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Abstract 

On a frequent day-to-day basis, we encounter situations that require the 

formation of decisions based on ambiguous and often incomplete sensory 

information. Perceptual decision-making defines the process by which 

sensory information is consolidated and accumulated towards one of multiple 

possible choice alternatives, which inform our behavioural responses. 

Perceptual decision-making can be understood both theoretically and 

neurologically as a process of stochastic sensory evidence accumulation 

towards some choice threshold. Once this threshold is exceeded, a response 

is facilitated, informing the overt actions undertaken. Prevalent progress has 

been made towards understanding the cognitive and neural mechanisms 

underlying perceptual decision-making. Analyses of Reaction Time (RTs; 

typically constrained to milliseconds) and choice accuracy; reflecting decision-

making behaviour, can be coupled with neuroimaging methodologies; notably 

electroencephalography (EEG) and functional Magnetic Resonance Imaging 

(fMRI), to identify spatiotemporal components representative of the neural 

signatures corresponding to such accumulation-to-bound decision formation 

on a single-trial basis. Taken together, these provide us with an experimental 

framework conceptualising the key computations underlying perceptual 

decision-making.   

 

Despite this, relatively little remains known about the enhancements or 

alternations to the process of perceptual decision-making from the integration 

of information across multiple sensory modalities. Consolidating the available 

sensory evidence requires processing information presented in more than one 

sensory modality, often near-simultaneously, to exploit the salient percepts for 

what we term as multisensory (perceptual) decision-making. Specifically, 

multisensory integration must be considered within the perceptual decision-

making framework in order to understand how information becomes 

stochastically accumulated to inform overt sensory-motor choice behaviours. 

Recently, substantial progress in research has been made through the 

application of behaviourally-informed, and/or neurally-informed, modelling 

approaches to benefit our understanding of multisensory decision-making. In 

particular, these approaches fit a number of model parameters to behavioural 

and/or neuroimaging datasets, in order to (a) dissect the constituent internal 

cognitive and neural processes underlying perceptual decision-making with 

both multisensory and unisensory information, and (b) mechanistically infer 

how multisensory enhancements arise from the integration of information 



- vi - 

across multiple sensory modalities to benefit perceptual decision formation. 

Despite this, the spatiotemporal locus of the neural and cognitive 

underpinnings of enhancements from multisensory integration remains 

subject to debate. In particular, our understanding of which brain regions are 

predictive of such enhancements, where they arise, and how they influence 

decision-making behaviours requires further exploration.  

 

The current thesis outlines empirical findings from three studies aimed at 

providing a more complete characterisation of multisensory perceptual 

decision-making, utilising EEG and accumulation-to-bound modelling 

methodologies to incorporate both behaviourally-informed and neurally-

informed modelling approaches, investigating where, when, and how 

perceptual improvements arise during multisensory perceptual decision-

making. Pointedly, these modelling approaches sought to probe the exerted 

modulatory influences of three factors: unisensory formulated cross-modal 

associations (Chapter 2), natural ageing (Chapter 3), and perceptual learning 

(Chapter 4), on the integral cognitive and neural mechanisms underlying 

observable benefits towards multisensory decision formation.  

 

Chapter 2 outlines secondary analyses, utilising a neurally-informed 

modelling approach, characterising the spatiotemporal dynamics of neural 

activity underlying auditory pitch-visual size cross-modal associations. In 

particular, how unisensory auditory pitch-driven associations benefit 

perceptual decision formation was functionally probed. EEG measurements 

were recorded from participants during performance of an Implicit Association 

Test (IAT), a two-alternative forced-choice (2AFC) paradigm which presents 

one unisensory stimulus feature per trial for participants to categorise, but 

manipulates the stimulus feature-response key mappings of auditory pitch-

visual size cross-modal associations from unisensory stimuli alone, thus 

overcoming the issue of mixed selectivity in recorded neural activity prevalent 

in previous cross-modal associative research, which near-simultaneously 

presented multisensory stimuli. Categorisations were faster (i.e., lower RTs) 

when stimulus feature-response key mappings were associatively congruent, 

compared to associatively incongruent, between the two associative 

counterparts, thus demonstrating a behavioural benefit to perceptual decision 

formation. Multivariate Linear Discriminant Analysis (LDA) was used to 

characterise the spatiotemporal dynamics of EEG activity underpinning IAT 

performance, in which two EEG components were identified that discriminated 
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neural activity underlying the benefits of associative congruency of stimulus 

feature-response key mappings. Application of a neurally-informed 

Hierarchical Drift Diffusion Model (HDDM) demonstrated early sensory 

processing benefits, with increases in the duration of non-decisional 

processes with incongruent stimulus feature-response key mappings, and late 

post-sensory alterations to decision dynamics, with congruent stimulus 

feature-response key mappings decreasing the quantity of evidence required 

to facilitate a decision. Hence, we found that the trial-by-trial variability in 

perceptual decision formation from unisensory facilitated cross-modal 

associations could be predicted by neural activity within our neurally-informed 

modelling approach.  

 

Next, Chapter 3 outlines cognitive research investigating age-related impacts 

on the behavioural indices of multisensory perceptual decision-making (i.e., 

RTs and choice accuracy). Natural ageing has been demonstrated to 

diversely affect multisensory perceptual decision-making dynamics. However, 

the constituent cognitive processes affected remain unclear. Specifically, a 

mechanistic insight reconciling why older adults may exhibit preserved 

multisensory integrative benefits, yet display generalised perceptual deficits, 

relative to younger adults, remains inconclusive. To address this limitation, 

212 participants performed an online variant of a well-established audiovisual 

object categorisation paradigm, whereby age-related differences in RTs and 

choice accuracy (binary responses) between audiovisual (AV), visual (V), and 

auditory (A) trial types could be assessed between Younger Adults (YAs; 

Mean ± Standard Deviation = 27.95 ± 5.82 years) and Older Adults (OAs; 

Mean ± Standard Deviation = 60.96 ± 10.35 years). Hierarchical Drift Diffusion 

Modelling (HDDM) was fitted to participants’ RTs and binary responses in 

order to probe age-related impacts on the latent underlying processes of 

multisensory decision formation. Behavioural results found that whereas OAs 

were typically slower (i.e., ↑ RTs) and less accurate (i.e., ↓ choice accuracy), 

relative to YAs across all sensory trial types, they exhibited greater differences 

in RTs between AV and V trials (i.e., ↑ AV-V RT difference), with no significant 

effects of choice accuracy, implicating preserved benefits of multisensory 

integration towards perceptual decision formation. HDDM demonstrated 

parsimonious fittings for characterising these behavioural discrepancies 

between YAs and OAs. Notably we found slower rates of sensory evidence 

accumulation (i.e., ↓ drift rates) for OAs across all sensory trial types, coupled 

with (1) higher rates of sensory evidence accumulation (i.e., ↑ drift rates) for 
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OAs between AV versus V trial types irrespective of stimulus difficulty, 

coupled with (2) increased response caution (i.e., ↑ decision boundaries) 

between AV versus V trial types, and (3) decreased non-decisional processing 

duration (i.e., ↓ non-decision times) between AV versus V trial types for stimuli 

of increased difficulty respectively. Our findings suggest that older adults 

trade-off multisensory decision-making speed for accuracy to preserve 

enhancements towards perceptual decision formation relative to younger 

adults. Hence, they display an increased reliance on integrating multimodal 

information; through the principle of inverse effectiveness, as a compensatory 

mechanism for a generalised cognitive slowing when processing unisensory 

information. Overall, our findings demonstrate how computational modelling 

can reconcile contrasting hypotheses of age-related changes in processes 

underlying multisensory perceptual decision-making behaviour.  

 

Finally, Chapter 4 outlines research probing the exerted influence of 

perceptual learning on multisensory perceptual decision-making. Views of 

unisensory perceptual learning imply that improvements in perceptual 

sensitivity may be due to enhancements in early sensory representations 

and/or modulations to post-sensory decision dynamics. We sought to assess 

whether these views could account for improvements in perceptual sensitivity 

for multisensory stimuli, or even exacerbations of multisensory enhancements 

towards decision formation, by consolidating the spatiotemporal locus of 

where and when in the brain they may be observed. We recorded EEG activity 

from participants who completed the same audiovisual object categorisation 

paradigm (as outlined in Chapter 3), over three consecutive days. We used 

single-trial multivariate LDA to characterise the spatiotemporal trajectory of 

the decision dynamics underlying any observed multisensory benefits both (a) 

within and (b) between visual, auditory, and audiovisual trial types. While 

found significant decreases were found in RTs and increases in choice 

accuracy over testing days, we did not find any significant effects of perceptual 

learning on multisensory nor unisensory perceptual decision formation. 

Similarly, EEG analysis did not find any neural components indicative of early 

or late modulatory effects from perceptual learning in brain activity, which we 

attribute to (1) a long duration of stimulus presentations (300ms), and (2) a 

lack of sufficient statistical power for our LDA classifier to discriminate face-

versus-car trial types. We end this chapter with considerations for discerning 

multisensory benefits towards perceptual decision formation, and 
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recommendations for altering our experimental design to observe the effects 

of perceptual learning as a decision neuromodulator.  

 

These findings contribute to literature justifying the increasing relevance of 

utilising behaviourally-informed and/or neurally-informed modelling 

approaches for investigating multisensory perceptual decision-making. In 

particular, a discussion of the underlying cognitive and/or neural mechanisms 

that can be attributed to the benefits of multisensory integration towards 

perceptual decision formation, as well as the modulatory impact of the 

decision modulators in question, can contribute to a theoretical reconciliation 

that multisensory integrative benefits are not ubiquitous to specific 

spatiotemporal neural dynamics nor cognitive processes.  
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Chapter 1 

General Introduction 

In everyday life, we frequently encounter situations whereby a multitude of 

decisions must be formed on the basis of ambiguous and inherently noisy 

sensory information. Each decision requires a consolidation of incoming 

sensory information, or sensory-motor information, as determinant evidence 

towards particular choice alternatives. Once sufficient evidence has been 

accumulated towards a specific choice alternative, an overt behavioural 

response is facilitated, which prepares motor responses for efficient 

interaction with our immediate surrounding environment. The importance of 

the role of sensory information in directing behavioural responses has led this 

process to be defined as perceptual decision-making (see Gold & Shadlen, 

2007; Heekeren, Marrett, & Ungerleider, 2008; Philiastides & Heekeren, 2009; 

Philiastides, Diaz, & Gherman, 2017, for detailed reviews). In contrast with 

broader definitions of decision-making, perceptual decision-making considers 

choices to be facilitated at a non-deliberate lower level, which operates 

independently from a higher level of conscious awareness. Specifically, the 

criteria defining the quality of decisions is dependent on immediate and readily 

available sensory information, and less dependent on the subjective 

preference and goals of the observer (Dutilh & Rieskamp, 2016; Hauser & 

Salinas, 2014). In addition, prior-informed expectations, derived from 

repeated exposure, can bias perceptual decisions formed under time 

pressure, whereby we prioritise choice alternatives that are probabilistically 

more likely to be correct (Kelly, Corbett, & O’Connell, 2021). With a higher 

level of conscious awareness, as well as a lack of time pressure, this bias can 

be reduced.  

 

Consequently, there has been a longstanding interest in cognitive 

neuroscientific research to investigate the underlying cognitive and neural 

mechanisms of perceptual decision-making within the human brain. In order 

to investigate how we formulate perceptual decisions from readily available 

sensory information, researchers typically use speeded classification 

paradigms, whereby a participant must rapidly categorise a particular level of 

sensory stimulus input (which may vary in coherence, or “noise”), and make a 

decision constrained to a limited number of choice alternatives, for example, 

two choices in 2AFC paradigms (Smith & Ratcliff, 2004). Decisional 
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behaviours can then be assessed with single-trial measurements such as RTs 

and choice accuracy (and/or choice probability), which reflect the speed and 

accuracy of perceptual decision-making respectively. As such, differences in 

behavioural performance across the formation of perceptual decisions can be 

quantified in order to assess modulations in decisional behaviour from 

modulators, for example, changes in sensory input strength (Palmer, Hulk, & 

Shadlen, 2005) or the task demands of the paradigm itself (Heekeren et al., 

2004; Otto, Dassy, & Mamassian, 2013). A neuroimaging methodology such 

as EEG, fMRI, or magnetoencephalography (MEG) can be simultaneously 

applied to measure brain activity that underlies the formation of perceptual 

decisions on a single-trial basis. Such dual methodologies permit for an 

investigation of the spatiotemporal trajectory of the overall process of 

perceptual decision-making, whereby its neural correlates can be pinpointed 

within an interconnected hierarchy of cortical regions within the brain.  

 

The collected behavioural and neuroimaging datasets can be implemented, 

either independently or simultaneously, into computational models, to 

complete what are termed as behaviourally-informed modelling approaches 

(modelling behavioural datasets) or neurally-informed modelling approaches 

(modelling neuroimaging and behavioural datasets) respectively (see 

Hawkins et al., 2017; Turner et al., 2013; 2017, for reviews) for investigating 

the internal constituent mechanisms; both cognitive and neural, of perceptual 

decision formation. In particular, the Drift Diffusion Model (DDM; see 

Forstmann, Ratcliff, & Wagenmakers, 2016; Ratcliff, 1978; Ratcliff et al., 2016; 

Ratcliff & McKoon, 2008; Ratcliff & Smith, 2004; Ratcliff, Smith, & McKoon, 

2015; for detailed reviews), has proven invaluable in its modelling of RTs and 

choice accuracy. Furthermore, simultaneously collected neuroimaging 

datasets can be used to inform parameter fittings to predict latent states of 

perceptual decision-making patterns. Through the application of such 

approaches, mechanistic insights into the functions that predict decisional 

behaviours can be uncovered. In particular, a framework has been 

conceptualised implicating the overall process of perceptual decision-making 

involves a non-serial cascade of separate cognitive stages, or events, each of 

which is represented in an interconnected hierarchy of cortical regions within 

the brain.   

 

However, our external environment is inherently multisensory. The available 

sensory information must be seamlessly integrated and consolidated across 
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multiple sensory modalities, often near-simultaneously, in order to form unique 

and coherent perceptual representations, or percepts, delineating salient 

information about the environmental objects that inform choice behaviours 

(see Alais et al., 2010; Ghazanfar & Schroeder, 2006, for detailed reviews). 

The bound multisensory percepts subsequently guide adaptive behaviours. 

When compared to unisensory percepts (formed from information presented 

to single sensory modalities), perceptual decision formation from multisensory 

information shows benefits to decisional responses, notably improved 

stimulus detection (Lewis & Noppeney, 2010), increased response speed (i.e. 

reduced RTs in speeded classification paradigms; Lippert, Logothetis, & 

Kayser, 2007), and increased response choice accuracy (Franzen et al., 2020; 

Kayser, Philiastides, & Kayser, 2017).  

 

As such, the framework of perceptual decision-making has been extended to 

consider the integration and consolidation of sensory information across 

multiple modalities, and recently has been referred to as multisensory 

(perceptual) decision-making1 (Bizley, Jones, & Town, 2016a; Bizley, 

Maddox, & Lee, 2016b; Drugowitsch et al., 2014; Franzen et al., 2020; Raposo 

et al., 2012). The employment of both behaviourally-informed and neurally-

informed modelling approaches in investigations of the consolidation of 

multisensory information for perceptual decision formation, through 

comparisons of bimodal (presented in close spatial and/or temporal proximity, 

e.g., auditory and visual stimuli) and unimodal stimulus presentations have 

demonstrated neural and cognitive underpinnings discerning the benefits we 

see with multisensory information, compared to unisensory information, 

towards perceptual decision formation. Thus, this implicates that the 

integration and consolidation of multisensory information increases the 

likelihood of optimised decisional responses (Chandrasekaran, 2017; 

Drugowitsch et al., 2014; 2015; Hou et al., 2018). Thus, in order to benefit a 

wider understanding of perceptual decision-making, the proposed framework 

needs to consider the distinct integrative mechanisms; both cognitive and 

neural, that underlies an increased likelihood of optimised decisional 

responses through consolidating multisensory representations to benefit 

                                            

1 Where necessary, this thesis will refer to multisensory decision-making as “multisensory 

perceptual decision-making” in order to distinguish the process from perceptual decision-

making alone, which focuses on findings from experimental paradigms that presented only 

unisensory stimuli.  



- 4 - 

choice formation. These include cognitive mechanisms for forming 

multisensory representations; for example, binding unisensory signals 

weighted on sensory reliability and/or task relevance (Rohe & Noppeney, 

2016), and consolidating the causal relationship between bound signals to 

expedite the accumulation of sensory evidence (Zangaladze et al., 1999), as 

well as the neural mechanisms for differentiating multisensory representations 

in sensory and higher associative cortices. In particular, sensory cortices have 

been prominently linked to encoding sensory information into decisional 

evidence (e.g., auditory; Bizley et al., 2013; somatosensory; Romo, Lemus, & 

Lafuente, 2012), whereas regions such as the Inferior Frontal Sulcus (IFS; 

Werner & Noppeney, 2010), Posterior Parietal Cortex (PPC), and prefrontal 

cortex (Erlich et al., 2015) being found to reflect the accumulation of decisional 

evidence benefitting choice formation.   

 

Despite an increased understanding of these cognitive and neural 

mechanisms underlying perceptual decision-making with unisensory stimuli, 

our understanding of the comparative similarities and differences with the 

cognitive and neural mechanisms underlying multisensory perceptual 

decision-making requires further exploration. Cognitive neuroscientific 

research is only beginning to yield insights into how enhancements from 

multisensory stimuli in perceptual decision formation emerge, and 

subsequently modulate, the cascade of mechanisms resulting from an 

integration of sensory information across multiple modalities. This profoundly 

impacts a wider understanding of perceptual decision-making. In addition, this 

further impacts our comprehension of the exerted influence of decision 

(neuro)modulators on the separate events of decisional processing within the 

established framework. Consequently, insights into the prominent cognitive 

and neural mechanisms for multisensory perceptual decision-making in 

ecological surroundings, where sensory information is inherently probabilistic 

and highly variable (i.e. “noisy”; Philiastides, Diaz, & Gherman, 2017), is 

limited. As such, the previously defined framework needs to continue 

considering enhancements arising within multisensory perceptual decision-

making. 

 

This introductory chapter attempts to summarise recent literature exploring 

multisensory perceptual decision-making. First, it will outline the current 

understanding of perceptual decision-making with unisensory stimuli. Second, 

it will outline the current understanding of the mechanisms of multisensory 



- 5 - 

integration, and the ongoing debate of where multisensory signals are 

combined to benefit the formation of perceptual decisions. Finally, it will outline 

the outstanding questions that motivate this thesis, and how the decision 

(neuro)modulators in question affect the determinant cognitive and neural 

mechanisms of multisensory perceptual decision-making. 

 

1.1 Unisensory Perceptual Decision-Making 

The following section will describe converging non-human neurophysiological, 

human neuroimaging, and theoretical modelling research that demonstrates 

empirical support for the various stages of processing for unisensory 

perceptual decision-making. It will also outline the predictions made from 

behaviourally-informed and neurally-informed modelling approaches that 

inform the current framework used to conceptualise unisensory perceptual 

decision-making.  

 

1.1.1 Non-Human Neurophysiological Research 

Earlier non-human electrophysiological findings first revealed patterns of 

single-neuron activity that suggested an integrative mechanism for translating 

sensory information into overt motor behaviours (Gold & Shadlen, 2007). 

Previous findings recorded single-unit patterns that pointed towards 

modulations in neural activity that were not attributed to the commitment of 

choice behaviours, and instead corresponded to a cascade of neural events 

underlying the overall process of perceptual decision formation. For example, 

Newsome, Britten, and Movshon (1989) recorded single-neuron activity from 

MT area V5 in the extrastriate visual cortex of Rhesus monkeys, which 

spanned three different psychophysical thresholds of a Random Dot 

Kinematogram (RDK). This paradigm required the monkeys to categorise the 

dominant direction of motion of a random dot display by sustaining a visual 

fixation on their preferred direction. They observed that the response profiles 

of neurons recorded displayed increased sensitivity and reliability in the 

measurement of visual motion coherence when compared to the overt visual 

fixations the monkeys made themselves. Moreover, further studies found that 

the perceptual choice formation of monkeys correlated with the single-trial 

variability of direction-selective MT/V5 neurons, whereby the neurons 

displayed increased firing that correlated positively with the likelihood of the 

neuron’s preferred direction of motion (Britten et al., 1992; 1993; Shadlen et 
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al., 1996). These results implicated that perceptual decisions are formed from 

the increased firing of cortical neurons prior to the behavioural response itself, 

and therefore that sensory evidence representation forms the early basis for 

decision formation, but is accumulated with increased activity within the brain.  

 

Further research in this field also demonstrated that the sensory evidence 

provided by sensory cortical regions of the brain can be used to drive the later 

stages of perceptual decision formation in non-sensory, higher-order, regions. 

For example, it has been found that single-neuron activity in the lateral 

intraparietal (LIP) area, within the parietal cortex, of Rhesus and Macaque 

monkeys gradually increased over time at a rate proportional to the difficulty 

of a visual direction-discrimination RDK. This was thought to implicate an 

accumulation of consolidated sensory evidence needed to facilitate a decision 

based on task difficulty. In addition, firing rates were reported to have 

gradually converged when the monkeys committed to their visual fixation 

choices (Huk & Shadlen, 2005; Roitman & Shadlen, 2002; Shadlen & 

Newsome, 2001). The increased neuronal firing, corresponding to the 

availability of incoming visual information, and hence the subsequent build-up 

of decisional evidence, was also reported in the frontal eye fields (FEFs) and 

dorsolateral pre-frontal (DLPFC) cortex (Kim & Shadlen, 1999). These higher-

order cortical regions are independent of lower-order sensory cortical regions, 

which receive incoming sensory information first. Therefore, these findings 

can be regarded as evidence that analogue representations of visual motion 

were not received in higher-order cortical regions. Instead, they were 

consolidated, accumulated, and translated into a decision variable which 

informed choice behaviours (i.e., visual fixations). Such an interpretation can 

be reaffirmed by further observations that the predictive ability of firing rates, 

for the time and direction of visual saccades, were not observed once primate 

participants were committed to their behavioural movement. 

 

In summary, earlier non-human neurophysiological findings provided seminal 

insights into the neural mechanisms underlying perceptual decision-making, 

albeit at a single-neuron level. Undoubtedly, they outline distinct processes of 

perceptual decision formation that interacted in a hierarchical manner of 

activation. First, there is the process of sensory evidence representation in 

sensory cortices, representative of the consolidation of incoming signal 

information. Second, there is the corresponding downstream process from 

sensory cortices to associative cortices, whereby decisional evidence is 
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accumulated to form choice responses through the comparison of sensory 

neural firing inputs. Importantly, the identification of a downstream process for 

accumulating sensory information matches computational frameworks of 

perceptual decision, which implicate an integrative mechanism for 

accumulating sensory evidence over time to a pre-set internal decision 

boundary, thus determining choice responses (Philiastides, Diaz, & Gherman, 

2017; Siegel, Engel, & Donner, 2011). These will be outlined in the following 

subsection.   

 

1.1.2 Human Neuroimaging Research 

The de facto preference of speeded classification paradigms, often utilised 

when investigating perceptual decision formation in humans, is typically the 

two-alternative forced-choice (2AFC) paradigm. In this paradigm, a participant 

observes a sensory stimulus input, and is constrained to make a binary 

perceptual judgement. The sensitivity level, or stimulus coherence, of the input 

can be manipulated to observe performance differences in decision-making 

behaviour on a single-trial basis. The two commonly collected behavioural 

measurements of performance consist of RTs; usually recorded on the scale 

of milliseconds, and choice accuracy; usually recorded as a binary variable of 

whether or not the participant was correct in their facilitated choice. Using 

these two dependent variable measurements, how the formation of perceptual 

decisions changes between experimental conditions can be quantified. A 

methodology of neuroimaging such as EEG, fMRI, or MEG, can then be 

simultaneously applied to measure brain activity underlying the formation of 

perceptual decisions. Uncovering brain activity that reflects key neural events 

underpinning perceptual decision formation, quantified through analyses of 

RTs and choice accuracy, opens new avenues in regard to empirically 

validating the neural mechanisms underlying the distinct cognitive events, 

whereby predictions can be made for gaining a functional insight into the 

translation of sensory information into choice behaviours.   

 

In particular, key computations can be predicted utilising behaviourally-

informed or neurally-informed modelling approaches (see Hawkins et al., 

2017; O’Connell et al., 2018; Turner et al., 2013; 2017, for detailed reviews). 

In such approaches, individually or simultaneously collected behavioural and 

neuroimaging datasets can be joined in a single framework for empirically 

testing and refining model predictions about the constituent cognitive and 



- 8 - 

neural stages of perceptual decision formation respectively. One prominent 

variant of such model-based cognitive neuroscience approaches concerns 

sequential sampling models, in particular, the Drift Diffusion Model (DDM; 

Forstmann, Ratcliff, & Wagenmakers, 2016; Ratcliff et al., 2016; Ratcliff & 

McKoon, 2008; Ratcliff & Smith, 2004; Ratcliff, Smith, & McKoon, 2015; 

Wiecki et al., 2013). These models are behaviourally-informed, assuming a 

process of stochastic sensory evidence accumulation during decision 

formation, captured by certain parameters estimating different components of 

the decision-making process. Moreover, this process involves an integrative 

mechanism, concurrent with the mechanism processed for accumulation of 

representative sensory information from earlier animal neurophysiological 

findings, in which once enough sensory evidence is accumulated over time to 

exceed an internal boundary for one choice alternative, that choice is initiated, 

facilitating a behavioural response. They model single-trial speed (i.e., RTs) 

and choice accuracy, inextricably coupling speed and choice accuracy, and 

not treating them as independent response variables. Conceptualising 

perceptual decision-making as a gradual evidence accumulation process is 

advantageous in understanding its own internal variability in choice 

responses, and not quantifying the relation between RTs and accuracy as 

fixed. Instead, predictions can be accounted for of the effects of internal and 

external decisional modulators with the two behavioural performance 

measurements. For example, arbitrarily high choice accuracy can be 

accounted for by increases in response speed, and arbitrarily low (i.e., fast) 

response speed can be accounted for by decreases in choice accuracy, thus 

functionally probing the speed-accuracy trade-off (SATOs) when forming 

perceptual decisions (Wenzlaff et al., 2011; Zhang & Rowe, 2014). In DDMs, 

estimated parameters of internal cognitive components modulated by the 

experimental context are decomposed as: (1) the rate of evidence 

accumulation (drift rate), (2) possible a priori bias towards one of the two 

choice alternatives (starting point), (3) the distance between two decision 

boundaries controlling the amount of evidence required for one particular 

choice alternative (decision boundary), and (4) the duration of non-decisional 

processes, which can include time taken for stimulus encoding and motor-

response production latency (non-decision time). In addition, a further 

advantage of utilising DDMs as a sequential sampling modelling approach are 

that trial-by-trial correlations between a measurement of brain function (e.g. 

EEG amplitude, fMRI BOLD activity), and the aforementioned DDM 

parameters, can be estimated to demonstrate an association between brain 

activity and internal cognitive components under investigation, thus 
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constraining the model fits further to inform the role of brain function for certain 

latent processes.   

 

Consequently, the application of behaviourally-informed and neurally-

informed modelling approaches for linking single-trial behavioural 

measurements (i.e., RTs and/or choice accuracy) with corresponding 

recorded neural activity in the human brain has uncovered an interconnected 

hierarchy of cortical areas that underlie a cascade of separate stages, or 

events, of perceptual decision formation (Heekeren et al., 2004; 2006). 

Specifically, findings from the application of such approaches have coupled 

distinct regions in the human brain that underlie separate constituent 

components for the internal process of stochastic sensory evidence 

accumulation that predicts decision-making performance. For instance, 

Domenech and Dreher (2010) applied model-based fMRI to investigate 

perceptual decision formation in a go/no-go task, whereby participants had to 

press a response key for specific shapes in a sequence of visual stimuli. Their 

results highlighted voxels in the anterior cingulate cortex (ACC) that 

proportionally accounted for the slope of sensory evidence needed to be 

accumulated to initiate the motor response (i.e., response key presses) when 

the correct shape arose in the sequence. In addition, they highlighted a role 

for the dorsolateral prefrontal cortex (DLPFC) for the coding of accumulated 

sensory evidence. They proposed that the flow of sensory information from 

the ACC to the DLPFC was optimally adjusted to account for the modulations 

in decision thresholds, particularly for computations that required increased 

regulation to inhibit incorrect motor responses. 

 

Comparably, Forstmann et al. (2008) utilised fMRI and an experimental 

paradigm that instructed participants to judge whether the overall motion of a 

cloud of moving dots moved to the left or the right. Instructions in one block 

were manipulated whereby on one condition participants were asked to 

prioritise decisional speed, whereas separate instructions in an alternate block 

instructed participants to prioritise decisional accuracy. Statistical analysis of 

behavioural data using a Linear Ballistic Accumulator (LBA) model; a 

sequential sampling model similar to the DDM, assessing accumulation to 

response thresholds, discerned an account of changes in the response 

threshold for facilitating decisions based on the prioritisation of speed or 

accuracy (i.e., a lowering of speed for prioritising accuracy and vice versa). 

Their fMRI analysis showed that activity in the striatum and pre-supplementary 



- 10 - 

motor area (pre-SMA), brain regions associated with voluntary motor planning 

(Shima & Tanji, 1998), increased when block instructions prioritised a cueing 

for decisional speed. Their fMRI findings suggested that individual variations 

in striatum and pre-SMA activity correlated to the accumulation of visual 

sensory evidence evaluated by their modelling approach. They conducted a 

follow-up study applying the same methodology, instead incorporating within-

block variations in instructions to emphasise decisional speed or accuracy. 

Their fMRI analysis highlighted that connectivity strength between the pre-

SMA and striatum was predictive of the efficiency of which participants could 

modulate their response threshold based on SATO prioritisation (Forstmann 

et al., 2010). Yau et al. (2020) further characterised the neural underpinnings 

of evidence accumulation rate and response threshold modulations, utilising 

fMRI and a hierarchical extension of the DDM (Hierarchical Drift Diffusion 

Model(ling); HDDM; Wiecki et al., 2013), to examine the dynamic perception 

of emotional facial features. They decoded multivariate fMRI signals 

underlying subsequent perceptual decision formation to discern how they 

predict changes to HDDM parameters. They identified trial-by-trial variations 

in patterns of neural activity, localised in the fusiform gyrus, which 

corresponded with a consolidation of facial emotional information. 

Furthermore, the variability in these patterns was accounted for by 

modulations in drift rate, hence characterising the process of evidence 

accumulation in discerning the emotion of facial features within the fusiform 

gyrus. Moreover, a separate subcortical structure, the caudate nucleus, 

exhibited greater paternal activity variability corresponding to an inverse-

urgency signal. In the HDDM, this was modelled with decision boundary 

increases when choice formation was slower, suggesting that in contexts 

where incoming sensory information remains ambiguous to consolidate, an 

increase in response caution compensates to ensure appropriate choice 

facilitation.  

 

While fMRI has excellent spatial resolution localising where the constituent 

processes of perceptual decision-making may occur in the human brain, it has 

poor temporal resolution. This makes it difficult to measure the time-course 

and temporal characteristics of perceptual decision-making processes. To this 

end, the application of neuroimaging methodologies such as MEG and EEG 

have been used in neurally-informed modelling approaches to investigate the 

temporal trajectory of the internal processes of perceptual decision formation. 

Their advantage over spatial methodologies; for example fMRI, is their 
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excellent temporal resolution, typically on the order of milliseconds, to 

dissociate when the decisional processes and their constituent neural 

modulations arise. Studies applying EEG-based modelling approaches, in 

particular, have consolidated distinct neural markers, and corresponding time 

points, for sensory information consolidation and an indexing of accumulation-

to-bound sensory evidence accumulation. These studies further empirically 

validate a hierarchical framework for the processes within perceptual decision 

formation. 

 

In particular, seminal research from Philiastides et al. (see Philiastides & 

Sajda, 2006a; 2006b; Philiastides, Ratcliff, & Sajda, 2006) used a novel 2AFC 

paradigm; the face-versus-car categorisation paradigm, to research non-

invasive neural modulations that correlate to perceptual decision-making 

processes in the visual modality. In this paradigm, single-trial images of faces 

or cars are rapidly presented. Participants are required to initiate a choice, as 

quickly and as accurately as possible, categorising the embedded stimulus. 

Their neurally-informed modelling approach aimed to find a basis vector 

whereby EEG signals are projected maximally discriminating neural patterns 

in trials of one stimulus type compared to the other, using multivariate Linear 

Discriminant Analysis (LDA; Parra et al., 2002; 2005; 2007; Sajda et al., 2009). 

They highlighted two spatiotemporal EEG components, at two distinct time 

points, that best discriminated neural activity between the two stimulus 

categories (Philastides et al., 2006a; 2006b). First, they highlighted an earlier 

major discriminating EEG component at a post-stimulus onset of 130-170ms 

(which they termed the Early component). This was consistent with the 

characteristics of the face-selective N170 Event-Related Potential (ERP; 

Elmer, 2011), demonstrating evoked activity for processing stimulus features.  

The second Late component, however, arose variably from 300-450ms post-

stimulus onset. Interestingly, their choice probability analysis indicated a 

strong correlation between the profile of the Late component and participant’s 

judgements, whereby when evidence for face stimuli increased and evidence 

for car stimuli decreased, the onset of the Late component shifted earlier in 

time, correlating with reported lower RTs and increased choice accuracy. 

Consequently, these findings demonstrated an evolution in the temporal 

trajectory of the perceptual decision formation process within early visual 

perception. Specifically, evidence accumulation benefitted from increased 

strength of incoming sensory information (i.e. increased image coherence), 

modulating the underlying neural components for accumulation-to-bound 
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evidence gathering to benefit choice formation. Projected scalp topographies 

reaffirmed this interpretation of the temporal trajectory, in which the localized 

discriminatory EEG activity occurred over occipital-temporal brain regions, but 

shifted to frontocentral brain regions prior to choice facilitation, validating 

neuroimaging findings suggesting structures such as the inferior occipital and 

fusiform gyri have functional roles in encoding incoming visual information 

(McCarthy et al., 1997; Starrfelt & Gerlach, 2007), as well as the DLPFC 

having a functional role with initiating actions (Heekeren et al., 2004; 

Philiastides et al., 2011).   

 

They further investigated the temporal shifts in the Late component from 

variations in task difficulty (Philiastides, Ratcliff, & Sajda, 2006). They used a 

cued variant of the face-versus-car categorisation paradigm, instructing 

participants in certain trials to categorise image colour (as either red or green), 

changing the difficulty of categorisations (i.e., from categorizing stimulus type). 

Similar to their previous findings, they reported post-stimulus onsets of Early 

and Late EEG components at approximately 170ms and 300ms respectively. 

However, when instructions changed to red-green colour categorisations, the 

magnitude of the Late component, but not Early component, reduced to 

almost zero. This implicated a change in decision evidence characterization, 

with the authors suggesting a recruitment of top-down attentional resources 

in accordance with a change in task instructions. Furthermore, DDM 

application highlighted that the Late component was a significantly better 

predictor of single-trial modulations in drift rate, quantifying the rate of sensory 

evidence accumulation, motioning that an integrative mechanism determined 

choice response facilitation in the human brain according to paradigm 

demands (Philiastides, Ratcliff, & Sajda, 2006; 2009).  

 

Fundamentally, these preliminary findings implicated different neural 

mechanisms, captured with temporally distinct components, which were 

representative of distinct cognitive events during perceptual decision 

formation. Pointedly, earlier neural mechanisms appeared to reflect the events 

of incoming sensory information encoding and translation into decisional 

evidence, whereas later neural mechanisms appeared to reflect the events of 

decisional evidence accumulation. The events appeared to be serially 

independent and operated downstream into regions of the brain underlying 

the formation of decisions (Philiastides & Heekeren, 2009). The serial cascade 

of these events predicted the onset at which information is first represented in 
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sensory cortices, depending on the activated sensory domains (e.g. auditory; 

Kaiser, Lennert, & Lutzenberger, 2007; somatosensory; Spitzer & 

Blankenburg, 2011). Then, this information is translated in inferior frontal, 

temporal, and parietal associative cortices, which operate to form decisions 

from accumulation-to-bound evidence accumulation (Ploran et al., 2007; 

Tremel & Wheeler, 2015; Wheeler et al., 2015). Further findings empirically 

validate the notion of separate processing markers for perceptual decision 

formation. For example, Philiastides et al. (2011) used repetitive Transcranial 

Magnetic Stimulation (rTMS) on regions of the DLPFC of participants engaged 

in the face-versus car categorisation task. They found that low frequency 

rTMS over the left DLPFC reduced decision speed and accuracy, with the 

application of a DDM corresponding to decreases in drift rate, implicating a 

reduced rate of sensory evidence accumulation. These results further 

suggested a causal role of the DLPFC in accumulating incoming visual 

information to facilitate choice responses, with similar modelling findings with 

a stimulus-locked EEG-DDM analysis on population responses across the 

frontal scalp (Philiastides, Heekeren, & Sajda, 2014). Comparatively, 

O’Connell, Dockree, & Kelly (2012) investigated Steady State Visual-Evoked 

Potential (SSVEP), Left-Hemisphere Beta (LHB), and Central Parietal 

Positivity (CPP) ERPs using a gradual target detection paradigm. They found 

steady increases in the CPP ERP underlying decisions made about a stimulus 

fading, while SSVEP and LHB activity gradually faded. This captured the 

characteristics of accumulation-to-bound decision formation, independent of 

sensory-specific representations of flicking visual evidence; captured by 

gradual changes in the SSVEP potential, and motor-response production 

latency; captured by gradual changes in the LHB potential. In addition, Filimon 

et al. (2013) combined event-related fMRI, effective connectivity analysis, and 

Psychophysical Interaction (PPI) analysis to investigate whether the human 

sensorimotor system is embodied in perceptual decision implementation. 

Using cues for response execution varying between eye and hand movements 

in a face-versus-house categorisation paradigm, they found greater effectivity 

connectivity from sensory regions to the left IFS, corresponding to amounts of 

sensory evidence, but greater task-positive BOLD responses in the lateral 

intraparietal (LIP) area for motor response execution when cues instructed for 

categorisations with hand movements. This implicated that eye and hand 

motor response preparation was disentangled from the formation of 

perceptual decisions. PPI analysis modelled increased connectivity from the 

Lateral Occipital Complex (LOC) within the occipitotemporal brain area to the 

left IFS, anterior Inferior Frontal Gyri (IFG), posterior Superior Frontal Sulcus 
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(SFS), and middle frontal gyrus (MFG) in the frontal lobe regions, which 

predictably varied with the coherence of visual stimuli. This reaffirms 

interpretations of different systems for perceptual accumulation of sensory 

evidence and production of motor responses and underlying neural 

mechanisms for distinct cognitive and motor events in the facilitation of 

behavioural responses.  

 

In conclusion, the application of behaviourally-informed and neurally-informed 

modelling approaches in unisensory perceptual decision-making research has 

consolidated the underlying neural mechanisms, and their functional role in 

decision-making cognition, within the formation of perceptual decisions. Thus, 

they established a framework for perceptual decision formation which 

conceptualised a spatiotemporal locus of sensory information representation 

and integration into decision evidence, with task manipulations varying choice 

formation (i.e. RTs and choice accuracy), hence characterising inherent 

cognitive processes that operate to facilitate appropriate behavioural 

responses.  

 

1.2 Multisensory Perceptual Decision-Making 

The perceptual decision-making framework highlighted in the previous section 

is limited to an extent. Undoubtedly, it is based on research that investigated 

unisensory stimuli only. Our external environment is inherently multisensory. 

Everyday perceptual decisions frequently involve situations whereby incoming 

information is presented to multiple sensory modalities (see Alais et al., 2010; 

Ghazanfar & Schroeder, 2006, for detailed reviews). This influx of sensory 

signals occurs often near-simultaneously. Thus, choice responses must be 

facilitated that consider the consolidation of sensory information presented to 

more than one sensory modality. Integration of sensory modality-specific 

signals is an inherent process in combining information into unified percepts, 

which not only form unique coherent representations of our external 

environment, but optimise choice response facilitation when compared to the 

consolidation of unisensory information alone (Drugowitsch et al., 2014; 

2015). Consequently, this has led researchers to define multisensory 

perceptual decision-making (Bizley, Jones, & Town, 2016a; Bizley, Maddox, 

& Lee, 2016b; Drugowitsch et al., 2014; Franzen et al., 2020; Raposo et al., 

2012). 
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The following section will introduce research highlighting how multisensory 

integration is an important mechanism to consider within perceptual decision 

formation. It will outline human neuroimaging and theoretical modelling 

multisensory research that empirically validates the framework constructed 

from unisensory perceptual decision-making research, but builds upon it in 

consideration of the cognitive and neural mechanisms underlying the 

integration of multisensory information. It will further consider how a 

multisensory perceptual decision-making framework accounts for perceptual 

enhancements towards behavioural decision formation. Finally, it will 

introduce the outstanding question in the field, namely where we may observe 

enhancements towards perceptual decision formation from multisensory 

integration of unisensory stimuli.  

 

1.2.1 Multisensory Integration 

Incoming sensory input from single modalities interacts, converges upon, and 

influences further multisensory processes (Stein & Meredith, 1993). This 

convergence of multisensory information forms single integrated experiences 

from which relevant environmental percepts are constructed to inform 

decisional behaviours, and is commonly referred to as multisensory 

integration (Calvert et al., 2004; Stein & Stanford, 2008; Spence & Squire, 

2003). A classical viewpoint posited that each sensory input was processed 

independently prior to multisensory integration, and the multisensory 

convergence of afferent inputs occurred in higher-order associative cortices 

and specialised subcortical structures (Treisman & Gelade, 1980). However, 

this “unisensory before multisensory” perspective (Alais et al., 2010) has 

become less influential overtime (Schroeder & Foxe, 2005).  

 

The lessening influence of the “unisensory before multisensory” viewpoint 

occurred primarily due to two significant findings across earlier research. First, 

low-level brain regions, assumed to be unisensory, were found to respond to 

different combinations of multisensory stimuli (See Murray et al., 2016; Kayser 

et al., 2005, for reviews on neuroimaging evidence that commonly reports 

early audiovisual and auditory-somatosensory integrative effects within the 

primary visual and auditory cortices respectively). Foxe and colleagues, for 

example, reported that simultaneous auditory-somatosensory stimulations 

manifested interaction effects approximately 50ms post-stimulus onset over 
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right postcentral gyrus (localised to the side of auditory-somatosensory 

stimulation over the respective cortices) using ERPs (Foxe et al., 2000). 

Similar findings were obtained using fMRI over the same brain regions that 

corresponded to detection of simultaneous auditory-somatosensory 

stimulations (Foxe et al., 2002). Similarly, Cappe (2010) identified ERPs 60-

95ms post-stimulus onset, which revealed a topographic organisation of 

auditory-visual stimuli integrative effects for primary auditory and visual 

cortical areas, as well as preliminary posterior superior temporal regions 

mediating these effects. These findings provided evidence for the dissociation 

of multisensory integration as a process from separate bottom-up perceptual 

processes.  

 

Second, pioneering neurophysiological research by Stein and colleagues led 

to identifying the Superior Colliculus (SC) as a subcortical structure inherent 

in the integration of multisensory information (Meredith, 2002; Calvert et al., 

2001; Stein & Meredith, 1993). This midbrain structure both topographically 

maps retinotopic coordinates obtained from visual modality input (Sprague & 

Meikle, 1965), and is linked to the proprioception of head and eye orientations 

(Sparks, 1986). In investigating its role in multisensory integration, Meredith 

and Stein (1983) evoked dynamic modulations in neural activity from deep 

laminae SC neurons in cats using different simultaneous combinations of 

visual, auditory, and somatosensory inputs. Further studies implicated that the 

spatial overlap of SC neuron Receptive Field (RF) alignments was predictive 

of the multisensory stimulus-dependent combinations and was essential for 

converging afferent multisensory inputs (Kadunce et al., 2001; Meredith & 

Stein, 1996; Ursino et al., 2014; Wallace et al., 1998). This could be through 

either multisensory enhancement of cross-modal inputs in close spatial RF 

proximity (Stanford et al., 2005; Perrault et al., 2005), multisensory depression 

of inputs not spatially proximate, or inhibited by greater cross-modal neural 

responses (Jiang & Stein, 2003; Kadunce et al., 1997). Without behavioural 

measurements, these studies support multisensory integration as functionally 

distinct from further multisensory processes. Instead, modulations of neural 

responses from multisensory integration operate independently of lower-order 

perceptual or higher-order cognitive awareness (Alsiuis & Munhall, 2013; 

Jones, 2015), are innately automatic as a mechanism (Onat et al., 2007; 

Bresciani et al., 2006), and occur at early post-stimulus latency onsets; often 

less than 100ms and as early as ~50ms (Molholm et al., 2002; Foxe et al., 

2000; 2002; Giard & Peronnet, 1990). Despite the lessening influence of the 
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“unisensory before multisensory” perspective, it still highlights a hierarchical 

organisation in the brain for consolidation of multisensory information towards 

perceptual choice formation (Ursino et al., 2014).  

 

Accordingly, four key principles have been governed outlining the innate 

benefits of multisensory integration towards perceptual decision formation 

(see Angelaki, Gu, & DeAngelis, 2009; Freiherr et al., 2013; Stevenson et al., 

2014; for detailed reviews). The first two principles are referred to as the 

spatial and temporal rules respectively (Holmes & Spence, 2005; King & 

Palmer, 1985; Meredith & Stein, 1986; Spence, 2013). These principles argue 

that unisensory information presented in close spatial proximity and/or 

temporal concordance results in an increased likelihood of multisensory 

integration, and therefore an increased likelihood of multisensory 

enhancements towards decision formation. The third principle constitutes 

contextual semantic congruency between unisensory informational features 

strengthens the likelihood of multisensory integration. Here, unisensory 

informational streams that correspond to the same environmental object in 

meaning underlies the formation of percepts benefitting perceptual choice 

formation (Spence, 2007; 2011; Stevenson, Wallace, & Altieri, 2014). The 

fourth principle is termed the Principle of Inverse Effectiveness (Holmes, 2009; 

Meredith & Stein, 1986a; 1986b; Stein & Stafford, 2008). The Principle of 

Inverse Effectiveness refers to increased likelihood of multisensory integration 

when responsiveness to individual unisensory stimuli decreases. Hence, 

when less intense (in their stimulations) unisensory stimuli are processed 

separately, their consistent summation is exceeded by evoked responses 

from simultaneous stimuli processing. This principle is supported by 

observations that even weak multisensory combinations of unimodal stimuli 

have been found to enhance behavioural responses compared to strong, 

salient, unimodal stimulus presentations alone (Cappe et al., 2010).  

 

The aforementioned principles, reinforced by single-unit findings integration in 

the SC, imply that multisensory integration is supramodal within the brain. 

Furthermore, it is pivotal for the processing of incoming sensory information, 

presented to multiple sensory modalities, to optimise appropriate behavioural 

responses when interacting with our environment (Romo and de Lafuente, 

2013; Schroeder et al., 2003). Importantly, it needs to be considered within 

the unisensory research-formulated perceptual decision-making framework 

outlined in previous sections (see section 1.1 Unisensory Perceptual 
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Decision-Making). Specifically, the cognitive processes of sensory information 

encoding, and integration into evidence for decision formation, need to 

consider the role of multisensory integration, and how it can benefit perceptual 

decision formation. The following subsection, therefore, will discern research 

that applied modelling approaches to gain a functional insight into how 

perceptual decisions benefit from the integration of multisensory information.  

 

1.2.2 The Benefits of Multisensory Integration for Perceptual 

Decision-Making 

The benefits of processing complementary information across multiple 

sensory modalities towards perceptual decision formation; notably decreases 

in decisional speed and increases in choice accuracy, have been extensively 

demonstrated in previous research (Stein & Meredith, 1993; Welch & Warren, 

1980; Mercier & Cappe, 2020). Similar to previous unisensory perceptual 

decision-making research, such benefits can also be investigated in speeded 

classification paradigms, including 2AFC paradigms, by comparing the effects 

of multimodal and unimodal stimulus presentations on behavioural 

performance. Benefits to choice formation implicate increased likelihood of 

multisensory integration, hence increased likelihood of optimal perceptual 

decision formation (Drugowitsch et al., 2014). Considering the previously 

outlined principles of multisensory integration (see subsection 1.2.1 

Multisensory Integration), findings have found multisensory enhancements to 

choice formation corresponding to each of the principles.  

 

Concerning the spatial and temporal rules, for example, Jones (2015) reported 

an enhancement of temporal expectancy towards audiovisual spatial attention 

in a rhythmic cuing task. In this study, participants facilitated faster and more 

accurate behavioural responses when rhythmically cueing audiovisual stimuli 

compared to unisensory (i.e., auditory or visual) stimuli, suggesting 

multisensory percepts enhancing decision formation are more likely when 

based on spatially concordant rhythmic cuing of the two unisensory stimuli. 

Nidiffer et al. (2018) similarly found that temporally correlated audiovisual 

inputs facilitated greater speech perception. This suggested correlational 

strength of temporal coherence was an important factor for multisensory 

perceptual flexibility, with greater strength more likely to optimise choice 

behaviours. For spatial coherence, Aller et al. (2015) used dynamic 

Continuous Flash Suppression (CFS) to spatially collocate sounds to flashes, 
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and found spatial audiovisual integration stimulated more robust percepts that 

contributed to perceptual awareness. Similar findings have further been 

elucidated when both spatial and temporal correspondence factors are 

synchronized (Stevenson et al., 2012; Van der Burg, Alais, & Crass, 2018; 

Zhao et al., 2022).  

 

Concerning semantic congruency, Heikkilä et al. (2015) found improved 

audiovisual declarative memory (i.e. higher choice accuracy) in participants 

who memorised verbal and non-verbal auditory (spoken words and/or sounds) 

and visual (written words and/or pictures) stimuli, when presented 

simultaneously with semantically congruent stimuli in the alternate modality 

(verbal: spoken words-written words; non-verbal: sounds-pictures), compared 

to semantically incongruent stimuli in the alternative modality or a neutral 

stimulus (“noise”). Additionally, Delong & Noppeney (2021) investigated the 

extent that spatial and semantic congruency jointly influence the binding of 

audiovisual information depending on observers’ explicit conscious 

awareness. They employed a spatial ventriloquist paradigm across two 

experiments. Their findings from the first experiment demonstrated that not 

only did spatially correspondent audiovisual stimuli improve sound localization 

accuracy, but this improvement was amplified when audiovisual stimuli were 

semantically correspondent, thus implicating that semantic correspondences 

decreased susceptibility to spatial biases in auditory stimulus presentations. 

Their findings from the second experiment demonstrated that when forward-

backward masking was applied within the spatial ventriloquist paradigm, 

susceptibility to spatial biases in auditory stimulus presentations increased 

when visual stimuli were masked (i.e., outside of conscious perceptual 

awareness), with improvements from semantically correspondent audiovisual 

stimuli diminished. Together, their findings infer that different 

correspondences influence multisensory integration depending on an 

observer’s perceptual awareness, thus modulating the benefits towards 

perceptual decision formation. In particular, they implicate that semantic 

congruency modulates auditory spatial localisation bias when visual stimuli 

are presented within conscious awareness.  

 

Finally, for the principle of inverse effectiveness, Hairston et al. (2003) 

examined visual localisation precision of visual, auditory, and audiovisual 

stimuli under conditions of unaffected and degraded visual stimulus 

coherence. Under conditions of visual stimulus degradation, participants wore 
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+6-Dimensional glasses to artificially induce myopia (near-sightedness), 

increasing the difficulty of detecting light-emitting diode (LED; visual stimuli), 

broadband noise bursts (auditory stimuli), or the two respective stimuli 

simultaneously presented. They calculated the difference, in degrees, 

between perceived and actual target location, termed the localisation error. 

Their results revealed equal localisation performance for visual and 

audiovisual stimuli and impaired localisation performance for auditory stimuli 

in unaffected (i.e. “normal”) blocks. However, under conditions of artificially-

induced myopia, participants’ localisation judgements for audiovisual stimuli 

significantly improved relative to localisation judgements for visual and 

auditory stimuli. Comparably, Rach, Diederich, & Colonius (2011) quantified 

multisensory interaction effects, using measurements derived from a variant 

of sequential sampling modelling, that integrated RTs and Detection Rates 

(DRs) for unimodal and bimodal stimuli across two audiovisual cue detection 

paradigms. Measurements of multisensory speed-up and detectability; 

quantified as Multisensory Response Enhancement (MRE) and Multisensory 

Detection Enhancement (MDE) metrics respectively, predicted observable 

patterns of reduced RTs and increased DRs for audiovisual stimuli when 

unisensory (i.e., auditory and visual) stimulus coherence decreased, and 

increased RTs and decreased DRs when unisensory stimulus coherence 

increased. Finally, Tatz, Undorf, & Peynircioğlu (2021) observed multisensory 

benefits towards the effect of perceptual fluency of Judgement of Learning 

(JOL), whereby decreased RTs and choice accuracy were found across three 

experiments investigating written and spoken word processing fluency in 

audiovisual conditions when visual and/or auditory stimulus coherence 

became harder to perceive. This suggested that multisensory information 

processing heightened JOL, relative to unisensory information processing, in 

accordance with the principle of inverse effectiveness. Overall, these findings 

demonstrate multisensory-mediated enhancements towards perceptual 

decision formation when information presented to unisensory modalities 

becomes increasingly ambiguous to process. 

 

These findings demonstrate not only the principles of multisensory integration, 

but the benefits they facilitate towards perceptual decision formation and overt 

behavioural responses. Thus, multisensory enhancements are likely to have 

a key role for perceptual decision formation in experimental paradigms with 

multimodal information. Consequently, the neural substrates of multisensory 

integration, and its constituent loci within the non-serial hierarchy of 
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computations underpinning the benefits towards choice formation, has been 

the focus of a myriad of perceptual decision-making studies (see Keil & 

Senkowski, 2018; Talsma et al., 2010; ten Oever et al., 2016, for reviews). In 

particular, the application of behaviourally-informed and/or neurally-informed 

modelling approaches has furthered our understanding of how complimentary 

multisensory information is integrated and consolidated within the perceptual 

decision-making framework; derived from studies that used unisensory stimuli 

(see Chandrasekaran, 2017; Liu & Otto, 2020; Seilheimer, Rosenberg, & 

Angelaki, 2014; Ursino, Cuppini, & Magosso, 2014, for reviews). As such, the 

neurocomputational processes within perceptual decision formation can also 

be inferred by linking behavioural measurements (i.e., RTs and/or choice 

accuracy) with simultaneously recorded neural activity on a single-trial basis. 

Previous literature utilising such modelling principles and architectures has 

uncovered a similar interconnected hierarchy of sensory-cortical and higher-

associative brain regions underlying the cascade of separate, but not-linear, 

constituent stages of perceptual decision-making with multisensory 

information.  

 

For example, Delis et al. (2018) probed the neural correlates of visual-tactile 

active sensing; a process whereby sensory receptors are directed to extract 

task-relevant sensory information in order to interact with the external 

environment. They extracted brain-behaviour couplings using both EEG and 

finger kinematics, and characterised the prominent neural components that 

were predictive of participants’ perceptual judgements during a 2AFC texture 

discrimination paradigm. They found three distinct EEG components that 

showed significant brain-behaviour couplings, correlating visual-tactile 

integration with RTs and choice probability of finger movements during texture 

discrimination, hence predicting patterns of active sensing. These 

components were localised to the right-lateralized occipital cortex (LOC); 

specifically, Area V1, middle frontal gyrus (MFG), and SMA. In order to 

generate mechanistic insights into the functional role of these components 

underlying active sensing, a HDDM framework was incorporated, thus 

providing a principled approach towards linking behavioural output (i.e., 

visual-tactile sensory processing) with representations derived from brain-

behaviour couplings. First, they functionally implied that the LOC modulated 

the encoding of multisensory information, since component activity predicted 

decreases in non-decision time parameter estimations when visual and tactile 

information was complementary in its correspondence towards texture 
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coarseness. Second, the MFG was seen to represent the rate of multisensory 

evidence accumulation towards a particular choice alternative, since it 

predicted greater increases in drift rate parameter estimations for visual-tactile 

correspondences relative to parameter estimations for visual or tactile 

information alone. The third component, localised to the SMA did not produce 

significant EEG-kinematic couplings, nor correlations with estimated HDDM 

parameters, but was most prominent after peak MFG component 

discrimination, and prior to the facilitation of choice responses, empirically 

validating previous research implicating it as a region responsible for motor-

response production (Pleger et al., 2006; Kim et al., 2015). Furthermore, MFG 

activation disappeared from components uncovered from control participants 

when performing active sensing but not facilitating decisional responses, 

further elucidating functionally distinct neural correlates for sensory stimulus 

encoding and evidence accumulation processes. Overall, the study discerned 

integral processes predictive of multisensory perceptual decision-making 

behaviour, and neural mechanisms predicting the benefits of integrating visual 

and somatosensory information. In a follow-up study, using a similar variant 

of their previously applied 2AFC texture discrimination paradigm, coupled with 

an information-theoretic approach for characterising neural activity underlying 

multisensory enhancements towards perceptual decision formation, they 

found EEG activity in parieto-occipital and prefrontal brain regions that were 

predictive of participants’ movement patterns across visual, haptic, and visual-

haptic trials. Application of a HDDM framework further revealed trial-to-trial 

fluctuations in their neural representations of active sensing that predicted 

increases in drift rate (i.e. the rate of sensory evidence accumulation), across 

all three trial types. However, the multisensory (i.e. visual-haptic) 

representations of active sensing were strongly predictive of greater drift rate 

estimations, relative to the unisensory representations of active sensing (i.e. 

visual or haptic), therefore discerning a functional role of supramodal 

integration within active sensing, which benefits perceptual decision formation 

when presented with complimentary multisensory information (Delis et al., 

2022).  

 

Similarly, Regenbogen et al. (2018) incorporated fMRI BOLD signals into a 

HDDM framework, probing the differences in cortical processing that drive 

multisensory integration for clear, coherent, stimuli compared to unclear, 

degraded, stimuli. Their findings implicated connectivity between the IPS and 

fronto-parietal brain regions as a prevalent interconnected neural network for 
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enhancing decision-making performance (i.e., decreased RTs and increased 

choice accuracy) when multisensory stimuli were increasingly unclear, and 

thus ambiguous, to process when facilitating choice responses. HDDM 

application further elicited predictive increases in drift rate, capturing 

increased sensory evidence accumulation for degraded audiovisual stimuli 

relative to their auditory and visual counterparts. This indicated that an 

interconnected network within frontal brain regions drove selective recruitment 

of relay networks for integrating percepts of noisy unisensory information, not 

only validating the principle of inverse effectiveness governing multisensory 

integration, but reaffirming functional insights into the benefits of integrating 

multimodal compared to unimodal sensory information.  

 

Moreover, Franzen et al. (2020) coupled EEG and LDA with an audiovisual 

extension of the visual face-versus-car-categorisation paradigm (Philiastides 

& Sajda 2006a; 2006b; Phliastides, Sajda, & Ratcliff, 2007). Their study aimed 

to identify when and where multisensory enhancements towards perceptual 

decision formation arose when complementary auditory stimuli is presented 

simultaneously with visual stimuli. Using multivariate LDA, they capitalised on 

distinct neural components, which correlated to multisensory encoding of 

decision-relevant audiovisual evidence, revealing Early (approximately 

180ms) and Late (approximately 380ms) EEG components over frontocentral 

and bilateral occipitotemporal brain clusters, and prominent centroparietal 

brain clusters respectively. Amplitude comparisons between their EEG 

components demonstrated that the Late component for audiovisual stimulus 

presentations captured increases in drift rate parameter estimations, when 

incorporated into a neurally-informed HDDM, further predicting higher 

proportions of perceptual choice accuracy. This implicated multisensory 

behavioural improvements could arise with enhanced quality of incoming 

decisional evidence, which in this instance, was complementary auditory 

information, thus benefitting the process of (multi)sensory evidence 

accumulation when facilitating choice responses. This implication is 

consistent with findings demonstrating the enhanced emergence of neural 

activity in higher-order, associative, cortices brain regions, and not sensory 

associative brain regions, when presented with multisensory evidence (Newell 

& Shams, 2007).  

 

Finally, Mercier & Cappe (2020) used EEG to identify two temporally-distinct 

neural events underlying multisensory perceptual decision-making across 
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both audiovisual cue detection and cue categorisation paradigms. These 

events arose from approximately 0-400ms post-stimulus onset, which 

overlapped with the presentation of multisensory information, and at 

approximately 600ms within a 200ms period until average response 

facilitation. The spatiotemporal dynamics of the identified EEG events 

constituted an evolution of neural activity emerging in parietal brain regions, 

then progressing towards central brain regions, in which emergent increases 

in amplitude peaked before decision responses. These findings reaffirm 

previous research identifying distinct regions within a network for processing 

incoming sensory information in sensory cortices, and consolidating such 

information as decision evidence, when facilitating perceptual decisions. 

Importantly, the decoding of EEG activity underlying unisensory signal cues; 

utilizing a supervised machine learning approach, showed that these 

processes were predictive of early sensory encoding and late decisional 

formation processes. Multisensory benefits observed in the behavioural data 

(i.e., faster RTs, higher accuracy, and increased sensitivity towards 

multisensory cues) were concurrent with an acceleration of both processing 

stages when a HDDM was applied. Non-decision time parameter estimations 

and its variability significantly decreased in multisensory compared to 

unisensory conditions for the earlier EEG component, but parameter 

estimations for drift rate variability significantly increased for the later EEG 

component, across both paradigms, suggesting multisensory enhancements 

benefitted both a faster integration of sensory information and consolidation 

of decisional evidence. 

 

To conclude, application of behaviourally-informed and/or neurally-informed 

modelling approaches has revealed that multisensory benefits are pervasive 

within perceptual decision formation. Importantly, they reveal a dynamic, 

continuous, but somewhat non-linear, interplay between multisensory 

integrative and perceptual decision-making processes. This defines a critical 

role of multimodal information integration within the framework that previous 

unisensory perceptual decision-making findings have theorised. Specifically, 

multisensory integrative benefits have been observed within earlier sensory 

encoding stages and later decision formation stages. In utilising such 

approaches, a mechanistic insight into how this integrative mechanism 

consolidates information arriving at multiple sensory modalities has been 

gained. However, such theoretical considerations have further demonstrated 

that such multisensory integrative and perceptual decision-making processes 
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are not sequential, despite earlier observations that information is integrated 

innately within the human brain. Instead, the processes can be considered 

nested (Mercier & Cappe, 2020). Due to this, the fundamental question 

currently asked in the field concerns where and when multisensory signals are 

integrated to benefit perceptual decision formation (see Bizley, Jones, & 

Town, 2016a; Bizley, Maddox, & Lee, 2016b for detailed reviews). 

Comparably, it is important to consider the underlying neural correlates for 

such benefits within multisensory perceptual decision-making. Undoubtedly, 

this involves discerning the spatiotemporal characteristics of neural 

mechanisms that correlate with the benefits observed from multisensory 

integration towards overt choice behaviours. The prominent hypotheses of 

whether multisensory benefits arise before and/or during perceptual decision 

formation will therefore be discussed in the following subsection.  

 

1.2.3 Where Do the Benefits of Multisensory Integration Occur 

Within Perceptual Decision-Making?   

So far, we have discerned that when forming perceptual decisions with 

multimodal information, multisensory interactions are pervasive within the 

human brain, constituting different serial, but non-linear, processes along the 

cortical hierarchy (Cao et al., 2019; Rohe et al., 2018; Rohe & Noppeney, 

2016; Keil & Senkowski, 2018; Sadaghiani et al., 2009). Despite recent 

progress towards an understanding of the neural signatures associated with 

multisensory perceptual decision-making, and commonalities associated with 

neural signatures of unisensory perceptual decision-making, it remains 

unclear how the brain translates the relevant integrated multisensory 

information into benefits towards perceptual decision formation. Specifically, 

it is unclear whether multisensory representations localised in primary and 

non-primary sensory cortices benefit perceptual decision formation “early”, 

and/or whether a “late” integration of multisensory signals as decisional 

evidence, combined after the accumulation of unisensory evidence, occurs in 

higher associative brain regions such as the frontal and parietal cortices (see 

Bizley, Jones, & Town, 2016a; Bizley, Maddox, & Lee, 2016b; Calvert & 

Thesen, 2004, for reviews). Thus, for where and when multisensory 

information benefits perceptual decision-making, three prominent theories 

persist in the field: (1) the early integration hypothesis, (2) the late integration 

hypothesis, and (3) what we term as the dual integration hypothesis.  
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The early integration hypothesis posits that stages for early sensory encoding, 

and for combining complementary features of unisensory information, 

facilitate the influence of multisensory benefits towards perceptual decision 

formation (Ghazanfar & Schroeder, 2006; Kayser & Logothetis, 2007; 

Schroeder & Foxe, 2005). This hypothesis theorises that multisensory 

integration begins in the sensory cortices and contributes to an accumulation 

of multisensory evidence to benefit perceptual decision formation. Therefore, 

perceptual decision-making in high-level associative cortices is facilitated on 

readily available multisensory representations of information (Bizley, Jones, & 

Town, 2016a). Substantial evidence that supports the early integration 

hypothesis arises from identified interactions in neural pathways between 

primary sensory cortices (e.g. auditory, visual, and somatosensory cortices) 

and non-primary, higher-order, associative cortices (e.g. parietal, temporal, 

and frontal associative cortices) in the brain, but with prominent neural 

responses localized early within sensory cortices, thus highlighting 

multisensory interactions in putative “unisensory” cortices (Eckert et al., 2008; 

Ghazanfar & Schroeder, 2006; Giart et al., 1999; Kayser et al., 2017; Petro et 

al., 2017; Rohe & Noppeney, 2016). Comparably, neural pathways have been 

demonstrated to project directly to primary sensory cortices within the 

processing hierarchies of distinct modalities in animal model studies (Cappe, 

Rouiller, & Barone, 2009), as demonstrated by, for example, Falchier et al. 

(2002) and Majka et al. (2019); who found cortico-cortical pathways between 

core and parabelt areas of the auditory cortex, superior temporal polysensory 

(STP; area TPO-1) cortex, and area 17/V1 within the visual cortex in 

Cynomolgus Macaque (Macaca fascicularis) and Marmoset (Callithrix 

jacchus) monkeys respectively, and Henschke et al. (2015); who found 

matched and non-matched thalamocortical nuclei projections between areas 

V1 (visual cortex), A1 (auditory cortex), and S1 (somatosensory cortex) in 

Mongolian gerbils (Meriones unguiculatus); using retrograde tracing.  

 

Furthermore, numerous studies have correlated multisensory interactions in 

sensory cortices, through identified neural indices of multisensory integration, 

with outcomes representative of enhancements in decision behaviours (i.e., 

decreased RTs and/or choice accuracy). For instance, Mercier et al. (2013) 

focused on auditory and multisensory activity in posterior visual cortices using 

continuous intracranial EEG (iEEG) and a simple detection paradigm; 

responding with keyboard button presses whenever they observed auditory-

alone, visual-alone, or audiovisual stimuli, in order to investigate whether 
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phase resetting of ongoing intrinsic neural oscillations would impact the 

integration of audiovisual information in visual cortical regions. They reported 

early-latency auditory-induced phase resets over visual cortex, as well as 

auditory-evoked potentials (AEPs), that differed from AEPs traditionally 

observed over auditory cortex in amplitude, latency, and oscillatory frequency 

(Molholm et al., 2006). Interestingly, multisensory integrative effects were 

observed when audiovisual stimuli were presented through increased phase 

concentration and amplitude of identified ERPs over Brodmann Areas 17, 18, 

19, 37 and 39, which predicted faster RTs relative to unisensory stimulus 

presentations. These findings indicate neural markers for early multisensory 

integration in visual cortices, most notably, early cross-sensory phase setting 

to optimally integrate incoming multimodal sensory information.  

 

Moreover, Rajj et al. (2010) utilized fMRI and MEG to identify pathways and 

timings of early audiovisual activations and interactions in primary auditory 

cortex (A1) and primary visual cortex (V1) in human brains. Using auditory 

and visual “noise” bursts and chequerboard stimuli, presented for 300ms, they 

reported early latency onsets of neural activity for both modality-specific and 

modality-alternate stimuli across both primary cortices (Heschl’s gyri and 

Calcarine fissure for A1 and V1 respectively); with the onset of auditory-driven 

activity observed at 23ms and 53ms, and the onset of visual-driven activity 

observed at 43ms and 53ms in A1 and V1 regions respectively, thus 

implicating early neural origins for cross-sensory activations between the 

auditory and visual sensory modalities. In addition, they implicated that cross-

modal activations originate from the sensory cortex of the alternate stimulus 

modality, as evidenced by the asymmetrical activations between modalities, 

thought to be due to sensory-specific conduction delays, and given that 

audiovisual interactions occurred within a consistent timeframe range of 3-

21ms (after 300ms onsets). Finally, Lauzon et al. (2022) investigated the 

neural indices underlying the interrelation between multisensory associative 

learning and multisensory integration. They applied EEG to participants who 

engaged in a three-auditory stimulus oddball detection paradigm; a target 

detection task whereby participants’ responses, behavioural and/or neural, to 

a deviant stimulus presented within sequences of repetitive stimuli, are 

recorded as an index of pre-attentive processing (Courchesne, Hillyard, & 

Galambos, 1975). They found that ERPs of Mismatch Negativity (MMN; 

between ~216-252ms) and P300 (i.e. a positive deflection in electrical 

potential voltage; between ~332-440ms), over bilateral fronto-central and 



- 28 - 

occipital brain regions, correlated strongly with ERP fluctuations, and were 

recorded as early as 48ms (and approximately <100ms) over left-localised 

centro-parietal brain regions as participants engaged in a speeded-response 

task for detecting deviant audiovisual shape-tone pairings relative to auditory-

tone or visual-shape stimuli. Importantly, they found that their neural markers 

of audiovisual associative learning and integration predicted lower RTs, 

thereby faster perceptual decision-making, inferring that learned associations 

strengthen the early integration of novel multisensory information. 

 

While research implicating early cross-modal integration offers the possibility 

that multisensory evidence representations expedite later decision-making 

processes, discerning the functions of earlier cross-modal integration in 

shaping perceptual decision formation, as well as subsequent behaviour, 

remains subject to interpretation. Previous research has instead argued in 

favour of the late integration hypothesis, which argues that post-sensory 

enhancements of decision evidence arise from a late integration of 

multisensory information, therefore benefitting perceptual decision formation 

(Bizley, Jones, & Town, 2016a; Franzen et al., 2020). It postulates that 

unisensory information is processed separately at early sensory encoding 

stages, then combined into a unified source of evidence at a late post-sensory 

decisional stage. To an extent, this hypothesis thereby posits that 

multisensory integration occurs immediately prior of perceptual decision 

formation, with unisensory evidence accumulated in independent modalities 

(thereby within the respective associative cortices) and consolidated as 

unisensory decision variables within higher-order cortices, hence integrated 

later in time as multisensory decision evidence to facilitate appropriate 

behavioural responses. Empirical support for this hypothesis comes from 

research investigating the processes of object categorisation and recognition 

(Lee, Maddox, & Bizley, 2019). Given these are naturally multisensory 

processes, since information is presented to multiple sensory modalities near-

simultaneously, researchers have contended that top-down control processes 

are required to integrate salient accumulated unisensory information in order 

to expedite the speed and accuracy of perceptual decision formation (Calvert 

& Thesen, 2004; Chen & Spence, 2017; De Meo et al., 2015). Findings from 

Raposo et al. (2012) and Shepperd et al. (2013), for example, demonstrated 

improved multisensory perceptual decision-making behaviour, through 

increased choice accuracy, using an audiovisual rate categorisation 

paradigm. This paradigm instructs participants (both humans and rats) to 
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categorise brief auditory (tones) and/or visual (flashes) events as “fast” or 

“slow” when events varied both in stimulus strength (through manipulations of 

trial-averaged event rates) and reliability (through manipulations of Signal-to-

Nosie ratios; SNR ratios). Both studies reported consistent findings, in which 

clear multisensory enhancements were demonstrated as a function of 

stimulus reliability and not stimulus strength. Crucially, psychophysical 

analyses implicated that when unisensory stimuli were presented in 

asynchronous conditions with alternating trial-averaged event rates, they were 

less likely to be integrated into unified percepts to benefit choice formation, 

and instead were estimated separately for each modality. This led the authors 

of both studies to conclude that decisions are formed separately for dynamic, 

time-varying, stochastic unisensory stimuli, and prior to their integration in 

order reach a multisensory decision. These studies empirically validate the 

late integration hypothesis through the consideration that observers weigh 

individual sensory cues in proportion to the variability of their reliability. This 

mechanism is referred to as reliability-weighting (Ernst & Banks, 2002; Ernst 

& Bülthoff, 2004; Fetsch et al., 2012; Rohe & Noppeney, 2016). Reliability-

weighting traditionally supports late cross-modal integration of sensory inputs, 

whereby the most veridical, least variable, and statistically near-optimal 

multisensory percepts are accumulated for forming perceptual decisions. 

Hence, the likelihood of optimal behavioural responses for navigating our 

external environment are maximised, as the brain facilitates decisions based 

on integrated percepts providing salient, yet complementary, information, 

across multiple sensory modalities.  

 

For example, Beauchamp, Pasalar, & Ro (2010) delivered touches to the 

hands of participants as they simultaneously watched a video of an artificial 

hand being touched. When the temporal synchrony of sensory information 

was manipulated (i.e., a touch occurred in one modality but not the other), 

they observed evidence of reliability-weighting through increased detection of 

touch stimuli weighted towards the more reliable modality. They analysed 

fMRI activity to determine the neural substrates that corroborated with 

increased stimulus detection, observing increased BOLD activity in the inferior 

parietal lobe (IPS), lateral occipital cortex (LOC), and/or somatosensory 

cortices, depending on the bias in visual-somatosensory reliability-weighting 

of incoming stimuli. Similarly, Boyle, Kayser & Kayser used task-based EEG 

to probe neural activity underlying mechanisms for multisensory integration 

and reliability-weighting of audiovisual information. They localised neural 
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modulations at approximately 84ms post-stimulus onset over occipital and 

temporal regions, and approximately 120-204ms over occipital, temporal, and 

parietal regions of the brain respectively. Their results reaffirmed common 

behavioural neural origins for the integration and weighting of multisensory 

information for facilitating perceptual decisions that depended on the 

coherence of the audiovisual stimulus presentations, with coherence-induced 

modulations predicting enhanced neural processing beyond sensory cortices, 

and towards associative cortices thought to be implicated in sensory evidence 

accumulation for choice responses. Prominent regions linked to the reliability-

weighting for multisensory perceptual decision-making includes the parietal 

cortex, which is thought to have a prominent role for integrating and 

accumulating unisensory inputs (Herding et al., 2019; Rohe & Noppeney, 

2016; Sereno & Haung, 2014; Werner & Noppeney, 2010).  

 

Finally, the dual integration hypothesis posits that unisensory information is 

integrated at both early sensory encoding and late decision formation stages. 

This consolidates a process of causal inference for determining whether or 

not multisensory information is supramodal in determining the temporal locus 

of integrating incoming sensory information (Aller & Noppeney, 2019; Cao et 

al., 2019; Gau & Noppeney, 2016; Kayser & Shams, 2015; Mercier & Cappe, 

2020; Rohe et al., 2019; Rohe & Noppeney, 2016; Shams & Beierholm, 2010; 

Su, 2014). The previous research highlighted from Mercier & Cappe (2020) 

demonstrated evidence to support this hypothesis. Their study identified two 

temporally distinct neural processes underlying multisensory perceptual 

decision-making across both cue detection and cue categorisation paradigms. 

Importantly, decoding of EEG activity underlying unisensory cues implicated 

these processes were responsible for early sensory encoding and late 

decisional formation. Multisensory benefits observed in the behavioural data 

(i.e., faster RTs, higher choice accuracy, and increased perceptual sensitivity 

towards multisensory cues) were concurrent with an acceleration of both 

processing stages, suggesting that the complementary information between 

unisensory cues benefitted both a faster integration of sensory information 

and consolidation of decisional evidence. Crucially, their findings implicate 

that where we observe correlates of multisensory integration in the brain 

benefitting sensory evidence accumulation, whether it is sensory cortical, or 

associative cortical, areas of the brain may depend on (a) the nature of the 

task paradigm applied to investigate the subsequent neurocognitive 

underpinnings and b) whether multisensory cues are cross-modally bound, in 
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other words, thought to be perceived as originating from the same perceptual 

object (Bizley, Maddox, & Lee, 2016b). To this end, the process of causal 

inference supports the dual integration hypothesis. It suggests that repeated 

prior exposure to multisensory percepts optimises perceptual decision 

formation, as the brain integrates multisensory inputs that can be flexibly 

utilised to increase the likelihood of optimal choice responses. Hence, sensory 

inputs can be integrated early, with integrated percepts instead bound 

together, and then accumulated as decisional evidence, to causally infer 

previously formed choice responses, thus benefitting overt behavioural 

outcomes.  

 

At a neurophysiological level, the statistical optimization of single neural 

responses to multisensory stimuli has been thoroughly documented (see Stein 

& Stanford, 2008, for a review). Accordingly, such findings have begun to be 

reconciled with computational modelling approaches to provide neural and/or 

cognitive bases for the mechanism of causal inference, coupled with reliability-

weighting, enhancing multisensory perceptual decision-making behaviour 

(see Angelaki et al., 2009; Chandrasekaran, 2017, for reviews). These 

implicate that perceptual decision-making processes are recalibrated through 

repeated exposure to unisensory signal discrepancies. For example, Park & 

Kayser (2019) used MEG to investigate whole-brain activity during an 

audiovisual spatial localization task. They localized neural substrates for intra-

trial integrative processes within temporal and parietal cortex regions, and 

trial-to-trial perceptual recalibrations to decision-making within overlapping 

medial superior parietal cortex. Similarly, Cao et al. (2019) provide further 

MEG evidence for functional connectivity between the two processes. Using 

an audiovisual rate categorisation task, they identified parietal-temporal 

regions and prefrontal cortex activity for speeded decisions to be made about 

the temporal rate of audiovisual pulse repetitions. Both studies provide 

evidence suggesting multisensory information causes an updating of 

integrative and perceptual decision-making processes, maximising the 

likelihood of elicited behavioural benefits within initiated actions. 

Computational approaches have yielded mechanistic interpretations for a role 

of multisensory evidence recalibration using models for Bayesian Integration 

and Bayesian Inference (Acerbi et al., 2018; Körding et al., 2007; Noppeney, 

2021). Furthermore, findings have derived that prior expectations, formed 

from repeated exposure to multisensory percepts that causally infer the same 

object, benefit perceptual decision formation. For example, Ferrari & 
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Noppeney (2021) combined fMRI with a Bayesian model of causal inference 

to demonstrate that pre-stimulus anticipation and post-stimulus reporting of 

the spatiotemporal locus of auditory and visual stimuli modulated neural 

activity in the visual and/or posterior parietal cortices respectively. Similarly, 

Mahini et al. (2017) instructed participants to respond to spatial discrepancies 

in visual-tactile and visual-auditory-tactile stimuli to investigate optimal causal 

inference in discerning cue conflicts. Psychophysical analyses discerned a 

threshold for forming decisions that moved from integration of information to 

selection of cues of participants’ own discerned reliability, highlighting a 

weighting of information towards the modality that benefitted the accuracy of 

choices. These reaffirm that we process multisensory information to optimize 

perceptual decision-making through formulating prior probabilities of 

complementary sensory information. Therefore, causal inference operates on 

formed percepts with maximal prior probabilities of yielding salient information 

informing the guidance of perceptual and motor decisions (Filimon et al., 2013; 

Verdonck, Loossens, & Philiastides, 2022). To conclude, such computational 

frameworks reinforce the dual integration hypothesis.  

 

The recent emergence of findings that empirically validate the dual integration 

hypothesis, by coupling reliability-weighting as a component of causal 

inference mechanisms, suggests that multisensory enhancements towards 

perceptual decision formation do not originate from a specific timeframe. 

Rather, the suggestion that multisensory benefits towards choice behaviour 

originate from one of earlier sensory encoding stages, or post-sensory stages 

as a product of decision dynamics, is a false dichotomy. However, a 

reconciliation of the two competing hypotheses, in which multisensory 

perceptual decision-making enhancements may arise from either an 

accumulation of unisensory evidence within independent modalities, or an 

accumulation of bound unisensory evidence, implicates that common neural 

and cognitive mechanisms determine the constituent benefits of multisensory 

integration towards perceptual decision formation.  

 

This has important applications for applied fields of research investigating the 

underlying mechanisms of multisensory perceptual decision-making, in 

particular, the effects of natural ageing (de Dieuleveult et al., 2017; Mozolic et 

al., 2012). It has been extensively demonstrated, for example, that older adults 

exhibit impairments in the weighting of sensory information across sensory 

modalities (Guerreiro, Murphy, & Van-Gerven, 2013; McGovern et al., 2014), 
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coupled with deficits to baseline (i.e., “bottom-up”) multisensory filtering that 

have been considered pivotal in disrupting higher-order (i.e., “top-down”) 

mechanisms for selective attentional control, for example, in postural stability 

(Redfern et al., 2001; 2009). Such findings attribute that ageing impacts earlier 

processes for encoding sensory information, arguing for the early integration 

hypothesis in which impaired multisensory representations in older adults 

degrades the outcome of decision behaviours. However, neuroimaging 

findings have countered this argument (Alain et al., 2022). For example, 

Peiffer et al. (2009) coupled fMRI with auditory and visual discrimination 

paradigms to assess the ability of auditory and visual sensory cortices to 

suppress neural responses in the alternate cortex, in which the suppression 

of neural responses in the deactivated sensory cortex is found to decrease 

distractibility in weighting unisensory information. They found discrepancies in 

the visual cortical regions for cross-modal deactivations, in which older adults 

benefitted from suppressing neural responses in dorsal regions, compared to 

younger adults, but not for ventral regions, in which younger adults benefitted 

from suppressing neural responses. Furthermore, these differences held 

when accounting for reductions in gray matter volume within the sensory 

cortices, further implying that age-related differences in brain structure and 

function cannot solely account for disruptions to earlier multisensory encoding. 

Furthermore, it has been extensively demonstrated that older adults exhibit 

preserved multisensory integration despite impacts on the projection of 

sensory cortices onto regions of the brain linked to combining multisensory 

signals; notably the superior colliculus (SC) and superior temporal sulcus 

(STS; Calvert & Thesen, 2004; Clemo et al., 2012). Whereas this 

demonstrates support for preserved multisensory integrative benefits due to 

later post-sensory processes (and thus empirical support for the late 

integration hypothesis), it contradicts behavioural research that found a 

general slowing of cognitive and motor processes as a function of age 

(Laurienti et al., 2006; Peiffer et al., 2007). Thus, in the context of the dual 

integration hypothesis, prospective future research needs to consider 

reconciling why older adults may exhibit preserved (and to an extent 

enhanced; Laurienti et al., 2006; Peiffer et al., 2007) multisensory integration 

within perceptual decision-making despite inherent declines in earlier sensory 

and later post-sensory decision dynamics relative to younger adults.  

 

In conclusion, to fully understand the role of multisensory integration within 

perceptual decision formation, and how it benefits choice behaviours, it is 
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necessary to establish the perceptual relevance of the integrative mechanism 

at different stages of perceptual decision formation.  

 

1.3 Aims and Outline of the Thesis 

As highlighted in this chapter, there is considerable research characterising 

the neural and cognitive underpinnings of unisensory perceptual decision-

making. This formed the basis to formulate a framework that conceptualises 

multisensory perceptual decision-making, and therefore consolidates 

predictions for behavioural enhancements from the process of multisensory 

integration. The application of behaviourally-informed and/or neurally-

informed modelling approaches has posited a serial, non-linear, hierarchical 

cascade of neural events underlying the cognitive processes for multisensory 

perceptual decision-making. Importantly, a mechanistic, or functional, insight 

into how perceptual decision formation is enhanced through the integration of 

multisensory information into unified percepts, and consolidation of percepts 

as choice evidence for optimising decisional behaviours (i.e., faster and/or 

more accurate decisions) has steadily been uncovered within perceptual 

decision-making literature. The persisting key question, however, concerns 

the spatiotemporal locus of the benefits from multisensory integration within 

the processes of perceptual decision-making. Specifically, where, when, and 

how in the brain we observe the benefits from combining complementary 

multisensory signals remains subject to debate (Bizley, Jones, & Town, 

2016a; Bizley, Maddox, & Lee, 2016b; Otto, Dassy & Mamassian, 2013; Otto 

& Mamassian, 2017).  

 

Perceptual decision-making in humans, both unisensory and multisensory, 

can be modulated by a variety of intrinsic and extrinsic (i.e., environmental) 

factors. In addition to incoming sensory information, these factors have the 

capacity to influence different cognitive and neural processing components 

within the perceptual decision formation process, thus affecting facilitated 

choice responses. We define these factors as decision modulators, or 

decision neuromodulators, depending on whether their influence is exerted on 

cognitive and/or neural perceptual decision-making mechanisms (Doya, 2008; 

Philiastides, Diaz, & Gherman, 2017; Siegel, Engel, & Donner, 2011). 

Examples of decision (neuro)modulators include reinforcement learning, 

which captures the potential effects of reward and punishment on value-based 
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perceptual decision-making, (Fouragnan et al., 2015; 2017; Pisauro et al., 

2017), confidence (Gherman & Philiastides, 2015; 2018; Boldt et al., 2019), 

and prior probability or pre-stimulus expectations (Diaz, Delis, & Philiastides, 

2021; Kelly, Corbett, & O’Connell, 2021).  

 

Furthering our understanding of how various decision (neuro)modulators 

influence the processes of perceptual decision formation, and how such 

influences can be accounted for within behaviourally-informed (i.e., for the 

underlying cognitive mechanisms) and/or neurally-informed modelling (i.e., for 

the underlying neural mechanisms) approaches of perceptual decision-

making; notably sequential sampling model approaches, can not only benefit 

our understanding of the processes within multisensory perceptual decision-

making, but where, when, and how multisensory benefits consequently 

emerge to enhance choice behaviours. Through gaining a functional insight 

into the exerted influence(s) of established decision (neuro)modulators on the 

cognitive processes and neural mechanisms of multisensory perceptual 

decision-making, we can contribute to the current understanding of where 

multisensory signals are combined to benefit perceptual decision-making, by 

examining whether modelled cognitive processes and/or neural signals are 

related to choice behavioural outcomes.  

 

The work in this thesis aimed to provide insights into the cognitive and neural 

mechanisms underlying multisensory perceptual decision-making. We 

focused on audiovisual perceptual decision-making, comparing the cognitive 

and/or neural mechanisms for bimodal (i.e., auditory and visual) and unimodal 

(i.e., auditory or visual) stimuli. Specifically, it sought to investigate the 

constituent influences exerted by three decision modulators: (1) unisensory-

formulated cross-modal associations (Chapter 2), (2) natural ageing (Chapter 

3), and (3) perceptual learning (Chapter 4).  To do so, we utilised a 

combination of EEG-based neuroimaging, 2AFC decision-making paradigms 

(recording single-trial RTs and binary choice responses), single-trial EEG 

decoding (using Linear Discriminant Analysis; LDA), and computational 

modelling (using the HDDM; Wiecki et al., 2013) to incorporate behaviourally-

informed (for Chapter 3) and/or neurally-informed (for Chapters 2 and 4) 

approaches for provide novel insights into (a) the spatiotemporal locus of 

neural mechanisms underlying multisensory perceptual decision-making 

within the brain, (b) the cognitive processes mechanistically underlying 

identified spatiotemporal dynamics, and (c) the modulatory effects of our 
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nominated decision modulators on the underlying neural mechanisms and/or 

cognitive processes.  
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Chapter 2 

Neurocomputational Mechanisms underlying Cross-Modal 

Associations and their Influence on Perceptual Decisions2 

2.1 Abstract 

When exposed to complementary features of information across sensory 

modalities, our brains formulate cross-modal associations that bind features 

of stimuli presented separately to multiple modalities. For example, auditory 

pitch-visual size cross-modal associations map high-pitch tones with small-

size visual objects, and low-pitch tones with large-size visual objects. 

Preferential, or congruent, cross-modal associations have been shown to 

influence behavioural performance, i.e., choice accuracy and RTs, compared 

to non-preferential, or incongruent, cross-modal associations across 

multisensory decision-making paradigms. However, the neural mechanisms 

underpinning such influences in perceptual decision formation remain unclear, 

with discrepancies persisting as to whether associative congruency underlies 

‘early’ sensory processing benefits, or ‘late’ post-sensory modulations in 

decision dynamics, due to the issue of mixed selectivity within neural signals 

when utilising experimental paradigms that present two or more unisensory 

features simultaneously. Here, we sought to address this issue and identify 

when perceptual improvements from associative congruency emerge in the 

brain during decision formation. Using a modified version of the Implicit 

Association Test (IAT), coupled with EEG, we measured the neural activity 

underlying the effect of auditory stimulus-driven pitch-size associations on 

perceptual decision formation. Since the IAT only presents one unisensory 

stimulus per trial, the issue of mixed selectivity within neural signals can be 

overcome. Behavioural results showed that participants responded 

significantly faster (i.e., lower RTs) during trials when auditory pitch was 

congruent, rather than incongruent, with its associative visual size 

counterpart. Using multivariate LDA, we characterised the spatiotemporal 

dynamics of EEG activity underpinning IAT performance, characterising an 

Early component (approximately 100-110ms post-stimulus onset), coinciding 

                                            

2 This work has been published as Bolam, J., Boyle, S.C., Ince, R.A.A., & 
Delis, I. (2022). Neurocomputational mechanisms underlying cross-modal 
associations and their influence on perceptual decisions. NeuroImage, 247, 
118841, 1-15. 
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with the time of maximal discrimination of the auditory stimuli, and a Late 

component (approximately 330-340ms post-stimulus onset) underlying IAT 

performance. In order to characterise the functional roles of these components 

in perceptual decision formation, we incorporated a neurally-informed HDDM, 

revealing that the Early component predicted increases in the duration of 

sensory-encoding processes for incongruent trials, and the Late component 

predicted decreases in response caution for congruent trials, requiring less 

sensory evidence needed to be accumulated to facilitate choice behaviours. 

Overall, our results provide a mechanistic insight into the contribution of ‘early’ 

sensory processing, as well as ‘late’ post-sensory neural representations of 

unisensory-driven associative congruency to perceptual decision formation.  

 

2.2 Introduction 

When exposed to complementary features of information across sensory 

modalities, the brain predominantly associates features of information in close 

spatial and/or temporal proximity. However, it has been demonstrated that the 

brain further embodies implicitly learnt cross-modal associations between 

arbitrary features of stimuli presented separately to multiple modalities (see 

Parise & Spence, 2013; Spence & Deroy, 2013; Spence, 2011, for detailed 

reviews). Cross-modal association(s) define(s) the brain’s tendency to 

systematically bind stimulus features based on their orthogonality across 

multiple modalities (Bizley, Maddox, & Lee, 2016b; Ernst & Bülthoff, 2004), in 

which features that correspond to the same object become redundantly 

associated, thus enabling the brain to exploit the correlation between 

informational cues when forming perceptual decisions from ambiguous, and 

often noisy, unisensory information (Bien et al., 2012; Glicksohn & Cohen, 

2013). This is due to either an implicit lower-level statistical or structural 

correspondence across polar dimensions, or through an explicit higher-level 

degree of semantic coherence (see Parise & Spence, 2013; Spence, 2011, 

for detailed reviews).  

 

A paradigmatic example demonstrated extensively across previous literature 

concerns cross-modal associations between auditory pitch and visual size 

(Bien et al., 2012; Evans & Tresiman, 2010; Gallace & Spence, 2006; 

Mondloch & Maurer, 2004; Parise & Spence, 2009; 2008; 2012). Other 

audiovisual cross-modal associations have been demonstrated with 

alternative statistical correspondences, such as between auditory pitch and 
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visual brightness (Marks, 1987, Klapetek et al., 2012), auditory pitch and 

visual elevation (Jamal et al., 2018; McCormick et al., 2018, Zeljko et al., 

2019), auditory pitch and visual lightness (Brunel et al., 2015, Zeljko et al., 

2019), auditory pitch and visual shape (Köhler, 1929; Marks, 1987; Parise & 

Spence, 2012), and higher-order semantic coherence (Marks, 2004; Parise & 

Spence, 2013; Revill et al., 2014; Sadaghiani et al., 2009; Spence & Deroy, 

2013; Spence, 2011). 

 

Cross-modal associations have been shown to influence the consolidation of 

multisensory information when forming perceptual decisions (Bizley, Maddox, 

& Lee, 2016; Drugowitsch et al., 2014; Engel, Senkowski, & Schneider, 2012). 

These associative influences towards multisensory decision-making are 

consistently attributed to the modulatory effects of cross-modal 

(in)congruency (Marks, 2004), i.e., modulations in behavioural performance 

when a multisensory stimulus has two or more features that are (un)favourably 

mapped. Preferential, or anticipated, cross-modal associations, are referred 

to as congruent, whereas non-preferential, or non-anticipated, cross-modal 

associations, are referred to as incongruent. Congruent auditory pitch-visual 

size associations, for example, implicitly map high-pitch tones with small-size 

objects, and low-pitch tones with large-size objects, whereas incongruent 

auditory pitch-visual size cross-modal associations map high-pitch tones with 

large-size objects, and low-pitch tones with small-size objects (Bien et al., 

2012; Evans & Treisman, 2010; Marks, 1987; Shang & Styles, 2023) 

 

The direction and magnitude of the effects of associative congruency depends 

on the type and context of the experimental paradigm used. Earlier research 

adopted explicit paradigms that used methodologies requiring participants to 

directly map features across multiple modalities based on their preferred 

associative congruency (Köhler, 1929, 1947; Davis; 1961; Sapir, 1929; 

Ramachandran & Hubbard, 2001a; 2001b; Stevens & Marks, 1965; Zigler, 

1930). A seminal study by Köhler (1929), in particular, presented participants 

with two nonsensical words, takete and baluma, and two irregular shape 

outlines, a jagged/spikey one and a rounded/smooth one. When participants 

were explicitly instructed to match the words with the shapes, participants 

were more likely to map the word takete with the spiky/jagged shape outline 

and the word baluma with the rounded/smooth shape outline. Comparably, 

Steven and Marks (1965) instructed participants to adjust the magnitude of 

the brightness of a visual stimuli to subjectively match the magnitude of the 
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loudness of an auditory stimuli and vice versa. They found at various levels of 

intensity; participants demonstrated consistently similar corroborations when 

assessing the cross-modal magnitude of stimulus energy. A constrained 

variant of this paradigm from Marks (1987; 1989) instead instructed 

participants to choose which of two presented stimuli, on a trial-by-trial basis, 

in a given sensory modality matched the target stimulus in the alternate 

sensory modality, observing equally similar corroborations across 

participants. Further methodologies for assessing explicit compatibility effects 

of associative congruency include eye tracking for preferential looking (Walker 

et al., 2010), semantic differential techniques (Albertazzi et al. 2020; Osgood, 

1960; Oyama, Yamada, & Iwasawa, 1998), stimulus cueing (whereby the 

explicitly stated associative congruency of a cue preceding a target stimulus 

has been found to modulate reaction times of target stimulus categorisation; 

Chiou & Rich, 2012), speech vocalisation analyses (Parise & Pavani, 2011), 

and memory association in synaesthesia (a perceptual phenomenon whereby 

stimulation in one sensory modality leads to involuntary stimulation in a 

separate sensory modality, e.g., grapheme-colour synaesthesia; 

Ramachandran & Hubbard, 2001a; 2001b).  

 

Recently, studies have adopted implicit paradigms that do not require 

participants to directly map features across multiple modalities based on their 

preferred associative congruency. These investigate how the associative 

congruency of presented stimulus features modulates perceptual decision 

formation without an observer’s introspection. Considering research 

investigating auditory pitch-visual size cross-modal associations, for example, 

Parise & Spence (2008) investigated the modulatory effects of auditory pitch-

visual size associative congruency on the temporal ventriloquism effect 

(Morein-Zamir et al., 2003). They found that when asked to judge the temporal 

order of two different-sized visual stimuli (large and small grey circles), 

participants showed increased choice accuracy (i.e., higher sensitivity 

temporal order judgements; TOJs) when judging the temporal order of visual 

stimuli with congruent auditory tones preceding and following the display of 

each visual stimulus respectively. In a follow-up study, they further 

demonstrated that participants were able to judge the spatial discrepancy of 

an auditory stimuli less accurately (i.e. higher just noticeable difference 

discrimination thresholds; JNDs) when congruent with the visual stimulus 

presented (Parise & Spence, 2009). Similarly, Bien et al. (2012) presented 

participants with simultaneous visual (small-size/large-size circle) and 
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auditory (high-pitch/low-pitch tone) stimulus features that differed in spatial 

location (left/right of a fixation cross). Participants were then instructed to 

make a forced-choice judgement of where the presented auditory stimulus 

spatially originated. They found that participants were less accurate in judging 

the spatial origin of the auditory stimulus when the stimuli were congruent (i.e. 

high-pitch tone/small-size circle, low-pitch tone/large-size circle) than 

incongruent (high-pitch tone/large-size circle, low-pitch tone/small-size circle), 

implicating that the spatial location of the visual stimulus “pulled” the auditory 

stimulus towards its location, suggesting a decisional bias of associative 

congruency that begins to modulate early sensory-perceptual bottom-up 

processes within multisensory decision-making.  

 

In multisensory decision-making research, speeded classification paradigms, 

such as the 2AFC paradigm, have been used to demonstrate that the 

associative congruency of cross-modal associations benefits the 

consolidation of multisensory information when forming perceptual decisions 

(Bizley, Maddox, & Lee, 2016; Drugowitsch et al., 2014; Engel et al., 2012). 

In particular, enhanced behavioural performance in speeded classification 

paradigms has been evidenced by increased response speed (i.e., decreased 

reaction times; RTs; Kayser & Kayser, 2018; Laurienti et al., 2004; Silva et al., 

2017), increased choice accuracy (Franzen et al., 2020; Kayser & Kayser, 

2018; Kayser, Philiastides, & Kayser, 2017; Kim et al., 2008), and improved 

stimulus detection (Adam & Noppeney, 2014; Aller et al., 2015), when 

stimulus feature mappings are congruent versus incongruent, even if one 

stimulus feature was irrelevant to perceptual decision formation.  

 

Considering research investigating auditory pitch-visual size cross-modal 

associations again, for example, Gallace & Spence (2006) used a visual 

discrimination paradigm, whereby participants were instructed to discriminate 

the size of visual stimuli (small/large light gray disks) while ignoring task-

irrelevant auditory stimuli (high-pitch/low-pitch tones). They found that 

participants responded more rapidly (i.e., decreased RTs) when auditory 

stimulus pitch was congruent with the visual stimulus size than when 

incongruent, and when no auditory stimulus was presented. Similarly, Evans 

& Treisman (2010) used speeded classification paradigms to investigate 

cross-modal correspondence mappings of auditory pitch to four visual 

stimulus features (position, size, spatial frequency, and contrast). 

Comparisons of unisensory and bimodal simultaneous presentations of 
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congruent and incongruent auditory and visual stimulus pairings revealed 

faster RTs and lower error rates (i.e., higher proportion of correct responses) 

for categorising congruent compared to incongruent auditory pitch-visual size 

pairings. Furthermore, these findings were consistent across a manipulation 

of task instructions, with associative congruency effects prevalent even when 

task instructions changed from directly categorising small/large-size circular 

gratings and high/low-pitch tones (“direct” task instructions) towards 

categorising whether auditory stimuli were sounds of a violin (high-pitch tone) 

or a piano (low-pitch tone; “indirect” task instructions), implying that 

associative congruency influences choice performance inherently and does 

not require relevant instructions to benefit perceptual decision formation. 

Comparably, Brunetti et al. (2017) reported faster (i.e., decreased RTs) and 

more accurate (i.e., higher proportion of correct responses) classifications of 

visual stimulus size (small/large black disks) in a visual classification paradigm 

while hearing concurrent high/low-pitched task-irrelevant sounds. In addition, 

when presented with an intermediate auditory-pitch tone on interleaved trials, 

they found that further evidence of faster classification (i.e., decreased RTs) 

of visual stimulus size when the intermediate auditory-pitch tone was 

sequentially congruent (i.e., lower/higher following the presentation of a high-

pitch/low-pitch tone) than sequentially incongruent (i.e., higher/lower following 

the presentation of a low-pitch/high-pitch tone) with the auditory-pitch tone on 

the preceding trial, demonstrating relative flexibility in the nature of auditory 

pitch-visual size cross-modal associations in benefitting perceptual decision 

formation.  

 

Interestingly, the associative congruency of cross-modal associations can 

modulate the consolidation of multisensory information when forming 

perceptual decisions when only one stimulus is presented on a single-trial 

basis. This has been demonstrated particularly in research that used the 

Implicit Association Test (IAT). The IAT is a 2AFC categorization task that 

measures implicit perceptual associations between two arbitrary stimulus 

features through the manipulation of stimulus feature-response key mappings 

(Greenwald et al., 1998). Using a block design, two stimulus features are 

assigned, or mapped, to the same response key in one block of trials, whereas 

in a separate block of trials, they are assigned to different response keys. 

Participants are then instructed to categorise, as quickly and as accurately as 

possible, which of the four stimulus features was presented using the correctly 

assigned response key. RTs and choice accuracy are collected as single-trial 
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dependent variable measurements quantifying behavioural performance (and 

perceptual decision formation). The IAT assumes that the associative 

congruency of stimulus feature-response key mappings modulates 

behavioural performance, with perceptual choices faster (i.e., lower RTs) 

and/or more accurate (i.e. higher choice accuracy) when stimulus features are 

assigned to the same response key than when assigned to different response 

keys (i.e. higher RTs and/or lower choice accuracy). The IAT holds a 

symmetry between stimulus feature-response key mappings within blocks. 

Furthermore, at the beginning of each block of trials, participants only received 

new explicit instructions detailing which stimulus features are assigned to 

each response key, and no instructions to associate stimulus features 

assigned to the same response key. Hence, the outcome focuses on the 

implicit impact of associative congruency, reflecting both implicitly-formed 

associations and explicitly-attributed response mappings.  

 

For example, Parise & Spence (2012) used the IAT to investigate the 

modulatory benefits of associative congruency for five types of cross-modal 

association (takete-maluma; Köhler, 1947, mil-mal; Sapir, 1929, auditory 

pitch-visual size, auditory pitch-visual angle, auditory pitch-visual shape).  For 

all five types of cross-modal association, they showed decreased RTs for 

congruent, compared to incongruent, pairings when only one unisensory 

stimulus feature was presented per trial. Silva & Bellini-Leite (2020) replicated 

this finding utilising the IAT to investigate bouba-kiki cross-modal 

associations. Using a sine-wave stimuli, they found that when participants 

were trained to hear the sine-wave stimuli as speech, participants’ speech-

specific processing improved in an explicit cross-modal matching task, 

whereby behavioural benefits were observed underlying the mapping of the 

nonsensical words of bouba and kiki with their corresponding visual stimuli 

(curved shapes for bouba, jagged/sharp shapes for kiki). Moreover, these 

findings are consistent with those in studies that utilised the IAT to formulate 

implicit cross-modal associations with more ecological stimuli. For example, 

Demattè et al. (2006) found that when participants made speeded 

categorisations to two odours (strawberry and spearmint) and colour patches 

(pink and turquoise), participants showed decreased RTs and increased 

choice accuracy for odour-colour associations assigned to the same response 

key (strawberry-pink; spearmint-turquoise) than when assigned to different 

response keys. In addition, Roque et al. (2020) found decreased RTs, and 

hence faster response speed, for congruent pairings between visual bubble 
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size and auditory pouring sounds than for their incongruent pairings. 

Importantly, these findings were all observed when only one stimulus feature 

was presented on a single-trial basis, and with no explicit reference or 

instructions as to how the stimulus features should be mapped. As such, these 

results implicate that the associative benefits of cross-modal associations 

emerge implicitly earlier in the perceptual decision formation, and not 

exclusively within later explicit decision-related processes.  

 

However, when the benefits of associative congruency emerge within 

perceptual decision formation remains subject to extensive debate within 

cross-modal associative research (Spence & Deroy, 2013). Accordingly, 

investigating the underlying neural basis of cross-modal associations within 

perceptual decision formation has recently become a focus of human 

electrophysiology and neuroimaging research (Spence, 2011; Bizley, Jones, 

& Town, 2016). For example, Bien et al. (2012) used EEG to localise an effect 

of auditory pitch-visual size associative congruency across two identified 

Event-Related Potentials (ERPs) at approximately 250ms and approximately 

300ms across parietal and frontal electrodes respectively. They then applied 

Transcranial Magnetic Stimulation (TMS) over right-lateralised parietal cortex; 

a region of the brain found to be responsible for the integration and processing 

of congruent multisensory inputs (Matsuhashi et al., 2004; Molholm et al., 

2006; Pasalar, Ro, & Beauchamp, 2010). Using TMS, they observed that their 

identified ERPs were abolished, diminishing participants’ behavioural 

performance. Comparably, Diaconescu et al. (2011) used 

Magnetoencephalography (MEG) to identify neural modulations of associative 

semantic congruency. They found that approximately 100ms post-stimulus 

onset, posterior parietal brain regions elicited increased amplitude 

modulations to congruent cross-modal stimuli irrespective of task instructions 

or higher-order semantic coherence, implicating an early effect of implicit 

associative congruency. Increased neural modulations in superior temporal 

and posterior cingulate cortices were identified between 200m and 400ms 

post-stimulus onset when participants were instructed to classify semantic 

categories, which extended earlier from 100ms to 400ms post-stimulus onset 

across parahippocampal, dorsomedial, and orbitofrontal cortices when 

participants were instructed to classify whether semantic pairings were 

congruent or not. Similarly, Kovic, Plunkett, & Westermann (2010) used EEG, 

and found significant differences in neural activity between congruent and 

incongruent learned label-object associations as early as 140ms across 
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occipital regions of the brain. Furthermore, when participants were asked to 

identify mismatches to the learned label-object associations, detected 

mismatches evoked a modulation in activity between 340ms and 520ms 

across parietal regions.  

 

The above studies have started to shed light on the neural underpinnings of 

associative congruency. Notably, they localised earlier perceptual origins of 

associative congruency, as well as later task-dependent modulations that 

affected decision formation. However, the neural mechanisms facilitating 

these behavioural enhancements remain less well understood. Discrepancies 

persist between such studies that sought to identify when perceptual 

improvements emerge in the brain during decision formation, with temporally 

localised effects of associative congruency reported at different early and late 

onsets of the perceptual decision formation process (Bizley, Jones, & Town, 

2016). Hence, it is not clear whether such improvements represent ‘early’ 

sensory processing benefits, or ‘late’ post-sensory changes in decision 

dynamics. As such, we are yet to be provided with a conclusive mechanistic 

account of how the brain uses cross-modal associations to improve the 

efficiency of perceptual decisions.  

 

Difficulties in identifying the neural basis of cross-modal associations, as well 

as associative congruency, predominantly stems from the utilisation of 

experimental paradigms that present two or more unisensory features 

simultaneously, or in close spatial and/or temporal proximity. Previous 

research has associated multiple neural processes with the observed 

decision-making benefits as a result of multisensory information available, in 

particular (i) multisensory integration; integrating information across sensory 

modalities into unified percepts with significantly different bimodal neural 

responses (Angelaki et al., 2009; Calvert et al., 2004; Mercier & Cappe, 2020), 

or (ii) a form of selective attention; dividing attentional resources towards 

attending to task-relevant information in one sensory modality, and ignoring 

task-irrelevant information in another modality (Bien et al., 2012; Choi et al., 

2018; Gallace & Spence, 2006; Marks., 2004). Attending to two 

simultaneously presented stimulus features may facilitate enhancements to 

perceptual decision formation from benefits not directly attributed to genuine 

cross-modal associations. As such, any underlying neural activity recorded 

will display mixed selectivity representing a variety of sensory, decision-

related, and task-relevant signals facilitated by multisensory paradigms 
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(Chandrasekaran, 2017; Dahl et al., 2009; Fusi et al., 2016; Kobak et al., 2016; 

Park et al., 2014; Raposo et al., 2014; Rigotti et al., 2013). Therefore, it 

remains difficult to characterise whether cross-modal associations represent 

early sensory processing benefits or late post-sensory changes to decision 

dynamics during the formation of perceptual decisions. Thus, we cannot 

directly dissociate where and when perceptual improvements from associative 

congruency emerge in the brain during perceptual decision formation. 

 

In this study, we sought to capitalise secondary analyses of a dataset that 

exploited the novelty of using a modified variant of the Implicit Association 

Test (IAT), demonstrated by Parise & Spence (2012), to formulate auditory 

pitch-visual size cross-modal associations from the presentation of one 

unisensory stimulus feature (i.e. auditory pitch). The IAT presents one 

stimulus feature per trial and manipulates associative congruency by 

switching the stimulus feature-response key mappings across blocks of trials. 

Therefore, the proposed experimental manipulations overcome the 

methodological limitations present in previous research. First, the 

presentation of one sensory stimulus feature limits confounding effects from 

the processes of multisensory integration and selective attention. Second, the 

manipulation of associative congruency across blocks limits confounding 

effects from explicit stimulus feature mappings and subjective reporting of 

cross-modal associations. Thus, by using a modified variant of the IAT, 

coupled with EEG, we can record the neural activity underlying formulated 

auditory pitch-visual size associations, which is less likely to be affected by 

confounding activity, and therefore mixed selectivity, attributed to processing 

multisensory stimuli.   

 

Using this paradigm, we aim to mechanistically characterise the neural 

dynamics underlying cross-modal associations during perceptual decision 

formation. To achieve this, we analysed single-trial EEG activity using 

multivariate Linear Discriminant Analysis (LDA; Parra et al., 2002; 2005; Sajda 

et al., 2009; Philiastides & Sajda, 2006a; 2006b; Philiastides, Ratcliff, & Sajda, 

2006; Philiastides et al., 2014). Finally, to dissect the constituent processes 

underlying the effects of pitch-driven associations on perceptual decision 

formation, we adopted a neurally-informed cognitive modelling approach, that 

fits computational models to both behavioural and neuroimaging data (Turner 

et al., 2013; 2016; 2017; Franzen et al., 2020; Delis et al., 2018; Diaz et al., 

2017; Kayser & Shams, 2015). Thus, this approach links underlying latent 
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behavioural variables to hypothesised cognitive processes, and further 

constrains model fits with recorded neuroimaging data, to interpret the 

modulation of neural activity under different experimental conditions. Previous 

neurally-informed cognitive modelling research has provided mechanistic 

characterisations of neural activity underlying perceptual decision formation, 

and recently, multisensory decision-making (Delis et al., 2018; Franzen et al., 

2020; Mercier & Cappe, 2020).   

 

In the present study, we employ a neurally-informed hierarchical drift diffusion 

model (HDDM; Wiecki et al., 2013) to understand how the neural 

representations of auditory-driven pitch-size associations drive behavioural 

benefits to perceptual decision formation. Using this approach, we can extract 

sensory and decision-specific processes from brain activity and relate these 

to associative congruency benefits when forming perceptual decisions. Thus, 

we aim to ultimately characterise the mechanistic effect of cross-modal 

associations on perceptual decision formation.  

 

2.3 Materials and Methodology3 

2.3.1 Participants 

20 participants (male = 7, female = 13; age range = 19-32) were recruited 

using the University of Glasgow Subject Pool and received £6/hour (UK 

Sterling) for their participation. All participants were right-handed, reported 

normal hearing, normal or corrected-to-normal vision, and no history of 

neurological conditions. The study was approved by the ethics committee of 

the College of Science and Engineering at the University of Glasgow (CSE 

300130001) and was conducted in accordance with the Declaration of Helsinki 

(World Medical Association, 2013).  

                                            

3 The study was undertaken at the Institute of Neuroscience and Psychology at the University 

of Glasgow by Dr Stephanie Boyle and Dr Robin A.A. Ince. Subsections 2.3.1 Participants, 

2.3.2 Stimuli, 2.3.2 Implicit Association Test, 2.3.4 Procedure, and 2.3.6 EEG Recording and 

Preprocessing outline contents of the experiment and the datasets collected. All secondary 

analyses was conducted at the School of Biomedical Sciences at the University of Leeds. For 

further information, see page ii Intellectual Property and Publication Statements. 
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2.3.2 Stimuli 

Two auditory and two visual stimuli were created and presented using 

MATLAB (Mathworks) and the Psychophysics Toolbox Extensions (Brainard, 

1997). Auditory stimuli consisted of two 300ms pure tones (‘high-pitch tone’ 

and ‘low-pitch tone’, 2000Hz and 100Hz, respectively), and were presented 

using Sennheiser headphones, with the sound intensity of each tone matched 

to 72dB(A) Sound Pressure Level (SPL) for left and right ears using a sound 

level meter. Visual stimuli consisted of two light grey circles (‘small-size circle’ 

and ‘large-size circle’, 2cm and 5cm, 1.1° and 2.8° of visual angle, 

respectively), presented for 300ms on a Hansol 2100A CRT monitor at a 

refresh rate of 85Hz.  

 

2.3.3 Implicit Association Test 

This study used a modified variant of the IAT, adapted from Parise & Spence 

(2012), to formulate auditory pitch-visual size cross-modal associations 

(Figure 2.1a). In this variant, on each block, one auditory (high-pitch tone/low-

pitch tone) and one visual (small-size circle/large-size circle) stimulus feature 

were assigned to one of two response keys (left/right response keys). 

Participants were then instructed to categorise, as quickly and as accurately 

as possible, which stimulus feature was presented on a single-trial basis using 

the correctly assigned response key. Congruency was manipulated by 

switching the stimulus feature-response key mappings across blocks of trials. 

Congruent mappings assigned high-pitch tones and small-size circles to the 

left response key, and low-pitch tones and large-size circles to the right 

response key (Figure 2.1a, top). Incongruent mappings, however, switched 

the auditory stimulus feature-response key mappings only, so that high-pitch 

tones and low-pitch tones were assigned to the right and left response keys 

respectively (Figure 2.1a, bottom). These mappings justify previous findings, 

which suggested that high-pitch tones are often preferentially associated with 

small-size visual objects, and vice versa (Gallace & Spence, 2006; Evans & 

Treisman, 2010; Parise & Spence, 2012). 

 

The assigned visual stimulus features remained fixed across blocks for two 

reasons: (1) Pilot testing found that participants started to exhibit cross-modal 

associations between visual size and their assigned response keys, rather 

than their auditory pitch counterparts. Specifically, small-size and large-size 
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visual objects were associated with left and right response keys respectively. 

(2) In total, experimental sessions ran for ~3 hours (~2 hours for EEG 

setup/cleanup, ~1.5 hours for the task of 1280 trials per subject). Taken 

together, this made it difficult to design a cross-modal association experiment 

where the auditory and visual stimulus features were counterbalanced, and 

participants were not asked to spend more than three hours in a single 

laboratory session. For these reasons, we chose to only manipulate auditory 

pitch-response key mappings, therefore manipulating auditory stimulus 

feature congruency, across blocks. These stimulus feature-response key 

mapping manipulations are consistent with the mapping manipulations used 

in previous studies (Parise & Spence, 2012; Roque, Lafraire, & Auvray, 2020).  

 

 

 

 

Figure 2.1 Implicit Association Test. a, Participants were presented with 
one unisensory stimulus feature (auditory high/low-pitch tone; visual 
small/large-size circle) per trial, and asked to categorise which stimulus 
feature, within that modality, was presented as quickly and as accurately as 
possible using the correctly assigned response key (left/right response key). 
Auditory congruency was manipulated by switching the stimulus feature-
response key mappings across blocks (top, congruent block mappings; 
bottom, incongruent block mappings). b, Each trial started with a fixation cross 
presented centrally on-screen for a randomized 500-100ms period, before one 
of four stimulus features (see Stimuli section) were selected randomly and 
presented for 300ms. Feedback was provided after each response for a 
randomised 300-600ms period.  

 

2.3.4 Procedure 

Participants completed the experiment in a dark and electrically shielded 

room. Each block began with instructions on the auditory pitch-visual size 

mapping between stimuli and response keys (see 2.2.3 Implicit Association 

Test section). Participants were given as much time as they needed to 

memorize the instructions for the upcoming block. Figure 2.1b illustrates the 
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procedure on a single-trial basis. Each trial started with a fixation cross 

presented centrally on-screen for a randomised period (uniform distribution 

from 500 to 1000ms). Then, one of the four stimuli (see 2.3.2 Stimuli section) 

were selected randomly and presented for 300ms. Participants were 

instructed to categorize, as quickly and as accurately as possible, the 

presented stimulus feature using the left and right keyboard response keys, 

as defined by the instructions given for that specific block (see 2.3.3 Implicit 

Association Test section). Feedback was given after each trial, with green 

fixation crosses given for correct response choices, and red fixation crosses 

given for incorrect response choices. Feedback was provided for a 

randomised duration (uniform distribution from 300ms to 600ms). In total, 

participants completed 8 blocks (4 blocks each for the congruency of stimulus 

feature-response key mappings presented in a random order) for a total of 

1280 trials (160 trials per block; 40 trials for each stimulus feature). 

 

2.3.5 Statistical Analysis of Behavioural Data 

For each participant, median RTs (calculated in milliseconds; ms) and choice 

accuracy (calculated as the proportion of correct choices over all trials) were 

used as dependent variable measurements of behavioural performance. 

These were calculated separately for two independent variables: (1) stimulus 

feature (Auditory: High-Pitch Tone/Low-Pitch Tone; Visual: Small-Size 

Circle/Large-Size Circle), and (2) congruency of stimulus feature-response 

key mappings (Congruent/Incongruent). To further assess the effect of 

switching auditory stimulus feature-response key mappings, we calculated 

RTs for correct and incorrect choice responses. 

 

For separate auditory and visual stimuli, trials with RTs more or less than the 

median RT +/- 2.5 Median Absolute Deviations (MADs) were then excluded 

from further analyses, with these RTs attributed to outliers corresponding to 

“fast guesses” or attentional lapses during testing (Whelan, 2008). This pre-

processing criterion was selected as previous research has demonstrated that 

MADs are a more robust measurement of central dispersion than standard 

deviation (Leys et al., 2013). Overall, 1442 trials (Auditory: 830 trials; Visual 

612 trials) were excluded from further analysis, leaving a total of 9697 trials 

for auditory stimuli and 9939 trials for visual stimuli. Next, an Anderson-Darling 

test was first used to assess if RTs were normally distributed (Anderson & 

Darling, 1954; Nelson, 1998; Stephens, 1974). This is because it is commonly 
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observed in research that RT distributions tend to be not normally distributed, 

with histograms prominently illustrating a positive right skew (Marmolejo-

Ramos et al., 2015; Whelan, 2008).  

 

As expected, the assumption of normality was found to be violated for RTs 

over the full pre-processed behavioural dataset (A2 = 245.39, p < 0.001). 

Therefore, we statistically analysed median RTs and choice accuracy using 

Wilcoxon Matched-Pairs Signed-Rank tests, and further analysed RTs for 

correct and incorrect choices responses using Mann-Whitney U Paired tests. 

Effect sizes were calculated by dividing the Wilcoxon Signed-Rank test 

statistic (Z) by the square root of the test population (N = 20) for stimulus 

feature (high-pitch tone/low-pitch tone) and congruency 

(congruent/incongruent) respectively (Rosenthal, Cooper, & Hedges, 1994). 

For Mann-Whitney U Paired testing analysing RTs of correct and incorrect 

choices within each congruency and stimulus feature condition for auditory 

stimuli, effect sizes were calculated by dividing the Mann-Whitney U test 

statistic (Z) by the square root of the total number of trials for correct and 

incorrect responses in each congruency condition (congruent/incongruent) 

and stimulus feature condition (high-pitch tone/low-pitch tone). For Mann-

Whitney U Paired testing analysing RTs of correct and incorrect choices 

across congruency and stimulus feature conditions, effect sizes were 

calculated by dividing the Mann-Whitney U test statistic (Z) by the square root 

of the total number of trials in each accuracy condition (correct/incorrect) 

across congruency and stimulus feature conditions This enabled us to analyse 

the effects of both congruent/incongruent stimulus feature-response key 

mapping conditions, and high-pitch tone/low-pitch tone presentations for 

correct and incorrect RTs respectively. Post hoc power analyses were 

conducted using G*Power (Faul et al., 2007; 2009) to assess whether any 

identified significant results from both behavioural analyses were of sufficient 

statistical power (Cohen 1992a; 1992b; see the Power Analyses section in 

Supplementary Materials). Statistical analysis of all behavioural data was 

completed using R (R Core Team, 2022). 

 

2.3.6 EEG Recording and Pre-processing 

Continuous EEG data was recorded in a sound-attenuated and 

electrostatically shielded room using a 128-channel BioSemi amplifier system 

and ActiView recording software (Biosemi, Amsterdam, Netherlands). Signals 



- 52 - 

were sampled and digitized at 512 Hz, then band-pass filtered online between 

0.16 and 100 Hz.  Signals originating from ocular muscles were recorded from 

four additional electrooculography (EOG) electrodes placed below and at the 

outer canthi of each eye.  

 

Individual blocks of data were preprocessed using the Fieldtrip Toolbox 

(Oostenveld et al., 2011), which was implemented in MATLAB using custom 

scripts. Epochs of 2 seconds, from -0.5 to 1.5 seconds relative to stimulus 

onset, were extracted and filtered between 0.5 and 90 Hz using a Butterworth 

filter, before being down-sampled to 200 Hz. Potential signal artefacts were 

removed using Independent Component Analysis (ICA) using the Fieldtrip 

toolbox (Oostenveld et al., 2011). Components related to typical eye 

movement activities, such as blinks, or noisy electrode channels were 

removed. Horizontal, vertical, and radial EOG signals were further processed 

using established procedures (Hipp & Siegel, 2013; Keren, Yuval, Greenberg, 

& Deouell, 2010) and trials with high correlations between eye movements 

(e.g. saccades) and components in the EEG data removed. Remaining trials 

with amplitudes that exceeded ±120 µV were also removed. Successful 

cleaning was verified by visual inspection of single trials.  

 

2.3.7 EEG Signal Analysis – Linear Discriminant Analysis 

We applied single-trial multivariate Linear Discriminant Analysis (LDA; Parra 

et al., 2002; 2005; Philiastides & Sajda, 2006a; 2006b; Philiastides, Ratcliff, & 

Sajda, 2006; Philiastides et al., 2014; Sajda et al., 2009) to extract EEG 

components discriminating between (a) congruent and incongruent trials, and 

(b) high-pitch tone and low-pitch tone trials, for auditory stimulus-locked EEG 

data only. Specifically, for a pre-defined time window of interest, this method 

applies a linear multivariate classifier to EEG data in order to estimate a spatial 

weighting vector that quantifies the optimal combination of EEG sensor linear 

weights. When applied to multichannel EEG data, this yields a one-

dimensional projection that maximally discriminates between two conditions 

of interest. This projection represents the ‘discriminating component’ that 

integrates all signal information across the multichannel EEG array, while 

reducing effects common to both conditions. Compared to univariate trial-

averaging approaches, notably event-related/evoked response potential 

(ERP) analyses, multivariate approaches are better able to spatially integrate 

information across the multidimensional EEG sensor space, yielding 
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components which both  preserve inter-trial signal variability and increase the 

signal-to-noise ratio (Sajda et al., 2011) for preserved task-relevant 

information. Note that the term ‘component’ is preferred instead of ‘source’ in 

order to make clear that this is a projection of all EEG activity correlated with 

the underlying source.  

 

We used a sliding window approach (Parra et al., 2005; Sajda et al., 2009) to 

identify a projection of the multichannel EEG signal, 𝑥𝑖(𝑡), where 𝑖 =

[1 … 𝑁 𝑡𝑟𝑖𝑎𝑙𝑠], and 𝑁 is the total number of trials, within short time windows 

that maximally discriminated between congruency and stimulus feature 

conditions for auditory stimulus features only. All time windows had a width of 

50ms, with the window centre 𝑡 shifted from -100ms to 800ms, relative to 

auditory stimulus-onset, in 5ms increments. Specifically, we used logistic 

regression (Parra et al., 2002; 2005) to learn a 128-channel spatial weighting 

vector 𝑤(𝑡) that achieved maximal discrimination within each time window. 

This yields a one dimensional projection, 𝑦𝑖(𝑡), for each trial 𝑖 and given 

window 𝑡: 

 

𝑦(𝑡) = 𝑤𝑇𝑥(𝑡) =  ∑ 𝑤𝑖𝑥𝑖(𝑡)

𝐷

𝑖=1

 

 

Here, 𝐷 represents the number of channels in the multichannel EEG array and 

𝑇 refers to a matrix transpose operator. Our classifier was designed to map 

component amplitudes, 𝑦𝑖(𝑡), for congruency and stimulus feature trials, that 

separates activity maximizing differences and minimizing similarities of effects 

from neural processes common to both conditions. In discriminating the two 

congruency categories, the classifier maps negative and positive discriminant 

component amplitudes to congruent and incongruent trials respectively. In 

discriminating the two stimulus feature categories, the classifier maps 

negative and positive discriminant component amplitudes to high-pitch tone 

and low-pitch tone trials respectively. Thus, larger negative values indicate a 

higher likelihood of categorizing auditory stimuli within congruent stimulus 

feature-response key mappings, and larger positive values indicate a higher 

likelihood of categorizing auditory stimuli within incongruent stimulus feature-

response key mappings, with values near zero reflecting less discriminative 

component amplitudes. Similarly, larger negative values indicate a higher 
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likelihood of categorizing high-pitch tones, and larger positive values indicate 

a higher likelihood of categorizing low-pitch tones, with values near zero 

reflecting less discriminative component amplitudes. 

 

We quantified classification performance of our classifiers for each time 

window using the area under a receiver operating characteristic (ROC) curve 

(Green & Swets, 1966), referred to as an 𝐴𝑧 value, using a leave-one-out 

cross-validation procedure (Gherman & Philiastides, 2015; Philiastides & 

Sajda, 2006a; 2006b). To determine group significance thresholds for 

discriminator performance, we implemented a permutation test, whereby 

congruency and stimulus feature trial labels were randomized and submitted 

to the leave-one-out procedure. This randomization procedure was repeated 

1000 times, producing a probability distribution for 𝐴𝑧, which we used as 

reference to estimate the 𝐴𝑧 value leading to a significance level of 𝑝 < 0.05.  

 

Finally, the linearity of our model allowed us to compute scalp projections of 

the discriminating components resulting from equation (1) by estimating a 

forward model as:  

 

𝑎(𝑡) =  
𝑥(𝑡)𝑦(𝑡)

𝑦(𝑡)𝑇𝑦(𝑡)
 

 

where the EEG data (𝑥) and discriminating components (𝑦) are organized as 

matrix and vector notations, respectively, for convenience. Here, the EEG 

matrix, 𝑥𝑖(𝑡), denotes channel activity across rows and trials across columns 

for all 5ms increments in time window 𝑡, whereas discriminating components, 

𝑦𝑖(𝑡), are organized as single-trial vectors, 𝑦(𝑡), with each row is from trial 𝑖. 

Such forward model implementations can be displayed as scalp topographies 

and interpreted as the coupling between discriminating component amplitudes 

and observed multichannel EEG activity, whereby vector 𝑎(𝑡) reflects the 

coupling of the discriminating component 𝑦(𝑡) that explains most of the activity 

in 𝑥(𝑡), with maps illustrating this optimal component-activity coupling 

(Philiastides et al., 2014).  
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2.3.8 HDDM – Description 

We fit participants’ behavioural performance i.e., RTs and choice accuracy, 

with a hierarchical drift diffusion model (HDDM; Wiecki et al., 2013). Similar to 

the traditional DDM (Forstmann, Ratcliff, & Wagenamkers, 2016; Ratcliff et 

al., 2015; 2016; Ratcliff & McKoon, 2008; Ratcliff, 1978), the HDDM assumes 

sensory evidence is stochastically accumulated over time, towards one of two 

decision boundaries, corresponding to two choice alternatives (e.g. correct or 

incorrect choices; left or right response keys). For each decisional process, 

the HDDM returns parameter estimates of four internal components of 

perceptual decision-making, (1) the rate of evidence accumulation (drift rate), 

(2) possible a priori bias towards one of the two choice alternatives (starting 

point), (3) the distance between two decision boundaries controlling the 

amount of evidence required for one particular choice alternative (decision 

boundary), and (4) the duration of non-decisional processes, which can 

include time taken for stimulus encoding and motor-response production 

latency (non-decision time).  

 

2.3.9 HDDM – Fitting 

To fit HDDM to participants’ performance and estimate internal decisional 

processes, we used the HDDM toolbox (Wiecki et al., 2013), an open-source 

software package, written in Python, that permits  custom fits of HDDM 

variants to participants’ RTs and choice accuracy. The HDDM uses a 

Bayesian hierarchical framework to estimate the above four parameters, 

whereby sampled prior probability distributions of the model parameters are 

updated based on a likelihood function, formed from the data given to the 

model, to yield posterior probability distributions. HDDM uses Markov-Chain 

Monte Carlo (MCMC) sampling within this framework, whereby prior 

distributions of estimated parameters are iteratively adjusted by a likelihood 

function that maximizes the log likelihood of predicted mean RTs and choice 

accuracy (Gamerman & Lopes, 2006). The use of Bayesian hierarchical 

frameworks, and specifically the HDDM, allows for several benefits relative to 

traditional (non-hierarchical) DDM analysis. First, such frameworks assume 

that participants’ samples in a dataset are randomly drawn from a group 

(Vadekerchkove et al., 2011), thereby constraining participant- and group-

level posterior distributions, which yield more stable parameter estimates for 

individual participants (Wiecki et al., 2013). Second, HDDM has been found 

to be more robust in achieving stable parameter estimates in datasets with 

low numbers of trials, compared to non-hierarchical DDM approaches (Ratcliff 
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& Childers, 2015). Third, rather than quantifying the most likely value for each 

parameter, uncertainty can be directly conveyed with posterior distributions 

for each estimated parameter (Wiecki et al., 2013; Navarro & Fuss, 2009; 

Gelman, 2003). Fourth, and most importantly for our analysis, the HDDM 

framework supports the use of external variables as regressors of estimated 

model parameters, to assess the relations between specific parameters with 

further behavioural or neuroimaging data (Diaz et al., 2017; Delis et al., 2018, 

Frank et al., 2015; Franzen et al., 2020; Mercier & Cappe, 2020;  Tremel & 

Wheeler, 2015).  

 

To implement the HDDM, we used a process referred to as accuracy-coding 

(Wiecki et al., 2013), which fits the HDDM to RT distributions that assume the 

upper and lower decision boundaries correspond to correct and incorrect 

choices respectively. We sampled parameter estimates for drift rate (δ), 

decision boundary (θ), and non-decision time (τ). Starting point (z) was set as 

the midpoint between the two decision boundaries, since the IAT had no a 

priori bias towards either choice alternative (i.e., response key; Philiastides et 

al., 2011). We did not include any inter-trial variability parameters in our 

models as previous studies have shown that it is difficult to achieve stable 

posterior estimates, particularly with fewer trials (Boehm et al., 2018; Ratcliff 

& Childers, 2015).  For each model, we ran 5 separate Markov chains with 

11000 samples each. For each chain, the first 1000 were discarded as “burn-

in”, and the rest subsampled (“thinned”) by a factor of two, to reduce the 

autocorrelation within and between Markov chains. This is a conventional 

approach to MCMC sampling, whereby initial samples in the “burn-in” period 

are based on the selection of a random starting point, and neighbouring 

samples likely to be highly correlated. Both issues are likely to provide 

unreliable posterior distributions for estimated parameters. This left 25000 

remaining samples for our model, which constituted the probability 

distributions for each estimated parameter, allowing us to compute individual 

parameter estimates for participants and condition categories. To ensure 

Markov chain convergence, we computed Gelman-Rubin Ȓ statistics between 

chains (Gelman & Rubin, 1992). This compares within-chain and between-

chain variance of estimated parameters both for individual participants and 

group conditions. We verified that all Ȓ statistics fell between 0.98 and 1.02, 

which suggests reliable convergence between chains.   
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2.3.10 HDDM – EEG Regressors 

We sought to use our EEG discrimination analysis results to inform the fitting 

of the HDDM to our behavioural data (i.e. RTs and choices). Specifically, we 

used the HDDM toolbox (Wiecki et al., 2013) to construct regressors that 

assessed the trial-by-trial, linear relationship between our single-trial EEG 

discriminator amplitudes (for congruent and incongruent trials) and posterior 

estimates for drift rate (𝛿), decision boundary (𝜃), and non-decision time (𝜏). 

In line with our behavioural results, in which we reported a significant effect of 

RTs decreasing for congruent trials (see section 2.4.1 Behavioural Results), 

we hypothesized that component amplitudes would be predictive of increases 

in the rate of evidence accumulation (drift rate) and decreases in evidence 

required for categorising auditory stimuli (decision boundary). For the duration 

of non-decisional processes (non-decision time), we hypothesized that either 

(a) component amplitudes for congruent trials would be predictive of 

decreases in the duration of non-decisional processes, or (b) component 

amplitudes for incongruent trials would be predictive of increases in the 

duration of non-decisional processes. Therefore, as part of the model fitting 

within the HDDM framework, we used our single-trial EEG discriminator 

amplitudes for congruent and incongruent trials to construct regressors for drift 

rate (𝛿), decision boundary (𝜃), and non-decision time (𝜏) as follows:  

 

𝛿 =  𝛼0 +  𝛼1 ∗ |𝑦𝑒𝑎𝑟𝑙𝑦
𝑚𝑎𝑥 | +  𝛼2 ∗  |𝑦𝑙𝑎𝑡𝑒

𝑚𝑎𝑥| 

𝜃 =  𝛽0 + 𝛽1 ∗ |𝑦𝑒𝑎𝑟𝑙𝑦
𝑚𝑎𝑥 | +  𝛽2 ∗  |𝑦𝑙𝑎𝑡𝑒

𝑚𝑎𝑥| 

𝜏 =  𝛾0 + 𝛾1 ∗  |𝑦𝑒𝑎𝑟𝑙𝑦
𝑚𝑎𝑥 | + 𝛾2 ∗  |𝑦𝑙𝑎𝑡𝑒

𝑚𝑎𝑥| 

 

where |𝑦𝑒𝑎𝑟𝑙𝑦
𝑚𝑎𝑥 | and |𝑦𝑙𝑎𝑡𝑒

𝑚𝑎𝑥| are the maximum, single-trial, discriminator 

amplitudes of subject-specific, stimulus-locked EEG components capturing 

the highest classification performance between congruent and incongruent 

trials (corresponding to group peak 𝐴𝑧 values; Early ~ 110ms; Late ~ 340ms; 

see Figure 2.3b). Coefficients 𝛼1, 𝛽1, 𝛾1 and 𝛼2, 𝛽2, 𝛾2 weight the slope of each 

parameter by the absolute values of |𝑦𝑒𝑎𝑟𝑙𝑦
𝑚𝑎𝑥 | and |𝑦𝑙𝑎𝑡𝑒

𝑚𝑎𝑥| respectively, with 

intercepts 𝛼0, 𝛽0, 𝛾0, on a trial-by-trial basis for each subject and congruency 

condition. Note that we used the absolute values of our single-trial EEG 

discriminator amplitudes to construct regressors, since congruent trials were 
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predominantly categorised by negative |𝑦𝑒𝑎𝑟𝑙𝑦
𝑚𝑎𝑥 | and |𝑦𝑙𝑎𝑡𝑒

𝑚𝑎𝑥| values, and 

incongruent trials were predominantly categorised by positive |𝑦𝑒𝑎𝑟𝑙𝑦
𝑚𝑎𝑥 | and 

|𝑦𝑙𝑎𝑡𝑒
𝑚𝑎𝑥| values respectively (see 2.3.7 EEG Signal Analysis – Linear 

Discriminant Analysis section). Hence, by using these regression coefficients, 

we were able to assess the trial-by-trial modulatory effects of each identified 

component on drift rate, decision boundary, and non-decision time in both 

congruency conditions. Consequently, we can characterise the behavioural 

benefits of cross-modal associative congruency on perceptual decision 

formation, dissecting which decisional processes best predict decreases in 

choice RT.  

 

To assess the posterior predictive power of our regression coefficients, we 

first calculated the posterior probability densities of samples that differed from 

0 using the built-in functions of the HDDM toolbox (Wiecki et al., 2013) 

corresponding to our pre-defined hypotheses predicting the effect of 

decreased RTs for congruent trials, and decreased RTs for incorrect 

responses for congruent trials (albeit not significantly affecting choice 

accuracy, see 2.4.1 Behavioural Results section). For drift rate and 

incongruent non-decision time regression coefficients, probability densities 

were calculated from the proportion of samples greater than 0 (P(δ > 0); P(τ > 

0), whereas for decision boundary and congruent non-decision time 

regression coefficients, probability densities were calculated from the 

proportion of samples less than 0 (P(θ < 0); P(τ < 0)). Then, we calculated 

each coefficient’s posterior log odds by applying the logit function to the 

proportion of posterior samples in favour of their corresponding hypothesis 

(Ince et al., 2021). This Bayesian Inference approach was utilised because 

Bayesian hierarchical modelling frameworks violate the assumption of 

independence in its posterior estimation sampling procedure, since group-

level and participant-level parameter posteriors are simultaneously estimated 

(Wiecki et al., 2013). Therefore, null-hypothesis significance testing 

approaches commonly utilised in frequentist approaches towards statistical 

analysis are not recommended. To determine the prevalence of true positive 

results, implicating strong predictive effects of our regression coefficients on 

posterior parameter estimations, we further calculated the log posterior odds 

proportion of a hypothetical sample corresponding to a false-positive rate of ɑ 

= 0.05 (i.e. a 95% true-positive threshold). Regression coefficient log-odds 

proportions greater than the hypothetical log-odds proportion of our false 

positive rate (which is equal to 2.944) suggests predictive effects of our 



- 59 - 

regression coefficients on changes to estimated posterior parameters 

favoured by our hypotheses.  

 

2.4 Results 

2.4.1 Behavioural Results 

2.4.1.1 Reaction Time 

Participants responded faster in auditory trials with congruent compared to 

incongruent stimulus feature-response key mappings (Figure 2.2a, 

Congruent: median = 624ms post-stimulus offset; Incongruent: 657ms post-

stimulus offset). Wilcoxon Signed-Rank Testing determined this finding to be 

statistically significant (Z = -2.135, p = 0.033, effect size = -0.447, Wilcoxon 

Signed-Rank Testing). This result held for both correct (Figure 2.2c, 

Congruent/Correct: median = 608ms post-stimulus offset; 

Incongruent/Correct: median = 639ms post-stimulus offset, Z = -6.333, p < 

0.001, effect size = -0.090, Mann-Whitney U testing) and incorrect trials 

separately (Figure 2.2c, Congruent/Incorrect: median = 573ms post-stimulus 

offset; Incongruent/Incorrect: median = 617ms post-stimulus offset, Z = -

2.890, p = 0.004, effect size = -0.092, Mann-Whitney U testing). Furthermore, 

RTs were significantly longer for correct compared to incorrect responses for 

congruent stimulus feature-response key mappings (Figure 2.2c, Correct: 

median = 608ms post-stimulus offset; Incorrect: median = 573ms post-

stimulus offset, Z = -2.793, p = 0.005, effect size = -0.030, Mann-Whitney U 

Testing), but not for incongruent stimulus feature-response key mappings 

(Figure 2.2c, Correct: median = 639ms post-stimulus offset; Incorrect: median 

= 617ms post-stimulus offset, Z = -1.159, p = 0.247, effect size = -0.017, 

Mann-Whitney U Testing). We found no significant effect of stimulus feature 

on median RTs (Figure 2.2d, High Pitch Tone: median = 632ms; Low Pitch 

Tone: median = 639ms, Z = -0.788, p = 0.430, effect size = -0.176, Wilcoxon 

Signed-Rank Testing). There was also no significant effect when testing 

correct (Figure 2.2f, High Pitch Tone/Correct: median = 622ms post-stimulus 

offset; Low Pitch Tone/Correct = 621ms post-stimulus offset, Z = -0.146, p = 

0.884, effect size = 0.001, Mann-Whitney U Testing) or incorrect trials 

separately (Figure 2.2f, High Pitch Tone/Incorrect: median = 592ms post-

stimulus offset; Low Pitch Tone/Incorrect: median = 589ms post-stimulus 

offset, Z = -0.719, p = 0.472, effect size = -0.025, Mann-Whitney U Testing). 

Furthermore, we found no significant difference in RT between correct and 
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incorrect responses for either high-pitch tones (Figure 3.2f, Correct: median = 

622ms post-stimulus offset; Incorrect: median = 592ms post-stimulus offset, 

Z = -1.443, p = 0.149, effect size = -0.021, Mann Whitney-U Testing), or low-

pitch tones (Figure 2.2f, Correct: median = 621ms post-stimulus offset; 

Incorrect: median = 589ms post-stimulus offset, Z = -1.627, p = 0.052, effect 

size = -0.023, Mann Whitney-U Testing).  

 

We found no significant effect of associative congruency on median RTs for 

visual stimuli (Congruent: median = 579ms post-stimulus offset; Incongruent: 

median = 608ms post-stimulus offset; Z = 1.199, p = 0.231, effect size = -

0.268, Wilcoxon Signed-Rank Testing). We further found no significant effect 

of visual stimulus feature on median RTs (Small-Size Circle: median = 619ms 

post-stimulus offset; Large-Size Circle: median = 599ms post-stimulus offset, 

Z = -0.974, p = 0.330, effect size = -0.218, Wilcoxon Signed-Rank Testing).  

 

2.4.1.2 Choice Accuracy 

Regarding choice accuracy, participants had a slightly, but not significantly, 

higher proportion of correct responses for auditory trials with congruent 

compared to incongruent stimulus feature-response key mappings (Figure 

2.2b, Congruent: proportion correct = 0.918; Incongruent: proportion incorrect 

= 0.913, Z = -0.128, p = 0.898, effect size = -0.029, Wilcoxon Signed-Rank 

Testing). There was also no significant effect of stimulus feature on choice 

accuracy (Figure 2.2e, High Pitch Tone: proportion correct = 0.915; Low Pitch 

Tone: proportion correct = 0.918, Z = -0.055, p = 0.956, effect size = -0.012, 

Wilcoxon Signed-Rank Testing).  
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Figure 2.2 Behavioural Performance. Left. a, d, Median RTs and b, e, 
choice accuracy (proportion of correct responses) for condition (bars) and 
participants (scatter points) for a, b, Congruency (congruent/incongruent) and 
d, e, Stimulus Feature (High Pitch Tones/Low Pitch tones). Right. Median RTs 
for correct and incorrect RT for c, Congruency (congruent/incongruent) and f, 
Stimulus Feature (High-Pitch Tones/Low-Pitch Tones). For all graphs, 95% 
Confidence Intervals (CIs) were computed using 1000 bootstrapping random 
sampling iterations to estimate the distribution of average performance 
measurements. Note that behavioural performance here was quantified with 
an initial preprocessing criteria excluding all RTs between 300ms and 
1200ms, yielding similar median RTs for congruency and stimulus feature 
outcomes.  

 

In addition, participants had a slightly, but not significantly, higher proportion 

of correct responses for trials with congruent compared to incongruent visual 

stimulus feature-response key mappings (Congruent: proportion correct = 

0.958; Incongruent: proportion correct = 0.957, Z = -0.423, p-value = 0.673, 

effect size = -0.094. Wilcoxon Signed-Rank Testing). There was also no 

significant effect of visual stimulus feature on choice accuracy (Small-Size 

Circle: proportion correct = 0.956; Large-Size Circle: proportion correct = 

0.960; Z = -0.905, p-value = 0.365, effect-size = -0.202, Wilcoxon Signed-

Rank Testing).  

 



- 62 - 

2.4.1.3 Interim Summary of Behavioural Results 

To summarise, we found responses for congruent auditory trials were faster 

than responses for incongruent auditory trials and, in addition, within the set 

of congruent trials, correct responses were slower than incorrect responses.  

Furthermore, we found responses for congruent visual trials were not faster 

nor more accurate compared to incongruent visual trials. Therefore, no 

significant behavioural improvements as a result of associative congruency 

were demonstrated when categorising visual stimulus features. 

 

2.4.2 EEG Signal Analysis Results 

 

Figure 2.3 Multivariate Linear Discriminant Analysis Group Results. a, 

Mean multivariate discriminator performance (Az), quantified by leave-one-out 
trial cross-validation procedure, during outcome discrimination of stimulus-
locked EEG responses, as a function of congruency (congruent-vs-
incongruent; blue) and stimulus feature (high-pitch tones-vs-low-pitch tones; 
red) conditions. Dashed black line represents the group average permutation 
threshold at p < 0.05 for congruent-vs-incongruent discriminator performance. 
Shaded error bars denote the standard error of the mean across participants. 
Shaded area denotes the presentation of auditory stimuli, from 0ms (post-
stimulus onset) to 300ms (post-stimulus offset). a, Top Right. Scalp 
topographies at representative time windows corresponding to EEG 
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components from 0-400ms in 50ms time increments. b, Scalp topographies at 
representative time windows corresponding to the two EEG components, 
defined for congruency (Top, CEarly and CLate) and stimulus feature (Bottom, 
SF1 and SF2) conditions respectively. c, Participants’ mean discriminator 
performance (Az) obtained from a leave-one-out cross-validation procedure, 
during stimulus feature (red) and congruency (blue) discrimination of stimulus-
locked EEG responses. Dashed black line represents the group average 
permutation threshold at p < 0.05 for congruent-vs-incongruent discriminator 
performance. Condition mean discriminator performance (black) is also 
illustrated for congruency and stimulus feature discrimination. Shaded 
polygons for a, c, denote the presentation of auditory stimuli, from 0ms (post-
stimulus onset) to 300ms (post-stimulus offset). d, Participants’ mean 
discriminator performance (Az) for the Early and Late congruency-
discriminating EEG components. 

 

Next, we analyzed the EEG data to identify the neural components that 

discriminated between congruent and incongruent trials. Specifically, for each 

participant separately, we performed a single-trial multivariate discriminant 

analysis to identify linear spatial weightings (i.e., spatial filters) of the EEG 

sensors that discriminated congruent from incongruent trials. The identified 

weightings produced a projection in the 128-dimensional EEG space that 

maximally discriminated congruent-vs-incongruent trials within short pre-

defined windows of 50ms, locked to stimulus-onset. 

 

Application of the resulting linear spatial filters to single-trial EEG data 

produces a measurement quantifying the discriminating component amplitude 

(y, see 2.3.7 EEG Signal Analysis - Linear Discriminant Analysis section). 

These component amplitudes can be used as an index of the quality of 

categorizing the congruency of stimulus feature-response key mappings in 

each trial. In other words, higher amplitudes, negative or positive, indicate 

higher neural evidence for congruent or incongruent stimulus feature-

response key mappings respectively, while values closer to zero indicate less 

evidence of categorizing associative congruency. To quantify the 

discriminator’s performance over time, we used the area under a receiver 

operating characteristic curve (i.e., AUC-ROC; Az value), coupled with a 

leave-one-trial-out cross validation approach, to control for overfitting. 

Compared to traditional approaches, which assume an Az value of 0.5 as 

chance performance, we performed a permutation analysis using a leave-one-

trial-out procedure that produced an Az randomization distribution, to compute 

a group-average Az value, leading to a conventional significance level of p = 

0.05. 
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Our discriminator’s performance as a function of stimulus-locked time 

revealed increased discriminant performance from 0-600ms, above the 

significance level estimated from our permutation test. Specifically, 

discriminator performance within this range was characterized by two 

temporally specific components (Figures 2.3a and 2.3b; CEarly: mean peak 

time = 100-110ms, Az value = 0.846; CLate: mean peak time = 330-340ms, Az 

value = 0.797). These components were consistent across participants (see 

Figure 3.4c for the Az curves and Figure 3.3d for the maximum Az values of 

each participant). We then computed the corresponding scalp topographies, 

obtained using the forward model, correlating between peak discriminant 

output and EEG data (Figure 3.3b, averaged over a 50ms time window 

centered on the two classification performance peaks). For the Early 

component, the strongest effects originated over central, left-lateralized 

centro-parietal, and left-lateralized occipital electrodes, whereas for the Late 

component, the strongest effects predominantly originated over fronto-central 

electrodes. These results indicate that our multivariate LDA classifier identifies 

two EEG components that carry significant information about the congruency 

of stimulus feature-response key mappings.  

 

Similarly, we applied the same single-trial multivariate discriminant analysis to 

the EEG data to identify the neural components that discriminated between 

trials which presented either high-pitch and low-pitch auditory tones. Here, our 

discriminator’s performance as a function of stimulus-locked time revealed 

increased discriminant performance post-stimulus onset, characterized by two 

temporally specific peaks (Figure 2.3b; SF1: mean peak time = 90-100ms, Az 

value = 0.595; SF2: mean peak time = 170-180ms, Az value = 0.647).  The 

corresponding scalp topographies, again obtained using the forward model, 

revealed a bipolar EEG response that discriminated the two auditory stimuli. 

The first component (SF1) had positive activations over outer occipital, 

parietal, and temporal electrodes and negative activations over a frontocentral 

cluster, whereas the second component (SF2) showed activations at the same 

locations with inverse polarity. Notably, the stimulus-discriminating 

components occur approximately at the same temporal window as the Early 

congruency-discriminating EEG component. Thus, taken together, our EEG 

results attribute an early sensory-encoding role for the Early congruency-

discriminating component and a post-sensory role for the Late congruency-

discriminating component.   
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Figure 2.4 Multivariate Discriminator Amplitude Participant Results. a, 
Single-trial discriminator amplitudes (y) for Congruent and Incongruent 
component amplitudes illustrated as histograms for the Early (top) and Late 
(bottom) EEG components respectively. Negative values indicate neural 
evidence for associative congruency whereas positive values indicate neural 
evidence for associative incongruency. b, Single-trial discriminator amplitudes 
(y) for Early and Late component windows for Congruent and Incongruent 
trials. Above. Single-trial discriminator amplitudes from a representative 
subject. c, d, Absolute values of our single-trial discriminator amplitudes (y)s 
for Congruent and Incongruent component amplitudes for the Early (c) and 
Late (d) components. 

 

 
 
 
 
 
 
 



- 66 - 

The covariation between the strength of the Az values for Early (i.e., CEarly) 

and Late (i.e., CLate) components was then assessed using a covariation 

matrix. The variance within the Early and Late components respectively was 

consistently low (Early: 0.015; Late: 0.012), as was the covariance across N 

= 20 participants (0.011). The low variance demonstrates a consistency 

across participants to display peak component activity for temporally distinct 

neural processes. Furthermore, a positive covariance value indicates that two 

variables tend to simultaneously increase or decrease, suggesting that the 

strength of the Early component predicts the strength of the Late component, 

albeit weakly. This initial covariance analysis implies that the onset of the Early 

component may partially influence the onset of the Late component. In 

addition, partial correlations were applied to assess the degree of association 

between Early (i.e., CEarly) and Late (i.e., CLate) components assuming the 

effect of the peak onset of the stimulus feature components (i.e., SF1 and/or 

SF2) was controlled. Therefore, we could observe if there is an influence of 

the peaks for discriminating auditory stimulus feature (i.e., high-pitch tones 

versus low-pitch tones) on the onset of the peaks for discriminating 

associative congruency. A partial correlation was run to determine the 

relationship between a participants’ CEarly and CLate component peaks whilst 

controlling for SF1 and SF2 component peaks. There was a moderate positive 

partial correlation between CEarly and CLate component peaks whilst controlling 

for SF1 and SF2 component peaks, which was statistically significant (r(16) = 

0.746, N = 20, p < 0.001). However, zero-order correlations (i.e., excluding for 

controlling of SF1 and SF2 component peaks) showed that there was a 

statistically significant, moderate, positive correlation between CEarly and CLate 

component peaks (r(18) = 0.791, N = 20, p < 0..001), indicating that SF1 and 

SF2 component peaks had very little influence in controlling for the relationship 

between CEarly and CLate component peaks. We reaffirmed these findings by 

then assessing the relationship between an individual’s CEarly and CLate 

component peaks whilst controlling for SF1 or SF2 component peaks 

separately. We found moderate positive partial correlations between CEarly and 

CLate component peaks whilst controlling for SF1 and SF2 component peaks 

separately, both of which were statistically significant (SF1: r(17) = 0.725, N = 

20, p < 0.001; SF2: r(17) = 0.788, N = 20, p < 0.001). Zero-order correlations 

confirmed that this significant moderate positive correlation between CEarly and 

CLate component peaks resided, indicating that neither stimulus feature 

component had a profound influence in controlling for the relationship between 

CEarly and CLate component peaks (SF1: r(18) = 0.791, N = 20, p < 0.001; SF2: 

r(18) = 0.791, N = 20, p < 0.001). Together, these findings imply that the 
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auditory stimulus feature encoded in the associative congruency of stimulus 

feature-response key mappings did not profoundly influence the variance nor 

the correlation between the temporal peaks of our identified components 

reflecting Early and Late mechanisms underlying the benefits of associative 

congruency towards perceptual decision formation.  

 

2.4.3 Neurally-Informed Cognitive Modelling Results 

After characterizing the effect of congruency on the discriminating power of 

brain activity, we sought to gain a mechanistic insight into how the identified 

single-trial neural responses were linked to improvements in perceptual 

decision formation between congruent versus incongruent trials. To achieve 

this, we used a neurally-informed variant of the HDDM (Wiecki et al., 2013, 

see Figure 2.5a for a graphical illustration and sections 2.3.8 HDDM – 

Description, 2.3.9 HDDM – Fitting, and 2.2.10 HDDM – EEG Regressors for 

modelling details). As previously mentioned, the HDDM is a Bayesian 

implementation of the well-known DDM, used for characterizing perceptual 

decision formation in 2AFC paradigms (Ratcliff & McKoon, 2008).  

 

We extracted the maximum single-trial discriminator amplitudes (|𝑦𝑒𝑎𝑟𝑙𝑦
𝑚𝑎𝑥 | and 

|𝑦𝑙𝑎𝑡𝑒
𝑚𝑎𝑥|) from subject-specific temporal windows corresponding to our stimulus-

locked Early and Late peak EEG components. These values represent the 

neural evidence for discriminating the congruency of stimulus feature-

response key mappings per trial (see Figure 2.4a for histograms of 𝑦𝑒𝑎𝑟𝑙𝑦
𝑚𝑎𝑥  and 

𝑦𝑙𝑎𝑡𝑒
𝑚𝑎𝑥 in congruent and incongruent trials). Depending on the stimulus feature-

response key mapping, these values demonstrate where stimulus-induced 

neural responses systematically differ, explicitly linking perceptual decision 

formation benefits to time points where early bottom-up and late top-down 

influences from associative congruency modulate the subsequent neural 

responses. Thus, we used them to construct regressors for drift rate, boundary 

separation, and non-decision time parameters in the model. We estimated 

regression coefficients to assess the relationship between trial-to-trial 

variations in EEG component amplitude and parameter posterior estimations 

(Coefficients 𝛼1, 𝛽1, 𝛾1 and 𝛼2, 𝛽2, 𝛾2 for |𝑦𝑒𝑎𝑟𝑙𝑦
𝑚𝑎𝑥 | and |𝑦𝑙𝑎𝑡𝑒

𝑚𝑎𝑥| respectively). Note 

that we extracted the absolute single-trial discriminator amplitudes, as this 

would permit us to compare indexes of neural evidence, underlying our 

assumption that larger component amplitudes reflect higher discriminant 
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activity within the brain for congruent compared to incongruent trials (see 

Figures 2.4c and 2.4d for the average |𝑦𝑒𝑎𝑟𝑙𝑦
𝑚𝑎𝑥 | and |𝑦𝑙𝑎𝑡𝑒

𝑚𝑎𝑥| of each participant).  

 

Figure 2.5 Neurally-Informed Cognitive Modelling – Posterior Predictive 
Checks. a, Graphical representation illustrating the Bayesian hierarchical 
framework for estimating neurally-informed HDDM parameters. Round nodes 
represent continuous random variables, and shaded nodes represent 
recorded or computed signals, i.e., single-trial behavioural data (RTs and 
Choice) and EEG component discriminator amplitudes (ys). Double-bordered 
nodes represent deterministic variables, defined in terms of other variables. 
Plates denote a hierarchical framework for modelling multiple random 
variables. The inner plate is over participants (n = 1 , …, N) and the outer plate 
is over congruency conditions (Congruent | Incongruent). Parameters are 
modeled as random variables with inferred means µ and variances σ2, 
constrained by inferred estimates over congruency conditions. External plates 
denote constructed single-trial regression coefficients as predictors of the drift 
rate (ɑ), decision boundary (θ), and non-decision time (τ). b, c, Posterior 
predictive checks of the Neurally-informed HDDM fitting to participant and 
group behavioural data. Modelling fit to behavioural data was assessed using 
b, histogram and neurally-informed HDDM model fits for RT distributions split 
across congruency conditions, and c, a cumulative quantile-probability plot, 
showing quantiles of RT distributions split across congruency conditions 
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(Congruent/Incongruent in columns) and choice accuracy (Correct/Incorrect 
in rows). Cumulative probability quantiles are plotted along the x-axis for 
observed RTs, i.e. single-trial behavioural data (RTs), and predicted RTs, i.e. 
simulated RTs from HDDM posterior predictive estimates. Diamonds 
represent group averages and circles represent single-participant values.  

 

We found a good fit of the behavioural data (i.e., choice accuracy and RTs) 

from our proposed neurally-informed HDDM (Figures 2.5b and 2.5c). 

Crucially, we found that the single-trial amplitudes for the Early component 

were highly predictive of increases in non-decision time estimates for 

incongruent trials (Early: 𝑃(𝛾1
𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡

 < 0) = 0.189, log-odds = -1.470; 

𝑃(𝛾1
𝐼𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡

 > 0) = 0.997, log-odds = 5.861. Late: 𝑃(𝛾2
𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡

 < 0) = 0.62, 

log-odds = -2.712; 𝑃(𝛾2
𝐼𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡

 > 0) = 0.936; log odds = 2.690; Figure 2.6c). 

We should note that the non-decision time parameter captures the duration of 

non-decisional processes, such as the latency of early stimulus encoding and 

the motor preparatory response. This result is consistent with the longer RTs 

observed in incongruent trials and combined with the early occurrence of this 

component (approximately 100-110ms post-stimulus), suggests a longer 

duration of early sensory processing during incongruent trials.  

 

We further found evidence to indicate that single-trial amplitudes of the Late 

component were predictive of decreases in decision boundary parameter 

estimates for congruent trials only (Early: P(𝛽1
𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡

 < 0) = 0.370, log-odds 

= -0.553; P(𝛽1
𝐼𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡

 < 0) = 0.641, log-odds = 0.580. Late: 𝑃(𝛽2
𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡

 < 

0) = 0.973, log-odds = 3.574; P(𝛽2
𝐼𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡

 < 0) = 0.234, log-odds = -1.186; 

Figure 3.6b). Thus, this implies a modulation of the decision boundary in 

congruent trials by the Late component amplitudes. The lower decision 

boundary indicates that participants require less evidence to reach a decision 

in congruent trials, thus they (a) respond faster and (b) are more likely to make 

incorrect perceptual judgments when responding fast. These are consistent 

with our behavioural findings indicating (a) shorter RTs in congruent trials and 

(b) faster RTs for incorrect choices compared to correct choices in congruent 

trials (Figure 2.6b). 

 

Finally, we did not find prevalent evidence that single-trial amplitudes of either 

the Early or Late component were predictive of increases in drift rate 

parameter estimates for congruent or incongruent trials, since they did not 
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exceed the hypothetical log-odds proportion of our false positive rate 

suggesting predictive effects (Early: P(𝛼1
𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡

 > 0) = 0.930, log-odds = 

2.587; P(𝛼1
𝐼𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡

 > 0) = 0.387, log-odds = -0.461. Late: 𝑃(𝛼2
𝐶𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡

 > 0) 

= 0.0.852, log-odds = 1.754; P(𝛼2
𝐼𝑛𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡

 > 0) = 0.0.853, log-odds = -1.757; 

Figure 2.6a). This result argues against our hypotheses implicating higher 

sensory evidence in congruent compared to incongruent trials for either the 

Early and Late component, and does not mechanistically characterize shorter 

RTs in congruent compared to incongruent trials.   
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Figure 2.6 Neurally-Informed Cognitive Modelling - Results. Group-level 
(left) and participant-level (right) posterior density distributions of estimated 
regression coefficients for a, drift rate (α’s), b, decision boundary (β’s) and c, 
non-decision time (γ’s) for Early (top) and Late (bottom) EEG component 
discriminator amplitudes. For group-level posterior density distributions, all 
regression coefficients are derived from the neurally-informed HDDM, 
including N = 20 participants and 9850 trials. Thick lines denote the median 
point estimate and the shaded areas represent the 90% probability mass, 
enclosed between 5% and 95% probability confidence intervals. Dashed lines 
denote the zero point. For participant-level posterior distributions, points 
denote the mean point estimates for each subject, and the dashed line 
denotes the zero point.  

2.5 Discussion 

In this work, we used single-trial multivariate LDA and neurally-informed 

cognitive modelling to investigate the neural mechanisms underlying auditory 

pitch-visual size cross-modal associations, formulated from the presentation 

of unisensory stimulus features (i.e., auditory pitch). Using a modified variant 

of the Implicit Association Test (Parise & Spence, 2012), we showed 

significant behavioural improvements as a result of associative congruency, 

whereby participants responded faster to congruent than incongruent stimulus 

feature-response key mappings (Figure 2.2a). Additionally, we showed that 

participants were slower for correct compared to incorrect responses for 

congruent stimulus feature-response key mappings only. Our multivariate 

discriminant analysis on the underlying EEG signals revealed neural 

information discriminating the congruency of stimulus feature-response key 

mappings predominantly within a 0-600ms post-stimulus onset window, 

including the 300ms period for stimulus feature presentations and 

(approximately) after which for perceptual decision formation up to median 

choice responses. Within this 0-600ms time window, we characterised two 

temporally-distinct EEG components carrying congruency-relevant 

information on a single-trial basis: first, an Early component, peaking at 

approximately 100-110ms post-stimulus onset, and a Late component, 

peaking at approximately 330-340ms post-stimulus onset. Using neurally-

informed cognitive modelling, we linked these prominent neural correlates of 

associative congruency (for auditory pitch stimulus feature-response key 

mappings) with the corresponding behavioural observations for forming 

perceptual decisions. We thus associated the observed shorter RTs in 

congruent trials with (a) an increase in the duration for processing and 

encoding sensory information modulated by the Early component during 



- 72 - 

incongruent trials, and (b) a decrease in the quantity of post-sensory evidence 

that needs to be consolidated and accumulated to facilitate a perceptual 

choice modulated by the Late component in congruent trials, albeit not to the 

detriment of either choice accuracy or slowing of responses for congruent 

trials.   

 

Our behavioural results further consolidate the existence of auditory pitch-

visual size cross-modal associations that have been reported in previous 

research (Bien et al., 2012; Brunetti et al., 2017; Evans & Treisman, 2010; 

Gallace & Spence, 2006; Marks, Ben-Artzi, & Lakatos, 2003; Parise & 

Spence, 2008; 2009; 2012). More importantly, our results demonstrate that 

auditory pitch-visual size cross-modal associations can be formulated even 

when only a single unisensory stimulus feature is presented on a single-trial 

basis. This replicates the findings of Parise & Spence (2012), who reported 

faster RTs for congruent compared to incongruent trials for five auditory-visual 

stimulus combinations, including frequency-pitch and object-size. Importantly, 

as the IAT only presents one unisensory stimulus feature per trial, results in 

both auditory and visual modalities were equally relevant in forming perceptual 

decisions, and no explicit instructions were given to participants to 

preferentially map frequency-pitch and object-size, our results can be 

interpreted as evidence of a more genuine effect of stimulus feature 

compatibility in benefitting perceptual decision formation, and not from general 

multisensory benefits arising from simultaneously presented stimulus 

features, notably multisensory integration (Angelaki et al., 2009; Calvert et al., 

2004; Mercier & Cappe, 2020) and/or a form of selective attention/attention-

dividing (Bien et al., 2012; Choi et al., 2018; Gallace & Spence, 2006; Marks., 

2004). 

 

Whether the nature of associative congruency towards benefitting perceptual 

decision formation is absolute (i.e., automatic) or relative remains a persistent 

debate in cross-modal correspondence research (Moors & De Houwer, 2006; 

Spence, 2019). Traditionally, the prevalent generalization was that congruent 

cross-modal associations are inherently automatic in benefitting rapid 

perceptual decision formation, with such benefits arising due to pure bottom-

up perceptual processing with specific one-to-one cross-modal mapping 

between particular stimulus features across multiple sensory modalities, for 

example, a particular pitch frequency and size range of an audiovisual object. 

However, this has been questioned in recent studies. Across audiovisual 
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cross-modal associative research, contradictory findings persist concerning 

the replicability of the benefits of associative congruency towards decision 

formation, with advantages in speeded classification paradigms not always 

exclusively reported (e.g., auditory pitch-visual spatial location; Heron et al., 

2012; auditory pitch-visual elevation; Chiou & Rich, 2012; auditory/tactile 

amplitude frequency-visual spatial frequency; Orchard-Mills; Alais, & Van der 

Burg, 2013). In addition, such findings further demonstrate that the benefits of 

associative congruency are not unsusceptible to strategic top-down cognitive 

modulations towards multimodal perceptual decision formation, notably the 

amodal properties of the presented stimuli, the modality characteristics 

determining how incoming features are consolidated, and processes 

determining how the integration of features underlies the goal-orientated 

behaviours of the observer itself. In consideration (see Welch & Warren, 1980; 

Chen & Spence, 2017, for reviews), it should be emphasized that the benefits 

of associative congruency observed in our study should be considered relative 

in nature, and not inherently automatic in enhancing perceptual decision 

formation. 

 

Specifically, it is the variation within blocks of trials, and subsequent trial-by-

trial contrasts between high frequency and low frequency pitch tones, which 

influences behavioural performance, and not necessarily the absolute pitch 

frequency of the auditory tones presented. Our results complement findings 

from Brunetti et al. (2017; see section 2.2 Introduction), as well as from Getz 

& Kubovy (2018), who utilised a novel paradigm whereby they manipulated 

the associative congruency and associative compatibility of cross-modal 

associations between auditory pitch and five visual features (object angularity, 

brightness, height, size, and spatial frequency). Manipulations of associative 

compatibility were defined according to whether participants were explicitly 

instructed to pair congruent audiovisual or incongruent audiovisual endpoints. 

Their findings implicated a consistent advantage of associative congruency 

across all five pairings of decreased RTs for correct decisions (replicating 

findings from both explicit and implicit speeded classification paradigms; see 

section 2.2 Introduction), but which were negated (albeit subject to the 

audiovisual cross-modal association under investigation) when associative 

compatibility explicitly instructed participants to map non-preferential 

audiovisual stimulus features, demonstrating evidence that the benefits of 

associative congruency towards perceptual decision formation involve both 

bottom-up and top-down processing, and the degree of which both are 
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involved modulates the consequential choice benefits. Given in our paradigm 

participants were only instructed as to which response key should be selected 

to categorise the presented auditory or visual stimulus feature (without explicit 

instructions to map compatible auditory-pitch visual-size cross-modal 

associations according to research consensus), and our participant-level 

behavioural, neuroimaging, and modelling results illustrate not all participants 

were susceptible to benefits from associative congruency from one stimulus 

feature presentation per trial (see sections 2.4.1 Behavioural Results, 2.4.2 

EEG Signal Analysis Results, and 2.4.3 Neurally-Informed Cognitive 

Modelling Results), we recommend operationalising manipulations to this 

paradigm that can boost top-down processing influences for future research 

in order to dissociate whether unisensory-formulated cross-modal 

associations are biased towards one end of this absolute-relative associative 

benefits spectrum. Comparably, analysing the effects of statistical learning of 

transitional probabilities within unisensory-formulated cross-modal 

associations could be assessed to ascertain whether participants begin to 

exploit the benefits of associative congruency across modalities (Glickson & 

Cohen, 2013). In particular, statistical learning could be enhanced or reduced, 

depending on if decision-making performance benefits between and within 

blocks of different associative congruency levels when mapping unisensory-

led stimulus feature-response key mappings. Future research should consider 

this to determine if the decision-making benefits of associative congruency 

begin to emerge (i.e., relative cross-modal associative benefits), or remain 

stable (i.e., automatic cross-modal associative benefits) during IAT 

participation.  

 

We further provide neuroimaging evidence demonstrating a robust modulation 

to neural activity by the associative congruency of auditory-driven stimulus 

feature-response key mappings. Most importantly, as the IAT only presents 

one unisensory stimulus feature per trial, the resultant modulations are 

minimised from confounding neural activity attributed to further multisensory 

decision-making mechanisms, notably multisensory integration (Franzen et 

al., 2020; Mercier & Cappe, 2020), and a form of selective-attention/attention-

dividing (Bien et al., 2012; Marks, 2004) between stimulus features presented 

simultaneously, or within close spatial and/or temporal proximity. To examine 

neural activity specifically related to the behavioural benefits of auditory 

stimulus-driven cross-modal associative congruency, we applied multivariate 

LDA to decode congruent versus incongruent stimulus feature-response key 
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mappings. The application of multivariate LDA to our EEG data revealed two 

temporally distinct neural components representing both early and late 

influences of associative congruency mappings. Furthermore, the two 

components share a broadly consistent scalp topography for localizing 

associative congruency benefits, clustering a positive discriminative 

topography that emerged over left-lateralised centroparietal, and left-

lateralized occipital electrodes, with the consequential spatiotemporal 

trajectory between the components characterised by a gradual emergence 

toward fronto-central regions of the brain from 0-400ms post-stimulus onset.  

 

Crucially, the first component (CEarly:  approximately 100-110ms post-stimulus 

onset) arises near simultaneously with the prominent components for 

encoding auditory stimuli (i.e. SF1 and SF2: ~90-100ms and ~170-180ms post-

stimulus onset respectively), whereby the early latency onset of the 

discrimination of auditory stimulus-driven associative congruency, reflecting 

higher neural evidence between congruent versus incongruent mappings, 

coincides with our results revealing an increase in discrimination of the 

frequency of the presented auditory stimulus feature itself. This implicates an 

overlapping mapping of perceptual priors of auditory stimulus-driven pitch-

size associations that systematically influences early sensory 

encoding/processing. Based on our observations of the behavioural results 

(see section 2.4.1 Behavioural Results), we contend that the benefits of 

associative congruency modulate neural activity due to a form of perceptual 

feedback, or trial-by-trial perceptual recalibration (Boyle, Kayser, & Kayser, 

2017; Kayser & Kayser, 2018; Park & Kayser, 2019). This results in an 

inducing of mappings through repeated exposure (i.e., on a trial-to-trial basis) 

between preferential pitch frequency and object size within the early 

processing of sensory information across multiple modalities during the 

perceptual decision formation process.  

 

Previous research has demonstrated that repeated exposure to 

complementary stimulus features shapes their multisensory composition, thus 

informing implicit preferences to congruent mappings (Habets et al., 2017). 

For example, Kayser & Kayser (2018) used an audiovisual flanker paradigm 

and EEG to investigate current and serial trial-by-trial interactions of 

associative congruency in discriminating visual motion coherence and the 

resultant modulations in underlying neural activity. They found that 

participants elicited higher choice accuracy and faster RTs when an 
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accompanying acoustic stimulus mimicked motion in the same coherent 

direction of a visual random dot display as opposed to opposite mimicked 

motion. Intriguingly, they found clustered Region of Interest (ROI) modulations 

of the effect of current-trial associative congruency over sensory specific 

areas of the occipital lobe at a latency of approximately 300ms, followed by 

clustered ROI modulations of the effect of serial trial-by-trial associative 

congruency over right ventral frontal lobe. Together, their results 

demonstrated that neural representations of preferential audiovisual 

mappings are serially dependent on perceived associative congruency 

formulated from previous experience, whereby neural representations of 

encoded multisensory information in modality specific regions on the brain can 

be hierarchically modulated to benefit perceptual decision formation 

independently from paradigm demands, which consolidate the formulated 

decision itself.  

 

Similarly, Park & Kayser (2019) investigated the neural mechanisms 

underlying multisensory integration and trial-by-trial perceptual recalibration 

effects using MEG. Using an audiovisual ventriloquist paradigm and single-

trial multivariate classification analysis, they found that participants were 

susceptible to the ventriloquist effect (VE) and ventriloquist after-effect (AVE) 

whereby a congruent visual stimulus biased the perceived location of its 

auditory stimulus counterpart, demonstrating the decisional influence of 

associative congruency through audiovisual spatial discrepancy. 

Underpinning these behavioural findings were significant neural correlates 

localised at  approximately 80ms in the cingulum and prenucleus; temporally 

shifting towards inferior/superior parietal areas at  approximately 220ms, and  

approximately 160ms in the left occipital-parietal regions for encoding 

congruent visual information (for auditory stimulus presentations) and auditory 

information (for visual stimulus presentations) respectively. Their MEG 

analysis further elucidated a discrimination of neural activity underlying their 

behavioural responses, with previous congruent auditory and visual stimuli 

influencing overlapping neural activity as early as 80ms in the right parietal 

cortex, as well as frontal and temporal regions. These results led the 

researchers to contend that parietal regions represent relevant neural 

information of associative multisensory congruency, which affects the neural 

encoding of the currently perceived unisensory stimuli, thus elucidating a 

perceptually-relevant encoding role of medial parietal regions that 

consolidates congruent multisensory stimuli to guide adaptive decision-
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making responses. Further research has also demonstrated that multisensory 

interaction enhancements during decision formation can occur at very short 

latencies (Boyle, Kayser, & Kayser, 2017; Cappe et al., 2010; Foxe et al., 

2000; 2002; Foxe & Schroeder, 2005; Molholm et al., 2002; 2006; Sperdin et 

al., 2009). Such findings reaffirm our assumption that associative congruency 

shapes multisensory decision formation through trial-by-trial perceptual 

mechanisms, thus improving either or both the speed and accuracy of choice 

responses. Our results are complementary in this respect, whereby the early 

modulation we observed further suggests such enhancements are not 

exclusively multisensory, since on each trial only a single unisensory stimulus 

was presented. Consequently, we contend that the early onset of our results 

underlying the benefits to decision formation (i.e. reduced RTs for congruent 

stimulus feature-response key mappings) implies that cross-modal 

associations are not exclusively decision-related, but may be perceptual in 

origin.  

 

Alternatively, an existing underlying mapping of the perceptual priors of 

auditory pitch-visual size cross-modal associations may automatically 

influence early sensory encoding. Cross-modal associations reflect a naturally 

occurring mapping between stimulus features presented to multiple sensory 

modalities (Parise, Knorre, & Ernst, 2014; Parise & Spence, 2013). Auditory 

acoustic pitch-visual size associations demonstrate a strong statistical 

correspondence in our external environment, whereby larger objects resonate 

at lower pitch frequencies than smaller objects. Thus, an alternative 

interpretation suggests that the early onset of our results is related to the 

influence of such existing priors shaped in the statistics of our external 

environment (Baier et al., 2006). For example, if top-down processes access 

this existing mapping, and signal to early sensory encoding regions, such 

feedback might embed the existing environmental mapping. This 

interpretation is supported by the observation that our discriminator’s 

performance for congruency exceeded the significance level prior to auditory 

stimulus feature presentation (i.e. Az > 0.05 at 0ms, see Figures 2.3 and 2.4). 

A possible explanation for this is that the discrimination of EEG component 

amplitudes, formulated by the congruency of stimulus feature-response key 

mappings prior to the formation of perceptual decisions, could indicate pre-

mapping anticipation, or expectation, that actively modulates the effects of 

congruency benefitting the faster formation of perceptual decisions, without 

modulating the categorisation of auditory stimulus features, or their sensory 
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signals themselves. Bang & Rahnev (2017) present psychophysical evidence 

to implicate the effects of pre-stimulus anticipation to support this 

interpretation. In their study, participants made forced choices as to whether 

the overall orientation of a series of Gabor patches were horizontally 

orientated clockwise or anti-clockwise. They reported that participants’ 

response bias were significantly affected by post-stimulus cues (presented 

after stimulus presentations), and not pre-stimulus cues (presented before 

stimulus presentations, which offered predictions indicative of whether the 

overall patch orientation was likely to be clockwise or anti-clockwise. They 

further found that neither pre-stimulus or post-stimulus cues affected stimulus 

sensitivity, leading to a conclusion that post-stimulus anticipation altered 

decision criterion mechanisms, but not mechanisms for categorising the 

sensory signal itself. The contention of an influence of existing priors, or pre-

stimulus anticipation, further contributes to the longstanding debate in the field 

concerning the degree of automaticity of cross-modal associations (Chen & 

Spence, 2017; Spence & Deroy, 2013; Getz & Kubovy 2018), reaffirming 

associative congruency benefits involving both perceptual bottom-up and 

modulatory top-down processes if there are contextual cues that can aid early 

perceptual processes in improving perceptual decision formation (Ten Oever 

et al., 2014; Vroomen & Gelder, 2000).  

 

The onset of the second component (CLate: approximately 330-340ms post-

stimulus onset) further suggests that the formulation of cross-modal 

associations and benefits from associative congruency may be decision-

related, albeit not exclusively. Previous perceptual decision formation studies 

have consolidated a neural signature of decision formation, often termed 

Centro-Parietal Positivity (CPP; O’Connell et al., 2018; Polich, 2007; 

Tagliabue et al., 2019; Twomey et al., 2016), or the Late decision-related 

component (Philiastides et al., 2006; 2011; 2014; Philiastides & Sajda, 2006a; 

2006b; 2007), arising approximately 300-500ms post-stimulus across centro-

parietal electrodes, reflecting neural activity for accumulating evidence to 

facilitate a choice. Previous studies by Mercier & Cappe (2020) and 

Schaffhauser, Boubenec, & Mamassian (2021) have further attributed that the 

CPP indexes the accumulation of sensory evidence for multisensory decision-

making and is distinct from the encoding of sensory information earlier during 

the perceptual decision formation process. In our study, the decoded Late 

component highly resembled the spatiotemporal characteristics of this 

indexed neural signature, with a positive discriminative topography emerging 



- 79 - 

across similar centro-parietal regions of the brain. Given we further observed 

higher neural evidence for discriminating associative congruency as late as 

~600ms, we contend that the congruency of cross-modal associations for 

accumulating sensory evidence at a further decisional stage is important to 

consider, supporting studies demonstrating the CPP for both unisensory and 

multisensory decision-making, and thus providing a consistent mechanism for 

benefitting perceptual decision formation. However, we did not observe highly 

predictive increases in drift rate for congruent trials in our neurally-informed 

modelling results. Thus, further research should enquire as to the extent 

cross-modal binding expedites the rate of sensory evidence accumulation 

uptake, and whether it is dependent on alternate factors such as the type of 

cross-modal association under investigation and experimental paradigm 

demands.    

 

In consideration of the possible mechanisms underlying these two EEG 

components, we contend that cross-modal associations and behavioural 

enhancements arising from associative congruency may benefit from being 

consolidated within a predictive coding framework as a mechanism benefitting 

choices for multisensory perceptual decision-making (Shi & Burr, 2015; 

Talsma, 2015). Predictive coding frameworks generally model a process of 

predicting sensory inputs based on the context and representativeness of 

information from our external environment. Strong evidence that applies a 

predictive coding framework stems from studies that implement Bayesian 

interpretations of the effects of existing priors (Huang & Rao, 2011; McGovern 

et al., 2016; Tong et al., 2020), using an probabilistic causal inference for using 

optimising choice formations from multisensory stimuli (Cao et al., 2019; 

Kayser & Shams, 2015). Such Bayesian theories have implicated that cross-

modal associative congruency strengthens stimulus feature binding during 

multisensory integration (Parise & Spence, 2013), demonstrating the 

pronounced effect of associating priors for benefitting consequent decision 

formation (Acerbi et al., 2018; Gau & Noppeney, 2016; Rohe Ehlis, & 

Noppeney., 2019; Rohe & Noppeney, 2015a; 2015b; 2016). Our 

interpretations posit further support for predictive coding implementations, 

whereby repeated exposure to auditory pitch-visual size mappings, 

formulated from a single unisensory stimulus on a single-trial basis, could 

relate to some existing underlying binding (i.e. mapping) of the perceptual 

priors between high/low-pitch tones and small/large-size objects respectively. 

Hence, the early sensory benefits observed from associative congruency may 
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be influenced by newly formed priors of auditory pitch-visual size associations 

(and perhaps from existing naturalistic priors), with top-down processing 

signalling to early sensory regions of the brain providing feedback that 

embeds the environmental prior.  

 

Previous studies have used DDMs to study multisensory perceptual decision-

making (Delis et al., 2018; Franzen et al., 2020; Kayser et al., 2017; Mercier 

& Cappe, 2020). To our knowledge, such studies have not focused purely on 

cross-modal associations and modelled behavioural and neuroimaging data 

from experimental paradigms that present two sensory stimuli simultaneously, 

or within close spatial or temporal proximity. The application of the IAT means 

we can model multisensory decision-making, yielding parameter estimates 

informed by neural measurements linked to the processing of one sensory 

stimulus feature, thus producing neurally compatible outcomes underlying 

benefits purely driven by cross-modal associations. Importantly, our findings 

suggest that key mechanistic insights can be elicited by coupling models of 

perceptual decision formation with neuroimaging data. Our results highlighted 

that the inclusion of the two characterised EEG components enabled the 

disambiguation of the internal processes that yielded two IAT behavioural 

performance results. First, decreased RTs for congruent compared to 

incongruent stimulus feature-response key mappings, and second, decreased 

RTs for incorrect compared to correct congruent trials. Our Late component 

was linked with a decrease in the amount of evidence required to reach a 

decision as a result of congruent associations, thus congruent trials had 

shorter RTs and larger proportions of incorrect responses for short RTs. This 

result is complemented by the observation that incongruent stimulus-

response mappings yielded increased non-decision time estimates modulated 

by the Early component, suggesting longer stimulus encoding times and 

consequently slower responses in incongruent trials.  

  



- 81 - 

Chapter 3 

Characterising Age-Related Impacts in Multisensory 

Perceptual Decision-Making Processes: A Hierarchical Drift 

Diffusion Model Analysis 

3.1 Abstract 

Natural ageing has been demonstrated to diversely impact multisensory 

perceptual decision-making dynamics. Previous perceptual decision-making 

research has outlined that older adults display enhanced benefits from 

perceptually utilising multisensory versus unisensory information within the 

formation of decisions, coupled with SATO-induced deficits towards 

decisional speed and accuracy. Despite hypotheses outlining why older adults 

display preserved multisensory integrative benefits, a mechanistic insight 

reconciling why older adults may exhibit preserved multisensory integrative 

benefits, yet display generalised perceptual deficits, relative to younger adults, 

remains inconclusive. To address this limitation, we sought to investigate age-

related impacts on the behavioural indices of multisensory perceptual 

decision-making. We employed an online variant of a well-established object 

categorisation paradigm (i.e., audiovisual face-versus-car categorisation 

paradigm; Franzen et al., 2020), to assess how complementary audiovisual 

(AV) information benefits perceptual decision formation, compared to visual 

(V) or auditory (A) information alone, between younger adults (Mean ± 

Standard Deviation = 27.95 ± 5.82 years) and older adults (Mean ± Standard 

Deviation = 60.96 ± 10.35 years), recording single-trial RTs and binary 

responses as metrics of decision-making performance. HDDM was fitted to 

participants’ RTs and binary responses in order to probe age-related impacts 

on the latent underlying processes of multisensory decision formation. 

Behavioural results outlined that whereas older adults were generally slower 

and less accurate relative to younger adults across all trial types, they 

exhibited no significant difference in RTs between AV versus V trial types, 

implicating preserved benefits of multisensory integration towards perceptual 

decision formation. HDDM demonstrated parsimonious fittings for 

characterising these behavioural discrepancies between YAs and OAs. 

Notably we found slower rates of sensory evidence accumulation (i.e., ↓ drift 

rates) for OAs across all sensory trial types, coupled with (1) higher rates of 

sensory evidence accumulation (i.e., ↑ drift rates) for OAs between AV versus 

V trial types irrespective of stimulus difficulty, coupled with (2) increased 

response caution (i.e., ↑ decision boundaries) between AV versus V trial 
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types, and (3) decreased non-decisional processing duration (i.e., ↓ non-

decision times) between AV versus V trial types for stimuli of increased 

difficulty respectively. Together, our findings provide novel insights into 

reconciling age-related impacts on multisensory decision-making using 

HDDM. We implicate that OAs display an increased reliance on multisensory 

integration to preserve benefits towards decisional speed, therefore 

compensating for a generalised slowing in consolidating modality-specific 

unisensory stimuli, yet display increased response caution when unisensory 

stimuli are more difficult to reconcile. Overall, our findings demonstrate how 

computational modelling can reconcile contrasting hypotheses of age-related 

changes in processes underlying multisensory perceptual decision-making 

behaviour.  

 

3.2 Introduction 

As we naturally age, we observe significant lifelong alterations towards our 

sensory systems, as well as a diverse variety of psychological functions, 

across the adult lifespan (Cullum et al., 2000; Deary et al., 2009; Hedden & 

Gabrieli, 2004; Paraskevoudi, Balcı, & Vatakis, 2018; Van Hooren et al., 2007; 

Zaninotto et al., 2018). Generally, such alterations are characterised by 

contrasting trajectories of gradual decline and stability underpinning 

sensation, perception, cognition, and/or movement control (see Alais et al., 

2010; Dully, McGovern, & O’Connell, 2018, for detailed reviews). Salient age-

related declines in vision, for example, include deficits in visual acuity (Elliott 

1987; Elliott, Whitaker, & MacVeigh, 1990; Ward et al., 2018), perception of 

colour (Paramei, 2012), depth (Normal et al., 2009; 2013), and motion 

(Bennett, Sekuler, & Sekular, 2007; Billino & Pilz, 2019). Salient age-related 

declines in hearing, for example, include deficits in pure-tone hearing 

thresholds (Brant & Fozard, 1990; Lee et al., 2005), frequency and/or intensity 

discrimination (Freigang et al., 2011), and perception of speed (Taitelbaum-

Sweard & Fostick, 2016). Such age-related decrements impact performance 

levels in experimental paradigms investigating, for example, information 

processing speed (Salthouse, 1996; 2009), episodic and/or working memory 

(De Beni & Palladino, 2004), task switching (Wasylyshyn, Verhaeghen, & 

Sliwinski, 2011), executive function (Rhodes, 2004; Veríssimo et al., 2022), 

and motor response latency (Birren & Fisher, 1995; Falkenstein et al., 2006). 

Underpinning such performance outcomes are widespread alterations in brain 

structure (Pareek, Raliabandi, & Roy, 2018) and brain activity (Rieck, 
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Baracchini, & Grady, 2021), suggesting that the interplay between early 

sensory and later cognitive processes is affected (Diaconsecu et al., 2013; 

Dully et al., 2018). Moreover, ageing can have a profound negative impact on 

everyday living, as it has been shown that ageing compromises of 

multifaceted alterations to physiological, psychological, and social health and 

wellbeing (Reetz et al., 2012). Therefore, it is an important field of research to 

investigate how ageing impacts everyday functioning.    

 

In order to understand why older adults exhibit such alterations to everyday 

functioning, researchers have sought to pinpoint core processes, affected by 

ageing, that traverse across multiple domains of psychological functioning 

(Dully, McGovern, & O’Connell, 2018, Park & Reuter-Lorenz, 2009; Stern, 

2002). One fundamental process concerns perceptual decision-making, since 

most (if not all) behavioural paradigms require a translation of sensory, or 

sensory-motor, information into appropriate actions. However, unravelling the 

latent mechanisms impacted by ageing within perceptual decision-making 

necessitates exploring how multisensory integration is affected by the ageing 

process, given daily activities require processing information presented to 

multiple sensory modalities for perceptual decision formation (see Jones & 

Noppeney, 2021; Mozolic et al., 2012, for reviews). Consequently, unravelling 

the mechanisms by which multisensory perceptual decision-making varies not 

only from individual to individual, but with ageing, benefits our understanding 

of how behavioural attributes of optimal decision-making rely on a 

consolidation of information across multiple sensory modalities, as well as 

prior effects of repeated exposure, known to drive adaptive trial-by-trial 

recalibrations of multisensory perceptual decision-making, across the adult 

lifespan (Park & Kayser, 2020). Furthermore, in consideration of the profound 

negative impacts that ageing can have in everyday living, it is important to 

consider the core processes of multisensory perceptual decision-making; 

notably multisensory integration, that may be impaired. For example, impaired 

multisensory integration has been linked with predictions of higher incidences 

of falling (Zhang et al., 2020; Mahoney, Cotton, & Verghese, 2018), of 

decreased mobility (Bates & Wolbers, 2014), and of increased risk of pre-

dementia stages such as Mild Cognitive Impairment (MCI; Mahoney & 

Verghese, 2020) in the elderly population.  

 

Previous research provided mixed results on the differences in general 

multisensory processing capabilities between younger and older adults. Stine, 
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Wingfield, & Myers (1990), for example, found that younger adults, but not 

older adults, demonstrated improvements in episodic memory (i.e., increased 

choice accuracy) for audiovisual presentations of television news compared 

to auditory presentations alone. Similarly, Dobreva, O’Neill, & Paige (2012) 

investigated spatial memory through ocular fixations of younger and older 

adults in a paradigm instructing them to localise auditory, visual (both 

unimodal) and audiovisual (bimodal) targets using a manual laser pointer. 

They reported that older adults were influenced more strongly by irrelevant 

distractors in all unimodal and bimodal target conditions, as they 

demonstrated greatly impaired localisation accuracy and precision in auditory 

(through vertical overshoots), visual (through horizontal overshoots) and 

audiovisual (through both horizontal and vertical overshoots) target 

conditions, implicating modality-dependent deterioration in the multisensory 

processing of audiovisual spatial objects and a greater susceptibility to biases 

in processing complementary sensory information during multisensory 

integration within specific modalities. Finally, Cienkowski & Carney (2002) and 

Hernández et al. (2019) both reported age-related increases in susceptibility 

towards McGurk and Sound-Induced Flash illusions respectively, whereby 

older adults were more likely to report fusions of auditory and visual 

information when compared to young adults, thus implicating alterations to 

reliability-weighting of multimodal information for perceptual decision 

formation. The general conclusion across these results indicates that 

multisensory processing is affected by ageing, hence resulting in increased 

variability in perceptual decision formation, characterised by deficits to choice 

behaviours. Despite this indication, however, it is difficult to interpret how 

ageing alters multisensory processing capabilities within perceptual decision 

formation; specifically, how it alters common underlying cognitive 

mechanisms, since these studies used different complex paradigms and 

analysis methodologies (see De Dieuleveult et al., 2017; Mozolic et al., 2012, 

for reviews).  

 

The application of speeded paradigms, or response time enhancement 

paradigms (e.g., 2AFC paradigms), can contribute to narrowing the gap in 

understanding age-related changes in multisensory perceptual decision-

making. Speeded paradigms assess the degree to which multisensory 

stimulus presentations, that is, the near-synchronous presentation of two or 

more unisensory stimuli benefits decision formation, often through quantifying 

differences in the decisional speed (i.e., RTs) and/or accuracy. Recent 
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research using speeded target detection paradigms have demonstrated that, 

contrary to findings from non-speeded paradigms, older adults show not only 

preserved multisensory response facilitation, but enhanced multisensory 

response facilitation in addition, whereby older adults display, and hence 

benefit more from stimuli presented near-simultaneously across two or more 

modalities, suggesting multisensory integration is not necessarily impaired 

(Jones & Noppeney, 2021; Mahoney et al., 2011; Mozolic et al., 2012). 

Laurienti et al. (2006), for example, investigated age-related differences in 

speeded classification of colours, whereby participants had to categorise the 

colour of visual (coloured discs on a computer screen), auditory (soundbites 

of colour word verbalizations), and audiovisual stimuli in a 2AFC paradigm as 

either red or blue. They reported that whilst older adults displayed a 

generalised slowing of RTs across all conditions, they demonstrated 

significantly larger differences in RTs between multisensory and unisensory 

conditions, compared to younger adults. This demonstrates an age-related 

multisensory enhancement towards perceptual decision formation.  Moreover, 

the observed enhancement (i.e., decreased RTs) for older adults matched and 

sometimes individually exceeded the faster of the two unisensory conditions 

for younger adults. Findings from studies by Peiffer et al. (2007) and Diederich 

et al. (2008) reaffirmed the findings from Laurienti et al. (2006), whereby older 

adults exhibited greater supra-threshold choice RTs to multisensory stimuli 

than younger adults, despite a generalised slowing of RTs during the 

facilitation of decisions.  

 

Together, these findings highlighted that, despite observable deficits to 

domains of cognitive function (e.g., increased RTs, hence slower decision 

formation), multisensory integration is not fully impaired. Rather, it can remain 

preserved, and sometimes enhanced to some extent, given the observations 

of greater multisensory benefits towards perceptual decision-making 

behaviour (Bucur et al., 2005; Diaconescu et al., 2013; Gondan & Minakata, 

2016). However, there remains a degree of uncertainty about whether older 

adults benefit more from multisensory integration within perceptual decision 

formation. The aforementioned study from Diederich et al. (2008), for 

example, employed a saccadic RT paradigm and a Time-Window-of-

Integration (TWIN) model to assess RT patterns cross-modally. Their findings 

inferred a slowing of peripheral sensory processing in elderly participants. This 

was further coupled with wider temporal binding windows (TBWs) for 

integrating multisensory information when compared to younger participants. 
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This has been empirically validated in later studies (Basharat et al., 2019; 

Bedard & Barnett-Cowan, 2016), suggesting that multisensory integration was 

not enhanced, as TWIN modelling did not demonstrate the wider TBWs fully 

compensating for age-induced peripheral sensory slowing.  

 

Several possible hypotheses have been posited to explain the basis of an age-

related preservation in multisensory perceptual decision-making response 

facilitation (Dieuleveult et al., 2017; Freiher et al., 2013). For example, the 

general slowing hypothesis (Birren & Fisher, 1995; Cerella, 1985; 1990; De 

Dieuleveult et al., 2017 Mozolic et al., 2012; Salthouse, 1996; 2000) outlines 

that older adults exhibit slower cognitive and sensorimotor processing for 

unisensory signals. Therefore, the formation of unisensory perceptual 

decisions increases in cognitive demand, as less coherent (i.e., “noisy”) 

unisensory signals become more difficult to consolidate, impairing perceptual 

decision formation (DeLoss et al., 2013; Eusop, Sebban, & Piette, 2001; 

Guerreiro et al., 2014; 2015). The processing of multisensory signals, 

however, is less difficult to consolidate, because the unified percepts provide 

redundant information about the same multimodal object (i.e., same stimulus 

properties presented to different sensory modalities). This proposes that 

enhanced multisensory gains in perceptual decision-making may be an 

artefact of increased proportional differences within the speed of sensory 

information consolidation between younger and older adults. In particular, it is 

the differences in cognitive demand for multisensory and unisensory 

information processing. Despite this explanation, general sensorimotor and 

cognitive slowing during ageing has not been fully attributed to enhanced 

multisensory integration, as it cannot fully explain the acceleration of RTs or 

increased choice accuracy. For example, Laurienti et al. (2006) utilised a post 

hoc adjustment for comparing multisensory and unisensory RTs in their two-

choice audiovisual discrimination experiment. This involved log-transforming 

RTs to equate for age-related differences in the speed of decision 

classification, even when unisensory trials were the same in stimulus 

categorisation difficulty for younger and older adults. Their results suggested 

that older adults still exhibited enhancements in processing multisensory 

information for perceptual decision-making than younger adults after log-

transforming RTs, even when stimulus categorising difficulty was equivalent. 

However, comparisons of RTs on unisensory trials in the study by Peiffer et 

al. (2007) were found to be the same for younger and older adults when their 

analysis fixed the effect of stimulus categorisation difficulty. Thus, it can be 
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argued that the general slowing hypothesis cannot fully capture the benefits 

of multisensory integration remaining intact, and to an extent enhanced, in 

older adults compared to younger adults (Murray et al., 2018; Yordanova et 

al., 2004). 

 

An additional hypothesis concerns the governing principle of inverse 

effectiveness for multisensory integration (Holmes, 2009; Meredith & Stein, 

1986a; 1986b; Stein & Stafford, 2008). As previously outlined in Chapter 1 

(see subsection 1.2.1 Multisensory Integration), the principle of inverse 

effectiveness outlines that the magnitude of multisensory enhancements 

increases when the effectiveness of processing individual sensory stimuli 

decreases. Therefore, less salient unisensory stimuli are more likely to be 

integrated, and more salient unisensory stimuli less likely to be integrated, in 

order to benefit perceptual decision formation. In consideration of research 

demonstrating age-related functional deficits in sensory systems, 

multisensory enhancements towards perceptual decision formation are likely 

to remain preserved, or subsequently increased, in older adults due to 

reduced acuity in individual senses. This would result in increased 

multisensory benefits towards choice selection as the stimulus coherence of 

unisensory stimuli remains naturally degraded (Laurienti et al., 2006; Peiffer 

et al., 2007). Behavioural findings from Mahoney et al. (2011) empirically 

validate this notion. They presented younger (mean age = 19.17 years) and 

older (mean age = 76.44 years) participants with unisensory and paired 

auditory, visual, and somatosensory stimuli, instructing participants to depress 

a foot pedal as quickly and as accurately as possible in a simple detection 

paradigm. They observed faster RTs in all multisensory conditions across both 

age groups. Interestingly, however, they found that older adults exhibited a 

greater RT gain when responding to visual-somatosensory stimuli compared 

to younger adults. This implicates a multisensory response facilitative benefit 

when integrating visual and somatosensory information, thus benefitting the 

formation of perceptual decisions. On the contrary, younger adults exhibited 

a greater RT gain for auditory-visual and auditory-somatosensory stimuli 

compared to older adults. As such, it can be argued that the principle of 

inverse effectiveness is either not generalisable for multisensory integration 

across all modalities, or not the only process to ubiquitously determine 

multisensory integrative enhancements towards perceptual decision 

formation.  
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Contrastingly, further studies have demonstrated that in scenarios with 

degrading stimulus effectiveness, either due to natural deficits in sensory 

systems or reduced coherence in super-threshold unisensory stimuli, the 

principle of inverse effectiveness is not always evident. For example, Tye-

Murray et al. (2007) used closed-set Build-A-Sentence (BAS) and City 

University of New York (CUNY) Sentence tests to investigate age-related 

effects on audiovisual speech perception. The assessment of scores between 

unisensory (auditory or visual) and multisensory (audiovisual) conditions did 

not implicate enhanced speech recognition in older adults, nor multisensory 

benefits under poor signal clarity (through degrading image and SNR 

contrasts for visual and auditory stimuli respectively). However, stimulus 

coherence (i.e., “noise”) was manipulated in the presence of continuous 

background auditory non-speech. This makes it difficult to discern if this had 

a confounding effect on older adult’s speech recognition capabilities. 

Furthermore, it implicates further existing hypotheses for why we see 

preserved multisensory integration in older adults. Notably, deficits in top-

down attentional control (Mozolic et al., 2008a; 2008b), and increased noise 

at “baseline” levels (de Dieuleveult et al., 2017; Mozolic et al., 2012) when 

processing unisensory stimuli in perceptual decision formation. Age-related 

impacts on selective attention are important to consider, since this is a top-

down mechanism allowing for a sustained focus on important properties of 

unisensory signals presented near-simultaneously (Talmsa et al., 2010). 

Importantly, it has been extensively demonstrated that older adults display 

deficits in selective attention, whereby they are prone to distractions of 

irrelevant stimuli presented within attended sensory modalities (Naveh-

Benjamin et al., 2005) and across unattended sensory modalities Dobreva et 

al., 2012; Poliakoff et al., 2006). Younger adults, however, do not display 

deficits in selective attention, with comparable behavioural and neuroimaging 

findings demonstrating dividing attention across multiple specific modalities 

modulates the likelihood of multisensory integration (Rienäcker et al., 2020; 

Yang et al., 2020). However, previous studies contrast with these findings, 

implicating that older adults can, in fact, successfully engage selective 

attention within and across sensory modalities to preserve multisensory 

integration, therefore retaining enhanced benefits to perceptual decision 

formation. (Hugenschmidt et al., 2009a; Jones et al., 2019; Mishra et al., 2014) 

Because of this, it is crucial to consider the interplay between top-down 

attentional and bottom-up perceptual mechanisms, notably, the hypothesis 

that older adults display increases in baseline sensory noise within unisensory 

modalities. Thus, age-related increases in distractibility arise not from deficits 
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to top-down selective attention or attention dividing capabilities, but the 

adequate means of filtering irrelevant unisensory stimuli (Hugenschmidt et al., 

2009b).  

 

The outlined hypotheses: the general slowing hypothesis, increased inverse 

effectiveness, deficits in attentional control, and increased noise in baseline 

levels of unisensory processing, offer explanations theorising how older adults 

display preserved, and sometimes enhanced, multisensory integration within 

perceptual decision formation. Whilst their explanations are plausible, they are 

not fully generalisable in solely explaining the variability in age-related effects 

on multisensory perceptual decision-making behaviour. Furthermore, it is 

important to highlight that task-dependent manipulations result in age-related 

increases in response latencies during multisensory decision-making 

performance. Thus, the core cognitive mechanisms, and their key 

computations, underpinning age-related impacts on multisensory perceptual 

decision-making remain subject to debate.  

 

To overcome this, computational modelling can be used to parse the 

psychological processes underpinning age-related impacts on the behavioural 

indices of (multisensory) perceptual decision-making (see Dully et al., 2018, 

for review). As previously outlined in Chapter 1 (see section 1.1. Unisensory 

Perceptual Decision-Making), a highly influential set of computational models 

for perceptual decision formation concerns sequential sampling models 

(O’Connell et al., 2018), in particular, the DDM (Forstmann, Ratcliff, & 

Wagenmakers, 2016; Ratcliff et al., 2016; Ratcliff & McKoon, 2008; Ratcliff & 

Smith, 2004; Ratcliff, Smith, & McKoon, 2015; Wiecki et al., 2013). The DDM 

decomposes behavioural data into latent cognitive parameters that capture 

the perceptual decision formation process, such as the standard of sensory 

evidence accumulated in the decision process (i.e., drift rate), the quantity of 

evidence required to trigger a decision (i.e., decision boundary), and the 

duration of processes not attributable to sensory evidence accumulation such 

as sensory encoding and motor response latency (i.e., non-decision time). By 

decomposing a behavioural dataset, i.e., RTs and choice accuracy, into DDM 

parameters that capture response latencies, age-related processes that drive 

changes in choice behaviour can be inferred.  
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Notably, researchers have highlighted three consistent trends that have 

emerged from DDM applications to perceptual decision-making studies 

investigating ageing (O’Govern et al., 2018; Dully et al., 2018). First, an age-

dependent increase in decision boundaries, thought to be indicative of 

increases in response caution, and an adoption of more cautious decision 

policies (Ratcliff et al., 2001; 2006a; McKoon & Ratcliff, 2013; Scheib, Stoll, & 

Randerath, 2023; Servant & Evans, 2020; Starns & Ratcliff, 2010; Thapar et 

al., 2003). Second, an age-dependent increase in the duration of non-

decisional processes (non-decision time), thought to be indicative of delays in 

sensory encoding and/or motor response production latency, due to age-

related degradations in sensorimotor processes (Ratcliff, et al., 2004a; 2004b; 

2006b; von Krause et al., 2020). Third, a highly task-dependent impact of 

individual-related ageing effects on the average rate of sensory evidence 

accumulation (drift rate; Ratcliff, Thapar, & McKoon, 2006; Theisen et al., 

2021).  

 

Research applying computational modelling, particularly sequential sampling 

models, to probe age-related differences in perceptual decision-making 

behaviour has proven invaluable in gaining a mechanistic insight into the 

psychologically meaningful latent parameters affected. However, a major 

limitation concerns that their application has been limited to modelling 

unisensory perceptual decision-making, and not multisensory perceptual 

decision-making. To our knowledge, no studies have directly addressed 

whether age-related differences in multisensory perceptual decision-making 

using similar approaches. Thus, the extent to which model parameter 

differences accurately reflect modulations to the underlying cognitive 

computations in multisensory perceptual decision-making remains unclear. 

Thus, it remains relatively unprobed a unified view of the age-related 

processes driving changes in the indices of multisensory perceptual decision-

making (i.e., RTs and choice accuracy), and in particular, age-related changes 

in the processes of multisensory integration within perceptual decision 

formation.  

 

In the present study, we coupled single-trial measurements of multisensory 

perceptual decision-making behaviour, i.e., RTs and choice accuracy, 

recorded from an internet-based (i.e., online) variant of an audiovisual object 

categorisation paradigm (Franzen et al., 2020) with Hierarchical Drift Diffusion 

Modelling (Wiecki et al., 2013), in order to (a) assess the effects of natural 
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ageing on the behavioural indices of multisensory perceptual decision-

making, and (b) to dissect the constituent processes underlying identified age-

related modulations of multisensory perceptual decision-making, thus gaining 

a mechanistic insight into internal cognitive mechanisms that are either 

degraded or preserved in older adults. By utilizing this experimental paradigm, 

we could examine the extent to which natural ageing influences the 

consolidation of complementary unisensory information for perceptual 

decision formation in a multisensory context. Therefore, we could observe 

whether the consolidation of congruent audiovisual information improves the 

ability to formulate perceptual decisions when compared to auditory or visual 

information alone.  

 

3.3 Materials and Methodology 

3.3.1 Participants 

Participants were recruited using the Gorilla Experiment Builder research 

platform (www.gorilla.sc; Anwyl-Irvine et al., 2020; 2021). An a priori power 

analysis was conducted using G*Power version 3.1.9.7 (Faul et al., 2007; 

2009; Mayr et al., 2007) to determine the minimum sample size required to 

test the study hypotheses. Results indicated that for a fixed linear multiple 

regression model (with R2 deviation from zero) with three predictors, a 

minimum sample size of 176 participants was required to achieve 95% power 

for detecting an effect size of 0.1, at a significance criterion of α = 0.05.  

 

Therefore, 212 participants (male = 105, female = 107; mean age = 43.52, 

standard deviation = 18.46, age range = 18.08 – 86.83) were selected after 

completing the full experiment between December 2021 and June 2022, 

receiving a £10 Amazon Voucher as payment. All participants provided 

informed consent prior to participation, self-reported normal hearing, 

normal/corrected-to-normal vision, and no history of neurodevelopmental 

conditions that may affect sensory processing, cognitive function, or 

movement capabilities. In addition, this sample was selected after being 

screened to ensure they demonstrated an honest commitment to completing 

the full experiment (see sections 3.3.3 Experimental Paradigm and 3.3.4 

Procedure and Statistical Analysis of Behavioural Data respectively). This 

study was approved by the Research Ethics Committees of the College of 

Business, Law and Social Sciences at Nottingham Trent University (BLSS 
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REC 2021/45) and the Faculty of Biological Sciences at the University of 

Leeds (BIOSCI 19-021). It was conducted in accordance with the Declaration 

of Helsinki (World Medical Association, 2013).  

 

3.3.2 Stimuli 

We used a set of 36 grayscale images – 18 images of faces and 18 images 

of cars (image size: 512 x 512 pixels; bit depth: 8 bits per pixel) – adapted 

from previous experiments (Diaz et al., 2017; Franzen et al., 2020; Philiastides 

& Sajda, 2006a; 2006b; 2007; Philiastides, Ratcliff, & Sajda, 2006). The 

original face images were selected from the Face Database of the Max Plank 

Institute of Biological Cybernetics (Troje & Bülthoff, 1996) and the car images 

were sourced from the Internet.  All images were equated for spatial contrast, 

frequency, luminance, and the numbers of frontal and size views (maximum 

of ±45°), with initial backgrounds removed and replaced with uniform gray 

backgrounds. They all had identical magnitude spectra (average magnitude 

spectrum of all images in the database), with their corresponding phase 

spectra manipulated using the weighted mean phase technique (Blanz & 

Vetter, 1999; Dakin et al., 2002). This alters the phase coherence of the 

images and characterises the stimulus coherence of visual stimuli (i.e. the 

amount of visual evidence available). Two levels of stimulus coherence were 

used for this study (37.5% and 32.5%, high and low levels of stimulus 

coherence respectively), since previous findings have found that these are 

known to yield performance spanning the psychophysical threshold 

(Philiastides & Sajda, 2006a; 2006b, Philiastides, Ratcliff, & Sajda, 2006). All 

images were displayed on a white background (RGB [255 255 255]), using 

the PsychoPy Software (version 1.82.01; Peirce et al., 2019), for a consistent 

duration of 300ms.  

 

We further used a set of 36 sounds – 18 sounds of human speech and 18 

car/street-related sounds – adapted from Franzen et al. (2020). These sounds 

were sourced from the Internet. No copyright restrictions were in place and 

modification of the sound files was permitted. These were sampled at a rate 

of 22.05 kHz and stored as .wav files. A 10ms cosine on/off ramp was added 

using MATLAB (Version 2015b, The Mathworks, 2015, Natick, 

Massachusetts) to reduce the effects of sudden sound onsets, with all sounds 

normalised by their Standard Deviation (SD). Subsequently, the amplitude of 

these normalised sounds was reduced by 80%, therefore lowering their 
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intensity. Sounds were embedded in Gaussian white noise, and the relative 

amplitude of the sounds and noise was manipulated to create two different 

levels of relative signal-to-noise ratio, corresponding to two levels of stimulus 

coherence of auditory stimuli (0% and 25%, high and low levels of stimulus 

coherence respectively). The resulting noisy speech and car-related sounds 

were presented binaurally for a consistent duration of 300ms.  

 

3.3.3 Experimental Paradigm and Procedure 

We employed a modified variant of the audiovisual face-vs-car categorisation 

paradigm adapted from Franzen et al. (2020). This is a 2AFC paradigm that 

requires participants to categorise, on a single-trial basis, whether a face or a 

car is embedded in a presented stimulus. The presented stimuli consisted of 

the following: (a) images of faces and cars (visual stimuli: V), (b) sounds of 

human speech or car/street-related sounds (auditory stimuli: A), or (c) 

simultaneously presented and congruent (i.e., matching) images and sounds 

of faces/human speech and cars/car or street-related sounds (audiovisual 

stimuli: AV). All stimuli were presented briefly (i.e., 300ms) and in a 

pseudorandomised sequence. Two levels of stimulus phase coherence were 

used to vary the amount of sensory evidence in presented images and sounds 

(i.e., noise; High Coherence: HC; Low Coherence: LC; see 3.3.2 Stimuli 

section), therefore manipulating the difficulty of stimulus categorisation. 

Participants were instructed to indicate their categorised decision via a 

standard keyboard button press as quickly and accurately as possible, with 

RTs and choice accuracy collected as single-trial dependent variable 

measurements quantifying behavioural performance (and perceptual decision 

formation).  

 

The experimental paradigm was prepared using the Gorilla Experiment 

Builder research platform (www.gorilla.sc; Anwyl-Irvine et al., 2020; 2021), 

and available to complete through an online URL. It could only be completed 

on a standard desktop computer or portable laptop. Prior to completing the 

experimental paradigm, participants were presented with an ethical consent 

form, study information, and instructions for preparation prior to completing 

the paradigm. The instructions first specified that participants should position 

themselves in a quiet environment, and to use headphones, or a sound 

system set at an appropriate volume, in order to adequately hear auditory 

stimuli. Then, they explicitly specified the instructions of the paradigm itself, 
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whereby they would be shown a series of quick and distorted stimuli consisting 

of images only (V trial type), sounds only (A trial type), and images and sounds 

together of faces/human speech or cars/street-related noises (AV trial type), 

and asked to categorise the presented stimulus as either a face or a car, using 

the j and k standard keyboard buttons, as quickly and as accurately as 

possible, with further instructions to position their left index and middle fingers 

over the j and k keys respectively. Notably, they were informed that 

audiovisual stimuli would always be matching (i.e., congruent) and that 

images and sounds would neither be mismatching, and instructed to refrain 

from categorising images and sounds individually in these trials. They were 

further informed that if they were unsure in their decision to guess to the best 

of their capabilities, since they had a maximum time limit to indicate a 

response, and that they would receive visual feedback following each 

response.  

 

Figure 3.1 illustrates the procedure on a single-trial basis. Each trial started 

with a black fixation cross (RGB: [0 0 0]) presented centrally on-screen for 

1000ms. Then, one of three stimuli (i.e., images only, sounds only, 

simultaneously presented images and sounds) were presented for 300ms. 

Auditory stimuli were accompanied by an image of a speakerphone on screen 

to immediately indicate to the participant that the presented stimulus is a 

sound. Participants were then instructed to categorise, as quickly and as 

accurately as possible, the presented stimuli using the j and k response keys 

for face and car stimuli respectively. The response deadline was set at 

3000ms. Feedback was presented centrally for 1000ms for two possible 

outcomes: (a) a tick in green for correct responses (RGB: [3 129 3]), or (b) a 

cross in red for incorrect responses (RGB: [129 3 3]). In total, we presented 

216 trials (divided equally between the two response categories, (i.e., 108 face 

trials; 108 car trials), and the two levels of stimulus coherence, (i.e., 108 HC 

trials; 108 LC trials), presented in three blocks of 72 trials each and divided 

equally between the stimuli (i.e., 24 V trials; 24 A trials; 24 AV trials), totalling 

72 trials for each stimuli respectively, with a 60 second rest period between 

blocks. The entire experiment lasted approximately 20-25 minutes.  
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Figure 3.1 Experimental Paradigm. a, Schematic representation of the 
experimental paradigm on a single-trial basis. Participants were instructed to 
categorise noisy representations of faces and cars. First, a fixation cross was 
presented centrally on-screen for 1000ms. Then, a brief stimulus, which was 
either an image (V), a sound (A), or a simultaneously presented image and 
sound (AV), was presented for 300ms, and followed by a delay period of a 
maximum of 3000ms during which participants were instructed to indicate their 
response with a keyboard button press (j or k keyboard button presses for 
face/car categorisations respectively). Following their response, feedback 
was then presented for 1000ms (a green tick or a red cross, for a correct or 
incorrect response, respectively), which preceded an inter-stimulus interval 
(ISI) of 500ms (illustrated by the ellipsis). b, Sample face (top) and car 
(bottom) images at the two levels of stimulus phase coherence used in the 
experimental paradigm (Low Coherence: 32.5%; High Coherence: 37.5%). 

 

3.3.4 Statistical Analysis of Behavioural Data 

For each participant, RTs (calculated in milliseconds) and choice accuracy 

(calculated as a binary variable of correct and incorrect responses) were 

collected as single-trial dependent variable measurements quantifying 

behavioural performance for three categorical independent variables: (1) 

sensory trial type (three levels: V | A | AV), (2) stimulus coherence (two levels: 

HC | LC), and (3) age range (Younger Adults, YA: aged 18-40 | Older Adults: 

aged 40+). The categorical split of age range was calculated to set a near-

even split of participants for further statistical analyses (YA: N = 112; male = 

53, female = 59; mean age = 27.95, standard deviation = 5.82; OA: N = 100; 

male = 46, female = 54; mean age = 60.96, standard deviation = 10.35), and 

is justified by previous multisensory research that used similar age range splits 

(Lee et al., 2018; Stevenson et al., 2015).  
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All participants were screened to ensure they demonstrated an honest 

commitment towards completing the full experiment to the best of their 

capabilities. Specifically, we ensured that participants did not attempt to 

complete the experiment more than once, that they had not procured timed-

out responses (i.e., a maximum RT of 3000ms) in all or most trials, and that 

they had proportions of correct responses greater than 50% across all sensory 

trial types (demonstrating behavioural performance above a baseline chance 

level, i.e., guesses).  Trials with RTs more or less than the median RT +/- 2.5 

Median Absolute Deviations (MADs) were then excluded from further 

analyses, with these RTs attributed to outliers corresponding to “fast guesses” 

or attentional lapses during testing (Whelan, 2008). This pre-processing 

criterion was selected as previous research has demonstrated that MADs are 

a more robust measurement of central dispersion than standard deviation 

(Leys et al., 2013). Overall, 4027 trials were excluded from an initial 45792 

trials, leaving 41765 trials for further analyses. Next, an Anderson-Darling test 

was used to assess if RTs were normally distributed (Anderson & Darling, 

1954; Nelson, 1998; Stephens, 1974). As previously mentioned in Chapter 2 

(see section 2.3.5 Statistical Analysis of Behavioural Data), this was used 

because it is commonly observed in research that RT distributions tend to be 

not normally distributed, with histograms prominently illustrating a positive 

right skew (Marmolejo-Ramos et al., 2015; Whelan, 2008). As expected, the 

assumption of normality was found to be violated for RTs over the full pre-

processed behavioural dataset (A2 = 347.71, p < 0.001).  

 

Therefore, our main statistical analysis therefore quantified participants’ 

behavioural performance using Generalised Linear Mixed-Effects Models 

(GLMMs), which were applied using the lme4 package in RStudio (Bates et 

al., 2014; R Core Team, 2022).. GLMMs are an extension of linear mixed-

effects models (LMMs) and are considered preferable to use over 

conventional repeated-measures (M)ANOVA statistical analyses, due to their 

principled methodologies of modelling non-spherical error variance and 

heteroscedasticity (Bono, Alarcón, & Blanca, 2021; Jaeger, 2008). In 

particular, random effects structures can be incorporated into the design of a 

GLMM to account for inter-individual and inter-predictor variability around 

population-level average effects, therefore increasing statistical power. In 

addition, GLMMs permit for the mixing of categorical and continuous variables 

in the statistical analysis of outcome variables, which themselves may be 

categorical or continuous, and can flexibly accommodate different types of 
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outcome distributions through the application of a variety of link functions 

(Aarts et al., 2014; Baayern et al., 2008).  

 

Our GLMM analyses included main effects, two-way interactions, and three 

way-interactions of the three predictor variables: sensory trial type (three 

levels: Visual, V; Auditory, A; Audiovisual, AV), stimulus coherence (two 

levels: High Coherence, HC; Low Coherence, LC), and age range (two levels: 

Older Adults, OA; Younger Adults; YA), along with by-participant random 

slopes and random intercepts for sensory modality and age range main 

effects. Random correlations were excluded for all GLMMs. This random 

effects structure was justified by our experimental design and adopted to 

ensure parsimonious fits of our GLMMs to the behavioural dataset. The 

predictor sensory trial type (i.e., three levels) was entered using mean-centred 

backwards difference coding, whereas the predictors stimulus coherence and 

age range were entered in mean-centred form (i.e., deviation coding). By 

using mean-centred contrast coding schemes, small imbalances in trial 

numbers between each predictor’s levels (and their interactions) can be 

accounted for. All GLMMs were fit using a bobyqa optimizer to ensure model 

convergence. Post Hoc likelihood-ratio (χ2) model comparisons were used to 

quantify the predictive power and significance of all main effects and 

interactions in our GLMM analyses. These Post Hoc likelihood-ratio (χ2) model 

comparisons compared full models (i.e., models including main effects, their 

two-way interactions, and random effects) to reduced models that excluded 

the main predictor or two-way interaction in question.  

 

3.3.5 HDDM – Description  

We fit participants’ behavioural performance (i.e., RTs and choice accuracy) 

with Hierarchical Drift Diffusion Models (HDDMs; Wiecki et al., 2013). Similar 

to traditional Drift Diffusion Models (DDMs; Ratcliff et al., 2015; 2016; 

Forstmann et al., 2016; Ratcliff & McKoon, 2008; Ratcliff, 1978), HDDMs 

assume a continuous and stochastic process of sensory evidence 

accumulation over time, towards one of two decision boundaries, 

corresponding to two choice alternatives (e.g., correct/incorrect responses; j/k 

response keys). For each decisional process, the HDDM returns estimates of 

four parameters that define the scopes of the internal components of 

perceptual decision formation: (1) the rate of evidence accumulation (drift 

rate), (2) the distance between the two decisional boundaries that quantifies 
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the amount of evidence to facilitate one particular choice alternative (decision 

boundary), (3) the duration of non-decisional processes, that is, the time taken 

for processes that are not part of the evidence accumulation process, such as 

stimulus encoding and motor-response production latency (non-decision 

time), and (4) possible a priori bias towards one of the two choice alternatives 

(starting point).  

 

As previously outlined in Chapter 2 (see sections 2.3.8 HDDM - Description 

and 2.3.9 HDDM – Fitting respectively), HDDMs are extensions of traditional 

DDM (Ratcliff et al., 2015; 2016; Forstmann et al., 2016; Ratcliff & McKoon, 

2008; Ratcliff, 1978) that use Bayesian hierarchical frameworks and MCMC 

sampling to iteratively adjust DDM parameters to maximise the summed log-

likelihood of predicted mean RTs and choice accuracy. Specifically, prior 

probability distributions of the model parameters are simultaneously estimated 

at individual participant and group levels under the assumption that individual 

participant level parameters are constrained within the group level 

distributions, and vice versa. These prior distributions are then updated on the 

basis of the likelihood of the data given the model, to yield posterior probability 

distributions of the sampled parameters. The use of Bayesian hierarchical 

frameworks, and specifically HDDMs, allows for several benefits relative to 

traditional non-hierarchical DDM analyses. In particular, the assumption that 

individual participant samples are randomly drawn from a constrained group 

level distribution yields posterior parameter estimates with higher stability and 

robustness. In addition, they can quantify uncertainty through posterior 

distributions for estimated parameters, rather than converging on the most 

likely value for each parameter (Gelman, 2003; Navarro & Fuss, 2009; 

Vadekerchkove et al., 2011; Wiecki et al., 2013). 

 

3.3.6 HDDM – Fitting 

To fit HDDMs to participants’ single-trial behavioural performance 

measurements (i.e., RTs and choice accuracy), and estimate the internal 

components of perceptual decision formation, we used the HDDM toolbox 

(Wiecki et al., 2013), an open-source software package, written in Python, that 

permits custom fits of HDDM variants to participants’ RTs and choice 

accuracy. We used a process referred to as accuracy-coding, which fits 

HDDMs to RT distributions that assume the upper and lower decision 

boundaries correspond to correct and incorrect choices respectively. Eight 
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HDDM accuracy-coded variants were fit to our behavioural dataset. Seven 

variants sampled posterior parameter estimates for combinations of drift rate 

(δ), decision boundary (θ), and non-decision time (τ) for the conditional 

dependencies (levels) of all three of our independent variables (sensory trial 

type, stimulus coherence, and age range), whereas one variant was fit to our 

behavioural dataset that did not allow parameters to vary by our conditional 

dependences. Starting point (z) was set as the midpoint between the two 

decision boundaries for all variants, since stimuli were presented in a 

pseudorandomised order in the experimental paradigm, thereby considerably 

reducing the likelihood of an a priori bias towards either choice alternative. In 

addition, we fixed the trial-to-trial variabilities of each parameter to 0, since 

previous research has found that these can improve parameter estimates for 

drift rate (δ), decision boundary (θ), and non-decision time (τ; Lerche & Voss, 

2016). 

 

In total, we sampled estimated posterior distributions for a maximum of 12 drift 

rate (δ), decision boundary (θ), and non-decision time (τ) parameters across 

all conditional dependencies for the three independent variables (sensory trial 

type: Visual, V; Auditory, A; Audiovisual, AV; stimulus coherence: High 

Coherence, HC; Low Coherence, LC; Age Range: Older Adults, OA; Younger 

Adults; YA) as follows:  

 

 

𝛿 = 𝜒𝑖,𝑗  ~ 𝐹 (𝛿  𝐻𝐶,   𝐿𝐶

𝑉,   𝐴,   𝐴𝑉
𝑂𝐴,   𝑌𝐴 ) 

𝜃 = 𝜒𝑖,𝑗 ~ 𝐹 (𝜃 𝐻𝐶,   𝐿𝐶

𝑉,   𝐴.  𝐴𝑉
𝑂𝐴,   𝑌𝐴 ) 

𝜏 = 𝜒𝑖,𝑗 ~ 𝐹 (𝜏  𝐻𝐶,   𝐿𝐶

𝑉,   𝐴,   𝐴𝑉
𝑂𝐴,   𝑌𝐴 ) 

 

where 𝜒𝑖,𝑗 represents the observed behavioural data (i.e. RTs and choice 

accuracy) for participant i and trial j, and 𝐹(… ) represents the DDM Wiener 
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likelihood function (as formulated by Navarro & Fuss, 2009) to simultaneously 

sample individual participant and group level parameters.  

 

For each HDDM variant, we ran 5 separate Markov chains with 11000 

samples each. For each chain, the first 1000 were discarded as “burn-in”, and 

the rest subsampled (“thinned”) by a factor of two, to reduce the 

autocorrelation within and between Markov chains. This is a conventional 

approach to MCMC sampling, whereby initial samples in the “burn-in” period 

are based on the selection of a random starting point, and neighbouring 

samples likely to be highly correlated. Both issues are likely to provide 

unreliable posterior distributions for estimated parameters. This left 25000 

remaining samples for each modelling variant, which constituted the 

probability distributions for each estimated parameter, allowing us to compute 

individual parameter estimates for participants and condition categories in 

each variant. To ensure Markov Chain convergence, we computed Gelman-

Rubin Ȓ statistics between chains (Gelman & Rubin, 1992). This compares 

within-chain and between-chain variance of estimated parameters both for 

individual participants and group conditions. We verified that all Ȓ statistics 

fell between 0.98 and 1.02, which suggests reliable convergence between 

chains. Finally, for comparisons between each variant, we used the Deviance 

Information Criterion (DIC), a measure popular for assessing and comparing 

relative hierarchical model fits to behavioural datasets, particularly those that 

use MCMC sampling (Spiegelhalter et al., 2002). The DIC evaluates the trade-

off between a modelling variant’s goodness-of-fit and complexity (i.e., number 

of parameters). We selected the modelling variant with the lowest DIC, which 

favours the model with the highest likelihood of a good fit to data for the least 

degrees of freedom.  

 

3.3.7 HDDM – Hypothesis Testing 

As previously outlined in Chapter 2 (see sections 2.3.9 HDDM – Fitting and  

2.3.10 HDDM – EEG Regressors), Bayesian hierarchical modelling 

frameworks naturally violate the assumption of independence in its posterior 

estimation sampling procedure, since group-level and participant level 

parameter posteriors are simultaneously estimated (Wiecki et al., 2013). 

Consequently, null-hypothesis significance testing approaches commonly 

utilised in frequentist approaches are not recommended. Therefore, in order 

to analyse the predictive power of each posterior distribution for each 
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parameter (and its conditional dependencies), we used Bayesian hypothesis 

testing. Specifically, we compared the proportion of posterior distributions 

between two of the same parameters, complete with their conditional 

dependences, that did not overlap in their sampled parameter estimations, 

returning a value between 0 and 1, depending on the hypothesis tested. To 

determine the prevalence of true positive results, implicating strong predictive 

effects in the difference between posterior distributions, we calculated the log 

posterior odds proportion of a hypothetical proportion corresponding to a 

false-positive rate of α = 0.05 (i.e., a 95% true-positive threshold, similar to the 

utilisation of p-values in null-hypothesis significance testing approaches; Ince 

et al., 2021). Non-overlap proportions greater than the hypothetical log-odds 

proportion of our false positive rate (which is equal to 2.944) suggests highly 

predictive effects in the non-overlap of parameter posterior distributions 

favoured by our hypotheses.  

 

We sought to use the results of our statistical analyses to inform the fitting of 

the HDDM to our behavioural data (i.e., single-trial RTs and binary 

responses). Tables 3.1, 3.2, and 3.3 outline the hypotheses across all 

conditional dependencies. Generally, in line with the results of our RT 

statistical analyses (see section 3.4.1 Behavioural Results), in which we 

observed (1) significant decreases in RTs across levels of multisensory (i.e., 

AV trial types) and unisensory (i.e., V and A trial types) sensory trial type, 

stimulus coherence (i.e., HC versus LC trial types), and age range (i.e., YAs 

versus OAs), (2) significant increases in choice accuracy across levels of 

multisensory (i.e., AV) and unisensory  (i.e., V and A) sensory trial type, 

stimulus coherence (i.e., HC versus LC trial types), and age range (i.e., YAs 

versus OAs), and (3) discrepancies in significance in two-way interactions 

between sensory trial type and age range for RTs (coupled with non-

significant two-way interactions between sensory trial type and age range for 

choice accuracy), we hypothesised that there would be strong predictive 

differences (i.e., prevalent non-overlaps between proportions of posterior 

distributions) in drift rate and non-decision time parameter estimates.  

 

In general, we tested hypotheses outlining that drift rate parameter estimates 

would predictively increase across sensory trial types; in which AV trial types 

would have higher drift rate parameter estimates versus V trial types (δAV > 

δV) and A trial types (δAV > δA), and V trial types would have higher drift rate 

estimates versus A trial types (δV > δA), predictively decrease across levels of 
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stimulus coherence, whereby HC trial types would have higher drift rate 

parameter estimates versus LC trial types (δHC > δLC), and predictively 

decrease across age ranges, whereby younger adults would have higher drift 

rate parameter estimates versus older adults (δYA > δOA), and (2) non-decision 

time parameter estimates would predictively decrease across sensory trial 

types, whereby AV trial types would have lower non-decision time estimates 

versus V trial types (τAV < τV) and versus A trial types (τAV < τA), and V trial 

types would have lower non-decision time estimates versus A trial types (τV < 

τA), predictively increase across levels of stimulus coherence, whereby HC 

trial types would have lower non-decision time estimates versus LC trial types 

(τHC < τLC), and predictively increase across age ranges, whereby older adults 

would have higher non-decision time parameter estimates versus younger 

adults (τYA < τOA).  

 

Conversely, in line with the results of our choice accuracy statistical analyses, 

in which we report significant effects of choice accuracy decreasing across 

levels of sensory trial type, stimulus coherence, and age ranges, but no 

significant two-way interaction between sensory trial type and age range we 

hypothesised that there would be strong predictive differences (i.e., prevalent 

non-overlaps between proportions of posterior distributions) in decision 

boundary estimates. In particular, we tested the following bidirectional 

hypotheses: a) coupled with significant decreases in RTs, decision boundaries 

would predictively decrease across sensory modalities, whereby AV trials 

would have lower decision boundary parameter estimates versus V trial types 

(θAV < θV), and versus A trial types (θAV < θA), and V trial types would have 

lower decision boundary estimates versus A trial types (θV < θA), predictively 

increase across levels of stimulus coherence, whereby HC trial types would 

have lower decision boundary estimates versus LC trial types (θHC < θLC), and 

predictively increase across age ranges, whereby younger adults would have 

lower decision boundary parameter estimates versus older adults (θYA < θOA).  
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3.4 Results 

3.4.1 Behavioural Results 

 

 

Figure 3.2 Behavioural Performance. a, b, Median RTs (top) and c, d, 
choice accuracy (proportion of correct responses; bottom) for Younger Adults 
(left) and Older Adults (right) across the two levels of stimulus coherence 
(high/low coherence) and as a function of visual (purple), auditory (orange), 
and audiovisual (green) trials. Shaded regions indicate 95% Confidence 
Intervals (CIs), which were calculated using 1000 bootstrapping random 
sampling interactions to estimate the distribution of group average 
performance measurements.  

 

Generalised Linear Mixed-Effects Models (GLMMs) and post hoc likelihood-

ratio (χ2) model comparisons were used to analyse RTs and choice accuracy 
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(using gamma and binomial logit models for RTs and choice accuracy 

respectively) as a function of sensory modality, stimulus coherence, and age 

range, as well as their subsequent two-way interactions.  

 

3.4.1.1 Reaction Time GLMM Analyses Results 

Our RT analyses demonstrated a significant main effect of sensory trial type 

(Figures 3.2a and 3.2b; GLMM: χ2 = 140.78, df = 2, p < 0.001); in which 

participants responded faster to AV versus V trial types (MedianAV = 697ms 

post-stimulus offset, MedianV = 704ms post-stimulus offset; GLMM (AV 

versus V): χ2 = 10.14, df = 1, p < 0.001), AV versus A trial types (MedianAV = 

696ms post-stimulus offset, MedianA = 844ms post-stimulus offset; GLMM 

(AV versus A): χ2 = 96.27, df = 1, p < 0.001), and during V versus A trial types 

(MedianV = 704ms post-stimulus offset, MedianA = 844ms post-stimulus 

offset; GLMM (V versus A): χ2 = 67.68, df = 1, p < 0.001). In addition, they 

demonstrated a significant main effect of stimulus coherence, in which 

participants responded faster to HC versus LC trial types (MedianHC = 727ms 

post-stimulus offset, MedianLC = 749ms post-stimulus offset; GLMM: χ2 = 

145.84, df = 1, p < 0.001). A significant two-way interaction was further found 

between sensory trial type and stimulus coherence (GLMM: χ2 = 18.60, df = 

2, p < 0.001), in which participants responded faster to HC versus LC trial 

types between AV versus A trial types (MedianAV | HC = 683ms post-stimulus 

offset; MedianA | HC = 838ms post-stimulus offset; MedianAV | LC = 713ms post-

stimulus offset; MedianA | LC = 850ms post-stimulus offset; GLMM (AV versus 

A): χ2 = 15.50, df = 1, p < 0.001), and between V versus A trial types (MedianV 

| HC = 691ms post-stimulus offset; MedianA | HC = 838ms post-stimulus offset; 

MedianV | LC = 717ms post-stimulus offset; MedianA | LC = 850ms post-stimulus 

offset; GLMM (V versus A): χ2 = 10.12, df = 1, p = 0.001), but not between AV 

versus V trial types (MedianAV | HC = 683ms post-stimulus offset; MedianV | HC 

= 691ms post-stimulus offset; MedianAV | LC = 713ms post-stimulus offset; 

MedianV | LC = 717ms post-stimulus offset; GLMM (AV versus V): χ2 = 0.72, df 

= 1, p = 0.395). Together, these results highlight larger decreases in RTs with 

AV trial types, relative to V and A trial types, with a further decrease in RTs 

with the amount of complementary V evidence salience (i.e., stimulus 

difficulty), but not for A evidence salience, benefitting decision speed. 

 

Our analyses further demonstrated a significant main effect of age, in which 

YAs responded faster than OAs (Figures 3.2a and 3.2b; MedianYA = 708ms 
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post-stimulus offset, MedianOA = 774ms post-stimulus offset; GLMM: χ2 = 

18.13, df = 1, p < 0.001). Moreover, a significant two-way interaction was 

found between sensory trial type and age for RTs (χ2 = 33.10, df = 2, p < 

0.001). In particular, we found significant age-related differences in RTs 

between AV versus A trial types, whereby YAs demonstrated a larger 

decrease in RTs for AV versus A trial types (MedianAV | OA = 738ms post-

stimulus offset; MedianA | OA = 852ms; MedianAV | YA = 670ms post-stimulus 

offset; MedianA | YA = 837ms post-stimulus offset; χ2 = 5.01, df = 1, p < 0.025) 

and between V and A trials (MedianV | OA = 745ms post-stimulus offset; 

MedianA | OA = 852ms post-stimulus offset; MedianV | YA = 676ms post-stimulus 

offset; MedianA | YA = 837ms post-stimulus offset; GLMM (AV versus A): χ2 = 

9.58, df = 1, p = 0.025), but not between AV versus V trial types (MedianAV | 

OA = 738ms post-stimulus offset; MedianV | OA = 745ms post-stimulus offset; 

MedianAV | YA = 670ms post-stimulus offset; MedianV | YA = 676ms post-stimulus 

offset; χ2 = 1.31, df = 1, p = 0.254). To reaffirm these significant trends and 

account for an age-related generalised slowing, log-transformed RTs were 

further analysed (Cerella, 1995; Diederich et al., 2008; Laurenti, 2006; Peiffer 

et al., 2007; Salthouse, 1996). Application of an ANOVA to compare AV trial 

types versus V and A trial types, between OAs versus YA, demonstrated 

significant main effects of sensory trial type (F2, 41759 = 1179.00, p < 0.001) and 

age range (F1, 41759 = 394.12, p < 0.001), and a sensory trial type by age range 

interaction (F2, 41759 = 53.09, p < 0.001). Post Hoc comparisons using Tukey 

HSD testing between log-transformed AV versus V trial type RTs for OAs 

versus YAs further indicated that OAs, but not YAs, had significantly greater 

differences between AV versus V trial types (OAs: Mean DifferenceLog-RTs = -

0.016 [-0.030 -0.003], p = -0.008; YAs: Mean DifferenceLog-RTs = - 0.005 [-0.018 

0.007], p = 0.820). 

 

Finally, our analyses did not find a significant two-way interaction between 

stimulus coherence and age range (MedianHC | OA = 763ms post-stimulus 

offset; MedianLC | OA = 784ms post-stimulus offset; MedianHC | YA = 695ms post-

stimulus offset; MedianLC | YA = 721ms post-stimulus offset; χ2 = 1.97, df = 1, p 

= 0.161), nor a significant three-way interaction (MedianV | HC | OA = 738ms post-

stimulus offset; MedianA | HC | OA = 849ms post-stimulus offset; MedianAV | HC | 

OA = 724ms post-stimulus offset; MedianV | LC | OA = 758ms post-stimulus offset; 

MedianA | LC | OA = 855ms post-stimulus offset; MedianAV | LC | OA = 754ms post-

stimulus offset; MedianV | HC | YA = 662ms post-stimulus offset; MedianA | HC | YA 

= 830ms post-stimulus offset; MedianAV | HC | YA = 659ms; MedianV | LC | YA = 
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691ms post-stimulus offset; MedianA | LC | YA = 846ms post-stimulus offset; 

MedianAV | LC | YA = 683ms; χ2 = 2.93, df = 2, p = 0.232).  

 

3.4.1.2 Choice Accuracy GLMM Analyses Results 

Our choice accuracy analyses demonstrated significant main effects of 

sensory trial type (GLMM: χ2 = 166.00, df = 2, p < 0.001), in which participants 

responded more accurately to AV versus V trial types (Proportion CorrectAV = 

0.885; Proportion CorrectV = 0.851; GLMM (AV versus V): χ2 = 70.70 df = 1, 

p < 0.001), AV versus A trial types (Proportion CorrectAV = 0.885; Proportion 

CorrectA = 0.798; χ2 = 113.82, df = 1, p < 0.001; GLMM (AV versus A): χ2 = 

113.82, df = 1, p < 0.001), and V versus A trial types (Proportion CorrectV = 

0.851; Proportion CorrectA = 0.798; GLMM (V versus A): χ2 = 21.32, df = 1, p 

< 0.001). In addition, they demonstrated a significant main effect of stimulus 

coherence, in which participants performed more accurately in HC versus LC 

trial types (Proportion CorrectHC = 0.869; Proportion CorrectLC = 0.823; 

GLMM: χ2 = 189.00, df = 1, p < 0.001). A significant two-way interaction was 

further found between sensory trial type and stimulus coherence (GLMM: (χ2 

= 18.40, df = 2, p < 0.001), in which participants performed more accurately 

to HC versus LC trial types between AV versus A trial types (Proportion 

CorrectAV | HC = 0.907; Proportion CorrectA | HC = 0.815; Proportion CorrectAV | 

LC = 0.863; Proportion CorrectA | LC = 0.780; GLMM (AV versus A): χ2 = 10.37, 

df = 1, p = 0.001), and between V versus A trial types (Proportion CorrectV | HC 

= 0.0.880; Proportion CorrectA | HC = 0.815; Proportion CorrectV | LC = 0.821; 

Proportion CorrectA | LC = 0.780; GLMM (V versus A): χ2 = 21.32, df = 1, p < 

0.001), but not between AV versus V trial types (Proportion CorrectAV | HC = 

0.907; Proportion CorrectV | HC = 0.0.880; Proportion CorrectAV | LC = 0.863; 

Proportion CorrectV|LC = 0.821; GLMM (AV versus V): χ2 = 0.21, df = 1, p = 

0.643). Together, these results highlight larger decreases in choice accuracy 

with AV trial types, relative to V and A trial types, with a further decrease with 

the amount of complementary A evidence salience (i.e., stimulus difficulty), 

but not for V evidence salience, benefitting decision accuracy. 

 

Our analyses further demonstrated a significant main effect of age, in which 

YAs performed more accurately than OAs (Proportion CorrectYA = 0.870; 

Proportion CorrectOA = 0.819; χ2 = 23.80, df = 1, p < 0.001). However, no 

significant interaction was found between sensory trial type and age range 

(Proportion CorrectAV | OA = 0.862; Proportion CorrectA | OA = 0.772; Proportion 
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CorrectV | OA = 0.819; Proportion CorrectAV | YA = 0.906; Proportion CorrectA | YA 

= 0.821; Proportion CorrectV | YA = 0.879; GLMM: χ2 = 2.12, df = 2, p = 0.346) 

nor stimulus coherence and age range (Proportion CorrectHC | OA = 0.843; 

Proportion CorrectLC | OA = 0.794; Proportion CorrectHC | YA = 0.892; Proportion 

CorrectLC | YA = 0.847; GLMM: χ2 = 1.62, df = 1, p = 0.204). In addition, no 

significant three-way interaction was found between sensory trial type, 

stimulus coherence, and age range (Proportion CorrectV | HC | OA = 0.850; 

Proportion CorrectA | HC | OA = 0.787; Proportion CorrectAV | HC | OA = 0.889; 

Proportion CorrectV | LC | OA = 0.787; Proportion CorrectA | LC | OA = 0.758; 

Proportion CorrectAV | LC | OA = 0.835; Proportion CorrectV | HC | YA = 0.906; 

Proportion CorrectA | HC | YA = 0.840; Proportion CorrectAV | HC | YA = 0.924; 

Proportion CorrectV | LC | YA = 0.851; Proportion CorrectA | LC | YA = 0.800; 

Proportion CorrectAV | LC | YA = 0.877; χ2 = 0.92, df = 2, p = 0.632).  

 

3.4.1.3 Interim Summary of Behavioural Results 

We observed general age-related declines in decision speed (i.e., increased 

RTs) and accuracy (i.e., decreased proportions of correct responses). In 

addition, we saw age-related differences in RTs between multisensory (i.e., 

AV) versus unisensory (i.e., V and A trial types), albeit with different 

trajectories in RT difference. Specifically, whereas YAs displayed a greater 

multisensory benefit in RT differences between AV versus A trial types (i.e., 

larger AV-A RT Differences; coupled with a greater benefit in RT differences 

between V versus A trial types; larger V–A RT Differences) relative to OAs, 

OAs displayed a greater multisensory benefit in log-transformed RT 

differences between AV versus V trial types (i.e., larger AV-V RT Differences), 

irrespective of the salience of complementary sensory evidence (i.e., stimulus 

coherence), with non-transformed RT differences suggesting no significant 

two-way interaction, indicating a preservation of multisensory integrative 

benefits in consolidating complementary A information. Regarding choice 

accuracy, however, no age-related differences between multisensory (i.e., AV 

trial types) and unisensory (i.e., V and A trial types) were found, implying a 

preservation of choice accuracy not impacted by ageing. In addition, no further 

effects seemed to be elicited suggesting generalisable multisensory deficits 

towards choice accuracy as a function of either categorical or chronological 

age between AV versus V trial types, implicating an age-related preservation 

of the benefits towards choice accuracy. 
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Figure 3.3 Behavioural Performance Correlations. Pearson correlations 
of age with median RTs (top) and choice accuracy (proportion of correct 
responses; bottom) across the two levels of stimulus coherence (high/low 
coherence) as a function of visual (left), auditory (middle), and audiovisual 
(right) trial types. Pearson Correlation Coefficients (R) and p-values are 
shown for each correlation. Shaded regions indicate 95% Confidence 
Intervals (CIs). 
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Figure 3.4 Behavioural Performance Differences. Individual participant 
behavioural performance changes (AV-A; top, AV-V; middle, V-A; bottom) 
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for a, b, c, median RTs and d, e, f, choice accuracy (proportion of correct 
responses) for Younger Adults (left) and Older Adults (right) across the two 
levels of stimulus coherence (high coherence/low coherence). Solid black 
lines denote the group averages (calculated across N = 212 participants), 
and dashed grey lines denote the boundaries for no behavioural 
performance differences. 

 

 

Figure 3.5 Performance Correlational Differences With Age Range 
Individual Pearson’s correlations of age with a, median RT differences and 
b, choice accuracy (proportion of correct responses) differences between AV 
and A trial types (left), between AV and V trial types (middle), between and V 
and A trials types, across the two levels of stimulus coherence (high/low 
coherence). Pearson Correlation Coefficients (R) and p-values are shown for 
each correlation. Shaded regions indicate 95% Confidence Intervals (CIs). 

 

3.4.2 HDDM – Model Convergence 

For all HDDM analyses, MCMC sampling routines (Gelman & Rubin, 1992) 

ran for 5 chains of 11000 iterations, each with a burn-in period of 1000 
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iterations and thinning factor of 2. For each variant, model convergence was 

assessed by examination of the posterior samples and the computed Gelman-

Rubin Ȓ convergence diagnostics between chains for simultaneously 

estimated participant and group-level parameters. As previously outlined, 

Gelman-Rubin Ȓ convergence diagnostics are a measure of convergence 

among multiple MCMC chains and indicate that posterior density estimates 

and have converged to a fixed estimate. A Ȓ convergence diagnostic between 

0.98 and 1.02, and closer to 1, indicates that chains with different starting 

values have converged to the same posterior estimate. This was confirmed 

for all eight modelling variants, with successful convergence confirmed by 

MCMC errors of all parameters for each variant smaller than 0.01.  

 

 

Figure 3.6 HDDM – Framework and Convergence Results. a, Graphical 
representation illustrating the Bayesian hierarchical framework for estimating 
behavioural HDDM parameters. Round nodes represent continuous random 
variables, with shaded nodes representing recorded variables, i.e., single-trial 
behavioural performance data (RTs and choice accuracy). Double-bordered 
nodes represent deterministic variables, defined in terms of other variables. 
Plates denote a hierarchical framework for modelling multiple random 
variables. The inner plate is over participants (n = 1, …, N) and the outer plate 
is over conditional dependencies for sensory trial type (Audiovisual; AV, 
Auditory; A, Visual; V), age range (Older Adults; OA, Younger Adults, YA), 
and stimulus coherence (High Coherence; HC, Low Coherence; LC). 
Combinations of drift rate (δ), decision boundary (θ), and non-decision time 
(τ) parameters are modelled as random variables with inferred means μ and 
variances σ, and are constrained by inferred estimates over all conditional 
dependencies. b, Deviance Information Criterion (DIC) scores and fixed 
parameters (i.e., free to vary across all conditional dependences) for all 
modelling variants tested. Shaded row denotes the best fitting Bayesian 
hierarchical modelling framework (i.e., lowest DIC score) towards our 
behavioural dataset. 
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After assessing modelling convergence, we performed a quantitative 

comparison of all variants by computing each variant’s associated Deviance 

Information Criterion (DIC) score. The DIC assesses the goodness-of-fit for 

modelling variants to the applied dataset and penalises for its overall 

complexity (i.e., number of parameters). Modelling variants with a lower DIC 

score are to be preferred to those with a higher DIC, indicating the most 

parsimonious explanation of the dataset. Figure 3.5a outlines the DICs for 

each modelling variant. For our HDDM analysis, the modelling variant that 

best described the data (i.e., the model with the lowest DIC score) was the 

three-parameter model (Model 8) that sampled drift rate (δ), decision 

boundary (α), and non-decision time (τ) parameters for each participant 

(Model 8, 𝐷𝐼𝐶𝛼
𝜏

𝛿 = 5719.890). In addition, a difference in DICs greater than 10 

indicates substantial evidence that the model with the lower DIC is a better fit 

(Anderson & Burnham, 2004; Burnham & Anderson, 1998; Spiegelhalter et 

al., 2002). Because the difference between the modelling variant with the 

lowest DIC (Model 8, 𝐷𝐼𝐶𝛼
𝜏

𝛿 = 5719.890) and the modelling variant with the 

second lowest DIC (Model 6,  𝐷𝐼𝐶𝜏
𝛿 = 6184.432) exceeds 10 (𝛥𝐷𝐼𝐶 =

 −464.542), we consider this substantial evidence that Model 8 should be 

considered the most parsimonious account of the dataset.  

 

Finally, to ensure there were no systematic discrepancies between the 

empirical behavioural dataset and the posited model, we performed a 

posterior predictive check, simulating a behavioural dataset with the fitted 

model, and comparing with the empirical dataset to illustrate that the posited 

model was a good fit. Figure 3.5 illustrates that a simulated behavioural 

dataset based on the best fitted modelling variant (i.e. Model 8, 𝐷𝐼𝐶𝛼
𝜏

𝛿 = 

5719.890) was consistent with the empirical behavioural dataset, namely that 

the empirical behavioural dataset metrics were within the 90% highest density 

interval (HDI) of the distributions and quantiles of simulated behavioural 

dataset metrics (Turkkan & Pham-Gia, 1993). Therefore, further analyses 

focused on this modelling variant.   
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Figure 3.7 HDDM – Highest Density Region Intervals. Highest (posterior) 
Density Regions (HDRs) of the best fitting HDDM for the behavioural dataset. 
Modelling fit to the behavioural dataset was assessed using a cumulative 
quantile-probability plot, showing quantiles of RT distributions split across all 
conditional dependencies. Cumulative probability quantiles are plotted along 
the x-axis for observed RTs (blue) and predicted RTs (green), i.e., simulated 
RTs from HDDM posterior predictive estimates. Dashed grey lines on the y-
axis denote the credible intervals representing the HDRs at a 90% confidence 
level.   
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Figure 3.8 HDDM – Posterior Predictive Checks. Posterior predictive 
checks of the best fitting HDDM for the behavioural dataset. Modelling fit to 
the behavioural dataset was assessed using combined histogram and density 
plots for RT distribution splits across all conditional dependences and 
accuracy of choice responses (positive and negative RT histogram/density 
plot distributions for correct and incorrect choice responses respectively). 
Histograms (in blue) and density plots (in black) denote observed and 
predicted RTs respectively. Dashed grey lines on the x-axis denote the 
credible intervals representing the HDRs at a 90% confidence level for correct 
and incorrect choice responses. 
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3.4.3 HDDM – Behaviourally-Informed Cognitive Modelling 

Results 
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Figure 3.9 HDDM – Results. Group posterior density boxplots and violin plots 
for a, drift rate (δ), b, decision boundary (θ), and c, non-decision time (τ) 
parameters across all conditional dependencies (sensory trial type: Visual, V; 
Auditory, A; Audiovisual, AV; stimulus coherence: High Coherence, HC; Low 
Coherence, LC; age range: Older Adults, OA; Younger Adults, YA). All 
posterior density plots are derived from the behavioural HDDM, including N = 
212 participants and 41765 trials. 

 

Tables 3.1, 3.2, and 3.3 outline the hypotheses testing results across all 

conditional dependencies. We provide summaries of the hypothesis testing 

for each of our predictor variables (Age Range, Sensory Modality, Stimulus 

Coherence) below.  

 

3.4.3.1 Age Range 

Drift rate (δ) estimations were higher for YAs versus OAs across all sensory 

trial type and stimulus coherence conditional dependencies (Visual/High 

Coherence: P(𝛿𝑌𝐴 >  𝛿𝑂𝐴) = > 0.999, log-odds = > 6.660; Visual/Low 

Coherence: P(𝛿𝑌𝐴 >  𝛿𝑂𝐴) = > 0.999, log-odds = > 6.660; Auditory/High 

Coherence: P(𝛿𝑌𝐴 >  𝛿𝑂𝐴) = > 0.999, log-odds = > 6.660; Auditory/Low 

Coherence: P(𝛿𝑌𝐴 >  𝛿𝑂𝐴)  = 0.996, log-odds = 5.488; Audiovisual/High 

Coherence: P(𝛿𝑌𝐴 >  𝛿𝑂𝐴) = > 0.999, log-odds = > 6.660; Audiovisual/Low 

Coherence: P(𝛿𝑌𝐴 >  𝛿𝑂𝐴) = > 0.999, log-odds = > 6.660). These results are 

consistent with the significantly lower RTs and higher proportions of correct 

responses observed between YAs and OAs across all sensory trial types 

(Figures 9, 10, and 11). Since the drift rate parameter captures the average 

rate of sensory evidence accumulation, these results implicate that younger 

adults are able to accumulate sensory evidence at a faster rate than older 

adults.  

 

Decision boundary (θ) estimations were lower for YAs versus OAs, but only 

for AV and A trial types of LC (Visual/High Coherence: P(𝜃𝑌𝐴 <  𝜃𝑂𝐴) = 0.879, 

log-odds = 1.980; Visual/Low Coherence: P(𝜃𝑌𝐴 <  𝜃𝑂𝐴) = 0.229, log-odds = -

1.212; Auditory/High Coherence: P(𝜃𝑌𝐴 <  𝜃𝑂𝐴) = 0.875, log-odds = 1.949; 

Auditory/Low Coherence: P(𝜃𝑌𝐴 <  𝜃𝑂𝐴) = 0.996, log-odds = 5.488; 

Audiovisual/High Coherence: P(𝜃𝑌𝐴 <  𝜃𝑂𝐴)  = 0.775, log-odds = 1.235; 

Audiovisual/Low Coherence: P(𝜃𝑌𝐴 <  𝜃𝑂𝐴) = 0.952, log-odds = 2.997). Given 

we observed lower RTs and higher choice accuracy respectively for YAs 

compared to OAs, coupled with significant behavioural benefits between AV 
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versus A trial types for YAs, this implicates an age-related difference in the 

pre-set quantities of sensory evidence required to be accumulated to facilitate 

choices for AV and A trial types of decreased stimulus salience (i.e., increased 

categorisation difficulty).  

 

Non-decision time (τ) estimates were: (1) lower for YAs compared to OAs only 

for V trial types, and (2) higher for YAs compared to OAs only for A trial types, 

within LC trial types (Visual/High Coherence: P(𝜏𝑌𝐴 <  𝜏𝑂𝐴) = 0.352, log-odds 

= -0.609; Visual/Low Coherence: P(𝜏𝑌𝐴 <  𝜏𝑂𝐴) = 0.979, log-odds = 3.846; 

Auditory/High Coherence: P(𝜏𝑌𝐴 <  𝜏𝑂𝐴) = 0.076, log-odds = -2.495; 

Auditory/Low Coherence: P(𝜏𝑌𝐴 <  𝜏𝑂𝐴) = 0.006, log-odds = -5.158; 

Audiovisual/High Coherence = 0.374, log-odds = -0.516; Audiovisual/Low 

Coherence = 0.156, log-odds = -1.686). We should note that the non-decision 

time parameter captures the duration of non-decisional processes, such as 

the latency of early stimulus encoding and the motor preparatory response. 

These results implicates that YAs have a reduced duration for non-decisional 

processing of V trial types of low evidence salience (i.e., increased 

categorisation difficulty), but an increased duration for non-decisional 

processing of A trial types of low evidence salience, relative to OAs. 

Interestingly, no prevalent differences were found between OAs and YAs for 

AV trial types were found. Coupled with the different trajectories of non-

decisional processing between OAs and YAs, this result underlies the 

comparative multisensory benefits exhibited between multisensory (i.e., AV) 

and unisensory (i.e., V and A) trial types on RTs, in which OAs benefit more 

from non-decisional processing speed from complementary A evidence, and 

YAs benefit more from non-decisional processing speed from complementary 

V evidence.  
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Figure 3.10 HDDM – Age Range Results. Group posterior density 
distributions illustrating ageing conditional dependencies for a, drift rate (δ), b, 
decision boundary (θ), and c, non-decision time (τ) parameters across 
sensory modality conditional dependencies (Visual, V; Auditory; A; 
Audiovisual; A). All posterior density distributions are derived from the 
behavioural HDDM, including N = 212 participants and 41765 trials. 

 

3.4.3.2 Sensory Trial Type 

Drift rate (δ) estimations were higher for AV versus A trial types (Older 

Adults/High Coherence: P(𝛿𝐴𝑉 >  𝛿𝐴) = > 0.999, log-odds = > 6.660; Older 

Adults/Low Coherence: P(𝛿𝐴𝑉 >  𝛿𝐴) = > 0.999; Younger Adults/High 

Coherence: P(𝛿𝐴𝑉 >  𝛿𝐴) = > 0.999, log-odds = > 6.660; Younger Adults/Low 

Coherence: P(𝛿𝐴𝑉 >  𝛿𝐴) = > 0.999, log-odds = > 6.660) and V versus A trial 

types (Older Adults/High Coherence: P(𝛿𝑉 >  𝛿𝐴) = > 0.999, log-odds = 

>6.660; Older Adults/Low Coherence: P(𝛿𝑉 >  𝛿𝐴) = 0.966, log-odds = 3.343; 

Younger Adults/High Coherence: P(𝛿𝑉 >  𝛿𝐴) = > 0.999, log-odds = >6.660; 

Younger Adults/Low Coherence: P(𝛿𝑉 >  𝛿𝐴) = > 0.999, log-odds = > 6.660) 

across all conditional dependencies. Between AV versus A trial types, drift 

rate estimations were higher for all conditional dependencies except for YAs 
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within HC trial types (Older Adults/High Coherence: P(𝛿𝐴𝑉 >  𝛿𝑉) = 0.996, log-

odds = 5.538; Older Adults/Low Coherence: P(𝛿𝐴𝑉 >  𝛿𝑉) = 0.986; Younger 

Adults/High Coherence: P(𝛿𝐴𝑉 >  𝛿𝑉) = 0.948, log-odds = 2.902; Younger 

Adults/Low Coherence: P(𝛿𝐴𝑉 >  𝛿𝑉) = 0.997, log-odds = 6.570). These results 

are consistent with the significantly shorter RTs and higher proportions of 

correct responses observed for AV trial types compared to V trial types, as 

well as the significant interactions between reduced sensory modality (i.e., AV 

versus V trial types) and stimulus coherence and age range conditions 

respectively. These results implicate that the rate of visual sensory evidence 

accumulation is enhanced when presented simultaneously with 

complementary auditory information, except in YAs with high stimulus 

coherence (i.e., lower categorisation difficulty). Older adults, however, still 

display enhanced multisensory integration, and thus benefits towards 

perceptual decision formation between AV and V RTs, which is highlighted by 

the significant interaction, and greater RT difference exhibited.   

 

For decision boundary (θ) estimations, we found (1) higher estimations for AV 

versus V trial types for OAs for LC trial types, and (2) higher estimations for 

AV versus V trial types for YAs in HC trial types (Older Adults/High Coherence: 

P(𝜃𝐴𝑉 >  𝜃𝑉) = 0.925, log-odds = 2.515; Older Adults/Low Coherence: P(𝜃𝐴𝑉 >

 𝜃𝑉) = 0.999, log-odds = 6.660; Younger Adults/High Coherence: P(𝜃𝐴𝑉 >  𝜃𝑉) 

= 0.966, log-odds = 3.355; Younger Adults/Low Coherence: P(𝜃𝐴𝑉 >  𝜃𝑉) = 

0.751, log-odds = 1.106). In comparison, no prevalent differences in decision 

boundary estimates were found between audiovisual (AV) stimuli, compared 

to auditory (A) stimuli across any conditional dependencies (Older Adults/High 

Coherence: P(𝜃𝐴𝑉 >  𝜃𝐴) = 0.537, log-odds = 0.150; Older Adults/Low 

Coherence: P(𝜃𝐴𝑉 >  𝜃𝐴) = 0.135, log-odds = -1.855; Younger Adults/High 

Coherence: P(𝜃𝐴𝑉 >  𝜃𝐴) = 0.673, log-odds = 0.721; Younger Adults/Low 

Coherence: P(𝜃𝐴𝑉 >  𝜃𝐴) = 0.431, log-odds = -0.277). Given we further 

observed higher decision boundary estimates for V versus A trial types only 

for OAs for LC trial types ((Older Adults/High Coherence: P(𝜃𝑉 >  𝜃𝐴) = 0.083, 

log-odds = -2.401; Older Adults/Low Coherence: P(𝜃𝑉 >  𝜃𝐴) = > 0.999, log-

odds = > 6.660; Younger Adults/High Coherence: P(𝜃𝑉 >  𝜃𝐴) = 0.071, log-

odds = -2.567; Younger Adults/Low Coherence: P(𝜃𝑉 >  𝜃𝐴) = 0.191, log-odds 

= -1.440), these results implicate that OAs display increased caution in 

decision policy for AV versus V trial types when complementary A evidence is 

of decreased salience (i.e., higher categorisation difficulty), yet YAs display a 

similar increased response caution when complementary A evidence is of 
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increased salience (i.e., lower categorisation difficulty). We observed in our 

behavioural results that OAs displayed a greater multisensory benefit towards 

RTs between AV versus V trial types, coupled with no significant differences 

in choice accuracy between AV versus V trial types, and a significant reduced 

three-way interaction suggesting such multisensory benefits are impacted by 

LC trial types. Overall, this implicates that OAs preserve caution in choice 

responses when complementary sensory evidence is more difficult to 

categorise, yet YAs preserve caution in choice responses when 

complementary sensory evidence interferes with less difficult stimuli 

categorisations.  

 

For non-decision time (τ) estimations, we found (1) lower estimations for AV 

versus V trial types for OAs in LC trial types (Older Adults/High Coherence: 

P(𝜏𝐴𝑉 <  𝜏𝑉) = 0.643, log-odds = 0.587; Older Adults/Low Coherence: P(𝜏𝐴𝑉 <

 𝜏𝑉) = 0.986, log-odds = 4.258; Younger Adults/High Coherence: P(𝜏𝐴𝑉 <  𝜏𝑉) 

= 0.674, log-odds = 0.725; Younger Adults/Low Coherence: P(𝜏𝐴𝑉 <  𝜏𝑉) = 

0.224, log-odds = -1.242), (2) lower estimations for AV versus A trial types for 

YAs across HC/LC trial types (Older Adults/High Coherence: P(𝜏𝐴𝑉 <  𝜏𝐴) = 

0.882, log-odds = 2.010; Older Adults/Low Coherence: P(𝜏𝐴𝑉 <  𝜏𝐴) = 0.779, 

log-odds = 1.379 ; Younger Adults/High Coherence: P(𝜏𝐴𝑉 <  𝜏𝐴) = 0.992, log-

odds = 4.877; Younger Adults/Low Coherence: P(𝜏𝐴𝑉 <  𝜏𝐴) = 0.995, log-odds 

= 5.246), and (3 lower estimations for V versus A trial types for YAs across 

HC/LC trial types (Older Adults/High Coherence: P(𝜏𝑉 <  𝜏𝐴) = 0.796, log-odds 

= 1.362; Older Adults/Low Coherence: P(𝜏𝑉 <  𝜏𝐴) = 0.087, log-odds = 2.346; 

Younger Adults/High Coherence: P(𝜏𝑉 <  𝜏𝐴) = 0.978, log-odds = 3.782; 

Younger Adults/Low Coherence: P(𝜏𝑉 <  𝜏𝐴) = 0.999, log-odds = 6.660). 

Interestingly, these results implicate that despite increased response caution 

in decision policy, OAs had a lower duration for encoding AV versus V 

information of decreased stimulus salience, whereas YAs saw a further benefit 

encoding AV versus A information regardless of stimulus salience, enhancing 

benefits towards RTs and choice accuracy overall. This trend can be 

reaffirmed given YAs had a lower duration for encoding V versus A trial types 

(regardless of stimulus salience). 

 

3.4.3.3 Stimulus Coherence 

We found higher drift rate (δ) estimations for HC versus LC trial types across 

all sensory trial type and age range conditions (Older Adults/Visual: P(𝛿𝐻𝐶 >
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 𝛿𝐿𝐶) = 0.999, log-odds = 6.660; Younger Adults/Visual: P(𝛿𝐻𝐶 >  𝛿𝐿𝐶) = > 

0.999, log-odds = > 6.660; Older Adults/Auditory: P(𝛿𝐻𝐶 >  𝛿𝐿𝐶) = 0.957, log-

odds = 3.091; Younger Adults/Auditory: P((𝛿𝐻𝐶 >  𝛿𝐿𝐶) = 0.998, log-odds = 

6.064; Older Adults/Audiovisual: P(𝛿𝐻𝐶 >  𝛿𝐿𝐶) = > 0.999, log-odds = > 6.660; 

Younger Adults/Audiovisual: P(𝛿𝐻𝐶 >  𝛿𝐿𝐶) = > 0.999, log-odds = > 6.660). 

These findings are consistent with behavioural results illustrating significantly 

lower RTs for HC compared to LC trials, implicating decreases in the rate of 

sensory evidence accumulation with decreasing stimulus salience (i.e., 

increased task difficulty), and vice versa.  

 

For decision boundary (θ) estimations, we found higher estimations for HC 

versus LC trial types for (a) OAs in V trial types, and (b) YAs in AV trial types 

(Older Adults/Visual: P(𝜃𝐻𝐶 >  𝜃𝐿𝐶) = 0.998, log-odds = 6.213; Younger 

Adults/Visual: P(𝛿𝐻𝐶 >  𝛿𝐿𝐶) = 0.826, log-odds = 1.556; Older Adults/Auditory: 

P(𝜃𝐻𝐶 >  𝜃𝐿𝐶) = 0.529, log-odds = 0.114; Younger Adults/ Auditory : P(𝜃𝐻𝐶 >

 𝜃𝐿𝐶) = 0.944, log-odds = 2.832; Older Adults/Audiovisual: P(𝜃𝐻𝐶 >  𝜃𝐿𝐶) = 

0.892, log-odds = 2.113; Younger Adults/Audiovisual: P(𝜃𝐻𝐶 >  𝜃𝐿𝐶) = 0.984, 

log-odds = 4.137). These findings indicate increased response caution was 

not a factor within AV or A trials for older adults, yet was a factor in AV trials 

for younger adults, and is consistent with general increases in choice accuracy 

observed for younger adults, but overall lack of significant findings for choice 

accuracy between OAs versus YAs within different stimulus coherence trial 

types.  

 

For non-decision time (τ) estimations, we found lower estimations for HC 

versus LC trial types for OAs and V trial types only (Older Adults/Visual: 

P(𝜏𝐻𝐶 <  𝜏𝐿𝐶) = 0.958, log-odds = 3.126; Younger Adults/Visual: P(𝜏𝐻𝐶 <  𝜏𝐿𝐶) 

= 0.253, log-odds = -1.053; Older Adults/Auditory: P(𝜏𝐻𝐶 <  𝜏𝐿𝐶) = 0.313, log-

odds = -0.788; Younger Adults/Auditory: P(𝜏𝐻𝐶 <  𝜏𝐿𝐶) = 0.746, log-odds = 

1.078; Older Adults/Audiovisual: P(𝜏𝐻𝐶 <  𝜏𝐿𝐶) = 0.445, log-odds = -0.223; 

Younger Adults/Audiovisual: P(𝜏𝐻𝐶 <  𝜏𝐿𝐶) = 0.708, log-odds = 0.885). These 

findings indicate that stimulus salience (i.e., task difficulty) was modality-

specific in decreasing the duration of non-decisional processes for older adults 

with visual information only.  
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3.4.3.4 Interim Summary of HDDM Results 

We observed general age-related decreases in drift rate between OAs and 

YAs across all sensory trial types, demonstrating OAs accumulated sensory 

evidence more slowly than YAs. A comparison of drift rates for multisensory 

(i.e., AV) versus unisensory (i.e., V and A) trial types within OA and YA 

samples, however, demonstrated that OAs consistently exhibited increases in 

drift rate for multisensory versus unisensory trial types. Interestingly, YAs did 

not exhibit pronounced increases in drift rate for AV versus V trial types of 

increased stimulus salience (i.e., HC trial types), implicating the consolidation 

of complementary evidence from A trial types did not exhibit multisensory 

benefits towards perceptual decision formation. 

 

Coupled with this were higher decision boundaries for AV versus A trial types 

of decreased stimulus salience (i.e., LC trial types) for OAs versus YAs, 

demonstrating that for general multisensory processing and specific 

unisensory processing, OAs had a higher response caution in decision policy, 

in which more sensory evidence needed to be accumulated to facilitate 

decisions. Finally, only OAs displayed lower non-decision times for AV versus 

V trial types of decreased stimulus coherence (i.e., LC trial types), implicating 

that they display an increased reliance on multisensory integration for 

encoding complementary A information. On the other hand, YAs displayed 

lower non-decision times for AV versus V trial types regardless of stimulus 

salience, implicating that benefitted greater from encoding complementary V 

information relative to OAs. 
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Tables 3.1, 3.2, and 3.3 HDDM Hypothesis Testing Results. HDDM 
Bayesian hypothesis testing results for age range, sensory trial type, and 
stimulus coherence conditions respectively. Shaded Hypothesis testing 
results indicate predictive effects (P() > 0.950) of corresponding hypotheses.  
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Figure 3.11 HDDM – Posterior Parameter Correlations with Age Range. 
Individual Pearson correlations of age with a, drift rate (δ), b, decision 
boundary (θ), and c, non-decision time (τ) parameters across all conditional 
dependencies (sensory modality: Visual, V; Auditory, A; Audiovisual, AV; 
stimulus coherence: High Coherence, HC; Low Coherence, LC; age range: 
Older Adults, OA; Younger Adults, YA). Pearson Correlation Coefficients (R) 
and p-values are shown for each correlation. Shaded regions indicate 95% 
Confidence Intervals (CIs). 
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Figure 3.12 HDDM – Posterior Parameter Correlational Differences with 
Age Range. Individual Pearson’s correlations of age with a, drift rate (δ), b, 
decision boundary (DB, θ), and c, non-decision time (NDT, τ) parameter 
estimate differences between AV and V trials (left), between AV and A trials 
(middle), and between V and A trials (right) across levels of stimulus 
coherence (high/low coherence). Pearson Correlation Coefficients (R) and p-
values are shown for each correlation. Shaded regions indicate 95% 
Confidence Intervals (CIs). 
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3.5 Discussion 

This study coupled an online variant of an audiovisual object categorisation 

paradigm (Franzen et al., 2020) with a behaviourally-informed HDDM to 

investigate age-related impacts on the latent psychological processes 

underlying multisensory perceptual decision-making. This methodology 

provided a principled account for characterising age-related modulations 

within the decision formation process. In particular, it permitted a recovery of 

parameters for modelling observed behavioural performance outcomes (i.e., 

RTs and binary responses), and mechanistically accounted for multiple 

alterations in behavioural outcomes suggesting impacts on the utilisation of 

multisensory information for forming perceptual decisions as we age. In 

particular, we observed significant alterations in perceptual decision-making 

between multisensory (i.e., AV) and unisensory (i.e., V and A) trial types, 

implying that older adults were able to preserve benefits from multisensory 

enhancements between AV versus V trial types towards choice formation, 

since we did not observe significant slowing of RT differences (i.e., AV – V 

Median RT differences) in OAs, as observed between AV versus A (i.e., AV – 

A Median RT differences) trial types, when compared to YAs. This 

preservation was identified despite observable age-related declines in 

decisional speed (i.e., RTs) and choice accuracy across all sensory trial types. 

In addition, we found a significant interaction between sensory trial types and 

age range, whereby OAs appeared to benefitted more from complementary 

audiovisual information compared to auditory, but not from visual information, 

alone. As mentioned, significant age-related decreases in choice accuracy 

were found, but not between sensory trial types. Arguably, this demonstrates 

declines in the accuracy of decisions, formed under time pressure, is not 

modality-specific, nor does it degrade multisensory integration within 

perceptual decision formation, implying a preservation of choice accuracy 

underlying multisensory integrative enhancements.    

 

HDDM fittings towards participants’ single-trial RTs and binary responses 

demonstrated parsimonious fits for reconciling the discrepancies in RTs and 

choice accuracy observed between younger and older adults for the rate of 

sensory evidence accumulation (i.e., drift rate), changes in decision caution 

policy (i.e., decision boundary), and duration of non-decisional processes (i.e., 

non-decision time). Thus, we could characterise age-related impacts 
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determining the preservation of multisensory integrative benefits between 

multisensory and unisensory objects as we age. In particular, we observed 

four key trends: (1) slower rates of uptake in accumulating sensory evidence 

for OAs (i.e., lower drift rates. See Table 3.1; Figure 3.9; Figure 3.10) across 

all sensory trial types, irrespective of stimulus difficulty (i.e., stimulus 

coherence), (2) faster rates of uptake in accumulating sensory evidence 

between multisensory (i.e., AV) versus unisensory (i.e., V and A) trial types 

for both OAs and YAs, irrespective of stimulus coherence, (3) increases in 

response caution (i.e., higher decision boundaries. See Table 3.1, 3.2, Figure 

3.9; Figure 3.10) for multisensory (i.e., AV) trial types of reduced evidence 

salience (i.e., LC stimulus coherence trial types); for both age ranges (i.e., 

OAs and YAs) and for OAs in comparison with YAs, and (4) a reduced duration 

of non-decisional processing (i.e., lower non-decision times) between AV 

versus V trial types for OAs with decreased evidence salience (i.e., LC 

stimulus coherence trial types), but not for YAs, who only exhibited a reduced 

duration of non-decisional processing between AV versus A trial types 

irrespective of stimulus difficulty (i.e., stimulus coherence).  

 

In general, the key findings related to drift rate and decision boundary reaffirm 

previous observations of perceptual decision-making observed in older adults. 

First, we observed a decline in drift rate compared to younger adults across 

all trial types, reaffirming slower perceptual decision formation overall. This 

can be attributed to inherent age-related declines in sensory acuity and 

multiple domains of psychological functioning that perceptual decision-making 

underlies, observed as a function of age (Salthouse, 1996; 2009; see Section 

3.2 Introduction for further citations) and underlie higher RTs observed for 

OAs versus YAs across all sensory trial types (see section 3.4.1 Behavioural 

Results). Second, OAs appeared to display decreased response caution when 

facilitating perceptual decisions with multisensory information of increased 

categorisation difficulty compared to YAs (Table 3.1; Figure 3.9; Figure 3.10). 

This finding reaffirms those from previous HDDM studies investigating age-

related impacts on the behavioural indices of unisensory perceptual decision-

making. Specifically, HDDM fittings to unisensory perceptual decision-making 

yielded an age-dependent widening of pre-set boundaries quantifying the 

extent of sensory information needed to facilitate perceptual decision 

formation (Ratcliff et al., 2001; 2006a; McKoon & Ratcliff, 2013; Scheib, Stoll, 

& Randerath, 2023; Servant & Evans, 2020; Starns & Ratcliff, 2010; Thapar 

et al., 2003). Interpretations between such complementary results imply an 
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increase in response caution is increasingly likely as we age in order to 

compensate for reduced acuity in processing incoming sensory information, 

particularly when it is increasingly ambiguous to consolidate to inform our 

choice behaviours.  

 

However, we did not observe age-dependent modulations in decision 

boundary for visual trial types. Instead, we observed age-dependent 

modulations in decision boundary for auditory and audiovisual trial types (see 

Table 3.1). Interestingly, this general widening can be interpreted as modality-

specific, and thus can be impacted not only by ageing, but the modality 

activated to process incoming sensory information. Reaffirming this 

interpretation concerns the observation from our HDDM results that OAs had 

larger decision boundaries for AV versus V trial types, but not AV versus A 

trial types, of decreased evidence salience, whereby complementary 

information that is difficult to interpret (i.e., A trial types) is treated with a cost 

in perceptual decision formation to preserve underlying choice accuracy (see 

Table 3.1; Figure 3.9; Figure 3.10). As such, the general observation of an 

age-related increased in response caution in decision policies should be 

treated cautiously, as it was not consistent across both multisensory (i.e., AV) 

and unisensory (i.e., V and A) trial types, and perhaps underlies the 

inconsistencies between age-related slowing of information processing and 

hypotheses demonstrating preserved benefits of multisensory integration 

within perceptual decision formation (Figure 3.12). A further notion to consider 

concerns the acuity of the visual and auditory modalities. Given all included 

participants self-reported normal vision and/or hearing, a comparison with 

OAs who display deficits in visual and/or auditory acuity could reaffirm our 

assumption that the widening of response boundaries across multisensory 

and modality-specific unisensory conditions could further our understanding 

of whether increased response caution in decision policy is sensory-driven or 

modulated by post-sensory decision dynamics, as evidenced by our 

significant interactions for AV versus A, but not AV versus V sensory trial 

types.  

 

Alternatively, the notion that older adults typically display general age-

dependent increases in response caution as a compensatory mechanism can 

be challenged. Given the prevalent difficulties in ascertaining why bidirectional 

age-related modulations in drift rate and decision boundary are observed for 

unisensory paradigms, it implicates that differences in the readout of 
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multisensory information differs depending on the context of the decision 

facilitation process not otherwise seen with unisensory information (Kelly & 

O’Connell. 2015). In consideration of the hypotheses previously outlined (see 

section 3.2 Introduction), preserved multisensory integration for objects that 

are more difficult to process may arise from the principle of inverse 

effectiveness (Holmes, 2009; Meredith & Stein, 1986a; 1986b; Stein & 

Stafford, 2008), and/or deficits in attentional control; either in higher-order 

selective attention, or lower-order “baseline” unisensory filtering levels 

(Hugenschmidt et al., 2009a; 200b). Overall, there seems to be a modulation 

of multisensory integrative levels compensating where unisensory processing 

performance is poorest. This interpretation is further reinforced by increases 

in the duration of sensory encoding and/or motor response production latency 

(i.e., increased non-decision times) for older adults, compared to younger 

adults, across unisensory conditions (i.e., V and A; see Table 3.1). This 

suggests declines in sensory systems, resulting in degraded function, and 

longer processing times. Similarly, we further observe that younger adults did 

not exhibit multisensory benefits through increased drift rate differences 

between AV versus V object types of increased evidence salience (i.e., HC 

trial types), whereas older adults did. It is possible that younger adults are less 

likely to exhibit multisensory benefits when complementary unisensory 

information does not weight the reliability of information already available, and 

decision-making performance is already near-optimal. Whereas a ceiling 

effect may underline why younger adults did not exhibit such benefits in this 

finding (i.e., as observed in chronological age correlations in which younger 

adults were more likely to ascertain full choice accuracy across unisensory 

and multisensory trial types; see Figure 3.3), it is possible that younger adults 

are less susceptible to manipulations in stimulus salience (i.e., task difficulty), 

thus reducing the likelihood of the principal of inverse effectiveness arising to 

account for deficits in attentional control in filtering complementary unisensory 

information.  

 

Contradictory to these arguments, however, are the declines in non-duration 

time for AV versus V object types, implying that whereas increased noisy at 

unisensory baseline levels remains inherent; irrespective of stimulus object 

properties or attentional state (Fisher et al., 2023; Hernández et al., 2019; 

Rowe et al., 2006), the integration of information preserves enhancements 

towards multisensory perceptual decision-making, in which less cognitive 

demand is needed to process information from independent unisensory 
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modalities. In consideration of such inferences, we contend that preserved 

benefits from multisensory integration are specific to the modality whereby 

information is more reliable, possibly inferring a preservation of reliability-

weighting mechanisms (Ernst & Banks, 2002; Ernst & Bülthoff, 2004; Fetsch 

et al., 2012; Rohe & Noppeney, 2016) in older adults. Research supporting 

this interpretation comes from findings that applied alternative computational 

modelling methodologies (see Jones & Noppeney, 2021, for review). Park & 

Kayser (2020), for example, investigated whether age-related impacts on 

audiovisual spatial perception arose from reduced sensory precision with age 

or alterations to the process of causal inference when inferring sensorimotor 

cues. Using a single-trial audiovisual localisation paradigm, coupled with 

models of Bayesian causal inference, they analysed participants’ abilities to 

localise auditory and visual stimuli, and their susceptibility to the ventriloquist 

effect (i.e., within multisensory trials) and the ventriloquist aftereffect (i.e., 

between multisensory trials) biasing their judgements (Alais & Burr, 2004). 

The findings of their model-based approach predicted that while older adults 

exhibited reduced precision in representing auditory information, they were 

not susceptible to follow-up biases in auditory spatial localisation. Their results 

therefore suggested that older adults benefitted from a recalibration in 

multisensory representations based on their previous decisional responses, 

not previous sensory representations. Our results reaffirm this interpretation, 

since we observed prominent evidence of age-related increases in response 

caution when complementary auditory information was less salient, and 

thereby increasingly difficult to precisely consolidate.  

 

To assess the effect of reliability-weighting mechanisms, future replications of 

this study should consider replacing self-reporting of no known impairments 

to vision and hearing, as conducted in our study, with metrics for assessing 

sensory acuity. For example, visual acuity can be assessed using logMAR 

charts (Hazel & Elliott, 2002), whereas contrast sensitivity can be assessed 

using Pelli-Robson charts (Elliott, Sanderson, & Conkey, 1990). Recording of 

such metrics as an exclusion criterion could be considered in order to stabilise 

the degree of sensory acuity and reliability of participants across the adult 

lifespan. In addition, however, sensory acuity and/or sensitivity analyses with 

both categorical and chronological age, and subsequent relationship with 

HDDM parameters for conceptualising multisensory perceptual decision-

making, could enable us to discern why we observe modality-specific 

differences between AV versus V and AV versus A sensory trial types 
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between younger and older adults. Thus, we can probe if reliability-weighting 

is an inherent mechanism most prominently impacted in natural ageing and 

consolidate whether it is the inherent declines in sensory processing, or in 

post-sensory dynamics impacting the cognitive mechanisms for consolidating 

multisensory representations towards perceptual decision formation (Hirst et 

al., 2019; 2022).  

 

A further recommendation for future replications of this study should exploit 

the effects of learning, specifically, how older adults react to trial-by-trial 

feedback on decisional speed and accuracy in categorising multisensory and 

unisensory trial types relative to younger adults. Previous DDM analyses of 

age-related impacts on unisensory perceptual decision-making, for example, 

have found that older adults typically begin experiments with slower and less 

accurate choice performance, but improve at a rate that exceeds those of 

younger adults. The effects of learning have found that they improve in 

proportion to the salience of the available sensory information, leading to 

decreased response caution in decision policy (i.e., lower decision 

boundaries) and increases in the uptake of sensory information (i.e., higher 

drift rates) in exploiting signals of increased evidence salience (Ratcliff, 

Thapar, & McKoon, 2006). However, further DDM findings have highlighted 

that older adults are more likely to compromise SATOs in order to minimize 

errors in trial-by-trial decision-making accuracy, and do not reduce their 

increased response caution in decision policy (i.e., higher decision 

boundaries) to benefit their Reward Rate Optimal Boundary (RROB), a single 

value metric for decision boundary parameters that captures the highest 

proportion of correct responses, when unisensory signals are of decreased 

evidence salience (Starn & Ratcliff, 2010). Conceptualising if such findings 

are generalisable to multisensory perceptual decision-making would yield 

insights into whether the preservation of multisensory benefits observed in our 

HDDM results are similarly impacted through trial-by-trial feedback, and 

subsequent associative learning.  

 

In order to consolidate our interpretations for disentangling age-related 

impacts on multisensory perceptual decision-making, it would be beneficial to 

follow up on these preliminary findings by investigating age-related impacts 

on the neural signatures underlying decision formation. In particular, 

examining age-dependent modulations in EEG response profiles towards 

multisensory and unisensory stimuli using neurally-informed modelling 



- 135 - 

approaches. Considering unisensory perceptual decision-making research, 

McGovern et al. (2018) investigated age-related effects on EEG activity of 

participants who engaged in continuous random dot motion discrimination and 

contrast-change detection paradigms. They extracted ERPs corresponding to 

CPP, and performed comparisons of behaviourally-informed and neurally-

informed DDM models; modelling RTs/choice accuracy and CPP amplitudes 

respectively. Interestingly, they found that the fitting of the maximum 

amplitude, captured by the CPP, as regressors within the DDM predicted task-

dependent slowing of accumulation-to-bound processes (i.e., lower drift rates) 

among older adults, as well as decreased inter-trial drift rate variability, 

suggesting neural mechanisms for sustained visual attention as a 

compensatory mechanism for deficits in unisensory processing. Similarly, 

Forstmann et al. (2011) investigated age-related degradations in the structure 

of pre-SMA and striatum; a region thought to determine decision policy 

adjustments, and therefore decision boundaries underlying response caution. 

By simultaneously incorporating diffusion weighted structural imaging and 

behavioural performance outcomes into a LBA model, they found a decreased 

flexibility in adjusting decision policies for SATOs in older adults correlated 

with a reduction in white matter integrity in the corticostriatal pathways. Finally, 

Jaworska et al. (2019) used an information theoretic framework to predict age-

related modulations in EEG activity corresponding to the processing of facial 

features. They reported modulations in occipitotemporal regions that 

represented dynamic evidence accumulation of eyes in face-versus-noise 

images at approximately 170ms post-stimulus onset. Furthermore, their 

information theoretic framework reconciled their neural locus with an 

approximate 40ms increase in RTs, inferring an impact of sensory evidence 

accumulation not indicative of a slowing of visual active sensing.  

 

Importantly, these studies recommend that constraining modelling fits towards 

ageing data with neural indices of perceptual decision-making may benefit 

when and where in the brain we observe separate decision processes for 

sensory evidence consolidation and motor response facilitation. In order to 

develop upon this research domain of application, we contend that utilising a 

neurally-informed modelling approach to provide parsimonious fits towards 

simultaneously collected behavioural and neuroimaging data may prove 

beneficial in linking our preliminary interpretations of preserved multisensory 

mechanisms with preservations of function in their corresponding neural 

substrate(s). In consideration of this, a study that recorded EEG signals 
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underlying older and younger adults’ behavioural performance in the 

audiovisual face-versus-car categorisation paradigm, and subsequent 

analysis utilising multivariate LDA to characterise the underlying neural 

dynamics, would provide the opportunity to incorporate a neurally-informed 

HDDM (Wiecki et al., 2013) to dissect the underpinning neural processes 

capturing the exhibited benefits of multisensory integration towards perceptual 

decision formation within older adults. In particular, a consolidation of the 

neural components capturing increases in drift rate between multisensory (i.e., 

AV) and unisensory (i.e., V and A) trial types, coupled with increased decision 

boundary and decreased non-decision time between AV and V trial types of 

low stimulus coherence, could capture the spatiotemporal trajectory of earlier 

sensory encoding and later changes to post-sensory decision dynamics, and 

modulatory differences as a function of age, further informing our insights into 

the resultant cognitive mechanisms preserved or degraded in preserving 

multisensory integrative benefits towards perceptual decision formation. In 

line with the hypotheses outlined in Chapter 1 (see subsection 1.2.3 Where 

Do the Benefits of Multisensory Integration Arise during Perceptual Decision-

Making), an understanding of how the ageing brain modulates the integration 

and consolidation of sensory information across modalities, through capturing 

particular modulations to temporally earlier and later neural correlates, would 

highlight if the modulations in HDDM parameters arise from natural deficits to 

sensory systems (i.e., bottom-up processing) and/or decision-making 

cognition (i.e., top-down processing), or modulated activity attributed to a 

means of compensating for such deficits to preserve multisensory perceptual 

decision-making behaviour. 

 

In conclusion, we demonstrated novel insights into the key computations 

determining preserved multisensory integration, and therefore preserved 

benefits in perceptual decision formation, in older adults. Notably, we 

conceptualised that despite an age-related slowing of sensory information 

processing for both multisensory and unisensory information, compensatory 

mechanisms for (a) the functions of unisensory modalities, and (b) decreased 

salience of stimulus properties may be apparent in older adults to ensure 

perceptual decision-making is not fully degraded. We therefore recommend 

further exploration of the relationship between sensory representation 

precision, stimulus effectiveness, and multisensory enhancements towards 

perceptual decision formation, both at a computational level and at a cortical 
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level, to further disentangle the extent older adults may benefit from 

multisensory integration in choice formation (Mozolic et al., 2012).  
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Chapter 4 

Investigating the Neuromodulatory Effects of Perceptual 

Learning on Multisensory Decision-Making 

4.1 Abstract 

Learning is associated with long-term improvements to an organism’s 

perceptual abilities, including the formation of rapid low-level decisions. 

Neurobiological accounts of unisensory perceptual learning have implicated 

multiple timescales and locations for improvements in decisional behaviour, 

i.e., lower RTs and higher choice accuracy, arguing that alterations to 

neuronal plasticity may arise in sensory cortices; and are therefore associated 

with the strengthening of sensory representations, or associative cortices; and 

are therefore associated with a strengthening of decision dynamics in 

consolidating post-sensory decision evidence representations. Such 

unisensory perceptual learning accounts, however, are not compatible with 

localising where we may observe benefits to perceptual learning towards 

multisensory decision formation. Undoubtedly, considering the spatiotemporal 

locus of perceptual learning benefits towards multisensory perceptual 

decision-making has not been explored in concordance with unisensory 

perceptual learning accounts. To address this, we coupled an audiovisual 

object categorisation paradigm with EEG to (a) analyse the neural activity 

underpinning the ability of participants to categorise faces and cars in 

embedded visual, auditory, and audiovisual stimuli, and (b) assess the effects 

of learning and experience on decision-making performance (i.e., RTs and 

choice accuracy) from completing the paradigm over three consecutive days. 

While we observed generalisable benefits towards perceptual decision 

formation from completing the study over three days, through significantly 

decreased RTs and higher choice accuracy, we did not observe any 

significant differences between categorisations of multisensory and 

unisensory stimuli. A methodological issue was identified with the application 

of multivariate LDA, in which there was a lack of sufficient statistical power in 

the classifier’s ability to identify categorisations of faces and cars in the 

embedded stimuli. An alternative analysis, however, decoding categorisations 

between multisensory (i.e., AV) and unisensory (i.e., V and A trial types), did 

uncover neural components suggesting earlier sensory and later post-sensory 

neural dynamics underpinning the beneficial effects of multisensory 

integration towards perceptual decision formation. Interestingly, the 

spatiotemporal locus of the identified components varied depending on the 
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unisensory modality providing the complementary evidence to be integrated. 

We conclude our findings discussing the potential implications of why we did 

not observe our results corresponding to our hypotheses, and recommend 

alterations to the paradigm for how to improve the LDA classification 

performance in order to further our understanding of the neuromodulatory 

effects of multisensory perceptual learning. 

  

4.2 Introduction 

Perceptual learning defines sustained, long-lasting, alterations to an 

organism’s perceptual system which improves its ability to respond to its 

environment (Gibson, 1963; 1968; Seitz, 2017). Specifically, it defines 

enhancements in our ability to categorise, detect, and/or discriminate sensory 

stimuli (Gilbert, Sigman, & Crist, 2001; Law & Gold, 2008; Goldstone, 1998). 

Importantly, perceptual learning is inextricably related to both unisensory (see 

Gold & Ding, 2011; Philiastides, Diaz, & Gherman, 2017 for reviews) and 

multisensory perceptual decision-making (Powers, Hevey, & Wallace, 2012; 

Proulx, Brown, Pasqualotto, & Meijer, 2014). 2AFC paradigms; considered the 

de facto choice of paradigm in perceptual decision-making literature (see 

section 1.1.2 Human Neuroimaging Research), instruct participants to 

categorise, detect, and/or discriminate sensory stimulus presentations as 

quickly and as accurately as possible, thereby facilitating a response from a 

limited range of choice alternatives. The expected outcome of perceptual 

learning in 2AFC paradigms is that with training, practice and/or task-

dependent experience, long-lasting improvements to decisional speed and 

accuracy improves during task participation, hence providing a benefit to the 

formation of perceptual decisions.  

 

Despite the obvious ubiquity of perceptual learning benefitting the formation 

of decisions, the underlying neural plasticity still requires further research. 

Previous studies have provided insights into the neurobiological mechanisms 

of perceptual learning (see Philiastides, Diaz, & Gherman, 2017, for review), 

but remain conflicted over when and where in an organism’s perceptual 

system we observe alterations to neural plasticity that underlie induced 

benefits towards decision formation. The residing notion is that learning-

induced neuronal plasticity can occur over multiple timescales and regions in 

the brain (Fahle, 2005). In consideration of the theoretical framework for 
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(unisensory) perceptual decision-making, traditional viewpoints posited that 

the influence of repeated exposure modulates earlier neural mechanisms in 

the sensory cortices (Seitz & Dinse, 2007). Findings demonstrating support 

for this long-standing hypothesis stem from studies identifying markers of 

neuronal plasticity in visual (Karni & Sagi, 1991; Sagi & Tanne, 1994), auditory 

(Bao, 2015; Irvine, 2018), and somatosensory (Bejjanki et al., 2011) cortices. 

Human neuroimaging research from Chen et al. (2015), for example, coupled 

visual 2AFC motion discrimination paradigm with fMRI to investigate the 

consequential effects of perceptual learning. They found improved choice 

accuracy over eight training days, with underlying enhancements in BOLD 

responses in area V3(A) of the visual cortex, as well as its effective 

connectivity to the IPS. They thus implicated that perceptual learning improves 

the functional interconnectivity of neurons in visual cortex for forced decision-

making. Comparably, Jehee et al. (2012) measured BOLD activity of 

participants who engaged in delayed decision-making in a visual orientation 

discrimination paradigm. Their results demonstrated neural enhancements 

among early areas of the visual cortex for repeatedly induced orientations, 

implicating that a functional reorganisation of neural substrates within early 

sensory cortices underlies the basis for prolonged benefits to perceptual 

decision formation.  

 

Alternatively, a more recent viewpoint posits that learning-induced neuronal 

plasticity does not modulate neural activity in sensory cortices, but rather, 

modulates neural activity in associative cortices. In other words, it does not 

alter representations of incoming sensory information, but how they are 

interpreted to infer the decision dynamics facilitating choice responses. A 

seminal study by Law & Gold (2008), for example, identified neural correlates 

in the middle temporal area (MT) and LIP of Macaque monkeys as they 

engaged in a RDK, which displayed different modulatory patterns as 

behavioural sensitivity to determining motion coherence increased through 

training. Specifically, motion-driven responses of LIP, but not MT, neurons 

correlated with this training-induced increase in behavioural sensitivity, 

suggesting inputs from sensory cortices did not strengthen the underlying 

neural pathways, but rather, it was the neural pathways for resultant sensory 

evidence representations being strengthened. Furthermore, an EEG study by 

Diaz et al. (2017) tested participants who completed the visual face-versus-

car categorisation paradigm over three consecutive days, in order to identify 

the benefits towards visual perceptual decision-making from forced choice 
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practice. Their results yielded two EEG components that corresponded with 

the time points of those uncovered from research by Philiastides et al. 

(Philiastides & Sajda, 2006a; 2006b; Philiastides, Ratcliff, & Sajda, 2006; see 

section 1.1.2 Human Neuroimaging Research). Specifically, they uncovered 

Early and Late components of perceptual decision formation at approximately 

183ms and 431ms over occipitotemporal and frontroparietal brain regions 

respectively. Completion of the experiment over three consecutive days 

elicited the observation that participants displayed comparative improvements 

in decisional speed (i.e., lower RTs) and accuracy (i.e., higher proportion of 

correct responses), and was attributed to simultaneous enhancements in 

classification performance to the Late, but not the Early, component. 

Furthermore, the onset of the Late component was delayed in time, and 

attributed to increases in RTs), as the categorisation of faces versus cars 

became more difficult with decreasing evidence salience. The authors implied 

that their findings demonstrated a strengthening of the connections between 

early sensory encoding and downstream associative regions, driving 

modulatory improvements to the post-sensory decision dynamics as a product 

of perceptual learning.  

 

Despite the contradictory findings inferring where and when we observe the 

neuromodulatory influences of perceptual learning towards decision 

formation, it can be concluded that perceptual learning is inextricably linked to 

perceptual decision-making. In order to further our understanding of the 

consequential effects to neural plasticity, an understanding of how perceptual 

learning is inextricable linked to multisensory perceptual learning may 

contribute to narrowing our overall understanding. Comparably, similar 

parallels can be considered between unisensory hypotheses of the nature and 

location of perceptual learning in the brain, and hypotheses of the nature and 

location of multisensory perceptual decision-making in the brain (see section 

1.2.3 Where Do the Benefits of Multisensory Integration Occur Within 

Perceptual Decision-Making?). Put concisely, the spatiotemporal locus of 

multisensory perceptual learning may coincide with the spatiotemporal locus 

of benefits from perceptual learning.  

 

In relation to early multisensory perceptual learning benefits, for example, 

Powers et al. (2012) analysed fMRI BOLD activity of participants who were 

trained to improve decision-making performance in an audiovisual 

simultaneity judgement training paradigm. They characterised regions of 
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auditory and visual cortices that exhibited decreases in BOLD activity during 

testing on the second day, with dynamic causal modelling predicting an 

increase in resting state effective connectivity, which reduced the window for 

temporal binding (i.e., the Temporal Binding Window; TBW), thereby 

strengthening early bidirectional sensory connections for multisensory 

integration. Comparably, Ross et al. (2022) coupled fMRI with recordings of 

continuous narrative speech in order to inquire into the neural regions that 

showed audiovisual enhancement during articulatory speech perception. 

BOLD fMRI responses demonstrated functional connectivity of thalamic brain 

regions along the visual and auditory pathways with bilateral Superior 

Temporal Sulcus (STS) and amygdalae; regions notably associated with early 

multisensory integration in speech perception (Calvert & Thesen, 2004). 

However, further studies have instead inferred neural indices that indicate 

perceptual learning elicits later, post-sensory, multisensory benefits towards 

decision formation. For example, Yang et al. (2018) applied EEG to older and 

younger participants who engaged with an audiovisual spatiotemporal 

discrimination paradigm instructing them to categorise spatiotemporally 

congruent and incongruent presentations of auditory and visual stimuli. Their 

results highlighted greater P300 ERP amplitudes in older adults after 

spatiotemporal perceptual training; a temporal-parietal potential associated 

with selective attention (Polich, 2007), but no significant effects on P300 ERP 

amplitudes in younger adults. This implied that multisensory perceptual 

learning improves cognitive abilities, with greater modulatory effects on 

malleable regions of the ageing brain associated with post-sensory decision 

dynamics. Furthermore, Zilber et al. (2014) trained participants to discriminant 

visual colour coherence between RDKs that displayed visual only, 

audiovisual, and visual with auditory noise RDKs while recording brain activity 

using MEG. Selectivity of ventrolateral prefrontal cortex (vlPFC) responses 

were demonstrated across all three RDK variants towards learned coherence 

levels, but neural selectivity in the human Medial Temporal complex (hMT+) 

was only demonstrated in the audiovisual RDK variant, correlating with post-

sensory decision-making performance. Their findings demonstrate empirical 

support for the Reverse Hierarchy Theory of Learning (Ahissar & Hochstein, 

2004), which theories that supramodal processing is optimised from late 

decisional processes capitalizing on sensory invariant representations and 

feeding back globally towards sensory modalities.  
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Despite increasing interest, whether multisensory perceptual learning 

enhances multisensory integrative benefits, and if so how, remains an 

underexplored and conflicting field of research. Specifically, a focus on where 

we may observe multisensory perceptual learning benefits, in conjunction with 

the processes theorised in a multisensory perceptual decision-making 

framework, remains underexplored in the research field, and is limited by the 

wide variety of experimental paradigms and modelling variants utilised. In 

particular, this confounds the assumption of context invariance; defined as the 

assumption which states unisensory signal processing is independent of its 

embedment in the induced experimental context (i.e., instructions; Liu & Otto, 

2020). As such, conflations of enhanced multisensory integration within 

perceptual decision formation as purely sensory, or post-sensory in respect to 

modulating decision dynamics (i.e., perceptual inference), are prevalent in 

limiting our understanding of how learning enhances the formation of rapid 

multisensory decisions (Noppeney, 2021).  

 

In this study, we sought to explore how perceptual learning modulates the 

underlying cognitive and neural mechanisms of multisensory perceptual 

decision formation. In particular, we sought to see if any of the unisensory 

perceptual learning hypotheses could account for the development of 

multisensory benefits towards decision formation during audiovisual object 

categorisation. In addition, we further sought to pinpoint whether perceptual 

learning would heighten any observed multisensory integrative benefits 

towards perceptual decision formation (i.e., decreased RTs and/or increased 

choice accuracy) over the course of three consecutive days. This was 

achieved through comparison of behavioural performance differences in RTs 

and choice accuracy (i.e., binary responses) between multisensory (i.e., 

audiovisual) and unisensory (i.e., visual or auditory) trial types over three 

consecutive days. We used another modified variant of Franzen et al. (2020)’s 

audiovisual face-versus-car categorisation paradigm, coupled with EEG, to 

further discern the modulatory effects of learning on the underlying neural 

recordings. To characterise the neural dynamics underlying any observable 

behavioural benefits, we analysed single-trial EEG activity using multivariate 

LDA (Parra et al., 2002; 2005; Sajda et al., 2009; Philiastides & Sajda, 2006a; 

2006b; Philiastides, Ratcliff, & Sajda, 2006; Philiastides et al., 2014), to 

identify patterns of activity discriminating (1) face-versus-car stimulus 

categorisations (i.e., within), and (2) between multisensory and unisensory 

trial types respectively.  
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4.3 Materials and Methodology 

4.3.1 Participants 

22 participants (male = 14, female = 8; mean age = 23.70; standard deviation 

= 2.79; age range = 18-29) were opportunistically recruited from the University 

of Leeds, and received £45 (UK sterling) for successful completion of the full 

experiment (i.e., over three consecutive days; see section 4.3.3 Experimental 

Paradigm and Procedure). All participants were right-handed, reported normal 

hearing, normal or corrected-to-normal vision, and had no history of 

neurological conditions. The study was approved by the ethics committee of 

the Faculty of Biological Sciences at the University of Leeds (BIOSCI 19-021) 

and conducted in accordance with the Declaration of Helsinki (World Medical 

Association, 2013).  

 

4.3.2 Stimuli 

We used the same stimuli, outlined in Chapter 3 (see section 3.3.2 Stimuli), 

consisting of 36 grayscale images (18 images of faces and cars respectively) 

and 36 sounds (18 sounds of human speech and car/street-related sounds 

respectively) adapted from previous experiments (Diaz et al., 2017; Franzen 

et al., 2020; Philiastides & Sajda, 2006a; 2006b; 2007; Philiastides, Ratcliff, & 

Sajda, 2006). However, all images were instead displayed on a purple 

background (RGB [102 0 128]) instead of a white background (RGB [255 255 

255]), and feedback was replaced by two images of a cartoon scientist 

illustrating two possible outcomes: (a) smiling and holding his thumb up for 

correct responses, and (b) frowning and holding his thumb down for incorrect 

responses (see sections 3.3.2 Stimuli and 3.3.3 Experimental Paradigm and 

Procedure). The visual stimulus display was controlled by a Stone 64-bit 

based machine (CPU: i7-9700; RAM: 500GB SSD) running Windows 

Professional 7 (Linux-x86_64-bit) and PsychoPy presentation software 

(version 1.92.01; Pierce et al., 2019). All images were presented on an Iiyama 

ProLite B2484HSU 24-inch monitor (resolution: 1920 x 1080 pixels; refresh 

rate: 75 Hz). Participants were seated 60cm from the visual stimulus display 

at all times. Auditory stimuli were presented using Sennheiser HD 280 

headphones, with the sound intensity of all tones matched to 72 DbA SPL 

(across left and right ears).  
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4.3.3 Experimental Paradigm and Procedure 

We employed a similar modified variant of the audiovisual face-versus-car 

categorisation paradigm adapted from Franzen et al. (2020). As was 

previously outlined in Chapter 3 (see subsection 3.2.3 Experimental Paradigm 

and Procedure), this is a 2AFC paradigm that requires participants to 

categorise, on a single-trial basis, whether a face or a car is embedded in a 

presented stimulus. The presented stimuli consisted of the following: (a) 

images of faces and cars (visual stimuli; V), (b) sounds of human speech or 

car/street-related sounds (auditory stimuli; A), or (c) simultaneously presented 

and matching (i.e., congruent) images and sounds of faces/human speech 

and cars/car or street-related sounds (audiovisual stimuli; AV). All stimuli were 

presented for a period of 300ms and in a pseudorandomised sequence. Two 

levels of stimulus phase coherence were used to vary the amount of sensory 

evidence in presented images and sounds (i.e., “noise”; High Coherence; HC 

and Low Coherence; LC, see sections 3.3.2 Stimuli, 3.4.3 Experimental 

Paradigm, and 4.3.2 Stimuli respectively), therefore manipulating the difficulty 

of categorising embedded stimuli. Participants were instructed to indicate their 

categorised decision via a standard keyboard button press as quickly and 

accurately as possible, with RTs and binary responses (i.e., correct or 

incorrect) collected as dependent variable measurements quantifying 

behavioural performance (and therefore perceptual decision formation). Each 

participant performed this paradigm on three consecutive days, with the 

experiment taking place at the same time on each day. Successful completion 

of the experiment involved a commitment to completing all trials on each day. 

On the first day, participants completed a maximum of 15 trials in order to 

familiarize themselves with the structure and pace of the paradigm.  

 

Figure 4.1 illustrates the procedure on a single-trial basis.  Prior to completing 

the experimental paradigm, participants were presented with an ethical 

consent form, study information, and instructions for preparation prior to 

completing the paradigm. The instructions explicitly specified the instructions 

of the paradigm itself, whereby they would be shown a series of quick and 

distorted stimuli consisting of images only (V), sounds only (A), and images 

and sounds, presented together, of faces/human speech or cars/street-related 

noises (AV), and asked to categorise the presented stimulus as either a face 

or a car, using the left and right arrow standard keyboard buttons, as quickly 

and as accurately as possible, with further instructions to position their left 

index and middle fingers over the left and right arrow keys respectively. 
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Notably, they were informed that audiovisual stimuli would always be 

matching (i.e., congruent) and that images and sounds would neither be 

mismatching (i.e., face images-traffic-related sounds, car images-human 

speech sounds), and instructed to refrain from categorising images and 

sounds individually in these trials. They were further informed that if they were 

unsure in their decision to guess to the best of their capabilities since they had 

a maximum time limit to indicate a response (1250ms). Finally, participants 

were instructed that they would receive visual feedback following each 

response.  

 

Participants completed the experiment in a darkened and sound-attenuated 

room on each day. Each trial started with a fixation cross presented centrally 

on-screen for 1000ms. Then, one of three stimuli (i.e., images only, sounds 

only, simultaneously presented images and sounds) were presented for 

300ms. Auditory stimuli were accompanied by an image of a speakerphone 

on screen to immediately indicate to the participant that the presented 

stimulus is a sound only. Participants were then instructed to categorise, as 

quickly and as accurately as possible, the presented stimuli using the left and 

right arrow response keys for face and car stimuli respectively. The response 

deadline was set at 1250ms. Feedback was presented centrally for 500ms for 

two possible outcomes: (a) a cartoon scientist smiling and holding his thumb 

up for correct responses, or (b) a cartoon scientist frowning and holding his 

thumb down for incorrect responses (see section 4.3.2 Stimuli). On each day, 

we presented 216 trials (divided equally between the two response categories, 

i.e. 108 face trials and 108 car trials, and the two levels of stimulus coherence, 

i.e. 108 HC trials and 108 LC trials), presented in three blocks of 72 trials each 

(divided equally between the stimuli, i.e. 24 V, 24 A, and 24 AV trials, totalling 

72 trials for each stimuli respectively), with a 60 second rest period between 

blocks. In total, we presented 648 trials over the three days. The entire 

experiment lasted approximately 20-25 minutes per day.    
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Figure 4.1 Experimental Paradigm. a, Schematic representation of the 
experimental paradigm on a single-trial basis. Participants were instructed to 
categorise noisy representations of faces and cars. First, a fixation cross was 
presented centrally on-screen for 1000ms. Then, a brief stimulus, which was 
either an image (V), a sound (A), or a simultaneously presented image and 
sound (AV), was presented for 300ms, and followed by a delay period of a 
maximum of 1250ms during which participants were instructed to indicate their 
response with a keyboard button press (left/right keyboard button presses for 
face/car categorisations respectively). Following their response, feedback 
was then presented for 500ms (a scientist holding a thumbs up or a thumbs 
down, for a correct or incorrect response, respectively), which preceded an 
inter-stimulus interval (ISI) of 500ms (illustrated by the ellipsis). b, Sample 
face (top) and car (bottom) images at the two levels of stimulus phase 
coherence used in the experimental paradigm (Low Coherence: 32.5%, High 
Coherence: 37.5%). 

 

4.3.4 Statistical Analysis of Behavioural Data 

For each participant, RTs (calculated in milliseconds) and choice accuracy 

(calculated as a binary variable of correct and incorrect responses) were 

collected as single-trial dependent variable measurements quantifying 

behavioural performance (and hence perceptual decision formation) for three 

categorical independent variables: (1) sensory trial type (three levels: V | A | 

AV), (2) stimulus coherence (two levels: HC | LC), and (3) testing day (three 

levels: Day One | Day Two | Day Three). Trials in which participants did not 

facilitate a choice response within the 1250ms delay period were excluded 

from further analyses. Overall, 410 trials were excluded from an initial 14256 

trials, leaving a remaining total of 13846 trials. Next, an Anderson-Darling test 

was used to assess if RTs were normally distributed (Anderson & Darling, 

1954; Nelson, 1998; Stephens, 1974). As we have previously outlined (see 

sections 2.3.5 and 3.3.4 Statistical Analysis of Behavioural Data respectively), 

this is because it is commonly observed in research that RT distributions tend 
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to be not normally distributed, with histograms prominently illustrating a 

positive right skew (Marmolejo-Ramos et al., 2015; Whelan, 2008). As 

expected, the assumption of normality was found to be violated for RTs over 

the full pre-processed behavioural dataset (A2 = 325.45, p < 0.001). 

 

Therefore, we quantified participants’ behavioural performance using GLMMs 

using the lme4 package in RStudio (Bates et al., 2014; R Core Team, 2022), 

specifying gamma and binomial logit models for log-transformed RTs and 

choice accuracy respectively4. Our GLMM analyses included main effects and 

two-way interactions of the three predictors: sensory modality (three levels: 

Visual, V; Auditory, A; Audiovisual, AV), stimulus coherence (two levels: High 

Coherence, HC; Low Coherence, LC), and testing day (three levels: Day One; 

Day Two; Day Three), along with by-participant random slopes and random 

intercepts. Random correlations were excluded for all GLMMs. All GLMMs 

were fit using a bobyqa optimizer to ensure model convergence. Post Hoc 

likelihood-ratio (χ2) model comparisons were used to quantify the predictive 

power and significance of all main effects and interactions in our GLMM 

analyses. These Post Hoc likelihood-ratio (χ2) model comparisons compared 

full models (i.e., models including main effects, their two-way interactions, and 

random effects) to reduced models that excluded the main predictor or two-

way interaction in question. 

 

4.3.5 EEG Recording and Preprocessing 

Continuous EEG data was recorded simultaneously with experiment 

participation in a darkened and sound-attenuated room using a 64-channel 

EEG amplifier system (actiCHamp Plus, Brain Products, GmbH, Germany). 

Ag/AgCl (sinter) scalp electrodes were placed in accordance with the 

international 10-20 positioning system on an actiCAP cap (Brain Products 

GmbH, Germany). A separate ground electrode was used, with all channels 

initially referenced to electrode FCz (placed on the midline sagittal plane of 

the scalp) during EEG recording. The input impedance of all channels was 

adjusted to <15 kΩ through application of a high viscosity electrolyte gel 

(SuperVisc, Brain Products GmbH, Germany) between each electrode and 

the scalp to minimize the resistance to electrode current flow. Brain Vision 

                                            

4 See section 3.3.4 Statistical Analysis of Behavioural Data for an outline of 
the rationale of using GLMMs for statistical analysis of behavioural data.  
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Recorder (version 1.22.01, Brain Products GmbH, Germany) was used to 

record EEG data and trial-specific information, including event triggers for 

displayed stimuli, response key presses, and feedback presentations. All EEG 

recordings were sampled at a rate of 1000 Hz and underwent online filtering 

using a 0.0016-250Hz analog band-pass filter. Upon completion of data 

collection, recordings were stored for offline preprocessing and analysis in 

MATLAB (Mathworks).  

 

Datasets from individual sessions (i.e., testing days) for each participant were 

preprocessed offline separately in MATLAB using EEGLAB (Delorme & 

Makeig, 2004). All datasets were re-referenced to obtain a common average 

reference, which computes the signal average at all EEG channel locations, 

and subtracts it from the EEG signal at each electrode location at the sampled 

time point. Each dataset was then filtered using a Butterworth band-pass filter 

between 0.5-40Hz cut-off frequencies in order to minimise linear trends from 

phase-related frequency distortions. This minimises the introduction of 

artefact filtering at shorter time intervals (i.e., trials). Independent Component 

Analysis (ICA) was used to identify potential noise artefacts, both internal 

(e.g., eye blinks and saccades) and external (e.g. line and/or channel noise) 

for subsequent removal (Delorme et al., 2004; 2007; 2012; Makeig et al., 

1995; 2004; Onton, Delorme, & Makeig, 2005). This was applied twice to 

ensure sufficient convergence during feature decomposition. The built-in 

function ICLabel (Pion-Tonachini, Kreutz-Delgado, & Makeig, 2019) was used 

to distinguish independent components that were characteristic of sources 

originating from the brain from those that were characteristic of non-task 

related eye and bodily movements, heartbeats, and/or noisy electrode 

channels. Finally, epochs from -100ms to 1000ms relative to stimulus-onset 

were extracted on a single-trial basis. For two participants (SO2 and SO5), 

single noisy channels (TP9 and FP2 respectively) were interpolated to 

minimise noise artefacts from unexpected non-neural resources, and to 

reconstruct EEG signals from neighbouring electrodes.  

 

4.3.6 EEG Signal Analysis – Linear Discriminant Analysis 

We applied single-trial multivariate LDA (Parra et al., 2002; 2005; Philiastides 

& Sajda, 2006a; 2006b; Philiastides, Ratcliff, & Sajda, 2006; Philiastides et al., 

2014; Sajda et al., 2009) to extract stimulus-locked EEG components that 

discriminated (1) face-versus-car trial types within sensory trial types (Visual; 



- 150 - 

V, Auditory; A, and Audiovisual; AV), and (2) AV-versus-V and AV-versus-A 

trial types between multisensory and unisensory trial types, across testing 

days (Day 1, Day 2, and Day 3). As we have previously outlined (see section 

2.3.7 EEG Signal Analysis – Linear Discriminant Analysis), this method 

applies a linear multivariate classifier to EEG data in order to estimate a spatial 

weighting vector that quantifies the optimal combination of EEG sensor linear 

weights. When applied to multichannel EEG data, this yields a one-

dimensional projection that maximally discriminates between two conditions 

of interest. This projection represents the “discriminating component” that 

integrates all signal information across the multichannel EEG array, and 

reduces effects common between two conditions of interest. Compared to 

univariate trial-averaging approaches, notably ERP analyses, multivariate 

approaches are better able to spatially integrate information across the 

multidimensional EEG sensor space, yielding components which both 

preserve inter-trial signal variability and increase SNR (Sajda et al., 2011) for 

preserved task-relevant information.  

 

We used a sliding window approach (Parra et al., 2005; Sajda et al., 2009) to 

identify projections of the multichannel EEG signal, 𝑥𝑖(𝑡), where 𝑖 =

[1 … 𝑁 𝑡𝑟𝑖𝑎𝑙𝑠] and 𝑁 is the total number of trials, within 100ms time windows 

that maximally discriminated (1) face-versus-car trial types within sensory trial 

types (Visual; V, Auditory; A, and Audiovisual; AV) and (2) AV-versus-V and 

AV-versus-A trial types between sensory trial types, across testing day (Day 

1, Day 2, and Day 3). All time windows had a width of 100ms, with the window 

centre 𝑡 shifted from -100ms to 1000ms, relative to the onset of stimulus 

presentations (i.e., 0ms), in 10ms increments. Specifically, we used logistic 

regression (Parra et al., 2002; 2005) to learn a 64-channel spatial weighting 

vector 𝑤(𝑡) that achieved maximal discrimination within each time window. 

This yielded a one-dimensional projection, 𝑦𝑖(𝑡), for each trial 𝑖 and given 

window 𝑡: 

 

𝑦(𝑡) = 𝑤𝑇𝑥(𝑡) =  ∑ 𝑤𝑖𝑥𝑖(𝑡)

𝐷

𝑖=1

 

 

Here, 𝐷 represents the number of channels in the multichannel EEG array and 

𝑇 refers to a matrix transpose operator. Our classifier was designed to map 
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component amplitudes, 𝑦𝑖(𝑡), for (1) categorizing face-versus-car trial types 

within sensory trial types, and (2) categorizing sensory trial types, thus 

separating activity maximizing differences and minimizing similarities of neural 

processes common to two conditions of interest. In discriminating individual 

conditions of interest, the classifier maps negative and positive discriminant 

component amplitudes to (1) face-versus-car trial types respectively within 

each sensory trial type, and (2) V-versus-AV and A-versus-AV trial types 

between sensory trial types respectively. Thus, larger negative values indicate 

a higher likelihood of categorizing (1) face trial types, and (2) V (versus AV) 

and A (versus AV) trial types respectively, whereas larger positive values 

indicate a higher likelihood of categorizing (1) car trial types, and (2) AV 

(versus V) and AV (versus A trials respectively, with values near zero 

reflecting less discriminative component amplitudes.  

 

We quantified classification performance for each time window using the area 

under a receiver operating characteristic (ROC) curve (Green & Swets, 1966), 

referred to as an 𝐴𝑧 value, using a leave-one-out cross-validation procedure 

(Gherman & Philiastides, 2015; Philiastides & Sajda, 2006a; 2006b). To 

determine group significance thresholds for discriminator performance, we 

implemented a permutation test, whereby (1) face-versus-car and (2) V-

versus-AV and A-versus-AV trial labels were randomized and submitted to the 

leave-one-out procedure. This randomization procedure was repeated 100 

times, producing a probability distribution for 𝐴𝑧, which we used as reference 

to estimate the 𝐴𝑧 value leading to a significance level of 𝑝 < 0.05.  

 

Finally, the linearity of our model allowed us to compute scalp projections of 

the discriminating components for V-versus-AV and A-versus-AV trial types, 

resulting from equation (1), by estimating a forward model as:  

 

𝑎(𝑡) =  
𝑥(𝑡)𝑦(𝑡)

𝑦(𝑡)𝑇𝑦(𝑡)
 

 

In which the EEG data (𝑥) and discriminating components (𝑦) are organized 

as matrix and vector notations, respectively, for convenience. Here, the EEG 

matrix, 𝑥𝑖(𝑡), denotes channel activity across rows and trials across columns 

for all 10ms increments in time window 𝑡, whereas discriminating components, 
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𝑦𝑖(𝑡), are organized as single-trial vectors, 𝑦(𝑡), with each row is from trial 𝑖. 

Such forward model implementations can be displayed as scalp topographies 

and interpreted as the coupling between discriminating component amplitudes 

and observed multichannel EEG activity, whereby vector 𝑎(𝑡) reflects the 

coupling of the discriminating component 𝑦(𝑡) that explains most of the activity 

in 𝑥(𝑡), with maps illustrating this optimal component-activity coupling 

(Philiastides et al., 2014).  

 

4.4 Results 

4.4.1 Behavioural Results 

Generalised Linear Mixed-Effects Models (GLMMs) and post hoc likelihood-

ratio (χ2) model comparisons were used to analyse log-transformed RTs and 

choice accuracy (using gamma and binomial logit models for log-transformed 

RTs and choice accuracy respectively) as a function of sensory trial type 

(Visual; V, Auditory; A, and Audiovisual; AV), stimulus coherence (High 

Coherence; HC, and Low Coherence; LC) trial types, and testing day (Day 

One, Day Two, and Day Three), as well as their subsequent two-way 

interactions and three way interactions.  

 

4.4.1.1 Reaction Time GLMM Analyses Results 

Our log-transformed RT GLMM analyses demonstrated significant predictive 

power of the main effects of sensory trial type (MedianV: 5.99 log-RT post-

stimulus offset, MedianA = 6.15 log-RT post-stimulus offset, MedianAV: 5.95 

log-RT post-stimulus offset; χ2 = 1108.62, df = 2, p < 0.001), stimulus 

coherence trial type (MedianHC = 5.99 log-RT post-stimulus offset, MedianLC 

= 6.07 log-RT post-stimulus offset; χ2 = 107.74, df = 1, p < 0.001), and testing 

day (MedianDay One = 6.15 log-RT post-stimulus offset, MedianDay Two = 6.03 

post-stimulus offset, MedianDay Three = 5.95 log-RT post-stimulus offset; χ2 = 

651.41, df = 2, p < 0.001).  

 

Furthermore, our RT GLMMs demonstrated significant predictive power of the 

main two-way interactions between sensory trial type and stimulus coherence 

(MedianV | HC = 5.95 log-RT post-stimulus offset, MedianA | HC = 6.15 log-RT 

post-stimulus offset, MedianAV | HC = 5.91 log-RT post-stimulus offset, MedianV 

| LC = 6.03 log-RT post-stimulus offset, MedianA | LC = 6.18 log-RT post-stimulus 
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offset, MedianAV | LC = 5.99 log-RT post-stimulus offset; χ2 = 107.40, df = 2, p 

< 0.001), but not of the main interactions between sensory trial type and 

testing day (MedianV | Day One  = 6.11 log-RT post-stimulus offset, MedianV | Day 

Two = 5.99 log-RT post-stimulus offset, MedianV | Day Three = 5.91 log-RT post-

stimulus offset, MedianA | Day One  = 6.25 log-RT post-stimulus offset, MedianA | 

Day Two = 6.15 log-RT post-stimulus offset, MedianA | Day Three  = 6.07 log-RT post-

stimulus offset, MedianAV | Day One  =  6.03 log-RT post-stimulus offset, MedianAV 

| Day Two  = 5.95 log-RT post-stimulus offset, MedianAV | Day Three  = 5.86 log-RT 

post-stimulus offset; χ2 = 0.27, df = 2, p = 0.875) or between stimulus 

coherence trial type and testing day (MedianHC | Day One  = 6.11 log-RT post-

stimulus offset, MedianHC | Day Two = 5.99 log-RT post-stimulus offset, MedianHC 

| Day Three = 5.91 log-RT post-stimulus offset, MedianLC | Day One  = 6.18 log-RT 

post-stimulus offset, MedianLC | Day Two  = 6.07 log-RT post-stimulus offset, 

MedianLC | Day Three = 5.99 log-RT post-stimulus offset; χ2 = 3.09, df = 2, p = 

0.079).  

 

Finally, our RT GLMMs demonstrated no significant predictive power of the 

main three-way interaction between sensory trial type, stimulus coherence 

trial type, and testing day conditions (Figure 4.2a; MedianV | HC | Day One = 6.07 

log-RT post-stimulus offset, MedianV | HC | Day Two = 5.95 log-RT post-stimulus 

offset, MedianV | HC | Day Three = 5.86 log-RT post-stimulus offset, MedianV | LC | 

Day One = 6.15 log-RT post-stimulus offset, MedianV | LC | Day Two = 6.07 log-RT 

post-stimulus offset, MedianV | LC | Day Three = 5.95 log-RT post-stimulus offset, 

MedianA | HC | Day One = 6.21 log-RT post-stimulus offset, MedianA | HC | Day Two = 

6.13 log-RT post-stimulus offset, MedianA | HC | Day Three = 6.03 log-RT post-

stimulus offset, MedianA | LC | Day One = 6.28 log-RT post-stimulus offset, MedianA 

| LC | Day Two = 6.18 log-RT post-stimulus offset, MedianA | LC | Day Three = 6.09 log-

RT post-stimulus offset, MedianAV | HC | Day One = 5.99 log-RT post-stimulus 

offset, MedianAV | HC | Day Two = 5.91 log-RT post-stimulus offset, MedianAV | HC | 

Day Three = 5.81 log-RT post-stimulus offset, MedianAV | LC | Day One = 6.07 log-RT 

post-stimulus offset, MedianAV | LC | Day Two = 5.99 log-RT post-stimulus offset, 

MedianAV | LC | Day Three = 5.86 log-RT post-stimulus offset, χ2 = 1.42, df = 2, p = 

0.491) 

 

4.4.1.2 Choice Accuracy GLMM Analyses Results 

Our choice accuracy GLMMs demonstrated significant predictive power of the 

main effects of sensory trial type (Proportion CorrectV = 0.913, Proportion 
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CorrectA = 0.908, Proportion CorrectAV = 0.955; χ2 = 140.64, df = 2, p < 0.001), 

stimulus coherence trial type (Proportion CorrectHC = 0.949, Proportion 

CorrectLC = 0.903; χ2 = 90.22, df = 1, p < 0.001), and testing day (Proportion 

CorrectDay One = 0.901, Proportion CorrectDay Two = 0.935, Proportion CorrectDay 

Three = 0.942; χ2 = 90.70, df = 2, p < 0.001).  

 

Furthermore, our choice accuracy GLMMs demonstrated significant predictive 

power of the main two-way interactions between sensory trial type and 

stimulus coherence trial type (Proportion CorrectV | HC = 0.944, Proportion 

CorrectA | HC = 0.929, Proportion CorrectAV | HC = 0.973, Proportion CorrectV | LC 

= 0.884, Proportion CorrectA | LC = 0.888, Proportion CorrectAV | LC = 0.938; χ2 

= 6.60, df = 2, p = 0.037), but not of the main interactions between sensory 

trial type and testing day (Proportion CorrectV | Day One = 0.878, Proportion 

CorrectV | Day Two = 0.924, Proportion CorrectV | Day Three = 0.940, Proportion 

CorrectA | Day One = 0.892, Proportion CorrectA | Day Two = 0.912, Proportion 

CorrectA | Day Three = 0.921, Proportion CorrectAV | Day One = 0.933, Proportion 

CorrectAV | Day Two = 0.968, Proportion CorrectAV | Day Three = 0.965; χ2 = 3.75, df 

= 2, p = 0.154), or between stimulus coherence trial type and testing day 

(Proportion CorrectHC | Day One = 0.930, Proportion CorrectHC | Day Two = 0.51, 

Proportion CorrectHC | Day Three = 0.964, Proportion CorrectLC | Day One = 0.872, 

Proportion CorrectLC | Day Two = 0.918, Proportion CorrectLC | Day Three = 0.920; χ2 

= 0.60, df = 2, p = 0.439).  

 

Finally, our choice accuracy GLMMs demonstrated no significant predictive 

power of the main three-way interaction between sensory trial type, stimulus 

coherence trial type, and testing day conditions (Figure 4.2b; Proportion 

CorrectV | HC | Day One = 0.920, Proportion CorrectV | HC | Day Two = 0.946, Proportion 

CorrectV | HC | Day Three = 0.964, Proportion CorrectV | LC | Day One = 0.836, 

Proportion CorrectV | LC | Day Two = 0.901, Proportion CorrectV | LC | Day Three = 

0.915, Proportion CorrectA | HC | Day One = 0.916, Proportion CorrectA | HC | Day Two 

= 0.927, Proportion CorrectA | HC | Day Three = 0.944, Proportion CorrectA | LC | Day 

One = 0.868, Proportion CorrectA | LC | Day Two = 0.897, Proportion CorrectA | LC | 

Day Three = 0.898, Proportion CorrectAV | HC | Day One = 0.953, Proportion CorrectAV 

| HC | Day Two = 0.980, Proportion CorrectAV | HC | Day Three = 0.985, MedianAV | LC | Day 

One = 0.912, Proportion CorrectAV | LC | Day Two = 0.955, MedianAV | LC | Day Three = 

0.945, χ2 = 0.42, df = 2, p = 0.812). 
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Figure 4.2 Behavioural Results. a, Median log-transformed RTs and b, 
choice accuracy (proportion of correct responses) for condition (diamonds) 
and participants (scatter points) across two levels of stimulus coherence (Left. 
High Coherence trials; Right. Low Coherence trials) as a function across three 
levels of sensory trial type (Visual: purple, Auditory: orange, Audiovisual: 
green) and testing days (Day One, Day Two, and Day Three). For all graphs, 
standard errors of the median and mean were computed for median log-
transformed RTs and choice accuracy respectively, as represented by the 
shaded regions across groups.  

 

4.4.2 EEG Signal Analysis Results 

First, we analysed the EEG data to identify neural components that 

discriminated between face-versus-car trial types embedded within visual (V), 
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auditory (A), and audiovisual (AV) sensory trial types across testing days. For 

each participant, we performed single-trial multivariate LDA to identify linear 

spatial weightings (i.e., spatial filters) of the EEG sensors that discriminated 

face-versus-car trial types. The identified weightings yielded a projection of 

the 64-dimensional EEG space that maximally discriminated stimulus-locked 

face-versus-car trial types within pre-defined time windows of 100ms. Second, 

we analysed the EEG data to identify neural components that discriminated 

between multisensory (i.e., AV) and unisensory (i.e., A or V) trial types across 

testing days. For each participant, we performed single-trial multivariate LDA 

to identify linear spatial weightings (i.e., spatial filters) of the EEG sensors that 

discriminated multisensory (i.e., AV) versus unisensory (i.e., A or V) trial types 

across testing days. The identified weightings produced a projection of the 64-

dimensional EEG space that maximally discriminated stimulus-locked AV-

versus-V, and AV-versus-A trial types, within pre-defined time windows of 

100ms.  

 

Application of the linear spatial filters to the single-trial EEG dataset produced 

measurements quantifying the resulting component amplitudes discriminating 

between the aforementioned conditions of interest (γ, see sections 2.3.7 EEG 

Signal Analysis – Linear Discriminant Analysis and 4.3.6 EEG Signal Analysis 

– Linear Discriminant Analysis). These components amplitudes can be used 

as an index of the quality of categorising: (1) face-versus-car trial types 

embedded within V, A, and AV sensory trial types, and (2) AV-versus-V and 

AV-versus-A trial types across testing days respectively. Namely, higher 

amplitudes, negative or positive, indicate higher neural evidence for two 

conditions of interest at a time, while amplitudes closer to zero indicate less 

neural evidence. For all multivariate analyses, we quantified the 

discriminator’s classification performance using area under a receiver 

operating characteristic curves (i.e., AUC-ROC; Az value), coupled with leave-

one-trial-out cross validation approaches, in order to control for overfitting. 

Compared to traditional approaches, which assume an Az value of 0.5 as 

chance performance, we performed permutation analyses using leave-one-

trial-out procedures that produced Az randomization distributions, computing 

group-average Az values, that lead to a conventional significance level of p = 

0.05. 
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Figure 4.3 Face-Versus-Car Multivariate Linear Discriminant Analysis 
Results. Mean multivariate discriminator performance (Az), quantified by 
leave-one-out cross-validation procedure, during face-versus-car trial type 
outcome discrimination of stimulus-locked EEG responses, as a function of 
testing day (Day 1, Day 2, and Day 3) within a, Visual (V), b, Auditory (A), and 
c, Audiovisual (AV) sensory trial types. Dashed black lines represent the 
group average permutation thresholds at p < 0.05 for face-versus-car trial type 
discriminator performance for all trial types across testing days. Shaded error 
bars across testing days denote the standard error of the mean across 
participants. Shaded area denotes the presentation of stimuli, from 0ms (post-
stimulus onset) to 300ms (post-stimulus offset).  

 

The performance of our stimulus-locked discriminators for decoding face-

versus-car trial types (within sensory trial types) across testing days did not 

appear to reveal broad time windows in which face-versus-car trial type 

decoding could be considered statistically reliable (-100-1000ms post-

stimulus onset). As observed in Figure 4.3, this is due to the performance of 

all discriminators predominantly remaining below the significance levels 

estimated from permutation testing. We did observe exceptions within V and 

AV trial types, in which face-versus-car decoding did exceed Az values in 

which classification performance could be considered statistically reliable. 

These were localised at approximately 400-600ms post-stimulus onset within 
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V trial types (Figure 4.3a) and at approximately 600-700ms post-stimulus 

onset within AV trial types (Figure 4.3c). However, we did not observe any 

systematic differences in classification performance over testing day. Overall, 

these results indicate that multivariate LDA classification could not exhibit 

significant neural information for classification of face-versus-car trial types, 

nor could it exhibit pronounced components to correlate peak discriminant 

output to identify temporally-specific time points to infer the underlying neural 

dynamics of multisensory perceptual learning. Consequently, we chose not to 

examine the resultant forward models, since any inferences for where in the 

brain would also not be statistically reliable.  

 

 

Figure 4.4 AV-versus-AV and AV-versus-A Trial Type Multivariate Linear 
Discriminant Analysis Results. Mean multivariate linear discriminator 
performance (Az), quantified by leave-one-out trial cross-validation 
performance, during outcome discrimination of stimulus-locked EEG 
responses, as a function of a, V versus AV trial types, and b, A versus AV trial 
types over testing days (Day 1; blue, Day 2; red, Day 3; green). Shaded error 
regions denote the standard error of the mean across participants. Shaded 
areas denote the stimulus presentation duration (300ms). Top. Scalp 
topographies at representative time windows corresponding to stimulus 
presentation duration in 50ms increments from 0ms (post-stimulus onset) to 
300ms (post-stimulus offset) over for a, V versus AV and b, A versus AV 
conditions, over testing days. Bottom. Scalp topographies at representative 
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time windows corresponding to EEG components, defined by peaks of 
maximum discrimination for a, V versus AV trial types (at approximately 
270ms), and b, A versus AV trial types (at approximately 170ms and 400ms 
respectively).  

 

However, the performance of our stimulus-locked discriminators for decoding 

AV-versus-V and AV-versus-A sensory trial types did reveal broad time 

windows for which decoding of sensory trial types could be considered 

statistically reliable. For AV-versus-V decoding, we observed increased 

discriminator performance from 0-300ms post-stimulus onset. Specifically, 

discriminator performance within this range was characterised by three 

components, all of which were localised at approximately 270ms post-stimulus 

onset (Figure 4.4a; Day 1: Az = 0.736; Day 2: Az = 0.735; Day 3: Az = 0.727). 

The corresponding scalp topographies, obtained from using the forward 

model, correlated peak discriminant output and EEG data (averaged over a 

100ms time window centered on the classification performance peak) 

consistently over right-lateralized occipital, centro-parietal, and left-lateralized 

fronto-central electrodes. For AV-versus-A decoding, we observed increased 

discriminator performance from approximately 0-400ms post-stimulus onset, 

characterized by two temporally-specific components arising at 170ms (Figure 

4.4b; Day 1: Az = 0.917; Day 2: Az = 0.890; Day 3: Az = 0.898) and 400ms 

(Figure 4.4b; Day 1: Az = 0.934; Day 2: Az = 0.892; Day 3: Az = 0.916) post-

stimulus onset. The corresponding scalp topographies, obtained from using 

the forward model, correlated peak discriminant output and EEG data 

(averaged over a 100ms time window centered on the classification 

performance peaks) consistently over right-lateralized parieto-occipital and 

left and central-lateralized fronto-central electrodes. Across participants, 

however, ANOVA analyses did not find any significant effects of testing day 

between AV-versus-A trial type peak components (170ms post-stimulus 

onset: F(2, 63) = 0.460, p = 0.636; 400ms post-stimulus onset: F(2, 63) = 

1.530, p = 0.224) nor AV-versus-V trial type peak components (270ms post-

stimulus onset: F(2, 63) = 0.040, p = 0.957).  

 

4.5 Discussion 

In our investigation of the effects of learning on multisensory perceptual 

decision-making, we did not find any significant evidence to demonstrate 

enhancements to decisional behaviour, nor modulations to the underlying 
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neural mechanisms, between multisensory and unisensory trial types. 

Whereas our behavioural findings implied a general benefit of perceptual 

learning on behavioural measurements of decision-making performance, in 

which we observed significantly lower RTs and higher choice accuracy across 

testing days, we did not observe any significant interactions between sensory 

trial type and testing day. In addition, no significant neural components were 

found for classifying face-versus-car trial types either within sensory trial types 

(i.e., visual, auditory, and audiovisual) across testing days. Since temporally-

specific Early and Late components were replicated across previous studies 

utilising similar variants of the face-versus-car object categorisation paradigm 

(Diaz et al., 2017; Franzen et al., 2020; Philiastides & Sajda, 2006a; 2006b; 

Philiastides, Ratcliff, & Sajda, 2006; 2009), we contend that our initial 

multivariate analysis lacked sufficient statistical power to not only capture 

similar developmental trajectories of discriminated EEG activity, but further 

capture potential effects of testing day as an indicator of the benefits of 

multisensory perceptual learning. Given previous research has discerned 

decision modulators, notably stimulus strength (Palmer, Huk, & Shadlen, 

2005) and pre-stimulus anticipation (Summerfield & De Lange, 2014) exert an 

influence on choice benefits (i.e., decreased speed and increased accuracy 

of facilitated responses), we contend the overall scope of improvement we 

initially aimed to elicit during our investigations of multisensory perceptual 

decision-making was confounded by further decisional modulators, as well as 

paradigm and stimulus dependencies, not considered. Thus, we outline 

recommendations for future replications of our study below that evaluate 

potential decision (neuro)modulators that may have confounding influences 

on our initial observations.   

 

One potential modulator to consider concerns the duration of stimulus 

presentations. We fixed the duration to 300ms across our implementations of 

the audiovisual face-versus-car categorisation paradigm (see sections 3.3.2 

Stimuli, 3.3.3 Experimental Paradigm and Procedure, 4.3.2 Stimuli, and 4.3.3 

Experimental Paradigm and Procedure in Chapters 3 and 4 respectively). In 

Chapter 3, our findings showed significant behavioural improvements in 

multisensory trial types (i.e., AV trial types) compared to unisensory trial types 

(i.e., V and/or A trial types; see section 3.4.1 Behavioural Results). In 

particular, we found faster RTs and higher proportions of correct responses, 

implying multisensory integrative benefits towards perceptual decision 

formation. Interestingly, this finding is contradictory to Franzen et al.’s findings 
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(Franzen et al., 2020), who did not find any significant effects of sensory trial 

type (i.e., AV versus V trial types) on RTs, nor a significant interaction with 

stimulus coherence trial type. Instead, they observed that RTs were, on 

average, slower for AV versus V trial types. Instead, they identified a 

multisensory integrative benefit for the accuracy of choice responses. Taking 

into consideration that the authors implemented a duration of 50ms for 

presenting sensory trial types, it is possible that the lack of replication in our 

RT analyses may be attributed to the timeframe for the encoding of stimulus 

presentations alters multisensory perceptual decision-making, and influences 

whether or not multisensory integrative benefits for decisional speed and/or 

accuracy may be discerned. Previous literature has outlined that paradigm 

and stimulus dependencies can govern the likelihood of multisensory temporal 

processes benefitting perceptual decision formation (Otto, Dassy, & 

Mamassion, 2013; Stevenson & Wallace, 2013). In consideration of the 

principle of temporal concordance outlined in Chapter 1 (see sections 1.2.1 

Multisensory Integration and 1.2.2 The Benefits of Multisensory Integration for 

Perceptual Decision-Making respectively), it may be important to consider that 

the variability in behavioural results observed across our studies should be 

considered in accordance to research outlining that the length of the Temporal 

Binding Window may influence the recorded behavioural indices of 

multisensory perceptual decision-making and multisensory perceptual 

learning. 

 

In particular, it is possible that our 300ms duration for stimulus presentations 

was not effable in our aims to elucidate the benefits of complementary 

multisensory information on perceptual decision formation over testing days. 

Instead, it appeared too long a duration in order to adequately operationalise 

conditions for multisensory perceptual learning, as well as for improvement in 

decision-making, as highlighted by no significant interaction between sensory 

trial type and testing day (see section 4.4.1 Behavioural Results). Whereas 

we observed behavioural performance was typically improved in multisensory 

versus unisensory trial types within each day, we did not observe an increase 

in multisensory perceptual decision-making performance that exceeded 

unisensory perceptual decision-making performance, and further identified 

participants who displayed maximum choice accuracy over the first testing 

day, therefore not leaving a scope for improvement of decisional accuracy 

over the second and third testing days (see Figure 4.2). Our findings contradict 

those reported by Diaz et al. (2017), who found significant effects of testing 



- 162 - 

day on both RTs and binary responses for visual perceptual learning.  

Whereas our 300ms stimulus presentation duration enabled us to discern age-

related impacts on the behavioural indices of multisensory perceptual 

decision-making (see Chapter 3), and thus overcome the hypothesis that our 

results would be confounded by possible wider temporal windows of 

integration in older adults, it did not enable us to discern learning-related 

impacts. Consequently, future replications of this study using the audiovisual 

face-versus-car categorisation paradigm should consider an adequate 

stimulus presentation duration that can replicate previous findings, thereby 

permitting for an increased possibility of perceptual learning improving 

multisensory decision-making performance.  

 

A further limitation concerns the lack of sufficient statistical power for our 

multivariate LDA analyses (see section 4.4.2 EEG Signal Analysis Results). 

As previously outlined, we did not find any significant neural evidence for 

classifying face-versus-car trial types; either within sensory modality 

conditions (i.e., visual, auditory, and audiovisual), nor across testing days. Our 

findings are not compatible with the findings of EEG studies who applied 

similar variants of face-versus-car categorisation paradigm and multivariate 

LDA analyses (Diaz et al., 2017; Franzen et al., 2020; Philiastides & Sajda, 

2006a; 2006b; Philiastides, Ratcliff, & Sajda, 2006; 2009). Undoubtedly, these 

studies demonstrated major discriminating EEG components characterising 

Early and Late temporal shifts in neural components underlying facilitated 

choices, and further characterised a smooth developmental trajectory from 

which they could infer the underlying constituent processes which modulate 

perceptual decision formation. In contrast, our LDA analyses for visual trial 

types in particular did not even remotely capture similar patterns of 

discriminated neural activity, nor salient components to utilise in a cognitively-

informed modelling approach for the effects of multisensory perceptual 

learning. One possible contention is the number of trials across sensory trial 

types and testing days we implemented was insufficient for our supervised 

classifiers to discern EEG activity patterns for discriminating face-versus-car 

trial types. Reviewing the methodology of previous studies, and identifying trial 

quantities, reaffirms this notion. For example, studies from Philiastides et al., 

(2006a; 2006b) and Diaz et al. (2017) presented 288 trials, split over the two 

trial types (i.e., 144 face/car trial types respectively), with Diaz et al. presenting 

the same amount per testing day, whereas Franzen et al. (2020) presented 

720 trials, split over all stimulus trial types (i.e., 360 face/car trial types; 360 
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visual/audiovisual trial types, 180 27.5%/30%/32.5% and 35% phase 

coherence conditions respectively). Given we presented 216 trials, split over 

the three sensory trial types (i.e., 36 face and car trial types for 

visual/auditory/audiovisual trial types respectively), it is possible that we did 

not have participants complete a sufficient quantity of trials for which to 

quantify underlying EEG signals. Thus, we recommend that future 

researchers ensure enough trials for which supervised dimensionality 

reduction analyses; such as single-trial multivariate LDA, can discern robust 

patterns of EEG signal classification. The aforementioned recommendation is 

supported by our alternate findings identifying neural components 

discriminating between sensory trial types, in which we achieved robust, 

stable, temporal trajectories of our identified neural components (see Figure 

4.4).  
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Chapter 5 

General Summary 

5.1 Overview 

Over the past two decades, substantial advances in our understanding of the 

process of perceptual decision-making across multiple domains of cognitive 

functioning have been developed. A collaborative set of experimental 

scenarios (in particular, 2AFC paradigms), neuroimaging methodologies, and 

computational models have yielded cognitive modelling approaches (either 

behaviourally informed or neurally-informed) for discerning the underlying 

neural and cognitive mechanisms for rapidly translating sensory information 

into overt behavioural responses. The application of cognitively-informed 

approaches for characterising similar mechanisms for perceptual decision-

making with multisensory information remains a somewhat emerging field of 

research and many fundamental questions remain to address how we observe 

multisensory integrative benefits towards perceptual decision formation. To 

contribute to the existing literature, we sought to observe the exerted influence 

of three decision modulators (i.e., unisensory-formulated cross-modal 

associations, ageing, perceptual learning) on multisensory perceptual 

decision-making utilising our own cognitive modelling approaches.  

 

In Chapter 2, using a neurally-informed cognitive modelling approach, we first 

characterized the spatiotemporal dynamics of neural activity underlying 

associative congruency, and then probed its functional role in perceptual 

decision formation. By presenting only one unisensory stimulus feature per 

trial, we were able to overcome previous difficulties interpreting the mixed 

selectivity of neural responses to simultaneously presented stimulus features. 

Consequently, we could identify the effects of cross-modal associations on 

neural processing and draw a direct link between these neural processes and 

the behavioural benefits of associative congruency in perceptual decision-

making. We recommend that future research consolidates our observations 

by utilizing similar unisensory approaches for investigating cross-modal 

associations with alternative statistical correspondences.  

 

In Chapter 3, using a behaviourally-informed cognitive modelling approach, 

we highlighted novel findings into age-related impacts on cognitive processes 

underlying multisensory perceptual decision-making. We disentangled HDDM 
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findings predicting that, despite general decision-making deficits (i.e., 

increased RTs and reduced choice accuracy), ageing is associated with an 

increased functional reliance on multimodal information integration, whereby 

reductions in sensory representations, through decreased salience or 

increased task difficulty, are compensated for by the principle of inverse 

effectiveness compensating for general unisensory processing deficits. 

Overall, our findings demonstrate how computational modelling can reconcile 

contrasting hypotheses of age-related changes in processes underlying 

multisensory decision-making behaviour and develop upon computational 

modelling research of unisensory decision-making behavioural changes.  

 

Chapter 4 was not as successful in being able to identify a temporal locus for 

the neural benefits of multisensory perceptual learning. We attribute this to (i) 

a lack of sufficient statistical power due to the number of trials across sensory 

conditions and testing days, and (ii) our stimulus presentation duration of 

300ms, which confounded task difficulty as participants had too long to 

categorise embedded stimuli. Nonetheless, an analysis of EEG activity 

between multisensory (i.e., audiovisual) versus unisensory (i.e., visual or 

auditory) trial types uncovered neural components demonstrating greater 

discrimination for categorisations of stimuli. In particular, we observe 

prominent earlier and later components for audiovisual versus auditory stimuli, 

but only prominent early components for audiovisual versus visual stimuli. Our 

findings demonstrate preliminary evidence of different timescales for 

multisensory integration benefiting perceptual decision-making, depending on 

the sensory modality providing the complementary information. 

 

5.2 Limitations of EEG 

An immediate limitation of the findings from this current thesis is its reliance 

on utilising EEG to record neural activity underlying multisensory perceptual 

decision-making. One of the most predominant advantages of using EEG is 

its excellent temporal resolution. Changes in electrical activity can be recorded 

on the scale of milliseconds (ms; 1/1000th of a second). This benefits how we 

observe when changes in mesoscale brain dynamics unfold in real time for 

particular cognitive processes underlying multisensory perceptual decision-

making. However, EEG has a predominant disadvantage of poor spatial 

resolution. The recorded signals are limited to generated electrical activity 
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across the scalp, meaning that each electrode records activity not exclusively 

from the neurons below the electrode, but also from surrounding electrodes. 

This further includes specific structures in the deep laminae of cerebral cortex 

within the brain. A solution to rectify this is concerns simultaneously recording 

generative surface potentials over more electrodes. For example, the number 

of electrodes could be increased to 256. This would comparatively improve 

spatial resolution and the signal-to-noise ratio. Despite this, it is important to 

consider the electrical propagation, or movement direction in signal 

transmission, between neurons. Signal transmission between neurons is bi-

directional, so signals can be propagated both towards and away from multiple 

neurons, depending on factors such as neuron type and location. Due to this, 

it remains difficult where to identify a particular process occurs in the brain. 

The limitations of EEG should therefore be considered concerning the 

neuroimaging findings presented in this thesis (see Chapters 2 and 4), since 

we cannot specify brain structures that determine the cognitive mechanisms 

facilitating multisensory perceptual decision-making. However, this does not 

fully limit the scope of our findings. Using our results, we were able to infer the 

spatiotemporal locus of multisensory integrative and decision formation 

processes, and identify where we may observe choice facilitative benefits to 

overt behaviours. Therefore, our findings can be compared and contrasted 

with findings that used methodologies such as fMRI and/or MEG, which 

achieve greater spatial resolution. Future research can even consider dual 

neuroimaging methodologies, in order to achieve both greater spatial and 

temporal resolution. This has been by Philiastides, Tu, & Sajda, 2021, who 

combined EEG and fMRI to investigate unisensory perceptual decision-

making. Consequently, findings from an extensive variety of neurally-informed 

modelling approaches should be considered to further our understanding of 

the underlying neural and cognitive mechanisms of multisensory perceptual 

decision-making.  

 

5.3 Conclusion  

The current thesis presented research that characterised the underlying 

cognitive and neural mechanisms of multisensory perceptual decision-making 

in humans. Using both behaviourally-informed (Chapter 3) and neurally-

informed (Chapters 2 and 4) modelling approaches, it details accounts of how 

decision (neuro)modulators can exert their influence on the various processes 

of multisensory perceptual decision-making. In particular, the use of the 
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widespread accumulation-to-bound HDDM posited findings that demonstrated 

when, where, and/or how our nominated modulators: unisensory-formulated 

cross-modal associations, ageing, and perceptual learning, can influence the 

integration of multisensory integration to benefit perceptual decision 

formation. It enabled us to functionally characterise the latent processes 

underlying such multisensory enhancements. Chapter 2 showed clear 

enhancements of associative congruency when formulating cross-modal 

associations between auditory pitch-frequency and visual object-size from 

unisensory information alone. In dissecting two neurocomputational 

mechanisms that characterised different internal benefits (i.e., lower RTs), we 

demonstrate neurally-informed evidence in support of a dual-integration 

hypothesis for localising benefits towards perceptual decision formation. 

These mechanisms characterised benefits even in the absence of 

multisensory information, implicating that cross-modal binding, and not 

multisensory integration, may be a unique mechanism to optimise adaptive 

behaviours (Bizley, Maddox, & Lee, 2016b). Chapter 3 highlighted a 

behaviourally-informed modelling account of age-related changes in the use 

of multisensory information for perceptual decision-making. We particularly 

highlight prominent evidence of a generalised age-dependent slowing of 

sensory evidence accumulation for both multisensory and unisensory signals, 

but further evidence for compensatory mechanisms linked to the principle of 

inverse effectiveness and increased baseline filtering in unisensory modalities 

for older adults. This highlights further opportunities to exploit neurally-

informed modelling approaches to obtain the corresponding neural 

underpinnings. Finally, whilst we did not observe any prominent multisensory 

perceptual learning benefits in Chapter 4, we observed neural evidence of 

multisensory benefits that were temporally-dependent on the quality of signals 

provided by the complementary sensory modality. 
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