
Investigating Early Nucleosynthesis of

the Lighter Heavy Elements

Cameron J. Angus

Doctor of Philosophy

University of York

Physics, Engineering and Technology

July 2023



Abstract

The r -process produced half of all heavy elements in the universe today. While models

successfully reproduce the abundance distributions of the heaviest elements observed in Ultra-

Metal Poor stars, the lighter heavy elements (36 < Z < 47) are found to be more abundant

than predicted. An additional nucleosynthesis process operating at early times in the universe,

preferentially producing lighter heavy elements, has been proposed. This project consisted of

experimental investigations into two candidates for this process: the weak r -process in the

neutrino-driven winds of core-collapse supernovae and the s-process in rotating massive stars.

The 20Ne(d,p)21Ne reaction was studied using the HELIOS spectrometer at Argonne Na-

tional Laboratory; angular distributions of energy levels in the 21Ne nucleus were measured to

determine their neutron widths and spin-parities. These parameters are important for deter-

mining the neutron poisoning effects of 16O on the s-process in rotating massive stars. Results

for several levels are reported. Jπ = 3
2

−
and Γn = 7600 ± 2100 eV was found for the 7820 keV

state disagreeing with the literature assignment of 2Jπ = (3, 5)+ and a neutron width limit of

Γn < 7200 eV was determined for the first time for the 7749 keV state. Resonance strengths

calculated with these results are compared to literature. Both the 7749 keV and 77820 keV

energy levels are of astrophysical interest.

The reaction 86Kr(α,n)89Sr was studied at TRIUMF using the EMMA recoil mass spec-

trometer. Partial cross sections of 1.0+0.6
−0.8mb and 0.8+0.7

−0.8mb were measured for transitions in

the recoiling 89Sr nucleus from the 1032 keV excited state to the ground state and from the

1473 keV excited state to the ground state respectively; both measurements are in agreement

with predictions.

These results will help constrain uncertainty in model predictions of nucleosynthesis for

each site and inform future experiments. Ultimately, these results contribute to determining

the contribution of these two processes to the abundances of the lighter heavy elements at early

times in the universe.
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Chapter 1

Introduction and Astrophysical

Background

1.1 Nuclear Astrophysics and Nucleosynthesis

The physics of nuclei have a great impact on astrophysics, a famous example being the gen-

eration of energy inside stars via nuclear fusion reactions. Another case is the study of light

curves such as those produced in a type 1a supernova where the radioactive decay of 56Ni and
56Co governs the observed shape of the curve [1]. Combining nuclear physics with observational

astronomy can also help trace the galactic chemical evolution of the Milky Way; 26Al is useful

in this regard [2]. The focus of this project, however, is nucleosynthesis : the creation of the

chemical elements. There are many different processes of nucleosynthesis but they all have

their roots in the initial formation of the lightest elements (hydrogen, helium and lithium) just

after the Big Bang [3]. From these first elements, all of the heavier elements are made [4]. The

formation of other elements, can be split into two distinct groups: elements heavier than iron

and elements lighter than iron.

The bulk of the light elements (those not made in the Big Bang) are produced in stellar

burning, with some made in other sites such as classical novae [5]. During stellar burning, a star

is under hydrostatic equilibrium: a state where there is balance between the force of gravity

acting towards the centre of the star and the force of the pressure which acts against it. This

pressure is generated by energy released in nuclear fusion reactions: where two nuclei merge

together to create a heavier element and, in doing so, release energy. A star burning hydrogen

in its core is known as a main sequence star and it is here that stars spend most of their life.

The fusion of hydrogen happens in two ways: through the pp-chain and the CNO cycle. In

stars lighter than 1.3M⊙ the pp-chain dominates, but above that mass the CNO cycle is more
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Figure 1.1: How binding energy per nucleon changes as a function of the atomic mass number. Data
from: Ref.[8, 9].

significant [6] (for a more detailed description of the CNO cycle, see Chapter 1.3). Eventually,

the hydrogen in the core of the star is exhausted and what happens next depends on the initial

mass of the star. Stars above 0.3M⊙ will begin to burn hydrogen in the layers that surround

the extinct core which causes the outer layers to expand and cool, forming a red giant [7]. Here,

stars with an initial mass similar to that of the Sun may then experience a helium flash as the

core ignites and begins to fuse helium into carbon via the triple alpha process. It is worth

highlighting that fusion processes in stars produce both helium and lithium, meaning that not

all of the He and Li atoms in the universe today were made in the Big Bang.

Stellar nucleosynthesis progressively fuses heavier and heavier elements. For example, the

next phase for a star above a mass of 0.5M⊙ would be an inert carbon-oxygen core surrounded

by an inner helium burning shell and an outer hydrogen burning shell; stars such as this are

known as an Asymptotic Giant Branch (AGB) stars [10]. Eventually that C-O core may itself

re-ignite (if the star is massive enough) and this allows the star to continue to release energy

via fusion. The process of fusing ever more massive elements ceases once the star has reached

an iron-nickel core, at which point the net production of energy from nuclear fusion is no longer

possible. Fig.1.1 shows a plot of binding energy per nucleon vs nucleon number and illustrates

that any fusion reactions beyond iron would require a net input of energy since iron is the most

stable element. At this point the star will die, how its life ends depends on its mass. This
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The s-process

project concerns the second group of elements: those heavier than iron.

Most of the elements heavier than iron are made in either the s-process (the slow neutron

capture process) or the r -process (the rapid neutron capture process) with a small number

of elements made in other processes, such as the p-process or the i -process [11]. Predictions

for the s- and r -processes are generally robust at reproducing observed elemental abundances,

however, there are some discrepancies. One of these discrepancies is the focus of this project.

Before that discrepancy can be introduced it is necessary to give some background as to the

main modes of heavy-element nucleosynthesis.

1.1.1 The s-process

The s-process stands for the slow neutron capture process. In the s-process nuclei are exposed

to a flux of neutrons, some of which react to form heavier nuclei in capture reactions. Some

of these heavier nuclei are unstable and will radioactively decay. The slow neutron capture

process is defined where the rate of neutron capture is much slower than the rate of beta decay:

tβ < tn. This results in the path of the s-process following the valley of stability up the Chart

of the Nuclides by a sequence of neutron captures followed by beta decays, starting at iron and

ending at bismuth beyond which point a lack of stable isotopes prevents further progress up

the Chart of the Nuclides, as illustrated in Fig.1.2. Bismuth-209 is the last stable nucleus since

it has 126 neutrons, a “magic number” corresponding to a nuclear shell closure which helps

stabilise the nucleus. Past bismuth, the Coulomb repulsion between protons in a nucleus is

too strong to be overcome by the attractive strong nuclear force interactions that act between

nucleons and therefore nuclei with additional protons (heavier elements) are unstable. There

are two astrophysical sites where the s-process takes place: in Asymptotic Giant Branch (AGB)

stars and in massive stars [12]. The timescale of the s-process is on the order of thousands of

years, in contrast with the r -process. Today, around 50% of elements heavier than iron are

made in the s-process[13]. However, this was not always the case. The s-process is a secondary

process, i.e. it does require pre-existing seed nuclei to synthesise heavy elements [12]. Seed

nuclei are iron peak nuclei and in the s-process they must already exist when the star forms.

None of the earliest stars would have been able to synthesize elements via the s-process as iron

seeds had yet to be released into the intersteller medium by the r -process, therefore stars that

formed early in the history of the universe would not have been enriched by the products of

the r -process.
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Figure 1.2: The paths of the r -process and the s-process along the Chart of the Nuclides [16].

1.1.2 The r-process

In the r -process, elements heavier than iron are synthesised through neutron capture reactions

that happen faster than beta decays tn < tβ. This drives nuclei towards unstable neutron-rich

isotopes so fast that those isotopes do not have enough time to decay. Once the r -process is

complete, these neutron-rich isotopes will eventually decay back to stability over time, as shown

in Fig.1.2. Approximately half of all elements heavier than iron in the universe were made in

the r -process along with all elements heavier than bismuth. The r -process is very fast lasting at

most only a few seconds and occurring in extremely violent events. The specific astrophysical

site of the r -process is still debated [14]. However, it is thought to take place in neutron-star

mergers [15].

As a primary process, the r -process does not need heavy nuclei to exist before its astrophys-

ical site forms [12]. It therefore follows that the first heavier-than-iron nuclei in the universe

were synthesised via the r -process, so these elements should dominate the heavier-than-iron

metal composition of the oldest stars observable. Stars in ultra-faint dwarf galaxies fall into

this category and observations have shown that metals in their composition were produced

in infrequent events that co-produced large quantities of both heavy elements (A > 130) and

lighter heavy elements (56 < A < 130) [17]. Models have suggested that this would be the

case if the r -process took place in neutron-star mergers [18] and recent analysis of Kilonova

GW170817 identified strontium in the spectrum, an element synthesised through neutron cap-

ture reactions. This observation lends support to the theory that neutron-star mergers are the

site of the r -process [15].
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1.2. The Light Element Primary Process

Another potential site of the r -process is in the neutrino-driven winds of core-collapse su-

pernovae. However, models suggest that the conditions in these winds would not be able to

synthesize nuclei above A > 130 [19]. While the evidence suggests that core-collapse supernovae

are not the site of the main r -process, their potential to produce the lighter heavy elements is

significant (cf. Chapter 1.2) and they will be discussed in detail in Chapter 1.4.

1.2 The Light Element Primary Process

Following the discussion in Chapter 1.1, it follows that early in the universe, any element heavier

than iron should have been generated by the r -process, therefore any stars formed in that epoch

should only contain metals that were made in the r -process. To test this theory, astronomers

may observe Ultra-Metal Poor (UMP) stars. UMP stars are very old, thought to have formed

before the s-process could significantly contribute to the galactic chemical abundances, therefore

astronomers can test predictions for r -process nucleosynthesis against observed abundances in

UMP stars.

When compared to metal abundances observed in UMP stars, r -process predictions have

been found to be robust for the heaviest elements, however, fail to reproduce the abundances of

elements heavier than iron but lighter than silver [20]. These so-called lighter heavy elements,

show a clear overabundance relative to r -process predictions [21]. Strontium, yttrium and

zirconium are often looked for in observations studying the r -process as these elements form

part of the first r -process peak, which makes them significantly more abundant than other

r -process elements [22]. Also, because their 1+ ions have low excitation potentials, they are

relatively easy to detect [18].

Fig.1.3 shows the observed abundances for Sr, Y and Zr when normalised to what should be

an r -process only element, in this case barium [20]. The x-axis uses the ratio of iron to helium

as a proxy for time, since there is a correlation between the age of a star and its metallicity.

Metallicity is the fraction of a star’s mass that is made of elements heavier than hydrogen or

helium. If the Sr, Y and Zr were synthesised in the r -process the abundance trends would

appear flat on Fig.1.3. As can be seen, the r -process models under predict the abundances of

the lighter heavy elements. When comparing measured solar system abundances to predicted

s- and r -process yields, the models fall short for Sr by 8% and for Y and Zr by 18% [20].

This over population cannot be attributed to a flawed understanding of the main r -process

because of the otherwise good theoretical predictions at higher Z numbers [20], suggesting that

there is another unknown process contributing to the abundance of heavier-than-iron elements

early in the Universe. This has been dubbed the Light Element Primary Process (LEPP). The
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Figure 1.3: The trend in abundances of Sr, Y and Zr relative to barium with varying stellar metal-
licities compared to predictions based on the r-process [20]. The abundance ratio of iron to hydrogen
is used here as a proxy for time.

term “Light Element” is used because whatever the exact mechanism might be, it favours the

production of elements within the range of 26 < Z < 47. It was expected to be a primary

process due to the age of the UMP stars. However, as shall be discussed in Chapter 1.3, this

may not necessarily be the case.

The difference between the observed and predicted abundances for elements in the first

element peak represents an unidentified source of nucleosynthesis in the universe. This project

has investigated two candidate processes for the LEPP. Two experiments were conducted, one

for each candidate. The first reaction studied was part of an investigation into nucleosynthesis in

rapidly-rotating metal-poor stars. The second experiment studied a nuclear reaction of interest

to nucleosynthesis in core-collapse supernovae. The aim of this project is to help constrain

uncertainties in the nucleosynthesis models for each process. The two candidates that were

studied shall now be introduced.
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Figure 1.4: A diagram of the CNO cycle on the Chart of the Nuclides.

1.3 The s-process in Rapidly-rotating Metal-Poor Stars

The Light Element Primary Process was named according to the theory that only a primary

process could significantly contribute to chemical abundances in old stars such as UMP stars.

To be the missing source of the lighter heavy elements, the s-process would need to be efficient

enough to synthesize elements in large quantities from low initial metallicities after the first

generation of stars had expired, but before the UMP stars formed. Based on these constraints,

the s-process was initially discounted as a significant source of lighter heavy elements at early

times. However, simulations have shown that nucleosynthesis in rapidly-rotating metal-poor

stars could be efficient enough to contribute to their abundances.

12C is produced in the convective helium burning core of massive stars by the triple al-

pha process. The importance of the rotation of the star is that it mixes 12C from the he-

lium burning core into the hydrogen burning shell where it enhances production of 14N in

the CNO cycle. The CNO cycle is the main mode of fusion in the hydrogen burning shell

of massive stars [23], in essence the carbon, nitrogen and oxygen in the CNO cycle act as

catalysts for the fusion of hydrogen into helium. The CNO cycle can be summarised as
12C(1H,γ)13N(e+ν)13C(1H,γ)14N(1H,γ)15O(e+ν)15N(1H,α)12C [24] with the overall reaction be-

ing 41H → 4He + 2e+ + 2ν, a diagram is shown in Fig.1.4. The 14N is synthesised as part

of the CNO cycle. However, as the He core grows, it engulfs 14N ashes left behind by the H
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burning shell [25]. Once in the core, the 14N undergoes a series of α induced reactions: 14N(α,

γ)18F(e+ν)18O(α,γ)22Ne(α,n)25Mg [26]. The series of reactions ends with 22Ne(α,n)25Mg which

is a major source of neutrons for the s-process. Depending on the exact model used in the

nucleosynthesis calculations, the rotation of a massive star can increase s-process yields by

several orders of magnitude [26] compared with non-rotating massive stars.

Whether or not this process can account for the missing lighter heavy elements depends on a

ratio of the rates two reactions: 17O(α,n)20Ne/17O(α,γ)21Ne [27]; reaction rate is introduced in

Chapter 2.4 and is shown in Eq.2.6. The reason for the importance of this ratio is that the rate

of s-process nucleosynthesis is determined by the flux of neutrons reaching the iron seed nuclei

in the outer layers of the star. If some of those neutrons are absorbed before they can react

with a seed nucleus then the rate of heavy element nucleosynthesis in that star is diminished.

Nuclei that capture neutrons and inhibit the s-process are known as neutron poisons. 16O is a

strong neutron poison [28], capturing a neutron to form 17O, and is produced in quantity during

helium burning. What happens after the 16O(n,γ)17O reaction determines the significance of

the neutron poisoning effect on nucleosynthesis in rotating massive stars. 17O may undergo

reactions with alpha particles and can do so in two ways (beside scattering): 17O(α,n)20Ne and
17O(α,γ)21Ne. The ratio of the 17O+α reactions determines how many neutrons are “recycled”

from the 16O neutron capture by 17O(α,n)20Ne and therefore how much of an impact neutron

capture by 16O has on the final abundance predictions. The temperature range of interest for

helium core burning in rotating metal-poor stars is 0.2 – 0.3GK [29].

Determining the 17O(α,n)20Ne/17O(α,γ)21Ne ratio is challenging since the cross sections

for each reaction are very low, making direct laboratory measurements impractical (although

recently the 17O(α,γ)21Ne reaction was partly measured [29]) and thus expected rates are

calculated from theoretical models. Because these are light nuclei, their cross sections depend

strongly on nuclear resonances (cf. Chapter 2.4). These resonances have their origin in the

energy levels of the compound 21Ne nucleus. Each energy level has associated parameters known

as spin-parity and width (cf. Chapter 2.3) which help determine the rate of a resonant reaction

that proceeds via that resonance. If these parameters are unknown it introduces uncertainty

into any attempt to model nucleosynthesis in this site. It is therefore important that information

on the energy levels of 21Ne is as complete as possible.

1.3.1 Current Status

At present there remain several energy levels in 21Ne important to nuclear astrophysics that

have unknown spin parities and partial widths. Fig.1.5 shows the level scheme for 21Ne prior
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to this study with the energy range of interest for He core burning, corresponding to the

Gamow window for 17O+α reactions (cf. Chapter 2.2), marked as ∆EO at 7.65–7.99MeV, well

above the alpha and neutron thresholds at 7347.93(4) keV and 6761.16(4) keV, respectively [9].

Most significant for the 17O(α,n) 20Ne reaction are the energy levels at 7820 keV, 7749 keV and

7981 keV [30], two of which have uncertain or unknown spin-parities.

7420 (5,7)−

7470 (1,3)−

7559 (3,5)+

7602 (5,7)−
7619 3−

7656 7+

7749

7820 (3,5)+

7960 11−
7981 3−
7982

8008 1−

8069 3+

8146 3+
8159 9+
8160 5+

Ex(keV) 2Jπ

∆Eo

Figure 1.5: A level diagram for 21Ne around the region of astrophysical interest in rapidly-rotating
metal-poor stars with information on the spin-parities of each state from Ref.[30]. The neutron
threshold is at 6761 keV and the alpha threshold is at 7347 keV [31].

Until recently there were two competing theoretical predictions for the 17O(α,n)20Ne to
17O(α,γ)21Ne reaction rate ratio that disagreed with each other by four orders of magnitude

at the energies of interest for rapidly-rotating metal-poor stars. The ratio reported by Ref.[32]

predicts that a significant proportion of neutrons are recycled from 16O and was based on
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a combination of Hauser-Feshbach theory (cf. Chapter 2.7 for a detailed description) and

results from an 18O(α,γ)22Ne experiment [33]. Hauser-Feshbach formalism is at the limit of

its applicability for reactions on such light particles and without experimental data for 17O+α

reactions, there is a large uncertainty on this prediction. The second model was based on

calculations using a three-cluster generator coordinator (GCM) method [34], a microscopic

model that builds up from nucleon-nucleon interactions which predicted that the effects of the

neutron recycling would be negligible. The GCM method for a nucleus of this mass number

was at the limit for the validity of the microscopic model [34] and its prediction has since been

excluded by two independent experiments that shall now be discussed.

A measurement at the University of Notre Dame National Science Laboratory studied the
17O(α,γ)21Ne reaction at several energies between 8159 keV and 8659 keV [35] and found that

the rate of reaction was significantly higher than predicted by Ref.[34]. The findings of Ref.[35]

were later confirmed in an experiment conducted at TRIUMF using the DRAGON recoil spec-

trometer [29]. DRAGON (the Detector of Recoils And Gammas Of Nuclear reactions) uses a

windowless gas target set up [36] and in 2019 was, for the first time, able to directly measure

the rate of the 17O(α,γ)21Ne reaction at energies analogous to the highest temperatures within

the convective He burning core of massive stars. The measurement within the energy range of

interest consisted of one data point that, due to the thickness of the gas target, overlapped with

three individual levels close in energy to each other (7982 keV, 7980 keV and 7961 keV). The

individual contributions of each of the states could not be determined. However, the overall

rate of reaction was calculated and fell in between the predictions of Ref.[32] and Ref.[34], thus

excluding the latter.

Previous work to directly measure the 17O(α,n)20Ne reaction [37] determined widths and

spin-parities for several energy levels above the energy range of interest by fitting an R-matrix to

the measured cross section. The fit was then extrapolated down to lower energy levels relevant

to 17O+α reactions in He core burning to estimate the rate of the 17O(α,n)20Ne reaction in

stars. It should be noted that it is possible to reproduce the same fit using different resonance

parameters and therefore results derived from R-matrices can disagree with studies that use

different methods to assign resonance parameters [37].

Combining the 17O(α,γ)20Ne results [37] and the earlier 17O(α,γ)21Ne results [35], an upper

limit was determined for the ratio of the two reactions. Fig.1.6 shows that limit in green,

calculated in simulations that were based on nuclear data. The limit reported in Ref.[37] was

calculated using the results of that study for Jπ, Γα and Γn for the higher-lying states but

assumed ℓ = 0 for all 17O(α,n)20Ne reactions for states in the compound nucleus with unknown

spin-parities; alpha widths were estimated with the relation Γα = C2SΓα,sp taking single-
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Figure 1.6: Ratio of the rates of reaction for 17O(α,n)20Ne / 17O(α,γ)21Ne [30]. The black line
indicates the median rate as calculated in Ref.[30] using experimental data and the red lines indicate
the uncertainty limits of that rate. The purple line is the theoretical CF88 rate [32] and the green line
is the previous limit estimated using experimental data from reaction studies at energies above the
range of interest [35]. Recall that the Gamow window ranges from 0.2–0.3GK in this site.

particle alpha widths (Γα,sp) calculated with the DWUCK4 code [38], assuming a spectroscopic

factor (C2S) of 0.01 where no data were available.

The most up to date predictions for the ratio of 17O(α,n)20Ne to 17O(α,γ)21Ne came from

a study conducted with the Enge split-pole spectrometer at the Triangle Universities National

Laboratory (TUNL) [30]. That experiment determined the spin-parities of several energy levels

in the range of astrophysical interest (shown on Fig.1.5 as ∆EO) and reported the spin-parity of

the 7820 keV level as either 3
2

+
or 5

2

+
. The TUNL experiment, however, suffered from contam-

ination of their target, a carbon foil implanted with 20Ne. 16O reacted with the deuteron beam

through the 16O(d,p)17O channel, producing 17O resonances that overlapped with the proton

spectrum of 21Ne making an accurate determination of the spin-parity difficult for the 7820 keV

state and impossible for the 7749 keV state. Fig.1.7 shows the TUNL proton energy spectrum

at 38°measurement, illustrating the challenges introduced by the 17O contaminant. The results

from Ref.[30] were used to re-calculate the ratio of the 17O(α,n)20Ne and 17O(α,γ)21Ne reactions

using the RatesMC Monte Carlo code [39, 40], taking the input parameters used in Ref.[37]

as a basis and updating them with the newly measured data. Predictions made in Ref.[30]

therefore include the same assumptions about spin-parities and alpha widths as Ref.[37] except

where new information was available. The result, shown in Fig.1.6, indicated a significantly

11
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higher 17O(α,n)20Ne/17O(α,γ)21Ne ratio than had been reported by Ref.[37] and predicted that

enough neutrons are recycled by 17O(α,n)20Ne reactions for a significant quantity of lighter

heavy elements to be synthesised in this site by the s-process. The black line on Fig1.6 is

the simulated median ratio and the red lines are the uncertainty limits, which remain large

especially at lower temperatures (cf. Fig.1.6) and further constraining these uncertainties is

necessary to improve the precision of nucleosynthesis predictions.

Figure 1.7: The 38° spectrum for the 20Ne(d,p)21Ne experiment of Ref.[30], with the 17O contaminant
obscuring the 7820 keV and 7749 keV resonances. The black line indicates the 21Ne excitation energy
spectrum and the red line is the carbon spectrum (on an arbitrary scale). The Gamow window is
bracketed by the two green lines.

The first experiment that was studied during this project was 20Ne(d,p)21Ne, the same

experiment as in Ref.[30]. This time, however, it was conducted in inverse kinematics (cf.

Chapter 2.1.2) to avoid the 17O contaminant and enable the determination of the spin-parities

and neutron widths of the energy levels within the energy range 7.65–7.99MeV. The 7749 keV

and 7820 keV energy levels were of particular interest. The experiment was conducted at

Argonne National Laboratory (ANL) using the HELIOS spectrometer.

1.4 The Weak r-process in Core-collapse Supernovae

1.4.1 Neutrino-Driven Winds

Recently it has been shown that the weak s-process in rapidly-rotating metal-poor stars alone

does not produce sufficient quantities of the lighter heavy elements to fully account for the
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overabundances relative to r -process predictions observed in UMP stars, indicating an addi-

tional r -process component is required to fully explain the abundance of intermediate mass

elements in UMP stars [41]. The additional source of r -process nucleosynthesis is known as the

weak r -process. There is some uncertainty on the astrophysical site of the weak r -process, sug-

gestions include magnetorotationally-driven supernovae [42] and the neutrino-driven winds of

core-collapse supernovae [43]. This project investigates the latter case: neutrino-driven winds

in core-collapse supernovae.

Core-collapse supernovae occur when a massive star (M > 8M⊙) reaches the end of its

life. After the star exhausts the hydrogen in its core, it proceeds to fuse progressively heavier

elements leading to “onion shell” layers, as shown in Fig.1.8. Once the star reaches the iron-

nickel core stage, however, fusion reactions require a net energy input (cf. Fig.1.1) and the

star can no longer maintain hydrostatic equilibrium, leading it to collapse under gravity. As

the star contracts, the core comes under increasing pressure until the electrons and protons

combine to form neutrons through electron capture reactions. The core collapse will continue

until the pressure reaches the point of neutron degeneracy. Neutron degeneracy is a state where

the neutrons have been compressed to the point where the Pauli exclusion principle becomes

relevant. This principle states that: “two Fermions with the same spin cannot occupy the

same space”. At this point the core cannot be further compressed and the in-falling matter

rebounds. This core bounce leads to a shock that radiates outward from the neutron-degenerate

core but begins to stall due to the dissipation of energy in photo-disintegration of iron nuclei

surrounding the proto-neutron star core [44]. Computer models suggest that the shock will

not reach the outer layers of the star, however, it is thought that an enormous outward flux of

neutrinos released by the cooling proto-neutron star drives material outward, giving the shock

a “second wind” and producing the characteristic explosion associated with a supernova [45].

This model of a core-collapse supernova was first shown to be able to reproduce the observed

overabundance of the lighter heavy elements seen in UMP stars by Ref.[43].

Although, as discussed in Chapter 1.1, the main site of the r -process is thought to be

neutron-star mergers [47] the conditions in the neutrino-driven winds of core-collapse super-

novae are right for the synthesis of the lighter heavy elements (up to A ∼ 130) [48]. This has

been labelled the weak r -process and it is a candidate for the LEPP. While the precise condi-

tions in the neutrino-driven winds are not clear, it is currently thought that they are proton

rich with small pockets of neutron-rich ejecta [44, 49]. In the proton rich parts of the outflow

the νp-process dominates nucleosynthesis. In the parts of the winds that are slightly neutron

rich it has been found that (α,n) reactions become important [11]. Indeed, the name weak

r -process is somewhat misleading, since it implies that this is a neutron capture process and
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Figure 1.8: The onion layer structure of a pre-supernova massive star [46].

while, neutron capture reactions do occur in this site, the primary driver of nucleosynthesis in

neutron-rich winds are (α,n) reactions.

1.4.2 The Role of (α,n) Reactions

Initially, the neutrino-driven winds are in a state of nuclear statistical equilibrium, which means

that each nuclear reaction is happening at the same rate as its inverse so on average there is no

change in the elemental composition of the winds. For example, (p, n) reactions occur at the

same rate as (n, p) reactions. The nuclear statistical equilibrium does not last and as the wind

evolves, the changing conditions leads to some reactions falling out of equilibrium with their

inverse. Simulations have shown that (α,n) reactions are most significant in shifting matter to

Z numbers beyond iron [11], Fig.1.9 demonstrates the reason for this: between 2 < T [GK] < 5

the rate of (α,n) reactions is much faster than that of (n,α) and therefore drives nucleosynthesis.

In these simulations the predicted rates of all (α,n) reactions were varied and this resulted in

significant differences between final abundance predictions.

The precise conditions within a neutrino-driven wind are unknown, therefore it is important

to consider a variety of different possibilities when modelling the weak r-process. By varying

the parameters of the simulations that correspond to the physical properties of the winds it was
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Figure 1.9: The change in the rate of different nuclear reactions in neutrino-driven winds as their
temperature evolves over time [11].

found that the baryon fraction (Ye) had a significant impact on the final abundance predictions

[11]. Baryon fraction is the ratio of electrons to the total number of baryons (protons and

neutrons). The effect of changing the baryon fraction on the final elemental abundances is

shown in Fig.1.10. Note that as those simulations only studied slightly neutron-driven winds

the range of baryon fraction considered only covered 0.4 < Ye < 0.5. These results illustrate

the significance of Ye to the final abundances and shows that the further Ye moves from 0.5, the

heavier the nuclei that can be synthesised. The reason being that stable nuclei at intermediate

masses have more neutrons than protons and therefore since the weak r -process proceeds close

to the line of stability more neutrons are needed than protons.

Whatever the exact properties of the winds are, simulations are able to make predictions

for their nucleosynthesis. Those predictions contain uncertainties which are dominated by

uncertainty of the (α,n) reactions [11], the origin of which is the lack of experimental data

for the cross sections of (α,n) reactions. Few studies have been conducted on either stable or

unstable nuclei at energies relevant to the weak r -process. In order to include these reactions

in simulations, theorists must resort to using model predictions for their cross sections. The

model used to predict cross sections for these reactions is known as Hauser-Feshbach theory
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Figure 1.10: The variation of abundance patterns with different values of baryon fraction (Ye),
illustrating that the further below 0.5 the Ye gets, the more matter is pushed to heavier elements in
neutron rich neutrino-driven winds [11].

and will be discussed in detail in Chapter 2.7. Hauser-Feshbach calculations depend on models

for the nuclear interaction between the alpha particle and the incident nucleus, known as the

alpha optical model potential (αOMP). It is in the choice of αOMP that the uncertainty arises,

since there are many different αOMPs and their cross section predictions for the same reaction

can differ from each other by up to a factor of 10 [11].

1.4.3 Current Status

To date, there are few cross section measurements for (α,n) reactions within the ranges of

energy and mass that are relevant for the weak r -process. It must therefore be concluded that

to constrain abundance predictions, (α,n) cross sections must be directly measured. Those

most important reactions to measure have been identified in the studies of Ref.[50, 51]. Recent

experiments have studied the reactions 96Zr(α,n)99Mo [52] and 100Mo(α,n)103Ru [53] at the

Institute for Nuclear Research (Atomki) in Hungary which yielded cross section measurements

with significantly reduced uncertainties compared to those used in model simulations thus far.

Both Atomki experiments used the activation method [54] in which a stable (or very long lived

isotope in the case of 96Zr) is bombarded with an alpha particle beam to induce the desired

reaction. The reaction products are radioactive and follow the Radioactive Decay Formula:

N = N0e
−λt where N0 is the number of radioactive particles at time zero, t is the time elapsed
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since time zero and the decay constant λ = ln(2)
t1/2

with t1/2 as the half-life of the radioactive

isotope. For a detailed description the activation method see Ref.[54].

The 100Mo(α,n)103Ru reaction has also been studied using the MUlti-Sampling Ionisaiton

Chamber (MUSIC) active target set up at ANL [55]. In an active target, the detection medium

also acts as the target for the beam [56]. Ref.[55] shows agreement between their (α,xn) results

and the Atomki (α,1n) results [53] below ECM = 11.5MeV.

Recently a new αOMP called Atomki V2 has been developed and has been shown to re-

produce the shape of (α,n) reaction cross sections [52, 53, 57]. The Atomki V2 potential was

developed after it was recognised that the main source of the discrepancy between αOMP

predictions are the tails of the imaginary part of the potentials. The imaginary tails are un-

constrained by experimental data leading the Atomki V2 developers to use a pure barrier

transmission model to avoid the uncertainties introduced by the imaginary tails. The Atomki

V2 potential will be trialled against results from this study.

To decided which (α,n) cross section to measure, it was desirable that the chosen cross

section have the maximum impact on constraining the uncertainties. To that end, Ref.[51]

was consulted. That study had used a reaction network to model the expected abundances of

the lighter heavy elements under various astrophysical conditions, while using a Monte Carlo

simulation to vary the (α,n) reaction rates within their theoretical uncertainties. The results

identified those reactions that, when their reaction rate was varied, had the greatest impact

on final elemental abundance plots. The significant of the impact of varying a given reaction

rate on the final abundances was quantified by Spearman Rank, which measures the strength of

the relationship between a given reaction rate and final abundance of each specific isotope and

assigns it a value between -1 and 1 (1 indicating a perfect correlation and -1 indicating a perfect

anti-correlation). Based on the work reported in Ref.[51], it was decided that an experiment

to measure the cross section of 94Sr(α,n)97Zr would be conducted alongside an 86Kr(α,n)89Sr

measurement; the latter using a stable beam to test the experimental setup before moving onto

the radioactive 94Sr beam as the main experiment. During the experiment, however, problems

with the radioactive beam development meant that the 94Sr(α,n)97Zr had to be postponed.

Since the successfully measured 86Kr(α,n)89Sr reaction was also a reaction of interest for the

weak r -process, it became the second of the two experiments studied in this project.

In Ref.[51], it was found that the 86Kr(α,n)89Sr reaction impacted “many elemental abun-

dances under many astrophysical conditions”, specifically the abundances of elements with

Z-numbers: 38–42, 44, 45 & 47. Table 1.1 summarises the impact of the 86Kr(α,n)89Sr reac-

tion on weak r -process nucleosynthesis by listing the variation in the final abundance of each

element that was significantly affected, as reported in Ref.[51]. Table 1.1 also includes the
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Table 1.1: Summary of the impact of the 86Kr(α,n)89Sr reaction on final abundances of the
lighter heavy elements in weak r -process nucleosynthesis [51].

Element (Z) Abundance Variation Correlation Coefficient

38 6.81–10.53 0.3–0.58

39 6.62 0.3

40 5.59–6.0 0.35–0.7

41 5.11–14.26 0.2–0.8

42 5.05–8.55 0.22–0.54

44 7.71–31.16 0.5–0.54

45 10.69–31.69 0.22–0.56

47 20.78 0.22

calculated correlation coefficient between the 86Kr(α,n)89Sr reaction rate and the abundance of

each element.

The rate of the 86Kr(α,n)89Sr reaction was later found in a second study to significantly im-

pact the abundances of elements: 38, 40–42, 44–46 with abundance variations ranging between

2.07–5.76 and correlation coefficients between 0.33–0.70 [50]. That study followed a similar

method to Ref.[51], but differed in that it used the new Atomki V2 alpha optical model poten-

tial to constrain the (α,xn) reaction rates. The authors also compared their results to observed

abundances in metal-poor stars and thus were able to constrain their simulations to those which

were able to reproduce observed abundances. Ref.[50] also provided estimates for the impact

on elemental abundance ratios, finding correlations of 0.28–0.69 for Sr/Zr, Y/Zr and 0.21–0.78

for Mo/Zr. These results lead the authors to conclude that the reaction 86Kr(α,n)89Sr affected

“few elemental ratios under many astrophysical conditions” [50].
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Chapter 2

Nuclear Theory

This chapter explains the nuclear physics underpinning this project. For theory relating to the

astrophysical background see Chapter 1 and for the theory behind the detectors used in the

two experiments, see Chapters 3 and 4.

2.1 Reaction Cross Sections

In general, an experiment which aims to study a nuclear reaction consists of a beam impinging

upon a target. The composition of the beam and the target depends on the reaction being

studied. In a reaction between a beam nucleus (projectile) and a target nucleus, the products

are a recoiling nucleus and an ejected light particle (except in a capture reaction where there

is no ejectile). Since not all beam projectiles incident on the target will react, a reaction has

an associated probability of occurring which is measured by a cross section. The number of

reactions that happen per second depends on several factors: the reaction cross section, the

intensity of the beam and the target areal density. In an experiment designed to measure a

cross section the number of reactions taking place is counted while the beam intensity and

target density are controlled. The reactions are counted by detecting the recoiling nucleus,

ejectile and/or a characteristic gamma ray emitted by the de-exciting nucleus (or some combi-

nation of these). The method of detection for any one of these reaction products varies and so

experimental set ups depend on the reaction being studied. Each reaction product requires a

different detector and with these different detectors there is always be an associated efficiency

of measurement which must be included when calculating the cross section of the experiment

from the measured yield (Y). Putting all of this together leads to

Y = ϵσNtIb (2.1)
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Where ϵ represents the total efficiency, σ is the cross section (in units of barns, 1b =

10−24 cm2), Ib is the beam intensity (in units of particles per second) and Nt is the target

density (nuclei per square centimeter).

2.1.1 Differential Cross Sections

Eq.2.1 gives the total cross section over the full 4π solid angle. In practice, however, no detector

set up can fully cover this 4π range and will only be able to measure part of the total cross

section; this is significant because within the full 4π, the measured cross section varies with

the position of measurement. Therefore what is actually measured is dσ(θ) which is the cross

section as measured by a detector set at angle θ. Normalising by the solid angle coverage of

that detector gives the differential cross section, which is denoted by dσ(θ)/dΩ. The angle θ is

usually defined relative to the beam axis.

Cross sections vary with parameters other than just angle (such as energy) and strictly

speaking equations describing those relationships are also “differential cross sections”. However,

it is common to refer to the variation of the cross section with angle as the differential cross

section and that shall be the case here going forward.

2.1.2 Inverse Kinematics

Figure 2.1: A comparison of an experiment conducted in forward kinematics (left) versus inverse
kinematics (right).

Traditionally when conceptualising a nuclear reaction one imagines a light nucleus acceler-

ating towards a heavier one and many experiments are indeed conducted in this configuration.

However, sometimes this is an inappropriate set up. Some radioactive nuclei have very short
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lifetimes which means targets containing them cannot be fabricated. For example, 94Sr has a

half-life of 75.3 s [31] and studying reactions on this nucleus is of interest to nuclear astrophysi-

cists [51]. By instead accelerating the heavier radioactive isotope towards a target containing

the lighter nucleus enough radioactive nuclei will reach the target and react before they de-

cay, making it possible to study reactions on short lived radioactive nuclei. Fig.2.1 shows a

comparison of these two approaches.

The draw back of the inverse-kinematics set up is that compared to forward kinematics the

energy resolution is much poorer, since the larger mass of the projectile relative to the target

results in forward focusing of the reaction products in the laboratory frame, meaning the detec-

tors effectively cover a much larger angular bin than they would in a forward-kinematics set up.

Covering a greater angular range means that particles associated with the same resonance are

detected with a greater range of energies on a single detector than they would be in an equiva-

lent forward-kinematics experiment. Fig.2.2 compares data from two experiments studying the
20Ne(d,p)21Ne reaction at similar centre-of-mass energies; one was conducted in forward kine-

matics (blue) [30] and the other in inverse kinematics (red). The plot shows the proton energy

spectrum between 7.0MeV to 8.2MeV measured at the same angle in the centre-of-mass frame,

though at a different centre-of-mass energy. The inverse-kinematics experiment was conducted

at 22.155MeV and the forward-kinematics experiment at 13.984MeV and this difference in en-

ergy results in variations of the relative height of the resonances shown on Fig.2.2. Nevertheless,

Fig.2.2 illustrates the improved resolution of forward kinematics, resonances that are clearly

distinguishable in the forward kinematics set up are unresolved in the inverse-kinematics data.

There are, however, advantages to studying this particular reaction in inverse kinematics, even

though 20Ne is a stable nucleus. A full explanation can be found in Chapter 1.3. However, the

main advantage for this comparison is that reactions producing 17O are avoided when using a
20Ne beam instead of a deuteron beam. The feature in the forward-kinematics data on Fig.2.2

at channel number 2600 comes from 17O and obscures part of the 21Ne spectrum, however, as

can be seen, is not present in the inverse-kinematics data.

2.2 The Gamow Window

The when planning nuclear astrophysics experiments there are many parameters to consider

beyond just the composition of the beam and target, not least at what energy the reaction

in question should be studied. The range of energies that are significant for a reaction in a

given astrophysical site is called the Gamow window and will be introduced here. The energies

referred to in this description are in the centre-of-mass frame and must be translated into the
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Figure 2.2: A comparison of data from two experiments studying the 20Ne(d,p)21Ne reaction: one
in inverse kinematics, one in forward kinematics. Both data taken at the same centre-of-mass angle,
equivalent to 16° in inverse kinematics. The y-axes are scaled to compare the shape of the spectrum
and the x-axis covers a range of energies from 7.0MeV to 8.2MeV. The forward-kinematics data are
from Ref.[30] and the inverse-kinematics data are from this project.

laboratory frame when planning experiments.

In the core of a star the protons and neutrons in nuclei are held together by the Strong

Nuclear Force. However, beyond a few femtometers, the electrostatic repulsion of the positively

charged protons repel other nuclei and the result is a potential barrier to nuclear fusion known

as the Coulomb barrier. The shape of the Coulomb potential is shown in Fig.2.3.

The nuclei in a star have a range of energies (dependent on the temperature of the star) which

can be modelled with the Maxwell-Boltzmann distribution. Based on this distribution alone,

ions in the core of stars would not appear to have sufficient energy to overcome the Coulomb

barrier and react. However, the effects of quantum tunneling must also be considered.

A nucleus in a star has a finite probability of quantum tunnelling through the Coulomb

barrier and fusing with the nucleus on the other side. This probability depends on the width of

the Coulomb barrier as well as the energy of the incident particle. By combining the Maxwell-

Boltzmann distribution with the probability distribution of particle to tunnel through a given

potential barrier, it can be shown that there is a region of energies where the probability

of nuclear reactions taking place is most favourable. Within that range the energy of the

reactants is high enough for a significant probability of tunnelling to exist, while still being

low enough for a significant number of particles to posses. The range of energies where the
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Figure 2.3: The shape of the Coulomb barrier in nuclear reactions. The potential within the nucleus
is negative (attractive) indicating the dominance of the strong nuclear force. Outside the nucleus
(beyond radius R) the repulsive Coulomb force dominates [58].

reaction is most favourable is known as Gamow Window and is shown graphically on Fig.2.4

along with the Maxwell-Boltzmann distribution and a curve representing the probability of

quantum tunnelling to illustrate how the Gamow window arises from both these distributions.

An approximate value for the central energy of the Gamow window can be found with

Eo = 0.122(Z2
1Z

2
2µT

2
9 )

1
3 (2.2)

and the width of the window with

∆Eo = 0.237(Z2
1Z

2
2µT

5
9 )

1
6 (2.3)

Combining Eq.2.2 and 2.3 gives the range of energies that defines the Gamow window for

two nuclei with reduced mass µ = M1M2

M1+M2
at a temperature T9 (the subscript indicating units

of GK) with Z1 and Z2 representing the charges of the two interacting nuclei. The Gamow

window describes the range of energies where a reaction in a star is most likely to happen and

is therefore the energy range of interest for nucleosynthesis.

2.3 Spin-Parity

Angular momentum is a conserved quantity and in a nucleus arises from two sources: orbital

angular momentum and intrinsic spin. Much like in atomic physics, a nucleus can be conceptu-

alised as having a series of energy levels, each with its own quantised orbital angular momentum.
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Figure 2.4: The Gamow window arising from the Maxwell-Boltzmann distribution and the probability
distribution of quantum tunnelling for a particle with energy E in a astrophysical site of temperature
T [59].

The azimuthal quantum number ℓ is derived from the classical equation L⃗ = r⃗ × p⃗, where r⃗ is

a position vector, p⃗ is linear momentum and L⃗ is the angular momentum with its magnitude

defined as L = ℏ
√

ℓ(ℓ+ 1) (ℏ is the reduced Planck constant). In the quantum treatment of

angular momentum, the quantum number ℓ can only have integer values 0, 1, 2, 3, ... (usually

denoted s,p,d,f...). This theory forms the basis of the nuclear shell model. The number of

particles in each energy subshell follows the rule N = 2(2ℓ + 1), derived using the magnetic

quantum number mℓ = −ℓ, ..., 0, ..., ℓ which describes the possible spacial orientations of the

nucleons; the additional factor of two originates from the two possible spins that a nucleon may

hold. As protons and neutrons are different particles, their energy levels are independent of

one another

Since both protons and neutrons are Fermions they each have an intrinsic spin s of either +1
2

or −1
2
. Nucleons naturally fill energy levels from lowest energy up, forming pairs with particles

of opposing spin. These two sources of angular momentum, the orbital angular momentum (L⃗)

and the spin (S⃗), must be combined in a vector sum to find the total angular momentum (J⃗) of

a given nucleus: J⃗ = L⃗+ S⃗. The numbers s, ℓ and mℓ are three of the four quantum numbers
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Figure 2.5: The coupling of orbital angular momentum to spin for a nucleon [24].

that describe the shell model. The fourth quantum number is n, the principle quantum number

denoting which overall shell a nucleon belongs to.

Because of their pairing-up where there are even numbers of protons or neutrons the nuclear

spins cancel out, meaning that the shell model predicts the angular momentum of a nucleus in

its ground state originates from any unpaired nucleons. Nuclei with an even number of protons

and an even number of neutrons (even-even nuclei) have a total angular momentum of zero and

therefore Jπ = 0+. The + sign indicates that it has positive parity.

Parity is another quantum mechanical property of a nucleus and can either be positive or

negative. Two particles that are identical but that have opposite parities can be conceptualised

as being mirror images of each other. When parity is positive it means that the wave function of

the particle in that state is even, thus satisfying ϕ(−r⃗) = +ϕ(r⃗). A cosine curve is an example

of an even function. When parity is negative, it means that ϕ(−r⃗) = −ϕ(r⃗), such as is the case

for a sine function. The parity of an even-even nucleus is positive by definition. Together, the

total angular momentum and parity of an energy level is known as spin-parity and is labelled

Jπ.

2.4 Resonant Reactions

Now that the quantum treatment of angular momentum has been presented nuclear reactions

can be returned to; starting with the theory of resonant reactions.

The cross section of a reaction varies smoothly with the centre-of-mass energy between

the interacting particles. When this energy matches an nuclear energy level in the compound

nucleus, however, the cross section (and therefore the rate of reaction) increases significantly.
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The sudden increase in cross section is known as a resonance and in quantum mechanical

terms is where the wave function of an incident particle outside of the nucleus matches the

wave function of an energy level inside the nuclear potential. Should the Gamow window for

a reaction in a given astrophysical site cover a region of σ(E) which includes resonances, they

can be the dominating factor in the overall rate of reaction.

Figure 2.6: The cross section of the 24Mg(p,γ)25Al reaction as it varies with energy including several
narrow resonances [60].

The cross section of a reaction that proceeds via a single narrow resonance is described by

the Breit-Wigner formula

σ(E) = πλ2 2Jr + 1

(2J1 + 1)(2J2 + 1)

ΓaΓb

(E − Er)2 + (Γ/2)2
(2.4)

Where E is the centre-of-mass energy and Er is the resonance energy. Fig.2.6 illustrates

how the presence of a resonance can locally affect the cross section of a reaction.

Jr is the total angular momentum of the resonance and J1 and J2 are the angular momenta

of the particles in the entrance channel (i.e. the target nucleus and incident particle). Γ is the

full width at half maximum of the resonance, equal to ℏ
τ
(where τ is the lifetime of the state). If

the range of energies covered by a given astrophysical site is much broader than the total width

(ie. ∆E >> Γ), the resonance can be said to be narrow in which case, provided the resonance

is wholly within the energy range, the narrow resonance approximation applies.

The total width can be decomposed into a series of partial widths: Γ = Γa + Γb + .... A
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partial width represents a possible channel through which a reaction can proceed and its value

is proportional to rate of the reaction through that channel. In the Eq.2.4, the subscripts a and

b represent the entrance and exit channels respectively. For example, in a reaction between an
17O nucleus and an alpha particle the entrance channel is 17O+α and the products could be
20Ne+n or 21Ne+γ from nuclear reactions or 17O+α from scattering reactions. Each of these

possibilities represents an exit channel with its own associated width. Partial widths can be

calculated with

Γλc = 2
ℏ2

mR2
PlC

2Sθ2pc (2.5)

Derived in Ref.[61] where Pc is the penetrability factor: a parameter that represents the

penetrability of the target nucleus with respect to the Coulomb and angular momentum barriers,

θ2pc is the dimensionless single-particle reduced width: a parameter representing the probability

the single-particle will be present at the nuclear boundary, C is a Clebsch-Gordan coefficient

describing the angular momentum coupling, S is the single-particle spectroscopic factor and R

is the channel radius. The equation for the rate of reaction is given by

< σv >=

(
8

πµ

) 1
2
(

1

kbT

) 3
2
∫ ∞

0

σ(E)Ee
−E
kbT dE (2.6)

Where µ is the reduced mass, kb is the Boltzmann constant, T is the temperature of the

astrophysical site, σ(E) is the cross section and E is the centre-of-mass energy. Solving Eq.2.6

for a narrow resonance produces

Na < σν >= 1.54× 1011(µT9)
−3/2ωγe

−−11.605Er
T9 (2.7)

Where T9 is the temperate of the site in GK, Er is the central energy of the resonance and

Na is Avogadro’s number. ωγ is the resonance strength determined defined by

ωγ =
2Jr + 1

(2J1 + 1)(2J2 + 1)

ΓaΓb

Γ
(2.8)

Here, ω is the spin-factor, 2Jr+1
(2J1+1)(2J2+1)

, with J1 and J2 representing the angular momentum

of the two particles in the entrance channel of the reaction and Jr representing the total angular

momentum of the energy level the produces the resonance. γ represents the multiplication of

the partial widths for the entrance and exit channels (Γa and Γb, respectively), normalised by

the total width. When one of the partial widths is much narrower than the other, the value

of ωγ is reduced to be proportional only to the narrower partial width, since ΓaΓb

Γ
≈ Γb (if

Γb << Γa) [62]. Therefore, measuring these partial widths is vital for knowing the rate of a
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particular direct reaction.

2.4.1 Q-value and the Energy Range of Astrophysical Interest

Resonances are found where the centre-of-mass energy of the incident reactants matches an

energy level in the recoiling nucleus. The following equation can be used to determine which

energy levels are of relevance for a reaction in a given astrophysical site

Erange = Q+ Eo ±
1

2
∆Eo (2.9)

Where Eo is the central energy of the astrophysical site as determined by Eq.2.2 and ∆Eo

defining the width of the range of interest (cf. Eq.2.3). Q is known as the Q-value which is the

amount of energy released or absorbed in the nuclear reaction. If this is positive the reaction

is exothermic and releases energy, if negative then it is endothermic and absorbs energy. The

Q-value of a reaction can be found with Q = [(Mp+MT )−(Me+MR)]c
2, where MT is the mass

of the target nucleus, MR is the mass of the recoiling nucleus, Mp is the mass of the projectile

and Me is the mass of the ejectile.

2.5 Direct Reactions and Compound Reactions

As mentioned in Chapter 1.3, it is not always practical to experimentally measure reactions

and therefore approximations must be made. For example, to study the s-process in rapidly-

rotating metal-poor stars the 20Ne(d,p)21Ne reaction was used to probe the energy levels of the
21Ne nucleus. A (d,p) reaction is an example of a transfer reaction, which in turn is a type of

direct reaction. Direct reactions occur when the de Broglie wavelength of a projectile (λ = h
p
)

is comparable to the distance between nucleons in the target nucleus. The probability of such a

reaction occurring increases with energy. This type of reaction is fast, happening in timescales

on the order of ∼ 10−21 s.

Compound nuclear reactions are slow (lasting ∼ 10−18– 10−16 s) due to the requirement

for thermal equilibrium to be established between the nucleons inside the compound nucleus

that forms from the fusion of the two reactants [24]. The decay of the compound nucleus is

therefore independent of its formation making the whole process a two-step reaction, in contrast

to direct reactions where the interaction between target and projectile occurs on the surface of

the nucleus in one quick step.

Because the theory of these two types of reaction are so different, separate models are

needed to describe them. Direct reactions can be modelled using the Distorted-Wave Born
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Approximation which will be discussed in Chapter 2.6 and compound reactions can be modelled

with Hauser-Feshbach theory which will be introduced in Chapter 2.7.

2.5.1 Selection Rules for Direct Reactions

When conservation rules are combined with the quantisation of physical properties it can be

seen that in a direct reaction there are only certain combinations of angular momenta and

parties are possible. The two equations that determine the possible outcomes are known as

selection rules and are

||Ja − ℓ| − s| ≤ Jb ≤ Ja + ℓ+ s (2.10)

∆π = (−1)ℓ (2.11)

Where Ja is the total angular momentum of the initial nucleus, Jb is the total angular

momentum of the final nucleus, ℓ is the orbital angular momentum quantum number and s

is the spin of the transferred particle (s = 0 for alpha particles or s = 1
2
for protons and

neutrons). It is important to remember that these rules only apply to direct reactions, since

compound reactions last long enough that the exit channel is effectively independent of the

entrance channel from a quantum physics standpoint.

2.6 The Distorted-Wave Born Approximation

A nuclear reaction is envisaged classically as a series of particles interacting like billiard balls.

In the quantum treatment, however, particles can be represented as waves with wave functions

that describe them. The Distorted-wave Born Approximation (or DWBA) uses the wave like

nature of particles to model direct reactions.

In DWBA, a direct reaction is modelled by treating the incoming projectile nucleus as

a plane wave and the reaction as a perturbation to that wave; this is illustrated in Fig.2.7.

This perturbation contains the information about the reaction that took place. In the optical

model, the plane wave is incident on a partially opaque sphere that represents the target

nucleus (stationary in the laboratory frame) [24]. Analogous to optical physics, part of the

wave is reflected and part is transmitted. The total interaction potential is the sum of both of

these parts

V (r) = Vr(R) + iU(R) (2.12)
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Figure 2.7: A simple diagram illustrating the DBWA treatment of a direct reaction, with wavefronts
shown before and after the interaction.

Vr(R) is the real term which represents elastic scattering and is usually based on the Woods-

Saxon potential combined with the Coulomb potential. U(R) is the imaginary part of the

potential (i.e. the part that is transmitted) and represents the inelastic nuclear reactions

(including direct reactions). The differential cross section of the transmitted wave displays an

interference pattern, similar to double-slit diffraction. When direct reactions occur via a narrow

resonance the quantum mechanical properties of the energy level that gave rise to the resonance

have an impact the reaction. A relevant example for this project is that the spin-parity of an

energy level affects the shape of the differential cross section of a reaction[63]. Experimenters

can therefore determine the spin-parity of individual energy levels by measuring the differential

cross section for a resonant reaction across several angles and compare the resulting data to

possible theoretical predictions made using DWBA. Each prediction is produced by modelling

the reaction with a different angular momentum transfer (∆ℓ) while holding all other variables

constant. The spin-parity assigned to that state is the one whose theoretical prediction best

fit the data. The code used to produce DWBA predictions for the 20Ne(d,p)21Ne part of this

project was FRESCO [64].

Once the spin-parity has been determined, the next step is to extract the partial width.

DWBA contributes to this by providing the spectroscopic factor of each energy level. The

spectroscopic factor scales the measured differential cross section to the value predicted by

DWBA theory, this relationship is
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dσ

dΩ

exp

= C2S
dσ

dΩ

theory

(2.13)

The spectroscopic factor can then be used in Eq.2.5 to calculate the partial width.

Using DWBA to determine the spin-parities of a reaction has its limits. By nature, assign-

ments made using DWBA are model dependent, since assignments are by comparison to model

predictions and these models do not always reproduce observed physics accurately or may only

be valid under certain conditions, for a relevant example of this see Chapter 2.6.2. Some-

times the predictions made using DWBA for two different spin-parities can both agree with

the experimental data, in which case it is difficult to determine which is the most appropriate

assignment.

2.6.1 Optical Model Potentials in DWBA

Difficulty arises in modelling reactions due to there being many interacting bodies within the

a nucleus. The many interactions are approximated by optical model potentials (OMPs).

Precisely what information is contained within the OMPs depends on the model being used.

As mentioned already, an OMP often begins with a Woods-Saxon central potential representing

the short-ranged nuclear forces and builds from there, adding terms to represent the Coulomb

interaction (electromagnetic) and sometimes a term representing the spin-orbit coupling though

this can be a minor component of the total potential [65]. The linear sum of these parts to the

real potential is

Vr(r) = VWS + Vcoul + VSO (2.14)

Where, Vr is the real potential, r is the radius, VWS is the Woods-Saxon potential contri-

bution, Vcoul is the Coulomb potential contribution and VSO is the spin-orbit potential contri-

bution. The imaginary terms have been omitted for clarity. The imaginary potential may also

have several terms, depending on the specific model being used.

The final potential is substituted into the Schödinger equation along with the wave func-

tion of the relevant particle and used to calculate the radial wave equation for the particle

experiencing the potential

d2uL(r)

dr2
+

(
2m

ℏ2
[E − V (r)] +

L(L+ 1)

r2

)
uL(r) = 0 (2.15)

Here, uL = rR where R is the radial component of the potential, r is the radius, ℏ is the

Planck constant, L is an integer value, m is the particle mass, E is the total energy and V(r)
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is the potential. This equation is solved first within the radius of the nuclear potential and

then outside the potential by solving the radial wave equation again, this time without the

potential. The requirement is then set that the wave function should transition between these

two solutions smoothly [66]. The wave function used to produce Eq.2.15 is the spherically

symmetric solution Φ(r) =
∑ uL(r)

r
iLPL(cosθ), with PL being the Legendre polynomial and θ

is the angle to the z-axis.

Integrating the radial wave equation over a series of steps gives the wave function of the

recoiling particle and comparing that to the same wave function in the absence of a nuclear

potential yields the differential cross section of the reaction. When modelling direct reactions

parameters such as the number of steps or the size of each step can have a significant impact

on the final results and therefore must be selected with caution [64].

To reproduce a direct reaction computationally using this formulation, different potentials

are needed. Precisely which depends on the reaction being modelled. However, for a transfer

reaction such as was studied in this project, one OMP is needed for the entrance channel, one

for the exit channel, one describing the incident nucleus, one for the core-core interaction and

one describing the recoiling nucleus [64].

The choice of which OMP to use for each of these potentials depends on the conditions the

reaction is being simulated under. An important consideration is whether to select a local or a

global potential. A local potential is valid for a specific reaction at a specific energy and is often

derived from empirical measurements. A global potential is valid across a range of energies and

nuclear masses for a given interaction and consists of theoretical functions which vary the shape

of the potential with the changing parameters of the interaction, for instance Ref.[67]. Local

potentials are desirable where possible since they are usually based on data. However, when a

reaction has not been studied before global potentials can be used, such as is the case in this

project.

2.6.2 The Adiabatic Approximation

Above beam energies of E = 10MeV/u in (d,p) reactions deuteron break up becomes important

[68, 69] and this causes an issue for the DWBA predictions because the OMPs are based on

elastic scattering and do not account for that break up. Thus as the beam energy increases

and break up effects becomes more important, DWBA predictions become less accurate. It is

possible to adjust the OMP of the entrance channel to account for the break up of the deuteron

using a linear correction known as the adiabatic approximation [70]. While the modified OMPs

have been shown to best describe (d,p) transfer reactions above E = 10MeV/u, they do so at the
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expense of a good representation of elastic scattering. The modified theory is called ADWA (the

Adiabatic Distorted-wave Born Approximation). A comparison between DWBA and ADWA

for certain energy levels populated in the 20Ne(d,p)21Ne experiment at beam energies of E =

11MeV/u is made in Chapter 3.3.

2.7 Hauser-Feshbach Theory
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Figure 2.8: An example of Hauser-Feshbach predictions for the cross section of the 86Kr(α,n)89Sr
reaction made using different αOMPs [71, 72, 73, 74, 75, 76].

While single narrow resonances dominate the rates of reaction for lighter nuclei, reactions

involving heavy nuclei are different. In heavier nuclei, the protons and neutrons are much more

numerous meaning that there are many excited states close enough together that they overlap.

The cross section of a reaction can therefore be modelled as varying smoothly with energy

by statistically averaging the contributions from the individual energy levels. This approach

is known as Hauser-Feshbach theory [77] and can used in circumstances where there are no

experimental data for the cross section of a reaction. It is important to note here that this is

not a direct reaction because the reaction forms a compound nucleus as an intermediary step

between the entrance and exit channels.

The Hauser-Feshbach formula underpins this theory [77]
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σHF
ab (E) = πλ2

∑
JΠ

ωa

∑
{ja} Ta

∑
{nb}

∑
{jb} TbWab∑

c

∑
{nc}

∑
{jc} Tc

(2.16)

Here, σHF
ab is the cross section, E is the centre-of-mass energy, the subscripts a and b denote

entrance and exit reaction channels respectively and c represents all the channels that are open.

{ja} and {jb} are the angular momentum in the entrance and exit channel, respectively, {jc}
represents the angular momenta defining a given channel and {nc} are all possible discrete states
in the residual nuclei, while {nb} are only those states being considered. Π is the parity of the

compound system, λ is the reduced wavelength in the incident channel, ωa is the spin-factor of

the entrance channel (ωa =
(2Jr+1)

(2J2+1)(2J1+1)
, where Jr is the total angular momentum of the energy

level that produces the resonance and J1 and J2 are the angular momenta of the reactants) and

Wab is a factor relating the individual averages of partial widths for channels a and b to the

combined average of both over the total width (⟨ΓaΓb

Γ
⟩ = Wab

⟨Γa⟩⟨Γb⟩
⟨Γ⟩ ). The terms T represent

the transmission coefficients for each of the channels and are calculated from the optical model

potentials used to model the reaction. These OMPs are one of the three main input parameters,

the choice of which can significantly affect the predictions made using Hauser-Feshbach theory.

The other two parameters are the gamma strength function and the level density function. The

gamma strength function describes the gamma-ray channel of a nuclear reaction and enters

into Eq.2.16 through the transmission coefficient calculated for gamma-ray channels. As can

be deduced from its name, the level density parameter describes the density of the nuclear

energy levels in the outgoing channel b. Level density is an important parameter where there

is a range of possible final state energies in the outgoing nucleus. The following equation shows

the extension of Eq.2.16 to show the variation of the cross section with numerous energy levels

in the outgoing nucleus, including the level density function ρ(Eb, Ib,Πb)

dσHF
ab (E)

dEb

= πλ2
∑
JΠ

ωa

∑
{ja} Ta∑

c

∑
{nc}

∑
{jc} Tc

∑
Ib,Πb

∑
{jb}

TbWabρ(Eb, Ib,Πb) (2.17)

Where Eb, Ib and Πb are the final energies, spins and parities respectively. The derivation of

Eq.2.16 will not be given here. However, a clear description can be found in Ref.[78], starting

from the Breit-Wigner formula (cf. Eq.2.4).

The Hauser-Feshbach calculations for the 86Kr(α,n)89Sr part of this project were done using

the computer model TALYS (version 1.95) [79]. An example plot made with TALYS is shown

in Fig.2.8 and was made by holding all parameters constant except the choice of αOMP, which

was varied to show how the selection of OMP can significantly affect the predictions made with

Hauser-Feshbach theory.
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20Ne(d,p)21Ne for the s-process

3.1 The HELIOS Spectrometer

The Helical Orbital Spectrometer (HELIOS) is part of the Argonne Tandem Linac Accelerator

System (ATLAS) facility [80] at Argonne National Laboratory (ANL) in the United States and

studies nuclear reactions using an inverse kinematics setup. The beam that reaches HELIOS

has been accelerated through a series of Linacs (linear accelerators): the PII Linac, Booster

Linac, and finally, the ATLAS Linac. For radioactive isotope beams, the Argonne In-flight

Radioactive Ion Separator (RAISOR) can then be used to purify radioactive beams before

they reach the experimental end stations. The available ions sources for beam production are

an Electron Cyclotron Resonance (ECR) source and the CAlifornium, Rare Isotope Breeder

Upgrade (CARIBU). CARIBU is used to produced neutron-rich isotopes [81] that are then

ionised by an Electron Beam Ionisation Source (EBIS), which uses electron impact reactions

to produce ions. For this experiment, the ECR was used to produce the 20Ne beam The ECR

works by applying a magnetic field to gaseous atoms and electrons, then exciting the electrons

using incident microwaves that have a frequency equal to the electron cyclotron frequency, such

that they impact the neutral atoms and produce ions [82].

As is shown in Fig.3.1, HELIOS is a large solenoid with the beam entering along the axis

and impinging upon a target [83]. The force exerted on a moving ion in an electromagnetic

field is described by the Lorentz equation

F = q(E + v ×B) (3.1)

where q is the charge of the ion (measured in C), v is the velocity of the ion (measured in

m/s),B is the magnetic field strength (measured in T),E is the electric field strength (measured
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Figure 3.1: A labelled diagram of the HELIOS Spectrometer [83]

in V/m) and F is the resulting force on the ion (measured in N). Because HELIOS is a solenoid

the magnetic field lines inside the spectrometer are parallel to the beamline and uniform; this

means when light particles (such as protons) are ejected from reactions at an angle to the

beamline they move across these magnetic field lines thus experiencing a centripetal force that

brings them back to the beamline. If viewed from one end of the spectrometer this appears

to be a circular path. However, because the particle is also moving along the beamline the

resulting motion is a spiral.

The Lorentz equation can be used to predict the position at which a particle will return

to the beamline by substituting the equation for a centripetal force (F =
mv2⊥
r

), along with

v⊥ = ωr and ω = 2π
Tcyc

, into Eq.3.1 to yield

Tcyc =
2πm

q|B|
(3.2)

The cyclotron period (Tcyc) can be used to predict the position (z) where the light particle

will return to the beamline as z = v||Tcyc, where v|| is the particle velocity parallel to the

beamline. The velocity parallel to the beamline depends upon the energy and reaction angle

of the light particle. Thus, by using an coaxially mounted array of position-sensitive silicon

detectors, the position and energy of the ejected light particles can be measured and used to

calculate the reaction angle of that particle and the energy level through which the reaction
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proceeded. This description is an idealised scenario to illustrate the general operating principles

of the HELIOS spectrometer and is complicated, for example, by the fact that the detector

array has real volume, which means particles are detected before they have fully returned to

the beamline. For a more physical description see Chapter 3.1.2 and Ref.[83, 84].

As HELIOS operates in inverse kinematics, nuclei recoiling from reactions carry away most

of the energy and continue down the solenoid at small angles to the original beam axis. These

are stopped at the end of the solenoid by a silicon telescope which measures the ∆E-E of each

ion [85], allowing each isotope to be identified. Subsequently these recoil measurements can be

used to place a coincidence gate on the data and improve the signal-to-noise ratio of a given

experiment.

3.1.1 Coaxial Detector Array

Figure 3.2: Left) A simplified diagram of a position-sensitive silicon detector [86]. Right) The coaxial
array of position-sensitive silicon detectors used in HELIOS [83].

The coaxial detector array consists of twenty-four position-sensitive silicon detectors with

six mounted on top, six below and six to either side of a long hollow box which surrounds the

beamline; an image of the array can be seen in Fig.3.2. It is positioned upstream of the target

so as to measure low centre-of-mass angles. Each detector is a silicon semiconductor and is

sensitive to position in one dimension (along the beam axis). The diagram in Fig.3.2 shows how

an individual position sensitive silicon detector is designed. While the base is connected to one

cathode there are two anodes on the face of the detector, one at either end. When a particle (e.g.

a proton) impinges upon the detector it deposits its energy through electromagnetic interactions

with the semiconducting material. These interactions excite electrons in the silicon into the

conduction band, thus allowing electrons and holes to flow. The number of charge carriers

liberated is proportional to the energy of the incident particle. Charge flows out of the detector
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via the two anodes and the proportion of the total charge measured by each output for a single

event is determined by the relative distance between the two anodes that the charged particle

impinged upon the detector. Thus, detection position can be measured along with the total

energy of the incident particle.

When fabricating a detector, intrinsic semiconductors like silicon are doped. This is a process

where by atoms of other elements are added in order to improve the electrical conductivity of

the detector. The are two types of doping: n-doping (negative-doping), which introduces atoms

that act as electron donors, and p-doping (positive doping), which introduces atoms that act

as electron acceptors. These silicon detectors contain regions of n- and p- doped silicon, the

boundary between which is called the p-n junction. At the p-n junction, electrons from the

n-doped region diffuse into the p-region, forming what is known as a depletion region. On the

p-doped side of the depletion region, the electrons combine with holes to produce negatively

charged ions. On the n-doped side, the positively charged ions that donated those electrons

remain. The p-n junction stabilises once a sufficient number of electrons have diffused into the

p-region to repel addition electrons from diffusing.

When used in a nuclear physics experiment, a semiconductor detector is placed under reverse

bias, a state where an external voltage has been applied to the detector such that the electrons

and holes are drawn away from the p-n junction and thus the width of the depletion region

is expanded. Under these conditions, the electrons released by incident radiation will flow

towards the n-doped region, and the holes towards the p-doped region. Biasing reduces the

flow of leakage current, the current that naturally flows across the detector which is mostly

caused by thermal generation of electron-hole pairs, therefore improving the signal-to-noise

ratio of a detector.

3.1.2 Conversion from (e,x) to (E,z)

Based on the position along z that a light particle is detected by the coaxial array and the

amount energy it deposited the centre-of-mass angle of the reaction and the energy level through

which the reaction proceeded could be calculated. As mentioned in Chapter 3.1, the equation

to convert position in z to θcm is not as simple as z = v||Tcyc. Owing to the presence of the

coaxial detector the light particles have not completely returned to the beamline when they

are detected since the array has real volume. To resolve this, a correction can be made to the

equation for the time period (Tcyc =
2πr
v⊥

). As the full cycle is not complete, the full 2π angle

must be replaced with 2π − 2α where α = arcsin( r0
2r
). This relationship is derived from the
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diagram in Fig.3.3 and is used to produce

z = (v0 cos(θcm) + Vcm)
r[2π − 2 arcsin

(
r0
2r

)
]

v0sin(θcm)
(3.3)

Which is the calculation for z, where the detector array radius is r0 = 11.4mm and r is the

radius of the orbit of the proton. v0 is the velocity of the proton in the centre-of-mass frame

(which depends on its emission energy), Vcm is the velocity of the centre-of-mass frame in the

laboratory and θcm is the centre-of-mass reaction angle. The substitutions for v⊥ and v|| can

be found in Ref.[84].

ro

2r

⍺

Figure 3.3: A diagram of the HELIOS detector array illustrating the correction to the cyclotron
period. The black cylinder is the coaxial array, the red line represents the beamline and the blue line
is the trajectory of the recoiling protons.

The measured energy of a light particle depends on the energy level through which the

direct reaction proceeded. Because position in z is determined by both reaction angle and the

excitation energy of the state each detector corresponds to a different angular range for each

energy level in the recoiling heavy ion. To perform calculations with Eq.3.3, Heliosmatics (v14 )

[87] was used. This spreadsheet was also used to calculate the solid angle that each detector

subtended.

3.1.3 Recoil Detector

The recoil detector is circular and divided into four segments. Each segment consisted of two

layers of silicon. The surface layer is 80µm thick and measures the energy loss of a recoil as it

passes through (∆E). The backing layer is 500µm thick and stops the recoiling ion, measuring

the residual energy. By measuring ∆E–E, the proton number and mass number of a recoiling

nucleus can be identified. The ∆E of a recoil is associated with the proton number of that recoil

through a classical particle identification technique known as the Bethe-Bloch formula, which
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models the average energy loss of a nucleus as it moves through matter, the non-relativistic

version of the Bethe-Bloch formula takes the form of

− dE

dx
=

4πNaZtρtZ
2

AtMumev2
(
e2

4πϵ0
)2ln(

2mev
2

I
) (3.4)

Zt is the atomic number of the target, At it the nucleon number of the target, ρt is the

target density, Z is the charge of the recoiling nucleus, v is the velocity of the recoil and I is

the effective ionisation energy. The constants me and e represent the mass and charge of an

electron, respectively; NA is Avogadro’s number and Mu is the molar mass constant. Eq.3.4

illustrates the Z2 dependency of the energy loss. The energy deposited in the thin layer of

silicon provides the ∆E measurement. The rear layer of silicon in the HELIOS recoil detector

is thick enough to stop the recoils altogether and thus measures the residual energy. Thse

measurements can be used to determine nucleon number of a recoil (A) and so ∆E–E allows

for the identification of different recoiling isotopes.

3.1.4 Experimental Setup

For the 20Ne(d,p)21Ne experiment the 20Ne beam energy used was 11MeV/u (for a total beam

energy of 220MeV in the laboratory frame) and the magnetic field strength was set to 2T. The

silicon telescope was in use to measure the 21Ne recoils and the ejected protons were detected by

the position sensitive coaxial array. The coaxial array was positioned to cover an angular range

of 10◦ – 35◦ in the centre-of-mass frame (96◦ – 143◦ in the laboratory frame) for nuclei recoiling

with excitation energies of 7.5–8.0MeV. The target used was deuterated polyethylene with a

thickness of 50µgcm2. The luminosity monitor (Elum) was not in use during this experiment.

The Elum is a silicon semiconductor that detects elastically scattered ions, allowing the beam

intensity to be monitored throughout the experiment.

3.2 Data Analysis

3.2.1 Position Calibration

The information on the recoil angle of a light particle and the excited state through which

the direct reaction proceeded was extracted from the raw data collected by the spectrometer,

measured by the number of charge carriers liberated in a single event and the position at which

each event occurred. These charge carriers were collected by the two anodes at either end of

each silicon strip in the coaxial array, with the sum of the two signals being the total size of
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the signal (e) registered for a single event. Here, xf is defined as the size of the signal collected

by the upstream anode and xn is the size of the signal collected by the downstream anode.

The position of an event on the detector was determined by the relative current induced on the

upstream and downstream anodes (cf. Chapter 3.1). The first step in the data analysis was

to use these two measured signals to compute the position each event occurred at on a given

detector and began by gain matching the detectors for xf and xn. Gain is a term describing

the process of multiplying the number of electrons measured by the detector for each event.

Applying detector gain is necessary since the raw number of counted electrons, e, in any detector

is very small and must be amplified so that a data acquisition unit (DAQ) can handle it. Note

that each detector needed to be treated individually as each had a slightly different response.
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Figure 3.4: The process of gain matching the position-sensitive SSBs in HELIOS. xf denotes the
signal collected by the upstream anode and xn, the downstream anode. The χ2 value of the fit shown
is 29.1351.

A 228Th source was placed in the target position and calibration data were collected; this

is a radioactive source that emits alpha particles at a several well known energies as the nu-

cleus passes down the 228Th decay chain, specifically the 5.388MeV, 5.432MeV, 5.685MeV,
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6.050MeV, 6.288MeV, 6.778MeV and 8.785MeV lines. A plot of xf vs xn, such as is shown

in Fig.3.4, was made for each detector and on these plots the alpha particles emitted by the

source could been seen. The alpha particles are the straight lines with a negative gradient, each

line corresponding to a specific emission energy. For each of these lines xf + xn = k, where

k is a constant and each should intercept the x- and y-axis at values of xn = k and xf = k,

respectively, when they are correctly gain matched. It can be seen from the fit in Fig.3.4 that

this is not the case in the raw data and that had to be corrected. One of the lines associated

with an emitted alpha particle was isolated and fitted with the function

xf = Bxn + k (3.5)

This determined the correction B that was needed to match the gain in the upstream and

downstream anodes. Here, x′
n = Bxn was defined for later use. The B parameter was then

used to make a plot of e vs x′
n + xf and once more a first order polynomial was fitted, using

the equation

e = C1(x
′
n + xf ) + C0 (3.6)

The constants C1 and C0 were then used to define the following terms

x′
f = C1xf + C0 (3.7)

x′′
n = C1x

′
n + C0 (3.8)

At this stage the gain matching was complete and e = x′
f + x′′

n. The relative position on a

single detector ranges from (−1, 1) and is defined by

x =
(x′

f − x′′
n)

e
(3.9)

This was then converted to an absolute position in z (distance along the beam axis) with

z = d(
x+ 1

2
) + p (3.10)

Where d is the length of the single detector and p is the position of the leading edge of

that detector. Once z had been calculated, the absolute distance along the beam axis for the

interaction of each proton was known.

Now turning to the proton data from the 20Ne(d,p)21Ne experiment, Fig.3.5 shows raw
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Figure 3.5: Raw energy vs z position from the 20Ne(d,p)21Ne experiment.

energy measured by the detectors plotted against position along the beamline, z. Note the six

distinct sections show clearly the six different detector positions along z. Already the excited

states of 21Ne can be seen. These are the straight lines that are continuous across multiple

detector positions, their angle to the beam axis comes from the kinematics of the reaction. The

next step was to calibrate the energy registered by each detector.

3.2.2 Energy Calibration

Before the raw spectrum could be plotted for calibration, a correction had to be made for a

kinematic effect that arose from the motion of the beam nuclei as they reacted with the target

deuterons. This effect resulted in the kinematic lines of the 21Ne excited states appearing at

an angle on Fig.3.5. To perform the correction, another first-order polynomial was fitted to an

isolated kinematic line. Isolating these lines is easiest when they are clearly separated from one

another, however, as can be seen in Fig.3.5, in these data they were not. There was a significant

background which could be cleaned up using the recoil detector at the end of HELIOS as a

coincidence gate.

Coincidence gating set a condition that after a proton was detected in the coaxial array,

a recoiling ion must be detected within a given time frame otherwise the proton event would

be vetoed. In this work, the time gate required a recoil be measured within 8µs of a proton,

which based on kinematic calculations was a sufficient time for the associated recoils to reach
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Chapter 3. 20Ne(d,p)21Ne for the s-process

the detector. Furthermore, the proton and neutron number of each recoil could be identified

by ∆E − E analysis. This allowed an additional gate to be set such that only protons in

coincidence with specific recoiling nuclei were included in the analysis, specifically: 21Ne, 20Ne

and 17O. By gating on these recoils, it was possible to isolate an individual excited state so that

the necessary correction for the beam kinematics could be determined. The process of doing

this is illustrated in Fig.3.6. The polynomial fitted is e′ = D1x+D0 and the two constants D0

and D1 are different for each detector. Once this step was complete the proton energy spectrum

could be plotted.
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Figure 3.6: A comparison of detector 6 before and after the kinematic correction, the first order
polynomial fit to one of the energy levels after the background has been removed by gating on the
recoils, the associated χ2 value is 6.2791.

3.2.2.1 Internal Calibration

The value of e measured by the detectors represents the size of the detected signal when

a proton was stopped in the detector. e is proportional to the kinetic energy of the detected

proton which could be used, along with z position, to calculate the energy of the excited state
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in 21Ne through which the reaction proceeded and the reaction angle. e was converted directly

to excitation energy by an internal calibration.

An internal calibration plots the e spectrum and compares it to an excitation energy spec-

trum from literature; identifying the most prominent peaks and using these as reference points

for a calibration. The precise position in e was determined by fitting Gaussian functions to

each peak and taking the centroid value. A plot of measured e vs literature Ex was then made

to graphically relate the two parameters and a linear function was fit. This fit is the calibration

function.

A summary of which peaks were used in the calibration for each detector in this work can

be found in Table 3.1. Ideally the same set of energy levels would be used in the calibration of

each detector. However, this was not possible due to variation in the resolution of individual

detectors, which led to the energy levels on some detectors overlapping and making it impossible

to reliably identify the e position of the two peaks.
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Figure 3.7: Proton energy spectrum from detector 6 before and after energy calibration and the
polynomial used to transform between the two. The apparent difference in counts is a function of
binning which results from the x-axis being slightly wider in the uncalibrated plot.

Once the plot of Ex vs e had been made using all available points of comparison, a linear

function was then fitted to the data. This process is illustrated in Fig.3.7 on which it can

be seen that detector 6 provided a high resolution data set with narrow peaks leading to a

calibration with a low uncertainty. The calibration itself is shown in Fig.3.8. Uncertainty in

the calibration was determined by calculating the standard deviation of the data points from

the linear fit for each detector.

With the excitation energy spectra calibrated, the analysis could move onto the next stage:

peak fitting. Note that by converting from e to Ex, the spectrum was reflected through the
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Figure 3.8: The polynomial used to calibrate detector 6, producing the transformation shown in
Fig.3.7. This calibration has χ2=0.000458.

y-axis because the higher energy protons originated from the lower energy levels deeper in the

nuclear potential well.

An internal calibration was used rather than calibrating with the 228Th alpha source. Both

options included states close to the region of astrophysical interest, but the internal calibration

covered a range of energies that reached down to 4.526MeV, whereas the alpha calibration only

reached extended down to 5.388MeV. Since it was desirable that the lower states in 21Ne also

be investigated, the internal calibration was chosen as the range of energies it included covered

more of the excitation energy spectrum that was the aim of this study.

3.2.3 Peak Fitting

With the proton energy spectrum for 20Ne(d,p)21Ne calibrated and the relationship between

detector position, 21Ne energy level and reaction angle established, the next step was to extract

the number of counts for each excited state at each angle. As there were six detector positions,

the differential cross section for each excited state was measured at six different angles. In

practice, however, not all detectors were used in the analysis of states above the alpha threshold.

See Chapter 3.2.5.1 for a discussion on which detectors were used and why some were not. The

excitation energy spectrum for each detector now displayed a series of peaks, each corresponding

to an excited state in 21Ne. The number of protons recoiling from a reaction that proceeded

through a specific energy level in 21Ne was determined by fitting a Gaussian function to its
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Figure 3.9: The proton energy spectrum for detector 6 fitted below the neutron threshold. Note that
this is shown here as an example of a full range fit. A more detailed plot showing similar fits zoomed
in on the higher energy region can be found in Fig.3.16 and include the individual contributions from
each state. χ2 = 131.14033

respective peak on the energy spectrum and calculating the area underneath. In practice

none of the energy levels were completely isolated and overlapped with other levels of various

strengths. When fitting therefore, the function used is a sum of several Gaussian curves, one for

each energy level. Background protons are often accounted for by fitting a polynomial function

to the spectra, however, this was not done here as the background can be seen to be negligible

in comparison to the height of the main peaks on Fig.3.9. The software used to perform the

spectrum fitting in this experiment was ROOT [88]. The equation

P (x) =
Λ

σ
√
2π

e−(x−µ)2/2σ2

(3.11)

Shows the version of the Gaussian function that was used to fit the peaks, with Λ, µ and σ as

the area, centroid and width respectively. The most prominent peaks in the 21Ne spectrum were

below the neutron threshold and these are the peaks used in the internal calibration due to the

low uncertainties in literature for their energies. An example of a full fit of the post-calibration

spectrum can be seen in Fig.3.9.
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Table 3.1: The states in 21Ne below the neutron threshold used to calibrate the detectors.

ID States used to calibrate (MeV) Comments

0 6.608, 5.822, 5.550, 5.335, 4.725, 4.526

1 6.608, 5.822, 5.550, 5.335, 4.725, 4.526

2 6.608, 5.822, 4.725

3 6.608, 5.550, 5.335, 4.725, 4.526

4 6.608, 5.335, 4.725, 4.526

5 Not working

6 6.608, 5.822, 5.690, 5.550, 5.335, 4.725, 4.526

7 6.608, 5.690, 5.550, 5.335, 4.725

8 6.608, 5.822, 5.690, 5.550, 5.335, 4.725, 4.526

9 6.608, 5.335, 4.725, 4.526

10 6.608, 5.335, 4.725

11 Not working

12 6.608, 5.822, 5.550, 5.335, 4.725, 4.526

13 6.608, 5.822, 5.690, 5.550, 5.335, 4.725, 4.526

14 6.608, 5.550, 5.335, 4.725

15 6.608, 5.550, 5.335, 4.725, 4.526

16 Not working

17 6.608, 5.335, 4.725, 4.526

18 6.608, 5.822, 5.550, 5.335, 4.725, 4.526

19 6.608, 5.822, 5.550, 5.335, 4.725, 4.526

20 6.608, 5.335, 4.725, 4.526

21 6.608, 5.335, 4.725, 4.526

22 6.608, 5.335, 4.725

23 6.608, 5.550, 4.725
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3.2.4 Recoil Identification

3.2.4.1 Shift in Recorded Recoil Energy
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Figure 3.10: Recoil E vs event number (time) for recoil detector rdt[6], zoomed in on the region
where the leakage current change took place. Top) before recorded energy correction. Bottom) after
the recorded energy correction.

As mentioned in Chapter 3.2.2, the recoiling nuclei could be used to set a gate on the

data, thus removing background events to leave only those associated with the 20Ne(d,p)21Ne

reaction. Gating was done by plotting graphs of ∆E vs E and identifying the loci of the recoils.

One issue encountered was an observed change in the leakage current that occurred partway

through the experiment. Leakage current is the current that naturally “leaks” across the band

gap of the semiconducting silicon. The change in leakage current was correlated with a shift

in the E value measured by the recoil detectors and had to be accounted for by making a

correction to the recorded data. The origin of this shift is uncertain; it could be that a change

was made to the gain of the detectors midway through the experiment. No change was logged,

however, since the change is discontinuous, it is likely the result of human intervention. This

experiment was conducted during the coronavirus pandemic and was largely remotely attended.

The reduced number of on-site staff did, understandably, impact communication over the course

of the experiment; it is possible that this is one such example.
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Figure 3.11: Recoil E vs event number (time) for recoil detector rdt[4], zoomed in on the region
where the leakage current change took place. Top) before the correction for the shift in recorded recoil
energy. Bottom) after the correction for the shift in recorded recoil energy.

The correction made to the recoil data was linear and had a magnitude calculated from

plots of E vs time for each of the four recoil segments. The precise time at which this shift

occurred could be identified by finding the discontinuity on these plots. E should be constant

in time, therefore by fitting a straight line either side of the shift the measured energy was

determined both before and after the leakage current shift and the difference between these

values was the necessary correction. Fig.3.10 shows the energy vs time plot before and after

the correction was made for one of the recoil detectors (rdt[6]); the plot is zoomed in on run

Table 3.2: The recoil detector corrections for the shifts in recorded energy.

Recoil Detector Correction (channel number)

rdt[0] -135.2(37)

rdt[2] n/a

rdt[4] -190.1(24)

rdt[6] -217.0(42)
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62, during which the leakage current shift took place. Fig.3.11 shows the same plot, this time

for the rdt[4] detector, illustrating that this change was observed in multiple recoil detectors.

Correcting for this shift was necessary otherwise the inconsistent E value for the recoils made

it impossible to set appropriate gates based on the recoils, as the shift in E resulted in some

overlap between the 21Ne and 20Ne loci on the particle identification plots. The shifts varied

for each detector and their corrections are listed in Table 3.2.
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Figure 3.12: The excitation energy spectrum from detector 6 when gating on different recoils (21Ne,
20Ne and 17O) both before and after the correction for the shift in recorded energy. Left) before
correction. Right) after correction.
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Figure 3.13: Particle ID plots before and after the correction for the shift in recorded recoil energy.
Left) before correction. Right) after correction.

A comparison of the plots on Fig.3.12 illustrates the importance of this correction for the

recorded recoil energy as the 20Ne gate clearly shows data from 21Ne is being included in the
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cut, despite having attempted to gate on only 20Ne. Gating on 20Ne should exclude data below

the neutron threshold, which is at 6761 keV. The post correction plot no longer displays this

behaviour, indicating the shift in recorded recoil energy was indeed the reason for the overlap.

The ∆E–E plots shown in Fig.3.13 show the effects of the shift in recorded recoil energy on the

measurements made with the recoil detectors.

3.2.4.2 Recoil Gates
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Figure 3.14: The recoil gates for each nucleus studied for the rdt[6] vs rdt[7] detectors.

Fig.3.14 shows the recoil gates used for the three isotopes of interest to this experiment.

Each locus on this plot corresponds to a different isotope being measured by the recoil detectors.

The red gate is 21Ne, orange is 20Ne and green is 17O (from the 20Ne(n,α)17O channel). These

gates were made tight to minimise any random background events in the spectrum. Fig.3.15

shows a close up of the spectrum, plotted using the recoils for each gate and illustrates that by

gating on these loci the background became negligible.

3.2.5 Spectrum Fitting

By fitting Gaussian functions to the excitation energy spectrum of each detector, the yield for

excited states at several different angles could be found. The yield needed to be corrected for
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Figure 3.15: The excitation energy spectrum for detector 6, zoomed in on a region of background.

statistical binning and the solid angle coverage for each detector had to be included to allow

comparison. Each detector was positioned at a different distance along z and therefore a proton

must travel further to reach some detectors than others. Conceptualising these distances as the

radius of a sphere, one can see that the solid angle of detectors at different positions are not

the same. Calculating the solid angle coverage was done using Heliosmatics [87], as mentioned

in Chapter 3.1.2. Once these corrections had been made, graphs of counts vs angle for each

energy level could be plotted by normalising the solid angle for each detector to that of one

position. The position chosen for normalisation was the same for all levels studied and was

position 1 (which covered detectors 1, 7, 13 & 19).

The width of a peak in one of these spectra is a fixed value (not allowed to vary in the

fitting) calculated by combining the resolution of each detector (determined with the method

discussed above) and the total width of that energy level. As this experiment was conducted

in inverse kinematics detector resolution dominates the measured width, so the width of a

level could be considered negligible unless it was larger than the detector resolution and all

of these states produce narrow resonances. The resolution for each detector was determined

by fitting the strong states below the neutron threshold, allowing the width and height of the

Gaussian peaks to vary freely, and taking an average of the resulting σ from the Gaussian fits,

the results are shown in Table 3.4. Determining the resolutions was useful in the fitting of states

in the energy range of interest above the neutron threshold because the much lower statistics in

this region required the fitting parameters to be constrained as much as possible. Calibration
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Figure 3.16: Fits for those strong states below the neutron threshold of 21Ne. The dashed magenta
lines indicates the overall fits and the red Gaussians are the individual peaks that contribute. These
spectra combine contributions from different detectors at the same angle. For a list of which detectors
are associated with which position, see Table3.4. χ2 values for the fits to positions 0 to 5 are as follow:
χ2(0) = 233, χ2(1) = 264, χ2(2) = 322, χ2(3) = 288, χ2(4) = 263 and χ2(5) = 176.
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uncertainty (calculated as explained in Chapter 3.2.2.1) was used to constrain the centroid of

each energy level above the neutron threshold by commuting the calibration uncertainty with

the uncertainties on the energies reported in Ref.[30].

Table 3.3: The energy levels used in fitting the 21Ne proton energy spectrum above the alpha
threshold and their literature source.

Energy level (keV) Source

7108(1) [89]

7176(1) [89]

7337(1) [89]

7420.4(15) [30]

7559.1(15) [30]

7619.9(10) [30]

7748.8(17) [30]

7820.1(15) [30]

7981(2) [30]

8069(1) [30]

8189(2) [37]

To extract out the counts for each state below the neutron threshold, the spectra from and

the working detectors at a given position were summed. These combined position spectra were

then fitted with the same states as was used in the fits to the spectra individual detectors.

These fits are shown in Fig.3.16, zoomed in on the section of the spectra showing the peaks

that were investigated in this study. In these fits below the neutron threshold, the centroid

position was constrained as described above and the heights and widths were left to vary freely.

The fitting of the states above the neutron threshold was done separately to those below.

There were several difficulties in analysing the data in this region: low resolution (from inverse

kinematics), low statistics and the energy levels being narrowly separated in energy. These

issues resulted in the peaks overlapping on the spectra and meant that when summing over all

detectors at a given angle the uncertainty of the resulting fits was too high to allow any conclu-

sions to be drawn from the data. The solution was to use only one detector from each angular

position. Since resolution was the dominant problem, the detector with the best resolution was

chosen to represent each position. Table 3.4 highlights which detectors were used for each angle

and lists each the resolution of each detector. This approach sacrificed counts (statistics) in
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order to improve the resolution of the spectra. Even with this approach the overlaps made it

impossible to identify by eye the position of individual energy levels. Fortunately, there was a

solution.

A 20Ne(d,p)21Ne experiment had previously been run in forward kinematics at TUNL [30].

While this experiment suffered from 17O contamination that obscured states in the Gamow

window, most of the energy levels in the region of interest could be seen clearly at several

angles. For a comparison of the resolution of the two experiments, see Fig.2.2. As the TUNL

experiment was conducted at a similar centre-of-mass energy to this study across a similar

angular range, the results from the TUNL experiment could be used to inform the fitting of

the HELIOS spectra. Therefore, the fitting procedure for the HELIOS data only included

those peaks clearly seen in the TUNL experiment. Peaks that appear very small in the TUNL

data were treated as negligible in the HELIOS analysis in an attempt to avoid over-fitting the

spectra. A list of the peaks used in the fitting can be found in Table 3.3. Fig.3.17 shows the

fitting produced when using the TUNL data to restrict the free parameters available for each

of the detectors used. Note that no background polynomial was included because, based on

Fig.3.12, background events are expected to have been sufficiently removed with the two gating

conditions (coincidence time and recoil gate).

The fits above the neutron threshold, as shown in Fig.3.17, fixed the peak widths using the

resolution of each detector and did not include any energy dependence. The justification for

this was to prevent over-fitting of the spectra. The fits shown in Fig.3.17 also include states at

8068 and 8198 keV. The justification for this is that, while these peaks have been observed in

previous studies [29], above 8068 keV the level density becomes too great for HELIOS to resolve

and therefore a reliable investigation of these states in this experiment was not possible. Their

inclusion in the fits (particularly the 8068 keV state) was necessary since they both overlap the

7820 keV peak and therefore needed to be included in the fitting, lest their omission increase

the uncertainty of the 7820 keV fits. The 8068 keV state was reasonably well separated from

the 7981 keV state.

3.2.5.1 Chosen Detectors

Unfortunately, the detectors corresponding to the lowest angles (position 0; detectors: 0,

6, 12 & 18) could not be used in the analysis of the levels above the neutron threshold since

these detectors were on the very edge of angular acceptance of HELIOS. The spectra are cut

off around 7.7MeV, below the excited states of interest (those being 7749 keV and 7820 keV).

This can be seen on the plot for detector six in Fig.3.17.

Fig.3.18 shows that the response of each detector was different. For instance, some detectors

had better resolution and some had a greater uncertainty in their energy calibration; these
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Figure 3.17: Fits of the excitation energy region of interest for each of the detectors used. The dashed
magenta lines indicates the overall fits and the red Gaussians are the individual peaks that contribute.
The two vertical black lines on each plot bracket the energy range of relevance for the s-process in
rotating massive stars, which spans 7.65–7.99MeV. χ2 values for each detector fit shown are as follow:
χ2(6) = n/a, χ2(13) = 49.2, χ2(8) = 31.0, χ2(3) = 36.4, χ2(4) = 53.1 and χ2(17) = 41.4.
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Figure 3.18: A comparison of detector 8 and detector 14, both of which at position 2 on the array,
showing significant differences in resolution.

differences are summarised in Table 3.4. An additional problem was found in the positioning

of the beam on the target. If the beam spot was off-centre it would result in one side of the

array receiving a higher count rate than the others. When the data were tested it was found

that there was indeed an asymmetry in the beam position. This asymmetry would not be

an issue provided all detectors at a given position along the array were in use, however, this

was not case. Those energy levels analysed below the neutron threshold took data from all

detectors available, summing the spectra together to make a combined plot. However, as a

number of detectors were not functioning during the experiment (cf. Table 3.4) the results at

those angles would be affected by the beam position offset. In the case of the above threshold

states, only the detectors with the best resolution were used meaning that once again, the beam

position offset has to be accounted for when reporting results. This beam position offset was

determined by evaluating the percentage contribution of each detector to the total counts at

each position. This could only be calculated for positions where all detectors were functioning

(positions 0,1 and 2). Taking the average of the standard deviations for each of these positions,

the uncertainty in counts as a results of the beam offset for a given detector was calculated to

be 10%.

3.2.6 ADWA Analysis

3.2.6.1 Potentials

Chapter 2.3 explained how differential cross section measurements are compared to DWBA

predictions when determining the spin-parity of an energy level and the associated spectroscopic
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Table 3.4: A summary of the detectors in the HELIOS coaxial array with their resolution
calculated as an average of their measured sub-threshold widths.

ID Position σcalibration (keV) Resolution (keV) % total position counts Comments

0 0 2.4 49 17.5 Acceptance limit

1 1 7.6 53 14.4

2 2 1.7 70 21.0

3 3 6.9 56 16.0 Used for analysis

4 4 0.7 53 n/a Used for analysis

5 5 Not working

6 0 8.1 43 20.5 Acceptance limit

7 1 6.3 80 27.9

8 2 6.1 37 14.7 Used for analysis

9 3 7.2 57 8.6

10 4 6.6 52 n/a

11 5 Not working

12 0 8.3 44 43.7 Acceptance limit

13 1 6.2 46 33.9 Used for analysis

14 2 3.3 79 37.3

15 3 3.4 55 38.9

16 4 Not working

17 5 5.1 45 n/a Used for analysis

18 0 8.1 66 18.3 Acceptance limit

19 1 8.2 61 23.8

20 2 4.6 65 27.0

21 3 2.4 77 36.7

22 4 12.4 75 n/a

23 5 16.6 88 n/a
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factor (C2S). Table 3.5 lists the OMPs that were used in the calculations; each of these

potentials are global (cf. Chapter 2.6). The OMPs used in this study were chosen to match

those used in Ref.[30], since it was desirable that the results be as comparable as possible for

the later analysis. The only variations were the addition of the potential from Ref.[70] that

introduced the adiabatic correction, as well as the necessary adjustment for a different reaction

energy. One concern was that the global potential from Ref.[67] had originally been reported

as appropriate for the mass range A=40–209, for which Neon is below. However, this potential

had been used in the TUNL analysis [30] and successfully replicated known results for the

spin-parities of energy levels in 21Ne.

Table 3.5: The optical model potentials used in the 20Ne(d,p)21Ne analysis.

Index Overlap Potential Reference

1 20Ne + 2H An and Cai (2006) [90]

Wales and Johnson (1976) [70]

2 21Ne + 1H Varner et al. (1991) [67]

3 20Ne + n Varner et al. (1991) [67]

4 n + 1H A. M. Morro [example]

5 20Ne + 1H Varner et al. (1991) [67]

The angular distributions extracted for each excited state in 21Ne were compared to several

ADWA predictions, each prediction was made assuming a different possible ℓ-transfer. Each

excited state was assigned the spin-parity which produced the best agreement between the

measured data and ℓ-transfer prediction. The comparisons between measured data points and

theoretical predictions was made using chi-squared minimisation (cf. Chapter 3.2.6.3).

An important point to make is that because HELIOS measures all angular data points

simultaneously, target density and the number of beam particles impinged is the same, therefore

the shape of the differential cross section can be replicated without converting from measured

counts to dσ/dΩ (mb/sr). As the spin-parity was determined independently of the absolute

cross section, the Jπ of the energy levels could be determined from the shape of the measured

counts vs angle alone. The spectroscopic factor (C2S), however, and by extension the neutron

width (Γn), would require converting from arbitrary counts to mb/sr. Unfortunately, in the
20Ne(d,p)21Ne experiment the Elum, which is needed for reliable beam normalisation, was not

in operation and therefore the HELIOS data alone could not be used to find the spectroscopic

factor as defined in Eq.2.13.
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3.2.6.2 Extrapolation
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Figure 3.19: ADWA predictions for the differential cross section of the 7619 keV energy level in the
20Ne(d,p)21Ne reaction, calculated at a series of different binding energies below the neutron threshold.
Each prediction is separated by a difference of 250 keV in binding energy. These calculations are
indexed by the excitation energy used in FRESCO.

FRESCO can be used to produce DWBA predictions for bound states, however, once below

zero binding energy for a state in the outgoing channel its predictions becomes unreliable. The

neutron threshold for the 20Ne(d,p)21Ne reaction is 6761 keV and the excitation energy range

of interest is 7.0–8.2MeV. Therefore, a solution was needed to produce DWBA predictions

above threshold; in this project the extrapolation method was used [91]. In this method, the

assumption is made that the shape of the differential cross section varies smoothly with exci-

tation energy and by determining this trend, the cross section can be computed at an energy

just below threshold then scaled to the desired excitation energy using a linear extrapolation.

Fig.3.19 shows the series of below threshold calculations for the angular distribution of the

7619 keV state in 21Ne and the final prediction after extrapolation.

The extrapolation in this analysis is based on five FRESCO calculations at 250 keV intervals

below the neutron threshold (listed on Fig.3.19). The average difference between these steps is

then calculated and this average is used to extrapolate to 7619 keV from the 5511 keV prediction.

This process is illustrated for one angle on Fig.3.20 as an example.
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Figure 3.20: ADWA predictions for the differential cross section of the 7619 keV energy level in the
20Ne(d,p)21Ne reaction, calculated at an angle of 20°, for each of the binding energies listed on Fig.3.19.
The final extrapolation to 7619 keV is also shown.

3.2.6.3 Chi-Squared Minimisation

After extrapolating the predictions to the required excitation energy the theoretical predic-

tion of dσ/dΩ was compared to the data points measured in the experiment. This meant scaling

the ADWA prediction to the measured data according to Eq.2.13. The scaling factor was found

by using a chi-squared minimisation algorithm. The chi-squared test statistic compares the

predicted differential cross section scaled by a factor Sf to the measured data, weighted by the

uncertainty. The equation is

χ2 =
∑
i

(xi − x̄i)
2

σ2
i

(3.12)

Where x̄i is the expected value, xi is the measured value and σi is the uncertainty on that

measurement. The algorithm looped over Eq.3.12 and varied the scaling factor until the best

fit between the theoretical predictions and the data was found. The best fit was defined as the

smallest value of χ2 that could be produced by the algorithm. From that minimum the best

fitting value of Sf was determined.
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3.2.6.4 FRESCO vs DWUCK

This analysis chose to use FRESCO to achieve consistency with other studies of the 21Ne

nucleus [30] and to combine it with the extrapolation method [91], enabling an investigation

of those states above the neutron threshold. Extrapolating was a necessary with FRESCO as

the program does not reproduce above-threshold states well. An alternative option would have

been to use DWUCK [38], another commonly used program for modelling direct reactions. Un-

like FRESCO, DWUCK incorporates the approach outlined in Ref.[92] which enables the code

to converge the integrals of oscillatory wave functions for above-threshold states. Without that

approach, the form factor integrals for transfers involving continuum states (above-threshold

states) will not converge because the radial wave functions decay too slowly as the radius in-

creases [64] - this is the reason FRESCO does not reproduce individual continuum states well.

Using DWUCK therefore would have enabled the direct calculation of angular distributions for

states above the neutron threshold, removing the extrapolation which is inherently an approx-

imation. A full comparison between FRESCO and DWUCK with respect to measurements is

beyond the scope of this project.

3.2.7 Partial Width Determination

As the HELIOS Elum was not in operation during the 20Ne(d,p)21Ne experiment there were no

reliable measurements for beam intensity. Thus, absolute cross sections could not be determined

and the partial widths could not be directly calculated since that required the spectroscopic

factor, C2S (cf. Eq.2.5). The data from HELIOS, however, could calculate a scaling factor

(Sf ) that was used to compare theoretical cross sections to proton counts. The conversion from

counts to differential cross section requires first calculating the cross section as measured by

each detector from the counts, beam intensity, target density and detector efficiency according

to Eq.2.1. This value is then normalised to the solid angle of the detector.

Nevertheless, an attempt to provide estimates for the neutron widths was made. This was

done using the TUNL data as a point of comparison and attempting to scale the HELIOS Sf

to Γn. The procedure for doing this shall now be presented.

First the equation C2STUNL = κ × Sf, HELIOS was defined where κ contains the experimental

information missing from the HELIOS data. Next, κ was determined by comparing a state

for which the HELIOS and TUNL spin-parity results were in good agreement, thus providing

an estimate for κ; the 7620 keV energy level was used in this analysis. The HELIOS value of

counts per steradian for the chosen state was then multiplied by Sf and κ to yield dσ
dΩ
. Then,

using that dσ
dΩ
, the partial widths were calculated using Eq.2.162 in Ref.[62]. In this analysis, a
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script written by Dr. P. Adsley was used to perform this step.

This method provided a means of estimating the neutron widths of these states, however, did

contain a hidden uncertainty. The partial width of a state depends on the centre-of-mass energy

of the reaction and the TUNL and HELIOS experiments were conducted at different centre-

of-mass energies (13.984MeV and 22.155MeV respectively). Therefore the method described

above, where the 7620 keV state is used to relate the TUNL data to the HELIOS data, is not

comparing like-for-like. This systematic uncertainty could have been quantified had there been

another state, besides 7620 keV, for which results from HELIOS and TUNL to be compared.

Unfortunately, at the time of study there was no available results on other states for which

HELIOS and TUNL showed agreement. Investigations of some of the lower energy states

observed in the TUNL experiment are ongoing [89] and could be used in future to quantify the

uncertainty due to the energy difference.

3.3 Results and Discussion

Table 3.6: Results from the 20Ne(d,p)21Ne experiment at HELIOS. Literature ℓ values come
from NNDC [31] below the 6.0MeV and from Ref.[30] and Ref.[89] above that energy. Values
for (2J + 1)Sf are normalised to 6609 keV with 2Jπ = 5+ and the literature comparison comes
from Ref.[93].

Ex [keV] 2Jπ ℓn ℓn lit. (2J + 1)Sf (2J + 1)Sf lit. Γn [eV]

2794 1+ 0 0 0.378± 0.531

4526 (3, 5)+ 2 2 1.024± 0.240, 1.146± 0.260 1.56

4725 (5, 3)+ 2 1 3.890± 0.779, 3.476± 0.703 3.19

5334 (5, 3)+ 2 2 or 3 2.909± 0.621, 2.591± 0.567 0.84

5549 (5, 3)+ 2 2 1.280± 0.716, 1.143± 0.183 0.74

5822 (7, 5)− 3 2 0.792± 0.167, 0.703± 0.149 0.34
(5, 3)+ 2 0.616± 0.113, 0.548± 0.102

6609 (5, 3)+ 2 2 1.000± 0.160, 0.884± 0.147 1.00

7106 (5, 3)+ 2 2 0.110± 0.033, 0.099± 0.029

7176 (5, 3)+ 2 1 0.297± 0.046, 0.265± 0.042

7337 (7, 5)− 3 1 0.231± 0.052, 0.205± 0.047

7420 undetermined 1

7559 (1, 3)− 1 2 0.036± 0.006, 0.042± 0.008

7619 (1, 3)− 1 1 0.043± 0.007, 0.051± 0.009

7749 undetermined < 7200

7820 3− 1 2 0.034± 0.009 7600± 2100

7980 (11, 13)+ 6 1 1.473± 0.204, 1.547± 0.221
(11, 9)− 5 0.295± 0.053, 0.263± 0.048
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Figure 3.21: A comparison of three independent experiments studying the 20Ne(d,p)21Ne reaction,
with DWBA fits for each. Data included from Ref.[30] (green: χ2 = 5560), Ref.[93] (hot magenta:
χ2 = 53215) and this work (blue: χ2 = 97). Rescaled arbitrarily for comparison. DWBA preformed
using the models in Table 3.5 (minus the Adiabatic correction) at the centre-of-mass energy of each
experiment.

Some general observations shall be discussed here before the DWBA results are presented. A

consistent problem with this analysis was the low resolution. The recoil gates shown in Fig.3.14

are quite restrictive and could have been expanded since the background is well controlled,

which may have improved the number of counts under the peaks, however, the main source

of uncertainty was the low resolution rather than counting statistics, therefore expanding the

gates would likely not have significantly improved the uncertainty. Furthermore, the absolute

cross section could not be measured without the Elum and therefore neutron widths for the

various excited states could not be directly calculated. A method to indirectly calculate neutron

widths by combining both these data and the results in Ref.[30] was used (cf. Chapter 3.2.7).

An improved version of this experiment would use include the Elum so that cross sections could

be determined and neutron widths directly calculated, also using an array of detectors with

a consistently good resolution (ie. detector 8) would have reduced uncertainty when fitting

individual resonances in the Gamow window.

Since this experiment and the TUNL [30] experiment were conducted at slightly different

centre-of-mass energies, it provides an opportunity to compare the effects of these different
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kinematics on the measured data and the associated DWBA predictions. Fig.3.21 shows the

results for 6609 keV, which is known to be either a 3
2

+
or 5

2

+
state. Results from a third (d,p)

experiment [93] have also been included and all three data sets have been arbitrarily scaled for

an easy comparison of their shapes. The HELIOS experiment was conducted at a centre-of-

mass energy of 22.155MeV, the experiment of Ref.[30] at 13.984MeV and the experiment of

Ref.[93] at 9.091MeV. Note the higher the centre-of-mass energy, the more forward peaked the

angular distribution becomes. For the purpose of this comparison the HELIOS data has been

fitted to DWBA predictions rather than ADWA.

3.3.1 ADWA versus DWBA
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Figure 3.22: A comparison of two different ℓ-transfers predicted for the 6609 keV energy level (left
is ℓ = 2, right is ℓ = 3) to illustrate the improved fit of ADWA model predictions (red) over DWBA
model predictions (blue).

Fig.3.22 illustrates the improvement of ADWA over DWBA in modelling the data of this ex-

periment. There is only a small difference between the two models (blue=DWBA, red=ADWA),

which is to be expected as the 21Ne beam energy of 11MeV/u is close to the threshold for the

ADWA regime (10MeV/u) and using DWBA would still be reasonable. The two plots show

the predictions compared to the data from the 6609 keV state for ℓ = 2 (left) and ℓ = 3 (right).

The 6609 keV state is known to be ℓ = 2 which is why it was chosen to compare the ADWA and

DWBA predictions. As can be seen, both ADWA and DWBA yield a good fit with the data.
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Turning to the ℓ = 3 predictions, however, it can be seen that the DWBA predictions give a

worse fit to the data than ADWA. Indeed, the DWBA analysis cannot fully reject ℓ = 3. In

contrast, the ADWA predictions can exclude the ℓ = 3 predictions. Therefore, because ADWA

reproduces literature results more reliably than DWBA for these data, ADWA was used in this

analysis.

3.3.2 States Below the Neutron Threshold

All ℓ transfers for (d,p) have two possible Jπ values (except ℓ = 0, which has only one). These

data cannot be used to discriminate between the possible Jπ values for a given ℓ-transfer since

the differences between the predictions are too small. Therefore, the following plots show the

fits to the measured data for only the Jπ with the smallest χ2 for each ℓ-transfer.
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Figure 3.23: Measured differential cross section for the 2794 keV energy level compared to different
ℓ-transfer predictions and the χ2 value of each fit. The best fitting prediction is ℓ = 0

This state was reported as prominent by Ref.[94] who assigned it a Jπ of 1/2+ in their
20Ne(d,p)21Ne study. This analysis is in agreement with that study, as can be seen in Fig.3.23.

While ℓ = 0 did give the lowest χ2 fit for these data, the measured shape was still somewhat

different to the predicted shape for ℓ = 0. A possible reason for this is that there is an unresolved

peak at 2867 keV in the spectrum [31] that has erroneously been included in the fits for 2794 keV.
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The 2867 keV peak has not previously been observed in (d,p) experiments, which seldom analyse

states so low in excitation energy, and was therefore not included in the fitting here. Given the

somewhat different shape of these data with respect to the predictions and taking into account

the otherwise good agreement of the other results for both ADWA predictions and literature

values, it is possible that this overlap is the source of the discrepancy. The 2867 keV state has

a reported spin-parity of 9/2+ [31]. Further analysis, comparing measurements to combined

predictions for these two overlapping states, might be able to determine if this overlap was the

source of the poor agreement between data and predictions. Another reason may be that, since

the measurements for this peak are relatively far from 0o, the ADWA predictions are failing to

reproduce the data. Such deviations between 20Ne(d,p)21Ne measurements and DWBA analysis

have previously been observed at large angles above 40° [93, 30].
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Figure 3.24: Measured differential cross section for the 4526 keV energy level compared to different
ℓ-transfer predictions and the χ2 value of each fit. The best fitting prediction is ℓ = 2.

Previous 20Ne(d,p)21Ne studies have determined a spin-parity of either 5/2+ or 3/2+ [93,

94] and studies of 21Ne states populated by other experiments such as the 16O(7Li,npγ)21Ne

of Ref.[95] confirmed 5/2+. This study is in agreement with the literature, finding that the

smallest χ2 fit is given by ℓ = 2, meaning a Jπ assignment of either 5/2+ or 3/2+. The

predicted transfers are shown in Fig.3.24 where it can be seen by eye that ℓ = 2 is the best fit.
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4725 keV
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Figure 3.25: Measured differential cross section for the 4725 keV energy level compared to different
ℓ-transfer predictions and the χ2 value of each fit. The best fitting prediction is ℓ = 2.

This state is an unresolved doublet with the 4685 keV state, which may be the source of

the disagreement between this study, which from Fig.3.25 finds a best fit of ℓ = 2, and the

literature value of ℓ = 1. The literature value was determined in another 20Ne(d,p)21Ne study

[93]. This disagreement is unusual as the results for energy levels below the neutron threshold

in this study are generally in agreement with previous experiments, including Ref.[93].

5334 keV

The spin-parity of 7/2− adopted by Ref.[31] for this state would imply ℓ = 3 in a 20Ne(d,p)21Ne

reaction and comes from a 17O(7Li,npγ)21Ne study [96]. Fig.3.26 shows that these data do not

agree with that assignment. This study instead finds agreement with the previous 20Ne(d,p)21Ne

experiment of Ref.[94] and the previous 18O(α,nγ)21Ne study of Ref.[97] that both found best

fitting spin-parities of Jπ of either 5/2+ or 3/2+. Ref.[96] reported using gamma-ray coinci-

dence measurements to determine transitions and it is possible therefore that this energy level

was wrongly associated with one of the observed cascades.

5549 keV

This study found that a spin-parity of either 5/2+ or 3/2+ yielded the lowest χ2 value for

these data points (another ℓ = 2) as can be seen on Fig.3.27 and this is again in agreement with
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Figure 3.26: Measured differential cross section for the 5334 keV energy level compared to different ℓ
predictions and the χ2 value of each fit. The best fitting prediction is ℓ = 2.
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Figure 3.27: Measured differential cross section for the 5549 keV energy level compared to different
ℓ-transfer predictions and the χ2 value of each fit. The best fitting prediction is ℓ = 2.
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the previous 20Ne(d,p)21Ne study of Ref.[94] and the neutron pickup experiment of Ref.[98] that

determined a spin-parity of 3/2+.

5822 keV
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Figure 3.28: Measured differential cross section for the 5822 keV energy level compared to different
ℓ-transfer predictions and the χ2 value of each fit. The best fitting predictions are ℓ = 2 and ℓ = 3.

An ℓ = 2 transfer produced the smallest χ2 fit for this state, but Fig.3.28 shows that ℓ = 3

is also a possibility, having a very similar χ2 value and fitting well by eye. The literature Jπ is

3/2+, based on a previous 20Ne(d,p)21Ne experiment [94] and a 18O(α,nγ)21Ne experiment [99],

implying a transfer of ℓ = 2. In these data, the 5822 keV energy level is unresolved with the

5818 keV state. 5818 keV has a spin-parity in literature of 7/2− corresponding here to an ℓ = 3

transfer. It is possible that the 5818 keV state is contributing to the peak labelled 5822 keV

and is the source of the ADWA analysis uncertainty.

6609 keV

As seen in Fig.3.29 the smallest χ2 fit for this state was ℓ = 2, agreeing with the results of

Ref.[30]. This state is very prominent in the 20Ne(d,p)21Ne spectrum and is close to the neutron

threshold for 21Ne at 6761 keV. Previous studies have taken advantage of the relative isolation

of this energy level by using it to normalise the spectroscopic factors of all other levels [93]. By

normalising the scaling factors from this analysis to that of 6609 keV comparisons can be made

to literature values for C2S of different states, even without the absolute cross section.
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Figure 3.29: Measured differential cross section for the 6609 keV energy level compared to different
ℓ-transfer predictions and the χ2 value of each fit. The best fitting prediction is ℓ = 2

3.3.3 States Above the Neutron Threshold

7106 keV

In this study the fit with the lowest χ2 was ℓ = 2, agreeing with the previous assignment

from Ref.[30]. From visual inspection of 3.30 it can be seen that ℓ = 1 and ℓ = 3 also give

reasonable fits to the data. This energy level is not fully resolved from the 7176 keV state in

these spectra and it is possible that some 7176 keV counts have been included in the 7106 keV

peak.

7176 keV

This state is not recorded in the compilations [31, 100, 101]. However, it was quite promi-

nent in both this experiment and the TUNL experiment [30]. The TUNL study assigned a

momentum transfer of ℓ = 1 [89] for which this study is in disagreement. The best fitting

ℓ-transfer in this study was ℓ = 2, as seen in Fig.3.31 the predictions for ℓ = 1 gave a relatively

poor χ2 minimisation. This state is unresolved with the 7106 keV state in the HELIOS spectra,

meaning that the fits are less reliable than for other, better isolated energy levels. Another

possible reason for the disagreement between these states is that there are several small 21Ne

peaks observed in the TUNL experiment that were not included in the fitting for the HELIOS

data, such as the 7156(1) keV state. The reasons for treating these other states as negligible
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Figure 3.30: Measured differential cross section for the 7106 keV energy level compared to the five
best fitting ℓ-transfer predictions and the χ2 value of each fit. The best fitting prediction is ℓ = 2.
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Figure 3.31: Measured differential cross section for the 7176 keV energy level compared to the five
best fitting ℓ-transfer predictions and the χ2 value of each fit. The best fitting prediction is ℓ = 2.
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was to avoid over fitting the data, as has already been discussed. However, the disagreement

with previous measurements could be explained if those states are more strongly populated in

this study than they were in the TUNL experiment. It is possible that some resonances are

stronger in this study than in the TUNL experiment since this study was conducted at the

higher centre-of-mass energy of 22.155MeV compared to 13.984MeV used at TUNL [30].

7337 keV
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Figure 3.32: Measured differential cross section for the 7337 keV energy level compared to the five
best fitting ℓ-transfer predictions and the χ2 value of each fit. The best fitting prediction is ℓ = 3.

This is another unresolved energy level in the HELIOS spectrum. The results, seen in

Fig.3.32, give good agreement with several possible ℓ-transfers, in particular ℓ = 1, 2&3. The

best fitting ℓ-transfer was ℓ = 3, disagreeing with the much higher resolution analysis of the

TUNL experiment [89] which found that ℓ = 2 best fit their data (the data came from the

same experiment as Ref.[30] but investigated lower energy levels). The peak fits for this state

overlap with several other states, however, as previously discussed, only the levels prominent

in the TUNL data were included in the fitting procedure for the HELIOS data. Therefore, the

7337 keV and 7420 keV states were fitted in this region, ignoring other known energy levels such

as 7470 keV on the basis that they are negligible compared to the other peaks observed in the

TUNL data. No state had been reported at this energy until the TUNL study. However, the

compilations do include a state at 7320±5 keV [31, 100, 101] which may have been the same
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level. It appeared prominently in the TUNL study and was therefore included in the fitting

here.

7420 keV
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Figure 3.33: Measured differential cross section for the 7420 keV energy level compared to the five
best fitting ℓ-transfer predictions and the χ2 value of each fit. None of the predictions fit these data
well.

This state overlaps with the 7337 keV state in the HELIOS data and could not be resolved.

Unfortunately, the best fitting spin-parity could not be identified as the data fit three different

predictions for ℓ (1,2 and 3), as shown in Fig.3.33 along with the χ2 values for the minimisation

of the predicted transfers to the measured data. The inability to separate this state from the

7337 keV peak satisfactorily is the likely reason for the strange shape of the data.

7559 keV

This state was observed in the TUNL data and reported ℓ = 2 despite also fitting the ℓ = 1

predictions [30]. The basis for this was that an ℓ = 1 transfer would mean a neutron width

large enough to be seen in the neutron resonance experiment of Ref.[102], since such a strong

neutron resonance was not observed it was assigned a spin-parity of either 3
2
+ or 5

2
+. As seen

on Fig.3.34, in this study ℓ = 2 is not a good fit for these data and therefore must be reported

as ℓ = 1, despite not agreeing with the results of Ref.[102]. A more detailed discussion on the

disagreements between this study and Ref.[102] can be found in the 7820 keV section of this

chapter.
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Figure 3.34: Measured differential cross section for the 7559 keV energy level compared to the five
best fitting ℓ-transfer predictions and the χ2 value of each fit. The best fitting prediction is ℓ = 1.

7619 keV
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Figure 3.35: Measured differential cross section for the 7619 keV energy level compared to the five
best fitting ℓ-transfer predictions and the χ2 value of each fit. The best fitting prediction is ℓ = 1.
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This study is in good agreement with the ℓ = 1 assignment of Ref.[30] as seen on Fig.3.35.

Because this state was the only one above the neutron threshold for which the was a clear

agreement between this study and Ref.[30], this energy level was chosen for use in estimating

the partial widths of the 7820 keV and 7749 keV states observed in this experiment. The partial

width adopted by Ref.[30] was 8000(1000) eV; for a detailed explanation of how these data were

used to estimate the Γn for other states in this experiment without a measured C2S see Chapter

3.2.7.

7749 keV

Determining the spin-parity of this state was one of the aims of this experiment. It is worth

noting at the outset that the excitation energies in the compilations [31, 101] do not agree, the

reason being that Ref.[31] has not been updated with the energy correction to Ref.[103] made

by Ref.[101]. This correction to Ref.[103] was made to fix a systematic error in the results of

that study and increased the measured energies of the excited states in 21Ne. The energy used

in fitting these data came from Ref.[30] and had a value of 7748.8(17) keV.
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Figure 3.36: Measured differential cross section for the 7749 keV energy level compared to all ℓ-
transfer predictions trialled (except ℓ = 0) and the χ2 value of each fit. The large uncertainties on the
measurements mean that many predictions fit these data.

Unfortunately, due to the combination of low statistics and low resolution this study has

been unable to determine the ℓ-transfer from the measured differential cross section, which is

consistent with being flat, as shown on Fig.3.36. It is worth recalling here that these resonances

77



Chapter 3. 20Ne(d,p)21Ne for the s-process

are assumed to arise from direct reactions. Given the flat shape of the differential cross section

at this energy, it could mean that other reaction mechanisms are contributing, such as multi-

step reactions. In which case, ADWA analysis would not be a good representation of the

ongoing physics.

The only ℓ-transfer that could be excluded from these data was ℓ = 2. As this state is above

the neutron threshold ℓ = 0 transfers are unlikely, since without either a Coulomb barrier or

an angular momentum barrier there is nothing to hold the transferred neutron in the nucleus.

ℓ = 0 would therefore mean the peak should be broad, as is the case for the 7211 keV state

[104] and while it is difficult to tell from these data, past observations of this state have found

it to be narrow [30]. Therefore, the minimum possible transfer is assumed to be ℓ = 1. Based

on an assumption of ℓ = 1, and using the method detailed in Chapter 3.2.7, the neutron widths

were calculated to be 4800±2400 eV and 2400±1000 eV for Jπ = 1
2

−
and 3

2

−
respectively.

A state with a neutron width greater than 1000 eV should have been observed in neutron

resonances studies such as Ref.[102]. Because no such state was observed in that experiment,

it suggests the width is much smaller making a transfer of ℓ = 1 unlikely. In that case, since

Fig.3.36 can exclude ℓ = 2 the minimum transfer for this state would be ℓ = 3. This study

disagrees with Ref.[102] over other results (see the results for 7820 keV) and so it was decided

that an upper limit for the neutron partial width would be reported assuming ℓ = 1. That

limit was 7200 eV. For completeness neutron widths were calculated assuming several different

spin-parity combinations (including ℓ = 2) and are shown in Table 3.7.

Table 3.7: Neutron widths and spin factors for 7749 keV calculated using the method described
in Chapter 3.2.7 for several different possible spin-parities and limits for the 17O(α,n)20Ne
resonance strengths calculated using the alpha width from Ref.[37].

ℓ 2Jπ Γn (eV) ω < ωγn (µeV)

1 1-, 3- 4800±2400, 2400±1000 1
3
, 2

3
7.2× 10−3

2 3+, 5+ 120±100, 80±64 2
3
, 1 14.4× 10−3

3 5-, 7- 4.6±2.8, 3.2±2.5 1, 4
3

21.6× 10−3

Since the rate of a nuclear reaction through a narrow resonance is linearly dependent on the

resonance strength (ωγ). Table 3.7 includes a column for the spin-factor (ω = (2Jr+1)
(2J1+1)(2J2+1)

cf.

Chapter 2.4) calculated for the 17O(α,n)20Ne reaction using different spin-parities. 2Jπ = 5+

for 17O and 2Jπ = 0+ for 4He, therefore the spin factor reduces to ω = (2Jr+1)
6

for an 17O+α

reaction. The alpha width is assumed to be Γα << Γn,γ meaning ωγn = ωΓα, therefore the

resonance strength can be calculated using these new results and alpha widths calculated from
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Table 2 in Ref.[37]. Γα is assumed to be 0.022µeV for 7749 keV and with the limit of ℓ = 1 the

resonance strength is ωγn < 7.2×10−3µeV. Table 2 of Ref.[37] reported a strength of 0.022µeV

meaning that this result is a factor of three lower than the literature value; this would imply

a reduced rate of 17O(α,n)20Ne reaction compared what has previously been used in models

[30] and would result in reduced s-process nucleosynthesis due to fewer neutrons being recycled

after the 16O(n,γ)17O reaction.

7820 keV
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Figure 3.37: Measured differential cross section for the 7820 keV energy level compared to the five
best fitting ℓ-transfer predictions and the χ2 value of each fit. The best fitting prediction is ℓ = 1.

This state is also of significant interest for nuclear astrophysics, sitting in the energy range

of interest for alpha reactions on 17O in rotating massive stars. The best fitting ℓ-transfer for

this state was ℓ = 1, which is shown in Fig.3.37. Ref.[30] reported an ℓ-transfer of ℓ = 2 despite

their data better fitting the ℓ = 1 prediction because the resulting value for Γn(ℓ = 1) should

have been large enough to be observed in the earlier neutron resonance experiment by Ref.[102].

This new 20Ne(d,p)21Ne measurement by HELIOS shows that ℓ = 2 fits poorly to the data for

7820 keV. The best fitting spin-parities are Jπ = 1/2− or 3/2− for the 7820 keV state and the

corresponding neutron widths are 15400±4500 or 7600±2100 eV respectively. A partial width

of 7600±2100 eV is consistent with the experimental width observed on the TUNL spectra [30].

However, the higher Γn can be ruled out, therefore the assignment of Jπ = 3/2− was made. A
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spin-parity assignment of 3/2− begs the question as to why, if for this level Γn = 7600±2100 eV,

did Ref.[102] not observe this state, since that study did report other resonances of a similar

width? On Fig.4 of Ref.[102], there is a weak feature at approximately 7860 keV which was not

investigated. No energy level has been reported in 21Ne at that energy but the nearest known

state is 7820 keV. If this feature does arise from the 7820 keV energy level then that could resolve

the disagreement between 20Ne(d,p)21Ne studies and neutron resonance experiments. Ref.[102]

was in good agreement with Ref.[30] for the energies of the excited states, but since that region

was not studied closely the granularity of the energy measurements is large compared to other

parts of the spectrum; this makes it possible that a peak could have been missed. For these

reasons, a future neutron resonance study investigating 21Ne resonances in this energy region

is recommended.

The spin-factor in the 17O(α,n)20Ne reaction calculated for 2Jπ = 3− is ω = 2
3
. As with

the 7749 keV state, the resonance strength of the neutron channel can be calculated using

literature values for the alpha width, once again from Table 2 in Ref.[37]. The resonance

strength calculated assuming 2Jπ = 3− is ωγn = 0.36µeV, a third lower than reported by

Ref.[37] suggesting the 17O(α,n)20Ne is less favourable, reducing the reaction-rate ratio and so

reducing the efficiency of the s-process in rotating massive stars. The values for alpha width

reported in Ref.[30] are upper limits calculated from a Porter-Thomas distribution [105] and are

therefore inappropriate to use in a direct comparison with this result for ωγn. A Porter-Thomas

distribution is based on experimental data and calculates the width of a resonance from the

square of a Gaussian-random variable. The lower spin-parity reported by Ref.[30] produces the

same value for the spin-factor as this result meaning that these studies would be in agreement

if the Γα value from Ref.[30] was used to calculate resonance strength instead of the value from

Ref.[37].

7980 keV

This state is a doublet of two levels at 7980 keV and 7982.1 keV. Because the state at

7982.1 keV has a reported Jπ of (7/2+, 11/2+) [31] it was thought that in this study the main

contribution would come from the 7980 keV state, since previously reported spin-parities for

7982.1 keV would mean ℓ-transfers of either 4 or 6 (respectively) and as this was a 20Ne(d,p)21Ne

experiment the states with higher ℓ-transfers are not expected to be significantly populated.

However, the ADWA analysis of the HELIOS data, shown in Fig.3.38, indicates the best fitting

ℓ-transfers are either 5 or 6, which disagrees with the TUNL study assignment of ℓ = 1. This

discrepancy could have originated in the poor separation between this state and the nearby

8068 keV energy level, however, could also indicate that the 7982.1 keV energy level is more

prominent than expected. After this state, the energy level density is high enough that, with
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Figure 3.38: Measured differential cross section for the 7980 keV energy level compared to the five
best fitting ℓ-transfer predictions and the χ2 value of each fit. The best fitting predictions are ℓ = 5
and ℓ = 6.

the resolution of HELIOS, analysis of individual levels is not possible, therefore this is the last

energy level that was analysed.

3.3.4 Summary

In summary, spin-parities have been determined for energy levels in 21Ne using ADWA analysis

of differential cross sections measured in a 20Ne(d,p)21Ne reaction. Results have generally shown

agreement with measurements reported in literature. Two energy levels of particular interest to

the s-process in rotating massive stars are 7749 keV and 7820 keV, which had either unknown

or uncertain spin-parity assignments prior to this study.

The differential cross section of the 7820 keV state was best described with an ℓ = 1 transfer.

By combining data from this experiment and a previous study [30] the neutron widths of

7820 keV and 7749 keV were estimated. These estimates for width were compared to literature

to rule out a spin-parity of 1
2

−
for the 7820 keV state, therefore the assignment of Jπ = 3

2

−

was made. The 17O(α,n)20Ne resonance strength for the 7820 keV state was calculated to be

ωγn = 0.12µeV; this result is in agreement with theoretical calculations in literature. The

estimate for neutron width was 7600(2100) eV. A previous neutron resonance experiment [102]

observed other states with similarly wide resonances yet did not report a state at 7820 keV;
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this discrepancy suggests a future investigation into the neutron resonances of 21Ne could be

warranted.

The spin-parity for the 7749 keV state could not be determined in this study due to high

uncertainties in the differential cross section, which had their origin in the low statistics of the

data. Despite this, an upper limit of Γn < 7200 keV for the neutron width was determined by

assuming an ℓ = 1 transfer. This assumption was justified based on a previous observation

showing that the 7749 keV state was narrow, thus excluding an ℓ = 0 transfer. A minimum

resonance strength for 17O(α,n)20Ne was determined as ωγn < 7.2×10−3 µeV, which is a factor

of three below what has previously been assumed in reaction-rate models that used theoretical

calculations from literature and suggests a reduced rate of 17O(α,n)20Ne reactions. A reduced

rate of reaction implies the s-process is less efficient in rotating massive stars than has previously

been assumed in models due to more efficient neutron poisoning by 16O.

Determining the overall impact of these results on predictions for s-process nucleosynthesis

in rotating massive stars would require computer simulations using these results to update the

model. Ideally these simulations would also include new measurements for alpha widths, which

remain a source of uncertainty in models, as well as new measurements for gamma width which

combined with these results for neutron width would improve Γn/Γγ estimates. Two separate

studies are currently underway aiming to measure both alpha widths and gamma widths using

the 17O(7Li,t)21Ne reaction [106, 107].

82



Chapter 4

86Kr(α,n)89Sr for the Weak r-process

4.1 The EMMA Recoil Mass Spectrometer

Figure 4.1: The Electromagnetic Mass Analyser with the field generating sections labelled [108].

The Electromagnetic Mass Analyser (EMMA) is part of the ISAC-II facility at TRIUMF

in Vancouver, Canada. It is a recoil separator designed for studying nuclear reactions, often in

inverse kinematics (cf. Chapter 2.1.2), and its role is to separate ions recoiling from a nuclear

reaction by their mass-to-charge ratio (M/q value) and disperse them accordingly across the

focal plane. By passing the recoiling nuclei through a series of electric and magnetic fields

(cf. Fig.4.1), the trajectories of the recoils are deflected and the scale of that deflection is

proportional to the deviation of the M/q value of each ion with respect to the set value. At

the end of EMMA, quadrupole magnets focus the ions onto the focal plane of the spectrometer

where the recoils are detected [108]. Recoiling ions with different mass-to-charge ratios are

dispersed across the focal plane and can be identified using the x-position at which they are

detected.

The deflection induced by EMMA on recoil trajectories is quantified by the Lorentz equation
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F = q(E + v ×B) (4.1)

which describes the force exerted on a moving ion in an electromagnetic field. In Eq.4.1, q

is the charge of the ion, v is the velocity of the ion, B is the transverse magnetic field, E is

the transverse electric field and F is the resulting force. When a moving charge enters either a

magnetic or an electric field the force exerted upon it is centripetal in nature and the Lorentz

equation can be substituted into

F =
mv2

r
(4.2)

to find the radius of curvature, r, for an ion moving through either type of field. In Eq.4.2,

m is the mass of the particle, F is the magnitude of the centripetal force on the particle, v is

the magnitude of the velocity of the particle.

The result for a magnetic field is

r =
mv

q|B|
(4.3)

and for an electric field

r =
mv2

q|E|
(4.4)

By appropriately setting the strengths of the fields generated by the electrostatic deflectors

and the dipole magnet, EMMA can be tuned to disperse a specific range of M/q values across

the focal plane and, importantly, to screen out undesired isotopes such as the unreacted beam.

EMMA is also equipped with a series of slits which can be moved in and out as required to

block certain trajectories thus preventing all recoils except those with a given M/q value from

reaching the focal plane.

EMMA can be used with either stable or radioactive beams. Stable beams originate in OLIS

(the Offline Ion Source), whereas radioactive rare isotope beams (RIBs) are developed using

the Isotope Separation On-Line (ISOL) technique. This method first directs a beam of protons

accelerated by the TRIUMF 520MeV cyclotron into a target (such as Uranium Carbide); some

target nuclei are fragmented into various nuclides which are ionised, magnetically separated

and the desired isotope extracted.

As 86Kr is a stable isotope, OLIS [109] was the source for the beam in the 86Kr(α,n)89Sr

experiment. OLIS is designed to ionise gaseous atoms using either a microwave-cusp ion source,

a charged surface or a hybrid source comprised of a ionising surface and an arc-discharge circuit.

For atoms that are not gaseous under standard conditions, a set of ovens can be used to

evaporate them beforehand. During this experiment, the microwave source was used to ionise
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the 86Kr atoms to a distribution of charge states centred on 14+. Secondary stripping of the
86Kr ions was also required to push the beam ions’ central charge state to 20+ by passing the

beam through a thin foil which removes yet more electrons from the ions, further increasing

the charge state of the beam.

The target chamber of EMMA contains the target wheel, a Faraday cup and two silicon

surface barrier (SSB) detectors set at 20o to the beamline. SSB detectors are silicon detectors

with their depletion region close to the front face of the detector. This is achieved by making

the silicon wafer mostly from n-doped silicon, with only a thin layer of p-doped silicon. A thin

film of gold is evaporated onto the surface to act as an electrode for the electronic readout.

For more on silicon detectors, see Chapter.3.1.1. The SSBs detect elastically scattered ions

which are used for beam normalisation as well as for online monitoring of target composition.

The total area of each SSB is 150mm2 [108], however, they can be fitted with apertures to

restrict the surface area and prevent the SSBs being saturated by high rates of scattering (for

example, beam scattering from gold-backed targets). For the 86Kr(α,n)89Sr experiment, circular

apertures with a diameter of 3mm were used to define the active area and prevent saturation

of the detectors by the scattered beam without preventing the collection of sufficient statistics

of scattered target nuclei for beam normalisation.

Focal-plane Detectors: the PGAC

Figure 4.2: Left) Diagram of a position-sensitive parallel grid avalanche counter [110]. Right) Cross
section of the electric field generated by a series of parallel anode wires such as are found in the EMMA
PGAC [111].

There are several focal-plane detectors that EMMA can use but most important for this ex-

periment is the position-sensitive parallel-grid avalanche counter (PGAC). The PGAC provides

information on the position at which each recoil impinges upon the focal plane, thus allowing

for M/q determination [108]. It is filled with 2 Torr of isobutane gas contained by 0.9µm mylar

windows which have layers of aluminium on both sides, 10 − 75 nm thick; the recoiling nuclei
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ionise this gas as they pass through the PGAC. Dividing the PGAC chamber are three wire

grids: the middle grid is positively charged whereas the front and rear grids are negative, as

illustrated in Fig.4.2. The electric field lines produced in such a set up are mostly parallel to

one another except very close to the wires themselves, again shown in Fig.4.2. The electrons

released in ionisation events accelerate towards the positive wire grid (the anode) and induce

a signal on the wires as they move towards them. The positive ions drift to the cathodes.

Which wires register a signal depends on the position in the chamber that the initial ionisa-

tion occurred: providing for position sensitivity in the detector. The signal registered by these

wires is amplified by Townsend avalanches, which is an effect where by electrons released in

the primary ionisation reaction accelerate towards the anode wire and collide with neutral gas

particles that are ionised by the collision. The secondary electrons released in these collisions

increase the charge collected by the wires.

PGAC pulses are passed through a pre-amplifier and then an amplifier before being pro-

cessed by the data-acquisition (DAQ) system. The signals from the anodes are fed into a

Constant Fraction Discriminator (CFD) and then a time-to-digital converter (TDC). Each

wire in the cathode grid has a known read-out delay time depending on its position which is

set by a inductor-capacitor circuit. After this delay, their signals are fed into a CFD and then

on into a TDC. The anode acts as the trigger of the DAQ system and the start for the TDC

signal. The time difference between the anode and the cathode signals are used to reconstruct

the position information of each event.

Focal-plane Detectors: the Ionisation Chamber and the Si Detector

The remaining detectors at the focal plane are the ionisation chamber (IC) and a silicon

detector. Between them, these two detectors provide energy loss and residual energy signals.

The ionisation chamber operates in a similar fashion to the PGAC in that it is a chamber filled

with isobutane gas at 2.5 – 10 Torr which is ionised when a heavy recoil passes through. The

liberated electrons drift towards the anode which is positioned along the side of the chamber.

The amplitude of the signal measured by the ionisation chamber is proportional to the energy

lost by the recoil as it passes through the ionisation chamber. This proportionality is described

in the classical model known as the Bethe-Bloch formula, which was introduced in Chapter

3.1.3 and is shown in Eq.3.4.

The focal-plane silicon detector can be either a 3000mm2 ion-implanted detector or a double-

sided silicon strip detector, depending on the needs of the experiment [108]. When in use, it is

set behind the ionisation chamber to record the residual energy of ions after they have passed

through both the PGAC and IC. The ions that impinge upon the silicon generate a number of

electron-hole pairs proportional to the energy deposited into the detector. The electrons are
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excited into the conduction band of the semi-conductor and the voltage pulse is recorded by

the DAQ. The SSBs in the target chamber work according to the same principle. When used

together, the IC and the focal plane silicon detector yield ∆E − E measurements which, with

the Bethe-Bloch formula, help identify the proton number of the recoiling nuclei.

4.1.1 The TIGRESS Gamma-ray Spectrometer

The TRIUMF-ISAC Gamma-ray Escape Suppressed Spectrometer (TIGRESS) can be coupled

to EMMA to allow for the detection of gamma rays produced in nuclear reactions in the EMMA

target chamber [112]. By measuring both gamma rays and recoiling nuclei, coincidence gates can

be placed on the data to improve the signal-to-noise ratio on the gamma-ray energy spectrum

measured by TIGRESS for a specific recoiling nucleus detected by EMMA. Coincidence gating

involves vetoing any gamma ray that was detected in TIGRESS but did not coincide with an

event on the EMMA focal plane within a certain time frame.

Figure 4.3: A picture of one half of the TIGRESS array from the point of view of the EMMA target
chamber.

In this experiment, TIGRESS consisted of twelve High-Purity Germanium (HPGe) clovers,

four set at an angle of 135◦ and eight at an angle of 90◦ [113]. These angles give the array max-

imum angular coverage, while still allowing TIGRESS to couple to EMMA. The need to couple

to EMMA preventing additional HPGe detectors being placed at more forward angles. Each

clover is comprised of four HPGe crystals and is surrounded by Bismuth Germanate (BGO)
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scintillator shields which are used to suppress Compton scattering. The clovers within can be

pushed forward past the shields to maximise detection efficiency or kept withdrawn behind

the BGO shields to maximise the peak-to-noise ratio [114]. In the 86Kr(α,n)89Sr experiment

the BGO clovers were withdrawn behind the Compton suppressors. TIGRESS can be seen in

Fig.4.3, which shows half of the array. TIGRESS is divided into two wings which can be pulled

back to allow access to the EMMA target chamber. Each clover consists of thirty-two segments

which provide position sensitivity and are shown in Fig.4.4. Each segment has one readout and

each crystal has an additional readout for the full-energy signal. The thirty-six readouts for

each clover, plus the twenty readouts from the suppressors, are fed into a pre-amp and then

into a 100MHz flash ADC which digitises the signal. The signal is then passed through a field

programmable gate array (FPGA), allowing pulse shape analysis and extraction of information

on the timing and shape of the pulse. The timing of each signal is of particular importance when

coupled to EMMA since it is needed to determine whether events in EMMA and TIGRESS are

coincident.

Figure 4.4: Diagram of a TIGRESS clover showing the segmentation of the readout for each crystal
[114].

Like the silicon detectors discussed previously, high-purity Germanium detectors are semi-

conductors. HPGe arrays are preferred for the detection of gamma rays and X-rays owing

to the higher atomic number of germanium, which makes the mean free path of a photon

shorter than it would be in silicon and therefore reduces the physical size of the detector that is

needed. Another advantage of HPGe is that less energy is required to generate an electron-hole

pair: 2.9 eV compared with 3.6 eV for silicon, giving germanium based detectors much better

resolution. The downside of these detectors is that they must be cooled to around 77K to

reduce thermal generation of electron-hole pairs.

The BGO scintillators are used as a veto to suppress Compton scattering; that is, the
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scattering of photons from electrons within the HPGe crystals themselves. It is necessary to

attempt to suppress this phenomenon because the scattered photons that leave the detector will

not transfer their full energy into the germanium and thus represent incomplete measurements,

this Compton background must be accounted for in the analysis. The BGO scintillators are

used in shields that surround the HPGe clovers and detect those Compton scattered photons

that escape the HPGe crystals. A scintillator such as bismuth germanate has a high atomic

number and when a photon passes through it excites electrons in the crystal. The excitation

of the electrons in the scintillator leads to a flash of light, or luminescence, when the electrons

de-excite. The flash is read out using a photo-multiplier tube (PMT). A photo-multiplier tube

consists of a photo-cathode, which releases electrons through the photoelectric effect when a

photon impinges upon it. These photo-electrons pass through the PMT, interacting with a

series of dynodes that multiply the number of electrons associated with the original photon

thus amplifying the signal. These electrons are collected to form an electrical signal which is

recorded by the DAQ. Detections from the BGOs allow any coincident signals in the HPGe

detectors to be vetoed, removing a significant source of background events.

4.1.2 Helium-containing Targets

The targets used the 86Kr(α,n)89Sr experiment are a recent development and were first described

in Ref.[115]. They have a helium density comparable to gas targets, reported to be 3.3 – 5.4

×1018 atoms cm−2, but avoid the drawbacks of expensive pumping stations, such as are needed

for windowless gas-target set ups, and the issues that arise from using gas-target chambers, in

particular the introduction of contaminant nuclei in the chamber window as well as the loss

of energy and intensity by the beam as it passes through the window. Since these targets

are relatively new, practical considerations arising from their use are still being investigated.

Concerns include: whether heavy ion beams would cause the He atoms to leak from the targets

due to heating, the physical stability of the targets (brittleness) and contamination during

fabrication, although any contamination can be quantified by proton elastic back-scattering

experiments.

These targets are fabricated through magnetron sputtering silicon onto a sodium chloride

backing in the presence of helium. This technique produces a silicon matrix which contains he-

lium in pores throughout the foil, as can be seen in Fig.4.5. The NaCl backing is then dissolved

in water leaving only the self-supported Si:He foil behind. The density of the original targets

was determined using proton elastic back-scattering. Ref.[115] reported the results when differ-

ent He pressures were used in the production of these targets and found that medium pressure
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Figure 4.5: The appearance of the novel helium containing targets under a transmission electron
microscope, with the He pocket labelled [115].

conditions (4.9Pa) were optimal for maximising helium content. Two years later another pro-

ton back-scattering experiment on the same targets yielded the same results, demonstrating

stability over time [115]. The scattering cross section determined for these targets was in good

agreement with literature, confirming their viability for use in reaction experiments [115].

Given the high helium density and stability of these targets, they are of interest for use

in inverse-kinematics reactions. The 86Kr(α,n)89Sr reaction was the first time a reaction other

than scattering has been studied using these targets. The targets used in this experiment had

a thickness of 2.6(1)µm and a density of 1.465(73) gcm−3 and were produced and characterised

by the University of Seville researchers. The measured ratio of He to Si in these targets was 0.44

He:Si, which gives an equivalent helium density of 3.38 × 1018 atoms cm−2 with an associated

uncertainty of 5%.

4.1.3 Experimental Setup

The experiment targeted the upper limit of the energy range of astrophysical interest for the
86Kr(α,n)89Sr reaction. The beam energy was set to 223MeV producing a centre-of-mass reac-
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tion energy of 9.583MeV, which is the most favourable energy for 86Kr(α,n)89Sr reactions in an

astrophysical site at a temperature of T = 4.95GK according to Eq.2.2. EMMA was set for a

central trajectory of 89Sr20+ ions with an energy of 107.8MeV. The fields were set for rigidities

of RE = 10.77MV and RB = 0.7049Tm in order to bend the recoils. The slits of EMMA were

used to block beam trajectories not associated with 89Sr20+, effectively placing a mass gate on

which recoils reach the focal plane. The final slits were opened to a width of 15mm. The recoils

emerged from the target in a range of charge states, among which 20+ was strongly populated.

The PGAC was set up at the focal plane, as was the Ionisation chamber and the focal-

plane silicon detector. The Ionisation chamber and the focal-plane silicon detector were not

needed in the later analysis as the 89Sr gamma-ray energy spectrum was sufficiently isolated

without them. As stated, the SSB detectors were set at 20◦with 3mm apertures restricting

their effective area. Two targets were available for use in this experiment and were installed

on the target wheel, these were made in the same batch and therefore had the same nominal

thickness. The 2.5µm gold degrader was placed on the 3°× 3° aperture downsteam of the target

to reduce recoils’ kinetic energies such that EMMA would be able to bend their trajectories. It

is unusual to place the degrader on the aperture, since the aperture is normally used to restrict

the entrance angles of the ions entering EMMA and by fixing a foil of high Z material such

as gold to the aperture the benefits of this angular restriction were lost, particularly since the

scattering was dominated by the degrader. However, because the targets in this case were self

supported, the scattering of the recoils in the targets was not expected to result in deflection

of recoils beyond a laboratory angle of 2◦ (based on simulations in GEANT4), therefore the

aperture was not needed whereas the degrader was and the aperture provided a convenient

place to mount the gold foil.

4.2 Data Analysis

The data from the 86Kr(α,n)89Sr experiment were sorted into histograms using the GRSISORT

code [116]. The ultimate aim of the analysis was to deduce the cross section using Eq.2.1. The

target density was known, so the only remaining values required were the measured yield, beam

intensity and the experimental efficiency.

The first step of the analysis was to plot a histogram showing counts against the time

difference between events in EMMA and TIGRESS to look for a coincidence peak. EMMA

was tuned to select 89Sr20+ recoils (and the slits were extended to block other M/q values)

which effectively placed a mass gate on the data, however, because the scattered beam was not

suppressed perfectly background was present. Then, the coincidence peak was used to remove
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the time-random background in the energy spectrum measured by TIGRESS. Gamma rays

known to originate from 89Sr, and which are therefore associated with the (α,n) reaction, were

identified and the number of counts observed for each gamma ray was calculated by fitting a

Gaussian function and a linear background to the energy spectrum. This number was less than

the total number of reactions that took place, partly because of efficiency losses but also because

not all reactions released that particular gamma ray. After that, the beam normalisation was

performed and the various experimental efficiencies were calculated in order to finally calculate

a partial cross section which represented the probability of populating the energy level whose

de-excitation produced the gamma ray used to tag the reaction. To compare this partial cross

section to model predictions, it was necessary to combine information on the branching ratios

of the 89Sr energy levels with the predicted cross section for reactions leading to a recoil in

a particular excited state. Using information on the gamma-decay branching of 89Sr from

Ref.[31] and cross section predictions calculated using Hauser-Feshbach theory, the measured

partial cross sections for 86Kr(α,n)89Sr were compared to predictions.

4.2.1 EMMA-TIGRESS Coincidence Time
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Figure 4.6: Left) Time difference between events registered in EMMA and TIGRESS. Right) Close
up of the same spectrum, with a Gaussian fit to the (α,n) coincidence time peak, χ2 = 294.

As discussed in Chapter 4.1.1, EMMA and TIGRESS can be used together to remove

the random background counts measured over the course of the experiment which otherwise

would make analysis either difficult or impossible. The principle was that any background

events recorded by EMMA and TIGRESS would be uncorrelated in time, simply being random

coincidences between scattered beam particles and gamma rays released either in unrelated

nuclear interactions in the target chamber or with gamma rays released naturally, such as
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in the decay of 40K. These random coincidences were not related to nuclear reactions and

needed to be cut from the data. When an (α,n) reaction did take place the recoiling nucleus

would emit gamma rays that could be detected in the HPGe crystals of TIGRESS. Each 89Sr

nucleus recoiled from the reaction with a known range of possible kinetic energies and would

take a corresponding time to pass through EMMA before it could be detected at the focal

plane. The average time-of-flight between EMMA and TIGRESS was 580 ns. However, the

total time difference includes factors such as cable length, electronic processing of the signals

and detector latency period, all of which delay the signal from EMMA and so the total time

difference averaged 740 ns. The time delay between the detection of an 89Sr gamma ray and the

detection of the correlated recoil stood out from the random background as a peak of coincident

measurements, as can be seen in Fig.4.6. This coincidence peak was used to place a coincidence

gate on the data when plotting the gamma-ray energy spectrum. It could also be used to inform

sampling of the time-random background. The gate used in this analysis is shown in green on

Fig.4.7 and the limits were defined as being 2σ from the centroid of the coincidence time peak.

The values for σ and the centroid came from the Gaussian fit shown in Fig.4.6. The fit includes

a linear function to describe the random-coincidence background events; varying the slope of

this line, while impacting the result for the yield under the peak, did not significantly affect the

result for σ and therefore did not significantly affect the position of the timing gates. Setting

the gates this close to the peak was an attempt to maximise the signal-to-noise ratio when

background subtracting, however, introduced an efficiency loss of approximately 5%, since the

2σ gate will only include 95% of the coincidence timing peak.

The ∆E−E functionality of EMMA was not used in the end since the small number of 89Sr

recoils prevented their tracks from being identified. Attempts estimate their position on the

∆E − E plot resulted in a reduction in the relative height of the coincidence time peak above

the time-random background. The coincidence time peak is shown in Fig.4.6. Concerned that

attempting to gate on the ∆E − E was resulting in valid 89Sr events being cut from the data,

attempts to use the ∆E − E data as a gate were abandoned.

4.2.2 Energy Spectrum

Because the nuclei that emitted gamma rays were moving, the frequencies of the gamma rays

were Doppler shifted and therefore, before the energy spectrum could be plotted, their measured

energies (E = h/ν) were corrected. The Doppler correction was performed using the equation

νobs =
νs

γ(1 + βcosθobs)
(4.5)
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Figure 4.7: Time of flight plot including the gates set both on the coincidence peak (green) and on
the random background (red).

Where, νobs is the frequency of a gamma ray observed in the Laboratory frame, νs is the

frequency in frame of the gamma ray in the moving frame of the source, β = v
c
is the speed

of the source in the laboratory frame in units of the speed of light in vacuo, γ = 1√
1−β2

is the

Lorentz factor and θobs is the angle of observation. In the 86Kr(α,n)89Sr experiment β = 0.075,

calculated from the beam energy of 223.6MeV.

Since Eq.4.5 depends on the angle with respect to the beamline, the exact orientation of each

HPGe crystal in the TIGRESS array matters. Because each clover consisted of four crystals

they each covered two angular bins. Those bins were centred on: 80°, 100°, 125° and 145° [113]
covering ranges of: 76.6° – 88.0°, 92.0° – 103.6°, 121.6° – 132.1° and 136.5° – 147.8° , respectively
[117]. In addition, the crystals are further subdivided into eight segments (cf. Fig.4.4), each

with a given angular coverage within those ranges and therefore a different Doppler correction

was necessary for each ring of segments. Fig.4.8 shows the result of applying the Doppler

correction to the gamma-ray energy spectrum as measured by TIGRESS. Since the strongest

room-background peaks were emitted by stationary sources in the laboratory frame, when the

Doppler shift was applied to the measured spectrum these background peaks were shifted along

with the signal peaks.

The Doppler correction caused the recoil gamma rays measured by each detector to be

combined into one peak but also caused the background peaks to be spread into different peaks
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on the Doppler corrected spectrum, one for each ring of segments. For example, the decay

of 40K released a gamma ray at 1460 keV; in the uncorrected TIGRESS spectrum this narrow

peak is strongly populated, but after the Doppler correction is applied the peak is spread out

across several energies, as shown in Fig.4.8.

The segmentation of TIGRESS allowed for a much more precise Doppler correction than

would have been possible if four crystals had been used as a whole, since the segments have a

reduced angular coverage compared to a full crystal. Weighting for the different surface area

of each segment, the resolution of the Doppler corrected peaks is improved by a factor of 3 due

to the crystal segmentation.
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Figure 4.8: Left) Laboratory frame gamma-ray energy spectrum compared to time-random back-
ground with no Doppler correction. Right) Doppler-corrected rest frame gamma-ray energy spectrum
compared to the time-random background which still remains.

The next step was to remove the random background from the energy spectrum. Uncor-

related gamma rays can be seen in Fig.4.9 as the horizontal lines indicating the same gamma

ray is being observed by TIGRESS across multiple coincidence times between TIGRESS and

EMMA, suggesting that these gamma rays are released independently of the reaction being

studied. One way to estimate the background would be by placing gates on the time difference

plot in Fig.4.7 to either side of the coincidence peak before normalising and subtracting the

resultant spectrum from that produced when gating on the coincidence peak. During analysis,

however, this approach did not fully remove certain peaks known to have originated from room

background, particularly the 40K decay line at 1460 keV, the 214Bi decay lines at 1764 keV and

2204 keV and the 208Tl decay line at 2614 keV from the 232Th decay chain. After some effort to

reproduce the background by sampling either side of the time-of-flight peak, it was decided to
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make use of these room-background gamma rays. The background was sampled across a range

of times-of-flight which are shown in red on Fig.4.7. The background was scaled to reproduce

the height of the 1764 keV 214Bi decay peak observed in the laboratory frame using the time

difference gate; this is shown in on the left-hand panel of Fig.4.8. The 1764 keV transition was

chosen rather than the larger 1460 keV peak as some events were expected from the 1473 keV

gamma ray of 89Sr. The result of this procedure was a background spectrum normalised to the

prominent and well known 1764 keV 214Bi decay peak which could then be shifted into the 89Sr

rest frame and used for background subtraction. The 2614 keV 208Tl decay line was not chosen

to normalise the background since it had fewer counts than the 1764 keV state and would result

in a normalisation with a greater uncertainty. The 214Bi line at 2204 keV was not used either,

with the same justification.
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Figure 4.9: Doppler-corrected gamma ray energy vs EMMA-TIGRESS time difference.

Fig.4.10 shows the spectrum produced when gating on the signal region after the background

has been subtracted. Note that there are counts below the zero line. Such negative counts are

a result of the background having been estimated by statistical averaging.

Peak Fitting

Once the spectrum had been plotted it could be used to look for gamma rays known to be

associated with electromagnetic decay of the 89Sr nucleus. These gamma rays should appear as

approximately Gaussian shaped peaks in the spectrum since the statistics here are low enough
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Figure 4.10: Background-subtracted, Doppler-corrected 89Sr gamma-ray energy spectrum.
χ2(1032) = 66.9 and χ2(1473) = 71.2.

that the low energy tail on the photopeaks can be treated as negligible. A previous experiment

studied this same reaction in forward kinematics and reported the measured energy spectrum

[118] without an associated cross section. That experiment was conducted at a slightly higher

centre-of-mass energy than in this study and therefore the energy spectrum was not expected to

be the same, because the relative strengths of each gamma ray vary with centre-of-mass energy

(cf. Fig.3 in Ref.[118]). It nevertheless proved useful in informing this analysis. As can be seen

in Fig.4.10, there is a peak at 1032 keV in these data which corresponds to a known gamma

ray associated with the de-excitation of the first excited state of 89Sr. By fitting a Gaussian to

this peak, the number of 1032 keV gamma rays observed can be extracted from the spectrum.

An alternative was to simply count the number of gamma rays in the bins around 1032 keV

Fitting a Gaussian curve, however, to the data had advantages that shall be discussed in due

course.

It should be noted that there are other gamma rays, besides 1032 keV, associated with
89Sr expected in this energy region, one has an energy of 1025 keV and originates from the

2057 keV energy level. Since each bin covers 10 keV on the spectrum, the 1025 keV peak would

be unresolved from the 1032 keV peak. Any fits of the 1032 keV peak are expected to include

some contribution from this gamma ray and that must be accounted for when trying to calculate

the cross section in the next step of analysis. The same procedure was followed for the gamma
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ray expected at 1473 keV, the peak for which also included a similarly unresolved gamma ray

at 1489 keV that originated from the 2962 keV state in 89Sr.

The expected widths could be calculated using the equation for Doppler broadening

∆E

γ
= E0

γβsin(θ)∆θ (4.6)

Where ∆E is the broadened full width at half maximum (FWHM) for the gamma ray being

studied, γ is the Lorentz factor, β is the magnitude of the velocity of the nucleus, normalised

to the speed of light, E0
γ is the energy of the gamma ray in the source frame, θ is the angle

of the detectors relative to the beamline and ∆θ is the angle subtended by the detectors. The

angles used were for each of the TIGRESS segment rings and are shown in table 4.1, along

with their respective angular ranges. Doppler broadening has a greater impact on the higher

energy gamma ray and therefore the same width could not be assumed for both peaks. The

FWHM calculated using Eq.4.6 could be converted to the Gaussian σ parameter with the

relation: FWHM = 2
√
2ln(2)σ. The expected FWHM calculated for the 1032 keV gamma ray

was 6.8 keV and for the 1473 keV gamma ray was 9.8 keV.

The Doppler broadened width calculated using Eq.4.6 was initially used in the fitting pro-

cedure for Fig.4.10, since fixing the widths of the peaks, and thus constraining the fits, was

deemed desirable due to the low statistics of the data. Unfortunately, using widths calculated

from Eq.4.6 resulted in a very poor fit for both peaks. It was decided therefore, to use these

values as a lower limit for the peak widths and allow the fits to vary above that value until a

reasonable fit to the data was achieved. These fits are shown in Fig.4.10 and the widths have

values of 17.67 keV for the 1032 keV gamma ray, and 15.35 keV for the 1473 keV gamma ray.

Since the beam energy was below the Coulomb barrier for reactions with silicon (which has

a barrier height of 81.2MeV) the recoils observed should only be produced in the (α,n) reaction.

However, Fig.4.10 shows there are several other features in this spectrum besides the 1032 keV

and 1473 keV peaks. Although the background was subtracted in the previous step, that was

an averaged sample and the actual background will not be perfectly represented. Therefore,

the low statistics on Fig.4.10 means that some of these “peaks” could simply be fluctuations in

the background, while others are genuine gamma rays. To be certain that the photopeaks being

investigated were statistically significant Fig.4.10 was replotted, this time with the associated

uncertainty on each bin to form Fig.4.11.

The statistical significance of the detection of the 1473 keV transition above the estimated

background was 1.24σ (approximately 78% confidence level). This was our adopted detection

threshold. Suspected photopeaks were fit with Gaussians which provided both the counts
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Table 4.1: The assumed central angles of each ring of TIGRESS segments and their associated
opening angles.

Segment Central Angle, θ (degrees) Subtended Angle, ∆θ (degrees)

79.6 5.7

80.4 3.8

84.2 3.8

85.2 5.7

90.0 5.8

91.9 3.9

95.7 3.9

100.7 5.8

124.2 5.3

125.2 3.5

128.7 3.5

129.5 5.3

139.3 5.7

140.3 3.3

144.1 3.3

145.0 5.7

under each peak and the uncertainty on those counts. It is important to note that the error

bars on Fig.4.11 include the uncertainty propagated from the background subtraction. Those

peaks observed in the spectrum are shown on Fig.4.12 and listed in Table 4.2 where they are

compared to gamma rays originating from 89Sr. Most of these peak locations do correspond to

known gamma rays, which support the treatment of the 1032 keV and 1473 keV photopeaks as

gamma rays. However, the photopeak at 993(4) keV did not match any known gamma ray in
89Sr but was almost as strongly populated as the nearby 1032 keV peak. For further discussion

see Chapter 4.3.

4.2.3 Beam Normalisation

Now that the measured yield had been found, the beam intensity, measured in particles per

second (pps), for the entire duration of the experiment was calculated. The method used is
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Figure 4.11: The uncertainties associated with the counts in each bin of the background-subtracted
spectrum shown in Fig.4.10.

known as a relative beam normalisation.

The experiment was sub-divided into runs each of a known duration usually lasting an

hour. Before each run a Faraday cup reading of the absolute beam current was taken. Current

measurements had an associated uncertainty of 10%, which is comparable to experiments of

a similar set up [119]. Over the course of the experiment, the current does not remain stable

at a single value, rather it varies over time and scattering is used to infer the current. It was

necessary to have an estimate for the average beam current to use to calculate the number of

beam particles incident on the target, as required by Eq.2.1. To calculate the average beam

current for the whole experiment, the rate of the scattered silicon calculated for the whole

experiment was normalised to that for each individual run.

When a beam particle impinges upon the target, there is a probability of the incident

particle reacting to produce 89Sr, but there is a much higher probability of the beam particle

simply scattering off the target. These scattered particles can be detected by the EMMA SSBs,

which are positioned in the target chamber at 20o to the left and right of the beamline. The

cross section of nuclear scattering depends upon the atomic number of the nuclei involved and

therefore there are independent cross sections for each of the nuclei in the target (He and Si).

This Z dependence is shown in
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Table 4.2: A list of gamma rays associated with 89Sr detected with a significance of 1.24σ or
greater above background compared to known gamma rays in the literature. Energies sourced
from Ref.[31].

Measured Energy (keV) Literature Energy (keV) Confidence (σ)

843(7) 852 1.337

912(3) 906.0(1) 2.99

993(4) ? 1.71

1033(3) 1032.00(4) 2.28

1482(6) 1473.35(6) 1.63

1538(9) 1538.08(6) 1.71

dσ

dΩ
=

[
Z1Z2α(ℏc)
4Esin2( θ

2
)

]2
(4.7)

which is the equation for Rutherford scattering. Z1 and Z2 are the atomic numbers of the

two interacting nuclei, E is the centre-of-mass energy, θ is the centre-of-mass scattering angle

and α is the fine structure constant (α ≈ 1
137

with ℏc ≈ 197 fm MeV). It should be noted that

while the Rutherford scattering model describes the krypton and silicon scattering well, the

centre-of-mass energy for krypton-helium scattering is above the threshold for being modelled

purely with Rutherford scattering [120].

Eq.4.7 produces a cross section that can be used with

Rate = IbNtΩ

(
dσ

dΩ

)
(4.8)

to calculate the expected rate of scattering for two nuclei at a given measurement angle,

where Ib is the beam intensity in particles per second (pps), Nt is the areal target density for

the nuclei in question and Ω is the solid angle coverage of the detectors.

Eq.4.8 was used to determine the beam intensity throughout the whole experiment by

comparing the scattering of the beam nuclei to the scattering of the silicon nuclei in the target.

The silicon was chosen over the helium because the scattering rate was higher which gave

better statistics; also over time the helium in the target may deplete, whereas silicon would

remain effectively constant. The helium content of the targets was monitored with the ratio

of scattered helium to scattered silicon for each run, normalised to beam current and did not

significantly change during the experiment. Plots showing the total scattering into each SSB
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Figure 4.12: Background-subtracted, Doppler-corrected 89Sr gamma ray energy spectrum from the
reaction 86Kr(α,n)89Sr with observed gamma rays labelled.

are shown in Fig.4.13. The highlighted peaks each correspond to a different nucleus that has

been scattered into the SSBs; red is the helium, green is the beam (krypton) and magenta is

the silicon. The highlighting lines also indicate the ranges between which the SSB spectra were

integrated to get the counts in each peak. These ranges were needed as although statistics in

Fig.4.13 are good enough for a Gaussian fit, the spectra for individual runs could not be fitted

reliably. An alternative option was simply to integrate all counts within a given range. This

range needed to be consistent for each peak across all runs (and the summed spectrum) and

it was preferable that these ranges be defined empirically. Therefore, a Gaussian function was

fitted to each of the observed peaks in the summed spectrum and the integration limits were

set to 1.25σ. This range was chosen as it was wide enough for statistical purposes but did not

overlap with the integration ranges of the other peaks. The widths of the peaks depend on the

kinematics of the scattering interaction, with different ions having different ranges of energies

scattered across the 3mm aperture of the SSBs.

Background in the He peak from the scattered beam did not impact the beam normalisation

since the He was not used for that purpose; the He peak was only used to monitor the target

content. While calculations for the ratio of He-to-Si counts did therefore include some back-

ground from scattered 86Kr, so long as these ratios compared the same spectral bins the target

content could be monitored, even if the exact He content was not accurately represented, the
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Figure 4.13: SSB energy spectra taken over the duration of the experiment. The red bracketed peak
is the scattered helium, green is the 86Kr and magenta is the scattered silicon.

trend in the ratio over time was what was important. The trend did not show a decrease over

the course of this experiment suggesting the beam current was too low to significantly deplete

the target; this will be discussed further in Chapter 4.3.

Relative beam normalisation uses the average rate of scattering from the whole experiment

(< Rate >), which is calculated by summing all scattered silicon detected by the SSBs and

dividing by the total duration of the experiment, and dividing it by the rate of a single run

Rate(i) to produce

< I >= I(i)× < Rate >

Rate(i)
(4.9)

for the average current throughout the experiment. Because the current will vary somewhat

during the course of any given run, the best estimate for average beam current, < I >, is to

take the measured current for every run, I(i), and find the mean. Fig.4.14 shows the normalised

beam current calculated from the data for each individual run in the experiment. The average

was 15.8(16) pA, which for 86Kr ions was equal to 4.93(50)× 106 pps. The discrepancy between

the earlier runs and later runs shown in Fig.4.14 will be discussed in Chapter 4.3.

4.2.4 EMMA Efficiencies

Compiling the various efficiencies of the experimental setup was the last stage of analysis before

the cross section could be calculated. The TIGRESS HPGe detectors and the EMMA PGAC

are not perfect and will only record a fraction of the true number of events. In addition,

the EMMA spectrometer itself has certain associated efficiency losses that must be taken into
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Figure 4.14: Normalised beam current calculated from each run in the experiment.

account.

The PGAC has a (relatively high) efficiency of 94.0% [121]. This efficiency is a geometric

transmission efficiency and arises from the presence of the wire grids in the PGAC gas volume.

Should a recoil passing through the PGAC impinge upon one of these wires, it will be scattered

or blocked. This represents an efficiency loss. The estimated efficiency of 94.0% is calculated

purely from the geometry of the PGAC and has a negligible uncertainty.

The EMMA detectors also have a livetime efficiency associated with the fraction of the time

that the DAQ system is able to record events. The opposite is dead time, which is the time

after an event during which the detector cannot record another event. The livetime efficiency

for each individual run was calculated as the ratio of accepted triggers to presented. The total

livetime efficiency for the experiment was calculated as an average of the measured livetime of

each run and the uncertainty was calculated from the standard deviation. The value for this

experiment was 86.3(31)%.

Charge State Efficiency

Recoils from the 86Kr(α,n)89Sr reaction emerge from the He:Si target and gold degrader

with a range of charge states, each with a different associated M/Q value. EMMA is set up to

screen out all but one of these M/Q values and therefore, there is an associated efficiency loss
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Figure 4.15: Shows the measured charge state distribution for the 86Kr beam at a central energy of
125MeV compared with the theoretical prediction calculated from Ref.[122], scaled to the measure-
ments as described.

that must be determined.

A charge state distribution (CSD) is a plot of the transmission efficiency through EMMA

for a given isotope with a varying charge state. Each charge state will be populated differently.

The shape of a CSD can be modelled as a Gaussian distribution with the area underneath

normalised to unity. The fraction of the total number of recoils that a given charge state

makes up is known as the charge state fraction (CSF). This fraction needs to be estimated to

determine the efficiency loss introduced by selecting only one charge state.

Estimating the CSF for the 89Sr recoils required the CSD. This presents a problem since

there are not sufficient numbers of recoils to directly measure the 89Sr CSD. Therefore, the 89Sr

CSD must be estimated from a measurement of the 86Kr CSD. The 86Kr beam also emerges

from the target and degrader with a range of charge states and unlike the 89Sr recoils, the 86Kr

nuclei are sufficiently populous that the 86Kr CSD can be measured.

To measure the 86Kr CSD, EMMA was systematically tuned to a series of charge states in
86Kr and the total number of nuclei that made it through EMMA was measured for each. After

normalising to run time and beam intensity, the CSD could be plotted from these measurements,

which are the data points shown in Fig.4.15.

Now the measured 86Kr CSD was fitted with a Gaussian curve to find the measured values
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for CSD centroid and width. These values were then compared to theoretical predictions,

calculated using the model found in Ref.[122]. The model in Ref.[122] was chosen due to the

good agreement for the CSD centroid value predicted by that model and the measurements

conducted with EMMA. The model predictions for the centroid and width of the 86Kr CSD

were then scaled to match those of the measured CSD, with their uncertainties propagated as

described in Appendix A. The reason for this step was to gain an estimate for the difference

between the predicted CSD and the measured CSD and add this difference to the uncertainties

on the predicted centroid and width. The scaled prediction from Ref.[122] is also shown on

Fig.4.15.

Now that the uncertainty between the predicted and measured CSD had been established,

it was time to turn to the 89Sr recoils. The model was used to calculate a prediction for the 89Sr

CSD. Then, a ratio of the predicted 89Sr CSD centroid to the 86Kr CSD centroid was calculated

(i.e. µ89Sr/µ86Kr) and used to multiply the measured 86Kr centroid. This yielded an estimate

for the value of the 89Sr centroid which included the uncertainty between the measurements and

predictions, after once more propagating the uncertainties in the manor in Appendix A. The

same procedure was followed to estimate the width of the 89Sr CSD. With these parameters

now found, the 89Sr CSD could be plotted, and the result is again shown on Fig.4.15.

Now that the 89Sr CSD has been estimated, the CSF was simply the height of the CSD

at the charge state that was used in the experiment. In this case, EMMA was tuned to the
89Sr20+ charge state which had an associated efficiency of 15.06+3.42

−8.77%. The CSD for 86Kr was

calculated for a central energy in EMMA of 125MeV and the 89Sr was calculated for a central

recoil energy of 107.8MeV. The lower energy value is due to the reaction, and different energy

losses of the two nuclei.

Transmission Efficiency

Not all those 89Sr20+ recoils will make it through EMMA. While, in theory, EMMA is tuned

to accept a single M/Q value, the field strengths are calculated assuming that the recoils enter

EMMA at zero degrees to the beamline. Due to the kinematics of the reaction and scattering in

the target and (more significantly) the degrader, the recoils enter EMMA at a range of angles

to the beamline. If a recoil’s angle of entry is too large, it will not make it to the end of EMMA

and will be stopped either by the slits of from impinging on the side of the beamline. This is

another efficiency loss which must be estimated.

Estimating the transmission efficiency is a two-step process. First, a Monte Carlo simulation

was conducted to simulate the energy loss and multiple scattering of the recoils as they leave

the target and pass through the degrader foil; which, in this experiment, was mounted 8 cm

downstream of the target. The Monte Carlo simulations were carried out using GEANT4 [123,
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Figure 4.16: Horizontal (Phi) and vertical (Theta) projections of the scattering angles in spectrometer
coordinates for simulated recoils after multiple scattering from the target and gold degrader in EMMA.

124, 125] and calculated the trajectories for 10,000 simulated recoils. Fig.4.16 shows the results

of that simulation, and shows the angle at which each recoil enters EMMA, with θ being the

horizontal projection of the scattering angle and ϕ being the vertical projection of the scattering

angle.

With these simulated recoils, a second simulation was then run. This second simulation

used empirical fitting functions that were derived from measurements to estimate the transmis-

sion efficiencies of the simulated recoils [126]. The functions were based on a set of extensive

measurements of the transmission efficiency through EMMA, conducted with an alpha source

placed in the target chamber. During these measurements, the central energy to charge ratio

to which EMMA was tuned was systematically varied and a set of six angular apertures were

installed at the entrance of EMMA so as to study the transmission efficiency of ions through

EMMA as a function of energy per unit charge and the horizontal and vertical angles of their

trajectories relative to the optic axis. The result was an empirical parameterisation, dependent

on θ and ϕ for each of 9 relative energy/charge deviations ranging from -20% to +20% of the

central energy/charge setting. The empirical fits at each of these energies are products of asym-

metric Gaussian functions. The transmission efficiencies of recoils with energies in between the

fitted energies are interpolated using the two nearest energy fits. The estimated transmission
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efficiency was 65(9)% for this experiment.

4.2.5 TIGRESS Efficiency

The last remaining efficiency needed before the final cross section could be calculated was

the efficiency of gamma ray detections by TIGRESS. The detection efficiency for gamma rays

depends on the geometry of the experiment and energy of the photopeak of interest. To calibrate

the detector efficiency several radioactive sources of known activities were placed sequentially

into the target chamber, the array was then closed to mimic the set up used in the experiment

and data were collected for a known period of time. Once complete, the energy spectra from

these calibration runs were analysed and the counts in the photopeaks associated with the

gamma rays from the calibration sources were extracted by fitting Gaussian functions to the

measured spectra. The total expected counts in each photopeak was calculated using the decay

equation and known information about each source: the measured activity, the date it was last

measured (so as to calculate the time that has since passed) and the absolute intensity per

100 decays of each observed gamma ray (taken from Ref.[31]). The efficiency with which each

gamma ray was measured is the ratio of observed to expected counts. The calculated efficiency

was plotted on a graph of efficiency vs energy for each gamma ray and is shown in Fig.4.17.

The sources used for this efficiency calibration were 60Co, 147Eu, 133Ba and 56Co.

With the measured efficiencies now plotted, a polynomial function was fitted to these data

in order to interpolate the efficiency trend. The polynomial function used was

ϵ = exp

[
6∑

i=0

ailn(E)i

]
(4.10)

Where, ϵ is the efficiency, E is the energy of the photopeak, a is a calibration constant and i

is the order of the polynomial (integer values). The resulting efficiency for a photopeak energy

of 1032 keV was 7.9(14)% and 6.5(12)% for a photopeak energy of 1473 keV. The uncertainties

on these values arise from the uncertainty in the efficiency curves fit.

4.2.6 Partial Cross Sections Predictions

A partial cross section is associated with only those reactions producing a recoiling nucleus in

one specific energy level. In this experiment gamma rays were used to tag the de-excitations

of the first and second excited states. These states both have branching ratios of 100% to the

ground state through a single gamma ray (1032 keV and 1473 keV, respectively). It is important

to note that these states are both directly populated in reactions and fed from above as recoils
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Figure 4.17: Measured photopeak efficiency versus energy for each gamma ray investigated for effi-
ciency calibration in this experiment. The red line is a polynomial that was fitted to these data with
a Chi-Squared value of χ2 = 0.005. The error bars on the data of this plot are negligible.

produced in higher lying states de-excite to the ground state. This indirect feeding from higher

energy levels must be included when making partial cross sections predictions. Figures 4.19

and 4.20 show those levels that are known to feed into the first and second excited states,

respectively, from above.

Making comparisons between measured partial cross sections and theoretical predictions

required combining Hauser-Feshbach models with information on the energy levels of 89Sr and

their decay pathways. The code TALYS [79] predicts cross sections leading to the population

of individual excited states in the recoiling nucleus. The uncertainty on the predictions for

the cross section of an individual excited state was estimated to be 10% in a similar analysis

[119]. Fig.4.18 shows the cross section of the 86Kr(α,n)89Sr reaction leading to the 89Sr recoil

being in its first excited state and illustrates that each individual energy level in the recoil

accounts for only a small fraction of the total cross section. To calculate partial cross section

predictions for these excited states therefore, it was not enough to include only the cross section

for the direction population of the targeted energy levels, but it was also necessary to include

the contributions from all those higher lying states that fed into it. It was important that this

information was as complete as possible since the gamma rays chosen for study (1032 keV and

1473 keV) are emitted by states known to be fed from above. Further complicating the analysis
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Figure 4.18: Hauser-Feshbach predictions for total cross section and the first excited state contribution
of the 86Kr(α,n)89Sr reaction. Calculated using the potential from Ref.[71].

is the fact that energy levels can have multiple decay branches and so not all reactions that

produced 89Sr in a higher lying energy level would lead to a 1032 keV or 1473 keV gamma ray.

A formal description of the process will now be laid out. Starting from

σ′ =
N∑
i

piσi (4.11)

σ′ is the partial cross section for a given energy level calculated using the predicted cross

section σi for level i and pi the branching proportion from the populated energy level to the

targeted energy level.

The branching proportion pi is calculated from the gamma ray intensity information in

Ref.[31] for each state. pi is calculated in

pi =
bz∑J
j bj

+
L∑
ℓ

[
bℓ∑J
j bj

U∏
u

(
cn∑K
k ck

)
u

]
(4.12)

which is written to include not only all the de-excitations that lead immediately to the

targeted energy level, but also de-excitations that proceed via other intermediary energy levels.

These intermediate energy levels may also have decay branches that also must be included.
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Figure 4.19: Shows a level diagram for 89Sr with the known transitions leading to the population of
the first excited state at 1032 keV.

In 4.12, bz∑J
j bj

is the branching ratio leading straight to the targeted state, with bz being the

intensity of the gamma ray leading to the targeted state and
∑J

j bj being the sum of the

intensities for all known gamma rays associated with the de-excitation of that energy level,

the number of which is J . The next term begins with a sum over all other decays from the

populated state that feed into the target state via intermediate states (the number of these

decays is given by L = J − 1 if there was a z branch directly populating the targeted state).

bl is the intensity of the gamma ray leading to the targeted state. As each intermediate state

has its own set of branches, its branching ratio must also be included and is represented by
cn∑K
k ck

where cn is the intensity of the branch leading towards the targeted state and
∑K

k ck is

a sum of the intensities of each branch from that state; K is the number of branches available

to each intermediate state. Extending this to the case where there are multiple intermediate

levels in between the populated state and the targeted energy level (the total number being U)

gives Eq.4.12, which includes a product over U terms to account for the branching ratios of all
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Ground State
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Figure 4.20: Shows a level diagram for 89Sr with the known transitions leading to the population of
the second excited state at 1473 keV.

intermediary energy levels.

If the decay scheme of 89Sr were sufficiently well known, the partial cross sections could also

be scaled to the total cross section by taking the ratio between the Hauser-Feshbach predictions

for the partial cross sections and the predictions for the total cross section. Table 4.3 lists the

energy levels that feed into the first and second excited states of 89Sr and includes the proportion

of the de-excitations for each energy level that produce a 1032 keV or a 1473 keV gamma ray.

Scaling to the Total Cross Section

Once the partial cross sections had been calculated, it was possible to use them to try to

estimate the total cross section. Estimates were made by taking a weighted average of the

counts for each gamma ray and, after multiplying by the corresponding TIGRESS efficiency

for each gamma ray, that value was used with Eq.2.1 to calculate a combined partial cross

section for both the 1032 keV and 1473 keV states. This cross section was then divided by a

scaling factor, calculated by summing the predictions made for the two partial cross sections
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Table 4.3: The list of energy levels whose de-excitations feed the population of the first and
second excited states in 89Sr as defined in Eq.4.12. Branching information from Ref.[31].

Excitation Energy (keV) Proportion feeding 1032 keV Proportion feeding 1473 keV

1032 1.000(0)
1473 1.000(0)
1940 0.174(43)
2008 0.023(5)
2057 0.495(219)
2062 0.087(1)
2280 0.965(49)
2452 0.422(57) 0.056(15)
2570 0.239(18) 0.000(0)
2675 0.148(33)
2707 0.000(0) 0.027(10)
2931 1.000(36)
2962 1.000(0)
3228 0.749(40)
3249 0.248(104)
3303 0.000(0) 0.0219(11)
3433 0.308(93)
3509 0.084(12) 0.033(17)
3652 0.075(22)
3700 0.846(230)
3755 0.009(4)
3846 0.222(119) 0.228(119)
3988 0.137(69)
4050 0.568(207) 0.052(25)
4226 0.087(29)
4329 0.230(35)
4336 0.067(50)
4445 0.555(125)
4660 0.729(77)
4956 0.030(5) 0.009(29)

and dividing by the predicted the total cross section (for each individual αOMP). The result

was an estimate for the total cross section. Despite disagreeing on the absolute value for the

cross section, the αOMPs are in good agreement for the relative contribution to the total cross

section from individual excited states, giving confidence in the use of this method.

The total cross section could not simply be estimated by counting recoils that were measured

in coincidence with events in TIGRESS since some reactions induce 89Sr de-excitations that

cascaded through several energy levels and released multiple gamma rays. If one of those

gamma rays was in random coincidence with a beam particle that reached the EMMA focal

113



Chapter 4. 86Kr(α,n)89Sr for the Weak r-process

plane, it could be counted as a “false positive”. Since this uncertainty could not be constrained,

simply counting those gamma ray-recoil coincidences could not be used to estimate the total

cross section. There was also concern that the Compton suppression offered by TIGRESS was

not complete, in which some coincidence events above the random background in Fig.4.6 may

not in fact be associated with gamma rays emitted by 89Sr. Because of these reasons, it was

necessary to follow the procedure described above.

4.3 Results and Discussion

The primary results of the 86Kr(α,n)89Sr experiment are the partial cross sections for the

energy levels 1032 keV and 1473 keV. These partial cross sections are σ1032 = 1.0+0.6
−0.8mb and

σ1473 = 0.8+0.7
−0.8mb and include both direct population of the first and second energy levels,

respectively, plus feeding from higher energy levels. The values were calculated from parameters

either directly measured in the experiment or known prior to it (both cases are listed in Table

4.4 with their associated uncertainties). The uncertainty in the partial cross sections originates

chiefly from the statistical uncertainty in the measured counts of the two photopeaks. This

uncertainty could have been reduced by using a higher beam current and/or by measuring for

longer. This is particularly relevant for the 1473 keV partial cross section, which is consistent

with zero. The beam current averaged 15.8(16) pA, a relatively conservative value chosen so as

not to damage the targets since it was not known how high a beam current they could safely

take, this being the first use of these targets in this sort of experiment. The performance of the

targets will be discussed after the results from the experiment have been presented.

The partial cross section results are plotted in Fig.4.21 and Fig.4.22 against several pre-

dictions from different αOMPs, with all other parameters (level density and gamma-strength

function) held constant. Of those αOMPs available for use in TALYS, only some were appro-

priate to use in this case. The Koning–Delaroche potential [72] (the TALYS default) was not

developed to model complex incident particles such as alphas [127] and the Nolte potential [76]

is less reliable for incident alphas below 80MeV (the equivalent incident alpha energy here is

10.5MeV); therefore neither model was considered. The dispersive model from the potentials

of Ref.[73] was also used (labelled DGG02). This potential combines parts of the other two

potentials presented in that paper using the dispersion relation and it was used for compari-

son here because it has previously reproduced experimental data for α-captures below 12MeV

on A < 100 nuclei [73]. The McFadden and Satchler model [71] (labelled McF66) was com-

pared since it is commonly used and has been shown to be a good model for elements Ca-Zr

with incident alpha energies around 25MeV. The two Avrigeanu potentials, [74, 75], were also
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Table 4.4: The inputs used to calculate the cross section of 86Kr(α,n)89Sr and their associated
uncertainties.

Description Value Units Uncertainty (%)

PGAC efficiency 0.94 dimensionless ∼ 0

CSF efficiency 0.151 dimensionless +22.7
−58.2

Transmission efficiency 0.65 dimensionless 14

ToF Peak fit 0.95 dimensionless ∼ 0

Livetime efficiency 0.863 dimensionless 3.1

Beam intensity 4.9× 106 s−1 10

Target density 3.3× 1018 cm−2 5

Duration 161390 s ∼ 0

Counts (1032) 15 dimensionless 40

TIGRESS efficiency (1032) 0.075 dimensionless 18

Counts (1473) 10 dimensionless 61

TIGRESS efficiency (1473) 0.061 dimensionless 18

tested. The optical model potential reported in Ref.[75] (labelled Av94) is an extension of the

Nolte potential [76] to lower energies, the potential in described in Ref.[74] is a separate model

(labelled Av14), good for elements satisfying 45 < A < 209 at energies below Coulomb barrier.

All αOMPs trialled against these results were found to be in agreement with both partial

cross sections at the 1σ level. The large uncertainties on the partial cross sections prevents

the cross section uncertainty being constrained further than the uncertainty associated with

Hauser-Feshbach predictions. The method for predicting partial cross sections relies on the

decay scheme of the recoil nucleus being well known which for 89Sr is not the case. The predic-

tions included cross section contributions from only twenty-two excited states for the 1032 keV

partial cross section and sixteen for the 1473 keV partial cross section. The contribution to

the predicted partial cross sections from direct population of the first and second energy levels

is 10% and 17%, respectively, showing that the contribution from higher energy levels is al-

ready significant. If, as is likely, there are other energy levels that feed into either the first or

second excited state then the predicted partial cross sections will be underestimates. Indeed,

a comparison of the two predicted partial cross sections shows that the 1032 keV gamma ray

is predicted to be stronger than that of 1473 keV at energies above 10MeV. Results from a

previous experiment do not support this prediction [118] and suggest that there are indeed
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Figure 4.21: The partial cross section for 86Kr(α,n)89Sr yielding a 1032 keV gamma ray. The coloured
lines are partial Hauser-Feshbach predictions calculated with different αOMPs and decay information
from Ref.[31] and the shaded area indicates the astrophysical region of interest for the weak r -process.

unknown decay pathways leading to at least the 1473 keV excited state. This suggests that

a study of the coincident gamma rays from the 86Kr(α,n)89Sr reaction is necessary to better

quantify the decay scheme of 89Sr so that more robust predictions for the partial cross sections

can be made. Identifying the need for a better understanding of the 89Sr gamma decay scheme

is an important conclusion for future measurements using this method whose results will also

be compared to theoretical cross sections. The lack of information on the higher excited states

may also be the source of the unknown gamma ray observed at 995 keV, shown in Fig.4.10.

Since this gamma ray was observed in coincidence with mass 89 recoils it is likely that is is

associated with 89Sr. Considering the coincidence time gating and Doppler shift correction, it

is unlikely that this is a simply a prominent background peak, especially since Fig.4.8 suggests

that the background has been well controlled.

Fig.4.23 shows an attempt to scale the partial cross sections to a total cross section. Because

it is unknown how many other higher lying states may feed into the 1032 keV and 1473 keV

levels, the resulting estimate for the total cross section is an upper limit. That limit was

estimated to be σtotal < 71.8mb and was not able to exclude any of the αOMPs, including the

new Atomki V2 potential [57] (labelled Moh21 on Fig.4.23) since the scaling method assumes
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Figure 4.22: The partial cross section for 86Kr(α,n)89Sr yielding a 1473 keV gamma ray. The coloured
lines are partial Hauser-Feshbach predictions calculated with different αOMPs and decay information
from Ref.[31] and the shaded area indicates the astrophysical region of interest for the weak r -process.

a well known decay structure for the recoiling 89Sr nucleus. The upper limit does not exclude

the possibility that the total cross section for the 86Kr(α,n)89Sr reaction may be larger than has

previously been used in models such as those used by Ref.[50] and Ref.[51]. Those abundance

ratios that would be most affected by this change would be: Sr/Zr, Y/Zr and Mo/Zr, as

discussed in Chapter 1.4.3, which would be increased relative to current models. The final

abundance of elements 38–42, 44, 45 and 47 would also be expected to be greater than the

currently assumed, based on the correlation coefficients reported in Ref.[51] and listed in Table

1.1.

Since the results for total cross section is a limit, the uncertainty is not reduced by this

result. Future measurements of 86Kr(α,n)89Sr are planned and will take place at higher energies,

enabling the shape of the new Atomki V2 potential (shown in Fig.4.23) to be trialled against

measured data. That investigation would again be more reliable with a better quantification of

the 89Sr gamma decay scheme. Investigating gamma-gamma coincidences in the higher energy

version of this experiment could improve the understanding of the 89Sr decay scheme.
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Figure 4.23: Total 86Kr(α,n)89Sr cross section estimated by scaling from the combined partial cross
sections. The shaded area indicates the astrophysical region of interest for the weak r -process. Credit:
Dr A. Psaltis for the Atomki-V2 data [57].

Magnetron-sputtered Targets

Since this was the first use of the He:Si targets the beam current was kept low at 15.8(16) pA.

The targets used held up throughout the experiment and there was little evidence of degradation

or depletion, based on Fig.4.24, which shows the He:Si scattering ratio run by run for both SSBs.

The scatter in the data on Fig.4.24 comes from the low helium counts recorded for each run

relative to the silicon counts. This indicates that it is possible to move to higher beam currents

in future experiments; something which is desirable given the low statistics in the gamma-ray

energy spectrum. One concern about the targets used was their brittleness. This brittleness

did not impact the success of this experiment. However, there was some damage sustained

to one of the three targets sent to TRIUMF during transport. The damage consisted of a

planar shearing of the central section of the target, which meant that the areal density was no

longer well known and so that target could not be used. Fortunately, the other two targets

were in better condition. These were self-supported He:Si foils and were grown on a layer

of NaCl before being floated in water so that the NaCl dissolved away. Interestingly, some

evidence of this procedure may be observed on the SSB scattering spectra in Fig.4.13. The

slightly raised section of the spectrum around 150MeV corresponds to the expected position of
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Figure 4.24: The ratio of helium to silicon scattered into the SSBs by run as a measurement of target
helium content.

scattered chlorine atoms. Any scattered sodium would be obscured behind the scattered beam.

Other examples of these targets sputtered on to other backing materials (rather than being

self-supported as was used here) have proved to be more physically robust.

Fig.4.14 shows the beam normalisation based on scattering calculations and it can be seen

that there was an interruption to the data taking runs. This was due to problems with the

beam. In between the earlier and later data taking runs, the targets were switched. It can

be observed that SSB2 has a significantly lower estimated current during these earlier runs

which is not replicated later on in the experiment. It is likely that this was a product of the

target switch, possibly caused by the target frame partially obscuring SSB2. The targets were

delivered on a frame that was unsuitable for use in EMMA and had to be fixed to a second

EMMA target frame before they could be placed into the target chamber. The secondary target

frames were attached in slightly different orientations for each target possibly leading one to

fall partly into the beam spot which would explain the discrepancy in the estimated current.

Despite this being the likely case, however, these values were still used in normalising the beam

current as it could not be empirically confirmed that the orientation of the target frame was

the cause, therefore these runs were included. On the other hand, these early runs represent

a small subsection of the total experimental time therefore the difference in the average beam

current calculated when excluding these runs was negligible for an average weighted by the
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number of scattered silicon events per run.
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Conclusion

This thesis has presented the results from two separate experiments, each investigating a dif-

ferent astrophysical process that may be a source of light heavy elements at early times in the

universe additional to the r -process.

The possible contribution to early light heavy element production by the s-process in

rapidly-rotating metal-poor stars was investigated in an 20Ne(d,p)21Ne experiment with the

HELIOS spectrometer at ANL in the United States. The aim was to make spin-parity as-

signments for important energy levels in the 21Ne nucleus. These levels, form resonances at

the right energies to impact the 17O(α,n)20Ne reaction rate. The 17O(α,n)20Ne/17O(α,γ)21Ne

reaction rate ratio determines the efficiency of neutron poisoning by 16O in rotating massive

stars and, according to computer simulations, governs whether or not the s-process contributes

significantly to the abundance of lighter heavy elements at early times. The experiment was

conducted in inverse kinematics since previous studies had suffered from target contamination

which obscured the energy region of interest. Unfortunately, this resulted in poor resolution

making it challenging to resolve levels close in energy. Nevertheless, attempts were made to

extract spin-parities for those energy levels observed using ADWA analysis. Analysis of the

stronger populated peaks in the spectrum generally produced good agreement with literature,

lending credibility to the results for previously unanalysed states.

Through comparisons with previous experiments, predictions were made for the neutron

widths of two states that are key for 17O+α reactions in rotating massive stars. The 7820 keV

state was best described with a spin parity of 3
2

−
with a neutron width of 7600(2100) eV. The

calculated resonance strength using literature estimates for alpha width is ωγn = 0.12µeV,

which is in agreement with literature. A disagreement between two (d,p) studies and a neutron

resonance experiment could warrant a future investigation into the neutron resonances of 21Ne.

An upper limit on the neutron width for the 7749 keV energy level was calculated to be
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Γn < 7200 eV, assuming ℓ = 1 on the basis that it has previously been observed as a narrow

peak which excludes an ℓ = 0 transfer. Assigning a minimum ℓ = 1 transfer in a (d,p) reaction

suggests a resonance strength of ωγn < 7.2×10−3µeV which is a factor of three below what has

previously been assumed in reaction rate models. A lower resonance strength implies a reduced

rate of 17O(α,n)20Ne reactions making s-process nucleosynthesis in rotating massive stars less

favourable. To determine the overall effect on s-process nucleosynthesis in rotating metal poor

stars, a model simulation incorporating these results would need to be run. Combining these

results with anticipated future results from studies aiming to measure Γα and Γγ for states in
21Ne would produce the most up-to-date predictions for s-process nucleosynthesis in rotating

massive stars.

Secondly, the experiment conducted with EMMA at TRIUMF aimed to study 86Kr(α,n)89Sr;

a reaction which, according to models, is important to the weak r -process in core-collapse

supernovae. It has been found that in the weak r -process (α,n) reactions are the primary

drivers of nucleosynthesis, however, cross section predictions for (α,n) reactions are a major

source of uncertainty in nucleosynthesis predictions for this site and reducing these uncertainties

will help determine if this process can contribute significantly to the abundances of lighter heavy

elements at early times in the universe. Analysis of the experiment yielded partial cross sections

for two gamma rays associated with the recoiling 89Sr nucleus. The results are 1.0+0.6
−0.8mb for

the 1032 keV gamma ray and 0.8+0.7
−0.8mb for the 1473 keV gamma ray; both agreeing with model

predictions. Unfortunately, the decay scheme for 89Sr is not well enough known to allow a

meaningful estimate for the total cross section. A second measurement of this reaction (at a

higher centre-of-mass energy) has already taken place with a third measurement planned for the

summer of 2023. The results presented here are for the lowest energy that is planned for study

and could be used to calculate a total cross section with sufficient knowledge of the gamma

decay scheme for 89Sr. It is recommended here that, if possible, gamma-gamma coincidences

for 89Sr should be investigated during analysis of the other measurements to attempt to identify

which energy levels are contributing significantly to the partial cross sections of the reaction.

In summary, the light element primary process is a hypothetical mode of nucleosynthesis

that is needed to explain an observed over abundance of the lighter heavy elements with respect

to model predictions at early times in the universe. Two candidate processes have been analysed

in the project: the weak r -process in core-collapse supernovae and the s-process in rotating

massive stars. This project has contributed measurements that when applied to astrophysical

models will help reduce uncertainties in the nucleosynthesis predictions for both sites.
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Charge State Fraction Efficiency

y = He
−(x−µ)2

2σ2 (A.1)

Theoretical modelling of the charge state distribution (CSD) as a Gaussian curve (Eq.A.1)

yields values for peak centroid (µt) and width (σt). Both parameters have an associated the-

oretical uncertainty. The experimentally measured CSD also has values for centroid (µe) and

width (σe); each has an experimental uncertainty. The area beneath the curve is normalised to

unity and the equation

Area = 1 = σH
√
2π (A.2)

is used to calculated H, the height of the CSD peak.

The ratio of measured parameters to predicted parameters is found and used to scale the pre-

dicted values to the measured values allowing the combination of theoretical and experimental

uncertainties. The equation

Sµ =
µe

µt

(A.3)

for example, shows the scaling factor (Sµ) for the centroid. Once the uncertainties have been

propagated using

∆S = S

√(
∆A

A

)2

+

(
∆B

B

)2

(A.4)

the CSD can be used to determine the fraction of the beam represented by each different charge

state and to calculate the associated uncertainty on that fraction. Eq.A.4 is a general equation,

shown for the case of S = A
B
, where A and B are uncorrelated; S is used to represent either the

scaling factor calculated for either µ or σ, as equation Eq.A.4 is used in both cases.

To determined the fraction of the beam each charge state represents, the charge state used

in the experiment is first identified, then the height of the Gaussian curve is calculated at that
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charge state using Eq.A.1; this value is the Charge State Fraction (CSF). To calculate the lower

limit of the CSF, the CSD centroid is moved as far from the chosen charge state as the one sigma

uncertainty on µ allows (i.e. if the charge state is lower than the centroid, µ′ = µ + ∆µ) and

the width is made as narrow as the one sigma uncertainty limit on σ allows (i.e. σ′ = σ−∆σ).

Eq.A.1 is now solved again at the chosen charge state with these values for centroid and width

(µ′ and σ′) and the result is the lower limit for the CSF.

The upper limit on the CSF is calculated by moving the centroid as close to the chosen

charge state as the one sigma limit on µ allows and again setting the width to the minimum

within the one sigma limit of σ, then solving Eq.A.1 at the chosen charge state. Credit to Dr.

M. Williams for this method [128].
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20Ne(d,p)21Ne Results Data Tables

2749 keV 4526 keV
Angle (Degrees) Normalised Yield (Counts) Angle (Degrees) Normalised Yield (Counts)

29.8 ± 1.3 821 ± 16 25.3 ± 1.0 694 ± 17
32.7 ± 1.2 1189 ± 24 28.8 ± 1.1 511 ± 15
35.6 ± 1.1 604 ± 18 32.1 ± 1.2 230 ± 12
38.3 ± 1.1 138 ± 8 35.2 ± 1.3 218 ± 8
40.9 ± 1.0 78 ± 7 38.1 ± 1.4 90 ± 7
43.3 ± 1.0 35 ± 5 40.7 ± 1.6 98 ± 7

4725 keV 5334 keV
Angle (Degrees) Normalised Yield (Counts) Angle (Degrees) Normalised Yield (Counts)

24.7 ± 1.7 1686 ± 25 22.6 ± 1.9 1706 ± 26
28.2 ± 1.5 1280 ± 22 26.5 ± 1.6 1387 ± 22
31.7 ± 1.3 699 ± 19 30.2 ± 1.4 657 ± 18
34.8 ± 1.2 776 ± 16 33.5 ± 1.3 603 ± 14
37.7 ± 1.1 337 ± 12 36.6 ± 1.2 266 ± 11
40.4 ± 1.1 316 ± 13 39.3 ± 1.1 201 ± 8

5549 keV 5822 keV
Angle (Degrees) Normalised Yield (Counts) Angle (Degrees) Normalised Yield (Counts)

21.8 ± 1.9 736 ± 17 20.8 ± 2.1 553 ± 14
25.9 ± 1.6 511 ± 14 25.0 ± 1.7 484 ± 15
29.7 ± 1.4 264 ± 12 28.9 ± 1.5 247 ± 13
33.0 ± 1.3 217 ± 9 32.4 ± 1.3 238 ± 11
36.1 ± 1.2 228 ± 13 35.6 ± 1.2 114 ± 16
39.0 ± 1.1 103 ± 10 38.5 ± 1.1 98 ± 14
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6609 keV 7106 keV
Angle (Degrees) Normalised Yield (Counts) Angle (Degrees) Normalised Yield (Counts)

17.0 ± 2.6 1113 ± 21
22.2 ± 2.0 800 ± 17 20.1 ± 1.3 156 ± 22
26.6 ± 1.6 542 ± 19 25.0 ± 1.5 88 ± 40
30.4 ± 1.4 277 ± 11 29.0 ± 1.8 37 ± 7
33.8 ± 1.3 129 ± 10 32.6 ± 2.2 42 ± 9
36.9 ± 1.2 150 ± 11 35.8 ± 1.3 58 ± 9

7176 keV 7337 keV
Angle (Degrees) Normalised Yield (Counts) Angle (Degrees) Normalised Yield (Counts)

19.8 ± 2.3 409 ± 26 19.0 ± 2.4 365 ± 25
24.7 ± 1.8 221 ± 40 22.3 ± 1.8 208 ± 16
28.8 ± 1.5 170 ± 16 28.4 ± 1.6 160 ± 15
32.5 ± 1.4 123 ± 14 32.0 ± 1.4 115 ± 15
35.7 ± 1.3 71 ± 10 35.3 ± 1.3 102 ± 11

7420 keV 7559 keV
Angle (Degrees) Normalised Yield (Counts) Angle (Degrees) Normalised Yield (Counts)

18.6 ± 2.4 162 ± 20 17.8 ± 2.6 54 ± 12
23.9 ± 1.9 82 ± 13 23.3 ± 1.9 36 ± 9
28.1 ± 1.6 107 ± 15 27.7 ± 1.6 25 ± 11
31.8 ± 1.4 47 ± 12 31.5 ± 1.4 29 ± 11
35.1 ± 1.3 54 ± 10 34.8 ± 1.3 38 ± 12

7619 keV 7749 keV
Angle (Degrees) Normalised Yield (Counts) Angle (Degrees) Normalised Yield (Counts)

17.5 ± 2.6 72 ± 12 16.7 ± 2.8 14 ± 10
23.0 ± 1.9 47 ± 9 22.6 ± 2.0 25 ± 6
27.5 ± 1.6 50 ± 11 27.1 ± 1.7 24 ± 10
31.3 ± 1.4 33 ± 11 30.9 ± 1.5 22 ± 8
34.7 ± 1.3 34 ± 12 34.4 ± 1.3 30 ± 17

7820 keV 7982 keV
Angle (Degrees) Normalised Yield (Counts) Angle (Degrees) Normalised Yield (Counts)

16.3 ± 2.9 49 ± 10 15.2 ± 3.1 25 ± 9
22.3 ± 2.0 47 ± 8 21.6 ± 2.1 27 ± 10
26.8 ± 1.7 23 ± 10 26.3 ± 1.7 34 ± 6
30.7 ± 1.5 31 ± 7 30.3 ± 3.0 44 ± 9
34.2 ± 1.3 46 ± 15 33.8 ± 1.4 48 ± 8
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[10] S Höfner and H. Olofsson. “Mass loss of stars on the asymptotic giant branch”. The

Astronomy and Astrophysics Review 26 (2018).

[11] J. Bliss et al. “Impact of (α, n) reactions on weak r-process in neutrino-driven winds”.

Journal of Physics G: Nuclear and Particle Physics 44 (2017), p. 054003.

[12] B. S. Meyer. “The r-, s-, and p-Processes in Nucleosynthesis”. Annual Review of Astron-

omy and Astrophysics 32 (1994), pp. 153–190.

127



Bibliography
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