
High Performance Real-Time
Scheduling Framework for
Multiprocessor Systems

Nan Chen

PhD

University of York

Computer Science

October 2023

Abstract

Embedded systems, performing specific functions in modern devices, have be-

come pervasive in today’s technology landscape. As many of these systems are

real-time systems, they necessitate operations with stringent time constraints.

This is especially evident in sectors like automotive and aerospace. This the-

sis introduces a High Performance Real-time Scheduling (HPRTS) framework,

which is designed to navigate the multifaceted challenges faced by multiprocessor

real-time systems.

To begin with, the research attempts to bridge the gap between system reli-

ability and resource sharing in Mixed-Criticality Systems (MCS). In addressing

this, a novel fault-tolerance solution is presented. Its main goal is to enhance

fault management and reduce blocking time during fault tolerance. Following

this, the thesis delves into task allocation in systems with shared resources. In

this context, we introduce a distinct Resource Contention Model (RCM). Using

this model as a foundation, our allocation strategy is formulated with the aim to

reduce resource contention. Moreover, in light of the escalating system complex-

ity where tasks are represented using Directed Acyclic Graph (DAG) models, the

research unveils a new Response Time Analysis (RTA) for multi-DAG systems.

This particular analysis has been tailored to provide a safe and more refined

bound.

Reflecting on the contributions made, the achievements of the thesis highlight

the potency of the HPRTS framework in steering real-time embedded systems

toward high performance.

1

Contents

Abstract 1

List of Tables 5

List of Figures 7

Acknowledgment 8

Declaration 9

1 Introduction 10

1.1 Motivation . 11

1.2 Thesis Aim . 13

1.3 Thesis Hypothesis . 15

1.4 Success Criteria and Contributions 16

1.5 Thesis Outline . 17

2 Review of Existing Literature 18

2.1 General Definitions of Real-Time Systems 19

2.1.1 Real-Time Task and System Models 19

2.1.2 Task Scheduling Mechanisms 23

2.1.3 Schedulability Analysis 27

2.1.4 Summary . 30

2.2 Resource Sharing in Real-Time Systems 30

2.2.1 Shared Resources . 31

2.2.2 Lock-Based Mechanisms 32

2.2.3 Resource Sharing Protocols 36

2

2.2.4 RTA for Shared Resources 41

2.2.5 Summary . 51

2.3 Real-Time Mixed Criticality Systems 51

2.3.1 Defintions of MCS . 52

2.3.2 Conventional MCS Model 53

2.3.3 Fault Tolerance Approaches 55

2.3.4 Fault-Tolerance and Shared Resources in MCS 58

2.3.5 Summary . 61

2.4 Task Allocation Methods . 61

2.4.1 Evolution of Task Allocation Methods 62

2.4.2 Resource-Aware Task Allocation Methods 63

2.4.3 Summary . 68

2.5 DAG Tasks in Real-Time Systems 69

2.5.1 Generic DAG Task Model 69

2.5.2 DAG Task Scheduling . 72

2.5.3 RTA for DAG Tasks . 78

2.5.4 Summary . 86

2.6 Summary of Existing Literature 87

3 Reliable Resource Sharing in Mixed-Criticality Systems 89

3.1 A Fault-Tolerant Solution for MCS with Shared Resources 90

3.1.1 The Proposed System Model 91

3.1.2 Fault-Tolerance of Normal Sections 92

3.1.3 Fault-Tolerance of Critical Sections by MSRP-FT 94

3.2 Schedulability Analysis . 100

3.2.1 Analysis of Systems with A Stable Mode 100

3.2.2 Analysis of Systems under A Mode Switch 108

3.3 Evaluation . 109

3

3.4 Summary . 116

4 Contention-Aware Task Allocation 117

4.1 Resource Contention Model . 118

4.2 Contention-Aware Task Allocation 121

4.2.1 Task Grouping Based on Resource Contention 122

4.2.2 Allocation of Task Groups on Processors 124

4.3 Evaluation . 127

4.3.1 Experimental Setup . 127

4.3.2 Performance Evaluation for Homogeneous Architecture . . 129

4.3.3 Performance Evaluation for Heterogeneous Architecture . . 132

4.4 Summary . 134

5 Precise Response Time Analysis for Multiple DAG Tasks 136

5.1 Response Time Analysis for DAG Tasks 137

5.1.1 RTA for Single-DAG Systems 138

5.1.2 RTA for Multi-DAG Systems 145

5.2 Evaluation . 146

5.2.1 Evaluation for Single-DAG Systems 148

5.2.2 Evaluation for Multi-DAG Systems 152

5.3 Summary . 154

6 Conclusion 156

6.1 Contributions . 157

6.2 Future Research . 160

6.3 Concluding Remarks . 165

List of Abbreviations 166

4

List of Tables

1 Table of Notations for Real-Time Tasks and Models 22

2 Notations of Shared Resources . 33

3 Table of Notations for Original MSRP 44

4 Table of Notations for Advanced MSRP 49

5 Table of Notations for Advanced MSRP (Bi) 51

6 Notations for MCS . 56

7 List of Notations for DAG Task 73

8 Notations for Bounding the Resource Accessing Time 104

9 Table of Notations for RCM . 121

10 Table of Notations for Task Allocation Algorithm 126

11 Computation cost (in ms) with A = 15, ck = [1us, 25us]. 131

12 Table of Notations for Single DAG Anlaysis 138

13 The Comparison of Makespan with He2021. 150

14 The Comparison of Makespan with Serrano2016. 151

5

List of Figures

1 The execution chart for priority inversion 35

2 The execution chart for tasks under PCPs 38

3 The back-to-back hit . 46

4 Resource contention analysis for one shared resource 48

5 The AMC model . 54

6 The four-mode model [1] . 59

7 An example of multiple DAG tasks. 70

8 An example of a DAG task τi . 72

9 An example of timing anomaly 77

10 Three DAG tasks with different priorities. 81

11 An example of a DAG. 85

12 The simulation graph of the DAG in Figure 11. 86

13 The proposed system model. 91

14 Fault-tolerance in normal sections 93

15 Fault tolerance in critical sections 95

16 Fault-tolerance in a critical section 96

17 A comparison between two fault-tolerance approaches under the

same checkpoints setting. 97

18 Worst-case spin delay . 103

19 LO mode . 111

20 HI mode . 113

21 Mode switch . 114

22 Schedulability with m = 6, z = 3,A = 3, cx ∈ [51, 100] 115

23 Homogeneous schedulability figures. 130

24 Heterogeneous schedulability figures. 133

6

25 An example of the interference-free execution. 142

26 An example of a DAG task. 143

27 The makespan of a single DAG with varied m, Parallelism = 8

and Length = 7. 149

28 The makespan of a single DAG with varied degree of parallelism,

m = 6 and Length = 7. 150

29 The makespan of a single DAG with varied length, m = 6, and

Parallelism = 12. 150

30 The system schedulability for multi-DAGs under a varied m, Par-

allelism = 6, and Length = 6. 153

31 The system schedulability for multi-DAGs under varied
∑

U
m

, m =

4, Parallelism = 6, and Length = 6. 153

7

Acknowledgment

I extend my heartfelt gratitude to the University of York for seven transformative

years, transitioning from undergraduate to doctoral studies.

My deepest appreciation goes to my supervisors: Prof. Alan Burns, Prof.

Wanli Chang, and Dr. Siyuan Ji. Their unwavering support and expertise have

been instrumental in my academic journey.

I am profoundly thankful to Dr. Zhishan Guo for his role as my external

examiner. His insights and thorough examination have significantly contributed

to the depth and quality of this research.

I am also grateful to the Real-Time Distributed Systems group, including Ian

Gray, Iain Bate, Shuai Zhao, Xiaotian Dai, Jie Zou, Haitong Wang, and others.

Their collaboration and feedback have been invaluable. Special mention to Shuai

Zhao for our joint achievements and to Ian Gray for his insightful thesis review.

To my parents, your unwavering support and sacrifices have been the foun-

dation of my academic success. I also thank my friends: Xinyi Hu, Zhiheng Hu,

and Qianyi Xu, for their constant emotional support.

In closing, my sincere thanks to everyone who contributed to this research.

Your collective efforts have made this thesis possible.

8

Declaration

I declare that the work presented in this thesis is entirely my own creation.

While some portions of the content have been featured in published articles,

submissions, and other formal documents, they are explicitly detailed as follows:

• W. Chang, S. Zhao, S. Burton, T. Chen, N. Chen, N. Audsley. Hardware/-

Software Co-Synthesis and Co-Optimization for Autonomous Systems. Design

Automation Conference (DAC). 2021.

• N. Chen, S. Zhao, I. Gray, A. Burns, S. Ji, W. Chang. MSRP-FT: Reliable

Resource Sharing on Multiprocessor Mixed-Criticality Systems. Real-Time and

Embedded Technology and Applications Symposium (RTAS). 2022

• N. Chen, S. Zhao, I. Gray, A. Burns, S. Ji, W. Chang. Precise Response Time

Analysis for Multiple DAG Tasks with Intra-task Priority Assignment. Real-

Time and Embedded Technology and Applications Symposium (RTAS). 2023.

• W. Chang, N. Chen, S. Zhao, X. Dai. Evolvement of Scheduling Theories for

Autonomous Vehicles. Book Chapter. Springer. 2023.

• G. Xie, Y. Zhang, N. Chen, W. Chang. A High-Flexibility CAN-TSN Gate-

way with a Low-Congestion TSN-to-CAN Scheduler.Transactions on Computer-

Aided Design of Integrated Circuits and Systems (TCAD). 2023.

• S. Zhao, N. Chen, Y. Fang, Z. Li, W. Chang. A Universal Method for Task Allo-

cation on FP-FPS Multiprocessor Systems with Spin Locks. Design Automation

Conference (DAC). 2023.

This work has not been previously submitted for an award at this or any

other university. All sources have been duly acknowledged as references.

9

Chapter 1

Introduction

Embedded systems are computer systems integrated into other devices or prod-

ucts to perform specific functions. According to [90], embedded systems can be

described as a combination of hardware and software components that work to-

gether to control the device or product it is integrated with. The hardware com-

ponent includes a microprocessor or microcontroller and various peripheral de-

vices, such as sensors, actuators, and memory. The software component includes

an operating system and applications, which control the hardware and provide

the necessary functionality for the system to perform its designated task. As the

field of embedded systems continues to evolve, new developments in technology

are driving innovation in this area. For example, the increasing use of wireless

communication technologies, such as Wi-Fi and Bluetooth, and the growth of the

Internet of Things (IoT) are enabling the development of new types of embedded

systems that can interact with other devices and systems [85].

Many embedded systems are designed to operate in real-time environments.

Real-time systems are characterized by their ability to respond to inputs and

events within strict time constraints, making them ideal for use in critical appli-

cations where timely and accurate processing is required [30]. The integration

of embedded systems with real-time capabilities is critical in industries, such as

automotive, aerospace, and telecommunications [46]. For example, in the au-

tomotive industry, embedded systems are used in real-time to control various

systems within the vehicle, such as engine management and safety systems, to

ensure reliable and efficient operation [32].

In a real-time system, tasks that fail to complete within the allotted time

10

are referred to as deadline miss. According to the cost of the outcome, real-

time systems can be broadly categorized as hard or soft. Hard real-time systems

have zero tolerance for deadline miss and the occurrence of one will result in the

complete failure of the system and have catastrophic consequences. Conversely,

deadline miss in soft real-time systems generally do not result in severe outcomes,

but persistent missed deadlines will affect the Quality of Service (QoS) of the

system. Taking the example of an embedded system in an automobile, a deadline

miss in the multimedia system will only result in a subpar customer experience.

However, if the Anti-lock Braking System (ABS), which prevents the vehicle from

losing control due to locked brakes, experiences a deadline miss, the consequences

can be devastating, potentially leading to loss of life.

1.1 Motivation

Driven by applications such as autonomous vehicles, spacecraft, robotics, and

industrial automation, real-time systems are required to implement ever more

complex functionalities with high performance while maintaining conventional

timing predictability, reliability, and cost-effectiveness. These systems often con-

tain a large number of shared resources, including elements like memory sections,

data structures, Input/Output (I/O) devices, storage media, network sockets,

and hardware components, all of which require coordinated mechanisms such as

locks and semaphores [50] to ensure mutually exclusive access. This coordina-

tion is crucial for maintaining data integrity and system stability while preventing

conflicts and ensuring efficient, reliable operations. However, the need for mutu-

ally exclusive access to shared resources can lead to blocking due to contention.

In this context, the conventional requirements of timing predictability and re-

liability still need to be satisfied. That is, the deadlines of tasks must be met

while failures during task executions must be resolved which is particularly hard.

11

Several multiprocessor resource-sharing protocols have been proposed to bound

and minimize blocking time, including Multiprocessor Stack Resource Protocol

(MSRP) [41] and Multiprocessor resource sharing Protocol (MrsP) [22]. How-

ever, reliability has not been accounted for i.e., handling task faults, which is

imperative in mission-critical scenarios. Existing fault-tolerance methods are

based on redundancy, and they may be directly applied to shared resources by

scheduling repeated task executions and resource accesses a sufficient number of

times to get the correct output. However, this leads to severe resource contention

and undermines system schedulability.

To address the issue of resource contention across processors, there has been

significant focus on resource-aware task allocation in fully-partitioned multipro-

cessor systems. There are many resource-aware task allocation methods avail-

able, as cited in [48,49,55,62,97]. These methods cater to various scheduling tech-

niques and resource-sharing protocols, such as Fixed-Priority Scheduling (FPS)

and the MSRP [42]. Unlike conventional allocation methods such as Worst-Fit

(WF) and Best-Fit (BF), these methods focus on discovering the resource-access

relationships between tasks and reduces contention by localizing the shared re-

sources. They can be generally categorized into two major approaches, which

execute critical sections (i) on the host processor of tasks or (ii) on dedicated

processors. The first approach aims to allocate tasks with the same shared re-

sources to one processor to reduce contention. However, for complex systems

with intensive resource sharing, the methods in this approach become ineffec-

tive due to the utilization of coarse-grained analysis of contention levels between

tasks [49,62,97]. The second approach circumvents the aforementioned issues by

designating a set of processors specifically for resource access. Yet, this approach

relies on a search-based method, aided by schedulability tests, which results in

high computation times. Additionally, it introduces extra migration overhead

12

and is less advantageous with frequent resource accesses [109].

Furthermore, as system complexity increases, tasks may need to adhere to

specific execution orders due to functional dependencies between them. These de-

pendencies are represented using Directed Acyclic Graph (DAG) models. For op-

timal performance, multiple DAGs must be scheduled, and their Worst-Case Re-

sponse Times (WCRT) must be bounded. This schedulability analysis during the

design phase is crucial for estimating the necessary hardware resources. Research

into the Response Time Analysis (RTA) of DAGs encompasses a broad spectrum

of scheduling schemes, including global [38,74], fully-partitioned [37], and feder-

ated [9]. When focusing on a typical setup where multiple DAGs operate on a

homogeneous multi-core system using a global scheme, there have been significant

research efforts aimed at establishing bounds for worst-case execution scenarios

through RTA. Broadly, the existing analysis techniques fall into two categories:

the generic bound [36, 74, 86] and the priority-explicit bound [53, 54, 107, 108].

Generic bounds can be overly conservative without knowledge of the intra-task

(node-level) priority. In contrast, the priority-explicit bound, which is based on

intra-task priority knowledge, reduces unnecessary interference and blocking cal-

culations. However, it retains some pessimism due to the overlooked parallelism

between nodes. Given the pessimistic nature of current DAG analysis methods,

system engineers often resort to substantial resource over-provisioning. This ten-

dency has become a significant hurdle for implementing the RTA of DAG tasks

in real-world systems.

1.2 Thesis Aim

The aforementioned limitations hinder the advancement of real-time systems

towards high performance. In this thesis, we introduce a High Performance

Real-Time Scheduling (HPRTS) framework. This framework tackles intricate

13

challenges in multiprocessor architectures with FPS scheduling, including reli-

able resource sharing, contention-aware allocation, and RTA for multi-DAG sys-

tems—all crucial for propelling real-time systems to higher performance levels.

The initial step of the proposed HPRTS framework seeks to bridge the gap

between reliability and resource sharing. We focus on Mixed-Criticality Systems

(MCS), which are prevalent in practical applications [59, 101]. Their intricate

execution model makes the problem more challenging to address. We introduce

the first fault-tolerant solution for multiprocessor MCS with shared resources.

This proposed solution should be suitable for MCS with any number of criticality

levels. New fault-tolerant techniques must be proposed to efficiently handle faults

in the presence of shared resources, with the aim of reducing blocking time during

fault tolerance. Concurrently, a schedulability test must be introduced to ensure

the timing predictability of the proposed solution.

In the second step of the HPRTS framework of the thesis, we address the

task allocation problem in the presence of shared resources. To mitigate re-

source contention in multiprocessor systems, a comprehensive contention-aware

model is essential. This model should accurately capture task resource-access

behaviors, guiding allocation to minimize contention effectively. It must be effi-

cient, avoiding the need for repeated schedulability tests, ensuring both reduced

computational costs and adaptability for run-time applications. The allocation

strategy will prevent tasks from migrating, thus avoiding additional migration

overheads.

In the concluding step of the proposed HPRTS, we embark on an explo-

ration of a sophisticated task model. The objective is to curtail resource over-

provisioning during the design phase of systems employing DAG tasks, recog-

nizing that such over-provisioning can hinder the pursuit of high performance in

real-time systems. Our attention is centered on systems equipped with knowl-

14

edge at the node level, a feature that is directly applicable in practical scenarios.

Following this, we present an analytical bound through RTA tailored to en-

capsulate the worst-case execution scenarios, thereby safeguarding the system’s

timing predictability. The proposed analytical bound is crafted to explore the

parallelism inherent in the execution of DAG tasks. It aims to minimize un-

necessary interference and blocking delay computations, leading to a reduction

in pessimistic estimations and effectively addressing the challenges of resource

over-provisioning.

1.3 Thesis Hypothesis

The thesis hypothesis posits that integrating reliable resource sharing, contention-

aware task allocation, and RTA for multi-DAG systems will significantly enhance

real-time embedded system performance. This hypothesis is grounded in the fol-

lowing assumptions:

Reliable resource sharing: While resource contention complicates the

adherence to timing constraints in real-time embedded systems, current fault-

tolerance methods further intensify this contention, thereby diminishing system

schedulability. Our proposed fault-tolerant solution aims to shorten the fault-

tolerance process, thereby improving system schedulability over existing methods

by at least 10%.

Contention-aware task allocation: Effective task allocation is pivotal for

systems with intensive resource sharing. Our proposed algorithm, cognizant of

task resource usage, is designed to diminish resource contention and outperform

existing allocation methods in enhancing system performance by alleviating the

computation speed and schedulability by at least 10%.

RTA for multi-DAG systems: Applications in modern real-time embed-

ded systems are often modeled as DAG tasks. A precise RTA bound can mitigate

15

hardware resource over-provisioning challenges. Our proposed RTA for multi-

DAG systems is designed to offer a safe and tight bound, scheduling at least 10%

more systems than current bounds.

In summary, the hypothesis suggests that by synergizing these three com-

ponents, the overall efficiency and efficacy of real-time embedded systems will

see marked improvement, leading to superior performance. Experimental and

simulation methods will be employed to validate this hypothesis.

1.4 Success Criteria and Contributions

To evaluate the effectiveness of the proposed framework in this thesis, a set of

Success Criterias (SC) have been established. To validate the hypothesis stated

in Section 1.3, the following must be developed:

SC-1: A system execution model compatible with an arbitrary number of

criticality levels is constructed in which faults occurring in normal sections (i.e.,

without shared resources accessed) and critical sections (i.e., with shared re-

sources accessed) are treated separately.

SC-2: A novel protocol is proposed to address faults during accessing shared

resources, aiming to minimize blocking time following a schedulability analysis

to provide the timing guarantees.

SC-3: A Resource Contention Model (RCM) that approximates the degree

of resource contention between tasks in the context of FIFO-spin locks.

SC-4: A contention-ware task allocation algorithm based on the RCM, where

shared resources are accessed by tasks from their host processor.

SC-5: An RTA for multi-DAG systems, utilizing novel analysis techniques,

effectively harnesses node-level parallelism. It safely eliminates redundant calcu-

lations and workloads that cannot contribute to delays, hence ensures a tighter

bound.

16

1.5 Thesis Outline

The thesis is structured as follows:

Chapter 2: This chapter offers an in-depth overview of real-time systems,

covering task classifications, scheduling methodologies, and the intricacies of mul-

tiprocessor environments. It places emphasis on synchronization in resource shar-

ing, the role of MCS in scheduling, and the evolution of task allocation. The

importance of DAG tasks is underscored, and current research limitations are

addressed, paving the way for deeper exploration in the subsequent chapters.

Chapter 3: Here, the first fault-tolerant solution tailored for multiprocessor

MCS with shared resources is introduced. A system execution model compatible

with any number of criticality levels is presented, along with innovative resource-

sharing protocols that adeptly manage faults while ensuring real-time guarantees.

The content satisfies Success Criteria 1 and 2 (SC-1 and SC-2) and addresses the

Limitations 1, 2, and 3 highlighted in Chapter 2.

Chapter 4: This chapter presents the proposed RCM, which estimates the

degree of competition for resources among tasks. Allocation strategies based on

the RCM are also discussed, demonstrating the thesis’s alignment with SC-3 and

SC-4, address the Limitations 4, 5 and 6 that pointed out in Chapter 2.

Chapter 5: An RTA with novel techniques for DAG tasks is showcased.

These techniques harness node-level parallelism and exclude non-contributory

workloads when determining intra-task and inter-task delays. The content val-

idates SC-5 and resolves the Limitations 7 and 8 that pointed out in Chapter

2.

Chapter 6: The thesis concludes by summarizing its main points, revisiting

its contributions and central hypothesis, and suggesting potential avenues for

future research.

17

Chapter 2

Review of Existing Literature

This literature review explores the foundational concepts of real-time systems,

covering fundamental definitions, task models, and scheduling mechanisms, with

an emphasis on Response Time Analysis (RTA).

We then discuss shared resources in real-time systems, introducing basic re-

source models and lock-based mechanisms essential for data integrity. Resource-

sharing protocols, which offer guidelines for task interactions, are also explored,

along with the evolution of RTA in this context.

Our focus shifts to Mixed-Criticality Systems (MCS), detailing task defini-

tions within MCS and the evolution of RTA. We also touch upon conventional

fault-tolerance approaches in embedded systems, leading to a holistic exami-

nation of fault-tolerance, resource-sharing, and MCS. The limitations of current

research are addressed which set the stage for Chapter 3. The review further dis-

sects task allocation algorithms, both traditional and those considering shared

resources. A gap in resource-aware task allocation is highlighted, addressed in

Chapter 4. We also explore the task model represented as Directed Acyclic

Graphs (DAG), clarifying its core concepts and current research directions. The

RTA of DAG tasks, especially in relation to RTA with intra-task priority assign-

ment, is detailed, leading to our contributions in Chapter 5.

The review’s structure is as follows: Section 2.1 offers an overview of real-

time systems research. Section 2.2 focuses on shared resources and protocols.

Section 2.3 covers MCS and fault-tolerance. Section 2.4 discusses task allocation

challenges, and Section 2.5 provides an in-depth analysis of DAG tasks.

18

2.1 General Definitions of Real-Time Systems

In this section, we explore the core concepts of real-time systems, focusing on

their definition, task models, and scheduling schemes. We will examine the

intricacies of task scheduling in multiprocessor environments and conclude with

an analysis of schedulability to ensure system reliability and efficiency. This

overview will provide a foundational understanding of the critical components

and operations in real-time systems.

2.1.1 Real-Time Task and System Models

Real-time systems, chiefly distinguished by their stringent timing requirements,

play an integral role in numerous critical applications, ranging from autonomous

vehicles to avionics systems [23]. These systems are not just defined by their

processing speed but more importantly, by their determinism in fulfilling time-

based commitments [63].

Real-Time Task Models

A real-time system typically contains a set of tasks Γ, in which the ith task

is denoted as τi. A task τi often contains a series of recurrent job instances

{j1, j2, . . . , jn}. Each task τi can generally be defined by the following tuples:

{Ti, Di, P ri(τi), P (τi), Cτi , Uτi}.

• Ti represents the period of a task in real-time systems, referring to the time

interval between consecutive instances of that task.

• Di denotes the deadline by which each task must be completed.

• Pri(τi) indicates the priority of τi which is the ranking assigned to a task

in an operating system, determining its execution order relative to other

tasks. In this thesis, a larger number indicates a higher priority.

19

• P (τi) signifies the core on which the task is allocated.

• Cτi represents the pure Worst-Case Execution Time (WCET) of a task.

This is the time the task computes on a core without considering interfer-

ences, blocking, or any other delays.

• Uτi is the utilization of the task τi, defined as the ratio of its computation

time Cτi to its period Ti. Mathematically, Uτi =
Cτi

Ti
.

Based on their release patterns or periods tasks can be categorized into peri-

odic, aperiodic, and sporadic tasks [23].

Periodic tasks, as the name implies, recur at constant time intervals. Ev-

ery instance of such a task, or a job, carries a deadline that it must meet. For

instance, the control loop in an autopilot system is a periodic task, which con-

sistently reads sensor data and adjusts controls based on the readings.

In contrast, aperiodic tasks do not follow a fixed pattern and can occur spon-

taneously. A user command in a computer system, such as a mouse click or a

keyboard press, serves as an example of an aperiodic task.

Finally, sporadic tasks, while resembling aperiodic tasks in their irregular oc-

currence, differ in that they enforce a minimum separation requirement between

consecutive jobs and often come with hard deadlines. A safety monitor in a

factory provides an apt example, requiring checks on machinery status following

unpredictable events, with a requisite minimum time lapse between checks to

avoid system overloading.

In addition, real-time tasks can be further classified as implicit-deadline,

constrained-deadline, or arbitrary-deadline tasks, based on the relationship be-

tween a task’s period and its deadline [68].

Implicit-deadline tasks have deadlines that coincide with the period. In math-

ematical terms, for each task i, this relationship can be expressed as: Di = Ti.

20

These tasks are frequently encountered in periodic systems, such as control loops

in embedded systems.

Constrained-deadline tasks have deadlines that are either equal to or less

than the period. Mathematically, for each task i, this relationship is expressed

as: Di ≤ Ti.

Conversely, arbitrary-deadline tasks may have deadlines that are shorter,

equal to, or longer than the period. For these tasks, the mathematical rela-

tionship for each task with index i can be expressed as: Di ≤ Ti or Di > Ti,

and are typically associated with complex, event-driven systems such as modern

aviation control systems.

Real-Time System Models

As described by [68], real-time systems are further classified into hard and soft

real-time systems based on the criticality of adhering to these deadlines. Hard

real-time systems demand strict adherence to task deadlines, with any deviation

potentially leading to catastrophic consequences. An exemplary instance is an air

traffic control system, which must process radar data and relay updated aircraft

positions to air traffic controllers within stringent time frames. Any lapse could

result in dire events, such as mid-air collisions.

On the other hand, soft real-time systems offer a degree of leniency, where

occasional missed deadlines might lead to a decrease in performance but remain

within acceptable bounds. The in-flight entertainment system in aircraft serves

as an example; while prompt responses enhance the passenger experience, minor

delays will not have grave repercussions.

In the computing domain, the architecture of the processor plays a pivotal role

in determining system performance and efficiency. Two primary architectures

have emerged: homogeneous and heterogeneous [43].

21

Table 1: Table of Notations for Real-Time Tasks and Models

Notation Description

Γ Set of tasks in a real-time system

τi i-th task in the set Γ

Ti Period of task τi

Di Deadline of task τi

Pri(τi) Priority of task τi

P (τi) Core on which task τi is allocated

Cτi WCET of task τi

Uτi Utilization of task τi

Λ Set of processors in a multiprocessor architecture

m Number of cores in the system

Pa a-th processor in the set Λ

Γ(Pa) Set of tasks allocated to core Pa

Homogeneous Architecture: In this setup, all cores are functionally and

performance-wise identical. They are capable of executing the same set of in-

structions, facilitating a streamlined programming and task scheduling environ-

ment. Such architectures are commonly found in traditional multi-core proces-

sors.

Heterogeneous Architecture: This design integrates diverse core types

within a single system. For instance, a system might incorporate high-performance

cores for demanding tasks alongside energy-efficient cores for less intensive opera-

tions. This configuration provides versatility, balancing performance and energy

consumption.

Tasks are assumed to be scheduled on a multiprocessor architecture repre-

sented by a set of processors, Λ, and the number of cores in the system is denoted

22

as m (the terms “core” and “processor” are used interchangeably in this thesis).

The ath processor in Λ is denoted as Pa. Γ(Pa) returns the set of tasks allo-

cated to core Pa. While most parts of this thesis centers on the homogeneous

architecture, we also transition our evaluation to a basic heterogeneous setup in

Chapter 4, where identical cores operate at varying frequencies during runtime.

Necessary notations for task and system models are summarized in Table 1.

2.1.2 Task Scheduling Mechanisms

Task scheduling is fundamental in real-time systems, dictating the order and

timing of task executions. It guarantees timely and efficient task execution,

ensuring the system adheres to its stringent time constraints.

Preemptive vs. Non-preemptive Scheduling

Task scheduling is central to a system’s efficiency and responsiveness. Two key

methodologies in this domain are preemptive and non-preemptive scheduling

[30].

• Preemptive Scheduling: In this type of scheduling, the currently execut-

ing task can be interrupted (preempted) by a higher-priority task. Once the

higher-priority task completes its execution or is blocked, the preempted

task can resume its execution. This approach ensures that high-priority

tasks are executed as soon as they become available, making it suitable

for real-time systems where timely task execution is crucial. However it

inevitably cause more frequent context switches.

• Non-preemptive Scheduling: Once a task starts its execution, it runs

to completion without being interrupted. Even if a higher-priority task be-

comes available, it has to wait until the currently executing task completes.

This approach can lead to longer waiting times for high-priority tasks but

23

ensures that once a task starts, it will not be interrupted, which can be

beneficial in scenarios where task interruptions can lead to complications

or inefficiencies.

Fixed-Priority and Dynamic Scheduling

Task scheduling can further be categorized into Fixed-Priority Scheduling (FPS)

and dynamic scheduling. FPS, characterized by its fixed task execution order,

brings predictability to the system. In contrast, dynamic scheduling adapts

task priorities in real-time, offering the system flexibility to respond to changing

conditions.

FPS: In this thesis, we focus on FPS, a scheduling scheme that is one of

the most commonly employed in real-time systems due to its compelling fea-

tures. Under FPS, tasks are assigned static priorities at the initial phase of

system configuration. These priorities, which remain constant throughout the

tasks’ lifecycle, dictate the order in which tasks are selected for execution by the

scheduler [68].

One of the principal advantages of FPS is the predictability it imparts to

the scheduling process [30]. This predictability is invaluable in real-time envi-

ronments, where guaranteeing the timely execution of tasks is paramount. It

simplifies the system analysis, as the behavior of tasks under a set of known con-

ditions can be assessed deterministically. This, in turn, makes both operations

and system management more straightforward and robust.

Additionally, FPS is known for its relatively lower runtime overhead. Without

the need for frequent, potentially complex recalculations of task priorities, the

system can execute tasks efficiently, which is a crucial characteristic for systems

where computational resources are at a premium [33].

Within the FPS paradigm, several specific algorithms exist for priority as-

24

signment:

• Rate-Monotonic Priority Assignment (RMPA): RMPA assigns pri-

ority to tasks based on their period, with shorter periods indicating higher

priority. This method is particularly useful in systems that handle periodic

tasks, as it prioritizes tasks that demand more frequent attention [67].

• Deadline-Monotonic Priority Assignment (DMPA): DMPA is a vari-

ation of RMPA optimized for systems where task periods and deadlines

differ. DMPA prioritizes tasks with shorter relative deadlines, superseding

the shortest period criteria [64].

• Audsley’s Optimal Priority Assignment (AOPA): AOPA is a so-

phisticated algorithm for optimal priority assignment under static-priority

scheduling. It operates iteratively, assigning the lowest priority to the fea-

sible task at that level, thereby excluding it from future consideration [4].

Dynamic Scheduling: Contrary to FPS methods, dynamic strategies de-

cide task priorities at runtime. These priorities are subject to change during

the system operation depending on various factors, such as task deadlines, task

arrival times, or remaining computation time. These strategies generally manage

aperiodic and sporadic tasks more effectively as they adapt to the evolving state

of the system.

• Earliest Deadline First (EDF): The EDF scheme is a dynamic schedul-

ing strategy where the task with the nearest deadline is given the highest

priority [23]. Specifically, EDF is proven to be optimal for uniprocessor sys-

tems, meaning that if a set of tasks with arbitrary arrival times is schedula-

ble (i.e., all tasks can meet their deadlines) on a uniprocessor system under

any scheduling algorithm, then that task set is guaranteed to be schedula-

25

ble under EDF. This optimality holds as long as the total CPU utilization

of all tasks in the system is less than or equal to 1 (100%) [68].

• Least Laxity First (LLF): Similar to EDF, LLF is a dynamic scheduling

strategy that gives priority to tasks based on their laxity or slack time,

assigning the highest priority to the task with the least remaining time

after its execution time is subtracted from its deadline. This strategy is

particularly beneficial in systems with variable execution times to prevent

tasks from missing their deadlines [61].

However, dynamic scheduling can lead to increased overhead due to frequent

task switching as priorities change with approaching deadlines. Handling these

shifting priorities can be challenging, especially in systems with numerous tasks

or variable behavior. While EDF works well for single-processor systems, its

effectiveness can differ in multi-processor systems, which may require added syn-

chronization [6].

Scheduling Paradigms in Multiprocessor Systems

Over the years, various scheduling methods have been developed to efficiently

manage task execution within real-time multiprocessor systems, each offering

unique advantages [7, 69,71].

• Fully-Partitioned Scheduling [69]: Tasks are assigned to specific pro-

cessors and remain there throughout their lifecycle. This approach is pre-

dictable and reduces overhead due to the absence of inter-processor commu-

nication for task migrations. However, it demands careful task allocation

to avoid imbalances in processor utilization.

• Semi-Partitioned Scheduling [71]: While tasks are primarily assigned

26

to individual processors, certain tasks can migrate between processors, pro-

viding better flexibility and potentially improved processor utilization.

• Global Scheduling [65]: Tasks are placed in a system-wide queue and

can be executed by any available processor. This approach offers flexibility

but may introduce overhead due to frequent task migrations.

• Global List Scheduling [76]: A specific type of global scheduling where

tasks are organized in a priority list. Processors pick tasks based on their

priority, ensuring that high-priority tasks are executed first.

• Federated Scheduling [7]: A hybrid approach that combines partition-

ing and global scheduling. Larger tasks are partitioned onto specific pro-

cessors, while smaller tasks are globally scheduled, optimizing resource uti-

lization.

The selection among these strategies depends on the specific requirements of

the system being designed, underscoring the significance of a deep understanding

of each method.

2.1.3 Schedulability Analysis

In the sphere of real-time systems, the reliable execution of tasks within their stip-

ulated deadlines is of paramount importance. To certify this essential attribute, a

robust approach known as schedulability analysis [30], typically enacted through

schedulability tests, is employed. These tests represent sophisticated analyti-

cal procedures designed to ascertain whether a particular set of tasks, under a

predetermined scheduling policy, can invariably fulfill their deadlines.

The types of schedulability tests is multi-faceted, with a principal catego-

rization based on the form of assurance they furnish [29]: necessary, sufficient,

27

and exact (or optimal) conditions. A necessary condition, if left unsatisfied, un-

equivocally confirms the non-schedulability of a task set. Conversely, even upon

meeting this condition, a task set’s schedulability cannot be confirmed, necessi-

tating further analysis. Sufficient conditions, if met, provide the assurance of a

task set’s schedulability. However, an inability to satisfy this condition does not

conclusively pronounce the task set as unschedulable. An exact or optimal condi-

tion, serving as both a necessary and sufficient determinant, delivers a definitive

verdict: a task set that satisfies this condition is categorically schedulable, while

those failing to meet this criterion are deemed non-schedulable.

The utilization test serves as a foundational test for determining the schedu-

lability of tasks in real-time systems. However, its specific criteria vary across

different scheduling algorithms. In sufficient scenarios, fixed-priority scheduling

algorithms, such as RMPA and DMPA, assign tasks a static priority that remains

unchanged over time. The derived schedulability tests for these algorithms, par-

ticularly for periodic tasks, are rooted in worst-case scenarios. Specifically, the

formula n(21/n − 1), as proposed by Liu and Layland [67], establishes an upper

bound on CPU utilization for a set of n tasks. This threshold, which is notably

less than 100%, accounts for the worst-case interference from higher-priority

tasks that can potentially delay the execution of those ranked lower. As the

task count escalates, this bound asymptotically approaches a value below 100%,

approximately 69.3%, ensuring that all tasks can meet their deadlines even in

the most adverse conditions.

Conversely, dynamic scheduling algorithms, exemplified by the EDF method,

exhibit a more fluid approach, adjusting task priorities based on specific criteria,

such as impending deadlines. The 100% utilization criterion for EDF suggests

that if tasks collectively do not demand more than the available CPU time, they

are feasibly schedulable. This is attributed to the algorithm’s strategy of always

28

prioritizing the task with the most imminent deadline. However, a caveat exists:

while a CPU utilization below 100% does not universally guarantee schedulability

due to variables like task phasing, surpassing this threshold unequivocally renders

a task set non-schedulable. In this case, utilization test is deemed as necessary

test.

More intricate scenarios, characterized by task dependencies, blocking times,

and resource sharing, necessitate the formulation of advanced schedulability

tests. Often grounded in RTA, these tests primarily are sufficient tests which

focus on computing a task’s Worst-Case Response Time (WCRT) and comparing

it to its designated deadline [13].

In systems devoid of shared resources, a series of tasks exists, each with a

distinct priority. The RTA for a task τi is exemplified. As depicted in Equation

(1), Ri denotes the WCRT of τi.

Ri = Cτi +Bi +
∑

τh∈lhp(i)

⌈
Ri

Th

⌉
Cτh (1)

More specifically, Cτi represents the WCET of τi. Without shared resources,

tasks might be blocked due to non-preemptive (NP) segments run by the underly-

ing RTOS. This halts certain tasks as the system operates within an NP segment.

Since such blocking can occur only once during the release of a real-time task, the

blocking duration can be directly bounded by the longest non-preemptive seg-

ment in the RTOS, as shown in Equation (2). Here, Bi signifies the maximum

duration of the RTOS’s NP segments. In
∑

τh∈lhp(i)

⌈
Ri

Th

⌉
Cτh , lhp(i) denotes the

set of tasks on the same processor with a priority higher than τi, and
Ri

Th
repre-

sents the number of times the highe-priority task τh can be released during the

period Ri. The overall notation indicates the total interference incurred by τi

from tasks on the same processor that have a higher priority [21].

29

Bi = max(NP1, NP2, . . . , NPn) (2)

In situations where an analytical approach is deemed impractical due to sys-

tem intricacies, simulation-based testing methods emerge as a practical alterna-

tive. These methods involve simulating the system’s function over a set duration,

often a hyperperiod, followed by identifying potential deadline breaches [16].

To sum up, schedulability tests are a cornerstone in the domain of real-

time systems. They provide essential guarantees of temporal accuracy, a trait

crucial in many applications, especially those with strict safety or performance

requirements. This field remains an active area of research, with novel methods

continually emerging to address the challenges of increasingly intricate system

models.

2.1.4 Summary

In this section, we provide an overview of real-time systems, emphasizing their

defining attributes, task models, and the mechanisms that govern their oper-

ation. Central to our discussion is the FPS method, a prevalent approach in

real-time systems due to its predictability and efficiency. We also spotlight the

RTA, a critical tool for assessing task schedulability and ensuring that tasks meet

their deadlines. Through this exploration, we aim to offer a foundational under-

standing of the key components and methodologies that underpin the reliable

functioning of real-time systems.

2.2 Resource Sharing in Real-Time Systems

In this section, we introduce the shared resources model central to our the-

sis, outlining the specific resources we focus on. We will examine lock-based

mechanisms that govern access to these resources, ensuring orderly task execu-

30

tion. Additionally, we will discuss the protocols that regulate task interactions

with shared resources, a crucial step in maintaining system integrity. Lastly,

we will undertake a schedulability analysis incorporating shared resources and

the applied protocols, aiming to assess a system’s ability to meet task deadlines

effectively. This discussion lays a robust groundwork for further explorations in

this thesis.

2.2.1 Shared Resources

Shared resources play a pivotal role in the realm of computer science and pro-

gramming, especially in real-time systems where tasks have strict timing con-

straints [110]. These resources include data structures, such as arrays, lists, and

trees, which are systematic ways of organizing and storing data. They also con-

sist of variables, essential memory storage locations that hold data values, and

specialized memory spaces like buffers or caches tailored for specific purposes.

These spaces can speed up data access or provide intermediary storage.

In real-time systems, managing concurrent access to shared resources is chal-

lenging. When multiple tasks or processes need simultaneous access to a resource,

they enter a critical section of the code. It is essential to ensure mutual exclu-

sivity within this critical section, allowing only one task to access the shared

resource at a time.

To guarantee safe and efficient concurrent access, synchronization mecha-

nisms like locks, semaphores, or critical section protocols are used. But in real-

time contexts, these mechanisms must be carefully designed to ensure tasks do

not miss their deadlines while waiting for resource access [88].

In this thesis, we explore the intricacies of shared resources in multicore real-

time systems. We posit that within the system, there exists a set of resources,

denoted as R. Every resource in this set can be accessed by all tasks, but only

31

in a mutually exclusive manner. This exclusivity is achieved by executing the

associated critical section. A shared resource with index x, represented as rx, is

defined by two notations: cx and Nx
i . Here, cx denotes the computation time

required to access the shared resource rx. In contrast, Nx
i quantifies the number

of requests from τi within a single release. The function F (·) specifies the set of

resources requested by the given tasks.

In addition, due to the presence of shared resources in the system, the total

computation time for τi (denoted as Ĉτi) must also account for the resource

computation time. This is given by

Ĉτi = Cτi +
∑

rx∈F (τi)

Nx
i · cx (3)

where Cτi denotes the pure WCET of τi when executed on a processor without

accessing shared resources. The term∑
rx∈F (τi)

Nx
i · cx (4)

represents the total time τi spends accessing shared resources. Here, F (τi) returns

the set of resources requested by τi, and Nx
i ·cx computes the total time τi spends

accessing resource rx. The utilization of a task, Uτi , is subsequently determined

by

Uτi =
Ĉτi

Ti

=
Cτi +

∑
rx∈F (τi)

Nx
i · cx

Ti

(5)

which is the total computation time divided by the task’s period. For clarity,

the notations of shared resources are provided in Table 2 below.

2.2.2 Lock-Based Mechanisms

In the field of real-time systems, ensuring data integrity and the predictability

of task behaviors is paramount. One prevalent method for safeguarding data

and mitigating race conditions is the lock-based synchronization technique. This

32

Table 2: Notations of Shared Resources

Symbol Meaning

R Set of shared resources in the system

rx A shared resource with index x

cx Computation time to access the resource rx

Nx
i Number of requests from τi to resource rx within a single release

F (·) Function specifying the set of resources requested by a task

Ĉi Total computation time for τi considering shared resources

approach works harmoniously alongside non-blocking strategies to create a co-

hesive synchronization system. In the lock-based paradigm, specific locks guard

critical sections. Tasks can only enter these sections upon acquiring the relevant

lock. When one task holds a lock, others must patiently await its release.

This strategy encompasses several locking primitives, including mutex locks,

semaphores, and monitors [25]. Based on a task’s behavior during its waiting

period, these primitives can be classified as [104]:

1. Suspension-based Locks: Under this mechanism, tasks wanting an en-

gaged lock will temporarily step back, yielding the processor. They tran-

sition to an idle state and join a priority queue. Upon the lock’s release,

the task at the queue’s forefront, usually with the highest priority, resumes

and claims the lock.

2. Spin Locks: Contrary to the suspension-based locks, tasks with spin locks

stay active, even if the required lock is unavailable. They remain in a busy-

wait state, repeatedly checking the lock’s status. Though often governed

by a First-in-First-out (FIFO) methodology, a priority-based system can

also serve them. This type of locking is particularly favored in kernel-level

33

operations.

However, the lock-based approach is not devoid of challenges [77]. Deadlocks

present a significant concern. In such scenarios, tasks, intertwined in a nested

quest for resources, reach a standstill due to mutual dependencies. Additionally,

there’s the menace of livelocks, where tasks continuously defer lock acquisition to

each other, achieving no progress. Real-time systems counteract these pitfalls by

introducing additional rules such as not allowing a task to hold resources while

waiting for others to avoid deadlocks and set strict request order to avoid livelocks.

It is important to note that this thesis does not consider nested resource sharing.

In other words, a task can interact with only one resource at any given time.

However, this limitation can be circumvented using group locks, as discussed

in [109].

Nevertheless, the incorporation of locks, while indispensable, introduces its

own set of complexities. One prominent challenge is priority inversion, which

could significantly disrupt the predictable functioning of a real-time system.

When a high-priority task finds itself stalling due to a lower-priority task’s opera-

tions, unpredictability ensues, risking missed task deadlines. For clarity, consider

the following illustrative example:

Example 1.

τ1 : A task with high priority.

τ2 : Holding a priority lower than τ1.

r1 : A resource desired by τ2.

Based on the tasks and resource setup, Figure 1 presents an execution scenario

that demontrates what priority inversion is.

• τ2 initiates its operation at time point t = 0 and acquires r1 , then remains

non-preemptive from t = 2 to t = 4 .

34

0 1 2 3 4 5 6 7 8 9 t

Legend

Critical Section

Execution

Blocked

Preempted

Start

Request

Finish

Release

Figure 1: The execution chart for priority inversion

• During τ2’s execution with r1 , τ1 readies for execution at t = 2, and aims

to execute on the processor.

• Given that τ2 currently possesses r1, τ1, despite its higher priority, is

blocked from t = 2 to t = 4.

• This situation, wherein τ1 is hindered by τ2 due to a shared resource access,

epitomizes priority inversion.

• After τ2 releases r1 at t = 4, τ1 preempts it and executes until t = 7

• τ2 resumes its execution at t = 7 and finishes executing at t = 9 in this

example

The presented scenario highlights the behaviors of priority inversion. It repre-

sents a divergence from the expected sequence of task execution based on priority.

When a high-priority task is compelled to stand by because a low-priority task ac-

cesses a shared resource, the system’s predictable feature faces disruption. Such

a disturbance can lead to missed deadlines, especially for pivotal high-priority

tasks.

35

Completely eliminating priority inversion may appear as an aspirational tar-

get, but it is not always the primary aim. The objective is to limit the duration

and effects of these inversions. In doing so, real-time systems can ensure all tasks

to meet their deadlines.

2.2.3 Resource Sharing Protocols

The pivotal role of shared resources in fostering concurrent task interactions

highlights the imperative for dependable protocols. These protocols are crucial

not only to ensure smooth access but also to prevent race conditions, safeguard

data integrity, and maintain the system’s overall dependability. Historically,

the field of resource sharing in single-core and multicore real-time systems has

benefited from comprehensive research, leading to the development of numerous

resource sharing protocols [2, 22, 41]. For an in-depth review of these protocols

can be found in survey presented in [15].

Protocols for Uniprocessor Systems

In single-processor systems, the Priority Ceiling Protocol (PCP) is widely used

to control how tasks access shared resources. Two main adaptations of PCP are

well-documented in [81]: the Original Priority Ceiling Protocol (OPCP) and the

Immediate Priority Ceiling Protocol (IPCP).

In the OPCP, there are two distinct ceiling priorities: the resource ceiling

and the system ceiling. The resource ceiling priority is set to the priority of the

highest-priority task that may request the resource. Meanwhile, the system ceil-

ing priority reflects the highest resource ceiling priority of any resource currently

in use. With OPCP in place, a task can only acquire a lock if its priority is

higher the current system ceiling. If not, the task will be blocked until it can

meet this condition.

36

With the IPCP, each shared resource has an assigned ceiling priority, which

is determined by the highest priority of tasks that might request the resource.

Within the IPCP protocol, when a task secures a shared resource, its priority is

temporarily elevated to match the resource’s ceiling priority. This elevation in

priority ensures that, while in possession of a shared resource, the task remains

immune to preemption by other tasks that have priorities lower than the ceiling.

An execution example of PCPs is demonstrated below.

Example 2. Consider three tasks and their associated priorities:

τ1 : Priority 3 (highest)

τ2 : Priority 2

τ3 : Priority 1 (lowest)

We also have the following resources with their respective resource ceilings:

r1 : Ceiling Priority 2 (accessed by τ2 and τ3)

r2 : Ceiling Priority 3 (accessed by τ1)

Given this system setup, with assistance of Figure 2, we demonstrate an ex-

ecution scenario of tasks under OPCP:

• τ3 starts at t = 0, requests r1 at t = 2 and successfully locks the resource. The

system ceiling is then raised to 2.

• τ2 starts and requests r1 at t = 2, but blocked by τ3 as its priority 2 is not

higher than the current system ceiling.

• Subsequently, τ1 starts and requests r2 at t = 4. As its priority 3 is higher

than the current system ceiling, it preempts τ3 and lock r2 successfully.

• τ3 resumes its execution at t = 6 as τ1 releases the resource and finishes exe-

cuting, then it releases r1 and finishes executing at t = 7.

37

0 1 2 3 4 5 6 7 8 9 t

Legend

Critical Section

Execution

Blocked

Preempted

Start

Request

Finish

Release

Figure 2: The execution chart for tasks under PCPs

• In the mean time, τ2 finally secures r1 at t = 7 and finishes executing at t = 9.

With the same system setup, the task behaviors under IPCP is similar to

OPCP and can so be described by referencing Figure 2.

• τ3 starts at t = 0 and requests r1 at t = 2 and successfully lock the resource.

Its priority is immediately boosted to 2.

• τ2 starts and requests r1 at t = 2, but blocked by τ3 as its priority 2 is not

higher than the boosted priority of τ3.

• Subsequently, τ1 starts and requests r2 at t = 4. As its priority 3 is higher

than τ3’s, it preempts τ3 and locks r2 successfully with unchanged priority (its

priority is equal to the ceiling priority of r2).

38

• τ3 resumes its execution still with boosted priority at t = 6 as τ1 releases the

resource and finishes its execution. At t = 7, τ3 releases the resource, retrieves

its base priority and exists the system

• τ2 finally secures r1 at t = 7 and exists the system at t = 9.

The primary differentiation between IPCP and OPCP lies in the dynamic

elevation of priority inherent to IPCP. While protocols like OPCP inhibit tasks

based on the prevailing system ceiling, IPCP uniquely elevates the priority of the

task in question. This ensures that the task remains impervious to preemption

by tasks of intermediary priorities that do not necessitate the locked resource.

Resource-Sharing Protocols for Multiprocessor Systems

In the multiprocessor aspect, out of the many existing protocols, the Multipro-

cessor Stack Resource Protocol (MSRP) [41] merits special attention. Specifi-

cally crafted for fully-partitioned systems, MSRP is a FIFO spin-based resource-

sharing protocol. Under MSRP, each globally shared resource is linked with a

FIFO queue. Tasks requesting such a resource are added to the queue and busy-

wait (spin) non-preemptively until they reach the queue’s head, upon which the

resource is assigned to them. Once a task is granted a resource, it carries on its

non-preemptive execution until the resource is relinquished. In contrast, when

dealing with a local resource (i.e., a resource shared within one core), the IPCP

is employed. The MSRP is examplified below.

Example 3. Consider a two-core computer system, P1 and P2, dedicated to

managing tasks in a computational environment.

39

Tasks and Resources:

τ1 on P1 : Requires r1.

τ2 on P2 : Requires both r1 and r2.

τ3 on P2 : Requires r2.

r1 : Globally shared computational module.

r2 on P2 : Local computational unit exclusive to P2.

Scenario 1 - Accessing the Global Resource r1:

• τ1 on P1 initiates its operation and locks r1.

• Simultaneously, τ2 on P2 requires r1. Since τ1 is currently using the re-

source, τ2 enters the FIFO queue and spins on P2 non-preemptively.

• After τ1 releases r1, τ2 becomes the head of the FIFO queue and starts

accessing r1 non-preemptively on P2.

• Concurrently, if τ3 is released, it will be blocked by τ2 from computing on

P2, regardless of its priority.

Scenario 2 - Accessing the Local Resource r2:

• τ2 wants to access r2. Due to the priority ceiling protocol, its priority is

elevated.

• τ3 is subsequently blocked from executing until τ2 finishes its operation re-

gardless of its priority.

In this structure, MSRP ensures efficient access to both global and local resources,

reducing delay for low-priority tasks and ensuring smooth task executions.

40

2.2.4 RTA for Shared Resources

The implementation of resource-sharing protocols can prevent race conditions

among tasks in the system which in turn safeguards data integrity. However,

the timely behavior of tasks, especially during resource sharing, can lead to

additional waiting times or priority inversion—termed as blocking—owing to the

mutually exclusive nature of resource access. Capturing the intricacies of these

protocols accurately is vital to ensure the timing correctness of tasks.

The blocking effect is primarily divided into spin delay and arrival block-

ing [109]. Spin delay can further be categorized into Direct and Indirect spin

delay.

Direct spin delay occurs when a task is directly obstructed from accessing a

shared resource due to other concurrent remote accesses. For instance, under

MSRP, when task τ1 requests a resource r1, tasks on other processors, say τ2 and

τ3, are ahead of τ1 in the FIFO queue because they requested r1 earlier. The

time τ1 spends waiting for r1 before it can lock it is referred to as direct spin

delay.

In contrast, indirect spin delay arises when a task is preempted by a higher-

priority local task that is itself directly blocked. For example, under MSRP,

when τ1 is executing on the processor normally without accessing any shared

resource, a higher-priority task τ2 preempts τ1 to compute on the processor and

requests for a global shared resource. Here, τ1 can only resume its computation

when τ2 finishes its execution. Therefore, the spin delay experienced by τ2 will

transitively cause a delay to τ1, termed as indirect spin delay.

Arrival blocking, on the other hand, transpires when a newly released high-

priority task, like τ2, is immediately blocked by a lower-priority task, τ1. This

can be because τ1 is either currently requesting or locking a shared resource. As

a result, it remains non-preemptive under MSRP until it completes its operation

41

and releases the lock. Thus, a higher-priority task like τ2 cannot preempt τ1

directly, leading to a delay known as arrival blocking.

Original RTA for MSRP

The RTA designed to capture the system’s worst-case timely behavior under

fully-partitioned systems scheduled by preemptive FPS with the application of

MSRP was first developed by [41]. As shown in Equation (6), the analysis aims

to calculate the WCRT of each task, denoted as Ri, which comprises the total

WCET (Ĉi), the arrival blocking (Bi), and the interference imposed by the set

of local tasks with a higher priority than τi, represented as
∑

τh∈lhp(i)

⌈
Ri

Th

⌉
· Ĉh.

Ri = Ĉi +Bi +
∑

τh∈lhp(i)

⌈Ri

Th

⌉
· Ĉτh (6)

Further exploring Ri, as illustrated in Equation (7), the term Ĉi comprises the

pure WCET of τi without accessing any shared resources, denoted as Cτi , and the

time spent accessing resources, given by
∑

rx∈F (τi)
Nx

i ·ex. Here, F (τi) represents

the set of resources requested by τi, N
x
i indicates the number of requests that τi

sends to rx during a single release, and ex denotes the total time spent on each

access to rx.

Ĉi = Cτi +
∑

rx∈F (τi)

Nx
i · ex (7)

The amount of time that a task can spend accessing rx once is illustrated

in Equation 8. In this equation, the function map(G(rx)) is utilized to identify

the set of processors that contain tasks requesting access to rx. The notation ||

indicates the size of this set of processors, representing the maximum number of

requests that can be sent to rx concurrently. This analysis assumes a worst-case

scenario wherein τi is perpetually placed at the end of the FIFO queue, forcing

42

it to wait until requests from other processors have been fully serviced. Con-

sequently, ex is determined by multiplying the maximum number of concurrent

requests by the time needed to access rx, denoted as cx.

ex = |map(G(rx))|·cx (8)

The arrival blocking is denoted by Bi, as illustrated in Equation (9). Here, êi

signifies the maximum arrival blocking that τi can experience, while b̂ represents

the non-preemptive section of the operating system, as previously discussed.

The arrival blocking of τi takes place when τi is released but is hindered from

execution by a local low-priority task (e.g., τll). This hindrance arises when the

latter is in the process of requesting or utilizing a shared resource and hence,

cannot be preempted by τi.

Bi = max{êi, b̂} (9)

Equation (10) aims to discern the peak arrival blocking, which can also be

perceived as the maximum time τll can allocate to accessing a shared resource

rx, essentially the upper limit of ex. As indicated in Equation (10), the resource

should be sought by τll; thus, the count of requests from τll to rx should be

non-zero, or in mathematical terms, Nx
ll > 0.

Furthermore, the resource resulting in the blocking effects can be global,

attributed to the MSRP’s provision that τll maintains its non-preemptive status

during both request and execution phases. Conversely, the said resource might be

local, boasting a ceiling priority surpassing that of τi. This allows τll to perform

under an elevated priority, in turn obstructing τi. This scenario is symbolized by

the condition Pri(rx, P (τi)) ≥ Pri(τi), where Pri(rx, P (τi)) reveals the priority

ceiling of rx when the resource is specific to the processor that τi is allocated

(P (τi)). Necessary notations are concluded in Table 3.

43

Table 3: Table of Notations for Original MSRP

Notation Definition

Ĉi Worst-case execution time of task τi including shared resource

access time

Cτi Pure computation time of task τi excluding shared resource

access time

Bi Arrival blocking time of task τi

lhp(i) Set of local tasks with higher priority than τi

F (τi) Set of resources requested by task τi

ex Total time spent accessing resource rx once

map(G(rx)) Function to identify the set of processors that contain tasks

requesting access to rx

êi Maximum arrival blocking that task τi can experience

τll A local low-priority task

Nx
ll Number of requests from τll to rx

Pri(rx, P (τi)) Priority ceiling of resource rx when local to processor P (τi)

êi = max{ex|Nx
ll > 0 ∧ (rx is global ∨ Pri(rx, P (τi)) ≥ Pri(τi))} (10)

This brings us to the conclusion of the original RTA of MSRP, as illustrated

in the seminal work by [41]. This early analysis operates under the assumption

that each request originating from a local processor to rx can be obstructed by

a constant number of requests from other cores, i.e., |map(G(rx))|, irrespective

of the accounting for the exact number of requests from remote processors. Un-

fortunately, this assumption leads to the inclusion of many extra, repeated spin

delays, resulting in a significantly overestimated WCRT bound.

44

Advanced RTA for MSRP

The evolution of schedulability analysis for MSRP took a significant leap for-

ward with the work of [104], which notably improved the degree of pessimism

in calculating the WCRT. As shown in Equation (11), the WCRT of task τi is

systematically computed. In this framework, Cτi stands for the WCET of τi ex-

cluding any interactions with shared resources. On the other hand, Ei represents

the cumulative time expended in accessing shared resources, accounting for both

τi and the higher-priority tasks operative (lhp(i)) on the local processor.

The term
∑

τh∈lhp(i)

⌈
Ri

Th

⌉
·Ch encapsulates the interference introduced by all

tasks in lhp(i). Specifically,
⌈
Ri

Th

⌉
· Ch conveys the interference from a higher-

priority task τh. This concept aligns with that introduced in Equation 1, where⌈
Ri

Th

⌉
calculates the release time of τh during τi’s execution and then multiplies

by τh’s pure WCET.

Ri = Cτi + Ei +Bi +
∑

τh∈lhp(i)

⌈Ri

Th

⌉
· Ch (11)

The key component of the WCRT of MSRP analysis is the total resource

accessing time, denoted as Ei. As illustrated in Equation (12), Ei iterates over

all resources in the system R to identify the resource that could directly or

indirectly prolong the response time of τi. The term Nx
i represents the number

of requests from τi to rx in a single release. Additionally, Nhx
i (Ri) stands for the

number of requests sent from task in lhp(i) during the period Ri. Meanwhile,

Nrx(Ri, Rj) signifies the count of requests from all remote processors capable of

obstructing requests from the local processor during the period Ri and a release

jitter Rj, in other words, the requests that can induce direct or indirect spin

delays to τi.

45

blocking
1

blocking
2

rq1 rq2 rq3 rq4

Figure 3: The back-to-back hit

Ei =
∑
rx∈R

(Nx
i +Nhx

i (Ri) +Nrx(Ri, Rj))× cx (12)

Nhx
i (Ri) is demonstrated in Equation (13), where τh ∈ lhp(i). The expression⌈

Ri

Th

⌉
calculates the number of times τh will be released, with Nx

h representing

the number of times τh will request rx in a single release.

Nhx
i (Ri) =

∑
τh∈lhp(i)

⌈Ri

Th

⌉
·Nx

h (13)

In the meantime, as illustrated in Equation (14), Nrxa(Ri, Rj) denotes the

number of requests for the resource rx initiated by all tasks on processor Pa

(denoted as Γ(Pa)), over the interval defined by the duration Ri and the jitter

Rj. It is important to note that the inclusion of the jitter Rj accommodates the

back-to-back hit phenomenon of resource requests [109]. Referencing Figure 3,

the remote task τj requests the shared resource four times in two releases (ranging

from rq1 to rq4). In this scenario, to accurately account for the number of

requests that τj can send during τi’s execution, the formula
⌈
Ri

Tj

⌉
×2 = ⌈2.5

3
⌉×2 =

2 proves insufficient. Consequently, a jitter represented by µ = Rj is introduced

to incorporate the back-to-back hits from τj, exemplified as
⌈
Ri+Rj

Tj

⌉
×2 = 2×2.

46

Nrxa(Ri, Rj) =
∑

τj∈Γ(Pa)

⌈Ri +Rj

Tj

⌉
·Nx

j (14)

Finally, Nrx(Ri, Rj) is utilized to denote the total number of requests on

all remote processors that can impose direct or indirect spin delay on τi. The

notation Pa /∈ P (τi) indicates all processors excluding the one τi is currently

utilizing. The function min{ι, κ} is applied to determine the lesser value between

ι and κ. Here, ι = Nx
i + Nhx

i (Ri) and κ = Nrxa(Ri, Rj), where ι represents the

cumulative number of requests sent from the local processor, encompassing both

the requests initiated by τi itself (Nx
i) and those initiated by tasks in lhp(i),

Nhx
i (Ri), during the period defined by Ri. The constraint applied here is that

the maximum number of requests blocking the local requests is determined by

the minimum of the two values, ι or κ. This is grounded on the principle that

a processor can send only one request at a time, hence a request can be delayed

by another request from a processor at most once. An example illustrating this

analysis is provided in Example 4. All necessary notations are summarized in

Table 4

Nrx(Ri, Rj) =
∑

Pa /∈P (τi)

min {Nx
i +Nhx

i (Ri), Nrxa(Ri, Rj)} (15)

Example 4. Figure 4 provides an example that illustrates the total resource-

access time that τi can incur due to accesses to a resource rx. In this figure,

during the release of τi, it executes on P1 and requests the resource once, while

tasks in lhp(i) preempt τi and send two requests to the resource on core P1.

Tasks on core P2 request the same resource five times during the same period.

Meanwhile, the tasks on core P3 request the resource only twice. As illustrated in

the figure, the first request from P1 can incur delays from one request from both

P2 and P3, as shown in the queue labeled FIFO1. Similarly, the second request

47

lhp(i) request remote requestrequest

FIFO 1

FIFO 2

FIFO 3

Figure 4: Resource contention analysis for one shared resource

from P1 faces the same scenario, depicted in FIFO2. However, the third request

from P1 can only incur one delay from P2, since tasks on P3 only request twice in

total. Summarizing, on P2 a maximum of three requests can cause spin delay to

τi; one of these delays affects the request from τi directly, while the other two delay

the requests from lhp(i), thereby delaying τi transitively. For core P3, the tasks

there request the resource only twice, meaning they can induce a direct or indirect

delay to τi a maximum of two times. Consequently, τi will be blocked by remote

requests five times, leading to a worst-case spin delay of seven occurrences.

The arrival blocking is denoted by Bi, as shown in Equation (16), where êi

represents the maximum arrival blocking that τi can incur, and b̂ designates the

non-preemptive section of the operating system, as introduced earlier.

Bi = max{êi, b̂} (16)

48

Table 4: Table of Notations for Advanced MSRP

Notation Description

Ei Total resource accessing time for task τi and lhp(i)

Nhx
i (Ri) Number of requests sent from local tasks with higher priority

lhp(i) during the period Ri

Nrxa(Ri, Rj) Number of requests from processor Pa that can cause direct or

indirect spin delays during the periods Ri and Rj

Nrx(Ri, Rj) Number of requests from remote processors that can cause direct

or indirect spin delays during the periods Ri and Rj

Γ(Pa) Set of all tasks on processor Pa

min(ι, κ) Function to return the smaller value between ι and κ

The arrival blocking of τi occurs when τi is released and prevented from

executing by a local low-priority task (e.g., τll), which is either requesting or

executing a shared resource and, therefore, cannot be preempted by τi. This

scenario is further detailed in Equation (17), where the set of resources potentially

causing arrival blocking to τi is denoted as FA(τi). The total arrival blocking

time is determined by multiplying the number of requests to rx causing arrival

blocking, represented as |αx
i |, by the duration of cx. It is important to note that

a task can only incur arrival blocking once; after τi initiates its execution, τll

cannot block it again. Consequently, the function max{} identifies the resource

that can induce the worst-case arrival blocking.

êi = max{|αx
i |·cx|rx ∈ FA(τi)} (17)

The set of resources FA(τi) is bounded in Equation (18). Firstly, Nx
ll indi-

cates the number of requests from τll to rx, and this value must be greater than

0. Moreover, the resource causing the blocking can be a global resource; this

49

is because, under MSRP, τll remains non-preemptive when either requesting or

executing the resource. Alternatively, it might be a local resource with a ceiling

priority higher than that of τi, enabling τll to execute with a boosted prior-

ity, thereby blocking τi. This condition is denoted as Pri(rx, P (τi)) ≥ Pri(τi),

where Pri(rx, P (τi)) gives the priority ceiling of rx when the resource is local to

processor P (τi).

FA(τi) ≜ {rx|Nx
ll > 0 ∧ (rx is global ∨ Pri(rx, P (τi)) ≥ Pri(τi)} (18)

Considering that the resource can be global, multiple tasks on different pro-

cessors may request rx concurrently, thus facilitating τll to incur direct spin delay.

As delineated in Equation (19), αx
i encompasses a set of processors. A processor

Pa can be included in αx
i if and only if the number of its remote requests, denoted

by Nrxa(Ri, Rj), surpasses the sum of local requests, given by Nx
i + Nhx

i (Ri).

This stipulation arises because a maximum of Nx
i + Nhx

i (Ri) remote requests

have been acknowledged as spin delay and incorporated into Ei as presented in

Equation (12). Only processors with additional requests, such as the requests

on P2 depicted in Figure 4—which tallies five requests, with three accounted for

in Equation (12) and the remaining two potentially imposing arrival blocking on

τi—are considered. Moreover, P (τi) must also be accounted for in αx
i since it

contains requests that τll sends to rx. The term |αx
i | subsequently defines the

aggregate number of requests capable of inducing arrival blocking on τi. All

necessary notations of Bi is summarized in Table 5.

αx
i ≜ {Pa|Nrxa(Ri, Rh) > (Nx

i +Nhx
i (Ri)) ∧ Pa /∈ P (τi)} ∪ P (τi) (19)

The new RTA of MSRP meticulously delineates the resource requests emanat-

ing from each core, thereby mitigating the recurrence of spin delay calculations

substantially. Despite introducing additional complexity, this approach curtails

50

the pessimism traditionally inherent in the analysis, fostering a notable enhance-

ment in system schedulability [104].

Table 5: Table of Notations for Advanced MSRP (Bi)

Notation Description

êi Maximum arrival blocking that task τi can incur

FA(τi) Set of resources potentially causing arrival blocking to τi

αx
i Set of processors influencing the arrival blocking on τi for resource

rx

2.2.5 Summary

This section reviews resource sharing in real-time systems, emphasizing the in-

tricacies of shared resources in multicore settings. Lock-based mechanisms, es-

pecially spin-based locks, are highlighted for ensuring mutual exclusivity. The

FIFO order’s role in managing access sequences is discussed. The section delves

into MSRP and contrasts the original MSRP RTA with the advanced MSRP

RTA, underscoring advancements in WCRT calculations for a preciser system

behavior analysis.

2.3 Real-Time Mixed Criticality Systems

In this section of the literature review, we explore the foundational concepts and

frameworks in MCS. We start with the general definitions that govern MCS,

followed by a RTA of traditional MCS model. The focus then shifts to fault-

tolerance strategies, emphasizing the role they play in ensuring system robust-

ness. Lastly, we review the recent research on fault-tolerant MCS with shared

resources, highlighting both the advancements and the existing limitations in

51

this area. This discussion aims to provide a comprehensive overview, setting the

groundwork for deeper exploration in the subsequent sections of the thesis.

2.3.1 Defintions of MCS

MCS have emerged as a pivotal concept in the domain of embedded and real-

time systems. These systems are characterized by the coexistence of tasks with

varying levels of criticality, all executing on a shared computational platform

[20]. The term criticality in this context refers to the importance or severity of

a task’s failure to meet its deadline or functional requirements.

MCS are extensively utilized in industries such as aviation, automotive, and

healthcare. These systems are responsible for handling tasks that have varying

levels of safety requirements. Specifically in aviation, the DO-178C standard

[102] serves as a prime example of MCS application. It categorizes tasks into

five levels of criticality: Level A (Catastrophic), Level B (Hazardous), Level

C (Major), Level D (Minor), and Level E (No Effect). Each level determines

the extent of certification needed, based on the potential impact of a failure.

This method ensures that software used in aviation is thoroughly evaluated for

safety. The more critical a task is, the more rigorous the testing it undergoes.

Such a structured approach is vital in systems where tasks vary significantly in

importance and potential impact, ensuring that each task is managed with the

appropriate level of scrutiny.

The design philosophy behind MCS revolves around a delicate equilibrium:

on one hand, there is the need to optimize resource utilization, and on the other,

an imperative to uphold the sanctity of task criticality. It is a balancing act

where high-criticality tasks must always take precedence, ensuring they meet

their stringent specifications [34].

This assurance gains heightened significance in sectors such as avionics, au-

52

tomotive systems, and medical devices, where any lapse in high-criticality task

execution can lead to catastrophic outcomes. In certain scenarios, this might ne-

cessitate sidelining tasks of lower criticality. However, sidelining does not imply

complete abandonment. Consider, for instance, an avionics system where the

primary task is to maintain the aircraft’s stability. In a situation where compu-

tational resources are strained, secondary tasks like in-flight entertainment might

experience reduced performance or temporary unavailability.

Graceful degradation is often pursued in MCS: while the system prioritizes the

most critical functions, it still aims to provide a baseline Quality of Service (QoS)

for less critical tasks, albeit at a diminished capacity. Such methodical degrada-

tion in service ensures that while the system remains resilient and safety-critical

operations are uncompromised, other functionalities are not entirely jettisoned

but are instead scaled down in a controlled manner.

In this thesis, we consider N criticality levels. The criticality level of a system

task τi is defined by the system engineer according to their importance, denoted

as li ∈ {A,B, ...,N} in which A is the lowest criticality and N is the highest.

Tasks being allocated to higher criticality levels implies a severe consequence for

overall system performance if their execution in some way fails. Tasks in MCS

have a series of WCET denoted as
−→
Cτi . The verification is more conservative for

a higher criticality level [11], hence Cτi,A ≤ Cτi,B ≤...≤ Cτi,N . The task τi with

criticality li can execute up to Cτi,li from its
−→
Cτi .

2.3.2 Conventional MCS Model

Baruah et al. [11] introduced the Adaptive Mixed Criticality (AMC) model, a

notable MCS model in the context of preemptive fully-partitioned systems with

FPS [56]. As illustrated in Figure 5, the AMC model differentiates between

two system modes; the mode of the system is denoted as L ∈ {LO,HI}. These

53

OverrunLO HI

Figure 5: The AMC model

modes cater to systems with tasks that fall into one of two criticality levels. The

criticality of a random task τi in the system is denoted as li ∈ {low, high}.

Tasks with a low criticality (i.e. li = low) run using a WCET of Cτi,low. On

the other hand, high-criticality tasks (i.e. li = high) have two WCETs, denoted

as
−→
Cτi = {Cτi,low, Cτi,high}, where Cτi,low ≤ Cτi,high. As shown in Figure 5, the

system starts in the LO mode, allowing all tasks to execute up to Cτi,low. If a

high-criticality task surpasses its allocated budget, the system switches to the

HI mode. In this mode, tasks with li ≥ high are allowed an extended bud-

get of Cτi,high, while tasks with li < high are paused. One of the foundational

assumptions of the AMC model is its ability to track the runtime of tasks. Addi-

tionally, the model is designed for flexibility, capable of accommodating an array

of system modes corresponding to various criticality levels.

The RTA of the AMC model, denoted as AMC-rtb, was developed by the

work in [18]. The analysis of tasks in AMC can be divided into two scenarios:

one where the system remains in a stable mode, maintaining either a HI or a

LO mode throughout its entire execution, and another where it experiences a

transition from LO to HI mode.

The WCRT of tasks in the LO mode is presented in Equation (20). This

equation comprises the WCET of τi in the LO mode, denoted by Cτi,low, and

the interference from local high-priority tasks τj ∈ lhp(i) that also execute with

their LO-mode execution budgets, represented by Cj,low. Meanwhile, when a

54

task executes in the HI mode throughout its entire duration, it signifies that

the task has a criticality level of li = high. As illustrated in Equation (21), the

WCRT of τi, represented as Ri,HI, is comprised of the HI -mode WCET (Cτi,high).

It can only incur interference from local high-priority tasks with a criticality level

of li = high, denoted by τj ∈ lhpH(i), which also execute with their HI-mode

execution budgets Cj,high.

Ri,LO = Cτi,low +
∑

τj∈lhp(i)

⌈Ri,LO

Tj

⌉
· Cj,low (20)

Ri,HI = Cτi,high +
∑

τj∈lhpH(i)

⌈Ri,HI

Tj

⌉
· Cj,high (21)

If a task experiences a mode switch and continues to execute, it must therefore

be a high-criticality task with li = high. As shown in Equation (22), the WCRT

of such a task consists of its HI-mode WCET Cτi,high. Moreover, it will incur

interference from both local high-priority tasks with low and high criticalities,

denoted by lhpL(i) and lhpH(i), respectively. For tasks in lhpH(i), they continue

to execute after the mode switch, and their interference frequency is calculated

as
⌈
Ri,HI
Tj

⌉
. Conversely, tasks in lhpL(i) will be terminated after the system

switches to HI mode. Therefore, their interference frequency is calculated as⌈
Ri,LO
Tk

⌉
, with a duration of Ri,LO, which can be deduced from Equation (20).

Main notations about MCS are summarized in Table 6.

Ri,switch = Cτi,high +
∑

τj∈lhpH(i)

⌈Ri,HI

Tj

⌉
· Cj,high +

∑
τk∈lhpL(i)

⌈Ri,LO

Tk

⌉
· Ck,low (22)

2.3.3 Fault Tolerance Approaches

In the context of MCS, understanding faults and their tolerance mechanisms is

pivotal. Faults in contemporary embedded systems are predominantly classified

55

Table 6: Notations for MCS

Symbol Meaning

N Number of criticality levels

li Criticality level of task τi
−→
Cτi Series of WCET for task τi

L Mode of the system

Cτi,low WCET of task τi in LO mode

Cτi,high WCET of task τi in HI mode

Ri,LO WCRT of task τi in LO mode

Ri,HI WCRT of task τi in HI mode

Ri,switch WCRT of task τi during a mode switch

lhpL(i) Set of local high-priority tasks with low criticality for task τi

lhpH(i) Set of local high-priority tasks with high criticality for task τi

as either permanent or transient faults. Transient faults briefly disrupt system

functionality, while permanent faults persist and are challenging to rectify. Cer-

tain software faults, also known as bugs, are a consequence of erroneous program

design, categorizing them as permanent faults that cannot be rectified simply by

restarting the operation [95]. In contrast, other software faults can be transient,

precipitated by unexpected thread interference, and may be ameliorated through

program restarts [75]. On the hardware front, transient faults can result from

power supply fluctuations or electromagnetic interference, problems exacerbated

by decreasing transistor size and operating voltage [51]. Permanent hardware

faults, often due to hardware damage or wear, cannot be remedied until the

faulty component is replaced. The focus of this thesis is specifically on transient

faults, which can be resolved by reattempting the operation.

Redundancy techniques are widely adopted in literature to tolerate faults,

56

with the three key strategies being re-execution [1], checkpointing [26], and repli-

cation [83]. The re-execution approach safeguards task status at the beginning

and detects faults at the end. Upon fault detection, the system invokes the

roll-back technique, and the task is re-executed in its entirety. Conversely, the

checkpointing technique introduces additional checkpoints within a task, typi-

cally dividing task execution into uniform segments. Each segment is individ-

ually scrutinized for faults, and upon fault detection, the system reverts to the

most recent checkpoint, re-executing only the faulty segment. The replication

technique creates several replicas of each task. The task and its replicas are

released concurrently and execute in parallel. Once one execution completes

without faults, the remaining tasks are discarded.

Conventional fault detection mechanisms focus on analyzing execution out-

puts. For instance, in lockstep dual-core architecture [89] or Triple Modular Re-

dundancy architecture [8], multiple identical cores execute the same code, and

the system applies a majority vote to pinpoint the faulty component. Acceptance

tests are frequently applied at checkpoints to determine operation correctness by

examining conditions that are expected to be met if the program has executed

correctly [80]. In contrast, another type of fault-detection mechanism concen-

trates on detecting the stimuli of the fault rather than the computation results.

For example, acoustic wave detectors are employed in the hardware architecture

[93] to detect particle strikes that can result in transient faults during computa-

tion. Rather than using built-in hardware for fault detection, the Argus approach

[73] utilizes detection equipment to monitor circuit variations. Detailed descrip-

tions and comparisons of such types of detection mechanisms can be found in [94].

We consider transient faults which can be resolved by redundancy approaches

(e.g. re-execution and replication) in this thesis. Each fault can only affect one

task at a time and the acceptance test is applied as the fault-detection technique.

57

2.3.4 Fault-Tolerance and Shared Resources in MCS

Beyond addressing the fundamental challenges of MCS, researchers have ex-

plored intertwined complexities such as fault-tolerance and energy consumption.

Pathan [78] introduces the FTMC, a mixed-criticality fault-tolerant algorithm

for systems with two criticality levels. In FTMC, a system transition from a LO

mode to a HI mode is triggered when either an overrun occurs or when the num-

ber of transient faults exceeds a predefined threshold. Chen et al. [26] propose

the FTS-RHS, an online fault-tolerant MCS scheduling framework that applies

checkpointing recovery schemes, thereby enhancing performance in scheduling.

Building upon these efforts, Safari et al. [83] incorporate energy consumption

considerations into their research on fault-tolerant MCS, proposing a LETR-MC

scheme for systems with two criticality levels.

With respect to shared resources, Burns [17] applies the OPCP to MCS on a

uni-processor platform with two criticality levels. Low-criticality resource hold-

ers operating at ceiling priority are suspended when the system upgrades to the

HI mode. These suspended tasks can resume execution by inheriting the execu-

tion budget from the next task trying to access the resource. Zhao et al. [103]

extend the Priority Ceiling Protocol (PCP) [87] to the Highest-Locker Criticality,

Priority-Ceiling Protocol (HLC-PCP) to manage resource sharing in the MCS

under the AMC scheme. Han et al. [47] then migrate the MSRP to the MCS

and develop a criticality-aware utilization bound.

More recently, research into fault tolerance has been extended to support

MCS. Al-bayati et al. [1] propose a state-of-the-art fault-tolerant model to tackle

both task overruns and transient faults for MCS with tasks’ criticality levels

li ∈ {low, high}, known as the four-mode model. Based on the AMC model, the

four-mode model introduces two additional system execution modes: TF (tran-

sient faults) and OV (overruns) to deal with transient faults and task overruns

58

separately.

LO Mode

No re-executions

TF Mode

Re-executions

HI Mode

 Re-executions

OV Mode

No re-executions

Fault

Fault

Figure 6: The four-mode model [1]

Figure 6 illustrates the system execution flow of the four-mode model. The

system initially starts in LO mode, in which each task is running with a budget

Cτi,low. If any high-criticality task incurs a transient fault, the system moves to

TF mode, the re-execution approach is then applied to resolve the fault. Or,

if any task overruns its budget in the LO mode the system will move to the

OV mode, where high-criticality tasks can execute with a higher budget Cτi,high.

Lastly, the system moves to the HI mode from TF or OV , if an overrun or a

fault occurs, respectively. In HI mode, tasks can execute up to Cτi,high with

re-executions allowed for resolving faults.

The four-mode model provides reliability and timing guarantees for dual-

criticality MCS without any shared resource. However, the four-mode model has

the following three major limitations.

Limitation 1. The four-mode model does not scale well for systems with more

than two criticality levels.

With the four-mode model, a task overrun can bring the system from LO to

OV mode whereas a task fault advances the system from LO to TF mode. Then,

at OV and TF modes, the model requires the occurrence of both task fault

59

and overrun to advance the system to the HI mode. Such design is sufficient

for systems with two criticality levels conceptually. However, for systems with

multiple criticality levels (e.g. four criticality levels in ISO 26262 [59] and five

criticality levels in the avionic standard DO178-C [101]), the four-mode model

becomes difficult (or in reality impossible) to apply as the model requires the

occurrence of both transient faults and task overruns to advance to the next

mode. For example, in a system with five levels of criticality, the AMC model

can adopt five system modes (e.g. A− E) and four occurrences of task overrun

will take the system to E mode, whereas the four-mode model only reacts to the

first overrun and neglects the rest, due to the absence of transient faults.

Limitation 2. The four-mode model relies on re-executing the entire task to

resolve faults. With the presence of shared resources, this can lead to prolonged

blocking for the faulty task, increase the interference of all low priority tasks, and

result in low system schedulability.

In particular, if a fault occurs during execution without the involvement of

shared resources, re-executing the whole task is very pessimistic due to the ad-

ditional blocking imposed to both the task itself and other tasks in the system.

Moreover, re-execution indicates re-requesting every resource access, the task

can block (or be blocked by) other tasks that are requesting the same shared

resource again [109].

Limitation 3. The four-mode model relies on the re-execution approach, which

cannot immediately resolve faults occurring in a critical section. This can cause

transitive effects if the correctness of other tasks depends on the computation

results of the resource.

When a fault occurs during the critical section of a task with re-execution

applied, it cannot be resolved immediately because the detection is applied at

60

the end of a task. Therefore, the erroneous computation results submitted by

a task to a shared resource could be used by the following tasks that share the

same resource, which can incur undesired domino effects and impose a threat to

the reliability of the whole system. Hence, a fault-tolerant approach that can

address faults in shared resources immediately before the lock is released should

be adopted.

2.3.5 Summary

In MCS literature, tasks with different criticalities are addressed, especially in

sectors like avionics where precise task execution is crucial. Baruah et al. pro-

posed the AMC model, categorizing tasks into low or high criticalities and ad-

justing their performance accordingly. Although fault tolerance is essential in

MCS, the four-mode model by Al-bayati et al. revealed some shortcomings. It

struggles with systems having multiple criticality levels and is not always efficient

in managing faults. This highlights the need for more advanced fault-tolerance

models in MCS that can effectively manage shared resources. These challenges

pave the way for the proposed HPRTS framework, as outlined in Chapter 3,

aiming to offer a fault-tolerance solution for multiprocessor MCS with shared

resources.

2.4 Task Allocation Methods

Task allocation is a crucial part of real-time systems, ensuring that tasks are

efficiently distributed across processors to meet specific timing and performance

requirements. Over the years, many methods have been developed to tackle chal-

lenges posed by the increasing complexity of systems and changing workloads.

This section delves into the history and evolution of task allocation methods,

moving from basic static approaches to advanced dynamic strategies. We then

61

shift our focus to allocations designed for systems with shared resources. Here,

we will discuss the advantages, limitations, and details of different contention-

aware allocation techniques.

2.4.1 Evolution of Task Allocation Methods

Task allocation in real-time systems is an essential aspect that has garnered

significant research attention. In the early stages, real-time systems primar-

ily employed static task allocation [68]. In this scenario, tasks were assigned

to specific processors during the design phase and remained fixed throughout

the system operation. While straightforward and predictable, this method best

suited real-time systems with a stable, unvarying workload.

However, as systems grew more complex and workloads became less pre-

dictable, the limitations of static task allocation began to surface. To address

these constraints, the concept of dynamic task allocation was introduced, leading

to the evolution of fully partitioned scheduling systems [30].

In fully-partitioned systems, tasks are statically assigned to designated cores

and cannot migrate during execution [70]. This method promotes predictable

scheduling behavior, minimizes run-time overhead, and simplifies inter-task syn-

chronization management. However, it may lead to sub-optimal system utiliza-

tion when dealing with variable or unpredictable workloads.

To optimize fully partitioned scheduling, various methods have been pro-

posed. Heuristic methods such as Best-Fit (BF), First-Fit (FF), Worst-Fit (WF)

and Next-Fit (NF) are among these [3]. The BF strategy allocates tasks to the

processor where the task’s requirement best fits the remaining capacity, mini-

mizing resource wastage. The FF strategy assigns tasks to the first processor

with sufficient capacity, thus expediting the allocation process. The WF strat-

egy places tasks on the processor with the most remaining capacity, aiming to

62

balance load across processors. NF sequentially assigns tasks to processors. If a

processor lacks capacity for a task, the allocator proceeds to the next processor.

The process continues until an appropriate processor is identified or all are exam-

ined. The last assigned processor is noted for subsequent allocations. Heuristic

methods are favored for their simplicity and computational efficiency. However,

their performance can be limited as system complexity increases especially with

the inclusion of shared resource [106].

Apart from heuristic methods, mathematical programming techniques such as

Integer Linear Programming (ILP) can be employed for task allocation [44]. ILP

aims to provide an optimal solution, albeit with high computational complexity,

and is thus suited for systems with a smaller number of tasks. Metaheuristic

methods like Genetic Algorithms also find use in more complex scenarios, offering

near-optimal solutions with lower computational demands at the cost of potential

imprecision [44].

2.4.2 Resource-Aware Task Allocation Methods

In the study of multiprocessor architectures, resource-aware task allocation is

key. It focuses on managing tasks effectively, taking into account the need for

mutually exclusive access to shared resources [27, 48, 49, 55, 57, 62, 97, 99, 100].

This need influences the strategies and approaches in task allocation, forming

the basis of different scheduling algorithms.

Building on the basic concepts discussed earlier, we now focus on resource-

aware allocation methods designed for fully-partitioned FPS systems. These

methods aim to work well in settings where exclusive access to shared resources

is a must, helping to reduce the blocking time during resource access and, as a

result, improving system efficiency.

63

Executing Critical Section on Host Core

Currently, most methods execute critical sections on the host processors of

tasks [48,49,55,62,97]. In this context, Lakshmanan et al. [62,104] introduced the

Synchronization-aware Partitioning Algorithm (SPA). This algorithm groups all

tasks that either directly or indirectly share the same resources and assigns these

groups of tasks to processors using a strategy known as the Best-Fit Decreas-

ing (BFD) heuristic. This strategy allocates tasks using the best-fit approach,

following a non-increasing utilization order of tasks. The idea behind SPA is

to allocate tasks that share the same resource in the same bundle and to allo-

cate that bundle to a single processor, thereby localizing the shared resources

and reducing the blocking incurred due to accessing global resources. A detailed

implementation of SPA is explained below:

Step 1: Initialization

• Bundle Creation: Form bundles for tasks sharing the same or transitive

resources.

• Handle independent tasks separately.

Step 2: Initial Allocation

• Task and Bundle Sorting: Order tasks/bundles by decreasing utilization.

• Utilization of BFD Algorithm: Use BFD algorithm for allocation with a

utilization cap per core.

• Prioritize allocatable tasks/bundles, defer others.

Step 3: Breaking and Reallocating Macrotasks

• Breaking Cost Calculation: Calculate the cost to break each unallocatable

bundle.

64

• Bundle Sorting: Sort bundles by increasing breaking cost.

• Bundle Breaking and Creation: Break least costly bundle and form a new

one matching available utilization.

• Allocation and Core Addition: Allocate broken bundles, adding cores as

needed.

The SPA is a method characterized by its versatility, fundamentally operating

based on the knowledge of resource usage. However, it encounters a significant

limitation in its approach to task bundling and allocation. In SPA, tasks are

grouped into the same bundle simply if they share the same resources, without

considering other vital details. This approach can lead to the creation of oversized

bundles, particularly in systems with extensive resource sharing. When a bundle

becomes too large to be assigned to a single core, it necessitates breaking down

the bundle, a process that primarily considers the system’s utilization, often

overlooking the actual levels of resource contention between tasks. This can

result in tasks, which have higher levels of resource contention, being separated,

thereby reducing the efficiency in contention reduction. The cirtical issue is

summarized below.

Limitation 4. The SPA [62] can create large bundles that no processor can

accommodate, leading to a breakdown process that does not always effectively

reduce resource contention, potentially resulting in inefficiencies [57,97].

Migrating to Access Shared Resoruce

Rather than executing critical sections on the host processor, Hsiu et al. [55]

suggest a method that allocates resources to processors and migrates a task to

a specified processor each time it requests a shared resource. This strategy also

65

localizes shared resources and can reduce resource contention between proces-

sors. As reported, the method [55] reduces the number of processors needed for

system scheduling. In the same vein, a Resource-Oriented Partitioning (ROP)

method is developed in [57, 100]. The ROP method allocates tasks and shared

resources to different sets of processors, namely synchronization and application

cores. In this setup, synchronization cores are dedicated to managing access to

shared resources, thereby localizing the contention and reducing the associated

overhead. Meanwhile, application cores are primarily tasked with executing the

application tasks. This segregation facilitates a reduction in resource contention

and optimizes the scheduling process by allowing tasks to migrate to synchro-

nization cores when accessing shared resources, and thereby maintaining a high

level of control over resource access protocols. The method leverages specialized

schedulability tests and offers two variations that employ either the priority ceil-

ing protocol or the non-preemptive protocol to govern resource access, enhancing

the system’s overall efficiency and schedulability. The allocation process of ROP

is delineated in the subsequent steps.

Step 1: Initialization

• Analyze task resource utilization, including access count and duration.

• Sort resources by utilization and tasks by deadlines.

Step 2: Priority Assignment

• Prioritize tasks based on deadline order, with shorter deadlines higher.

Step 3: Resource Allocation

• Adjust synchronization processors from one to minimum of tasks or parti-

tions to find a feasible solution.

• Allocate resources on processors using WFD, balancing load and total uti-

lization.

66

Step 4: Task Allocation

• Create and track an empty allocation list for each processor.

• – Sequentially select tasks for allocation.

– Try allocating to non-synchronization processors first.

– Ensure task can be scheduled on chosen processor with RTA.

– Allocate and update task details if schedulable.

Step 5: Finalization

• Verify all tasks are allocated.

• – Return scheme if successful.

– Return null if not.

Step 6: Iterative Adjustments

• Modify parameters and retry until a solution is found or all options are

exhausted.

The ROP method, grounded in a search-based approach, distinctly allocates

tasks and shared resources to synchronization and application cores, fostering

a more efficient real-time system scheduling. This strategy not only localizes

the resource contention, reducing the associated overhead but also leverages

specialized schedulability tests to find an optimal allocation of tasks and re-

sources, enhancing the system’s performance. By allowing tasks to migrate to

synchronization cores for accessing shared resources, it minimizes conflicts and

promotes a smoother execution flow, potentially reducing the number of proces-

sors required for system scheduling. The search-based nature of ROP ensures

a detailed exploration of possible solutions, aiming to find the most optimized

67

allocation, albeit at the cost of higher computational time. It is demonstrated

in [100] that ROP outperforms a set of existing methods, including greedy slacker

approach in [97].

However, ROP is a search-based allocation algorithm, it maps tasks to pro-

cessors by iterating through each one and assessing the system’s schedulability

using a specific test. Although search-based allocation often produces better

schedulability results compared to conventional heuristic approaches (e.g., WF),

potentially enhancing system performance, it can also prolong implementation

time. This leads to the following limitation.

Limitation 5. Search-based task allocation methods that rely on schedulability

tests, such as ROP [57], can result in extended computation times, making them

unsuitable for runtime applications.

Tasks under ROP may incur additional migration overhead each time they

access a shared resource—i.e., migrating to and returning from a dedicated pro-

cessor. This can introduce a significant runtime overhead, leading to the subse-

quent limitation [104,109].

Limitation 6. In scenarios with intensive resource access, ROP [57] can induce

frequent task migrations, imposing considerable overhead and thereby reducing

the method’s performance [109].

2.4.3 Summary

Task allocation in real-time systems has transitioned from static to dynamic

strategies to optimize the distribution of tasks across processors. Allocation in

multiprocessor environments with shared resources has attracted many atten-

tions. While methods such as SPA group tasks by shared resources, they can

occasionally produce oversized bundles, resulting in inefficiencies. Conversely, the

68

ROP method, which assigns tasks and resources to distinct processors, can result

in longer computation times because of its iterative approach. Additionally, it

introduces overhead from frequent task migrations. These challenges underscore

the necessity for enhanced task allocation techniques and form the basis for the

second step of the proposed HPRTS framework as presented in Chapter 4.

2.5 DAG Tasks in Real-Time Systems

In real-time systems, the intricacy of tasks and their dependencies has increased

significantly. DAG are now essential tools for representing and managing these

relationships, facilitating effective task execution on multicore platforms. This

section provides an overview of DAG tasks, from basic models to advanced

scheduling methods and RTA. As we explore DAG tasks further, we identify

the challenges that require solutions.

2.5.1 Generic DAG Task Model

As real-time systems continue to grow in both scale and complexity, the tasks

within these systems have begun to exhibit intricate internal structures, necessi-

tating solutions that can leverage high performance to manage these complexities

adeptly. A representation that has gained prominence in this context is that of

DAG, wherein nodes represent subtasks, and edges signify the precedence con-

straints between them. This representation is increasingly utilized in real-time

systems due to its ability to accurately depict complex task dependencies, thereby

facilitating high-performance parallelism on multicore platforms.

We assume a multi-DAG system contains z recurrent DAG tasks Γ = {τ1, ..., τz}

as illustrated in Figure 7, DAG tasks in this thesis are independent of each other,

that is we assume nodes of two different DAG tasks do not share any resources

and there exists no dependency between them. According to [53,108], a real-time

69

Figure 7: An example of multiple DAG tasks.

DAG task τi is defined by following tuples {Ti, Di,Gi = (Vi, Ei), P ri(τi)}. Here,

Ti, Di, and Pri(τi) are as defined in the Section 2.1.1. Moreover, Gi represents

a graph that defines the set of activities forming the DAG task. This graph

is described as Gi = (Vi, Ei), where Vi is the set of nodes and Ei ⊆ (Vi × Vi)

indicates the set of directed edges connecting any two nodes.

A node in DAG τi is represented as vi,j ∈ Vi, with the index j specifying the

node and the index i indicating its affiliation to τi (e.g., V1 = {v1,1, v1,2, v1,3, v1,4, v1,5}

as presented in Figure 7). For simplicity, the subscript of the DAG task (i.e., i

for τi) is dropped when a single DAG task is under consideration. Each node vj

are assigned a unique priority, represented as Pri(vj), respectively. Furthermore,

if the priority of τi exceeds that of τj (i.e. Pri(τi) > Pri(τj)), then every node in

τi will have a priority greater than those in τj (i.e. Pri(va) > Pri(vb), ∀va ∈ Vi

and vb ∈ Vj). The WCET of a node vj is given as Cvj , while the cumulative

WCET of a DAG τi is represented as Cτi =
∑

vj∈Vi
Cvj .

If two nodes vj and vk are connected by a directed edge (i.e., (vj, vk) ∈ E),

vk can start executing only if vj finishes executing. That is, vj is a predecessor

70

of vk, whereas vk is a successor of vj. The predecessors and successors of node

vj can be formally defined as pre(vj) = {vk | vk ∈ Vi ∧ (vk, vj) ∈ E} and

suc(vj) = {vk | vk ∈ Vi ∧ (vj, vk) ∈ E}, respectively. Nodes that are either direct

or transitive predecessors and successors of a node vj are termed as its ancestors

anc(vj) and descendants des(vj) respectively. A node vj with pre(vj) = ∅ or

suc(vj) = ∅ is referred to as the source vsrc or sink vsink respectively. As with

most of the existing work [53, 54, 107], we assume a generic DAG model that

always starts with one source and ends with one sink node, otherwise, a dummy

node without utilization is added to the beginning or the end of the DAG.

Based on the DAG task model. we define the features of a DAG that will be

utilized by RTA constructed in this thesis. Table 7 summarizes main notations

of DAG tasks.

Definition 1. When bounding RTA for DAG tasks, the WCRT of a DAG in a

single-DAG system is often referred to as the makespan

Definition 2. (Concurrent nodes) For a pair of nodes vj, vk ∈ Vi, if vj is neither

the ancestors of vk (i.e. vj /∈ anc(vk)) nor the descendants of vk (i.e. vj /∈

des(vk)), it is referred to as a concurrent node of vk. The set of concurrent

nodes of vj is denoted as S(vj) and is expressed as Equation 23.

S(vj) = {vk|vk ∈ Vi ∧ vk /∈ anc(vj) ∧ vk /∈ des(vj) ∧ vk ̸= vj} (23)

Example 5. Taking the DAG task shown in Figure 8 as an example. The con-

current nodes of v2 within the DAG is S(v2) = {v3, v4, v5}.

A complete path within a DAG is defined as follows. As no partial paths will

be used in this thesis, we use the term path directly.

71

Figure 8: An example of a DAG task τi

Definition 3. (Path) A path of τi is denoted by λa = {v0, v1, · · · , vk}, where

∀p ∈ [0, k], (vp, vp+1) ∈ E, v0 = vsrc and vk = vsink.

For a path λa, Cλa returns its total workload (i.e., length), which is the sum

of the WCET of nodes in λa. The path with the highest workload (Cλa) within

a DAG τi is defined as the critical path and is denoted as λ∗
i .

Example 6. As shown in Figure 8, the DAG task consists of three paths: λ1 =

{v1, v2, v6}, λ2 = {v1, v3, v5, v6} and λ3 = {v1, v4, v6}, with Cλ1 = 5+ 2+ 6 = 13,

Cλ2 = 5+ 3+ 6+ 6 = 20 and Cλ3 = 5+ 6+ 6 = 17, respectively Therefore, λ2 is

the critical path of this DAG task.

2.5.2 DAG Task Scheduling

Similar to the traditional sporadic task model, research on DAG task scheduling

has branched into partitioned, global, and federated scheduling, as introduced

in section 2.1.2. Among these, global scheduling has garnered the most atten-

tion, becoming a significant focus in research. Beyond offering improved system

utilization, it provides more flexible and adaptable scheduling solutions adept at

72

Table 7: List of Notations for DAG Task

Notation Definition

Gi Graph representing set of activities in τi

Vi Set of nodes in τi

Ei Set of directed edges in τi

vi,j Node j in DAG τi

Pri(vj) Priority of node vj

Cvj WCET of node vj

λa A path in τi

Cλa Total workload of path λa

λ∗
i Critical path in τi

pre(vj) Predecessors of node vj

suc(vj) Successors of node vj

anc(vj) Ancestors of node vj

des(vj) Descendants of node vj

vsrc Source node of a DAG

vsink Sink node of a DAG

S(vj) Set of concurrent nodes of vj

managing dynamic changes. This strategy is especially advantageous in environ-

ments where tasks have precedence constraints modeled as a DAG [9].

Global list scheduling entails maintaining a global list of all tasks [72]. A

pivotal step in global list scheduling is task prioritization. Tasks receive pri-

orities from metrics like computational demands and task dependencies. This

prioritization can either be static, set before execution, or dynamic, allowing for

adjustments during runtime. The aim is to minimize the overall execution time,

or the makespan, through the smart allocation of tasks to processors [79].

73

At the core of this method is the upkeep of a global list of all tasks await-

ing scheduling. This list acts as a repository, guiding the selection of tasks for

scheduling and ensuring a consistent view of all tasks. In a DAG setting, the

node with the highest priority might not be the initial choice for scheduling due

to the need to honor task dependencies [58].

Work-Conserving and Non-Work-Conserving

Work-conserving scheduling stands as a strategy where the scheduler ensures that

the processor is never idle if there are tasks ready to be executed [39]. In the

context of global list scheduling, this means that tasks are continuously pulled

from the global list and allocated to processors as long as there are tasks available.

This strategy aims to maximize resource utilization and minimize task waiting

times, thereby potentially increasing the overall system throughput. However, it

requires a well-structured global list that can quickly identify and allocate the

next task to be executed, ensuring a smooth and efficient scheduling process.

On the other hand, non-work-conserving scheduling allows for periods where

the processor remains idle despite having tasks ready in the global list for execu-

tion [82]. This strategy is employed to ensure that higher-priority tasks receive

the focus they require, potentially waiting for a more opportune time for execu-

tion, even if it means a temporary underutilization of resources. In a global list

scheduling context, this could mean a more strategic allocation of tasks, where

the scheduler can withhold lower-priority tasks in the global list to prioritize the

execution of higher-priority tasks, maintaining a quality of service and meeting

critical deadlines.

74

Preemptive, Non-Preemtpive and Limited Preemption

In the context of global list scheduling applied to DAG tasks, understanding the

nuances of different scheduling strategies—namely preemptive, non-preemptive,

and limited preemption scheduling—is pivotal [12]. These strategies dictate how

tasks are managed and executed, each with its unique approach to handling task

priorities and preemptions.

Starting with preemptive scheduling, this strategy allows for a DAG task to

be interrupted at any point, provided a higher-priority task or node becomes

available. This ensures that high-priority tasks are not left waiting, thereby

optimizing the system’s responsiveness and throughput. While this strategy

offers flexibility, it does come with its set of challenges, including the potential

for frequent context switches and the associated overheads.

Transitioning to non-preemptive scheduling, here, once a DAG task com-

mences, it sees through to completion of the last node of the DAG, regardless

of the emergence of higher-priority tasks. This strategy stands in contrast to

preemptive scheduling, offering a simplified scheduling process at the expense of

potentially longer waiting times for high-priority tasks, as it strictly adheres to

the execution pattern defined by the DAG.

Bridging the gap between preemptive and non-preemptive scheduling is the

strategy of limited preemption scheduling. This approach permits preemptions at

the task level while retaining a non-preemptive stance at the individual node level

within each task. Essentially, it seeks to marry the responsiveness of preemptive

scheduling with the simplicity of non-preemptive scheduling, creating a controlled

environment that strategically designates preemption points to curb the potential

overhead induced by unrestricted preemptions.

75

Timing Anomaly in DAG

A timing anomaly in the context of DAG scheduling refers to a situation where

a local improvement in the execution time of a node not lead to an improvement

in the overall execution time of a DAG or a system, and can sometimes even lead

to a degradation in the global performance.

In DAG scheduling, the execution of a node should obey the precedence con-

straint. A timing anomaly can occur in such a system due to various factors in-

cluding, but not limited to, the complex interplay of task dependencies, resource

contentions, and scheduling policies. Example 7 presents a timing anomaly sce-

nario under global list scheduling with a limited preemption scheduling scheme

in a work-conserving manner.

Example 7. Figure 9 presents a DAG example and its two abstracted execution

Gantt charts (Simulation and Reality). Node priorities are not necessary in this

example and hence are omitted. As shown in the Simulation chart, v1 starts at

t = 0 on partition P2 as it is the source node. When v1 finishes at t = 1, v2 and v3

become eligible to execute and begin execution on P1 and P2, respectively. When

v3 finishes at t = 3, v6 starts and continues until t = 8 on partition P1. Following

the completion of v2 at t = 4, v4 and v5 execute sequentially on P2. Finally, v7

starts at t = 8 and finishes at t = 9, resulting in a simulation makespan for the

DAG of 9 units. However, in reality, a node is likely to execute in less time than

its WCET. In the Reality scenario, v2 executes for only one unit of time, from

t = 1 to t = 2, which initially appears to be an improvement. However, due to

limited preemption, this alters the execution order of v4, v5, and v6, resulting in

a makespan of 10 units.

To avoid timing anomalies in limited preemption environments while main-

taining timing predictability, numerous studies have introduced additional run-

time approaches to eliminate timing anomalies in DAG scheduling [28,66].

76

Simulation

Reality

t

t

0 1 2 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9 10

Figure 9: An example of timing anomaly

In one such approach detailed in a study [28], the authors propose a sys-

tem that monitors the actual runtime execution of each execution unit within

a DAG. This system strictly idles the core to preserve the pre-established exe-

cution order of DAG tasks, effectively removing timing anomalies encountered

during scheduling with limited preemption. To provide timing guarantees to the

system, they simulate a hyperperiod of the system and calculate the worst-case

system behavior through simulation.

However, this approach has its drawbacks. Firstly, it renders the system

non-work-conserving, as there are instances where ready nodes cannot execute

because they must adhere to the predefined execution order, even when a core is

77

idle. Secondly, online monitoring introduces additional overhead to the system,

potentially exacerbating system performance. On the other hand, developing a

RTA to bound the WCRT of tasks can also foster timing predictability without

managing DAG execution at runtime. This strategy aims to ensure that the

system can reliably predict the maximum time it takes for a task to be completed,

enhancing the overall predictability and reliability of the system.

2.5.3 RTA for DAG Tasks

There exists a large body of work on analyzing DAG tasks, which covers a wide

range of hardware settings, scheduling schemes and task models [24,36,52,53,60,

65,74,86,107,108]. In this subsection, we focus on the major existing analysis for

DAG tasks with a global work-conserving schedule in homogeneous multi-core

systems. An in-depth review is provided to illustrate the major limitations and

defects of the existing analysis.

Generic DAG Analysis under Work-Conserving Schedules

The majority of existing methods on DAG scheduling assume a work-conserving

scheduling scheme [74]. For this schedule, Graham [45] proposes the classic

generic bound for the traditional tasks, in which the interference of a task is

computed by the average value of the total workload of other tasks on all pro-

cessors.

Based on the classic bound, Melani et al. [74] construct an analysis to compute

the WCRT of DAG tasks under a preemptive scheduling scheme. This analysis

takes the priorities of the DAG tasks as an input but assumes no knowledge of

the intra-node priority of each DAG. We note that the analysis is constructed for

conditional DAGs, i.e., a DAG task can contain conditional edges that may not

be active during execution, but is fully compatible with the unconditional ones.

78

Under this analysis, two key factors of the WCRT of a DAG task are identified:

the intra-task and inter-task interference that can be summarized below.

Definition 4. (Intra-task interference) the amount of interference incurred by a

node from high-priority nodes within the same DAG.

Definition 5. (Inter-task interference) the amount of interference incurred by a

node from high-priority nodes from other DAGs.

Later on, the generic analysis is improved by Fonseca et al. [36] using a finer-

grained approach for computing the inter-task interference caused by carry-in

and carry-out DAGs. Following a similar approach, Serrano et al. [86] construct

a generic analysis for DAG tasks for the limited preemption scheme, where a

blocking factor imposed by the low-priority nodes and DAGs is introduced in

the analysis. The definitions of blocking are defined below. When referring to

the term delay by itself, it contains both interference and blocking.

Definition 6. (Intra-task blocking) the amount of blocking incurred by a node

from low-priority nodes within the same DAG.

Definition 7. (Inter-task blocking) the amount of interference incurred by a

node from low-priority nodes from other DAGs.

As shown in Equation 24 [86], the WCRT of a DAG can be divided into two

parts: 1) the worst-case makespan of a DAG, 2) the inter-task delay suffered

from other DAG tasks.

Ri = Makespan︸ ︷︷ ︸
part 1

+InterDelay︸ ︷︷ ︸
part 2

(24)

As shown in Equation 25, the first part calculates the worst-case makespan

of a DAG task τi. The Cλ∗
i
term is the sum of the WCET of the nodes in the

critical path. The analysis includes the principle that all nodes apart from the

79

critical path can provide delay to the critical path. Therefore, the amount of

delay incurred by the critical path is denoted as 1
m
(CVi

− Cλ∗
i
), in which CVi

gives the total workload of τi and CVi
− Cλ∗

i
represents the amount of workload

of a DAG apart from the critical path. The workload after subtraction is then

divided by the number of cores in the system m to work out the upper bound of

the delay incurred from nodes within the same DAG task.

Then, the second part calculates the inter-task delay of τi, in which Ihii is

the workload of the interference delay imposed by high-priority tasks, which is

the sum of the WCETs of all high-priority nodes that are released during the

execution of τi. As for Blo
i , it contains the workload of the blocking delay from

low-priority tasks due to limited preemption scheduling. To bound Blo
i , Lemma

1 and 2 are constructed in [92].

Ri = Cλ∗
i
+

CVi
− Cλ∗

i

m︸ ︷︷ ︸
part 1

+

⌊
Ihii +Blo

i

m

⌋
︸ ︷︷ ︸

part 2

(25)

Lemma 1. For a DAG task, the first node can suffer a blocking delay from at

most m (total core number) nodes with lower priorities [92].

Lemma 2. For a DAG task, nodes apart from the first node can suffer the

blocking delay from at most m− 1 nodes with lower priorities [92].

According to Lemma 1 and 2, the classical bound then assumes the first node

(resp. every node apart from the first node) can suffer blocking delay from m

(resp. m − 1) largest low-priority nodes that can execute in parallel [86]. The

largest m (and m − 1) nodes among the DAG tasks with lower priorities that

can execute in parallel are denoted as δmi (and δm−1
i). As shown in Equation 26,

Blo
i is equal to the total workload of δmi (incurred by the first node) plus |Vi|−1

times the workload of δm−1
i (incurred by rest of the nodes), where |Vi| represents

80

Figure 10: Three DAG tasks with different priorities.

the size of the nodes in τi

Blo
i = Cδmi

+ (|Vi|−1) ∗ Cδm−1
i

; (26)

An example of the calculation of the classical bound [86] is presented below.

Example 8. We first calculate the worst-case makespan of τ1 shown in Figure 10,

which is the first part of Equation 25. The critical path of τ1 is λ∗
1 = {v1, v2, v5}.

The total workload of the λ∗
1 is Cλ∗

1
= 1 + 10 + 2 = 13. The total workload of τ1

is CV1 = 1 + 10 + 1 + 1 + 2 = 15. For a dual-core system, the interference of

λ∗
1 can be calculated as 15−13

m
= 15−13

2
= 1. The worst-case makespan is equal to

R1 = Cλ∗
1
+ 1 = 13 + 1 = 14.

Then, we calculate the inter-task delay. For simplicity, assuming τ2 and τ3

will only release once during the execution of τ1. Task τ3 has higher priority than

81

τ1, i.e Pri(τ3) = 3 > Pri(τ1) = 2, hence Ihi1 = CV3 = 1+4+4+2+2 = 13. Task

τ2 has lower priority than τ1, We have δ21 = {v7, v8} and δ11 = {v7}, then Cδ21
=

4+4 = 8 and Cδ11
= 4, the size of τ1 the |V1|= 5. Finally, Blo

1 = 8+(5−1)∗4 = 24.

According to Equation 25, we have R1 = 14 + ⌊13+24
2

⌋ = 32

Based on the description provided above, we can see that the classical bound

for systems with limited preemptions proposed in [86] is rather pessimistic. The

main limitations of the classical bound can be concluded as follows.

Limitation 7. The analysis neglects the parallelism feature between nodes and

results in a pessimistic calculation of the worst-case response time.

For example, for the analysis of a single DAG, the classical bound assumes all

the nodes apart from the critical path will delay with the critical path. However,

some nodes can execute in parallel without delaying the execution of the critical

path. Moreover, when accounting for the inter-task delay, it also assumes all

nodes with a higher priority will interfere with the DAG. For a system with suf-

ficient cores available, DAG tasks can also execute in parallel without interfering

with each other.

Limitation 8. When calculating the inter-task low-priority blocking, each node

apart from the source node is assumed to incur a constant low-priority blocking

from δm−1
i , which is pessimistic.

According to Lemma 2, each node apart from the source node will suffer

blocking from at most m − 1 low-priority nodes. However, each low-priority

node can only delay a high-priority node once during one release [21]. Thus,

assuming nodes in δm−1
i can constantly block all nodes apart from the first node

will result in repetitive calculations of blocking.

Moreover, the Limitation 8 is also caused by that fact that intra-task and

inter-task blocking are analyzed separately, which can inevitably cause redundant

calculations.

82

DAG Analysis with Explicit Intra-task Priority

Despite its utility, this generic bound can become overly pessimistic, especially

when the precise node execution order is predetermined before system execution,

leading to an overestimation of interference and blocking [108].

He et al. [54] alleviates pessimism of the classical bound by introducing prior-

ities to nodes within a DAG. They consider systems with a preemptive scheduler.

With a given intra-task priority assignment, only nodes with higher priority need

to be considered as the interference workload. Therefore, the resulting intra-task

delay can be reduced. As shown in the part 1 of Equation 27, Cλj
calculates

the workload of the path λj. The factor I(λi) denotes the set of nodes that

have a higher priority than the nodes in path λi. Term CI(λi) then calculates the

interference workload of the path. Finally, maxλj∈τi{} iterates through all paths

in τi and finds out the maximum bound on the DAG makespan. The part 2 of

Equation 27 denotes the inter-task delay, where only the interference from tasks

with higher priorities is accounted for. The calculation of Ihii follows the same

method as in Equation 25.

In Equation 27, the intra-task interference is reduced by assuming an intra-

task priority assignment under the preemptive scheme. However, the parallelism

between nodes is not fully exploited. For instance, the analysis assumes that all

nodes with a higher priority contribute to intra-task interference when computing

the worst-case makespan. Yet, when there are sufficient cores in the system,

nodes can execute in parallel without experiencing any interference. Thus, it

does not address Limitation 7. Furthermore, since the focus is on preemptive

scheduling, it does not address Limitation 8.

Ri = max
λj∈τi

{
Cλj

+
CI(λj)

m

}
︸ ︷︷ ︸

part 1

+

⌊
Ihii
m

⌋
︸ ︷︷ ︸
part 2

(27)

83

Later, Zhao et al. [107] proposed a RTA under the limited preemption scheme

which aims to eliminate unnecessary interference by exploring the parallelism

of the execution of nodes. The single-DAG analysis produces the worst-case

makespan by computing the worst-case finish time of each node. According to

Equations 3, 4, and 10 in [107], the key concept of calculating the worst-case

finish time of each node can be summarized as Equation 28. In this analysis,

the worst-case finish time of a node vj is denoted as Ft(vj), which is computed

by determining: 1) the WCET of vj, 2) the predecessor node with the latest

worst-case finish time, i.e. maxvk∈pre(vj){Ft(vk)}, and 3) the intra-task delay

which include the delay imposed by both interference and blocking (denoted as⌈
CI(vj)

m

⌉
).

Ft(vj) = Cvj + max
vk∈pre(vj)

{Ft(vk)}+
⌈CI(vj)

m

⌉
(28)

I(vj) = S(vj) \
⋃

vp∈anc(vj)

I(vp) (29)

As illustrated in Equation 28, the set of nodes that can delay vj is encom-

passed within the list I(vj). This list comprises both higher-priority nodes that

can interfere with vj and lower-priority nodes that can block vj. The cumulative

workload of the nodes in I(vj) is represented as CI(vj).

Further examining the composition of I(vj) as depicted in Equation 29, it

includes all the concurrent nodes of vj, denoted as S(vj), excluding those that

have already been accounted for in delaying the ancestors of vj. This is achieved

through a loop that iterates over each ancestor of vj, i.e., vp ∈ anc(vj), incor-

porating every list that has been recognized as containing nodes that can delay

the ancestor vp, represented as I(vp). However, this analysis might potentially

be unsafe, a concern is proposed in Lemma 3.

84

Figure 11: An example of a DAG.

Lemma 3. The calculation of the worst-case finish time shown in Equation 28

is not necessarily the worst-case finish time.

Proof. An example of a DAG task is shown in Figure 11. Assuming the DAG

executes in a dual-core system. To ease the presentation, the scheduling scheme

is assumed to be preemptive (i.e., no blocking delay can occur) which will not

affect our claim. We now compute the worst-case finish time of each node and

the makespan of the DAG using the analysis in [107].

According to Equation 28, we can calculate the worst-case finish time of each

node as below:

• Ft(v1) = Cv1 = 1: v1 has no predecessors and concurrent nodes, so its

finish time is equal to its computation time.

• Ft(v2) = Cv2 + Ft(v1) +
Cv3+Cv5+Cv6

2
= 3 + 1 + 10+3+3

2
= 12. The only an-

cestor node of v2 is v1 and does not incur any interference. The concurrent

nodes of v2 are given by S(v2) = {v3, v5, v6}. These nodes have a higher

priority than v2.

85

t0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 12: The simulation graph of the DAG in Figure 11.

• Ft(v3) = Cv3 +Ft(v1) = 10+ 1 = 11. Here, the only ancestor node of v3 is

v1.The concurrent nodes of v3 is S(v3) = {v2}, but Pri(v2) < Pri(v3), so

no interference is incurred.

• Ft(v4) = Cv4 + Ft(v2) = 3 + 12 = 15. In this case, pre(v4) = {v2, v3},

and maxvk∈pre(v4){Ft(vk)} = Ft(v2) = 12. Since S(v4) = {v5, v6} has been

accounted for in Ft(v2), hence no additional interference is calculated.

However, Figure 12 shows one of the possible execution scenario, in which v5

and v6 will delay the execution of v4, which results in a finish time of 17 > 15.

However, such a delay is not accounted for in the analysis. Therefore, this

analysis does not produce the worst-case finish time of the DAG.

As for the analysis of multi-DAGs, the analysis in [107] does not support work-

conserving scheduling, the inter-task delay cannot be computed using the same

analytical approach as for the intra-task delay. It assumes that a DAG starts

executing when the previous arrived DAG finishes executing entirely. Therefore,

as the bound in [107] may not be safe, Limitations 7 and 8 are still open to be

resolved, which motivates our work in the following chapter.

2.5.4 Summary

The section reviews research on DAG tasks in multi-core systems, emphasizing

global work-conserving schedules. While the RTA of DAG tasks plays a central

86

role, various methods have been discussed, including generic DAG analysis and

those with explicit intra-task priority. However, these methods often come with

inherent limitations. These limitations include neglecting node parallelism, mak-

ing pessimistic assumptions, and potential unsafety in certain analyses. Despite

extensive research, these unresolved issues motivate the final step of the proposed

HPRTS framework, as demonstrated in Chapter 5, to propose a new technique

for RTA of DAG tasks and provide a tighter upper bound.

2.6 Summary of Existing Literature

In this chapter, an examination of real-time systems is presented. The focus is

on their primary characteristics, the models used for tasks, and the scheduling

mechanisms. The FPS method is highlighted due to its recognized efficiency and

predictability within these systems. Furthermore, the RTA tool is identified as

a vital instrument for evaluating whether tasks can be completed within their

respective deadlines.

The subsequent section delves into the topic of resource sharing in real-time

systems. The challenges of managing shared resources, especially in multicore

environments, are discussed. Emphasis is placed on lock-based mechanisms, with

spin-based locks being particularly noteworthy because of their role in ensuring

mutual exclusivity of resource access. The importance of the FIFO order in

managing access sequences is also addressed. A comparison is made between the

older and newer versions of MSRP RTA, with the latter offering improvements

in WCRT calculations.

The literature on MCS is explored, categorizing tasks based on their criti-

cality levels. The classic AMC model is discussed for its approach to classifying

tasks into different system modes. However, the four-mode model has certain

limitations, summarized in Limitations 1, 2, and 3. These observations lead to

87

the proposition of advanced fault-tolerance models, as detailed in Chapter 3.

The topic of task allocation in real-time systems is addressed, highlighting

a transition from static to dynamic methods. The SPA method, which groups

tasks based on shared resources, is discussed, along with its potential to create

large task groups. In contrast, the ROP method, which assigns tasks and re-

sources separately, can lead to extended computation times. The limitations are

summarized in Limitations 4, 5, and 6. These challenges and potential solutions

are further elaborated upon in Chapter 4.

Finally, the chapter reviews DAG tasks in multi-core systems. The role of

RTA in these tasks is central, but current methods have certain limitations.

These limitations, including issues with node parallelism and specific assump-

tions, are summarized in Limitations 7 and 8. Moreover, we also spot a mistake

of the state-of-the-art RTA as presented in [108] and highlight it in Lemma 3

with proofs. The need for a new RTA approach is emphasized, culminating in

its introduction in Chapter 5.

Overall, this chapter provides a comprehensive review of real-time systems, fo-

cusing on reliable resource sharing, contention-aware task allocation algorithms,

and RTA for DAG tasks. We then identify the bottlenecks in these areas that

hinder the evolution of real-time systems. These limitations analyzed inspire our

proposal of the HPRTS framework to guide modern real-time systems towards

high performance

88

Chapter 3

Reliable Resource Sharing in Mixed-Criticality

Systems

There is an increasing demand to realize both complex functionality and high

performance with limited resources in emerging real-time applications. This ne-

cessitates extensive resource sharing. For example, to facilitate partially or fully

automated driving, the AUTOSAR Classic standard (which implements static

task configuration with resource isolation) is evolving to AUTOSAR Adaptive

with dynamic resource sharing on multiprocessor architectures [5]. The con-

ventional requirements of timing predictability and reliability still need to be

satisfied. That is, the deadlines of tasks must be met while failures during task

executions must be resolved. However, satisfying both is particularly hard, es-

pecially in the aerospace sector which makes extensive use of task re-execution

to handle errors caused by radiation.

In this thesis, shared resources include data structures, special memory loca-

tions, and code segments. They often need to be accessed in a mutually exclu-

sive fashion, which can cause blocking due to contention. Several multiprocessor

resource-sharing protocols have been proposed to bound and minimize blocking

time, including MSRP [41] and MrsP [22]. However, reliability has not been

accounted for, which is imperative in mission-critical scenarios. Existing fault-

tolerance methods are based on redundancy, and they may be directly applied

to shared resources by scheduling repeated task executions and resource accesses

a sufficient number of times to get the correct output. However, this leads to

severe resource contention and undermines system schedulability.

This chapter consists the first step of the proposed HPRTS framework which

89

aims to bridge the gap between reliability and resource sharing. We focus on MCS

that are widely found in practical applications [59, 101] and whose complicated

execution model makes the problem more challenging to solve. We propose the

first fault-tolerant solution for multiprocessor MCS with shared resources. First,

a system execution model compatible with an arbitrary number of criticality lev-

els is constructed. In our model, faults occurring in normal sections (i.e., without

shared resources accessed) and critical sections (i.e., with shared resources ac-

cessed) are treated separately. Then, a novel protocol, namely Multiprocessor

Stack Resource Protocol Fault Tolerance (MSRP-FT), is proposed to address

faults during critical sections, aiming to minimize blocking time. Specifically,

the remote processors occupied by other tasks waiting for the resource are em-

ployed to assist the resource-holding task (i.e., the head of the FIFO queue) for

fault tolerance. A RTA is reported to bound the worst-case execution scenarios

of the proposed solution.

The rest of this chapter is organized as follows: In Section 3.1, we present

the proposed fault-tolerant solution for MCS with shared resources. In Section

3.2, we report the RTA for the proposed solution. Section 3.3 showcases the

evaluation results, and Section 3.4 concludes the work and its success criteria

established for the entire thesis.

3.1 A Fault-Tolerant Solution for MCS with Shared Re-

sources

In this section, we present a new fault-tolerant solution for generic MCS that have

tasks with two or more criticality levels with shared resources, to handle both

task overruns and transient faults. First, we introduce a new fault-aware system

model for MCS. The proposed system model distinguishes faults occurring in

normal and critical sections, which enables different fault-tolerance schemes to

90

be implemented. Then, based on MSRP, a novel fault-tolerance multiprocessor

resource sharing protocol is proposed for handling faults in critical sections, which

reduces the blocking time incurred for tolerating faults and guaranteeing the

reliability of the system.

Task Fault Request Resource Request ResourceFault

Free

Task FaultFault

Free

Overrun

Overrun

Mode Mode

Roll-back New approach Roll-backNew approachOverrun

Figure 13: The proposed system model.

3.1.1 The Proposed System Model

To handle task overruns and faults which occur during both normal and crit-

ical sections of a MCS, a fault-tolerant system model is constructed based on

the extension of the AMC model as illustrated in Section 2.3.2 [11]. Figure 13

illustrates the execution flow of the system and tasks in the model. During a

task’s execution, faults can occur either in a normal or a critical section. The

former is called a task fault and the latter a resource fault in this chapter. In the

proposed model, different fault-tolerant techniques are adopted to tolerate these

two types of fault. The fault detection and tolerance techniques for normal and

critical sections are presented in Section 3.1.2 and 3.1.3.

As shown in Figure 13, each task has three execution states under a system

mode (say L): fault-free (L-FF), task-fault (L-TF) and resource-access (L-RA).

They are allowed to execute up to an execution budget Cτi,L. A task executing

in state L-FF is executing a normal section without incurring any faults. Once

91

a fault occurs in a normal section, the task moves to state L-TF, at which

the fault will be resolved. If a task requests a resource, it moves to state L-RA

directly, where the fault-tolerance procedure for critical sections will be activated

immediately, guaranteeing a fault-free resource access (see Section 3.1.3). The

task moves back to state L-FF from L-TF or L-RA if the fault is resolved or the

resource access is finished, respectively.

The system advances to the next system mode L+ if any task with li > L in

mode L overruns its budget; this represents a transition between any two suc-

cessive modes, e.g., from mode A to mode B. When an overrun occurs, tasks

with criticality li ≥ L+ that are running in states L-FF, L-TF and L-RA will

move directly to L+-FF, L+-TF and L+-RA respectively with elevated execution

budgets Cτi,L+ and other tasks are dropped. By doing so, each overrun can bring

the system to the next mode, and therefore, the scalability issue stated in the

Limitation 1 of Section 2.3.4 is addressed. However, there is an exception for

tasks with criticality li < L+ running in the state L-RA while executing with a

shared resource, they are allowed to be dropped after finishing the underway crit-

ical section for the consideration of data integrity [47]. Moreover, mode changes

can occur in the reverse direction. It is assumed that when the computational

pressure decreases, the system reverts to the lowest mode, at which point pre-

viously suspended tasks are resumed. This functionality is facilitated through a

dynamic monitoring system that evaluates the computational load in real time,

thereby enabling fluid and efficient operation.

3.1.2 Fault-Tolerance of Normal Sections

In this subsection, we focus on transient faults which can be resolved by redun-

dancy approaches. However, in systems with shared resources, detecting faults

at the end of a task and re-executing the whole task to resolve a transient fault

92

can lead to substantial blocking time and the risk of transferring incorrect data

to other tasks. To minimize the blocking time and provide reliable resource shar-

ing, we apply different fault-tolerance approaches to handle faults that occur in

normal and critical sections. This is achieved by not only inserting checkpoints

at the start and end of each task but also introducing additional checkpoints

around each critical section of the task. By doing so, the task execution is di-

vided into a set of normal and critical sections. The acceptance test is assumed

to be applied as the fault detection technique at each checkpoint. Although, the

practical application of checkpointing in shared resource systems remains under-

explored. This analysis advocates for its potential integration into future system

architectures, highlighting its prospective benefits in supporting fault tolerance

and operational efficiency. This proposition is a forward-thinking exploration

aimed at guiding the development of more robust resource-sharing mechanisms

in intricate computing environments.

Normal 1 Normal 2Critical 1

Release DeadlineCorrect

τ1

Correct

Normal 2

Error Correct

Check 2 Check 3 Check 4

Rollback

Check 1 Check 5

Save
Detect

Restore

Figure 14: Fault-tolerance in normal sections

In the proposed fault-tolerance approach, the purposes of the checkpoints

are slightly different, and so their operations vary. As shown in Figure 14, a

checkpoint (e.g. Check 1) will be set at the beginning of a task to perform a Save

operation which involves storing the current architectural state of the system,

including register files, counter values and etc. For fault-tolerance in normal

sections, each checkpoint will operate a Detect operation to detect faults after

the execution of each normal segment. If no faults are detected (e.g. at Check 2)

93

the checkpoint will perform the Save operation. Otherwise, if a fault is detected

(e.g. at Check 4) the task will roll back to the most recent checkpoint and

perform the Restore operation which restores the previous data and re-performs

the execution. This process repeats until the normal section is executed without

any fault. Each re-attempt requires an additional Detect operation (e.g. at Check

5). However, for the end of the last execution segment, the Save operation is not

needed at the checkpoint.

3.1.3 Fault-Tolerance of Critical Sections by MSRP-FT

For faults occurring in critical sections, we propose a novel fault-tolerance multi-

processor resource sharing protocol, called MSRP-FT, in which tasks waiting for

a resource can assist the resource holder to execute the associated critical section

in parallel to address potential faults. The objective is to reduce the additional

blocking time caused by resolving faults in critical sections via re-executions.

The proposed MSRP-FT is introduced with the following steps.

Allocation of Replicas

Figure 15 demonstrates an example of the implementation of the proposed MSRP-

FT, which is based on the resource sharing protocol MSRP. According to MSRP

[41], tasks are inserted into a FIFO queue when they request a global resource.

The task at the head of the queue (e.g. τ1 in the figure) is granted the resource,

other tasks spin on their own cores while checking the lock non-preemptively.

With MSRP-FT, tasks are also placed at the FIFO queue when requesting shared

resources. The task at the head of the FIFO queue will access the shared re-

source and the code segment to be executed by the head task and the internal

states (e.g. variables) of the resource are replicated to a number according to the

number of tasks in the FIFO queue as shown in Figure 15b. It is worth noting

94

FIFO

(a) An example of a FIFO queue

resource holder spinning task replica

z z z

(b) Replicas allocation based on the number of tasks in the queue.

Figure 15: Fault tolerance in critical sections

that the access to the resource is always performed by the head task which obeys

the mutually exclusive principle of shared resources and will not incur a race

condition. Afterwards, replicas are stored in the local memory of each core and

each task in the FIFO queue (including the head task) executes a replica on their

host cores in parallel and updates the results on the local replica independently.

Such approach allows critical sections to be executed by cores simultaneously

without causing corruption. If there is only one task in the FIFO queue, the

head task has to execute the critical section by itself.

Submission of Replicas

Each execution of the replica is tested for faults on different cores. As shown in

Figure 16a, if a replica finishes without incurring any fault (e.g. on core P3), it

will obtain the lock and update the shared resource with its local variables. If two

overlapping requests to acquire the lock arrive, one task will commit the result

and another will have no effect on the resource. The update of the resource

95

Replica 2

Error

Replica 1

Replica 3

Correct

R

Error

(a) Submission of execution re-

sults.

 Replicate

Normal 1 Normal 2Critical 1

Release Deadline
Correct Error

Check 1 Check 2

Save
Detect

Restore

Fetch

(b) Operations of checkpoints around a critical sec-

tion.

Figure 16: Fault-tolerance in a critical section

is assumed to be conducted with an atomic action which once performed no

other action can interleave with it, hence, race conditions are avoided. Once

the resource is updated, other tasks are signaled to abandon the computation.

In contrast, if all the resource-accessing tasks fail to obtain the correct result,

they roll back and re-execute the replica until the correct result is successfully

submitted. With a successful commit by any task in the FIFO queue, the head

task (i.e., τ1) is removed from the queue and continues its execution. The same

procedure then repeats for the next head task within the FIFO queue.

Figure 16b shows the operations performed at the checkpoints around the crit-

ical section of τ1. The checkpoint at the start of the critical section (e.g. Check

1) first performs Detect and Save operations to detect for faults and save the

results of the execution of the previous segment, which is the same as mentioned

above. It also applies Fetch and Replicate operations to fetch and replicate the

corresponding operation and the shared resources to the spinning cores. A Detect

operation is performed after the execution of the replica. Although the replica

incurs faults, τ3 already updated the result and a Save operation is performed

to save the architectural states of the system and τ1 continues its execution. As

demonstrated, the proposed approach abbreviates the delaying time due to fault-

96

0 1 2 3 4 5 6 7 8 9

Normal Section Critical Section

Spinning

Assisting

Acquire Resource Release Resource

t10 11

Fault

(a) Fault tolerance by simple segment re-execution.

0 1 2 3 4 5 6 7 8 9

Replica 1

Replica 2

t10 11

Replica 3

(b) The proposed fault-tolerance method.

Figure 17: A comparison between two fault-tolerance approaches under the same

checkpoints setting.

tolerance and the submission made to the global resource is always guaranteed

to be correct, therefore, both Limitations 2 and 3 introduced in Section 2.3.4 are

addressed.

Working Example

To clarify the implementation of the proposed fault-tolerance approach, the de-

tailed execution procedure of the example stated above under two different fault-

97

tolerance approaches is presented in Figure 17. Figure 17a assumes that each

critical section is checked for faults and any detected fault is tolerated directly

by the roll-back and re-execution approach. As shown in Figure 17a, τ1, τ2 and

τ3 request for a shared resource concurrently at t = 1. According to MSRP, τ1

ranks first in the FIFO queue so it is granted with the resource and starts to

execute its critical section immediately. Other tasks (τ2 and τ3) spin on their own

cores and wait for the resource. However, τ1 incurs two faults consecutively and

re-executes its critical section twice. It finally releases the resource and leaves

the FIFO queue at t = 7. τ2 then becomes the head of the queue, which acquires

the resource and starts its critical section from then.

With the application of the proposed fault-tolerant approach, as shown in the

Figure 17b, the cores of τ2 and τ3 are utilized to execute τ ′1s critical section in

parallel instead of spinning. Although only one piece of the replica (i.e., Replica

3) is executed without faults, τ1 can still continue its execution at t = 3. The

chief principle of the fault-tolerant approach for critical sections is to replace

wasted cycles of the spinning tasks in the FIFO queue to provide the reliability

guarantee for each critical section in a single access, in pursuance of reducing the

time spent on fault-tolerance and resource contention. For local resources, each

task has to execute by itself as there exists no spinning tasks on remote cores.

Implementation and Run-Time Overhead

The implementation of the proposed approach requires the hardware architecture

to have individual cache memory or dedicated memory space for each core to store

replicas during the execution of the MSRP-FT, where most commercially off-the-

shelf architectures can satisfy. From the software aspect, a global scheduler will

be adopted to communicate with tasks on different cores. For example, the

scheduler will signal tasks to assist the head task (i.e. the resource holder)

98

to execute the replicas in parallel. Once a successful result is submitted, the

scheduler will signal other tasks to abandon the execution on replicas. Threads

control methods such as wait() and notify() can be used to construct the above

communication logic.

The feasibility of a task executing operations on behalf of other tasks has

been validated in [91], in which once a task is preempted while spinning in

the FIFO queue, the task behind it can acquire the lock first and execute the

operation on behalf of the preempted task. Burns and Wellings [22] also briefly

describes how the associated computations of the preempted task holder can be

executed by the spinning tasks in parallel on different cores, but a detailed system

design and implementation execution framework are not provided. Although the

proposed fault-tolerance approach is developed within a different context and

serves a different purpose, that of reducing blocking time caused by resource

faults, the above work has provided sufficient evidence towards the applicability

and practicability of the proposed approach.

Moreover, the setting of checkpoints can bring additional overheads in terms

of execution time. However, there is a clear trade-off between the number of

checkpoints being set and the final schedulability benefits of the proposed ap-

proach. If the task has intensive resource requests (i.e. contains voluminous

critical sections), the engineer can set fewer checkpoints in a flexible manner

so that a balanced result can still be achieved between the time spent for each

checkpoint and the advantage brought by the proposed approach. In this work,

we assume the worst-case overhead (including that of checkpoints and commu-

nication) is included in the WCET of each task.

99

3.2 Schedulability Analysis

This section provides the RTA for MCS with the proposed fault-tolerance solu-

tion, in which resources are managed by MSRP-FT. The RTA is based on the

most state-of-the-art analysis of MSRP [109] and the AMC-rtb analysis of the

AMC model [11] as stated in Section 2.2.4 and 2.3.2 respectively. Our novelty is

developing the WCRT bound of the fault-tolerant approaches introduced in Sec-

tion 3.1 and integrating these analyses together to provide a holistic upper bound

for the target systems under the proposed approach. We present the complete

worst-case RTA incrementally with an increasing complexity. First, the analysis

for systems that only incur transient faults is developed, i.e. in a stable system

mode. Then, we extend the analysis to include overruns which will advance the

system mode from L to L+, i.e. a mode switch. In addition, this analysis does

not depend on a specific fault model (e.g. the one in [83]). Similar with [1],

each task τi is assumed to incur an individual number of faults fi,L during one

execution in a mode L, in the worst case. Computing the number of faults that

a task can tolerate is referred to as the fault model [1, 83, 84] but is out of the

scope of this thesis.

3.2.1 Analysis of Systems with A Stable Mode

Equation (30) bounds the WCRT of a task τi in a stable mode L. As shown

in the equation, Cτi,L denotes total execution time of normal sections of τi in

mode L. Notation EL
i represents the resource accessing time incurred by τi and

the set of tasks on the same core but that have priority higher than τi and with

criticality li ≥ L (i.e., lhpH(i, L)). BL
i represents the arrival blocking incurred by

τi in mode L. The resource accessing time is the pure computation time of a task

with shared resources and the spin delay experienced by the task when requesting

shared resources but being delayed by other tasks in the FIFO queue which

100

arrived earlier. Whereas, the arrival blocking is incurred when the task is released

but blocked by local low priority tasks that are accessing shared resources and

cannot be preempted. The interference is bounded in
∑

j∈lhpH(i,L)

⌈
RL

i

Tj

⌉
×Cτj ,L,

which is the total amount of execution time (normal sections only) preempted by

lhpH(i, L). FL
i and FL

j denote the additional execution time spent on recovering

faults occurred on τi and a task τj in lhpH(i, L) respectively.

RL
i =Cτi,L + EL

i +BL
i +

∑
j∈lhpH(i,L)

⌈
RL

i

Tj

⌉
× Cτj ,L

+ FL
i +

∑
j∈lhpH(i,L)

⌈
RL

i

Tj

⌉
× FL

j

(30)

Resource Accessing Time (EL
i)

As introduced in Section 2.2.4, the spin delay is the blocking incurred by τi when:

• requests a shared resource but is blocked directly by tasks running on

remote cores accessing the same resource; or

• is preempted by a local higher priority task (lhpH(i, L)), which in turn, is

blocked directly by remote tasks for accessing a shared resource.

However, it is not always true that each request sent by τi and lhpH(i, L)

will be blocked by accesses from every remote core that contains tasks requesting

the same resource as illustrated in the Example 4. This observation aligns with

the state-of-the-art analysis of MSRP presented in [104]. Additionally, in our

model, each request to the shared resource may execute more than once due to

the occurrence of faults, since each execution with shared resource (i.e., critical

section) is tested for transient faults and handled immediately with the proposed

MSRP-FT. Moreover, in MSRP-FT, the spinning tasks will also execute the

resource along with the head task in parallel to hasten the fault-tolerance process.

Therefore, the worst-case execution time of the proposed approach needs to be

101

developed, and we claim novelty of the following parts of the analysis. Notations

introduced for bounding the resource accessing time are presented in Table 8.

The maximum number of executions for each request to resource rx is char-

acterized as nx
i,L = 1 + fi,L, which includes the successful one, and a series of

failed executions fi,L (i.e., number of faults). Lemma 4 is then stated to provide

the worst-case delay that a task can incur from the resource holder during its

one request to a resource.

Lemma 4. For task τi that is spinning for rx at position k in the FIFO queue,

the worst-case delay τi that can be incurred from the current resource holder τj

is bounded by
⌈
nx
j,L

k

⌉
cx.

Proof. Follows directly from the properties in the fault-tolerance method for

global resources. In the worst case, τi and all (k − 1) tasks ahead τi (including

τj) will execute r
x in parallel, and the maximum execution number of the request

is nx
j,L times. Hence, the maximum length of τj’s access to rx (also the delay to

τi) is bounded by
⌈
nx
j,L

k

⌉
cx.

According to Lemma 4, as shown in Figure 18a, in the worst case, each request

issued from τi’s core endures every possible blocking and is placed at the end of

the FIFO queue, with no help available from other waiting tasks to resolve faults.

Moreover, remote blocking requests with higher nx
i,L should be placed closer to

the end of the FIFO queue (i.e. fewer helpers and smaller k) to impose the worst

delay to τi.

To express the worst-case scenario with formulations, we introduce ηxi,L(ι, µ)

to denote a non-increasing list of requests from a task τi to resource rx during

a time period ι with jitter µ. Each element in the list is the number nx
i,L. It

follows that |ηxi,L(ι, µ)|=
⌈
ι+µ
Ti

⌉
× Nx

i , where || gives the size of the list (i.e., the

number of requests) and Nx
i is the number of τi’s accesses to rx in one release.

102

FIFO 1 1

1

1

n=4

n=3FIFO 2

FIFO 3 n=3

n=3

n=2

n=1

n=1

request lhpH request remote request

(a) Worst-case placement of remote blocking requests

1

1

1

n=4

n=3

n=3

n=3

n=1

n=2

n=1

n=2

(b) Requests to a resource from different processors

Figure 18: Worst-case spin delay

For instance, ηxi,L(Ri, 0) = {2, 2, 2} gives Nx
i = 3 and all nx

i,L = 21.

ζxi,L = ηxi,L(R
L
i , 0) ∪

⋃
τj∈lhpH(i,L)

ηxj,L(R
L
i , 0) (31)

With ηxi,L(ι, µ) defined, we introduce a set of notations of lists as shown in

Figure 18b for bounding the blocking, where P1 is the local core and P2−P4 are

remote cores. Below we explain each of the notations introduced in the figure

and their formulations. Equation 31 gives the non-increasing list of execution

1In ηxi,L(ι, µ), each execution number also denotes one resource request. For simplicity, we

use these two terms interchangeably.

103

Table 8: Notations for Bounding the Resource Accessing Time

Symbols Definitions

nx
i,L The number of executions of a request from τi to rx in mode L.

fi,L The maximum number of faults that τi can incur in mode L.

Nx
i The number of requests from τi to resource rx during one release.

ηxi,L(ι, µ) A list of requests from τi to rx during period ι with a jitter µ in mode L.

lhpH(i, L) The list of local high-priority tasks that are eligible to execute in mode L.

ζxi,L The list of execution numbers of each access to rx by τi and lhpH(i, L) in

mode L.

ξxi,Pa,L
The list of execution numbers of each remote request that can block τi or

lhpH(i, L) from core Pa in mode L.

Ex
i,L The list of remote requests that can block τi or tasks in lhpH(i, L) from all

remote cores in mode L.

Γ(Pa, L) The set of tasks on a remote core with index Pa in mode L.

numbers of each access to rx by τi and tasks in lhpH(i, L), during the release of

τi. If a list is denoted by ζxi,L, then ζxi,L(k) gives its kth element, or ∅ if k > |ζxi,L|.

Note, ζxi,L does not account for the requests issued by τi and tasks in lhpH(i, L)

for addressing faults through re-execution. The additional time caused by this

is bounded in FL
i and FL

j , in Section 3.2.1.

In addition, a remote task τj can incur at most fj,L faults during its execution

while accessing shared resources. Accordingly, the worst-case blocking for τi

happens when all fj,L faults occur in its critical sections that can block either τi or

tasks in lhpH(i, L). However, τj can have multiple requests to different resources

in one release, where all these requests can block τi in the worst-case. Moreover,

among these requests, the one for the longest resource may not impose the worst

spin delay to τi according to Lemma 4. For instance, a task τj is executing with

a resource rx up to nx
j,L = 5 times with cx = 5, and τi’s request is placed in

the FIFO queue with k = 2. Thus, the worst spin delay τj can impose to τi is

104

⌈
5
2

⌉
∗ 5 = 15. If cx = 10 and τi is placed at k = 10, then the spin delay τj can

impose to τi is
⌈

5
10

⌉
∗ 10 = 10. However, the identification of the remote request

that can cause the worst-case blocking with faults would require significant state

exploration. Therefore, to ease computation while providing a safe bound, we

assume the first request of τj to each resource that can block τi will incur fj,L

faults (i.e., nx
i,L = 1 + fj,L). As each task can incur at most fj,L faults during

real execution in the worst-case, this assumption does not jeopardize the safe

bound as a higher number of faults during a resource access can only lead to a

non-decreasing blocking.

The notation ξxi,Pa,L
is then introduced as the non-increasing list of remote

requests that can block τi or tasks in lhpH(i, L) from the core with index a.

Γ(Pa, L) is the set of tasks on a remote core Pa in mode L, ξxi,Pa,L
loops though

every task on core Pa and combines their ηxj,L(R
L
i , R

L
j) lists with the inclusion of

back-to-back hit (see Section 2.2.4) together to form a new list, examples can be

seen in Figure 18b.

ξxi,Pa,L =
⋃

τj∈Γ(Pa,L)

ηxj,L(R
L
i , R

L
j) (32)

With Equations 31 and 32, the Ex
i,L is introduced as a non-increasing list to

store remote requests that can cause τi to incur the worst-case spin delay and

can be obtained as given in Equation 33. This equation iterates through each

remote core Pa and takes the first |ζxi,L| elements in ξxi,Pa,L
(if they exist), i.e. at

most |ζxi,L| of requests from each core can block τi or lhpH(i, L) as mentioned

above. Provided that all lists are in non-increasing order, hence the top elements

are with highest nx
i,L value.

Ex
i,L =

⋃
Pa ̸=P (τi)

|ζxi,L|⋃
k=1

ξxi,Pa,L(k) (33)

Finally, EL
i can be bounded as Equation 34. First, for rx ∈ R, each re-

quest in ζxi,L accounts for one execution and takes 1× cx units of time to finish.

105

Accordingly, the total execution time of all requests in ζxi,L is |ζxi,L|×cx. Sec-

ond, for requests in Ex
i,L, the delay is bounded based on the principle that a

request with a larger number of total executions receives less help. Thus, given

|ζxi,L| (i.e., total number of FIFO queues), the kth request in Ex
i,L can have at

most
⌈
k/|ζxi,L|

⌉
helping tasks in one FIFO queue, and hence, a finish time of⌈

Ex
i,L(k)/(

⌈
k/|ζxi,L|

⌉
+ 1)

⌉
× cx. Finally, we note that no delay is imposed to τi

from rx if ζxi,L = ∅; and that |Ex
i,L|= 0 if rx is a local resource (no blocking from

remote tasks).

EL
i =

∑
rx∈R

Ñ
|ζxi,L|+

|Ex
i,L|∑

k=1

 Ex
i,L(k)⌈

k/|ζxi,L|
⌉
+ 1


é

× cx (34)

Recall Figure 18 for instance, τi and tasks in lhpH(i, L) request for rx three

times in total, i.e., |ζxi,L|= 3, where these three requests can be blocked by a list

of remote requests Ex
i,L = {4, 3, 3, 3, 2, 1, 1}. With cx = 1, the delay is bounded

by (⌈4/2⌉+ ⌈3/2⌉+ ⌈3/2⌉+ ⌈3/3⌉+ ⌈2/3⌉+ ⌈1/3⌉+ ⌈1/4⌉)× 1 = 10.

Theorem 1. Equation 34 bounds the worst-case spin delay of τi in system mode

L.

Proof. First, the lists of requests to rx from τi’s core and all remote cores that

can block τi is bounded by ζxi,L and Ex
i,L, respectively. This is proved by Theorems

1 and 2 in [109].

Second, Equation 34 accounts for the worst-case delay from requests in Ex
i,L.

We prove this by swapping any two elements in Ex
i,L with indexes k1 and k2 and

values n1 and n2, respectively. Let εj =
⌈
kj/|ζxi,L|

⌉
+1, it follows n1 ≥ n2 and ε1 ≤

ε2 if k1 < k2. Accordingly, we have ⌈n1/ε1⌉+⌈n2/ε2⌉ and ⌈n2/ε1⌉+⌈n1/ε2⌉ before

and after the swap, respectively. It is clear that (n1/ε1+n2/ε2) ≥ (n2/ε1+n1/ε2)

as n1 × ε2 + n2 × ε1 − n1 × ε1 − n2 × ε2 = (n1 − n2)× (ε2 − ε1) ≥ 0. Therefore,

the theorem holds.

106

Arrival Blocking (BL
i)

BL
i = max{(αx

i,L +

|βx
i,L|∑

k=1

⌈
βx
i,L(k)

k + 1

⌉
)× cx|rx ∈ FA(i, L)} (35)

Arrival blocking BL
i is given by Equation 35, in which FA(i, L) gives the set

of resources that can block τi upon its arrival (global or local resources with a

ceiling higher than τi’s priority) that are accessed by τi’s local low priority tasks

(llpH(i, L)). As arrival blocking can only occur once before τi’s execution, it is

bounded by computing the largest delay for accessing a resource in FA(i, L) from

a task in llpH(i, L) [109].

Function αx
i,L = max{nx

j,L|τj ∈ llpH(i, L) ∧ Nx
j > 0} gives the request with

the highest total execution number issued by llpH(i, L) to rx. Function βx
i,L =⋃

Pa ̸=Pτi
ξxi,Pa,L

(|ζxi,L|+1) gives the requests with the highest execution number in

each remote core that can block αx
i,L. For a remote core Pa, the request that

can cause the highest blocking is ξxi,Pa,L
(|ζxi,L|+1) (if any), in which the requests

before index |ζxi,L|+1 have been accounted for in Equation 34 when bounding τi’s

spin delay. βx
i,L = ∅ if rx is a local resource.

With the above functions, the worst-case resource accessing time of a task in

llpH(i, L) can be obtained by the same way as Equation 34. For request αx
i,L, it

takes αx
i,L× cx to finish its execution with rx (i.e., at the end of the FIFO queue)

and incurs a worst-case blocking of
∑|βx

i,L|
k=1

⌈
βx
i,L(k)

k+1

⌉
× cx from requests in βx

i,L,

with the proposed fault-tolerance method applied.

Local Fault-Tolerance Time (FL
i , F

L
j)

The proposed fault-tolerance approach divides tasks into several segments, the

worst-case fault-tolerance scenario happens when all fi,L faults happen in the

longest segment of a task repeatedly [80]. The additional execution time of τi

and tasks in lhpH(i, L) due to fault-tolerance is bounded in Equation 36, in

107

which the longest segment is selected among the normal section Cτi,L and a set

of critical section lengths cx from the set of resources accessed by τi in mode L

(denoted as F (τi, L)). If the longest segment is one of critical section cx, the

external time spent on fault-tolerance is fi,L × cx, as all requests from τi and

lhpH(i, L) are executed without helpers.

FL
i = fi,L ×max{Cτi,L,max{cx|rx ∈ F (τi, L)}} (36)

3.2.2 Analysis of Systems under A Mode Switch

If any task overruns its execution budget in mode L, the system would switch to a

higher mode (say L+). During the mode switch, tasks with criticality li < L+ are

dropped and ones with criticality li ≥ L+ are granted higher execution budgets.

The worst-case response time for a task τi that experiences faults and a mode

switch from L to L+ is given by Equation 37, in which lhpE(i, L) and lhpH(i, L+)

represent the set of local high priority tasks with a criticality level li = L and

li ≥ L+ respectively.

RL+

i,L =Ci,L+ + EL+

i,L +BL+

i,L + FL+

i

+
∑

j∈lhpH(i,L+)

⌈
RL+

i,L

Tj

⌉
Cj,L+

+
∑

j∈lhpE(i,L)

⌈
RL

i

Tj

⌉
Cj,L

+
∑

j∈lhpH(i,L+)

⌈
RL+

i,L

Tj

⌉
× FL+

j

+
∑

j∈lhpE(i,L)

⌈
RL

i

Tj

⌉
× FL

j

(37)

The blocking terms EL+

i,L and BL+

i,L are bounded by the same approaches in

Equations 31 to 35, with the following two changes. First, the system mode

108

is updated from L to L+ in all equations. This reflects the increased busy-

period, i.e., RL+

i,L and RL+

j,L in Equations 31 and 32; and the set of tasks that are

active in the new mode L+, i.e., lhpH(i, L+), H(Pa, L
+) and llpH(i, L+) used

by Equations 31, 32 and 35. Second, when accounting for remote requests in 32,

tasks with criticality li ≥ L+ can incur at most fi,L+ faults, where fi,L+ ≥ fi,L,

since longer execution time has a higher probability of incurring faults [1]. The

terminating tasks (tasks with a criticality level L) are included when accounting

for resource requests in Equations 31, 32 and 35, with a busy period of RL
i and

maximum fault fi,L (where applicable).

In addition, according to the AMC-rtb analysis [11], the worst-case scenario of

τi during a mode switch happens when: 1) all tasks in lhpE(i, L) preempt τi and

finish executing with Cτi,L during the busy period RL
i before being terminated;

2) all tasks in lhpH(i, L+) preempt τi and execute with Cτi,L+ during the period

RL+

i,L (with RL+

i,L > RL
i). The theories are reflected in the second and third lines

of Equation 37, in which the interference from lhpH(i, L+) and lhpE(i, L) last

for the busy periods RL+

i,L , and RL
i respectively.

Finally, the fault-tolerance time of τi and tasks in lhpH(i, L+) and lhpE(i, L)

are denoted as FL+

i , FL+

j and FL
j respectively. They are bounded in the same way

as Equation 36, but for FL+

i and FL+

j , mode L is changed to L+ correspondingly.

3.3 Evaluation

In this section, the schedulability of the proposed model is investigated against

the state-of-the-art Four-mode model [1] and the Checkpointing model. The

RTA in Section 3.2 implements the following comparisons:

• the Proposed Model ;

• the Four-mode Model : once a fault is detected at the end of the task, the

whole task is re-executed and shared resources are re-requested;

109

• the Checkpointing Model : Same checkpoint setting as the proposed model,

but faults are resolved by simple segment re-execution (see Figure 17).

• the Indicators of the proposed model showing the best-case resource-access

scenario where tasks incur no delay when accessing resources. This is used

to indicate scheduling pressure of the system. (e.g. EL
i =

∑
rx∈R|ζxi,L|×cx

and BL
i = 0 under mode L).

Experimental setup: To clarify presentation, we consider systems that

have tasks with two criticality levels (li ∈ {low, high}) and systems have two

modes L = LO and L+ = HI. Tasks are allocated by the Worst-Fit (WF) heuris-

tic and are scheduled by fully-partitioned preemptive Fixed-Priority scheduling

(FPS). Rate Monotonic Priority Assignment (RMPA) is applied. We consider

platforms with a set of processors m ∈ [2, 16] and a set of tasks on each proces-

sor z ∈ [2, 9] which enables a proper range of schedulable systems for anal-

ysis and comparison. The low criticality utilization of each task (Uτi,low) is

generated using the UUnifast algorithm [14], with a system utilization bound

Uτi,low = 0.1×m× z. Task periods are randomly selected between [1ms,1000ms]

in a log-uniform distribution. Deadlines of the tasks are equal to their periods.

For a task τi, the low-criticality worst-case execution time for normal sections is

given by Cτi,low = Uτi,low×Ti−
∑

rx∈R N
x
i ×cx. For each system, half of the tasks

(chosen randomly) are assigned a high criticality, where Cτi,high is randomly set

to [1, 1.5] times of its Cτi,low.

With an increasing number of processors, we introduce a corresponding in-

crease in the number of shared resources. Therefore, the number of shared re-

sources is set to equal m. Shared resources are managed by MSRP but incor-

porated with different fault-tolerance approaches. Among the generated tasks, a

ratio of tasks are selected to request a random number of resources (up to m).

The ratio is denoted the Resource-Sharing Percentage (RSP). The number of

110

2 4 6 8 10 12 14 16
Number of Processors

0
0.2
0.4
0.6
0.8

1
S

ch
ed

ul
ab

le
 S

ys
te

m
s

Proposed Model Proposed Indicator
Four-mode Model CheckPointing

2 4 6 8 10 12 14 16

Number of Processors

0

0.2

0.4

0.6

0.8

1

S
c
h
e
d
u
la

b
le

 S
y
s
te

m
s

(a) Schedulability with z = 3,A = 2, cx ∈

[16, 50], f = 1, RSP = 0.6

8 12 16 20 24 28 32 36

Number of Tasks

0

0.2

0.4

0.6

0.8

1

S
c
h

e
d

u
la

b
le

 S
y
s
te

m
s

(b) Schedulability with m = 4,A = 2, cx ∈

[16, 50], f = 1, RSP = 0.6

1 2 3 4 5 6 7 8

Number of Accesses

0

0.2

0.4

0.6

0.8

1

S
c
h
e
d
u
la

b
le

 S
y
s
te

m
s

(c) Schedulability with m = 4, z = 3, cx ∈

[51, 100], f = 1, RSP = 0.8

0 1 2 3 4 5 6 7

Number of Faults

0

0.2

0.4

0.6

0.8

1

S
c
h

e
d

u
la

b
le

 S
y
s
te

m
s

(d) Schedulability with m = 4, z = 2,A =

3, cx ∈ [16, 50], RSP = 0.8

Figure 19: LO mode

accesses to a resource from each task is set to A ∈ [1, 8] in one release. The

worst-case computation time of a shared resource (cx) is generated randomly in

the range [1µs, 100µs]. With cx obtained, Cτi,low described above can be com-

puted, where we enforce Uτi,low × Ti −
∑

rx∈R N
x
i × cx ≥ 0.

To enable fair comparisons and highlight the schedulability differences be-

tween the proposed, Four-mode, and Checkpointing models, we assign each task

to incur the same number of faults f for all models, with f ∈ [0, 7].

Results: Figures 19, 20 and 21 illustrate the schedulability of systems at

111

LO mode, HI mode, and during a Mode Switch, respectively. In each figure we

vary system settings m, m × z (number of tasks in the system), A and f . In

addition, Figure 22 shows the schedulability of all modes with the variation of

RSP . For each combination of system settings, 1000 systems are generated and

the percentage of schedulable systems of the considered models is presented.

Figures 19 and 20 present the schedulability of the evaluated models under

stable modes LO and HI, respectively. From the results, the schedulability of

the proposed model outperforms the Four-mode and the Checkpointing models

in all considered settings. In Figures 19a and 20a (with varied m), the schedu-

lability of all models decreases with the increase of m, due to increased remote

blocking time. However, the proposed model maintains an advantage over the

Four-mode and the Checkpointing models in terms of schedulability. The re-

sults are due to the setting of checkpoints allowing the fault-tolerance approach

to be implemented on small task segments, and the proposed model effectively

reduces remote blocking by allowing spinning tasks to execute work for the re-

source holder in parallel, instead of re-requesting resources when the whole task

is re-executed or re-executing the resource a number of times sequentially.

For the same reason, the proposed model provides better schedulability than

the Four-mode and the Checkpointing models in Figures 19c and 20c with varied

A. With the proposed model, the increasing A can bring more critical sections to

a task, thus with more checkpoints, which allows the fault-tolerance to be carried

out on smaller segments. As shown in Figure 19c, for instance, with A = 7, the

proposed model can schedule 189.4% more systems than the Four-mode model,

where the Four-mode model schedules 263 systems and the proposed model can

schedule 761 systems. On the other hand, under the same setting of checkpoints,

the proposed model also outperforms the Checkpointing model by 13.3 % with

A = 1 in Figure 20c. Although the increased number of checkpoints will bring

112

2 4 6 8 10 12 14 16
Number of Processors

0
0.2
0.4
0.6
0.8

1
S

ch
ed

ul
ab

le
 S

ys
te

m
s

Proposed Model Proposed Indicator
Four-mode Model CheckPointing

2 4 6 8 10 12 14 16

Number of Processors

0

0.2

0.4

0.6

0.8

1

S
c
h
e

d
u

la
b
le

 S
y
s
te

m
s

(a) Schedulability with z = 3,A = 2, cx ∈

[16, 50], f = 1, RSP = 0.6

8 12 16 20 24 28 32 36

Number of Tasks

0

0.2

0.4

0.6

0.8

1

S
c
h
e
d
u
la

b
le

 S
y
s
te

m
s

(b) Schedulability with m = 4,A = 2, cx ∈

[16, 50], f = 1, RSP = 0.6

1 2 3 4 5 6 7 8

Number of Accesses

0

0.2

0.4

0.6

0.8

1

S
c
h
e
d
u
la

b
le

 S
y
s
te

m
s

(c) Schedulability with m = 4, z = 3, cx ∈

[51, 100], f = 1, RSP = 0.8

0 1 2 3 4 5 6 7

Number of Faults

0

0.2

0.4

0.6

0.8

1

S
c
h

e
d

u
la

b
le

 S
y
s
te

m
s

(d) Schedulability with m = 4, z = 2,A =

3, cx ∈ [16, 50], RSP = 0.8

Figure 20: HI mode

more overheads which is not considered in this work, the significant increase in

schedulability can validate the effectiveness of the proposed model.

In addition, we observed that the schedulability of all models drops quickly

when increasing m × z and f (i.e., Figures 19b,20b and 19d,20d). The reason

is that increasing the number of tasks also increases the amount of interference

and the growing number of faults imposes significant schedulability pressure. On

average, for all the considered settings in Figures 19 and 20, the proposed model

can schedule 151.5% and 25.3% more systems than the Four-mode model ; and

113

2 4 6 8 10 12 14 16
Number of Processors

0
0.2
0.4
0.6
0.8

1
S

ch
ed

ul
ab

le
 S

ys
te

m
s

Proposed Model Proposed Indicator
Four-mode Model CheckPointing

2 4 6 8 10 12 14 16

Number of Processors

0

0.2

0.4

0.6

0.8

1

S
c
h
e
d
u
la

b
le

 S
y
s
te

m
s

(a) Schedulability with z = 3,A = 2, cx ∈

[16, 50], f = 1, RSP = 0.6

8 12 16 20 24 28 32 36

Number of Tasks

0

0.2

0.4

0.6

0.8

1

S
c
h

e
d

u
la

b
le

 S
y
s
te

m
s

(b) Schedulability with m = 4,A = 3, cx ∈

[16, 50], f = 1, RSP = 0.6

1 2 3 4 5 6 7 8

Number of Accesses

0

0.2

0.4

0.6

0.8

1

S
c
h
e
d
u
la

b
le

 S
y
s
te

m
s

(c) Schedulability with m = 4, z = 3, cx ∈

[51, 100], f = 1, RSP = 0.8

0 1 2 3 4 5 6 7

Number of Faults

0

0.2

0.4

0.6

0.8

1

S
c
h

e
d

u
la

b
le

 S
y
s
te

m
s

(d) Schedulability with m = 4, z = 2,A =

3, cx ∈ [16, 50], RSP = 0.8

Figure 21: Mode switch

127.8% and 11.7% more systems than the Checkpointing model respectively.

Figure 21 presents the resulting schedulability during a mode switch. As the

same with the above figures, the proposed model has schedulability higher than

the Four-mode model under all settings. In particular, with A = 8 in Figure 21c

and f = 5 in Figure 21d, the proposed model improves the number of schedulable

systems by 81% and 88.1% respectively when compared to the Four-mode model.

Lastly, for all tested system configurations, the proposed model outperforms the

Four-mode and Checkpointing models by 65.4% and 32.5% on average, in terms

114

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8

Percentage of Resource-accessing Tasks

0

0.2

0.4

0.6

0.8

1
S

c
h

e
d

u
la

b
le

 S
y
s
te

m
s

Proposed(LO)

Four-mode(LO)

CheckPointing(LO)

Proposed(HI)

Four-mode(HI)

CheckPointing(HI)

Proposed(SWITCH)

Four-mode(SWITCH)

CheckPointing(SWITCH)

Figure 22: Schedulability with m = 6, z = 3,A = 3, cx ∈ [51, 100]

of the number of schedulable systems during a mode switch, respectively.

Figure 22 shows the schedulability of tasks in the proposed, Four-mode and

Checkpointing models in different modes (LO, HI and SWITCH) with the vari-

ation of RSP . For systems with no shared resources (i.e., RSP = 0), their

schedulability behaviors in all modes are the same. With the growing of RSP ,

the schedulability of all models decreases and the effectiveness of the proposed

model is increasingly more obvious. This is because the increasing number of

resource-accessing tasks exacerbates the resource contention and imposes pres-

sure on the schedulability of systems for all models. Meanwhile, the increasing

number of resource-accessing tasks also leads to more helpers (i.e. spinning

tasks) for the head task in the FIFO queue, which are utilimed by the proposed

model to speed up the resource-accessing routine. Therefore, the proposed model

greatly shortens the amount of time spent tolerating faults in critical sections

and reduces blocking.

115

3.4 Summary

This chapter introduces a fault-tolerance solution for multiprocessor MCS with

shared resources. Initially, a system execution model is formulated that is fully

compatible with the generic MCS having more than two criticality levels. This

model can differentiate between faults that arise during normal sections and

those that occur in critical sections, enabling the application of distinct fault-

tolerant methods. Subsequently, a novel fault-tolerance resource-sharing protocol

is devised to minimize the blocking time while ensuring reliable resource shar-

ing. A schedulability analysis is also presented to establish timing bounds for

the proposed solution. Experimental results indicate that the proposed method

surpasses the state-of-the-art in terms of schedulability, showing an average im-

provement of up to 151.5%. This chapter represents the pioneering step of the

HPRTS framework, addressing Limitations 1, 2, and 3 as outlined in Section

2.3.4 and established the success criteria SC-1 and SC-2 for the thesis.

116

Chapter 4

Contention-Aware Task Allocation

Real-time systems are increasingly incorporating complex functionalities, from

autonomous vehicles to 5G telecommunications base stations. These systems

often include tasks that need to access shared resources such as code segments,

memory blocks, and I/O ports. To prevent race conditions during computa-

tions on these resources, spin locks, as recommended by the AUTOSAR stan-

dard [40], are extensively utilized. Resource sharing protocols manage access to

these shared resources [15]. However, enforcing spin locks can result in resource

contention due to competition for these shared resources. This problem intensi-

fies when tasks across different processors request the same resource, leading to a

busy-wait state on their host processors until the resource is granted, potentially

causing significant blocking and impacting system schedulability [98].

The issue of resource contention among processors has been addressed by

focusing on resource-aware task allocation within fully partitioned multiproces-

sor systems. These systems localize shared resources to minimize contention.

Various resource-aware task allocation methods have been proposed for different

scheduling methodologies and resource-sharing protocols, including FPS and the

MSRP [42]. Broadly speaking, these methods fall into two categories: those that

execute critical sections on the task’s host processor, and those that execute on

dedicated processors. The former approach, which reduces contention by assign-

ing tasks that share resources to a single processor, may prove ineffective for

complex systems [49, 62, 97]. The latter approach circumvents these issues by

designating specific processors for resource access, but this introduces additional

migration overhead and is suboptimal for scenarios requiring frequent resource

117

access [109].

This chapter presents the second step of the proposed HPRTS framework

of the thesis, addressing the task allocation problem in the presence of shared

resources. Initially, we introduce a Resource Contention Model (RCM) for tasks

operating in systems that utilize FIFO-spin-based resource-sharing protocols to

manage shared resources. This is done without restricting priority assignments

or resource-sharing protocols. With the RCM, we can determine the contention

intensity between tasks. Building on this foundation, we propose a contention-

aware allocation algorithm designed to reduce contention between tasks when

they request shared resources. We first demonstrate the evaluation of the pro-

posed methods in homogeneous architectures, where all cores in the system are

identical. Subsequently, we transition to heterogeneous architectures, where

cores can operate at different frequencies at runtime, to evaluate the robustness

of the proposed approaches.

This chapter unfolds as follows: Section 4.1 introduces the RCM. The contention-

aware task allocation algorithm is elucidated in Section 4.2. Our evaluation re-

sults are highlighted in Section 4.3, while Section 4.4 wraps up the chapter and

outlines the success criteria built for the thesis

4.1 Resource Contention Model

In this section, we introduce a novel RCM designed to approximately capture

the contention intensity between tasks. The RCM considers the characteris-

tics of tasks scheduled under a FIFO-spin-based resource-sharing protocol using

preemptive FPS. Importantly, it remains decoupled from priority assignment al-

gorithms, resource-sharing protocols, and schedulability tests. It is noteworthy

that the RCM neither provides safe timing bounds for tasks with shared resources

nor does it offer an exact quantification of the resource contention between tasks.

118

Instead, the primary objective of the RCM is to generate Contention Factor (CF)

approximations with a sufficient level of accuracy among tasks. This can provide

effective guidance for task allocation in order to minimize contention.

In a system with shared resources, when a task τi is allocated to a processor

Px, it implies that other tasks on Px will not experience global contention (direct

spin delay) from τi. Conversely, tasks on different processors might incur direct

spin delay from τi when they request the same global shared resources. The

RCM is developed to identify potential global contention between two tasks or

two task groups, assuming they are allocated to separate processors.

As described in [98], under FIFO spin locks, each global resource is associated

with a FIFO queue that contains requests from all processors based on their

arriving order, in which the task at the head of the queue is always granted with

the resource [104]. This leads to Lemma 5.

Lemma 5. With FIFO spin locks, a request of τi to rk can be blocked at most

once by requests to rk from a remote processor.

Proof. For non-preemptive spin locks, a task τi remains non-preemptive when

requesting for a shared resources until it releases the lock hence at most one

request can be issued from a processor at any time instance. An example is

illustrated in Example 4 in Section 2.2.4 and this is also proved in [98, 109]. As

for preemptive ones, a higher-priority task τj can preempt τi when it is requesting

for a resource rk, however, τj cannot request r
k after preempting τi. Otherwise,

deadlocks can occur in which τi cannot be served by the lock as it is preempted

by a τj that is waiting (spinning) behind it in the FIFO queue. Thus, a processor

contains at most one request to a global resource at any time instant with FIFO

spin locks.

According to Lemma 5, the contention that τi can incur from a task group

Ga under FIFO spin locks is estimated by Equation 38, denoted as ϕ(τi,Ga).

119

The notation Nk
i (t) represents the number of requests from τi to rk over a time

duration t, i.e., Nk
i (t) =

⌈
t
Ti

⌉
× Nk

i . Assuming that τi and Ga are allocated

on two different processors, τi can send Nk
i (Ti) requests to rk during its period

Ti. Concurrently, during the same period, the maximum number of requests

from tasks in Ga to rk can be represented as
∑

τj∈Ga
Nk

j (Ti). Therefore, the

min function is used to calculate the number of global blocking instances that

τi can incur from Ga for rk, same idea has been explained when introducing the

advanced RTA for MSRP in Section 2.2.4. By accounting all the resources shared

between τi and Ga, the maximum amount of blocking that τi can incur from Ga

is captured by ϕ(τi,Ga).

ϕ(τi,Ga) =
∑
rk∈R

min
{
Nk

i (Ti),
∑
τj∈Ga

Nk
j (Ti)

}
× ck (38)

By employing Equation 38, the CF approximation between Ga and Gb under

FIFO-spin locks can be determined as ∆(Ga,Gb), as shown in Equation 39. This

equation computes the summation of contention that tasks in both groups might

incur if they were allocated to different processors. The term
∑

τi∈Ga
ϕ(τi,Gb)

calculates the sum of the CF between each task τi in Ga and the task group Gb.

Similarly,
∑

τj∈Gb
ϕ(τj,Ga) computes the sum of the CF between each task τj in

Gb and the task group Ga. A higher value of ∆(Ga,Gb) suggests that it would

be more beneficial to allocate both groups Ga and Gb to the same processor, if

feasible. Notation for RCM are summarized in Table 9.

∆(Ga,Gb) =
∑
τi∈Ga

ϕ(τi,Gb) +
∑
τj∈Gb

ϕ(τj,Ga) (39)

120

Table 9: Table of Notations for RCM

Notation Description

rk A shared resource with index k

Ga A task group with index a

Nk
i (t) Number of requests from τi to rk over a time duration t

Ti Period of task τi

ck the length of critical section of rk

ϕ(τi,Ga) CF approximation between τi and a task group Ga

∆(Ga,Gb) CF approximation between two task groups Ga and Gb

4.2 Contention-Aware Task Allocation

This section presents a resource-aware task allocation method for fully-partitioned

systems with preemptive FPS applying FIFO-spin locks, in which shared re-

sources are accessed by tasks directly on their host processors. Different from

existing methods, the proposed method utilizes the RCM proposed in Section 4.1

that can approximate CF between tasks or task groups. Using the approximated

CF as guidance, the method produces allocation decisions following the funda-

mental principle that always (i) group tasks with the highest CF approximation

and (ii) allocate task groups with the highest approximated CF to one processor.

As the RCM does not aim to compute a safe bound on the worst-case response

or blocking time, it can produce quick CF approximations with a sufficient level

of accuracy without detailed knowledge of the underlying system. This provides

the key to the generality of the proposed allocation method which is universally

applicable in all fully-partitioned systems scheduled by preemptive FPS and with

shared resources managed by FIFO-spin locks.

121

4.2.1 Task Grouping Based on Resource Contention

For a given set of tasks, the proposed allocation method forms a set of task

groups G in which each group contains tasks with high resource contention.

A utilization bound U is applied for all task groups to bound the maximum

utilization allowed for one group, i.e., U ≥ UGa ,∀Ga ∈ G. In this work, U is set

to the average utilization of the system in each processor, i.e., U = UΓ/m, m

denotes the total number of cores in the system.

The proposed task grouping technique follows the principle of always merging

two groups that have the highest CF approximation with U enforced. By doing

so, only the tasks with a high resource contention will be merged into one group,

even if they share certain resources with other tasks in the system. In addition,

the use of U effectively avoids the creation of heavy groups that cannot be fitted

into any processor. This highlights the key difference with the SPA, which tends

to form large task bundles due to Limitation 4 discussed in Section 2.4.2.

Algorithm 1 presents the complete task grouping process based on the RCM.

The algorithm takes all tasks in the system Γ as the input and initializes |Γ| task

groups where each group contains a single task (lines 1-4). For any two groups Ga

and Gb, the CF approximation is computed using the RCM, i.e., the ∆(Ga,Gb) in

line 5. Then, the group formation starts by identifying the pair of groups with the

highest CF approximation, among any two groups that can satisfy UGa+UGb
≤ U

(line 7). If such a group pair is obtained with a positive CF approximation, a

new group is created by merging the two groups (line 11). In addition, the CF

approximation between the newly-created group and the existing ones in G is

computed for further group formation in the following iterations (line 12). This

process finishes until each group is independent from others (i.e., ∆(Ga,Gb) = 0)

or no groups can be merged with U enforced (lines 8-10). Due to the former

condition, groups with a single task that does not share any resources will not

122

Algorithm 1: Task group formation

1 G = ∅;

2 for each τi ∈ Γ do

3 Ga = {τi}; G = G ∪ Ga;

4 end

5 compute ∆(Ga,Gb),∀Ga,Gb ∈ G ∧ a ̸= b;

6 while true do

7 (Ga,Gb) = argmax
a,b

{∆(Ga,Gb) | UGa + UGb
≤ U};

8 if ∆(Ga,Gb) = 0 ∨ (Ga,Gb) = ∅ then

9 return G;

10 end

11 Ga = Ga ∪ Gb; G = G \ Gb;

12 Compute ∆(Ga,Gs),∀Gs ∈ G ∧ a ̸= s;

13 end

14 return G;

be merged during the entire process. Example 9 illustrates the group formation

process using four tasks and Characteristic 1 summarizes the key that addresses

Limitation 4 discussed in Section 2.4.2.

Example 9. For a task set {τ1, ..., τ4}, they are initialized as a set of groups

{G1 = {τ1}, ...,G4 = {τ4}}, in which each group contains one task. Assuming

∆(G1,G4) is the highest among all groups, they will be merged together if U is

satisfied, i.e., {G1 = {τ1, τ4}, ...,G3 = {τ3}}. Then, if ∆(G2,G3) is the highest, G2

and G3 are merged even if they also have a positive CF approximation with G1,

i.e., {G1 = {τ1, τ4},G2 = {τ2, τ3}}. However, under SPA all tasks are grouped

together regardless of the resource contention.

Characteristic 1. The proposed method forms a set of task groups in which

tasks in each group has the highest contention. In addition, U is applied to avoid

forming large task groups that cannot be allocated in a single processor. This

123

addresses Limitation 4.

4.2.2 Allocation of Task Groups on Processors

Algorithm 2: Resource-aware task allocation

1 for each Ga ∈ G do

2 Ωa =
∑

τi∈Ga
∆({τi},Ga\τi);

3 end

4 for each x ∈ [1...min{|G|,m}] do

5 Ga = argmax
a

{Ωa | ∀Ga ∈ G};

6 P (τi) = Px,∀τi ∈ Ga; G = G \ Ga;

7 end

8 while G ̸= ∅ do

9 Px = argmin
x

{UΓ(Px) | ∀Px ∈ Λ};

10 Ga = argmax
a

{∆(Ga,Γ(Px)) | ∀Ga ∈ G};

11 if UPx
+ UGa

≤ 1 then

12 P (τi) = Px,∀τi ∈ Ga; G = G \ Ga;

13 else

14 for each τi ∈ Ga, highest ∆({τi},Γ(Px)) first do

15 if UPx
+ Uτi ≤ 1 then

16 P (τi) = Px; Ga = Ga \ τi;

17 end

18 end

19 if no task in Ga is allocated to Px then

20 return unfeasible;

21 end

22 end

23 end

24 return {P (τi),∀τi ∈ Γ};

With G constructed, Algorithm 2 is performed that maps G to a set of pro-

cessors Λ. The algorithm starts by computing a weight Ωa for each Ga based

124

on the CF. This factor reflects the degree of the internal resource contention be-

tween tasks in Ga, which is calculated by summing the CF between each τi ∈ Ga

and other tasks in the group Ga\τi (line 1-3).

The allocation is then performed in two steps. The first step produces an

initial allocation for up to m groups in G based on Ωa (lines 4-7). Then, the

second step decides the allocations of the rest of the task groups based on the

guidance of the RCM (lines 8-23).

In the first step, the method identifies at most min{|G|,m} task groups with

the highest Ωa and allocates each of these groups to one processor (lines 5-6). For

groups that have the same Ωa, the one with a higher utilization is taken. This is

feasible as all groups are formed with U enforced and U ≤ 1. By localizing tasks

in these groups, we mitigate the contention between the tasks with the highest

CF approximations in the system.

Following the initial allocation, the second step maps the unallocated groups

following the rule of the Px with the least UΓ(Px) first and the Ga with the highest

∆(Ga,Γ(Px)) first (lines 9-10). UΓ(Px) return the total utilization of tasks on a

processor with index x and ∆(Ga,Γ(Px)) return the CF between a task group Ga

and Γ(Px). This approach selects processor with least utilization and pick the

group in G that has the highest CF with task on the selected processor. This

increases the chance of fitting a complete task group to the processor with least

utilization and can reduce resource contention in a general case.

If Ga can be fitted into Px, all tasks in the group are assigned to this processor

(lines 11-12). Otherwise, to increase the success ratio of the allocation method

with reduced contention, tasks in Ga are allocated individually, in which the one

with the highest ∆({τi},Γ(Px)) is always assigned to Px. However, under this

case, if no task in Ga can be assigned to Px (i.e., the processor with the lowest

utilization), the algorithm returns immediately with no feasible allocation being

125

found (lines 19-21). The complete process finishes until every task is assigned

with an allocation, i.e., P (τi), ∀τi ∈ Γ. With the above descriptions, we conclude

the following two characteristics of the proposed method. The notations related

to the allocation algorithm is summarized in Table 10.

Characteristic 2. The proposed method allocates tasks to processors based on

the RCM without the need for utilizing a specific schedulability test iteratively,

and hence, addresses Limitation 5.

Characteristic 3. Tasks under the proposed method do not require additional

runtime facilities, e.g., migrations in [100], and have negligible runtime over-

head that is equivalent to the traditional fully-partitioned system. This addresses

Limitation 6.

This concludes the description of the proposed task allocation method. The

time complexity of the proposed method is O(n2), as at most ||Γ|×|Γ|| iterations

are required to (i) compute ∆(Ga,Gb) for all group pairs in G, (ii) form task

groups, and (iii) allocate the task groups to processors.

Table 10: Table of Notations for Task Allocation Algorithm

Notation Description

Γ The set of tasks in the system

Γ(Px) Set of tasks on processor Px

G Set of task groups created

Λ Set of processors

Ωa Weight for each task group Ga based on the internal CF

∆(Ga,Γ(Px)) Contention Factor between a task group Ga and tasks on pro-

cessor Px

UΓ(Px) Total utilization of tasks on a processor Px

126

4.3 Evaluation

This section evaluates the performance of the proposed resource-aware task allo-

cation method against the state-of-the-art methods in terms of both effectiveness

and efficiency. The following competing methods are considered: (i) a combina-

tion of Worst-Fit, Best-Fit, First-Fit, and Next-Fit heuristics (see Section 2.4.1)

as the baseline [97] (denoted as Any-Fit); (ii) the SPA in [62]; (iii) the ROP with

the non-preemptive protocol applied [57]; and (iv) the proposed Resource-aware

task Allocation with the RCM for FIFO spin locks (denoted as OUR).

4.3.1 Experimental Setup

Our evaluations, grounded in synthetic but realistic values, employ a similar

experimental setup as used in [98, 109]. Our synthetic tests do not rely on ex-

traneous variables such as caching, networking, communications, or distance to

memory. We evaluate systems with m cores, which are selected from a range

m ∈ [4, 32]. z is denoted as the number of tasks per core, and it varies in the

range z ∈ [1, 9]. As the number of cores increases, new tasks will also be added to

the system. Hence, the total number of tasks in the system is calculated as m×z.

The utilization of tasks is computed using the UUniFast-Discard algorithm [35],

given a total utilization of 0.1×m× z.

Task periods Ti are randomly generated from the range [1 ms, 1000 ms] in a

log-uniform distribution, with implicit deadline Di = Ti. The Rate Monotonic

Priority Ordering is applied to generate task priorities. The total computation

time (including the time spent executing with shared resources) is then obtained

and denoted as “Ci = Uτi × Ti.

Each core is set to be associated with a shared resource, hence the number of

shared resources is also equal to m. Each resource has a length randomly decided

within a given range ck ∈ [1µs, 100µs]. A resource sharing factor RSP = 0.3 is

127

applied to define that 30% of tasks in the system will request shared resources.

Each of these tasks can randomly request [1,m] resources. The maximum number

of accesses from a task to a resource is chosen from A = [1, 40]. If A = 10, then

the task randomly accesses the resource from 1 to 10 times. Let CR
i denote

the total resource computation time of τi. We enforce that “Ci − CR
i ≥ 0, with

Cτi =
“Ci − CR

i . For each system configuration, 1000 systems are generated and

tested by each competing method.

In our extended experimental framework for a heterogeneous architecture, we

work with a system of m cores. These cores exhibit a range of computational

speeds, evenly distributed from 0.5 to 1. Specifically, the first core, being the

fastest, operates at a speed factor of 0.5. This means tasks on this core execute

at 0.5 × Cτi of their computation time. If a task access a resource rk on this

core, it will operate at 0.5× ck of the resource computation time. As we progress

to subsequent cores, the speed factor increases evenly, ensuring that each core

is uniformly slower than the previous. By the time we reach the m-th core,

the slowest in the setup, the speed factor is 1, and tasks execute using their

original computation times: Cτi for general computation and ck when accessing

rk. This setup provides a systematic gradient of performance across the cores.

In this manner, since tasks typically compute for shorter durations, we intensify

the system’s schedulability pressure to highlight the differences between each

method. This is achieved by expanding the range to ck ∈ [1µs, 360µs], which in

turn increases the blocking time between tasks when accessing shared resources.

Unless specified in the allocation method (e.g., ROP), the MSRP is applied to

manage the shared resources in the system, which is a FIFO spin-based protocol

that is common-seen in multiprocessor real-time systems [57, 97, 105]. For Any-

Fit, SPA and OUR, the holistic schedulability analysis for MSRP as demontrated

in 2.2.4 is applied to evaluate system schedulability [98,109]. In addition, a cost

128

of 8.35µs for each migration triggered by ROP is added in its schedulability test.

This overhead is measured and reported by [104,109] under the Linux operating

system. It is worth noting that the migration cost of tasks can vary due to many

factors, such as task size and hardware architectures. Here, we apply a reasonable

value for our synthetic evaluation. To precisely calculate the task migration cost

in Linux, tracing tools like perf or ftrace [31] are often used to measure the time

from the decision to migrate a task until its resumption on a new processor,

considering all associated overheads. Ensure accuracy by repeatedly measuring

under various system loads and conditions, and by thoroughly understanding the

impacts of specific hardware and kernel versions.

4.3.2 Performance Evaluation for Homogeneous Architecture

Figure 23 presents the schedulability performance of all methods under homoge-

neous architecture with varying parameters: the number of tasks per processor

(z), the maximum number of accesses to a resource (A), the number of processors

(m), and the length of critical sections (ck).

Figure 23a presents the system schedulability of the competing methods with

a varied z. From the figure, we can observe that the proposed OUR constantly

outperforms SPA, where both methods are performed based on the resource

usage of the system. This validates the effectiveness of the proposed allocation

and the RCM. In addition, OUR maintain an advantage over all other methods

with z = [1, 7]. Specifically, the OUR outperforms the ROP by 19.5% with

z = 5. The reason for this observation is that ROP have a certain degree of

pessimism that undermines their effectiveness (Limitations 6 in Section 2.4.2).

In contrast, the proposed allocation method addresses the limitation, i.e., has

negligible runtime overhead. However, OUR lost its advantage with z ≥ 8, i.e.,

when U is high. In this case, task groups with a high utilization can be formed

129

1 2 3 4 5 6 7 8 9

Average number of tasks per processor

0

0.2

0.4

0.6

0.8

1

S
c
h

e
d

u
la

b
ili

ty
AnyFit SPA ROP OUR

(a) Schedulability with m = 16, A = 15,

ck = [1us, 25us].

1 5 10 15 20 25 30 35 40

Max number of accesses to a resource

0

0.2

0.4

0.6

0.8

1

S
c
h

e
d

u
la

b
ili

ty

AnyFit SPA ROP OUR

(b) Schedulability with z = 6, m = 16, ck =

[1us, 25us].

4 8 12 16 20 24 28 32

Number of processors

0

0.2

0.4

0.6

0.8

1

S
c
h

e
d

u
la

b
ili

ty

AnyFit SPA ROP OUR

(c) Schedulability with z = 6, A = 15, ck =

[1µs, 25µs].

1-10 1-25 1-50 1-75 1-100

Length of critical sections

0

0.2

0.4

0.6

0.8

1
S

c
h

e
d

u
la

b
ili

ty

AnyFit SPA ROP OUR

(d) Schedulability with z = 6, m = 16, A =

15.

Figure 23: Homogeneous schedulability figures.

which are hardly schedulable. This leads to future work of an adaptive utilization

bound that further enhances the performance of the proposed methods.

Similar observations are obtained in Figures 23b and 23c with an increased

A and m respectively, OUR outperforms all competing methods in most cases.

It is worth noting that with an increased A, the schedulability of ROP drops

quickly. This is because the intensive resource accesses cause both high migration

overhead and interference as all requests to a resource are accessed on a dedicated

processor. In addition, the proposed methods constantly outperform SPA and

ROP with an increased ck, as shown in Figure 23d. For example, the OUR

outperforms ROP by 91.6% with ck = [1µs, 75µs]. This is because the increase

130

Table 11: Computation cost (in ms) with A = 15, ck = [1us, 25us].

m = 16, SPA ROP OUR

z = avg. std. avg. std. avg. std.

2 0.2 2.6 21.6 16.4 1.9 6.3

4 0.1 0.9 72.9 34.5 8.7 9.0

6 0.1 0.1 125.4 65.5 28.1 11.2

8 0.1 0.1 238.6 259.5 59.5 16.9

z = 6, SPA ROP OUR

m = avg. std. avg. std. avg. std.

8 0.1 1.0 13.7 12.4 2.1 4.9

16 0.1 0.8 135.6 63.9 31.5 10.4

24 0.2 0.1 524.3 336.0 118.8 25.8

32 0.3 0.6 1391.6 725.4 371.1 61.9

in the resource length causes a higher interference on a task when accessing rk by

other requests on the same processor. This observation is consistent with that

in [57].

Overall, as illustrated in Figure 23, the proposed approach consistently out-

performs the state-of-the-art in terms of schedulability for the majority of cases.

When evaluating all scenarios where OUR holds an advantage, it outperforms

the search-based method with the inclusion of migration overheads (ROP) by an

average of 74% in terms of schedulability.

Finally, we report the computation cost of the competing methods on an

Intel i5-4460 processor with a CPU frequency of 3.20GHz. Table 11 presents

the average (avg.) and standard deviation (std.) of the computation cost of the

evaluated methods with varied z and m. As shown in the table, the SPA has the

lowest computation cost due to its simplicity. As for the OUR, it requires much

131

less computation time compared to both ROP. Specifically, the computation cost

of ROP is about 5.9x of OUR on average for all settings shown in the table. In

particular, although with a high schedulability, the ROP demonstrates a 4x the

computation cost of the OUR on average with z = 8. However, in most cases,

the OUR achieves a higher schedulability than all other methods with a much

less computation cost. The reason is ROP use a searching method that requires

iterative computations to bound the WCRT of tasks for each allocation choice,

resulting in a much higher cost to find a feasible allocation solution.

In summary, the proposed allocation can outperform the state-of-the-art

methods in schedulability with a much less computation cost. The results vali-

date that the constructed RCM can provide effective guidance without details of

the underlying system, and verify the effectiveness and efficiency of the proposed

allocation method.

4.3.3 Performance Evaluation for Heterogeneous Architecture

In Figure 24, we showcase the schedulability performance across various methods

for a heterogeneous setting. The parameters under consideration include the

tasks per processor (z), maximum resource accesses (A), processor count (m),

and critical section lengths (ck).

The results depicted in Figure 24a reveal that for z = 1, all algorithms,

with the exception of SPA, achieve a schedulability rate close to or equal to

100%. This suggests that the system experiences minimal schedulability pressure.

As the number of tasks per processor z rises, the OUR method consistently

outperforms other algorithms in terms of schedulability rate. Up to z = 7, OUR

maintains a rate above 94%, while ROP declines to 51% and SPA registers only

0.2% schedulable systems. This indicates that the OUR method offers enhanced

robustness and reliability under diverse conditions, outshining other algorithms

132

1 2 3 4 5 6 7 8 9

Average number of tasks per processor

0

0.2

0.4

0.6

0.8

1

S
c
h

e
d

u
la

b
ili

ty
AnyFit SPA ROP OUR

(a) Schedulability with m = 16, A = 15,

ck = [11us, 60us].

1 5 10 15 20 25 30 35 40

Max number of accesses to a resource

0

0.2

0.4

0.6

0.8

1

S
c
h

e
d

u
la

b
ili

ty

AnyFit SPA ROP OUR

(b) Schedulability with z = 6, m = 16, ck =

[61us, 160us].

4 8 12 16 20 24 28 32

Number of processors

0

0.2

0.4

0.6

0.8

1

S
c
h

e
d

u
la

b
ili

ty

AnyFit SPA ROP OUR

(c) Schedulability with z = 6, A = 15, ck =

[11µs, 60µs].

1-10 11-60 61-160 161-260 261-360

Length of critical sections

0

0.2

0.4

0.6

0.8

1
S

c
h

e
d

u
la

b
ili

ty

AnyFit SPA ROP OUR

(d) Schedulability with z = 6, m = 16, A =

15.

Figure 24: Heterogeneous schedulability figures.

in both homogeneous and heterogeneous architectures.

On the other hand, the results presented in Figure 24b show that at A = 1,

OUR achieves a schedulability rate of 97.8%, which is significantly higher than

AnyFit ’s rate of 14.8%. SPA performs well, with a schedulability rate of 80.4%,

while ROP have rates of 99.9%. As A increases to 20, as shown in Figure 24b,

OUR continues to lead, with a schedulability rate of 78.2%. This outperforms

AnyFit by 70.9% (equivalent to 709 more systems being schedulable), SPA by

77.2% (772 more systems schedulable), and ROP by 70.2% (702 more systems

schedulable). As A progresses to 40, Figure 24b illustrates that despite the gen-

eral decreasing trend in schedulability rates, OUR continues to exhibit relatively

133

better performance,

In both Figures 24c and 24d, we demonstrate the dominance of all algorithms

as various settings increase. Specifically, OUR consistently stands out in schedu-

lability, maintaining a 16.7% rate at m = 32. In contrast, AnyFit starts robustly

but drops to 0.4% by m = 32, and SPA reaches 0% by m = 28. ROP, while

declining, still lags notably behind OUR, hitting 0% at m = 32. Turning to Fig-

ure 24d, as ck extends to [11, 60], OUR retains a strong 97.3% rate, significantly

outperforming both ROP and SPA by margins of 43.5% and 101%, respectively.

These results underscore OUR’s adeptness in managing varying system pressures

and resource contention.

In conclusion, the OUR algorithm consistently exhibits superior performance

across various scenarios compared to AnyFit, SPA, and ROP. This dominance

mirrors its performance under homogeneous architecture. The pronounced per-

formance gap stems from the combined effects of our RCM, which precisely

captures the contention level between tasks, and our allocation algorithm, which

markedly reduces global resource contention by assigning contention-intensive

tasks to the same core.

4.4 Summary

In this chapter, we explored the task allocation challenge within the context

of shared resources, marking the second phase of our proposed HPRTS frame-

work. We introduced the RCM, tailored for tasks in systems that employ FIFO-

spin-based resource-sharing protocols, without imposing constraints on priority

assignments or the protocols themselves. This model enables us to gauge the in-

tensity of contention between tasks. Leveraging the insights from the RCM, we

unveiled a contention-aware allocation algorithm aimed at minimizing contention

during shared resource requests.

134

Our evaluations commenced with homogeneous architectures to ensure a uni-

form core environment. In most cases, the proposed approach outperforms state-

of-the-art methods. Specifically, in scenarios where our method has an advantage,

it surpasses the search-based method (ROP) by an average of 74% in terms of

schedulability. Furthermore, the computational cost of ROP is approximately

5.9 times of the proposed approach on average. We subsequently extended our

evaluations to the more intricate heterogeneous architectures, where core fre-

quencies can differ. The performance disparity between our proposed method

and other methods becomes even more pronounced. In many instances, while

our method still maintains a significant number of schedulable systems, other

methods are scarcely schedulable. Overall, the proposed approaches effectively

address the Limitation 4, 5 and 6 as defined in Section 2.4.2 and established the

success criteria SC-3 and SC-4 of the thesis.

135

Chapter 5

Precise Response Time Analysis for Multiple DAG

Tasks

With emerging real-time application scenarios, such as in autonomous systems

and Ultra-Reliable Low Latency Communications (URLLC) in the industrial

automation domain, complex functionalities are increasingly deployed in multi-

core real-time systems. In these systems, the functionalities can be delivered in

a concurrent fashion, but are subject to execution dependencies at certain points

of execution [96]. To reflect the complex dependency and parallelism that widely

exist between computations in the system, the DAG task model has received

much attention in the real-time systems community [10].

A DAG task contains a set of nodes and directed edges, in which each node

indicates a code segment that must be executed in a sequential manner and a

directed edge connecting two nodes indicates their execution dependency [10].

Any two nodes that have no execution dependencies between each other can be

executed in parallel across multiple cores. Compared to the traditional sporadic

task model [21] in which tasks have no execution dependencies between each

other, the DAG task abstraction provides a more realistic model that better de-

scribes the internal execution relationships within the system. However, it also

imposes new research challenges in ensuring system schedulability as the tradi-

tional bound on the WCRT of regular task models (e.g. sporadic and periodic)

does not take these existing execution dependencies within DAGs into account.

This chapter constructs the last step of the proposed HPRTS, we move to-

wards the exploration of more complicated task model. We focus on periodic

DAG tasks running on a homogneous multi-core system with a global limited

136

preemption scheme. The principal contribution of this chapter is a novel priority-

explicit RTA that advances the industrial usage of RTA for DAGs in real-world

systems. The proposed analysis produces tighter upper bounds for DAG tasks

by precisely bounding the intra-task and inter-task delay of a DAG task.

The structure of the following sections is as follows: Section 5.1 introduces

a novel RTA for DAG tasks, Section 5.2 presents the evaluation results, and

Section 5.3 concludes with some key findings.

5.1 Response Time Analysis for DAG Tasks

As described in Section 2.5.3, the existing RTA calculates the WCRT of a single

DAG (or makespan) first, and then adds the inter-task delay upon the single-

DAG RTA, which can result in a pessimistic bound leading to Limitations 7 and

8.

In this section, we construct a finer-grained RTA that provides the WCRT

bounds for both single- and multi-DAG systems by fully exploring the potential

parallelism of each node in the system to address the limitations. For clarity,

Table 12 concludes the necessary notations for RTA of single-DAG systems.

As mentioned in Section 2.5.1, the proposed RTA assumes that nodes be-

tween two DAG tasks are independent, they neither have constraints nor share

resources between each other. Moreover, nodes within a DAG are assigned indi-

vidual priorities. If the priority of τi exceeds that of τk (i.e., Pri(τi) > Pri(τk)),

then every node in τi will have a priority greater than those in τk (i.e., Pri(va) >

Pri(vb) for ∀va ∈ Vi and vb ∈ Vk). Furthermore, the proposed RTA is applicable

to any priority assignment. When referring to the term delay individually in this

chapter, it encompasses both interference and blocking delays.

137

Table 12: Table of Notations for Single DAG Anlaysis

Notation Description

Pri(τi) Priority of task τi

Vi Set of nodes in task τi

Ftvj Worst-case finish time of node vj

Stvj Worst-case starting time of node vj

Cvj Worst-Case Execution Time (WCET) of node vj

Ivj Nodes that can cause an intra-task delay to node vj

m Total number of cores in the system

Iremove
vj

Set of nodes that will never delay the execution of vj

Ipotentialvj
Set of nodes that can potentially cause intra-task delay to a node

vj

Ihivj High-priority nodes in Ipotentialvj

I lovj Low-priority nodes in Ipotentialvj

I lomax
vj

m− 1 largest nodes among the low-priority nodes in Ipotentialvj

I loprevj
Ancestor nodes of I lomax

vj
among the low-priority nodes in Ipotentialvj

5.1.1 RTA for Single-DAG Systems

To analyze the WCRT of a DAG task, we aim to identify the worst-case finish

time of each node and then identify the node that finishes the latest in the

DAG task. Equation 40 presents the worst-case makespan of a single DAG task,

denoted as Ri. Notation Ftvj defines the worst-case finish time of node vj and

maxvj∈Vi
{Ftvj} calculates the node that has the largest finishing time in the

DAG.

Ri = max
vj∈Vi

{Ftvj} (40)

Then for a given node vj, its worst-case finish time is computed as the sum

138

of its worst-case starting time Stvj and its WCET Cvj , as shown in Equation 41.

Ftvj = Stvj + Cvj
(41)

For a node vj, it is allowed to start its execution if all of its predecessors have

finished their executions. In addition, when vj is eligible to execute, it can incur

the intra-task delay imposed from the concurrent nodes with a higher priority

in the DAG task. Equation 42 bounds the worst-case starting time of vj, in

which Ivj gives the nodes that can cause an intra-task delay on node vj. This

equation iterates through each predecessor node vk ∈ pre(vj), and computes the

worst-case finish time of vk and the associated intra-task delay that vj can incur,

and hence, derives a safe bound [53].

Stvj = max
vk∈pre(vj)

{
Ftvk +

⌈CIvj \Ivk

m

⌉}
(42)

In addition, for the computation of the intra-task delay, we exclude the delay

(i.e. Ivj \Ivk) that has been accounted for in Ftvk to avoid repetitive calculations.

The term CIvj \Ivk represents the total workload that could delay vj, and the final

intra-task delay of vj is given by ⌈
CIvj \Ivk

m
⌉. Below we present details on the

identification of nodes in Ivj .

Under the limited preemptive scheduling scheme with a defined priority as-

signment policy, a node vj will not necessarily be delayed by all of its concurrent

nodes S(vj) (defined in Definition 2). To bound the amount of delay suffered by

vj from S(vj), we first identify the nodes that can never delay vj.

Lemma 6. For a pair of concurrent nodes vk and vj with Pri(vk) < Pri(vj), if

vk is eligible to execute (i.e., all of its predecessors have finish executing) at the

same time as or later than vj, vk and its descendants will not impose a delay to

vj.

139

Proof. If vk is eligible to execute at the same time as or later than vj, because

Pri(vk) < Pri(vj), once a core is available the scheduler will select vj to execute

first. Therefore, vk and its descendants (des(vk)) will not delay vj.

Lemma 7. For a node vj, nodes in the same DAG that are eligible to execute at

the same time with or later than vj are computed by η(vj), as shown in Equation

43.

η(vj) =

{
vk|vk ∈ Vi ∧ pre(vj) ⊆ pre(vk) ∧ vj ̸= vk

}
(43)

Proof. For a node vk ∈ Vi and vj ̸= vk , the predecessors of vk (pre(vk)) containing

all the predecessors of vj (pre(vj)) can be expressed as pre(vj) ⊆ pre(vk). Hence,

the predecessors of vk can finish later than or at the same time as the predecessors

of vj. Finally, we can deduce that vk is eligible to execute at the same time with

or later than vj

Based on Lemma 6 and 7, the set of nodes that cannot impose any delay to

the node vj (denoted as Iremove
vj

) can be identified in Equation 44. This equation

iterates over all the nodes in the DAG and appends vk and its descendants

(des(vk)) in Iremove
vj

, if the following conditions are satisfied: 1) the priority of vk

is smaller than vj (Pri(vk) < Pri(vj)); and 2) vk ∈ η(vj) or any of its ancestors

belongs to η(vj) (i.e., anc(vk) ∩ η(vj) ̸= ∅).

Iremove
vj

=
⋃

vk∈Vi


vk ∪ des(vk), if Pri(vk) < Pri(vj)∧

(vk ∈ η(vj) ∨ anc(vk) ∩ η(vj) ̸= ∅)

∅, otherwise.

(44)

Theorem 2. Equation 44 bounds the node set that will never delay the execution

of vj.

Proof. For a node vk with priority Pri(vk) < Pri(vj) that satisfies vk ∈ η(vj),

it cannot impose any delay to node vj according to Lemma 6 and 7. Moreover,

140

if any ancestors of vk belong to η(vj) (i.e. anc(vk)∩η(vj) ̸= ∅), the ancestor is

eligible to execute at the same time as or later than vj according to Lemma 7.

Accordingly, vk is eligible to execute at the same time as or later than vj, hence,

vk cannot impose any delay to node vj according to Lemma 6.

Based on Theorem 2, Equation 45 bounds the set of nodes that can potentially

cause intra-task delay with a node vj, denoted as Ipotentialvj
. As shown in the

equation, Ipotentialvj
is computed by excluding the nodes that cannot delay vj from

the concurrent node of vj (i.e. S(vj) \ Iremove
vj

).

Ipotentialvj
= S(vj) \ Iremove

vj
(45)

Lemma 8. For a node vj, if the nodes in Ipotentialvj
cannot occupy all m cores in

the system, then vj will not suffer from the intra-task delay.

Proof. Assuming all nodes in Ipotentialvj
execute on m− 1 cores of a system, when

vj arrives, it will directly execute on the idle core without being delayed.

Example 10. As shown in Figure 25, the set of nodes that can potentially delay

vj is Ipotentialvj
= {v1, v2, v3, v4}. Due the dependencies of nodes in Ipotentialvj

, they

can occupy at most two cores, therefore vj can execute on the core available

directly without incurring any delay.

Let path(Ipotentialvj
) denote a function that computes the largest number of

cores that Ipotentialvj
can occupy. Based on Lemma 8, Ivj can be computed by

Equation 46. As shown in this equation, when path(Ipotentialvj
) < m (i.e., the

potential delaying nodes cannot take all m cores), vj does not incur any intra-

task delay, and hence, Ivj can be directly set to empty. This approach takes

into account scenarios where nodes can execute in parallel, thereby avoiding

unnecessary delay calculations between nodes. This addresses Limitation 7, as

illustrated in Section 2.5.3.

141

Figure 25: An example of the interference-free execution.

Otherwise, if path(Ipotentialvj
) ≥ m, vj can incur a certain amount of intra-task

delay from Ipotentialvj
. As shown in Equation 46, under this case, the nodes that

cause this delay can be categorized into the following three groups.

1. Ihivj : the high-priority nodes in Ipotentialvj
,

2. I lomax
vj

: the m − 1 largest nodes among the low-priority nodes in Ipotentialvj
,

and

3. I loprevj
: the ancestor nodes of I lomax

vj
among the low-priority nodes in Ipotentialvj

.

Ivj =


∅, if path(Ipotentialvj) < m

Ihivj ∪ I lomax
vj ∪ I loprevj , otherwise

(46)

Equation 47 provides the computation for Ihivj , which takes all the high-priority

nodes in Ipotentialvj
into account. In the worst case, when vj arrives, all nodes in

Ihivj have just started executing, therefore, Ihivj is included in Ivj .

Ihivj =

{
vk|vk ∈ Ipotentialvj ∧ Pri(vk) > Pri(vj)

}
(47)

Under the global limited preemption scheme, in a multi-DAG scenario, the

source node of DAG may experience blocking from up to m low-priority nodes.

142

Figure 26: An example of a DAG task.

This assumes that when the source node arrives, all the cores are occupied by

low-priority nodes from other DAG tasks. However, in a single DAG scenario, the

source node will be the starting node, therefore, incur no blocking delay [86,92].

In both scenarios the remaining nodes may experience blocking from up to

m − 1 low-priority nodes. This is because before the node arrives, one core

will be taken up by its predecessor and the rest m − 1 cores can be taken by

the concurrent low-priority nodes. Proofs of the above statements on the low-

priority intra-task blocking delay can be found in Lemmas 4.2 and 4.3 in [92].

Therefore, the low-priority nodes in Ipotentialvj
that can cause a delay to vj can

be computed by Equations 48 and 49, in which I lovj returns all the low-priority

nodes in Ipotentialvj
and I lomax

vj
identifies the m− 1 nodes in I lovj that can cause the

maximum blocking delay. Example 11 demonstrates an example of bounding

I lomax
vj

.

I lovj =

{
vk|vk ∈ Ipotentialvj

∧ Pri(vk) < Pri(vj)

}
(48)

I lomax
vj

=
m−1
max{I lovj} (49)

Example 11. As shown in the Figure 26, the concurrent nodes of v1 is S(v1) =

{v3, v4}. As the priority of v1 (Pri(v1) = 3) is higher than the priorities of v3

(Pri(v3) = 1) and v4 (Pri(v4) = 2), we have I lov1 = {v3, v4}. For a system with

two cores, the maximum number of low-priority tasks that node v1 can execute

143

concurrently with is 1 and given that Cv3 < Cv4, the intra-task blocking of low-

priority nodes is I lomax
v1

= {v4} in this example.

According to Figure 26, S(v1) = {v3, v4} and I lomax
v1

= {v4}, S(v2) = {v4} and

I lomax
v2

= {v4}. In the present instance, v4 will only be counted as interference

of v1 and not for v2, since v1 is the predecessor of v2 and Equation 42 excludes

repeated interference from being counted more than once. However, there may

exist a situation that v3 delays v1 and v4 delays v2, as this situation still meets

the constraint that each node within a DAG can suffer delay from at most m−1

low-priority node mentioned above. We can assume v3 will impose blocking delay

to v1 as well to derive a safe upper bound for the intra-task delay. Such nodes

are denoted as I loprevj
and are bounded in Equation 50. The I loprevj

iterates through

nodes in I lomax
vj

denoted as vp, and identifies each node that belongs to I lovj but is

not in I lomax
vj

(i.e., vk ∈ (I lovj \I
lomax
vj

)), and is an ancestor of vp (i.e., vk ∈ anc(vp)).

I loprevj =
⋃

vp∈Ilomax
vj

{vk|vk ∈ (I lovj \ I
lomax
vj) ∧ vk ∈ anc(vp) ∧ vk ∈ Vi} (50)

Sustainability: We claim that the above analysis of the WCRT bound for

single-DAG systems is sustainable [19], i.e., when a node executes less than its

WCET, the Ri will not exceed the computed worst-case bound. In the con-

structed analysis, the WCRT is obtained by finding the worst-case finish time of

each node in a DAG. According to the Equations 41 and 42, the worst-case finish

time of each node consists of three factors: 1) the finish time of the predecessor,

2) the associated intra-task delay, and 3) the WCET of the node.

Lemma 9. The constructed analysis is sustainable if the intra-task delay is not

increased when the predecessors of a node vj execute less than their WCETs.

Proof. We focus on one factor at a time to prove this lemma. First, if vj itself

executes less than its WCET, it can only result in a smaller Ftvj . Second,

without considering the intra-task delay, given that the predecessors of vj execute

144

less than their WCETs, then Ftvj can only demonstrate a monotonically non-

increasing trend. Therefore, any sustainability issue in the constructed analysis

could only occur when the predecessors of vj execute less than their WCET but

have caused an increased intra-task delay.

Theorem 3. The constructed WCRT bound is sustainable.

Proof. Following Lemma 9, we focus on proving that for a node vj, its intra-

task delay will not increase when its predecessor nodes execute less than their

WCETs. First, the set of concurrent nodes of vj will remain the same regardless

of the actual execution time vj takes, which is derived purely based on exe-

cution dependency. Then, the list Iremove
vj

cannot be affected as the nodes are

accounted for based on the structural characteristics of the DAG instead of the

execution time of the nodes (Theorem 2). This precludes Ipotentialvj
from being

affected (Equation 45). To this end, we proved that the list Ipotentialvj
cannot be

affected by a lower execution time of nodes in a DAG. Based on Equation 46,

the intra-task delay is determined by Ihivj , I
lomax
vj

, and I lowpre
vj

. However, as shown

in Equations 47, 49, and 50, these factors are computed based on the priori-

ties and the WCETs of the nodes, which provide the maximum possible bound.

Therefore, any node with a lower execution time will not increase the intra-task

interference of vj, and hence, the theorem follows.

5.1.2 RTA for Multi-DAG Systems

In this section, we extend the analysis from a single DAG to a multi-DAG system,

in which there exists a set of recurrent DAG tasks Γ = {τ1, τ2, ..., τz}. The WCRT

of τi is denoted as Ri. To calculate Ri, the goal is to determine the worst-case

finish time of each node in τi (i.e. Ft(vi,j),∀vi,j ∈ Vi) which follows the same

principle as Section 5.1.1. The only difference is that each node will incur delay

not only from nodes within the same DAG but also from other DAGs, i.e., inter-

145

task delay. To compute the delay, the identification of the concurrent nodes

(see Equation 1) is updated to include nodes from other DAG tasks, denoted as

S∗(vi,j) for the multi-DAG case in Equation 51.

S∗(vi,j) = S(vi,j) ∪
⋃
τk∈Γ

{⌈
Ri

Tk

⌉
∗ Vk

∣∣∣∣vi,j /∈ Vk

}
(51)

As shown in this equation, the set of concurrent nodes of vi,j in a multi-DAG

system contains 1) the concurrent nodes from the same DAG (i.e. S(vi,j) in

Equation 23 and the nodes from other DAGs, which is denoted as
⋃

τk∈Γ{⌈
Ri

Tk
⌉ ∗

Vk|vi,j /∈ Vk}. Notation ⌈Ri

Tk
⌉ provides the number of releases of τk during Ri and

Vk represents all nodes in τk. The multi-DAG analysis follows the same process

as the single-DAG analysis described in Section 5.1.1 but includes extra inter-

task delay imposed by other DAG tasks. The key principle is still to work out

the worst-case execution scenario of each node within a DAG.

Unlike the RTA for DAG tasks proposed in [86], as introduced in Section

2.5.3, which bounds the WCRT of DAG by calculating the intra-task and inter-

task delays separately and incurs repetitive calculations of the delay leading to

Limitation 8, the proposed RTA places all concurrent nodes in Equation (51). It

analyzes intra-task and inter-task holistically, proceeding step by step (as shown

in Section 5.1.1) to more precisely capture the actual intra-task and inter-task

delays, effectively addressing the limitation.

5.2 Evaluation

In this section, we compare the tightness of the analytical bounds between the

proposed and the state-of-the-art methods. The evaluation focuses on comparing

the WCRT length (i.e. makespan) for single-DAG systems and the overall system

schedulability of multi-DAG systems.

Experimental Setup.

146

We consider a homogeneous architecture with varied core numberm = [2, 32].

Each DAG task in the evaluation is generated using two structural parameters:

the Length indicating the number of node layers required during generation, and

the Parallelism defining the number of nodes to be generated in a layer. Starting

from a single source node, nodes in a DAG task are generated layer by layer given

the Length and the Parallelism settings, where the node generation is finished

by adding a single sink node. Each newly-generated node has a probability of

50% to be connected to existing ones. Finally, nodes without any predecessor

(or successor) are directly connected to the source (or the sink) node.

In the single DAG evaluation, 1000 DAGs are generated under each sys-

tem setting to compare the length of makespan. Each task is generated with

Parallelism ∈ [6, 16] and Length ∈ [3, 13]. The period of each DAG τi is ran-

domly determined within the range of Ti ∈ [1000ms, 2000ms], and its deadline

is set equal to the period Di = Ti. The utilization task is set to Uτi = 0.5.

For the multi-DAG evaluation, 1000 systems are generated under each system

setting to compare the percentage of schedulable systems. Each system contains

z = 8 DAGs. We set Ti ∈ [1000ms, 3000ms] and Di = Ti. The total utilization of

the system
∑

U is determined by multiplying a utilization factor in the range of

[0.1, 0.35] by z, ensuring that the average utilization per core
∑

U
m

< 1. The indi-

vidual utilization of each DAG τi is computed using the UUnifast Algorithm [14].

With utilization determined, the total WCET of τi is calculated by Cτi =

Uτi × Ti. The WCET of each node (e.g., Cvi for a node vi) is then randomly

distributed by Cτi , where we enforce Cvi ≥ 0.

In addition, the intra-task priority assignment in [54] is applied for nodes

in the DAG. The Rate Monotonic Priority Assignment is used to assign the

DAG-level priorities.

The competing methods are illustrated below.

147

• The state-of-the-art generic bound for the limited preemption scheme in [86]

(denoted as Serrano2016).

• The state-of-the-art priority-explicit bound proposed in [54]. In single-

DAG, we include the intra-task blocking (i.e., I lovj and I loprevj
in Equation

49 and 50). For multi-DAG, the inter-task blocking in [86] is applied 2.

(denoted as He2021).

• The RTA constructed in this chapter (denoted as ours).

5.2.1 Evaluation for Single-DAG Systems

Figures 27 to 29 present the makespan of a single DAG with varied m, degrees

of parallelism, and lengths, respectively. Each makespan of a DAG is normalized

against the maximum makespan observed in the experiment out of 1000 DAGs

(where applied). A box-and-whisker plot is used to display the results, providing

a standardized method for representing the distribution of a dataset. The central

box spans the interquartile range, extending from the first quartile to the third

quartile, capturing the middle 50% of the data. A horizontal line within this box

indicates the median, signifying the data’s central tendency. The top and bottom

lines of the plot extend from the box to the dataset’s minimum and maximum

values, giving a comprehensive view of the data’s range.

From Figure 27, we can observe that the proposed analysis demonstrates a

constant lower bound on makespan compared to other methods. For instance,

the proposed analysis outperforms He2021 and Serrano2016 by an average of

8.8% and 8.47% under m = 6, respectively. The reason for this observation is

that the proposed analysis explicitly considers the parallel execution of nodes in

2We note that this modification is necessary for the application on a limited preemption

scheduler and the modified analysis is still the state-of-the-art analysis with explicit priorities

under the target scheduling scheme.

148

2 4 6 8 10 12

Core

0

0.2

0.4

0.6

0.8

1
m

a
k
e

s
p

a
n

He2021 Ours Serrano2016

Figure 27: The makespan of a single DAG with varied m, Parallelism = 8 and

Length = 7.

a DAG and only takes ones that can cause a delay, and hence, leads to lower

intra-task delay.

Similar observations are also obtained in Figures 28 and 29, in which the

proposed analysis is constantly better than the competing methods in terms

of achieving tighter bounds on the makespan. From these figures, a notable

observation is that the proposed analysis performs better when the length of the

DAG is relatively low, e.g., with a length less than seven in Figure 29. This

is because with a shorter length, fewer layers of nodes are generated so that

less nodes will be included in Ipotentialvj
. According to Equation 46, if nodes in

Ipotentialvj
cannot take up all the cores, vj can start execution without incurring

any interference. However, in the state-of-the-art methods, such workload is still

accounted for when bounding the intra-task delay, and hence, results in a longer

makespan.

In addition, to offer a more detailed comparison of the evaluated methods,

Tables 13 and 14 present a comprehensive dataset extracted from Figure 27

149

6 8 10 12 14 16

Parallelism

0.2

0.4

0.6

0.8

1

m
a
k
e
s
p
a
n

He2021 Ours Serrano2016

Figure 28: The makespan of a single DAG with varied degree of parallelism,

m = 6 and Length = 7.

3 5 7 9 11 13

Length

0

0.2

0.4

0.6

0.8

1

m
a
k
e
s
p
a
n

He2021 Ours Serrano2016

Figure 29: The makespan of a single DAG with varied length, m = 6, and

Parallelism = 12.

Table 13: The Comparison of Makespan with He2021.

Our ≻ He2021 Our ≺ He2021

m=2 m=4 m=6 m=8 m=10 m=12 m=2 m=4 m=6 m=8 m=10 m=12

number 981 995 991 992 1000 1000 5 5 9 8 0 0

avg. 7.21 9.17 8.88 9.24 8.04 6.75 0.06 1.65 1.52 1.86 0 0

max. 21.64 27.68 26.47 22.14 23.91 18.22 0.3 3.4 2.44 3.84 0 0

150

Table 14: The Comparison of Makespan with Serrano2016.

Our ≻ Serrano2016 Our ≺ Serrano2016

m=2 m=4 m=6 m=8 m=10 m=12 m=2 m=4 m=6 m=8 m=10 m=12

number 1000 987 980 991 1000 1000 0 13 20 9 0 0

avg. 13.68 9.11 8.47 8.94 7.91 6.69 0 1.3 1.92 1.77 0 0

max. 28.29 26.75 22.01 20.56 19.28 16.87 0 3.06 5.21 3.84 0 0

with varied m. This dataset provides a comparison of the length of computed

makespan between competing methods. For instance, Our ≻ He2021 indicates

cases where Our outperforms He2021, while Our ≺ He2021 denotes the oppo-

site. The notation number represents the number of advantageous or disad-

vantageous DAG tasks out of 1,000 generated tasks. avg. provides the average

advantageous performance, and max. denotes the maximum advantageous per-

formance. Taking the first column of Table 13 as an example, when m = 2,

our bound computes 981 shorter makespan out of 1000 DAG tasks. In the 981

cases, we outperform He2021 by 7.21% (i.e. shorter by 7.21%) in average. The

maximum advantage in these cases is 21.64%.

From the tables, we can observe that the proposed analysis outperforms other

schemes in most cases across all settings, and obtains an improvement of up to

9.24% and 13.68% on average, compared to He2021 and Serrano2016 respectively.

However, we also observed that there exist cases where He2021 or Serrano2016

can produce a lower makespan bound. This is because in order to provide a

safe bound, the I loprevj
in Equation 46 is introduced in our analysis to avoid over-

optimistic computations when bounding the blocking delay from low-priority

nodes. However, such situations rarely occur and the proposed analysis demon-

strates a significant advantage over the competing analysis in almost all cases.

151

5.2.2 Evaluation for Multi-DAG Systems

Figures 30 and 31 present the schedulability of the evaluated methods in multi-

DAG systems, with a varied number of cores m and utilization per core
∑

U
m

.

In the multi-DAG case, the proposed analysis demonstrates the most pro-

nounced advantages, in which the schedulability of other methods drops quickly

and schedules few systems when either the m < 14 or the
∑

U
m

> 0.2. In contrast,

the proposed analysis can still schedule up to 100% of the systems in majority

cases (e.g., m = 12 in Figure 30 and with
∑

U
m

= 0.5 in Figure 31). This obser-

vation is obtained due to the combined efforts of the proposed RTA in reducing

the bound of both the intra-task and inter-task delays.

More specifically, in the single-DAG analysis, we focus on calculating the

worst-case scenario of nodes instead of paths which allow a finer-grained delay

analysis. The key factor for better schedulability is the removal of unnecessary

interference and blocking delay that we summarized in Equation 44 and the con-

dition that judges whether delay will occur in Equation 46. Moreover, in the

multi-DAG analysis, we continue to analyze the worst-case execution scenario

of each node and treat other DAGs as concurrent nodes as shown in Equation

51 which allows the inter-task delay to be capured precisely without much re-

dundancy. However, He2021 and Serreno2016 always compute the interference

delay by averaging the total workload of the interfering DAGs or nodes, and in-

clude repetitive calculations when bounding the blocking delay (See Limitation

8 discussed in Section 2.5.3).

We also observed thatHe2021 and Serreno2016 have almost the same scheduli-

bility in Figures 30 and 31. The reason is that the work in [54] provides a bound

for single-DAG preemptive scheduling which can have an obvious advantage over

generic bound because only high-priority nodes are accounted as interference.

However, we introduce non-preemptive (our focus) features to He2021 which in-

152

1214161820222426283032

Core

0

500

1000

S
c
h
e
d
u
la

b
le

 S
y
s
te

m
s

Ours

He2021

Serreno2016

Figure 30: The system schedulability for multi-DAGs under a varied m, Paral-

lelism = 6, and Length = 6.

0.2 0.3 0.4 0.5 0.6 0.7
Util

0

500

1000

S
c
h

e
d

u
la

b
le

 S
y
s
te

m
s

Ours

He2021

Serreno2016

Figure 31: The system schedulability for multi-DAGs under varied
∑

U
m

, m = 4,

Parallelism = 6, and Length = 6.

153

cludes low-priority blocking delay, and the advantage becomes trivial. Moreover,

He2021 inherits the analysis of Serreno2016 in multi-DAG systems, hence their

overall difference is negligible with a limited-preemption scheduling scheme.

5.3 Summary

This chapter focuses on the RTA of DAG tasks operating under a global lim-

ited preemption scheme. We introduce novel RTA analysis techniques tailored

for both single-DAG and multi-DAG systems. For the single-DAG analysis, we

meticulously address intra-task delays. This is achieved by identifying and elim-

inating infeasible delays, guided by an in-depth exploration of a DAG’s depen-

dency structure. Furthermore, we capitalize on the inherent parallelism among

nodes, examining conditions where nodes can concurrently execute without in-

ducing any delay, thereby addressing Limitation 7 as stated in Section 2.5.3.

Diverging from conventional methods that formulate the multi-DAG RTA by

simply aggregating the inter-task delay to the single-DAG RTA. Our approach

centers on constructing the WCRT by determining the worst-case finish time

for each node within a DAG. Such a methodology grants enhanced flexibility in

bounding the WCRT for multi-DAG scenarios. To derive the WCRT for multi-

DAG systems, we also compute the worst-case finish time for each node, treating

other DAG tasks as parallel entities. Subsequently, we revisit the analysis pro-

cess to holistically ascertain a more accurate interference and blocking delay,

eliminating the redundancy in intra-task and inter-task delay calculations which

addresses the Limitation 8 as summarized in Chapter 2.5.3.

Our experimental results distinctly highlight the advanced efficacy of our

analysis in comparison to prevailing methods. Comprehensive experiments re-

veal that, when juxtaposed with the techniques in [86] and [54], our analysis

yields considerably tighter bounds, amplifying system schedulability by over

154

300%. Notably, our approach demonstrates pronounced superiority in systems

facing intense schedulability constraints, achieving scheduling for up to 100% of

such systems, a feat unattained by competing methodologies. The contributions

of this chapter established the success criteria SC-5 of the thesis.

155

Chapter 6

Conclusion

In this thesis, we undertake a comprehensive investigation into three pivotal

research areas in real-time systems: reliable resource sharing in Mixed-Criticality

Systems (MCS), resource-aware task allocation methods, and precise Response

Time Analysis (RTA) for tasks modeled as Directed Acyclic Graphs (DAG).

These areas are fundamental to enhancing the performance of modern real-time

embedded systems.

Chapter 2 serves as the foundation of this thesis, providing essential back-

ground knowledge on real-time task models, scheduling schemes, and schedula-

bility analysis—all crucial for ensuring timing predictability. This chapter delves

into the intricacies of shared resources and MCS models and introduces advanced

RTA methods that incorporate both shared resources and MCS. It addresses lim-

itations 1-8 of current research bottlenecks, setting the stage for the solutions

proposed in the subsequent chapters.

In Chapter 3, we introduce a novel fault-tolerance solution to ensure reli-

able resource sharing in MCS. This solution encompasses a system execution

model and the Multiprocessor Stack Resource Sharing Protocol Fault Tolerance

(MSRP-FT) protocol—a novel approach designed to minimize blocking time dur-

ing critical sections. By leveraging remote processors to support the resource-

holding task, this solution enhances fault tolerance and provides a timing guar-

antee through a comprehensive RTA.

Chapter 4 presents a resource-aware task allocation method for preemptive,

fully-partitioned systems scheduled by Fixed-Priority Scheduling (FPS) with

First-In-First-Out (FIFO) spin locks applied. This method transcends the limi-

156

tations of traditional approaches by using a Resource Contention Model (RCM)

to approximate resource contention between tasks. This guides the allocation

process to diminish resource competition and task blocking, ultimately improv-

ing system performance.

Chapter 5 zeroes in on periodic DAG tasks in homogeneous multiprocessor

systems, introducing a novel priority-explicit RTA. This chapter unveils new

analysis techniques that sidestep complex computations, offering tighter upper

bounds for DAG tasks. It achieves this by accurately bounding both intra-

task and inter-task delays, laying the groundwork for the application of RTA

in the modern embedded systems with increasing complexities and stringent

requirements.

6.1 Contributions

In this thesis, we introduce a High-Performance Real-time Scheduling (HPRTS)

framework designed to tackle the existing limitations in crucial areas of real-time

systems. These areas encompass reliable resource sharing, contention-aware al-

location, and RTA for multi-DAGs in multiprocessor architectures, all of which

have the potential to impede the advancement of current real-time systems to-

ward higher performance.

In Chapter 2, we provide a literature review to contextualize the research of

this thesis.

• We demonstrate a deep understanding of the field by critically analyzing

and synthesizing a wide range of relevant literature, theories, and method-

ologies.

• We identify gaps in existing studies, summarizing Limitations 1 to 8.

157

• We establish through Lemma 3 that the existing RTA bound for DAG tasks

as presented in [108] is not secure.

In chapter 3, to guarantee reliable resource sharing in multiprocessor MCS,

we propose a fault-tolerance solution:

• We construct a system execution model compatible with an arbitrary num-

ber of criticality levels. In our model, faults occurring in normal sections

and critical sections are treated separately.

• A novel protocol, MSRP-FT, is proposed to address faults during critical

sections, aiming to minimize blocking time.

• An holistic RTA, building on the state-of-the-art analysis is developed to

provide timing guarantees for the proposed solution.

Compared to the existing methods in the same system context, our approach

improves system schedulability by up to 151.5% in average. These contributions

address Limitations 1, 2 and 3 as illustrated in Chapter 2 and fulfill the success

criteria SC-1 and SC-2 of this thesis.

In chapter 4, to provide effective task allocation methods with the presence

of shared resources, we present a resource-aware task allocation method for fully-

partitioned systems scheduled by FPS with FIFO-spin locks applied:

• We develop a RCM to approximate resource contention between tasks, by

anlayzing resource usage and potential blocking.

• A resource-aware task allocation algorithm is developed to allocate tasks

with the highest resource contention to the same processor, which reduces

global resource competition and task blocking.

We initiated evaluations on homogeneous architectures. In most test cases,

our method outperformed other prevailing techniques. Moreover, in scenarios

158

particularly favorable to our approach, we surpassed the search-based method

(Resource-Oriented Partitioning (ROP)) by an average of 74% in schedulability.

Additionally, the computational overhead of ROP was, on average, 5.9 times

that of our method. Upon transitioning to the more intricate heterogeneous

architectures with diverse core frequencies, the superiority of our method was

further underscored, especially in comparison to numerous other techniques. Our

contributions in Chapter 4 address Limitations 4, 5 and 6 as stated in Chapter

2 and fulfill the success criteria SC-3 and SC-4 of this thesis.

In chapter 5, for multi-core systems with multi-DAG tasks and a global lim-

ited preemption scheme, we propose a novel priority-explicit RTA:

• We provide a new analysis technique for a single DAG that explores node-

level parallelism and safely removes unnecessary workload when bounding

intra-task delays.

• We also provide a new analysis method for multi-DAGs which analyze the

intra- and inter-task delays holistically to avoid redundant calculations.

Extensive experiments demonstrate that the constructed analysis achieves

tighter bounds and can improve system schedulability by over 300%. It has an

even larger advantage for systems with high schedulability pressure, scheduling

up to 100% of such systems compared to 0% for competing methods. This

developed RTA for single- and multi-DAG tasks addresses Limitations 7 and 8

as stated in Chapter 2 and fulfills the success criteria SC-5 of the thesis.

Revisiting the hypothesis of this thesis, we posited that the proposed HPRTS

framework could achieve promising performance improvements in reliable resource-

sharing, resource-aware task allocation, and RTA for multi-DAG systems. Re-

flecting on the contributions and experimental results presented in this thesis:

Our fault-tolerant solution effectively addresses the challenges of resolving faults

in MCS with shared resources, thereby enhancing system schedulability. The

159

resource-aware task allocation algorithm we introduced reduces resource con-

tention, outperforming existing methods. Furthermore, our RTA for multi-DAG

systems provides a tighter WCRT bound, adeptly addressing the challenges of

hardware resource over-provisioning. Consequently, the initial hypothesis has

been validated.

6.2 Future Research

In this subsection, we will outline potential future research directions building

upon the current strategies that ensure reliable resource-sharing, resource-aware

task allocation methods, and timing predictability for the scheduling of multi-

DAG systems. Building on the existing research, we aim to extend to a more

complex system model or to develop advanced methods that are more aligned

with the applications of real-world systems. This approach will further facilitate

the optimization of real-time systems, steering them towards higher performance.

Fault-Tolerance Approaches with Different Protocols

In Chapter 3, we introduce the novel fault-tolerance protocol MSRP-FT, which

operates based on the non-preemptive FIFO-spin characteristics of MSRP. In

this setup, tasks are placed in a FIFO queue and start to spin non-preemptively,

engaging in busy-wait states for the locks on their host core. These tasks are

utilized to assist the resource holder in executing the associated critical section

in parallel, thereby addressing potential faults.

The core principle of this fault-tolerant approach for critical sections is to

repurpose the wasted cycles of the spinning tasks in the FIFO queue. This strat-

egy ensures reliability for each critical section during a single access, aiming to

reduce the time spent on fault tolerance and resource contention. Meanwhile, the

simple non-preemptive FIFO-spin characteristics offer a naturally suitable plat-

160

form for the application of MSRP-FT. This allows for the utilization of wasted

cycles and prevents helping tasks from being interrupted midway while assist-

ing the resource holder. However, the non-preemptive characteristics are not as

accommodating to local high-priority tasks, which often face more urgent dead-

lines but can experience intensive blocking from low-priority tasks whenever a

resource request is made.

Looking ahead, our future research will apply the proposed fault-tolerance ap-

proaches to other preemptive FIFO-spin-based multiprocessor resource sharing

protocols, such as Multiprocesser resource sharing Protocol (MrsP), cited in [22].

Under this approach, tasks inherit a ceiling when requesting shared resources,

meaning they can be preemptive while spinning for shared resources. Implement-

ing MrsP necessitates the development of more detailed execution strategies to

respond to faults when they occur, especially when the resource holder and help-

ing tasks are preempted by a local task. In line with the developed approaches,

new RTA will be introduced to enhance the system’s timing predictability.

Include Overheads in Fault-Tolerance Approach

In Chapter 3, the proposed fault-tolerance approaches are undertaken with the

assumption that no overheads are explicitly considered. In revising the MSRP-

FT, the task at the head of the FIFO queue will access the shared resource.

The code segment to be executed by the head task and the internal states (e.g.,

variables) of the resource are replicated according to the number of tasks in the

FIFO queue. Subsequently, replicas are stored in the local memory of each core.

Each task in the FIFO queue, including the head task, executes a replica on their

host cores in parallel and updates the results on the local replica independently.

Once a correct output is produced, it will update the global resource, and the

execution of other replicas will be signaled to stop and abandon the replicas.

161

The implementation of MSRP-FT involves many steps, including fetching

the shared resources, replicating the shared resources, and facilitating communi-

cation between tasks when updating the shared resources. It also encompasses

the context switch of helping tasks when assisting different resource holders to

execute the critical sections. While some of these overheads may be negligible,

they are still worth exploring. In future research, we will analyze the poten-

tial overheads at each step of MSRP-FT, incorporating them into the RTA of

MSRP-FT to more precisely evaluate its performance. This will help determine

the scenarios and extent to which the overheads can impact the effectiveness of

MSRP-FT.

Develop a RCM Model based on other Lock Mechanisms

In Chapter 4, the RCM delineates the level of resource contention occurring

between tasks operating under FIFO-Spin-based resource sharing protocols. This

contention level is ascertained approximately through a meticulous analysis of the

aggregate demand of tasks for resources, coupled with the regulatory stipulations

inherent in FIFO-Spin-based resource sharing protocols, thereby facilitating a

more precise computation of potential task blockages.

Nevertheless, as elucidated in [104], resource sharing protocols in multiproces-

sor environments inherently possess both advantages and disadvantages, with no

single protocol unequivocally surpassing others. Looking forward, our forthcom-

ing research endeavors will encompass the expansion of the prevailing resource

contention model to accommodate a diverse array of resource sharing protocols.

This initiative aims to accurately depict task resource-access behaviors governed

by the distinct regulations of various resource sharing protocols. Consequently,

this will empower system architects in the realm of modern embedded systems

with a broader spectrum of design alternatives and enhanced adaptability, given

162

that different protocols are optimally suited for disparate systems

Develop Resource-Aware Task Allocation on Heterogeneous Architec-

ture

In Chapter 4, we evaluate the RCM and resource-aware task allocation algo-

rithms in both homogeneous and heterogeneous architectures. However, the

current assumed heterogeneous model represents an initial or simple heteroge-

neous architecture. Cores are presumed to have Dynamic Voltage and Frequency

Scaling (DVFS)-enabled and to operate at different frequencies during runtime.

Moreover, they do not exhibit markedly different execution abilities, meaning

that tasks can execute on any core in the system.

In the existing heterogeneous setup, the proposed allocation algorithms based

on the RCM can still yield outstanding results with the current design. Look-

ing forward to future research, we plan to explore more complex heterogeneous

architectures, wherein different types of tasks can only be executed on specified

processors. In such scenarios, the contention model and allocation algorithms

must be redeveloped to consider not only task contention and resource frequen-

cies but also to accommodate different task types. Balancing these elements will

introduce more complex research problems, yet it is essential for enhancing the

performance of high-end real-time systems.

Developing RTA for Typed-DAG Tasks

In Chapter 5, we introduce a new analysis technique for single and multi-DAGs

that leverages node-level parallelism and safely eliminates unnecessary blocking

workload. The proposed RTA is grounded in simple task models within a homo-

geneous multiprocessor architecture, where nodes within DAG tasks can execute

on different cores.

163

However, emerging research has begun to focus on typed-DAG tasks, wherein

nodes within a DAG are required to execute on different cores. These typed-DAG

tasks can represent a wider range of systems, as applications stemming from dif-

ferent components of the platform may have vastly different execution require-

ments, yet still maintain execution dependencies. Consequently, future research

will analyze typed-DAG tasks on heterogeneous architectures under a steadfast

scheduling paradigm, continuing to consider the parallelism between nodes while

developing an effective RTA that ensures safety and reduces pessimism.

Discover Resource-Sharing of DAG Tasks

The current focus of this thesis in Chapter 5 is on simple DAG task models with-

out the consideration of shared resources. However, this scenario will eventually

need to be addressed, as shared resources are prevalent in modern real-time

embedded systems.

In future research on the topic of DAG task models, we will take into ac-

count the presence of resource sharing, not only between DAG tasks but also

between nodes within a DAG. In this scenario, it will be essential to explore the

effectiveness of different resource sharing protocols, ensuring that node schedul-

ing satisfies dependency constraints while also maintaining the data integrity of

shared resources. Moreover, the RTA of such systems needs to be developed to

guarantee both timing constraints and dependency constraints of tasks. New

research challenges will arise under the complicated research background, such

as determining the blocking delay, which will depend not only on the execution

time of nodes but also on the amount of time each node spends acquiring shared

resources.

164

6.3 Concluding Remarks

In the realm of academic research, the domain of real-time systems consistently

presents a myriad of intricate avenues for exploration and innovation. The com-

prehensive findings and methodological contributions presented in this thesis not

only elucidate the current state of the art but also establish a rigorous foundation

for subsequent scholarly endeavors. As we look forward, it becomes imperative

to build upon this foundation with the overarching objective of further enhanc-

ing the efficacy, robustness, and dependability of real-time embedded systems,

ensuring they meet the evolving demands of contemporary applications.

165

List of Abbreviations

HPRTS: High Performance Real-time Scheduling

MCS: Mixed-Criticality Systems

RCM: Resource Contention Model

I/O: Input/Output

DAG: Directed Acyclic Graph

RTA: Response Time Analysis

QoS: Quality of Service

ABS: Anti-lock Braking System

WF: Worst-Fit

FF: First-Fit

BF: Best-Fit

NF: Next-Fit

FPS: Fixed-Priority Scheduling

EDF: Earliest Deadline First

LLF: Least Laxity First

NP: Non-Preemptive

WCET: Worst-Case Execution Time

WCRT: Worst-Case Response Time

FIFO: First-in-First-out

OPCP: Original Priority Ceiling Protocol

IPCP: Immediate Priority Ceiling Protocol

PCP: Priority Ceiling Protocol

MSRP: Multiprocessor Stack Resource Protocol

AMC: Adaptive Mixed Criticality

HLC-PCP: Highest-Locker Criticality, Priority-Ceiling Protocol

166

ILP: Integer Linear Programming

SPA: Synchronization-Aware Partitioning Algorithm

ROP: Resource-Oriented Partitioning

CF: Contention Factor

URLLC: Ultra-Reliable Low Latency Communications

MrsP: Multiprocessor Resource Sharing Protocol

MSRP-FT: Multiprocessor Stack Resource Protocol Fault Tolerance

DVFS: Dynamic Voltage and Frequency Scaling

167

References

[1] Z. Al-bayati, J. Caplan, B. H. Meyer, and H. Zeng. A four-mode model

for efficient fault-tolerant mixed-criticality systems. In IEEE Design, Au-

tomation & Test in Europe Conference & Exhibition (DATE), 2016.

[2] M. Alfranseder, M. Deubzer, B. Justus, J. Mottok, and C. Siemers. An

efficient spin-lock based multi-core resource sharing protocol. In IEEE

International Performance Computing and Communications Conference

(IPCCC), 2014.

[3] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings.

Applying new scheduling theory to static priority pre-emptive scheduling.

Software Engineering Journal, 8(5):284–292, 1993.

[4] N. C. Audsley. Optimal priority assignment and feasibility of static priority

tasks with arbitrary start times. In Technical Report YCS 164. University

of York, Department of Computer Science, 1991.

[5] AUTOSAR. AUTOSAR Adaptive Platform, November 2019.

[6] T. P. Baker. An analysis of edf schedulability on a multiprocessor. IEEE

transactions on parallel and distributed systems, 16(8):760–768, 2005.

[7] T. P. Baker. A comparison of global and partitioned edf schedulability

tests for multiprocessors. 22nd IEEE International Real-Time Systems

Symposium (RTSS’05), pages 10 pp.–, 2005.

[8] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli, M. Peri,

and S. Pezzini. Fault-tolerant platforms for automotive safety-critical ap-

168

plications. In ACM Compilers, Architectures and Synthesis for Embedded

Systems (CASES), 2003.

[9] S. Baruah. The federated scheduling of systems of conditional sporadic

DAG tasks. In International Conference on Embedded Software, pages 1–

10, 2015.

[10] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and

A. Wiese. A generalized parallel task model for recurrent real-time pro-

cesses. In Real-Time Systems Symposium, pages 63–72, 2012.

[11] S. K. Baruah, A. Burns, and R. I. Davis. Response-time analysis for mixed

criticality systems. In IEEE Real-Time Systems Symposium (RTSS), 2011.

[12] M. Bertogna, G. Buttazzo, and G. Yao. Improving feasibility of fixed

priority tasks using non-preemptive regions. In 2011 IEEE 32nd Real-Time

Systems Symposium, pages 251–260. IEEE, 2011.

[13] E. Bini and G. Buttazzo. Schedulability analysis of real-time systems

with stochastic task execution times. IEEE Transactions on Computers,

53(11):1462–1473, 2005.

[14] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability

tests. Springer Real-Time Systems (RTS), 2005.

[15] B. B. Brandenburg. Multiprocessor real-time locking protocols: A system-

atic review. arXiv preprint arXiv:1909.09600, 2019.

[16] I. Broster and A. Burns. A practical solution to the problem of schedulabil-

ity analysis with overrun without abort. In Proceedings of the 24th IEEE

Real-Time Systems Symposium (RTSS), pages 209–218. IEEE, 2003.

169

[17] A. Burns. The application of the original priority ceiling protocol to mixed

criticality systems. Proc. ReTiMiCS, RTCSA, 2013.

[18] A. Burns and S. Baruah. Towards a more practical model for mixed criti-

cality systems. In Workshop on Mixed-Criticality Systems (colocated with

RTSS), 2013.

[19] A. Burns and S. K. Baruah. Sustainability in real-time scheduling. Journal

of Computing Science and Engineering, 2(1):74–97, 2008.

[20] A. Burns and R. I. Davis. Mixed criticality systems—a review. Department

of Computer Science, University of York, Tech. Rep, 2019.

[21] A. Burns and A. J. Wellings. Real-time systems and programming lan-

guages: Ada 95, real-time Java, and real-time POSIX. Pearson Education,

2001.

[22] A. Burns and A. J. Wellings. A schedulability compatible multiprocessor

resource sharing protocol–mrsp. In IEEE Euromicro Conference on Real-

Time Systems (ECRTS). IEEE, 2013.

[23] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable Schedul-

ing Algorithms and Applications. Springer Science & Business Media, 2011.

[24] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo. Partitioned fixed-

priority scheduling of parallel tasks without preemptions. In IEEE Real-

Time Systems Symposium, pages 421–433. IEEE, 2018.

[25] D. Cederman, B. Chatterjee, N. Nguyen, Y. Nikolakopoulos, M. Papatri-

antafilou, and P. Tsigas. A study of the behavior of synchronization meth-

ods in commonly used languages and systems. In 2013 IEEE 27th Interna-

tional Symposium on Parallel and Distributed Processing, pages 1309–1320.

IEEE, 2013.

170

[26] G. Chen, N. Guan, K. Huang, and W. Yi. Fault-tolerant real-time tasks

scheduling with dynamic fault handling. Elsevier Journal of Systems Ar-

chitecture (SA), 2020.

[27] N. Chen, S. Zhao, I. Gray, A. Burns, S. Ji, and W. Chang. MSRP-FT:

Reliable resource sharing on multiprocessor mixed-criticality systems. In

2022 IEEE 28th Real-Time and Embedded Technology and Applications

Symposium (RTAS), pages 201–213. IEEE, 2022.

[28] P. Chen, W. Liu, X. Jiang, Q. He, and N. Guan. Timing-anomaly free

dynamic scheduling of conditional DAG tasks on multi-core systems. ACM

Transactions on Embedded Computing Systems, 18(5):1–19, 2019.

[29] R. I. Davis and A. Burns. Improved priority assignment for global fixed

priority pre-emptive scheduling in multiprocessor real-time systems. Real-

Time Systems, 47(1):1–40, 2011.

[30] R. I. Davis and A. Burns. A survey of hard real-time scheduling for mul-

tiprocessor systems. ACM computing surveys (CSUR), 43(4):1–44, 2011.

[31] A. C. De Melo. The new linux’perf’tools. In Slides from Linux Kongress,

volume 18, pages 1–42, 2010.

[32] S. Di Cairano and I. V. Kolmanovsky. Real-time optimization and model

predictive control for aerospace and automotive applications. In 2018 an-

nual American control conference (ACC), pages 2392–2409. IEEE, 2018.

[33] R. Dobrin and G. Fohler. Reducing the number of preemptions in fixed

priority scheduling. In Proceedings. 16th Euromicro Conference on Real-

Time Systems, 2004. ECRTS 2004., pages 144–152. IEEE, 2004.

171

[34] P. Ekberg and M. Törngren. Reliability in mixed-criticality systems. Pro-

ceedings of the 2nd Workshop on Analytic Virtual Integration of Cyber-

Physical Systems, 2012.

[35] P. Emberson, R. Stafford, and R. I. Davis. Techniques for the synthesis of

multiprocessor tasksets. In International Workshop on Analysis Tools and

Methodologies for Embedded and Real-time Systems, pages 6–11, 2010.

[36] J. Fonseca, G. Nelissen, and V. Nélis. Improved response time analysis of

sporadic DAG tasks for global FP scheduling. In International Conference

on Real-Time Networks and Systems, pages 28–37, 2017.

[37] J. Fonseca, G. Nelissen, V. Nelis, and L. M. Pinho. Response time analysis

of sporadic DAG tasks under partitioned scheduling. In Symposium on

Industrial Embedded Systems, pages 1–10, 2016.

[38] J. C. Fonseca, V. Nélis, G. Raravi, and L. M. Pinho. A multi-DAG model

for real-time parallel applications with conditional execution. In Annual

ACM Symposium on Applied Computing, pages 1925–1932, 2015.

[39] K. Funaoka, S. Kato, and N. Yamasaki. Work-conserving optimal real-

time scheduling on multiprocessors. In 2008 Euromicro Conference on

Real-Time Systems, pages 13–22. IEEE, 2008.

[40] S. Fürst, J. Mössinger, S. Bunzel, T. Weber, F. Kirschke-Biller,

P. Heitkämper, G. Kinkelin, K. Nishikawa, and K. Lange. AUTOSAR–

a worldwide standard is on the road. In 14th International VDI Congress

Electronic Systems for Vehicles, Baden-Baden, volume 62, 2009.

[41] P. Gai, G. Lipari, and M. Di Natale. Minimizing memory utilization of real-

time task sets in single and multi-processor systems-on-a-chip. In IEEE

Real-Time Systems Symposium (RTSS), 2001.

172

[42] P. Gai, G. Lipari, and M. Di Natale. Minimizing memory utilization of

real-time task sets in single and multi-processor systems-on-a-chip. In Real-

Time Systems Symposium (RTSS), pages 73–83. IEEE, 2001.

[43] Y. Gao and P. Zhang. A survey of homogeneous and heterogeneous system

architectures in high performance computing. In 2016 IEEE International

Conference on Smart Cloud (SmartCloud), pages 170–175. IEEE, 2016.

[44] H. Gomaa. Real-Time Systems Design and Analysis: An Engineer’s Hand-

book. John Wiley & Sons, 2004.

[45] R. L. Graham. Bounds on multiprocessing timing anomalies. Journal on

Applied Mathematics, 17(2):416–429, 1969.

[46] F. E. Gruber. Industry 4.0: A best practice project of the automotive

industry. In Digital Product and Process Development Systems: IFIP TC

5 International Conference, NEW PROLAMAT 2013, Dresden, Germany,

October 10-11, 2013. Proceedings, pages 36–40. Springer, 2013.

[47] J.-J. Han, X. Tao, D. Zhu, and L. T. Yang. Resource sharing in multicore

mixed-criticality systems: Utilization bound and blocking overhead. IEEE

Transactions on Parallel and Distributed Systems (TPDS), 2017.

[48] J.-J. Han, X. Wu, D. Zhu, H. Jin, L. T. Yang, and J.-L. Gaudiot.

Synchronization-aware energy management for VFI-based multicore real-

time systems. IEEE Transactions on Computers, 61(12):1682–1696, 2012.

[49] J.-J. Han, D. Zhu, X. Wu, L. T. Yang, and H. Jin. Multiprocessor real-

time systems with shared resources: Utilization bound and mapping. IEEE

Transactions on Parallel and Distributed Systems, 25(11):2981–2991, 2013.

[50] P. B. Hansen. The origin of concurrent programming: from semaphores to

remote procedure calls. Springer Science & Business Media, 2013.

173

[51] M. A. Haque, H. Aydin, and D. Zhu. Real-time scheduling under fault

bursts with multiple recovery strategy. In IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS), 2014.

[52] M. Hatami. Semi-partitioned scheduling hard real-time periodic dags in

multicores. In The Proceeding of First Work-in-Progress Session of 2018

CSI International Symposium on Real-Time and Embedded Systems and

Technologies, page 9, 2018.

[53] Q. He, N. Guan, Z. Guo, et al. Intra-task priority assignment in real-time

scheduling of dag tasks on multi-cores. IEEE Transactions on Parallel and

Distributed Systems, 30(10):2283–2295, 2019.

[54] Q. He, M. Lv, and N. Guan. Response time bounds for dag tasks with

arbitrary intra-task priority assignment. In 33rd Euromicro Conference on

Real-Time Systems (ECRTS 2021). Schloss Dagstuhl-Leibniz-Zentrum für

Informatik, 2021.

[55] P.-C. Hsiu, D.-N. Lee, and T.-W. Kuo. Task synchronization and alloca-

tion for many-core real-time systems. In Proceedings of the ninth ACM

international conference on Embedded software, pages 79–88, 2011.

[56] H.-M. Huang, C. Gill, and C. Lu. Implementation and evaluation of mixed-

criticality scheduling approaches for sporadic tasks. ACM Transactions on

Embedded Computing Systems (TECS), 2014.

[57] W.-H. Huang, M. Yang, and J.-J. Chen. Resource-oriented partitioned

scheduling in multiprocessor systems: How to partition and how to share?

In Real-Time Systems Symposium (RTSS). IEEE, 2016.

[58] S. Ijaz and E. U. Munir. Mopt: list-based heuristic for scheduling workflows

in cloud environment. The Journal of Supercomputing, 75:3740–3768, 2019.

174

[59] I. ISO. 26262: Road vehicles-functional safety. International Standard

ISO/FDIS, 2018.

[60] X. Jiang, N. Guan, X. Long, and W. Yi. Semi-federated scheduling of par-

allel real-time tasks on multiprocessors. In Real-Time Systems Symposium,

pages 80–91, 2017.

[61] M. Klein, T. Ralya, B. Pollak, R. Obenza, and M. González Harbour.

Static scheduling of hard real-time tasks. Software Engineering Journal,

8(3):116–128, 1993.

[62] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task schedul-

ing, allocation and synchronization on multiprocessors. In Real-Time Sys-

tems Symposium (RTSS), pages 469–478. IEEE, 2009.

[63] P. A. Laplante. Real-time systems design and analysis. John Wiley & Sons,

2004.

[64] H. Leinster. Deadline monotonic scheduling. Real-Time Systems,

20(3):255–274, 2001.

[65] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah. Analysis of

federated and global scheduling for parallel real-time tasks. In Euromicro

Conference on Real-Time Systems, pages 85–96, 2014.

[66] C.-C. Lin, M. Günzel, J. Shi, T. T. Seidl, K.-H. Chen, and J.-J.

Chen. Scheduling periodic segmented self-suspending tasks without timing

anomalies. In 2023 IEEE 29th Real-Time and Embedded Technology and

Applications Symposium (RTAS), pages 161–173. IEEE, 2023.

[67] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming

in a hard-real-time environment. Journal of the ACM (JACM), 20(1):46–

61, 1973.

175

[68] J. W. S. Liu. Real-time systems. Prentice Hall, 2000.

[69] J. W. S. Liu. Real-Time Systems. Prentice Hall, 2000.

[70] J. M. Lopez, J. Diaz, and D. Garcia. Utilization bounds for edf schedul-

ing on real-time multiprocessor systems. Real-Time Systems, 28(1):39–68,

2004.

[71] J. M. Lopez, J. L. Diaz, and D. F. Garcia. A comprehensive comparison

of partitioning schedules for real-time systems. In 20th IEEE Real-Time

Systems Symposium (RTSS ’00), pages 15–24. IEEE, 2000.

[72] R. Madhura, B. L. Elizabeth, and V. R. Uthariaraj. An improved list-based

task scheduling algorithm for fog computing environment. Computing,

103:1353–1389, 2021.

[73] A. Meixner, M. E. Bauer, and D. Sorin. Argus: Low-cost, comprehensive

error detection in simple cores. In IEEE/ACM International Symposium

on Microarchitecture (MICRO), 2007.

[74] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and G. C.

Buttazzo. Response-time analysis of conditional dag tasks in multiproces-

sor systems. In 2015 27th Euromicro Conference on Real-Time Systems,

pages 211–221. IEEE, 2015.

[75] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and I. Neamtiu.

Finding and reproducing heisenbugs in concurrent programs. In OSDI,

2008.

[76] N. Muthuvelu, J. Liu, N. L. Soe, S. Venugopal, A. Sulistio, and R. Buyya.

A dynamic job grouping-based scheduling for deploying applications with

fine-grained tasks on global grids. In Proceedings of the 2005 Australasian

176

workshop on Grid computing and e-research-Volume 44, pages 41–48. Cite-

seer, 2005.

[77] J. Park. A deadlock and livelock free protocol for decentralized inter-

net resource coallocation. IEEE Transactions on Systems, Man, and

Cybernetics-Part A: Systems and Humans, 34(1):123–131, 2004.

[78] R. M. Pathan. Fault-tolerant and real-time scheduling for mixed-criticality

systems. Springer Real-Time Systems (RTS), 2014.

[79] F. Pop, C. Dobre, and V. Cristea. Genetic algorithm for dag scheduling

in grid environments. In 2009 IEEE 5th International Conference on In-

telligent Computer Communication and Processing, pages 299–305. IEEE,

2009.

[80] S. Punnekkat, A. Burns, and R. Davis. Analysis of checkpointing for real-

time systems. Springer Real-Time Systems (RTS), 2001.

[81] R. Rajkumar. Synchronization in real-time systems: a priority inheritance

approach, volume 151. Springer Science & Business Media, 2012.

[82] E. Rosti, E. Smirni, G. Serazzi, and L. W. Dowdy. Analysis of non-work-

conserving processor partitioning policies. In Job Scheduling Strategies for

Parallel Processing: IPPS’95 Workshop Santa Barbara, CA, USA, April

25, 1995 Proceedings 1, pages 165–181. Springer, 1995.

[83] S. Safari, M. Ansari, G. Ershadi, and S. Hessabi. On the scheduling of

energy-aware fault-tolerant mixed-criticality multicore systems with ser-

vice guarantee exploration. IEEE Transactions on Parallel and Distributed

Systems (TPDS), 2019.

177

[84] M. Salehi, A. Ejlali, and B. M. Al-Hashimi. Two-phase low-energy n-

modular redundancy for hard real-time multi-core systems. IEEE Trans-

actions on Parallel and Distributed Systems (TPDS), 2016.

[85] F. Samie, L. Bauer, and J. Henkel. Iot technologies for embedded comput-

ing: A survey. In Proceedings of the Eleventh IEEE/ACM/IFIP Interna-

tional Conference on Hardware/Software Codesign and System Synthesis,

pages 1–10, 2016.

[86] M. A. Serrano, A. Melani, M. Bertogna, and E. Quiñones. Response-time

analysis of DAG tasks under fixed priority scheduling with limited preemp-

tions. In Design, Automation & Test in Europe Conference & Exhibition,

pages 1066–1071, 2016.

[87] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols:

An approach to real-time synchronization. IEEE Transactions on comput-

ers (TC), 1990.

[88] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts.

Wiley, 2018.

[89] L. Spainhower and T. A. Gregg. Ibm s/390 parallel enterprise server g5

fault tolerance: A historical perspective. IBM Journal of Research and

Development, 1999.

[90] J. A. Stankovic. Real-time and embedded systems. ACM Computing Sur-

veys (CSUR), 28(1):205–208, 1996.

[91] H. Takada and K. Sakamura. A novel approach to multiprogrammed multi-

processor synchronization for real-time kernels. In IEEE Proceedings Real-

Time Systems Symposium (RTSS), 1997.

178

[92] A. Thekkilakattil, R. I. Davis, R. Dobrin, S. Punnekkat, and M. Bertogna.

Multiprocessor fixed priority scheduling with limited preemptions. In Pro-

ceedings of the 23rd International Conference on Real Time and Networks

Systems, pages 13–22, 2015.

[93] G. Upasani, X. Vera, and A. González. Setting an error detection infras-

tructure with low cost acoustic wave detectors. In IEEE Annual Interna-

tional Symposium on Computer Architecture (ISCA), 2012.

[94] G. Upasani, X. Vera, and A. González. Avoiding core’s due sdc via acoustic

wave detectors and tailored error containment and recovery. In ACM/IEEE

International Symposium on Computer Architecture (ISCA), 2014.

[95] K. Vaidyanathan and K. S. Trivedi. Extended classification of software

faults based on aging. In Fast Abstract, Int. Symp. Software Reliability

Eng., Hong Kong. Citeseer, 2001.

[96] M. Verucchi, M. Theile, M. Caccamo, and M. Bertogna. Latency-aware

generation of single-rate DAGs from multi-rate task sets. In Real-Time and

Embedded Technology and Applications Symposium, pages 226–238, 2020.

[97] A. Wieder and B. B. Brandenburg. Efficient partitioning of sporadic real-

time tasks with shared resources and spin locks. In Symposium on Indus-

trial Embedded Systems (SIES), pages 49–58. IEEE, 2013.

[98] A. Wieder and B. B. Brandenburg. On spin locks in AUTOSAR: Blocking

analysis of FIFO, unordered, and priority-ordered spin locks. In Real-Time

Systems Symposium (RTSS), pages 45–56. IEEE, 2013.

[99] M. Yang, Z. Chen, X. Jiang, N. Guan, and H. Lei. DPCP-p: A distributed

locking protocol for parallel real-time tasks. In Design Automation Con-

ference (DAC), pages 1–6. IEEE, 2020.

179

[100] M. Yang, W.-H. Huang, and J.-J. Chen. Resource-oriented partitioning

for multiprocessor systems with shared resources. IEEE Transactions on

Computers, 68(6):882–898, 2018.

[101] W. K. Youn, S. B. Hong, K. R. Oh, and O. S. Ahn. Software certification

of safety-critical avionic systems: DO-178C and its impacts. Aerospace and

Electronic Systems Magazine, 2015.

[102] W. K. Youn, S. B. Hong, K. R. Oh, and O. S. Ahn. Software certification of

safety-critical avionic systems: Do-178c and its impacts. IEEE Aerospace

and Electronic Systems Magazine, 30(4):4–13, 2015.

[103] Q. Zhao, Z. Gu, and H. Zeng. Hlc-pcp: A resource synchronization protocol

for certifiable mixed criticality scheduling. IEEE Embedded Systems Letters

(ESL), 2013.

[104] S. Zhao. A FIFO Spin-based Resource Control Framework for Symmetric

Multiprocessing. PhD thesis, University of York, 2018.

[105] S. Zhao, W. Chang, R. Wei, W. Liu, N. Guan, A. Burns, and A. J. Wellings.

Priority assignment on partitioned multiprocessor systems with shared re-

sources. IEEE Transactions on Computers (TC), 2020.

[106] S. Zhao, N. Chen, Y. Fang, Z. Li, and W. Chang. A universal method

for task allocation on fp-fps multiprocessor systems with spin locks. In

2023 60th ACM/IEEE Design Automation Conference (DAC), pages 1–6.

IEEE, 2023.

[107] S. Zhao, X. Dai, and I. Bate. Dag scheduling and analysis on multi-core

systems by modelling parallelism and dependency. IEEE Transactions on

Parallel and Distributed Systems, 2022.

180

[108] S. Zhao, X. Dai, I. Bate, A. Burns, and W. Chang. Dag scheduling and

analysis on multiprocessor systems: Exploitation of parallelism and de-

pendency. In 2020 IEEE Real-Time Systems Symposium (RTSS), pages

128–140. IEEE, 2020.

[109] S. Zhao, J. Garrido, A. Burns, and A. Wellings. New schedulability analysis

for MrsP. In Embedded and Real-Time Computing Systems and Applica-

tions (RTCSA), pages 1–10. IEEE, 2017.

[110] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto. Sur-

vey of scheduling techniques for addressing shared resources in multicore

processors. ACM Computing Surveys (CSUR), 45(1):1–28, 2012.

181

	Abstract
	List of Tables
	List of Figures
	Acknowledgment
	Declaration
	Introduction
	Motivation
	Thesis Aim
	Thesis Hypothesis
	Success Criteria and Contributions
	Thesis Outline

	Review of Existing Literature
	General Definitions of Real-Time Systems
	Real-Time Task and System Models
	Task Scheduling Mechanisms
	Schedulability Analysis
	Summary

	Resource Sharing in Real-Time Systems
	Shared Resources
	Lock-Based Mechanisms
	Resource Sharing Protocols
	RTA for Shared Resources
	Summary

	Real-Time Mixed Criticality Systems
	Defintions of MCS
	Conventional MCS Model
	Fault Tolerance Approaches
	 Fault-Tolerance and Shared Resources in MCS
	Summary

	Task Allocation Methods
	Evolution of Task Allocation Methods
	Resource-Aware Task Allocation Methods
	Summary

	DAG Tasks in Real-Time Systems
	Generic DAG Task Model
	DAG Task Scheduling
	RTA for DAG Tasks
	Summary

	Summary of Existing Literature

	Reliable Resource Sharing in Mixed-Criticality Systems
	A Fault-Tolerant Solution for MCS with Shared Resources
	The Proposed System Model
	Fault-Tolerance of Normal Sections
	Fault-Tolerance of Critical Sections by MSRP-FT

	Schedulability Analysis
	Analysis of Systems with A Stable Mode
	Analysis of Systems under A Mode Switch

	Evaluation
	Summary

	Contention-Aware Task Allocation
	Resource Contention Model
	 Contention-Aware Task Allocation
	Task Grouping Based on Resource Contention
	Allocation of Task Groups on Processors

	Evaluation
	Experimental Setup
	Performance Evaluation for Homogeneous Architecture
	Performance Evaluation for Heterogeneous Architecture

	Summary

	Precise Response Time Analysis for Multiple DAG Tasks
	Response Time Analysis for DAG Tasks
	RTA for Single-DAG Systems
	RTA for Multi-DAG Systems

	Evaluation
	Evaluation for Single-DAG Systems
	Evaluation for Multi-DAG Systems

	Summary

	Conclusion
	Contributions
	Future Research
	Concluding Remarks

	List of Abbreviations

