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Abstract 

In this thesis, decentralised distributed massive multiple-input multiple-output (DD-

MaMIMO) is considered for providing high spectral efficiency (SE) per user. In the 

DD-MaMIMO system, a large number of access points (APs) within a coordination 

region are connected to an edge processing unit (EPU) via fronthaul links, serving the 

users within a service region. Initially, we investigate a DD-MaMIMO system with 

perfect fronthaul links and assume that the processing takes place in the EPU. To 

demonstrate the improved SE, we compare our proposed architecture to cell-free 

MaMIMO. Furthermore, we discuss the scalability of DD-MaMIMO and give its 

definition. Secondly, we extend our research to the limited-capacity fronthaul links 

which is essential in practice. To model the limited-capacity fronthaul links, we adopt 

the Bussgang decomposition to express the quantisation. We propose two strategies for 

obtaining channel state information (CSI): estimate-and-quantise (EQ) and quantise-

and-estimate (QE). Particularly, in the QE scheme, we derive the closed-form 

expressions of Bussgang decomposition coefficients for the non-Gaussian distribution 

input of the quantiser, as the elements of pilots follow complex Gaussian distribution. 

Both CSI acquisition strategies are analysed with respect to the mean square error (MSE) 

of channel estimation. Finally, we explore the processing which happens at the AP 

which is the local estimation in DD-MaMIMO. Here, two approaches are exploited for 

data decoding at the EPU: simply averaging decoding and large scale fading decoding. 

We further compare the local estimation scheme with the decentralised processing 

scheme. The scalability is also discussed as the channel estimation and data detection 

happens at the AP.
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Chapter 1 

Introduction 

1.1 Overview and Motivation 

Mobile communication networks evolve with each passing decade. As of 2020, the fifth 

generation (5G) communication system has been standardised and commercially 

launched. Even though enhancements to the 5G new radio (NR) and 5G advanced are 

still in progress, research on the sixth generation (6G) has already commenced, aiming 

to meet the future demands anticipated for the 2030s. Nowadays, the pursuit of higher 

data rates is no longer the sole objective for the next generation mobile communication 

network. The goal has shifted towards the establishment of a ubiquitous intelligent 

communication system that enables seamless connectivity amongst humans, devices, 

sensors and machines. Additionally, it also aims to merge the boundaries between the 

physical and digital worlds, transforming communications methods and improving life 

quality. This leads to many novel concepts and emerging techniques such as Artificial 

Intelligence (AI), Internet of Things (IoT), Internet of Everything (IoE), Extended 

Reality (XR), self-driving cars and telemedicine.  

To realise this aspiration, the future mobile communication network faces numerous 

challenges. According to the framework for International Mobile Telecommunications-

2030 (IMT-2030) proposed by International Telecommunication Unit 

Radiocommunication Sector (ITU-R), 6G needs to adapt to an ultra-dense network, 

potentially accommodating ten to a hundred million devices per square kilometre [1]. 

At the same time, the peak data rate is anticipated to reach one Terabit per second (Tbit/s) 

[2-8], which is a 10 to 100-fold increase over 5G. As the number of accessed devices 

increases, spectrum resources will become scarce. Therefore, carrying out a 

communication system with higher spectral efficiency is necessary. On the other hand, 

the increased number of accessed devices and data rate also leads to a substantial energy 

consumption. Thus, improving energy efficiency should be considered to reduce both 

costs and carbon emissions per bit of transmitted data. Furthermore, in order to cater to 
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various demands, the future network should provide lower latency, increased reliability, 

and enhanced security. In response to these challenges, ITU-R has categorised 6G 

services into six usage scenarios [1]. The difference from 5G usage scenarios is that the 

communication capabilities, such as data rate, latency, reliability and connection 

density, are enhanced. Furthermore, the new usage scenarios for coverage extension 

and service extension are introduced. These scenarios are summarised as follows: 

• Immersive Communication is an extension of the enhanced mobile broadband 

(eMBB) scenario [1, 2] applied in 5G, which aims to facilitate a higher data rate 

access to the network and a greater area traffic capacity [1, 3]. This supports the 

applications such as augmented reality (AR), virtual reality (VR) and wireless 

holographic communication [4-6].  

• Massive Communication focuses on the ultra-dense network, which builds 

upon the scenario of massive machine-type communication (mMTC) [1, 2], 

serving a larger number of accessed devices.  

• Hyper Reliable and Low-Latency Communication (HRLLC) in 6G targets 

applications that demand sensitive reliability, latency and availability, with 

envisioned 100 microsecond latency and availability of 1 − 10−7 [1, 3]. This 

advances the ultra-reliable low-latency communication (URLLC) scenario, 

supporting the use cases such as remote medical surgery, smart grid, and 

automatic vehicles [1-3]. 

• Ubiquitous Connectivity, introduced as a new usage scenario, emphasises 

extensive coverage and enhanced mobility [1, 9]. It promotes the integration of 

terrestrial and satellite-aerial networks and aims for velocities up to 1000 

kilometres per hour in airline systems [1, 3] . 

• Integrated AI and Communication represents a new application scenario in 

which services beyond communications assisted by AI are provided [1, 9]. It 

enhances radio communications in terms of physical layer signal processing and 

resource management, by exploiting machine learning [7, 10]. 

• Integrated Sensing and Communication aims to unify wireless signal sensing 

and communication within a single system for their mutual benefits [11]. It 

enables services beyond communications. For example, an autonomous vehicle 

can simultaneously sense its surroundings using radar and communicate with 

other vehicles. Additionally, it also facilitates high-precision localisation for 
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obtaining more accurate beamforming when tracking the channel state 

information (CSI) [12]. 

Motivated by some of these usage scenarios and challenges, many technologies 

have been proposed for satisfying an ultra-dense network with low latency and high 

data rate. One among others is MaMIMO where the base station is equipped with a 

large number of antennas, serving many user terminals in the same time-frequency 

resource [13]. This technique plays a key role in 5G [14, 15], and continues to hold 

significant potential in enhancing spectral and energy efficiency for 6G. Furthermore, 

to mitigate the intercellular interference, the concept of cell-free MaMIMO has been 

proposed, in which MaMIMO is deployed in a distributed manner, simultaneously 

serving many users [14, 16]. This approach increases the coverage and spectral 

efficiency (SE) which also can be a promising technique for 5G and beyond [17]. Many 

works on cell-free MaMIMO have been researched [14-30], however there is still much 

more to be done. Recently, an initiative to incorporate virtualisation, intelligence and 

open interface within a RAN has been proposed, known as the open radio access 

network (Open RAN) [31, 32]. This allows different vendors to use a unified 

interconnection standard. Additionally, in Open RAN, hardware is decoupled from 

software which provides greater flexibility and efficiency in network deployments. To 

fulfil these requirements, a scalable network needs to be considered with flexible 

implementation of signal processing. The related topics about adapting cell-free 

MaMIMO for Open RAN have not previously been investigated.  

In [30], the edge effects and latency in cell-free MaMIMO has been discussed. To 

overcome these disadvantages, a new architecture was proposed which combines the 

Fog RAN (F-RAN) and cell-free MaMIMO with a defined coordination region [30]. 

However, the analysis in [30] is based on the assumption of channel hardening which 

is a phenomenon where the variations of channel gain decrease if the number of 

antennas at the base station is very large. This is not strict because the phenomenon of 

harden channel vanishes in cell-free MaMIMO when each base station is only equipped 

one or few antennas[19]. Therefore, motivated by these challenges, we extend the 

research on this architecture without assuming channel hardening, and provide a 

thorough study with limited-capacity fronthaul. 
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1.2 Contributions 

The contributions of this thesis are summarised as follows: 

In Chapter 3: 

• We redefine the concept of Fog Massive MIMO [30] as Decentralised Distributed 

MaMIMO (DD-MaMIMO) in order to distinguish the definition of “fog” with 

[33] and its general use in fog computing respect. We explicitly emphasize that 

the processing occurs at the network edge, which is decentralised in a distributed 

MaMIMO system. To mitigate the cluster-edge effect, the coordination region 

among the adjacent network clusters is defined, which also enables the system to 

be scalable. 

• A novel pilot assignment algorithm is proposed, adapted for the practical 

implementation in DD-MaMIMO, which takes into account the users in the 

overlapped coordination regions. 

• A general expression of uplink achievable SE for DD-MaMIMO is derived based 

on the knowledge of channel estimation and data detection at the EPU without 

assuming channel hardening. The expression of the signal-to-interference-plus-

noise ratio (SINR) is given. 

In Chapter 4: 

• We consider the limited-capacity fronthaul links in DD-MaMIMO, where we use 

a scalar uniform quantiser to transfer the analogue signals to the digital signals. 

We exploit the Bussgang decomposition to model the non-linear quantiser. 

• We consider two strategies for obtaining the channel state information (CSI) at 

the EPU: i) the quantised version of the received pilots at the APs is available at 

the EPU, and ii) the quantised version of the estimated channels at the APs is 

known at the EPU. In the first strategy, we adopt two types of pilot sequences 

which are complex Gaussian distributed pilots and binary pilots. The 

performances for both strategies and both types of pilots are evaluated by 

calculating the mean squared error (MSE) of channel estimation. 



1.2 Contributions  5 

 

• We analyse the effect of the complex non-Gaussian distribution input of the 

quantiser when the elements of pilot sequences follow a complex Gaussian 

distribution. To find the optimum quantisation step interval, we derive the 

probability distribution function (pdf) of the real part of this complex non-

Gaussian distribution. The pdf of the imaginary part is the identical to that of the 

real part. 

• Based on the pdf, we derive closed-form expressions for two linear coefficients 

of the Bussgang decomposition and calculate the optimum quantisation step 

interval for the use of complex Gaussian distributed pilots. 

• Considering the quantisation distortion that affects the CSI acquisition and data 

transmission, we derive an achievable SE expression for the uplink DD-

MaMIMO with minimum mean square error (MMSE) data detection processed 

at the EPU. The expression of the signal-to-interference-and-distortion-plus-noise 

ratio (SIDNR) is provided.  

In Chapter 5: 

• Similarly, we compare the local estimation, where the signal processing takes 

place at the APs, with decentralised processing in DD-MaMIMO assuming the 

perfect fronthaul. The results show that the local estimation case has a worse 

performance than the latter. However, with the increase of the number of antennas 

for each AP, the discrepancy reduces. 

• We consider two final decoding methods at the EPU for the local estimation case: 

i) large scale fading decoding employs the channel statistics at the EPU, and ii) 

simply averaging the estimated data from all APs within the coordination region 

at the EPU. 

• We derive an achievable uplink SE expression for the local estimation case with 

respect to two decoding methods. The different SINR expressions are given. 

• The scalability of the local estimation in DD-MaMIMO is discussed and it is 

feasible.
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• According to the different signal processing locations in DD-MaMIMO, we 

analyse that our system can be a promising architecture for performing in Open 

RAN. 

Conference Papers 

A. Burr, S. Islam, J. Zhao, and M. Bashar, “Cell-free Massive MIMO with multi-

antenna access points and user terminals,” in 2020 54th Asilomar Conference on 

Signals, Systems, and Computers, ieeexplore.ieee.org, Nov. 2020, pp. 821–825. 

Journal Papers 

There is one paper titled “Decentralised Distributed Massive MIMO” that is prepared 

to submit to IEEE Transactions on Wireless Communications before the 29th February 

2024. Another paper related to the quantisation in Decentralised Distributed Massive 

MIMO is to be finished and could be submitted before May 2024. 

1.3 Thesis Outline 

The thesis is organised as follows. Chapter 2 provides a literature review with respect 

to the subsequent chapters. First, we describe the evolution of the wireless cellular 

network, indicating key techniques and relevant services developed in each generation. 

Then, the various RAN architectures along with physical entities are discussed. We 

next give the basics of MaMIMO, which can be deployed in single-cell, multi-cell or 

cell-free schemes. In the context of cell-free MaMIMO, we introduce fundamental 

concepts of channel estimation and uplink data transmission. Finally, we present the 

basic principle of the uniform quantiser and provide the method for finding its optimal 

step size. 

In Chapter 3, a DD-MaMIMO architecture with unlimited-capacity fronthaul links 

is introduced. We first define the DD-MaMIMO system, which can significantly 

eliminate the cluster-edge effect observed in cell-free MaMIMO by leveraging the 

coordination region. Then, channel estimation is considered. Furthermore, we propose 

a pilot allocation algorithm that considers the overlapped coordination region in DD-

MaMIMO, where the neighbouring clusters are deployed. We next discuss data 
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transmission and data detection without assuming channel hardening on the uplink. 

Given the general form of detected data, we derive an achievable SE expression in terms

 of SINR. Subsequently, a scalability issue in cell-free MaMIMO is mentioned. 

Following this, we explain how DD-MaMIMO can resolve this issue. Finally, 

numerical results are provided to validate our research and evaluate the performance of 

our proposed system. 

Chapter 4 explores the scenario of limited-capacity fronthaul links in DD-MaMIMO, 

where a uniform quantiser is employed at the AP. We begin the discussion with the CSI 

acquisition, which can be obtained through two schemes. The pilots can either be 

quantised first and then sent to the EPU for channel estimation, or they can be used to 

estimate channels first, followed by quantisation. Subsequently, we express the 

quantised estimated channel adopting two different CSI acquisition strategies. Based 

on that, we derive the closed-form expression for calculating the optimum quantisation 

step interval. Furthermore, non-Gaussian distribution for the input of quantiser is 

analysed for finding the correct optimum quantisation step interval when the pilots 

follow the complex Gaussian distribution. Moreover, we also utilise binary pilot 

sequences to avoid the issue of non-Gaussian distribution in quantisation. After 

acquiring the CSI, we analyse the data transmission considering the limited-capacity 

fronthaul. This leads us to derive an achievable uplink SE expression for the signal-to-

interference-and-distortion-plus-noise ratio (SIDNR). Finally, numerical results are 

provided which present the performance of two CSI acquisition schemes and the overall 

system with different number of quantisation bits. 

In Chapter 5, we introduce the local estimation in DD-MaMIMO. Similar to Chapter 

3, we first outline the basic concepts of the system model where the channel estimation 

and data detection occur at the AP. Subsequently, we calculate the channel estimation. 

This is then followed by the data detection, in which the AP only uses its own locally 

estimated channels. Next, the locally detected data are sent to the EPU for final 

decoding, which can be implemented by two methods. In the first scheme, we consider 

large scale fading decoding, where channel statistics are exploited due to the CSIs being 

unknown at the EPU. In the second scheme, the estimated data from all APs within the 

coordination region is simply averaged at the EPU. According to both decoding 

schemes, the expressions of SE with SINR are given, respectively. Before evaluating 

the system performance, the scalability is discussed. Finally, we give the numerical 
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results which shows the local estimation in DD-MaMIMO can also be a promising 

scheme. This validates our discussion of different locations for signal processing. 

In Chapter 6, we provide a comprehensive conclusion of this thesis and discuss the 

potential challenges and research in the future. 

1.4 Notation 

In this sub-chapter, some important notations used in this thesis will be stated. Any 

specific notation will be introduced when it appears at the first time. The upper-case 

boldface Roman letter represents a matrix whereas the lower-case boldface denotes a 

column vector. The real and complex matrix with the size of 𝑀 × 𝐾 are represented by 

ℝ𝑀×𝐾  and ℂ𝑀×𝐾 , respectively. The 𝑀 ×𝑀  identity matrix is 𝑰𝑀×𝑀 . The random 

variables are written as RVs. The complex Gaussian distribution of a random variable 

with mean 𝜇 and variance 𝜎2 is represented by 𝒞𝒩(𝜇, 𝜎2). For the real and imaginary 

part of a complex number, we use Re(∙)  and Im(∙)  to represent, respectively. We 

denote the expectation of a random variable as 𝔼{∙} . The complex conjugate is 

represented by (∙)∗ and the Hermitian or transpose conjugate is (∙)𝐻. The m-th element 

of a vector is [∙]𝑚. We use ‖∙‖ to denote the norm or magnitude of a vector. We adopt 

𝑑𝑖𝑎𝑔(∙)  for a diagonal matrix with on-diagonal elements taken from a vector. The 

notation 𝑎𝑟𝑐 represents the contour of a curve and 𝑅𝑒𝑠 denotes the residue. In thesis, 

many subscripts are used to define the different variable names and indices, respectively. 

The subscripts “m” , “n” and “k” denote indices. Other subscripts such as “u” in “y” 

(𝑦𝑢)  or “p” in “ 𝜏 ” (𝜏𝑝)  are referred to variable names considered as entities. 

Consequently, 𝑦𝑢,𝑚𝑛𝑘 represents the variable 𝑦𝑢 with the indices m, n and k.



   

Chapter 2 

Background 

This chapter aims to provide a literature review for the subsequent chapters. Firstly, we 

intend to discuss the evolution of wireless cellular networks, indicating the 

characteristics a system needs to serve future wireless communication networks. We 

will then study various radio access networks (RANs) from 1G through to 5G and 

beyond. This will provide fundamental knowledge of the entities in the wireless 

network architecture. The emerging technique of massive multiple-input multiple-

output (MaMIMO) will also be presented. Furthermore, a comprehensive introduction 

to cell-free MaMIMO will be given. Finally, we will discuss the basics of quantisation. 

2.1 History of Wireless Cellular Network 

Since the first generation (1G) wireless cellular network was proposed in 1980s, four 

decades have passed. The wireless network has experienced evolution five times with 

respect to the second, third, fourth and fifth generation (2G, 3G, 4G and 5G) networks. 

In 1G the analogue signal was used to convey the information of the voice in the 

wireless network, however it is replaced by the digital cellular networks in 2G where 

the data service such as Short Messaging Service (SMS) was introduced. In the 1990s, 

the Global System for Mobile Communications (GSM) as a 2G standard was developed 

by the European Telecommunications Standards Institute (ETSI). Then, the air 

interface standards for 3G, such as Wideband Code-Division Multiple Access (W-

CDMA), CDMA2000 and Time-Division Synchronization CDMA (TD-SCDMA), 

were proposed by the Third Generation Partnership Project (3GPP). In the 3G era, the 

focus shifted towards data services, including mobile Internet access, web browsing, 

video calls and mobile television [5, 34]. Subsequently, 4G was standardised as Long 

Term Evolution (LTE) which applied Orthogonal Frequency Division Multiplexing 

(OFDM), Multiple-Input and Multiple-Output (MIMO) techniques and all-Internet 

Protocol (IP) flat architecture to achieve higher data rates and Quality of Service (QoS) 

[35]. In 2014, a paper introduced the perspective of 5G mobile networks, highlighting 
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the ultra-densification, millimetre wave (mmWave) and MaMIMO as key technologies 

for the development of 5G [36]. Since then, the conceptual framework of 5G has 

continued to evolve [5]. In 2015, 3GPP initiated a study on the 5G New Radio (NR) as 

a standard for 5G, which supported a wide range of services, including virtual reality 

(VR), augmented reality (AR), high-definition (HD) video streaming and automatic 

driving [3, 5]. After the first commercial launch of 5G network in 2019, the global 

deployment of 5G has been progressively advancing. However, as the rapid growth of 

mobile traffic, 5G may not fulfil the demands of future emerging technologies which 

require massive interconnectivity with highly diverse devices [7]. Thus, the academia 

and industry have begun to study the visions, challenges, technologies, applications, 

and service requirements for satisfying the future 6G networks in 2030 [3, 7, 17, 37-

40]. 

 5G communication services have been categorised into three aspects with regard to 

the enhanced Mobile Broadband (eMBB), massive Machine-Type Communications 

(mMTC) and Ultra-Reliable Low-Latency Communications (URLLC) [41]. Inheriting 

these features, 6G services are complemented and characterised in the different 

application scenarios. For example, the paper [5] classified the application scenarios 

into five respects: eMBB Plus (eMBB-Plus), Big Communications (BigCom), Secure 

URLLC (SURLLC), Three-Dimensional Integrated Communications (3D-InteCom) 

and Unconventional Data Communications (UCDC). The author in [3] proposed the 

ubiquitous mobile broadband (uMBB) to emphasise the enhanced on-board 

communications and ubiquitous connection ability, while the ubiquitous mobile ultra-

broadband (uMUB) as a new key performance indicator (KPI) of 6G was included in 

[7]. Merging the mMTC and URLLC, the massive URLLC (mURLLC) service was 

summarised in [38] which provides a scalable URLLC with massive connectivity. 

Although these papers had different definitions about the 6G services, they all 

mentioned the new architecture of the RAN should be explored and MaMIMO is still 

the key technique for adapting the ultra-dense 6G networks. 

2.2 Radio Access Network 

A RAN is a major component of a mobile telecommunications system that enables 

devices such as mobile phones, computers, and other user terminals (UTs) to access the 

core network via a radio link. Fundamentally, a RAN architecture consists of two 



2.2 Radio Access Network  11 

 

essential entities: the Radio Unit (RU) and the Baseband Unit (BBU). The RU, acting 

as a transceiver, includes antennas, amplifiers, analogue-to-digital converters (ADCs) 

and digital-to-analogue converters (DACs), transmitting and receiving the radio signals. 

On the other hand, the BBU processes baseband signals, performing functions such as 

error control, coding, decoding, modulation and demodulation. In traditional RAN, the 

RU and BBU are integrated into the Base Station (BS), an architecture example of 

which is given in Fig. 2.1(a). This design was popular in 1G and 2G, where the RU and 

BBU were installed in a room (or box) beneath the BS tower, connecting to the antennas 

on top via coaxial cable [41]. With the advent of 3G and 4G, the RU and BBU became 

separated as illustrated in Fig. 2.1(b). The RU, also referred to as the Remote Radio 

Head (RRH), is placed at the top of the tower [42], while the BBU can be deployed at 

a more accessible site, potentially up to 40 km away from the RRH [43]. The link 

between the RRH and BBU, known as the fronthaul, can be implemented using either 

optical fibre or microwave [41, 43]. Besides, signals are conveyed to the core network 

from the BBUs through the backhaul link, which is typically fibre-based. Later, for 

reducing the power consumption and adapting to the increasing amount of user data, 

the BBUs are aggregated into a BBU pool which is centralised and virtualised in 4G 

and beyond. This architecture given in Fig. 2.1(c) is called Centralised RAN or Cloud 

RAN (C-RAN) [44].  

In C-RAN, a BBU pool is shared across multiple cells to serve up to tens of RRHs, 

leveraging cloud technology to enhance computational capabilities. This approach also 

mitigates the costs associated with deploying a BS in every individual cell. However, 

since the fronthaul in C-RAN carries the quantised signals, the capacity must be many 

times the user data rate [30]. In addition, all processing takes place in the BBU pool 

leading to a high computational complexity. These disadvantages may result in 

significant delay which cannot fulfil the requirement of the ultra-reliable low-latency 

communications (URLLC) in 5G mobile communication service standards [45]. 

Therefore, a new paradigm called Fog RAN (F-RAN) has been proposed in which the 

core idea is to move the signal processing back from the “cloud” such as the remote 

BBU to the network edge, which is nearer to the Access Points (APs) [30]. The related 

research for the F-RAN has been discussed in [46-48] which indicates the problem 

described above in the C-RAN has been overcome by alleviating the burdens at edge 

processing unit (EPU), and hence the latency will be reduced. The architecture of F-

RAN is shown in Fig. 2.2. Furthermore, in conventional C-RAN and F-RAN systems,  
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(a) Traditional BS  

 

(b) BS with RRH 

 

(c) C-RAN with RRHs 

Fig. 2.1 Evolution of RAN architecture. 
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each AP (RRH) only serves its own cell, which can cause the intercellular interference, 

especially for cell-edge users. Thus, the need for coordination techniques between APs 

should be considered. For instance, the network coordination was discussed in [49], 

while paper [50] studied multi-cell MIMO cooperative networks. This approach has 

also been mentioned as network MIMO in [51]. Additionally, another coordination 

technique, known as coordinated multipoint (CoMP), proposed in [52], improves both 

the system’s average spectral efficiency (SE) and the data rates at the cell edge. 

 

Fig. 2.2 An architecture of Fog RAN system. 

More recently, a new concept known as Open RAN, also referred as to O-RAN in 

some papers, has been introduced by O-RAN Alliance to build upon the principles of 

openness and intelligence for 5G beyond and 6G [31, 32]. The architecture of Open 

RAN disaggregates the BS into three functional units: the Central Unit (CU), the 

Distributed Unit (DU), and the Radio Unit (RU) [53], where the function of the physical 

layer is split by 3GPP into different options for the DU and RU [53]. Specifically, the 

CU implements the higher layers of the protocol stack, such as the Radio Resource 

Control protocol, which is associated with connection establishment and release [54], 

[55]. In split 7.2x [53], the RU is responsible for the precoding, Fast Fourier Transform 

(FFT), beamforming, ADC/DAC and radio frequency (RF) functions. Meanwhile, the 

DU handles the remaining physical layer functions (i.e., modulation, scrambling, part 

of precoding, etc.), as well as the second layer functions, including Medium Access 

Control (MAC) and Radio Link Control (RLC). If the DU is separated from the RU and 

aggregated with the CU in a cloud, such a scheme corresponds to C-RAN. On the other 

hand, F-RAN relates to the scenario in which the DU and the RU are co-located. Thus,
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the physical architecture of the Open RAN can be implemented in a manner similar to 

C-RAN and F-RAN, depending on the specific functional split options. Furthermore, 

the fronthaul load must be considered due to the digital transmission between the RU 

and the DU. To alleviate this burden, compression or quantisation techniques can be 

applied to remove redundant or less important information. In Open RAN, six fronthaul 

compression techniques have been released by O-RAN Alliance and European 

Telecommunications Standards Institute (ETSI) [56]. However, this thesis will 

primarily discuss the application of quantisation, rather than these compression 

methods. Additionally, while the RAN Intelligent Controller (RIC) is a key innovation 

[55] for controlling and optimising RAN functions in Open RAN, this new component 

largely concerns the higher layer. Therefore, we will not delve into the functionality of 

RIC in this thesis. Further discussion about how our approach aligns with the physical 

layer of the Open RAN architecture will be presented in the subsequent chapters.  

2.3 Massive MIMO Technique 

MaMIMO is a multi-user MIMO (MU-MIMO) technique in which the BS, equipped 

with significantly more antennas than UTs, serves users simultaneously. The number 

of antennas for each BS can reach into tens or even hundreds, which is considerably 

more than the amount used in MU-MIMO. This leads to two notable properties: channel 

hardening and favourable propagation. The terminology “channel hardening” was 

coined in a 2004 paper [57], revealing that as the number of antennas at the BS increases, 

the instantaneous data rate tends towards its average. This phenomenon occurs because 

enhanced spatial diversity can significantly mitigate the effects of small-scale fading 

[58], which typically generates the random fluctuation in the channel gain. As a result, 

it creates a “hardened” channel where the channel fading becomes deterministic. 

Favourable propagation was defined in [58] that the channel vectors between the BS 

and UTs are mutually orthogonal in MaMIMO. With this property, the maximum sum-

capacity can be realised using simple linear processing [58, 59].  

MaMIMO, initially proposed in [13], has been recognised as a key technique to 

meet the rapidly growing demand for data rates in 5G wireless communications [14], 

[15] and anticipated future 6G networks. Besides the previously mentioned benefits, 

MaMIMO can be more efficient in a time-division duplexing (TDD) mode by 

leveraging channel reciprocity [58]. In [60], the author investigated the application of 
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MaMIMO in TDD operation under various propagation environments. The study 

concluded that, due to the channel hardening or the use of a blind channel estimation 

scheme, there is no need for downlink pilots to obtain the channel state information 

(CSI) [60]. However, in a frequency-division duplexing (FDD) mode, different 

frequency bands are used for uplink and downlink [61], resulting in different channels. 

Therefore, acquiring the CSI of the downlink requires the UTs to feed the estimation 

information back to the BS on the uplink, which proportionally increases the 

transmission overhead with respect to the number of BS antennas. 

 

Fig. 2.3 A single-cell MaMIMO system. 

Conventional MaMIMO is implemented with the co-located antennas at the BS, 

either within a single cell or across multiple cells. In the single-cell scenario, a multiple-

antenna BS, located at the network centre, communicates with distributed single-

antenna UTs throughout the entire cell. The cell-edge UTs experience poor 

performance due to the high pathloss being far from the BS. This scheme is not realistic 

in the scenario where all UTs in the network are served by only one BS. The system 

model is demonstrated in Fig. 2.3. In contrast, multi-cell MaMIMO can be realised by 

dividing the whole network into several cells, each possessing one BS at the centre, 

exclusively serving the UTs within its respective cell. The corresponding architecture 

is presented in Fig. 2.4. This scheme, however, raises the issue of inter-cell interference, 

especially for the cell-edge UTs at which the signals received from the adjacent BSs 

have similar power. To address this issue, BSs can jointly serve UTs across multiple 

cells by employing a cooperative network [49-51] and CoMP technique [52]. These can
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be implemented either by interconnecting the BSs or by linking all BSs to the CPU via 

a fronthaul. However, the network coverage in co-located MaMIMO may not be very 

large due to the path loss, which leads to the limited data rate for UTs at the cell edge.  

 

Fig. 2.4 A multi-cell MaMIMO system. 

2.4 Cell-free Massive MIMO 

In MaMIMO, apart from the co-located strategy, the antennas can also be deployed in 

a distributed manner [62]. This scheme, known as distributed MaMIMO or cell-free 

MaMIMO [14, 16], involves a large number of APs simultaneously serving a smaller 

number of single-antenna UTs. All APs are connected to the CPU via links, defined as 

“backhaul” by Ngo [16], a term equivalent to “fronthaul” as used in C-RAN and F-

RAN. Note that in this thesis, we will refer to these links as fronthaul connections. Since 

each UT is served by multiple APs, the concept of a “cell” or “cell boundary” is 

abolished, thereby eliminating the cell-edge effect. Furthermore, distributing APs 

across the network significantly enhances the overall coverage of connectivity. Then, 

we consider an uplink transmission cell-free MaMIMO system where there are 𝑀 APs 

and 𝐾 UTs, each equipped with a single antenna, randomly distributed in the network, 

which is illustrated in Fig. 2.5.The channel coefficient from the k-th UT to the m-th AP 

is given by: 
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 𝑔𝑚𝑘 = 𝛽𝑚𝑘
1/2
ℎ𝑚𝑘 (2.1) 

where ℎ𝑚𝑘~𝒞𝒩(0,1) is the small-scale fading coefficient and 𝛽𝑚𝑘 denotes the large-

scale fading coefficient which only relates to the shadowing and the distance between 

the UT and AP [63]. In real life, the large-scale fading varies much slower than small-

scale fading when the UT moves with slow speed and short distance [64]. Therefore, 

the large-scale fading is assumed to be known at the APs or the CPU by simply 

averaging the power of received signals over a long period of time. 

 

Fig. 2.5 The architecture of cell-free MaMIMO (green dash line denotes “backhaul” 

[16], red dash line with arrow represents the channel, and 𝑔𝑚𝑘 is the channel coefficient 

from the k-th UT to the m-th AP). 

2.4.1 Channel Estimation in Cell-free MaMIMO 

For obtaining the CSI, UTs can send a set of known training data to the APs on the 

uplink. Then, the channel is estimated at the local AP by using the combining technique. 

Alternatively, the received signals can be collected at the CPU via the fronthaul links 

from all APs and are exploited to estimate the channel. For the downlink CSI, the 

channel reciprocity can be used in cell-free MaMIMO with the TDD operation. Note 

that throughout this thesis the TDD mode is adopted. Let 𝝋𝑘 ∈ ℂ
𝜏𝑝×1, where ‖𝝋𝑘‖

2 =

𝜏𝑝, be the pilot sequence allocated to the k-th UT. The subscript “p” refers to the pilot 

transmission. Then, the received pilot signal 𝒚𝑝 at the m-th AP is given by: 
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 𝒚𝑝,𝑚 =∑𝑔𝑚𝑘𝝋𝑘
𝑇

𝐾

𝑘=1

+ 𝒛𝑝,𝑚 (2.2) 

where 𝒛𝑝,𝑚 ∈ ℂ
1×𝜏𝑝 is the noise 𝒛𝑝 at the m-th AP whose elements are independent and 

identically distributed (i.i.d) 𝒞𝒩(0, 𝜎𝑧
2)  random variables (RVs). (∙)𝑇  denotes the 

transpose. Based on the received pilots, 𝑦̌𝑝,𝑚𝑘 is given by calculating the projection 

𝒚𝑝,𝑚 onto 𝝋𝑘
∗  [14, 16] and scaling by the factor 𝜏𝑝, where (∙)∗ represents the complex 

conjugate. 

 

𝑦̌𝑝,𝑚𝑘 =
1

𝜏𝑝
𝒚𝑝,𝑚𝝋𝑘

∗  

= 𝑔𝑚𝑘 +
1

𝜏𝑝
∑ 𝑔𝑚𝑘′𝝋𝑘′

𝑇

𝐾

𝑘′≠𝑘

𝝋𝑘
∗ + 𝒛𝑝,𝑚𝝋𝑘

∗  

(2.3) 

Although (2.3) can be used as the estimated channel, it is not sufficient when some pilot 

sequences are not pairwise orthogonal. Hence, the minimum mean square error (MMSE) 

estimation can be adopted: 

 𝑔̂𝑚𝑘 =
𝔼{𝑔𝑚𝑘𝑦̌𝑝,𝑚𝑘

∗ }

𝔼 {|𝑦̌𝑝,𝑚𝑘|
2
}
𝑦̌𝑝,𝑚𝑘 = 𝑐𝑚𝑘𝑦̌𝑝,𝑚𝑘 (2.4) 

where the MMSE weight 𝑐𝑚𝑘 is: 

 
𝑐𝑚𝑘 =

𝛽𝑚𝑘

𝛽𝑚𝑘 +
1
𝜏𝑝2
∑ 𝛽𝑚𝑘′𝔼 {|𝝋𝑘′

𝑇 𝝋𝑘
∗ |
2
}𝐾

𝑘′≠k +
𝜎𝑧2

𝜏𝑝

 
(2.5) 

If 𝐾 < 𝜏𝑝, then all pilot sequences are pairwise orthogonal that 𝝋𝑘′
𝑇 𝝋𝑘

∗ = 0 as 𝑘′ ≠ 𝑘, 

thus the second term in (2.3) disappears. On the contrary, if 𝐾 ≥ 𝜏𝑝 the pilot sequences 

will be re-used which results in the pilot contamination effect. In addition, the MSE of 

the channel estimation is calculated by: 

 

𝜎𝑒
2 = 𝔼{|𝑔̃𝑚𝑘|

2} = 𝔼{|𝑔𝑚𝑘 − 𝑔̂𝑚𝑘|
2} 

= 𝔼{(𝑔𝑚𝑘 − 𝑔̂𝑚𝑘)(𝑔𝑚𝑘
∗ − 𝑔̂𝑚𝑘

∗ )} 

= 𝔼{𝑔𝑚𝑘
2 + 𝑔̂𝑚𝑘

2 − (𝑔̂𝑚𝑘
∗ + 𝑔̃𝑚𝑘

∗ )𝑔̂𝑚𝑘 − (𝑔̂𝑚𝑘 + 𝑔̃𝑚𝑘)𝑔̂𝑚𝑘
∗ } 

= 𝔼{𝑔𝑚𝑘
2 − 𝑔̂𝑚𝑘

2 } 

(2.6) 
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 = (1 − 𝑐𝑚𝑘)𝛽𝑚𝑘  

where we assume 𝑔̃𝑚𝑘 is uncorrelated with 𝑔̂𝑚𝑘 due to the use of MMSE estimation. 

2.4.2 Uplink Data Transmission in Cell-free MaMIMO 

On the uplink, all UTs send the data 𝑥, where the variance of the data 𝜎𝑥
2 = 1, to the m-

th AP. The received signal 𝑦𝑢 at the m-th AP is presented as 

 𝑦𝑢,𝑚 =∑𝑔𝑚𝑘𝑥𝑘

𝐾

𝑘=1

+ 𝑧𝑢,𝑚 (2.7) 

where 𝑧𝑢,𝑚  is the noise 𝑧𝑢  at the m-th AP. The subscript “u” refers to the uplink 

transmission. In order to recover the data, the data detection can be done at the AP by 

applying the combination technique. As stated in [14], we introduce the maximum-ratio 

combining (MRC) to estimate data. First, the received signal at the m-th AP is 

multiplied by the MRC weight 𝑔̂𝑚𝑘
∗ . Then, the weighted signals from all APs are sent 

to the CPU for detection via the fronthaul links. Other combining techniques such as 

zero forcing (ZF) and MMSE also can be used. 

 

𝑟𝑢,𝑘 = ∑ 𝑔̂𝑚𝑘
∗

𝑀

𝑚=1

𝑦𝑢,𝑚 

= ∑ ∑ 𝑔̂𝑚𝑘
∗ 𝑔𝑚𝑘′𝑥𝑘′

𝐾

𝑘′=1

𝑀

𝑚=1

+ ∑ 𝑔̂𝑚𝑘
∗ 𝑧𝑢,𝑚

𝑀

𝑚=1

 

(2.8) 

where 𝑟𝑢 denotes the received signal on the uplink at the CPU and the subscript “k” is 

an index which indicates the transmitted data from the k-th user 𝑥𝑘 can be detected from 

the signal 𝑟𝑢,𝑘. 

2.5 The Basics of Quantisation 

On the uplink of RAN, the signals are collected at the receiver (AP) and transferred to 

the CPU by fibre-based connections. This connection, named fronthaul, was first 

defined in C-RAN and it is also known as backhaul in cell-free MaMIMO. In this 

processing, quantisation is applied since the transferred signal must be digital which is  
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discrete in practice. In this sub-chapter, we will introduce the Bussgang decomposition 

to analyse the non-linear quantisation. 

The Bussgang decomposition as the result of Bussgang’s theorem has been reported 

in [65], however the extension of the explicit decomposition application was researched 

in communications [66] and in the Massive MIMO field by [67-69]. The original 

Bussgang theorem states that the crosscorrelation of two Gaussian distributed signals, 

one of which undergoes the nonlinear amplitude distortion, is identical to the cross-

correlation of the two initial signals scaled by a factor [65]. Further, if we consider a 

non-linear system where there is only one input Gaussian distributed signal, the 

crosscorrelation of input and output will be proportional to the autocorrelation of the 

input signal. Based on these contents, let 𝑥 be a real Gaussian distributed signal and the 

output of a non-linear quantizer 𝑦(𝑥)  can be expressed by a linear Bussgang 

decomposition function: 

 𝑦(𝑥) = 𝛼𝑥 + 𝛿 (2.9) 

where 𝛼  is the proportionality coefficient which has been described above, and 𝛿 

denotes the quantisation error or distortion, which is uncorrelated with the input signal 

𝑥. The linear coefficient is given by: 

 𝛼 =
𝔼{𝑥𝑦(𝑥)}

𝔼{𝑥2}
=
1

𝑃𝑥
∫ 𝑥𝑦(𝑥)𝑓𝑋(𝑥)𝑑𝑥
∞

−∞

 (2.10) 

where 𝑃𝑥 = 𝔼{|𝑥|
2} = 𝔼{𝑥2} is the power of 𝑥 and the absolute value can be omitted 

as 𝑥 is assumed to be a real number, and 𝑓𝑋(𝑥) is the probability distribution function 

(pdf) of 𝑥. Then, it is useful to define the factor 𝛾 as the ratio between the output power 

and the input power of the quantiser [66]: 

 𝛾 =
𝔼{|𝑦(𝑥)|2}

𝔼{𝑥2}
=
1

𝑃𝑥
∫ |𝑦(𝑥)|2𝑓𝑋(𝑥)𝑑𝑥
∞

−∞

 (2.11) 

Thus, the power of the distortion can be represented by: 

 

𝔼{|𝛿|2} = 𝔼{|𝑦(𝑥) − 𝛼𝑥|2} 

=
(𝑎)
𝔼{|𝑦(𝑥)|2}−𝛼2𝑃𝑥 

= (𝛾 − 𝛼2)𝑃𝑥 

(2.12) 
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where step (a) is true due to the uncorrelation between 𝛿 and 𝑥. We note that the power 

of the distortion should be equal to or larger than zero in practice, hence  𝛾 ≥ 𝛼2. Then, 

for analysing the performance of the quantisation, the signal-to-distortion and noise 

ratio (SDNR) of the quantiser is defined as: 

 𝑆𝐷𝑁𝑅 =
𝔼{|𝛼𝑥|2}

𝔼{|𝛿|2}
=

𝛼2𝑃𝑥
(𝛾 − 𝛼2)𝑃𝑥

=
𝛼2

𝛾 − 𝛼2
 (2.13) 

where the numerator of (2.13) is the power of the desired signal in (2.9). To achieve the 

best performance of quantisation, we need to reduce the effect of distortion, in other 

words, the SDNR should be maximised. According to [28, 70], the mid-rise uniform 

quantiser 𝑦(𝑥) is given by: 

 𝑦(𝑥) =

{
 
 

 
 −

𝐿 − 1

2
Δ  x ≤ −(

𝐿

2
− 1)Δ

(𝑙 +
1

2
)Δ  𝑙Δ < x ≤ (𝑙 + 1)Δ, 𝑙 = −

𝐿

2
+ 1…

𝐿

2
− 2

𝐿 − 1

2
Δ 𝑥 > (

𝐿

2
− 1)Δ

 (2.14) 

where 𝐿 = 2𝑏 is the number of quantisation steps, 𝑏 is the number of quantisation bits 

and Δ refers to the quantisation step size or quantisation step interval. An example of 

the uniform quantiser with 𝐿 = 8 steps and step interval Δ = 1 is shown in Fig. 2.6. 

Next, we substitute (2.14) into (2.10) and (2.11), assuming the input signal 

𝑥~𝒩(0, 𝜎𝑥
2), and have the results as: 

 𝛼 =
Δ

√2𝜋𝜎𝑥
(

 ∑2𝑒
−
𝑙2Δ2

2𝜎𝑥
2

𝐿
2
−1

𝑙=1

+ 1

)

  (2.15) 

 𝛾 =
Δ2

𝜎𝑥2

(

 4∑𝑙𝑄 (
𝑙Δ

𝜎𝑥
)

𝐿
2
−1

𝑙=1

+
1

4

)

  (2.16) 

where 𝑄(∙)  denotes the Q-function. The proof is omitted in this thesis since it was 

already provided by [28]. Finally, we replace 𝛼 and 𝛾 in (2.13) by (2.15) and (2.16), 

and solve the SDNR maximisation problem by finding the optimum step interval. 
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Δ𝑜𝑝𝑡 = arg max
Δ

(
𝛼2

𝛾 − 𝛼2
) = arg max

Δ
(

1
𝛾
𝛼2
− 1

) 

= arg max
Δ

(
𝛼2

𝛾
) 

= arg max
Δ

(

 
 
 
Δ2

2𝜋𝜎𝑥2
(∑ 2𝑒

−
𝑙2Δ2

2𝜎𝑥
2

𝐿
2
−1

𝑙=1 + 1)

2

Δ2

𝜎𝑥2
(4∑ 𝑙𝑄 (

𝑙Δ
𝜎𝑥
)

𝐿
2
−1

𝑙=1 +
1
4)

)

 
 
 

 

= arg max
Δ

(

 
 
 
(∑ 2𝑒

−
𝑙2Δ2

2𝜎𝑥
2

𝐿
2
−1

𝑙=1 + 1)

2

4∑ 𝑙𝑄 (
𝑙Δ
𝜎𝑥
)

𝐿
2
−1

𝑙=1 +
1
4
)

 
 
 

 

(2.17) 

Note that on the second equality of (2.17), we also have the constraint 𝛾 ≥ 𝛼2. 

 

Fig. 2.6 Quantisation function of 8 steps mid-rise uniform quantiser with the step 

interval is one (The quantiser is symmetric with respect to the origin). 

In Fig. 2.7, an example of finding the optimum step interval for maximising the 

SDNR with 4 quantisation steps is illustrated, where the input of the quantiser follows 

the standard normal distribution and we vary the step interval by the range from 0 to 
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1.5, to show the corresponding values 𝛼, 𝛾, 𝛼2/𝛾 and SDNR. In Table 2.1, we provide 

a comprehensive list of the linear coefficient 𝛼 and 𝛾 − 𝛼2 with respect to the optimum 

step interval for quantisation bits up to 12, under the standard normal distribution input. 

This table is generated by exploring the quantisation step interval Δ to maximise the 

SDNR using a tool such as Mathematica. 

 

Fig. 2.7 An example of the optimum step interval by maximising SDNR, 𝐿 = 4, the 

input of quantiser follows the standard normal distribution where the variance is one. 

Table 2.1 Optimum step interval and Bussgang parameters 

No. of bits, b Δ𝑜𝑝𝑡 α γ − α2 

2 0.995687 0.881154 0.104722 

3 0.586019 0.96256 0.0360379 

4 0.335201 0.988457 0.0114096 

5 0.188139 0.996505 0.00348299 

6 0.104063 0.99896 0.00103896 

7 0.0568677 0.999696 0.00030424 

8 0.0307624 0.999912 0.0000876785 

9 0.016499 0.999975 0.0000249184 

10 0.00878546 0.999993 6.99696 × 10−6 

11 0.00464984 0.999998 1.94441 × 10−6 

12 0.00244841 0.999999 5.35536 × 10−7 



   

Chapter 3 

Decentralised Distributed Massive 

MIMO 

3.1 Introduction 

The demand for higher data rate is expected to increase exponentially in the next decade. 

To cater to the huge number of wireless devices requiring low latency and high spectral 

efficiency (SE), an architecture with adaptive deployment and related signal processing 

needs to be considered. Cell-free massive multiple-input multiple-output (MaMIMO), 

as discussed in the literature, has been identified as a promising approach that improves 

cell-edge services and increases per-user capacity by exploiting distributed MIMO 

technique. However, challenges such as the cluster-edge effect, network scalability and 

latency exist, which limit the system’s performance. While solutions for cell-free 

MaMIMO have been proposed, they may be complicated or inflexible to implement. 

We will discuss these issues in detail in the subsequent sub-chapters. Therefore, the 

fundamental idea of this thesis, which is distinguished from the concepts of cell-free 

MaMIMO or cloud radio access network (C-RAN), is to explicitly define where the 

processing occurs, and to move it to the network edge from a cloud or central location. 

In an earlier paper [30] it has been shown that users at the cluster edge of the cell-

free MaMIMO network do not perform well, and the signal-to-interference ratio (SIR) 

might be negative. The reason is that the access points (APs) close to the edge of the 

adjacent network clusters are uncoordinated with the current cluster, resulting in inter-

cluster interference. To solve this problem, we define adjacent entities, referred to as 

coordination regions, which naturally overlap. This means that APs near the edge of a 

cluster may be coordinated by more than one edge processing unit (EPU). Leveraging 

the features of the technologies mentioned in Chapter 2, we combine the decentralised 

signal processing technique with cell-free MaMIMO and define the coordination 

regions, proposing a new paradigm called “Decentralised Distributed Massive MIMO” 
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(DD-MaMIMO). This system is the same as “Fog Massive MIMO” in [30]. We chose 

to change the name because the terminology of “Fog Massive MIMO” was not widely 

used five years ago. However, in recent years, Fog Massive MIMO has been used in 

[33] to indicate a network with a “fog”-like density of remote radio heads (RRHs), 

where UTs autonomously connect to the convenient RRHs, which is different from the 

usage in [30]. Additionally, the term “fog” is often associated with fog/edge computing, 

which concerns caching within the network. Furthermore, the terms “decentralised cell-

free MaMIMO” [26] and “decentralised network” in [23] have been used to describe 

techniques where channel estimation and data detection are locally processed at the AP, 

which is different from our definition. Therefore, we redefine “fog” that the signal 

processing locates at the network edge referring to as the decentralisation and combine 

it with cell-free MaMIMO which is distributed.  

A rudimentary performance analysis for the uplink DD-MaMIMO was discussed in 

[30]. This analysis adopted least squares (LS) channel estimation with maximum ratio 

combining (MRC) for data detection. It also exploited the assumption of channel 

hardening, which might not be valid, particularly when the number of antennas at the 

APs is fewer or the path-loss exponent is greater [19]. Therefore, in this chapter, we 

will discard the assumption, mainly taking account of the general case in which each 

AP is equipped with either a single antenna or just a few antennas. We will employ both 

MRC and minimum mean square error (MMSE) techniques. To ensure a fair and 

reasonable comparison, we will maintain the same level of density for the AP and user 

terminal (UT), and apply the same propagation model as [24], which provided a 

comprehensive analysis of cell-free MaMIMO, to DD-MaMIMO. The power control 

will not be considered in this thesis; instead, we will assign equal power to all 

transmitted UTs. 

In the subsequent sub-chapters, we will firstly introduce the system model of DD-

MaMIMO, giving the initial setup parameters. Then, channel estimation processed in 

the decentralised entity which is the EPU will be described, by collecting the received 

pilot signals from all APs within the coordination region via the unlimited capacity 

fronthaul links. To fit with the practice, we will next propose a pilot allocation scheme 

which concerns the areas consisting of six adjacent clusters and the current cluster. 

Furthermore, we will discuss the data detection which also occurs at the EPU. Based 

on the different estimation methods, a general expression for calculating the achievable 

uplink SE is presented. Additionally, we will show that our DD-MaMIMO adapts to



3.2 System Model  26 

 

 the scalable network and does not consume extra overhead. Finally, we will give some 

numerical results and provide a comprehensive analysis. 

3.2 System Model 

In this sub-chapter, we consider a DD-MaMIMO system with 𝑀𝑐𝑜𝑜𝑟  randomly 

distributed APs in the coordination region serving 𝐾𝑠𝑒𝑟𝑣  UTs in the service region, 

which was originally defined in [30], see Fig. 3.1. The network as a whole contains 

many EPUs (there are two illustrated in Fig. 3.1), each at the centre of a coordination 

region (which is a circle area of radius 𝑟𝑐𝑜𝑜𝑟) within which all APs are coordinated by 

and connected to the EPU. The coordination regions have an overlap between the 

adjacent EPUs, which indicates that an AP might be jointly coordinated by more than 

one EPU. According to the definition, the UTs served by the AP within this overlapping 

area can send their data to any EPU that serves this overlapping coordination region. 

However, in this sub-chapter we define a hexagon as the service region for each EPU 

such that the data from all served UTs in the hexagonal area are processed by this EPU.  

 

Fig. 3.1 The architecture of DD-MaMIMO, including EPUs with their service regions 

(red dash hexagon) and coordination regions (blue solid circle), APs with fronthaul 

links (black solid line), and UTs. 

The key difference is that in the conventional cell-free MaMIMO [14], all APs 

connected to one CPU influence the size of the serving area. But EPUs involving 
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multiple APs in Fig3.1 produce the size of the serving area. We assume the distance 

between the EPUs (the centre of the coordination region) represented by 𝑑𝐸𝑃𝑈, is 300 

m here, which adapts to the ultra-dense network. Besides, in this chapter we do not 

discuss the details of the fronthaul which connects the AP to the EPU, only assuming it 

is error-free and offers no bandwidth limitation. To analyse the performance of the 

system, we initially assume a scenario in which the UTs with only a single antenna and 

APs equipped with multiple antennas are uniformly distributed in the network area with 

the density of 𝜌𝑢 and 𝜌𝐴, respectively. Moreover, we assume 𝒈𝑚𝑘 represents the flat-

fading channel coefficients between the k-th UT in the service region of a given EPU 

and the m-th AP with 𝑁𝑟 antennas in the coordination area. Here the gain vector 𝒈𝑚𝑘 =

[𝑔𝑚1𝑘 𝑔𝑚2𝑘…𝑔𝑚𝑁𝑟𝑘]
𝑇
 is given by: 

 𝒈𝑚𝑘 = 𝛽𝑚𝑘
1/2
𝒉𝑚𝑘 (3.1) 

where 𝒉𝑚𝑘 = [ℎ𝑚1𝑘 ℎ𝑚2𝑘 …ℎ𝑚𝑁𝑟𝑘]
𝑇
 represents the small-scale Rayleigh fading of the 

elements, as independent and identically distributed (i.i.d) complex Gaussian 𝒞𝒩(0,1) 

random variables (RVs). We assume 𝒉𝑚𝑘  remains the same over the period of 

coherence interval. 𝛽𝑚𝑘 denotes the large-scale fading including the one-slope path loss 

applying the 3GPP Urban Microcell Model, as follows [24, 71]: 

 𝛽𝑚𝑘[dB] = −22.7 − 26 log10 (
𝑓𝑐

1 GHz
) − 36.7 log10 (

𝑑𝑚𝑘
1 m

) + 𝐹𝑚𝑘 (3.2) 

where 𝑓𝑐 is the carrier frequency (assumed to be 2 GHz),  𝑑𝑚𝑘 is the distance between 

the m-th AP and the k-th user, and 𝐹𝑚𝑘~𝒞𝒩(0,16) represents the shadow fading. In 

this thesis, we assume that the shadow fading coefficients from one AP to all UEs are 

uncorrelated. Furthermore, the correlation among the channels will not be discussed. 

Note that the large-scale fading coefficients of multiple antennas at the same AP are 

equal because they are at the same distance from the UT, and we assume they are also 

affected by shadow fading in the same way.  

As in [14, 20, 30], we adopt time-division duplex (TDD) operation for the uplink 

and downlink transmission. The coherence interval 𝜏𝑐  is defined as the period over 

which the channel is approximately constant. Based on the feature of TDD which is the  
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channel reciprocity, we can obtain the downlink channel knowledge from the uplink 

channel estimation, thus the pilots do not need to be transmitted on the downlink. The 

coherence interval is then divided into three phases: uplink pilot sequence (𝜏𝑝), uplink 

data transmission (𝜏𝑢), and downlink data transmission (𝜏𝑑), i.e., 𝜏𝑐 = 𝜏𝑝 + 𝜏𝑢 + 𝜏𝑑. 

The pilot length should be less than the coherence interval, and cannot be too long 

which will decrease the efficiency of data transmission. In this chapter, we focus only 

on the uplink but unlike [26] and [72] where 𝜏𝑝 < 𝐾 (the number of all UTs) in practical 

cell-free MaMIMO, we assume the pilot length is larger than the number of UTs in the 

coordination region (𝜏𝑝 ≥ 𝐾𝑐𝑜𝑜𝑟 ), ensuring the random pilots for all users in the 

coordination region are fully orthogonal. That is because in the ultra-dense network, 

there is not a large number of UTs to be served by a single EPU. For example, to support 

holographic video streaming within the ultra-dense network, the computational 

complexity can be reduced by separating the users into many EPUs. Then, each EPU 

only server a few users which also increases the data rate and reduces the latency. In 

addition, 𝐾𝑐𝑜𝑜𝑟 can be limited by reducing the coordination region and service region. 

The area of coordination region and service region are given by: 𝑆𝑐𝑜𝑜𝑟 = 𝜋𝑟𝑐𝑜𝑜𝑟
2  and 

𝑆𝑠𝑒𝑟𝑣 =
1

2
×
𝑑𝐸𝑃𝑈

√3
×
𝑑𝐸𝑃𝑈

2
× 6 =

√3

2
𝑑𝐸𝑃𝑈
2  , respectively, hence on average 𝐾𝑐𝑜𝑜𝑟 =

𝜌𝑢𝜋𝑟𝑐𝑜𝑜𝑟
2  and 𝐾𝑠𝑒𝑟𝑣 =

√3

2
𝜌𝑢𝑑𝐸𝑃𝑈

2 . 

3.3 Channel Estimation 

To estimate the channel coefficients, we assume that 𝛽𝑚𝑘  is known by all APs and 

EPUs. We suppose that the pilot sequence for the k-th user is 𝝋𝑘 ∈ ℂ
𝜏𝑝×1  with 

‖𝝋𝑘‖
2 = 𝜏𝑝 , and the pilots outside coordinated region are randomly assigned. The 

detail of pilot sequence will be discussed in the sub-chapter 4.3. Note that, as mentioned 

in the system model sub-chapter, the UTs in the coordination region are assigned fully 

orthogonal pilots. Here, the term “randomly assigned” refers to the pilot assignment 

chosen from that set of pilot sequences randomly. This means that interfering users 

outside the coordination region might transmit the same pilots as the served users. The 

received pilot matrix 𝒀𝑝 at the m-th AP 𝒀𝑝,𝑚 ∈ ℂ
𝑁𝑟×𝜏𝑝  then is given by: 
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 𝒀𝑝,𝑚 = ∑ 𝒈𝑚𝑘𝝋𝑘
𝑇

𝐾𝑠𝑒𝑟𝑣

𝑘=1

+∑𝒈𝑖,𝑚𝑘𝝋𝑖,𝑘
𝑇

𝐾𝑖𝑛𝑡

𝑘=1

+ 𝒁𝑝,𝑚 (3.3) 

where the matrix 𝒁𝑝,𝑚 ∈ ℂ
𝑁𝑟×𝜏𝑝 is the noise at the m-th AP, the elements of 𝒁𝑝,𝑚 are 

i.i.d 𝒞𝒩(0, 𝜎𝑧
2) RVs, 𝒈𝑖,𝑚𝑘 denotes the channel coefficient from interfering users not 

coordinated by this EPU, defined by the same form as (3.1), and 𝝋𝑖,𝑘 represents the 

interfering pilot sequence for the k-th interfering UT. Note that the subscripts “p” and 

“i” refer to the pilot transmission and interference, respectively. They are not indices. 

To obtain a good channel state information (CSI) between the k-th UT and the m-th AP, 

we first multiply the received pilots 𝒚𝑝,𝑚𝑛 , which is the n-th row vector of 𝒀𝑝,𝑚 , by 

the conjugate of the pilot sequence 𝝋𝑘
∗ . We then take the LS estimate of the channel by 

finding 𝑔̌𝑚𝑛𝑘 to minimise the squared deviation of ‖𝒚𝑝,𝑚𝑛 𝝋𝑘
∗ − 𝜏𝑝𝑔̌𝑚𝑛𝑘‖

2
. Since the 

smallest value is zero, the LS estimation is given by: 

 𝑔̌𝑚𝑛𝑘 =
1

𝜏𝑝
𝒚𝑝,𝑚𝑛 𝝋𝑘

∗ = 𝑔𝑚𝑛𝑘 +
1

𝜏𝑝
∑ 𝑔𝑖,𝑚𝑛𝑘′𝝋𝑖,𝑘′

𝑇 𝝋𝑘
∗

𝐾𝑖𝑛𝑡

𝑘′=1

+
1

𝜏𝑝
𝒛𝑝,𝑚𝑛𝝋𝑘

∗  (3.4) 

where 𝒛𝑝,𝑚𝑛 is the n-th row vector of the noise matrix. This estimated value has a good 

performance, if all interfering pilots are orthogonal to the pilots within the coordination 

region. However, this is not reasonable and practical in real life due to the shortage of 

orthogonal pilots. Hence, the MMSE channel estimation can be used to improve the 

estimation performance. The MMSE weight 𝑐𝑚𝑛𝑘, applied for the k-th UT to the n-th 

antenna of the m-th AP, is obtained by equating the first derivative of MSE 𝜖𝑚̅𝑛𝑘 =

𝔼{|𝑔𝑚𝑛𝑘 − 𝑐𝑚𝑛𝑘𝑔̌𝑚𝑛𝑘|
2} with respect to 𝑐𝑚𝑛𝑘 to zero. 

 

0 =
𝜕𝜖𝑚̅𝑛𝑘
𝜕𝑐𝑚𝑛𝑘

 

=
𝜕

𝜕𝑐𝑚𝑛𝑘
(𝔼{|𝑔𝑚𝑛𝑘|

2} − 𝔼{𝑔𝑚𝑛𝑘𝑐𝑚𝑛𝑘
∗ 𝑔̌𝑚𝑛𝑘

∗ } − 𝔼{𝑔𝑚𝑛𝑘
∗ 𝑐𝑚𝑛𝑘𝑔̌𝑚𝑛𝑘}

+ 𝔼{|𝑐𝑚𝑛𝑘𝑔̌𝑚𝑛𝑘|
2}) 

= −𝔼{𝑔𝑚𝑛𝑘
∗ 𝑔̌𝑚𝑛𝑘} + 𝑐𝑚𝑛𝑘

∗ 𝔼{|𝑔̌𝑚𝑛𝑘|
2} 

(3.5) 

Thus, the MMSE weight is 
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𝑐𝑚𝑛𝑘 =
(𝑎) 𝔼{𝑔𝑚𝑛𝑘𝑔̌𝑚𝑛𝑘

∗ }

𝔼{|𝑔̌𝑚𝑛𝑘|2}
 

=
𝔼{|𝑔𝑚𝑛𝑘|

2}

𝔼 {|𝑔𝑚𝑛𝑘|2 +
1
𝜏𝑝2
∑ |𝑔𝑖,𝑚𝑛𝑘′𝝋𝑖,𝑘′

𝑇 𝝋𝑘
∗ |
2𝐾𝑖𝑛𝑡

𝑘′=1
+
1
𝜏𝑝2
|𝒛𝑝,𝑚𝑛𝝋𝑘

∗ |
2
}
 

=
𝛽𝑚𝑛𝑘

𝛽𝑚𝑛𝑘 +
1
𝜏𝑝2
∑ 𝛽𝑖,𝑚𝑛𝑘′
𝐾𝑖𝑛𝑡
𝑘′=1

𝔼 {|𝝋𝑖,𝑘′
𝑇 𝝋𝑘

∗ |
2
} +

𝜎𝑧2

𝜏𝑝

 

=
(𝑏) 𝛽𝑚𝑛𝑘

𝛽𝑚𝑛𝑘 +
1
𝜏𝑝
∑ 𝛽𝑖,𝑚𝑛𝑘′
𝐾𝑖𝑛𝑡
𝑘′=1

+
𝜎𝑧
2

𝜏𝑝

 

(3.6) 

where we substitute (3.4) into step (a) and assume 𝔼 {|𝝋𝑖,𝑘′
𝑇 𝝋𝑘

∗ |
2
} = 𝜏𝑝  in step (b). 

Furthermore, the terms in (3.4) are uncorrelated with each other. Therefore, the MMSE 

channel estimation is given by 

 
𝑔̂𝑚𝑛𝑘 = 𝑐𝑚𝑘𝑔̌𝑚𝑛𝑘 =

𝛽𝑚𝑘𝑔̌𝑚𝑛𝑘

𝛽𝑚𝑘 +
1
𝜏𝑝
∑ 𝛽𝑖,𝑚𝑘′
𝐾𝑖𝑛𝑡
𝑘′=1

+
𝜎𝑧2

𝜏𝑝

 
(3.7) 

Note that 𝑐𝑚𝑛𝑘 depends only on the large-scale fading coefficients 𝛽𝑚𝑛𝑘 and 𝛽𝑖,𝑚𝑛𝑘 , 

which remain the same value for the different antennas at the same AP. Thus, we can 

replace 𝑐𝑚𝑛𝑘 by 𝑐𝑚𝑘. The variance of (3.7) is:  

 

𝔼{|𝑔̂𝑚𝑛𝑘|
2} = 𝔼

{
 

 
|

𝛽𝑚𝑘𝑔̌𝑚𝑛𝑘

𝛽𝑚𝑘 +
1
𝜏𝑝
∑ 𝛽𝑖,𝑚𝑘′
𝐾𝑖𝑛𝑡
𝑘′=1

+
𝜎𝑧2

𝜏𝑝

|

2

}
 

 
 

= (
𝛽𝑚𝑘

𝛽𝑚𝑘 +
1
𝜏𝑝
∑ 𝛽𝑖,𝑚𝑘′
𝐾𝑖𝑛𝑡
𝑘′=1

+
𝜎𝑧2

𝜏𝑝

)

2

𝔼{|𝑔̌𝑚𝑛𝑘|
2} 

=
𝛽𝑚𝑘
2

𝛽𝑚𝑘 +
1
𝜏𝑝
∑ 𝛽𝑖,𝑚𝑘′
𝐾𝑖𝑛𝑡
𝑘′=1

+
𝜎𝑧2

𝜏𝑝

= 𝑐𝑚𝑘𝛽𝑚𝑘 

(3.8) 

3.4 Pilot Assignment 

In practice, DD-MaMIMO is implemented with a configuration considering the 

neighbouring clusters as shown in Fig. 3.2, where the current cluster (hexagon) is 
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surrounded by six neighbours. Each cluster owns an EPU (0-6) at its centre and its 

coordination region may overlap with others. Hence, the pilot assignment needs to be 

considered to avoid pilot reuse within the coordination region. For instance, in a simple 

scenario, the coordination region is overlapped by at most three adjacent clusters. Let 

us consider that the pilot P3 is located in the intersection area coordinated among the 

EPU 0, EPU 3 and EPU 4. This pilot cannot be reused in these corresponding 

coordination areas. However, it can be reused in the area served by EPU 6, excluding 

the area of overlap that is coordinated by EPU 0. Based on this idea, we develop a pilot 

allocation algorithm for a user’s first time accessing the DD-MaMIMO system, as 

described in Algorithm 3.1. Without loss of generality, we define any arbitrary EPU as 

the x-th EPU and the user as the k-th UT. Furthermore, in the subsequent sub-chapter, 

we will compare this proposed pilot allocation with a completely random pilot 

allocation scheme. For the latter, we only consider if a pilot is used within the 

coordination area of the current EPU, which serves the k-th user. The users outside this 

coordination area are viewed as interfering users, and the pilots are assigned completely 

randomly to them. 

 

Fig. 3.2 The wrap-around DD-MaMIMO network for pilot assignment, including the 

current cluster with EPU 0 at centre with six surrounding clusters (with EPU 1-6). P1-

P4 denotes the different pilot sequence. The red square is simulated area. 

Algorithm 3.1 Pilot Allocation 

Define: The coordination area of the general x-th EPU is 𝒜𝑐𝑜𝑜𝑟,𝑥 and the service 

  area of the x-th EPU is 𝒜𝑠𝑒𝑟𝑣,𝑥.   
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       The position of the general k-th user is 𝑈𝑇𝑘. 

       𝓟 denotes the total pilot sequences with the length of 𝜏𝑝. 

       𝓟𝑥 denotes the set of pilot sequences which were already assigned in 

  𝒜𝑐𝑜𝑜𝑟,𝑥. 

       𝓟𝑒𝑥 denotes the set of pilot sequences which will be excluded. 

       𝓟𝑖𝑛 denotes the set of pilot sequences which will be included. 

1:    Locate the k-th user in its EPU service area: 

  if 𝑈𝑇𝑘 ∈ 𝒜𝑠𝑒𝑟𝑣,𝑥 then 

2:     Find the EPU coordination areas in which the k-th 

user lies: 

  if 𝑈𝑇𝑘 ∈ 𝒜𝑐𝑜𝑜𝑟,𝑦 then  

3:    𝓟𝑒𝑥 = 𝓟𝑦; 

4:    𝓟𝑒𝑥 = 𝓟𝑥 ∪𝓟𝑒𝑥; 

5:    repeat step 2 to step 4 

6:    until all coordination areas are found 

7:    Assign the pilot 𝑝  to k-th user randomly selected 

from: 

𝓟𝑖𝑛 = {𝑝 | 𝑝 ∈ 𝓟 & 𝑝 ∉ 𝓟𝑒𝑥}; 
8:    𝓟𝑥 = 𝓟𝑥 ∪ 𝑝; 

9:   else 

10:          if 𝑈𝑇𝑘 is only in 𝒜𝑠𝑒𝑟𝑣,𝑥 then 

11:     𝓟𝑒𝑥 = 𝓟𝑥; 

12:     repeat step 7 and step 8 

13:    end 

14:   end 

15:  end 

3.5 Data Transmission 

In this sub-chapter, we will discuss the uplink data transmission and the data detection 

in DD-MaMIMO. Since each EPU serves a coordination region in DD-MaMIMO, the 

uplink data transmission is considered only at the APs within this coordination region. 

This contrasts with the canonical cell-free MaMIMO where all UTs transmit data to all 

APs across the entire network. The signal received at the APs within the coordination 

region can be represented by a 𝑀𝑐𝑜𝑜𝑟𝑁𝑟 × 𝜏𝑢 size matrix on the uplink: 

 𝒀𝑢 = 𝑮𝑿 + 𝑮𝑖𝑛𝑡𝑿𝑖𝑛𝑡 + 𝒁 (3.9) 

where 𝑮 ∈  ℂ𝑀𝑐𝑜𝑜𝑟𝑁𝑟×𝐾𝑠𝑒𝑟𝑣  denotes the channel matrix from the UTs in the service 

region, 𝑮𝑖𝑛𝑡 ∈  ℂ
𝑀𝑐𝑜𝑜𝑟𝑁𝑟×𝐾𝑖𝑛𝑡  is the channel matrix from the interfering users. The 

transmitted data, containing 𝜏𝑢  symbols, from the service area and outside the 

coordination region are represented by the matrix 𝑿 ∈ ℝ𝐾𝑠𝑒𝑟𝑣×𝜏𝑢 and the matrix 𝑿𝑖𝑛𝑡 ∈

ℝ𝐾𝑖𝑛𝑡×𝜏𝑢, respectively. In this thesis, we assume the variance of data 𝜎𝑥
2 is the same as 
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the interference 𝜎𝑥𝑖𝑛𝑡
2  . Finally, 𝒁 ∈ ℂ𝑀𝑐𝑜𝑜𝑟𝑁𝑟×𝜏𝑢  is uncorrelated complex Gaussian 

noise at the received antennas, whose elements are i.i.d 𝒞𝒩(0, 𝜎𝑧
2)  RVs. Here, we 

assume all data symbols are independent, so we can consider each column vector of the 

data symbol matrix independently, and rewrite (3.9) in vector form: 

 𝒚𝑢 = ∑ 𝒈𝑘𝑥𝑘 +∑𝒈𝑖,𝑘𝑥𝑖,𝑘

𝐾𝑖𝑛𝑡

𝑘=1

𝐾𝑠𝑒𝑟𝑣

𝑘=1

+ 𝒛 (3.10) 

where 𝒈𝑘 = [𝒈1𝑘
𝑇  𝒈2𝑘

𝑇 …𝒈𝑀𝑐𝑜𝑜𝑟𝑘
𝑇 ]

𝑇
 , 𝒈𝑖,𝑘 = [𝒈𝑖,1𝑘

𝑇  𝒈𝑖,2𝑘
𝑇 …𝒈𝑖,𝑀𝑐𝑜𝑜𝑟𝑘

𝑇 ]
𝑇
 and 𝒛  is the 

column vector of 𝒁.  

Then, the received signals at all APs within the coordination region are transferred 

via the fronthaul links to the EPU, in which the data is recovered by utilising the 

combining techniques. The detected data can be represented by weighting the received 

signals in a general form:  

 

𝑥̂𝑘 = 𝒘𝑘𝒚𝑢 

= 𝒘𝑘𝒈̂𝑘𝑥𝑘 +𝒘𝑘𝒈̃𝑘𝑥𝑘 + ∑ 𝒘𝑘𝒈𝑘′𝑥𝑘′

𝐾𝑠𝑒𝑟𝑣

𝑘′≠𝑘

+ ∑ 𝒘𝑘𝒈𝑖,𝑘′𝑥𝑖,𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+𝒘𝑘𝒛 
(3.11) 

where the weight vector 𝒘𝑘 ∈ ℂ
1×𝑀𝑐𝑜𝑜𝑟𝑁𝑟 can be used to describe various combining 

techniques. The channel vector 𝒈𝑘  can be expanded as 𝒈̂𝑘 + 𝒈̃𝑘 . The term 𝒈̂𝑘 =

[𝒈̂1𝑘
𝑇  𝒈̂2𝑘

𝑇 …𝒈̂𝑀𝑐𝑜𝑜𝑟𝑘
𝑇 ]

𝑇
, where 𝒈̂𝑚𝑘 = [𝑔̂𝑚1𝑘 𝑔̂𝑚2𝑘 … 𝑔̂𝑚𝑁𝑟𝑘]

𝑇
 represents the estimated 

channel vector between the k-th UT and the 𝑁𝑟 antennas of the m-th AP within the 

coordination area. Meanwhile, 𝒈̃𝑘 denotes the channel estimation error vector, which 

has the same form as 𝒈̂𝑘. Furthermore, the first two terms in the expanded equality 

(3.11) are desired signals where 𝒘𝑘𝒈̂𝑘𝑥𝑘 is the signal over the estimated channel and 

𝒘𝑘𝒈̃𝑘𝑥𝑘 is the signal over the unknown channel. The third term represents intra-service 

area interference, while the fourth term denotes interference from users outside the 

coordination region. The last term is noise. Then, the achievable SE for the k-th UT can 

be given by using the standard capacity lower bounds which has the same form as [24, 

73], as shown in the following proposition.  

Proposition 3.1. Suppose that 𝐾𝑠𝑒𝑟𝑣 UTs are served by 𝑀𝑐𝑜𝑜𝑟 APs where each AP is 

equipped with 𝑁𝑟 antennas in DD-MaMIMO. The estimation of the channel and data 
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are processed at the EPU with unlimited fronthaul. An achievable SE for the k-th UT 

is 

 𝑆𝐸𝑘 =
𝜏𝑢

𝜏𝑝 + 𝜏𝑢
𝔼{log2(1 + 𝑆𝐼𝑁𝑅𝑘)} (3.12) 

where the factor 𝜏𝑢/(𝜏𝑝 + 𝜏𝑢) is the fraction of uplink transmission which is used by 

data transmission, and the expectation is with respect to the channel estimates. The 

instantaneous signal-to-interference-plus-noise ratio (SINR) for the k-th UT is given by: 

 

𝑆𝐼𝑁𝑅𝑘

=
|𝒘𝑘𝒈̂𝑘|

2

𝒘𝑘 (∑ 𝒈̂𝑘′𝒈̂𝑘′
𝐻𝐾𝑠𝑒𝑟𝑣

𝑘′≠𝑘
+ ∑ 𝑪𝑔̃𝑔̃,𝑘′

𝐾𝑠𝑒𝑟𝑣
𝑘′=1

+ ∑ 𝑪𝑔𝑖𝑛𝑡𝑔𝑖𝑛𝑡,𝑘′
𝐾𝑖𝑛𝑡
𝑘′=1

+
𝜎𝑧2

𝜎𝑥2
𝑰𝑀𝑐𝑜𝑜𝑟𝑁𝑟)𝒘𝑘

𝐻
 (3.13) 

where the covariance matrix of channel estimation error for the k-th UT is expressed 

as 𝑪𝑔̃𝑔̃,𝑘, and 𝑪𝑔𝑖𝑛𝑡𝑔𝑖𝑛𝑡,𝑘 denotes the covariance matrix of channel coefficients for the 

k-th uncoordinated UT.  

Proof: In [73, Th. 4.1], the achievable SE of a cellular system with the discrete 

memoryless interference channel can be expressed by computing the lower bound of 

its ergodic capacity, if the channel response is a realization of a RV. In (3.11) the input 

of such a discrete memoryless interference channel model corresponds to 𝑥 = 𝑥𝑘, the 

random channel response is denoted by ℎ = 𝒘𝑘𝒈̂𝑘  with the random realisation 𝑢 =

{𝒈̂𝑙}  where 𝑙  is arbitrary value, the output is 𝑦 = 𝒘𝑘𝒚𝑢  and the interference term is 

represented by: 

 𝑣 = 𝒘𝑘𝒈̃𝑘𝑥𝑘 + ∑ 𝒘𝑘𝒈𝑘′𝑥𝑘′

𝐾𝑠𝑒𝑟𝑣

𝑘′≠𝑘

+ ∑ 𝒘𝑘𝒈𝑖,𝑘′𝑥𝑖,𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+𝒘𝑘𝒛 (3.14) 

Note that the original definitions of the terms 𝑥 , ℎ , 𝑢 , 𝑦  and 𝑣  mentioned above 

were stated in [73] for describing a general discrete memoryless interference channel 

model. The terms 𝑥𝑘 , 𝑥𝑖,𝑘  and the elements in 𝒛  are zero mean, and they are 

independent of the realisations of the channel estimates in (3.14). So, the interference 

term 𝑣 is also zero mean. Furthermore, since the weight vector 𝒘𝑘 is a function of the 

channel estimates, the conditional variance of 𝑣 given {𝒈̂𝑙} with arbitrary value of 𝑙 can 

be calculated by: 
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𝔼{|𝑣|2|𝑢 = {𝒈̂𝑙}} 

=
(𝑎)
𝔼{|𝑥𝑘|

2}𝔼{|𝒘𝑘𝒈̃𝑘|
2|{𝒈̂𝑙}} + ∑ 𝔼{|𝑥𝑘′|

2}𝔼{|𝒘𝑘𝒈𝑘′|
2|{𝒈̂𝑙}}

𝐾𝑠𝑒𝑟𝑣

𝑘′≠𝑘

+ ∑ 𝔼{|𝑥𝑘′|
2}𝔼{|𝒘𝑘𝒈𝑘′|

2|{𝒈̂𝑙}}

𝐾𝑠𝑒𝑟𝑣

𝑘′≠𝑘

+ ∑ 𝔼{|𝑥𝑖,𝑘′|
2
} 𝔼 {|𝒘𝑘𝒈𝑖,𝑘′|

2
|{𝒈̂𝑙}}

𝐾𝑖𝑛𝑡

𝑘′=1

+ 𝔼{|𝒘𝑘𝒛|
2|{𝒈̂𝑙}} 

=
(𝑏)
𝜎𝑥
2𝒘𝑘𝑪𝑔̃𝑔̃,𝑘𝒘𝑘

𝐻 + 𝜎𝑥
2𝒘𝑘 (∑ 𝒈̂𝑘′𝒈̂𝑘′

𝐻 + 𝑪𝑔̃𝑔̃,𝑘′

𝐾𝑠𝑒𝑟𝑣

𝑘′≠𝑘

)𝒘𝑘
𝐻

+ 𝜎𝑥
2𝒘𝑘 ∑ 𝑪𝑔𝑖𝑛𝑡𝑔𝑖𝑛𝑡,𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

𝒘𝑘
𝐻 + 𝜎𝑧

2𝒘𝑘𝑰𝑀𝑐𝑜𝑜𝑟𝑁𝑟𝒘𝑘
𝐻 

= 𝜎𝑥
2𝒘𝑘 (∑ 𝒈̂𝑘′𝒈̂𝑘′

𝐻

𝐾𝑠𝑒𝑟𝑣

𝑘′≠𝑘

+ ∑ 𝑪𝑔̃𝑔̃,𝑘′

𝐾𝑠𝑒𝑟𝑣

𝑘′=1

+ ∑ 𝑪𝑔𝑖𝑛𝑡𝑔𝑖𝑛𝑡,𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+
𝜎𝑧
2

𝜎𝑥2
𝑰𝑀𝑐𝑜𝑜𝑟𝑁𝑟)𝒘𝑘

𝐻 

(3.15) 

where step (a) exploits the fact that the terms in (3.14) are uncorrelated with each other, 

due to the independence of signals 𝑥𝑘 , 𝑥𝑖,𝑘  and the independence among signals, 

channels and noise. Next, step (b) follows 𝔼{|𝒘𝑘𝒈𝑘′|
2|{𝒈̂𝑙}} = 𝒘𝑘(𝒈̂𝑘′𝒈̂𝑘′

𝐻 +

𝑪𝑔̃𝑔̃,𝑘′)𝒘𝑘
𝐻  for arbitrary 𝑙 , because the estimated channel is uncorrelated with the 

channel estimation error. Additionally, the interference term 𝑣 is uncorrelated with the 

input signal 𝑥 given {𝒈̂𝑙}, which is achieved by: 

 𝔼{𝑥𝑣|{𝒈̂𝑙}} = 𝔼{|𝑥𝑘|
2}𝔼{𝒘𝑘𝒈̃𝑘|{𝒈̂𝑙}} = 0 (3.16) 

where the first equality is satisfied since the input signal is independent of all terms of 

interference (3.14), except the term 𝒘𝑘𝒈̃𝑘𝑥𝑘 . Then, the second equality is realised 

because the channel estimation error 𝒈̃𝑘 has zero mean and it is uncorrelated with the 

channel estimates. Then, the ergodic channel capacity is lower bounded as: 

 𝐶 ≥ 𝔼 {log2 (1 +
𝔼{|𝑥|2}|ℎ|2

𝔼{|𝑣|2|{𝒈̂𝑙}}
)} (3.17) 

where  𝔼{|𝑥|2} = 𝜎𝑥
2  and |ℎ|2 = |𝒘𝑘𝒈̂𝑘|

2 . Finally, we take the fraction of effective 
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uplink data transmission in one coherence block, which finishes the proof.  

Note that 𝑆𝐼𝑁𝑅𝑘 in (3.12) is instantaneous which is different from the conventional 

SINR, since it includes the instantaneous estimated channel, the covariance of channel 

estimation error and the covariance of interfering channels. It needs a period to calculate 

these covariance matrices. This means that the term 𝑆𝐼𝑁𝑅𝑘 cannot be measured in a 

given coherence block. Therefore, we can obtain the related covariance values within a 

finite realisation and then adopt that to a new independent realisation with respect to a 

𝑆𝐼𝑁𝑅𝑘 RV. 

Any combining techniques can be applied to obtain the weight 𝒘𝑘 . A simple 

combining technique which has low computational complexity is MRC with  𝒘𝑘 = 𝒈̂𝑘
𝐻. 

Other estimators such as zero-forcing (ZF) also can be selected in the EPU. Moreover, 

we can also use the MMSE estimation vector to maximise (3.13) as follows. 

Corollary 3.1.  The MMSE combining vector for maximising the instantaneous SINR 

in (3.13) is given by 

 𝒘𝑘 = 𝒈̂𝑘
𝐻 [∑ (𝒈̂𝑘′𝒈̂𝑘′

𝐻 + 𝑪𝑔̃𝑔̃,𝑘′)

𝐾𝑠𝑒𝑟𝑣

𝑘′=1

+ ∑ 𝑪𝑔𝑖𝑛𝑡𝑔𝑖𝑛𝑡,𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+
𝜎𝑧
2

𝜎𝑥2
𝑰𝑀𝑐𝑜𝑜𝑟𝑁𝑟]

−1

 (3.18) 

which leads to the maximum value 

 

𝑆𝐼𝑁𝑅𝑘 = 𝒈̂𝑘
𝐻 (∑ 𝒈̂𝑘′𝒈̂𝑘′

𝐻

𝐾𝑠𝑒𝑟𝑣

𝑘′≠𝑘

+ ∑ 𝑪𝑔̃𝑔̃,𝑘′

𝐾𝑠𝑒𝑟𝑣

𝑘′=1

+ ∑ 𝑪𝑔𝑖𝑛𝑡𝑔𝑖𝑛𝑡,𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+
𝜎𝑧
2

𝜎𝑥2
𝑰𝑀𝑐𝑜𝑜𝑟𝑁𝑟)

−1

𝒈̂𝑘 

(3.19) 

Proof: We define the MSE of the estimated data as 𝜖𝑘̅ = 𝔼{|𝑥𝑘 −𝒘𝑘𝒚𝑢|
2}. To find the 

maximum instantaneous SINR, we need to minimise the MSE. Let the first derivative 

of 𝜖𝑘̅ equal zero with respect to 𝒘𝑘: 

 

0 =
𝜕𝜖𝑘̅
𝜕𝒘𝑘

=
𝜕𝔼{|𝑥𝑘 −𝒘𝑘𝒚𝑢|

2}

𝜕𝒘𝑘
 

=
𝜕

𝜕𝒘𝑘
(𝔼{|𝑥𝑘|

2} − 𝔼{𝑥𝑘𝒚𝑢
𝐻𝒘𝑘

𝐻} − 𝔼{𝑥𝑘
∗𝒘𝑘𝒚𝑢} + 𝔼{|𝒘𝑘𝒚𝑢|

2}) 

(3.20) 
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 = −𝔼{𝑥𝑘
∗𝒚𝑢} + 𝔼{|𝒚𝑢|

2}𝒘𝑘
𝐻  

Then, the MMSE combining vector for detecting k-th user’s data is obtained: 

 𝒘𝑘 = 𝔼{𝑥𝑘𝒚𝑢
𝐻}𝔼{|𝒚𝑢|

2}−1 (3.21) 

where the expression can be expanded as (3.18), because 𝑥𝑘 is only correlated with 

𝒈𝑘𝑥𝑘  in (3.10) and the terms in (3.10) are uncorrelated with each other. Then, we 

substitute (3.18) into (3.13) and replace the term ∑ 𝒈̂𝑘′𝒈̂𝑘′
𝐻𝐾𝑠𝑒𝑟𝑣

𝑘′≠𝑘 + ∑ 𝑪𝑔̃𝑔̃,𝑘′
𝐾𝑠𝑒𝑟𝑣
𝑘′=1 +

∑ 𝑪𝑔𝑖𝑛𝑡𝑔𝑖𝑛𝑡,𝑘′
𝐾𝑖𝑛𝑡
𝑘′=1 +

𝜎𝑧
2

𝜎𝑥
2 𝑰𝑀𝑐𝑜𝑜𝑟𝑁𝑟 by 𝚯 

 

𝑆𝐼𝑁𝑅𝑘 =
|𝒘𝑘𝒈̂𝑘|

2

𝒘𝑘𝚯𝒘𝑘
𝐻 =

𝒘𝑘𝒈̂𝑘𝒈̂𝑘
𝐻𝒘𝑘

𝐻

𝒘𝑘𝚯𝒘𝑘
𝐻  

=
𝒈̂𝑘
𝐻(𝒈̂𝑘𝒈̂𝑘

𝐻 + 𝚯)−1𝒈̂𝑘𝒈̂𝑘
𝐻(𝒈̂𝑘𝒈̂𝑘

𝐻 + 𝚯)−1𝒈̂𝑘

𝒈̂𝑘
𝐻(𝒈̂𝑘𝒈̂𝑘

𝐻 + 𝚯)−1𝚯(𝒈̂𝑘𝒈̂𝑘
𝐻 + 𝚯)−1𝒈̂𝑘

 

=
(𝑎) 𝒈̂𝑘

𝐻𝚯−1𝒈̂𝑘𝒈̂𝑘
𝐻𝚯−1𝒈̂𝑘

𝒈̂𝑘
𝐻𝚯−1𝚯𝚯−1𝒈̂𝑘

 

= 𝒈̂𝑘
𝐻𝚯−1𝒈̂𝑘 

= 𝒈̂𝑘
𝐻 (∑ 𝒈̂𝑘′𝒈̂𝑘′

𝐻

𝐾𝑠𝑒𝑟𝑣

𝑘′≠𝑘

+ ∑ 𝑪𝑔̃𝑔̃,𝑘′

𝐾𝑠𝑒𝑟𝑣

𝑘′=1

+ ∑ 𝑪𝑔𝑖𝑛𝑡𝑔𝑖𝑛𝑡,𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+
𝜎𝑧
2

𝜎𝑥2
𝑰𝑀𝑐𝑜𝑜𝑟𝑁𝑟)

−1

𝒈̂𝑘 

(3.22) 

where step (a) follows the Lemma: (𝑨 + 𝑩𝑪𝑫)−1 = 𝑨−1 − 𝑨−1𝑩(𝑫𝑨−1𝑩+

𝑪−1)−1𝑫𝑨−1, and here, we assume 𝑨 = 𝚯,𝑩 = 𝒈̂𝑘, 𝑪 = 𝑰 and 𝑫 = 𝒈̂𝑘
𝐻, then we have: 

 

(𝚯 + 𝒈̂𝑘𝒈̂𝑘
𝐻)−1 = 𝚯−1 − 𝚯−1𝒈̂𝑘(𝒈̂𝑘

𝐻𝚯−1𝒈̂𝑘 + 𝑰)
−1𝒈̂𝑘

𝐻𝚯−1 

= 𝚯−1 −
1

𝒈̂𝑘
𝐻𝚯−1𝒈̂𝑘 + 1

𝚯−1𝒈̂𝑘𝒈̂𝑘
𝐻𝚯−1 

(3.23) 

where 𝒈̂𝑘
𝐻𝚯−1𝒈̂𝑘 is a scalar. Then, we calculate the expression by left multiplying by 

𝒈̂𝑘
𝐻: 

 

𝒈̂𝑘
𝐻(𝚯 + 𝒈̂𝑘𝒈̂𝑘

𝐻)−1 = 𝒈̂𝑘
𝐻𝚯−1 −

𝒈̂𝑘
𝐻𝚯−1𝒈̂𝑘𝒈̂𝑘

𝐻𝚯−1

𝒈̂𝑘
𝐻𝚯−1𝒈̂𝑘 + 1

 

=
(𝒈̂𝑘

𝐻𝚯−1𝒈̂𝑘 + 1)𝒈̂𝑘
𝐻𝚯−1 − 𝒈̂𝑘

𝐻𝚯−1𝒈̂𝑘𝒈̂𝑘
𝐻𝚯−1

𝒈̂𝑘
𝐻𝚯−1𝒈̂𝑘 + 1

  

(3.24) 



3.5 Data Transmission  38 

 

 
=

𝒈̂𝑘
𝐻𝚯−1

𝒈̂𝑘
𝐻𝚯−1𝒈̂𝑘 + 1

 
 

The proof is completed. 

If the MMSE estimator is used to estimate channels, the variance of the channel 

estimation error for the k-th UT to the n-th antenna of the m-th AP is: 

 

𝜎𝑒
2 = 𝔼{|𝑔̃𝑚𝑛𝑘|

2} = 𝔼{(𝑔𝑚𝑛𝑘 − 𝑔̂𝑚𝑛𝑘)(𝑔𝑚𝑛𝑘 − 𝑔̂𝑚𝑛𝑘)
∗}

= 𝔼{|𝑔𝑚𝑛𝑘|
2 − 𝑔̂𝑚𝑛𝑘𝑔𝑚𝑛𝑘

∗ − 𝑔𝑚𝑛𝑘𝑔̂𝑚𝑛𝑘
∗ + |𝑔̂𝑚𝑛𝑘|

2} 

= 𝛽𝑚𝑛𝑘 − 𝔼{𝑔̂𝑚𝑛𝑘(𝑔̂𝑚𝑛𝑘
∗ + 𝑔̃𝑚𝑛𝑘

∗ )} − 𝔼{(𝑔̂𝑚𝑛𝑘 + 𝑔̃𝑚𝑛𝑘)𝑔̂𝑚𝑛𝑘
∗ }

+ 𝔼{|𝑔̂𝑚𝑛𝑘|
2} 

=
(𝑎)
𝛽𝑚𝑛𝑘 − 𝔼{|𝑔̂𝑚𝑛𝑘|

2} = 𝛽𝑚𝑛𝑘 − 𝑐𝑚𝑛𝑘𝛽𝑚𝑛𝑘 

= (1 − 𝑐𝑚𝑘)𝛽𝑚𝑘 

(3.25) 

where the estimated channel is assumed to be uncorrelated with corresponding channel 

estimation error in step (a). Then, the covariance of channel estimation error is: 

 

𝑪𝑔̃𝑔̃,𝑘 = 𝔼{𝒈̃𝑘𝒈̃𝑘
𝐻} 

= [

(1 − 𝑐11𝑘)𝛽11𝑘 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ (1 − 𝑐𝑀𝑐𝑜𝑜𝑟𝑁𝑟𝑘)𝛽𝑀𝑐𝑜𝑜𝑟𝑁𝑟𝑘

] 

= 𝑑𝑖𝑎𝑔{(1 − 𝑐11𝑘)𝛽11𝑘, … , (1 − 𝑐1𝑁𝑟𝑘)𝛽1𝑁𝑟𝑘, … , (1

− 𝑐𝑀𝑐𝑜𝑜𝑟1𝑘)𝛽𝑀𝑐𝑜𝑜𝑟1𝑘, … , (1 − 𝑐𝑀𝑐𝑜𝑜𝑟𝑁𝑟𝑘)𝛽𝑀𝑐𝑜𝑜𝑟𝑁𝑟𝑘 } 

= 𝑑𝑖𝑎𝑔 {(1 − 𝑐1𝑘)𝛽1𝑘  … (1 − 𝑐1𝑘)𝛽1𝑘⏟                  
𝑁𝑟

 … (1 − 𝑐𝑀𝑐𝑜𝑜𝑟𝑘)𝛽𝑀𝑐𝑜𝑜𝑟𝑘  … (1

− 𝑐𝑀𝑐𝑜𝑜𝑟𝑘)𝛽𝑀𝑐𝑜𝑜𝑟𝑘} 

(3.26) 

where 𝑑𝑖𝑎𝑔 denotes diagonal matrix. Since we assume the channels are uncorrelated 

with each other at the same AP with multiple antennas, the off-diagonal elements in 

(3.26) are zero. The covariance matrix of interfering channels is:

 
𝑪𝑔𝑖𝑛𝑡𝑔𝑖𝑛𝑡,𝑘 = 𝔼{𝒈𝑖,𝑘𝒈𝑖,𝑘

𝐻 } 

= 𝑑𝑖𝑎𝑔{𝛽𝑖,11𝑘, 𝛽𝑖,12𝑘, … 𝛽𝑖,1𝑁𝑟𝑘, … 𝛽𝑖,𝑀𝑐𝑜𝑜𝑟1𝑘, … 𝛽𝑖,𝑀𝑐𝑜𝑜𝑟𝑁𝑟𝑘} 
(3.27) 
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= 𝑑𝑖𝑎𝑔 {𝛽𝑖,1𝑘  … 𝛽𝑖,1𝑘⏟        
𝑁𝑟

 … 𝛽𝑖,𝑀𝑐𝑜𝑜𝑟𝑘  … 𝛽𝑖,𝑀𝑐𝑜𝑜𝑟𝑘⏟            
𝑁𝑟

} 

 

3.6 Scalable Network 

In the conventional cell-free MaMIMO system described in Chapter 2, the network 

where all APs connect to one CPU simultaneously to serve all UTs is not scalable. The 

reason is that if the network coverage tends to infinity, the number of fronthaul links 

and the fronthaul length will be infinity which cannot be implemented in real life. 

Furthermore, it is impractical for a user to be served by all APs. This kind of scalability 

issue has been mentioned in [22, 23] where the definition of scalability was given that 

the computational complexity of per AP remains finite when the number of UTs in the 

whole network tends to infinity. In addition, to solve the pilot contamination caused by 

non-orthogonal pilots, the greedy pilot assignment algorithm should be adopted which 

requires iterative re-computation at the CPU [14, 40]. This means the large scale fading 

gain information for all APs needs to be known at the CPU in order to find the strongest 

pilot contamination and reassign a proper pilot. Hence, it is not scalable and unrealistic, 

especially in the ultra-dense low-latency dynamic mobility network. The author in [40] 

has also mentioned the scalable challenge that the computational complexity and 

latency will be high, and the fronthaul capacity might increase when the coordination 

level among the APs increases.  

There are several approaches to realise the scalable networks. The method in [23] 

is to select a dynamic cooperation cluster where a small number of APs serve one 

specific UT within that cluster, assuming that each AP serves no more than one UT per 

pilot sequence. Furthermore, the partial MMSE (P-MMSE) and the local P-MMSE (LP-

MMSE) combining techniques are used for data detection in [23], ensuring the 

scalability of the network. However, these combining techniques sacrifice a part of 

ability for mitigating the interference caused by other users. The alternative simple 

method is to divide the cell-free MaMIMO network into separate regions served by 

independent CPUs. However, this results in the edge interference between the adjacent 

network clusters. In [22], the author discusses this simple method and assumes multiple 

CPUs are interconnected. But, the issue with this specific approach is that it is not clear 

exactly how the CPUs would cooperate. For overcoming these disadvantages, DD-
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MaMIMO is considered as a new scalable network system in this thesis. To explain 

why DD-MaMIMO is a scalable network, we propose the definition below which is 

adapted from the one originally given in [23]. 

Definition 3.1 (Scalability): A DD-MaMIMO network is scalable if the following tasks 

have finite complexity and resource requirements for each AP and EPU as the number 

of UTs in the whole network K tends to infinity. 

1. Signal processing for channel estimation; 

2. Signal processing for data reception and transmission; 

3. Fronthaul signalling for CSI sharing and data; 

4. Power control optimisation (not applied in this thesis).  

In DD-MaMIMO, all APs within the coordination region send the received pilots to 

the EPU for channel estimation, a process that does not take place at the AP. Moreover, 

the EPU only needs to estimate the channels from 𝐾𝑠𝑒𝑟𝑣 UTs located within the service 

area to each AP in the coordination region, both of which are finite regardless of 𝐾. 

Consequently, the complexity of the channel estimation is finite for each EPU, as 𝐾 →

∞. For the uplink data detection, the EPU computes {𝒘𝑘𝒚𝑢: 𝑘 = 1,… , 𝐾𝑠𝑒𝑟𝑣} in (3.11) 

using 𝐾𝑠𝑒𝑟𝑣  different combining vectors {𝒘𝑘: 𝑘 = 1,… , 𝐾𝑠𝑒𝑟𝑣} , which has finite 

computational complexity with varying combining techniques. Note that for the MMSE 

combining vectors in (3.18), 𝐾𝑖𝑛𝑡 different covariance matrices of interfering channels 

{𝑪𝑔𝑖𝑛𝑡𝑔𝑖𝑛𝑡,𝑘: 𝑘 = 1, … , 𝐾𝑖𝑛𝑡} are added together. It might grow unboundedly if 𝐾 were 

infinity. However, 𝑪𝑔𝑖𝑛𝑡𝑔𝑖𝑛𝑡,𝑘 , given in (3.27) consisting of the large scale fading 

coefficients for the interfering channels, only depends on the distance between the UT 

and AP, which leads to a tiny value for distant UTs. Therefore, we can set a threshold 

for UT-AP distance and ignore any UTs that exceed it, and the complexity remains 

finite. Similarly, for the downlink transmission, the EPU creates transmitted signals for 

each AP, comprising the precoding vectors and data signals intended for 𝐾𝑠𝑒𝑟𝑣 UTs, 

which also has finite complexity. Over the fronthaul link, each AP in the coordination 

region needs to forward 𝜏𝑝 length received pilots and 𝜏𝑢 length data signals to an EPU, 

and in turn receives the 𝐾𝑠𝑒𝑟𝑣 downlink data signals. Hence, the fronthaul signalling is 

finite. Finally, in this thesis, we do not apply the power control to DD-MaMIMO but 

our numerical results in the next sub-chapter show that it can nevertheless achieve a 
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better performance than cell-free MaMIMO with power control. So, the fourth task in 

Definition 3.1 vanishes. Overall, the DD-MaMIMO is scalable. 

3.7 System Performance 

In this sub-chapter, we will show the numerical results for the uplink performance of 

DD-MaMIMO by setting up the simulation. We will first introduce the initial setup 

parameters. Then, we will compare the DD-MaMIMO with cell-free MaMIMO by 

using different combining techniques and applying either single or multiple antennas. 

Furthermore, according to the definition of DD-MaMIMO, we will analyse the results 

with different radii of coordination region. 

3.7.1 Simulation Setup 

A DD-MaMIMO system with a hexagonal service area and a circular coordination area 

is considered. We assume that the inter-EPU distance is 300 𝑚 and simulate the whole 

system in a square area with side length 1 𝑘𝑚. To give a reasonable comparison, we 

adopt the UT density 𝜌𝑢 = 40/km
2 and AP density 𝜌𝐴 = 400/km

2 in general cases, 

which are similar to the parameters adopted in [24]. The one-slope path loss model is 

given by (3.2) with the parameters referred to above. All UTs transmit with the power 

𝜎𝑠
2 = 100 mW, the noise power is 𝜎𝑛

2 = −96 dBm, the uplink data transmission 𝜏𝑢 =

190 and the pilot length is 𝜏𝑝 = 10 in this thesis. 

Moreover, the UTs and APs are randomly allocated within the simulation area, and 

the number of both follows the random Poisson distribution. The locations for the UTs 

and APs depend on the geometric boundary of the service region, coordination region, 

and the region outside coordination region. In the multiple-antenna case, we provide 

simulation results where the number of antennas per AP are 2, 4 and 8. For analysing 

the proposed pilot allocation, stated in Algorithm 3.1, the neighbouring network 

clusters are considered which follows Fig. 3.2. 

3.7.2 Numerical Results 

First, we revisit [30] in which the channel hardening was assumed. We highlight that 

the network cluster edge effect occurs in cell-free MaMIMO by presenting the SIRs for 

various UTs. Fig. 3.3 provides a scatter plot where each UT is represented by a point, 
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with various colours denoting differing levels of SIR. From the results, we can observe 

that the worst SIRs, which are negative, occur at the edge of the hexagonal cluster. The 

authors in [17] present the comparison of the downlink achievable data rates for the 

cell-free MaMIMO and collocated MaMIMO, which indicates the benefits of cell-free 

MaMIMO. But it also shows that the users at the cluster edge have a lower data rate. 

 

Fig. 3.3 Scatter plot of UTs served by one CPU in cell-free MaMIMO, presenting their 

SIRs (taken from [30, Fig. 2] ).  

We next evaluate our proposed DD-MaMIMO architecture. Fig. 3.4 shows the 

cumulative distribution function (CDF) of achievable uplink SE by applying the MRC 

data detection and MMSE channel estimation with various radii of coordination region. 

At the 90% likely SE points, all the cases have the insufficient performance which only 

reaches 1 or 1.5 bit/s/Hz per user. We can see that there is an improvement in average 

as the radius of coordination area increases, especially for the 400 m radius case. But 

the increase is not large when the radius increases from 282 m to 400 m. The poor 

processing leads to a limited SE performance even if the number of serving APs 

increases. 

Note that the minimum coordination region has radius 174 m, where this radius is 



3.7 System Performance  43 

 

equivalent to the distance from circle centre to the hexagon vertices. In this thesis, we 

mainly focus on the case of radius 282 m where the area of coordination region is a 

quarter of the simulation area. In this case the number of interfering pilots, 30, is the 

same as for the cell-free MaMIMO system in [24], where the 40 users are evenly 

divided between four square areas which are quarters of the simulation area, and each 

uses the same set of 10 pilots. So, the results are comparable to the radius 282 m case. 

Moreover, the “Cell-free” in the plot represents the case where the coordination area is 

the same as the service area. This also corresponds to a cell-free Massive MIMO system 

in which the network is divided into separate regions served by their own CPU.  

 

Fig. 3.4 CDF of uplink SE for MRC data detection and MMSE channel estimation, 

𝑑𝐸𝑃𝑈 = 300 𝑚, single antenna per AP, for a range of coordination radii. For “Cell-free” 

the coordination region is coincident with the service region, which is also the same as 

cell-free MaMIMO. 

In Fig. 3.5, using the MMSE estimator for channel estimation and data detection, 

the performance is presented which again shows the CDF of uplink SE with various 

coordination region radii. Moreover, in this case the 90% likelihood SE increases 

significantly as the coordination radius increases, where there is an increase of 4 

bit/s/Hz comparing the 400 m radius case with the cell-free system. This shows that 
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when the radius increases, more desired signal power will be collected, but the 

interference will decrease. Note that although the SE improves as the coordination 

radius grows, there is a necessary condition, which should keep 𝐾𝑐𝑜𝑜𝑟 less than the pilot 

length 𝜏𝑝 . That is also one of the key idea of DD-MaMIMO that states the pilots 

assigned to the users within the coordination region are fully orthogonal, which largely 

reduces the interference from the pilot contamination. As the discussion in Fig. 3.4, this 

is a fair comparison between the cell-free MaMIMO given in [24] and DD-MaMIMO 

with 282 m coordination radius in Fig. 3.5. The same size of simulation area and  the 

same number of APs and UTs are used. We also consider the same number of 

interfering users and the same pilot length. The results show that DD-MaMIMO has a 

better SE than the cell-free MaMIMO for average (8.9 bits/s/Hz in Fig. 3.5 compared 

to 8.2 bits/s/Hz in [24] ). This is because the users performance at the cluster edge are 

improved. 

 

Fig. 3.5 CDF of uplink SE for MMSE data detection and channel estimation, 𝑑𝐸𝑃𝑈 =
300 𝑚, single antenna per AP, for a range of coordination radii. 

Then, Fig. 3.6 considers two cases with the same antenna density level of 400/𝑘𝑚2 

while varying the number of antennas per AP. The scenario with a larger number of 
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APs, each equipped with a single antenna, outperforms the case with a quarter of the 

number of APs, each equipped with four antennas. This result arises due to the sparser 

coverage in situations with fewer APs, which in turn increases the average distance 

between the UT and AP. This increase in distance subsequently diminishes the power 

of received signal. 

 

Fig. 3.6 CDF of uplink SE for MMSE data detection and channel estimation, 𝑑𝐸𝑃𝑈 =
300 𝑚, with same density level of antennas but different No. of antennas per AP. The 

coordination radius is 282 m. 

Fig. 3.7 compares MRC data detection with MMSE data detection using the same 

scheme of channel estimation (MMSE). It shows that using the MMSE estimator for 

detecting data offers a better SE performance, approximately a 4 bit/s/Hz increase on 

average and 5.5 bit/s/Hz for 90% of the users. This is comparable with the “level 4” 

cooperation in [24, Fig. 2(a)] and [24, Fig. 3], respectively, though the SE using MRC 

detection drops slightly due to the different deployment of the APs and UTs. In [24], 

the APs were deployed on a square grid and the UTs were evenly assigned between the 

four quarters of the simulation area, where the number of APs and UTs were fixed as 

400 and 40. However, in our DD-MaMIMO simulation scenario, the number of APs 
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and UTs follows the Poisson distribution with the same density level. Hence the number 

of APs in the coordination region may be less and the SE is reduced. 

 

Fig. 3.7 CDF of uplink SE for the comparison between MRC (blue) and MMSE (red) 

data detection, 𝑑𝐸𝑃𝑈 = 300 𝑚, single antenna per AP, and the coordination radius is 

282 m.  

The scenario of multiple antennas per AP is considered and presented in Fig. 3.8. 

We apply the same setup of the APs/UTs density and the coordination radius to the 

different multiple-antenna cases. The figure shows the increase of the number of 

antennas per AP leads to an obvious SE increase. It makes sense that the desired signal 

gain received at the AP is stronger. However, the requirements of the fronthaul capacity 

and computational complexity at the EPU will also be increased. In the multiple-

antenna case, 𝑁𝑟𝜏𝑝 received pilots and 𝑁𝑟𝜏𝑢 data for one coherence block needs to be 

sent to EPU via each fronthaul link. For least square channel estimation, the EPU needs 

to compute 𝜏𝑝 + 1  scalar multiplications and 𝜏𝑝 − 1  scalar additions in (3.4). Then, 

three multiplications and 𝐾𝑖𝑛𝑡 + 1 additions are performed in (3.6) for calculating one 

MMSE estimation weight. Finally, for obtaining all MMSE channel estimates, 

𝑀𝑐𝑜𝑜𝑟𝑁𝑟𝐾𝑠𝑒𝑟𝑣(𝜏𝑝 + 5)  scalar multiplications and 𝑀𝑐𝑜𝑜𝑟𝑁𝑟𝐾𝑠𝑒𝑟𝑣(𝜏𝑝 + 𝐾𝑖𝑛𝑡)  scalar 
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additions are computed in the EPU. Significantly, if MMSE estimation is used for data 

detection, a 𝑀𝑐𝑜𝑜𝑟𝑁𝑟 ×𝑀𝑐𝑜𝑜𝑟𝑁𝑟 matrix needs to be inverted in (3.18) which has the 

computational complexity 𝒪(𝑀𝑐𝑜𝑜𝑟
3 𝑁𝑟

3), where 𝒪(∙) denotes big O notation. 

 

Fig. 3.8 CDF of uplink SE for the MMSE data detection in respect of the different 

number of antennas per AP, 𝑑𝐸𝑃𝑈 = 300 𝑚 and the coordination radius is 282 m. 

To evaluate the computational complexity, we run the simulation in MATLAB 

R2023a with a laptop processor (12th Gen Intel® Core™ i9-12900H).  In particular, 

we calculate the average execution time for inverting the 𝑀𝑐𝑜𝑜𝑟𝑁𝑟 ×𝑀𝑐𝑜𝑜𝑟𝑁𝑟 matrix 

in (3.18). This could be different from the practical wireless communications system in 

which the hardware may have different processor and the optimisation can be applied 

in the software. In Fig. 3.9, numerical results are obtained by varying the radius of 

coordination region while keeping the same number of antennas per AP. The results 

show that as the coordination region radius increases, the time required to invert the 

matrix for calculating the MMSE combining weight grows significantly. We observe 

that the average execution time for a coordination region with a 400-metre radius is 

approximately 64 times that of one with a 200-metre radius, when the number of 

antennas per AP is 4. This is reasonable, as the number of APs within the coordination 
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region is quadrupled, leading to a 64-fold increase in computational complexity, 

according to 𝒪(𝑀𝑐𝑜𝑜𝑟
3 𝑁𝑟

3) . Note that we adopt Poisson distribution to generate the 

random number of APs and use the function “inv” in MATLAB which may cause the 

imprecise results. We can observe that the slope is different for the cases with fewer 

antennas or 174 m radius. Furthermore, for a given coordination region radius, the 

execution time rises as the number of antennas per AP increases. Specifically, in a 

scenario with a 230-metre coordination region radius, each AP with 16 antennas has an 

average execution time approximately 1000 times longer than each AP with just a single 

antenna. 

 

Fig. 3.9 Complexity analysis for the average execution time of inverting a matrix which 

is used to calculate the MMSE combining weight. The radius of the coordination region 

varies from 174 m to 400 m. “𝑁𝑟” denotes the number of antennas per AP. 

Finally, we consider the proposed pilot algorithm which is given by Algorithm 3.1 

and the completely random pilot allocation which the pilots assigned to the interfering 

users outside of the coordination region are random. It means the interfering pilots may 

be the same as those of the served users. Fig. 3.10 gives the comparison of the different 

allocation methods in which the same setup is adopted but the coordination radius is 

282 m, here. The figure shows that there is not too much difference between two  
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schemes. We need to notice that random pilot assignment may not be practical for the 

whole system, because it does not ensure that the same pilot is not reused within any 

coordination region, just not within the central one. This could affect the system 

performance due to the pilot contamination. However, the results from Fig. 3.10 prove 

that the system performance does not become worse by using completely random pilot 

allocation for users outside coordination region in DD-MaMIMO. 

 

Fig. 3.10 CDF of uplink SE for different pilot allocation, the proposed pilot allocation 

(blue line with cross mark) and total randomly assignment (red line with round mark), 

𝑑𝐸𝑃𝑈 = 300 𝑚 and the coordination radius is 282 m. 

3.8 Summary 

In this chapter, we have considered a new scalable DD-MaMIMO architecture which 

has the potential to fulfil the ultra-dense low-latency and massive devices access 

requirements in 6G and future wireless network. We have exploited MMSE channel 

estimation and applied either MRC or MMSE to detect data for DD-MaMIMO. To 

evaluate the system performance, the SE expression has been proposed without 

assuming channel hardening. Numerical results have been provided to demonstrate that 

our DD-MaMIMO outperforms cell-free MaMIMO and that the edge effect can be 



3.8 Summary  50 

 

significantly mitigated. In addition, the results confirm that the use of MMSE 

estimation can achieve a better SE than MRC, even though only a single antenna is used 

on each AP. Furthermore, the simulations for the multiple-antenna AP and increasing 

the coordination radius have been provided, which indicate that more antennas per AP 

and larger coordination radius performed better. We finally have proposed a pilot 

allocation algorithm for adapting the DD-MaMIMO in practice, though the results 

showed that it does not have any difference compared to the completely random pilot 

allocation. Overall, DD-MaMIMO can be a promising system. 



  

Chapter 4 

Quantisation in Decentralised 

Distributed Massive MIMO 

4.1 Introduction 

Quantisation is necessary for communications system as Chapter 2 stated that the 

analogue signal has to be converted to a digital signal before sending it via the fronthaul. 

This is because the fronthaul which connects the access points (APs) to the edge 

processing unit (EPU) by the optical fibre has finite capacity in practice. Hence, the 

signal processing in the decentralised distributed massive multiple-input multiple-

output (DD-MaMIMO) system with limited-capacity fronthaul needs to be considered. 

To answer this, we will research the following issues in this chapter: where the 

quantisation happens and how the quantisation is processed. To begin with a simple 

case, we mainly focus on the DD-MaMIMO system when only a single antenna is 

available at the AP in the subsequent sub-chapters. 

Based on the research of channel state information (CSI) acquisition in [25], we also 

consider two strategies for channel estimation. First, all the APs quantise the received 

pilot sequences and then send them to the EPU for channel estimation. Here, we assume 

the EPU knows the information of the large scale fading and the pilots allocated to the 

user terminals (UTs). Another strategy is that the channel is estimated locally at the AP 

and the quantised version of the channel estimation is sent to the EPU. This answers 

where the quantisation happens for the purposes of the channel estimation. For 

analysing the process of quantisation, we adopt the simple mid-rise uniform quantiser 

and exploit the Bussgang decomposition to model this non-linear system. 

There have been some papers that researched the quantisation in the cell-free 

MaMIMO by using the Bussgang decomposition. For instance, in [25, 28] the basic 

analysis of the quantisation using Bussgang decomposition for channel estimation 

based on complex random pilots is studied. However, the authors did not give a strict 
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discussion about the condition of the original Bussgang theorem [65]which requires the 

input of the quantiser to be Gaussian distributed. The author in [26] indicates that the 

central limit theorem can be exploited to approximate the input signal of quantiser to 

the Gaussian distribution. However, the characteristic of the input signal, which 

consists of the sum of many products of the complex random Gaussian distributed 

variables, was not researched in practice. Moreover, the central limit theorem is only 

applicable when the number of random variables drawn from a near-Gaussian 

distribution is sufficiently large, which may not hold true in the DD-MaMIMO system, 

particularly in rural areas with few UTs. Thus, it is imperative to research the actual 

scenario where the input of the quantiser has a non-Gaussian distribution. In the 

subsequent sub-chapters, we will derive the probability density function (pdf) of the 

non-Gaussian distribution and employ it to calculate the Bussgang decomposition 

parameters and determine the optimum step interval in DD-MaMIMO. Often, people 

adopt complex random pilot sequences to estimate the channel in the MaMIMO [73] 

and the cell-free system [14], which gives rise to the Bussgang decomposition issue 

mentioned above. Apart from giving the true distribution, there is an alternative 

approach which uses binary pilot sequences. In this study, we also investigate this 

binary pilot-based channel estimation method, and the results reveal that there is no 

significant difference in performance. 

Next, we introduce the quantisation of the data transmission on the uplink of DD-

MaMIMO, in which the transmitted data are quantised at the APs before being sent to 

the EPU for data detection. To evaluate the performance of the system, we derive an 

expression for the signal-to-interference-and-distortion-plus-noise ratio (SIDNR) and 

the formulae for the achievable ergodic capacity. Finally numerical results are given 

for the proposed scheme. 

4.2 System Model 

We assume there are 𝐾𝑠𝑒𝑟𝑣   UTs and 𝑀𝑐𝑜𝑜𝑟  APs with single antenna in the DD-

MaMIMO system. The received uplink signal at the m-th AP is given by: 

 𝑥𝑚 = ∑ 𝑔𝑚𝑘𝑠𝑘 +∑𝑔𝑖,𝑚𝑘𝑠𝑖,𝑘

𝐾𝑖𝑛𝑡

𝑘=1

+ 𝑛𝑚

𝐾𝑠𝑒𝑟𝑣

𝑘=1

 (4.1) 
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= ∑ ℎ𝑚𝑘𝛽𝑚𝑘
1
2⁄ 𝑠𝑘

𝐾𝑠𝑒𝑟𝑣

𝑘=1

+∑ℎ𝑖,𝑚𝑘𝛽𝑖,𝑚𝑘
1
2⁄ 𝑠𝑖,𝑘

𝐾𝑖𝑛𝑡

𝑘=1

+ 𝑛𝑚 

where 𝑔𝑚𝑘 is the channel coefficient from the k-th served UT to the m-th AP and 𝑔𝑖,𝑚𝑘 

is the interfering channel coefficient from the k-th UT outside the coordination region. 

𝑠𝑘  and 𝑠𝑖,𝑘   are the transmit signals from the k-th user and the k-th interfering user, 

respectively. 𝑛𝑚  denotes the noise at the m-th AP. ℎ𝑚𝑘~𝐶𝒩(0,1)  represents the 

Rayleigh fading channel coefficient and 𝛽𝑚𝑘 is the large-scale fading with a path loss. 

ℎ𝑖,𝑚𝑘 and 𝛽𝑖,𝑚𝑘 are the Rayleigh and large scale fading coefficients from the interfering 

UTs. The variance of the received uplink signal is: 

 𝜎𝑥
2 = 𝔼{|𝑥𝑚|

2} = ∑ 𝛽𝑚𝑘

𝐾𝑠𝑒𝑟𝑣

𝑘=1

𝜎𝑠
2 +∑𝛽𝑖,𝑚𝑘

𝐾𝑖𝑛𝑡

𝑘=1

𝜎𝑖,𝑠
2 + 𝜎𝑛

2 (4.2) 

where  𝜎𝑠
2, 𝜎𝑖,𝑠

2   and 𝜎𝑛
2  are the variances of transmitted signal, interfering signal and 

noise, respectively. 

4.3 Channel Estimation 

In Chapter 3, we discussed the channel estimation in the DD-MaMIMO system 

assuming perfect fronthaul transmission. In this sub-chapter, we will present the 

definition and derivation of the channel estimation when the fronthaul capacity is 

limited. There are two CSI acquisition strategies that we will consider. The first 

approach, known as the quantise-and-estimate (QE) scheme [25], involves quantising 

the received pilots from all APs and sending them to the EPU for channel estimation. 

This approach is suitable for the case where EPU has high computing ability or the fronthaul 

link capacity is small. The reason is in QE scheme, each AP only needs to quantise 𝜏𝑝 length 

pilots but the channel estimation is processed at the EPU. The other is the estimate-and-

quantise (EQ) scheme [25] where the channels are estimated by the local APs and the 

quantised CSI are then collected by the EPU. This approach is applied to the scenario 

in which the fronthaul link capacity is big or the low computational complexity is 

required at the EPU. This is because each AP needs to quantise all estimated channels 

from all UTs within the service area and the EPU does not need to estimate channels. 
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We assume that the k-th UT transmits a length 𝜏𝑝  pilot sequence 𝝋𝑘 ∈ ℂ
𝜏𝑝×1  , 

where all the pilots are orthogonal with each other and 𝝋𝑘
𝐻𝝋𝑘′ = 𝜏𝑝 . The random 

complex Gaussian pilots are considered because of their varying amplitudes, which 

benefits the quantisation in terms of distortion. In quantisation, if the input signals of 

quantiser have the same amplitude, the correlation of the quantisation distortion will be 

strong. We also apply the real-valued Hadamard pilots in the sub-subchapter 4.3.4. The 

results and related effects will be discussed in the subsequent sub-chapters. Then, we 

have the received pilots at the m-th AP: 

 𝒚𝑝,𝑚 = ∑ 𝑔𝑚𝑘

𝐾𝑠𝑒𝑟𝑣

𝑘=1

𝝋𝑘
𝑇 +∑𝑔𝑖,𝑚𝑘

𝐾𝑖𝑛𝑡

𝑘=1

𝝋𝑖,𝑘
𝑇 + 𝒛𝑝,𝑚 (4.3) 

where the vector 𝝋𝑖,𝑘 denotes the pilot sequence transmitted by the k-th interfering UT 

which may not be orthogonal to the served user pilots, and the vector 𝒛𝑝,𝑚 represents 

the additive noise at the m-th AP. The elements of  𝒛𝑝,𝑚 follows 𝒞𝒩(0, 𝜎𝑧
2). 

In many papers related to cell-free MaMIMO [14, 16, 24, 72], complex pilot 

sequences are utilised, and these pilots are pairwise orthogonal. However, the method 

for generating such a set of pilot sequences is not mentioned. To address this, we 

provide following details: These complex pilot sequences can be generated by 

exploiting either the singular value decomposition (SVD) of a given complex square 

matrix or  the eigen decomposition of a Hermitian matrix. The unitary matrix obtained 

from such decomposition can subsequently be used as the pilot sequences. Furthermore, 

we offer a concise analysis of the distribution of the pilot sequence elements. First, we 

assume that the elements in the decomposed complex square matrix follow the complex 

Gaussian distribution. Meanwhile, the Hermitian matrix can be represented as a product 

of this complex square matrix and its Hermitian.  

In Fig. 4.1, we compare the distribution of the real part of the pilot sequence 

elements, using numerical results, to the standard normal distribution. Two vertical axis 

forms are applied, here. Fig. 4.1(a) with linear vertical axis shows a minor difference 

above the vertical value of 0.5 on the top. On the contrary, an obvious discrepancy is 

observed in the tails of the numerical distribution results in Fig. 4.1(b). This is because 

the size of square matrix used for decomposition is 10-by-10 which is quite small, here, 

leading to limitations in the tail values. If we increase the matrix size to 50-by-50, the 

corresponding results are shown in Fig. 4.2 where the tails are closer to the theory. From 
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the results, we can assume the elements of the pilots follow the complex Gaussian 

distribution sufficiently closely. This assumption will be discussed further in the 

following sub-chapters in order to solve a general issue of quantisation. 

 

Fig. 4.1 The pdf for the real Gaussian distribution with zero mean and variance 0.5 (red 

solid line) versus the histogram of numerical results obtained from the pilots. (a) gives 

linear results of vertical axis and (b) is logarithmic. The decomposed square matrix is 

10-by-10. 

4.3.1 Estimate-and-Quantise 

Based on the definition of the EQ scheme, the channel coefficient is estimated first, 

given by (3.7), at the AP and its quantised version 𝑔̂𝑚𝑘
𝑒𝑞

 is then sent to the EPU. We use 

the Bussgang decomposition (2.1) to represent the quantised estimated channel as: 

 𝑔̂𝑚𝑘
𝑒𝑞 = 𝛼𝑔̂𝑚𝑘 + 𝛿𝑚𝑘

𝑒𝑞   (4.4) 

where 𝛼 denotes the linear coefficient of the Bussgang decomposition which can be 

calculated by (2.7), and 𝛿𝑚𝑘
𝑒𝑞

 is the quantisation distortion. In this case, the optimum 

quantisation step interval can be easily obtained from Table 2.1 by multiplying the 

standard deviation of the input which is the estimated channel, here. This process  
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Fig. 4.2 The pdf for the real Gaussian distribution with zero mean and variance 0.5 (red 

solid line) versus the histogram of numerical results obtained from the pilots. The 

decomposed square matrix is 50-by-50. 

normalises the input of the quantiser. To give the general optimum quantisation step 

interval we rewrite (2.9) as:  

 

Δ𝑜𝑝𝑡 = arg max
Δ

(
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(4.5) 
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where we substitute the general quantisation step interval Δ with 𝜎𝑥Δ
′ in step (a), where 

Δ′  represents the step interval under the standard normal distribution input. 

Consequently, the general optimum quantisation step interval can be achieved by 

scaling the optimum step interval of the normalised input. In order to inspect the quality 

of the quantised channel estimation, it is advantageous to calculate the mean square 

error (MSE) of the channel estimation, which is given as: 

 

𝜎𝑒𝑚,𝑘
2 = 𝔼 {|𝑔̂𝑚𝑘

𝑒𝑞  − 𝑔𝑚𝑘|
2
} 

= 𝔼{𝑔𝑚𝑘𝑔𝑚𝑘
∗ + 𝑔̂𝑚𝑘

𝑒𝑞  𝑔̂𝑚𝑘
𝑒𝑞∗ −  𝑔𝑚𝑘𝑔̂𝑚𝑘

𝑒𝑞∗ − 𝑔̂𝑚𝑘
𝑒𝑞 𝑔𝑚𝑘

∗ } 

=
(𝑎)
𝛽𝑚𝑘+𝔼 {(𝛼𝑔̂𝑚𝑘+𝛿𝑚𝑘

𝑒𝑞
) (𝛼𝑔̂𝑚𝑘+𝛿𝑚𝑘

𝑒𝑞
)
∗
−𝑔𝑚𝑘 (𝛼𝑔̂𝑚𝑘+𝛿𝑚𝑘

𝑒𝑞
)
∗

− (𝛼𝑔̂𝑚𝑘+ 𝛿𝑚𝑘
𝑒𝑞
)𝑔𝑚𝑘

∗ } 

=
(𝑏)
𝛽𝑚𝑘+𝔼 {𝑎

2|𝑔̂𝑚𝑘|
2
+ |𝛿𝑚𝑘

𝑒𝑞
|
2
− (𝑔̂𝑚𝑘+ 𝑔̃𝑚𝑘) (𝛼𝑔̂𝑚𝑘+𝛿𝑚𝑘

𝑒𝑞
)
∗

− (𝛼𝑔̂𝑚𝑘+ 𝛿𝑚𝑘
𝑒𝑞
) (𝑔̂𝑚𝑘+ 𝑔̃𝑚𝑘)

∗
} 

=
(𝑐)
𝛽𝑚𝑘+𝛼

2𝔼 {|𝑔̂𝑚𝑘|
2
}+𝔼 {|𝛿𝑚𝑘

𝑒𝑞
|
2
}−2𝛼𝔼 {|𝑔̂𝑚𝑘|

2
} 

= 𝛽𝑚𝑘 + (𝛾 − 2𝛼)𝔼{|𝑔̂𝑚𝑘|
2} 

= (1 + (𝛾 − 2𝛼)𝑐𝑚𝑘)𝛽𝑚𝑘 

(4.6) 

where  𝑔̂𝑚𝑘
𝑒𝑞

 is replaced by (4.4) in step (a). Based on the Bussgang decomposition, the 

distortion 𝛿𝑚𝑘
𝑒𝑞

 is uncorrelated with the input estimated channel 𝑔̂𝑚𝑘 and the channel 

coefficient is expanded by 𝑔̂𝑚𝑘 + 𝑔̃𝑚𝑘, which achieves step (b). Due to the usage of 

minimum mean square error (MMSE) for channel estimation, 𝑔̂𝑚𝑘 is uncorrelated with 

the estimation error and hence 𝑔̃𝑚𝑘, and 𝛿𝑚𝑘
𝑒𝑞

 are also uncorrelated. This completes the 

step (c). The expectation term 𝔼{|𝑔̂𝑚𝑘|
2} has already been given in (3.8). 

4.3.2 Quantise-and-Estimate 

Unlike the EQ scheme, the received pilots are first quantised at the APs and then 

delivered to the EPU for channel estimation in the QE scheme. In this case, we quantise 

the received pilots 𝒚𝑝,𝑚 from (4.3), and the quantised signal can be expressed using the 

Bussgang decomposition as: 

 𝒚𝑝,𝑚
𝑞 = 𝛼𝒚𝑝,𝑚 + 𝜹𝑚

𝑞𝑒
 (4.7) 
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where 𝜹𝑚
𝑞𝑒

 is the row vector of the quantisation distortion with 𝜏𝑝 elements, at the m-th 

AP. Then, by exploiting the information from the quantised received pilots, the channel 

estimation is completed at the EPU. Here, we assume that the channels among the APs 

are uncorrelated, hence we can perform least square (LS) estimation first from each AP 

separately which is shown as: 

 

𝑔̌𝑝,𝑚𝑘
𝑞 =

1

𝜏𝑝
𝒚𝑝,𝑚
𝑞 𝝋𝑘

∗  

= 𝛼(𝑔𝑚𝑘 +
1

𝜏𝑝
∑ 𝑔𝑖,𝑚𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

𝝋𝑖,𝑘′
𝑇 𝝋𝑘

∗ +
1

𝜏𝑝
𝒛𝑝,𝑚𝝋𝑘

∗) +
1

𝜏𝑝
𝜹𝑚
𝑞𝑒𝝋𝑘

∗  

(4.8) 

We next use the MMSE to estimate the channel in the QE scheme, which is given by: 

 𝑔̂𝑚𝑘
𝑞𝑒 = 𝑐𝑚𝑘

𝑞𝑒 𝑔̌𝑝,𝑚𝑘
𝑞

 (4.9) 

where the MMSE weight 𝑐𝑚𝑘
𝑞𝑒

 is: 

 
𝑐𝑚𝑘
𝑞𝑒 =

𝔼{𝑔𝑚𝑘𝑔̌𝑝,𝑚𝑘
𝑞 ∗

}

𝔼 {|𝑔̌𝑝,𝑚𝑘
𝑞 |

2

}
 

(4.10) 

where 

𝔼{𝑔𝑚𝑘𝑔̌𝑝,𝑚𝑘
𝑞 ∗

} = 𝛼𝛽𝑚𝑘 (4.11) 

𝔼 {|𝑔̌𝑝,𝑚𝑘
𝑞 |

2
} =
(𝑎)
𝛼2𝛽𝑚𝑘 +

𝛼2

𝜏𝑝2
∑ 𝛽𝑖,𝑚𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

𝔼 {|𝝋𝑖,𝑘′
𝑇 𝝋𝑘

∗ |
2
} +

𝛼2

𝜏𝑝
𝜎𝑧
2 +

1

𝜏𝑝
𝜎𝛿𝑚
2  

=
(𝑏)
𝛼2𝛽𝑚𝑘 +

𝛼2

𝜏𝑝
∑ 𝛽𝑖,𝑚𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+
𝛼2

𝜏𝑝
𝜎𝑧
2 +

1

𝜏𝑝
𝜎𝛿𝑚
2  

(4.12) 

where 𝜎𝑧
2  and 𝜎𝛿𝑚

2   are the variance of the noise and distortion. Step (a) is satisfied 

because the distortion term in (4.8) is uncorrelated with the rest. In addition, it is 

assumed that the quantisation distortion is uncorrelated among the different pilot 

symbol periods at the same AP using the pilots defined in Chapter 3. This assumption 

is expressed as 𝔼{𝛿𝑚𝑖𝛿𝑚𝑗
∗ } = 0, 𝑖 ≠ 𝑗 where 𝛿𝑚𝑖 and 𝛿𝑚𝑗 are the i-th and j-th element 

of 𝜹𝑚, respectively. Further, we assume  𝔼 {|𝝋𝑖,𝑘′
𝑇 𝝋𝑘

∗ |
2
} =  𝜏𝑝 which fulfils step (b). 
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Following (2.4), the variance of non-linear distortion 𝜎𝛿𝑚
2   for the Bussgang 

decomposition of the received pilot sequences at the m-th AP is given by: 

 𝜎𝛿𝑚
2 = (𝛾 − 𝛼2)𝜎𝑦𝑝,𝑚

2  (4.13) 

where 𝜎𝑦𝑝,𝑚
2  is the variance of the received pilot sequences at the m-th AP (it is the 

element in one symbol period): 

 𝜎𝑦𝑝,𝑚
2 = 𝔼{|𝑦𝑝,𝑚𝑖|

2
, 𝑖 = 1,… , 𝜏𝑝} = ∑ 𝛽𝑚𝑘

𝐾𝑠𝑒𝑟𝑣

𝑘=1

+∑𝛽𝑖,𝑚𝑘

𝐾𝑖𝑛𝑡

𝑘=1

+ 𝜎𝑧
2 (4.14) 

Substitute (4.13) and (4.14) to (4.12): 

 

𝔼 {|𝑔̌𝑝,𝑚𝑘
𝑞 |

2
} = 𝛼2(𝛽𝑚𝑘 +

1

𝜏𝑝
∑ 𝛽𝑖,𝑚𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+
1

𝜏𝑝
𝜎𝑧
2)

+
(𝛾 − 𝛼2)

𝜏𝑝
(∑ 𝛽𝑚𝑘′

𝐾𝑠𝑒𝑟𝑣

𝑘′=1

+ ∑ 𝛽𝑖,𝑚𝑘′ + 𝜎𝑧
2

𝐾𝑖𝑛𝑡

𝑘′=1

) 

(4.15) 

Then the MMSE channel estimation weight can be represented as: 

 
𝑐𝑚𝑘
𝑞𝑒 =

𝛼𝛽𝑚𝑘

𝛼2𝛽𝑚𝑘 +
𝛾 − 𝛼2

𝜏𝑝
∑ 𝛽𝑚𝑘′
𝐾𝑠𝑒𝑟𝑣
𝑘′=1

+
𝛾
𝜏𝑝
(∑ 𝛽𝑖,𝑚𝑘′ + 𝜎𝑧2

𝐾𝑖𝑛𝑡
𝑘′=1

)
 

(4.16) 

The MSE of the channel estimation in the QE scheme is derived as: 

 

𝜎𝑒𝑚,𝑘
2 = 𝔼{|𝑔̂𝑚𝑘

𝑞𝑒 − 𝑔𝑚𝑘 |
2
} = 𝔼{(𝑔̂𝑚𝑘

𝑞𝑒 − 𝑔𝑚𝑘)(𝑔̂𝑚𝑘
𝑞𝑒 ∗ − 𝑔𝑚𝑘

∗ )} 

= 𝔼{𝑔̂𝑚𝑘
𝑞𝑒 𝑔̂𝑚𝑘

𝑞𝑒 ∗ − 𝑔𝑚𝑘𝑔̂𝑚𝑘
𝑞𝑒 ∗ − 𝑔̂𝑚𝑘

𝑞𝑒 𝑔𝑚𝑘
∗ + 𝑔𝑚𝑘𝑔𝑚𝑘

∗ } 

= 𝔼{𝑔̂𝑚𝑘
𝑞𝑒 𝑔̂𝑚𝑘

𝑞𝑒 ∗ − (𝑔̃𝑚𝑘 + 𝑔̂𝑚𝑘
𝑞𝑒 )𝑔̂𝑚𝑘

𝑞𝑒 ∗ − 𝑔̂𝑚𝑘
𝑞𝑒 (𝑔̃𝑚𝑘

∗ + 𝑔̂𝑚𝑘
𝑞𝑒 ∗)

+ 𝑔𝑚𝑘𝑔𝑚𝑘
∗ } 

= 𝔼{𝑔𝑚𝑘𝑔𝑚𝑘
∗ − 𝑔̂𝑚𝑘

𝑞𝑒 𝑔̂𝑚𝑘
𝑞𝑒 ∗} 

= 𝛽𝑚𝑘 − 𝑐𝑚𝑘
𝑞𝑒 2𝔼 {|𝑔̌𝑝,𝑚𝑘

𝑞 |
2
} 

= 𝛽𝑚𝑘 − 𝑐𝑚𝑘
𝑞𝑒 2 (𝛼2 (𝛽𝑚𝑘 +

1

𝜏𝑝
∑ 𝛽𝑖,𝑚𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+
1

𝜏𝑝
𝜎𝑧
2) +

𝜎𝛿𝑚
2

𝜏𝑝
) 

(4.17) 



4.3 Channel Estimation  60 

 

 = (1 − 𝛼𝑐𝑚𝑘
𝑞𝑒 )𝛽𝑚𝑘  

Here, the channel estimation error 𝑔̃𝑚𝑘 is uncorrelated with the estimated channel 𝑔̂𝑚𝑘
𝑞𝑒

. 

4.3.3 Non-Gaussian distribution 

According to the definition of the Bussgang decomposition [65], if the input of the 

quantiser follows the Gaussian distribution, the Bussgang parameters have results such 

as (2.7) and (2.8). However, by observing (4.7) which defines the Bussgang 

decomposition of the received pilots in QE form at the AP, we know that the input 

signal (4.3) is the sum of many products of two Gaussian distributed variables plus the 

noise. Thus, we cannot simply exploit the results (2.7) and (2.8) to find the optimum 

quantisation interval. In this sub-subchapter, we will derive the Bussgang parameters 

from the definitions (2.2) and (2.3). 

Initially, we explore the pdf of the sum of many products of two Gaussian 

distributed variables. To begin, a basis is considered where there exists only one product. 

In order to derive the pdf of the product of two real Gaussian distributed variables, the 

characteristic function of this product is determined. The following Lemma states the 

characteristic function. 

Lemma 4.1. The characteristic function for the product 𝑍  of two real Gaussian 

distributed variables 𝑋 and 𝑌, with zero mean and the variance 𝜎1
2𝜎2

2. 

 𝜑𝑍(𝑡) =  ℳ𝑍(𝑖𝑡) = ℳ𝑋𝑌(𝑖𝑡) =
1

√1 + 𝜎1
2𝜎2

2𝑡2 
 (4.18) 

where 𝑖  denotes the imaginary unit and  ℳ(∙)  represents the moment-generating 

function. 

Proof: First, we think about the product of two Gaussian distributed variables where 

𝑋~𝒩(0, 𝜎1
2), 𝑌~𝒩(0, 𝜎2

2) and 𝑍 = 𝑋𝑌. The moment-generating function is given by: 
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ℳ𝑋𝑌(𝑡) = 𝔼{𝑒
𝑥𝑦𝑡}

=
1

√2𝜋𝜎1

1

√2𝜋𝜎2
∫ ∫ 𝑒

−
𝑥2

2𝜎1
2

∞

−∞

∞

−∞

𝑒
−
𝑦2

2𝜎2
2
𝑒𝑥𝑦𝑡 𝑑𝑥 𝑑𝑦

=
1

√2𝜋𝜎2
∫ 𝑒

−
𝑦2

2𝜎2
2
𝑑𝑦∫

1

√2𝜋𝜎1
𝑒
−
(𝑥−𝜎1

2𝑦𝑡)
2
+𝜎1

4𝑦2𝑡2

2𝜎1
2

 

∞

−∞

∞

−∞

𝑑𝑥

=
1

√2𝜋𝜎2
∫ 𝑒

−
(1−𝜎1

2𝜎2
2𝑡2)𝑦2

2𝜎2
2

𝑑𝑦
∞

−∞

 

(4.19) 

=
1

√2𝜋𝜎2
∫ 𝑒

−
(1−𝜎1

2𝜎2
2𝑡2)𝑦2

2𝜎2
2

𝑑𝑦
∞

−∞

 

=
1

√2𝜋𝜎2
√2𝜋

𝜎2

√1 − 𝜎1
2𝜎2

2𝑡2  
=

1

√1 − 𝜎1
2𝜎2

2𝑡2 
 

Then, the characteristic function for the product of two real Gaussian distributed 

variables is proved by substituting the variable 𝑡 with 𝑖𝑡. 

Theorem 4.1. The probability density function for the product 𝑍 of two real Gaussian 

distributed variables, with zero mean and the variance 𝜎1
2𝜎2

2. 

 𝑓𝑍(𝑧) =
𝐾0 (

|𝑧|
𝜎1𝜎2

)

𝜋𝜎1𝜎2
 (4.20) 

where 𝐾0(∙) is modified Bessel Function of the second kind in zero order. 

Proof: By using the inverse theorem of characteristic function to Lemma 4.1, the 

pdf of the product 𝑍 is expressed as:  

 

𝑓𝑍(𝑧) =
1

2𝜋
∫ 𝑒−𝑖𝑡𝑧𝜑𝑍(𝑡) 𝑑𝑡
∞

−∞

 

=
1

2𝜋
∫

cos 𝑡𝑧

√1 + 𝜎1
2𝜎2

2𝑡2 
𝑑𝑡

∞

−∞

 

=
𝐾0 (

|𝑧|
𝜎1𝜎2

)

𝜋𝜎1𝜎2
 

(4.21) 

where the last line follows the equation (3.754.2) in [74], which completes the proof.  
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In Theorem 4.1, the pdf only depends on the product of 𝜎1 and 𝜎2. Fig. 4.3 shows 

the pdf of the product of two real Gaussian distributions with different values of 𝜎1 and 

𝜎2. It also indicates that changing the standard deviation of the product only varies the 

scale of the pdf. 

We next discuss the scenario involving the summation of multiple products. An 

assumption is made that {𝑍𝑘} = {𝑍1, 𝑍2, … , 𝑍𝑛}  comprises independent and 

identically distributed (i.i.d) random variables, each resulting from the product of two 

real Gaussian distributed variables. Employing the same approach as Theorem 4.1, the 

characteristic function of the sum of these variables 𝑍 = ∑ 𝑍𝑘
𝑛
𝑘=1  is calculated and the 

pdf is defined in the following Theorem, based on [75].  

 

Fig. 4.3 An example: the pdf of the product of two real Gaussian distributions with 

different standard deviations. 

Theorem 4.2. The probability density function for the sum of n independent and 

identically distributed products of two real Gaussian distributions, with zero mean and 

the variance 𝜎1
2𝜎2

2 for each product. 

 𝑓𝑍(𝑧) =
𝛽
𝑛+1
2 |𝑧|

𝑛−1
2 2

1−𝑛
2

√𝜋Γ (
𝑛
2)

𝐾1−𝑛
2

(𝛽|𝑧|) (4.22) 

where 𝛽 = (𝜎1𝜎2)
−1 , 𝛤(∙)  is the gamma function, and 𝐾0(∙)  represents modified 

Bessel Function of the second kind in zero order. 
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Proof: Applying the Lemma 4.1, the characteristic function of the sum of 𝑛 

products {𝑍1, 𝑍2, … , 𝑍𝑛} is given by: 

 𝜑𝑍(𝑡) = 𝔼{𝑒
𝑖𝑡𝑧} = 𝔼{𝑒𝑖𝑡 ∑ 𝑧𝑘

𝑛
𝑘=1 } = {𝔼(𝑒𝑖𝑡𝑧𝑘)}

𝑛
= (1 + 𝜎1

2𝜎2
2𝑡2)−

𝑛
2 (4.23) 

Using the inverse theorem to obtain the pdf: 

 𝑓𝑍(𝑧) =
1

2𝜋
∫ 𝑒−𝑖𝑧𝑡[(1 − 𝑖𝜎1𝜎2𝑡)(1 + 𝑖𝜎1𝜎2𝑡)]

−
𝑛
2𝑑𝑡

∞

−∞

 (4.24) 

=
(𝑎) 𝛽𝑛

2𝜋
∫ 𝑒−𝑖𝑧𝑡[(𝛽 − 𝑖𝑡)(𝛽 + 𝑖𝑡)]−

𝑛
2

∞

−∞

𝑑𝑡 

=
(𝑏) 𝛽

𝑛
2|𝑧|

𝑛
2
−1 

2
𝑛
2Γ (

𝑛
2)

𝒲
0,
1−𝑛
2

(2𝛽|𝑧|) 

=
𝛽
𝑛
2|𝑧|

𝑛
2
−1 

2
𝑛
2Γ (

𝑛
2)

√
2𝛽|𝑧|

𝜋
𝐾1−𝑛

2

(𝛽|𝑧|) 

=
𝛽
𝑛+1
2 |𝑧|

𝑛−1
2 2

1−𝑛
2

√𝜋Γ (
𝑛
2)

𝐾1−𝑛
2

(𝛽|𝑧|) 

where 𝒲𝑢,𝑣(∙) denotes the Whittaker function which can be converted to the modified 

Bessel function of the second kind by the fact 𝒲0,𝑣(𝑧) = √𝑧/𝜋𝐾𝑣(𝑧/2). Following 

equation (3.384.9) in [74], we simplify the equation (a) to (b) in (4.24) which completes 

the proof. 

To facilitate comparison with the standard normal distribution input case in the 

original Bussgang decomposition, it is desirable to standardise the pdf (4.22). This 

involves normalising the variable 𝑧 in the pdf such that the variance of 𝑧 equals one. 

Since 𝑧  consists of the sum of 𝑛  products, we assume 𝑋𝑘~𝒩(0,1/√𝑛 ) , and 

𝑌𝑘~𝒩(0,1/√𝑛). In this way, the variance of the sum of 𝑛 products 𝑍 = ∑ 𝑋𝑘𝑌𝑘
𝑛
𝑘=1  is 

identical to one. Then, we substitute 𝜎1𝜎2 = 1/√𝑛  into (4.22) and obtain the 

standardised version: 

 𝑓𝑍(𝑧) =
1

2𝜋
∫ 𝑒−𝑖𝑧𝑡[(1 − 𝑖𝜎1𝜎2𝑡)(1 + 𝑖𝜎1𝜎2𝑡)]

−
𝑛
2𝑑𝑡

∞

−∞

 (4.25) 



4.3 Channel Estimation  64 

 

=
1

2𝜋
∫ 𝑒−𝑖𝑧𝑡 [(1 −

𝑖𝑡

√𝑛
) (1 +

𝑖𝑡

√𝑛
)]
−
𝑛
2
𝑑𝑡

∞

−∞

 

=

𝑛
𝑛
22

1−𝑛
2 |

𝑧

√𝑛
|

𝑛−1
2

√πΓ (
𝑛
2)

𝒦1−𝑛
2
(𝑛 |

𝑧

√𝑛
|) 

where the last line follows the same calculation as (3.384.9) in [74]. From the results, 

we can observe that the variable is normalised as 𝑧/√𝑛. 

In the case of complex variables, assuming that 𝑋 = Re(𝑋) + 𝑖 Im(𝑋)  and 𝑌 =

Re(𝑌) + 𝑖 Im(𝑌) are the independent complex Gaussian distributions, the product 𝑍 =

𝑋𝑌 is then expanded to four product variables as: 

 
𝑍 = 𝑋𝑌 

= Re(𝑋)Re(𝑌) − Im(𝑋)Im(𝑌) + 𝑖(Re(𝑋)Im(𝑌) + Im(𝑋)Re(𝑌)) 
(4.26) 

where the variances of each product are the same. Therefore, for the complex Gaussian 

distribution, the number of product variables in the real or imaginary part is twice that 

of the real Gaussian distribution case. Fig. 4.4 presents a comparison of the pdf for the 

standard normal distribution and the standardised pdf for the sum of two products i.e. 

setting 𝑛 = 2  in (4.25). Note that these products are from the real part of a single 

complex signal. 

 

Fig. 4.4 The pdf of standard normal distribution (orange) versus the standardised pdf 

of sum of two product variables (blue) where setting 𝑛 = 2 in (4.25). 
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From Fig. 4.4, it is clear that the pdf for the non-Gaussian case exhibits a marked 

difference from the standard normal distribution particularly when the number of 

product variables is very low. It is complicated to give a closed-form expression of 𝛼 

and 𝛾 in the case where all products are i.i.d variables. But it is easy to calculate the 

results from a tool such as Mathematica. In the following tables, we present the 

optimum step interval and Bussgang parameters for the two scenarios. Table 4.1 shows 

the optimum step interval and Bussgang parameters when using 2-bit quantisation with 

varying the numbers of product variables. Table 4.2 displays the results obtained by 

changing the number of quantisation bits while maintaining 2 product variables. 

Table 4.1 Optimum step interval and Bussgang parameters for 2-bit 

quantisation with different number of products (identical distribution) 

 

 

No. of products, n Δ𝑜𝑝𝑡 α γ − α2 

2 1.087393 0.803698 0.157768 

4 1.064446 0.839825 0.134519 

6 1.047761 0.852429 0.125794 

8 1.036895 0.858987 0.121128 

10 1.029531 0.86306 0.118188 

20 1.013169 0.871665 0.111865 

30 1.007381 0.874714 0.109589 

50 1.002701 0.877232 0.107696 

100 0.9991864 0.8791703 0.10622987 

By observing results from Table 4.1 and comparing with the result of 2-bit 

quantisation from Table 2.1, the optimum step interval of the Non-Gaussian distribution 

case approaches Δ𝑜𝑝𝑡 = 0.995687 which is the result for the Gaussian distribution case, 

as the number of products increases. So, a very large number of products can provide 

the same outcome as Gaussian distribution case. This also indicates the fact that the 

Bussgang decomposition cannot be applied directly when the input of the quantiser is 

the non-Gaussian distribution, especially with very small number of variables. 

Table 4.2 Optimum step interval and Bussgang parameters for the sum of 

two real products with different number of quantisation bits (identical 

distribution) 

 No. of bits, b Δ𝑜𝑝𝑡 α γ − α2 

2 1.087393 0.803698 0.157768 
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3 0.730933 0.928252 0.0666 

4 0.460995 0.974649 0.024708 

5 0.279989 0.991287 0.008637 

6 0.165681 0.997087 0.00290494 

7 0.0960989 0.999051 0.000947697 

8 0.0548443 0.999699 0.000301329 

9 0.03088278 0.999906 0.000093722 

10 0.017195504 0.999971 0.000028602 

11 0.00948389  0.999991 8.58738 × 10−6 

12 0.00518861 0.999997 2.54207 × 10−6 

Comparing Table 4.2 with Table 2.1, it is evident that there exists a considerable 

discrepancy of over ten percent in the optimum step interval, when the number of 

quantisation bits surpasses 3. This contrast becomes more obvious once the number of 

quantisation bits increases to 11, with a significant fifty percent difference. There is 

also a notable increase of distortion power between two cases. 

Since it is hard to derive the pdf for the sum of multiple i.i.d products plus a 

Gaussian distribution, we will not discuss that scenario in this thesis. But, in practice, 

the variances of complex product variables are not the same. For instance, the complex 

products in (4.3) 𝑔𝑚𝑘𝝋𝑘
𝑇  have different variances when 𝑘  varies because of the 

different path loss. Hence, it is interesting to discuss the non-Gaussian distribution input 

case in quantisation with non-identical variables. We assume {𝑍𝑘} = {𝑍1, 𝑍2, … , 𝑍𝑛}, 

𝑛  is even, are 𝑛/2  pairs of real independent and identically distributed product 

variables, where the variances differ among the 𝑛/2 pairs. Note that the variables in 

each pair have identical variance since they are obtained from the real part of one 

complex product variable.  

To give a simple example, we firstly research the scenario with one complex product 

variable where there are two real products in both the real and the imaginary parts. Then, 

without loss of generality, we discuss the case when the number of the complex non-

Gaussian distributed variables is larger than one. The following theorem states the result 

in two scenarios. 

Theorem 4.3. The pdf of the sum of n/2 pairs of real independent and identically 

distributed product variables with zero mean and the variance 𝑏𝑚 for the m-th pair, 

where n is even. Here, the product variable denotes the product of two real Gaussian 

distributed variables. 



4.3 Channel Estimation  67 

 

When 𝑛 = 2 which means there is only one pair of real product variables {𝑍1, 𝑍2}, the 

pdf of 𝑧 = 𝑧1 + 𝑧2 is given as: 

 𝑓𝑍(𝑧) =
1

2𝜋
∫

𝑒−𝑖𝑡𝑧

1 + 𝑏1𝑡2

∞

−∞

𝑑𝑡 =
𝑒
−
|𝑧|

√𝑏1

2√𝑏1
 , 𝑏1 > 0 (4.27) 

where 𝑏1 is the variance of each product variable. 

When 𝑛 > 2, the pdf of 𝑧 = ∑ 𝑧𝑘
𝑛
𝑘=1  is given by: 

 

𝑓𝑍(𝑧) =
1

2𝜋
∫

𝑒−𝑖𝑡𝑧

∏ (1 + 𝑏𝑚𝑡2)
𝑛
2
𝑚=1

∞

−∞

𝑑𝑡 

=
1

2
∑

𝑏𝑚

𝑛−3
2 𝑒

−
|𝑧|

√𝑏𝑚

∏ (𝑏𝑚 − 𝑏𝑚′)
𝑛/2

𝑚′≠𝑚

𝑛/2

𝑚=1

 , 𝑏𝑚 ≠ 𝑏𝑚′ 

(4.28) 

where 𝑏𝑚 is the variance of m-th pair of product variables. 

Proof: The case when there is only two real product variables (4.27) is proved in 

Appendix 4.A. The 𝑛 > 2 case (4.28) is proved in Appendix 4.B. 

Further, we consider the more realistic pdf in practice, which includes the sum of 

many products of two real Gaussian distributed variables plus a real noise variable 

which follows the Gaussian distribution. Based on Theorem 4.3, we obtain the pdf of 𝑦 

which consists of the real part of 𝑛/2 complex products and a noise variable in the 

following theorem. 

Theorem 4.4. The pdf of the sum of n/2 pairs of real independent and identically 

distributed product variables with zero mean and the variance 𝑏𝑚 for the m-th pair,  

plus a real Gaussian distributed variable 𝑥~𝒩(0, 𝜎𝑥
2), where n is even. 

When 𝑛 = 2, the pdf of 𝑦 = 𝑧 + 𝑥, where 𝑧 = 𝑧1 + 𝑧2, is given by: 
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𝑓𝑌(𝑦) =
1

4√𝑏1
(𝑒

−
𝑦

√𝑏1
+
𝜎𝑥
2

2𝑏1erfc (
−√𝑏1𝑦 + 𝜎𝑥

2

√2𝜎𝑥2𝑏1
)

+ 𝑒

𝑦

√𝑏1
+
𝜎𝑥
2

2𝑏1erfc (
√𝑏1𝑦 + 𝜎𝑥

2

√2𝜎𝑥2𝑏1
)) 

(4.29) 

where 𝑏1 is the variance of each product variable, 𝜎𝑥
2 denotes the variance of the real 

Gaussian distributed variable and erfc(∙) represents the complementary error function. 

When 𝑛 > 2, the pdf of 𝑦 = 𝑧 + 𝑥, where 𝑧 = ∑ 𝑧𝑘
𝑛
𝑘=1 , is given by: 

 

𝑓𝑌(𝑦) =
1

4
∑

𝑏𝑚

𝑛−3
2

∏ (𝑏𝑚 − 𝑏𝑚′)
𝑛
2
𝑚′≠𝑚

𝑛
2

𝑚=1

(𝑒
−

𝑦

√𝑏𝑚
+
𝜎𝑥
2

2𝑏𝑚erfc (
−√𝑏𝑚𝑦 + 𝜎𝑥

2

√2𝜎𝑥2𝑏𝑚
)

+ 𝑒

𝑦

√𝑏𝑚
+
𝜎𝑥
2

2𝑏𝑚erfc (
√𝑏𝑚𝑦 + 𝜎𝑥

2

√2𝜎𝑥2𝑏𝑚
)) 

(4.30) 

where 𝑏𝑚 is the variance of the m-th pair of product variables. 

Proof: We first prove (4.29) by exploiting the pdf of 𝑧 in Theorem 4.3. Then, the pdf 

of 𝑦 = 𝑧 + 𝑥 is calculated by the convolution: 

 

𝑓𝑌(𝑦) = ∫ 𝑓𝑋(𝑥)
∞

−∞

𝑓𝑍(𝑦 − 𝑥)𝑑𝑥 

= ∫
1

𝜎𝑥√2𝜋
𝑒
−
𝑥2

2𝜎𝑥
2

∞

−∞

𝑒
−
|𝑦−𝑥|

√𝑏1

2√𝑏1
𝑑𝑥 

=
1

2𝜎𝑥√2𝜋𝑏1
(∫ 𝑒

−
𝑥2

2𝜎𝑥
2

𝑦

−∞

𝑒
−
𝑦−𝑥

√𝑏1𝑑𝑥 + ∫ 𝑒
−
𝑥2

2𝜎𝑥
2

∞

𝑦

𝑒
−
𝑥−𝑦

√𝑏1𝑑𝑥) 

(4.31) 

=
1

2𝜎𝑥√2𝜋𝑏1

(

 
 
𝑒
−
𝑦

√𝑏1
+
𝜎𝑥
2

2𝑏1∫ 𝑒
−

(𝑥−
𝜎𝑥
2

√𝑏1
)

2

2𝜎𝑥
2

𝑦

−∞

𝑑𝑥 + 𝑒

𝑦

√𝑏1
+
𝜎𝑥
2

2𝑏1∫ 𝑒
−

(𝑥+
𝜎𝑥
2

√𝑏1
)

2

2𝜎𝑥
2

∞

𝑦

𝑑𝑥

)

 
 

 

=
1

4√𝑏1
(𝑒

−
𝑦

√𝑏1
+
𝜎𝑥
2

2𝑏1erfc (
−√𝑏1𝑦 + 𝜎𝑥

2

√2𝜎𝑥2𝑏1
) + 𝑒

𝑦

√𝑏1
+
𝜎𝑥
2

2𝑏1erfc (
√𝑏1𝑦 + 𝜎𝑥

2

√2𝜎𝑥2𝑏1
)) 
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which completes the proof. When 𝑛 > 2, the proof is given in Appendix 4.C.  

Fig. 4.5 presents a comparison between the theoretical pdf given by (4.29) and the 

histogram of simulated results, assuming the variances 𝑏1 = 0.1  and 𝜎𝑥
2 = 0.01 . It 

shows that the histogram closely matches the theoretical formula, indicating the validity 

of the pdf expression for the given set of parameters. Fig. 4.5(a) presents the linear 

results of the vertical axis, while the logarithm results are given in Fig. 4.5(b). It is 

obvious that the tails of the numerical data agrees with the theory in both cases, even 

though there are some small discrepancies in the logarithmical results because of the 

calculation of the tiny values. This outcome indicates that the pilot assumed as the 

Gaussian distribution in Chapter 3 is not impacted by the difference of the distribution 

tails between Fig. 4.1 and Gaussian distribution. Thus, Theorem 4.4 is applicable in 

practical scenarios. 

 

Fig. 4.5 The pdf for the sum of two real product variables plus a Gaussian distributed 

variable (eq. 4.29) versus the histogram of numerical results that follow the same 

distribution. (a) gives linear results of vertical axis and (b) is logarithm. 

Next, we can apply the pdf to calculate the Bussgang parameters 𝛼  and 𝛾 . 

Observing the definition of 𝛼 (2.2), it includes the cross-correlation between the input 
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signal 𝑥  and the output 𝑦(𝑥) . If we adopt the mid-rise uniform quantiser (2.6), the 

cross-correlation can be expressed by solving the general indefinite integral as the 

following Lemma. 

Lemma 4.2. The indefinite integral of the following combination of the complementary 

error function with exponentials and powers, where the variable x and the coefficients 

a, b, c and d are real-valued, 𝑎, 𝑏 ≠ 0: 

 

∫𝑥𝑒𝑏𝑥+𝑑erfc(𝑎𝑥 + 𝑐) 𝑑𝑥

= (
1

𝑏2
−

1

2𝑎2
+
𝑐

𝑎𝑏
) 𝑒

𝑏2

4𝑎2
−
𝑏𝑐
𝑎
+𝑑
erfc (𝑎𝑥 + 𝑐 −

𝑏

2𝑎
)

+
𝑏𝑥 − 1

𝑏2
𝑒𝑏𝑥+𝑑erfc(𝑎𝑥 + 𝑐) −

1

𝑎𝑏√𝜋
𝑒−(𝑎𝑥+𝑐)

2+𝑏𝑥+𝑑 

(4.32) 

Proof: Please refer to Appendix 4.D.  

Similarly, 𝛾  can be calculated by solving the indefinite integral in the following 

Lemma. 

Lemma 4.3. The indefinite integral of the following combination of the complementary 

error function with exponentials where the variable x and the coefficients a, b, c and d 

are real-valued, 𝑎, 𝑏 ≠ 0: 

 

∫𝑒𝑏𝑥+𝑑erfc(𝑎𝑥 + 𝑐) 𝑑𝑥 

=
1

𝑏
(𝑒𝑏𝑥+𝑑erfc(𝑎𝑥 + 𝑐) − 𝑒

𝑏2

4𝑎2
−
𝑏𝑐
𝑎
+𝑑
erfc (𝑎𝑥 + 𝑐 −

𝑏

2𝑎
)) 

(4.33) 

Proof: Please refer to Appendix 4.D.  

By introducing Lemma 4.2, Lemma 4.3 and Theorem 4.4, Bussgang’s parameters 

α and γ can be expressed by the closed-form formulae, which is stated in the following 

theorem. 

Theorem 4.5. The closed-form Bussgang parameters 𝛼  and 𝛾  are given, when the 

input signal is the sum of n/2 pairs of real independent and identically distributed 
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product variables with zero mean and the variance 𝑏𝑚 for the m-th pair,  plus a real 

Gaussian distributed variable 𝑥~𝒩(0, 𝜎𝑥
2), where n is even. 

When 𝑛 = 2: 

 𝛼 =
1

𝑃𝑥
∫ 𝑥𝑦(𝑥)𝑓𝑋(𝑥)𝑑𝑥
∞

−∞

 (4.34) 
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√2𝑏1
) + 2𝜎𝑛√
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and 
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1

𝑃𝑥
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∞
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(4.35) 

when 𝑛 > 2 
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(4.36) 

and  
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(4.37) 

Proof: Please refer to Appendix 4.E. 

We can then calculate the optimum step interval of the quantiser by finding the 

maximum SDNR. Due to the lack of space, the expression is omitted but it can be 

obtained applying Theorem 4.5 to (2.5). The maximised SDNR in (2.5) can be 

simplified as: 

 

Δ𝑜𝑝𝑡 = arg max
Δ

(
𝛼2

𝛾 − 𝛼2
) = arg max

Δ
(

1
𝛾
𝛼2
− 1

) 

= arg max
Δ

(
𝛼2

𝛾
) 

(4.38) 
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Note that there are two scenarios of the parameters 𝛼 and 𝛾, thus the optimum step 

interval has two different forms. Since the SDNR includes the exponential function and 

complementary function of Δ, it is possible to derivate the SDNR with respect to Δ. But, 

we will not discuss that in this thesis. 

4.3.4 Binary pilot sequences 

As the aforementioned discussion, if the pilot sequences follow the complex Gaussian 

distribution, the input signal of the quantiser is not Gaussian distribution in QE form. 

Hence, we analyse the realistic scenario in the last sub-subchapter. Apart from using 

in-phase and quadrature pilots, applying the binary pilot sequences can be an alternative 

approach in QE form, which enables the input signal to be the Gaussian distribution. In 

this sub-subchapter, we investigate the binary pilots scenario which Hadamard matrix 

is exploited whose elements are either +1 or −1 and the rows are mutually orthogonal: 

 𝝋𝐻𝝋𝐻
𝑇 = 𝜏𝑝𝑰𝜏𝑝 (4.39) 

where 𝝋𝐻  is Hadamard matrix and 𝑰  denotes the identity matrix. Replacing the 

complex pilot sequences by 𝝋𝐻 , we rewrite the Bussgang decomposition of the 

received pilots (4.7) as: 

 𝒚𝑝,𝑚
𝑞 = 𝛼(∑ 𝑔𝑚𝑘

𝐾𝑠𝑒𝑟𝑣

𝑘=1

𝝋𝐻,𝑘 +∑𝑔𝑖,𝑚𝑘

𝐾𝑖𝑛𝑡

𝑘=1

𝝋𝐻𝑖,𝑘 + 𝒛𝑝,𝑚) + 𝜹𝑚
𝑞𝑒

 (4.40) 

where 𝝋𝐻,𝑘 is the pilot sequence which is the k-th row vector the Hadamard matrix, 

transmitted by the k-th UT and 𝝋𝐻𝑖,𝑘 denotes the transmitted pilot sequence from the k-

th interfering UT, which is a row vector randomly selected from the Hadamard matrix. 

The rest terms were already defined in the previous sub-chapters. If the elements in the 

distortion term 𝜹𝑚
𝑞𝑒

 are uncorrelated with each other, the covariance of the distortion is 

given: 

 
𝔼 {𝜹𝑚

𝑞𝑒𝐻𝜹𝑚
𝑞𝑒} = 𝑑𝑖𝑎𝑔 {𝜎𝛿𝑚

2 , 𝜎𝛿𝑚
2 , … , 𝜎𝛿𝑚

2 }⏞            

𝜏𝑝

 
(4.41) 

where 𝑑𝑖𝑎𝑔{∙}  denotes the diagonal matrix in which the entries outside the main 

diagonal are all zero and 𝜎𝛿𝑚
2  is the variance of the distortion which is defined in (4.13). 
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As the pilot sequence is binary, each symbol of the received pilots at the same AP 

is composed of many channel coefficients added and subtracted together, along with 

the noise. The same set of channel coefficients is employed for the computation of the 

different symbols, which establishes a relationship among the received pilots at the 

same AP. This interrelation subsequently leads to a correlation among the elements of 

the quantisation distortion at the given AP. In particular, when a certain channel 

coefficient is much stronger than the others, it can dominate the relationship and 

produce a noticeable correlation among the elements of the quantisation distortion. 

Such correlation issues can influence the theoretical calculation of the MMSE 

estimation weights as defined in (4.10). 

 

Fig. 4.6 The comparison between the simulated results and theoretical results of the 

auto-correlation of the quantisation distortion at the same AP. 

Fig. 4.6 presents the auto-correlation of the quantisation distortion at one AP, where 

the horizontal axis denotes the simulated results and the vertical axis corresponds to the 

theoretical values derived from (4.41). In the simulation, the quantisation distortion is 

collected from one AP to compute its auto-correlation where the entities are marked 

with stars in Fig. 4.6. In the top right section of the figure, it is evident that the
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on-diagonal elements of the simulation align with the theoretical predictions. However, 

the simulated off-diagonal elements are not zero, and their order of magnitude does not 

significantly differ from that of the on-diagonal elements. It proves that the different 

symbols of the quantisation distortion at the same AP are correlated. 

Fig. 4.7 illustrates the comparison between the simulation (4.10) and the theory 

(4.16) of the MMSE estimation weights for channel estimation with the respective 

values denoted as stars. The figure reveals numerous discrepancies between the 

simulated and theoretical values, which indicate the theory may not be rigorous. The 

correlation of the quantisation distortion also impacts the theoretical calculation of the 

MSE for channel estimation. A more comprehensive discussion on the MSE of channel 

estimation will be provided in a subsequent sub-chapter. 

 

Fig. 4.7 The comparison between the simulated results and theoretical results of the 

MMSE estimation weights while using binary pilots. 

4.4 Data Detection 

After obtaining the CSI from all served UTs at the EPU, we proceed to explore the 

uplink data transmission under limited fronthaul constraints in DD-MaMIMO. As 
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discussed in the channel estimation sub-chapter, the signal can either be collected at the 

local AP and transmitted its quantised version to the EPU for estimation, or it can be 

estimated locally and then sent the quantised CSI to the EPU. In contrast to the channel 

estimation, this sub-chapter primarily focuses on the scenario where the transmitted 

data is quantised at the APs by a few bits and then sent to the EPU for detection. 

On the uplink, all UTs send the data simultaneously to the 𝑀𝑐𝑜𝑜𝑟 APs where each 

AP equips 𝑁𝑟 antennas and the received signals at APs can be expressed by a matrix: 

 𝒀𝑢 = 𝑮𝑿 + 𝑮𝑖𝑛𝑡𝑿𝑖𝑛𝑡 + 𝒁  (4.42) 

where 𝑮 ∈ ℂ𝑀𝑐𝑜𝑜𝑟𝑁𝑟×𝐾𝑠𝑒𝑟𝑣  and  𝑮𝑖𝑛𝑡 ∈ ℂ
𝑀𝑐𝑜𝑜𝑟𝑁𝑟×𝐾𝑖𝑛𝑡  are channel coefficient matrices 

from served UTs and interfering UTs to the APs in the coordination region, separately. 

𝑿 ∈ ℂ𝐾𝑠𝑒𝑟𝑣×𝜏𝑑  and 𝑿𝑖𝑛𝑡 ∈ ℂ
𝐾𝑖𝑛𝑡×𝜏𝑑  are transmitted signals. 𝒁  denotes the noise at the 

multiple antennas of each AP. Here we assume all data symbols are independent, so 

(4.42) can be rewritten in terms of column vector. Then, the received signals are 

quantised and it can be expressed by the Bussgang decomposition: 

 𝒚𝑢
𝑞 = 𝛼𝒚𝒖 + 𝜹 = 𝛼(∑ 𝒈𝑘𝑥𝑘 +∑𝒈𝑖,𝑘𝑥𝑖,𝑘

𝐾𝑖𝑛𝑡

𝑘=1

𝐾𝑠𝑒𝑟𝑣

𝑘=1

+ 𝒛) + 𝜹 (4.43) 

where 𝒚𝒖 is the vector form of the received signals, and 𝒈𝑘 = [𝒈1𝑘
𝑇  𝒈2𝑘

𝑇 …𝒈𝑀𝑐𝑜𝑜𝑟𝑘
𝑇 ]

𝑇
 is 

the k-th column vector of 𝑮  in which 𝒈𝑚𝑘 = [𝑔𝑚1𝑘 𝑔𝑚2𝑘 …𝑔𝑚𝑁𝑟𝑘]
𝑇
 are the channel 

coefficients from the k-th UT to the 𝑁𝑟  antennas of the m-th AP. 𝒈𝑖,𝑘  denotes the 

channel coefficients for the interfering UT, which has the same structure as 𝒈𝑘. 𝑥𝑘 and 

𝑥𝑖,𝑘 represent the transmitted data from the k-th UT and the k-th interfering UT, both 

with the variance 𝜎𝑥
2, respectively. In this sub-chapter, we assume that binary phase-

shift keying (BPSK) is applied to the data modulation, resulting in binary transmitted 

data with 𝜎𝑥
2 = 1. 𝒛 is the noise with the variance of each element 𝜎𝑧

2 and 𝜹 denotes the 

quantisation distortion. Depending on different CSI acquisition strategies (4.4) and 

(4.9), the channel coefficient 𝒈𝑘 is expressed as: 

 𝒈𝑘 = 𝒈̂𝑘 + 𝒈̃𝑘, where [𝒈̂𝑘]𝑚𝑛𝑘 = 𝑔̂𝑚𝑘
𝑒𝑞  𝑜𝑟  [𝒈̂𝑘]𝑚𝑛𝑘 = 𝑔̂𝑚𝑘

𝑞𝑒
 (4.44) 
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where 𝒈̃𝑘 denotes the channel estimation error. To detect the transmitted data, the L-

MMSE estimator is applied at the EPU in this thesis and the MMSE weight 𝒘𝑘
𝑞
 for 

detecting the data transmitted by the k-th UT can be expressed by: 

 𝒘𝑘
𝑞 = 𝔼{𝑥𝑘𝒚𝑢

𝑞𝐻}𝔼{𝒚𝑢
𝑞𝒚𝑢

𝑞𝐻}
−1

 (4.45) 

where 

 𝔼{𝑥𝑘𝒚𝑢
𝑞𝐻} = 𝛼𝜎𝑥

2𝒈̂𝑘
𝐻 (4.46) 

and 

 

𝔼 {|𝒚𝑢
𝑞|
2
} = 𝛼2𝜎𝑥

2 (∑ (𝒈̂𝑘′𝒈̂𝑘′
𝐻 + 𝑪𝑔̃𝑔̃,𝑘′)

𝐾𝑠𝑒𝑟𝑣

𝑘′=1

+ ∑ 𝑪𝑔𝑖𝑛𝑡𝑔𝑖𝑛𝑡,𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+
𝜎𝑧
2

𝜎𝑥2
𝑰𝑀𝑐𝑜𝑜𝑟𝑁𝑟) + 𝑪𝛿 

(4.47) 

where  𝑪𝑔𝑖𝑛𝑡𝑔𝑖𝑛𝑡,𝑘  is the covariance matrix of interfering channel coefficients defined 

in (3.27). 𝑪𝑔̃𝑔̃,𝑘 denotes the covariance matrix of the channel estimation errors given by: 

 𝑪𝑔̃𝑔̃,𝑘 = 𝔼{𝒈̃𝑘𝒈̃𝑘
𝐻} = 𝑑𝑖𝑎𝑔(𝜎𝑒𝑖,𝑘

2 , 𝑖 = 1, … ,𝑀𝑐𝑜𝑜𝑟𝑁𝑟) (4.48) 

where the expression of  𝜎𝑒𝑖
2   depends on the different quantisation schemes (4.6) or 

(4.17). 𝑪𝛿 represents the covariance matrix of the quantisation distortion: 

 𝑪𝛿 = 𝔼{𝜹𝜹
𝐻} = 𝑑𝑖𝑎𝑔( 𝔼{|𝛿𝑖|

2}, 𝑖 = 1,… ,𝑀𝑐𝑜𝑜𝑟𝑁𝑟 ) (4.49) 

where 𝛿𝑖 is the i-th element of 𝜹 and 𝛿𝑖 for the different AP is uncorrelated with each 

other. Exploiting (2.4) we rewrite (4.49) as: 

 

𝑪𝛿 = (𝛾 − 𝛼
2)𝑪𝑦𝑢 

= (𝛾 − 𝛼2) (𝜎𝑥
2 ∑ 𝑪𝑔𝑔,𝑘′

𝐾𝑠𝑒𝑟𝑣

𝑘′=1

+ 𝜎𝑥
2 ∑ 𝑪𝑔𝑖𝑛𝑡𝑔𝑖𝑛𝑡,𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+ 𝜎𝑧
2𝑰𝑀𝑐𝑜𝑜𝑟𝑁𝑟  ) 

(4.50) 
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where  𝑪𝑦𝑢 is the covariance of the received signals at APs and 𝑪𝑔𝑔,𝑘′ = 𝔼{𝒈𝑘′𝒈𝑘′
𝐻 } =

𝑑𝑖𝑎𝑔( 𝛽𝑚𝑘′ , 𝑚 = 1,… ,𝑀𝑐𝑜𝑜𝑟𝑁𝑟 ). Then, we substitute (4.46), (4.47) and (4.50) into 

(4.45): 

 

𝒘𝑘
𝑞 = 𝛼𝒈̂𝑘

𝐻 (𝛼2 ∑(𝒈̂𝑘′𝒈̂𝑘′
𝐻 + 𝑪𝑔̃𝑔̃,𝑘′)

𝐾𝑠𝑒𝑟𝑣

𝑘′=1

+ 𝛾(∑ 𝑪𝑔𝑖𝑛𝑡𝑔𝑖𝑛𝑡,𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+
𝜎𝑧
2

𝜎𝑥2
𝑰𝑀𝑐𝑜𝑜𝑟𝑁𝑟) + (𝛾 − 𝛼

2) ∑ 𝑪𝑔𝑔,𝑘′

𝐾𝑠𝑒𝑟𝑣

𝑘′=1

)

−1

 

(4.51) 

Using the MMSE weights (4.51), we then obtain the detected data transmitted by the k-

th UT as: 

 

𝑥̂𝑘 = 𝒘𝑘
𝑞𝒚𝑢

𝑞  

= 𝒘𝑘
𝑞 (𝛼 (∑ 𝒈𝑘𝑥𝑘 +∑𝒈𝑖,𝑘𝑥𝑖,𝑘

𝐾𝑖𝑛𝑡

𝑘=1

𝐾𝑠𝑒𝑟𝑣

𝑘=1

+ 𝒛) + 𝜹 ) 

= 𝛼𝒘𝑘
𝑞 (𝒈̂𝑘𝑥𝑘 + 𝒈̃𝑘𝑥𝑘 + ∑ 𝒈𝑘′𝑥𝑘′

𝐾𝑠𝑒𝑟𝑣

𝑘′≠𝑘

+ ∑ 𝒈𝑖,𝑘′𝑥𝑖,𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+ 𝒛) +𝒘𝑘
𝑞 𝜹 

(4.52) 

4.5 Achievable Spectral Efficiency 

In this sub-chapter, we will research the spectral efficiency (SE) in the DD-MaMIMO 

system when the fronthaul is limited. By using the MMSE detection, the components 

of the estimated data (4.52) can be categorised as: the desired signal over estimated 

channel is 𝛼𝒘𝑘
𝑞𝒈̂𝑘𝑥𝑘; the desired signal over unknown channel is 𝛼𝒘𝑘

𝑞𝒈̃𝑘𝑥𝑘; the terms 

𝛼𝒘𝑘
𝑞 ∑ 𝒈𝑘′𝑥𝑘′

𝐾𝑠𝑒𝑟𝑣
𝑘′≠𝑘  and 𝛼𝒘𝑘

𝑞 ∑ 𝒈𝑖,𝑘′𝑥𝑖,𝑘′
𝐾𝑖𝑛𝑡
𝑘′≠𝑘  are the interference from the intra service 

region and inter service region, respectively; 𝛼𝒘𝑘
𝑞𝒛  denotes the noise, and 𝒘𝑘

𝑞 𝜹 

represents the distortion. Thus, we can formulate the achievable SE in the following 

proposition. 

Proposition 4.1. Suppose that 𝐾𝑠𝑒𝑟𝑣  UTs are served by 𝑀𝑐𝑜𝑜𝑟  APs where each AP 

equips 𝑁𝑟 antennas in DD-MaMIMO with limited fronthaul. If the MMSE estimator is 

used to estimate channel and detect data for all UTs, an achievable SE of k-th UT is 
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 𝑆𝐸𝑘 =
𝜏𝑢

𝜏𝑝 + 𝜏𝑢
𝔼{log2(1 + 𝑆𝐼𝐷𝑁𝑅𝑘)} (4.53) 

where the factor 𝜏𝑢/(𝜏𝑝 + 𝜏𝑢) is the fraction of the uplink transmission which is used 

by data transmission. The instantaneous signal-to-interference-and-distortion-plus-

noise ratio (𝑆𝐼𝐷𝑁𝑅𝑘) for the k-th UT is given by 

 

𝑆𝐼𝐷𝑁𝑅𝑘 =
|𝒘𝑘

𝑞𝒈̂𝑘|
2

𝒘𝑘
𝑞 (
∑ 𝒈̂𝑘′𝒈̂𝑘′

𝐻𝐾𝑠𝑒𝑟𝑣
𝑘′≠𝑘

+ ∑ 𝑪𝑔̃𝑔̃,𝑘′
𝐾𝑠𝑒𝑟𝑣
𝑘′=1

+ ∑ 𝑪𝑔𝑖𝑛𝑡𝑔𝑖𝑛𝑡,𝑘′
𝐾𝑖𝑛𝑡
𝑘′=1

+
𝜎𝑧2

𝜎𝑥2
𝑰𝑀𝑐𝑜𝑜𝑟𝑁𝑟 +

1
𝛼2𝜎𝑥2

𝑪𝛿
)𝒘𝑘

𝑞𝐻

 

(4.54) 

=
(𝑎)
𝛼2𝒈̂𝑘

𝐻

(

 
 
 𝛼

2 ∑ 𝒈̂𝑘′𝒈̂𝑘′
𝐻

𝐾𝑠𝑒𝑟𝑣

𝑘′≠𝑘

+ 𝛼2 ∑ 𝑪𝑔̃𝑔̃,𝑘′

𝐾𝑠𝑒𝑟𝑣

𝑘′=1

+ 𝛾 ∑ 𝑪𝑔𝑖𝑛𝑡𝑔𝑖𝑛𝑡,𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+𝛾
𝜎𝑧
2

𝜎𝑥2
𝑰𝑀𝑐𝑜𝑜𝑟𝑁𝑟 + (𝛾 − 𝛼

2) ∑ 𝑪𝑔𝑔,𝑘′

𝐾𝑠𝑒𝑟𝑣

𝑘′=1 )

 
 
 

−1

𝒈̂𝑘 

and the expectation is with respect to the channel estimates 𝒈̂𝑘. 

Proof: The sketch of the proof is the same as the proof in [73, Th. 4.1], where the 

expression of the achievable SE is derived by giving the lower bound of the ergodic 

capacity of the discrete memoryless interference channel. The input of the channel is 

𝑥 = 𝛼𝑥𝑘, the output is 𝑦 = 𝑥̂𝑘, the channel response is given by ℎ = 𝒘𝑘
𝑞𝒈̂𝑘, the random 

realisation 𝑢 = {𝒈̂𝑙} with arbitrary values of 𝑙 affects the interference variance, and the 

interference 𝑣 is the sum of the terms (4.52) excluding 𝛼𝒘𝑘
𝑞𝒈̂𝑘𝑥𝑘: 

 𝑣 = 𝛼𝒘𝑘
𝑞 (𝒈̃𝑘𝑥𝑘 + ∑ 𝒈𝑘′𝑥𝑘′

𝐾𝑠𝑒𝑟𝑣

𝑘′≠𝑘

+ ∑ 𝒈𝑖,𝑘′𝑥𝑖,𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+ 𝒛) +𝒘𝑘
𝑞 𝜹 (4.55) 

Given the realisation ℎ and 𝑢, the interference is conditionally uncorrelated with the 

input: 

 𝔼{𝑥𝑣|ℎ, 𝑢} = 𝔼{𝑥𝑣|{𝒈̂𝑙}} = 0 (4.56) 

Furthermore, the terms of the interference 𝑣 are uncorrelated with each other. The step 

(a) in (4.54) follows the same derivation as (3.22).



4.6 Performance Analysis  80 

 

4.6 Performance Analysis 

In this sub-chapter, we provide some numerical results for quantisation in the DD-

MaMIMO system. The same path loss model and parameters given in Chapter 3 are 

utilised for the simulation. All the simulations are based on the case where each AP 

only equips one antenna. We first evaluate the MSE of channel estimation in the QE 

form, considering different distribution analyses for the input signals of the quantiser.  

 

Fig. 4.8 The CDF of the MSE of channel estimation with a range of quantisation bits, 

based on different distributions of the input of the quantiser. 

Fig. 4.8 shows the CDF of the MSE of channel estimation which is obtained in (4.17) 

using the Bussgang decomposition.  Here, we assume the coordination region radius is 

282 m in the DD-MaMIMO system. The legends “Gaussian 2b” and “non-Gaussian 2b” 

denote the input signals follow the Gaussian distribution with 2-bit quantisation and the 

true (non-Gaussian) distribution derived from Theorem 4.4 with 2 quantisation bits, 

respectively. Note that since the large scale fading coefficients tend to -15 order of 

magnitude in our simulation, the channel gain is very small and also the value of MSE 

of channel estimation. In comparison to the Gaussian distribution case (dash line), the 

MSE of channel estimation is slightly smaller in the non-Gaussian case (solid line), 
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which is noticeable in the 4-bit quantisation scenario. The results indicate that the 

channel estimation, acquired by applying Theorem 4.4 to the Bussgang decomposition, 

exhibits a modest improvement, albeit not significant.  

 

Fig. 4.9 The CDF of the MSE of channel estimation applying the different CSI 

acquisition strategies with a range of quantisation bits. 

Next, we analyse the MSE of channel estimation by adopting different CSI 

acquisition strategies which are presented in (4.6) and (4.17). The same parameters are 

used for the simulation. The simulation results are shown in Fig. 4.9 where the legend 

“EQ” denotes the estimate-and-quantise form and “QE” is the quantise-and-estimate 

form. The results indicate that the QE form (dash line) has a poorer MSE than the EQ 

scheme in the most of cases, though the discrepancies are not substantial. Fig 4.8 

presents the results of the MSE of channel estimation using the complex pilots and 

binary pilots in the QE form with 2-bit quantisation. In this simulation, we adopt the 

Hadamard matrix to generate binary pilots (4.39) which the matrix order must be 1, 2 

or a multiple of 4, prompting us to adjust the length of the pilot sequences from 10 to 

8.  As we discussed in the sub-subchapter 4.3.4, the expression of the theoretical MMSE 

weight 𝑐𝑚𝑘
𝑞𝑒

 (4.16) in the binary pilot case is not strict. Hence, in Fig. 4.10, we utilise 
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the simulated and the theoretical MMSE weights, respectively, to calculate the MSE 

for both types of pilots. The legend “Simu-weight” represents that the MMSE weights 

and the MSE are simulated using the Monte Carlo method, while “Theo-weight” 

denotes that the MSE (4.17) is computed by exploiting the theoretical MMSE weights 

(4.16). It is shown that the simulation using complex pilots (blue dash line with cross) 

match the theory (red solid line). Nevertheless, there is a small gap between the 

simulation (black dash line with circle) and the theory (green solid line) in the binary 

pilot case. This is because the correlation between the quantisation distortions at the 

same AP is ignored in theory when the binary pilots are used. 

 

Fig. 4.10 The CDF of the MSE of channel estimation using the different pilots with 2-

bit quantisation. 

After the discussion of the MSE of channel estimation using different pilots, we 

know that there is no significant difference in obtaining the CSI in the two scenarios. 

Then, the overall performance, represented by the CDF of the SE, is shown in Fig. 4.11 

where “Unq” denotes the unquantisation, “b” is the quantisation bit and “Bi” represents 

the binary. Here, the same quantisation bits for the channel estimation are used to 

quantise the data. We can observe that the results of SE overlap in the ideal case where 
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the signal is not quantised, however the binary pilot case outperforms when the 

quantisation is introduced. In our simulation, the theoretical MMSE weights are 

adopted for channel estimation in both pilot cases, leading to the error of the MSE of 

channel estimation in binary pilot case. As a result, the simulation of the binary pilot 

case shows a deviation from the complex pilot case. 

 

Fig. 4.11 The CDF of the SE using different pilots with a range of quantisation bits. 

Applying different CSI acquisition strategies, the SE is then presented in Fig. 4.12 

with varying numbers of quantisation bits. We adopt the same number of quantisation 

bits to quantise the pilots and data in this simulation. The results demonstrate that the 

QE scheme performs better than the EQ scheme when fewer quantisation bits are used. 

This is because each AP only needs to send the quantised pilots to the CPU in the QE 

form, the fronthaul load is lower compared to the EQ form, where each AP needs to 

send a quantised version of the estimated channel for each UT. Furthermore, as the 

number of quantisation bits increases, the performance gap between the two strategies 

narrows, and the results for both cases begin to coverage towards the ideal scenario. In 

the simulation of the QE form, we exploit Theorem 4.5 and (4.38) to resolve the 

maximisation problem by seeking the optimum step interval. The range of the step 
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interval needs to be decided at the outset of the simulation, which might not provide 

precise results. Therefore, the decrease in the performance gap may be caused by the 

imperfect optimum step interval finding for channel estimation in the QE form. 

 

Fig. 4.12 The CDF of the SE using different CSI acquisition strategies with various 

quantisation bits. 

4.7 Summary 

In this chapter, we have presented the quantisation in the DD-MaMIMO system. The 

general concept was elaborated which the digital signals were transferred to the EPU 

for processing. To analyse the output of the quantiser, Bussgang decomposition was 

studied for characterising this non-linear system. We have taken account of two 

strategies which are estimate-and-quantise (EQ) scheme and quantise-and-estimate (EQ) 

scheme for obtaining CSI at the EPU. The expression of the MSE of channel estimation 

was derived in both cases and the performance was evaluated in the simulation. The 

results showed that there is no significant difference of the MSE between two strategies. 

Further, we have had a comprehensive research about the input distribution of the 

quantiser when the pilots followed the complex Gaussian distribution in the QE form. 
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We have proposed the theorem to express this pdf and applied that to find the optimum 

step interval using Bussgang decomposition. The numerical results showed that the 

MSE decreased adopting the proposed theorem. Moreover, the binary pilots were 

exploited in the QE form to avoid the issue of distribution. We have presented the 

performance of the binary pilot case where the MSE had no difference from the 

complex pilot case in the simulation. At last, we have provided the quantisation in the 

data transmission on the uplink of DD-MaMIMO. The achievable SE per user was 

derived with respect to the MMSE estimation of the channel and data, given a limited-

capacity fronthaul.  

The simulation results showed that the QE form with the MMSE data detection had 

a better SE than the EQ form in the DD-MaMIMO system. But, the disadvantage is all 

the estimation is processed at the EPU which leads to the high computation complexity, 

and the latency may be increased if the fronthaul links have a bad quality of service. In 

the EQ form, the computation burden at the EPU can be deducted by processing the 

channel estimation at the AP where only the quantised version of the estimated channel 

are transferred to the EPU. Overall, the trade off between the SE and the computation 

complexity depends on the specific requirements of the system, including the factors 

such as fronthaul capacity, latency requirements, computational resources and the 

nature of the application being supported. 

4.8 Appendix 

Appendix 4.A: Proof of Theorem 4.3 (n = 2) 

First, we prove the case when there are only two real product variables (n = 2). The 

characteristic function of the sum of 𝑍1 and 𝑍2 based on Lemma 4.1 is given by: 

 

𝜑𝑍(𝑡) = 𝔼{𝑒
𝑖𝑡𝑧} = 𝔼{𝑒𝑖𝑡𝑧1𝑒𝑖𝑡𝑧2} 

= (1 + 𝑏1𝑡
2)−

1
2(1 + 𝑏1𝑡

2)−
1
2 

= (1 + 𝑏1𝑡
2)−1 

(4.57) 

By using the inverse theorem of characteristic function and solving the integral, the 

pdf (4.27) is then calculated. Here, we can solve the integral by exploiting the residue 

theorem. We first discuss the case 𝑧 < 0 and the contour 𝐶 goes from −𝑅 to 𝑅 where 
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𝑅 > 1/√𝑏1 on the real axis and then counterclockwise along a semicircle centred at 

origin from  𝑅 to −𝑅. The integral (4.27) can be expressed by: 

 

𝑓𝑍(𝑧) =
1

2𝜋
∫

𝑒−𝑖𝑡𝑧

1 + 𝑏1𝑡2

∞

−∞

𝑑𝑡 = lim
𝑅→∞

1

2𝜋
∫

𝑒−𝑖𝑡𝑧

1 + 𝑏1𝑡2
𝑑𝑡

𝑅

−𝑅

 

= lim
𝑅→∞

1

2𝜋
(∮

𝑒−𝑖𝑡𝑧

1 + 𝑏1𝑡2𝐶

𝑑𝑡 − ∫
𝑒−𝑖𝑡𝑧

1 + 𝑏1𝑡2
𝑑𝑡

𝑎𝑟𝑐

) 

= lim
𝑅→∞

1

2𝜋
(∮

𝑒−𝑖𝑡𝑧

𝑏1(𝑡 + 𝑖/√𝑏1)(𝑡 − 𝑖/√𝑏1)𝐶

𝑑𝑡 − ∫
𝑒−𝑖𝑡𝑧

1 + 𝑏1𝑡
2
𝑑𝑡

𝑎𝑟𝑐

) 

=
1

2𝜋
(2𝜋𝑖 ∙ 𝑅𝑒𝑠

𝑡=
𝑖

√𝑏1

𝑒−𝑖𝑡𝑧

1 + 𝑏1𝑡2
− lim
𝑅→∞

∫
𝑒−𝑖𝑡𝑧

1 + 𝑏1𝑡2
𝑑𝑡

𝑎𝑟𝑐

) 

=
(𝑎) 1

2𝜋
(2𝜋𝑖 ∙

𝑒

𝑧

√𝑏1

2√𝑏1𝑖
− lim
𝑅→∞

∫
𝑒−𝑖𝑡𝑧

1 + 𝑏1𝑡2
𝑑𝑡

𝑎𝑟𝑐

) 

=
𝑒

𝑧

√𝑏1

2√𝑏1
 

(4.58) 

where 𝑎𝑟𝑐  represents the contour of the semicircle, 𝑅𝑒𝑠  denotes the residue and the 

integral in step (a) is solved by: 

 

lim
𝑅→∞

|∫
𝑒−𝑖𝑡𝑧

1 + 𝑏1𝑡2
𝑑𝑡

𝑎𝑟𝑐

| 

=
(𝑎)

lim
𝑅→∞

|∫
𝑒−𝑖𝑧𝑅𝑒

𝑖𝜑

1 + 𝑏1(𝑅𝑒𝑖𝜑)2
𝑖𝑅𝑒𝑖𝜑𝑑𝜑

𝜋

0

| 

≤
(𝑏)

lim
𝑅→∞

𝜋𝑅 ∙ 𝑠𝑢𝑝
𝜑∈[0,𝜋]

|
𝑒−𝑖𝑧𝑅𝑒

𝑖𝜑
𝑒𝑖𝜑

1 + 𝑏1(𝑅𝑒𝑖𝜑)2
| 

= lim
𝑅→∞

𝜋𝑅 ∙ 𝑠𝑢𝑝
𝜑∈[0,𝜋]

|𝑒−𝑖𝑧𝑅(cos𝜑+𝑖∙sin𝜑)+𝑖𝜑|

|1 + 𝑏1𝑅2(cos 2𝜑 + 𝑖 ∙ sin 2𝜑)|
 

=
(𝑐)
lim
𝑅→∞

𝜋𝑅 ∙ 𝑠𝑢𝑝
𝜑∈[0,𝜋]

|𝑒𝑖(𝜑−𝑧𝑅 cos𝜑)+𝑧𝑅 sin𝜑|

√(1 + 𝑏1𝑅2 cos 2𝜑)2 + 𝑏1
2𝑅4 sin2 2𝜑

 

= lim
𝑅→∞

𝜋𝑅 ∙ 𝑠𝑢𝑝
𝜑∈[0,𝜋]

|𝑒𝑧𝑅 sin𝜑|

√𝑏1
2𝑅4 + 2𝑏1𝑅

2 cos 2𝜑 + 1
 

(4.59) 
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≤
(𝑑)

lim
𝑅→∞

𝜋𝑅 ∙ 𝑠𝑢𝑝
𝜑∈[0,𝜋]

1

√𝑏1
2𝑅4 + 2𝑏1𝑅2 cos 2𝜑 + 1

 

≤ lim
𝑅→∞

𝜋𝑅 ∙
1

√𝑏1
2𝑅4 − 2𝑏1𝑅2 + 1

= lim
𝑅→∞

𝜋𝑅 ∙
1

𝑏1𝑅2 − 1
= 0 

where step (a) expresses 𝑡 in polar form: 𝑡 = 𝑅𝑒𝑖𝜑, and the absolute value of 𝑖 is equal 

to one. The argument 𝑠𝑢𝑝 denotes the supremum in step (b). The inequality is satisfied 

because of the property of the integral by which we can multiply the maximum value 

of the integrand by the length of the integral trajectory. Step (c) includes the term 

|𝑒𝑖(𝜑−𝑧𝑅 cos𝜑)|  of which the absolute value is one. Since we assume 𝑧 < 0  and 

𝑅 sin𝜑 ≥ 0  when 𝜑 ∈ [0, 𝜋] , |𝑒𝑧𝑅 sin𝜑| ≤ 1  achieves step (d). Finally, the term 

2𝑏1𝑅
2 cos 2𝜑 has the minimum value −2𝑏1𝑅

2 which gives the result of the supremum, 

and (4.58) is proved.  

Next, we research the case 𝑧 > 0  and the contour 𝐶−  goes from 𝑅  to −𝑅  where 

𝑅 > 1/√𝑏1 on the real axis and then counterclockwise along a semicircle centred at 

origin from  −𝑅 to 𝑅. Then, we have a similar calculation as (4.58): 

 

𝑓𝑍(𝑧) =
1

2𝜋
∫

𝑒−𝑖𝑡𝑧

1 + 𝑏1𝑡2

∞

−∞

𝑑𝑡 

= lim
𝑅→∞

1

2𝜋
∫

𝑒−𝑖𝑡𝑧

1 + 𝑏1𝑡2
𝑑𝑡

𝑅

−𝑅

 

= lim
𝑅→∞

−
1

2𝜋
(∮

𝑒−𝑖𝑡𝑧

1 + 𝑏1𝑡2𝐶−
𝑑𝑡 − ∫

𝑒−𝑖𝑡𝑧

1 + 𝑏1𝑡2
𝑑𝑡

𝑎𝑟𝑐−
) 

= −
1

2𝜋
(2𝜋𝑖 ∙ 𝑅𝑒𝑠

𝑡=−
𝑖

√𝑏1

𝑒−𝑖𝑡𝑧

1 + 𝑏1𝑡2
− lim
𝑅→∞

∫
𝑒−𝑖𝑡𝑧

1 + 𝑏1𝑡2
𝑑𝑡

𝑎𝑟𝑐−
) 

= −
1

2𝜋
∙ 2𝜋𝑖 ∙ (−

𝑒
−
𝑧

√𝑏1

2√𝑏1𝑖
) 

=
𝑒
−
𝑧

√𝑏1

2√𝑏1
 

 

(4.60) 
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According to the integral contour, we have the relationship ∮ 𝑑𝑡
𝐶−

= ∫ 𝑑𝑡
𝑎𝑟𝑐−

+

 ∫ 𝑑𝑡
−𝑅

𝑅
 , where 𝑎𝑟𝑐−  represents the semicircle from −𝑅  to 𝑅  with the angle 𝜋  to 2𝜋 . 

The integral on the 𝑎𝑟𝑐− is estimated: 

 lim
𝑅→∞

|∫
𝑒−𝑖𝑡𝑧

1 + 𝑏1𝑡2
𝑑𝑡

𝑎𝑟𝑐−
| = lim

𝑅→∞
|∫

𝑒−𝑖𝑧𝑅𝑒
𝑖𝜑

1 + 𝑏1𝑅2𝑒2𝑖𝜑
𝑖𝑅𝑒𝑖𝜑𝑑𝜑

 2𝜋 

𝜋

| (4.61) 

= lim
𝑅→∞

𝜋𝑅 ∙ 𝑠𝑢𝑝
𝜑∈[𝜋,2𝜋]

|
𝑒𝑧𝑅 sin𝜑

1 + 𝑏1𝑅
2𝑒2𝑖𝜑

| ≤ lim
𝑅→∞

𝜋𝑅 ∙ 𝑠𝑢𝑝
𝜑∈[𝜋,2𝜋]

|
1

1 + 𝑏1𝑅
2𝑒2𝑖𝜑

| 

≤ lim
𝑅→∞

𝜋𝑅 ∙
1

𝑏1𝑅2 − 1
= 0 

where 𝑧 > 0 and 𝑅 sin𝜑 ≤ 0 when 𝜑 ∈ [𝜋, 2𝜋], hence 𝑒𝑧𝑅 sin𝜑 ≤ 1. If 𝑧 = 0, we can 

easily obtain the result of the integral as 𝜋/√𝑏1 and thus 

 𝑓𝑍(𝑧) =
1

2𝜋
∫

𝑒−𝑖𝑡𝑧

1 + 𝑏1𝑡2

∞

−∞

𝑑𝑡 =
𝑒
−
|𝑧|

√𝑏1

2√𝑏1
 (4.62) 

We combine the results of (4.58), (4.60) and (4.62), which completes the proof.  

Appendix 4.B: Proof of Theorem 4.3 (n > 2) 

The characteristic function of the sum of the set 𝑍 = ∑ 𝑍𝑘
𝑛
𝑘=1  is given by Lemma 4.1: 

 𝜑𝑍(𝑡) = 𝔼{𝑒
𝑖𝑡𝑧} (4.63) 

= 𝔼{𝑒𝑖𝑡 ∑ 𝑧𝑘
𝑛
𝑘=1 } = 𝔼 {∏𝑒𝑖𝑡𝑧𝑘

𝑛

𝑘=1

} 

=
1

∏ (1 + 𝑏𝑚𝑡2)
𝑛/2
𝑚=1

 

Using the inverse theorem of the characteristic function: 

 𝑓𝑍(𝑧) =
1

2𝜋
∫

𝑒−𝑖𝑡𝑧

∏ (1 + 𝑏𝑚𝑡2)
𝑛/2
𝑚=1

∞

−∞

𝑑𝑡 (4.64) 
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To solve this integral, we adopt the residue theorem that has the same steps as (4.58). 

First, we present the case 𝑧 < 0  and the contour 𝐶  goes from −𝑅  to 𝑅  where 𝑅 >

max 1/√𝑏𝑚 on the real axis and then counterclockwise along a semicircle centred at 

origin from  𝑅 to −𝑅. The integral (4.64) can be expressed by: 

 

𝑓𝑍(𝑧) =
1

2𝜋
∫

𝑒−𝑖𝑡𝑧

∏ (1 + 𝑏𝑚𝑡2)
𝑛
2
𝑚=1

∞

−∞

𝑑𝑡 

= lim
𝑅→∞

1

2𝜋
∫

𝑒−𝑖𝑡𝑧

∏ (1 + 𝑏𝑚𝑡2)
𝑛
2
𝑚=1

𝑑𝑡
𝑅

−𝑅

 

= lim
𝑅→∞

1

2𝜋
(∮

𝑒−𝑖𝑡𝑧

∏ (1 + 𝑏𝑚𝑡2)
𝑛
2
𝑚=1

𝐶

𝑑𝑡 − ∫
𝑒−𝑖𝑡𝑧

∏ (1 + 𝑏𝑚𝑡2)
𝑛
2
𝑚=1

𝑑𝑡
𝑎𝑟𝑐

) 

=
1

2𝜋
(2𝜋𝑖 ∙ ∑ 𝑅𝑒𝑠

𝑡=
𝑖

√𝑏𝑚

𝑒−𝑖𝑡𝑧

∏ (1 + 𝑏𝑚𝑡2)
𝑛
2
𝑚=1

𝑛
2

𝑚=1

) 

= 𝑖 ∙ ∑
𝑒

𝑧

√𝑏𝑚

𝑏𝑚(𝑖/√𝑏𝑚 + 𝑖/√𝑏𝑚) ∙ ∏ (1 −
𝑏𝑚′

𝑏𝑚
)

𝑛
2
𝑚′≠𝑚

𝑛
2

𝑚=1

 

=
1

2
∑

𝑏𝑚

𝑛−3
2 𝑒

𝑧

√𝑏𝑚

∏ (𝑏𝑚 − 𝑏𝑚′)
𝑛/2

𝑚′≠𝑚

𝑛/2

𝑚=1

 , 𝑏𝑚 ≠ 𝑏𝑚′  

(4.65) 

where 𝑎𝑟𝑐 represents the semicircle from −𝑅 to 𝑅 with the angle from 0 to 𝜋 and the 

integral on 𝑎𝑟𝑐 has the result zero when 𝑅 tends to infinity. This can be proved in the 

same approach as (4.59). Similarly, if 𝑧 > 0, we obtain the result as: 

 

𝑓𝑍(𝑧) =
1

2𝜋
∫

𝑒−𝑖𝑡𝑧

∏ (1 + 𝑏𝑚𝑡2)
𝑛
2
𝑚=1

∞

−∞

𝑑𝑡 

=
1

2
∑

𝑏𝑚

𝑛−3
2 𝑒

−
𝑧

√𝑏𝑚

∏ (𝑏𝑚 − 𝑏𝑚′)
𝑛/2

𝑚′≠𝑚

𝑛/2

𝑚=1

 , 𝑏𝑚 ≠ 𝑏𝑚′ 

(4.66) 

and when  𝑧 = 0 
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𝑓𝑍(0) =
1

2𝜋
∫

1

∏ (1 + 𝑏𝑚𝑡2)
𝑛
2
𝑚=1

∞

−∞

𝑑𝑡 

=
1

2
∑

𝑏𝑚

𝑛−3
2

∏ (𝑏𝑚 − 𝑏𝑚′)
𝑛/2

𝑚′≠𝑚

𝑛/2

𝑚=1

 , 𝑏𝑚 ≠ 𝑏𝑚′ 

(4.67) 

Thus, we combine the results (4.65), (4.66) and (4.67) which completes the proof. 

Appendix 4.C: Proof of Theorem 4.4 (n > 2) 

Introducing the Lemma 4.1 which gives the pdf of 𝑧 , the pdf of 𝑦 = 𝑧 + 𝑥  can be 

expressed by: 

 

𝑓𝑌(𝑦) = ∫ 𝑓𝑋(𝑥)
∞

−∞

𝑓𝑍(𝑦 − 𝑥)𝑑𝑥 

= ∫
1

𝜎𝑥√2𝜋
𝑒
−
𝑥2

2𝜎𝑥
2

∞

−∞

1

2
∑

𝑏𝑚

𝑛−3
2 𝑒

−
|𝑦−𝑥|

√𝑏𝑚

∏ (𝑏𝑚 − 𝑏𝑚′)
𝑛
2
𝑚′≠𝑚

𝑛
2

𝑚=1

𝑑𝑥 

=
1

2𝜎𝑥√2𝜋
∑

𝑏𝑚

𝑛−3
2

∏ (𝑏𝑚 − 𝑏𝑚′)
𝑛
2
𝑚′≠𝑚

𝑛
2

𝑚=1

∫ 𝑒
−
𝑥2

2𝜎𝑥
2

∞

−∞

𝑒
−
|𝑦−𝑥|

√𝑏𝑚 𝑑𝑥 

=
1

2𝜎𝑥√2𝜋
∑

𝑏𝑚

𝑛−3
2

∏ (𝑏𝑚 − 𝑏𝑚′)
𝑛
2
𝑚′≠𝑚

𝑛
2

𝑚=1

𝐼𝑚 

(4.68) 

where  

 

𝐼𝑚 = ∫ 𝑒
−
𝑥2

2𝜎𝑥
2

∞

−∞

𝑒
−
|𝑦−𝑥|

√𝑏𝑚 𝑑𝑥 

= ∫ 𝑒
−
𝑥2

2𝜎𝑥
2−
𝑦−𝑥

√𝑏𝑚

𝑦

−∞

𝑑𝑥 + ∫ 𝑒
−
𝑥2

2𝜎𝑥
2+
𝑦−𝑥

√𝑏𝑚

∞

𝑦

𝑑𝑥 

= ∫ 𝑒
−

𝑥2−
2𝜎𝑥

2

√𝑏𝑚
𝑥+

2𝜎𝑥
2

√𝑏𝑚
𝑦

2𝜎𝑥
2

𝑦

−∞

𝑑𝑥 + ∫ 𝑒
−

𝑥2+
2𝜎𝑥

2

√𝑏𝑚
𝑥−

2𝜎𝑥
2

√𝑏𝑚
𝑦

2𝜎𝑥
2

∞

𝑦

𝑑𝑥 

(4.69) 
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= ∫ 𝑒
−

(𝑥−
𝜎𝑥
2

√𝑏𝑚
)

2

2𝜎𝑥
2

𝑦

−∞

𝑒
−

𝑦

 √𝑏𝑚
+
𝜎𝑥
2

2𝑏𝑚𝑑𝑥 + ∫ 𝑒
−

(𝑥+
𝜎𝑥
2

√𝑏𝑚
)

2

2𝜎𝑥
2

∞

𝑦

𝑒

𝑦

 √𝑏𝑚
+
𝜎𝑥
2

2𝑏𝑚𝑑𝑥 

= 𝑒
−

𝑦

 √𝑏𝑚
+
𝜎𝑥
2

2𝑏𝑚√
𝜋𝜎𝑥2

2
erfc (

−√𝑏𝑚𝑦 + 𝜎𝑥
2

√2𝑏𝑚𝜎𝑥2
) + 𝑒

𝑦

 √𝑏𝑚
+
𝜎𝑥
2

2𝑏𝑚√
𝜋𝜎𝑥2

2
erfc (

√𝑏𝑚𝑦 + 𝜎𝑥
2

√2𝑏𝑚𝜎𝑥2
) 

Then, we substitute (4.69) into (4.68): 

 

𝑓𝑌(𝑦) =
1

4
∑

𝑏𝑚

𝑛−3
2

∏ (𝑏𝑚 − 𝑏𝑚′)
𝑛
2
𝑚′≠𝑚

𝑛
2

𝑚=1

(𝑒
−

𝑦

√𝑏𝑚
+
𝜎𝑥
2

2𝑏𝑚erfc (
−√𝑏𝑚𝑦 + 𝜎𝑥

2

√2𝜎𝑥2𝑏𝑚
)

+ 𝑒

𝑦

√𝑏𝑚
+
𝜎𝑥
2

2𝑏𝑚erfc (
√𝑏𝑚𝑦 + 𝜎𝑥

2

√2𝜎𝑥2𝑏𝑚
)) 

(4.70) 

which completes the proof. 

Appendix 4.D: Proof of Lemma 4.2 and Lemma 4.3 

 

∫𝑥𝑒𝑏𝑥+𝑑erfc(𝑎𝑥 + 𝑐) 𝑑𝑥 

=
1

𝑏
𝑒𝑏𝑥+𝑑𝑥erfc(𝑎𝑥 + 𝑐) −

1

𝑏
∫𝑒𝑏𝑥+𝑑 𝑑(𝑥 ∙ erfc(𝑎𝑥 + 𝑐)) 

=
1

𝑏
𝑒𝑏𝑥+𝑑𝑥erfc(𝑎𝑥 + 𝑐) −

1

𝑏
∫𝑒𝑏𝑥+𝑑erfc(𝑎𝑥 + 𝑐) 𝑑𝑥

−
1

𝑏
∫𝑒𝑏𝑥+𝑑𝑥 𝑑(erfc(𝑎𝑥 + 𝑐)) 

(4.71) 

where 

 

∫𝑒𝑏𝑥+𝑑erfc(𝑎𝑥 + 𝑐) 𝑑𝑥 

=
1

𝑏
𝑒𝑏𝑥+𝑑erfc(𝑎𝑥 + 𝑐) −

1

𝑏
∫𝑒𝑏𝑥+𝑑 𝑑(erfc(𝑎𝑥 + 𝑐)) 

=
1

𝑏
𝑒𝑏𝑥+𝑑erfc(𝑎𝑥 + 𝑐) −

1

𝑏
∫𝑒𝑏𝑥+𝑑 (−

2𝑎

√𝜋
) 𝑒−(𝑎𝑥+𝑐)

2
𝑑𝑥 

=
1

𝑏
𝑒𝑏𝑥+𝑑erfc(𝑎𝑥 + 𝑐) +

2𝑎

𝑏√𝜋
 ∫ 𝑒−𝑎

2𝑥2−2𝑎𝑐𝑥+𝑏𝑥−𝑐2+𝑑 𝑑𝑥 

(4.72) 



4.8 Appendix  92 

 

=
1

𝑏
𝑒𝑏𝑥+𝑑erfc(𝑎𝑥 + 𝑐) +

2𝑎

𝑏√𝜋
 ∫𝑒

−(𝑎𝑥+𝑐−
𝑏
2𝑎
)
2

−
𝑏𝑐
𝑎
+
𝑏2

4𝑎2
+𝑑
𝑑𝑥 

=
1

𝑏
𝑒𝑏𝑥+𝑑erfc(𝑎𝑥 + 𝑐) +

2𝑎

𝑏√𝜋
𝑒
−
𝑏𝑐
𝑎
+
𝑏2

4𝑎2
+𝑑
∙ (−

√𝜋

2𝑎
) erfc (𝑎𝑥 + 𝑐 −

𝑏

2𝑎
) 

=
1

𝑏
(𝑒𝑏𝑥+𝑑erfc(𝑎𝑥 + 𝑐) − 𝑒

𝑏2

4𝑎2
−
𝑏𝑐
𝑎
+𝑑
erfc (𝑎𝑥 + 𝑐 −

𝑏

2𝑎
)) 

which completes the proof of Lemma 4.3. 

 

∫𝑒𝑏𝑥+𝑑𝑥 𝑑(erfc(𝑎𝑥 + 𝑐)) 

= −
2𝑎

√𝜋
∫𝑒𝑏𝑥+𝑑𝑥𝑒−(𝑎𝑥+𝑐)

2
𝑑𝑥 

= −
2𝑎

√𝜋
(−

1

2𝑎2
𝑒−𝑎

2𝑥2𝑒𝑏𝑥+𝑑−2𝑎𝑐𝑥−𝑐
2
+

1

2𝑎2
∫𝑒−𝑎

2𝑥2 𝑑𝑒𝑏𝑥+𝑑−2𝑎𝑐𝑥−𝑐
2
) 

=
1

𝑎√𝜋
(𝑒−(𝑎𝑥+𝑐)

2+𝑏𝑥−𝑑 −∫𝑒−𝑎
2𝑥2(𝑏 − 2𝑎𝑐) 𝑒𝑏𝑥+𝑑−2𝑎𝑐𝑥−𝑐

2
𝑑𝑥) 

=
1

𝑎√𝜋
(𝑒−(𝑎𝑥+𝑐)

2+𝑏𝑥−𝑑 − (𝑏 − 2𝑎𝑐)∫𝑒
−(𝑎𝑥+𝑐−

𝑏
2𝑎
)
2

−
𝑏𝑐
𝑎
+
𝑏2

4𝑎2
+𝑑
𝑑𝑥) 

=
1

𝑎√𝜋
(𝑒−(𝑎𝑥+𝑐)

2+𝑏𝑥−𝑑 +
(𝑏 − 2𝑎𝑐)√𝜋

2𝑎
𝑒
𝑏2

4𝑎2
−
𝑏𝑐
𝑎
+𝑑
erfc (𝑎𝑥 + 𝑐 −

𝑏

2𝑎
)) 

=
1

𝑎√𝜋
𝑒−(𝑎𝑥+𝑐)

2+𝑏𝑥−𝑑 +
(𝑏 − 2𝑎𝑐)

2𝑎2
𝑒
𝑏2

4𝑎2
−
𝑏𝑐
𝑎
+𝑑
erfc (𝑎𝑥 + 𝑐 −

𝑏

2𝑎
) 

(4.73) 

Then, we substitute (4.72) and (4.73) into (4.71): 

 

∫𝑥𝑒𝑏𝑥+𝑑erfc(𝑎𝑥 + 𝑐) 𝑑𝑥 

=
1

𝑏
𝑒𝑏𝑥+𝑑𝑥erfc(𝑎𝑥 + 𝑐) −

1

𝑏
∫𝑒𝑏𝑥+𝑑erfc(𝑎𝑥 + 𝑐) 𝑑𝑥

−
1

𝑏
∫𝑒𝑏𝑥+𝑑𝑥 𝑑(erfc(𝑎𝑥 + 𝑐)) 

=
1

𝑏
𝑒𝑏𝑥+𝑑𝑥erfc(𝑎𝑥 + 𝑐)

−
1

𝑏2
(𝑒𝑏𝑥+𝑑erfc(𝑎𝑥 + 𝑐) − 𝑒

𝑏2

4𝑎2
−
𝑏𝑐
𝑎
+𝑑
erfc (𝑎𝑥 + 𝑐 −

𝑏

2𝑎
)) 

(4.74) 
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−
1

𝑎𝑏√𝜋
𝑒−(𝑎𝑥+𝑐)

2+𝑏𝑥+𝑑 −
(𝑏 − 2𝑎𝑐)

2𝑎2𝑏
𝑒
𝑏2

4𝑎2
−
𝑏𝑐
𝑎
+𝑑
erfc (𝑎𝑥 + 𝑐 −

𝑏

2𝑎
) 

= (
1

𝑏2
−

1

2𝑎2
+
𝑐

𝑎𝑏
) 𝑒

𝑏2

4𝑎2
−
𝑏𝑐
𝑎
+𝑑
erfc (𝑎𝑥 + 𝑐 −

𝑏

2𝑎
) +

𝑏𝑥 − 1

𝑏2
𝑒𝑏𝑥+𝑑erfc(𝑎𝑥 + 𝑐)

−
1

𝑎𝑏√𝜋
𝑒−(𝑎𝑥+𝑐)

2+𝑏𝑥+𝑑 

which completes the proof of Lemma 4.2. 

Appendix 4.E: Proof of Theorem 4.5 

We first prove the case when 𝑛 = 2: 

 

𝛼 =
1

𝑃𝑥
∫ 𝑥𝑦(𝑥)𝑓𝑋(𝑥)𝑑𝑥
∞

−∞

 

=
1

𝜎𝑥2
∫ 𝑥 (−

𝐿 − 1

2
)Δ

(−
𝐿
2
+1)Δ

−∞

1

4√𝑏1
(𝑒

−
𝑥

√𝑏1
+
𝜎𝑛
2

2𝑏1erfc (
−√𝑏1𝑥 + 𝜎𝑛

2

√2𝜎𝑛2𝑏1
)

+ 𝑒

𝑥

√𝑏1
+
𝜎𝑛
2

2𝑏1erfc (
√𝑏1𝑥 + 𝜎𝑛

2

√2𝜎𝑛2𝑏1
))𝑑𝑥 

+
1

𝜎𝑥2
∑ ∫ 𝑥 (𝑙 +

1

2
)Δ

(𝑙+1)Δ

𝑙Δ

𝐿
2
−2

𝑙=−
𝐿
2
+1

1

4√𝑏1
(𝑒

−
𝑥

√𝑏1
+
𝜎𝑛
2

2𝑏1erfc (
−√𝑏1𝑥 + 𝜎𝑛

2

√2𝜎𝑛2𝑏1
)

+ 𝑒

𝑥

√𝑏1
+
𝜎𝑛
2

2𝑏1erfc (
√𝑏1𝑥 + 𝜎𝑛

2

√2𝜎𝑛
2𝑏1

))𝑑𝑥 

+
1

𝜎𝑥2
∫ 𝑥

𝐿 − 1

2
Δ

∞

(
𝐿
2
−1)Δ

1

4√𝑏1
(𝑒

−
𝑥

√𝑏1
+
𝜎𝑛
2

2𝑏1erfc (
−√𝑏1𝑥 + 𝜎𝑛

2

√2𝜎𝑛2𝑏1
)

+ 𝑒

𝑥

√𝑏1
+
𝜎𝑛
2

2𝑏1erfc (
√𝑏1𝑥 + 𝜎𝑛

2

√2𝜎𝑛2𝑏1
))𝑑𝑥 

(4.75) 
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= ∑
(𝑙 +

1
2)Δ

4𝜎𝑥2√𝑏1

𝐿
2
−2

𝑙=−
𝐿
2
+1

[(√𝑏1(𝑙 + 1)Δ − 𝑏1)𝑒

𝑙+1

√𝑏1
Δ+

𝜎𝑛
2

2𝑏1erfc (
𝑙 + 1

√2𝜎𝑛
Δ +

𝜎𝑛

√2𝑏1
)

− (√𝑏1(𝑙 + 1)Δ + 𝑏1)𝑒
−
𝑙+1

√𝑏1
Δ+

𝜎𝑛
2

2𝑏1
 

erfc (−
𝑙 + 1

√2𝜎𝑛
Δ +

𝜎𝑛

√2𝑏1
)

− 2𝜎𝑛√
2𝑏1
𝜋
𝑒
−
(𝑙+1)2Δ2

2𝜎𝑛
2
] 

+ ∑
(𝑙 +

1
2)Δ

4𝜎𝑥2√𝑏1

𝐿
2
−2

𝑙=−
𝐿
2
+1

[(√𝑏1𝑙Δ + 𝑏1)𝑒
−
𝑙Δ

√𝑏1
+
𝜎𝑛
2

2𝑏1
 

erfc (−
𝑙Δ

√2𝜎𝑛
+

𝜎𝑛

√2𝑏1
)

− (√𝑏1𝑙Δ − 𝑏1)𝑒

𝑙

√𝑏1
Δ+

𝜎𝑛
2

2𝑏1erfc (
𝑙Δ

√2𝜎𝑛
+

𝜎𝑛

√2𝑏1
) + 2𝜎𝑛√

2𝑏1
𝜋
𝑒
−
𝑙2Δ2

2𝜎𝑛
2
] 

+
(𝐿 − 1)Δ

4𝜎𝑥2√𝑏1
[(
𝐿 − 2

2
Δ√𝑏1 + 𝑏1) 𝑒

−
𝐿−2

2√𝑏1
Δ+

𝜎𝑛
2

2𝑏1erfc (−
𝐿 − 2

2√2𝜎𝑛
Δ +

𝜎𝑛
2𝑏1

)

− (
𝐿 − 2

2
Δ√𝑏1 − 𝑏1) 𝑒

𝐿−2

2√𝑏1
Δ+

𝜎𝑛
2

2𝑏1erfc (
𝐿 − 2

2√2𝜎𝑛
Δ +

𝜎𝑛
2𝑏1

)

+ 2𝜎𝑛√
2𝑏1
𝜋
𝑒
−
(𝐿−2)2Δ2

8𝜎𝑛
2
] 

= ∑
(𝑙′ −

1
2)Δ

4𝜎𝑥
2√𝑏1

𝐿
2
−1

𝑙′=−
𝐿
2
+1

[(√𝑏1𝑙
′Δ − 𝑏1)𝑒

𝑙′

√𝑏1
Δ+

𝜎𝑛
2

2𝑏1erfc (
𝑙′

√2𝜎𝑛
Δ +

𝜎𝑛

√2𝑏1
)

− (√𝑏1𝑙
′Δ + 𝑏1)𝑒

−
𝑙′

√𝑏1
Δ+

𝜎𝑛
2

2𝑏1
 

erfc (−
𝑙′

√2𝜎𝑛
Δ +

𝜎𝑛

√2𝑏1
)

− 2𝜎𝑛√
2𝑏1
𝜋
𝑒
−
𝑙′
2
Δ2

2𝜎𝑛
2
] 
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+ ∑
(𝑙 +

1
2)Δ

4𝜎𝑥2√𝑏1

𝐿
2
−1

𝑙=−
𝐿
2
+1

[(√𝑏1𝑙Δ + 𝑏1)𝑒
−
𝑙Δ

√𝑏1
+
𝜎𝑛
2

2𝑏1
 

erfc (−
𝑙Δ

√2𝜎𝑛
+

𝜎𝑛

√2𝑏1
)

− (√𝑏1𝑙Δ − 𝑏1)𝑒

𝑙

√𝑏1
Δ+

𝜎𝑛
2

2𝑏1erfc (
𝑙Δ

√2𝜎𝑛
+

𝜎𝑛

√2𝑏1
) + 2𝜎𝑛√

2𝑏1
𝜋
𝑒
−
𝑙2Δ2

2𝜎𝑛
2
] 

= ∑
Δ

4𝜎𝑥2√𝑏1

𝐿
2
−1

𝑙=−
𝐿
2
+1

[(√𝑏1𝑙Δ + 𝑏1)𝑒
−
𝑙Δ

√𝑏1
+
𝜎𝑛
2

2𝑏1
 

erfc (−
𝑙Δ

√2𝜎𝑛
+

𝜎𝑛

√2𝑏1
)

− (√𝑏1𝑙Δ − 𝑏1)𝑒

𝑙Δ

√𝑏1
+
𝜎𝑛
2

2𝑏1erfc (
𝑙Δ

√2𝜎𝑛
+

𝜎𝑛

√2𝑏1
) + 2𝜎𝑛√

2𝑏1
𝜋
𝑒
−
𝑙2Δ2

2𝜎𝑛
2
] 

=
Δ

2𝜎𝑥2
∑[(𝑙Δ + √𝑏1)𝑒

−
𝑙Δ

√𝑏1
+
𝜎𝑛
2

2𝑏1
 

erfc (−
𝑙Δ

√2𝜎𝑛
+

𝜎𝑛

√2𝑏1
)

𝐿
2
−1

𝑙=1

− (𝑙Δ − √𝑏1)𝑒

𝑙

√𝑏1
Δ+

𝜎𝑛
2

2𝑏1erfc (
𝑙Δ

√2𝜎𝑛
+

𝜎𝑛

√2𝑏1
) + 2𝜎𝑛√

2

𝜋
𝑒
−
𝑙2Δ2

2𝜎𝑛
2
] 

+
Δ

2𝜎𝑥2
(√𝑏1𝑒

𝜎𝑛
2

2𝑏1erfc (
𝜎𝑛

√2𝑏1
) + 𝜎𝑛√

2

𝜋
 ) 

where 𝑙′ = 𝑙 + 1. Then, we calculate 𝛾: 

 

𝛾 =
1

𝑃𝑥
∫ |𝑦(𝑥)|2𝑓𝑋(𝑥)𝑑𝑥
∞

−∞

 

=
1

𝜎𝑥2
∫ (

𝐿 − 1

2
)
2

Δ2
−(
𝐿
2
−1)Δ

−∞

1

4√𝑏1
(𝑒

−
𝑥

√𝑏1
+
𝜎𝑛
2

2𝑏1erfc (
−√𝑏1𝑥 + 𝜎𝑛

2

√2𝜎𝑛2𝑏1
)

+ 𝑒

𝑥

√𝑏1
+
𝜎𝑛
2

2𝑏1erfc (
√𝑏1𝑥 + 𝜎𝑛

2

√2𝜎𝑛2𝑏1
))𝑑𝑥 

(4.76) 
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+
1

𝜎𝑥2
∑ ∫ (𝑙 +

1

2
)
2

Δ2
(𝑙+1)Δ

𝑙Δ

𝐿
2
−2

𝑙=−
𝐿
2
+1

1

4√𝑏1
(𝑒

−
𝑥

√𝑏1
+
𝜎𝑛
2

2𝑏1erfc (
−√𝑏1𝑥 + 𝜎𝑛

2

√2𝜎𝑛2𝑏1
)

+ 𝑒

𝑥

√𝑏1
+
𝜎𝑛
2

2𝑏1erfc (
√𝑏1𝑥 + 𝜎𝑛

2

√2𝜎𝑛2𝑏1
))𝑑𝑥 

+
1

𝜎𝑥2
∫ (

𝐿 − 1

2
)
2

Δ2
∞

(
𝐿
2
−1)Δ

1

4√𝑏1
(𝑒

−
𝑥

√𝑏1
+
𝜎𝑛
2

2𝑏1erfc (
−√𝑏1𝑥 + 𝜎𝑛

2

√2𝜎𝑛2𝑏1
)

+ 𝑒

𝑥

√𝑏1
+
𝜎𝑛
2

2𝑏1erfc (
√𝑏1𝑥 + 𝜎𝑛

2

√2𝜎𝑛2𝑏1
))𝑑𝑥 

=
Δ2

4𝜎𝑥2
∑ (𝑙′ −

1

2
)
2

[𝑒

𝑙′Δ

√𝑏1
+
𝜎𝑛
2

2𝑏1erfc (
𝑙′Δ

√2𝜎𝑛
+

𝜎𝑛

√2𝑏1
) − erfc (

𝑙′Δ

√2𝜎𝑛
)

𝐿
2
−1

𝑙′=−
𝐿
2
+1

− 𝑒
−
𝑙′Δ

√𝑏1
+
𝜎𝑛
2

2𝑏1erfc (−
𝑙′Δ

√2𝜎𝑛
+

𝜎𝑛

√2𝑏1
) + erfc (−

𝑙′Δ

√2𝜎𝑛
)] 

−
Δ2

4𝜎𝑥2
∑ (𝑙 +

1

2
)
2

[𝑒

𝑙Δ

√𝑏1
+
𝜎𝑛
2

2𝑏1erfc (
𝑙Δ

√2𝜎𝑛
+

𝜎𝑛

√2𝑏1
) − erfc (

𝑙Δ

√2𝜎𝑛
)

𝐿
2
−1

𝑙=−
𝐿
2
+1

− 𝑒
−
𝑙Δ

√𝑏1
+
𝜎𝑛
2

2𝑏1erfc (−
𝑙Δ

√2𝜎𝑛
+

𝜎𝑛

√2𝑏1
) + erfc (−

𝑙Δ

√2𝜎𝑛
)] +

Δ2

𝜎𝑥2
(
𝐿 − 1

2
)
2

 

=
Δ2

4𝜎𝑥
2
∑ 2𝑙 [𝑒

−
𝑙Δ

√𝑏1
+
𝜎𝑛
2

2𝑏1erfc (−
𝑙Δ

√2𝜎𝑛
+

𝜎𝑛

√2𝑏1
) − erfc (−

𝑙Δ

√2𝜎𝑛
)

𝐿
2
−1

𝑙=−
𝐿
2
+1

− 𝑒

𝑙Δ

√𝑏1
+
𝜎𝑛
2

2𝑏1erfc (
𝑙Δ

√2𝜎𝑛
+

𝜎𝑛

√2𝑏1
) + erfc (

𝑙Δ

√2𝜎𝑛
)] +

Δ2

𝜎𝑥2
(
𝐿 − 1

2
)
2

 

=
Δ2

𝜎𝑥2
∑𝑙 [𝑒

−
𝑙Δ

√𝑏1
+
𝜎𝑛
2

2𝑏1erfc (−
𝑙Δ

√2𝜎𝑛
+

𝜎𝑛

√2𝑏1
) − erfc (−

𝑙Δ

√2𝜎𝑛
)

𝐿
2
−1

𝑙=1

− 𝑒

𝑙Δ

√𝑏1
+
𝜎𝑛
2

2𝑏1erfc (
𝑙Δ

√2𝜎𝑛
+

𝜎𝑛

√2𝑏1
) + erfc (

𝑙Δ

√2𝜎𝑛
)] +

Δ2

𝜎𝑥2
(
𝐿 − 1

2
)
2

 

where 𝑙′ = 𝑙 + 1. Since the pdf when 𝑛 > 2 has the similar form as the case 𝑛 = 2 in 
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Theorem 4.4, the scenario of 𝑛 > 2 in Theorem 4.5 can be proved in the same method 

as (4.75) and (4.76) by introducing Lemma 4.2 and Lemma 4.3. Then, the proof is 

completed. 



  

Chapter 5 

Local Estimation in Decentralised 

Distributed Massive MIMO 

5.1 Introduction 

Considering where the signal processing is performed has become a notable and 

significant topic of discussion within the context of the physical layer of radio access 

network (RAN). To fulfil the demand of sixth generation (6G) and the future wireless 

network, the location of signal processing needs to be investigated thoroughly. As we 

have stated in Chapter 3, all channel state information (CSI) and data are sent to the 

edge processing unit (EPU) for signal processing in decentralised distributed massive 

multiple-input multiple-output (DD-MaMIMO) which achieves a very high spectral 

efficiency (SE). However, the computational complexity for the EPU may dramatically 

increase when the number of served user terminals (UTs) grows. Furthermore, the 

performance is also influenced by the capacity of fronthaul which has been discussed 

in Chapter 4. In order to reduce the computational burden of EPU, we can move the 

signal processing to the access point (AP) in which the channel and data can be locally 

estimated and then transmitted to the EPU for the final decoding. Note that people often 

use either the term “local” or “decentralised” to indicate the signal processing which is 

happened at the AP in cell-free MaMIMO. We hence define this scheme as local 

estimation in DD-MaMIMO to distinguish it from the definition of “decentralised” 

given in Chapter 3. 

 Related work on local estimation has been widely studied for uplink transmission 

in cell-free MaMIMO. In [14, 21], minimum mean square error (MMSE) channel 

estimation and conjugate beamforming, also known as maximum ratio combining 

(MRC) or matched filter, were applied at the APs.   Papers [76, 77] researched the use 

of full-pilot zero-forcing (FZF) and partial full-pilot zero-forcing (PFZF) combining 

techniques at the AP, which presented a SE improvement compared to MRC. In [24], 

an MMSE estimator was adopted to estimate the channel and data at the APs with 



5.2 System Model  99 

 

different decoding methods: large scale fading decoding and directly averaging the 

estimated data sent by all APs. For both decoding schemes, the results in [24] showed 

that the use of local MMSE estimation outperformed the MRC technique. Additionally, 

for the local estimation with large scale fading decoding in cell-free MaMIMO, if the 

local number of antennas in the system remains constant, a configuration which 

contains fewer APs with multiple antennas can achieve a higher SE than the case with 

more APs equipped with single antenna. This is because using multiple antennas 

increases spatial diversity improving the data detection at each AP. In contrast, the 

scenario involving a large number of single-antenna APs performs better in DD-

MaMIMO with decentralised processing at the EPU. Furthermore, the local estimation 

scheme also fits the architecture of Open RAN, where the physical layer function of the 

baseband unit (BBU) in the conventional cloud RAN (C-RAN) is split between radio 

unit (RU) and distributed unit (DU) according to different options [53, 54].  

Therefore, in this chapter we will engage in a comprehensive discussion of local 

estimation in DD-MaMIMO, assuming perfect fronthaul links. Firstly, the system 

model and channel estimation will be introduced: these are similar to the concepts 

presented in Chapter 3, except for the location of channel estimation. Following that, 

we will explore local data detection, considering the estimation weights with different 

combining techniques. Given the estimated data acquired at the APs, two decoding 

schemes for data recovery will then be discussed. Furthermore, we will derive a general 

expression that can calculate SE in the local estimation system for arbitrary 

combinations. Finally, we will provide numerical results generated by the simulation. 

The results demonstrates that local estimation employing large scale fading decoding 

can achieve higher SE than when applying simple decoding in DD-MaMIMO. Besides, 

compared to the decentralised processing at the EPU, the local estimation perform a 

worse SE, especially for the single-antenna AP case. However, for a large number of 

antennas case, the discrepancy is not huge. 

5.2 System Model 

As stated in Chapter 3, we also assume in this chapter that there are 𝐾𝑠𝑒𝑟𝑣  UTs with a 

single antenna and 𝑀𝑐𝑜𝑜𝑟 APs equipped 𝑁𝑟 antennas each in the DD-MaMIMO system. 

The received signal 𝑥𝑚,𝑛 at the n-th antenna of the m-th AP on the uplink is given by:
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𝑥𝑚,𝑛 = ∑ 𝑔𝑚𝑛𝑘𝑠𝑘 +∑𝑔𝑖,𝑚𝑛𝑘𝑠𝑖,𝑘

𝐾𝑖𝑛𝑡

𝑘=1

+ 𝑧𝑚,𝑛

𝐾𝑠𝑒𝑟𝑣

𝑘=1

 

= ∑ ℎ𝑚𝑛𝑘𝛽𝑚𝑘
1
2⁄ 𝑠𝑘

𝐾𝑠𝑒𝑟𝑣

𝑘=1

+∑ℎ𝑖,𝑚𝑛𝑘𝛽𝑖,𝑚𝑘
1
2⁄ 𝑠𝑖,𝑘

𝐾𝑖𝑛𝑡

𝑘=1

+ 𝑧𝑚,𝑛 

(5.1) 

where 𝑔𝑚𝑛𝑘  and 𝑔𝑖,𝑚𝑛𝑘  are the channel coefficients, 𝑠𝑘  and 𝑠𝑖,𝑘  denote the transmit 

signals sent by served UTs and interfering UTs, respectively, 𝑧𝑚,𝑛 is the noise at the 

antenna, ℎ𝑚𝑛𝑘  and ℎ𝑖,𝑚𝑛𝑘  represent the Rayleigh fading coefficients and 𝛽𝑚𝑘  and 

𝛽𝑖,𝑚𝑘 are large scale fading coefficients. All parameters were defined in Chapter 3. This 

scalar received signal (5.1) can also be written in the vector form which is given in 

(3.10).  

5.3 Channel Estimation 

For the channel estimation the pilot sequences are sent from 𝐾𝑠𝑒𝑟𝑣 UTs to each antenna 

of the APs. Then, exploiting the received signals the channel is estimated at the AP 

which constitutes the local estimation. We consider the same method as Chapter 3 for 

channel estimation where the received pilots are given: 

 𝒚𝑝,𝑚𝑛 = ∑ 𝑔𝑚𝑛𝑘𝝋𝑘
𝑇

𝐾𝑠𝑒𝑟𝑣

𝑘=1

+∑𝑔𝑖,𝑚𝑛𝑘𝝋𝑖,𝑘
𝑇

𝐾𝑖𝑛𝑡

𝑘=1

+ 𝒛𝑝,𝑚𝑛 (5.2) 

where  𝝋𝑘 ∈ ℂ
𝜏𝑝×1 is one pilot sequence transmitted by the k-th UT,  𝝋𝑖,𝑘 ∈ ℂ

𝜏𝑝×1 is 

the pilot sequence sent by the interfering UT and 𝒛𝑝,𝑚𝑛 ∈ ℂ
1×𝜏𝑝  represents the noise at 

the n-th antenna of the m-th AP, in which the elements of the vector follow 𝒞𝒩(0, 𝜎𝑧
2). 

Here, we also assume that the channel coefficients among the 𝑁𝑟 antennas at the same 

AP are uncorrelated. Thus, we are able to apply least square (LS) estimation to the 

channel and obtain the estimated channel by weighting the LS outcomes. This is 

calculated by first projecting 𝒚𝑝,𝑚𝑛  onto 𝝋𝑘
∗  and scaling it by 1/𝜏𝑝 , followed by 

weighting the corresponding result with a weight 𝑐𝑚𝑛𝑘  that minimises the MSE. The 

channel estimate has the same form as (3.7): 

 𝑔̂𝑚𝑛𝑘 = 𝑐𝑚𝑛𝑘
1

𝜏𝑝
𝒚𝑝,𝑚𝑛𝝋𝑘

∗  (5.3) 
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=

(

 
𝛽𝑚𝑛𝑘

𝛽𝑚𝑛𝑘 +
1
𝜏𝑝2
∑ 𝛽𝑖,𝑚𝑛𝑘′𝔼 {|𝝋𝑖,𝑘′

𝑇 𝝋𝑘
∗ |
2
}

𝐾𝑖𝑛𝑡
𝑘′=1

+
𝜎𝑧2

𝜏𝑝)

 
1

𝜏𝑝
𝒚𝑝,𝑚𝑛𝝋𝑘

∗  

where we assume that the variance of the term 𝝋𝑖,𝑘′
𝑇 𝝋𝑘

∗  is 𝜏𝑝 and the MMSE weight 

𝑐𝑚𝑛𝑘 is defined in (3.6) where the large scale fading coefficient 𝛽𝑚𝑛𝑘 is determined by 

the positions of the AP and UT. Hence, 𝑐𝑚𝑛𝑘 is the same for all 𝑛 = 1,… ,𝑁𝑟. Due to 

the local estimation, the received pilot sequences are not required at the EPU which 

reduces by 𝜏𝑝𝑁𝑟𝑀𝑐𝑜𝑜𝑟 complex scalars the data to be sent from the APs to the EPU via 

the fronthaul in each coherence block. The MSE of the channel estimation is: 

 

𝜎𝑒𝑚𝑛𝑘
2 = 𝔼{|𝑔̃𝑚𝑛𝑘|

2} = 𝔼{|𝑔𝑚𝑛𝑘 − 𝑔̂𝑚𝑛𝑘|
2} 

= (1 − 𝑐𝑚𝑛𝑘)𝛽𝑚𝑛𝑘 

= (1 − 𝑐𝑚𝑘)𝛽𝑚𝑘 

(5.4) 

The proof is the same as (3.25). Here, the channel estimation error 𝑔̃𝑚𝑛𝑘  is 

uncorrelated with the estimated channel 𝑔̂𝑚𝑛𝑘 because of the use of MMSE. 

5.4 Data Detection and Decoding 

Instead of forwarding the channel estimates and data to the EPU, the known CSI for all 

served UTs at each AP can be utilised to locally estimate the data at the respective AP. 

After the initial data detection at the AP, the results are then sent to the EPU for the 

final decoding. In this sub-chapter, we mainly discuss the MR combining and the 

MMSE estimation for computing the local estimation of the data. First, the uplink 

received data at the m-th AP can be expressed by: 

 𝒚𝑢,𝑚 = ∑ 𝒈𝑚𝑘𝑥𝑘

𝐾𝑠𝑒𝑟𝑣

𝑘=1

+∑𝒈𝑖,𝑚𝑘𝑥𝑖,𝑘

𝐾𝑖𝑛𝑡

𝑘=1

+ 𝒛𝑚 (5.5) 

where the channel coefficients for the 𝐾𝑠𝑒𝑟𝑣 UTs to the 𝑁𝑟 antennas of the m-th AP 

𝒈𝑚𝑘 = [𝑔𝑚1𝑘 𝑔𝑚2𝑘 …𝑔𝑚𝑁𝑟𝑘]
𝑇

, the interfering channel coefficients are 𝒈𝑖,𝑚𝑘 =

[𝑔𝑖,𝑚1𝑘 𝑔𝑖,𝑚2𝑘 …𝑔𝑖,𝑚𝑁𝑟𝑘]
𝑇
, 𝒛𝑚 ∈ ℂ

𝑁𝑟×1  denotes the receiver noise at the antennas with 

independent 𝒞𝒩(0, 𝜎𝑧
2) entities. Next, we assume that the local combining vector is 



5.4 Data Detection and Decoding  102 

 

𝒗𝑚𝑘 ∈ ℂ
1×𝑁𝑟 for weighting the data at the m-th AP, transmitted from the k-th UT. Then, 

the local estimation of 𝑥𝑘 at the m-th AP is given by: 

 𝑥̌𝑚𝑘 = 𝒗𝑚𝑘𝒚𝑢,𝑚 = ∑ 𝒗𝑚𝑘𝒈𝑚𝑘′𝑥𝑘′

𝐾𝑠𝑒𝑟𝑣

𝑘′=1

+ ∑ 𝒗𝑚𝑘𝒈𝑖,𝑚𝑘′𝑥𝑖,𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+ 𝒗𝑚𝑘𝒛𝑚 (5.6) 

Based on the different selection of the combining techniques, the combining vector 

can either be simple MRC with 𝒗𝑚𝑘 = 𝒈̂𝑚𝑘
𝐻  or MMSE where the weight vector can be 

derived by computing the MSE of the estimated data which is a conditional expectation 

𝔼 {|𝑥𝑘 − 𝒗𝑚𝑘𝒚𝑢,𝑚|
2
| {𝒈̂𝑚𝑘}}  and equating its first derivative with respect to 𝒗𝑚𝑘 to 

zero. The MSE 𝜖𝑘 is calculated by: 

 

𝜖𝑘 = 𝔼 {|𝑥𝑘 − 𝒗𝑚𝑘𝒚𝑢,𝑚|
2
| {𝒈̂𝑚𝑘}} 

= 𝔼{|𝑥𝑘|
2} − 𝔼{𝑥𝑘

∗𝒗𝑚𝑘𝒚𝑢,𝑚} − 𝔼{𝑥𝑘𝒚𝑢,𝑚
𝐻 𝒗𝑚𝑘

𝐻 } + 𝒗𝑚𝑘𝔼 {|𝒚𝑢,𝑚|
2
} 𝒗𝑚𝑘

𝐻  

(5.7) 

Then let the first derivative 𝜕𝜖/𝜕𝒗𝑚𝑘 =  0: 

 

𝜕𝜖𝑘
𝜕𝒗𝑚𝑘

= −𝔼{𝑥𝑘
∗𝒚𝑢,𝑚} + {|𝒚𝑢,𝑚|

2
} 𝒗𝑚𝑘

𝐻  

= (𝜎𝑥
2 ∑(𝒈̂𝑚𝑘′𝒈̂𝑚𝑘′

𝐻 + 𝑪𝑔̃𝑔̃,𝑚𝑘′)

𝐾𝑠𝑒𝑟𝑣

𝑘′=1

+ 𝜎𝑥
2 ∑ 𝑪𝑔𝑖𝑛𝑡𝑔𝑖𝑛𝑡,𝑚𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+ 𝜎𝑧
2𝑰𝑁𝑟)𝒗𝑚𝑘

𝐻 − 𝜎𝑥
2𝒈̂𝑚𝑘 = 0 

(5.8) 

Then, we can obtain the result: 

 

𝒗𝑚𝑘
𝐻 = (𝜎𝑥

2 ∑(𝒈̂𝑚𝑘′𝒈̂𝑚𝑘′
𝐻 + 𝑪𝑔̃𝑔̃,𝑚𝑘′)

𝐾𝑠𝑒𝑟𝑣

𝑘′=1

+ 𝜎𝑥
2 ∑ 𝑪𝑔𝑖𝑛𝑡𝑔𝑖𝑛𝑡,𝑚𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+ 𝜎𝑧
2𝑰𝑁𝑟)

−1

𝜎𝑥
2𝒈̂𝑚𝑘 

(5.9) 

Since the entities in the inverse matrix of (5.9) are Hermitian matrices, the Hermitian 

of 𝒗𝑚𝑘
𝐻  is given by: 
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 𝒗𝑚𝑘 = 𝒈̂𝑚𝑘
𝐻 (∑ (𝒈̂𝑚𝑘′𝒈̂𝑚𝑘′

𝐻 + 𝑪𝑔̃𝑔̃,𝑚𝑘′)

𝐾𝑠𝑒𝑟𝑣

𝑘′=1

+ ∑ 𝑪𝑔𝑖𝑛𝑡𝑔𝑖𝑛𝑡,𝑚𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+
𝜎𝑧
2

𝜎𝑥2
𝑰𝑁𝑟)

−1

 
 (5.10) 

where the covariance matrix of the channel estimation error is: 

 
𝑪𝑔̃𝑔̃,𝑚𝑘 = 𝔼{𝒈̃𝑚𝑘𝒈̃𝑚𝑘

𝐻 } = 𝑑𝑖𝑎𝑔 (𝜎𝑒𝑚1𝑘
2 , … , 𝜎𝑒𝑚𝑁𝑟𝑘

2 ) 

= (1 − 𝑐𝑚𝑘)𝛽𝑚𝑘𝑰𝑁𝑟 
(5.11) 

and the covariance matrix of the interfering channel coefficients is given by: 

 𝑪𝑔𝑖𝑛𝑡𝑔𝑖𝑛𝑡,𝑚𝑘 = 𝔼{𝒈𝑖,𝑚𝑘𝒈𝑖,𝑚𝑘
𝐻 } = 𝑑𝑖𝑎𝑔(𝛽𝑖,𝑚𝑘, … , 𝛽𝑖,𝑚𝑘⏟        

𝑁𝑟

) = 𝛽𝑖,𝑚𝑘𝑰𝑁𝑟 (5.12) 

Compared to the MMSE combining at the EPU, the benefit of local MMSE 

estimation is that the size of the inverse matrix is 𝑁𝑟 × 𝑁𝑟 which is much smaller than 

the inverse matrix of (3.18). Furthermore, we notice that when 𝑁𝑟 = 1, (5.10) is not 

equal to the MRC weight but is a scaled version: 

 𝑣𝑚𝑘 = (∑ (𝑔̂𝑚𝑘′𝑔̂𝑚𝑘′
∗ + (1 − 𝑐𝑚𝑘′)𝛽𝑚𝑘′)

𝐾𝑠𝑒𝑟𝑣

𝑘′=1

+ ∑ 𝛽𝑖,𝑚𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+
𝜎𝑧
2

𝜎𝑥2
)

−1

𝑔̂𝑚𝑘
∗  (5.13) 

Subsequently, the local estimated data 𝑥̌𝑚𝑘 at the different APs are sent to the EPU 

together for decoding the data transmitted by the k-th UT. In the EPU, the linear 

combination adopting the weights 𝑤𝑚𝑘 is applied. The recovered data is then: 

 

𝑥̂𝑘 = ∑ 𝑤𝑚𝑘𝑥̌𝑚𝑘

𝑀𝑐𝑜𝑜𝑟

𝑚=1

 

= ∑ 𝑤𝑚𝑘 (∑ 𝒗𝑚𝑘𝒈𝑚𝑘′𝑥𝑘′

𝐾𝑠𝑒𝑟𝑣

𝑘′=1

+ ∑ 𝒗𝑚𝑘𝒈𝑖,𝑚𝑘′𝑥𝑖,𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+ 𝒗𝑚𝑘𝒛𝑚)

𝑀𝑐𝑜𝑜𝑟

𝑚=1

 

(5.14) 

If we define the vector form of the local estimated data as 𝒙̌𝑘 = [𝑥̌1𝑘  … 𝑥̌𝑀𝑐𝑜𝑜𝑟𝑘]
𝑇
, 

the local weighted channel 𝜸𝑘𝑘′ = [𝒗1𝑘𝒈1𝑘′  … 𝒗𝑀𝑐𝑜𝑜𝑟𝑘𝒈𝑀𝑐𝑜𝑜𝑟𝑘′]
𝑇

, and the local 
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weighted interfering channel 𝜸𝑖,𝑘𝑘′ = [𝒗1𝑘𝒈𝑖,1𝑘′  … 𝒗𝑀𝑐𝑜𝑜𝑟𝑘𝒈𝑖,𝑀𝑐𝑜𝑜𝑟𝑘′]
𝑇
, (5.14) can be 

rewritten as: 

 𝑥̂𝑘 = 𝒘𝑘𝒙𝑘 = ∑ 𝒘𝑘𝜸𝑘𝑘′𝑥𝑘′

𝐾𝑠𝑒𝑟𝑣

𝑘′=1

+ ∑ 𝒘𝑘𝜸𝑖,𝑘𝑘′𝑥𝑖,𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+𝒘𝑘𝒛𝑘
′  (5.15) 

where  𝒘𝑘 = [𝑤1𝑘…𝑤𝑀𝑐𝑜𝑜𝑟𝑘] and 𝒛𝑘
′ = [𝒗1𝑘𝒛1…𝒗𝑀𝑐𝑜𝑜𝑟𝑘𝒛𝑀𝑐𝑜𝑜𝑟]

𝑇
.  

Although the CSI is unknown at the EPU, we notice that its statistics can be 

exploited. They may be obtained by averaging the effective channel  𝒘𝑘𝜸𝑘𝑘′ within a 

finite coherence block. Therefore, the achievable SE is stated in the following. 

Proposition 5.1. Suppose that 𝐾𝑠𝑒𝑟𝑣 UTs are served by 𝑀𝑐𝑜𝑜𝑟 APs where each AP is 

equipped with 𝑁𝑟 antennas in DD-MaMIMO. The estimations of the channel and data 

are processed at the local and decoding the data at the EPU. An achievable SE for the 

k-th UT is 

 𝑆𝐸𝑘 =
𝜏𝑢

𝜏𝑝 + 𝜏𝑢
log2(1 + 𝑆𝐼𝐷𝑁𝑅𝑘) (5.16) 

where the factor 𝜏𝑢/(𝜏𝑝 + 𝜏𝑢)  is the fraction of the uplink transmission used for 

sending the data. The signal-to-interference-plus-noise ratio (𝑆𝐼𝑁𝑅) for the k-th UT is 

given by 

 𝑆𝐼𝑁𝑅𝑘 = (5.17) 

 

|𝒘𝑘𝔼{𝜸𝑘𝑘}|
2

∑ 𝔼{|𝒘𝑘𝜸𝑘𝑘′|2}
𝐾𝑠𝑒𝑟𝑣
𝑘′=1

− |𝒘𝑘𝔼{𝜸𝑘𝑘}|2 + ∑ 𝔼{|𝒘𝑘𝜸𝑖,𝑘𝑘′|
2
}

𝐾𝑖𝑛𝑡
𝑘′=1

+
𝜎𝑧
2

𝜎𝑥2
𝒘𝑘𝑫𝑘𝒘𝑘

𝐻
  

where 𝑫𝑘 = 𝑑𝑖𝑎𝑔 (𝔼{‖𝒗1𝑘‖
2}, 𝔼{‖𝒗2𝑘‖

2},… , 𝔼 {‖𝒗𝑀𝑐𝑜𝑜𝑟𝑘‖
2
}) ∈ ℂ𝑀𝑐𝑜𝑜𝑟×𝑀𝑐𝑜𝑜𝑟. 

Proof: The proof follows the same steps as in [73, Corollary 1.3], where the achievable 

SE of a cellular system is derived by calculating the lower bound of the capacity of the 

discrete memoryless interference channel, if the channel response is deterministic. 

Similarly, the signal in (5.15) matches this discrete memoryless interference channel, 

where the input 𝑥 = 𝑥𝑘, the deterministic channel response ℎ = 𝒘𝑘𝔼{𝜸𝑘𝑘}, the output 

𝑦 = 𝒘𝑘𝒙̌𝑘 and the interference term is 
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 𝑣 = ∑ 𝒘𝑘𝜸𝑘𝑘′𝑥𝑘′

𝐾𝑠𝑒𝑟𝑣

𝑘′=1

−𝒘𝑘𝔼{𝜸𝑘𝑘}𝑥𝑘 + ∑ 𝒘𝑘𝜸𝑖,𝑘𝑘′𝑥𝑖,𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+𝒘𝑘𝒛𝑘
′  (5.18) 

We should note that all terms 𝑥, ℎ, 𝑦 and 𝑣 are stated for the discrete memoryless 

interference channel model which follow the same definition as [73]. To utilise the 

statistical channel response, the channel hardening [57] is assumed which approximates 

𝒘𝑘𝜸𝑘𝑘 to its mean value 𝒘𝑘𝔼{𝜸𝑘𝑘} [24]. However, in [19] the author indicated that 

when the number of antennas is small, the channel hardening is not necessarily 

established. In such a scenario, the achievable SE will be underestimated. The 

interference term is obtained by adding and subtracting the desired signal 𝒘𝑘𝔼{𝜸𝑘𝑘}𝑥𝑘 

from 𝑥̂𝑘. Then, since the terms {𝑥𝑘 ∶ 𝑘 = 1,… , 𝐾𝑠𝑒𝑟𝑣 }, {𝑥𝑖,𝑘 ∶ 𝑘 = 1, … , 𝐾𝑖𝑛𝑡 } and the 

elements in 𝒛𝑘
′  are zero mean, the interference term has zero mean 𝔼{𝑣} = 0 . 

Furthermore, the interference term is uncorrelated with the input: 

 
𝔼{𝑥𝑣} = 𝔼{𝒘𝑘𝜸𝑘𝑘 −𝒘𝑘𝔼{𝜸𝑘𝑘}}⏟              

=0

𝔼{|𝑥𝑘|
2} = 0 

(5.19) 

Therefore, the channel capacity 𝐶 is lower bounded as: 

 𝐶 ≥ log2 (1 +
𝔼{|𝑥|2}|ℎ|2

𝔼{|𝑣|2}
) (5.20) 

where 𝔼{|𝑥|2} = 𝜎𝑥
2, |ℎ|2 = |𝒘𝑘𝔼{𝜸𝑘𝑘}|

2 and the variance of the interference term is: 

 

𝔼{|𝑣|2} = 𝜎𝑥
2 ∑ 𝔼{|𝒘𝑘𝜸𝑘𝑘′|

2}

𝐾𝑠𝑒𝑟𝑣

𝑘′=1

− 𝜎𝑥
2|𝒘𝑘𝔼{𝜸𝑘𝑘}|

2

+ 𝜎𝑥
2 ∑ 𝔼{|𝒘𝑘𝜸𝑖,𝑘𝑘′|

2
}

𝐾𝑖𝑛𝑡

𝑘′=1

+ 𝜎𝑧
2𝒘𝑘𝑫𝑘𝒘𝑘

𝐻 

(5.21) 

where the terms in (5.18) are uncorrelated with each other. Then, by substituting (5.21) 

and the expressions for 𝔼{|𝑥|2} and |ℎ|2 into (5.20), and by considering the effective 

transmission fraction, we complete the proof. 



5.4 Data Detection and Decoding  106 

 

5.4.1 Large Scale Fading Decoding 

The large scale fading decoding which was initially known as pilot contamination 

postcoding in [78] was proposed to mitigate the interference for cell-free MaMIMO in 

[79]. It is an approach in which only large scale fading coefficients are applied to 

maximise the SE. Note that since the statistics of the local processing parameters are 

known at the EPU in DD-MaMIMO, we can find the combining weight to maximise 

the SE. This large scale fading decoding approach was also used for “Level 3” decoding 

in [24]. 

Corollary 5.1.  The combining vector for maximising the SE in Proposition 5.1 is given 

by  

 𝒘𝑘 = 𝔼{𝜸𝑘𝑘
𝐻 } (∑ 𝔼{𝜸𝑘𝑘′𝜸𝑘𝑘′

𝐻 }

𝐾𝑠𝑒𝑟𝑣

𝑘′=1

+ ∑ 𝔼{𝜸𝑖,𝑘𝑘′𝜸𝑖,𝑘𝑘′
𝐻 }

𝐾𝑖𝑛𝑡

𝑘′=1

+
𝜎𝑧
2

𝜎𝑥2
𝑫𝑘)

−1

 (5.22) 

which gives rise to the maximum SINR value 

 

𝑆𝐼𝑁𝑅𝑘 = 𝔼{𝜸𝑘𝑘
𝐻 } (∑ 𝔼{𝜸𝑘𝑘′𝜸𝑘𝑘′

𝐻 }

𝐾𝑠𝑒𝑟𝑣

𝑘′=1

− 𝔼{𝜸𝑘𝑘}𝔼{𝜸𝑘𝑘
𝐻 } + ∑ 𝔼{𝜸𝑖,𝑘𝑘′𝜸𝑖,𝑘𝑘′

𝐻 }

𝐾𝑖𝑛𝑡

𝑘′=1

+
𝜎𝑧
2

𝜎𝑥2
𝑫𝑘)

−1

𝔼{𝜸𝑘𝑘} 

(5.23) 

Proof: For maximising the SINR, we first calculate the MSE 𝜖𝑑,𝑘 between the data and 

the decoded data and then set the first derivative of the MSE with respect to 𝒘𝑘 to zero. 

 

𝜖𝑑,𝑘 = 𝔼{|𝑥𝑘 −𝒘𝑘𝒙𝑘|
2} 

= 𝔼{|𝑥𝑘|
2} + 𝔼{|𝒘𝑘𝒙̌𝑘|

2} − 𝔼{𝑥𝑘𝒙̌𝑘
𝐻𝒘𝑘

𝐻} − 𝔼{𝑥𝑘
∗𝒘𝑘𝒙̌𝑘} 

= 𝜎𝑥
2 +𝒘𝑘𝔼{|𝒙̌𝑘|

2}𝒘𝑘
𝐻 − 𝔼{𝑥𝑘𝒙̌𝑘

𝐻}𝒘𝑘
𝐻 −𝒘𝑘𝔼{𝑥𝑘

∗ 𝒙̌𝑘} 

(5.24) 

Then, its first derivative is: 

 
𝜕𝜖𝑑,𝑘
𝜕𝒘𝑘

= 𝔼{|𝒙̌𝑘|
2}𝒘𝑘

𝐻 − 𝔼{𝑥𝑘
∗ 𝒙̌𝑘} (5.25) 
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= (𝜎𝑥
2 ∑ 𝔼{𝜸𝑘𝑘′𝜸𝑘𝑘′

𝐻 }

𝐾𝑠𝑒𝑟𝑣

𝑘′=1

+ 𝜎𝑥
2 ∑ 𝔼{𝜸𝑖,𝑘𝑘′𝜸𝑖,𝑘𝑘′

𝐻 }

𝐾𝑖𝑛𝑡

𝑘′=1

+ 𝜎𝑧
2𝑫𝑘)𝒘𝑘

𝐻 − 𝜎𝑥
2𝔼{𝜸𝑘𝑘} = 0 

Finally, we obtain the result: 

 𝒘𝑘
𝐻 = (𝜎𝑥

2 ∑ 𝔼{𝜸𝑘𝑘′𝜸𝑘𝑘′
𝐻 }

𝐾𝑠𝑒𝑟𝑣

𝑘′=1

+ 𝜎𝑥
2 ∑ 𝔼{𝜸𝑖,𝑘𝑘′𝜸𝑖,𝑘𝑘′

𝐻 }

𝐾𝑖𝑛𝑡

𝑘′=1

+ 𝜎𝑧
2𝑫𝑘)

−1

𝔼{𝜸𝑘𝑘} (5.26) 

Note that all terms in the inverse matrix in (5.26) are Hermitian matrices, thus the 

Hermitian of (5.26) is equivalent to (5.22). Moreover, substituting (5.22) into (5.17), 

𝑆𝐼𝑁𝑅𝑘 can be simplified as (5.23) which follows the same method as (3.22). 

While the large scale fading decoding was adopted in [24], the authors did not 

explicitly explain why the use of combining vectors, which are composed of statistical 

parameters for data recovery, is considered the relevant decoding method. Hence, we 

attempt to answer this in two respects. Firstly, the statistical parameters within the 

combining vectors are deterministic at the EPU which only relates to the large scale 

fading coefficients. Secondly, it can be simply proved that the final combining vectors 

at the EPU only depend on the large scale fading coefficients in the case where local 

MRC data detection is applied. If each AP has a single antenna and uses local MRC 

estimation where the local estimation weight is 𝑣𝑚𝑘 = 𝑔̂𝑚𝑘
∗ , the statistical parameters 

in (5.22) are: 

 

𝔼{𝜸𝑘𝑘
𝐻 } = [𝔼{𝑔1𝑘

∗ 𝑣1𝑘
∗ }…𝔼{𝑔𝑀𝑐𝑜𝑜𝑟𝑘

∗ 𝑣𝑀𝑐𝑜𝑜𝑟𝑘
∗ }] 

= [𝔼{(𝑔̂1𝑘
∗ + 𝑔̃1𝑘

∗ )𝑔̂1𝑘}…𝔼{(𝑔̂𝑀𝑐𝑜𝑜𝑟𝑘
∗ + 𝑔̃𝑀𝑐𝑜𝑜𝑟𝑘

∗ )𝑔̂𝑀𝑐𝑜𝑜𝑟𝑘}] 

= [𝔼{𝑔̂1𝑘
∗ 𝑔̂1𝑘}…𝔼{𝑔̂𝑀𝑐𝑜𝑜𝑟𝑘

∗ 𝑔̂𝑀𝑐𝑜𝑜𝑟𝑘}] 

= [𝑐1𝑘𝛽1𝑘…𝑐𝑀𝑐𝑜𝑜𝑟𝑘𝛽𝑀𝑐𝑜𝑜𝑟𝑘] 

= [
𝜏𝑝𝛽1𝑘

2

𝜏𝑝𝛽1𝑘 +∑ 𝛽𝑖,1𝑘′
𝐾𝑖𝑛𝑡
𝑘′=1

+ 𝜎𝑧2
…

𝜏𝑝𝛽𝑀𝑐𝑜𝑜𝑟𝑘
2

𝜏𝑝𝛽𝑀𝑐𝑜𝑜𝑟𝑘 + ∑ 𝛽𝑖,Mcoor𝑘′
𝐾𝑖𝑛𝑡
𝑘′=1

+ 𝜎𝑧2
] 

(5.27) 

The term 𝔼{𝜸𝑘𝑘′𝜸𝑘𝑘′
𝐻 } in (5.22) can be expressed by: 



5.4 Data Detection and Decoding  108 

 

 

𝔼{𝜸𝑘𝑘′𝜸𝑘𝑘′
𝐻 }

= [

𝔼{𝑣1𝑘𝑔1𝑘′𝑔1𝑘′
∗ 𝑣1𝑘

∗ } ⋯ 𝔼 {𝑣1𝑘𝑔1𝑘′𝑔𝑀𝑐𝑜𝑜𝑟𝑘′
∗ 𝑣𝑀𝑐𝑜𝑜𝑟𝑘

∗ }

⋮ ⋱ ⋮

𝔼{𝑣𝑀𝑐𝑜𝑜𝑟𝑘𝑔𝑀𝑐𝑜𝑜𝑟𝑘′𝑔1𝑘′
∗ 𝑣1𝑘

∗ } ⋯ 𝔼 {𝑣𝑀𝑐𝑜𝑜𝑟𝑘𝑔𝑀𝑐𝑜𝑜𝑟𝑘′𝑔𝑀𝑐𝑜𝑜𝑟𝑘′
∗ 𝑣𝑀𝑐𝑜𝑜𝑟𝑘

∗ }

] 
(5.28) 

The on-diagonal elements in (5.28) are calculated (for an example), when 𝑘′ ≠ 𝑘: 

 

𝔼{𝑣𝑚𝑘𝑔𝑚𝑘′𝑔𝑚𝑘′
∗ 𝑣𝑚𝑘

∗ } = 𝔼{𝑔̂𝑚𝑘
∗ 𝑔𝑚𝑘′𝑔𝑚𝑘′

∗ 𝑔̂𝑚𝑘} 

= 𝛽𝑚𝑘′𝔼{𝑔̂𝑚𝑘
∗ 𝑔̂𝑚𝑘} 

= 𝛽𝑚𝑘′𝑐𝑚𝑘𝛽𝑚𝑘 

=
𝜏𝑝𝛽𝑚𝑘

2 𝛽𝑚𝑘′

𝜏𝑝𝛽𝑚𝑘 + ∑ 𝛽𝑖,m𝑘′′
𝐾𝑖𝑛𝑡
𝑘′′=1

+ 𝜎𝑧2
 

(5.29) 

The on-diagonal elements for the case 𝑘′ = 𝑘: 

 

𝔼{𝑣𝑚𝑘𝑔𝑚𝑘𝑔𝑚𝑘
∗ 𝑣𝑚𝑘

∗ } = 𝔼{𝑔̂𝑚𝑘
∗ (𝑔̂𝑚𝑘 + 𝑔̃𝑚𝑘)(𝑔̂𝑚𝑘

∗ + 𝑔̃𝑚𝑘
∗ )𝑔̂𝑚𝑘} 

= 𝔼{|𝑔̂𝑚𝑘|
4 + |𝑔̂𝑚𝑘|

2|𝑔̃𝑚𝑘|
2} 

=
(𝑎)
2𝑐𝑚𝑘

2 𝛽𝑚𝑘
2 + 𝑐𝑚𝑘𝛽𝑚𝑘(1 − 𝑐𝑚𝑘)𝛽𝑚𝑘 

= 𝑐𝑚𝑘
2 𝛽𝑚𝑘

2 + 𝑐𝑚𝑘𝛽𝑚𝑘 

(5.30) 

where  𝔼{|𝑔̂𝑚𝑘|
4} = 2𝑐𝑚𝑘

2 𝛽𝑚𝑘
2  in step (a) follows the fact given in [14, Eq. 60], but the 

proof was not provided. In Appendix 5.A, we give a rigorous proof and compare the 

theoretical results with the simulation which shows the original expression in (5.30) is 

not strict. However, it does not significantly affect the overall results because of the 

tiny discrepancy, and the term 𝔼{|𝑔̂𝑚𝑘|
4} is only related to the large scale fading 

coefficients. Next, the off-diagonal elements in (5.28) are calculated when 𝑘′ = 𝑘 and 

𝑚′ ≠ 𝑚: 

 

𝔼{𝑣𝑚𝑘𝑔𝑚𝑘′𝑔𝑚′𝑘′
∗ 𝑣𝑚′𝑘

∗ } = 𝔼{𝑔̂𝑚𝑘
∗ 𝑔𝑚𝑘𝑔𝑚′𝑘

∗ 𝑔̂𝑚′𝑘} 

= 𝔼{|𝑔̂𝑚𝑘|
2|𝑔̂𝑚′𝑘|

2} 

=
𝜏𝑝
2𝛽𝑚𝑘

2 𝛽𝑚′𝑘
2

(𝜏𝑝𝛽𝑚𝑘 + ∑ 𝛽𝑖,m𝑘′
𝐾𝑖𝑛𝑡
𝑘′=1

+ 𝜎𝑧2)(𝜏𝑝𝛽𝑚′𝑘 + ∑ 𝛽𝑖,m′𝑘′
𝐾𝑖𝑛𝑡
𝑘′=1

+ 𝜎𝑧2)
 

(5.31) 

When 𝑘′ ≠ 𝑘, the expectation is zero. Then, the term 𝔼{𝜸𝑖,𝑘𝑘′𝜸𝑖,𝑘𝑘′
𝐻 } in (5.22) can 

be expressed by: 
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𝔼{𝜸𝑖,𝑘𝑘′𝜸𝑖,𝑘𝑘′
𝐻 }

= [

𝔼{𝑣1𝑘𝑔𝑖,1𝑘′𝑔𝑖,1𝑘′
∗ 𝑣1𝑘

∗ } ⋯ 𝔼 {𝑣1𝑘𝑔𝑖,1𝑘′𝑔𝑖,𝑀𝑐𝑜𝑜𝑟𝑘′
∗ 𝑣𝑀𝑐𝑜𝑜𝑟𝑘

∗ }

⋮ ⋱ ⋮

𝔼{𝑣𝑀𝑐𝑜𝑜𝑟𝑘𝑔𝑖,𝑀𝑐𝑜𝑜𝑟𝑘′𝑔𝑖,1𝑘′
∗ 𝑣1𝑘

∗ } ⋯ 𝔼 {𝑣𝑀𝑐𝑜𝑜𝑟𝑘𝑔𝑖,𝑀𝑐𝑜𝑜𝑟𝑘′𝑔𝑖,𝑀𝑐𝑜𝑜𝑟𝑘′
∗ 𝑣𝑀𝑐𝑜𝑜𝑟𝑘

∗ }

] 
(5.32) 

The on-diagonal elements in (5.32) are: 

 

𝔼{𝑣𝑚𝑘𝑔𝑖,𝑚𝑘′𝑔𝑖,𝑚𝑘′
∗ 𝑣𝑚𝑘

∗ } = 𝔼{𝑔̂𝑚𝑘
∗ 𝑔𝑖,𝑚𝑘′𝑔𝑖,𝑚𝑘′

∗ 𝑔̂𝑚𝑘} 

=
𝜏𝑝𝛽𝑚𝑘

2 𝛽𝑖,𝑚𝑘′

𝜏𝑝𝛽𝑚𝑘 + ∑ 𝛽𝑖,𝑚𝑘′
𝐾𝑖𝑛𝑡
𝑘′=1

+ 𝜎𝑧2
 

(5.33) 

Due to the uncorrelation among the different interfering channels, the off-diagonal 

elements in (5.32) are zero. Finally, the term 𝑫𝑘 can be calculated 

 

𝑫𝑘 = 𝑑𝑖𝑎𝑔 (𝔼{‖𝒗1𝑘‖
2}, 𝔼{‖𝒗2𝑘‖

2},… , 𝔼 {‖𝒗𝑀𝑐𝑜𝑜𝑟𝑘‖
2
}) 

= 𝑑𝑖𝑎𝑔 (𝔼{|𝑔̂1𝑘|
2},… , 𝔼 {|𝑔̂𝑀𝑐𝑜𝑜𝑟𝑘|

2
}) 

= 𝑑𝑖𝑎𝑔 (
𝜏𝑝𝛽1𝑘

2

𝜏𝑝𝛽1𝑘 + ∑ 𝛽𝑖,1𝑘′
𝐾𝑖𝑛𝑡
𝑘′=1

+ 𝜎𝑧2
, … ,

𝜏𝑝𝛽𝑀𝑐𝑜𝑜𝑟𝑘
2

𝜏𝑝𝛽𝑀𝑐𝑜𝑜𝑟𝑘 + ∑ 𝛽𝑖,Mcoor𝑘′
𝐾𝑖𝑛𝑡
𝑘′=1

+ 𝜎𝑧2
) 

(5.34) 

Substituting (5.27), (5.29), (5.30), (5.31), (5.33) and (5.34) into (5.22), this proves 

that the combining scalar in the single-antenna AP with local MRC estimation case only 

depends on the large scale fading coefficients. Subsequently, a sketch of a derivation 

of the combining vector for the multiple-antenna AP with local MRC estimation is 

given in Appendix 5.B. However, it is hard to derive the closed-form expression for the 

combining vector with local MMSE estimation. So, we leave this for future work. 

5.4.2 Simple Decoding 

In the large scale fading decoding, the local estimated data 𝑥̌𝑚𝑘  for all UTs, which 

include (𝜏𝑐 − 𝜏𝑝)𝐾𝑠𝑒𝑟𝑣 complex values, are sent to the EPU from each AP in each 

coherence block. In addition, the knowledge of 𝔼{𝜸𝑘𝑘
𝐻 } , ∑ 𝔼{𝜸𝑘𝑘′𝜸𝑘𝑘′

𝐻 }
𝐾𝑠𝑒𝑟𝑣
𝑘′=1 , 

∑ 𝔼{𝜸𝑖,𝑘𝑘′𝜸𝑖,𝑘𝑘′
𝐻 }

𝐾𝑖𝑛𝑡
𝑘′=1  and 𝑫𝑘  are also required at the EPU. Hence, it needs 𝑀𝑐𝑜𝑜𝑟 

complex values for 𝔼{𝜸𝑘𝑘
𝐻 } , 𝐾𝑠𝑒𝑟𝑣𝑀𝑐𝑜𝑜𝑟

2  complex values for ∑ 𝔼{𝜸𝑘𝑘′𝜸𝑘𝑘′
𝐻 }

𝐾𝑠𝑒𝑟𝑣
𝑘′=1 , 

𝐾𝑖𝑛𝑡𝑀𝑐𝑜𝑜𝑟
2  complex values for ∑ 𝔼{𝜸𝑖,𝑘𝑘′𝜸𝑖,𝑘𝑘′

𝐻 }
𝐾𝑖𝑛𝑡
𝑘′=1  and 𝑀𝑐𝑜𝑜𝑟 real value for 𝑫𝑘 to be 
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sent for joint decoding of the k-th UT. This scheme optimises the processing which 

provides the highest SE in the local estimation of DD-MaMIMO, but the demand of the 

statistical parameters will be increased if the number of APs and UTs grows which 

leads to inaccurate decoding when the statistics vary with time [24]. 

To solve this issue, we propose an alternative decoding method in which the local 

estimated data is simply decoded by averaging at the EPU. This is computed by: 

 𝑥̂𝑘 = ∑ 𝑤𝑚𝑘𝑥̌𝑚𝑘

𝑀𝑐𝑜𝑜𝑟

𝑚=1

=
1

𝑀𝑐𝑜𝑜𝑟
∑ 𝑥̌𝑚𝑘

𝑀𝑐𝑜𝑜𝑟

𝑚=1

 (5.35) 

where the local estimated data 𝑥̌𝑚𝑘 is acquired by (5.6). This also can be expressed in 

the same form as (5.15) if we define the vector of combining weight 𝒘𝑘 =

[1/𝑀𝑐𝑜𝑜𝑟 , … ,1/𝑀𝑐𝑜𝑜𝑟]. 

Corollary 5.2.  Adopting the simple decoding at the EPU with the local estimation in 

DD-MaMIMO, the effective SINR for calculating SE in Proposition 5.1 can be derived 

from 

 

𝑆𝐼𝑁𝑅𝑘 =
|∑ 𝔼{𝒗𝑚𝑘𝒈𝑚𝑘}
𝑀𝑐𝑜𝑜𝑟
𝑚=1 |

2

∑ 𝔼{|∑ 𝒗𝑚𝑘𝒈𝑚𝑘′
𝑀𝑐𝑜𝑜𝑟
𝑚=1 |

2
}

𝐾𝑠𝑒𝑟𝑣
𝑘′=1

− |∑ 𝔼{𝒗𝑚𝑘𝒈𝑚𝑘}
𝑀𝑐𝑜𝑜𝑟
𝑚=1 |

2

+∑ 𝔼{|∑ 𝒗𝑚𝑘𝒈𝑖,𝑚𝑘′
𝑀𝑐𝑜𝑜𝑟
𝑚=1 |

2
}

𝐾𝑖𝑛𝑡
𝑘′=1

+
𝜎𝑧2

𝜎𝑥2
∑ 𝔼{‖𝒗𝑚𝑘‖2}
𝑀𝑐𝑜𝑜𝑟
𝑚=1

 

(5.36) 

where 𝒗𝑚𝑘 is the local data estimation weight which can be any combining, such as 

MRC or MMSE. 

Proof: The proof follows the same steps as the proof of Proposition 5.1. 

In this simple decoding scenario, the EPU does not require the statistics of the local 

processing parameters, thereby reducing the overhead of fronthaul. When compared to 

cell-free MaMIMO, a notable advantage of simple decoding with local estimation in 

DD-MaMIMO is that the weaker APs, potentially located at the network edge, do not 

significantly impair the decoding process. According to (5.35), the final decoding in 

the cell-free MaMIMO system can be impacted by averaging the poor estimated data 

from a weaker AP. However, in DD-MaMIMO, only APs within the coordination 

region serve the UTs within the service region, thereby mitigating this effect. 
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5.5 Scalable Network 

In sub-chapter 3.6, we defined scalability for a DD-MaMIMO system in which the 

channel estimation and data detection are processed in the EPU. Applying this 

definition, we will discuss scalability for local estimation in DD-MaMIMO in this sub-

chapter. First, each AP only needs to estimate 𝐾𝑠𝑒𝑟𝑣𝑁𝑟 channels, even as the number of 

UTs over the whole network 𝐾 → ∞. We assume the AP knows large scale fading 

coefficients from all UTs to itself, which can be obtained by averaging the power of 

received signals over a finite time period. Note that the UTs far outside the coordination 

region can be ignored due to their tiny values. Hence, the number of effective UTs 

corresponding to the system is finite. Second, for the uplink data detection, each AP 

needs to compute {𝒗𝑚𝑘𝒚𝑢,𝑚: 𝑘 = 1,… , 𝐾𝑠𝑒𝑟𝑣}  in (5.6) exploiting 𝐾𝑠𝑒𝑟𝑣  combining 

vectors {𝒗𝑚𝑘: 𝑘 = 1,… , 𝐾𝑠𝑒𝑟𝑣}, which has finite computational complexity as 𝐾 → ∞. 

Similarly, on the downlink, each AP only creates the transmitted signals for 𝐾𝑠𝑒𝑟𝑣 UTs 

within the service area with respect to the same coordination region. Then, each APs 

forwards 𝐾𝑠𝑒𝑟𝑣  locally detected data to the EPU for the final decoding through the 

fronthaul link. If we use simple decoding method, no extra fronthaul signalling is 

required. Alternatively, the statistical parameters need to be sent to EPU for the large 

scale fading decoding. In (5.22), the combining vector 𝒘𝑘 is calculated by leveraging 

the expectation of {𝜸𝑘𝑘′𝜸𝑘𝑘′
𝐻 : 𝑘′ = 1,… , 𝐾𝑠𝑒𝑟𝑣} , {𝜸𝑖,𝑘𝑘′𝜸𝑖,𝑘𝑘′

𝐻 : 𝑘′ = 1,… , 𝐾𝑖𝑛𝑡}  , 𝜸𝑘𝑘
𝐻  

and 𝑫𝑘. These statistics can be obtained by averaging the power of locally detected data  

|𝑥̌𝑚𝑘|
2 and the power of |𝑥̌𝑚𝑘𝑥̌𝑚𝑘

𝐻 |2 over a finite time period. Therefore, it satisfies the 

third task in Definition 3.1. Finally, the concept of scalability of power control is not 

applicable to the local estimation in DD-MaMIMO, due to the absence of power control. 

5.6 System Performance 

In this sub-chapter, we will provide the numerical results for analysing the system 

performance of local estimation in DD-MaMIMO. We adopt the same parameters as 

Chapter 3, which includes the path loss model, the large scale fading coefficient with 

the uncorrelated shadowing, the simulation areas, the density of the UTs and APs, and 

the distance between the neighbouring EPUs.  

In Fig. 5.1 we show the CDF of SE for local estimation in DD-MaMIMO with 
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different radii of the coordination region. MMSE estimation is used for the channel 

estimation and data detection at the single-antenna APs, and the large scale fading 

decoding method detailed in sub-subchapter 5.4.1 is exploited. The result indicates that 

the DD-MaMIMO system can achieve higher SE than cell-free MaMIMO, especially 

as the radius of the coordination region expands. At the 90% likely SE points which 

correspond to the 0.1 value on the vertical axis, DD-MaMIMO with a 400m  radius 

outperforms the cell-free case by a factor of 2, which is a substantial enhancement. In 

[24, Fig. 2(a)], the author presented the CDF of the SE for “Level 3” decoding in cell-

free MaMIMO which applied the local MMSE estimation and large scale fading 

decoding. To give a comparable result in DD-MaMIMO, we select a coordination 

region with a radius of 282 metres. This configuration maintains system-level 

equivalence, where 30 UTs reuse the 𝜏𝑝 = 10 pilot sequences. Comparing with the SE 

in [24, Fig. 2(a)] where it achieves 3.3 bit/s/Hz for 90% UTs, the SE in the comparable 

DD-MaMIMO system reaches 3.5 bit/s/Hz. Furthermore, for 50% UTs DD-MaMIMO 

can obtain 5.2 bit/s/Hz however it only has 4.4 bit/s/Hz in [24]. Besides, the most 

important difference is that DD-MaMIMO is scalable. 

 

Fig. 5.1 The CDF of SE in DD-MaMIMO with varying radii of the coordination region, 

adopting local MMSE estimation for the channel and data at the APs with large scale 

fading decoding at the EPU (the single-antenna AP case). CF denotes cell-free 

MaMIMO. 𝑟𝑐𝑜𝑜𝑟 is the radius of the coordination region. 
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Fig. 5.2 The CDF of SE in DD-MaMIMO with different number of antennas 𝑁𝑟 for 

each AP, adopting local MMSE estimation for the channel and data at the APs with 

large scale fading decoding at the EPU (the radius of the coordination region is 282 m).  

Fig. 5.2 presents the CDF of SE with different number of antennas for each AP in 

DD-MaMIMO. It is obvious that the SE increases with the number of antennas. At the 

90% likely SE points, the performance improves by more than a factor of 2 when the 

number of antennas is 8, compared to the single-antenna scenario. However, the local 

computation complexity will be dramatically increased.  

Then, we compare the performance using the local estimation in DD-MaMIMO 

with the case applying the centralised estimation which is at the EPU to DD-MaMIMO. 

Fig. 5.3 shows that when the channel and the data are estimated at the EPU, the system 

can obtain the best SE because of the coordination among the APs. Moreover, adopting 

the large scale fading decoding with local MMSE estimation achieves higher SE than 

the case where the local estimated data is simply decoded by averaging at the EPU. 

Especially, in the multiple-antenna AP scenario 𝑁𝑟 = 4, the former has a significant 

improvement around 7.3 bit/s/Hz for 90% UTs, compared to the simple decoding 4 

bit/s/Hz for 90% UTs. Furthermore, we also compare the single-antenna case with [24], 

the results indicate that our system performs better. 
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Fig. 5.3 The CDF of SE in DD-MaMIMO with the data detection at the different 

positions and different number of antennas 𝑁𝑟  for each AP. The local MMSE 

estimation is used. LSFD denotes large scale fading decoding. Simple refers to the 

simple decoding. Est means estimate. 

As we discussed in sub-chapter 5.4, when the number of antennas for each AP is 

one the local MMSE estimation is different from the MRC. Hence, we adopt the 

different schemes of the local data estimation and final decoding for the DD-MaMIMO 

system and the performance is given in Fig. 5.4. It shows that the use of local MRC 

estimation to detect data is worse than MMSE estimation, even if there is only one 

antenna for each AP. The large scale fading decoding gives the better performance than 

the simple decoding for both local estimation schemes.
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Fig. 5.4 The CDF of SE in DD-MaMIMO with the different local estimation and final 

decoding schemes. Local MMSE/MRC denotes the local data estimation method. 

LSFD/Simple represents the decoding scheme. 

5.7 Summary 

In this chapter, we have investigated the local estimation in DD-MaMIMO where the 

signal processing occurs at the APs. To obtain the CSI locally, the MMSE channel 

estimation was explored: this involves the same calculations as the centralised version. 

We then discussed the local MRC and local MMSE data detection which are processed 

by exploiting the CSI acquired only at the related AP. Our simulations reveal that 

MMSE data detection can be implemented even with a single-antenna AP, and it 

performs better than the MRC case. Subsequently, we considered two decoding 

methods—large scale fading decoding and simple decoding—to recover the data at the 

EPU. The combining vectors for both approaches were provided. In the large scale 

fading decoding scenario, we derived the closed-form expression for the combining 

vectors with local MRC data estimation.  However, it was hard to obtain the closed-

form expression applying MMSE data detection due to the statistical CSI needed for 

calculating the combing vectors, which includes an inverse matrix that is not easy to 



5.8 Appendix  116 

 

solve. In the simple decoding case, the combining vectors were given with respect to 

the averaging factors which exclude the statistics of CSI, hence the computation 

complexity for the EPU is greatly decreased. 

Finally, we have presented numerical results to evaluate the performance of local 

estimation in DD-MaMIMO. The simulation indicated that shifting the signal 

processing to the AP led to a loss of SE, especially in the single-antenna AP case with 

simple decoding. However, this reduced the computational burden on the EPU. 

Additionally, we observed that the performance in the multiple-antenna AP scenario, 

where the local estimation and large scale fading decoding are implemented, does not 

significantly differ from centralised estimation in DD-MaMIMO. Overall, the selection 

of signal processing in different positions is a trade-off. Both schemes can be 

implemented in Open RAN and fulfil the demands of 6G. 

5.8 Appendix 

Appendix 5.A: The proof of the term 𝔼{|𝒈̂𝒎𝒌|
𝟒} 

In [14, Eq. 60], the author mentioned the fact  𝔼{|𝑔̂𝑚𝑘|
4} = 2𝛾2 = 2𝑐𝑚𝑘

2 𝛽𝑚𝑘
2  but the 

detail was not provided and referenced. Hence, we first give the probable reason and 

then provide a strict proof. Since the term 𝑔̂𝑚𝑘 is the estimation of 𝑔𝑚𝑘, the estimated 

channel can follow the same type of distribution as the channel coefficient. We know 

that 𝑔𝑚𝑘 = 𝛽𝑚𝑘
1/2
ℎ𝑚𝑘 in which ℎ𝑚𝑘~𝒞𝒩(0,1), hence 𝑔𝑚𝑘~𝒞𝒩(0, 𝛽𝑚𝑘). Further, the 

term 𝔼{|𝑔𝑚𝑘|
4} = 2𝛽𝑚𝑘

2  which is because: 

 𝔼{|𝑔𝑚𝑘|
4} = 𝛽𝑚𝑘

2 𝔼{|ℎ𝑚𝑘|
4} = 𝛽𝑚𝑘

2 𝔼 {|
√2

2
ℎ𝑚𝑘
′ |

4

} = 2𝛽𝑚𝑘
2  (5.37) 

where  ℎ𝑚𝑘
′ ~𝒞𝒩(0,2) and |ℎ𝑚𝑘

′ |2~𝒳2(2) in which 𝒳2(𝑘) denotes the chi-squared 

distribution with k degrees of the freedom. Then, 𝔼{|ℎ𝑚𝑘
′ |4} = 𝔼2{|ℎ𝑚𝑘

′ |2} + 𝜎2 where 

the variance 𝜎2  of |ℎ𝑚𝑘
′ |2  equals 4 and the mean is 2. Therefore 𝔼{|ℎ𝑚𝑘

′ |4} = 8 , 

leading us to (5.38). Given the variance 𝔼{|𝑔̂𝑚𝑘|
2} = 𝑐𝑚𝑘𝛽𝑚𝑘 , we have the result 

𝔼{|𝑔̂𝑚𝑘|
4} = 2𝑐𝑚𝑘

2 𝛽𝑚𝑘
2  with the same calculation as (5.37).  

Next, we give a rigorous proof by applying the definition of 𝑔̂𝑚𝑘 which is expressed 

by (3.6). 
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𝔼{|𝑔̂𝑚𝑘|
4} = 𝑐𝑚𝑘

4 𝔼{|𝑔̌𝑚𝑘|
4} 

= 𝑐𝑚𝑘
4 𝔼{|𝑔𝑚𝑘 +

1

𝜏𝑝
∑ 𝑔𝑖,𝑚𝑘′𝝋𝑖,𝑘′

𝑇 𝝋𝑘
∗

𝐾𝑖𝑛𝑡

𝑘′=1

+
1

𝜏𝑝
𝒛𝑝,𝑚𝝋𝑘

∗ |

4

} 

= 𝑐𝑚𝑘
4 𝔼{|𝑔𝑚𝑘|

4 + 4|𝑔𝑚𝑘|
2
1

𝜏𝑝2
 ∑ |𝑔𝑖,𝑚𝑘′𝝋𝑖,𝑘′

𝑇 𝝋𝑘
∗ |
2

𝐾𝑖𝑛𝑡

𝑘′=1

+ 4|𝑔𝑚𝑘|
2
1

𝜏𝑝2
|𝒛𝑝,𝑚𝝋𝑘

∗ |
2
+
1

𝜏𝑝4
∑|𝑔𝑖,𝑚𝑘′|

4

𝐾𝑖𝑛𝑡

𝑘′=1

|𝝋𝑖,𝑘′
𝑇 𝝋𝑘

∗ |
4

+
2

𝜏𝑝4
∑ ∑ |𝑔𝑖,𝑚𝑘′|

2
|𝝋𝑖,𝑘′

𝑇 𝝋𝑘
∗ |
2
|𝑔𝑖,𝑚𝑘′′|

2
|𝝋𝑖,𝑘′′

𝑇 𝝋𝑘
∗ |
2

𝐾𝑖𝑛𝑡

𝑘′′≠𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+
4

𝜏𝑝4
 ∑ |𝑔𝑖,𝑚𝑘′𝝋𝑖,𝑘′

𝑇 𝝋𝑘
∗ |
2

𝐾𝑖𝑛𝑡

𝑘′=1

|𝒛𝑝,𝑚𝝋𝑘
∗ |
2
+
1

𝜏𝑝4
|𝒛𝑝,𝑚𝝋𝑘

∗ |
4
} 

(5.38) 

=
(𝑎)
𝑐𝑚𝑘
4 (2𝛽𝑚𝑘

2 +
4

𝜏𝑝
𝛽𝑚𝑘 ∑ 𝛽𝑖,𝑚𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+
4

𝜏𝑝
𝛽𝑚𝑘𝜎𝑧

2 +
2

𝜏𝑝4
∑ 𝛽𝑖,𝑚𝑘′

2 𝜏𝑝
3

𝐾𝑖𝑛𝑡

𝑘′=1

+
2

𝜏𝑝4
∑ ∑ 𝛽𝑖,𝑚𝑘′𝛽𝑖,𝑚𝑘′′𝜏𝑝

2

𝐾𝑖𝑛𝑡

𝑘′′≠𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+
4

𝜏𝑝4
 ∑ 𝛽𝑖,𝑚𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

𝜏𝑝
2𝜎𝑧

2 +
2

𝜏𝑝4
𝜎𝑧
4𝜏𝑝
2) 

= 2𝑐𝑚𝑘
4 (𝛽𝑚𝑘

2 +
2

𝜏𝑝
𝛽𝑚𝑘 ∑ 𝛽𝑖,𝑚𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+
2𝜎𝑧

2

𝜏𝑝
𝛽𝑚𝑘 +

1

𝜏𝑝
∑ 𝛽𝑖,𝑚𝑘′

2

𝐾𝑖𝑛𝑡

𝑘′=1

+
1

𝜏𝑝2
∑ ∑ 𝛽𝑖,𝑚𝑘′𝛽𝑖,𝑚𝑘′′

𝐾𝑖𝑛𝑡

𝑘′′≠𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+
2𝜎𝑧

2

𝜏𝑝2
 ∑ 𝛽𝑖,𝑚𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+
𝜎𝑧
4

𝜏𝑝2
) 

where in step (a) we assume that  𝔼 {|𝝋𝑖,𝑘′
𝑇 𝝋𝑘

∗ |
4
} = 𝜏𝑝

3. Moreover, we notice that the 

result is not equivalent to 2𝑐𝑚𝑘
2 𝛽𝑚𝑘

2 . This is because the difference happens in the term 

𝔼{|
1

𝜏𝑝
∑ 𝑔𝑖,𝑚𝑘′𝝋𝑖,𝑘′

𝑇 𝝋𝑘
∗𝐾𝑖𝑛𝑡

𝑘′=1 |
4

} in (5.38), which is calculated by: 

 𝔼{|
1

𝜏𝑝
∑ 𝑔𝑖,𝑚𝑘′𝝋𝑖,𝑘′

𝑇 𝝋𝑘
∗

𝐾𝑖𝑛𝑡

𝑘′=1

|

4

} =
2

𝜏𝑝
∑ 𝛽𝑖,𝑚𝑘′

2

𝐾𝑖𝑛𝑡

𝑘′=1

+
2

𝜏𝑝2
∑ ∑ 𝛽𝑖,𝑚𝑘′𝛽𝑖,𝑚𝑘′′

𝐾𝑖𝑛𝑡

𝑘′′≠𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

 (5.39) 
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We expand the result 2𝑐𝑚𝑘
2 𝛽𝑚𝑘

2  and find that all terms are the same as (5.38) except 

the term 
2

𝜏𝑝
2 ∑ ∑ 𝛽𝑖,𝑚𝑘′𝛽𝑖,𝑚𝑘′′

𝐾𝑖𝑛𝑡
𝑘′′=1

𝐾𝑖𝑛𝑡
𝑘′=1  which is different from (5.39). To evaluate this 

effect of the discrepancy, we compare this expanded term and (5.39) with the simulated 

result, respectively. In addition, we also make a comparison between the simulation and 

the theory of (5.38), plus the original assumption 2𝑐𝑚𝑘
2 𝛽𝑚𝑘

2 . Fig. 5.5(a) shows that the 

theoretical result of (5.39) is twice  
2

𝜏𝑝
2 ∑ ∑ 𝛽𝑖,𝑚𝑘′𝛽𝑖,𝑚𝑘′′

𝐾𝑖𝑛𝑡
𝑘′′=1

𝐾𝑖𝑛𝑡
𝑘′=1  but the value is tiny. 

Besides, the simulation matches what we expect in the figure. From Fig. 5.5(b), we can 

conclude that the original fact mentioned in [14] where 𝔼{|𝑔̂𝑚𝑘|
4} = 2𝑐𝑚𝑘

2 𝛽𝑚𝑘
2  is not 

strict and the closed-form expression (5.38) is the solution. 

 

Fig. 5.5 (a): The simulated results of (5.39) versus the theory (blue star) and the 

assumption (red star). (b): The simulated results of (5.38) versus  the theory (blue star) 

and the assumption 2𝑐𝑚𝑘
2 𝛽𝑚𝑘

2  (red star). 

Appendix 5.B:  The derivation of the combining vector 

for the multiple-antenna AP with local MRC 

estimation 
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In this scenario, the local estimation vector 𝒗𝑚𝑘 = 𝒈̂𝑚𝑘
𝐻  

 

𝔼{𝜸𝑘𝑘
𝐻 } = [𝔼{𝒈1𝑘

𝐻 𝒗1𝑘
𝐻 }…𝔼{𝒈𝑀𝑐𝑜𝑜𝑟𝑘

𝐻 𝒗𝑀𝑐𝑜𝑜𝑟𝑘
𝐻 }] 

= [𝔼{(𝒈̂1𝑘
𝐻 + 𝒈̃1𝑘

𝐻 )𝒈̂1𝑘}…𝔼{(𝒈̂𝑀𝑐𝑜𝑜𝑟𝑘
𝐻 + 𝒈̃𝑀𝑐𝑜𝑜𝑟𝑘

𝐻 )𝒈̂𝑀𝑐𝑜𝑜𝑟𝑘}] 

= [𝔼{𝒈̂1𝑘
𝐻 𝒈̂1𝑘}…𝔼{𝒈̂𝑀𝑐𝑜𝑜𝑟𝑘

𝐻 𝒈̂𝑀𝑐𝑜𝑜𝑟𝑘}] 

= [∑𝔼{𝑔̂1𝑛𝑘
∗ 𝑔̂1𝑛𝑘}

𝑁𝑟

𝑛=1

…∑𝔼{𝑔̂𝑀𝑐𝑜𝑜𝑟𝑛𝑘
∗ 𝑔̂𝑀𝑐𝑜𝑜𝑟𝑛𝑘}

𝑁𝑟

𝑛=1

] 

= [∑𝑐1𝑛𝑘𝛽1𝑛𝑘

𝑁𝑟

𝑛=1

…∑𝑐𝑀𝑐𝑜𝑜𝑟𝑛𝑘𝛽𝑀𝑐𝑜𝑜𝑟𝑛𝑘

𝑁𝑟

𝑛=1

] 

= [
𝜏𝑝𝑁𝑟𝛽1𝑘

2

𝜏𝑝𝛽1𝑘 +∑ 𝛽𝑖,1𝑘′
𝐾𝑖𝑛𝑡
𝑘′=1

+ 𝜎𝑧2
…

𝜏𝑝𝑁𝑟𝛽𝑀𝑐𝑜𝑜𝑟𝑘
2

𝜏𝑝𝛽𝑀𝑐𝑜𝑜𝑟𝑘 + ∑ 𝛽𝑖,Mcoor𝑘′
𝐾𝑖𝑛𝑡
𝑘′=1

+ 𝜎𝑧2
] 

(5.40) 

The term 𝔼{𝜸𝑘𝑘′𝜸𝑘𝑘′
𝐻 } in (5.22) can be expressed by: 

 

𝔼{𝜸𝑘𝑘′𝜸𝑘𝑘′
𝐻 }

= [

𝔼{𝒗1𝑘𝒈1𝑘′𝒈1𝑘′
𝐻 𝒗1𝑘

𝐻 } ⋯ 𝔼 {𝒗1𝑘𝒈1𝑘′𝒈𝑀𝑐𝑜𝑜𝑟𝑘′
𝐻 𝒗𝑀𝑐𝑜𝑜𝑟𝑘

𝐻 }

⋮ ⋱ ⋮

𝔼{𝒗𝑀𝑐𝑜𝑜𝑟𝑘𝒈𝑀𝑐𝑜𝑜𝑟𝑘′𝒈1𝑘′
𝐻 𝒗1𝑘

𝐻 } ⋯ 𝔼 {𝒗𝑀𝑐𝑜𝑜𝑟𝑘𝒈𝑀𝑐𝑜𝑜𝑟𝑘′𝒈𝑀𝑐𝑜𝑜𝑟𝑘′
𝐻 𝒗𝑀𝑐𝑜𝑜𝑟𝑘

𝐻 }

] 
(5.41) 

The on-diagonal elements in (5.41) are calculated, when 𝑘′ ≠ 𝑘: 

 

𝔼{𝒗𝑚𝑘𝒈𝑚𝑘′𝒈𝑚𝑘′
𝐻 𝒗𝑚𝑘

𝐻 } = 𝔼{𝒈̂𝑚𝑘
𝐻 𝒈𝑚𝑘′𝒈𝑚𝑘′

𝐻 𝒈̂𝑚𝑘} 

= 𝔼{∑ 𝑔̂𝑚𝑛𝑘
∗ 𝑔𝑚𝑛𝑘′

𝑁𝑟

𝑛=1

∑ 𝑔𝑚𝑛′𝑘′
∗ 𝑔̂𝑚𝑛′𝑘

𝑁𝑟

𝑛′=1

} 

= ∑𝔼{𝑔̂𝑚𝑛𝑘
∗ 𝑔𝑚𝑛𝑘′𝑔𝑚𝑛𝑘′

∗ 𝑔̂𝑚𝑛𝑘}

𝑁𝑟

𝑛=1

 

= 𝑁𝑟 (
𝜏𝑝𝛽𝑚𝑘

2 𝛽𝑚𝑘′

𝜏𝑝𝛽𝑚𝑘 + ∑ 𝛽𝑖,𝑚𝑘′′
𝐾𝑖𝑛𝑡
𝑘′′=1

+ 𝜎𝑧2
) 

(5.42) 

The on-diagonal elements for the case 𝑘′ = 𝑘: 

 
𝔼{𝒗𝑚𝑘𝒈𝑚𝑘𝒈𝑚𝑘

𝐻 𝒗𝑚𝑘
𝐻 } = 𝔼{𝒈̂𝑚𝑘

𝐻 (𝒈̂𝑚𝑘𝒈̂𝑚𝑘
𝐻 + 𝒈̃𝑚𝑘𝒈̃𝑚𝑘

𝐻 )𝒈̂𝑚𝑘} 

= 𝔼{𝒈̂𝑚𝑘
𝐻  𝒈̂𝑚𝑘𝒈̂𝑚𝑘

𝐻 𝒈̂𝑚𝑘} + 𝔼{𝒈̂𝑚𝑘
𝐻  𝒈̃𝑚𝑘𝒈̃𝑚𝑘

𝐻 𝒈̂𝑚𝑘} 
(5.43) 
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= 𝔼{∑|𝑔̂𝑚𝑛𝑘|
2

𝑁𝑟

𝑛=1

∑|𝑔̂𝑚𝑛′𝑘|
2

𝑁𝑟

𝑛′=1

} + 𝔼{∑ 𝑔̂𝑚𝑛𝑘
∗ 𝑔̃𝑚𝑛𝑘

𝑁𝑟

𝑛=1

∑ 𝑔̃𝑚𝑛′𝑘
∗ 𝑔̂𝑚𝑛′𝑘

𝑁𝑟

𝑛′=1

} 

=∑𝔼{|𝑔̂𝑚𝑛𝑘|
4}

𝑁𝑟

𝑛=1

+∑ ∑ 𝔼{|𝑔̂𝑚𝑛𝑘|
2|𝑔̂𝑚𝑛′𝑘|

2}

𝑁𝑟

𝑛′≠𝑛

𝑁𝑟

𝑛=1

+∑𝔼{|𝑔̂𝑚𝑛𝑘|
2|𝑔̃𝑚𝑛𝑘|

2}

𝑁𝑟

𝑛=1

 

=
(𝑎)
2𝑁𝑟𝑐𝑚𝑘

4 (𝛽𝑚𝑘
2 +

2

𝜏𝑝
𝛽𝑚𝑘 ∑ 𝛽𝑖,𝑚𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+
2𝜎𝑧

2

𝜏𝑝
𝛽𝑚𝑘 +

1

𝜏𝑝
∑ 𝛽𝑖,𝑚𝑘′

2

𝐾𝑖𝑛𝑡

𝑘′=1

+
1

𝜏𝑝2
∑ ∑ 𝛽𝑖,𝑚𝑘′𝛽𝑖,𝑚𝑘′′

𝐾𝑖𝑛𝑡

𝑘′′≠𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+
2𝜎𝑧

2

𝜏𝑝2
 ∑ 𝛽𝑖,𝑚𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+
𝜎𝑧
4

𝜏𝑝2
)

+ (𝑁𝑟
2 − 𝑁𝑟)𝑐𝑚𝑘

2 𝛽𝑚𝑘
2 + 𝑁𝑟𝑐𝑚𝑘𝛽𝑚𝑘(1 − 𝑐𝑚𝑘)𝛽𝑚𝑘 

= 2𝑁𝑟𝑐𝑚𝑘
4 (𝛽𝑚𝑘

2 +
2

𝜏𝑝
𝛽𝑚𝑘 ∑ 𝛽𝑖,𝑚𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+
2𝜎𝑧

2

𝜏𝑝
𝛽𝑚𝑘 +

1

𝜏𝑝
∑ 𝛽𝑖,𝑚𝑘′

2

𝐾𝑖𝑛𝑡

𝑘′=1

+
1

𝜏𝑝2
∑ ∑ 𝛽𝑖,𝑚𝑘′𝛽𝑖,𝑚𝑘′′

𝐾𝑖𝑛𝑡

𝑘′′≠𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+
2𝜎𝑧

2

𝜏𝑝2
 ∑ 𝛽𝑖,𝑚𝑘′

𝐾𝑖𝑛𝑡

𝑘′=1

+
𝜎𝑧
4

𝜏𝑝2
)

+ (𝑁𝑟
2 − 2𝑁𝑟)𝑐𝑚𝑘

2 𝛽𝑚𝑘
2 + 𝑁𝑟𝑐𝑚𝑘𝛽𝑚𝑘

2  

where we substitute (5.38) into step (a). The off-diagonal elements in (5.41) are 

calculated, when 𝑘′ = 𝑘 and 𝑚′ ≠ 𝑚: 

 

𝔼{𝒗𝑚𝑘𝒈𝑚𝑘′𝒈𝑚′𝑘′
𝐻 𝒗𝑚′𝑘

𝐻 } = 𝔼{𝒈̂𝑚𝑘
𝐻 𝒈𝑚𝑘𝒈𝑚′𝑘

𝐻 𝒈̂𝑚′𝑘} 

= 𝔼{∑ 𝑔̂𝑚𝑛𝑘
∗ 𝑔𝑚𝑛𝑘

𝑁𝑟

𝑛=1

∑ 𝑔𝑚′𝑛′𝑘
∗ 𝑔̂𝑚′𝑛′𝑘

𝑁𝑟

𝑛′=1

} 

= 𝔼{∑|𝑔̂𝑚𝑛𝑘|
2

𝑁𝑟

𝑛=1

∑|𝑔̂𝑚′𝑛′𝑘|
2

𝑁𝑟

𝑛′=1

} 

= 𝑁𝑟
2𝑐𝑚𝑘𝛽𝑚𝑘𝑐𝑚′𝑘𝛽𝑚′𝑘 

(5.44) 

If 𝑘′ ≠ 𝑘 , the off-diagonal elements in (5.41) are zero. Then, the term 

𝔼{𝜸𝑖,𝑘𝑘′𝜸𝑖,𝑘𝑘′
𝐻 } in (5.22) can be expressed by: 

 



5.8 Appendix  121 

 

 𝔼{𝜸𝑖,𝑘𝑘′𝜸𝑖,𝑘𝑘′
𝐻 } (5.45) 

 = [

𝔼{𝒗1𝑘𝒈𝑖,1𝑘′𝒈𝑖,1𝑘′
𝐻 𝒗1𝑘

𝐻 } ⋯ 𝔼 {𝒗1𝑘𝒈𝑖,1𝑘′𝒈𝑖,𝑀𝑐𝑜𝑜𝑟𝑘′
𝐻 𝒗𝑀𝑐𝑜𝑜𝑟𝑘

𝐻 }

⋮ ⋱ ⋮

𝔼{𝒗𝑀𝑐𝑜𝑜𝑟𝑘𝒈𝑖,𝑀𝑐𝑜𝑜𝑟𝑘′𝒈𝑖,1𝑘′
𝐻 𝒗1𝑘

𝐻 } ⋯ 𝔼 {𝒗𝑀𝑐𝑜𝑜𝑟𝑘𝒈𝑖,𝑀𝑐𝑜𝑜𝑟𝑘′𝒈𝑖,𝑀𝑐𝑜𝑜𝑟𝑘′
𝐻 𝒗𝑀𝑐𝑜𝑜𝑟𝑘

𝐻 }

]  

The on-diagonal elements can be expressed by: 

 

𝔼{𝒗𝑚𝑘𝒈𝑖,𝑚𝑘′𝒈𝑖,𝑚𝑘′
𝐻 𝒗𝑚𝑘

𝐻 } = 𝔼{𝒈̂𝑚𝑘
𝐻 𝒈𝑖,𝑚𝑘′𝒈𝑖,𝑚𝑘′

𝐻 𝒈̂𝑚𝑘} 

= 𝔼{∑ 𝑔̂𝑚𝑛𝑘
∗ 𝑔𝑖,𝑚𝑛𝑘′

𝑁𝑟

𝑛=1

∑ 𝑔𝑖,𝑚𝑛′𝑘′
∗ 𝑔̂𝑚𝑛′𝑘

𝑁𝑟

𝑛′=1

} 

=∑𝔼{|𝑔̂𝑚𝑛𝑘|
2|𝑔𝑖,𝑚𝑛𝑘′|

2
}

𝑁𝑟

𝑛=1

 

= 𝑁𝑟𝑐𝑚𝑘𝛽𝑚𝑘𝛽𝑖,𝑚𝑘′ 

(5.46) 

The off-diagonal elements is derived when 𝑚′ ≠ 𝑚: 

 

𝔼{𝒗𝑚𝑘𝒈𝑖,𝑚𝑘′𝒈𝑖,𝑚′𝑘′
𝐻 𝒗𝑚′𝑘

𝐻 } = 𝔼{𝒈̂𝑚𝑘
𝐻 𝒈𝑖,𝑚𝑘′𝒈𝑖,𝑚′𝑘′

𝐻 𝒈̂𝑚′𝑘} 

= 𝔼{∑ 𝑔̂𝑚𝑛𝑘
∗ 𝑔𝑖,𝑚𝑛𝑘′

𝑁𝑟

𝑛=1

∑ 𝑔𝑖,𝑚′𝑛′𝑘′
∗ 𝑔̂𝑚′𝑛′𝑘

𝑁𝑟

𝑛′=1

} = 0 
(5.47) 

The term 𝑫𝑘 is computed by: 

 

𝑫𝑘 = 𝑑𝑖𝑎𝑔 (𝔼{‖𝒗1𝑘‖
2}, 𝔼{‖𝒗2𝑘‖

2}, … , 𝔼 {‖𝒗𝑀𝑐𝑜𝑜𝑟𝑘‖
2
}) 

= 𝑑𝑖𝑎𝑔(𝔼{𝒈̂1𝑘
𝐻 𝒈̂1𝑘},… , 𝔼{𝒈̂𝑀𝑐𝑜𝑜𝑟𝑘

𝐻 𝒈̂𝑀𝑐𝑜𝑜𝑟𝑘}) 

= 𝑑𝑖𝑎𝑔(𝑁𝑟𝑐1𝑘𝛽1𝑘, … , 𝑁𝑟𝑐𝑀𝑐𝑜𝑜𝑟𝑘𝛽𝑀𝑐𝑜𝑜𝑟𝑘) 

(5.48) 

Finally, the closed-form combining vector for large scale fading decoding with local 

MRC in the multiple-antenna AP case is derived by substituting (5.40), (5.42), (5.43), 

(5.44), (5.46), (5.47) and (5.48) into (5.22). From the results, this combining vector 

only depends on the large scale fading coefficients. 



  

Chapter 6 

Conclusion and Future Research 

6.1 Conclusion 

In this thesis, we have studied decentralised distributed massive multiple-input 

multiple-output (DD-MaMIMO), exploring its dimensions with regard to varying 

processing locations and fronthaul capacity assumptions. Our comprehensive analysis 

has demonstrated the potential of DD-MaMIMO in augmenting spectral efficiency (SE) 

and satisfying the demands of six generation (6G) communication networks. For a  

clearer understanding of DD-MaMIMO, we summarise each chapter as follows. 

In Chapter 2, literature review has been presented that primarily introduces various 

architectures of radio access networks (RANs), the MaMIMO technique with its diverse 

deployment approaches, and the general basics of optimum uniform quantisation. This 

review suggests that cell-free MaMIMO, as an approach to perform MaMIMO, can be 

a promising technique for fifth generation (5G) network and beyond. However, cell-

free MaMIMO encounters challenges such as the network edge effect, the quest for low 

latency, and the need for a flexible yet scalable implementation in Open RAN. Guided 

by these insights, the primary objective of this thesis is to design a network that solves 

these issues and fulfils the requirements of the next generation. 

To address these challenges, we have proposed the concept of DD-MaMIMO in 

Chapter 3 and compared it to cell-free MaMIMO. Our studies have demonstrated that 

the network edge effect can be mitigated by appropriately defining the coordination 

region. Furthermore, moving processing back to the network edge can reduce the 

fronthaul load and computational complexity at the central processing unit (CPU), 

resulting in the decreased latency. For a whole system evaluation, we have investigated 

the performance of DD-MaMIMO with unlimited-capacity fronthaul on the uplink, 

without resorting to channel hardening assumption. Numerical results have been 

provided to demonstrate that DD-MaMIMO outperforms cell-free MaMIMO, 

especially as the radius of coordination region increases. In additional, our findings 
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have revealed that applying minimum mean square error (MMSE) estimator for data 

detection is more effective than using maximum ratio combining (MRC), even if each 

access point (AP) is equipped with only a single antenna. Moreover, we have discussed 

that DD-MaMIMO is a scalable network and offers flexible implementation in Open 

RAN. Finally, an innovative pilot allocation algorithm tailored for neighbouring 

networks has been proposed, taking into account users located in overlapping areas 

across many coordination regions. 

In general, optical fibre is used to convey the digital signals between the APs and 

the EPU which requires quantisation to convert the analogue signal to the digital. 

Therefore, in Chapter 4, we have researched DD-MaMIMO with a limited-capacity 

fronthaul. For obtaining the channel state information (CSI), we have considered two 

strategies: quantise-and-estimate (QE) and estimate-and-quantise (EQ). The 

performance for both strategies has been analysed by exploiting Bussgang 

decomposition. In particular, in the QE form, the non-Gaussian distribution of the input 

signal of quantiser has been thoroughly studied. The probability density function (pdf) 

for this non-Gaussian distributed input signal has been derived. Then, we have 

exploited this pdf to further derive the closed-form expressions in order to find the 

optimum quantisation step interval when the elements of pilot sequences follows the 

complex Gaussian distribution. It can achieve a smaller MSE of channel estimation than 

using the optimum quantisation step interval with Gaussian distributed input signal 

assumption. We have also explored the use of binary pilot sequences (plus and minus 

one) in the QE form. The performance did not show a very large difference between 

the two types of pilots. Finally, we have compared numerical results for different CSI 

acquisition strategies with different number of quantisation bits. It has shown that 2-bit 

quantisation with QE strategy can outperform the SE of cell-free MaMIMO with ideal 

fronthaul for 90% likely users. 

In Chapter 5, to mitigate the computational complexity at the EPU, we have 

investigated local estimation at the AP within DD-MaMIMO when using an unlimited-

capacity fronthaul. With this approach, the fronthaul load diminishes since there is no 

need to transmit CSI to the EPU. We have explored two decoding strategies: large scale 

fading decoding and the straightforward method of averaging locally estimated data at 

the EPU. It has been observed that using large scale fading decoding yields superior 

results. However, this requires the channel statistics to be known at the EPU. We have 

also contrasted this local estimation scheme with the decentralised processing scheme. 
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Our numerical evaluations have indicated that the performance gap between the local 

estimation using large scale fading decoding and the decentralised case is not 

significant, if each AP is equipped with a large number of antennas. This phenomenon 

exhibits the adaptability of DD-MaMIMO with various processing locations to the 

flexible deployment requirements of Open RAN, meeting the demands of forthcoming 

wireless network. 

6.2 Future Research 

We recognise that this thesis has left some prospective challenges open for further 

investigate. The future research directions could be categorised into short-term and 

long-term objectives. 

The short-term objectives: 

• We adopted one-slope path loss model for the large scale fading channels in this 

thesis, in order to provide a reasonable comparison with previous research of 

cell-free MaMIMO in [24]. This may not be very suitable for an ultra-dense 

network in the future. This is because in the conventional cellular system, the 

signal-to-interference ratio (SIR) remains constant as the cell size scales. 

However, this becomes invalid, since the interference increases faster than 

signal power, when the cell size decreases further. Therefore, we could apply 

the multi-slope path loss model to DD-MaMIMO with an ultra-dense network. 

• In Chapter 3, we observed that the performance for the SE improves with the 

increase of the coordination radius in DD-MaMIMO. The reason is, in a larger 

coordination region, the number of serving APs is greater, resulting in the rise 

of signal power and the decrease of interference. However, the radius of the 

coordination region cannot be grown infinitely. It should have a range limitation 

with respect to the length of pilot sequences to ensure that pilots assigned to all 

user terminals (UTs) within coordination region are completely orthogonal with 

each other. Furthermore, if the length of pilots is less than the number of UTs 

within the coordination region, optimal pilot allocation methods such as greedy 

pilot allocation needs to be considered to mitigate the pilot contamination. We 
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could make a comparison for both cases to find whether there is a significant 

discrepancy. Based on this result, a trade-off could be evaluated. 

• In Chapter 4, we used the true pdf of the input signal of the quantiser to 

determine the optimal quantisation step interval. However, the MSE of channel 

performance did not show a significant improvement, compared to when we 

assumed a Gaussian distribution for the input signal. This outcome might 

happen when the number of users, including the interfering ones, is sufficiently 

large to align with a normal distribution by leveraging the central limit theorem. 

This phenomenon could be researched for a more comprehensive understanding. 

Moreover, the approach introduced in this chapter could be particularly relevant 

to rural areas where the number of devices accessing the network is limited. 

• We evaluated the performance of quantisation in Chapter 4 with the least 2 bits, 

but 1-bit quantisation also could be explored for the worst quantisation 

resolution circumstance. This might be suitable for local estimation in DD-

MaMIMO as stated in Chapter 5 where a large fronthaul capacity is not required. 

The long-term objectives: 

• In this thesis, we investigated the performance of DD-MaMIMO in terms of 

uncorrelated Rayleigh fading channel. But, in the realistic scenario, the channel 

between different antennas at one AP in MaMIMO system could be correlated. 

Though this would not affect the single-antenna AP case in this thesis, it could 

degrade the system performance with regard to the AP equipped a large number 

of antennas. For example, the comparison between the uncorrelated and 

correlated Rayleigh fading channel for cell-free MaMIMO was discussed in 

[80], indicating the effect of spatial correlation. Additionally, in [14], the 

correlated shadowing also caused the performance degradation. Therefore, 

more thorough research on the performance of DD-MaMIMO taking account of 

correlated channels and shadowing could be done in the future. 

• We focused on the flat fading channel in this thesis which may not be realistic. 

In practice, due to reflections, refractions or scattering from objectives, the AP 

receives the signal via multiple paths. This multipath propagation can make the 
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channel appear frequency-selective. To cope with this multipath effect, 

orthogonal frequency-division multiplexing (OFDM) can be applied. Therefore, 

the research of using OFDM in DD-MaMIMO could be developed in the future.  

• To improve system performance, power control should be implemented in DD-

MaMIMO. Furthermore, it is important to discuss the scalability aspects of the 

power control. 

• In this thesis, we derived an expression for the achievable SE referencing the 

upper bound of Shannon capacity, which represents a theoretical value. 

However, in real life, the selected modulation determines how close a practical 

communications system can approach this theoretical limit. Therefore, taking 

account of modulation could be an avenue for future research. Moreover, in the 

scenario with low resolution, especially when using only one or two 

quantisation bits, an adaptive modulation scheme should be chosen to strike a 

balance between data transmission efficiency and accuracy. 

• We investigated two distinct types of pilots in QE form. While numerical results 

for both types were quite similar, there remains an opportunity to delve into the 

specific application scenarios where each pilot type might be best suited. 

• In addition to applying quantisation, the compressed sensing is another 

emergent technique applicable to the limited-capacity fronthaul link. By using 

compressed sensing, the transmitted data can be sparsely represented which 

reduces the transmission bits and the power consumption [81]. However, the 

optimisation problems often needs to be solved in compressed sensing when the 

signals are decoded, which may increase the computational complexity [81]. 

Hence, the comparison for the application of quantisation and compressed 

sensing can be researched. The challenge of the compressed sensing can be 

solved in the future. 

• In Chapter 5, we only introduced local estimation in DD-MaMIMO with ideal 

fronthaul, which is not realistic. Therefore, quantisation for this local estimation 

case could be developed in the future work. There are several points needed to 

be considered, such as how to express the locally estimated data in a 
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quantisation form with two different decoding methods, how to quantise the 

channel statistics for large scale fading decoding, and if the original Bussgang 

decomposition could be directly used to the locally estimated data. 

• As stated in [7], artificial intelligence (AI) or machine learning (ML) could be 

applied in 6G for improving signal processing. For example, AI/ML can be used 

to predict more accurate CSI with rapidly changing channel conditions, which 

becomes significant especially for the millimetre wave and terahertz (THz) 

frequency. Though we did not discuss this in this thesis, it could be considered 

for DD-MaMIMO in the future.
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