tensor factor, and find similarly
Tr1 Tr2 (L1(w)) is a multiple of the identity. Hence we have that

{Q(L(z)), P (L(w))} = 0. (1.45)

This in fact goes both ways, and the invariant polynomials of L(z) Poisson
commuting implies the existence of an r-matrix satisfying (1.38) - see [3] or
[51] for proof of this.

The integrals of motion being those quantities unchanged by conjugation
of the Lax matrix is analogous to the way that in a gauge theory physically
relevant quantities are those preserved by gauge transformations, an idea we
will expand on in Part II of this thesis.

Our Lax matrix L(z) is more fundamental than the other half of the pair
M(z), as the time dependence of L(z) is governed by the Hamiltonian and
hence once we have written the Hamiltonian in terms of Lax matrix, its partner
M(z) is completely determined by L(z). Once we pick one of our integrals of
motion P (L(z)) to be the Hamiltonian, then we require

M(z) = P
′ (L(w))
z −w

(1.46)

to reproduce the Lax equation

∂tL(z) = [
P ′(L(w))
z −w

,L(z)]. (1.47)

For example in a matrix Lie algebra we might take P (L(w) = Tr (Ln(w)),
and here M(z) would take the form

M(z) = nL(w)
n−1

z −w
. (1.48)

In fact if we choose P (L(w)) = TrL2(w) for a matrix representation of g, then
we recover the Gaudin Hamiltonians (1.5) exactly as in (1.11).

Let us look at one particular realisation - or general class of realisations
- which we will be able to reproduce when we consider the gauge theoretic
perspective. Let u1, . . . , uN ∈ g and consider the orbits of these points in g

under conjugation by elements of the corresponding Lie group G, the adjoint
orbits of the fixed points ui ∈ g are defined as

Oui
= {û = hiuih

−1
i ∣hi ∈ G}. (1.49)
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The Poisson structure on ∏N
i=1Oi arises from the symplectic structure in the

usual way (described in Chapter 14 of [3]) and in this bracket the ûi also satisfy
the Kostant-Kirillov bracket

{ûi1, ûj2} = −[C12, ûi2]δij. (1.50)

The realisation ϕ is therefore given by

ϕ(J(i)) = ûi, (1.51)

with each basis element Ia(i) being realised as the corresponding coordinate of
ûi in that basis. The Lax matrix hence has the Lie algebra-valued ûi as the
residues at the poles zi

L(z) =
N

∑
i=1

ûi

z − zi

. (1.52)

1.2.2.2 Higher genus Gaudin models

One might ask whether the spectral parameter z must be constrained to C

or CP 1, and what changes when we alleviate that constraint. In fact this
construction of a higher genus Gaudin model is exactly the Hitchin system
with marked points.

Let us first sketch the Hitchin system without the marked points, as intro-
duced in [3, §7.11]. Let C be a Riemann surface of arbitrary genus, which we
will denote g, and let A the (0, 1)-fields on C. If we let z be a local coordinate
on C then a field A ∈ A takes the form Az̄dz̄. We also have gauge transforma-
tions by group-valued functions, h ∶ C → G, under which A transforms as a
connection

A↦ h−1Ah − h−1∂̄h. (1.53)

We also introduce the Higgs field Φ as a covector to a tangent vector at A ∈ A.
The Hitchin system is concerned with pairs (A,Φ), and we refer the reader
to [3] for the details of this. The z component of Φ, denoted Φz(z) in local
coordinate z, will correspond to the classical Gaudin Lax matrix (1.39) when
C has genus zero.

The phase space of the Hitchin system is defined by its moment map µ

µ = ∂z̄Φ +Φ ∧A +Φ ∧A, (1.54)

which we can write in local coordinates as µzz̄dz ∧ dz̄ where

µzz̄ = ∂z̄Φz + [Az̄,Φz]. (1.55)
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For the phase space we set µ = 0, factoring by the gauge group.
In genus zero, i.e. setting C = CP 1, this system is trivial. To instead obtain

the Gaudin model we need to introduce the data of the sites zi, by including
particular marked points at the sites of the Hitchin system. Instead of setting
the moment map of the system µ to zero, we set it to

µ = 2πi
N

∑
j=1
δzzj

. (1.56)

In the gauge Az̄ = 0, (1.56) gives us that

∂z̄Φz(z, z̄) = 2πi
N

∑
j=1
δzzj

, (1.57)

which implies that that Φz is meromorphic with simple poles at the points
zi ∈ C as required for the Lax matrix of the Gaudin model. We will go into
the details of this calculation from the 3dBF perspective specifically in Part
II, where some of the results apply equally to higher genus Hitchin systems
beyond the Gaudin model.

1.3 Models with Quadratic Lax Relations

Though certainly not the focus of this thesis, we will also briefly introduce
quadratic Lax relations (as opposed to the linear Lax relations discussed so far)
using the example of the XXX spin chain, also known as the Heisenberg spin
chain. In particular, we will show that in some limit we retrieve once more the
linear Lax relations discussed above, which will be of great use to us in the
Separation of Variables part of this thesis, and serve as a motivating example
in the following part.

Classically, quadratic Lax relations would take the form

{L1(z), L2(w)} = [r12(z,w), L1(z)L2(w)], (1.58)

which on quantisation becomes

L1(z)L2(w)R12(z,w) = R12(z,w)L2(w)L1(z). (1.59)

Where in the linear case, the r-matrix satisfies the classical Yang-Baxter
equation (1.10), theR-matrix is a solution of the quantum Yang-Baxter equation

R12(z1, z2)R13(z1, z3)R23(z2, z3) = R23(z2, z3)R13(z1, z3)R12(z1, z2). (1.60)
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We can depict the R-matrix graphically as the crossing point of two lines,
labelled by the two associated sites and the corresponding spectral parameter.
We see this in the following diagram;

R(z1, z2) =

z1 z2

From this we might even interpret R as a scattering matrix, see [71].
Extending this picture, we have a geometric interpretation of (1.60), as shown
in the following diagram;

z2 z3z1

=

z2 z3z1

In other words, the relation (1.60) allows us to pass these lines over one
another. This geometric interpretation, and its visual similarity to invariants
of knot theory, was a key entry point to considering integrable models from
the perspective of gauge theories (see, for example, [71]) which we will discuss
in Part II.

1.3.1 The XXX-Chain

We introduce the XXX-chain, following [21, 59, 51]. Solutions to (1.60) can be
of three types; rational, trigonometric, and elliptic [71]. The XXX-chain - a spin
chain with nearest neighbour interactions and periodic boundary conditions -
is an example of the former of these; it has a rational R-matrix which produces
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the rational r-matrix of the Gaudin model in a certain limit. We will not
consider trigonometric or elliptic R-matrices within this thesis.

Let {Ei
j}n

i,j=1 be the standard basis of gln, then we have

R(z,w) = 1 + h̵ 1
z −w∑

Ei
j ⊗E

j
i , (1.61)

where h̵ is an additional parameter included for the Gaudin limit later - note
that we have the Gaudin r-matrix at first order in h̵.

The Lax matrix at a particular site labelled i of the XXX-chain for gln is
associated to the direct sum gln ⊗ gl (i)n and takes the form

L
(i)
XXX(z) = 1 + h̵

z

N

∑
a,b=1

Ea
b ⊗E

b(i)
a . (1.62)

Of course to describe the dynamics of the spin chain as a whole we require
a global object, thus we combine copies of the Lax matrix across the different
sites zi into the monodromy matrix,

T (z) = L(1)XXX(z − zi)L(2)XXX(z − z2)⋯L(N)XXX(z − zN).

Here the copies of LXXX(z) are multiplied as matrices in the auxiliary factor
of gln, hence T (z) is associated to the direct sum gln ⊗⊕N

i=1 gl
(i)
n . Representing

this first factor of gln we can consider T (z) to be a matrix with entries T i
j (z).

By repeated application of (1.59), we see that T (z) satisfies the same
relation as LXXX(z),

T1(z)T2(w)R12(z,w) = R12(z,w)T2(w)T1(z). (1.63)

Analogously to the minors in the Lax matrix of the gln Gaudin model, we
can take quantum minors in the monodromy matrix T (z) of the gln XXX-chain,
which by convention also contain shifts in the spectral parameter by factors of
h̵, see [59];

T [a1a2...am

b1b2...bm
](z) = ∑

σ∈Sm

(−1)σT a1
bσ(1)
(z + (m − 1)h̵)T a2

bσ(2)
(z + (m − 2)h̵)⋯T am

bσ(m)
(z).

(1.64)
We distinguish (1.64) from the minors in the Gaudin model La1...am

b1...bm
in (1.24)

which do not contain these shifts in the spectral parameter by multiples of h̵
through the use of the square brackets.
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The commuting Hamiltonians of the model are generated from some of
these minors [21],

tk(z) = ∑
i1,i2,...,ik=1
i1<i2<⋅⋅⋅<ik

T [i1...ik
i1...ik
]. (1.65)

We will mainly be concerned with the gl3 XXX-chain and its relation to
the gl3 Gaudin model, in which case the generating functions are

t1(z) = TrT (z) = T 1
1 (z) + T 2

2 (z) + T 3
3 (z), (1.66a)

t2(z) = T [12
12](z) + T [13

13](z) + T [23
23](z) (1.66b)

d(z) = T [12...n
12...n](z), (1.66c)

where (1.66c) is known as the quantum determinant.
Following from (1.63), commutation relations of elements in the monodromy

T (z) are given by

(z −w)[T a
b (z), T c

d(z)] = h̵ (T c
b (z)T a

d (w) − T c
b (z)T a

d (w)) . (1.67)

The T i
j (z) are therefore a realisation of the Yangian Y (gln), an associative

algebra with generators T i(k)
j for i, j = 1, . . . , n and k ∈ Z≥1, see for instance [64,

59]. The elements of T (z) are polynomial in these generators

T i
j (z) = δij +∑

k

T
i(k)
j h̵kz−k. (1.68)

The centre of the Yangian is generated by the quantum determinant d(z) =
tn(z).

1.3.1.1 The Gaudin limit

For this thesis, our interest in the XXX chain is mainly in how it relates to the
Gaudin model. As we have already noted, the Gaudin Lax matrix appears at
first order in h̵ of the quantum R-matrix,

R(z,w) = 1 + h̵r(z,w). (1.69)

Taking the semi-classical limit h̵ → 0 we can recover the quantum Gaudin
model. Similarly, the Lax matrix (1.62) of the XXX chain resembles the Lax
matrix of a single-site Gaudin model, but if we expand the monodromy matrix
T (z) in this small h̵ limit

T (z) = 1 + h̵
N

∑
i=1

∑N
a,b=1E

a
b ⊗E

b(i)
a

z − zi

+O(h̵2) = 1 + h̵L(z) +O(h̵2), (1.70)
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where L(z) is the Gaudin Lax matrix for N sites. Furthermore, the linear Lax
algebra of the quantum Gaudin model arises in the h̵→ 0 limit of (1.63).

In Chapter 3, we will use this limit to move from the known result of Separa-
tion of Variables for models in the Yangian Y (sl3) [59, 21], to a corresponding
result for the sl3-Gaudin model as conducted by Ribault in [52].



Part I

Separation of Variables

33
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Separation of variables for sl2-Gaudin
models

Separation of variables (SoV) can be most broadly described as reducing a
multidimensional problem to a set of one-dimensional problems. This includes
both in the widely used sense of transforming differential equations, and in
the sense of the method of solving integrable systems developed by Evgeny
Sklyanin in the 1980s [57, 59, 60, 61], and originally styled as the "functional
Bethe Ansatz" - the latter of these is what we are concerned with in this thesis.

If we realise the Lie algebra underlying a given model in terms of differential
operators, the equations of motion will be differential equations in all the
variables of the representation. The relation to separation of variables in the
former sense becomes clearer; we can transform to new coordinates in which the
equations entirely decouple to solve the model. Although this is the historical
origin of SoV, it is generally enough define some variables {qj}Dj=1 such that the
join eigenfunctions may be factorised with each factor depending on only one
variable qj without the explicit change of variables from some initial differential
operator realisation.

In other words, for an N -dimensional quantum integrable system with
integrals of motion given by {Ĥi}N

i=1, we require a set of variables {qi}Di=1 and
corresponding coordinates {pj}Dj=1, which are conjugate

[qi, pj] = δij,

and D equations fj such that

fj(qj, pj, Ĥ1, . . . , ĤN) = 0,

34
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with a fixed ordering of the operators qj, pj and Ĥi if we are considering a
quantum model. If we then apply the fj to a common eigenvector of the Ĥi,
we find that

fj(qj, pj,H1, . . . ,HN)Ψ = 0, j = 1, . . . ,N,

where Hi is the eigenvalue of Ĥi on Ψ for i = 1, . . . ,N . Thus Ψ must factorise
into some functions ψj(qj) which each depend on only one of our variables qj,
each determined by the corresponding one-dimensional function fj.

Advantages of the separation of variables technique in comparison to others,
such as the Bethe Ansatz, include that it does not require us to assume we
have some highest weight reference vector, and therefore applies to a broader
class of representations. The greatest benefit to SoV for the Gaudin model in
particular is perhaps that the Bethe Ansatz has been shown to not provide a
complete set of eigenvectors beyond rank 2 [47], whereas solving via separation
of variables is believed to be complete due to the correspondence between the
separated equations and the corresponding g-opers - which have been shown to
provide a complete solution [29] - that we will define for the sl2 case later.

In the earlier days of SoV, it was suggested that that it could provide
an alternative definition of quantum integrability [60, 59] , which was more
practically verifiable and precisely defined. The link between classical Lax
integrability and SoV has since been explored further, see [62] for Lax matrices
of linear type, but this is no longer viewed as a key motivation for SoV as the
understanding of quantum integrability and its relation to solvability has since
improved.

In the review article New Trends [60], Sklyanin outlines a “magic recipe” used
to construct a separation of variables for a range of classical integrable models.
Classically, we expect the separated equation to arise from the characteristic
polynomial of the Lax matrix at some value of the spectral parameter

det (λ(z) −L(z)) , (2.1)

where λ(z) is the corresponding eigenvalue. The separated variables {qj}Dj=1
then arise at the poles of the the Baker-Akhiezer function Ω(z) (the eigenvalue
of the Lax matrix L(z)) having fixed a suitable normalisation, which is not
necessarily straightforward. The conjugate variables pj are then taken to be
the eigenvalue λ(qj) evaluated at that point. Therefore, as both lie on the
spectral curve, (2.1) provides the required separated equations

det (pj −L(qj)) = 0. (2.2)
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The difficulty then is ensuring that we have the correct number of variables
and that the transformation to these variables is canonical. To achieve this,
we take the separated variables to be the zeroes of some function B(z), often
known as the Sklyanin B-operator, which is made up of such a combination
of Lax matrix elements that the order guarantees that we have the necessary
number of variables qj. For the variables to be canonical they must mutually
Poisson commute, and so we require that

{B(z),B(w)} = 0, (2.3)

for all spectral parameters z,w ∈ C. We can also express pj in terms of some
other rational function of Lax matrix elements, denoted A(z), and hence all
properties required for SoV may be derived from the Lax algebra. For matrix
models of rank n, we will need the separating function B(z) to be of order
n(n − 1)/2 in the elements of the Lax matrix. In the rank 2 case this is
straightforward and we simply have single Lax matrix elements for both A(z)
and B(z), but the expressions become more cumbersome at higher rank, with
inverses of Lax matrix components appearing in A(z) in particular. Sklyanin
includes the form of A(z) and B(z) for a number of models, including the
classical sl2 and gl3 models with linear Lax relations, the gl3 XXX-chain, and
the classical XYZ magnet.

In the quantum case we can follow a very similar method, now with operator-
valued functions A(z) and B(z), with the separated variables appearing as
"operator zeroes" of B(z). We must also be specific about how we are substi-
tuting these operator zeroes into A(z), and we will follow the convention of
substitution from the left in this thesis. Where classically the magic recipe
provides the separated equations from the spectral curve, in the quantum case
we conjecture that this becomes

cdet (∂qi
+L(qi)) ,

where we specify a column-ordered determinant as we have non-commuting Lax
matrix elements, and L(qi) does not commute with ∂qi

. It makes sense here to
identify the operator pj with the differential operator ∂qi

as the coordinates
are conjugate, which leaves us with a differential equation in a single separated
variable qi. Interestingly, this quantisation of the spectral curve bears a strong
resemblance to the universal oper, despite the relatively straightforward method.
We will briefly discuss this link further at the end of the chapter.
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Otherwise, Sklyanin has constructed an SoV for a variety of integrable
systems, including the quantum sl2-Gaudin model [58], the quantum Toda
chain [61], the Yangian Y (sl3) [59] as well as the classical sl3 XXX-chain [57].

Some of the more recent interest in SoV for models with quadratic Lax
relations stems from its potential to inform us about string theories - see,
for example, [21, 8, 9, 34, 54, 53]. One can infer about such complicated
theories by studying a related quantum integrable spin chain, hence the interest
in separation of variables in spin-chains related to the Yangian Y (gln). As
well as SoV theoretically being applicable to any representation, if one takes
a separation of variables basis of the spin chain (that is, a basis in which
the eigenstates factorise into functions of a single variable), one finds simpler
expressions for the correlation functions in terms of Baxter Q-functions, which
are solutions to the Baxter equations.

For example, in [34] the authors extend the known SoV to the Y (SU(n))
case by twisting the usual Sklyanin operator BXXX(z) of the "magic recipe"
by a similarity transform to a diagonalisable version, called Bgood

XXX(z) that
cruicially still provides separated variables at the roots. They suggest an
extension to the higher rank sln case, which has been checked up to N = 4
sites. Having established a separated basis they go on in [8] to construct a
corresponding measure, and hence take scalar products in this basis, focusing
on the fundamental representation at each site. In the following chapter we
will discuss an analogous method to generalise the SoV of the Gaudin model
to arbitrary rank, and its limitations.

In [53] and [54], Ryan and Volin consider the XXX chain with finite di-
mensional irreducible representations of gln at the sites. They form particular
left eigenstates of the separated variables which diagonalise B from related
eigenvectors of a Gelfand-Tsetlin subalegbra of the Yangian and show that
these eigenstates factorise into product of Q-functions from Baxter equations.

In [44], Maillet and Niccoli construct the SoV basis without Sklyanin’s
separating function B(z). Instead they take the action of combinations of the
transfer matrix on some generic covector at particular values of the spectral
parameter, which depend on the representation of the symmetry algebra. This
eliminates the difficulty of finding expressions for B(z) at higher rank, and has
been applied to Y (gln). Though these results provide a lot of insight, when
we construct SoV the Gaudin model in this chapter and the next we will align
more with Sklyanin’s magic recipe, using the separating functions A(z) and
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B(z).
In this part of thesis we are primarily concerned with work towards the

extension of separation of variables in quantum gln Gaudin models to both
arbitrary rank and arbitrary strengths of poles. So far, an SoV has been
constructed for the sl2-Gaudin model [58], the XXX chain [21] and models
with Yangian Y (sl3) symmetry more generally [59], and by taking the limit of
this Ribault provides an SoV for the corresponding sl3 Gaudin model in [52].
Furthermore we have an SoV for the classical gln-Gaudin model at any rank
[23]. This chapter specifically recalls Sklyanin’s separation of variables for the
sl2-Gaudin model with simple poles and extends this to cover Gaudin models
with irregular singularities.

2.1 SoV for the sl2-Gaudin model with irregular singularities

Recall the description of the gln-Gaudin model with irregular singularities
detailed in Chapter 1, for ⊕N

i=1 sl2[εi]/ε τi
i we have basis elements {e(i)

[r]
∣r =

0, . . . , τi − 1}N
i=1. Since we follow the simple poles case [58] very closely, we can

check that the expressions correspond at each step by taking the particular
case where the Takiff degree τi = 1 on each site. There will be some small
discrepancies because we also include the double pole at infinity - this both
removes the need to perform the permutation of the Pauli matrices as in section
3 of the article, and better aligns with the following chapter in which we will
turn to the problem of separation of variables for the gl3-Gaudin model.

To explicitly compute a change of variables, we will need to realise the
Takiff Lie algebra at each site sl2[ϵi]/ϵ τi

i as differential operators. The details
of how we can construct such a realisation may be found in appendix A, with
the realisation ultimately being given by (A.6a),

π(f (i)
[r]
) = xi,[r]

π(h(i)
[r]
) =

τi−1−r

∑
s=0
−2xi,[s+r]∂i,[s] + 2ℓi,[r].

π(e(i)
[r]
) =

τi−1
∑

s,t=0
s+t+r<τi

−xi,[r+s+t]∂i,[s]∂i,[t] +
τi−1−r

∑
s=0

2ℓi,[r+s]∂i,[s],

where ℓi,[r] are the weights associated to the specific representation. Setting
Takiff degrees to one, we recover a standard differential operator realisation of
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sl
(i)
2

π(e(i)) = −xi∂
2

xi
+ 2ℓi∂xi

, π(f (i)) = xi, π(h(i)) = −xi∂xi
+ ℓi,

where we are identifying xi,[0] with xi.
In this realisation (A.6a), we see that the problem of finding eigenvalues

and eigenvectors of ŝ1(z) becomes a rather complicated differential equation in
all D = ∑N

i=1 τi variables;

ŝ1(z)Ψ =
N

∑
i,j=1

τi−1
∑
r=0

τj−1

∑
q=0

1
(z − zi)τi(z − zj)τj

(xi,[r]

τj−1

∑
s,t=0

s+t+q<τ

−xj,[q+s+t]∂j,[s]∂j,[t]

+ xi,[r]

τj−1−q

∑
s=0

2ℓj,[q+s]∂j,[s] (2.4)

+
τi−1
∑

s,t=0
s+t+r<τi

−xi,[r+s+t]∂i,[s]∂i,[t]xj,[s] +
τi−1−r

∑
s=0

2ℓi,[r+s]∂i,[s]xj,[s]

+ 1
2

τi−1−r

∑
s=0

τj−1−r

∑
t=0
(−2xi,[s+r]∂i,[s] + 2ℓi,[r]) (−2xj,[t+q]∂j,[t] + 2ℓj,[q]))Ψ

=s1(z)Ψ,

where s1(z) is the eigenvalue of ŝ1(z) on Ψ. The existence of a factorised form
of Ψ is quite unclear from (2.4), so we will construct a change of variables
where the wavefunction Ψ naturally factorises.

2.1.1 Constructing Separated Variables

We label the four elements of the Lax matrix as operator valued functions of
the complex spectral parameter z

L(z) =
⎛
⎝
A(z) B(z)
C(z) D(z)

⎞
⎠
, (2.5)

where A(z) and B(z) correspond to the separating functions of the magic
recipe. As we discussed for the classical case of the magic recipe, the zeroes
of the operator B(z) = L1

2(z) will provide the new, separated variables. B(z)
is a rational function of z with N poles at the points z = zi, each of strength
τi respectively. From the Lax matrix relations (1.16), we see that it trivially
commutes with itself at different values of the spectral parameter,

[B(z),B(w)] = [L1
2(z), L1

2(w)] = 0.



40 Chapter 2. Separation of variables for sl2-Gaudin models

It is also interesting to note that in the realisation (A.6a), B(z) is written
in terms of the variables xi,[r] only, with no ∂xi,[r]

operators. There is also a
constant term arising form the realisation of f (∞) ∈ slcomm

2 , that is, in our initial
realisation we have

B(z) = 1 +
N

∑
j=1

τj−1

∑
r=0

xi,[r]

(z − zi)r+1 .

If we return to the simple poles case, identifying xi,[0] with xi, this matches
Sklyanin’s expression;

B(z) = 1 +
N

∑
j=1

xi

z − zi

.

It is clear that as z →∞ we have at leading order

B(z) = 1 +O(z−1).

From this we surmise that there must be D "zeroes" of B(z) to exactly cancel
the factors of z in the poles - i.e. if we return to the simple poles case by setting
all Takiff degrees τi = 1 we have the N variables as described by Sklyanin. By
zeroes we are here referring to operators qj such that

B(qj) = 0, j = 1, . . . ,D. (2.6)

We have already noted that B(z) commutes with itself for different values of
the spectral parameter and it follows that the new variables must also pairwise
commute, leaving a factorised form of B(z)

B(z) = (z − q1) . . . (z − qD)
(z − z1)τ1 . . . (z − zN)τN

. (2.7)

Since [qi, qj] = 0, there is a realisation of sl2 such that B(z) is a multiplication
operator of the form (2.7), and the qi are variables in the same sense as the
representation variables xi,[r], and act as multiplication operators on C[{qi}Di=1].
Note that the variables are non-unique, and one can for example swap the roles
of A(z) and B(z).

To describe the new qj more explicitly, we can find the change of variables
from our original representation variables xi,[r]. We equate the expressions for
B(z) in terms of the two sets of variables {xi,[r]∣r = 0, . . . , τi − 1}N

i=1 and {qj}Dj=1

B(z) = 1 +
N

∑
j=1

τi−1
∑
r=0

xi,[r]

(z − zi)r+1 =
(z − q1) . . . (z − qD)
(z − z1)τ1 . . . (z − zN)τN

.
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Returning to the simple poles version for a moment, for any i = 1, . . . ,N we
find xi as the residue at site z = zi of B(z), and by taking the residue of our
two expressions for B(z) we obtain the change of variables explicitly as

xi = Reszi
B(z) =

∏N
j=1(zi − qj)
∏k=1

k≠j
(zi − zk)

. (2.8)

To extend this to higher order poles, we simply take higher order residues
for poles of strength r = 0, . . . , τj − 1 at each site zj, giving an expression for
xi,[r] in terms of the new variables qi

xi,[τi−1−r] =
1
r! lim

z→zi

⎛
⎜⎜
⎝

dr

dzr

∏Dk=1(z − qk)
∏N

j=1
j≠i

(z − zj)τj

⎞
⎟⎟
⎠
. (2.9)

The double pole at infinity allows us to treat the variables qj entirely equiva-
lently.

For a more interesting example, let us set the Takiff degree τi = 2 at some
site i. We then have two representation variables xi,[0] and xi,[1] and can write
them in terms of qi accordingly;

xi,[0] =
∑Dm=1∏k≠m(zi − qk)
∏j≠i(zi − zj)τj

−∑
l≠i

∏Dk=1(zi − qk)
(zi − zl)∏j≠i(zi − zj)τj

(2.10a)

xi,[1] =
∏Dk=1(zi − qk)
∏N

j≠i(zi − zj)τj
. (2.10b)

The change of variables (2.9) induces an isomorphism of rings between
polynomials in C[{xi,[r]}] and the ring of polynomials that are symmetric in
the new variables {qi}Di=1, which we will denote S[{qi}Di=1]. It is clear immediately
from (2.9) that each variable xi,[r] in our original representation is contained
within S[{qi}Di=1], as the right-hand side is symmetric in the new variables
{qi}Di=1. To show the reverse, consider the elementary symmetric polynomials
in the new variables, σ0 = 1 and σm = ∑Di1,...,im=1

i1<i2<⋯<im

qi1 . . . qim for m = 1, . . .D. We
can expand the product in the numerator of our change of variables to be

D

∏
k=1
(z − qk) =

D

∑
m=0
(−1)mzD−mσm,

hence overall we have xi,[r] = ∑Dm=0Cmσm where Cm are complex coefficients
formed of the sites zi ∈ C, since we have taken the limit z → zi. Therefore
considering all possible values of i = 1, . . . ,N and subsequent r = 0, . . . , τi,
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we have D equations in the independent σm and may therefore rewrite these
as a linear combination of the xi,[r] - hence it is also true that S[{qi}Di=1] ⊆
C[{xi,[r]∣r = 0, . . . , τi − 1}Di=1] and the two are isomorphic.

In the simple poles case, we can quotient C[x1, . . . , xN] by the ideal I =
(x2ℓ1+1

1 , . . . , x2ℓN+1
N ) to obtain a finite dimensional module of sl2⊗N . Sklyanin

demonstrates that this ideal is isomorphic to an ideal J = ({∏N
j=1(zi−qj)2ℓi+1}N

i=1)
of S[{qi}N

i=1], by substituting (2.8) into I to obtain J . Therefore the quotient
rings are also isomorphic,

C[x1, . . . , xN]/I ≅ S[{qi}N
i=1]/J. (2.11)

Hence we can move from our original realisation of the Gaudin spin chain to
this isomorphic realisation in the separated variables {qi}Di=1 via (2.9).

Representations of Takiff Lie algebras are far less studied, (though some
simple ones are covered in [24]) and it is not clear what the equivalent of I
and J would be in general. We can write down such an ideal for the most
straightforward case of sl2[ε]/ε2, if we set one of the weights ℓ[1] = 0. We focus
on a single site where we have six basis elements realised as

π(f[0]) = x[0]
π(f[1]) = x[1]
π(h[0]) = −2x[0]∂[0] + 2ℓ[0]
π(h[1]) = −2x[1]∂[0]
π(e[0]) = −x[0]∂ 2

[0] − 2x[1]∂[0]∂[1] + 2ℓ[0]∂[0]
π(e[1]) = −x[1]∂ 2

[0].

An ideal preserved by the action of sl2[ε]/ϵ2 would then be

I = x2ℓ
[0]+1
[0] C[x[0]] + x[1]C[x[0], x[1]]. (2.12)

Let us briefly sketch the reasoning for this. In the realisation, the basis
elements of mode 1, π(f[1]), π(h[1]) and π(e[1]), will multiply by x[1] which
moves everything in the ideal (2.12) into the x[1]C[x[0], x[1]] portion, and hence
preserves it. Similarly, the action of π(f[0]) and π(h[0]) are trivially absorbed
into C[x[0]]. This leaves us to consider

π(e[0]) (x
2ℓ
[0]+1
[0] C[x[0]] + x[1]C[x[0]])

= −2ℓ[0](2ℓ[0] + 1)x2ℓ
[0]
[0] C[x[0]] − 2x[1]C[x[0]] + 2ℓ[0](2ℓ[0] + 1)x2ℓ

[0]
[0] C[x0],

= x[1]C[x[0]],
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where we have absorbed factors back into C[x[0]]. To find the corresponding
ideal of S[{ql}2N

l=1] in the separated variables, we would need an ideal at each
site, for simplicity let us say that τ1 = 2 with ℓ1,[1] = 0 as above and τi = 1 for
i = 2, . . . ,N . Therefore the ideal of C[x1,[0], x1,[1], x2,[0], . . . , xN,[0]] is generated
by

(x2ℓ1,[0]+1
1,[0] C[x1,[0]] + x1,[1]C[x1,[0]], x

2ℓ2,[0]+1
2,[0] C[x2,[0]], . . . , x

2ℓN,[0]+1
N,[0] C[xN,[0]]) .

We would then substitute in (2.8) and (2.10) to find the corresponding ideal
of S[{qi}N+1

i=1 ]. However we will not include this expression here as it is quite
clunky, even in this most simple Takiff Lie algebra.

Unfortunately the quotient C[x[0], x[1]]/I is trivial in that it is isomorphic
to the simple poles case anyhow, since in the quotient we remove any terms
involving x[1]. For a non-trivial ideal we could take for example

K = x2
[1]C[x[0], x[1]], (2.13)

which would give the quotient

C[x[0], x[1]]/K = C[x[0]] + x[1]C[x[0]]. (2.14)

Since C[x[0]] is a module of sl2, acting with the mode zero elements of sl2[ε]/ε2

keeps us in the same term, whereas acting with the mode one elements moves
us left as we multiply by x[1]. This could be extended by taking an arbitrary
power of x[1] in K, where mode r Lie algebra elements would move us r terms
to the left. The quotient (2.14) is infinite dimensional so the weight ℓ[0] has
no bearing in this case. It would be interesting to use this idea of combining
sl2-modules into a Takiff module with a finite dimensional module in each term,
though the exact form of the required ideal is unclear.

2.1.2 Separating the Variables

Keeping in mind that we ultimately are looking for the joint spectrum and
common eigenvectors of the Gaudin Hamiltonians, we now describe their
generating function ŝ1(z) in terms of these new variables. If they have been
suitably chosen, then the eigenvalue equations (realised as differential operators)
will decouple in the new variables, leaving a set of D differential equations each
dependent on only one of the qi.
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Let us write ŝ1(z) in terms of our separating functions,

ŝ1(z) =
1
2 Tr(L(z))2 = 1

2
(A2(z) +D2(z) +B(z)C(z) +C(z)B(z)), (2.15)

with A(z),B(z),C(z),D(z) as in equation (2.5). We can rearrange this exactly
as Sklyanin does [58], since the Lax matrix with higher order singularities has
the same r-matrix as the Lax matrix with simple poles. Using the tracelessness
of L(z), we eliminate D(z)

ŝ1(z) =
1
2
(2A2(z) +B(z)C(z) +C(z)B(z)). (2.16)

Note that by the Lax algebra relations (1.16) we have

[C(z),B(z)] = [L2
1(z), L1

2(z)] = L2′
2 (z) −L1′

1 (z) = −2A′(z) (2.17)

where in the last step we have again used that TrL(z) = 0 in sl2. Altogether,
we have that

ŝ1(z) = A2(z) −A′(z) +B(z)C(z). (2.18)

Matching with general convention, we specify below and throughout this
thesis that the substitution into a differential operator Y (z) is from the left,
meaning that we take the function of z to the left of the differential operators
before substitution. E.g., for an operator Y (z) in terms of differential operators

Y (z) = Y0(z) +
D

∑
i=1
Yi(z,{qi}Di=1)∂qi

, (2.19)

with functions Yi(z,{qi}N
i=1) of z and {qi}Di=1, by substitution z → qj we mean

Y (z)∣z=qj
= Y0(qj) +

D

∑
i=1
Yi(qj,{qi}N

i=1)∂qi
. (2.20)

This generalises to higher order differential operators in the obvious way.
To separate the eigenvalue equations of ŝ1(z) we will need to carefully

substitute z → qi into it - i.e. from the left. Since B(z) is the part furthest to
the left and by definition of our coordinates B(z)∣z→qi

= 0, we are left with

ŝ1(z)∣z→qi
= ((A(z))2 −A′(z))∣

z→qi

.

Therefore to proceed we consider what happens when we substitute z → qi into
A(z) = L1

1(z) from the left. In the Lie algebra elements A(z) has the form

A(z) = L1
1(z) = λ +

N

∑
l=1

τl−1
∑
r=0

h
(l)

[r]

2(z − zl)r+1 . (2.21)
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We will see that substituting any of the variables qi defined in (2.7) into (2.21)
from the left gives

A(z)∣z→qi
= Λ(qi) − ∂qi

(2.22)

for a scalar function

Λ(z) = λ +
N

∑
j=1

τj−1

∑
r=0

ℓj,[r]

(z − zj)r+1 . (2.23)

We can show this in two separate ways. On the one hand, it follows directly
from the Lax algebra relations, however this method gives no information on
the scalar function Λ(z), nor the specific form of A(z) in this realisation. So
we will also show this explicitly using the change of variables (2.9), as in the
case for the sl2-Gaudin model with simple poles.

Firstly, since A(z) = L1
1(z) and B(z) = L1

2(z) it follows from the Lax algebra
that

[A(z),B(w)] = B(z) −B(w)
z −w

. (2.24)

Then, as we have noted that the variables qj mutually commute, we may write
B(w) as (w − qj)B(w) with B(qj) ≠ 0 since the zeroes are distinct as operators,
though their eigenvalues may coincide on a specific state. Therefore when we
substitute qj into A(z) from the left, (2.24) becomes

(w − qj)[A(z)∣z→qi
,B(w)] − [A(z)∣z→qi

, qj]B(w) =
(w − qj)B(w)

w − qi

.

Upon setting w = qj the left-hand side becomes

−[A(z)∣z→qi
, qj]B(qj),

and the right will depend on whether i = j or not. If they are distinct, then the
right hand side is immediately zero, whereas if they are the same, we have

−[A(z)∣z→qi
, qi]B(qi) = B(qi). (2.25)

Hence it is clear that
[A(z)∣z→qi

, qj] = −δij (2.26)

where δij is the Kronecker delta. This tells us that A(z)∣z→qi
must be of the

form Λ(z) − ∂qi
for some scalar function Λ(z).
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More directly, we look at the A(z) in the realisation (A.6a);

A(z) = λ +
N

∑
j=1

τj−1

∑
r=0

τj−r−1

∑
s=0

ℓj,[r] − xj,[r+s]∂xj,[s]

(z − zj)r+1 . (2.27)

We substitute z → qi from the left and separate the constant term and the
levels into two terms

A(z)∣z→qi
=(λ +

N

∑
j=1

τj−1

∑
r=0

ℓj,[r]

(z − zj)r+1) ∣
z→qi

− (
N

∑
j=1

τj−1

∑
r=0

τj−r−1

∑
s=0

xj,[r+s]

(z − zj)r+1
∂

∂xj,[s]

) ∣
z→qi

.

The first term here is a scalar function, here evaluated at z → qi which we label
Λ(z).

To rewrite this in terms of the {qj}N
j=1, we firstly use the change of variables

(2.9) we derived previously to calculate ∂xl,[τl−1−r]

∂qi
;

∂xl,[τl−1−r]

∂qi

= 1
r!

∂

∂qi

lim
z→zl

⎛
⎜⎜
⎝

dr

dzr

∏Dk=1(z − qk)
∏N

j=1
j≠l

(z − zj)τj

⎞
⎟⎟
⎠

= 1
r! lim

z→zl

⎛
⎜⎜
⎝

dr

dzr

1
(qi − z)

∏Dk=1(z − qk)
∏N

j=1
j≠l

(z − zj)τj

⎞
⎟⎟
⎠
.

By repeated application of the product rule this becomes
∂xl,[τl−1−r]

∂qi

= 1
r! lim

z→zl

(
r

∑
s=0
(r
s
) ds

dzs

1
qi − z

dr−s

dzr−s

∏Dk=1(z − qk)
∏N

j=1
j≠l

(z − zj)τj
)

= 1
r! lim

z→zl

⎛
⎜⎜
⎝

r

∑
s=0
(r
s
) s!
(qi − z)s+1

dr−s

dzr−s

∏Dk=1(z − qk)
∏N

j=1
j≠l

(z − zj)τj

⎞
⎟⎟
⎠

=
r

∑
s=0

1
(qi − zl)s+1

1
(r − s)! lim

z→zl

⎛
⎜⎜
⎝

dr−s

dzr−s

∏Dk=1(z − qk)
∏N

j=1
j≠l

(z − zj)τj

⎞
⎟⎟
⎠

=
r

∑
s=0

xi,[τi−r+s−1]

(qi − zl)s+1 ,

where in the last line we have recognised the expression for xi,[τi−r+s−1] again
from the change of variables (2.9). We can now expand ∂qi

in terms of xi,[r]

via the chain rule
∂

∂qi

=
N

∑
l=1

τl−1
∑
r=0

∂xl,[r]

∂qi

∂

∂xl,[r]

=
N

∑
l=1

τl−1
∑
r=0

τl−1−r

∑
s=0

xl,[r+s]

(qi − zl)s+1
∂

∂xl,[r]

.
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This is immediately recognisable in our expression A(z) in terms of the reali-
sation variables xi,[r] from equation (2.27), and thus we arrive at the desired
result.

Now we have seen that A(z)∣z→qi
= Λ(qi) − ∂qi

, we want to consider how
such a substitution works for A2(z) and A′(z) as they appear in ŝ1(z). Naively
we might think that A2(z) ∣z→qi

= (Λ(qi) − ∂qi
)2, however this does not work

due to the subtleties of the convention of substitution from the left. Once we
have substituted z → qi into the first factor of A(z),

A2(z)∣
z→qi

= ((Λ(qi) − ∂qi
)A(z))∣

z→qi

, (2.28)

we need to move the other factor of A(z) through to the left before substituting
into it, introducing an additional term from reordering

[(Λ(qi) − ∂qi
),A(z)]∣

z→qi

= −[∂qi
,A(z)∣

z→qi

] + [∂z,A(z)]∣
z→qi

= A′(z)∣
z→qi

.

(2.29)
This additional copy of A′(z) fortuitously cancels the one in (2.18), leaving

ŝ1(z)∣
z→qi

= (A2(z) −A′(z))∣
z→qi

= (Λ(qi) − ∂qi
)2.

In the next chapter we will generalise this idea of combinations of powers of
A(z) and derivatives to "quantum powers", which behave predictably when we
substitute z → qi from the left.

Therefore if Ψ = Ψ(q1, . . . , qD) is an eigenfunction of ŝ1(z) such that

ŝ1(z)Ψ = s1(z)Ψ,

then by substituting z → qi from the left we see that it is also true that

∂2
qi

Ψ − 2Λ(qi)∂qi
Ψ + (Λ2(qi) −Λ′(qi))Ψ = s1(qi)Ψ. (2.30)

As this only affects one of the variables, the eigenfunctions of ŝ1(z) are products
of functions in one variable Ψ = ψ1(q1)⋯ψD(qD) (or more generally, sums of
such products) where each ψi(qi) satisfies a differential equation of the form

y′′ − 2Λy′ + (Λ2 −Λ′)y = s1y. (2.31)

More explicitly, plugging in the expression for Λ(z) (2.23) and ŝ1(z) in
terms of the Gaudin Hamiltonians (1.18), the equation reads

y′′ − 2(λ +
N

∑
k=1

τk−1
∑
r=0

ℓk,[r]

(qi − zk)r+1) y
′ + (

N

∑
k=1

τk−1
∑
r=0

ak,[r]

(qi − zk)r+1) y = 0 (2.32)
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where

ak,[0] = −Hk,[0] + ℓk,[0]

⎛
⎜⎜
⎝

N

∑
j=1
j≠i

τj−1

∑
s=0

2ℓj,[s]

(zk − zj)s+1

⎞
⎟⎟
⎠

and, with Hk,[r] as eigenvalues of the Gaudin Hamiltonians Ĥk,[r],

ak,[r] = −Hk,[r] + ℓk,[r]

⎛
⎜⎜
⎝

N

∑
j=1
j≠i

τk−1
∑
s=0

2ℓj,[s]

(zk − zj)s+1

⎞
⎟⎟
⎠
+ rℓk,[r−1] +

τk−2
∑
s=0

ℓk,[s]ℓk,[r−s−1].

On setting the Takiff degrees to 1 and once again identifying xi,[0] with xi and
also ak,[0] with ak, these separated equations become

y′′ − 2(λ +
N

∑
k=1

ℓi

(qi − zk)
) y′ + (

N

∑
k=1

ak

(qi − zk)
) y = 0, (2.33)

exactly recovering [58, Eq. (1.27a)].
In (2.26), the exact form of the scalar function Λ(z) appears to be somewhat

arbitrary, since we only seem to require that it commutes with qi. In our
discussion of the Bethe Ansatz below, we will see that it is relevant as the
eigenvalue of A(z) on the vacuum state, however we can "hide" it in the
wavefunction ψi(qi) to make our differential equation appear simpler, and the
analogy between (2.30) and the oper clearer. If we let ψ̃i(qi) = e− ∫ Λ(qi)ψi(qi)
then we can shift the differential operator ∂qi

by Λ(qi)

−∂qi
ψ̃i(qi) = Λ(qi)ψ̃i(qi) − e− ∫ Λ(qi)∂qi

ψi(qi)

= e− ∫ Λ(qi) (Λ(qi) − ∂qi
)ψi(qi). (2.34)

The pay-off for the simpler differential equation that we ultimately achieve
from this rotation is that the eigenstates are in the more complicated space
e− ∫ Λ(qi)C[{xj,[r]∣r = 0, . . . τj − 1}N

j=1. This will be a more convenient choice in
the gl3-case covered in the following chapter, since we will not be working
with the realisation directly it will be less clunky to simply rescale and remove
Λ(qi). However, for the present chapter we will continue with the form of Λ(z)
given in (2.23), since it naturally arises from the realisation we have chosen
and highlights the correspondence to the original simple poles case.

2.2 Comparison to Bethe Ansatz

Let us now align this SoV perspective on solving the Gaudin model with the
well-known diagonalisation of the Gaudin Hamiltonians using the Bethe Ansatz,
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see [31] for an overview. We will see that the Bethe vectors do indeed satisfy
our separated equation (2.32). Let us first briefly recall the Bethe Ansatz for
the sl2-Gaudin model.

2.2.1 The Bethe Ansatz

This section follows [58] and [31]. Though the Bethe Ansatz for the irregular
singularities case has not been mentioned previously in the literature, the
method of the Bethe Ansatz that we will outline here is derived wholly from
the Lax algebra relations and thus applicable to any strength of poles.

To ensure a suitable reference vector we require the representations at each
site to be highest-weight representations; for k = 1, . . . ,N we take at the kth
site the module Vk with highest weight vector vk, and at infinity the module
V∞ where sl2 acts by multiplication by the numbers in the matrix described in
(A.10). Hence the spin-chain Ω of the Gaudin model is given by

Ω = V1 ⊗ V2 ⊗⋯⊗ VN ⊗ V∞. (2.35)

Our reference vector will then be the vacuum state found as a tensor product
of the highest weight vectors at each site

∣0⟩ = vλ1 ⊗ vλ1 ⊗⋯⊗ vλN
⊗ v∞, (2.36)

note that any state in Ω may be reached by acting with a suitable combination
of f (i)

[r]
on ∣0⟩. For example, since B(z) is such a combination

B(w) ∣0⟩ = f (∞) ∣0⟩ +
N

∑
i=1

τi−1
∑
r=0

f
(i)

[r]
∣0⟩

(z − zi)τi+1 ∈ Ω. (2.37)

To understand the effect of the other Lax matrix elements in (2.5) on ∣0⟩, let us
consider them in the realisation (A.6a), in which the modules Vk are made up
of polynomials in the variables {xi,[r]}τk−1

r=0 with corresponding highest weight
vector vk = 1 for k = 1, . . . ,N . If we apply C(z) to the vacuum vector ∣0⟩ using
this realisation we see that

C(z) ∣0⟩ = 0, (2.38)

as π(e(k)
[r]
) acts first by differentiation. Similarly we find that ∣0⟩ is an eigenvector

of A(z),

A(z) ∣0⟩ = Λ(z) ∣0⟩ , Λ(z) = λ −
N

∑
i=1
∑

ℓi,[r]

(z − zi)r+1 . (2.39)
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Note that Λ(z) is the scalar function we found previously in (2.23) from the
separation of variables approach. From (2.39) and (2.18) it is clear that ∣0⟩ is
an eigenvectors of ŝ1(z) with eigenvalue Λ2(z) −Λ′(z).

We have noted that B(z) ∣0⟩ ∈ Ω for all z ∈ C, we now determine the
condition on the value w of the spectral parameter for Ψ(w) = B(w) ∣0⟩ to be
another eigenvector of ŝ1(z). We can reorder the operators and use our known
eigenvalue on the vacuum, but this introduces an additional term from the
commutation relations;

ŝ1(z)Ψ(w) = (Λ2(z) −Λ′(z))Ψ(w) + [ŝ1(z),B(w)] ∣0⟩ . (2.40)

It follows by the Lax algebra relations that

[ŝ1(z),B(w)] ∣0⟩ =
2

z −w
(B(z)A(w) −B(w)A(z)) ∣0⟩ (2.41)

= −2Λ(z)
z −w

B(w) ∣0⟩ + 2Λ(w)
z −w

B(z) ∣0⟩

= −2Λ(z)
z −w

Ψ(w) + 2Λ(w)
z −w

B(z) ∣0⟩ .

Regrouping this, we see that the Bethe vector Ψ(w) is an eigenvector of ŝ1(z)
with eigenvalue

s1(z,w) = (χw(z) −Λ(z))2 + d
dz
(χw(z) −Λ(z)) (2.42)

where χw(z) = 1
z−w , if and only if the parameter w satisfies the equation

Λ(w) = 0. (2.43)

This is referred to as the Bethe equation and parameters w satisfying it as
the Bethe-root. Note that if we have rescaled to remove Λ(z) from A(z) as in
(2.34), then the vacuum vector would be of the more complex form e− ∫ Λ(qi) so
we would still find Λ(z) as the eigenvalue of A(z) on the vacuum, and hence
the Bethe equation would not be affected.

We can extend this to further deviations from the reference vector ∣0⟩ by
applying more copies of B(z) at different Bethe roots w1,w2, . . . ,wm,

Ψ(w1,w2, . . . ,wm) = B(w1)B(w2) . . .B(wm) ∣0⟩ . (2.44)

To determine the eigenvalue and Bethe equation we again move ŝ1(z) past the
factors of B(wk) by repeatedly applying (2.41) along with the relation

[A(z),B(w1)B(w2)⋯B(wm)] ∣0⟩ (2.45)

= −χw1,...,wmΨ(w1,w2, . . . ,wm) +
m

∑
k=1

χwk
B(z)Ψ(w1, . . . ,��wk, . . . ,wm),
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where
χw1,...,wm(z) =

m

∑
i=1

1
z −wk

. (2.46)

Thus applying ŝ1(z) to Ψ(w1, . . . ,wm) we get

ŝ1(z)Ψw1w2...wm = s1(z;{wj}m
j=1)Ψ(w1, . . . ,wm) (2.47)

+
m

∑
k=1

2χwk
(z)(Λ(wk) − χw1,...,��wk,...,wm(wk))B(z)Ψ(w1, . . . ,��wk, . . . ,wm),

where

s1(z;{wj}m
j=1) = (χw1,...,wm(z) −Λ(z))2 + d

dz (χw1,...,wm(z) −Λ(z)). (2.48)

Clearly from (2.47), for Ψ(w1, . . . ,wm) to be an eigenvector of ŝ1(z), the Bethe
roots {wk}m

k=1 must now satisfy Bethe equations

Λ(wk) =∑
j=1
j≠k

1
wk −wj

. (2.49)

Thus we have obtained the joint spectrum of the Gaudin Hamiltonians for
any highest weight representation - which is complete in sl2 [47].

2.2.2 Bethe Vectors and the Separated Equation

Let us check that the Bethe vectors (2.44) we know to be solutions of the
Gaudin model do indeed satisfy equation (2.32), beginning with the vacuum
vector ∣0⟩ (recalling that that this is the tensor product of highest weight
vectors given by vk = 1 for k = 1, . . . ,N in our differential operator realisation of
sl1[εi]/ε τi

i ). There is clearly no dependence on any of the separated variables,
hence the separated equation is mostly trivial

(Λ(qi) − ∂qi
)2 ∣0⟩ − s1(qi) ∣0⟩ = Λ2(qi) ∣0⟩ −Λ′(qi) ∣0⟩ − s1(qi) ∣0⟩ = 0. (2.50)

The final equality here is simply a restatement of the fact that the eigenvalue
of our generating function on the vacuum is s1(qi) = Λ2(qi) −Λ′(qi).

For cases where our eigenvector does have some dependence on the separated
variables, take Ψ(w) = B(w) ∣0⟩ - or, when factorised in terms of the variables

Ψ(w) = (w − q1)⋯(w − qD)
(w − z1)τ1⋯(w − zN)τN

∣0⟩ . (2.51)
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Because we showed that the separated variables are isomorphic to our original
realisation in the variables {xi,[r]∣r = 0, . . . , τi − 1}N

i=1, they must also be distinct.
Hence when we apply (2.30) to Ψ(w) only the first derivative terms are non-zero;

∂qi
Ψ(w) = 1

qi −w
Ψ(w), (2.52)

where we have recognised that this factor in front is just χw(qi) = 1
qi−w as

defined above. Therefore the separated equation acting on Ψ(w) leaves only

−2ΛχwΨ(w) + (Λ2 −Λ′)Ψ(w) − s1Ψ(w) = 0 (2.53)

which again is a rearrangement of the known eigenvalue s1(z) in (2.48).
In fact Sklyanin shows in [58] that any generic Bethe vector Ψ(w1,w2, . . . ,wm)

satisfies equation (2.32) by rearranging to arrive at the separated equation
from the Bethe Ansatz context. Using (2.7) we can immediately factorise
Ψ(w1, . . . ,wm) in terms of our separated variables

Ψ(w1, . . . ,wm) =
m

∏
k=1

D

∏
j=1
(wk − qj) ∣0⟩ . (2.54)

Labelling y(z) =∏m
k=1(z −wk), Ψ(w1, . . . ,wm), we have

Ψ(w1) = y(q1)⋯y(qD) ∣0⟩ , (2.55)

with each factor depending on one separated variable.
The first part of this argument would theoretically apply beyond sl2; if

one can show that the eigenfunctions of the Hamiltonians may be derived
from the separating function B(z) acting on the vacuum, then we have a
factorised form with each depending on a single separated variable, albeit with
no knowledge of the corresponding separated equation. In this lowest rank case
this is immediate, as B(z) is simply the lowering operator, however it becomes
less trivial for higher rank cases. This idea is the crux of the method laid out
by Gromov, Cavalgia, Levkovich-Maslyuk and Sizov in [8, 34] to construct the
separation of variables for the the sln-XXX chain. We will discuss this with
regards to the gl3-Gaudin model in the next chapter when looking towards
higher rank.

In this case we can go further and see that y(qj) satisfies (2.32) for all
j = 1, . . . ,D. Firstly, note that

χw1,...,wm(z) =
y′(z)
y(z)

. (2.56)
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and hence (2.48) may be written as

s1 = (
y′

y
−Λ)

2
+ (y

′

y
−Λ)

′

= (y
′)2
y2 − 2Λy

′

y
+Λ2 + y

′′

y
− (y

′)2
y2 −Λ′. (2.57)

Multiplying both sides by y, we reach exactly our separated equation once
again

s1y = y′′ − 2Λy′ + (Λ2 −Λ′) y (2.58)

so y(qj) (and therefore Ψ) satisfies the separated equation for each variable qj.
Thus when we have highest weight representations at each site, finding polyno-
mial solutions to (2.32) is equivalent to finding the Bethe roots w1, . . . ,wm.

2.2.3 Relation to Opers

Underlying both the Separation of Variables and the Bethe Ansatz for the
Gaudin model is a description of the spectrum of the Gaudin model using
opers, put forth by Feigin, Frenkel, and Reshetikhin in [26, 27, 29]. Crucially,
this construction produces a complete set of joint eigenvectors for the Gaudin
Hamiltonians [55]. These same opers can be used to describe the Bethe Ansatz
in the Gaudin model, and also appear (after some rearranging) in the SoV
of both this Chapter and the next. We briefly introduce sl2-opers, largely
following [41].

Consider the space of meromorphic sl2-connections on CP 1, which take the
following form when we view sl2 in its usual matrix representation;

∇ = ∂z +
⎛
⎝
a(z) b(z)

1 −a(z)
⎞
⎠

(2.59)

where z is a coordinate on CP 1 and a(z) and b(z) are meromorphic functions
in z. We can gauge transform a connection by a matrix g(z) valued in the
associated Lie group SL2;

g(z)∇g(z)−1 = ∂z + g(z)
⎛
⎝
a(z) b(z)

1 −a(z)
⎞
⎠
g(z)−1 − g′(z)g(z)−1 (2.60)

and the space of connections like (2.59) are invariant under gauge transforms
of the form

g(z) =
⎛
⎝

1 f(z)
0 1

⎞
⎠
, (2.61)
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where f(z) is meromorphic. Under such a transformation, they become

g(z)∇g(z)−1 = ∂z +
⎛
⎝
a(z) + f(z) b(z) − 2a(z)f(z) − f 2(z) − f ′(z)

1 −a(z) − f(z)
⎞
⎠
. (2.62)

An sl2-oper is the equivalence class [∇] of sl2-connections (2.59) under gauge
transformations of the form (2.61). We can choose a specific canonical rep-
resentative of such an equivalence class by taking a gauge transform with
f(z) = −a(z), leaving us with zeroes on the diagonal

∂z +
⎛
⎝

0 c(z)
1 0

⎞
⎠
, (2.63)

for some meromorphic function c(z).
A Miura oper is a connection of the special form

∇ = ∂z +
⎛
⎝
m(z) 0

1 −m(z)
⎞
⎠
. (2.64)

The canonical representative in the equiavalence class with a Miura oper is

∇c = ∂z +
⎛
⎝

0 m2(z) −m′(z)
1 0

⎞
⎠
, (2.65)

where we call m2(z) −m′(z) the Miura transformation of m(z).

2.2.3.1 Opers and the Bethe Ansatz

In [26] we see an alternative formulation of the Bethe Ansatz for the Gaudin
model in terms of opers.

Let w1, . . . ,wm be the Bethe roots, defined as solutions to (2.49), and
let χw1,...,wm and Λ(z) be as in (2.46) and (2.23) respectively. We may then
construct the Miura oper

∇w1,...,wm = ∂z +
⎛
⎝

Λ(z) − χw1,...,wm(z) 0
1 χw1,...,wm(z) −Λ(z)

⎞
⎠
. (2.66)

If we take instead the canonical representative of the oper containing ∇w1,...,wm ,
we see that it is

∇c,w1,...,wm = ∂z +
⎛
⎝

0 (χw1,...,wm(z) −Λ(z))2 − (χw1,...,wm(z) −Λ(z))′

1 0
⎞
⎠
. (2.67)
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In other words, the eigenvalue s1(z) on Ψ(w1, . . . ,wm) is the Miura transform
of (χw1,...,wm(z) −Λ(z)).

To recover the Bethe equations (2.49) in this formalism, consider the be-
haviour of the eigenvalue s1(z) at the poles z = wi. The double pole arising
from the χ2

w1,...,wm
(z) term cancels with that from the χ′w1,...,wm

(z), hence we
have a simple pole with residue

Resz=wi
s1(z) =

N

∑
i=1

−2
wi −wj

− 2Λ(wi). (2.68)

Therefore in this oper formulation, the Bethe equations satisfy the requirement
that s1(z) is regular at the Bethe roots z = wj.

2.2.3.2 Opers in Separation of Variables

Interestingly opers also appear in the separated equation (2.30) itself. This
may not be initially obvious, since our second order differential equation does
not bear much resemblance to (2.59), but we can rearrange to see the similarity.
We firstly let the oper act upon some generic vector and set this to zero

⎛
⎝
∂z +
⎛
⎝
a(z) b(z)

1 −a(z)
⎞
⎠
⎞
⎠
⎛
⎝
ϕ1

ϕ2

⎞
⎠
= 0. (2.69)

We can rewrite (2.69) as two simultaneous differential equations

∂zϕ1 + a(z)ϕ1 + b(z)ϕ2 = 0, (2.70a)

∂zϕ2 + ϕ1 − a(z)ϕ2 = 0, (2.70b)

and combine these as a single second order differential equation

∂ 2
z ϕ2 + (b(z) − a2(z) − a′(z))ϕ2 = 0 (2.71)

- note that the coefficient of ∂zϕ2 is 0, as we are in sl2. If we label the coefficient
of ϕ2 as τ(z) then (2.71) is

(∂ 2
z + τ(z))ϕ2 = 0. (2.72)

Let us now compare this to the quantity cdet(∂z1 + L(z)) acting on an
eigenvector Ψ of ŝ1,

cdet (∂z +L(z))Ψ = (∂ 2
z + ŝ1(z))Ψ = (∂ 2

z + s1(z))Ψ. (2.73)
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This bears a clear resemblance not only to the second order differential equation
(2.72), but also to the separated equations if we ignore the terms containing the
scalar function Λ(z) and replace z by qi. We will find in the following chapter
this trend continues at the next rank, and that the separated equation may
again be found from

cdet (∂z +L(z))∣
z→qifrom left

Ψ = 0 (2.74)

in the separated variables qi. The quantity cdet (∂z + L(z)) is known as the
universal oper, with ∂ 2

z + τΨ being the oper associated to the state Ψ.
As we remarked above, the scalar function Λ(z) does not appear naturally

from this perspective, however we can still include it using the transformation
(2.34). If we multiply on the left by e∫ Λ(qi) then we have

e∫ Λ(qi)∂qi
ϕ = (∂qi

−Λ(qi))e∫ Λ(qi)ϕ. (2.75)

Therefore, performing this rotation on (2.74) gives

eΛqi(∂ 2
qi
+ s1)e−Λqi = (∂qi

−Λ)2 + s1, (2.76)

which leads naturally to our separated equation by expanding the brackets and
acting on y

y′′ − 2Λy′ + (Λ2 −Λ′)y = s1y. (2.77)

As discussed above, an important advantage of the Separation of variables
technique over the Bethe Ansatz is that the latter does not provide the complete
set of eigenvectors, whereas separation of variables is generally believed to
be complete. It has been shown [55] that there is a bijective correspondence
between the space of opers and the eigenspaces of the Gaudin Hamiltonians,
and we have seen that opers correspond to these second order differential
equations which separate the variables. In contrast, the Bethe Ansatz has been
shown to be incomplete for higher rank [47]. Though we have seen that the
Bethe vectors also correspond to opers (specifically, to Miura opers of the form
(2.66)) there are joint eigenvectors of the Gaudin Hamiltonians which cannot be
described in this way - i.e they correspond to opers that are not Miura opers.

It is interesting that, via SoV, we rediscover this complete description of the
Gaudin eigenstates using opers, without needing to delve into the complicated
machinery. In addition, the appearance of the universal oper cdet(∂z +L(z))
in the separated equation might prove useful for systematically constructing
an SoV for higher rank Gaudin models.



3

Separation of variables for gl3-Gaudin
models

We now consider separation of variables for the quantum sl3 and gl3 Gaudin
models. As a guide we have the known SoV for the sl3 XXX-chain [21, 59], from
which we can take the Gaudin limit as described in Section 1.3.1.1. Firstly we
construct the SoV for the sl3 Gaudin model entirely by taking the Gaudin limit
of the separating functions and the separated equations, which was conducted
independently by Ribault in [52]. Following this we can recreate the SoV
entirely within the Gaudin model itself, where it is straightforward to extend
it to the more general gl3 Gaudin model with irregular singularities as it is a
consequence of the Lax algebra. As we discussed in the previous chapter, the
separating functions A(z) and B(z) become increasingly involved expressions
at higher rank, but taking the limit of the XXX chain provides a starting point
which we can check against the classical expressions from [60] and [23]. We will
later discuss a variety of methods to construct the separating functions and
separated equations more systematically at arbitrary rank without the need to
refer to other models.

Our initial realisation for the Takiff Lie algebra gl3[εi]/ετi
i is detailed in

appendix A, (A.8). We now have 3τi variables at each site labelled xi,[r],yi,[r]

and zi,[r] for modes r = 0, . . . , τi − 1 and sites i = 1, . . .N , hence we now require
3D separated variables qj. Note that there is a notational conflict between the
sitez zi and the realisation variables zi,[r], but as we rarely use the realisation
directly it will not prove to be overly troublesome. In this chapter we do
not construct an explicit change of variables analogous to (2.9), as both the
realisation (A.8) and B(z) are more complex and it is not clear how to isolate

57
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the variables as we did in the rank 2 case. While the change of variables
provided the basis of the idea of SoV, particularly in earlier examples, we do
not need to restrict the definition of SoV to include it, as was discussed in [60].
One place it is useful to have the perspective of the initial realisation is when
defining the Gaudin separating function A(z), as the inverse terms that arise
may then be viewed as fractions.

3.1 As a limit of the XXX-chain

We take the Gaudin limit of the separating functions and the separated equation
for the XXX chain, as Ribault does in [52]. Let us firstly briefly present the
SoV for the quadratic case.

3.1.1 Summary of SoV for the sl3 XXX-chain

We will follow [59] and [21]. In the former Sklyanin provides a separation of
variables applicable to any quantum integrable model associated to Y (sl3),
whereas in the latter Derkachov and Valinevich focus specifically on the XXX-
chain and provide a starting differential operator realisation for this model,
before going on to find eigenvectors of BXXX(z). Here the separated equation
will be a finite difference equation, which will become a third order differential
equation in the limit, the rank 3 analogue to (2.32). We will include the
parameter h̵ in order to take the Gaudin limit later.

As the Lax matrix LXXX(z) (1.62) of the XXX chain covers only single
site, the separating functions will instead be made up of elements of the global
monodromy matrix T (z). Representing the auxiliary factor in the fundamental
representation we have a 3 × 3 matrix,

T (z) =
⎛
⎜⎜⎜
⎝

T 1
1 (z) T 1

2 (z) T 1
3 (z)

T 2
1 (z) T 2

2 (z) T 2
3 (z)

T 3
1 (z) T 3

2 (z) T 3
3 (z)

⎞
⎟⎟⎟
⎠
.

The separating function BXXX(z) is then given by

BXXX(z) = T 1
3 (z)T [12

23](z − h̵) − T 1
3 (z)T [12

13](z − h̵), (3.1)

recalling the definition of the quantum minor T [ac
bd](z) given in (1.64). The

separated variables, which we label {qi}3N
i=1, are as usual defined as the operator
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zeroes of BXXX(z), that is

BXXX(z) = B0(z)(z − q1)(z − q2)⋯(z − q3N), (3.2)

Where B0(z) is just some rational function of z. Note that at rank 3 we have
3N separated variables. As we would hope, B(z) commutes with itself [59, Eq.
(21)]

[BXXX(z),BXXX(w)] = 0, (3.3)

and hence the {qi}3N
i=1 also mutually commute.

Similarly, the corresponding separating function AXXX(z) which provides
the conjugate coordinates is given by

AXXX(z) = −T [12
13](z − h̵)(T 2

3 (z − h̵))−1, (3.4)

assuming that the operator T 2
3 (z) is invertible.

For reference, let us also briefly note the commutation relations of our
separating functions AXXX(z) and BXXX(z) to guide us when we find the
corresponding relation in the Gaudin model later;

(z −w)AXXX(z)BXXX(z) − (z −w − h̵)BXXX(w)AXXX(z) (3.5)

= h̵BXXX(z)AXXX(w)(T 2
3 (z − h̵))−1(T 2

3 (z))−1T 2
3 (w − h̵)T 2

3 (w).

In the XXX-chain, the separated equation will be a finite difference equation
and so AXXX ∣z→qi

must be a finite difference operator; if F (q1, . . . , q3N) is
polynomial in the separated variables qi then as in [59, Eq.(36)], [21, Eq.(4.37)]
we can act with AXXX(z) to get

A(z)∣
z=qi

F (q1, . . . , q3N)) = F (q1, . . . , qi − h̵, . . . , q3N). (3.6)

Recall the definition of the generating functions of the integrals of motion
t1(z), t2(z), t3(z) given in (1.66). The separated equation of an eigenvector Φ
of the XXX-chain is therefore a difference equation given in [59, Eq.(48)]

Φ(q1, q2, . . ., qi − 3h̵, . . . ) − t1(qi + 2h̵)Φ(q1, q2, . . . , qi − 2h̵, . . . ) (3.7)

+t2(qi − 2h̵)Φ(q1, q2, . . . , qi − h̵, . . . ) − d(qi − 2h̵)Φ(q1, q2, . . . ) = 0

for which Φ(q1, q2, . . . .q3N) = ϕ1(q1)ϕ2(q2),⋯ϕ3N(q3N) is clearly a solution.
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3.1.2 Gaudin limit

We can now take the Gaudin limit, as described in section 1.3.1.1 to obtain an
SoV for the corresponding gl3 Gaudin model with simple poles, as in [52]. Recall
that we recover the Lax matrix of the Gaudin model from the monodromy
T (z) at first order in the h̵→ 0 limit,

T (z) = 1 + h̵L(z) + h̵2T (2)(z) + h̵3T (3)(z) +O(h̵4); (3.8)

we have expanded up to order h̵3 as we will need to check that these higher
order parts cancel off, leaving us with a result truly in the Gaudin setting.
We firstly define our separated variables by constructing suitable separating
functions for the Gaudin model by taking the limit of (3.4) and (3.1), as they
no longer arise naturally as single elements of the Lax matrix;

AXXX(z) = 1 + h̵A(z) +O(h̵2)

BXXX(z) = h̵3B(z) +O(h̵4).

This leaves us with rational separating functions A(z) and B(z) in the compo-
nents of the Gaudin Lax matrix only.

A(z) = (L2
3(z))−1L12

13(z) = L12
23(z)(L2

3(z))−1 (3.9a)

B(z) = L21
31(z)L1

3(z) −L2
3(z)L12

32(z) (3.9b)

where now the minors do not have shifts in the spectral parameter as we have
Taylor expanded in h̵. Fortunately we do not need to worry about the ordering
in the A(z) definition too much as L2

3(z) commutes with the minor L12
13(z)

by repeated application of (1.17). We also note that on taking the classical
limit (i.e. letting the Lax matrix elements commute with one another) the
expressions for the separating functions given in (3.9) become exactly their
analogues for the classical Gaudin model as described in [62].

Entirely as before we may take our separated variables qi to be the 3N
operator zeroes of B(z);

B(z) = (z − q1)⋯(z − q3N)
(z − z1)3⋯(z − zN)3

, (3.10)

as expected we have 3N variables which aligns with our 3N variables xi, yi, zi

for i = 1, . . . ,N in our original realisation of sl3⊕N (A.7). It is straightforward
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to see that B(z) and hence the separated variables commute by taking the
limit of (3.3)

h̵6[B(z),B(w)] = 0. (3.11)

We could consider the effect of A(z) by taking limits of (3.5), and indeed
Ribault does [52, Eq.(4.13)], however we do not strictly need this information
to complete the SoV. We will consider this later directly from the Gaudin
model, for now let us instead take the h̵ → 0 limit of the separated equation
(3.7) directly to produce the Gaudin separated equation. We begin by Taylor
expanding the eigenfunction Φ in powers of h̵,

0 =(1 − t1(qi + 2h̵) + t2(qi + 2h̵) − d(qi + 2h̵))Φ

+ h̵(3 − 2t1(qi + 2h̵) + t2(qi + 2h̵))∂qi
Φ

+ h̵2(92 − 2t1(qi + 2h̵) + 1
2t2(qi + 2h̵))∂2

qi
Φ

+ h̵3 (9
2 −

4
3t1(qi + 2h̵) + 1

6t2(qi + 2h̵))∂3
qi

Φ,

where we are ignoring anything of order h̵4 or higher, and we will then deal
with the coefficients of Φ and each of its derivatives separately leaving us with
the separated equation of the Gaudin model at order h̵3.

Expand each of the generating functions in h̵ using (3.8), ignoring h̵3 and
higher for the moment, gives

t1(z) =3 + h̵TrL(z) + h̵2 TrT (2)(z) (3.12a)

t2(z) =3 + 2h̵TrL(z) (3.12b)

+ h̵2(L12
12(z) +L13

13(z) +L23
23(z) + 2L1′

1 (z) +L2′
2 (z) +TrT (2)(z)).

Applying (3.12) to the coefficient of ∂3
qi

Φ we have

h̵3 (9
2 −

4
3t1(qi) +

1
6t2(qi)) = h̵3 (9

2 − 4 + 1
2) +O(h̵

4) = 1 +O(h̵4).

Similarly for the coefficient of ∂2
qi

, it follows simply from equations (3.12) that
there is no contribution at order h̵2 and we are left with −h̵3 TrL(qi) = 0 due
to the tracelessness of the Lax matrix for the sl3-Gaudin model. We will treat
with the gl3 case later in the chapter when we work only in the Gaudin model.

Moving on to the ∂qi
Φ coefficient, we once again see that terms of order h̵

and h̵2 drop out rather easily, leaving us with the following expression

h̵3(L12
12(qi) +L13

13(qi) +L23
23(qi) +L1′

1 (qi) +L2′
2 (qi)), (3.13)
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which we recognise as the generating function ŝ2(z) of the Gaudin model from
equation (1.25b). As we have seen in (1.26b) we can rewrite this for the special
linear case as 1

2 TrL2(z).
Finally for the coefficient of Φ in the separating equation,

1 − t1(qi) + t2(qi) − d(qi), (3.14)

we will need to consider the limit of the quantum determinant d(z) in addition
to the behaviour of t1(z) and t2(z) up to order h̵3. It turns out that the cross
terms that arise in the limit involving T (2)(z) and T (3)(z) cancel off neatly,
but the calculation is quite tedious so we will not include them explicitly in
our expansion;

d(z) =1 + h̵TrL(z) + h̵2(L12
12(z) +L13

13(z) +L23
23(z) + 2L1′

1 (z) +L2′
2 (z))

+ h̵3(L123
123(z) + (L12

12)′ +L1′
1 (z)L3

3(z) −L1′
3 (z)L3

1(z) +L1′′
1 (z) +

1
2L

2′′
2 (z))

+ higher order cross terms.

Once again it is straightforward to show that the terms of order h̵2 and below
cancel off, leaving the relevant remaining part of t2(qi),

h̵3(1
2L

2′′
2 (qi) +L3′′

3 (qi)). (3.15)

Therefore the coefficient of Φ in terms of the Lax matrix components is

h̵3( −L123
123(qi) − (L12

12(qi))′ −L1
1(qi)L3′

3 (qi) +L1
3(qi)L3′

1 (qi) +L1′′
1 (qi)). (3.16)

Again we recognise the expression within the brackets as the generating function
of the Gaudin model ŝ3(qi) from (1.25c), which we have seen becomes

h̵3

3 TrL3(z), (3.17)

once we apply the sl3 condition that TrL(z) = 0.
Overall we have 3N third order differential equations at order h̵3 with

coefficients made up of the eigenvalues of the Gaudin Hamiltonians

∂3
qi

Φ + s2(qi)∂qi
Φ − s3(qi)Φ = 0, (3.18)

which are the separated equations for the sl3-Gaudin model and we have
Φ = ϕ1(q1)⋯ϕ3N−1(q3N). Note that this is again the universal sl3-oper cdet (∂qi

+
L(qi)) applied to Φ with generating functions replaced by their eigenvalues.
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3.2 SoV Directly

Our aim in considering the sl3 case was in part to then generalise to arbitrary
rank, making worthwhile to reproduce this result directly in the Gaudin setting
- where it can apply to gl3 with minimal adjustment. Furthermore, since we will
derive the SoV from the Lax algebra alone it applies to the Gaudin model with
irregular singularities. We can still use the XXX SoV as a guide, in particular
we use the suitable separating functions A(z) and B(z) we found in (3.9) as a
limit of AXXX(z) and BXXX(z), but we now take the h̵→ 0 limit at the start
of the process instead of at the end.

3.2.1 Constructing the variables

Let us consider the behaviour of B(z) in the limit z →∞; from the realisation
of the commutative copy of gl3 at infinity (A.11) we get an additional constant
from the term L2

3(z)L1
2(z)L2

3(z), leaving

B(z) = 1 +O (1
z
) , (3.19)

hence we expect as many operator zeroes as we have poles, which means 3D
separated variables. In general we note that for the gln Gaudin model we would
need B(z) to be made up of multiples of n(n − 1)/2 Lax matrix elements to
provide enough variables for a representation of gln, with A(z) of order 1 in
Lax matrix elements overall. We define the separated variables qi in the usual
way, as the 3D operator zeroes of B(z),

B(z) = (z − q1) . . . (z − q3D)
(z − z1)3τ1 . . . (z − zN)3τN

. (3.20)

It is no longer straightforward to construct the associated change of vari-
ables from our original representation variables {xi,[r], yi,[r], zi,[r]} to the new
coordinates {qi}Di=1. Let us consider for the moment the gl3-Gaudin model with
simple poles in its Lax matrix - as usual equating xi,[0], yi,[0], zi,[0] at the ith
site with xi, yi, zi respectively. In terms of these representation variables B(w)
has the rather involved form

B(w) = 1 +
N

∑
i,j,k=1

1
(w − zi)(w − zj)(w − zk)

(xi(u3 + yj∂yj
+ zj∂zj

)yk

− (xi∂yi
− ∂zi
(u3 − u2 + zi∂zi

))yjyk + xi(zj + yj∂xj
)xk

− xiyj(u1 + 1 + xk∂xk
− zk∂zk

)).
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If we again try and equate this to our expression (3.20) for B(z) factorised in
terms of separated variables to determine a relationship it is not clear how to
isolate one of our original coordinates, as we did in the rank 2 case by taking a
residue. For this reason we will continue the process of separating the variables
without this explicit part of the construction.

To ensure that the variables {qi}Di=1 commute, we must recreate (3.11) using
only the Lax algebra (1.16), that is we require

[B(z),B(w)] = 0 z,w ∈ C. (3.21)

We prove this by direct calculation;

[B(z),B(w)] = L2
3(z)[L12

32(z), L2
3(w)]L12

32(w) +L2
3(w)[L2

3(z), L12
32(w)]L12

32(z)

−L2
3(z)[L12

32(z), L21
31(w)]L1

3(w) −L2
3(w)[L21

31(z), L12
32(w)]L1

3(z)

+L21
31(z)[L1

3(z), L21
31(w)]L1

3(w) +L21
31(z)[L1

3(z), L21
31(w)]L1

3(w).

The relevant commutation relations are those between components of the Lax
matrix and minors

[L1
3(z), L21

31(w)] = [L2
3(z), L12

32(w)] =
1

z −w
(L2

3(z)L1
3(w) −L1

3(z)L2
3(w)), (3.22)

and between the two minors themselves

[L21
31(z), L12

32(w)] =
1

z −w
(L12

32(z)L2
3(w) (3.23)

−L2
3(z)L12

32(w) +L21
31(w)L1

3(z) −L1
3(w)L21

31(z)).

On substituting these into [B(z),B(w)] all terms cancel leaving

(z −w)[B(z),B(w)] =

L2
3(z)(L1

3(w)L2
3(z) −L1

3(z)L2
3(w))L12

32(w)

+L2
3(w)(L1

3(z)L2
3(w) −L1

3(w)L2
3(z))L12

32(z)

−L2
3(z)(L12

32(w)L2
3(z) −L2

3(w)L12
32(z)

+L21
31(z)L1

3(w) −L1
3(z)L21

31(w))L1
3(w)
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−L2
3(w)(L12

32(z)L2
3(w) −L2

3(z)L12
32(w)

+L21
31(w)L1

3(z) −L1
3(w)L21

31(z))L1
3(z)

+L21
31(z)(L1

3(w)L2
3(z) −L1

3(z)L2
3(w))L1

3(w)

+L21
31(w)(L1

3(z)L2
3(w) −L1

3(w)L2
3(z))L1

3(z)

=L2
3(z)L1

3(w)[L2
3(z), L12

32(w)] −L2
3(w)L1

3(z)[L12
32(z), L2

3(w)]

+ [L1
3(z), L21

31(z)]L2
3(z)L1

3(w) − [L21
31(z), L1

3(w)]L2
3(w)L1

3(z)

= 0.

It therefore follows that for the separated variables {qi}3D
i=1 we have

[qi, qj] = 0, i, j = 1, . . . ,3D, (3.24)

as required.
Our conjugate coordinates will be defined by A(z)∣z→qi

for i = 1, . . . ,3D,
and must also commute with one another - note that as before the substitution
is from the left. Firstly note the trivial commutation relations

[L2
3(z), L2

3(w)] = 0
[L2

3(z), L12
13(w)] = 0,

and also that the minor L12
13(z) commutes with itself at different spectral

parameters z,w, ∈ C

[L12
13(z), L12

13(w)] =[L1
1(z)L2

3(z), L1
1(w)L2

3(w)] − [L1
1(z)L2

3(z), L1
3(w)L2

1(w)]

− [L1
3(z)L2

1(z), L1
1(w)L2

3(w)] + [L1
3(z)L2

1(z), L1
3(w)L2

1(w)]

= 1
z −w

( − (L1
3(z) −L1

3(w))L2
3(z)L2

1(w) +L1
3(w)(L2

1(z) −L2
1(w))L2

3(z)

+ (L1
3(z) −L1

3(w))L2
1(z)L2

3(w) −L1
3(z)(L2

1(z) −L2
1(w))L2

3(w)

−L1
3(w)(L2

3(z) −L2
3(w))L2

1(z) +L1
3(z)(L2

3(z) −L2
3(w))L2

1(w))

= 0.

Hence is clear that
[A(z),A(w)] = 0, z,w ∈ C. (3.25)
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It is immediate from (3.25) that the conjugate variables A(z)∣z→qi
also commute.

Finally, we also require the variables qi and A(z)∣z→qi
to satisfy the third

canonical commutation relation

[qi,A(z)∣z→qj
] = δij. (3.26)

It is this condition that will allow us to write

A(z)∣z→qi
= −∂qi

(3.27)

in the interpretation of the separated variables as a differential operator realisa-
tion of the gl3-Gaudin model. Equation (3.26) will follow from the Lax algebra
- in particular from the commutation relations of our separating functions
[A(z),B(w)].

To calculate [A(z),B(w)], we first establish a related identity without
inverse terms

(z −w)(L12
13(z)B(w)L2

3(z) −L2
3(z)B(w)L12

13(z)) (3.28)

= B̃(z)(L2
3(w))2 −L2

3(z)B(w)L2
3(z)

where we have introduced B̃(z)

B̃(z) = L12
13(z)L1

3(z) −L2
3(z)L21

23(z). (3.29)

Note that (3.28) is the Gaudin limit of the identity [59, Eq.(29)] from the
corresponding XXX chain proof.

Using the definition of B(w), we see that the left-hand side of (3.28) can
be written in terms of the following Lie brackets

(z −w)(L21
31(w)[L12

13(z), L1
3(w)]L2

3(z)

+L2
3(w)[L2

3(z), L12
32(w)]L12

13(z) −L2
3(w)[L12

13(z), L12
32(w)]L2

3(z)),

which by (3.22) and (3.23) becomes

L12
13(w)(L1

3(z)L2
3(w) −L1

3(w)L2
3(z))L2

3(z)

+L2
3(w)(L1

3(z)L2
3(w) −L1

3(w)L2
3(z))L12

13(z)

−L2
3(w)(L21

23(z)L2
3(w) −L2

3(z)L12
32(w) +L21

31(w)L1
3(z)

−L1
3(w)L12

13(z) +
1

z −w
(L1

3(z)L2
3(w) −L2

3(z)L1
3(w)))L2

3(z)

= L1
3(z)L12

13(z)(L2
3(w))

2 −L2
3(z)L1

3(w)L21
31(w)L2

3(z)

+L2
3(z)L21

23(z)(L2
3(w))

2 −L2
3(z)L2

3(w)L12
32(w)L2

3(z).
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Using the definitions of B(z) and B̃(z), we can regroup this to give exactly
the right-hand side of identity (3.28).

This identity (3.28) is relevant because if we multiply by (L2
3(z))−1 from

both the left and the right, the left-hand side becomes

(z −w)[A(z),B(w)],

where we recall that L2
3(z) and L12

13(z) commute so the ordering in the definition
of A(z) is unimportant.

For the right-hand side we first note that it follows straightforwardly from
the Lax algebra that B(z) and B̃(z) satisfy

L2
3(z)B̃(z) = B(z)L2

3(z),

and therefore

(L2
3(z))−1B̃(z)(L2

3(w))2(L2
3(z))−1 = B(z)(L2

3(z))−2(L2
3(w))2.

Overall, this leaves us with the relation

[A(z),B(w)] = B(z)(L
2
3(z))−2(L2

3(w))2 −B(w)
z −w

. (3.30)

Using (3.30) we will prove that the separated variables satisfy (3.26). Firstly,
since we have seen that the variables commute we can pull the factor (w − qj)
out to the front of B(w) to rewrite the latter as

B(w) = (w − qj)B(w). (3.31)

Note that since the variables are all distinct zeroes of B(z), there is no repeated
factor and we must have that B(qj) ≠ 0. Therefore we can expand the left-hand
side of equation (3.30) while substituting z → qi as

[A(z)∣z→qi
,B(w)] = (w − qj)[A(z)∣z→qi

,B(w)] − [A(z)∣z→qi
, qj]B(w). (3.32)

If we set w → qj, the first term on the left-hand side disappears, leaving

−[A(z)∣z→qi
, qj]B(qj). (3.33)

For the right hand side of (3.30), the definition of the separated variables
tells us that substituting z → qi into B(z) is simply zero, which leaves

(w − qj)B(w)
w − qi

. (3.34)
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If qi = qj, then we can simplify this to just B(qj). Therefore, equating left and
right hand sides tells us that

[qj,A(z)∣z→qi
] = 1

On the other hand, the right-hand side vanishes on substituting w → qj if qi ≠ qj .
Combining these two results we reach equation (3.26).

Going forward we will work in the separated variable realisation of the
Gaudin model and write the conjugate coordinates as A(z)∣z→qi

= −∂qi
, as is

consistent with the canonical commutation relations (3.24) - (3.26) that we have
shown here. We do not include a scalar function analogous to Λ(z) as in the sl2

case (although this would also be consistent with the canonical commutation
relations) as it does not arise naturally here, and obscures the relation to the
oper.

3.2.2 The separated equation

We now turn to reconstructing equation (3.18) directly from the Lax algebra
of the Gaudin model. Analogously to the sl2-case in the previous chapter we
do this by relating the generating functions for the integrals of motion to our
separating functions A(z) and B(z), and substituting in each variable. Since
we are looking to find a third order differential equation we find an expression
cubic in A(z), as (2.18) was quadratic in A(z) in the previous chapter.

In the rank 2 case we also found an additional derivative term of A(z) arising
from the rearranging which handily cancelled terms arising in the subtleties of
the substitution from the left. It is useful to introduce particular groupings of
such combinations of A(z) and its derivatives called "quantum powers" of A(z),
based on the very similar quantum powers of the Lax matrix in [11]. Denoted
by square brackets, the quantum powers are defined as

A[0](z) = 1, A[k+1](z) = A(z)A[k](z) − (A[k](z))′, (3.35)

where the dashes denote differentiation with respect to z. In particular we
recognise A[2](z) = A2(z) −A′(z) from (2.28), and recall that we showed that

(A[2](z))∣
z→qi

= ∂2
qi
.

The purpose of defining the quantum powers is to generalise this idea to higher
powers of ∂qi

, that is

A[k](z)∣z→qifrom left = (−1)k∂ k
qi
. (3.36)
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We can show this inductively, the base case k = 1 being given by (3.27). Assume
that A[k](z)∣z→qi

= (−1)k∂qi
, then by definition A[k+1](z) ∣z→qi

is given by

(A[k+1](z)) ∣z→qi
= (A(z)A[k](z) − (A[k](z))′) ∣z→qi

.

As A(z) ∣z→qi
are precisely the conjugate variables −∂qi

we can substitute into
the leftmost part of the expression and rearrange

(A[k+1](z)) ∣z→qi
= (−∂qi

A[k](z) − (A[k](z))′) ∣z→qi

= (−A[k](z)∂qi
− [∂qi

,A[k](z)] − (A[k](z))′) ∣z→qi
.

We can now both use our assumption and rewrite the bracket [∂qi
,A[k](z)] ∣z→qi

as the difference between qi dependence after substitution and the z dependence
before substitution;

(A[k+1](z))∣z→qi

= (−1)k+1∂k+1
qi
− [∂qi

,A[k](z)∣z→qi
] + [∂z,A

[k](z)]∣z→qi
− (A[k](z))′∣z→qi

= (−1)k+1∂k+1
qi
− [∂qi

, ∂k
qi
] + (A[k](z))′∣z→qi

− (A[k](z))′∣z→qi

= (−1)k+1∂k+1
qi
,

all additional terms cancel nicely leaving the desired expression.
In particular for rank 3 SoV we will require

A[2](z)∣z→qi
= (A2(z) −A′(z))∣z→qi

= ∂2
qi
, (3.37a)

A[3](z)∣z→qi
= (A3(z) − 2A(z)A′(z) −A(z)A′(z) +A′′(z))∣z→qi

= −∂3
qi
. (3.37b)

Using these quantum powers, we can write down the relation between our
separating functions that will ultimately lead to our separated equation

−A[3](z) +A[2](z)ŝ1(z) −A(z)ŝ2(z) + ŝ3(z) = −B(z)(L2
3(z))

−3
R(z) (3.38)

where
R(z) = L12

13(z)L2
1(z) −L2

3(z)L32
31(z). (3.39)

We want to show (3.38) using only the Lax algebra in order to ensure the SoV
we found as a limit of the XXX SoV is equally applicable to both gl3 and the
irregular singularities case.



70 Chapter 3. Separation of variables for gl3-Gaudin models

As we did for [A(z),B(z)], we will first show a related identity of Lax
matrix elements that does not involve the more complicated inverse terms;

− (L12
13(z))

3 − 3(L12
13(z))

2
L2′

3 (z) + 3(L12
13(z))

′
L2

3(z)L12
13(z) − 2L12

13(z)(L2′
3 (z))

2

+L12
13(z)L2′′

3 (z)L2
3(z) − (L12

13(z))
′′(L2

3(z))
2 + 2L2′

3 (z)(L12
13(z))

′
L2

3(z)

+ ((L12
13(z))2L2

3 − (L12
13(z))′(L2

3(z))2 +L2′
3 (z)L2

3(z)L12
13(z))ŝ1(z)

−L12
13(z)(L2

3(z))
2
ŝ2(z) + (L2

3(z))
3
ŝ3(z) = B̂(z)R(z), (3.40)

where

B̂(z) = L21
31(z)L1

3(z) −L2
3(z)L12

32(z) − 3L2
3(z)L1′

3 (z) + 3L2′
3 (z)L1

3(z).

This identity (3.40) has been checked analytically using Mathematica, but not
included here since it is a long-winded application of the Lax algebra relations
and not particularly insightful.

Having confirmed this, we can multiply on the left by ( − L2
3(z))

−3, and
regroup the left-hand side in terms of A(z)

−A3(z) + 3A(z)A′(z) −A′′(z) + (A2(z) −A′(z))ŝ1(z) −A(z)ŝ2(z) + ŝ3(z).

We recognise the quantum powers A[3](z) and A[2](z) from equations (3.37)
above to recover the left-hand side of (3.38).

For the right-hand side, note that

B̂(z)(L2
3(z))

3 = (L2
3(z))

3
B(z),

which follows straightforwardly from the commutation relations

[(L2
3(z))

3
, L12

32(z)] = 3(L2
3(z))

3
L1′

3 (z) − 3L1
3(z)L2′

3 (z)(L2
3(z))

2
.

Therefore, when we multiply the right-hand side by (L2
3(z))−3, we have

(L2
3(z))

−3
B̂(z)R(z) = B(z)(L2

3(z))
−3
R(z)

as required.
Thus, simply by substituting each of our separated variables qi into our

cubic identity (3.38) from the left, we find that by definition of the variable qi

as a zero of B(z), the right-hand side immediately vanishes

(B(z)(L2
3(z))

−3
R(z))∣

z→qi

= (B(z)∣
z→qi

(L2
3(z))

−3
R(z))∣

z→qi

= 0. (3.41)
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Whereas on the left-hand side of (3.38), we can use the property (3.36) of the
quantum powers of A(z)

(∂3
qi
+ ∂2

qi
ŝ1(z) + ∂qi

ŝ2(z) + ŝ3(z))∣z→qi
. (3.42)

This gives us overall 3D polynomials each in only one conjugate pair of the
separated variables and integrals of motion, so already provides a separation of
variables for the system. We now go on to shape it into equation (3.18). If we
apply the above to a common eigenfunction Ψ of the quantum Hamiltonians
(and therefore an eigenfunction of ŝ1(z), ŝ2(z),and ŝ3(z)) we can exchange the
operator generating functions ŝk(z) for their corresponding eigenvalues sk(z)

(∂3
qi
+ ∂2

qi
ŝ1(z) + ∂qi

ŝ2(z) + ŝ3(z))∣z→qi
Ψ

= (∂3
qi
+ ∂2

qi
s1(z) + ∂qi

s2(z) + s3(z))∣z→qi
Ψ = 0.

Without the operators, we may move s1(z), s2(z), and s3(z) past the partial
derivatives without problem, and we need not be so careful when making the
z → qi substitution. This fully recovers (3.18), with the additional ∂qi

term as
the Lax matrix is no longer necessarily traceless,

(∂ 3
qi
+ s1(qi)∂ 2

qi
+ s2(qi)∂qi

+ s3(qi))Ψ = 0. (3.43)

Thus we have a separation of variables for the gl3 Gaudin model with irregular
singularities in the variables {qi}3D

i=1. The problem of finding the common
eigenfunction Ψ(q1, . . . , q3D) may be reduced to one-dimensional problems
using the Ansatz

Ψ(q1, . . . , q3D) =
3D
∏
i=1
ψi(qi), (3.44)

where each ψi(qi) satisfies an equation of the form

ψ′′′i + s1ψ
′′ + s2ψ + s3 = 0. (3.45)

Note again the similarity of 3.43 to the universal oper

cdet (∂z +L(z)) = ∂ 3
z + ŝ1(z)∂ 2

z + ŝ2(z)∂z + ŝ3(z), (3.46)

which we also saw in the rank 2 case.
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3.3 Approaches to Higher rank

Now we have constructed the separation of variables in these two lowest rank
case, we can think about how to generalise this to cover Gaudin models of
matrix Lie algebras of some arbitrary rank n. In this section we will discuss
several approaches we have tried to systematically construct the separation
of variables such that it would generalise. While none of these have led to a
generalised separation of variables for the gln-Gaudin model, none are entirely
unfruitful and together they form a picture of what we might expect the
operator B(z) and the separated equation might look like in this more general
setting.

Let us discuss some general trends across the two cases we have looked at
so far that might continue. In both cases the separation of variables hinges
on the two operator separating functions A(z) and B(z) - simply elements of
the Lax matrix for the sl2-Gaudin model, and already much more complicated
rational functions for the next rank up. We see that A(z) is of order 1 overall
in Lax matrix elements, whilst in each of the cases B(z) is of order n(n−1)

2 in
these - that is for n = 2, B(z) consists of just one Lax matrix element, and for
n = 3 it is cubic in them. This is necessary to ensure that B(z) has 1

2n(n− 1)D
operator zeroes, which as we have seen provide the separated variables.

In both cases, what makes A(z) and B(z) good candidates for separating
functions ultimately arises from the commutation relations. We would require
that

[B(z),B(w)] = 0 (3.47a)

[A(z),A(w)] = 0 (3.47b)

[A(z),B(z)] = B(z)Q(z,w) −B(w)
z −w

(3.47c)

where Q(z,w) is some rational function of matrix elements of L(z) and L(w).
For the cases considered thus far Q(z,w) = 1 and Q(z,w) = (L2

3(z))
−2 (L2

3(w))
2

- in both we can note that Q(z) is made up of the denominator of A(z). If
these commutation relations are satisfied then the argument we used previously
applies here as well; separated variables defined as the operator zeroes qj of
B(z) and the conjugates as A(z)∣z→qj

(where substitution is from the left)
satisfy canonical commutation relations

[qi, qj] = 0, [A(z)∣z→qi
,A(z)∣z→qj

] = 0, [qi,A(z)∣z→qj
] = δij, (3.48)
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for all i, j = 1, . . . , n(n−1)
2 D.

Another trend across the past two chapters has been the clear similarity
between the equation in the separated variables and the universal oper cdet (∂z+
L(z)) in each case. The prevalence of the oper in determining a separated
equation for the Gaudin model (at least for the sl2 and gl3 cases) suggests
that there may be some deeper connection worthy of further investigation,
and as discussed in Chapter 2 gives some credence to the general belief that
SoV is complete. Were this pattern to continue, we would expect at higher
rank a simultaneous eigenfunction Ψ of the Gaudin Hamiltonians to satisfy an
equation of the form

n

∑
k=0

sn−k(qi)∂ k
qi

Ψ = 0 (3.49)

in each of the separated variables qi, where s0(z) = 1. (This notation is slightly
inconsistent with that used in the sl2 case discussed in the previous chapter,
as the quantity that would be ŝ1(z) by the conventions above vanishes due to
tracelessness, though the similarity to the oper is still present.)

We know that using the quantum powers of A(z), this would follow simply
by substitution z → qi from the left if suitable separating functions A(z) and
B(z) satisfy some identity

n

∑
k=0
(−1)kA[k](z)ŝn−k(z) = B(z)R(z). (3.50)

Here R(z) is some rational function of Lax operator elements - and must
certainly contain the inverse of the Lax matrix for any rank higher than n = 2
to balance the order on both sides. We note that the property (3.36) of the
quantum powers would still apply as long as A(z) ∣z→qi

= −∂qi
.

The difficulty then, is finding a method applicable at any rank to construct
separating functions of the right order that also satisfy relations akin to (3.47)
and (3.50). Below we detail some methods, drawing again from the attempts
put forward for quadratic Lax relations, and of the separation of variables
for the classical gln-Gaudin model (which has been proven for arbitrary n by
Skrypnyk and Dubrovin in their article [23]). It seems that A(z) is the more
complicated of the two separating functions to consistently construct, possibly
due to the requirement that it is order 1 in Lax matrix components and must
involve inverses in some sense.
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3.3.1 Manin matrix approach

Chervov and Falqui [10, 11] lay out a procedure to construct A(z) and B(z)
in the case of the XXX chain by making use of Manin matrices. Following the
analogue of this method for the Gaudin model, we define a new matrix M(z)
by taking the coefficients of powers of ∂z in the last column of the classical
adjoint of ∂z +L(z), and wish to use this same matrix to construct both A(z)
and B(z). For the rank 2 and rank 3 cases we’ve already covered, M(z) would
respectively be

M(z) =
⎛
⎝
−L1

2(z) L1
1(z)

0 1
⎞
⎠
, M(z) =

⎛
⎜⎜⎜
⎝

−L21
23(z) −L12

13(z) L12
12(z) +L1′

1 (z)
L1

3(z) −L2
3(z) L1

1(z) +L2
2(z)

0 0 1

⎞
⎟⎟⎟
⎠
.

In both of these cases, M(z) is a Manin matrix and the separating functions
B(z) is found (up to a negative sign) as the column ordered determinant

B(z) = cdetM(z), (3.51)

which is in accordance with the expressions for B(z) we have found so far in
(2.5) and (3.9b). That B(z) is constructed in the same way for each rank is
hopeful, but we still need to define A(z). In this method we only define A(z)
at the separated variables themselves, we will label these pi = A(z)z→qi

. We
make a vector of powers of pi, and define it by the equation

M(z)t∣z↦qi

⎛
⎜⎜⎜⎜⎜⎜
⎝

1
pi

⋮
pn−1

i (z)

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜
⎝

0
0
⋮
0

⎞
⎟⎟⎟⎟⎟⎟
⎠

. (3.52)

For sl2, this does give us the expected result (again up to a sign) of A(z) = −L1
1,

but we run into problems for gl3 where from substituting the correct M(z)
into (3.52) we have that both of the following hold

−L21
23(z)∣z→qi

+L1
3(z)∣z→qi

pi = 0 (3.53a)

−L12
13(z)∣z→qi

+L2
3(z)∣z→qi

pi = 0. (3.53b)

Clearly the latter is the definition of A(z) we have found to work in this chapter,
but these two statements are not equivalent as we would hope.
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To see this let us start with the second expression and multiply by L1
3(z)∣z→qi

on the left, leaving

−L1
3(z)∣z→qi

L12
12(z)∣z→qi

+L1
3(z)∣z→qi

L2
3(z)∣z→qi

pi = 0.

Note that we can reorder B(z) to be

B(z) = L1
3(z)L12

13(z) −L21
23(z)L2

3(z), (3.54)

with additional commutation terms cancelling off. Using this, and that
B(z)∣z→qi

= 0 by definition, we have that

−L21
23(z)∣z→qi

L2
3(z)∣z→qi

+L2
3(z)∣z→qi

L1
3(z)z→qi

pi = 0.

Which we rewrite as

L2
3(z)∣z→qi

( −L21
23(z)∣z→qi

+L1
3(z)∣z→qi

pi) + [L2
3(z)∣z→qi

, L21
23(z)∣z→qi

].

Since

[L2
3(z)∣z→qi

, L21
23(z)∣z→qi

] = L2
3(z)∣z→qi

L1′
3 (z)∣z→qi

−L1
3(z)∣z→qi

L2′
3 (z)∣z→qi

≠ 0,

we see that the two expressions in (3.53) are in fact not equivalent. Therefore
it is unclear which equation to choose when defining A(z) more generally and
this approach reaches a stumbling block. Interestingly, if the condition of the
separated variables were instead that B̃(z)∣z→qi

= 0, as defined in (3.29) then
the two equations for A(z) would be equivalent.

3.3.2 Skrypnyk-Dubrovin approach

Skrypnyk and Dubrovin constructed a separation of variables for the classical
gln-Gaudin model at any rank [23], and so the next approach is to use this as
our guide to systematically separate the variables for the quantum sl2 and gl3

Gaudin models and beyond.
In their work, both of the separating functions are once again constructed

from determinants of matrices built this time out of powers of the Lax matrix.
We can carefully quantise this, and get back once again the low rank separating
functions in the form familiar to us. A naive quantisation - by which we mean
straightforwardly replacing the Lax matrix of the classical Gaudin model with
its quantum counterpart - fails to give us all of the expected expression for our
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separating functions. To get around this, we will return to the Chervov and
Falqui definition of quantum powers of L(z) [11];

L[0] = 1, L[i+1](z) = L[i](z)L(z) − (L[i](z))′. (3.55)

We can now simply take the Skrypnyk and Dubrovin expression for B(z) in
[63, Eq. 3.5] and replace powers of L(z) with quantum powers.

Take a vector k⃗ = (0, 0, . . . , 1)
t
, the expression for B(z) is given by

B(z) = rdet (k⃗ L(z)k⃗ L[2](z)k⃗ ⋯ L[n−1](z)k⃗), (3.56)

where the listed vectors are the columns of the matrix. We are using "rdet" (the
row- ordered determinant) instead of cdet here to avoid adding transposes that
may over-complicate the expression. In fact this matrix (or rather its transpose)
is not Manin at rank as low as the gl3 case, though at that particular rank the
zeroes in the vector k⃗ sort out any problematic parts within the determinant.
It is also worth remarking that while this non-Maninness prevents us from
easily applying a wealth of techniques for matrices with commutative entries,
we can still take a row-ordered determinant so long as we carefully specify an
ordering of the columns and rows at the start of the process as we have here,
with no guarantee that switching such an ordering produces the same result.

The other separating function A(z) is written as a fraction of two determi-
nants

A(z) = C(z)
D(z)

, (3.57)

each of which we can quantise with the same procedure as we just did with
B(z). Let ξ⃗ = (1 0 ⋯ 0)

t

C(z) = rdet (k⃗, L(z)ξ⃗, L(z)k⃗,⋯, L[n−2](z)k⃗), (3.58a)

D(z) = rdet (k⃗, ξ⃗, L(z)k⃗,⋯, L[n−2](z)k⃗), (3.58b)

(This is a slightly different but equivalent form to [23, Eq.(3.8)].) These are
both non-unique and different choices on the vectors k⃗ and ξ⃗ will produce new
separating functions.

For sl2 (and gl2), we obtain the expected expressions from (3.58) up to a
sign

B(z) = rdet
⎛
⎝

0 L1
2(z)

1 L2
2(z)
⎞
⎠
= −L1

2(z) (3.59)
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and (3.56)

C(z) = rdet
⎛
⎝

0 L1
1(z)

1 L2
1(z)
⎞
⎠
= L1

1(z)

D(z) = rdet
⎛
⎝

0 1
1 0
⎞
⎠
= −1.

Hence A(z) = −L1
1(z) as we saw in the previous chapter. They also provide

the same expressions for A(z) and B(z) in the gl3-Gaudin model that we had
previously;

B(z) = rdet
⎛
⎜⎜⎜
⎝

0 L1
3(z) ∑

3
i=1L

1
i (z)Li

3(z) −L1′
3 (z)

0 L2
3(z) ∑

3
i=1L

2
i (z)Li

3(z) −L2′
3 (z)

1 L3
3(z) ∑

3
i=1L

3
i (z)Li

3(z) −L3′
3 (z)

⎞
⎟⎟⎟
⎠
= L12

32(z)L2
3 −L1

3(z)L21
31(z)

and

C(z) = rdet
⎛
⎜⎜⎜
⎝

0 L1
1(z) L1

3(z)
0 L2

1(z) L2
3(z)

1 L3
1(z) L3

3(z)

⎞
⎟⎟⎟
⎠
= L12

13(z) (3.61a)

D(z) = det
⎛
⎜⎜⎜
⎝

0 1 L1
3(z)

0 0 L2
3(z)

1 0 L3
3(z)

⎞
⎟⎟⎟
⎠
= L2

3(z), (3.61b)

hence again A(z) = L12
13(z)(L2

3(z))−1.
Problems start arising when we attempt the gl4 case - not only do we find

that more relevant parts of the matrix are no longer Manin, but also the results
we get for C(z) and D(z) no longer commute so there is some ambiguity in how
to interpret the fraction (3.57) in terms of ordering. Furthermore, while the
systematic construction of the operators that look like separating functions is
certainly a start, the rest of the process does not straightforwardly translate to
the quantum Gaudin model; we do not know if they are effective as separating
functions beyond the rank 2 and 3 cases and what link, if any, there is between
the opers cdet(∂z +L(z)) and the separated equations.

In future, it would be interesting to check whether the two approaches,
following Chervov-Falqui or Skrypnyk-Dubrovin, produce the same expression
for B(z) in the n = 4 case.
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3.3.3 Cavaglia, Gromov, Levkovich-Maslyuk, Sizov Approach

In the approaches we have discussed so far it has been A(z) that has proven
more difficult to generalise to higher rank, so we now look to the work of
Gromov, Cavaglia, Levkovich-Maslyuk, and Sizov on SoV in [34, 8] on sln

quantum spin chains, which only relies on the B-operator. Instead of trying to
find a separated equation as we have thus far, we aim to describe eigenvectors
of the Gaudin Hamiltonians as copies of B(z) acting on some vacuum vector
∣0⟩, and construct a separated eigenbasis. This of course limits us to highest
weight representations to ensure such a reference vector.

In [34], the authors show that one may write the Bethe Vectors of Ψ of the
XXX chain in terms of BXXX(z), and they therefore factorise

Ψ(w1, . . . ,wm) = B(w1)⋯B(wm) ∣0⟩ = B0
m

∏
j=1

N

∏
k=1
(wj − qk), (3.62)

where w1, . . . ,wm are Bethe roots in the XXX chain and B0 is some constant.
They go on to produce left eigenvectors ⟨w1, . . . ,wm∣, however since BXXX(z)
is not diagonalisable, this requires performing a generic twist

Bgood
XXX(z) =K−1BXXX(z)K

for some matrix K. Bgood(z) still has separated variables as its zeroes but now
has the advantage of producing a full basis of eigenvectors in which the Bethe
vectors Ψ fully separate.

To bring these ideas across to the Gaudin model, we take a highest weight
representation, which will be the fundamental representation in this case and
try and express Bethe vectors as in (3.62). We have already seen in Section
2.2 that in the sl2-Gaudin model the Bethe vectors can be written in exactly
this form, because B(z) is made up of lowering operators. We have the same
problem of B(z) not being diagonalisable, and so we can go on to perform a
similar twist if we wish to find the separated eigenbasis.

For rank 3, B(z) is more complicated but we can check this computationally
for low N in the fundamental representation of gl3 by comparing the action of
B(w) on the reference vector to the Bethe vector Ψ1(w).

In the representation, Ea
b are 3× 3 matrices with a 1 in the (a, b)th slot and
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zeroes elsewhere, the reference vector is given by

∣0⟩ =
⎛
⎜⎜⎜
⎝

1
0
0

⎞
⎟⎟⎟
⎠
⊗
⎛
⎜⎜⎜
⎝

1
0
0

⎞
⎟⎟⎟
⎠
⊗⋯⊗

⎛
⎜⎜⎜
⎝

1
0
0

⎞
⎟⎟⎟
⎠
,

where the right-hand side has N tensor copies.
The first Bethe vector Ψ1(w) is given by

Ψ1(w) = (L1
2(w) +L2

3(w)) ∣0⟩ , (3.63)

which we have checked computationally for low N is the same as B(w) ∣0⟩ if
and only if w satisfies the Bethe equation

N

∑
k=1

1
w − zk

= 0. (3.64)

Therefore, Ψ1(w) factorises, with each factor depending on only one of the
separated variables;

Ψ1(w) = B(w) ∣0⟩ = B0∏
i

(w − qi) ∣0⟩ ,

where B0 is some constant factor. This has only been checked for the simple
poles Gaudin model with N = 2 and N = 3.

We would hope, following the example of the XXX chain and the rank 2
SoV, that other Bethe vectors could also be written as

Ψm(w1, . . . ,wm) = B(w1) . . .B(wm) ∣0⟩ , (3.65)

however we found when we add in more Bethe roots that the Bethe vectors are
given by a sum of copies of B(wk) acting on the reference vector in different
combinations of the Bethe roots, and so does not clearly factorise.

For rank 4 and higher, [34] provides expressions for BXXX(z), of which we
could potentially take the Gaudin limit to find a general expression for B(z).
As we are working from Bethe vectors this method does not produce any new
vectors of the Gaudin model, but it can produce a separated basis in which to
view them.

3.3.4 An Observation on Opers and SoV

Finally we have an observation from the oper perspective in the sl2 case.
We note that the quantum power A[2](z) resembles a Miura transform of
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−A(z), though of course we have only truly defined Muira transformations for
meromorphic functions, not operator valued functions.

Therefore if one could take an oper-like object with non-commutative matrix
entries given by

∂z +
⎛
⎝
A(z) B(z)C(z)

1 −A(z)
⎞
⎠

(which interestingly would be Miura-like if we substitute z → qi from the left
as the top right-hand entry would be zero by definition), then the canonical
representative would be

∂z +
⎛
⎝

0 −ŝ1(z)
1 0

⎞
⎠
,

where we have used that

ŝ1(z) = A[2](z) −B(z)C(z). (3.66)

Therefore, if we transform this to a second order differential equation as we
did for a generic sl2-oper in (2.72), we recover the separated equation for the
sl2 Gaudin model;

∂ 2
qi
ϕ − ŝ1(z)∣z→qi

ϕ = 0.

To adapt this to the gl2-Gaudin model we can instead begin with

∂z +
⎛
⎝
A(z) B(z)C(z)

1 TrL(z) −A(z)
⎞
⎠
. (3.67)

While this remark does seem to tie together several elements of the sl2 SoV,
it is not clear how we would justify the starting differential operator. It also
does not offer us any construction of the separating functions A(z) and B(z)
at higher rank.



Part II

Gaudin Models from 3dBF
Theory
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4

3dBF Theory and Finite Gaudin
models

In the second part of this thesis we turn to look at the classical Gaudin
model for arbitrary Lie algebra g, and explore integrability from the more
recent perspective of gauge theories. We present the work we have previously
published in the article [67]. This alternative gauge theoretic perspective was
put forth by Costello and later developed alongside Witten and Yamazaki with
regards to 4-dimensional Chern-Simons Theory and its encoded description
of the Yangian [14, 15] - or see [71] for an introduction. Furthermore, this
was extended to a study of 2 dimensional integrable field theories, also from
4-dimensional Chern-Simons Theory [16]. Another area of study provides a
more algebraic description of integrable field theories from the perspective of
affine Gaudin models [66, 25, 17]. Naturally, this led to consideration of a link
between 4 dimensional Chern-Simons and affine Gaudin models - and indeed
Vicedo has shown [65] that one can obtain the Lax algebra of the affine Gaudin
model by a certain gauge fixing of 4 dimensional Chern-Simons Theory. This
is our chief motivation for analagously describing the finite Gaudin model from
a 3-dimensional gauge theory.

In particular, we will show that the finite Gaudin model can be described
using a collection of line defects on a 3-dimensional mixed BF Theory on
R ×CP 1. Moreover, we can describe tamely ramified Hitchin systems [3, 37] on
higher genus surfaces in the same way by taking an arbitrary Riemann surface
C instead of CP 1.

The main interest in both approaches lies in their potential to offer new
perspectives on quantum integrable field theory. By contrast with the affine case,
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the quantisation of the finite Gaudin model, and more generally of the Hitchin
system, is extremely well understood; see e.g. [5, 26, 28, 29, 46, 48, 49, 47, 45,
24, 27, 55]. The connection between 3d mixed BF theory and finite Gaudin
models should therefore provide a useful toy model for further developing our
understanding of the gauge theoretic approach to integrable models and more
generally integrable field theories in the sense of [16]. In particular, it would be
very desirable to understand the Bethe ansatz construction in quantum Gaudin
models, and more generally the Gaudin/oper correspondence from the point of
view of quantum 3d mixed BF theory. It is expected that the quantum Gaudin
model, and more generally the quantisation of the Hitchin system, should arise
from critical level quantum 3d Chern-Simons theory [30, 72], which we will see
may be viewed as a certain deformation of quantum 3d mixed BF theory.

4.1 4-dimensional Chern-Simons and integrability

Let us motivate the gauge theoretic perspective by discussing integrability
through the lens of 4-dimensional semi-holomorphic 4-dimensional Chern-
Simons theory (4dCS) in particular. The results presented in this chapter are
largely inspired by the connection between 4dCS and affine Gaudin models
described by Vicedo in [65].

To define the theory, we let G be a semisimple Lie group over C, with
Lie algebra g and fix a non-degenerate invariant symmetric bilinear form
⟨⋅, ⋅⟩ ∶ g × g → C on g - for example in a matrix representation this could be
⟨X,Y ⟩ = Tr(XY ). We let Σ be a 2-manifold (it will be either R2 or C∗ = R×S1

here) with coordinates t and σ and let z be a holomorphic coordinate on CP 1,
the theory will be over Σ ×CP 1. The Chern-Simons 3-form is then given by

CS(A) = ⟨A,dA +A ∧A⟩ . (4.1)

To make the 4-dimensional version of the theory we also need to introduce a
one-form ω

ω = φ(z)dz, (4.2)

in the examples that follow we will choose the function φ(z) to be holomorphic
or meromorphic depending on the situation. Putting the above together we
reach the action of 4dCS

S4dCS[A] =
i

4π ∫Σ×CP 1
ω ∧CS(A). (4.3)
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The equations of motion are the condition that the gauge field A has zero
curvature away from any zeroes ω might have;

ω ∧ F (A) = 0, (4.4)

with the curvature 2-form F (A) = dA +A ∧A.

The XXX chain The XXX spin chain can be obtained from 4-dimensional
mixed topological-holomorphic Chern-Simons theory on R2 ×C by introducing
certain line defects along the topological plane R2 for each site of the spin
chain [13, 12, 14, 15]. This elegant description of the Heisenberg spin chain is
ultimately possible because the integrable structure of the latter is underpinned
by the quantum Yang-Baxter equation

R12(z1, z2)R13(z1, z3)R23(z2, z3)

= R23(z2, z3)R13(z1, z3)R12(z1, z2)

z2 z3z1

=

z2 z3z1

We can recreate this visual description of the integrable structure in the
plane Σ of 4dCS, with the spectral parameters z1, z2, z3 being fixed points in
CP 1. The symmetry of Σ under diffeomorphisms allows us to place gauge-
invariant Wilson lines along Σ in the plane. That is, we take one-dimensional
lines ℓ ⊂ Σ and a suitable representation ρ and define the Wilson line as

W (ℓ) = TrρP exp∮
ℓ
Ai(t, σ, z, z̄)dξi, (4.5)

where ξi = t, σ respectively, and P exp denotes the path ordered exponential.
Each loop is labelled by a point z = zi in C, and the picture that emerges when
putting multiple Wilson lines onto Σ is already reminiscent of our pictorial
understanding of the Yang-Baxter equation. The leading order quantum
correction to the product of two Wilson loops (4.5) gives the classical r-matrix
r(z1, z2) = C12

z1−z2
, as shown in [14, Eq.(4.13)], or diagrammatically;

r(z1, z2) =

z1 z2
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Therefore we can view the crossing points of the lines in Σ as the quantum
R-matrix, R(z1, z2) = 1 + h̵r(z1, z2) +O(h̵2). Adding a third Wilson line to the
picture, we note that we can slide them over one another and change the order
of the crossing points due to the diffeomorphism invariance, with the distinct
spectral parameters preventing any problems caused by a triple intersection of
the lines, as they do not cross in the CP 1 direction. We have therefore created
a picture visually very reminiscent of the pictorial Yang-Baxter equation above.
In [14], Costello, Witten, and Yamazaki go on to define and fully solidify this
notion into a description of the XXX-chain from 4dCS.

Integrable Field Theories As well as lattice models, one can construct inte-
grable field theories from 4dCS such as the principal chiral model - see [40] for
a detailed introductory course. This is not entirely surprising when we recall
that the condition on the gauge field A imposed by the equations of motion
(namely that it has zero curvature away from the zeroes of ω) is exactly the
same as the condition on the Lax connection of an integrable field theory in 2
dimensions (see e.g. [51]);

∂tLt − ∂xLx + [Lt,Lx] = 0, (4.6)

the analogue to the Lax equation of a finite dimensional integrable system.
We can go on to construct the infinite integrable hierarchies from the Lax
connection L. Therefore if we identify the components of A in a gauge where
Az̄ = 0 with Lt and Lx we have a flat, meromorphic Lax connection and hence
an integrable field theory. To determine the specifics of the theory and find the
fields involved, one can look into the boundary conditions given by the zeroes
and poles of ω and the choice of gauge.

Since it is not always straightforward to specify a Lax connection [51], this
gauge theoretic perspective may provide a more systematic way to find Lax
connections for new integrable field theories.

Affine Gaudin models In contrast to the XXX-chain, the integrability of the
(classical and quantum) Gaudin model, or more generally the Hitchin system,
is underpinned by the classical Yang-Baxter equation

[r12(z1, z2), r13(z1, z3)] = [r23(z2, z3), r12(z1, z2)]−[r32(z3, z2), r13(z1, z3)], (4.7)

whose topological origin is less clear. On the other hand, affine Gaudin models,
whose integrability is also underpinned by the classical Yang-Baxter equa-
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tion (4.7) (see [66]) can be obtained [65] from the same 4-dimensional mixed
topological-holomorphic Chern-Simons theory on R2 × CP 1, this time by in-
troducing surface defects along R2 placed at the marked points zi ∈ C of the
affine Gaudin model. Effectively, the z, z̄ coordinates on CP 1 play the role of
the complex spectral parameter, while coordinates (t, σ) on R2 act as a time
coordinate in the Lax equation and the additional loop parameter of the affine
algebra g̃ respectively. As affine Gaudin models can describe integrable field
theories when we fix a representation of g̃, we can summarise this part of the
4dCS story in the following diagram;

4-dimensional
Chern-Simons

Affine
Gaudin model

Integrable
field theories

Gauge fixing
(Vicedo)

Boundary
conditions

(Costello & Yamazaki)

Fix
Representation

4.2 Finite Gaudin models and gauge theory

A natural question is therefore whether the ordinary Gaudin model, associated
with a finite-dimensional semisimple Lie algebra g rather than an affine Kac-
Moody algebra, can be described in a similar way. As we no longer require
a coordinate to parameterise the loop algebra we can expect this to be a
3-dimensional theory, and the correct candidate turns out to be 3dBF theory -
which we will introduce in the next section. We can summarise this too in a
diagram analogous to the above;
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3d BF Theory Finite
Gaudin model

Finite dimensional
integrable systems

Gauge fixing

Fix
Representation

The gauge fixing process is what forms the majority of this chapter, whereas
the move from finite Gaudin models to finite dimensional integrable systems
was described for example in [68, §5.4]. The final dotted arrow has not been
separately constructed as it was in the four-dimensional case [40] but could
effectively be considered as the composition of the other two processes - we
include it here only to complete the analogy with the previous picture.

More precisely, we will perform a Hamiltonian analysis of the 3d mixed
BF theory, whose fields are a partial connection 1-form A and a (1, 0)-form B,
with suitably chosen line defects. Using the condition Az̄ = 0 to fix the gauge
invariance, we find that the dynamics on the reduced phase space coincides
with that of the finite Gaudin model, or for arbitrary genus tamely ramified
Hitchin system [3, 37]. In particular, the (1,0)-form B becomes meromorphic
and gets identified with the Higgs field - or the meromorphic Lax matrix in the
genus 0 Gaudin case. This is completely analogous to the relationship found
in [65] between 4d mixed topological-holomorphic Chern-Simons theory on
Σ ×CP 1, with the cylinder Σ = R × S1 , and the affine Gaudin model. In other
words, our analysis will show that 3d mixed BF theory is to the Gaudin model
what 4d Chern-Simons theory is to the affine Gaudin model.

4.3 3d mixed BF theory

Let us begin by defining the theory in question. Let G be a semisimple Lie
group over C with Lie algebra g and a fixed non-degenerate symmetric bilinear
form ⟨⋅, ⋅⟩ ∶ g × g→ C on g. We also let C be a Riemann surface, to correspond
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to the Gaudin model we would take C = CP 1, with higher genus surfaces
corresponding to higher genus Hitchin systems.

We shall consider the 3-dimensional classical mixed topological-holomorphic
BF theory on R × C, or 3d mixed BF theory for short – see e.g. [36, 35, 50]
where the theory is discussed using the BV formalism. There are two g-valued
fields; a (1, 0)-form B on R ×C, together with a g-valued connection 1-form A

on R ×C. This bigrading (p, q) is the one induced by the complex structure of
C, such that in a local holomorphic coordinate z on some open subset of C
they might be written as

B = Bzdz, A = Atdt +Az̄dz̄ +Azdz.

We denote the curvature of the field A as F (A) = dA+ 1
2[A,A]. The action

of 3d mixed BF theory is then given simply by

S3d[A,B] =
1

2πi ∫R×C
⟨B,F (A)⟩. (4.8)

4.3.1 Gauge invariance

The 3d mixed BF action (4.8) is trivially invariant under gauge transformations
of the form A → A + χ for any g-valued (1,0)-form χ on R × C. Indeed, χ
drops out from the action since B is a (1,0)-form. We can fix this invariance
by requiring that A has no (1,0)-component so that it locally takes the form
A = Az̄dz̄ + Atdt for some local coordinate t on R and a local holomorphic
coordinate z on C. From now on we will always take A to be a partial
connection of this form.

More interestingly, the action (4.8) is invariant under the action of any
G-valued function g on R×C acting by gauge transformations on the connection
1-form A and by conjugation on the field B, namely

Az→ gA ∶= −∂̄gg−1 − dRgg
−1 + gAg−1, (4.9a)

B z→ gBg−1, (4.9b)

where ∂̄ is the (0, 1) component of the differential on C, and dR is the de Rham
differential on R. Under these gauge transformations the curvature 2-form
F (A) transforms by conjugation F (gA) = gF (A)g−1 and so the invariance of
the action follows from the adjoint G-invariance of the bilinear form ⟨⋅, ⋅⟩.
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4.3.2 Equations of Motion

To derive the equations of motion we consider variations in the fields B → B + ϵ
and A→ A + η by an arbitrary (1,0)-form ϵ and 1-form η on R ×C, and then
consider the resulting variation of the 3dBF action. Here d = dR + ∂̄. Varying
the action we find

δS3d[A,B] ∶= S3d[A + η,B + ϵ] − S3d[A,B]

= 1
2πi ∫R×C

(⟨ϵ,F (A)⟩ + ⟨B,dη + 1
2[A,η] +

1
2[η,A]⟩ +O(η

2))

= 1
2πi ∫R×C

(⟨ϵ,F (A)⟩ + ⟨B,dη + [A,η]⟩ +O(η2))

= 1
2πi ∫R×C

(⟨ϵ,F (A)⟩ + ⟨dB + [B,A], η⟩ +O(η2)),

where in the third equality we have used the fact that A and η are both
g-valued 1-forms, so that [η,A] = [A,η]. In the last equality we used Stokes’s
theorem, noting that ⟨B,dη⟩ = ⟨dB,η⟩ − d⟨B,η⟩, and integrating out the total
derivative term, which we can ignore if we choose a variation which tends to
zero sufficiently fast in the R direction. We also use the adjoint invariance of
the bilinear form, from which we see that ⟨B, [A,η]⟩ = ⟨[B,A]η⟩ in the last
equality.

The equation of motion from varying B is therefore F (A) = 0, or explicitly

∂̄A + dRA + 1
2[A,A] = 0, (4.10a)

while the equation of motion from varying A reads

∂̄B + dRB + [B,A] = 0. (4.10b)

The connection to integrability becomes clearer when working in local
coordinates; Let z be a local holomorphic coordinate on C and t a global
coordinate on R, and write the two fields in components as B = Bzdz and
A = Az̄dz̄ + Atdt. We can then write the equations of motion (4.10) more
explicitly in the components of the fields as

∂z̄At − ∂tAz̄ = [At,Az̄], (4.11a)

∂z̄Bz = [Bz,Az̄], (4.11b)

∂tBz = [−At,Bz]. (4.11c)
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The first key observation to make here is that the equation of motion (4.11c)
is very reminiscent of the Lax equation, particularly with the telling naming of
the coordinate on R to be t

∂tL = [M,L]. (4.12)

However, to make this superficial resemblance more precise we would need
Bz and −At to both be holomorphic (or more generally meromorphic) in
order to identify them with the Lax pair L and M of an integrable system
respectively - in the Gaudin model in particular the Lax matrix would need to
be meromorphic as we have seen in Chapter 1.

The second observation, based on the other two equations of motion (4.11a)
and (4.11b), is that this can be achieved by working in the gauge where Az̄ = 0.
Indeed, in this gauge the two equations (4.11a) and (4.11b) reduce to ∂z̄At = 0
and ∂z̄Bz = 0, respectively, which express the fact that At and Bz are both
holomorphic on C.

4.3.3 Adding defects

In the Lax equation (4.12) of an integrable system, however, L and M are more
generally g-valued meromorphic functions with poles at certain marked points.
This is, in fact, necessary if C has genus zero, i.e. when C = CP 1. Moreover, as
it stands there is no relation between Bz and −At in (4.11c), while in (4.12) the
matrix M is typically built out of the Lax matrix L. We can fix both of these
issues by introducing two different types of line defects in the action (4.8). We
will refer to these as type A and type B line defects, since these will depend on
the fields A and B, respectively.

4.3.3.1 Type A defects

As we have seen, the Lax pair of the Gaudin model is formed of two g-valued
meromorphic functions L and M on CP 1 with L having poles at certain marked
points zi ∈ C for i = 1, . . . ,N so we need to find or add this data into 3d Mixed
BF Theory somewhere. In order to view Bz and −At as such a Lax pair, but
working on a more general Riemann surface C, we would like them to be
meromorphic instead of holomorphic, with Bz having poles at certain marked
points zi ∈ C. To this end, we pick and fix elements ui ∈ g and introduce
G-valued fields hi on R for i = 1, . . . ,N . Following [16], see also the surface
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defects of [7], we add to the action (4.8) the following sum of line defects

SA−def[A,{hi}N
i=1] = −

N

∑
i=1
∫

R×{zi}

⟨ui, h
−1
i (dR + ι∗zi

A)hi⟩ (4.13)

where ιzi
∶ R×{zi}↪ R×C is the embedding of the line defect at zi into the total

space. In particular, the pullback ι∗zi
A is just the evaluation of the component

Atdt at the point zi ∈ C so that we can rewrite the defect action (4.13) more
explicitly as

SA−def[A,{hi}N
i=1] = −

N

∑
i=1
∫

R
⟨ui, h

−1
i (∂t +At(zi))hi⟩dt.

In order to maintain the gauge invariance of the action (4.8) after adding
(4.13) to it, we should require that the latter is itself gauge invariant. This
can easily be achieved by supplementing the gauge transformations (4.9) of the
fields A and B by the transformation

hi z→ ghi (4.14)

for the G-valued fields hi, i = 1, . . . ,N . The gauge invariance of the type-A
defect action is straightforward from here.

We can now consider the extended action

S̃[A,B,{hi}N
i=1] ∶= S3d[A,B] + SA−def[A,{hi}N

i=1]. (4.15)

Since the defect action (4.13) does not depend on B, the equations of motion
(4.10a) from varying B are unchanged. On the other hand, the equation
of motion (4.11b) from A in a local holomorphic coordinate z on an open
neighbourhood U of the point zi is now replaced by

∂z̄Bz = [Bz,Az̄] − 2πi ûiδzzi
, (4.16)

where we introduced ûi ∶= hiuih−1
i for each i = 1, . . . ,N and δzzi

denotes the
Dirac δ-distribution at the marked point zi with the property that

∫
U
f(z)δzzi

dz ∧ dz̄ = f(zi) (4.17)

for any function f ∶ U → C on the neighbourhood U ⊂ C of zi equipped with
the local holomorphic coordinate z.

In the gauge Az̄ = 0, the modified equation of motion (4.16) reads

∂z̄Bz = −2πi ûiδzzi
. (4.18)
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Using the fact that ∂z̄(z − zi)−1 = −2πiδzzi
we may rewrite this equation as

∂z̄(Bz −
ûi

z − zi

) = 0

which tells us that Bz has a simple pole at zi with residue ûi there, i.e.

B = ûi

z − zi

dz +O(1) (4.19)

where O(1) denotes terms which are holomorphic at the point zi.
When C = CP 1, corresponding to the Gaudin model, if we fix a global

coordinate z on C ⊂ CP 1 and require B to have a simple pole also at infinity
then we can explicitly write B as the g-valued meromorphic (1,0)-form

B =
N

∑
i=1

ûi

z − zi

dz. (4.20)

By varying the action (4.15) with respect to hi → eϵihi for some g-valued
function ϵi on R we find N further equations of motion

∂tûi = [−At(zi), ûi] (4.21)

for i = 1, . . . ,N . But given the meromorphic behaviour (4.19) of the (1, 0)-form
B at each of the marked points zi, these are merely consequences of the equation
of motion (4.11c) given by taking the residue at each zi, assuming that At is
regular at zi, as will be the case in the following section.

4.3.3.2 Type B defects

The type A line defects we have just introduced ensure that Bz is no longer
holomorphic in the gauge Az̄ = 0 but rather meromorphic with poles at certain
marked points zi ∈ C. The type B line defects will have a similar effect on the
field At. However, since −At is meant to play the role of M in the Lax pair
(4.12), we want it to be built out of Bz, which plays the role of the Lax matrix
L.

Let P ∶ g → C be a G-invariant polynomial on g and fix a point w ∈ C
distinct from the marked points zi ∈ C for i = 1, . . . ,N at which the type A line
defects were inserted in section 4.3.3.1. We consider the following line defect

SB−def [B] = −∫
R×{w}

P (Bz)dt = −∫
R
P (Bz(w))dt (4.22)
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where z is a local holomorphic coordinate around the point w ∈ C and, writing
B = Bzdz in this coordinate, Bz(w) denotes the evaluation of Bz at the point
w.

The G-invariance of the polynomial P ensures that the action (4.22) is gauge
invariant. Therefore, adding it to the gauge invariant action (4.15) obtained so
far, we obtain the full gauge invariant action

S[A,B,{hi}N
i=1] ∶= S3d[A,B] + SA−def[A,{hi}N

i=1] + SB−def [B]. (4.23)

Since the defect term (4.22) only depends on B, it will not modify the
equations of motion for A. Only the equation of motion for B, namely (4.11a)
which has so far remained unchanged, will be altered. To derive it we note
that the variation of the defect action (4.22), under the variation B → B + ϵ
considered in section 4.3.2 with ϵ = ϵzdz in the local holomorphic coordinate z,
reads

δSB−def [B] ∶= SB−def [B + ϵ] − SB−def [B]

= −∫
R
(P (Bz(w) + ϵz(w)) − P (Bz(w)))dt

= −∫
R
(⟨P ′(Bz(w)), ϵz(w)⟩ +O(ϵz(w)2))dt

where in the third line we introduced the element P ′(Bz(w)) ∈ g such that the
linear map ⟨P ′(Bz(w)), ⋅⟩ ∶ g → C is the derivative of P ∶ g → C at Bz(w) and
kept only the terms linear in ϵz(w). It follows that (4.11a) is now replaced by

∂z̄At − ∂tAz̄ = [At,Az̄] + 2πiP ′(Bz(w))δzw. (4.24)

In the gauge Az̄ = 0 this simplifies to

∂z̄At = 2πiP ′(Bz(w))δzw (4.25)

or in other words,

∂z̄(At +
P ′(Bz(w))
z −w

) = 0.

In the case C = CP 1 this tells us that the expression in brackets is a constant.
Taking this constant to be zero we therefore obtain

−At(z) =
P ′(Bz(w))
z −w

, (4.26)
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which coincides with the usual expression for M = −At in terms of L = Bz,
see for instance [3, Eq. (3.33)] in the case when g = glr and the polynomial
P ∶ glr → C is given by X ↦ tr(Xn) for some n ∈ Z≥1. Indeed, in this case we
have P ′(X) = nXn−1 for any X ∈ glr so that (4.26) becomes

−At(z) = n
Bz(w)n−1

z −w
. (4.27)

In connection with the Hamiltonian analysis to be performed later in the
chapter, where the classical r-matrix r12(z,w) = C12

w−z will be introduced in
(4.52), note that we can rewrite (4.27) in the more recognisable form

−At(z) = −n tr2(r12(z,w)Bz(w)n−1
2 ).

We can substitute the expression (4.26) for At into the equation of motion
(4.11c) to obtain the desired Lax equation

∂tBz(z) = [
P ′(Bz(w))
z −w

,Bz(z)], (4.28)

where we have explicitly written the dependence of Bz on the spectral pa-
rameters.We thus expect from the general theory of integrable systems, see
for instance the Proposition [3, p.47], that the time coordinate t along the
topological direction of the 3-dimensional space R ×C corresponds, through
the introduction of the type B defect (4.22), with the time induced by the
Hamiltonian

HP
w ∶= P (Bz(w)). (4.29)

To confirm this we will move to the Hamiltonian formalism through the Hamil-
tonian analysis in Section 4.4.

4.3.4 Unifying 1D action

We have now shown that the gauge fixed equations of motion for 3d mixed BF
theory in the presence of type A and B defects correspond exactly to the Lax
equation (4.28) of the Gaudin model with Lax matrix L(z) = Bz(z) given by
(4.20), where the residues ûi = hiuih−1

i are coadjoint orbits through the fixed
elements ui ∈ g and parameterised by the dynamical G-valued variables hi ∈ G.

At this stage we can take a brief detour to proceed along the lines of [20],
where a unifying 2d action for integrable field theories of affine Gaudin type
was derived from the 4d Chern-Simons action of [16]. In a similar spirit, in the



4.3. 3d mixed BF theory 95

present context we would like to obtain a 1d action for the Gaudin model with
Lax matrix (4.20) starting from the 3d mixed BF theory with both type A and
type B defects. In fact, the procedure followed in [7] is closer in spirit to the
present case since we do not have to deal with the presence of a meromorphic
1-form ω having zeroes, as in the 4d Chern-Simons action considered in [20].

Following [7, §2.6], we will therefore substitute the solutions to the equations
of motion (4.16) and (4.24) (but crucially not (4.11c)) in the gauge Az̄ = 0,
namely (4.20) and (4.26) respectively, into the full action (4.23). We will do
this for the three pieces in the action separately. For the bulk action (4.8) we
find

S3d[A,B] =
1

2πi ∫R×C
⟨Bz, ∂z̄At − ∂tAz̄ − [At,Az̄]⟩dz ∧ dz̄ ∧ dt

= 1
2πi ∫R×C

⟨Bz, ∂z̄At⟩dz ∧ dz̄ ∧ dt

= ∫
R
⟨L(w), P ′(L(w))⟩dt

where in the second equality we used the gauge Az̄ = 0. In the last equality we
used the fact that Bz is identified with the Lax matrix L together with the
identity (4.25), and then performed the integral over C using the presence of
the δ-function.

For the type A defect action (4.13) we have

SA−def[A,{hi}N
i=1] = −

N

∑
i=1
∫

R
⟨ui, h

−1
i ∂thi⟩dt −

N

∑
i=1
∫

R
⟨ûi,At(zi)⟩dt

= −
N

∑
i=1
∫

R
⟨ui, h

−1
i ∂thi⟩dt −

N

∑
i=1
∫

R
⟨ûi,

P ′(L(w))
w − zi

⟩dt

= −
N

∑
i=1
∫

R
⟨ui, h

−1
i ∂thi⟩dt − ∫

R
⟨L(w), P ′(L(w))⟩dt,

where in the second equality we used (4.26) evaluated at z = zi and in the
last line we recognised the sum over i in the second term as the expression
for the Lax matrix L(w) = Bz(w) in (4.20). Note that the second term on the
right hand side exactly cancels the expression found above for the bulk action
S3d[A,B].

Finally, the type B defect action (4.22) is simply SB−def [B] = − ∫RHP
w dt

using the expression (4.29) for the Hamiltonian alluded to in the previous
section and to be confirmed in the analysis of the following section. Putting all
the above together, we deduce that the full action (4.23) reduces to the simple
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form
S1d[{hi}N

i=1] = −
N

∑
i=1
∫

R
⟨ui, h

−1
i ∂thi⟩dt − ∫

R
HP

w dt, (4.30)

where we have suppressed the dependence on the fields A and B since these
have now been expressed in terms of the dynamical variables hi ∈ G and the
fixed elements ui ∈ g for i = 1, . . . ,N . We recognise (4.30) as the first order
action

S[{hi}N
i=1] =

N

∑
i=1
∫

R
⟨Xi, h

−1
i ∂thi⟩dt − ∫

R
HP

w dt,

associated with the Hamiltonian HP
w in (4.29) but where the conjugate mo-

mentum Xi ∈ g of hi ∈ G has been fixed to the constant element Xi = −ui.
This is consistent with the Hamiltonian analysis to be performed in the next
section. Namely, we will find in section 4.4.1.2 that there is a primary constraint
Xi +ui ≈ 0 on the conjugate momentum Xi ∈ g of the dynamical variable hi ∈ G.

We can check directly that the equations of motion of the 1d action (4.30)
are given by (4.21), with At as in (4.26), by varying it with respect to hi → eϵihi

for some arbitrary g-valued variable ϵi. Under this variation, the Lax matrix
L(w) transforms to

N

∑
i=1

eϵiûie−ϵi

w − zi

= L(w) +
N

∑
i=1

[ϵi, ûi]
w − zi

+O(ϵ2
i ).

Hence, using the explicit expression H = P (L(w)) for the Hamiltonian, the
variation of the action is given by

δS1d ∶= S1d[{eϵihi}N
i=1] − S1d[{hi}N

i=1]

= −
N

∑
i=1
∫

R
⟨ui, h

−1
i e
−ϵi∂t(eϵihi) − h−1

i ∂thi⟩dt

− ∫
R
(P(L(w) +

N

∑
i=1

[ϵi, ûi]
w − zi

) − P (L(w)))dt

= −
N

∑
i=1
∫

R
(⟨ûi, ∂tϵi⟩ + ⟨P ′(L(w)),

[ϵi, ûi]
w − zi

⟩ +O(ϵ2
i ))dt

=
N

∑
i=1
∫

R
(⟨∂tûi − [

P ′(L(w))
zi −w

, ûi], ϵi⟩ +O(ϵ2
i ))dt,

where in the last equality we have used Stokes theorem and the adjoint invariance
of the bilinear form. The N equations of motion for the hi are therefore

∂tûi = [
P ′(L(w))
zi −w

, ûi],

and using (4.26), we do indeed recover the equations of motion (4.21) found
previously from adding in type A defects in section 4.3.3.1.
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4.4 Hamiltonian analysis

Throughout this section we shall work in some local coordinate z on some open
subset of C. Our starting point is the Lagrangian density of the action (4.23)
written in terms of the components of the g-valued bulk fields A = Az̄dz̄ +Atdt
and B = Bzdz and in terms of the G-valued defect variables hi for i = 1, . . . ,N
which we introduced at the type A defects above, namely

L(A,B,{hi}N
i=1) =

1
2πi
⟨Bz, ∂z̄At − ∂tAz̄ + [Az̄,At]⟩

−
N

∑
i=1
⟨ui, h

−1
i (∂t +At)hi⟩δzzi

− P (Bz(w))δzw. (4.31)

4.4.1 Conjugate momenta and primary constraints

To move to the Hamiltonian formalism we first determine the conjugate mo-
menta of the bulk fields Az̄, At and Bz and the defect variables hi. We shall
find various primary constraints, some of which will be second class. We shall
impose the latter strongly at this stage by introducing a corresponding Dirac
bracket. To alleviate the notation, all Dirac brackets computed in this section
will ultimately be renamed simply as {⋅, ⋅} before moving on to the following
section where we work out the secondary constraints.

We will begin by considering the conjugate momenta of the bulk fields Az̄,
At and Bz, as the conjugate momenta to the G-valued defect variables hi will
need to be handled with more care, as discussed below.

4.4.1.1 Bulk canonical fields

The conjugate momenta to the g-valued bulk fields Az̄, At and Bz are the
g-valued fields given respectively by

Πt =
∂L

∂(∂tAt)
= 0, Πz̄ =

∂L
∂(∂tAz̄)

= − 1
2πiBz, Pz =

∂L
∂(∂tBz)

= 0,

which satisfy the canonical Poisson bracket relations

{Πt1(z),At2(z′)} = C12δzz′ ,

{Πz̄1(z),Az̄2(z′)} = C12δzz′ ,

{Pz1(z),Bz2(z′)} = C12δzz′ .

Here and in what follows we use the standard tensor notation. In particular,
if we fix dual bases {Ia} and {Ia} of g with respect to the non-degenerate
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invariant symmetric bilinear form ⟨⋅, ⋅⟩ ∶ g× g→ C introduced at the start of the
Chapter, then C12 = Ia ⊗ Ia is the split Casimir. Also for g-valued fields F and
G, which can be written in components as F = FaIa and G = GaIa, we have
{F1(z),G2(z′)} ∶= {Fa(z),Gb(z′)}Ia ⊗ Ib.

We have three primary constraints associated with the bulk fields, namely

Πt ≈ 0, Cz ∶= Bz + 2πiΠz̄ ≈ 0, Pz ≈ 0. (4.32)

Throughout this Chapter we use the conventional notation ‘≈’ to denote
equality on the constraint surface [38], or "weak equality". The first constraint
in (4.32) is clearly first class and the latter two are second class with Poisson
bracket

{Pz1(z),Cz2(z′)} = C12δzz′ .

We set these both strongly to zero immediately, by which we mean restricting
to the submanifold of phase space specified by Pz = 0 and Cz = 0 and replacing
the Poisson bracket with the corresponding Dirac bracket [38]. With respect to
the latter we still have the same relations between the remaining fields, i.e.

{Πt1(z),At2(z′)} = C12δzz′ , (4.33a)

{Πz̄1(z),Az̄2(z′)} = C12δzz′ , (4.33b)

and hence, by an abuse of notation, we will continue to denote this Dirac
bracket as {⋅, ⋅}.

4.4.1.2 Defect canonical variables

We have yet to find the conjugate momenta to the G-valued variables hi,
i = 1, . . . ,N introduced at the type A defects. This can be done by working
in local coordinates ϕα on the group G where α ranges from 1 to dimG, the
dimension of G. We refer the reader, for instance, to [41, §3.1.2] for details.
Each variable hi ∈ G can then be described locally in terms of the dimG

variables ϕα
i ∶= ϕα(hi).

The relevant part of the Lagrangian in finding the conjugate momenta is

−⟨ui, h
−1
i ∂thi⟩ = −⟨ui, ∂tϕ

α
i h
−1
i ∂αhi⟩,

which on the right-hand side we have rewritten in terms of the local coordinates
ϕα

i , where ∂α denotes the partial derivative with respect to the coordinate ϕα.
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The corresponding conjugate momenta are therefore given by

πi,α =
∂L

∂(∂tϕα
i )
= −⟨ui, h

−1
i ∂αhi⟩, (4.34)

and these have the usual canonical Poisson bracket relations

{ϕα
i , ϕ

β
j } = 0, {πi,α, πj,β} = 0, {πi,α, ϕ

β
j } = δβ

αδij.

To return to a coordinate free description of the phase space, we define a
matrix La

α for some fixed basis {Ia} of g such that

h−1
i ∂αhi = La

αIa. (4.35)

This La
α is invertable and we denote the inverse as Lα

a following the conventions
of [41, §3.1.2]. We can then introduce a coordinate-free g-valued variable Xi

which encodes the conjugate momentum πi,α as

Xi ∶= Lα
aπi,αI

a, (4.36)

where {Ia} is the basis of g dual to {Ia} with respect to the bilinear form
⟨⋅, ⋅⟩. We therefore have a coordinate free description of the phase space,
parameterised by a pair of fields (Xi, hi) at each defect valued in TG ≃ g ×G,
with the canonical Poisson brackets in local coordinates being equivalent to,
see for instance [41],

{hi1, hj2} = 0, (4.37a)

{Xi1, hj2} = hi2C12δij, (4.37b)

{Xi1,Xj2} = −[C12,Xi2]δij. (4.37c)

for each i, j = 1, . . . ,N .
Using the definition of the matrix La

α in (4.35) we have

Lα
a⟨ui, h

−1
i ∂αhi⟩Ia = ⟨ui, L

α
aL

b
αIb⟩Ia = ⟨ui, Ia⟩Ia = ui.

It then follows from the expression (4.34) for πi,α above, derived from the
Lagrangian, and the definition (4.36) of Xi that we have a primary constraint
of the form

Ci ∶=Xi + ui ≈ 0 (4.38)

for each defect i = 1, . . . ,N . These N primary constraints are not entirely first
or second class. Indeed, their Poisson brackets

{Ci1,Cj2} = {Xi1,Xj2} = −[C12,Ci2 − ui2]δij ≈ [C12, ui2]δij, (4.39)
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are non-vanishing on the constraint surface (4.38) and are not generally invert-
ible.

Let {vi
p}di

p=1 be a basis of the centraliser gui ∶= ker(adui
) of the element ui ∈ g,

with di ∶= dimgui for each i = 1, . . . ,N . The first class part of each Ci is given by
the set of constraints Cp

i ∶= ⟨vi
p,Ci⟩ for p = 1, . . . , di. These satisfy the relations

{Cp
i ,Cj} ≈ ⟨vi

p1, [C12, ui2]⟩1δij = [vi
p, ui]δij = 0, (4.40)

for every i, j = 1, . . . ,N and p = 1, . . . , di, where the last equality uses the fact
that vi

p ∈ gui . In particular, we have {Cp
i ,C

q
j } ≈ 0 for any q = 1, . . . , dj so that

the set of constraints Cp
i for p = 1, . . . , di, i = 1, . . . ,N are indeed first class.

It also follows from (4.37b) that the first class constraints Cp
i generate right

multiplication of the hi by elements eϵvi
p of the centraliser Gui of ui in G – note

that under such transformations the g-valued variables ûi are invariant

hie
ϵvj

puie
−ϵvj

ph−1
i = hiuih

−1
i = ûi. (4.41)

Let us extend the basis {vi
p}di

p=1 of the centraliser gui to a basis {vi
p}di

p=1 ∪
{ṽi

r}ci
r=1 of g where ci ∶= dimg − di. We claim that the remaining constraints

C̃r
i ∶= ⟨ṽi

r,Ci⟩ for r = 1, . . . , ci contained in Ci are second class. We need to show
that the matrix {C̃r

i , C̃s
i } for r, s = 1, . . . , ci is invertible on the constraint surface

Ci ≈ 0. If this were not the case then we would have a linearly dependent column
∑ci

s=1{C̃r
i , C̃s

i }as ≈ 0 for some as ∈ C with s = 1, . . . , ci. On the other hand, we
also know from (4.40) that ∑ci

s=1{C
p
i , C̃s

i }as ≈ 0 for all p = 1, . . . , di. Combining
these statements we have

0 ≈
ci

∑
s=1
{Ci, C̃s

i }as =
ci

∑
s=1
{Ci, ⟨ṽi

s,Ci⟩}as ≈
ci

∑
s=1
⟨ṽi

s2, [C12, ui2]⟩2as = [ui,
ci

∑
s=1
asṽ

i
s],

where in the third step we used (4.39). It follows that ∑ci
s=1 asṽi

s ∈ gui which
contradicts the assumption that {ṽi

r}ci
r=1 is the basis of some complement of gui

in g.
We would like to impose suitable gauge fixing conditions Dp

i ≈ 0, for p =
1, . . . , di, to fix the first class constraints Cp

i and move to a Dirac bracket {⋅, ⋅}∗

which fixes the constraints Ci ≈ 0 strongly. In particular, we would like to
compute the Dirac bracket {ûi1, ûj2}∗ of the g-valued variables ûi = hiuih−1

i for
i = 1, . . . ,N . It turns out that the result is independent of the choice of gauge
fixing condition Dp

i ≈ 0. Indeed, consider the variables X̂i ∶= hiXih−1
i . One
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deduces from (4.37) that they have the Poisson brackets

{X̂i1, X̂j2} = [C12, X̂i2]δij, (4.42a)

{Xi1, X̂j2} = 0 (4.42b)

for each i, j = 1, . . . ,N . In particular, it follows from (4.42b) that {Ci1, X̂j2} = 0
for any i, j = 1, . . . ,N . Now the matrix of Poisson brackets between the set of
all second class constraints Cp

i , Dp
i for p = 1, . . . , di and C̃r

i for r = 1, . . . , ci is of
the block form

⎛
⎜⎜⎜
⎝

0 ∗ 0
∗ ∗ ∗
0 ∗ ∗

⎞
⎟⎟⎟
⎠

(4.43)

where the first, second and third block rows and columns correspond to the
set of constraints Cp

i , Dp
i and C̃r

i , respectively. The zeroes of the matrix are all
a direct consequence of (4.40) and each ‘∗’ denotes a possibly non-zero block
matrix. The matrix (4.43) is invertible since the blocks in position (1, 2), (2, 1)
and (3,3) are all invertible by design. Its inverse is then schematically of the
block form

⎛
⎜⎜⎜
⎝

0 ∗ 0
∗ ∗ ∗
0 ∗ ∗

⎞
⎟⎟⎟
⎠

−1

=
⎛
⎜⎜⎜
⎝

∗ ∗ ∗
∗ 0 0
∗ 0 ∗

⎞
⎟⎟⎟
⎠
. (4.44)

Since {Cp
i , X̂j} = {C̃r

i , X̂j} = 0 for all p = 1, . . . , di and r = 1, . . . , ci, the only
non-zero part of the sum within the Dirac bracket will be paired with the
middle element of (4.44) - we see on the righthand side that this is just zero .
Together this implies that the Poisson brackets (4.42a) will remain unchanged
when passing to the Dirac bracket, i.e. we have

{X̂i1, X̂j2}∗ = [C12, X̂i2]δij.

Finally, using the fact that X̂i = −ûi after imposing the constraint Ci = 0 strongly,
we deduce that the g-valued variables ûi for i = 1, . . . ,N satisfy N commuting
copies of the Kostant-Kirillov bracket

{ûi1, ûj2}∗ = −[C12, ûi2]δij. (4.45)

To avoid overburdening the notation, and since we shall need to introduce a
further Dirac bracket in section 4.4.3, we will denote the Dirac bracket {⋅, ⋅}∗

introduced above simply as {⋅, ⋅} from now on.
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4.4.2 Hamiltonian and secondary constraints

The Hamiltonian density is defined as the Legendre transform of the Lagrangian
density (4.31). However, since the field At is non-dynamical, i.e. there are no
time derivatives of At in the action, we shall perform the Legendre transform
only with respect to the dynamical fields Az̄, Bz and the dynamical variables
hi. So we define

H ∶= ⟨Πz̄, ∂tAz̄⟩ + ⟨Pz, ∂tBz⟩ + ⟨Xi, h
−1
i ∂thi⟩ −L(A,B,{hi}N

i=1)

= 1
2πi⟨Cz, ∂tAz̄⟩ + ⟨Pz, ∂tBz⟩ +

N

∑
i=1
⟨Ci, h

−1
i ∂thi⟩

− 1
2πi⟨Bz, ∂z̄At + [Az̄,At]⟩ +

N

∑
i=1
⟨ûi,At⟩δzzi

+HP
w δzw

where in the second line we have used the definition of the bulk constraint Cz in
(4.32) and of the defect constraints Ci for i = 1, . . . ,N in (4.38). Since we have
already set these along with Pz strongly to zero, we can drop the corresponding
terms in the Hamiltonian density.

The Hamiltonian is the integral of the Hamiltonian density over C, namely

H ∶= ∫
C
Hdz ∧ dz̄

= − 1
2πi
⟪Bz, ∂z̄At + [Az̄,At]⟫ + ∫

C
(

N

∑
i=1
⟨ûi,At⟩δzzi

)dz ∧ dz̄ +HP
w ,

where in the first term of the right hand side we introduced the notation

⟪X,Y ⟫ ∶= ∫
C
⟨X,Y ⟩dz ∧ dz̄

for any g-valued fields X and Y on C.
It is convenient to introduce the bulk g-valued field

µ ∶= 1
2πi
(∂z̄Bz + [Az̄,Bz]) = −∂z̄Πz̄ − [Az̄,Πz̄], (4.46)

where in the second equality we have used the constraint Cz = 0 in (4.32) which
is now imposed strongly. If we also introduce the g-valued field

µ̂ ∶= µ +
N

∑
i=1
ûiδzzi

, (4.47)

the Hamiltonian can be rewritten succinctly as

H = ⟪µ̂,At⟫ +HP
w . (4.48)
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At this point it is interesting to note the similarity between the g-valued
fields µ and µ̂ just introduced and the moment map of the Hitchin system [39]
(we refer the reader to [3, §7.11] for a concise review of Hitchin systems). This
is the moment map on the cotangent bundle T ∗A of the space A of (0, 1)-forms
on the Riemann surface C, parameterised by the (0,1)-form A and the Higgs
field Φ, defined by µHit ∶= ∂̄AΦ = ∂̄Φ + [A,Φ]. The phase space of the Hitchin
system without marked points is defined as the symplectic reduction to the
level surface µHit = 0. This would coincide exactly, upon identifying Bz with
the Higgs field Φ and the (0,1)-form A with Az̄, with the condition µ = 0. In
the presence of marked points zi the level of the moment map of the Hitchin
system is chosen instead to be ∑N

i=1 ûiδzzi
. As we will see, this level surface

corresponds exactly to the constraint µ̂ ≈ 0 coming from the gauge invariance
in 3d mixed BF theory with the defects introduced in section 4.3.3. Without
the defects the constraint would reduce to µ ≈ 0 in pure BF theory.

4.4.2.1 Gauge invariance

We need to ensure that the remaining primary constraint, Πt ≈ 0, is preserved
under time evolution. That is,

{H,Πt} = µ̂ ≈ 0,

giving rise to the secondary constraint µ̂ ≈ 0. We see from the canonical brackets
(4.33) that −µ̂ is the generator of gauge transformations (4.9) on the fields Az̄

and Bz since

{µ̂1(z),Az̄2(z′)} = −[C12,Az̄2(z)]δzz′ − ∂z̄(C12δzz′) (4.49a)

{µ̂1(z),Bz2(z′)} = −[C12,Bz2(z)]δzz′ , (4.49b)

where we have used the identity [C12,Az̄2(z) +Az̄1(z)] = 0 for (4.49a). Note
that the moment map µ satisfies the following Poisson bracket

{µ1(z), µ2(z′)} =
1

2πi{µ1(z), ∂z̄′Bz2(z′)} +
1

2πi
{µ1(z), [Az̄2(z′),Bz2(z′)]}

= 1
2πi( − ∂z̄′[C12δzz′ ,Bz2(z′)] − [Az̄2(z), [C12,Bz2(z′)]]δzz′

− [[C12,Az̄2(z)]δzz′ + ∂z̄(C12δzz′),Bz2(z′)])

= 1
2πi( − [C12, ∂z̄Bz2(z)]δzz′ − [C12, [Az̄2(z),Bz2(z′)]]δzz′)

= −[C12, µ2(z)]δzz′ ,
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where in the second equality we used the relations (4.49), which also trivially
hold with µ̂ replaced by µ. In the third equality we have used the Jacobi
identity and the fact that ∂z̄δzz′ + ∂z̄′δzz′ = 0, which follows using the identity
∂z̄(z − z′)−1 = −2πiδzz′ .

The Poisson bracket of µ̂ with itself is therefore

{µ̂1(z), µ̂2(z′)} = {µ1(z), µ2(z′)} +
N

∑
i,j=1
{ûi1, ûj2}δzzi

δz′zj

= −[C12, µ2(z)]δzz′ −
N

∑
i=1
[C12, ûi2δzzi

]δz′zi
= −[C12, µ̂2(z)]δzz′

where in the second equality we have used (4.45) for the second term. This
vanishes on the constraint surface so µ̂ is first class – we will set it strongly to
zero with an appropriate gauge fixing condition in the following section.

The time evolution of µ̂ is given by

{H, µ̂(z)} ≈ 1
2πi
{HP

w , [Az̄(z),Bz(z)]}

= 1
2πi
[{HP

w ,Az̄(z)},Bz(z)] = −[P ′(Bz(w)),Bz(z)]δzw = 0,

and therefore we have no tertiary constraints.

4.4.3 Gauge fixing and Lax formalism

Recall that so far we have fixed the pair of second class constraints Pz ≈ 0 and
Cz ≈ 0 by introducing the corresponding Dirac bracket in section 4.4.1.1. We
kept the notation {⋅, ⋅} for this Dirac bracket. In section 4.4.1.2 we introduced
a further Dirac bracket {⋅, ⋅}∗ to fix the constraints Ci ≈ 0. As mentioned at the
end of that section, by abuse of notation we continued to call this Dirac bracket
{⋅, ⋅} since the Dirac bracket of the bulk fields is unaffected. In this section we
start with the latter Dirac bracket and wish to fix the gauge invariance arising
from the constraint µ̂ ≈ 0.

We will use the gauge fixing condition Az̄ ≈ 0 and simultaneously impose
this condition and the constraint µ̂ ≈ 0 strongly by defining a new Dirac bracket.
To this end, recall that

{µ̂1(z),Az̄2(z′)} = −[C12,Az̄2(z)]δzz′ − ∂z̄(C12δzz′) ≈ −∂z̄(C12δzz′)
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where the first equality is (4.49a) and in the last step we have used the new
constraint Az̄ ≈ 0. This can certainly be inverted, since

⟪−∂z̄(C12δzz′),
1

2πi
C23

z′ − z′′
⟫
(z′,2)

= i
2πC13∂z̄ (

1
z − z′′

) = i
2πC13(−2πiδzz′′) = C13δzz′′ . (4.50)

Here the subscript (z′,2) means that the pairing ⟨⋅, ⋅⟩ is taken in the second
tensor space and the integration is with respect to z′. We therefore define the
new Dirac bracket, denoted {⋅, ⋅}⋆ for g-valued functions U and V on C, by the
usual formula [38, §1.3.3], see also [65, §2.6] for the analogous derivation in the
4d Chern-Simons theory context, namely

{U1(z), V2(z′)}⋆ = {U1(z), V2(z′)}

−⟪{U1(z), µ̂3(z′′)},⟪
1

2πi
C34

z′′ − z′′′
,{Az̄4(z′′′), V2(z′)}⟫

(z′′′,4)
⟫
(z′′,3)

−⟪{U1(z),Az̄3(z′′′)},⟪
1

2πi
C34

z′′ − z′′′
,{µ̂4(z′′′), V2(z′)}⟫

(z′′′,4)
⟫
(z′′,3)

.

By construction, working with this Dirac bracket allows us to set the pair of
constraints µ̂ ≈ 0 and Az̄ ≈ 0 strongly to zero.

4.4.3.1 Lax algebra

We will show that the Dirac bracket of Bz with itself satisfies the Lax algebra

{Bz1(z),Bz2(z′)}⋆ = [r12(z, z′),Bz1(z) +Bz2(z′)], (4.51)

where r12(z, z′) is the standard classical r-matrix

r12(z, z′) =
C12

z′ − z
. (4.52)

To compute this Dirac bracket, we begin by noting that (4.49b) implies

{Bz1(z), µ̂2(z′)} = [C12,Bz1(z)]δzz′ .

Using this and the bracket {Bz1(z),Az̄2(z′)} = −2πiC12δzz′ which follows from
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(4.33b) along with the constraint Cz = 0 in (4.32), we find

{Bz1(z),Bz2(z′)}⋆

= −⟪[C13,Bz1(z)]δzz′′ ,⟪
1

2πi
C34

z′′ − z′′′
,2πiC24δz′z′′′⟫

(z′′′,4)
⟫
(z′′,3)

−⟪−2πiC13δzz′′ ,⟪
1

2πi
C34

z′′ − z′′′
,−[C24,Bz2(z′)]δz′z′′′⟫

(z′′′,4)
⟫
(z′′,3)

= −⟪[C13,Bz1(z)]δzz′′ ,
C23

z′′ − z′
⟫
(z′′,3)

−⟪C13δzz′′ , [
C23

z′′ − z′
,Bz2(z′)]⟫

(z′′,3)

= −[ C12

z − z′
,Bz1(z)] − [

C12

z − z′
,Bz2(z′)] = [

C12

z′ − z
,Bz1(z) +Bz2(z′)].

In other words, we recover the Lax algebra (4.51).

4.4.3.2 Lax matrix

By definition of µ̂ in (4.47), it follows that setting this constraint and its gauge
fixing condition to zero strongly, i.e. µ̂ = 0 and Az̄ = 0, leads to the equation

∂z̄Bz = −2πi
N

∑
i=1
ûiδzzi

, (4.53)

or ∂z̄Bz = −2πi ûiδzzi
in a small neighbourhood of the point zi, which is equivalent

to (4.18). This then leads to the local meromorphic behaviour (4.19) of the
(1,0)-form B, namely

B = ûi

z − zi

dz +O(1).

The Kostant-Kirillov bracket (4.45) for the residues ûi obtained in section
4.4.1.2 (recall that we are now denoting the Dirac bracket {⋅, ⋅}∗ of section
4.4.1.2 simply as {⋅, ⋅}) is equivalent to the Lax algebra (4.51) derived in section
4.4.3.1.

4.4.3.3 Lax equation

At this point we have now fixed all the constraints strongly except for the
primary constraint Πt ≈ 0. However, now that µ̂ = 0 is imposed strongly, the
Hamiltonian (4.48) no longer involves the field At and simply reduces to

H =HP
w .

In particular, together with the Dirac bracket (4.51) this now implies the Lax
equation (4.28) in the Hamiltonian formalism

{HP
w ,Bz(z)}

⋆ = [
P ′(Bz(w))
z −w

,Bz(z)]. (4.54)
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We deduce, as claimed at the end of Section 4.3, that the time flow ∂t along
the topological direction of the 3-dimensional space R ×C is the one induced
by the Hamiltonian HP

w = P (Bz(w)) with respect to the Dirac bracket, i.e.
∂tf = {HP

w , f}⋆ for any function f of the Lax matrix Bz. Focusing on such
observables, we are also free to set Πt = 0 strongly since these all Poisson
commute with Πt under the Dirac bracket {⋅, ⋅}⋆ and so their bracket will
remain unchanged after introducing a further Dirac bracket to fix the constraint
Πt ≈ 0.

4.4.3.4 Involution

It is well known [3] that the Lax algebra (4.51) implies the involution property

{HP
w ,H

Q
z }
⋆ = 0, (4.55)

for any pair of G-invariant polynomials P,Q ∶ g→ C and distinct points w, z ∈ C.
This can also be seen more directly from the above Hamiltonian analysis

of 3d mixed BF theory as follows. Since HP
w = P (Bz(w)) only depends on the

field Bz we have the involution property

{HP
w ,H

Q
z } = 0 (4.56)

with respect to the Poisson bracket (more precisely, recall that {⋅, ⋅} denotes
the Dirac bracket introduced in section 4.4.1), for any polynomials P,Q ∶ g→ C

and distinct points w, z ∈ C. But since HP
w is gauge invariant for G-invariant

polynomials P and −µ̂ is the generator of gauge transformations, see (4.49),
we have {µ̂(z),HP

w } = 0. The involution property (4.56), for any polynomials
P,Q ∶ g→ C, therefore immediately implies the involution property (4.55), for
any G-invariant polynomials P,Q ∶ g→ C.

4.5 Future directions

We have now shown that classical Gaudin models associated with a finite-
dimensional semisimple Lie algebra, and more generally tamely ramified Hitchin
systems, can be obtained from 3d mixed BF theory in the presence of certain
line defects by moving to the Hamiltonian framework and fixing the gauge
symmetry using the gauge fixing condition Az̄ ≈ 0 - exactly analogously to the
4-dimensional gauge theoretic origins of the affine Gaudin model from 4dCS
[65].
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4.5.1 Alternative realisations

The Lax matrix of the Gaudin model, or the Higgs field of the Hitchin system,
arises from the (1,0)-form B of the 3d mixed BF theory. In particular, after
going to the gauge Az̄ = 0 the latter becomes meromorphic with simple poles
(4.19) at each zi, the location of the type A line defects. The specific choice of
line defect (4.13) led to the residues of B at these simple poles being coadjoint
orbits ûi = hiuih−1

i of some fixed Lie algebra elements ui ∈ g. As is well known,
and as we have rederived in the present setting in section 4.4.1.2, such coadjoint
orbits provide a realisation of the Kostant-Kirillov Poisson bracket (4.45).

It would be interesting to see if other realisations of the Kostant-Kirillov
Poisson bracket can be obtained by making other choices of type A defects than
(4.13). Indeed, since the field Bz satisfies the Lax algebra (4.51) regardless of
the choice of type A line defects we make, the residues ûi at each simple pole
zi of Bz will necessarily satisfy the Kostant-Kirillov bracket. As mentioned in
the affine case in [65, §4.1], it would be desirable to find the precise dictionary
between the possible choices of type A line defects one can introduce in 3d
mixed BF theory and the different types of possible representations of the
Kostant-Kirillov bracket.

4.5.2 Generalised Gaudin models

We have focused in this paper on the case when the Lax matrix of the Gaudin
model, or the Higgs field of the Hitchin system, has simple poles at the marked
points zi.

It would be interesting to consider also type A line defects which would give
rise to higher order poles in the Lax matrix in order to construct Gaudin models
with irregular singularities as we saw in previous chapters. In the affine setting,
generalised surface defects in 4-dimensional Chern-Simons theory leading to
affine Gaudin models with irregular singularities were considered in [6, 42].

Other generalisations of the Gaudin model which one could try to relate
to 3d mixed BF theory, or some generalisation thereof, include cyclotomic
Gaudin models [62, 70, 69] or dihedral Gaudin models (see [66] in the affine
case), whose Lax matrices are equivariant under the action of cyclic or dihedral
groups, respectively. In the affine case, such a generalisation was considered
recently in [56] where the symmetric space λ-model, which can be described as a
Z4-cyclotomic affine Gaudin model, was obtained along the lines of [65] starting
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from 4d Chern-Simons theory with a Z4-equivariance condition imposed on the
gauge field.

Both the gauge theoretic and algebraic approaches to 2-dimensional inte-
grable field theories, which are of course intimately related [65], have been
used to construct many new examples of 2-dimensional classical integrable field
theories in recent years; see for instance [18, 17, 4, 2] in the affine Gaudin
model setting and the references above in the 4d Chern-Simons theory setting.
Finite Gaudin models, or equivalently 3d mixed BF theory, could similarly be
used to extend the list of known finite-dimensional integrable systems.

4.5.3 4dBF Theory

As we have seen, we can describe the finite Gaudin model via 3dBF theory and
the affine Gaudin model through 4dCS, we might question why we have this
mix of theories, instead of using 3-dimensional Chern-Simons theory or a 4-
dimensional version of BF theory. One perspective suggests that the description
of affine Gaudin models though 4dBF and though 4dCS might be somehow
equivalent, as both can be viewed as a dimensional reduction (in a loose sense)
of 5dCS along a copy of S1∗- either the first factor, or the copy hiding in
C∗ = S1 × R. In summary it would suggest that theories on the same row of
the following (speculative) diagram may be gauge-fixed to describe the same
model;

g-5dCS on
S1 ×C∗ ×C

g-4dBF on
C∗ ×C

g-3dBF on
R ×C

g-4dCS on
S1 × R ×C

g-3dCS on
R ×C

where the solid arrows represent reducing the dimensions of the theory along a
copy of S1 (recalling that C∗ = R × S1) and the dashed lines represent adding

∗We are grateful to K. Costello for private communication about this.
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term to the action of the BF theory in order to deform it into a Chern-Simons
theory.

Let us describe this deformation in the 3 dimensional case, following the
argument of [1, §2.3]. For Riemann surface C and field A ∈ Ω1(R ×C,g), the
3d Chern-Simons action is given by

S3dCS[A] =
k

4πi ∫R×C
CS(A), (4.57)

where CS(A) is the Chern Simons three-form defined in (4.1). The level k is a
complex multiple of the Killing form , which we will be able to use to "switch
off" the deformation. Let us rescale the (1, 0)-component of A to be nontrivial
at level zero, that is we write Az = 1

kBz, and the remainder we label as the
(0, 1)-form A = Az̄dz̄+Atdt. In terms of A and B the Chern-Simons three-form
(4.1) becomes

CS(A) = ⟨1
k
B,dA + 1

3[A,A]⟩ +
1
k
⟨A,dB + 2

3[A,B]⟩ + ⟨A,∂A⟩, (4.58)

as ⟨A, ∂̄A⟩ = 0. We then reintroduce the curvature 2-form F (A) = dA+ 1
2[A,A]

and reorder the second term,

CS(A) = 2
k
⟨B,F (A)⟩ + ⟨A,∂A⟩ − 1

k
d⟨A,B⟩. (4.59)

Hence the 3dCS action can be rewritten as

S3dCS[A] =
1

2πi ∫R×C
⟨B,F (A)⟩ + k

4πi⟨A,∂A⟩, (4.60)

which clearly produces the 3d mixed BF action at level zero. We can therefore
view 3dCS as a deformation of 3d mixed BF by k

2 ⟨A,∂A⟩, as in the diagram
above.

To write the action of 4dBF theory, we let C be a Reimann surface and
take the g-valued fields α ∈ Ω(0,1)(C∗ ×C) and β ∈ Ω(2,0)(C∗ ×C). The action
is entirely analogous to the 3dBF action

S4dBF[α,β] =
1

4πi ∫C∗×C
⟨β,F (0,2)(α)⟩

where F (0,2)(α) is the holomorphic curvature,

F (0,2)(α) = ∂̄α + 1
2[α,α].
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We can write the fields α,β in terms of some holomorphic coordinates
λ = et+iθ, λ̄ on C∗ and z, z̄ on C,

α = αλ̄λ̄
−1dλ̄ + αzdz + αz̄dz̄, (4.61)

β = βzdz ∧ λ−1dλ. (4.62)

Performing the same Hamiltonian analysis as we did for 3dBF theory, we
arrive at the Lax equations of the finite g-Gaudin model, this time with an
additional degree of freedom in the variable θ;

{βz1(θ, z), βz1(θ′, z′)}∗ = δzz′δθθ′[
C12

z − z′
, βz1(θ, z) + βz2(θ, z)]. (4.63)

In other words this is the the Gaudin model of the Loop algebra Lg, which
makes sense given that we can rewrite 4dBF associated with g to be written as
3dBF associated with Lg. This theory is ultralocal in the sense that its Poisson
bracket (4.63) does not contain any terms proportionl to a derivative of the
Dirac delta [19].

On the other hand, the classical affine Gaudin model is non-ultralocal, with
Poisson bracket given by [17, Eq.(2.18)]

{L1(z, θ), L2(z′, θ′)} =[
C12

z′ − z

−1
, L1(z, θ) −L2(z′, θ)]δθθ′ (4.64)

− (φ(z) − φ(z′)) C12

z′ − z
δ′θθ′ .

As it has been shown that the 4dCS theory produces the affine Gaudin model
on suitable gauge fixing, we would need to deform the 4dBF theory in order to
introduce this non-ultralocal term. Guided by (4.60) in the 3d case, for some
meromorphic 1-form ω = φ(z)dz let us write

S4dBF-def[α,β] =
1

4πi ∫C∗×C
⟨β,F (0,2)(α)⟩ + 1

4πi ∫C∗×C
ω ∧ ⟨α, ∂α⟩. (4.65)

where the level k has been replaced with the meromorphic function φ(z). For
the theory to be non-ultralocal we expect ω to have zeroes [65, §4.3]. In analogy
with the 3d case, we would hope that this deformed 4dBF action is equivalent
to the 4dCS action. This is suggested by the equations of motion; if we let

β = ω ∧ αλλ
−1dλ

and recall that αλ = 1
2(αt − iαθ), then one of he equations of of motion of the

action (4.65) is the zero curvature equation

∂tαθ − ∂θαt + αtαθ = 0. (4.66)
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This is consistent with the equations of motion of 4dCS as we have seen earlier
in the chapter, however further work would be required to show that this
deformation is fully equivalent to the 4dCS action. A next step might then
be to perform the Hamiltonian Analysis on this deformed action in order to
obtain the affine Gaudin model from the 4dBF perspective.

4.5.4 Potential Relation to Separation of Variables

We finish with a brief note on how this 3dBF perspective might relate to the
work on Separation of Variables we discussed in the previous part. Since we
focused on SoV in quantum Gaudin models, the 3dBF story would in reality
relate to the classical SoV conducted by Skrypnyk and Dubrovin in [23], and
the quantum version would instead most likely be from the perspective of
3-dimensional Chern-Simons Theory [72].

Recall that we found that the separated equation in the quantum sl2 and
gl3 Gaudin models to be given by the universal oper

cdet (∂qi
+L(qi)) = 0, (4.67)

and for the classical Gaudin models by the spectral curve

det (λ(qi) −L(qi)) = 0, (4.68)

where λ(z) is the eigenvalue of L(z). To bring this into the 3dBF perspective
we can choose our type-B defect (4.22) to be this classical spectral curve,
using our identification of the Lax matrix L(z) with the component Bz of the
gauge-field B;

SB-def = −∫
R×w

det(λ(w) −Bz(w))dt. (4.69)

Since the spectral curve generates as its coefficients the integrals of motion of
the classical Gaudin model, which are given by the gauge invariant polynomials
P , this would be the most general form of the type-B defect. Pursuing this
connection could lead to a new approach for SoV, and more widely for opers in
the quantum case, from the gauge-theoretic perspective.



A

Constructing Differential Operator
Realisations of Takiff Lie Algebras

For the separation of variables portion of this thesis, we will need to consider
the Lie algebra g underlying the Gaudin model as an algebra of differential
operators, in order for the eigenvalue equations of the Gaudin Hamiltonians
to read as differential equations so we can apply the separation of variables
technique.

For example, it is well-known that the basis {e, f, h} for sl2 may be realised
as differential operators on the space C[[x]] of formal power series in x

ϕ(e) = −x∂ 2
x + 2ℓ∂x, ϕ(f) = x, ϕ(h) = −x∂x + ℓ (A.1)

where ℓ ∈ is the weight. The space C[[x]] is then a Verma module of sl2, with
the corresponding highest weight vector being 1 ∈ C[[x]]. We can construct
finite-dimensional highest weight modules of weight 2ℓ+1 by taking the quotient
by the ideal generated by x2ℓ+1. Extending this, we can realise U(sl2)⊗N in
C[x1, . . . , xN] with the ith copy of sl2 as in equation (A.1) in the variable xi,
and therefore all of the observables of the sl2-Gaudin model.

On the other hand, when considering the Gaudin model with irregular
singularities we will need a differential operator realisation analogous to (A.1)
for the Takiff Lie algebra sl2[εi]/ετi

i as defined in Chapter 1, as well as for
gl3[εi]/ετi

i when we turn to consider the higher rank scenario. Fortunately we
can use the formula, outlined by Draisma in [22], to realise any Lie algebra
in terms of first order differential operators. The stipulation that they are
first order will not actually be necessary for our purposes, and in fact we will
perform the transformation x↔ ∂

∂x to ensure other conveniences in the final

113
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expression, however it is still the basis of the construction. Let us outline in
detail here the method for constructing the sl2[εi]/ετi

i realisation in particular,
as the algorithm is very similar for gl3[εi]/ετi

i so we need only point out some
minor differences. A useful final check will be to recover (A.1) on setting the
Takiff degrees τi = 1.

A.1 Realisation formula for sl2[εi]/ετi

i

For the realisation formula [22, Thm 2.1], we let h ⊂ g be a subalgebra such
that the codimension dimg − dimh = n is finite, this will be the number of
variables in which we represent g.

For our example, we will take h = b+[εi]/ετi
i generated by {e[r]}τi−1

r=0 and
{h[r]}τi−1

r=0 , the Takiff equivalent to the (non-strictly) upper triangular matrices
for sl2 in the fundamental representation. The codimension of b+[εi]/ετi

i is τi so
as expected our realisation of sl2 will be in differential operators in τi variables
which we label x[0], . . . , x[τi−1]. We must choose a realisation with a suitable
number of variables, for example one could take π(Ea

b ) = xa∂xb
as a realisation

for gln at any rank, but we would then only have n variables.
The formula then requires that we choose an ordered basis B the first

part of which is a basis C of h, (which in our example case will be given
by {h[0], . . . , h[τi−1], e[0], . . . , e[τi−1]}) and the second part is an ordered set of
elements {Y1, . . . , Yn} spanning the rest of g (which here will be {f[0], . . . , f[τi−1]}
ordering by mode).

For the generic formula, we extend B to the corresponding PBW-basis of
the universal enveloping algebra U(g) - that is, the basis given by all correctly
ordered monomials in B. We then define functions χi ∶ U(g)→ C which take an
element in the enveloping algebra to the coefficient of Yi when it is reordered to
be written in the PBW basis.The realisation of X ∈ U(g) in terms of differential
operators in some variables y1, . . . , yn is then given by

ψ(X) =
N

∑
i=1
( ∑

m1,...,mn∈Z≥0N

χi(Y m1
1 ⋯Y mn

n X)y
m1
1 ⋯y

mn
n

m1!⋯mn!
)∂i, (A.2)

where ∂i denotes ∂
∂yi

.
Let us consider what the value of χi(fm0

[0] . . . f
mτi−1
[τi−1]X) will be for each of our

basis elements e[r], f[r], h[r]. To correctly order these we will need to move the
f[s] for all modes s = 0, . . . , τi − 1 to the end of the expression, and at this point
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we can count the single f terms arising from the commutation relations (1.29)
- if indeed there are any. The most straightforward case is to consider basis
elements f[r], as these all commute at different modes we obtain no additional
terms from the reordering at all, and so χi will only return a non-zero result if
m0 =m1 = ⋯ =mτi−1 = 0 and if i = r. Hence it is straightforward to plug this in
to the formula (A.2) and see that ψ(f[r]) = ∂x

[r]
which we denote ∂[r].

When considering ψ(h[r]), we note from the Lie bracket

[h[r], f[s]] = −2f[r+s]

that the χi functions will only have a non-zero output if exactly one of the
mj = 1 and the rest are zero, at which point we see that χi(f[s]h[r]) = 2δi,r+s. A
similar line of reasoning follows for e[r] leaving us with the overall realisation
of sl2[εi]/ετi

i

ψ(f[r]) = ∂[r], (A.3a)

ψ(h[r]) = 2
τi−1
∑
s=0

x[s]∂[r+s], (A.3b)

ψ(e[r]) = −
τi−1
∑

s,t,=0
s+t+r<τi

x[s]x[t]∂[r+s+t]. (A.3c)

If we set the degree τi = 1 and return to the non-Takiff case, we can see that
we have clearly not yet reconstructed (A.1) in the variable x[0], as the weight
ℓ is not present anywhere in (A.3). Though this remains a valid differential
operator realisation (one can check that the expected commutation relations
apply), the weights will play a role in Chapter 2. To add these in, we turn again
to Draisma who provides a further algorithm [22, Thm 3.2] for this purpose;

ϕ̃(X) = ψ(X) + ∑
m1,...,mn

η(πh(Y m1
1 ⋯Y mn

n X))x
m1
1 ⋯x

mn
n

m1!⋯mn! (A.4)

where πh is the projector onto h and η ∶ h → C are the functions that
provides the weights with the requirement that η([h,h]) = 0. For the sl2[εi]/ετi

i

realisation, this condition forces η(e[r]) = 0 for r = 0, . . . , τi, leaving us with the
effect of η on the diagonals when viewed as matrices at all modes, which we
label as the weights such that η(h[r]) = 2ℓ[r]. The projector πh will kill any
additional term not in h, so we do not expect the weights to appear in ϕ̃(f[r])
as is consistent with (A.1). By the same process as above, now considering



116
Appendix A. Constructing Differential Operator Realisations of

Takiff Lie Algebras

reorderings that leave a single copy of h[s], we find the realisation

ϕ̃(f[r]) = ∂[r], (A.5a)

ϕ̃(h[r]) = 2
τi−1−r

∑
s=0

x[s]∂[r+s] + 2ℓ[r], (A.5b)

ϕ̃(e[r]) = −
τi−1
∑

s,t,=0
s+t+r<τi

x[s]x[t]∂[r+s+t] + 2
τi−1−r

∑
s=0

ℓ[r+s]x[s]. (A.5c)

Finally, it will be convenient for our purposes in the separation of variables
part of this thesis for our realisation of f[r] to be in one of the variables only and
involving no differential operators ∂x

[r]
. To this end we make the transformation

x↔ ∂
∂x and rearrange, absorbing any constants that arise from this into the

weights ℓ[r] - we also add a subscript i to the variables and weights because we
will be using this realisation across the N sites of the Gaudin model;

π(f (i)
[r]
) = xi,[r] (A.6a)

π(h(i)
[r]
) =

τi−1−r

∑
s=0
−2xi,[s+r]∂i,[s] + 2ℓi,[r]. (A.6b)

π(e(i)
[r]
) =

τi−1
∑

s,t=0
s+t+r<τi

−xi,[r+s+t]∂i,[s]∂i,[t] +
τi−1−r

∑
s=0

2ℓi,[r+s]∂i,[s], (A.6c)

which is entirely consistent with the commutation relations of sl2[εi]/ετi
i and

with (A.1) on setting τi = 1.

A.2 Realisations of gl3 and gl3(εi)/ετ
i

We will also require realisations of gl3 and the Takiff Lie algebra gl3(ε)/ετ in
Chapter 2. Derkachov and Valeinivich [21] provide such a realisation for sl3 and
we can construct a similar one here using Draisma’s method that we described
above.

Recall the standard basis {Ei
j}3

i,j=1 of gl3. In this case we take h to
again be the equivalent of the upper triangular matrices, hence {Y1, . . . , Yn} =
{E2

1 ,E
3
1 ,E

3
2} and so we expect three variables (xi, yi, zi) on each site. Following

the same steps as we did for the sl2 Takiff algebra we arrive at the following
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realisation:

π(E1(i)
1 ) = ℓ3

i + yi∂yi
+ zi∂zi

π(E2(i)
1 ) = zi + yi∂xi

π(E3(i)
1 ) = yi

π(E1(i)
2 ) = xi∂yi

+ ∂zi
(ℓ2

i − ℓ3
i − zi∂zi

)

π(E2(i)
2 ) = ℓ1

i + 1 + x∂xi
− zi∂zi

π(E3(i)
2 ) = xi (A.7)

π(E1(i)
3 ) = ∂y(−xi∂xi

− yi∂yi
− zi∂zi

− 1 + ℓ1
i − ℓ3

i )

− ∂xi
∂zi
(zi∂zi

+ u2 − u3)

π(E2(i)
3 ) = −zi∂yi

+ ∂xi
(−xi∂xi

− yi∂yi
+ zi∂zi

+ ℓ1
i − ℓ2

i )

+ zi∂zi
+ ℓ1

i − ℓ2
i

π(E3(i)
3 ) = ℓ2

i + xi∂xi
− zi∂zi

.

where ℓ1
i , ℓ

2
i , ℓ

3
i are the three weights per site.

Similarly to realise gl3[ε)]/ετ , we have the set of Yi given by {E2(i)
1,[r]

,E
3(i)
1[r],E

3(i)
2[r]}

τi−1
r=0 ,

so we expect 3τi variables to realise this algebra, or 3∑N
i=1 τi = 3D variables

across all the sites.

π(E1(i)
1[r]) =

τi−r−1
∑
s=0
−∂xi,[s]

xi,[s+r] − ∂zi,[s]
zi,[s+r] + σ1

i,r

π(E2(i)
1[r]) = −xi,[r] −

τi−r−1
∑
s=0

∂yi,[s]
zi,[r+s]

π(E3(i)
1[r]) = −zi,[r]

π(E1(i)
2[r]) =

τi−r−1
∑
s=0

∂zi,[s]yi,[s+r] + (σ2
i,r+s − σ1

i,r+s)∂zi,[s]

+
τi−1
∑

s,t=0
r+s+t<τi

∂xi,[s]
∂xi,[t]

xi,[r+s+t]

π(E2(i)
2[r]) = σ

2
i,[r] +

τi−r−1
∑
s=0

∂xi,[s]
xi,[s+r] − ∂yi,[s]

yi,[s+r] (A.8)

π(E3(i)
2[r]) = −yi,[r]
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π(E1(i)
3[r]) =∑

s=0
(σ3

i,r+s − σ1
i,r+s)∂zi,[s]

+ ∑
s,t=0

r+s+t<τi

∂zi,[s]
∂zi,[t]

zi,[r+s+t] + ∂xi,[s]
∂zi,[t]

xi,[r+s+t] + ∂yi,[s]
∂zi,[t]

yi,[r+s+t]

+ (σ2
i,r+s − σ1

i,r+s)∂xi,[s]
∂yi,[t]

+ ∑
s,t,q=0

q+r+s+t<τi

∂xi,[s]
∂xi,[t]

∂yi,[q]
xi,[q+r+s+t]

π(E2(i)
3[r]) =∑

s=0
∂zi,[s]

yi,[r+s] + (σ3
i,[r+s] − σ2

i,[r+s])∂yi,[s]

+ ∑
s,t=0

∂yi,[s]
∂yi,[ts]

yi,[r+s+t] + ∂xi,[s]
∂yi,[y]

xi,[r+s+t] + ∂yi,[s]
∂zi,[t]

zi,[r+s+t]

π(E3(i)
3[r]) = σ

3
i,[r] +

τi−r−1
∑
s=0

∂yi,[s]
yi,[r+s] + ∂zi,[s]

zi,[r+s].

Here the weights are denoted by σk
i,[r]

, where k = 1, . . . ,3, r denotes the mode
and i the site. Note that if we set the Takiff degree to zero, we do again recover
(A.7) exactly after reordering.

A.3 Realisation of the Double Pole at Infinity

When including a double pole at infinity in the model, we have an additional
commutative copy of g to realise. Each basis element is realised by a complex
number and no new variables, as they all commute. For sl2 and sl2[εi]/ετi

i we
have

ϕ(e∞) = 0, ϕ(f∞) = 1, ϕ(h∞) = 2λ (A.9)

for λ ∈ C. It is important that ϕ(f (∞)) is non-zero in particular to ensure that
we can treat our separated variables equivalently. We can write this compactly
in the following matrix

ϕ(Ea(∞)
b )2a,b=1 =

⎛
⎝
λ 0
1 −λ

⎞
⎠
. (A.10)

And similarly for gl3 and gl3[ε]/ετ we summarise this as in [68] by

ϕ(Ea(∞)
b )3a,b=1 =

⎛
⎜⎜⎜
⎝

λ 0 0
1 λ 0
0 1 λ

⎞
⎟⎟⎟
⎠
, (A.11)

where λ ∈ C. The non-zero constant term for E3(∞)
2 is particularly important

here when it comes to sensibly inverting the Lax matrix element L2
3(z) in the

definition of our separating function A(z) in Chapter 3.
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