UNIVERSITY OF LEEDS

Efficient and robust estimation of
non-classical effects in quantum devices

Matthew James Girling

Submitted in accordance with the requirements for the degree of
Doctor of Philosophy

The University of Leeds
School of Physics and Astronomy

October, 2023


mailto:matt@girling.io




Intellectual Property Statement

The candidate confirms that the work submitted is his own, except where work which has
formed part of jointly authored publications has been included. The contribution of the can-
didate and the other authors to this work has been explicitly indicated below. The candidate
confirms that appropriate credit has been given within the thesis where reference has been
made to the work of others.

Chapters 3 and 4 are based on:

M. Girling, C. Cirstoiu, and D. Jennings. “Estimation of correlations and nonsepara-
bility in quantum channels via unitarity benchmarking”. Physical Review Research, 4(2),
023041 (2022).

Chapters 2 and 5 are based on:
M. Girling, C. Cirstoiu, and D. Jennings. “A simple formulation of no-cloning and no-
hiding that admits efficient and robust verification”. arXiv preprint, arXiv:2303.02662(2023).

For both these papers the bulk of the research was undertaken by me with advice and guid-
ance from David and Cristina. Both of my co-authors gave input on the analytical results,
while any numerical calculations or computer simulations were completed solely by myself.
The manuscripts for both papers above were written by me and then edited jointly.

This copy has been supplied on the understanding that it is copyright material and that no quotation from the
thesis may be published without proper acknowledgement.
The right of Matthew James Girling to be identified as Author of this work has been asserted by him in
accordance with the Copyright, Designs and Patents Act 1988.


https://doi.org/10.1103/PhysRevResearch.4.023041
https://doi.org/10.1103/PhysRevResearch.4.023041
https://doi.org/10.48550/arXiv.2303.02662




Acknowledgements

First and foremost, I would like to thank my supervisor, David Jennings, for his constant
support throughout the last years. He has taught me how to think about research, how to
doresearch, and how to present research. Throughout, he has helped guide my work always
with detailed and thoughtful feedback. I am grateful for his advice on all aspects of the PhD,
especially during the disruptions associated with the pandemic. The mantra of the simplest
non-trivial example are indeed words to live by.

I am also very grateful to have collaborated with Cristina Cirstoiu on the two papers
which form the majority of this thesis. It was a pleasure to work with her and she has given
brilliant advice and assistance with thorny mathematical problems. She has also helped me
to develop as researcher, such as by teaching me how to restructure results into a narrative.

I want to thank Roger Colbeck for useful discussions on perfect hiding in quantum the-
ory and Robin Harper for helpfully explaining some practicalities when benchmarking quan-
tum devices. Both Matty Hoban and Daniel Mills gave productive feedback on an early draft
of my second paper.

On a personal level, I first thank my fellow amateur dendrologists Siand Rhea. I am very
grateful to have met them. The two Toms, who have been with me all the way, thank you.
I owe a debt to Sarah for keeping me sane throughout and reminding me that any situation
can be improved with the addition of humour.

Finally and above all, I thank my mum, dad and sister for their love and support.

iii






Abstract

The ability to transfer quantum information between systems is a fundamental component
of quantum technologies, and can generate correlations. However correlations in quantum
channels are less well studied than those in quantum states. Motivated by recent techniques
in randomized benchmarking (RB), we develop a range of results for efficient estimation of
correlations in channels. We extend the notion of unitarity - an average figure of merit that
captures the coherence of a quantum channel - to substructures within a bipartite quantum
channel. We define a correlation unitarity and prove that it provides a witness of nonsep-
arability — a strictly non-classical effect. We find that this measure can be estimated with
robustness to errors in state preparation and measurements (SPAM) for any separable or
Pauli quantum channel, and we show that a benchmarking/tomography protocol with mid-
circuit resets can reliably witness nonseparability for sufficiently small reset errors. Related
experimental techniques, that we develop, can be used to study quantum incompatibility.
Incompatibility is a feature of quantum theory that sets it apart from classical theory, and
the inability to clone an unknown quantum state is one of the most fundamental instances.
We extend the definition of unitarity to general physical theories. Then, we introduce the
notion of compatible unitarity pair (CUP) sets, that correspond to the allowed values of uni-
tarities for compatible channels in the theory. We show that a CUP-set constitutes a sim-
ple ‘fingerprint’ of a physical theory, and that incompatibility can be studied through them.
We analytically prove quantum CUP-sets encode both the no-cloning/broadcasting and no-
hiding theorems of quantum theory. We then develop RB protocols that efficiently estimate
quantum CUP-sets and provide simulations using IBMQ of the simplest instance. Finally, we
discuss ways in which the above methods provide independent benchmarking information
and test the limits of quantum theory on devices.
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Introduction

Everything is a quantum operation.

Irish folklore

Unknown

1.1 Quantum theory and quantum devices

Efficiently certifying and benchmarking non-classical features in quantum theory will be
central to the development of quantum technologies [6—12], which require precise control
and manipulation of quantum systems. High-fidelity quantum gates and circuits are essen-
tial for scalable quantum computing so it is important to benchmark the effects of physical
noise on how accurately a target unitary is realized on the quantum device. For example,
noise due to unwanted coherent correlations or leakage can detrimentally affect error rate
thresholds required for fault tolerant quantum computing [13—15]. Therefore, the detection
and quantification of non-classical effects not only impacts Noisy Intermediate Scale Quan-
tum (NISQ) devices [16] leading to improved circuit fidelities and error mitigation, but also
goes beyond our current era by providing necessary tools to test the physical assumptions of
quantum error correction.

On a high level, in the above we are considering how quantum theory can be used to test
quantum devices. However the opposite direction is also interesting. By quantifying and
measuring non-classical effects on quantum devices we can test the limits of quantum theory

using existing technology.
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>

Q) Structural features (i) Benchmarking
of quantum theory tools

(e) (c)

()

Actual quantum
devices

(iii)

Figure 1.1: Interplay between the key concepts of this thesis. Three areas within quantum
technologies research are shown. Each arrow represents a line of inquiry towards a goal or a
research question that could be asked. For example, (e) could be “How do structural features
of quantum theory limit the performance of quantum devices?”. Some of these arrows have
been better studied than others. One direction that has been less well studied is (b), which is
the primary focus of this work. By connecting benchmarking tools to fundamental features

of quantum theory, we obtain results that apply to the rest of the diagram including (d), (e),
and (f).

Quantum physics places much stronger limits on how we can transform information,
compared to classical physics. These limits can be captured by the notion of incompatibility,
that encapsulates fundamental impossibility results in quantum theory [17-20]. The most
commonly encountered form of incompatibility refers to measurements — position and mo-
mentum cannot be simultaneously measured with the same precision — leading to formula-
tions of no information without disturbance [21]. However, incompatibility can be described
far more generally [22—24]. Two local processes on systems A and B are said to be compat-
ible if there exists a global process that can produce both. The no-broadcasting theorem,
an extension of the famous no-cloning theorem, can be cast as the incompatibility of local
identity channels at A and B [20]. It is readily seen that if a physical theory admits perfect

cloning, such as classical theory, then the theory cannot have any form of incompatibility.

Quantum technologies open new directions to experimentally test foundational aspects

of quantum theory such as incompatibility [25-29]. However, current devices are inher-
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ently noisy [16, 30—32]. Errors in State Preparation and Measurement (SPAM) can have an
outsized effect on performance compared to errors in operations to evolve the system [33].
This presents a challenge in developing tests for foundational properties in a way that is ro-
bust to errors arising from the implementation of the experiment itself. Existing measures of
quantum incompatibility typically assume full access to the processes involved and are there-
fore not SPAM robust [22]. Such foundational tests can also produce valuable benchmarks
of errors [34], as they have clear operational significance rooted in fundamental properties of
quantum mechanics.

Finally, we have a consideration of efficiency. Direct process tomography [35, 36] of a
quantum process — that is, measuring all inputs and outputs — has a complexity that is known
to scale exponentially with system size. Therefore to evaluate such processes we need aver-
age measures, that give less detail but that can be estimated efficiently in terms of system
size. Within the area of device benchmarking, techniques have been developed such as gate-
set tomography and randomized benchmarking (RB), which allow for efficient estimation
of average measures [37]. Further, these measures are robust against initial and final SPAM
errors.

Putting this together, in this work, our primary research question is as follows:

Can we use benchmarking tools to capture fundamental features of

quantum theory?

This question is indicated by (b) in Figure 1.1. We undertake this question for the fol-
lowing three goals, which each are of interest independently and are indicated by (f), (d), and

(e) in Figure 1.1, respectively.

(1) To test the limits of quantum theory using current noisy quantum devices.
(2) To gain independent information about the nature of device noise.

(3) To provide efficient and robust certification of non-classical effects.

Within this thesis each chapter focuses on either mathematical results relating to quan-
tum theory or on deriving experimental methods to apply these results to quantum devices.
Therefore we setup a mathematical framework to tackle (1) within Chapter 2. However this
framework requires a fairly complex experimental set-up, and so in Chapters 3 and 4 we focus
on (2) and (3) which require simpler — but related — experimental methods. Having gained
some experience and intuition we return to the experimental methods for (1) in Chapter 5.

We will shortly give a more precise version of each of these goals with the details of how

we approach them. However, before we can give this overview, we must introduce some key
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concepts used throughout this work.

1.2 Mathematical preliminaries

We now introduce some mathematical concepts used throughout this work, before we can
give an overview of the technical content of each chapter. We assume the reader has some fa-
miliarity with quantum mechanical fundamentals including linear algebra, Dirac notation,
and the quantum circuit model of quantum computation. For a complete introduction to
the mathematical tools of quantum information science we suggest: Nielsen & Chuang’s
iconic textbook [32], the excellent book of John Watrous [38], and the lecture notes from
John Preskill’s course on Quantum Computation [39]. A critical reference for the author has

been the lecture notes from David Jennings’ course on Advanced Quantum Information [40].

1.2.1 Systems, states and quantum channels

Much of this work is framed around quantum devices where the smallest subsystems are
qubits and we characterize the device as a multi-qubit open quantum system. However, ex-
cept where explicitly stated, the results given here apply to any quantum system and do not
require the particular tensor product structure of a multi-qubit system.

The following notation is consistently used throughout this work. Consider an open
quantum system, X. We give it the dimension dx, and we denote the associated Hilbert
space Hx. A valid quantum state, p, for this system is any dx x dx Hermitian matrix with
non-negative eigenvalues, eigs(p) > 0, and normalized such that tr[p] = 1. We will use
lower-case Greek letters for quantum states i.e. p, o, T.

With this definition, a pure quantum state is then any state we can write in the form
p = | )|, where |1) is a vector of length one in the Hilbert space associated with the sys-
tem. Pure states represent maximal knowledge of the state of the system. Mixed states can
always be written as a probabilistic convex combination of pure states, p = > p; [1); X,
for Y7 p; = 1 with p; > 0. Therefore mixed states can be thought of as ambiguity in the
state of the system. The degree to which a state is mixed is captured by its purity. This is an

important concept in this work and defined in the following way.

Definition 1.1. For any quantum state, p, the purity, v(p), is defined as

Y(p) =tr[p?]. (1.1)

The purity has the following elementary properties that make it a useful measure of the

noisiness of a quantum state.
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Lemma 1.1 (Properties of purity). Consider the purity, v, of any quantum state p in a
system with dimension d x . We bave the bounds i < v(p) < 1withvy(p) = lifand only
1

if p is a pure state. The purity is lower bounded by ~(p) = - for the maximally mixed

state given by p = 1 /dx where 1 isthe dx X dx identity matrix.

Proofs for these properties can be found in [38] and essentially follow from considering
the decomposition p = >7 p; [1);(1;] for any quantum state. The maximally mixed state
represents no knowledge as to the state of the system and gives the lower bound of the purity,

while the upper bound is given for a pure state representing complete knowledge.

The purity, v(p), of a quantum state, p, is a measure of the level of knowledge we have

about the state of the system. Therefore it quantifies how noisy the state is.

Key parts of our work can be framed as generalizing the concept of purity to describe
more and more of the behaviour of quantum systems — and finally describe the limits of quan-
tum theory itself.

For any quantum system we will also want to perform measurements. Any quantum
measurement, M, with k outcomes on a dx dimensional system can be described by a set of
dx %X dx matrices, M = {My, M, ..., Mj_, }, with non-negative eigenvalues, eigs(M,) > 0,
and normalized such that Zf M; = 1, where 1 isthe dx x dx identity matrix. Further, given
aquantum state, p, the probability of the j* outcome of the measurement is p(j) = tr[M;p].
Mathematically, the above conditions ensure quantum measurements are restricted to the
set of Positive Operator-Valued Measures (POVMs).

Now we describe the behaviour of quantum systems, the main focus of this work.

Definition 1.2. 4 quantum channel, &, is any linear transformation p — &(p) such that
o = &(p) is a valid quantum state for all possible states p of the input system.

This definition is simple, but very powerful. Mathematically the definition above re-
stricts quantum channels to Completely Positive Trace-Preserving (CP'TP) maps. More for-
mally, any quantum channel £ : B(Hx) — B(Hy) will be a map from the bound space of
operators on the Hilbert space associated with the input system, say H x, to the bound space
of operators on the Hilbert space associated with the output system, say Hy . We will only
give these details when it is necessarily to clarify how a channel acts. In general we will use
upper-case calligraphic Latin letters for quantum channelsi.e. £, F, G.

Of particular importance is the unitary channel, U(p) := UpU, for a unitary matrix
UUT = U'U = 1. Unitary channels describe the evolution of closed quantum systems. The
identity channel, id, is the particular unitary channel that leaves a system unchanged, such

that id(p) := p for all states p. However, the output system of a quantum channel need not
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be the same system as the input — therefore we can use channels to describe a wide range of
behaviour.

In fact, state preparation can be cast as a channel from the trivial one-dimensional system
to a fixed state in a larger system, 1 — p. Similarly, discarding part of (or all of) a system is
a channel — as it is a process that always sends valid states to valid states. This channel is the
partial trace, trg(pap) = pa for an arbitrary bipartite system AB. In fact, we can use quan-
tum channels to describe all the main aspects of quantum theory including the preparation of
states, their evolution, discarding subsystems through the partial trace, and measurement
updates.

Sometimes, it is important to clarify the input and output systems of channel. Under
such circumstances we will use subscripts for the systems, such that a channel from a system
X toasystem Y is written Ex_,y.

Quantum channels allow for a few different representations — ways of mathematically
writing down how the acts — which we will introduce when they are first used. The linearity
of quantum mechanics means that convex combinations of quantum channels are also quan-
tum channels, such as p€ + (1 — p)F for two quantum channels £ and F. Quantum chan-
nels can also be applied in sequence, provided the output system dimension of first channel
matches the input system dimension of the second channel. For sequential channels we write

F o & for the application of € followed by F . Note that F o £ is also a quantum channel.

Quantum channels, £, F, G, describe the behaviour of quantum systems. They are highly

flexible and can express all the main elements of quantum theory.

As channels are so versatile, they are the natural tool to use to describe the dynamics of
quantum devices. For any algorithm (or any target process) we will want to: prepare some
pure state, evolve the state unitarily,! perform a measurement on the final state. Further, the
total desired evolution must be broken up into the individual native operations that form the

device gateset, ' = {U; }. Therefore we might have a circuit similar to

o)l —{ s v H s Huh Hu Hu— v (1.2)

with time flowing from left to right.

In reality, all these operations will be noisy — unintended interactions with the environ-
ment and imprecise control mean the device will not act as a closed quantum system. We can
use quantum channels to describe this noise. There will be some quantum channels describ-
ing the initial error is state preparation, |1))(¢)| — p, and the error in the final measurement,
M — M. These are the aforementioned SPAM errors. The unitary evolution will also be

noisy so we replace each idealised operation with a channel, I{;. Putting this together we

"'We will assume the desired evolution here is unitary, for simplicity, however some important processes
such as error correction are inherently non-unitary.



1.2 Mathematical preliminaries

have a circuit similar to

P —Us Uy U F Uy F Uy U — M (1.3)

for the real world device.
We now turn to quantifying how ‘far’ the circuit in equation (1.3) is from the idealised
circuitin equation (1.2). This s called benchmarking, and the tools that have been developed

in this area are crucial to our approach.

1.2.2 Benchmarking of quantum channels

The first obstacle when assessing the performance of a device is scaleability. Naively, tolearn
an unknown channel we have to see how the channel transforms each element of a complete
basis for the system. For a single qubit, this means preparing each of the 6 Pauli eigenstates,
performing the target operation, and measuring each of the 3 traceless Pauli observables.
This gives 18 parameters to estimate. For n qubits, this implies (22" — 1)? variables, and so
is exponentially difficult as we scale up the number of qubits. State-of-the-art tomographic
techniques reduce this to 22" and this cannot be improved upon [41]. Therefore rather than
completely learning a channel, it is desirable to have techniques that give less detailed (but
still useful) information and require fewer experiments to be completed. Such techniques
are said to be efficient.

A second consideration is which errors in the circuit shown in equation (1.3) are the ones
which limit the performance of the device. For current devices, the SPAM errors — the errors
for initially preparing states and the final measuring the system — can be an order of magni-
tude larger than the errors on individual elements of the gateset [33]. Further, to use quan-
tum error correction the required error threshold to reach is on the errors in the gateset and
not on SPAM errors [38, 42, 43]. Therefore techniques that can assess gateset errors inde-
pendently from SPAM errors are critical. For a more detailed discussion of SPAM errors, see
Chapter 4. Such methods that separate out the errors in a target process from SPAM errors
are said to be SPAM robust.

As quantum devices continue to grow in system size and quality, it will be important to
develop further methods that can assess the performance of a device. Two important con-

siderations are favourable scaling and isolating the limiting errors.

Putting this together, techniques that are efficient and SPAM robust would be advan-
tageous if they can be connected to meaningful information about the channel we want to
probe. One such family of methods are randomized benchmarking (RB) protocols which ex-
ploit properties of Clifford group to average a noise channel down to a simple one parameter

model which can be readily estimated.
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For the noisy computational gateset, [ = {Z;IZ}, we can write ; = &; o U, for each ide-
alised target unitary followed by a error channel, &;. This assumes that the error is Marko-
vian and independent of where in the circuit the gate is placed [6]. A further assumption that
greatly simplifies analysis is that there is an error channel associated with the gateset that
is constant across the gateset, such that U; = € oU;. We discuss this assumption of gate-
independence in Chapter 4 and note that RB protocols have been shown to return accurate
estimates for an effective noise channel £ even for highly gate-dependent noise [44, 45].

In the simplest instance, an RB protocol returns an estimate of the average gate infidelity,
(&), of an effective noise channel £ associated with a noisy computational gateset — the Clif-
ford group [32, 38,46, 47]. For any quantum channel, £, the average gate infidelity is defined

as

rE) =1 / (B IED) () 1), (1.4)

where integration is over pure states and with respect to the Haar measure. We have r(£) =
0ifand only if £ = id for the identity channel, id(p) := p for all states p [48]. Therefore this
infidelity measure captures the Haar-average deviation of € from the identity channel, which
corresponds to perfect preservation of the state of the system. In this way, the infidelity is the

first-order moment (or mean value) for the channel.

The average gate infidelity, (€), of'a quantum channel, £, is simple measure that quan-

tifies the average deviation of the channel from the identity, id(p) = p.

The average gate infidelity for the effective noise channel £ associated with a gateset can
be used to bound the worst-case error rate for the gateset, which is defined in terms of the
diamond norm [49]. This is the relevant quantity in the context of fault-tolerant computa-
tion [50, 51]. We have the following best known bounds [43] in terms of infidelity:

%r@:) < %Hid — &l < Jd[d+ D)), (1.5)

where ||id — £||, is the diamond norm distance (see equation (4.1)) of the channel £ to the
identity channel [38]. We discuss why the diamond norm cannot be directly estimated ef-
ficiently in Chapter 4. However, the above bounds are weak for highly coherent noise (i.e.
unintended unitary rotations) [43]. Therefore obtaining additional information about the
noise is vital.

Recent work has extended the core benchmarking toolkit, for example through higher-
order moment analysis [52], character benchmarking techniques [53], the extension to bench-
marking of logical qubits [54] and analogue regimes [55]. Simultaneous randomized bench-
marking [56] has also been developed as a means to quantify the addressability of a subsystem
in a device and thus provide a basic assessment of the presence of cross-talk and correlation

€rrors.
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1.2.3 Unitarity of quantum channels

Our work exploits recent techniques from randomized benchmarking theory [5, 57-59] that
were originally introduced to provide additional information beyond the average gate infi-
delity, 7(&), for noise channels. Specifically, if infidelity is the first order moment of a chan-
nel as discussed above, then we can gain additional independent information by considering
the second-order moment (or variance) of the channel. This variance is captured by the uni-
tarity, of a quantum channel, u(£), a measure of the coherence maintained by the channel.
The unitarity is of interest outside of benchmarking — and is a central quantity in this work.
Therefore we will spend some time introducing the definition of unitarity and then exploring
its key properties.

The most natural way to define the unitarity, u(£), of'a quantum channel, &, is given
by an average of the purity of the channel across all input states, with the contribution from
the maximally mixed state, p = 1/dy, subtracted off. This allows us to see that the unitar-
ity is strictly a generalization from considering the purity of states to the purity of quantum

channels.

Definition 1.3. For any quantum channel, &, the unitarity u(E) is defined as

dX —1 (/dwr —tf[g(]l/dx)ﬂ), (1.6)

where ) = |1)1)| and the integration is with respect to the Haar measure over pure states

u(€) =

of a dx-dimensional input system [57].

The unitarity can be formulated as a variance of the channel in the following way. We can
define notation for integration of a variable over the Haar measure as (X) = [ dyX for any
X dependent of ¢. We have that (¢)) = [ di ¢ = 1/dx as the Haar-average over all states is
simply the maximally mixed state, 1 /dx. Further, due to the linearity of quantum channels,
we have (£(¥)) = [dy E(Y) = E([ dy ) = E(1/dx). Putting this together, as noted in
[60], the unitarity can be formulated as

u(&) = dXd)i . tr[var(&)] = dXd— 1 r[(E(W)*) — <5(¢))2] (1.7)

Due to the linearity of the trace, we can easily show that this variance formulation of unitarity

is equivalent to the definition given in equation (1.6).

The unitarity obeys natural limits which make it useful for quantifying how noisy a quan-
tum channel is. Specifically, unitarity takes its extremal values if and only if the correspond-
ing channel is of a particular form. We now introduce these two important classes of chan-
nels.

Firstly, we have completely depolarizing channels, D, where no information about the

input system is retained after the channel. These take the form D(p) := o for any input state
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pand some fixed output state o, potentially in a completely different system. A simple exam-
ple of completely depolarizing channel is D(p) = |0)(0| which discards any input state p and
returns the single qubit computational basis state |0)(0|. Note that, in theory, p can be state
of any system (i.e. the state of the whole universe) and the output system will still be a single
qubit pure state. This illustrates the versatility of working with quantum channels. Com-
pletely depolarizing channels are of paramount importance in this work as they correspond

to the most noisy processes possible — all information is lost.

Secondly, we have isometric channels, V, which perfectly preserve all the information
about the input system. Isometries take the form V(p) := V pV T where VTV = 1 foridentity
matrix on the input system. Isometries are generalizations of unitaries where the output
system dimension can be larger than the input. Isometries are completely reversible, like
unitaries, with VT o V(p) = p. A simple example of an isometry would be V(p) = p ® [0)X0],

where for any input state p we output p within a larger system.

We summarize how these key channels relate to the unitarity in the following lemma.

Lemma 1.2 (Properties of unitarity). Consider the unitarity, u(E), of any quantum chan-
nel £. The unitarity obeys the bounds 0 < u(€) < 1 withu(&) = lifand onlyif€ =V,
Jforan isometry V. The unitarity is lower bounded with u(E) = 0ifand onlyif € = D, for
an completely depolarizing channel. Further, the unitarity is invariant underlocal changes
of basis such that u(V o € oU) = u(E) for any initial unitary U and final isometry V.

Proofs for these properties are non-trivial, and we will derive them in Chapter 2 when we
discuss generalizations of unitarity to other probability theories. They also appear in the lit-
erature within [57] and [61]. The unitarity attains its extremal values ifand only if the channel
completely retains all information about the input system, for aisometry V, or loses all infor-
mation about the input system, for a completely depolarizing channel, D. We also have that
unitarity remains constant under final unitary rotations, e.g. changes of basis. This is simi-

lar to how the purity, 7(p), of a state, p, is invariant under unitary rotations, v(U(p)) = p.

The above properties make unitarity a good measure of how well the channel transfers
quantum information and maintains the coherence of any input state. Further, we will show

that it is well suited as a tool for examining fundamental elements of quantum theory.

The unitarity, u(€), of a quantum channel, &, is a simple measure which quantifies how

well the channel preserves quantum information on average.

Crucially, the unitarity can be estimated for effective noise channels on quantum devices,
with an efficient and SPAM-robust RB protocol — similar to the infidelity. It provides im-

proved bounds on the diamond norm compared to infidelity, from (equation (32), [62]) we
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have:

K , dK?  (d+1)*r(E)?
— < - < .
75 S ||id 5||<>_\/ 1 + 5 (1.8)

where K? = %(u(&') + 2Lr(€) — 1). When the channel € is unitary (u(£) = 1) both
bounds scale as O(1/7(&)) which tightens the lower bound of equation (1.5). For a purely

N —

stochastic channel, where the unitarity is directly related to the infidelity, both bounds scale
as O(r(£)), thereby tightening the upper bound of equation (1.5). While measures like the
diamond norm have clear operational significance, such as for single-shot channel discrimi-
nation, they are in general neither efficiently estimatable nor robust to SPAM-errors, in con-
trast to the unitarity.

Throughout this work we will show that the unitarity of a quantum channel is versatile
tool, that we can utilize for our aims of connecting benchmarking techniques with founda-

tional features of quantum theory.

1.3 Overview of thesis

With the essential mathematical tools and concepts for this work established, we now give an
overview of the content of each chapter. This includes establishing additional motivations

aside from novel benchmarking of noise, and highlighting our key results.

1.3.1 Quantum incompatibility

Within benchmarking theory broadly we are considering how fundamentals from quantum
theory can be used to test the performance of quantum devices. However, we can also con-
sider the opposite direction — treating noise quantum devices as tools to probe the limits of
quantum theory. This was the first goal we introduced for this work.

The fact that unitarity is a measure of coherence for a channel suggests that it would be
good at capturing situations where quantum theory places limitations on the coherence of
channels. A famous example is the no-cloning theorem [17] which forbids a channel that
would produce copies of the unknown input state to two output systems. We will show that
the no-cloning theorem can be expressed in a simple manner using unitarity.

A broad range of behaviour is captured by quantum incompatibility and with this in mind,

initially we have the following aim:

(1) Formulate measures of quantum incompatibility that can be robustly and effi-

ciently estimated on quantum devices.

Existing criteria to decide the compatibility of quantum channels can be formulated gen-

erally in terms of semidefinite programming and by introducing witnesses of incompatibility
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[63, 64]. The task has also been shown to be equivalent to the quantum state marginal prob-
lem [65]. Other formulations rely on the Fisher metric [66] or on the diamond norm [67] to
capture information-disturbance trade-offs. Another approach is via robustness measures
[68, 69]. Evaluating these different figures of merit for incompatibility requires extensive op-

timisations that typically require a full description of the (quantum) processes involved.

The inability to clone a quantum state [17] can be shown to be an extremal case of in-
compatibility [22], and the ability to “hide” data in correlations can be viewed as being dual
to cloning. This problem arises in the black-hole information paradox [70-72], and the no-
hiding theorem was established to prove the impossibility of hiding a qubit state in the quan-
tum correlations of a closed system [70]. This has the implication that black hole information
must have some degree of spatial localization, either within the black hole interior or in the
external region to the black hole [70-72].

No-cloningand no-hiding canalso be related to other quantum impossibility results such
asno-masking[73, 74] and no-deleting [75]. There have been some recent experimental tests
of the no-hiding theorem [28] including the utilization of small scale quantum computers
[76]. No-cloning has also been tested in the context of information-disturbance [29]. How-
ever, here we develop a broader framework that exploits recent theoretical ideas that arise in
the analysis of quantum technologies.

Our approach to this problem is motivated by ideas from randomized benchmarking the-
ory [11, 37]. Recall that such methods produce estimates of average channel properties (fi-
delity, unitarity etc.) in a way that is robust to state preparation and measurement errors
and does not require exponentially difficult process tomography. In particular, we will ar-
gue that the unitarity of a quantum channel, as a measure of coherence [5, 48, 57], is a nat-
ural means to simultaneously describe both no-cloning and no-hiding. We will show how
quantum incompatibility, and therefore the above no-go results, can be captured by unitar-
ity within a single inequality.

At a high-level, our work can be viewed as extending the simple concept of the purity of a
state, which is a measure of disorder 2, to what can be viewed as a purity-measure of the phys-
ical theory itself. This extension serves as a simple and intuitive 2—dimensional “fingerprint”

of the theory. An example for quantum theory is shown in Figure 1.2.

1.3.2 Overview of Chapters 2 and 5

Our main focus is to simultaneously handle both classical and quantum theories under a uni-
tying umbrella using average channel properties that can be robustly estimated on quantum

devices.

?In quantum theory, this is (p) := tr[p?] for any state p.
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We start in Chapter 2, where we develop a generalization of the unitarity u(£) of'a quan-
tum channel, that allows extensions of our work to more general physical theories [77-79].
We show that this generalized unitarity has key properties that make it well suited to captur-
ing compatibility, compared to other average measures such as fidelities [80, 81].

We briefly summarize the framework we develop to capture incompatibility of a theory
in Section 2.1. For any theory we consider a global process, Gx_, 45, from a system X into
systems AB, and where the subscript simply indicates the input and output systems of the

channel. Then we define marginal channels

5_22 Exsa=1trpoGxan, (1.9)
& =Exsp=1raoGx_as,
by tracing out A or B. Therefore £ and € are obtained by discarding either part of the bi-
partite output state. This means £ quantifies only the information that is transferred from
X — Aand € only the information that is transferred from X — B. These channels let us

define compatible unitarity pairs (CUPs), which we write as
(u(&),u(&)) = (u, u). (1.10)

If we restrict Gy, 4p to certain classes for channels, then range over all channels of that type,
we obtain a CUP-set — which depends only on the underlying physical theory, properties of
the given family of channels and the dimensions of the systems dx, d4 & dg. In Section 2.1,
we show that CUP-sets allow us to compare and contrast fundamental aspects of different
physical theories, including incompatibility. Then in Section 2.2, we establish that classical
physics has a CUP-set exactly on the boundary of the unit square, while in stark contrast the
simplest CUP-set in quantum theory is described by a non-trivial shape in the (u, @) plane
(see Figure 1.2).

We explain why the shape of CUP-sets encode quantum incompatibility and we prove (see

Theorem 2.1) the following result when Gx _, 45 is restricted to the set of isometric channels:

Result (Incompatibility bound on isometric quantum CUP-set) Any point (u, w) in an iso-
metric quantum CUP-set lies in the band defined by

dx 1 1
dx—i—l(dA dB)_u v= ( )

where dx is the shared input system dimension, and d 4 € dp are the respective output dimen-
sions.

This provides a general constraint on any isometric quantum CUP-set, which will still be
a non-trivial shape within this band. In Section 2.3, we relate this result to the no-cloning
theorem and the impossibility of perfect hiding of quantum information under unitary evo-

lution, to which there is no classical equivalent. The above bounds are tight under general
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Figure 1.2: Robust and efficient verification of quantum incompatibility. In classical the-
ory we have the ability to perfectly clone and perfectly hide classical information. In contrast,
quantum theory has fundamental incompatibility that prohibits the same behaviour. This
is captured by defining CUP-sets, and shown here is the estimation of the simplest quan-
tum CUP-set C. The reversible CUP-set for classical theory corresponds to the full bound-
ary of the unit square [0, 1]?, and allows perfect cloning (the point (1, 1)) and perfect hiding
(the point (0, 0)). Using benchmarking techniques we estimate C, shown here, on an IBM
Q device and find that it saturates the general quantum bounds we derive in Theorem 2.1.
Verifying such fundamental bounds provides a means to test the performance of emerging
quantum computers.

conditions that we discuss. Further, we show that when dx = d4 = dp, these CUP-sets are
further constrained in a manner that captures the no-hiding theorem exactly (see Theorem
2.2).

With this framework for incompatibility established we must turn to the estimation of
CUP-sets on quantum devices to complete our goal. However, to estimate CUP-sets reliably
we require techniques from device benchmarking [57, 82, 83]. Specifically, the benchmark-
ing methods that we extend for estimating CUPs are more complex than those we define in
the remainder of this thesis. Therefore we leave this discussion of experimental CUP-sets
until Chapter 5 after we consider more straightforward randomized benchmarking proce-
dures within Chapter 4.

In Chapter 5, we take a very direct approach by estimating a range of CUPs using the
SWAP test [84]. These methods are detailed in Section 5.2. Secondly, we consider how
techniques including randomized benchmarking, can be used to estimate CUPs in a SPAM-
robust way, see Sections 5.3.1 & 5.4. We show that — with some assumptions — quantum
CUP-sets can be estimated SPAM robustly on current devices (see Figure 1.2).

In the final part of Chapter 5, we discuss how the direct and robust methods compare,

and to what degree we can infer that current devices obey the limits of quantum theory en-
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capsulated by quantum incompatibility.

1.3.3 Quantifying coherent correlations

In Chapter 3, we extend of the core unitarity framework to build measures of the coherence
in and between subsystems and the coherence of correlations within a channel. Then, in
Chapter 4, we give an introduction to randomized benchmarking and show our new mea-
sures are accessible through RB protocols that allow for independent information about the
nature of device to be obtained beyond existing techniques. However, beyond noise anal-
ysis in quantum technologies, there are other motivations why one would like to be able to
efficiently assess correlative structures within quantum channels.

For example, consider a bipartite quantum channel E45 : B(HAo®@Hp) — B(HA®@ Hp)
from a bipartite quantum system AB to itself with A and B being subsystems. Correla-
tions within the channel are required for the transfer of a quantum state prepared on the
first subsystem A to the second subsystem B: for example to transform the input pure states
[V) 4 @ |¢) B to|P) 4 @ |1) g via the SWAP unitary. This transformation is impossible under
product channels of the form €45 = €4 ® £, with £4 being a channel from A to A and £p
being a channel from B to B, and so non-product channels are clearly required. However,
quantifying these channel correlations is a distinct problem from measuring the correlation—
generating abilities of a quantum channel. The SWAP unitary perfectly transfers a quantum
state on A to B, however it has zero correlation generating abilities as it sends the set of prod-
uct states p4 ® op toitself. In contrast the channel that sends all quantum states on AB toa
Bell state is maximal in generating correlations, however it clearly transmits zero information
from Ato B.

Intermediate between these two extremal channels are separable channels that are de-

fined as a convex combination of product channels.

Definition 1.4. A separable channel, € sp, from a bipartite quantum system AB to itself

can be written in the form

Eap =) _Pifai® Ep; (1.12)

for some probability distribution p; of product channels € 4 ; @ Ep ; which act independently
on subsystems A and B.

Separable channels can only create classical correlations between A and B, but it is clear
they do not transfer any quantum information from A to B.

Definition 1.5. A non-separable channel, € 4, from a bipartite quantum system AB to

itselfis a channel which cannot be written in the separable form given above.
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Channels that generate non-classical correlations through the transfer quantum infor-
mation from A to B must be non-separable. This includes the SWA P channel which trans-
fers the maximum amount of information between the subsystems.

Further, connections between non-classical channel correlations and correlations within
quantum states do exist. Specifically, the set of separable channels play a central role in the
resource theory of Local Operations and Shared Randomness (LOSR) [85-94], for the study
of non-classicality in quantum theory. It has recently been argued that this framework is
the appropriate setting in which to properly analyse Bell non-locality and the self-testing of
quantum states [91, 92]. Therefore a non-separable quantum channel requires the consump-
tion of state correlations, and an ability to efficiently and robustly certify non-separability in
a general quantum channel €45 implies the use of non-local quantum resources.

More broadly, since process tomography is exponentially hard, one can ask what non-
classical features of quantum channels [95, 96] can be accessed in practice. We know that ac-
tual physical systems only probe a very small region of the set of all possible quantum states,
dubbed the “physical corner of Hilbert space” [97, 98], and so a similar question for quantum
channels can be addressed by drawing on recent developments in randomized benchmarking

theory.

1.3.4 Overview of Chapters 3 and 4

We now describe how, within Chapters 3 and 4, we address two more of the goals we gave
for this work. Firstly, to achieve of our goal of gaining independent information about the

nature of device noise, we will aim to:

(2) Enable novel benchmarking of the performance of quantum computers at the

level of subsystems.

Secondly, for our goal of providing robust certification of non-classical effects, we sepa-

rate out the following aims:

(3a) Quantify the degree to which a quantum channel deviates from being separable

in a form that can be estimated efficiently and robustly.

(3b) Demonstrate an application of this approach by deriving an information-

disturbance relation that can be efficiently and robustly verified.

We shall show that the unitarity of a quantum channel is well-suited to aims (2), (3a) and

(3b), and suggests a route to analysing similar structural questions about bipartite quantum



1.3 Overview of thesis

17

channels in a form that is amenable to efficient and SPAM-robust experiments.

We will show that for a bipartite quantum system AB the concept of unitarity naturally
extends to a collection of subunitarities uy _,y (E) of a quantum channel € on a bipartite sys-
tem AB. The subscripts denote the input and output subsystems under consideration. For
example, the subunitarity w4, 4 describes how much coherence is maintained within the A
subsystem by a channel; while the subunitarity u4_, 5 captures the information transferred
by a channel from A into B.

Each of these subunitarities gives finer information about how the channel acts on the
quantum systems A and B, and transfers information between subsystems. This allows us
to address both (2) and (3b) above. However we find that only non-trivial combinations of
subunitarities are estimatable in a SPAM-robust protocol, and so this forces us to develop
methods to estimate channel correlations for aim (3a).

Objective (3a) turns out to be substantially more challenging than (3b), and we begin in
Chapter 3 with the problem of quantifying channel correlations. In Section 3.1, recalling that
the unitarity of a channel can be reformulated as a variance estimate, we construct a correla-
tion measure u.(E4p) that parallels the covariance between two classical random variables.
Assembling this correlation measure leads to defining the subunitarities in Section 3.2.

In Section 3.1.2, we show that the simplest subunitarities can be related to the unitarity of
marginal channels. This links to our general results in Chapter 2 on quantum incompatibility
and leads to a novel form of the information-disturbance relation in terms of subunitarities.

For a bipartite unitary, U4 5, we have

Ua—aA(Uap) +uasp(Uap) <1, (1.13)

where Uy is a bipartite channel describing unitary evolution of the joint system. What
the above captures is the inherent limits quantum theory places on transferring information
from one subsystem into others. For example, if the unitary is structured such that all the
information from subsystem A stays in subsystem A, then necessarily no information goes
from A to the other output subsystem, B. The above upper bound on the corresponding
subunitarities captures this exactly, asifus , 4 (UUap) = 1 then necessarily us_,g(Uasp) = 0.

In the final part of Chapter 3 given by Section 3.3, we prove that the measure u.(E4p) cer-
tifies non-classical features of a channel. More precisely, we prove that over the set of separa-
ble quantum channels (i.e. convex combinations of product channels) it is strictly bounded
away from the global maximum, and thus provides a witness of non-separability for quantum
channels.

In Chapter 4 we address the problem of efficiently estimating the correlated unitarity of
effective noise channels in a benchmarking scenario. We begin with an exploration of ran-
domized benchmarking in Section 4.1. We then show how existing protocols use properties

of'a unitary 2-design to estimate the unitarity of gateset noise within Section 4.2.
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We then turn to our original protocols. For this we follow a similar approach to simulta-
neous randomized benchmarking in which one employs local 2-designs on each subsystem.
This is of relevance for quantitying cross-talk errors in quantum devices. In Sections 4.3 and
4.4, we show that for bipartite separable channels the correlated unitarity can be obtained
efficiently in a SPAM-robust protocol. For more general non-separable channels, we show
in Section 4.5 that for weak reset errors that this can still be estimated and within a natural
model demonstrate explicitly that the protocols can witness non-separability over a substan-
tial range of reset errors.

We end the chapter by discussing the relation between our work and simultaneous ran-
domized benchmarking and show that our protocols provide additional, independent infor-

mation on cross-talk and correlative errors.



A simple formulation of the
no-cloning and no-hiding theorems

“I do not know of any grottos,” replied Jacopo.
The cold sweat sprang forth on Dantés’ brow.
“What, are there no grottos at Monte Cristo?” he asked.

“None.”

The Count of Monte Cristo

Alexandre Dumas

The impossibility of cloning an unknown quantum state is one of the most famous in-
stances of incompatibility, and is captured by the no-cloning theorem [17, 22]. The no-
hiding theorem is another such instance, and can be viewed as being dual to no-cloning [70].
Such quantum features will play a key role in the development of quantum devices, and un-
derlie why quantum error correction must be intrinsically different from classical error cor-
rection [32]. Both extremes of quantum incompatibility can be described in a unified way
using quantum channels.

In this chapter, we develop a novel formulation of incompatibility that unifies both no-
cloning and no-hiding. Our approach is to consider how the unitarity of quantum channels,
a tool from device benchmarking, may be generalized for channels within other probability
theories — such as classical probability theory. We will use this generalized definition of uni-
tarity to establish a framework to measure the range of (in)compatibility allowed in a theory,
based around the unitarity of compatible channels under a theory.

We then derive bounds which strongly constrain the quantum case. Moreover, we show

that these bounds encode no-cloning and no-hiding exactly. We examine how our frame-
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work allows for a detailed comparison with classical probability theory — where both perfect
copying and perfect hiding are permitted.

Finally, we analytically explore the simplest non-trivial cases for both quantum and clas-
sical theory. These minimal examples of our general framework exhibit all the main fea-
tures and are simple enough to allow for testing on current devices. Critically, compared to
existing measures of incompatibility, our methods allow for efficient and robust estimation
on quantum devices. However the techniques required are fairly involved. So we relate the
discussion of estimation to Chapter 5 after we introduced more elementary benchmarking

protocols within Chapter 4.

2.1 CUP-sets and incompatibility

We now construct a framework to study fundamental incompatibilities of a physical theory
in a form that is sufficiently simple to allow for efficient and robust estimation. The analysis
in this chapter focuses on quantum and classical theory, but we can extend it to any general

probabilistic theory as described in Section 2.4.

2.1.1 Unitarity of a channel

We first introduce a measure — the unitarity — that quantifies how noisy a channel is. This
is generalization of the unitarity defined for quantum channels (see equation (1.6)). This
measure can also be viewed as the variance of the channel [60].

For both quantum and classical theory, we have the notion of a physical state = of a sys-
tem, which may be mixed or pure . For example, in classical statistical mechanics a pure state
is a microstate, while a macrostate is a mixed state. The most general evolutions of states are
called channels, and a channel &, is simply any map that takes valid states to states. For ex-
ample, the identity channel id(z) := z for all states . We next need a couple of additional
concepts in order to define the unitarity of a channel.

Firstly, for both classical and quantum theory, we have a notion of geometry that arises
for the states. In quantum theory we have the Hilbert-Schmidt inner product. For two Her-
mitian operators A and B this inner product is defined as (A, B) := tr[AB], and leads to the
definition of the purity of a quantum state p given by v := (p, p) = tr[p?]. The same features
exist in classical theory, and for a given probability distribution (p,) describing a classical
state of a system we have its associated purity given by v(p) := (p,p) := >, pi. There-
fore, in either classical or quantum theory, we can define the purity of a state x as given by
v(z) := (x, x) for the appropriate inner product. The purity provides a measure of the nois-

iness of a given state, and for example can be associated to the minimal collision entropy over

'More precisely a pure state is an extremal point in the set of all states, such as [1/)(1}| in quantum theory,
while a mixed state is obtained from probabilistic mixtures of pure states.
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discriminating measurements in the theory [100]. Moreover, this quadratic-order measure

can be readily estimated for either classical or quantum theory.

Secondly, for both quantum and classical theory we have a preferred measure dy(x) which
is non-zero over the set 0S of pure states of the theory. For quantum theory this is the Haar
measure, while for finite-dimensional classical systems it is the uniform measure over the

discrete pure states.

We can now define a generalised unitarity, that captures how well a channel in quantum

or classical theory preserves information.

Definition 2.1. The unitarity of a channel, £, under either quantum or classical theory

is given by
u(E) == a / (@) 1(E(@) — £(n) 2.1)

wheren := [, du(x) x is the maximally mixed state under the theory, and where ()
is the purity of a state x, defined as ~y(x) := (x, x) given an inner product in the space of

states. The normalizing constant « is chosen such that u(id) = 1.

This unitarity measure has a range of nice properties, which we will prove within the set-
ting of generalized probability theories given in Section 2.4. For example, in Lemma 2.3, we
prove that u(&) = Oifand onlyif € is a completely depolarizing channel thatactsas E(x) = y
for any state x and some fixed state y. Such a channel can be viewed as erasing all informa-
tion in the input state of the system. Additionally, for any theory in which v(z) = (z,x)
(i.e. quantum and classical theory), the unitarity is bounded between 0 and 1, and u(V) = 1
for all isometries V, which we prove in Corollary 2.2. Isometries are transformations that
perfectly preserve all information in the input state x. Similarly, for such theories, the uni-
tarity is invariant under changes of basis u(V o £) = u(€) for any channel £ and isometry VV
(see Lemma 2.5), and extension of the invariance of the unitarity of quantum channels under

unitaries given in [57].

The generalised unitarity, u(€), captures the degree to which a channel, &, preserves in-
formation — in classical, quantum, or some other theory of physics. It is maximized for
channels that perfect preserve information about the input state and minimized for chan-

nels that completely discard the input state.

These attributes make this generalized unitarity a natural tool for capturing the incom-

patibility of channels.
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2.1.2 Defining cloning and hiding

Given a channel G from a subsystem X to subsystems A B we define the marginal channels as

trg o G(z), (2.2)
traoG(z), (2.3)

where tr4 denotes the action of discarding the subsystem A, and similarly trp denotes dis-
carding B. This is similar to the marginals of a bipartite quantum state, p 4, where we have
pa = trg[pap|. With the concept of'a marginal channel, we can define what it means to clone
or hide a state in a theory. The ability to perfectly clone/broadcast a state within a theory can
be defined as the existence of a channel G from an input system X to two output systems A
and B, such that

trp(G(x)) =id(z) = x, (2.4)
tra(G(x)) =id(z) = x, (2.5)

for all states z. In other words the input state is perfectly copied to both outputs, and A
and B are copies of X as spaces. Note that broadcasting is where one allows correlations
between the two output systems, while cloning does not have correlations and is normally
considered for pure states only. This distinction is not important here since we focus on the
marginal outputs only, and henceforth we refer to the above process as cloning. The no-
cloning theorem [17] can therefore be cast as a statement that, under quantum theory, there
is no channel G such that equations (2.4) and (2.5) both hold for all states x.

The no-hiding theorem in its original formulation [70] says that if a quantum state [1})
evolves unitarily such that the output on one subsystem is a constant state — namely a com-
pletely depolarizing channel — then the state |¢)) can be perfectly recovered from the remain-
ing environment subsystem. We can formulate the no-hiding theorem in terms of the above
channel marginals in the following way. For a closed quantum system under unitary evo-
lution (e.g. when G = V), if trg(V(z)) = y for some fixed state y, then necessarily
must be completely recoverableattr 4 (V(z)). Therefore the no-hiding theorem requires that
trcotra(V(x)) = x, up to final change of basis, and where the additional partial trace (tr¢)
may be required to match the dimension of the input system.

Channel marginals can also capture a more general notion of hiding in any theory. More
precisely, we say that we can perform perfect hiding in a theory if there is a channel G from an

input system X to two output systems A and B such that for all input states = we have

trp(G(z)) = Di(z) =y (2.6)
tra(G(x)) = Da(x) = ya, (2.7)
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where D; and D, are completely depolarizing channels that send all input states to the fixed
states y; and y, respectively. In other words the marginal channels of G fully erase any infor-
mation encoded in z. However, this is not everything. We also require that x is genuinely
encoded in the global correlations between A and B. Therefore, we additionally require that
G isareversible transformation, G = R, which means there is another channel F from A and
Bto X suchthat FoG(x) = id(x) = x. This defines perfect hiding, but it might be possible
to have partial hiding of a state, in the same way as it is possible to partially clone a quantum
state.
The no-cloning and no-hiding theorems are two extremes of quantum incompatibility.
We have shown that they both can be formulated in a concise manner using marginal
channels, tr4 o G and trp o G for a global process G from X — AB. To capture no-hiding
we should consider isometries, G = V, for perfect hiding we should consider reversible

channels, G = R, while for no-cloning we should consider the marginals of any channel.

We next turn to quantifying how well a theory (classical, quantum or a more general the-
ory) can both clone and hide. To completely capture hiding our framework should repro-
duce both quantum theory’s no-hiding theorem, as well as identify perfect hiding. We do
this through the above focus on marginal channels, and use the unitarity to quantify how

well these local channels preserve information.

2.1.3 Compatible unitarity pairs of a theory

We now label the two marginal channels defined in equation (2.2), which gives us the nota-

tion to proceed with our framework for incompatibility within channels.

Definition 2.2. For any channel, G, from an input system X to a joint system AB with

marginal systems A and B, we define the marginal channels

E(x) :=trgoG(x), (2.3)
E(z) :==trpoG(x). (2.9)

We name the tuple of the unitarities of these channels a compatible unitarity pair (CUP)

and use the notation:

(uw(&),u(&)) = (u, u). (2.10)

From the previous discussion of cloning and hiding we found that the set of global chan-
nels, G, that we consider matters. For hiding, we must consider the set of isometric channels
to capture quantum theory’s no-hiding theorem — as well as the set of reversible channels for
perfect hiding in classical and quantum theory [101]. In contrast, for cloning we are free to

range over all possible channels within a theory.
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CUPs, (u, u), capture how a channel splits up information between two parties. Channels

under different theories will have different limits on how this can be done.

Itis possible to describe a general process on a open system in terms of reversible channels
on (larger) closed systems for both quantum and classical theory [102, 103]. In quantum
theory, global isometries suffice (captured by a Stinespring dilation [38]), however classical
theory requires the use of auxiliary randomness [103]. As discussed in Section 2.3.3, the

reversible channels are defined as those channels, R, for which we have

(R(z),R(y)) = c(z,y) (2.11)

forall states x, y and a constant 0 < ¢ < 1, and where the inner product is usual one given in
Section 2.1.1 for quantum and classical theory. The isometric channels are a proper subset of
reversible channels for both classical and quantum theory. Any isometric channel V is a re-
versible channel for which ¢ = 1. The smaller set of isometry channels are the traditional set
considered for incompatibility in quantum theory, due to the Stinespring dilation theorem.

When G € V), the set of isometric channels, and £ & & are its marginal channels — as
defined in equations (2.8) & (2.9) — then we write £ ~ & and say that these channels are
isometrically compatible. In this case, for quantum theory, the channels £ & & are comple-
mentary to each other.

Similarly if G € R, the set of reversible channels, then we write £ ~,. £. Finally, when
we consider G to be the set of all channels in a theory, we write £ ~, & such that £ and € are
marginals of any valid channel G from X to AB. This notation is just to simplify definitions,
and does not suggest an equivalence relation.

We are now ready to define the central quantity through which we examine the (in)com-

patibility allowed in physical theories.

Definition 2.3. We define the isometric Compatible Unitarity Pair set (bereafter called
the isometric CUP-set) as

CX7AB = [(u(&),u(f)) eR*: £~ E} (2.12)

which is determined by both the dimensions of the particular state spaces and where £ ~,

& are the marginals of any the admissible isometry channels in the theory.

Ina similar way, we define the reversible CUP-set, CX 748 when &€ ~, &€ forthe marginals
ofany reversible channel. Finally, we define the full CUP-set, CX 4B, for the marginals of any
valid channel, when £ ~, £. For the remainder of this work we shall drop the superscripts
specifying the subsystems and just write C, C, and C,. for the CUP-sets.

These abstract definitions are required to address quantum theory and classical theory

in a unified way. However we show that, in practice, for each theory CUP-sets are simple
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shapes in the 2-dimensional plane. These shapes encode the incompatibility of the theory in

intuitive geometrical way.

CUP-sets, C, C, and C,, capture all the ways information can be split up between two par-
ties with a quantum/classical channel. Therefore CUP-sets measure the level of (in)com-

patibility allowed in the theory itself.

Since the unitarity is bounded between 0 and 1, we have the following series of inclusions
CCC CC Clo1)7 (2.13)

It turns out that CUP-sets can also be defined for general probabilistic theories, and we dis-
cuss this in Section 2.4. Note that for any theory we have (0, 0) € C,, since we are always free
to discard the input state and prepare an arbitrary constant state on the output systems (for
which the unitarity vanishes). Likewise, since the identity channel is in any theory, and we
are free to swap/relabel subsystems (which is an isometric process) so that (1, 0) and (0, 1) lie

in C. These are common points for CUP-sets across different physical theories.

2.1.4 No-cloning and no-hiding through the CUP-set

No-cloning and no-hiding fit into this framework as follows. Firstly, if the physical theory
admits perfect cloning then this implies that (1, 1) € C, since u(€) = lifandonly if € = id
up to a final isometry [61]. We also note that it has been shown [19, 77] that broadcasting
is possible in a physical theory if and only if the theory has a simplex state space of perfectly
distinguishable states, and so essentially only classical theory has (1, 1) in its CUP-sets. The
no-cloning theorem can be cast compactly as a statement that — for quantum theory, the full
CUP-sets C, (and therefore all CUP-sets) exclude the point (1, 1).

Secondly, from Section 2.1.2, the no-hiding theorem given in terms of marginal channels
states that — for quantum theory under isometric evolution — if & = D (a completely de-
polarizing channel) then necessarily the input state can be completely recovered in the other
subsystem. In the case dy = d4 = dp, this implies & = V, an isometry. We will show (see
Section 2.3) that this statement of the no-hiding theorem is captured exactly by the isometric
quantum CUP-set C, as for the point (0, z) in C then x = 1 only. Additionally in the case of
unequal subsystems, the no-hiding theorem and the impossibility of perfect hiding implies
the point (0, 0) must still be strictly excluded from the isometric CUP-set C. We prove this
also holds in Section 2.3.

We also consider whether a theory admits perfect hiding with the addition of auxiliary
randomness. This is captured by the reversible CUP-sets, C,.. If the theory admits perfect
hiding with auxiliary randomness then we have D; ~,. D, for some completely depolarizing
channels D, and D,. However, as we prove in Section 2.4, this statement is equivalent to the
existence of the origin in the reversible CUP-set, (0, 0) € C,. We will show that the reversible
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CUP-sets of classical probability theory always contain (0, 0) whereas the quantum reversible
CUP-sets only contain (0, 0) under certain dimensional restrictions related to mixed state
purification.

Finally, for both quantum and classical theory we examine the case with the smallest
non-trivial dimensions in detail. Since quantum physics neither admits perfect cloning, nor
perfect hiding under unitary evolution, the simplest quantum CUP-sets form non-trivial sub-
sets of the unit square [0, 1]%, which we discuss shortly. In contrast, both (0,0) and (1,1)

always lie within the classical (reversible) CUP-sets, as we shall show shortly.

2.2 Classical CUP-sets

We now explore how a classical CUP-set captures the compatibility allowed in classical prob-
ability theory. We shall see that the CUP-sets of classical theory are radically different from

quantum theory, and so are a simple and vivid way to contrast the two theories.

2.2.1 Unitarity of classical channels

For a classical probability distribution on a d dimensional system, the pure states correspond
exactly to the d extremal points {z; }%_; of the state space. Therefore, for classical theory, the

unitarity given in equation (2.1) reduces to

u(®) = 7223 (Ew) — ), 2.14)

wheren = 1 3271 2; is the maximally mixed state.

The only isometric operations with input and output systems of the same dimensions are
those that permute the pure states. Recall that for any isometry we have u = 1 (see Corollary
2.2). Furthermore, reversible classical channels are fully generated by the set of isometries
and auxiliary classical randomness [103—105], as they correspond to injective Boolean func-
tions. This allows us to characterise CUP-sets for classical theory.

The state space of a single probabilistic classical bit is a d = 2 system with two possible
pure states 7o := (1,0) and z; := (0,1) in R?. Any pure state x; encodes the bit m €
{0, 1}. There are only two single-bit isometries: the identity channel id and NOT operation
for which NOT (z) = 21 & NOT(x1) = x¢. For a two-bit system d = 4, we can define the
pure states through the tensor product of the single bit pure states e.g. x,, := x, ® x; for
a,b e {0,1}.

2.2.2 Cloning and hiding in classical theory

To clone/broadcast a classical mixed state bit in a state, x := (p, 1 — p) with0 < p < 1, one

simply brings in an auxiliary bit in the pure state zy = (1, 0) and then performs a controlled-
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not (CNOT) gate, controlled on the state x with the auxiliary bit as the target. The marginal
distributions are then both given by x; the input information was perfectly copied to the

marginals. In terms of channels, the protocol is simply given by
V(z) = CNOT(z ® xy), (2.15)

which outputs a 2-bit state.

Hiding of a classical (deterministic) bit involves encoding a bit, z = (1,0) orz = (0, 1),
entirely in correlations so that the marginal bit states are = (1/2,1/2), the maximally dis-
ordered state. However, we also require that the bit is still perfectly recoverable from the
total state. This can be done as follows: we introduce a single auxiliary bit in the state 7,
which is viewed as an unknown key bit, and we perform a controlled-not gate on x that is

controlled on 7. Equivalently we get
Rhide,1/2(x) = CNOT(n ® ), (2.16)

which is a correlated 2-bit state. It has marginals 7 and also since CNOT o CNOT = id
we can perfectly recover the bit from the joint 2-bit state. This is the classical one-time pad

protocol for encryption and the operation performs perfect hiding in classical theory [106].

2.2.3 The simplest classical CUP-set

Returning to a classical mixed state bit in a state, z := (p,1 — p) with0 < p < 1, the
most general isometries from a single bit into two bits take the form of V(z) := map(x ® x¢)
where 745 is a permutation on the four basis states. There will be 6 such different isometric
operations, however they produce the same 3 points on the CUP diagram as follows. As the
unitarity of the marginal channels £ and € are invariant under local isometries at A and B,
then separable operations m4ap = 74 ® 7 will give the point (u, @) = (1, 0), corresponding
to £ = idand & = D. The swap operation permuting the two systems will produce the
point (u,u) = (0, 1). Finally, if the permutation corresponds to the C NOT operation with
control on system A, then on the CUP-set diagram this gives the point (u,u) = (1, 1), as
& = € = id. We therefore have that

C ={(1,0),(0,1), and (1,1)}, (2.17)

for the simplest non-trivial isometric CUP-set in classical theory.

2.2.4 Reversible classical CUP-set

We now consider the classical CUP-set produced by the set of reversible global operations

R. The following class of operations

Rp(x) = v ® (pro + (1 — p)o1) (2.18)
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introduces an auxiliary system B prepared in a fixed probabilistic state. This is notisometric,
but satisfies trp o R,(z) = z, and is therefore reversible. All such channels R,, correspond

to point (u, u) = (1,0) of the CUP-sets. Generally, reversible operations are given by
R:=mapoR, (2.19)

where 745 is again the permutation of the four basis states.
Motivated by the single-bit hiding protocolin Section 2.2.2, we consider g = CNOT 4,
the controlled-not with A as the control and with B as the target, that generates the follow-

ing family of reversible maps
Rhide,p = CNOTAB o) Rp. (2.20)

These are partially-hiding channels with the perfect-hiding channel occurring for p = 1/2,
corresponding to the point (u,u) = (0,0). For general p € [0, 1] we have (u,u) = (1,p)
with p’ = (1 — 2p)?. Since we can swap output subsystems we also get (u, @) = (p/,1). The

remaining reversible channels are obtained from
Rbroad,p = ONOTBA o} Rp (221)

which gives the points (u,u) = (0, p") withp’ = (1 — 2p)? and similarly, (u,u) = (p/,0) if

we swap the output subsystems. We therefore have that
C, ={(t,0),(0,¢), (t,1), and (1,¢) forall t € [0, 1]}. (2.22)

In other words the reversible CUP-set C, is simply the border of the unit square [0, 1]2.

2.2.5 Full classical CUP-set

Finally, we consider the full 1 to 2 bit CUP-set, C,, obtained by ranging over all single-bit to
two-bit systems. It can be shown (see Corollary 2.1) that if a global channel £ from X to AB
gives a point (u, u) inany CUP-set and D is any global, completely depolarizing channel, then
the set of convex combinations p€ + (1 — p)D give the line segment joining (u, @) to (0, 0).

This automatically implies that for classical theory we have
C, = [0,1]% (2.23)

since we can take convex combinations of reversible channels with a completely depolarizing

channel and the resulting line segments fill the unit square.

The classical full CUP-set fills the unit square, capturing that there is no incompatibility
between marginals. This follows from the existence of classical cloning (u, u) = (1,1) as

we can always disregard information to obtain any other point within the unit square.
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2.3 Quantum CUP-sets

Quantum CUP-sets are much more tightly constrained in the unit square [0, 1]* than their
classical counterparts, and we relate this to quantum no-go theorems. In this section we pro-
vide evidence for this statement, via tight analytical bounds on the sum of quantum CUPs.
For quantum theory, the general form for the unitarity given in equation (2.1) reduces to
familiar form given in Definition 1.3 in Chapter 1. Recall that, within the context of bench-
marking quantum devices, the unitarity u of the average noise channel £ associated with a
gateset can be estimated using randomized benchmarking [107]. Further there are proto-
cols to estimate the unitarity of noise are efficient and robust against state preparation and
measurement (SPAM) errors [5], as we will discuss at length in Chapter 4. We will make use

of these properties in Chapter 5 when we estimate CUP-sets on devices.

2.3.1 Incompatibility and hiding via trade-off relations on CUP-sets

We can now establish the following general bounds on the quantum CUP-sets that arise from
isometric channels, C. This gives us a handle on the structure of such sets and in particular

how they relate to cloning and hiding.

Theorem 2.1 (General bounds on isometric quantum CUP-set C). Consider any input
system X of dimension dx and output systems A and B of dimensions d 4 and dg, with
dx < dadpg. The associated isometric quantum CUP-set C C [0, 1]? is confined to the
band in the (u, w)—plane defined by

dx 1 1
—h — < u < 1. 2.24
dX+1(dA+dB)_u+u_ ( )

This bound is tight and the isometric quantum CUP-set C intersects the bounding lines
at (1,0),(0,1) and when dy = dp it also attains the optimal hiding point (u,u) =

(e X s)
daldx+1)’ da(dx+D)/"

Proof. Tt can be shown [61] that the unitarity of a channel can be expressed as

&1

u(€) (dx tr [5(11 /dX>2] — tr[€(1/dx)?]) (2.25)

where £ is any complementary channel to £, which we can choose to be £. Applying the

above expression to the complementary pair (€, £) we then have that

u(&) +u(€) = dde— 1(tr[€(]l/dx)2} +tr[E(1/dx)?]). (2.26)



30

Simple no-cloning and no-hiding theorems

For the lower bound, we bound each purity term individually. For any quantum state, p, for

a system of dimension d we have the purity is lower bounded as tr[p?] > 1/d, and therefore

. dy 1 1
> — 4+ —). 2.27
u(€) +u() 2 TE (= 4+ o) (2.27)

For the upper bound, we use the following property of complementary channels. We have
that £ := trg oVx_ap & & := try oVx_, 4 foran isometric channel Vx_, 4 5. Therefore the
state pap = Vx_ap(1/dx) has the marginals p4 = £(1/dx) and pp = E(1/dx). Fora

general bipartite quantum state p 45 we have [108] that

Y(pa) +(ps) < 1+7(pas), (2.28)
and therefore p
w(€) +u(€) < 7= = (1+7(Vxsap(L/dx))). (2.29)
x+1
As Vx_, op is anisometry
1Vxosan(Lfdx)) = e [(V(L/d)V'] = (2.30)

Substituting this into the previous inequality we obtain,
u(&) +u(€) <1, (2.31)
which completes the proof. ]

These bounds place hard limits on the amount of quantum information that can be hid-
den in the correlations between systems, and also how it can be shared between local sys-
tems. The upper bound can be directly related to the no-cloning theorem, asif u = 1
for the identity channel then necessarily @ = 0 for the other marginal being completely
depolarizing. The perfect hiding point (0, 0) is always precluded from the isometric CUP-
set which is a consequence of the no-hiding theorem. Further, the upper bound is satu-
rated for the identity and swap-channels, while the lower bound can be saturated in the case

dx = ds = dp = dviaa d? dimensional generalization of the Controlled-NOT operation.

CUP-sets capture the impossibility of perfectly copying unknown quantum information
in a simple and geometrical way. Namely, if we have u = 1 for complete transfer of infor-
mation from X to A then necessarily we have t = 0 for no information going from X to B.

Therefore cloning is forbidden.

In the case of equal input system and output subsystem dimensions, the isometric quan-
tum CUP-set is further restricted. We now proof that the marginal channels and unitarity of
such systems obey a series of equivalence relations. The details of the proof are not essential

to narrative here, but will lead to the appearance of another no-go theorem.
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Lemma 2.1. Consider an isometry, Vx_, ap, from an input system X and joint output system
AB with equal dimensions dx = da = dp. This defines the complementary marginal channels
E :=trpoVx_ apand & = try o Vx_,ap. The pair & and £ obey the following equivalence

relations

on
I
Ny
o)
Il
>

(2.32)

=
=

u(&) =1 = uw(&) =0

where D(p) = o is a completely depolarizing channel to a fixed state o.

Proof We first prove £ = U <= &€ = D,. Note that for any quantum channel F, its
complementary channel F is unique up to an isometry on the output of F [109]. Further,
we can write any isometry from n = logd to 2n qubits in the form Vx_,ap(p) = Uap(p @
10%0|*™). Therefore it suffices to find any fixed dimension channel £ complementary to &,
and apply a final unitary rotation. Theisometry Vx_,ap = U1 @U5(p@[0X0|*") = Ua(p)®
U (|0)0|*™) where U, and Up are unitaries on the respective subsystems A and B, gives the
required form for £, and we are free to set Up(|0X0|) = |1 )(1| which is the exact form of €.
Applying the same argument starting from € completes the inverse direction.

We now prove £ = U <= u(E) = 1. For any quantum channel, F, we have F =
V <= u(F) = 1where Visanisometry [61]. For fixed input and output dimensions the
set of isometric channels is equal to the set of unitary channels, and so the relation holds.

Finally, we prove £ = D, <= wu(€) = 0. For any quantum channel, F, we have
F =D <= u(F) = 0foracompletely depolarizing channel D(p) = o where o is a
fixed (potentially mixed) state. Given the form of Vx_,1p, the only marginal channel, &,
that disregards the input state completely is given by & (p) = tr, oldy @ Up(p @ [0)X0|*") =
U (|0X0|*™) = [1£)(¥)], for some pure state. Therefore all completely depolarizing channels
generated by Vx_, 4 5 must be to pure states, Dy, and the condition holds. O

These relations lead to a simple formulation of the no-hiding theorem as a further re-

striction on the shape of isometric quantum CUP-sets.

Theorem 2.2 (No-hiding bound on isometric quantum CUP-set C). Consider any in-
put system X and output systems A and B all of equal dimension. T'he associated quantum
CUP-=set C is confined such that for

(u,u) = (0,2) = x = 1. (2.33)

Proof. This follows directly from Lemma 2.1, where we have u(€) = 1 <= u(&) = 0and
the definitions of v and . O
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This restriction on isometric quantum CUP-sets encapsulates the no-hiding theorem in
the following manner. Here the no-hiding theorem states that if one marginal channel con-
tains no information about the input system, then necessarily all the information can be re-
covered through the other marginal channel [70]. Therefore when dx = ds = dp, if € =D
then necessarily £ = U, a unitary. From Theorem 2.2, these quantum CUP-sets capture
this geometrically, as for the point (0, z) in C then = 1 only. Which corresponds exactly
(and only) to & = D and £ = U, thereby capturing the no-hiding theorem. AS the unitarity
of a quantum channel is a simple measure that can be readily estimated with SPAM robust-
ness for device noise, this opens a path to robust testing of another no-go theorem on current
devices.

CUP-sets capture the impossibility of hiding unknown quantum information through
unitary evolution in a simple and geometrical way. Namely, if we have v = 0 for no in-
formation going from X to A, then necessarily we have u = 1 for complete transfer of all

information from X to B. Therefore no information is hid in the correlations.

We have established strong bounds on the shape of isometric quantum CUP-sets in the
2-D plane. Further the bounds encode quantum no-go theorems for arbitrary input and
output system sizes. However ultimately we wish to test this framework on actual quantum
devices. Towards this end, we should examine in detail the behaviour of a isometric CUP-set

when the input and output systems are the smallest non-trivial quantum systems — qubits.

2.3.2 The simplest quantum CUP-set

The simplest isometric quantum CUP-set is also the simplest quantum CUP-set in general
due to the series of inclusions in equation (2.13). Further, the smallest non-trivial dimensions
will be when dy = d4 = dg = 2, so we consider this case in detail. From Theorem 2.1, for

the isometric CUP-set C, this gives the following bounds

§§u+u§1. (2.34)
with the optimal hiding point given by (u, u) = (1/3,1/3).

Forisometries mapping single qubit to two qubits, V(p) := Uap(p®]0)0]), itis sufficient
to range over all unitaries U4 s to explore the full parameter space of (u, @) for C. The general
form of two qubit unitaries contains at most 3 CNOTs and 3 independently parametrised
single qubit rotations [1] (see Figure 2.2). However, the two parameter isometry set with
Usp = Uap(a, p) (for o, 5 € R) (as in Figure 2.3) generates all possible complementary
channel pairs, up to local unitaries [1]. As the CUP-set is invariant under local unitaries, this
family suffices to fully describe it.

In Figure 2.1 we plot this simplest CUP-set, where 3 boundary curves can be identified.

The families of channels generating the boundary are of interest for structural reasons and
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Figure 2.1: Quantum CUP-sets. The simplest isometric and reversible CUP-sets under
quantum theory, with their analytical bounds (dx = d4 = dp = 2). The isometric CUP-set
C generated by global isometries is the central boomerang-shaped region (blue). Extending
this to reversible operations C, increases the set in the direction of (0, 0) to the boundary with
the Hiding Zone (yellow). The two diagonal red lines are obtained from the general analytic
upper and lower bounds for CUP-sets in quantum theory. In contrast, for classical theory we
have that C, is the border of the unit square, while C is the triple of points (1, 1), (1,0), (0, 1).

will be key to the experimental implementation we devise. The curved upper curve is given
by a smooth interpolation between the identity channel and the SWAP channel that simply
swaps the outputs on A and B. More precisely it is given by Uyp = SWAP“for0 < u <1

and 0 < a < 1. The analytical relationship between u & @ for the upper curve is
(u,u) = (u,34+u—2v1+ 3u). (2.35)

The analytical relationship between w and @ for the lower curves is linear, as shown in Figure
2.1. The lower right curve is given by Uy g = C NOT'{5, over the domain % <y < 1. While
the left curve is given by Uyp = CNOTg, o CNOTyp over the domain 0 < u < % The

derivations of the boundary curves are provided in Appendix A.2.

2.3.3 Reversible quantum CUP-set

A general reversible quantum CUP-set C, (where d4, dp and dx are not necessarily equal)
is given by considering the marginals of the set of globally reversible channels. For dx <
d adp this set will be strictly larger than the set of isometric channels. The set of reversible

quantum channels has been fully characterised [101]: £ is a reversible channel if and only if
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Figure 2.2: Circuit decomposition for generic 2 qubitisometry V(«, 3, 7). Fordx = ds =
dp = 2, all isometries can be expressed in the above form, where 0 < «, 5,7 < 7 [1]. The
complementary channels £ = trg o) & £ = tr4 o) are shown, by ranging over «, 3,y we
can generate the isometric CUP-set C for 1 to 2 qubits.
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Figure 2.3: Sufficient circuit decomposition for 2 qubit isometry V(«, 3). Fordy = ds =
dp = 2, the above isometry is sufficient to generate all points (u, @) of the isometric CUP-set
C for 1 to 2 qubits with 0 < «, 8 < . This follows from the general decomposition given in
Figure 2.2, observing that the initial two gates do not change the state of the system, and the
invariance of unitarity under local unitaries.

there is a unitary U and a mixed state o
Elp)=U(p®o)UT. (2.36)
Alternatively, £ is a reversible quantum channel if and only if

(E(p),E(1)) = clp,7) (2.37)

for all states p, 7 and some constant ¢ > 0. Here the inner product is the Hilbert-Schmidt
inner product given by (X,Y) := tr[X1Y]. The latter demonstrates that reversible chan-
nels are a natural generalization of isometry channels. In fact, as for classical theory, we can
always write any reversible channel R as the convex combination of isometries R = Y. p;V;
with )7 p; = 1and p; > 0 (see Lemma 2.2). Therefore we can think of the reversible CUP-

set C, as introducing auxiliary classical randomness to the isometric CUP-set C.

2.3.4 Upper bound for reversible CUP-sets

In the following we establish that the reversible quantum CUP-set, C,, shares the same upper
boundary as the isometric quantum CUP-set, C — adding randomness does not increase our
ability to clone information. However, the existence of a non-trivial lower bound for C,, and
therefore the possibility of perfect hiding, will depend on the values of d4, dg and dx.

We now constrain C, by showing show that any point (u, @) within the set will obey the

same upper bound as C.



2.3 Quantum CUP-sets

35

Lemma 2.2. Given any input system X of dimension dx and output systems A and B of dimen-
sions da, dp, with dx < dadg. The associated reversible guantum CUP-set C, C [0,1]? is
bounded in (u, uw)—plane by

u+u < 1. (2.38)

Proof. We can always write a reversible channel R (p) := Uap(p® o) with a potentially mixed

state o, as the convex combination of isometries V; as
R(p) =Uap(p® o) =Uap(p® Zpiwz’) = ZpiuAB(P ® ;) = sz-vi(p) (2.39)

for some pure states ¢; = |1;)(1;|. We define the marginals € := trz oRand £x := try oR.

Therefore we can write the marginal channel £ as
873 =trp oR = Zpi trp OVZ' = szé’z (240)

if we define & := trg oV and similarly for £x. As the unitarity is convex (see Lemma A.2)

we have

u(€r) = U(szgz) < szu(gz) (2.41)

and similarly for Ex. However u(&;) + u(&;) < 1 forall i from our bound on isometric CUP-

sets in Theorem 2.1. Therefore we have
u(Er) +u(Er) <Y pi(u(&) +u(&)) <> pi=1. (2.42)

Which completes the proof, as (u(Er), u(Er)) = (u, @) in the reversible CUP-set. O

Therefore while the reversible CUP-set, C,., may be larger than the isometric CUP-set, C,

it must obey the same upper bound.

Perfect hiding with classical randomness

In the case dx = dy = dand dg = d?, the reversible CUP-set C, contains the point (0, 0)
and perfect hiding can be achieved. However, as the channelis neither unitary nor isometric,
it does not constitute a violation of the no-hiding theorem. The following channel is some-
times called the quantum one-time pad [110] and illustrates a perfect hiding channel when
d = 2. Further, it can be straightforwardly generalized to higher dimensions.

Labeling the 4 Pauli operators on a single qubit as {F;} = {1, X,Y, Z} we randomly

apply an operator to the input state and record which to a classical register, such that

4
Rip) =7 3 PooPice liil. (2.43)
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where {|i)(i|} are the four computational basis states on two qubits. This channel has max-
imally mixed marginals, trs[R(p)] = 1/2 and trp[R(p)] = 1/4. Thus (u,u) = (0,0).
However there exists a quantum channel, R’, such that R o R(p) = p for any state p.
Physically, R’ is implemented by measuring the classical register, B, and applying the cor-

responding Pauli operator to system A, then discarding the register. The Kraus operators,

R/(-) =3, R, - R}Y, for this channel will be of the form:
{r} ={R o} (2.44)

It is readily seen that ) R R = 1 and therefore that this is a valid quantum channel.

We can connect any channel to a isometric process in a higher dimension through the
stinespring dilation. This connects any reversible (or full) CUP-set to a isometric CUP-set
with high dimensional output systems. Applied to the above hiding channel, R, the follow-

ing isometry
4
1 . ,
V:ZZH@)MB@WC (2.45)

gives R(p) = trc[V pVT] where the dimension of subsystem C'is d¢ = 4. However by trac-
ing out the A subsystem, we find p can be completely recovered in BC'. In fact, any bipartite
combination of the subsystems A, B and C defines a pair of marginal channels for the iso-
metric CUP-sets C with dimensions (2, 16) or (4, 8). Thelower bound onisometric CUP-sets
given in Theorem 2.1 then guarantees that there is no arrangement of A, B and C such that
both marginals are completely depolarising — confirming that quantum information cannot
be completely hidden, and can always be recovered fully in the unitary dynamics of the larger

system.

Boundaries of the simplest reversible CUP-set

Inthe case dxy = dy = dp = 2, the reversible quantum CUP-set C, is quite similar to C. It
has exactly the same upper boundary but different lower boundaries which are again straight

lines. We have the following analytical bounds for reversible CUPs of these dimensions

<wu+u<l. (2.46)

W =

Where the lower bound can be found algebraically from the general circuit decomposition of
a unitary on two qubits and using the characterisation theorem of reversible channels.

Thelower bounding curves are straight lines, and given by considering the marginal uni-
tarities of the reversible channel R(p) = Uap(p ® 3). The right lower surface is given
by Uyp = CNOTSg over the domain % < u < 1. The middle lower surface is Uyp =
CNOTE,0CNOT pfor0 < u < 5. Finally, the left surface is given by Uy = CNOT§z 0
CNOTgs 0 CNOT g foru = 0.
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A similar construction to the lower boundaries of this reversible CUP-set appears in the

context of interleaved fidelity randomized benchmarking [111].

2.3.5 Full quantum CUP-set

Finally, the full quantum CUP-set C,, is generated by the marginals any quantum channel
from X — AB. For example, in the simplest case, C, is given by the marginal unitarities
of any 1 to 2 qubit quantum channel. Then the upper boundary is given in equation (2.35),
which it shares with both C, and C. More generally, for any system dimensions, any point
(u, 1) below the upper boundary given by C is part of the full CUP-set. This is readily seen
by considering a partially depolarizing channel on each output subsystem, as discussed in
Section 5.1.2.

2.4 Generalized incompatibility and reversibility

Generalized probability theories (GPTs), provide a broad framework in which one can com-
pare different physical theories and study their fundamental properties from an abstract, of-
ten information-theoretic viewpoint [77]. Our primary aim is to measure the incompatibility
of quantum and classical theory ina manner that can be compared, captures no-go theorems,
and — at least for quantum theory — can be efficiently computed on devices with robustness
to noise. However our work can be framed in a general GPT setting, which we explore in
this section. We also prove some properties of unitarity which were given following Defini-
tion 2.1. This assures the key properties hold across for quantum theory, classical theory

and other theories.

2.4.1 Unitarity of GPT channels

A GPT is defined by a closed, convex set S of states, and an effects space F, from which the
allowed measurements on S are constructed. The extremal points of S are called the pure
states, and we denote this set by 0S. We shall further assume that we can embed both the
state space S and effects space £ in a Euclidean vector space, with inner product (-,-). A
measurement M is given by any tuple of effects M = {my, ma, ..., my} withm; € E such
that 327 (my, z) = 1 for all states z in S. The probability of getting an outcome my, on a
state z is given by p(my|x) = (my,z). The dimension d of the state space is given by be
the maximal number of completely distinguishable states {x1, xo, ..., 24} in S, where a set
of states is completely distinguishable if there is a measurement M* = {my, my, ..., my}
that unambiguously identifies which of the states was measured through its deterministic

outcome. We call M* a sharp measurement. Any physical process corresponds to a channel
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&, which is a linear map that sends any valid state x in the input system to another valid state
&(x) in the output system.
For a GPT, we define the following function, the purity v(x) ofa state z via

() = max Xk}mk, z)?, (2.47)

where the maximization is taken over all sharp measurements M* = {m,} in the theory
[112]. While this optimization is non-trivial it turns out that the optimal measurements are
simply the measurement of the pure states in classical theory (see Lemma 2.6), and in the
case of quantum theory a rank-1 projective measurement in the basis the state is diagonal
in (see Lemma 2.7). Additionally we can define a generalized maximally mixed state for any

GPT obtained by averaging over the pure states S of the theory

771:/861#(55)55- (2.48)

S

Together equations (2.47) & (2.48) allow for the unitarity of a channel, as given in equa-
tion (2.1), to be calculated for theories which do not have an inner product purity (x, ).
More generally, the constant « in equation (2.1) will depend on the structure of the state

space S and the measure dy(x).

2.4.2 Channel compatibility in general theories

While recent works deal with incompatibility of measurements in general theories [23, 24],
one can also extend to the notion of (in)compatible channels [113].

The way in which the state space of subsystems relates to the state space of the global
systemis slightly non-trivial, and the details can be found in [77, 78, 114—116]. For composite
systems we also have the notion of tracing-out or discarding of subsystems, that corresponds
to the unit effect. We now put subscripts to specify the systems involved, so that z 4 is a state
for system A and x 45¢ is a state for a tripartite system ABC'. For a state x 45 on a bipartite
system AB we assume there is channel x 45 — tra[zap| =: 2 that outputs a state x5 on B
that results from discarding or ignoring system A. This amounts to computing the marginal
of a probability distribution. We also define the identity channel as id(x) = zforallz € S.
Givenachannel £ froma subsystem X to subsystems A B we can define the marginal channels
as

trgo&(x)and try o E(x). (2.49)

Two (or more) channels in a theory are compatible if they arise as marginal channels of a valid
global channel within the theory.
Given the structure of the perfect-hiding channel in classical theory, we therefore argue

that to capture no-go theorems, the appropriate set of global channels to consider in a theory
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is the set of reversible channels. In any theory, we say a channel £ is reversible precisely if
there is a second channel F in the theory such that 7 o £ = id such that the total channel is
the identity channel. For theories with an inner product between states, a particular subset
of reversible channels are isometry channels V, which preserve the inner product structure
i.e. for any pair of states y, z it satisfies (y, z) = (V(y), V(2)).

We also note that perfect cloning in classical theory involves an isometry channel, while
perfect-hiding in classical theory involves a non-isometric, but reversible channel. Therefore
if we restricted to only isometric channels in a theory this would suggest that is impossible
to hide a bit in classical theory, which is not true.

In light of this, we say that a theory admits perfect cloning precisely if there is a channel
€ from a system X into a bipartite system AB such that the marginal channels are both the
identity channel. We also say that the theory admits perfect hiding precisely if there is a re-
versible channel R from X into AB with marginals being two completely erasing channels
D, from X into A and D, from X into B. Here a channel D is completely erasing if for all
z € S we have D(z) = y for some fixed y.

Putting this together we have all the tools to examine incompatibility in a GPT using
compatible unitarity pairs and therefore CUP-sets. However as our primary aim is to com-
pare classical and quantum theory we leave explicit construction of GPT CUP-sets for future

analysis.

2.4.3 Properties of unitarity for GPT channels

We now prove some technical details of unitarity within the GPT setting. This gives us a
collection of properties that hold for both classical and quantum theory.
Firstly, we show that the unitarity vanishes for channels that completely discard the input

state.

Lemma 2.3. For any GPT in which du(x) is non-zero over all of 0S we have that u(€) = 0 if
and only if € = D, for a completely depolarizing channel D(y) = z for all input states y with
output state z fixed.

Proof. A sum of non-negative numbers is zero if and only if each number is identically zero.
Therefore we have that u(£) = Oifand onlyif (my, £(z) —E(n)) = 0forall my, in the optimal
measurement and for all z € 0S. Since my, # 0 for all & this means that u(€) = 0if'and only
if £(z) — E(n) = 0 forall z, which is true if and only if £(x) = £(n) = y for all x and fixed
Y. O

For channels that discard the input state with some probability and transform it with

another probability, the unitarity also has a simple form.
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Lemma 2.4. Forany GPT with an inner product between states and effects, and in which dyu(x)
is non-zero over all of S we have u(p€ + (1 — p)D) = p*u(E) where £ is any channel, and D
is a completely depolarizing channel D(y) = = for all states y with z fixed.

Proof. The proof follows from the expansion of the definition of unitarity under linearity,
and that D(z) — D(n) = 0 (from Lemma 2.3). Putting this together

u(pE + (1 - p)D) == a / (@)1 (o(E@) = E(n) + (1 = p)(Dla) = D).

—a [ dute) max 2l pE(x) ~ E))* (2.50)

~ /8 ) max 3 €60~ £ = (),

Which is the required form. N

The simple form given above for the unitarity when depolarizing channels are involved
can be directly applied to CUP-sets. It allows us to deform the CUP-set according to the

level of depolarization we apply.

Corollary 2.1. For any CUP-set if the global channel G from X — AB gives the point (u, u)
then the set of convex combinations pG + (1 — p)D gives the point (p? u, p* u), where D is a
global completely depolarizing channel D(y) = z for all states y with z fixed.

Proof. This follows from Lemma 2.4 with the observation that the marginals tr4 oD & trg oD
of'a completely depolarizing channel are also completely depolarising channels (to a different
fixed state). l

Lemma 2.5. Consider a GPT in whichy(x) = (x, x). Then for any isometry, V, and any other
channel, £, we have u(V o £) = u(E).

Proof. 'The proof follows from expansion of the definition of unitarity under linearity, and
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that (V(z),V(y)) = (z,y) for all isometries V and any states x and y. Then

u(Vo&) = dp(z) (Vo E(x) =V o &(n)),
() (Vol(r) =Vo&(n),Vol(r)—Vol(n)),

du(z) (Vo &(x),Vo&(x))

I 1 |
S o 2
Qa\%\w\
o9

+{(Vo&(n),Vo&n) (2.51)
—2(Vo&(z),Vo&(n))
—a / ) (), £ + (), Em)) — 2 (£ ), Em)
_ a/&s du(z) (E(x) — EM), E(x) — E)),
— /a (@)1 (E(w) — £)) = (@)
]

Corollary 2.2. Consider a GPT in which (x) = (x,x). Then for any isometry, V, we bave
uw(V) = 1.

Proof. This follows directly from Lemma 2.5 with £ = id. O]

2.4.4 Proofs for purity in classical and quantum theory

The following lemmas serve to illustrate that the general definition of purity for any GPT
given in equation (2.47) reduces to the familiar forms for both classical and quantum theory.

We first tackle classical theory.
Lemma 2.6. For any classical state x of dimension d, we bave

() = max (my,, 2)* = (z, 2) (2.52)

where the maximization is taken over all sharp measurements M* = {m;.} of dimension d.

Proof. Asdiscussed in Section 2.4, the pure states of classical probability theory are given by
the d extremal points {x;}{_, of the state space. There is only one measurement that distin-
guishes d states, namely M* = {;}%, for the set of pure states. Further, for any (mixed)
state x, we can write x = Zf p;x; where Zf p; = 1and all p; are non-negative. Putting this

together we have

d d
Y(@) = (wn2)® = (ak piri) (@, pia;) szp]% ji pr- (2.53)
k .5,k 1,5,k

To complete the proof we observe that (z, z) = sz pipj (xi, ) = ZZ P O
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The same result can be shown for quantum theory.

Lemma 2.7. For any quantum state p of dimension d we have
- 2 _ [ 2
Y(p) 1= max ;(mk, p)? =tr[p?], (2.54)

where the maximization is taken over all sharp measurements M* = {m,.} of dimension d.

Proof. We can write any quantum state in its eigenbasis, p = Zf i e;Xes|, such thattr[p]® =

Z? A2, As M completely distinguishes d states we have

d d
mae (e ) = max 337 Asee|m e,

d d
— m]\ZJlX Z(Z AiMki)2>
k 7

where My, = tr [m,z |ei>(ei|} , and forms a doubly stochastic matrix given by S°¢ Mj,; =

(2.55)

Zi My; = 1. Expanding the purity

d
n};ﬁx §<mk’ p>2 = m}&x Zk )\z')\ijz‘Mkj>
e (2.56)

= mj\z}x Z )\ZAJ (MTM)ZJ
17]
As the product of any two doubly stochastic matrices is doubly stochastic, Y ,(M*M);; =
> (MTM);; = 1. We then use that the vector A\ = (A1, Az, ..., \g)" majorizes the vector
@ := MT M. Such that

AN+ p?
2 e 7 7 2
max k (mp, p)* = E it < E 5 = E A (2.57)

Where the last inequality follows the Schur-convexity of f(x) = x?. Equality holds as we

can choose the measurement in the eigenbasis, which attains the bound. [

This completes our discussion of unitarity, incompatibility and CUP-sets within the set-

ting of generalized probability theories.

2.5 Conclusions

2.5.1 The long arm of purity

One way of viewing the approach we have taken here, is that we are starting with the concept

of purity and applying it with greater and greater abstraction in the sequence

States — Channels — Theories. (2.58)
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Let us make this more precise. In any general theory we can begin with an elementary notion
of disorder of a state, which can be quantified via the purity v(x). This can now be extended
to the channel level for the theory and we obtain the unitarity u(€) which is the natural gen-
eralization of purity. Indeed if we view a state x as itself being a preparation channel 1 — x
from the trivial system to S then it is readily seen that we have that u(z) = () and the two
notions coincide. For more non-trivial channels it can be shown [61] that the unitarity co-
incides with the conditional purity of the Choi state of £. The unitarity is a variance-based
measure of the disorder of a channel from one input system to one output system.

We next extend this further to consider how order can be shared or distributed amongst
subsystems A and B of a theory and unitarity pairs (u, @), and subsets of channels. Again,
this is a generalization of the preceding concept since if B is the trivial system then (u, u) =
(u(&),0), which is just the unitarity of a channel. When applied to sets of channels this leads
to encodings of no-go results of the theory. In this sense CUP-sets are purity measures of a

given physical theory within the space of all operational theories.

2.5.2 Overview

We have derived a simple formulation of information-disturbance and incompatibility in quan-
tum theory, given through the set of compatible unitarity pairs (CUPs). These pairs of com-
patible channels can be defined in any generalized probability theory, and they capture key
limits of information transformation under the chosen theory.

We undertook a thorough comparison between CUP-sets under quantum theory, where
they are tightly bound, and classical theory where the CUP-set lies on the boundary of the
unit square. We then explored the CUP-set for quantum theory in detail, including general
bounds on these sets, which we related to quantum no-go theorems.

However, to complete our aims we must connect our framework with efficient and ro-
bust estimation on quantum devices. However we will find the benchmarking techniques
required are more involved than those required for the estimation protocols of other results
in Chapter 4. Therefore we leave discussion of experimentally realizing the CUP-set frame-

work to Chapter 5.
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In this chapter, we establish several novel measures of coherence flow within bipartite
quantum channels. We then prove that our measures have a selection of desirable proper-
ties and examine how they act on specific families of channels. Specifically, we extend the
concept of the unitarity of a channel — a measure of how well a channel preserves coherence
— to sub-structures of channels. These subunitarities capture the local coherence of a chan-
nel. Inspired by the covariance of random variables, we then use the subunitarities to build
a measure of correlations in bipartite channels. Crucially, we prove this measure is a witness
of non-classical behaviour in channels, in particular non-separability. While these measures
are ofinterest independently, we will show in the following chapter that they appear naturally
within the context of randomized benchmarking protocols. This is critical to our approach
as we aim to produce measures that can be efficiently and robustly estimated on devices. We

discuss the complications that arise during estimation in the Chapter 4.

3.1 Operational subunitarities of quantum channels

We wish to formulate an experimentally accessible measure of correlations in a general bipar-

tite quantum channel. Paralleling the situation with quantum states, we say that a quantum

45
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channel €45 : B(Ha ® Hp) — B(Ha ® Hp) from a bipartite system AB to itself is uncor-
related or alternatively a product channel it E45 = £4 ® Ep for a channel €4 from A to itself
and £p from B toitself. Otherwise it is said to be a correlated channel. We shall also consider
the set of separable channels, which take the form of a statistical mixture of product channels
Eap =Y, pi€ly ® € for a probability distribution (e.g. p; > 0and Y, p; = 1). A quantum
channel is said to be non-separable if it lies outside the convex set of separable channels. The
extension to channels from input systems A B to potentially different output systems A’ B’ is
obvious, but to avoid over-complicating notation we primarily focus on identical input and
output systems and only discuss the more general case in Section 3.1.2, where it is required.

The general definition is provided in Appendix B.2.

3.1.1 Elementary subunitarities of a channel

Given two classical random variables X and Y a simple and direct method of measuring cor-
relations is to compute the covariance of X and Y. This is given as cov(X,Y) := (XY) —
(X)(Y'), where the angle brackets denote taking the expectation value of the random vari-
able. Moreover, we have that cov(X, X ) = var(X), the variance of the random variable X,
which in turn quantifies the noisiness of X'. The relevance here is, as discussed in Chapter 1,

it has been noted [60] that the unitarity of a channel can be expressed as

dx
dxy — 1

Cdy —1

u(€) = tr[var(€)] tr[(E(¥)*) — (EW)°], (3.1)
where (X) = [dyX for any X denotes taking the average of an operator-valued random
variable with respect to the Haar measure.

As the unitarity can be viewed as the variance of a quantum channel, we can ask if a form
of covariance for a quantum channel exists similar to the covariance of two random variables
in classical statistics. However, while there is a clear notion of a marginal distribution for a
joint probability distribution the situation is more complex for a bipartite quantum channel
where the reduction to ‘marginal channels’ depends on the structure of the initial state con-
sidered [118]. Instead, here we take the basic form of covariance of two random variables as a
guide and construct a unitarity-based correlation measure u.(£45) for a bipartite quantum
channel with certain desirable features.

As we want the measure u.(E4p) for quantum channels to function like cov(X,Y) for
classical random variables, we must define sensible channel equivalents to (X ), (Y) and (XY').
In the context of RB protocols on bipartite quantum channels we shall show in Section 4.4
that a natural marginal channel measure u4_, 4 emerges that parallels the classical marginal
expectation (X). This is given by the following subunitarity us_, 4 of a bipartite quantum

channel.
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Definition 3.1. The subunitarity u_, 4, of a bipartite channel, € 45, is defined as

Ua—a(Eap) == u(€a), (3.2)

where E4(p) := trp[€ap(p ® %)]ﬂr any state p of A and where g—g is the maximally

mixed state on the subsystem B.

The same construction applies for the B subsystem with the associated channel E5(p) =
tral€ap (fl—i ® p)], with g—;‘ as the maximally mixed state on A, givingup_,5(Eap) = u(Ep).
For both these subunitarities prepare the maximally mixed state on the other system — this
is logical, as this is the state that is obtained from averaging over all states and represents no
knowledge about the subsystem.

It is also clear that we can define two further subunitarities u4_, 5 and up_, 4 between the

subsystems. These are defined as

ua—p(Ea) = u(Easn) (3.3)

where E4_,5(p) = tral€ap(p® %)] forany input state p of A and where g—g is the maximally
mixed state on the subsystem B. We can define a similar channel £5_, 4 from B to A such that
up—a(Eap) := u(Ep_a). Equivalently we could make use of the unitary, SWAP, that swaps
the subsystems A and B such that SWAP(pa ® pg) = pp ® pa for any states p4 and pp.

Then we have the simple relation
Ua—p(Eap) = uaa(SWAP o Eap), (3.4)

and similarly for ug_, 4.

From these definitions it is clear that the subunitarity ux_,y (E4p), with X, Y = (A, B)
being subsystems, is based on the situation in which a quantum state p is prepared on X
with the maximally mixed state on the other subsystem and then evolved under the channel
Eap. The quantity ux_,y(Eap) inherits the properties of unitarity and therefore measures
how close this global evolution is to being an isometric mapping of the state p on X into the

output system Y, thereby quantifying information transfer.

The subunitarity ux_,y (£4p) quantifies the amount of quantum information that flows

from subsystem X into subsystem Y within a channel £45.

The subunitarities u4_, 4 and up_,  for the bipartite quantum channel have the property

that when applied to product channels give

UAAA((C/‘A ® 83) = U(SA)
UBHB((C/,A X (C:B) = U(SB) (35)
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These relations imply that if we can also construct a subunitarity up_, 45 such that

uap—ap(Ea ® Ep) = w(€a)u(Ep), (3.6)

then we can define a correlation measure that mirrors covariance in the following way.

Definition 3.2. The correlation unitarity, u.(Eap), of a bipartite channel € 4 is defined

as

Uc(Eap) == uap—ap(€ap) — ua—a(Eap)up—p(Ean), (3.7)

where ua_, 4, Uup_p and uap_, Ap are subunitarities of the channel.

We can in fact construct this measure, however the subunitarity usp_, 45 is more dif-
ficult to define than the local subunitarities w4, 4 and up_, 5 already given. The definition
of uap_, ap is most easily expressed in the Liouville representation, and is provided in Sec-
tion 3.2.2, and the justification for the naturalness of these terms is provided in Chapter 4
where we will show that these arise naturally from randomized benchmarking theory. The
technical reason for this is that they are the quantities that arise if one considers quadratic
order expectations over Haar random states where one includes the bipartite structure ex-
plicitly.

However, before deriving the remaining term in our correlation measure, in the next
sub-section we show how the above subunitarities lead to a statement of the information-

disturbance relation that is amenable to experimental verification.

3.1.2 Subunitarity formulation of information-disturbance

The information-disturbance relation [21] is a fundamental result in quantum theory and
can be summarized as saying that if a quantum channel is close to being a unitary — or more
generally an isometric channel — then the leakage of quantum information into the environ-
ment must be “small”. This trade-off can be expressed in terms of the diamond norm distance
of the channel from a unitary channel for the output system, and the diamond norm distance
of the complementary channel from a completely depolarizing channel for the environment.
However, such quantities can neither be estimated efficiently nor in a SPAM-robust form.
Within Chapter 2, we provided an alternative formulation of the information-disturbance
relation that does not suffer from these weaknesses. Here we show that we can express this
resultin the language of subunitarities, where we consider the trade-offs when moving quan-
tum information between subsystems of a bipartite process.

We now make a simplifying assumption!, we consider the evolution of the bipartite sys-

tem to be unitary, {4 5. This isanatural assumption to make when considering information-

!One can numerically verify that this assumption is not required for single qubit subsystems.
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disturbance, as we want to include environmental effects within the total system, and there-
fore expect the total process to be unitary.

For this setting, we now show the following result on subunitarities that provides a state-
ment of quantum incompatibility [21, 22]. To our knowledge the question of efficiently and
SPAM-robustly testing such foundational results has not been previously considered, and so
such aresult opens up this possibility by formulating in terms of quantities native to random-
ized benchmarking protocols. Given the ability to estimate unitarity in randomized bench-
marking protocols we therefore expect that our relation could also be verified efficiently and
robustly using existing hardware. We now state and prove the subunitarity-based information-

disturbance relation.

Theorem 3.1 (Subunitarity information-disturbance relation). Consider a bipartite

unitary, Uap, on a joint system AB. Then

UaaA(Uap) + ua—g(Uap) <1, (3.8)

where ua_, o and u 4, p are subunitarities of the bipartite channel.

Proof. We can prove that the above is a special case of our results for the reversible quantum

CUP-set in Chapter 2. From the definition of subunitarities (see Definition 3.1), we have

s AUap) = u(Eaa), (3.9)

fora channel £4,4(p) == trpoUap(p ® %). Similarly for the other output subsystem we
have ug_,g(Usp) = u(Eap) forachannel 4 ,5(p) := traolap(p @ %). It can be easily
checked that the channel R(p) := Uap(p® %) isareversible channel, as trz ol | ;oR(p) = p
forany state p. Therefore the channels £4_, 4 and £4_,  are the marginals channels of R such
that E4,4 = trgoRand £4,p = try oR.

However, for any reversible channel, R’, from a system X to a joint system AB, we have

shown in Lemma 2.2 that the unitarities of the marginals obey the following relation
u(trg oR’) + u(try oR') < 1. (3.10)
Setting R’ = R for this specific reversible channel, we have

U(tI'B OR) + u(trA OR) S 1,
w(Easa) +u(asp) <1, (3.11)
1.

Ua—aUap) +uaspUap) <

Which completes the proof. O]
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The above result provides a compact form of information-disturbance [21], in the fol-
lowing way, and can be straightforwardly generalized to case of differing input and output
subsystem dimensions. For clarity, in this section, we shall put subscripts on the channels
to denote their input and output systems explicitly, and write &;_,; to denote a channel from

any system ¢ into j. Recall that, from the definition of subunitarities, we have

Ua—a(Uap) = u(Easa), (3.12)

forEaa(p) :=trgolap(p ® %). Similarly for the other output subsystem we must have
uaB(Uag) = u(Eap) for E4p(p) = traoUap(p ® %). With these operational re-
lations, Theorem 3.1 captures the tradeoff of information flow from a single subsystem, A,
into either subsystem of the bipartite system AB.

More precisely, we can consider leakage of quantum information from a system into its
environment, which is of relevance to, for example, quantum computing in a noisy environ-
ment when one wishes to approximate a unitary channel as accurately as possible. We can
consider a quantum channel £4_,4 ~ Ux_, 4, which is approximately close to a target uni-
tary, Us_, 4, in terms of unitarity. We quantify this as u(E44) = u(Ua_4) — € for some
e > 0 quantifying the approximation. However the unitarity of a channel equals 1 if and
only if it is an isometry [57, 61] and so the monogamy relation of Theorem 3.1 implies that
u(€a—p) < €. Furthermore it is easily shown (see Chapter 2) that the unitarity vanishes if
and only if the channel is a completely depolarizing channel. This in turn implies that the
channel £4_, 5 must be e-close in terms of unitarity to a completely depolarizing channel. In
other words, the relation implies that the information leaking into the the other subsystem

necessarily decreases to zero as the channel £4_, 4 approaches a unitary channel.

We have shown that subunitarities also express an information-disturbance relation,
which is a foundational concept. We have us 4 (Uap) + uap(Uap) < 1 for the
subunitarities of a unitary Usp. Therefore when all information stay in a subsystem,
ua—a(Uap) = 1, then necessarily the channel produces no correlations and transfers no
information to the other subsystem w4, 5(Uag) = 0. This may open the path to robust

testing of information-disturbance on current highly noisy devices.

Information-disturbance is closely related to both the no-cloning and no-broadcasting
theorems [17, 20, 119, 120]. We discuss how unitarity can be used to address these quantum

no-go theorems in Chapter 2.

3.1.3 The Liouville representation of quantum channels

We now introduce vectorization of quantum states and the Liouville representation of a quan-

tum channel. These mathematical tools will be extremely useful throughout this chapter.
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Consider quantum channels £: B(Hx) — B(Hx), where B(Hx) denotes the space
of linear operators on the Hilbert space H x for a d-dimensional quantum system. We can
choose an orthonormal basis of operators Xy, X1, ..., X2 for B(Hx) with X, = 1/v/d
such that with respect to the Hilbert Schmidt inner product (X,,, X)) := tr [XlX V] = 0pp-
In particular, this means that X, ..., X2 are all traceless operators. We shall refer to
bases of this kind in the following compact way, X, = (X = \/ig]l, X;). We highlight that
we shall use Greek-labels (1, v, . . . ) for sums that run over all basis operators and Latin-labels
(4, 7, .. .) notation to run over just the traceless basis operators.

We define vectorization of operators via |vec(|a) (b)) := |a) ® |b) for computational basis
states [38]. This definition can be extended by linearity to get the mapping M — |vec(M))
for any operator M € B(Hx). Then for any quantum channel £ : B(Hx) — B(Hx) we

define its Liouville representation, £(£), through the relation
L(E)|vec(M)) = |vec(E(M))), (3.13)

for all M. To simplity things going forward, we shall adopt the notation that we denote all
vectorized quantities in boldface. This is similar to how a vector is sometimes represented in
boldface as v = (v, va,...,v,). So we write | M) := |vec(M)) and € := L(E). Using this

boldface notation we can re-express equation (3.13) in the more compact form

Elp) = €E(p)) . (3.14)

for any state p, and any channel £. Channel conjugation is particularly pleasing in this rep-

resentation as it becomes matrix multiplication, such that
EF |p) = €0 F(p)), (3.15)

for any state p, and any channels £ and F.

The Liouville representation, &, is a way of representing any quantum channel, &£, as a
matrix, acting on states, p, encoded in vectors, |p), such that € |p). This is particularly

useful for numerical calculations.

Using this notation we now give some useful quantum operations in the Liouville repre-
sentation that we use through out this work, with proofs following. Firstly, the channel to
trace out (¢r) the system, and a channel we define to prepare (prep : prep(1) = 1/d) a new

system in the maximally mixed state
tr = Vd (X,| and prep = |X,) /Vd. (3.16)

This shows that the preparation of the maximally mixed state can be thought of as dual to
the trace. As the trace completely discards a system, this strengthens our decision to use the

maximally mixed state within the definition of subunitarities.
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A direct consequence of the above is that the completely depolarizing channel D(p) =

1/d to the maximally mixed state is given by
D =prep-tr = | Xo)Xo| . (3.17)

The identity channel (id(p) = p) also allows a very simple form in the Liouville representa-

tion: ¢d = 1%2,

Proofs for the preceding equations

Proof. (of equation (3.16)) For the first part we have tr[p] = tr[1p] = V/d (Xo|p) as X = X.
We can then vectorize both sides and apply the definition of the Liouville representation of
a channel |tr[p]) = V/d (Xo|p) and tr |p) = V/d (Xo|p). Therefore tr = +/d (Xo|. For
the second part, definitionally, 1 /d = X,/v/d, prep(1) = X,/v/d and the vectorization of 1
leavesitunchanged |1) = 1. Therefore |prep(1)) = | Xo) /Vdand prep |1) = |Xo) /Vd [1).
As 1is the only valid state of the trivial system, we read off prep = | Xp) /+/d completing the
proof. O]

Proof (of equation (3.17)) We have D |p) = |1/d) = |Xo) /Vd. As (Xo|p) = 1/+/d for any
quantum state p we can write D = | Xo)(Xp|. O
3.1.4 \Unitarity in the Liouville representation

Using equation (3.14) we can decompose any channel £ : B(Hx) — B(H x) inthe orthonor-
mal basis X, = (X, = \/Lg]l, X;) to find the Liouville representation  of any channel:

d2—1

E =) |EXu)NX,l. (3.18)

In terms of matrix components we then have that

1 Xo) |Xj)
£ = g°|’< L ; ) (3.19)
i X

where £y = 1and &); = 0 follow from the fact that the channel is a completely positive
trace-preserving operation. The d> — 1 component vector x corresponds to the generalized
Bloch vector of £(1/d), which characterizes the degree to which the channel breaks unitality.

This suggests a measure of non-unitality for a quantum channel defined via z(€) = x'x,

*When the basis X, is fixed as the Pauli basis then the Liouville representation of a channel is sometimes
referred to as the Pauli transfer matrix [121].
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with x = 0 if and only if the corresponding channel is unital. The matrix block 7" encodes

the remaining features of a channel and from equation (3.19) takes the form

d2—1

T = Z (X E(X;)) | X)X - (3.20)

In this notation, the unitarity of'a channel is then given by the simple relation [57]

u(€) ==

e [T7T]. (3.21)
This form gives us further insight into the lower bound of unitarity. We can write tr[17T] =
||T||% where || M||y := /tr[MTM] is the Schatten 2-norm (or Frobenius norm) of a matrix
M [122]. As this is a norm, we have tr[T"T] = ||T']|3 = Oifand only if T = 0. Therefore
the only possible non-zero data in the channel’s Liouville representation is the x vector. This
is a completely depolarizing channel to some fixed state. Putting this together, we have that

u(€) = 0ifand only if € is a completely depolarizing channel, as we would expect.

3.2 Generalized subunitarities of bipartite quantum channels

The form given for the unitarity in equation (3.21) will allow us to define all the possible sub-
unitarities of a bipartite channel. We do this by examining how the Liouville representation

of a channel extends to bipartite situations.

3.2.1 Liouville decomposition of bipartite quantum channels

We can also compute Liouville representations of bipartite channels, Eap: B(H4 @ Hp) —

B(H 4®H ), where we assume for simplicity that the input and output systems are identical.

For subsystem A, we choose an orthonormal basis of operators X, = (X, = ﬁ 14, X5),
where d 4 is dimension of the subsystem A, and similarly for Babasis Y, = (Y, = \/%73 15,Y;).

Together these provide a basis for the full system which is given in the Liouville representa-

tion as 3

X, ®Y,) = |X,) ®|Y,). (3.22)

From these definitions we can build bipartite channels, such as the partial trace of subsystem
B

tdy @ trg =\/dpidy ® <}’0’ (3.23)

3Note that the basis | X ® Y) isa tensor product basis for (H 4 ®@H 4) ® (Hp ®H ) and up to re-ordering of
(second and third) Hilbert spaces the same as vectorization of the matrix X ® Y. Asthese basis are isomorphic,
the Liouville representation will be invariant under such permutations.
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where 2d 4 is the Liouville representation of the identity channel on subsystem A. This fol-
lows directly from equation (3.16). Similarly, combination of this with the preparation chan-

nel on B leads to the complete depolarization channel for the B subsystem
tdy @ Dp =idy ® (prepp - trp) = ids ® |Yo)Yo|. (3.24)

Finally we can express the unitary operation, SWAP : B(Ha ® Hp) — B(Hp @ Ha),
that swaps the states of both subsystems compactly in the Liouville representation. From
definition, we can write any bipartite state in the form p := 3" A, X, ® Y,,. The SWAP
channel then acts on this state such that SWAP(p) := 3, | A\, Y, ® X,. Therefore, from
inspection, the Liouville representation of the channel is
d4—1,d4-1
SWAP= Y  [|V,®X,)X,0Y,|. (3.25)
v=0,u=0

Having established these explicit forms, we will find they are useful in examining substruc-

tures of bipartite channels.

3.2.2 General subunitarities with the Liouville representation

We can further decompose the Liouville representations of bipartite channels, in a manner
that leads to a general definition of subunitarities. As {|X, ® Y,)},,,, forms a complete or-
thonormal basis for H 4 ® H 4 ® Hp ® Hp, the Liouville representation of €4 corresponds

to a matrix £ o, g whose entries satisfy
(X, @Y, Eap | Xy ®Yy) =tr[X] @ Y] Eap(X @ V0] (3.26)
This in turn provides the following matrix decomposition of €45,

|X0 ® },0> |X:i1 ® },0> |X.'i1 ® YJ'2> |X0 ® YJ'2>

(Xo ® Yo 1 0 0 0
(X, QY| XA-A Tyn Tap—a Thsa
AB = (3.27)
(X, ®Yi,|| xaB—an TasaB TaB—aB TsaB
(Xo®Y, XBB Tassp Tap—B Tsp

where iy = {1,2,...,(d4 — 1)}, 42 = {1,2, ..., (d% — 1)} and similarly for j. Here we break
up the entire 7" matrix of the channel, from equation (3.19), according the subsystem contri-
butions. For example, the term 74 5_, 5 denotes the mapping of joint degrees of freedom of
the input system AB into the B output subsystem.

With this notation in place, we can now define all the possible subunitarities of the bipar-

tite channel.
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Definition 3.3. For any quantum channel € 45 on a bipartite system AB a subunitarity

ux_y of the channel is defined as:

ux_y(€ap) = axtr [T;r(_)yTX—A/] ; (3.28)

Jorany X, Y € {A, B, AB}, withas = 1/(d4 — 1), ap = 1/(d% — 1) and aap =

ap0B.

Definition 3.3 provides a form for all nine choices of subunitarity. All these subunitarities
measure the amount of coherent information that flows from the subsystem X into the sub-
system Y. We highlight that Definition 3.3 allows us to construct a usp_, 45 subunitarity,
using the elements of the basis X, ® Y}, that do not feature the identity on either subsystem
(Xo or Yp). While usp_, 45 does not admit a straightforward operational interpretation we
will shortly show that it has some useful properties and allows the construction of a corre-
lation measure that is estimatable in practice. We now show that this generalized definition

coincides with our previous more operationally defined subunitarities.

Theorem 3.2. ForE4(p) = trp[Eap(p @ g—g)] we have u(Ea) = ua—a(Eap), the unitarity u
of the local channel equal to the subunitarity ua_, o of the full channel.

Proof. From definition the sub-unital block

1p

1
Tasn=(X;®Y|Eap|X; @Yp) = tr| X ® —BEAB(Xj ® \/7) ,
B (3.29)

Vdg

1
= tra[ X trp[€aB(X; ® i)“ = tra[X[E4(X;)],

which gives the unital block 7" of £4. As Tasa¢,, = Te, from definition uy,4(Eap) =

w(E4). Similarly u(Ep) = up_p(Eap) for Ep(p) := trA[SAB(E—;‘ ® p)]. O

As these subunitarities of a bipartite channel are the unitaries of local quantum channels
between subsystems, we directly inherit useful properties of unitarity as a measure. This

includes invariance under local changes of basis (e.g. unitary rotations).

Corollary 3.1. The local subunitarities of any channel upy_, o(E) & up_,g(E) are invariant un-

der local unitaries.

Proof. 'This follows directly from Theorem 3.2, as the unitarity of any quantum channel £ is
invariant under local unitaries, i/ and V, such that u(Ud 0 £ o V) = u(&) [61]. H

It is straightforward to expand on this property of local subunitarities, and apply it to all

subunitarities. Under a local change of bases on the input and output subsystems we have

Eap = (Va®Vp)oEapo (UL @ UY), (3.30)
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for local unitary channels denoted with V and ¢/. These changes of bases transform the sub-

matrices T’x_,y under multiplication by orthogonal matrices. For example
Tasa— O1T440;, (3.31)

for orthogonal matrices Oy, Oa, with e.g. O, arising from the unitary channel U, (X;) =

2 _
Eﬁ;‘: 11 O2.i mXm. Thisimplies that all the subunitarity terms are invariant under local changes
of bases. We formally proof'the case up_, 45 in Lemma 3.6, and those techniques can be di-

rectly applied to the remaining cases.

Invariance under local change of bases makes subunitarities, ux_,y (€ap), well suited to
capturing quantum information transfer. This is because we would expect any measure

of this resource to be independent of which basis the final measurement was taken in.

The subunitarities relate to the unitarity u(€4p) of the quantum channel £, through a
weighted sum. Intuitively, the total coherence of a channel can be broken up into the coher-

ence in and between the subsystems of a channel.

Theorem 3.3. The unitarity of a bipartite channel € 4p is obtained from the weighted sum of its

subunitarities:

w(Eap) = b Z UXL(EA”B)’ (3.32)

L, —1 «Q
AB X,Y€{A,B,AB} X

where dyp = dadp is the dimension of the total system and ov; = 1/(d? — 1).

Proof This simply follows from block-matrix multiplication, giving
tr[T1T] = D nm=(A.B.AB) tT [T, T sm). Therefore (see equation (3.21)) the unitarity is
u(€) = ﬁ Zn,m:(A,B,AB) tr {Tg_}an_m} . Rearranging the dimensional constants (see

equation (3.28)) completes the proof. N

A direct consequence of Theorem 3.3 is that estimation of all the non-zero subunitarities
of'a channel gives an estimation of its total unitarity. We will make use of this property when

examining channels with only a small number of non-zero subunitarities.

3.2.3 The subunitarities of product channels

Asdiscussed in Section 3.1, our primarily aim in exploring these subunitarities is to use them
to construct a measure of correlations in bipartite channels. Towards this we now show that

for a product channel £4 ® Eg, the subunitarity uap_, 45 splits up into the local unitarities,

UAB%AB((CJ) = u(gA)u(EB)

Lemma 3.1. Fora product channel, £4 @ Ep, the sub-unital block T, 4 = T ® |Yo)(Yo| where
Ta =325 1€aA(XG) XXl Similarly Ty, p = | Xo)Xo| ® Tp where Ty := ), ; |E(Y;) (Yil-
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Progf. Fromdefinition, Ty, 4, = (Xi|©(Yo| E4®€p | X;)©|Yo) = (Xi| €4 |X5) tr[€5(1/da)].
For any trace preserving channel tr[€(1/d)] = 1s0Tasa = >, ; (Xl Ea | X;) | Xa) X;] ®
|Yo)(Yo|. The proof for T, 5 follows similarly. N

Lemma 3.2. Fora product channel, E4 @ Ep, we bave Typ_ap = Ta @ Tp.

Proof. Fromdefinition, Tap_,ap = Zc-l?*fl 45 -1 (Xi|@(Yn| EaRER | X;) @ Ym) | Xi)(Xj|®

ij nm

Yo )(¥on| = S04 S5 |E4(X)) X @ |EB(Vin) ) Ya = T ® T, 0

nm

Theorem 3.4. Fora product channel, E = E4 @ Ep, we bave uap s ap(E) = u(Ea)u(Ep).

Proof. From Lemma 3.2 we can write uap ,45(E) = a4 - aptr [Tj‘ ® TJTBTA ® TB] = oy -

aptr [T;TA] tr [T;TB} — A (E)upon(E). Asu(En) = unsa(E)andu(Er) = up5(E)
for any channel this completes the proof. O

Putting this all together, we have the first key property of the correlation unitarity mea-

sure we first proposed in equation (3.7). Namely, that it vanishes for a product channel.

Corollary 3.2. The correlation unitarityu.(E) := uap_ap(E)—ua_a(E)up_p(E) ofaprod-
uct channel E4 @ Episu.(E4 @ ER) = 0.

Proof This follows directly from Theorem 3.4. N

This is a key property for a correlation measure, as it should always be zero for channel
that generates no correlations — which is a product channel.

In the following chapter, we shall make use of the above decompositions of unitarity for
our benchmarking protocols to estimate local subunitarities and the correlation unitarity.
But before discussing the protocol, we first give core properties of our correlation measure

that demonstrate its usefulness for assessing the correlation structure of a given channel.

3.3 Correlation unitarity of bipartite quantum channels

The correlation unitarity, u.(£) = uapap(E) — ua_a(E)up_p(E), has now been fully
defined in terms of its constituent subunitarities, and we now address the core properties of

this measure. The following result shows that it obeys natural conditions.

Theorem 3.5 (Properties of correlation unitarity). For any bipartite quantum channel
Eap, the correlation unitarity is bounded as u.(Eap) < 1, and is invariant under local
unitary transformations on either the input or output systems. Moreover u.(Eap) = 0 for
product channels and u.(Eap) = 1 when E4p is the SWAP channel modulo local unitary
changes of bases.
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Figure 3.1: Distribution of u. for 2—qubit unitaries. We plot the histogram of values of
ue(Usim ) for 20,000 random 2 qubit unitaries, Us,. The correlation unitarities lie between 0
and 1, and must take the value u.(€4 ® £p) = 0 for product channels, and u.(SWAP) = 1
for the SWAP channel. The value of . is invariant under local unitary changes of basis. The
upper bound for 2 qubit separable channels is u. T < 7/12, and is also shown on the plot. We
sampled using the methods of [2] and simulated using QuTip [3].

We have shown that the correlation unitarity vanishes for product channels, u.(E4 ®
&) = 0, in Corollary 3.2. Under our measure the SWAP channel generates the strongest
correlations, which follows from the fact it perfectly transfers all information between the
subsystems. Further, the correlation unitarity is invariant under local unitaries on the sub-
systems. Final rotations on the subsystems do not reduce the correlating effect of a channel,
and therefore it is pleasing that such operations do not change the value of the correlation
unitarity. Together these properties make v, a good working measure of the coherence of
correlations within a channel, and importantly within Chapter 4 we shall see it is accessible
through a randomized benchmarking protocol.

For the remaining properties to be proven, we tackle them individually with the following

lemmas.
Lemma 3.3. The correlation unitarity of a quantum channel, € g is bounded as u.(E4p) < 1.

Proof. Consider the subunitarity uap_,a5(Eap) = aaptr [TILB%ABTABﬁAB] . The matrix
Tap—ap has dimension (d4 — 1)(d% — 1) x (d% — 1)(d% — 1). Using Holder’s inequality

[123], we can bound this subunitarity as

[Tl anTasas| < Tapoaslbel Tanoanlh < (= D(@ -1)  (3.33)

where we have used in the above that the eigenvalues of T4 5, 45 have modulus at most 1
[124], and the rank of T4 _, 4 5 is at most the number of columns or rows. Therefore we must
have uap_a5(Eap) < 1. From the non-negativity of the Hilbert-Schmidt inner product,
the subunitarities w4, 4 and up_, p are strictly non-negative. Putting this together, we have

Ue = UABAB — UAsA - U—B < Uapap < 1, which completes the proof. ]
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Lemma 3.4. The correlation unitarity of the SWAP channel takes a value of u.(SWAP) = 1

Progf. From equation (3.25) we have SWAP = 3 |Y, ® X, (X, ®Y,,|. This makes the
unital block 7" a matrix with 1 along the minor diagonal and zero everywhere else. We can
then simply read off that uap . ap = uap = up_4 = 1and all other subunitarities are

zero. The correlation unitarity is then u. = uap_ap — U4 - upp = 1. O

Lemma 3.5. Any channel € withuap ap(E) = uap(E) = up_a(E) = 1is equivalent to
the SWAP channel up to local unitaries.

Proof. From Theorem 3.3 under the given conditions the channel is unitary, and all other
subunitarities are zero. We can use that us_,5(E) = uaa(SWAP o £) = 1 and similarly
upp(SWAP o £) = 1. With fixed system dimensions the unitarity equals 1 only for a
unitary, therefore we deduce that SWAP o £ = Uy ® Up, e.g. a product channel of local
unitaries on each subsystem. This implies that £ = SWAP o U, ® Up, since SWAP? =
id. O

Lemma 3.6. The correlation unitarity u.(E) of any quantum channel € is invariant under local

unitaries.

Proof Firstly, the local subunitarities of any channel w4, 4(€) & up_, g(€) are invariant un-
derlocal unitaries from Corollary 3.1. Therefore it remains to prove that u 4 5 is invariant. We
can write the Liouville representation of any product unitary in the our basis asl; s ®U; p =
(1® 0;4) ® (16 O, p) where O; x are unitary matrices of dimension (d% — 1) X (d% — 1)
obeying O; x (’)Z.T, v = lp,. Product channels have the additional property that Typ, =
Tay;, @ Tpy, = Oia ® O; . Wedefinea channel &' = Uy 4 @ Uy p 0 € 0 Us g @ Us p:
namely, the channel with product unitaries before and after. The product unitaries will have
block diagonal unital blocks which can be seen from considering their only non-zero subuni-
tarities are ua_, 4, U, & uap_ap. Because of this simple structure the sub-unital block
Tapof&is

Tape = Tapu,TapeTapu, = O1,4 @ O18Tap 024 @ Og . (3.34)

We can now calculate the required subunitarity uag(E’) = asp tr [T 21 pelaB, g/} . From the

cyclical properties of the trace,

’LLAB((S'/) = qaptr |:T1£B,(€TAB7€O§7A & O;BO?,A &® 0273], ( )
3.35
= qaptr [T,ZB,ETABf] = UAB<5>~

This implies u. is invariant under local unitarities. ]
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3.3.1 Witness of non-separability

Under our measure, the SWAP channel is the farthest from being a product channel, which
is consistent with the fact that it perfectly transfers quantum information from one subsys-
tem to the other. However, we can also consider intermediate regimes where no quantum
information is transferred, but the channel cannot be written in a product form. This is when

the bipartite channel is separable, namely it can be written as

Eap = Zpk:gk ® Fi, (3.36)
A

for some probability distribution (py ), with local channels £, and F;, on A and B respectively.
Channels that cannot be written in this form are therefore non-separable channels.

The class of separable channels are also known as Local Operations with Shared Ran-
domness (LOSR) [93, 94]. The above definition generalizes that of separable states, and
defines a convex subset of channels. It turns out that the correlation unitarity is strictly

bounded over separable channels as the following establishes.

Theorem 3.6 (Correlation unitarity is a witness of non-separability). Given a bipartite
quantum system AB with subsystems A and B of dimensions d 4 and dp respectively, for a

separable quantum channel, € 4 g, we bave that

17
uc(Eap) < C(da,dp) < 71 < 1, (3.37)
where . .
da,dp) = 1 l-— - 3.38
C(da,dg) = Ba(1+ Bg)( min(di,d%)) + 1 (3.38)
where 5; = ﬁ ford; =2o0rf; = d?dil otherawise.

The proof of this bound is non-trivial, and we will provide it directly after this discussion.
This bound is not tight in general, and we provide sharper bounds in terms of the subsystem
dimensions. Theds = dg = 3 qutrit case provides the upper bound in C(d 4, dp) and could
be improved, albeit via a non-trivial analysis of qutrit channels.

The consequence of the result is that, if the correlation unitarity can be efficiently esti-
mated, then obtaining values above the upper bound witnesses non-separability in the chan-

nel. This provides a practical way to certify quantum information transfer between A and B.

The correlation unitarity, u.(E4p), is @ witness of non-separability as it has a non-trivial
value C(d 4, dp) which cannot be exceeded if the channel £ 45 is separable. Therefore, for
an unknown channel if we measure u.(E45) > C(d4, dp), we can guarantee that ‘quan-
tum’ correlations have occurred in the channel, rather than purely ‘classical’ correlating
effects.
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The bound also relates to recent work on entanglement theory, where the operations
most studied are the set of Local Operations and Classical Communication (LOCC). Due
to the limitations of LOCC channels when it comes to analysing Bell non-locality [91], it has
been argued that LOSR channels provide a more sensible set. However, as LOSR channels
are precisely the set of separable channels then any violation of the bound in Theorem 3.6

implies the consumption of a resource state with respect to LOSR.

Proof of correlation unitarity as a witness of non-separability

The proof of the upper bound on correlation unitarity for separable channels turns out to be
non-trivial, and relies on bounds on the inner product of T'-matrices, the unital portion of

quantum channels. We first establish basic ingredients we need for the analysis.

Definition 3.4. For any quantum channel, £ : B(Hx) — B(Hy ), the Choi-Jamiotkowski state
J (E) given by
J(E) =& @id(y). (3.39)

for the input system with dimension dx, id : B(Hx) — B(Hx) is the identity channel, and the
state ) = 1)1 is a generalized Bell state, |1)) := \/% SIX i) @ |i) with computational basis
states {|i) } [32, 61].

The Choi-Jamiolkowski state is clearly a quantum state, as it is simply the output from a
bipartite quantum channel, £ ® id, acting on a valid input state. However the Choi state is
also a complete representation of the channel, £, as it encodes all the information about how
the channel acts. We can see this by explicitly substituting in the generalized Bell state, 1).

For any channel, £, we then have

T(E) = 5> € @ id(lifil @ ki),
;’i (3.40)
= LS eqinin o liil
dx “—

The set {|7)(j]} forms a complete basis for the input system. The Choi state tracks how the
channel £ acts on each element of this basis, using the second subsystem as an index. There-
fore the Choi state, J (&), captures all possible information about the channel, £.

The purity of the Choi state can be related to the unitarity, however here we use it for the
more abstract goal of bounding the T'-matrices of channels. The following lemma relates

the Choi state to our favourite basis.
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Lemma 3.7. For any channel £ : B(Hx) — B(Hy) the Choi-Jamiotkowski state can be ex-

pressed in the X, basis as

Zs ) ® X, (3.41)
oy

where X, = (X = 1/V/d, X;) is a completely orthonormal basis for H x.

Proof. We have J(€) := E®id(¢) = E® id(i |14, )14y |), but one can directly show
Lay (Lax| = >, X, ® X;;. This follows from tr[ X} ® X[ [14)(1a|] = <1’X:EX;> =
tr[X]X ] and therefore [14)(14] = Do tr [ X/ X)X, ®X,. However doutr [(X[X:] X, =
Do tr [ X[ X)X, = X sincetr[MT] = tr[M] for any matrix M, and the result follows. [J

We now have the following estimates for the magnitude of the overlap between unital
blocks of arbitrary channels. We will then relate this to the unitarity of mixtures of channels

which appear when considering separable channels.

Lemma 3.8. Given two channels £, and E; with unital blocks in the Liouville representation Ty

and Ty, for the Hilbert-Schmidt inner product between them we bave
—d<{(T\,Ty) <d*>—1, (3.42)
where d is the dimension of the Hilbert space.

We shall use this lemma to establish the upper bound on correlation unitarity for separa-
ble channels. However, we conjecture a stronger result that for any two quantum channels
&1, E that (11, Ty) > —1. This, for example implies the bound for optimal inversion of the
coherence vector of a quantum state [125, 126] as a special case. The analyse to establish this
sharper bound appears to be non-trivial. Since it is not essential to our work we leave it as
an open problem. We do, however, establish this lower beyond for a subset of channels (see

Lemma 3.9 below).

Proof. In the Choi representation we have
251 )@ X, and J(&) = 252 )© X, (3.43)
with X, = (Xy = 1/V/d, X;). Therefore we have that
tr [T (ENTT (E:)] = Ztr [E1(X,)TE(X,)] e[ XT X7 (3.44)

Since Choi matrices are positive semldeﬁmte, then so is the above quantity. Furthermore,
tr [XgX:] = 0, and so

[T (€)' T(&)] = 5 Ztr [£1(X,)1E(X,)] >0, (3.45)
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and therefore we have

d2

Z (E1(X,)1E62(X,)) = Ztl’[gl (Xu)ng(Xu)} > 0.

”w

Now we look at (T}, T5) = tr [TfTQ] and expand with respect to same basis.

1.1 = Y0 KT X = 3 (606) 6 (X))
= 2_ (EX) &%) — (E:(X0) (X)) -

Then it follows that
(11, Tz) = — (&1(Xo0)|E2(Xo)) -
However,
| (€1(X0)|E2(X0)) I* < (E1(X0)|E1(Xo)) (E2(Xo)|E2(Xo)) -
and since (&; (%) ‘8,7 (%)> < 1, we deduce that

1 1
S| —= — <d,
I 1(\/&)'82 (ﬁ)> <
and so we obtain the lower bound of
—d < (T, Ty).

The upper bound follows directly from Holder’s inequality

(11, To) < [|T1]lol|T2ll1 < (d* = 1)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

where we have used in the above that the eigenvalues of 77 and 75 have modulus at most 1,

and their rank is at most d> — 1.

O]

Having established bounds on the inner product of two 7'-matrices for any two arbitrary

channels, we now prove an improved bound for two subsets of quantum channels. This will

increase the sharpness of our bound for separable channels with lower dimensions.

Lemma 3.9. Let & and &, be two quantum channels. If we bave that either
1. One of the channels is unital,
2. The channels are arbitrary d = 2 qubit channels,

then it follows that —1 < (T, Ty) < d* — 1.
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The proof of this is as follows.

Proof 1f one of the channels, &; say, is unital then
(T1, T3) > — (&1(Xo)|E2(Xo)) = — (Xo|€2(X0)) = — (Xo|Xo) = —1, (3.53)

where we use the orthonormality (Xo|X;) foralli = 1,...d? — 1 and the fact that if & is
unital then & (X)) = X,.
Now suppose that both &£ and &, are qubit channels. Given any qubit channel &, the

corresponding Choi state take the form

1
j(g):Z(1+X‘U®]].+Zﬂjgi®aj), (3.54)
4,3
where {0;} are the Pauli matrices. As shown in [127] it is possible to perform local unitary
changes U, ® Ug of basis so that

U @ Us T (E)] = i(ﬂ tx-o@l+ Y toi®a), (3.55)
and so the channel is described, modulo local choices of basis, by the two vectors x and
t = (t1,t9,t3). The link between T}; and tis that T = Oadiag(ty, t2, t3)O% for orthog-
onal matrices O 4, Op corresponding to the local unitary rotations. It can be shown that if
J (&) is a valid quantum state (and so £ a valid quantum channel) the vector x lies in the
Bloch sphere, and t lies in a particular tetrahedron 7" in R®. Moreover, if x = 0 then every
t € 7T corresponds to a valid quantum state. Since x corresponds to the non-unitality of
the quantum channel &, this implies that if £ is a quantum channel with non-unitality vector
x and T'-matrix 7T then there exists another quantum channel £, with the same 7'—-matrix,
but which is unital. This implies that for the inner product (77, T5) we can without loss of
generality assume that one channel is unital, and thus from the previous part of our proof
we obtain —1 < (T3,75). The upper bound for (7}, T3) is unchanged from the previous

lemma. O]

The final component we need before tackling the general bound is a simple form for the

correlation unitarity of separable channels.

Lemma 3.10. For a bipartite separable channel € ==Y, p;€a; @ Ep,; the correlation unitarity

uc(E) can be decomposed as

ue(€) = anan(d_pip; (Th, T4) (Th, Th) =Y pipi (T, T4) Y pmpn (T, T5)) (3.56)
1,5 ©,] m,n

where T is the unital block in the Liouville representation of €4 ; and T} is the unital block of
gB,i-
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Proof. From definition the correlation unitarity is

ue(E) = anap((Tap—ap, Tap—sap) — (Tasa, Tasa) (Tp—p, Ts-5)). (3.57)

Since £ is separable, in the Liouville representation linearity implies

€(p)) =

Zpiﬁ'A,i ® 5B,i(P)> = pi€ai®Epsilp) =E|p) (3.58)

therefore it follows that the relevant subunital blocks of the channel are simply the weighted

sum of the subunital blocks of each product channel:
Tapap =Y pTa®@Th, Tasa=> pTh Tosp= > piTh (3.59)

where T7 is the unital block in the Liouville representation of €4 ; and T is the unital block

in the Liouville representation of 5 ;. Thus the correlation unitarity is

uC(gAB) = OZAO-/B(Zpipj <le ® Tg? T,Zl ® Té> - Zpipj <TIZ7 T/]l> mepn <Tglv Tg))?
1,J 7] m,n
= OéACYB(Zpin <Tib le> <Té7 T]]5’> - Zpipj <T217 Til> mepn <T]gna Tg>)
1,7 %,] m,n
(3.60)
Which completes the proof. N

With the preceding ingredients, and particularly with the compact form given above for
the correlation unitarity of separable channels, we are ready to prove the general bound. We
would expect that such a bound would exist, because the correlation unitarity quantifies the
strength of the correlations in the channel in terms of quantum information. As separable
channels can only produce ‘classical’ correlations they should not saturate the value of the

correlation unitarity as the maximally correlating SWA P channel does.

The following proofis perhaps the most difficult to follow in this work, as we have stripped
away all physics to deal with a probability distribution {p; } and the magnitude of the inner
products t;; = (T%,T%) and s;; = (T}, T%). The correlation unitarity of a separable

channel, u., is then given by two terms

ue = f({pi}, {tis}, {si53) = F({pi} {ti ) F { i} {5453) (3.61)

for three non-negative functions f(...) with 0 < f(...) < 1, (i.e. the subunitarities). In
order to upper bound u, overall we need to maximize the first term while minimizing the
second.

However, the way the terms interact is subtle. Naively maximizing the first term also
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maximizes the second, and vice versa for minimizing the second term. Therefore we have
to find a way to bound the first term using the second, and then perform an overall maxi-
mization.

We proceed by separating out the contributions to f({p;}, {t:;}, {si;}) from when ¢;; is
positive (t;; ort. ;;) and negative ({_ ;;). We then upper bound each of these contributions
interms of just f({p;}, {t;;}), the summation }, p? for the probability distribution {p;},
and some dimensional factors. This essentially gives us a total upper bound for u. in terms
of f({pi}, {ti;}), f{{pi}, {si;}) and {p;}. This is alot easier to work with and we find it
leads to a non-trivial bound on u.. in terms of the dimensions of the subsystems. Finally we
explicitly calculate the value of the upper bound for difterent dimensions to find an overall

numerical upper bound.

Proof. (Of Theorem 3.6) From Lemma 3.10,

ue(Eap) = aaas(Y_ pip; (Th, T4) (T, TL) = > pipi (Ta, T3) D pmpn (T, Th))
1,J 1,5 m,n
(3.62)
where T7 is the unital block in the Liouville representation of €4 ; and T is the unital block

of Ep ;. To simplify notation we label the normalized inner products
tij = <T,Z;17T,i> and s;; := ap <T2,Té>, (3.63)
and define A := 37 pipjtijand B := 1" pip;si;. Inthis notation the correlation unitarity

ij
of the separable channel is just

UC(SAB) == Zpipjtijsij — AB. (364)
ij

From Lemma 3.8 the range of any particular ¢,; is
—Ba<t; <1 (3.65)

where 54 = daa 4 applies to all channels and 54 = a4 holds for the case of qubit channels or
if one of the channels is unital. Additionally from the non-negativity of the Hilbert Schmidt
inner product ¢; = t;; > 0. Similarly for the B subsystem: —fp < s;; < lands; = s;; > 0.

We now bound the first term in equation (3.64) in relation to the second. Out of the r?
possible terms in the first term there are r terms that are equal to p?;s; (namely when i = j).
Now suppose that out of the 7? — r remaining terms there are k terms where t;; is negative:
t—ms (m = {0,1,....,k — 1,k}), and r* — (r + k) other terms where ¢;; is positive: ¢ ,,
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(n=1{0,1,...,7* = (r+k)— 1,7 — (r + k) }). We can then write the correlation unitarity as

gAB szt S; + Z plpjt’bj'slj B,
i#j
r2—r—k
= szt Si + Z plpjt— mSm + Z pzpjt+ nSn — AB, (366)
m=(ij),i#j n=(ij),i#j
r k r2—r—k
= Zplztzsz - Z pipj|tf,m’5m + Z pipjtJr,nSn — AB.
i m=(i7),i#j n=(if),i#j

We now bound the summation of positive and negative ¢, terms. Asallt_ ,,, < 0then since

|t_m| < Ba we can bound the summation of negative terms as

k 7‘ T T
> pipjltoml < Z Bapip; <> Bapip; = Ba(1 = p}) (3.67)
m=(ij),i#j m=(i5),i#£j i#] i

where we have maximized k to include all 7* — r possible terms, and used the simple relation
that Y7 p? + Z:; “"pipj = 1. From definition, A = > pt; + Z:;;r pip;tij therefore the

whole summation of cross terms can be written as

r2—r r2—r—k k T
Z pzp] ij — Z pzp]t+ n Z pipj’tf,m’ =A- prtl (368)
i#] n=(15),i#£j m=(ij),i#] i

From this we can bound the summation of the positive terms using the previous bound in

equation (3.67):

r2—r—k
Z plp]t—i- n — A Zp?t + Z plp]lt— m|
n—(wj AT m=(ij),i#] (3.69)
Y. pptia <A prt + Ba( 1—2192
n=(ij),i#£j

Since botht, , > O0and |t_,,| > 0andall elements — min(f5p, /5;5;) < Siz; < \/Si5; < 1,

then we can bound the summation containing ¢ ,,s,, elements as

r2—r—k r2—r—k
S pipitinsa <Y Pipjlan < A— prt +Ba(l - Z P (3.70)
n=(i5),i#£j n=(i7),i#j

and the summation containing t_ s, elements (assuming ,/s;s; > (p)

k k T
- Z pipjlt—m|sm < B Z pipjlt—m| < B(Ba(l — pr)) (3.71)
m=(i7).i] m=(i7).i] i
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Putting all this together we get a bound on the correlation unitarity of

ue(Eap) < Zp?tisi + Br(Ba(l - Zp?)) +A - Zp?ti +Ba(1=) p}) -

<Zpt i — 1)+ Ba(1+ Ba)( 1—sz )+ A(1 — B).
(3.72)

With no loss of generality we can set A < B as A and B are interchangeable. Therefore
we have that A(1 — B) < B(1 — B). As0 < B < 1, this is maximized when B = 1/2.
Additionally as s; < 1thens; — 1 < 0and the whole first term is negative. Therefore

- 1
ue(Eap) < Ba(l+Bp)(1 =D _pi) + 1 (3.73)
Further from the Cauchy-Schwartz inequality >; p? > 1 > W. Putting this to-
4B
gether we have:
(Eap) < Ba(l+ Br)(1 ! )+1 3.74
UelCAB) = PA B min(d4,d%)” 4 (3.74)

where we have 8; =

find that

; = (112_171 for d; = 2. Firstly, fords = dp = 2 we

& 1.1

1
E-n@E-n' & i3 (3.75)

Ue <6AB) S

We now eliminate the two other cases with a qubit subsystem. Firstly, (d4 = 2,dg > 2)

yields
1 d 1. 1
wel€an) < (14 Z= - Z)+ 4,
B A (3.76)

dp 3 1
2 -1y

<1(1+
-3

which is maximised for dg = 3 givingu.(E4p) < 17/32 =~ 0.53. Secondly, (d4 > 2,dp = 2)
yields

& 1 1 — — —
uelbap) < g =)+ g
d 1.3 1
< A1+ )0+,
d4 -1 3747 4
4 4 3 1 (3.77)
<z P+
da 1
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which is maximised for d4 = 3 giving u.(Eap) < 5/8 ~ 0.63.
Now we consider the two broader cases. Firstly, (d4, dg > 2withdp > d 4) whichyields

d d 1
te(€ap) € H (1 52)(1 = ) + 1.
AT B A
(3.78)
<Ly Sty
T da d%—l 4’

which is maximised fordy = dp = 3 givingu.(Eap) < 17/24(~ 0.71). Secondly, (d4,dp >
2 with ds > dp) which yields

da

< dp 1
& —1

1
pr o)1 - @) + - (3.79)

uc<gAB) 47

(1+

which is minimised for d4 = 4,dp = 3 giving u.(E45) < 311/540 ~ 0.58. This completes
the proof. N

We have established the key property that was given in Theorem 3.6 — namely that our
correlation measure is a witness of non-separability in quantum channels. We will test to
what degree this strictly non-classical effect can be estimated on quantum devices in Chapter

4. However first we explore further properties of correlation unitarity.

3.3.2 Properties of correlation and sub-unitarity for Pauli channels

It is straightforward to compute the correlation unitarity, u., for a range of channels. In this
section we consider how subunitarities can be decomposed for Pauli channels, and how this
leads to a simple form for the correlation unitarity of such channels. This decomposition will
be useful when we explore estimation techniques, in the following chapter, as recent research
suggests we can cast device noise as a Pauli channel [107].

Throughout this chapter, we have used an orthonormal operator basis, X, = (X, =
1/v/da, X;), for a d s dimensional quantum system. This basis can be fixed as the Pauli op-
erators, with the additional constraint that X = X,. For a single qubit, these normalized
Pauli operators are given by P, = (1/v/2,X/V2,Y /V/2,Z//2) for the usual Pauli ma-
trices obeying X |[0) = |1), X |1) = [0), Y |0) = —i|1), Y |1) = i|0), Z|0) = |0) and
Z|1) = —|1). A Paulichannel € : B(H ) — B(H 4) is then given by

E(p) = puPupP, (3.80)
I

with the condition ) _ , p, = d . This suggests a simple form for the unital block T" of a Pauli
channel, and 7' is in fact diagonal. We now show this leads to a pleasing expression for the

unitarity.
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Lemma 3.11. Let E(p) = >_, pubupP, be a Pauli channel with ), p, = da acting on a
system of dimension d 4, where the Pauli operators, P, = (Py = 1/+/d 4, P;), are normalized so
that tr[P,P,| = 0,,. The unitarity of € is given by

u(€) = Wl—l) ((%}i) — 1) . (3.81)

Proof. From definition (P,|E|P,) = (P,|E(P,)) = tr[P,E(F,)]. Note that (Py|E|Py) =
25 pi = 1,and (P|E|P;) = (P;|E|Py) = 0 from trace preservation. We can then check
directly that

tr[P;E(Py)] ZpﬂtrPPPkP]

Zm 1Pt [P Py (3.82)

_ n(Py,Py)
__Jk§:pﬂ o)

Which gives a diagonal Liouville representation in the Pauli basis. It remains to prove the

form of the unitarity. From definition, the unitarity is determined in terms ofits unital block

Te as
1
W) = ——tr[TiT] (3.83)
1 1
=721 > (PP = ﬁ(Z(PMfJIPH)Q —1). (3.84)
A J#0 A 1

The orthogonality relation } (- )”(P wPu) (—1)1PPu) = d% 6, ensures that

> (Pu.EIPL)? -z Zpupw )1tPeFu) (— 1) Fu) (3.85)

2 sV

=> (3.86)

1 2
u(€) = @D ((Z pl,) - 1) , (3.87)

which completes the proof. ]

Therefore, we have

We now examine the subunitarities of bipartite Pauli channels. For simplicity, we shall
consider bipartite systems formed of A and B each of n qubits, so they have dimensions d 4 =

dp = d = 2". A bipartite Pauli channel on two n-qubit systems will take the following form

E(paB) = Zpa,ﬁpa ® Pgpap Po ® Pg (3.88)
a,B
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and trace preserving condition requires ) _ , 5 pa,s = 4". The local channel at A is given by

Expn) : = trp 0 E(pa ®1/d) (3.89)
= Z QQ,OPapAPa (390)

where the go 0 :== 2> 5 Da,s- Similarly at B:

Eplpp) i =trao&(1/d® pp) (3.91)
=Y dosPspsPs (3.92)

where the go 5 := 5> Pa,s. Note that both local channels are also Pauli channels and there-
fore inherit the properties of the previous lemma.
The following result links the total unitarity of this bipartite Pauli channel to its subuni-

tarities and therefore the correlation unitarity.

Lemma 3.12. Consider a bipartite Pauli channel, E(pap) = Za’ﬁ Da.sPa ® P pap P ® Pg,
with equal subsystem dimensions, d = d = dp. We then bave that

1
wasa(€) = (Z 0o 1) , (3.93)

up5(€) = ﬁ (Z a5 — 1) : (3.94)
B

1
d?—1

(d* + Du(E) —uasa(€) —up_p(E)). (3.95)

uapap(€) =

Proof The relations for uy_, 4 and up_, 5 follow directly from Lemma 3.11 with Theorem
3.2. The relation for usp_, a5 follows from the fact that the Liouville representation of £ is

diagonal sothat Ty = Ty, 4 ® Tap—ap ® Ts—p and thus

tr[TiTe] =te[Th_ Tasa] + tr[Th_ s Ts 5] + tr[Th 5 spTan—aB)- (3.96)

From definition, u(&) = (d2)+71tr[Tng], so we have

u(€) = ﬁ(tr[le_}ATA_)A] + tr[T;%BTB_}B] + tr[TleB—mlBTAB%AB]);
= —d41_ ] ((d? = D) (uassa(E) + upp(&)) + (B — 1) (uap-an(E))),  (3.97)

1

= 7 (ana(@) +unop(€)) + (d* = 1)(uap-ag(£))).

Rearranging the dimensional factors completes the proof. [
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Corollary 3.3. Consider a bipartite Pauli channel, E(pap) = ), 3Pa,sPa ® Ps pap Po @ Pg,

with equal subsystem dimensions, d = da = dp. The correlation unitarity is given by

1
uc(€) = @ -1y (Zpi,ﬁ - (Z %) Z qg,,é’) : (3.98)
. a 3

Proof Directly from above. N

Lemma 3.12 proves that the unitarity of a Pauli channel is a weighted sum of three sub-
unitarities. Further, these are exactly the subunitarities we require for correlation unitar-
ity. This suggests that if we have only partial information about the subunitarities of a Pauli
channel, then the unitarity may provide additional information about the subunitarities.

Let us make this precise with an example. For a Pauli channel, £, assume we have access
to: the sum of the subunitarities, X = >7,_ , p 1p) %i~i(€), and the total unitarity, u(&).

With just this information, we can identify up—,45(€) using Lemma 3.12 as

1
)

However this is more than a mathematical curiosity. As we will find in Chapter 4, this sce-

Uap—ap(E) (d* + Du(&) — X). (3.99)

nario appears within the context of benchmarking Pauli channels on quantum devices, and

allows us to estimate the correlation unitarity with increased robustness to SPAM errors.

For Pauli channels, &, there are only three non-zero subunitarities: uag , 45(E), ua_a(E)
and up_,g(&). Further, we can write the total unitarity, u(£), as a weighted sum of these

terms. This will be useful when we consider benchmarking unknown noise channels.

3.3.3 Further interpretations of the correlation unitarity

There are other families of quantum channels for which the correlation unitarity, u.., can be

decomposed. For example, consider the channel
Eap =Y il @ Vi, (3.100)
k

2 2
where {U; }?;‘1 and {V; }jﬁl arelocal unitary error bases [128] on Aand B respectively, namely
unitaries on each subsystem that also form an orthonormal basis with respect to the Hilbert-

Schmidt inner product. For this channel, u.(€45) then takes the form
u(Eap) =Y i — O _pi)* (3.101)
k k

This quantity is maximized for p; = py = 1/2. Therefore for any €45 of the form given
in equation (3.100) we have u.(£45) < 1/4. This bound is perhaps not surprising given

Theorem 3.6 as the channel is separable.
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Further insight into the correlation unitarity can be obtained by formulating it in terms
of two-point correlation measures. We define the expectation of an observable O on a state p
as (0), := tr[O"p]. Now suppose we have local observables O 4 and O, for the subsystems
Aand B respectively. For any bipartite quantum channel, £, and bipartite state, 1) 45, we can

define the following correlation function

Fo,,05(E 0ap) = {04 @ 0B)enwam)|” — (O eawn)*{OB) eatwm |’ (3.102)

where the channels £4 and Ep are local channels on A respectively B defined in Definition
3.1 and the input states 14 and ¢ are the marginals of {4 5.

The correlation function above becomes related to the covariance of classical random
variables when considering classical states embedded in a quantum system. We define the
state pap = ), , P(x,y)|x)|y)(z|(y| for [z}, |y) computational basis states that diagonal-
ize the hermitian operators O4 and Op and p(x,y) is a joint probability distribution with

marginals p(z) and p(y). Then correlation function is

FOAOB (id> /)AB) :‘<OA ® OB>PAB’2 - |<OA>PA’2‘<OB>PB|27
:(<OA ® OB>PAB - <OA>pA <OB>PB)<<OA ® OB>PAB + <OA>PA <OB>PB)

=cov(04,08)((0O4 ® O0B) s +(04)p,{0B) g )-
(3.103)

where cov(O4,0p) = (04 ® Op) . — (Oa),,(OB),; and matches the covariance of clas-
sical random variables X, Y.
The correlation unitarity of any bipartite quantum channel, £, can be expressed using

this correlation function as

uc(g> = O4B dAB Z FPZ‘,P]- (57 wm,n) (3104)

Z?J7m7n

where P, are the orthonormal traceless Pauli operators on each subsystem, and where ¢,,, ,, =

P’#% is a “traceless state”, that can be statistically prepared via ¢, , = %(mﬁmm — UV mn)
or the two related quantum states ¥ ,,,, = —>=—2=—=2"n_ We prove this relation in Ap-
for the t lated quantum stat . PEMEREE - We prove this relat Ap

pendix B.6. This form for the correlation unitarity gives some intuition for how the Liouville

representation a channel can be related to Pauli states and measurements.

3.4 Conclusions

We have introduced subunitarities and shown they allow the construction of a correlation
measure which is a witness of non-separability in bipartite channels. Overall, the correlation
unitarity amounts to a working notion of correlation in a bipartite quantum channel, and we

do not delve any further into its theoretical properties. In Appendix B.5, we also compare
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u.(E4p) to a norm measure of correlation. While norm-based measures are mathematically
more natural, our aim is to connect to benchmarking protocols, and so ultimately the utility
of this measure should be judged by how useful it is in practice. We find that subunitarities

arise very naturally in benchmarking protocols.



Estimation of coherent correlations
and non-separability via
benchmarking protocols

And though our separation, it pierced me to the heart,

She still lives inside of me, we’ve never been apart.

If You See Her, Say Hello
Bob Dylan

In the previous chapter we developed a collection of tools, based around unitarity, to ad-
dress subsystem features of a quantum channel. The introduction of subunitarities and the
correlation unitarity allow us to quantify coherence between subsystems of a bipartite quan-
tum channel in a simple and direct manner. We now turn to the question of how such quan-
tities may be estimated in practice in a protocol that is both efficient in the number of opera-
tions required and robust against SPAM errors.

As these quantities are generalizations of the unitarity — which can be efficiently esti-
mated through a benchmarking protocol — it turns out similar methods work for subunitar-
ities. However some complications do arise as we shall discuss.

This chapteris structured as follows. Section 4.1 is anintroduction to randomized bench-
marking where we give an overview of some key results from the literature. Then in Section
4.2 we summarize the main result of [57] by mathematically deriving how the unitarity of’
noise appears within a randomized benchmarking protocol. The remainder of the chapter is

our original content. In Section 4.3 we extend the unitarity protocol to subsystems and show

75
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that this connects with the subunitarities we defined in Chapter 3. However the estimation
of individual subunitarities and our correlation measure require additional steps which we
describe in Section 4.4. Finally we show these methods give independent information be-

yond existing SPAM robust benchmarking methods.

4.1 Randomized Benchmarking Protocols

The certification of quantum devices is a fundamental problem of quantum technologies,
such as verifying that a physical device is actually performing with a sufficiently high fidelity.
In the context of quantum computing it is desirable to provide a greater abstraction from
the underlying physical implementation and talk of benchmarking a logical gateset I' :=
{Uy,Us, . .. ,U,} of target unitary gates. Using some meaningful quantity, we then wish to
measure how ‘far’ the set of physical gates T := {Uy, Uy, . . ., U, } are from idealised set '
The worst-case error rates are given by the set of diamond norm distances, {|[U; — ;]| },
which are the relevant physical parameters for the fault tolerance theorem [38, 42]. For two
quantum channels £ and F from a system with dimension dx to a system with dimension

dy, diamond norm distance between the channels is given by
1€ = Flfo = mj\XH5®’idx(p)—J:®idx(p)Hl (4.1)

where idyx is the identity channel with dimension dx, the state p has dimension d%, and
where || M||; := tr[ MtM ] is the matrix 1-norm for any matrix M.

The diamond norm distance can be directly linked to the maximal probability of distin-
guishing two known quantum channels with a single measurement, and its calculation can
be cast as a semi-define programme [37]. However, it is not obvious [43] how to estimate the
set {||U; — U], } directly; or to directly measure the diamond norm distance between two
quantum channels of interest. Additionally, estimating each value for the complete gateset
of a device will clearly scale very poorly with system size.

To benchmark errors we must therefore consider weaker measures. One such measure is
the average fidelity between the idealised unitaries and physical unitaries across the gateset.
The average gate infidelity, given in equation (1.4), provides bounds on the diamond dis-
tance of the average noise associated with the gateset, of the form shown in equation (1.5).
The problem with this route is that the bounds cannot be tightened, and for € corresponding
to a non-Pauli error there is a weak link between r(€) and the diamond norm [43, 48, 49].

Randomized benchmarking techniques can be used to estimate r(€) and circumvent the
exponential complexity of tomography and the unavoidable SPAM errors. The core com-

ponents of a randomized benchmarking protocol generally involves the noisy preparation of

'Tn this chapter we use the notation () to denote the noisy real-world implementation of any idealised
operator ().
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some initial quantum state p, which is then subject to a number k of physical gates I{; that
approximate target unitaries i; € I, before a final imperfect measurement is performed for
some binary outcome measurement { M, 1 — M }. Ifthe gates applied correspond to a (noisy)
unitary 2-design, such as I" being the Clifford group, then it can be shown that [6] the result-
ing statistics are exponentially decreasing in k, namely E[m(k)] = ¢; + co\¥, for constants
¢1 and ¢, that contain the state preparation and measurement details. The decay constant A

is then a measure of the noisiness of the physical gateset I' = {24;} employed.

In the simplified model of gate-independent noise, in which each noisy gate can be de-
composed as U, = & o U, for some & that is independent of i, then it can be shown that
A x 1 —r(E), where r(€) is the average gate infidelity of the noise channel £. In the more
realistic case of gate-dependent noise the relationship between the decay parameter A and the
physics of the set I is subtle, due to gauge degrees of freedom in the representation of the
physical components [45]. However, despite these details the decay parameter can still be

related to the physical gateset and essentially corresponds to the average gateset infidelity
[44].

By averaging over lots of random sequences of gates, an RB scheme simplifies the associ-
ated noise channel, £, down to a single parameter, (£). This can be readily estimated, as
if we increase the length of the sequence, then (&) can be related to the decay in the value

of some observable. This isolates estimation of the gateset noise, £, from SPAM errors.

Atamore abstract level, a randomized benchmarking scheme admits a compact descrip-
tion in terms of convolutions of the channels 24; with respect to the Clifford group [130]. The
decay law is then viewed in a Fourier-transformed basis where the channel compositions be-
come matrix multiplication over different irreps [7]. The resultant protocol then provides a
benchmark for the degree to which the physically realized channels {/;} form an approxi-
mate representation of the Clifford group [131, 132].

In the next section we expand on the components of the benchmarking scheme for the

case of unitarity benchmarking.

4.2 Unitary 2-designs & Unitarity Benchmarking Protocols

In this section, we now provide an outline of how the unitarity of a quantum channel can be
estimated in a benchmarking protocol, as described in [57]. We relegate proofs to the end of

the section.

Recall that by U we denote the Liouville representation of a unitary channel 4(X) =
UXUT, and therefore it takes the explicit form, U := U ® U*. A probability measure y over
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the set of unitaries U(d) is called a unitary 2-design if we have that

Janw)u = [y (4.2)

where fip1,,, is the Haar measure over the group U(d). In practice we are interested in uni-
tary 2-designs which are finite, discrete distributions of unitaries. In particular the uniform
distribution over the Clifford group C of unitaries is a 2-design (in fact it is a 3-design [133]),

and therefore .

ﬁ Zu®2 - /dluHaar(U) u®2 =P (43)

vec
where |C| is the number of elements in the Clifford group and we denote the resultant oper-

ator by P. For the space of bounded operators B(H) on the Hilbert space H, this operator
acts on the vectorized form of B(H ® H). It can be shown (see Lemma 4.1) that P is the
projector onto the subspace

S = span{|1%?) | [F)}, (4.4)
where IF is the unitary that transposes vectors in the two subsystems, |¢1) ® |p2) — |d2) @
|¢1). We now define an orthonormal operator basis X, = (X, = 1/v/d, X;) for B(H) where
dis the dimension of the system, in a same way as in Chapter 3. Using this basis, in vectorized

form, we can (see Lemma 4.2) decompose the projector P in the following way

1

d?-1
P = [Xo)XXo| © | Xo)Xo| + Z5— > IXX;| @ ‘X;’><X;" :
ij

(4.5)
=0 [0X0[ + 1)1,
where {|0) , |1)} forms an orthonormal basis of the subspace S.
Foraquantum channel, £ : B(H) — B(H), the projector P can be directly related to the
unitarity. From Theorem 4.1, as
)
V2 —1

where z(£) is a measure of non-unitality of the channel such that z(€) = 0ifand only if € is

PE*P = [0)X0] + u(€) [1)1] + [1X0] (4.6)

unital, meaning that £(1) = 1.
We have the projector, P, induced by averaging over two copies of the unitary group.

When applied PE®?P this twirls any channel £ into a simpler form based purely on the

values of the two parameters: unitarity, u(€) and non-unitality, z(&).

Further, if we consider placing this construction to a power, say k, we find that the uni-

tarity scales with k while the other factors remain constant such that

-1
2(€)
21

(PEPP)" = |0X0] + u(&)* [1)1] +

z(€)
-1

(4.7)

= [0)0] = [1X0] + u(&)"(J1LX1] + [1X0]).
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This scaling and the previous link between sampling from the Clifford group and the unitar-

ity of a quantum channel will be key to benchmarking protocol.

For the physical Clifford group gateset, I' = {I4;}, we now define an effective noise chan-
nel £ via €& := U' o U. Moreover in what follows we shall assume for simplicity that each
gate U € I'is subject to the same effective noise channel (but again this assumption can be

weakened and gate-dependent noise can be assessed [44]).

The unitarity of the noise channel, £, can then be estimated in the following way. We

prepare a quantum state p and now define
Us :=Us, s5,....5) = Us; OUs, 0+~ 0 U, (4.8)

where U, € I' foralliin the Clifford group gateset, and s; labels the particular choice of uni-
tary. We also denote by U, the corresponding noisy implementation of the above sequence
s = (s1, 82, ..., sk) of k unitaries. For any sequence s and some hermitian observable M we

estimate the quantity

m(s) = tr [ML?S@)] 7 (4.9)

and then randomly sample over the Clifford group for each step in the sequence to estimate
Es[m(s)?] := ﬁ >, m(s)?. By exploiting the fact that the Clifford group is a 2-design, and
specifically equations (4.3) and (4.4), it was shown in [57] that

Ey[m(s)?] = ¢1 + cou(E)F, (4.10)

for constants ¢; and ¢, that contain any errors due to state-preparation or measurement.
Therefore, by repeating this estimation for sequences of varying length we may extract an
estimation of u(€) as a decay constant for the quantity in an efficient and SPAM-robust man-

ner.

To derive equation (4.10), we essentially expand every term in the estimation until we

obtain the form given in equation (4.6). The following sketches this process out, and will be
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covered in more detail for the original protocols presented in the following section:
Elmls)] =i o m)" = e e[ M)

:ﬁ Z (MU, U, ..U, |p)°,

= Z (M|(EU,)(EU,, ) ... (EU,) ),
:ﬁ Z (M| (E22US2) (EX2U2 ) ... (EUS?) |p)™
- <Mef|®2 (7 Zu@)(s@?)k 1(|F| ZZu?;f ) (% (W Zum) P,
— (MeY PP g@?)k_lp - (E*)P|p)™*

= (3| (pe=2py 1 1p)
) )

= (3] (0]~ —ZEL 101+ ule)* 11Kl + —HEL o) )
(4.11)

2 (1000] + u(e) 1] + —2E)

=

Note we have absorbed the final error channel into the noise of the measurement. Asthe uni-
tarity decays exponentially, u(£)*~!, with the length of the sequence, while the other factors
remain constant, we can isolate and estimate the unitarity independently. This allows the
constants ¢; and ¢; to be read off.
By averaging over lots of random sequences of gates, a unitarity RB scheme simplifies
the associated noise channel, £, down to two parameters, u(£) and z(€). The unitarity,
u(&), can then be readily estimated, as if we increase the length of the sequence, u(€) can
be related to the exponential decay in the square of the value of some observable. This

isolates estimation of the gateset noise, £, from SPAM errors.

Proofs for the unitarity benchmarking protocol

First we show that a unitarity 2-design produces a projector into a subspace spanned by two

vectors which we can identify.

Lemma 4.1. The operator

P = / Atraar(U) US? = / dpiraar(U) (U @ U2, (4.12)

on H®* = V @ VL is a projector into the subspace V = span(|1%2) | |F)), where F is the Flip

operator on the subsystems, and therefore P = 0 on V.
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Proof. Forany finite or compact group G witharepresentation V, averaging over all elements

of the group gives a projector,
P = /V(g) dg, (4.13)
onto the invariant subspace {|¢) : V(g) |¢) = |¢) ¥V g € G}. Therefore for V(U) = (U ®

U*)®2, according to the above definition of an invariant subspace, we must find X such that
V) I1X) = 1X), (4.14)

or equivalently [X, U ® U] = 0.

We can decompose U ® U into irreducible representations of U (d). There are 2 of them:
the symmetric subspace and the alternating subspace. This is related to the fact that sym-
metric group on two elements has two irreducible representations: the trivial one (1) and the
alternating one (F).

Using Schur’s lemma ? the operator X must be a multiple of the identity when restricted
to either of these two subspaces. Putting everything together, the invariant subspace is then

spanned by [1%2%) and |F), which completes the proof. O

An alternative line for the above proofis to invoke Schur-Weyl duality to give an exact
form for P in terms of the permutation operators (1, F) [134, 135].

Now we show that the unitary 2-design projector can be decomposed into the same basis
we used when examining the unitarity of quantum channels in the Liouville representation
(see Chapter 3).

Lemma 4.2. The operator P = [dyis10r(U) UP? can be decomposed as P = 0){0] + [1)(1]

where

0) = [Xo) ® |Xo),

1 d2-1 . (4.15)
1) = N ; | Xk) ® ’Xk>>

‘?,Q)Z'th‘u = (XO = ]l/\/C_Z, Xz)

Proof. The operator P is a projector into the invariant vector space V = span(|1%2) | |F)).
Therefore, if we find an orthonormal basis for V', we can write the operator P using a linear
combination of basis elements such that P = P.

We define the tensor product of two vectorized matrices as: |A® B) := |A) ® |B). Ap-
plying this definition to the first vector that spans the space [1%2) = [1) ® |1) = d|Xp) ®
| Xo). Normalizing, the first eigenvector is therefore |0) := | Xp) ® | Xp).

2Schur’s Lemma states that the only matrices that commute with all elements of an irreducible represen-
tation of a group are scalar multiples of 1.
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The Flip operator in our basis is given by considering the permutation of computational

basis states:

F—ZU il @ |i)j] = ZU il @ (|7)i ZX ® X} (4.16)

up to a dimensional factor. Therefore |F) = Zﬁ:_ol Xy ® ‘XD From inspection, the

second normalized eigenvector that spans this subspace is

1 d?—1 '
= ; 1Xie) ® ‘Xk> . (4.17)

It is easily checked that (i) = d;;.
We can now write the decomposition of the projector P = [0)0| + |1)(1| as

= | Xo)(Xo| ® | Xo)}Xo 5 Z | X)X ® ‘X”><X*‘ (4.18)

This completes the proof. O]

Finally we prove that, when applied to a quantum channel, the unitary 2-design projector

averages the channel such that unitarity of the channel can be isolated.

Theorem 4.1. Consider the operator P = [djiy,e,(U) UF? = |0)(0] + |[1)(1| decomposed in the
basis X,, = (Xo = 1/Vd, X;). For a quantum channel £, with fixed system dimension d we

bave

®2p _ z(€)
PEZP = [0)0] + u(&) [1Y1] + \/dQ—I X0l (4.19)

where u(E) is the unitarity of the channel, and x(E) is the non-unitality of the channel.
Progf. We simply need to calculate each (i| €% |j) as PE®*P = 3=, . ) (i| %2 [5) [i)(j].
Firstly, we have (0| €22 |0) = (Xo| £ | Xo)? = tr[1£(1/d))” = 1. Secondly, we have

(0]€%]1) =

—— Z (Xo|€1X:) (Xo| €| xF).
(4.20)

d21

Z (Xol €1X:) (X:| ET | Xo) -

\/7
However (Xp| € | X;) = 0 for all i for a trace preserving channel. Therefore (0| £%% |1) = 0.

For the third element we have
d?-1

(1€ 10) = ﬁz X\ € | Xo) (X}| €1Xo)
R 1 (4.21)
= A= 2 K€ 1X) (Kl E11X) = @)
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Finally, we have

d2—1

1
(11€7211) = 55— Y- (K| €1x;) (x}| € |x]).
) (4.22)
1 d?—1
= F 1 Z (X € |X;) (X;| €T 1X;5) = ().
As this exhausts all the options so we have an exact form for PE®?P. O

This completes our discussion of benchmarking of the total unitarity of a noise channel.

Now we will extend the core protocol to allow for the subunitarities of noise to be estimated.

4.3 Bipartite channel subunitarities via local twirls

The unitarity arose from considering a global twirl using a 2-design, it turns out that the
subunitarities arise in a similar fashion, but now by considering local twirls for a bipartite
quantum system. Specifically, we now have a bipartite quantum system AB with local gate-
sets I'4 and I' 5, which we assume are unitary 2-designs, and a global gateset I' 4 5.

For simplicity, we consider fixed subsystem dimensions, with d 4 and dp for subsystems
Aand B respectively. The Hilbert space for the system takes the form, H 4 ® Hp, where H 4
and H p are the spaces associated with each subsystem. Bipartite quantum channels, £, on
the whole system act on the space of bounded operators £ : B(H4 ® Hp) = B(Hi @ Hp).
We now define the tensor product of two vectorized matrices as: |[A® B) := |A) ® |B).
For the Liouville representation, £, of a bipartite channel, this reorders tensor product of the
Hilbert spaces; such that £ acts on B(H 4 @ Ha ® Hp ® Hp). This reordering is a powerful

‘trick’, and we believe it makes the following calculations easier to follow.

4.3.1 Local twirls of a bipartite system

We now examine independent twirls on each subsystem, C x C. In the Liouville representa-

tion we have
PAB = /d,uHaar(UA) /dﬂHaar(UB) U§2 ® ugz’

1

——— ) UP Uz,

L allT5] S
Ups€el 4,Ugel'p

(4.23)

Since the integrals are independent, it is readily seen that Py = P4 ® Pg where P4 and P

are local projections at A and B onto subspaces S4 and Sp, with

Sa=span{[1l4®@1y),|Fan)}, (4.24)
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where A’ is isomorphic to A, and we have a similar expression for Sg. The next step is to
decompose P45 as we did for P in equation (4.5).

We define two orthonormal operator bases for each subsystem, in the same manner as
in Chapter 3. Firstly for subsystem A, we choose X, = (Xy = ﬁ]l 4, Xi), where d is
dimension of the subsystem A, and tr [X;EX v] = 6, Similarly for B, an orthonormal basis
Y, =Y = \/%]l B, Y;). Together these provide a basis for the full system which is given
in the Liouville representation as | X, ® Y,) = |X,) ® |Y,). Following from the tensor

structure in Lemma 4.2, simply

Pap=Pa®Ps= Y |iil4®i)ils (4.25)

1,j=(0,1)

where we have

0)4©@10)p = [Xo) @ [Xo) @ [Yo) @ [Y)

d% -1
1A @00 =Vaa Y 1Xa) ®|X}) ® [Yo) @ |Yo) ,

n=1

dp—1 (4.26)
004 @ 1) = Vas Y | Xo) ®|Xo) © [Ym) @ [Yh),

m=1

d%4—1,d4-1
Da®[1)p=vVaaas Y |Xa) ®|X}) @ |Ym) © V),
n,m=1

with a; = 1/(d? —1). In what follows we will drop the subscript subsystem labels and always
have A as the first subsystem and B as the second.

Applying two local twirls simultaneously over the Clifford group, C x C, gives a projector
P, p that contains ‘local’ terms describing the twirl on each subsystem, |1) , ® |0) 5 and
|0) 4 ® |1) 5, while tracing out the other subsystem; and also a further ‘non-local’ term

1) 4 ® |1) 5. These terms will directly connect with the subunitarities of a channel.

4.3.2 The matrix of subunitarities for local twirls

The projector P4 appears naturally within settings where local twirls are performed on a
device, such as in randomized benchmarking protocols. Therefore, we should consider the
structure of Pap€®?Pyp, where £ : B(Ha @ Hp) — B(Ha ® Hp) is a bipartite quantum
channel. We will see that it relates to the subunitarities of £, the measures of coherence within
and between subsystems of a channel introduced in Chapter 3.

More precisely, we now show that the operator P4pE®? P45 can be viewed as encoding
the quadratic order invariants of the quantum channel, and in particular the traceless com-

ponents form a 3 x 3 matrix of subunitarities S for the bipartite quantum channel. We then
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examine how things simplify for particular important classes of quantum channels. Finally,
we study the structure of (Pap€®?Pap)* where k is some positive integer. This object is
key, as it appears prominently within protocols for estimating subunitarities.

We now calculate the matrix elements of Pyg€®? P4 in the basis defined in the previous
section. There are two mathematical properties that make use of liberally. Firstly, for each
subsystem, as the ;1 = 0 elements are proportional to the identity we have X! = X, & Y| =
Yo. Secondly, as the channel € isa CP'TP map, we have that £((X, @ Y,)T) = (£(X,®Y,))T

for any elements of the basis, and so

(Xtovie|xXieY]) =u[(X|oyvhiexliov]),

tr[EN (X @ V)X, Y],

=tr[6(X, ® Y.)' X, ®Y,], (4.27)
EX,Y,)|1X,0Y,),

(X, 0Y,|EX,®Y,),

where 1 corresponds to the adjoint of € that is defined via tr[ A (B)] = tr[€T(A) B]. Futher-
more note that if the non-unital block of € is T', then the non-unital block of T is T'.
We can now calculate the 16 possible combinations {a| £%?|b). One element is simply

equivalent to the trace preserving property of a quantum channel

1
00| £92|00) = (tr {—5 1 =1 (4.28)
(00[ £57100) = (tr| ==E(—=) )" =
The remaining elements can be divided into 3 sub-blocks to be defined, such that
00)  [ij)
1
PipE%?Pup = 200|| < g > whereij € {10,11,01}. (4.29)
tj

For the definition of subunitarities in the Liouville representation, we refer the reader to Def-
inition 3.3.
Consider a diagonal (10| £%2 |10) element in the matrix S, from the above properties it
follows that
d%—1

(10] 72 10) = ax Y (X4l @ (X}
ij=1
d%4 -1

—as Y (Xi®Y|E|X;9Y0) (X; @Y/ 1| X; @ Vo),

1,j=1

@ (Yol © (BNE(1X;) @ |X]) © [Y) @ [¥p)).

=aogtr [TAHAT/TH A] = atr [T/TH ATAﬁA] =ua-a(E),

(4.30)
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where care must be taken with the ordering of the spaces. Similarly, we have (01| £92]01) =
up_p(E)and (11| E¥?|11) = uap_a5(E).

Off diagonal elements in S can be calculated with an additional dimensional factor. For
example, following the same line

(dE—1)(d%—1)

(011 E%2[10) = Vaaas Y (X%®YiEIX;0Y0) (X; @Y £ X @),

1,j=1

«
= \/aasQp tI‘|:TA_>BT;;_>B] = «/a—BUAéB(g).
A

Further, we have elements such as

(4.31)

(% -1)(d5—-1)
(I[EF10) =aav/as ) (X; QY| E|Xx®@Y0) (X ®Y|EN|X;®Ys).
k,j,n=1
=agy/aptr [TJHABTAaAB] = apuaap(E)
(4.32)

and (10| €22 [11) = aa /agtr |:T1£B~>ATAB*>A:| = \/%uABHA(S). The remaining ele-
ments of S can be found by swapping the labeling of the subsystems. Putting this together

we have the full matrix of subunitarities given by,

|10) |11) 01)
A0 waale)  Fuanoa€) \[eRupa(é)
S = (11]| apuasap(€) uap-»as(€) Jaaup-an(€) |. (4.33)

(01] \/Z—iUA»B(g) ﬁUABﬁB(S) up-5(E)

Pleasingly, every subunitarity of a bipartite channel is represented in S. We highlight that
the diagonal elements of S are of particular interest as they are exactly the components of
correlation unitarity, as previously defined.

The three elements (ij| £92 |00) with ij € {01, 10, 11} quantify the non-unitality of the
channel for each subsystem to quadratic order, through the H-S inner product of the gener-
alized Bloch vector x for each subsystem. We can define x4 := xil ., 4XA-4 and similarly for
B and AB. Therefore we have

d% -1
(10 £%2100) = Vax ¥ (X:i® Y| €[ Xo®Ys) (Xo @Yo/ 1| X: @ Vo),
i=1

=V CVAXEHAX/HA = /AT 4,

similarly (11| £%2]00) = \/aaagrap, (01| £2%|00) = /apr. We group these together
into the vector 7 = (\/aawa, \/aaQBT AR, \/aBTR) to get the form of equation (4.29).

(4.34)
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The final three elements (00] £%2 |i5) withij € {01, 10, 11} are required to the zero from
the trace preserving properties of a quantum channel. For example, considering (00| £%2 |10)
for £ to be a valid TP map we must have (Xo ® Yp| € |X; ® Yp) = 0 for alli. Therefore

d% -1
(00 £22[10) = Vaa > (Xo® Y| E1X; @ Yo) (Xi @Yo £ |Xo®Yp) = 0. (4.35)
i=1
Through the same argument (00| £%% 01) = (00| £%?|11) = 0.
Finally, putting all elements together, labeling P4gE®?Pap = (x) we get,

|00) 110) |11) |01)
(00| 1 0 0 0
() = (10 QAT A uaa(E) X/%UAB_M(E') \/%UB_,A(E)
(11|| Joaaaprap +/apuasap(E)  wap—ap(E)  /aaup_ap(E)
O\ vasrs [ SEuass€)  guasos)  usss(E)
(4.36)
Comparing this with decomposition of the Liouville representation of a bipartite channel £
in equation (3.27), we see that P45 produces the normalized purity of every sub-block of £.
As subunitarities are the normalized purity of sub-blocks of the unital block 7', these values

are extracted, as well as the absolute value of the non-unital vector for both subsystems.

Two local twirls, C x C, produces a projector, P4, that averages a bipartite channel on a

subsystem level to produce a matrix of the all the subunitarities of the channel, S.
Using the form of the top row of P4gE®2 Py, it is easily seen that
det(PapE“?Pap — A1) = (1 — A) det(S — A1) (4.37)

and therefore for any channel £ the 4 eigenvalues of Pyp€®?P4p will be \y = 1 and the
3 eigenvalues of S. Within a subunitarity randomized benchmarking protocol, we would
expect to encounter the object (P4gE®? Pap)™ for an integer m similar to the total unitarity
protocol. Before tackling the general case of decomposing this matrix, we first consider a

simpler case.

4.3.3 The matrix components for separable channels

For a product channel £4 ® £ the subunitarity matrix S takes a particularly simple form.
Since the channel is separable quantum information does not flow between A and B and
Theorem 3.4 tellsus that ua_,5(E4 ®ER) = up,4(EARER) = 0anduap ap(Ea R ER) =
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Ua5A(EA® ER) - up_p(Ea ® ER). Thus, for a product channel £ = £4 ® Ep we have

|00) |10) |11) |01)
(00| 1 0 0 0
©2 (10| VAT A u(€4) 0 0
Pap&® " Pap =
(11| | Vaaapzazp Japu(Ea)rp u(Ea)u(lp) Jaau(Ep)ra
<01| \/OBIRB 0 0 U(gB)

(4.38)
From this it is readily seen that the eigenvalues are {1, u(€4),u(Ep), u(Ea)u(Ep)}. More
generally, for the case of a separable channel, Eap = > pi€a; ® Epi, from Lemmas B.2 &
B.3 we find instead that, again labeling PApE®*P4p = (%),

|00) 110) |11) |01)
(00| 1 0 0 0
() = (10| VAT A Ua—a(Eap) 0 0
(11| Jaaosrap Japuasap(Eap) uap—ap(Eap) /@aup—ap(Eap)
(01] VBT 0 0 up-5(Ean)

(4.39)
and so now the eigenvalues are {1, us (), up—5(EaB), uap—-ap(Eap)}. Therefore in

both these cases, (P45E®? Pag)™, will have eigenvalues

N ={1uasa(EaB)™ up—B(EaB)™  uap—an(Ean)™} (4.40)

We will see shortly that this exact form appears within a randomized benchmarking protocol,
and that for separable (and product) channels the decay constants are simply the above three
subunitarities.

More generally, we do not have such a simple link between the eigenvalues and subuni-
tarities. Indeed, it may be the case that the matrix cannot be diagonalized fully, and so one
must instead use a Jordan decomposition to determine the decay law for the associated pro-

tocol. We provide these details in the next section.

4.3.4 Jordan decomposition for arbitrary bipartite channels

Forageneral bipartite channel € we can use the Jordan normal form of the matrix P4gE®? Pap
to study the structure scales with a power, (P4pE®*P45)™. This will be critical for estimat-

ing the subunitarities of channels where we have no knowledge about their structure.

Definition 4.1. Using the Jordan matrix decomposition of any square matrix M, we can find the

Jordan normal form such that
M=5"1J8, (4.41)

where S is a invertible matrix, and J is a block diagonal matrix of Jordan blocks [122].
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This gives a very simple scaling law.
Corollary 4.1. The Jordan matrix decomposition of a square matrix M to the power n_follows
M™ = S7'J"s. (4.42)
Progf. 'This follows from definition as S5~ = 1. O

The above imply that if write PagE®?Py4p, in a Jordan normal form, J, then the decay
law of (P4 E®? Pog)™ will be determined entirely by J™. There are 3 possibilities that could

OCcCur:
10 0 0 10 0 0 1 0 0 0
A 0N 1 0 0N 1 0
g= |0 M 00 J = ! CJ = ! . (4.43)
00 X O 00 A O 00 X\ 1
00 0 M\ 00 0 N 00 0 N\

where ); are the eigenvalues of the block §. Which form the Jordan decomposition takes
depends on the degeneracy of \; and whether the geometric and algebraic multiplicities of
each \; coincide [122].

For J diagonal, we have that

1 0 0 0
0 X" 0 0

PapE®?Pyp)™ = S71Jms = 571 ! S, 4.44

(Pas AB) 00 A 0 (4.44)
0 0 0 A\

where {\;} are the eigenvalues of S. Therefore,
(Pap€?Pap)™ = S7H(]00)00] + AT* [10)(10] + A5* [01)01] + A§* [11)(11])S  (4.45)

where S is some invertible matrix.
If the Jordan decomposition of P4gE%?P,4p is not completely diagonal, then the object
(P4pE®? Pap)™ still scales with the eigenvalues of S but in a slightly more complex manner.

From above, the 2 remaining options are

1 0 0 O 1 0 0 0
0 )\1 1 0 0 )\m m)\m—l 0
PigEX?Pap)™ = S71 S =gt 1 1 S, (4.46)

(Pap€° " Pap) 00 A\ O 0 0 ar (

0 0 0 X 0 0 0 AT

and

1 0 0 O 1 0 0 0

0 )\1 1 0 0 \™ /\m—l m(m—1) /\m_g
PupEPPyg)" =St — g1 1 1 —5 Al g
(Pap AB) 0 0 N 1 0 0 A Al

0 0 0 XN 0 0 0 AT

(4.47)
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1. Prepare the system in a state p.

2. Select a sequence of length k of simultaneous random noisy Cliftford gates locally on
subsystems A and B, starting with £ = 1. E.g. for each gate Uap; = Ua i, @ Up iy -

3. Estimate the square (m)? of an expectation value of an observable M, for this partic-
ular sequence of gates.

4. Repeat 1,2 & 3 for many random sequences s of the same length, finding the average
estimation E,[m(s)?] of (m)2.
5. Repeat 1, 2, 3 & 4 increasing the length of the sequence % by 1.

6. Fit each value of E,[m/(s)?] against the corresponding k and obtain decay parameters
as in equation (4.55).

Protocol 1: SPAM robust subunitarity estimation (C x C)

Therefore, in this more general scenario the decay law behaviour of (P4pE®2P45)™ is still
described by the constants {\;}.
This gives us all the tools we require to define a novel unitarity benchmarking protocol

that we can relate to the subunitarities of a quantum channel.

4.3.5 Analysis of a local twirl unitarity benchmarking protocol

We now introduce a unitarity benchmarking protocol, Protocol 1, and prove that it allows
the eigenvalues of the matrix of subunitarities S to be estimated SPAM robustly, under the
assumption of gate-independent noise associated to the gateset 'y ® I' 5. We do not assume
the noise is local to each subsystem and it is therefore described by some bipartite channel.
The protocol implements a local twirling on each subsystem of the associated bipartite
noise, similar to the total twirl we encountered in the total unitarity protocol. We now prove
this result analytically, and show that it gives us object (P41 E®? P45)™ that we we have been

examining in the previous section.

Lemma 4.3. Owver all sequences s, and for a gate-independent noise channel £, the expectation

wvalue of a observable M squared can be written as:

~ |®2
E,[m(s)?] = <M (Pap€®2Pap) 1 p)®2. (4.48)
with circuit of depth k, and sequences indexed via s = (s, sp) with sy = (ai,as,...,ax)
and sg = (b1, b, ..., by) specifying the particular target unitary in each of the local gatesets

F'ap=T4®1Is.
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Proof. From equation (4.9), over all sequences we have

]FAB|kZm ’thr[MZ/{ ]
:m )3 (Mt(p) = m > (MG e

E.|/m(s
[ !FAB

1 o ) , (4.49)
:m Z <M| uskusk—l"' U, ’p> )
’FAB|kZ Ml Sk 1)(8u81)|p>2
Which we can write equivalently as a bipartite system,
1
Ei[m(s)?] = mZ<M|®2 (EPUE)(EPUE? ) ... (EPUS?) [p)™. (4.50)
For each gate up to k, we can substitute the summation over U, , such that
g p k
1
E[m(s)?] = (M]** ECUE?
i) = M1 (3 )
Sk AB
1
®27 482
(mU ZF EVUL” ) (4.51)
sp_1€lAB
1
(m Z 8®QU§2) |p>®2

Usl EFAB

recalling that U; = U, ® U, and the sequences expand as Z = Y P* | We now have

SA,SB "
the form to use the property that the whole gateset forms a unitarity 2-design on each sub-

system. Namely, from equations (4.3) and (4.23), we have

S ey = /duHaar(UA> /duHaarwB) EPUL O U (4.52)

|FAB | Us, €l ap

for any index in the sequence up to k. Substituting this into equation (4.51) reduces the sum-

mation to k identical integrals over U4 and Ug. So we can write

Ei[m(s)?] = <M‘®2 (£%* /dMHaar(UA) /dMHaar(UB) (UL @ UR)P?)" \p)®2 . (4.53)

This is just the projector Py = P4 ® Pp as decomposed in Section 4.3.1. Therefore with a

final substitution we can find desired form

Ei[m(s)’] = (M|®* (E%*Pap)* |p)**,
<M’®2 £®2(P B£®2PAB)k—1 |p>®2
(€ _I(M)\@ (Pap€®*Pap)* " |p)**

(4.54)

PABS®2PAB)k 1 ‘p>
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where we have absorbed the final noise channel to the noisy measurement of the system. This

competes the proof. O]

It remains to give the final relation between the twirled error channel and the eigenvalues
of the associated matrix of subunitarities. The following result connects the benchmarking

protocol given in Protocol 1 to the matrix of subunitarities, S.

Theorem 4.2 (Derivation of subunitarity estimation protocol). Ower all sequences s
with circuit of depth k, and for a gate-independent noise channel €, the expectation value

of a observable M squared can be written as:
Es[m(s)Q] = Copo + C10 )\]f_l + Co1 )\I;_l + c1 )\lg_l, (4.55)

where {c;; } are constants related to SPAM errors and {\;} are the eigenvalues of the ma-

trix of subunitarities for the channel € given as

us-4(E) \/%UAB%A(S) v/ 22up—a(€)
S = | Vapuasap(€)  uwapsap(€) axupoap) | (4.56)
\/ arua-p(E) ;%jUAB—gﬂg) up_p(E)

Proof. From Section 4.3.4, if the Jordan decomposition is diagonal we have
(Pap€®*Pyap)* ™" = S71(]00)00] + Xy~ [L0)X10]+ A5~ [01)(01] + X5~1 [11)(11))S, (4.57)
where ); are the eigenvalues of the matrix S. Therefore from Lemma 4.3 we can write
2 | 2 2 k=1 2\ ®2
Eom(s)?) = (M|~ (PanE**Pap)* |9)**

~ | ®2
= (M| s,

~ | ®2
- <M S7L00Y00] + AEL[TONL0| + A1 [01X01] + AEL[11H(11])S [p)=2.
(4.58)

The transformation matrix S can be absorbed into the initial state of the system and the final

measurement such that
Ed[m(s)?] = <S‘1f(]\7.f®2)‘00> (00[S(p®2))
X (ST 10) (10]8(0°%))
+ A5 (STH(AT®R) 01) (01]S(o5%))
+ Ak <S‘”(1\7.f®2)’11> (11|S(p%2)) .

(4.59)
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Or simply,
]ES [m(s)Q] = Coo + C10 /\llc_1 + Co1 /\]5_1 —+ C11 )\g_l. (460)
Soif'a channel € produces a diagonal Jordan decomposition J, the protocol will produce a fit
of this form where )\; are the eigenvalues of S.
Ifany eigenvalues are degenerate the Jordan decomposition will not be diagonal, and can

take two forms. Firstly,

1 0 0 0
0 XNl (k—DA2 0

kal — 1 ( k_)l 1 ’ (461)
0 0 A 0
0 0 0 P

where the fit will take the following form: E,[m(s)?] = co+c1 A 4-c, A5 ™1, where \; are the
degenerate eigenvalues of S, and constants ¢; are dependent on M, p, S, S~ & x. However,
with simple rearrangement we can get the required form of equation (4.60), such as with
co A5t = (o1 + €11) A5, Secondly,

1 0 0 0
k—1 k-2 (k—1)(k—2) yk—3
s | 0N A; 2 AT : (4.62)
0 0 A! Mr=2
0 0 0 b=t

where the fit will take the following form: E,[m(s)?] = co + ¢; Af~!, where ), is the degen-
erate eigenvalue of S, and for different constants ¢; dependent on M, p, S, S~ and x. Again,
with simple rearrangement we can get the required form of equation (4.60). This completes

the proof. N

This completes the connection between Protocol 1 and the subunitarities of a channel.

We have established that the subunitarities, ux_,y (&), of a bipartite channel, £, appear
naturally through the local twirling, C X C, of a novel randomized benchmarking protocol.
However the connection is non-trivial as the three decay parameters estimated through

Protocol 1 are the eigenvalues, {\;} of a matrix, S, of all subunitarities.

Our ultimate goal is to access individual subunitarities such as, w4, 4(£), and the corre-
lation unitarity, u.(€), as these quantities have operational interpretations and useful prop-
erties as discussed in Chapter 3. In the following section, we summarize how Protocol 1 can

be used in practice to estimate particular subunitarities.

4.4 SPAM robust estimation of subunitarities for device noise

In the context of benchmarking we have the problem of determining the addressability of

qubits and the existence of crosstalk between qubits. For example, we want to implement
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some target unitary U; ® id on one qubit, while leaving all others unaftected. However, in re-
ality the physical channel performed /; will involve an effective noise channel £ that does not
factorize neatly with noise only on the target qubit. Instead, the noise channel will act non-
trivially on each subsystem of the bipartite split and could involve correlations that include
the leakage of quantum information. Learning the subunitarities and correlation unitarity
of £ would therefore give independent information beyond existing techniques. We now dis-
cuss under which circumstances such quantities can be estimated SPAM robustly for device

noise.

4.4.1 Estimation of subunitarities through local & global protocols

In what follows we again consider the averaged noise channel over the gateset, and so at the
simplest level of analysis assume that we have gate-independent noise. A more general analy-
sis involving gate-dependent noise should be possible by following perturbative approaches
such as in [44, 136] and by making use of interleaved benchmarking [82].

We also note that the channel under consideration need not be a noise channel in such a
scheme, but could be a target channel on which we wish to do robust tomography. For this
context it would be possible to exploit recent methods that make use of randomized bench-
marking to do tomography of quantum channels such as in [4]. We leave this kind of analysis
for later investigation in Chapter 5.

Under this average noise model assumption, we now perform a unitarity benchmarking
scheme by randomly sampling from I' 4 ® I' 5 and obtain a circuit of depth k, with sequence
indexed via s = (s, sp) with s4 = (a1, as,...,a;) and sg = (b1, ba, . .., by) specifying the
particular target unitary in the local gatesets. As before, we estimate the quantity m(s) :=
tr [M Uy( p)] and also E,[m(s)?] for circuits of depth k. However, for these local twirls, this
quantity now has a different decay profile. As we have shown in Section 4.3.5 this quantity

behaves as

ES [m(s)Q] = Coo —|— 601/\]1§_1 + 010/\15_1 —|— Cll)\lg_17 (463)

where (A1, Ay, A3) are the eigenvalues * of the matrix of subunitarities

ua-a(E) \/%UAB—M(E) \/ a2up—a(€)
S=|apuasap(&) uap»ap(€) oaupsap(€) |, (4.64)
A/ g—iuA—ua(g) \/%—AUABaB(g) UB—>B(5)

with ax = 3

subunitarities arise in the context of this benchmarking, albeit in a more non-trivial form to

%_1, and the constants cqg, . . ., ¢;; contain the SPAM-errors. Therefore, the
X

3This implicitly assumes a non-degenerate form of a Jordan matrix decomposition. However degenerate
cases give rise to similar expressions. See Section 4.3.4 for details.
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the global protocol. For example, we have that

tr[S] = Z Ni = Uasa(E) +uapsap(E) +upsp(€), (4.65)

with similar relations existing for the other coefficients of the characteristic polynomial of
[122]. Note that ), \; = 3ifand onlyif £ is a product of unitaries, £ = U4 ®Up, and so this
sum of eigenvalues gives a blunt handle on how much £ deviates from this regime.

By estimating the decay constants in equation (4.63) it is possible to obtain an estimate
of channel correlations that coincides with the correlation unitarity for a family of channels.
It is easily checked that for a product noise channel £ = £4 ® £ we have the matrix of

subunitarities given by

u(é’A) 0 0
S = apu(Ea)rp u(Ea)u(E) aau(€Ep)xa | » (4.66)
0 0 u(Ep)

where z 4 and z are constants related to deviations from unitality (see Section 4.3.3). This

implies that eigenvalues of S are given by

{Ai} =A{u(€a),u(EB),u(Ea)u(Ep)}. (4.67)

It can be checked that this simple link with subunitarities extends to arbitrary separable chan-
nels, for which A1, Ay, A3 are exactly equal to the subunitarities us 4, up— 5, uap—ap. This
provides a way to compute the correlation unitarity. More precisely, given \; > Ay > A3, we
may compute the quantity

C=X3— A1+ Ay, (4.68)

where we use the fact that subunitarities are upper bounded by one to distinguish A3 from
the other two. For a separable channel we have C' = u, and therefore get an estimate of the

correlation unitarity in a SPAM robust manner from Protocol 1.

For separable noise channels, £, we can estimate the correlation unitarity, u.(£), in a
completely SPAM robust manner. However for an unknown channel (which might be
non-separable) we cannot guarantee the decay parameters are exactly the subunitarities.

Therefore we require additional information to estimate the correlation unitarity.

Beyond separable channels, while in general equation (4.68) is not equal to the correla-
tion unitarity, we could use C' as a witness to non-separability in the following way. For a two
qubit channel, we have shown in Theorem 3.6 that u.(£45) > 7/12 means that €45 is non-
separable. As we have C' = u, for a separable channel, this implies that a value of C' > 7/12
means the corresponding channel must be non-separable. Therefore C' is a witness to non-
separability. However the problem with this approach is that, for channels far from separa-

ble, the measure C'is typically small or even negative. For example, for the SWAP channel
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Figure 4.1: SPAM error robust estimation of v, for generic quantum channels. The con-
vergence of the values of correlation unitarity and C as gate noise takes a product form, for a
2 qubit simulation. We show |u. — C| over p, where F = p€4®Eg+ (1 —p)G. The channels
Ea, Ep and G are sampled using the methods of [2] and simulated using QuTip [3].

we get C' = —2. This means that, in practice, using C' on its own is not a particularly useful
measure for non-separable channels.

For non-separable channels the deviation of the eigenvalues from each of the subunitari-
ties can be bounded by using the Girshgorin Circle Theorem or Brauer’s Theorem [122]. For
example, we obtain the bounds

At = 4 4(E)] € ——tiana(E) + \/O‘»—AuBmg). (4.69)
Vas ap
Using identities for subunitarities, we can further show that
1
NGT

These two inequalities are generally weak, due to the factors of a g and v 4, but they do imply

A1 —uasa(E)] <

[1 - UA—>A(5)]- (4.70)

that the approximation is very good when either the off-diagonal elements are small or when
the local unitarities are large. In such regimes Protocol 1 will return a good estimate of the
correlation unitarity as C' = u.. We demonstrate this with simulations in Figure 4.1.

Estimation of the three decay constants requires fitting noisy multi-exponential data.
This is non-trivial, but a range of methods have been developed to tackle this problem [7].
To assist with fitting, and moreover identify the subunitarity w45, 45, we may supplement
the local twirling with a global estimate of unitarity, and then make use of the decomposition
of unitarity into subunitarities. Specifically, for the case of unital separable channels, with
ds = dg = d, we have that

u(g) _ UA—>A(5) +UB—>B(22) _‘:: id — 1)UAB—>AB((€)’

(4.71)

and therefore we have the relation

(& -+ Du() = T\

4.72
3 (4.72)

uap—ap(€) =
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This means that separate estimations of (&) and the decay constants (\;) provide an esti-
mate of usp, 45 (&), and so provides additional independent information on the terms enter-
ing the correlation unitarity. In practice, this will require careful consideration as the aver-
age noise channel associated with global gateset, I', (employed in the estimation of unitarity)
might be different than that associated with "'y ® I'p.

4.4.2 Black box noise estimation with randomized compiling

We note that by using randomized compiling [107, 137] for the implementation of a quantum
circuit we may reduce the noise channel to being a Pauli channel.

For Pauli channels, the decay constants (\;) exactly coincide with the three subunitar-
ities required for the correlation unitarity, in a similar manner to equation (4.66). How-
ever we lack the information to assign each decay constant to a particular subunitarity. We
showed in Chapter 3 that equation (4.72) holds for Pauli channels. Therefore, we can iden-
tify uap—a5(E) assuming access to u(€). The remaining two subunitarities do not need to
be individually identified to calculate us, 4(€) - up_,5(£), and we have an estimate of u.(&).

Putting this together, assuming the same noise is associated with the global and local
gatesets as discussed above, with randomized compiling we have a SPAM-robust estimation

of the correlation unitarity, u.().

Recent research indicates we may be able to reduce device noise to a Pauli channel, €.
Then, if the noise is the same for the local and global gatesets, we can estimate the corre-

lation unitarity, u.(&) of device noise, £, with complete SPAM robustness.

Alternatively, since a general noise channel will not have \; coinciding precisely with the
subunitarities, by running the local twirling protocol with and without randomized compil-

ing one could witness the presence of non-Pauli noise.

4.5 Estimation of local subunitarities with resetting errors

While the local twirling protocol provides a means to estimate the correlation unitarity in
the case of any separable or Pauli channel, we would like to be able to estimate such corre-
lations for general non-separable channels. The obstacle here is to determine subunitarities
suchaswuy_,4(E4p). However, this requires preparing the maximally mixed state on subsys-
tem B and benchmarking the unitarity of the effective channel output on A. This presents
a problem of how accurately such a reset can be performed. Current devices, including ion-
traps [138] and IBM’s superconducting qubits [139], allow for mid-circuit measurements and
resets. These dynamical circuits capabilities can be accessed through hardware-agnostic
SDKs [140, 141].
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1. Prepare the system in the state p.

2. Selectasequence oflength k of random noisy Clifford gates on subsystem A, starting
with k = 1. E.g. foreach gate U4 ; ® idp

3. Estimate the square (m4)?, of the expectation value of an observable M4 on subsys-
tem A for this particular sequence of gates, while performing a reset Dy (pp) := % of
the B subsystem after every gate.

4. Repeat 1, 2 & 3 for many random sequences of the same length, finding the average
estimation E[(m.4)?] of (m4)?.

5. Repeat 1, 2, 3 & 4 increasing the length of the sequence k by 1.

6. Fit the data E[(m 4)?] against k and obtain decay parameters as in equation (4.10).

Protocol 2: SPAM effected subunitarity estimation (C x 1)

4.5.1 Estimation while utilizing the maximally mixed state

The local subunitarities s, 4(Eap) and up_, 5(Eap) of any bipartite channel €45 are mea-
sures of interest in their own right. However the exact estimation of the subunitarity of gate
noise through unitarity benchmarking requires the repeated preparation of the maximally
mixed state on the ancillary subsystem. As shown in [54], this introduces additional noise
from the imperfect depolarization.

While challenging to do in a fully SPAM-robust way, from the form of equation (3.2) we
see that if it is possible to do a resetting of subsystem close to the maximally mixed state then
one can obtain an estimate of the subunitarity us_,4(E45), and similarly for other single-
subsystem cases, by estimating the unitarity of the marginal channel £4 = trg o€45 0 Dp,
where D (p) = 115 for a completely depolarizing channel to the maximally mixed state.
Within the benchmarking circuit this would mean performing a noisy reset Dy on B after
each U, on A, with the aim of having Dy ~ Dg. This is a non-trivial assumption, and so in
general the protocol will not be fully robust against reset errors. However, if these errors are
substantially smaller than the addressability errors one wishes to estimate then the protocol
returns an approximate estimate.

The manner in which the induced error is modelled determines the accuracy of the pre-
dicted estimate of the subunitarity. Consider the case where we model the noisy reset chan-

nel f)B as

@B :gpo(idA®DB)OgM, (473)

where Dp is the exact reset, and where £, and Ep are SPAM errors on whole system related

to the imperfect reset of the subsystem B. Then it is straightforward? to show that Protocol

4The proof follows from considering unitarity benchmarking protocol with the above channels interleaved.
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Figure 4.2: Subunitarity estimation with reset error. Shown is a simulation of Protocol 2
to estimate the subunitarity us = ua—,4(E45), modelling the reset error associated B as in
equation (4.75). This reset error is shown for different levels of depolarization p, including
p = Oi.e. noreset. The channel €45 in this case has a theoretical value of us_,4(Eap) =
0.261. The protocol returns an estimate of the subunitarity accurate to ~ 90% for reset
errors up to ~ 20%.

2 allows the estimation of the subunitarity of the combined channel
ESA [m(SA)Z] =+ CQUA_>A(5M of ng)k_l (474)

for a sequence of length k£ where £ is the noise channel associated to the gateset. The con-
stants ¢; & c¢o depend on the initial and final SPAM and non-unitality of the channel £.

Given approximate estimates of u4_, 4(£ap) and up_, g(E4p) we may then exploit the fact
that >, \; = uaa(Ean) +up—p(Eap)+uap—ap(Eap) toinfer the value of uap_, a5 (Ean)
and thus compute the correlation unitarity for the channel £45. Therefore, under the as-
sumption of sufficiently small resetting errors we may estimate the correlation unitarity for
anarbitrary channel. Note that in the context of the local Clifford gatesets the effective chan-
nel need not be the same in each protocol since Protocol 2 uses a different gateset. However,
we can use the same gateset in Protocol 2 as in 1, since the application of non-trivial Clifford
gates on B does not change matters if D ~ Djp.

We can numerically test how sensitive the above protocol is to coherent resetting errors.

For example, one can model such reset errors as partially depolarizing with
Dp =ida @ (pDp + (1 — p)idp), (4.75)

where p € [0, 1]. In Figure 4.2, we plot the benchmarking decay curves and find that for
resetting errors up to ~ 20% the protocol returns an estimate of the subunitarity w4, 4(€)

accurate to ~ 90%.
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G, ue < 7/12 7/12 < Ciim, Ue
[ — Csim < 7/12 S Ue

(1 - q)’idA ®idp + gSWAP

q, €=

0
0 ] 05 1
p, Rp = (1 —p)idsg +pRp

Figure 4.3: Witnessing channel non-separability. Given a quantum channel £45 we con-
sider the ability to efficiently witness its non-separability via correlation unitarity in the pres-
ence of resetting noise. This could be realized, for example, in the context of robust to-
mography using randomized benchmarking [4]. We consider a 1—parameter family of 2-
qubit channels obtained from a convex combination of the maximally non-separable SWA4P
channel and the identity channel (a product channel). The contour plot compares the true
value of correlation unitarity u.(E4p) with the correlation measure Cy;,, ~ C estimating
equation (4.68) in the presence of reset errors. For two qubits, non-separability occurs if
uc(Eap) > T7/12. We simulate both Protocol 1 and 2, and we find that for a wide range
of reset errors we may witness non-separability for p,¢ 2 0.5. The region of green where
p,q > 1/2is an artifact of our particular method, and with a more refined algorithm we
expect detection of non-separability also in this region.

For general non-separable channels, to estimate the correlation unitarity we require an
additional protocol which is not fully SPAM robust. However, we find in practice that it

works reasonably well.

Note that the channel in equation (4.75) will not in general destroy correlations between

A and B, in contrast to a stronger, more simplistic error model of

Di(pan) = pa® (5(1+b- ), (4.76)

where one assumes a reset to a local qubit state with non-zero Bloch vector b. Under this
stronger model assumption a simulation shows that such a scenario returns a good estimate
for the subunitarity for [b| < 0.2.
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4.5.2 Estimation while utilizing computational basis states

There are further variants around the above protocol. For example, if resetting to states
other than the maximally mixed state have very low errors then this provides another means
to estimate ua,4(€ap). For example, we will show shortly that if a low-error reset to the
pair of states 5 (1 £ b - o) is possible for some b then it can be shown that the average unitar-
ity of the output on A over the pair is always an upper bound on u4_, 4(€45), and so would
provide a lower bound on the correlation unitarity. Therefore, this would allow witnessing
of non-separability under the preceding assumptions.

Recall the notation we introduced in Chapter 3 for quantum channels in the Liouville
representation. Protocol 2 requires the preparation of the maximally mixed state (|Yp) /+/dp
in our notation) on subsystem B, albeit noisily. However, consider an alternative line, where
we randomly reset to one of the computational basis states. For two qubits, in the Liouville

representation we define the preparation channel
prepp iz = ids ® (|Yo) /V2 £ |Yz) /V2), (4.77)

which prepares the state |0)(0| = 3(1 & Z) on subsystem B. For a bipartite channel €, the
related channel £, 7 on qubit A is defined as

Eiz:=trg-& preppiz = (ida ® (Yo|) € (id4 @ (|Yo) + [Yz))), (4.78)

and similarly €_5 :=trp - € - prepg 7.
We can calculate the structure of the unitarity of these channels using the Liouville rep-

resentation. The definition of unitarity can be written in our basis as

1
u(€r) = 5 D (Xl €N |X;) (X5 €1Xs), (4.79)

i

for some channel €4 that maps B(H 4) — B(.4). The unitarity of the channel £, ; can then
be related to the local subunitarity of the channel £ as
1
u(€yz) = wasal€) + 5 Y (Xi®YZ|EX; @ Y0) (X; @Yol £1X: ®Yz)

17
+(X;i®Yz|EN|X; ®Y0) (X; @ Yol €| X: ® Yo)
+ (XY ENX;®Y) (X; Y| E|X;®Y7),
(4.80)

and similarly

1
W€ z) = wasa(€) + 3 D (Xi®YzZ|E'|X; ®@Y0) (X; ®Yo| €|X; @ Yr)

ij
- <‘Xi®Yz|8Jr |Xj ®Y;)> <Xj ®YI)‘£ ‘Xi®Y0>
—(Xi®Y|ET|X;®Ys) (X; @ Y0|E|X; ®Y7) .
(4.81)
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This follows from expansion of the definitions of the channels and the Liouville definition of
unitarity. By taking the mean of the unitarity of these two channels we find

1 1

S(U(E12) Tu(€ 7)) =uasa(€) + 3 (X ®Yz| E'|X;@Y0) (X; ®Vo| € Xi ® V).

ij
(4.82)

As the 2™ term in equation 4.82 is strictly non-negative we can use this measure to bound
the subunitarity of the target channel. Therefore, if we can better reset to one of the compu-

tational basis states, then we can bound the subunitarity w4, 4 via the following:

wasa(€) < %(u(&z) +u(€_z)) (4.83)
where £, 7(p) = trp[E(p ® |0)0])] and E_(p) = trg[E(p ® |1)(1]|)]. This bound reaches
equality for a product channel, £ = £4 ® Ep, as the 2" term in equation (4.82) always con-
tains the element (Yp| £p |Y;), which must be zero for a valid CPTP map.

Additionally, it can be shown that the bound holds for any two orthogonal initial states
on qubit B, replacing Z with a general Bloch vector on qubit B. If we then minimize over all

orthogonal states we get
1
wa4(€) < minf o (u(Ess) + ulE-s)) ], (4.84)

where E44(p) = trp[€(p ® (1 £ b - 0))]. However it is not obvious how this minimiza-
tion could be performed efficiently (i.e. without many rounds of estimation with different
settings).

However, under the assumption that computational basis states induce fewer errors when
prepared compared to the maximally mixed state, then estimating u(€, z) and u(€_z) with
a RB protocol allows an upper bound to be placed on the local subunitarity w4, 4(€), where
£ is the noisy channel associated with the target gateset.

In such a case, the RB protocol would simply entail two experiments: firstly performing
unitarity RB on qubit A with a reset of qubit B to |0), and then secondly with a reset to |1).
If we assume the reset is performed completely incoherently, but with bipartite SPAM errors

we have for the 1% experiment will produce a fit of the form
E,,[m(sa)’] = c1 + cou(€szp 0 €z 0 Evz )™, (4.85)

where Ay 7 pr & Az p are the bipartite SPAM errors associated with the noisy reset of qubit

B to|0). Similarly the 2"! experiment will produce a fit of the form
]ESA [m(SA)2] =C+C u(é',Z’M o (SLZ o 5727P)m71’ (486)

where &£, 7 v & £17 p are the bipartite SPAM errors associated with the noisy reset of qubit

B. Such a modification could then be used when the preparation of a maximally mixed state
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is significantly noisier compared to computational basis state preparation and reset which
would detrimentally affect estimation of us_, 4(£). In the case when &, 7y p ~ id an upper
bound could be estimated as shown above.

4.5.3 Benchmarking non-local subunitarities directly

In theory, another source of information that could be exploited is the unitarity of the chan-

nel from AB to A, given by
Eap—a(p) =trgo€ap(p). (4.87)
In terms of subunitarities this quantity can be decomposed as
1 1 1
& = —(— & — & Ea)).
u(Eap—4) (dndn) = 1<OCAUAHA( AB) + OCBUBHA( aB) + OéAaB’UJABaA( AB))
(4.88)

However, while this provides an expression in terms of subunitarities without requiring re-
setting, the standard benchmarking protocol will not work here due to the input and output
systems being of different dimensions, and therefore a more involved protocol would be re-

quired.

4.6 Conclusions

4.6.1 Comparison with addressability of qubits

Several methods have recently been developed for detection [142], characterization [56, 143]
and mitigation [144] of unwanted correlations between subsystems (specifically cross-talk) in
a quantum device from a hardware-agnostic and model independent perspective. Our work
adds to this toolkit new methods to characterize non-separable correlations and provides
information about noise channels that is independent from features captured by previous
works.

Simultaneous randomized benchmarking [56] compares the increase in error rates when
both subsystems are simultaneously and independently driven vs when one subsystem is
driven and the other is kept idle. This quantifies the amount of new errors experienced by
a subsystem as a result of simultaneously applying Clifford gates on the other. As it is the
case for Protocol 2, due to the local independent Clifford twirl on one subsystem, simulta-
neous RB is also affected by SPAM, and strong errors may be detected by deviations from
exponential decay [56].

To compare with the information obtained from subunitarities, a quantity to detect cor-
relations can be determined from the simultaneous Clifford twirl as in [56]. We denote this
quantity by

a(Eap) == eap —ea - €p. (4.89)
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Figure 4.4: Correlation unitarity vs. addressability. Correlation unitarity is largely inde-
pendent from existing addressability measures, while Kraus rank is a better indicator of the
the value of u., which is consistent with it capturing the non-separable correlations between
subsystems. This suggests the measure might be suitable for benchmarking 2-qubit gates
where the unitary transfer of quantum information between subsystems is required. The
above plot is for random channels of different ranks from the distributions of Bruzda et al.
and simulated using QuTip [2, 3].

where €45 is an effective noise channel associated to the Clifford gateset acting locally on
each subsystem A and B. The three decay parameters e 45, €4 and e are extracted from the
randomized benchmarking protocol that applies simultaneous local Clifford gates to subsys-

tems A and B and are given in terms of the Liouville data for the channel as

ea = agtr[Ta_, 4l
ep = Qp tr[TBﬂB]; (4.90)

eap = aaaptr[Tapasl,

with the coefficients a x as defined earlier.

For a product channel, Tap_,ap = Ta—4 ® T, p and therefore a(€4 ® Eg) = 0. In this
manner, any deviation of a(€) from zero is taken as detection of correlated behaviour. Note
that in contrast to subunitarities, these measures are not invariant under local basis changes
which makes it more problematic to interpret as a strict correlation measure.

It is easy to verify that the correlation unitarity provides independent information to a

simultaneous RB protocol. For example, the CNOT gate is undetected by the addressabil-
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ity correlation measure; however it is detected by correlation unitarity. Figure 4.4 shows
that this independence is generic for bipartite channels, and we find that there are regions
where the addressability correlation measure is zero or close to it, but the correlation unitar-

ity varies greatly.

4.6.2 Overview

Our starting point in Chapter 3 was to develop simple, yet effective measures of correlations
in quantum channels and means to assess sub-structures of such channels. The approach
was motivated and guided by the idea of introducing measures that can be both efficiently
estimated through RB-type of techniques and interpreted operationally as to quantify non-
separable correlations, as we have shown in this chapter.

Certain subunitarities of a general bipartite channel can be interpreted as unitarities of
locally acting channels induced by state preparation and discarding on one subsystem. We
showed that they satisty a set of inequalities that express an information-disturbance rela-
tion. This opens up new directions to analyse non-classical features of quantum channels
directly from their robust tomographic description [4].

In the context of benchmarking of quantum devices, it will be of interest to develop hard-
ware implementations of the protocols here and determine how effective and useful they are
in practice. Such analysis will closely investigate the effects of reset errors for the subsys-
tem unaddressed by target gates. Our simulations show that our second protocol, while not
fully robust can still allow small reset errors to estimate magnitudes of correlated noise, but

ultimately whether this is a reasonable assumption must be assessed for the system at hand.






Efficient and robust verification of
guantum no-go theorems

Fear them not therefore: for there is nothing covered, that

shall not be revealed; and hid, that shall not be known.

King James Bible
Matthew 10:26

Within Chapter 2 we established a framework to capture the incompatibility of channels
for both quantum and classical theories, based around sets of Compatible Unitarity Pairs
(CUP-sets). For quantum theory, we showed that CUP-sets capture both the no-cloning
and no-hiding theorems, as well as broader quantum incompatibility. Having established
this relationship, we now turn to the estimation of quantum CUP-sets (both isometric and
reversible) on noisy quantum devices. As we based our framework on ideas from bench-
marking our ultimate goal is to produce robust schemes, however we should also test the
effectiveness of simpler techniques.

We therefore take two approaches here. For the first, we apply a ‘direct’ approach where
we construct the minimal possible circuits to estimate points on a CUP-set. To do this we
employ a SWAP test, a standard quantum circuit primitive to measure the purity of quan-
tum states, that we can relate to CUPs. However, these techniques do not differentiate be-
tween noise in the channels generating a CUP-set and the preparation of the SWAP test itself.
Therefore to achieve more accuracy we move to more involved techniques.

Our second approach is to consider ideas from device benchmarking such as randomized

benchmarking and spectral methods [57, 83]. We show that, with some assumptions, both
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Figure 5.1: Circuit decomposition in IBM gateset for lower right isometric CUP-set sur-
face. Circuit for 2 qubit isometry CNOT$5(p @ |0)X0]), and complementary channels £ &
& for the lower right surface of the CUP-set are shown. The final R rotation is optional but
aids in the estimation of CUPs through spectral techniques.

the simplest isometric and reversible quantum CUP-sets can be estimated more accuracy
and with robustness to some SPAM errors. The randomized benchmarking protocols we
introduce are different to those in Chapter 4, specifically because we now interleave a target

unitary but require less advanced mid-circuit measurements.

We test the performance of both approaches through simulations of a noisy IBMQ quan-
tum device. We then discuss to what degree we can infer that current devices obey the limits

of quantum theory.

5.1 Initial considerations

In this section we discuss some considerations that apply to all the methods we use.

5.1.1 Decomposition with device gatesets

Our simulations using IBMQ focus on two qubit systems as this allows for the smallest non-
trivial quantum CUP-set. This was the isometric quantum CUP-set with dx = d4 = dg =
2. Any method for estimating a point (u, @) in the CUP-set will require the preparation of the
associated channels (£, £). We have shown in Figure 2.3 that any pair can be generated with
two CNOTs and two single qubit rotations about the Pauli Y axis. However a device will have
a specific gateset of operations, and so for any experimental relation we should ensure (€, £)
can be decomposed efficiently. This s particularly important in the current era devices when

noise prohibits circuits of even modest depth.

For a typical IBM device, the native gateset is given by the single qubit operations Rz (),
v/ X and X, along with the two qubit C NOT gate. In Figures 5.2 and 5.1, we give the min-
imal circuits generating the boundary of the isometric quantum CUP-set in this gateset. As
the channels (€, £) can be efficiently decomposed this opens the path to estimation on a cur-

rent noisy IBM device.
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Figure 5.2: Circuit decomposition in IBM gateset for lower left isometric CUP-set surface.
Circuit for 2 qubitisometry CNOTg, o C NOT4p(p®|0)0]), and complementary channels
E & & for the lower left surface of the CUP-set are shown.

5.1.2 Effects of noise

The methods for estimating CUP-sets we employ can be separated into two stages: (i) the
preparation of the channels that generate the CUP-set, (ii) the estimation of the prepared
channel’s unitarity. There will be errors associated with both (i) and (ii). The errors in (i) are
our primary interest as they place a limit on the device’s performance at estimating CUPs.
However for the direct methods introduced shortly we cannot easily distinguish between
these errors, so refer to a noisy version, (-)y, of the whole process (uy, uy) for estimating
(u, ).

The simplest way to model how noise affects CUP-sets is through a depolarizing channel

given by

D, = (1—p)id+ pD (5.1)

where id(p) = p & D(p) = o, for o another fixed quantum state. Given u(id o £) = u(€ o
id) =u(€)and u(D o &) = u(€ o D) = u(D) = 0 then for any CUP-set we have

(U’NvaN) = (U(DPA °© 5)? U<DPB © g))a

) . (5.2)

= ((1=pa)u, (1 = pp)~a).
Therefore by varying p4 & pp independently a CUP-set can be projected towards either axis,
or towards the origin. We illustrate this process in Figure 5.3. As this allows us to reach
any point in the full CUP-set (C,), we will use depolarization as a crude way to quantify how

‘noisy’ an estimated CUP-set is (C or C,.).

We have shown that the channels generating the border of the simplest quantum CUP-set
can be efficiently decomposed into the gateset of a real device. Further, as the CUP-set
deforms in a simple way for depolarizing noise, we can use such noise as a blunt way to

compare the noisiness of experimental CUP-sets.
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Figure 5.3: CUP-set deformation through depolarization. The simplest quantum CUP-

set C is shown when one output is depolarized, (u(D, o &), u(€)) for difterent values of p.

5.2 Direct CUP-set estimation through state purity measure-
ments

In this section, we use formulations of unitarity in terms of quantum state purities to con-
struct simple circuits to estimate CUPs. We use these to estimate a representative selection

of points on the perimeter of the CUP-set using a simulation of an IBMQ device.

We designed our framework of CUP-sets with SPAM robust methods in mind. However
we should first test the performance of more elementary techniques with lower experi-

mental overheads.

5.2.1 Estimation through complementarity formulation

For any quantum channel, £, (with input dimension dx) we can express the unitarity in terms

of purities as

dx

() = 2 (€GN (). 6.3

where € is any channel complementary to £ [61]. For the isometric CUP-set, C, any compat-
ible pair of channels (€, £) will be complementary to each other. Therefore, by estimating
the two purity terms in equation (5.3) we get the point (u, ).

The purity of a quantum state can be estimated through a SWAP test [32]. For two un-

known quantum states, p & o, the following circuit performs a SWAP test of the states

|0X0] (Z)

>

(5.4)

o >
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(a) For X! = X & X° = id, the above circuit gives an estimation of v(£(1/2))
through the relation % ((Zo,0) 4+ (Zo1) + (Z1,0) + (Z1,1)) = v(E(1/2)).
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(b) The above circuit gives an estimation of the Choi state purity with (Z) = v(J(£)).

Figure 5.4: Unitarity estimation with state purities. Circuits for estimation of unitarity
u(&) of single qubit channel £ through SWAP test and state purity relations.

giving (Z) = tr[po], for the expectation value of Pauli Z measured on the first qubit. The
central gate is the controlled SWAP (or Fredkin) gate.

Withp = 0 = £(1/2) or p = 0 = E(1/2) (restricting to the case dx = ds = dp = 2),
we can use the SWAP test circuit on a quantum device to get direct, albeit noisy, estimation
(un, uy) ofapoint (u, u) of the CUP-set. This however requires the preparation of the max-

imally mixed state, which we discuss in Section 5.2.3.

5.2.2 Estimation through Choi state formulation

For the reversible CUP-set, C,, the resulting compatible pair of channels (€, £) are not nec-
essarily complementary to each other. While it is straightforward to derive complementary
channels for the families of channels we consider, the number of purity terms to be estimated
from equation (5.3) doubles compared to C. Further, these new complementary channels
will necessarily have a larger dimension, thereby increasing the complexity of the SWAP test.
However equivalently, and perhaps more naturally, we can formulate an approach using only

the channels (£, £) through the Choi-Jamiotkowski isomorphism.
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For any quantum channel £ (with input dimension d x) we have

(dx(T(€)) =(E(52))) (5.5)

where J (£) is the Choi-Jamiolkowski state of the channel (see Definition 3.4) which is given
by

T(E) =€ @id(V). (5.6)

The state ¢ = |¢)(¢] is a generalized Bell state, |¢) := \/% Z?X i) ® |i), which has dimen-
sion d% [32, 61].

Restricting to dx = d4 = dp = 2, from equation (5.4) we can estimate the first purity
by preparing two copies of the Choi state e.g. p = 0 = J (). For a channel with dimension
d, the Choi state has dimension d?, therefore the number of target qubits in the controlled
SWAP for C, is doubled compared to estimating C. The second term in equation (5.4) can

be obtained from p = ¢ = £(1/2). As this process must be repeated for u(€), estimating

points on C, will generally require twice the number of experiments of C.

For any channel £, we can relate the purity of certain states (such as the Choi state, 7 (£))
to the unitarity, u(&). For the channels that generate the CUP-set we can can then esti-

mate these purities directly through very simple quantum circuits.

5.2.3 Preparation of the maximally mixed state and experimental results

Both ofthe above methods require the preparation of the maximally mixed state. With a uni-
tary circuit, we can do this (i) statistically, by averaging the results of experiments performed
on computational basis states, or (ii) by discarding information about a prepared pure state
(e.g. amarginal state of a Bell state). The former method requires more experiments while
the later introduces further uncertainty into the estimation.

We use (i) to estimate the isometric CUP-set C using complementarity formulation, as
it requires a smaller system size. The exact circuits for the complete purity estimations are
given in Figure 5.4(a). We then experimentally estimate a range of CUPs on the surface of the
CUP-set C on a simulated IBM device. The results of this experiment are shown in Figure
5.5(a) where a partially depolarizing model has been fitted to each surface.

Then we pair (ii) with estimation through the Choi state. The exact circuits for this
method are given in Figure 5.4(b). We again estimate a range of CUPs on the surface of the
reversible CUP-set C,.. The results of this experiment are shown in Figure 5.5 (b) where a

partially depolarizing model has been fitted to each surface.
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Figure 5.5: Direct estimation of quantum CUP-sets. The two simplest quantum CUP-sets
are experimentally estimated directly through SWAP test schemes. A best fit depolarising
noise model has been applied to each surface (see Table 5.2).

5.2.4 Discussion of direct methods

The direct methods we have implemented have a few sources of errors. For any estimated
CUP, (uy, uy), the largest error, in terms of the size of intended operation, will be on the
controlled SWAP gate(s). Secondly, as the SWAP test relies upon the final measurement
being taken in the correct basis, the direct methods are sensitive to even small final SPAM
errors.

Examining Figure 5.5 we observe variance in the data, even after a round of averaging
over 100 experimental runs has been performed. The lack of robustness to SPAM errors,
means that we cannot ascribe this variance to one source — it may come primarily from SPAM
(uy =~ upy(&)) or it may occur in the preparation of the channel itself (uy ~ u(Ey)). This
is the main weakness with the direct methods, compared to methods we discuss in the fol-
lowing section. However, we note that even after the depolarizing fit is applied, for both C
and C, the noisy estimated CUP-set is found strictly below the no-cloning upper bound, and
therefore in the full CUP-set C,.

The direct methods work reasonably well, however we cannot separate the errors occur-
ring in the experimental procedure (the SWAP test) from the more fundamental errors in
the target channels (€ and £). We therefore will need more advanced techniques to better

isolate the latter errors which are truly the limits of the device.

The size of parameters needed for the depolarizing fit let us compare between the estima-

tion of C and C,.. From Table 5.2, the estimated depolarization is two to three times higher
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for C,. As the channels required to generate C, are very similar to C, we can prescribe this
increase directly to the larger overhead and complexity of the protocol for C, .

Finally, we note that the direct methods rely on a SWAP test(s), and are therefore not
efficiently scaleable in number of qubits. From Figure 5.4 we can extrapolate that for (€, £)
being n qubit channels we would require a system of 4n + 1 qubits. However these methods

are quite efficient in the number of runs required as detailed in Table 5.1.

5.3 SPAM robust CUP-set estimation through RB

With the direct method of the previous section, we make no distinction between errors in the
implementation of the target channel, and errors in the estimation protocol including initial
state preparation and final measurement SPAM errors. This severely limits the usefulness
of the direct method as a measure of whether a device obeys the CUP-set’s informational
bounds. For example, in the extreme, we could imagine a device that implements any quan-
tum channel perfectly but has SPAM errors such that it applies a final Hadamard transform
on all qubits before measurement. With the direct SWAP test method, this would only gen-
erate the point (0, 0) on the CUP-set diagram. From this we might conclude the device is not
acting as a closed quantum system — when in fact, prior to measurement, it was performing
perfectly.

With the above in mind, in this section we consider protocols to estimate quantum CUP-
sets that are robust to SPAM errors. However will see that the SPAM robust protocols come
with a cost of much larger operational overheads, and introduce difterent sources of potential

noise compared to the direct methods.

5.3.1 Estimation through randomized benchmarking

Through randomized benchmarking (RB) [57] we can estimate the unitarity u(A¢) of the
average error channel A induced by a computational gateset {U} generating the Clifford
group. Here we use the notation A for noise channels to avoid confusion with the specific
channels that generate the CUP-set, (€, £).

If we interleave the target channel, &, (of fixed dimension) between rounds of random
Clifford unitaries in the RB protocol, we can estimate the unitarity of the joint channel u(& o
A¢). Therefore in the limit A¢ = id the interleaved RB protocol returns an exact estima-
tion of u(&). More generally, as unitarity is proportional to the Hilbert-Schmidt norm of the
channel’s matrix representation we also have the relation u(€ o A¢) < u(€)||A¢||s0, where
||Ac||oo corresponds to the largest singular value of the average noisy Clifford gateset chan-
nel. This may also be determined, for example via spectral methods as in Section 5.4 to obtain

more precise bounds for u(&) in the presence of noisy Clifford operations.
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1. Prepare the system in the state p4 ® |0)(0] 5.

2. Select a sequence of length k of random elements of the Clifford group, {U¢;}, on
subsystem A, starting with k£ = 1, while performing a reset on subsystem B after every
gate. E.g. for each gate Uo; ® D

3. Interleave the bipartite unitary U, g after every Clifford gate (such that the final gate
is a Clifford gate).

4. Estimate the square (m4)?, of the expectation value of an observable M 4 on subsys-
tem A for this particular sequence of gates.

5. Repeat 1,2, 3 & 4 for many random sequences of the same length, finding the average
estimation E,[(m4)?] of (m.)?.

6. Repeat 1, 2, 3,4 & 5 increasing the length of the sequence k by 1.

7. Fit the data E,[(ma)?] = co + 18" where ¢y, ¢; are real constants, and find the
estimated unitarity, s.

Protocol 3: Interleaved unitarity RB for marginal channel £(p) := trp o Uap(p ® [0)X0]).

Applying interleaved RB to an estimation of the CUP-set follows from the above. How-
ever, inaddition, it involves an interleaved implementation of € using an ancilla initialisation,
the global unitary U4 5 and a partial trace. We require the additional assumption that we can
perform mid-circuit resets, D(p) := |0)0], and that the noisy version of these resets are in-
coherent — in that none of the state p is carried through even if D induces some larger error
on the device. This allows us to include the error D in Ac.

Through interleaved RB we can estimate the unitarity of the following channel ina SPAM

robust manner

En(p) =trp o Aap olUap o Ac(p @ 10)0]), (5.7)

where A 45 is the noise channel we want to probe associated with the experimental imple-
mentation of (€, £), the channels generating the (isometric) CUP-set. In the noiseless limit
Ac = Aap = id, Protocol 3 returns exactly u(€) in the isometric CUP-set C.

Protocol 3 gives the decay parameter that estimates s = u(&y) for the noisy channel £y
which includes the device errors from preparation of the channel £, but also protocol-specific
errors coming from the noisy random Cliffords.

The protocol for £ is very similar but requires an additional SWA P operation which we
can absorb into the interleaved unitary, U, ; = SWAP o U,p but this may have some re-

source costs associated with it. Allowing us to estimate u(Ey) for

5N(P) ZtTAOAAB OUABOAc(p®|O><O|). (58)

Proofs showing that the above protocols indeed produce estimates of CUP-sets can be found
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shortly in Section 5.3.2. An examination of how the protocols behave under gate indepen-

dent noise is given in after this, in Section 5.3.3.

With the (physically unrealistic) assumption there are no errors associated with the gate-
set or mid-circuit resets, A¢ = id, an interleaved unitarity RB protocol returns an exact
estimation of a point (u, u) in the noisy CUP-set. This applies even in the presence of ini-
tial and final SPAM errors.

We implement these protocols on a simulated version of the 1BM BELEM device, in an ef-
ficient manner (see Protocol 4) [5]. The results of the experiment for C are shown in Figure
5.6(a), and for C, in Figure 5.6(b) where a depolarization model has been fitted to each sur-

face.

5.3.2 Interleaved unitarity protocol for (£, £) without noise

We now give a pictographic sketch of the proof for Protocol 3 without noise, showing that it
reduces to the form of a unitarity benchmarking protocol as discussed in Chapter 3.
Define the elements of the Clifford group on qubit A to be {{/4,;}. We define channel

induced by averaging over many Clifford unitaries as

1 N
Z/{A = NZCA” (59)

In the case A = A¢ = id, the circuit diagram representation of Protocol 3 is

PA | Z/[A | UA MA
Uap (5.10)

—{D}-»

Repeat £ — 1 times

where < indicates the channel preparing |0)(0| and » the trace operation. As » 4= D, the

circuit reduces to

! Uap ! (5.11)

which further reduces to . -

PA Us—E—UA My (5.12)
L —_—__ ____ _

Repeat £ — 1 times

Which is exactly the right form for the circuit to estimate (). The decay parameter e; in

Protocol 3 is then exactly u(€) in this idealised case.
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The protocol to estimate u(€) is the same as for u(€) replacing U 45 with SWAP o U p.
This follows from the fact that

£(p) == traolap(p @ [OY0|) = trp oSWAP o Usp(p @ |0X0]). (5.13)

or as a circuit diagram

= | (5.14)

<4 >

where we implicitly assume d4 = dp, which is appropriate in this two qubit case.
Therefore, in the noise free limit, see how the protocols average the channels (£, £) over
the Clifford group and produce an estimate of any point (u, «). However, of more importance

is the behaviour of the protocol under device noise, which we shall explore now.

5.3.3 Interleaved unitarity protocol for (£, £) with noise

In this section we set out the minimum assumptions required to produce interleaved unitar-
ity RB circuits, where all operations are assumed to be noisy. We then show how this effects
the estimation of CUP-sets. For channels, states, functions, any X, we write the noisy ver-
sion X .

For a two qubit system when we implement any gate or mid-circuit measurement, the
noise associated with the process may eftect the whole device. Therefore we should model
errors as bipartite quantum channels. We make two simplifying assumptions about these
errors. Firstly, we consider the noise to be fixed across the Clifford group gateset, such that
Ac; = Acforalllf;. E.g. U; y = A¢ oU; ® idp. Secondly, we assume the reset of a qubit
is perfectly incoherent, but potentially noisy. Therefore the total channel can be written as
Dp N = Ap 0idy ® Dp, with a general bipartite error channel Ap.

A direct consequence of these two assumptions is that we can write the noisy version of

the summation of Clifford unitaries ¢4 x and the reset operation as

] L U, L
Uan @ Dp.n - Ac (5.15)

B R o7 S

where A¢ is an error channel associated with the operations together. Putting this together

with a noisy version of the interleaved unitary Usp y = Uap o Asp we can write a noisy

version of the circuit for Protocol 3:

Repeat k — 1 times
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Further we can write the reset operations as trace and preparation operations in our nota-
tion and absorb the initial and final error channels as SPAM errors in the A subsystem. This

leaves us with:

o U T Ui M)

Repeat £ — 1 times

As the protocol is SPAM robust, we get an estimation of the unitarity u(€y) of the channel
En(p) :=trgoAapolUsp o Ac(p® [0X0]).

When we implement the protocol for £ we will have an additional required operation,
SWAP, which we absorb into the joint unitary, U, ; = SWAP o Uup, but there maybe
additional noise associated with it. We can write the noisy version of this in full generality
withilyp v = SWAPN olUap n = Aap o SWAP o Uyp. This leads to a noisy circuit of the

form

F-— -~~~ - === a
PN — — May
: Ac Uap Aap : Ac (5.18)
|0X0] 5 Dp — Dg >
L o ___ N

Repeat £ — 1 times

Finally, absorbing the initial and final error channels as SPAM errors in the A subsystem

leaves us with:

Repeat & — 1 times

Giving an exact estimation of the unitarity u(Ey) for the channel Ex (p) = traoAypolapo
Ac(p @ [0)0])-

Putting this together we have considered the gateset noise to be fixed across the gateset,
A 4B, and have assumed the reset of a qubit is perfectly incoherent (but potentially noisy).
Under such circumstances the interleaved unitarity RB protocol estimates the unitarity, u(Ey)
ofajoint quantum channel for a process £y which contains the target process £ and the above

error channels.

With some assumptions on the nature of device noise, the interleaved unitarity RB pro-
tocol still returns an estimation of a point (u, @) in the CUP-set, however there will be
contributions from errors in the gateset and mid-circuit resets. However, it remains to

see how these techniques perform compared to the direct methods.
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1. Select a random sequence, Uy := U, 0 E oUy_1 0 E o ... oUy o € o U, of random
Clifford gates interleaved with target channel £.

2. Prepare the system in the state p. ; := 5(1 & P,) for all non-identity elements P, of
the Pauli group P # 1. In the single qubit input and output case, the states p, ; are pure
states given by py ; = {|+) ,[—) . [+4) ,|—17),|0), [1) }.

3. Estimate the average purity of the sequence across all possible traceless input and out-
put Pauli operators:

d2—1

> (P Clps)] — tr[P; Cilp-)])*.

1:7‘7‘

1
d?—1

qx =

4. Repeat 1,2 & 3 for IV, random sequences of length £, finding the average estimation
Elg] == 7 Y k" i

5. Repeat 1, 2, 3 & 4 increasing the length of the sequence, e.g. k = k + 1.

6. Fit the data with E[g] = ¢;5"7}, to find s the estimated value of u(£).

Protocol 4: Efficient interleaved unitarity RB for single qubit channel £, adapted from [5].

5.3.4 Efficient implementation of protocols

In the experiments for the SPAM robust CUP-set, we perform an efficient unitarity RB pro-
tocol, as introduced in [5]. Here we mean efficient in the sense that the protocol is optimal
rather than it scales linearly with system size. The protocol is particularly useful as it allows
for rigorous bounds on the variance in the associated decay curve, and therefore the value of
unitarity extracted '. Protocol 4 summarizes the efficient unitarity RB protocol given in [5]
applied to our methods here, where we consider interleaving a single qubit channel.
Efficiency, in the sense of a linear scaling of operational costs with system size, can be
achieved in a unitarity benchmarking protocol if one has access to two copies of the system [5,
107]. However this approach requires the assumptions that: the local errors on each system
are identical, that entangled states across both systems can be created, and that there are
no unwanted (noise) correlations between the systems. These assumptions are extremely
unlikely to hold outside of a fault tolerant device. Therefore for our simulations using 1BM

BELEM we use the single system protocol given above.

5.3.5 Discussion of SPAM robust methods

We now discuss the limitations of the interleaved randomized benchmarking technique we

give for estimating CUP-sets. While the protocol is robust to initial and final SPAM errors, it

"This scheme could be straightforwardly applied to the subunitarity protocols given in Chapter 4.
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Figure 5.6: SPAM robust estimation of quantum CUP-sets. The simplest quantum CUP-
sets are experimentally estimated through an interleaved unitarity randomized benchmark-
ing scheme. A best fit depolarising noise model has been fitted to each surface (see Table 5.2),
where each surface is produced from 9 pairs of experimental values.

relies on mid-circuit measurements to perform resets which must be incoherent (but can be
noisy). Under this assumption, the decay parameter of the protocol gives a robust estimation
of the unitarity of the given channel, s = u(Ey). If; as we might expect on a NISQ device, the
reset allows some coherent information through, then the decay parameter can no longer be
directly related to the unitarity, e.g. s = un(Ex). For further discussion see Section 5.3.3.

For the channels (€, Ex) to be close (in terms of unitarity) to the channels that gener-
ate the CUP-set (€, £), we need the error A¢ on one qubit Clifford unitaries to be small. As
the error preparing (€, £) should be of similar size to A¢, then we expect that the approxi-
mately half of the depolarizing fit required in Figure 5.6 can be attributed to the preparation
of (£,€).

5.3.6 Comparison with direct methods

While the SPAM robust methods require an additional assumption about the nature of resets
on the device, this is a vast improvement over the direct methods of Section 5.2, where errors
arising in the protocol and in the channel preparation could not be separated. Further, the
estimation of each CUP-set obtained through interleaved RB is significantly better in terms
of the required depolarizing fit than the direct methods (see Table 5.2). The variance in the
data points is also significantly lower for interleaved RB, even when performing an additional
round of averaging for the direct methods. However the number of individual runs required

for each data point is higher as shown in Table 5.1.
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Figure 5.7: Bound on CUP-set through random unitaries. For two surfaces of the isomet-
ric CUP-set C (for a range of 50 discrete values of 0 < a < 1) we can test how quickly the
lower bound given in Lemma 5.1 converges towards the actual unitarity given in Theorem
5.1. Roughly, we observe, for bound within 1% of the unitarity we need 1 random setting if
u > 2/3, and at most 100 random settings for lower values.

By adapting randomized benchmarking methods designed for SPAM-robust estimation
of device noise, we achieve a much better estimation of a CUP-set that more accurately
reflects the limits of the quantum device. This improves our ability to test whether quan-

tum devices obey the limits of quantum theory.

Additionally, we see that the interleaved RB protocol is very good at estimating points
where v or u = 0, especially compared to the direct methods. This is likely due to the fact
that, for the direct methods, these points require the estimation of two non-zero purities for

any value of u, whereas the SPAM robust methods estimate a single decay parameter.

5.4 Estimation through spectral methods

We next discuss if spectral methods (that estimate eigenvalues of a channel) are an alternative
SPAM robust path to estimate CUP-sets. We include two results that link unitarity to quan-
tities estimable through spectral tomography [83] which may be of independent interest.

5.4.1 Unitarity and channel eigenvalues

Any quantum channel £: B(H) — B(H) on a system H of dimension d has a (Liouville)
representation as a d*> X d? matrix. Its non-unital ¢ — 1 x d* — 1 block T has eigenvalues

{A\i(€)} that are real or come in complex conjugate pairs [146]. Further, we can relate the
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singular values, {0;(€)}, of T to the unitarity via [83]

w(&) = d21_ - Z oi(€)%. (5.20)

The set {\;(£)} can in theory be estimated SPAM robustly for some noisy target process
through spectral tomography [83]. Bounding the unitarity of'a channel using its eigenvalues
may provide a route to estimating points on the CUP-set.

The following holds for all quantum channels of fixed dimension, and allows us to lower
bound the unitarity of a channel in terms of the eigenvalues of the channel under changes of

basis.

Lemma 5.1. For any quantum channel &, of fixed dimension d and unitary channels U; and U,

we have
d2—1 )
])\k(Z/{Z o 8 OUj>|
> . .
u(&) > ,;:1 =1 (5.21)

Proof. For any quantum channel F, T’ is real matrix [147]. From Weyl’s Majorant Theo-
rem [148], Zd IN(F)? < Zd ' o4 (F)?, where A\ (F) denote eigenvalues and o (F)
singular values of 7. With 7 = U; o € o U; for unitary channels U/; & U it follows that

d?>—1 d?—1
Z ‘)\k(Z/{ZOSOZ/{])Ql S Zak(uiOgOZ/{j)Q. (522)
k k
Further more
d?—1 d?-1
> onUioEolthy)? =D an(€)’ = (d — 1) u(€) (5.23)
k k

from the invariance of singular values under unitary rotations, which completes the proof.
0

Further, for a single qubit channel, we can always saturate the above bound.

Theorem 5.1 (Variational formulation of unitarity). Forany single qubit quantum chan-

nel £, maximising over all single qubit unitary channels {U; } and {U; } gives

Me(Us 0 € olUh)[?
u(€) = Hll%l)fz 3 ) (5.24)

Proof From the previous lemma we have 377 [\ (U 0 € o U;)?| < 23 04 (Ui 0 € o U;)? for
alli; & U;. However for a single qubit channel, £, we can always find [47] two specific uni-
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taries Uy & U, such that Ty ocqs, is @ diagonal matrix, and therefore the eigenvalues and sin-
gular values are equal {\;(Uy o E olUy)} = {0;(U1 0 E oUs)} and

3 3
Z |)\k(b{1 o0& OZ/{Q)Z‘ = Zak(zxﬁ o0& OUQ)Q, (525)
k k

saturating the inequality. Therefore over the complete set of single qubit unitary channels

{U;} and {U; }, from the above two equations

3 3
{{neb)j; AU 0 Eo0l;)?| = ;ak(l/ﬁ o & olhy)? (5.26)
which completes the proof. N

The practical application of Theorem 5.1 to the channels that generate the simplest CUP-
set (when (€, €) are both single qubit channels) is shown in Figure 5.7. We now consider how
these results could be used if one has access to channel eigenvalues through benchmarking

protocol.

5.4.2 Estimation of CUP-set through spectral tomography

Putting this together, a spectral protocol to estimate a CUP-set would require the following
steps. For any point, estimate the eigenvalues of the channel I4; o £ o U, through spectral to-
mography for M different randomly chosen if; & U;. From Lemma 5.1, the set of estimated
eigenvalues provide a lower bound on u(Ey) where Ey is a noisy experimental implementa-
tion of U; o € o U,. Repeat for € to obtain a lower bound on u(€y) similarly. For M — oo,
and in practice for at most M = 100 (see Figure 5.7), from Theorem 5.1 the estimated lower
bound becomes an estimation of exactly the required unitarities.

We performed the above sequence of spectral tomographic experiments on a simulated
version of the IBMQ device, 1BM BELEM. However, using a similar number of resources to
the interleaved RB protocol, we were unable to extract eigenvalues accurately from the to-
mographic data. For state vector simulations with a fixed gateset error (and without sam-
pling) we were able to extract eigenvalues correctly. Therefore we suspect that the gate-
dependence of errors or issues with the finite sampling of expectation values impede the es-
timation process. While increasing the number of shots may help with the later, the experi-

mental overhead would be greatly increased compared to the other techniques we consider.

Alternative SPAM robust methods to estimate the CUP-set with a lower experimental
overhead would be desirable. Here we gave several results for how spectral tomography
could be used but were unable to extract CUPs with this method in practice. We leave
as future work the implementation of other techniques which may allow for the robust

estimation of CUP-sets, such as randomized measurements [149].
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5.5 Conclusions

Quantum CUP-sets are simple and geometrical tools for analyzing the incompatibility of
channels under quantum theory. We have developed methods to estimate the simplest quan-
tum CUP-sets through direct purity relations, but also — with some assumptions — ina SPAM
robust way through interleaved randomized benchmarking of unitarity. We then tested the
effectiveness of these methods with simulations of an IBM device. In doing so we completed
our aim of testing quantum theory using current quantum devices — where noise is a major
obstacle to producing reliable tests.

As quantum CUP-sets encapsulate quantum incompatibility they may be used as a tool
for benchmarking quantum devices. While estimating many points on the CUP-set may
not be an efficient method of benchmarking, the extremal points of the isometric CUP-set
(given for the qubit case by (0, 1), (1,0) and (1/3, 1/3)), requires just 6 experiments. The ex-
tremal points capture both the core CUP-set geometry and the unitarity-based information-
disturbance relation given in Theorem 2.1, and therefore are a natural minimal set.

Future work will focus on implementing the estimation methods for CUP-set on different
quantum hardware. In particular, we may also consider randomized measurements [149] for
direct purity estimation, which would give an additional method to produce the CUP-set,

with minimal implementation overhead.
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Upper C Left C Right C, Left C, Middle C. Right
Interleaved RB (0.063,0.137) (0.032,0.125) (0.095,0.159) (0,0.015) (0.047,0.107) (0,0)
SWAP test (0.165,0.147) (0.073,0.160) (0.084,0.153) (0,0.562) (0.365,0.337) (0.253,0)

Table 5.2: Depolarization fits for noisy CUP-sets. For each experimental estimation of the quantum CUP-sets C & C, we fit a depolarising
noise model (uy, uy) = ((1 — pa)?u, (1 — pp)?u) to each surface (see Section 5.1.2). Best fit values for (p4, pp) are tabulated here.



Concluding remarks

In the dime stores and bus stations,
People talk of situations,
Read books, repeat quotations,

Draw conclusions on the wall.

Love Minus Zero
Bob Dylan

Our overarching research question in this work was whether tools from the benchmark-
ing of quantum devices could capture fundamental features of quantum theory. The uni-
tarity of a quantum channel is measure of coherence for the channel that appears naturally
within randomized benchmarking protocols. To answer our research question we developed
a range of results building on the unitarity and connecting with foundational ideas such as
quantum no-go theorems and strictly non-classical effects like non-separability in quantum
channels. We chose our research question because we could relate it to three useful goals.

These were:
(1) To test the limits of quantum theory using current noisy quantum devices,
(2) To gain independent information about the nature of device noise,
(3) To provide efficient and robust certification of non-classical effects.

We now briefly summarize how we approached these goals, and whether we achieved them.
Following this, we examine how the ideas we have presented relate to other areas of research

and they could be built upon in future.
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6.1 Summary of results

Within Chapter 2, we extended the unitarity of quantum channels to channels in other prob-
ability theories. Then we used this generalised measure to establish a framework for captur-
ing quantum incompatibility based around sets of compatible unitarity pairs — CUP-sets.
We showed these CUP-sets encode no-cloning and no-hiding and allow for a simple geo-

metrical comparison with classical theory.

Having taken an ‘outward’ looking approach in the first chapter, we turned ‘inwards’ in
Chapter 3. Namely, we considered how unitarity can be extended to subsystems within a
channel. We defined subunitarities which capture the coherence in and between subsys-
tems within a channel. We showed that these measures have nice properties for quantify-
ing subsystem information transfer and lead to a measure for the coherence of correlations
in a channel — the correlation unitarity — which is a witness to a strictly non-classical effect,

non-separability.

While the results we obtained in the first two chapters are of independent interest, as they
connect with foundational ideas, to complete our goals we had to devise methods for estima-
tion on quantum devices. Therefore in Chapter 4 we proved that, with some assumptions,
subunitarities and the correlation unitarity can be estimated for device noise through ran-
domized benchmarking protocols. These protocols were efficient and robust to initial and
final errors in state preparation and measurements, however in general we required mid-
circuit resets which reduced robustness. When device noise can be assumed to be a Pauli
channel, through randomized compiling, we could estimate the correlation unitarity with
complete robustness. Further, we showed that our techniques work well in practice if the
reset errors are small. Finally, we showed that these methods give independent information
beyond existing benchmarking techniques namely in the form of'a novel measure of coherent
correlations which we proved witnesses non-separability and can be estimated in practice. In

this way, we achieved goals (2) and (3).

We then turned to the estimation of CUP-sets in Chapter 5, where we showed that the
simplest quantum CUP-sets can be estimated on current devices. We gave straightforward
methods of estimation and more involved methods based on randomized benchmarking.
These latter methods gave improved performance, as we could separate some of the errors in
the preparation of the experiment itself from errors in the target quantum process we were
trying to probe. As we gave an estimation of CUP-sets for a simulation of a real device, we
come close to realizing goal (1). We hope to implement the same experimental procedures

on a physical quantum device in the near future.
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6.2 Outlook

We now give some opinions on how our work could be improved or built upon, and how it
may be connected to other areas of active research.

Our primary protocol for subunitarity estimation relies on fitting a multi-exponential
decay to noisy data. In general this is a hard problem, and there will be many fits that will
approximate the decay curve. The protocol could be substantially improved by exploiting
recent statistical techniques [151] or algorithms for multi-exponential fitting [7, 152].

Throughout this work we have considered the error induced by a computational gateset
to be time-independent and gate-independent and averaged for the gateset considered. As
such, relaxing these constraints would be a natural line to develop [44, 153, 154].

Recently, many theoretical results have analysed how the effect of noise on quantum al-
gorithms results in a computation that can be efficiently simulated classically [155]. This
behaviour remains even for quantum advantage experiments [156]. Similarly, we have seen
that noise affects the quantum CUP-set by shifting it towards regions that exhibit classical
behaviour such as hiding. An interesting future direction would be to connect these two as-
pectsand determine if device benchmarking via CUP-sets can provide additional information
to bound finite size classical simulability of quantum circuits in the presence of noise.

While we expect classical devices to perform a perfect estimation of the isometric CUP-
set, the reversible classical CUP-set relies on a source of randomness to perform perfect hid-
ing. The accuracy of the estimated CUP-set can then be directly related to the bias in the
randomness. Therefore the CUP-set formulation could conceivably provide a means of as-
sessing the quality of a source of randomness.

Finally, in this work we primarily considered two theories, classical theory and quantum
theory, however CUP-sets can be derived for more general physical theories. It would be

interesting to see how the structure of CUP-sets varies between different theories.






Material related to CUP-sets

This section contains proofs and technical statements that were omitted from the discussion
in Chapter 2.

A.1 Convexity of unitarity

The following properties of unitarity are utilized within the proof of an upper bound on re-

versible quantum CUP-sets. They may be of independent interest.

Lemma A.1. Forany convex combination of channels € =3 p;&;, the respective unital matrix,
T, bas the form: Te =3 p;T¢,.

d%—1,d3—1 d%—1,d3—1 r
Proof: Te =3 % (k| € (x5)) lyr )il = D 25% (!> pi&i(z5)) lypXa;]. How-
2 192
everas quantum channelsare linear, thisis Y} p; Zj’,g byl (| Ei () lyeXs| = X8 piTe, .

O
Lemma A.2. The unitarity u(E) is a convex function of any quantum channel E.

Proof. From Lemma A.1, for any convex combination of channels & = "7 p;&; the corre-
sponding T matrix is the convex combination of each individual term, Tz = 7 p;T%,. All
norms are convex non-negative functions, including the ls norm, || - || [122]. Further, if f(x)
is convex and non-negative function of x then f(z)? is also convex. Therefore ||T¢||? is a

convex function of T¢. Putting this together with the appropriate dimension factor we have

.
2 < ZpiOéHTa
i

u(€) = al| ZpiTgi 7 = Zpiu(&-) (A.1)

which completes the proof. ]
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A.2 Analytical form for quantum CUP-set surfaces

We now calculate the unitarity of several channels analytically. This gives us the mathemat-
ical form for the surfaces of the (isometric) quantum CUP-set.
A.2.1 Upper surface (ST AP?)

Lemma A.3. Forthe isometry V,(p) := SWAP*(p ® |0X0|) where 0 < o < 1, we define the
marginals £,(p) := trg[V(p)a] and E,(p) = tra[V(p)a]. The unitarities of each marginal are

u(&,) = w (A.2)
and
W) =1 - 1= 5);3 +9) (A.3)

respectively, where s = sin?(%2).

If we consider the sum of the marginals from Lemma A.3 we have

2s5(1 — s)

u(Ea) +ula) =1 - =

(A.4)

with 0 < s < 1and produce a tighter bound on the marginals, namely for any isometry with

dx = dy = dp = 2, foragiven u(€) we have
u(€) <34+ u(&) —2y/1+ 3u(€). (A.5)

Proof (of Lemma A.3) First we must obtain a useful analytical form for SW AP®. As SW AP

is a unitary channel to derive the analytical form it is sufficient to find the unitary matrix U

that transforms the two qubit pure state 1)) ® |¢) such that

Ul) @ |¢) = |¢) @ [¥) . (A.6)
From this definition we can write

U = [00)00] + |10X01| + [01)(10] + [11)(11],
L@ 2 2 2 (A.7)
where {1, X, Y, Z} are the Pauli matrices on 1 qubit. Defining the Bell states as [$.) :=

\%(|00> +]11))and |V.) := \/Li(|()1> +]10)), we can diagonalise this unitary as

U = @)+ [N | + [0 ) | — WY,

. (A.8)
— N D ]+ [N + [T YT+ [T
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As SWAP(p) = U*p(U*)T, up to a global phase we can find [157]
U = [, |+ [0 Y| + [0 )|+ e [y |, (19)
and through careful expansion
U™ = 00)(00] + [11)(11]

+ X1 4 @) (Joryor] + [10)10)

2
1 .
+ 5 (1= e™)(|01)(10] + [10)(01}),
2
L oee ©2y 1 imay (1 ®2 ®2 1 ira) (v ©®2 ®2 (A.10)
:§(]l +7Z )+Z(1+6 (1% —Z )—1—1(1—@ J(XF2 Y97,
— %(1 +€i7TCM)]1®2 + i(l _ eiﬂa)<]1®2 —|—X®2 —|—Y®2 4 Z®2)7
1 , 1 A
= 5(1 + e 192 4 5(1 — ™.
If we now expand the isometry definition we have
V(p)a = Up @ [0)0] (U*),
1 < 1 ,
— (5(1 + e 1®2 + 5(1 —e™\U)
(p @ 10X01)
1 , 1 ,
(G141 4 (1 — )
(A.11)

_ cos(%)znf@?(p ® |0)0) 12 + sin(%)zy(p ® |0X0)) U

+ 5 sin(ma) 1(p ® |00) Ut — = sin(ma)U(p @ |0)0])1°%,
= cos<%>2p.® |0X0] + sin(?)2 |0)0] ®é

+ % sin(ra)1%2(p @ |0)0))UT — % sin(ra)U(p @ |0)0]) 12,

From this point it is relatively straightforward to show that the unital block 7" for the 1 qubit
channels &, & &, will be

X/V2)  [Y/V2)  |Z2/V2)
(X/V2| cos(%)2 1 sin(ra) 0
Teo = (Y/V2] | —3sin(ra) cos(%)2 ; (A.12)
(Z]V?| 0 0 cos(%)2
and
X/V2)  [Y/V2)  |2/V2)
<X/\/§‘ sin(%)2 — 3 sin(ra) 0
Teo = (Y/V2|| isin(ra) sin(%)2 ; (A.13)
(Z/V2| 0 0 sin(72)
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respectively. Therefore the unitarity of €, is given by

1 4 1 1 2
w(&y) = S tr [Tg Te a] = cos <B> + = sin(ma)® = = cos <E> (5 + cos(mar)). (A.14)
3 T 2 6 6 2
For the other marginal, the unitarity of &, is given by
- 1 4 1 1 2
u(€a) = gtr [Tg’,aT&a} = sin(%) + 5 sin(ma)® = 5 sin(%) (5 — cos(ma)). (A.15)
This completes the proof. O]

A.2.2 Lower right surface (CNOTS;)

Lemma A.4. Forthe isometryV(p)o == CNOT$5(p ® |0)X0]) where 0 < o < 1, we define
the marginals E,(p) = trg[V(p)a] and Eq(p) := tra[V(p)a). The unitarities of each marginal
are

W) =1—— (A.16)

and
w(&,) = g (A.17)

respectively, where s = sin*(72).
If we consider the sum of the marginals from Lemma A.4 we have

w(E) +u(Ey) =1 — (A.18)

[GCN IV

with0 < s < 1.

Proof. (of Lemma A.4) The proof follows in a similar way to the SW AP case. For the given
CNOT,p channel we use the notation CNOTp(p) = UpUT, to clarify that we mean the
unitary matrix U itself. We can diagonalise U with respect to the computational basis by
applying a hadamard transform H = (Z + X)/+/2 on the target qubit before and after such
that the sandwiched unitary is the controlled phase gate:

1
U:§(1®]I+Z®1+]I®X—Z®X),

1
5(]1®H]1H+Z®H]1H+]1®HZH—Z®HZH),

:(]l®H)%(]l®]l+Z®]l+]l®Z—Z®Z)(]l®H), (A.19)
= (1 ® H)(|00)00] + [01X01| + [10)(10] — [11)(11])(1 @ H),
= (1 ® H)(]00Y00| + [01X01] + [10X10] + €™ [11)}11])(1 ® H).
Therefore we have
U = (1 ® H)(|00X00| + |01)01] + |10X10]| + ™ [11)}11])(1 ® H),
(A.20)

= [0Y0] © 1 + 51+ ™) (1)1 © 1) + (1 — ™) (11| @ X).
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From the isometry definition we have V(p),, = U%p @ |0)X0| (U*)T, substituting in the defi-
nition of U we can show that the unital block 7T for the 1 qubit channels &, & &, will be

X/V2)  [Y/V2) |Z/v2)
(X/V2| [ cos*(%2)  isin(ra) 0

Teo = (Y/V2|| —isin(ra) cos?(%2) 0 : (A.21)
(Z/V?| 0 0 1
and
(X/V2) [Y/V2) |2/V2)
(X/V2| 0 0 0
Teo = (Y/V2 0 0 0 : (A.22)
<Z/\/§| 0 +sin(ra)  sin®(%2)
respectively. Therefore, with some multiplication, the unitarity of &, is given by u(&,) =
1 — 2sin*(%") and the unitarity of &, is given by u(&,) = 5 sin*(%F). This completes the
proof. N

A.2.3 Lower left surface (CNOTg, o CNOT4p)

Lemma A.5. FortheisometryV(p) := CNOTS,0 CNOTAp(p®|0X0|) where0 < o < 1,
we define the marginals £,(p) = trp[V(p)a] and E,(p) := tra[V(p)a|. The unitarities of each
marginal are
1
w(&a) = 5(1 —3) (A.23)
and )
u() =1- 5(1 —3) (A.24)
respectively, where s = sin®(Z2).
If we consider the sum of the marginals from Lemma A.5 we have
- 1
w(&a) +u(bs) =1— §(1 —3) (A.25)
with0 < s < 1.

Proof (of Lemma A.5) Proof follows in the same way as the previous two lemmas. From the
previous lemma we can write the unitary matrix for the channel CNOTg(p) := UgapU ]Tg A
as

Upa = (H ® 1)(]00)00] + [01)01] + [10)X10] 4 ™ [11)11])(H ® 1), (A.26)
and therefore

U, = (H @ 1)(J00Y00| + |01X01] + [10)10| + €™ [11)11])(H & 1), ( )
A.27
= 1@ [050] + (1 +¢™)(1 @ [1X1]) + 5(1 — ¢™)(X @ [1K1]).
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The unitary matrix for the channel CNOT45(p) := Uap pU:[1 5 is given in the Pauli basis as
1
UAB:§(]1®]1+Z®]1+]1®X—Z®X), (A.28)

therefore from the isometry definition V(p)o = U8 ,Uagp @ [0)0| Ul 5(U8 )T we can show
that the unital block T for the 1 qubit channels &, & &, will be

X/v2)  [YIV2) |Z2/V2)
(X /V?| 0 0 0
Teo = (Y/V2] 0 0 0 : (A.29)
(Z]V?| 0 —3sin(ra)  cos?(%2)
and
(X/V2)  [YV2)  |Z/V2)
(X/V2| [ sin’(%2) —1isin(ra) 0
Tso = (Y/V2| | Lsin(ma)  sin(%2) 0 : (A.30)
(Z/V?| 0 0 1
respectively. Therefore, with some multiplication, the unitarity of &, is given by u(&,) =
5 cos?(%) and the unitarity of &, is given by u(€,) = 1 — 2 cos?(%"). This completes the
proof.

]

A.3 Compatible fidelity pairs

As we discussed in Chapter 1, the unitarity appears when considering the variance of an ob-
servable for an RB sequence. The prototypical measure estimated through RB is the average
gate fidelity of noise, which can be estimated more straightforwardly. Fidelity RB scales bet-
ter with system size [5] than unitarity RB and rigorous analysis has been completed exam-
ining the gate dependence in noise for fidelity RB. Overall, average gate fidelity would seem
an easier SPAM robust tool to use compared to unitarity. It is therefore reasonable to ask if
fidelity can be used instead of unitarity in the analysis we have undertaken throughout this
work.

In this section, we illustrate that fidelity cannot be used to capture the no-hiding and no-
cloning theorems in the same manner as unitarity, as discussed in Chapter 2. The arguments
could be extended to non-separability as discussed in Chapter 4.

For a fixed dimension d, consider the average gate fidelity, f(£), of' a quantum channel,
E,is defined via f(£) = 1 — r(&) for the average gate infidelity given in equation (1.4) [48].
The fidelity is bounded 717 < f(€) < 1and takes the value f(€) = 1ifand onlyif £ = id
[52]. The fidelity of a channel is upper bounded by its unitarity [83] with

(%)2 < u(€). (A.31)
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Figure A.1: Compatible Fidelity Pairs. The simplest non-trivial set, C, of compatible aver-

age gate fidelity pairs, (f(€), f(£)), are shown. The bound given in equation (A.32) con-
strains the set to within the unit circle.

These bounds are tight as they hold exactly for a partially depolarizing channel.

Letus consider splitting quantum information between subsystems using quantum chan-
nels. This was discussed in detail in Chapter 2. For simplicity, we will consider single qubit
channels. For the isometry, V(p) = Uap(p ® |0X0|), from one qubit to two qubits, we
define a pair of complementarity channels. These are the single qubit marginal channels
£ :=trgoVand £ := try o). By ranging over all unitaries, U/, g, we generate all compatible
channels, (£, £), and we can examine possible ways to divide quantum information between
two parties.

Now let us consider pairs of compatible fidelities given by any tuple, (f(£), f(£)) for a
pair of compatible channels, (£, £). The set of all fidelity pairs will capture some of proper-
ties of the set of all compatible channels. For example, the no-cloning theorem excludes the
channels & = € = id from the set compatible channels, as f(€) = 1ifand only if € = id,
then the point (1, 1) must be excluded from the set of compatible fidelity pairs.

We can also more broadly constrain the set of fidelities analytically. Applying Theorem

2.1 to the bound in equation (A.31), and we immediately have
2f(E) —1*+ (2f (&) —1)* <u(&) +u(é) < 1. (A.32)

Rather pleasingly, these bounds constrain the set of compatible fidelity pairs to be within the
unit circle. Through the general circuit decomposition given in Figure 2.2 we can generate
the complete set of compatible fidelity pairs, which is shown in Figure A.1. We observable
the bounds are tight at the points (1,1/2) and (1/2,1).
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We now discuss the limitations of using fidelity to quantify incompatibility between chan-

nels. First, we note that the fidelity of a completely depolarizing channel, D, is f(D) = 1.
Fidelity is not invariant under local changes of basis, and the fidelity of a unitary channel, i/,
can be anywhere in the full range of 3 < f(U) < 1. Given this, an experimental value of

f(&) = % can correspond to the complete loss of the input state (€ = D) or complete re-

2
coverability (£ = U). For partial loss of information, we can extended this argument across
all values of f(€). This makes it difficult for fidelity to capture information-disturbance in
terms of recoverability, as a final unitary change of basis can give same fidelity as completely
discarding the input.

A direct consequence of the above is that the set of compatible fidelity pairs cannot easily
capture the no-hiding theorem. In terms of compatible channels, (see Chapter 4) the no-
hiding theorem states that if € = D then we must have £ = U. Given f(D) = 1, if we
examine the points (3, ) in Figure A.1, we find z can take any value. Therefore we cannot
relate the loss of information at one marginal to the complete recovery of information at the
other. A similar argument applies to the no-cloning theorem, as for the point (1, z) while we
must have z = 3, this does not uniquely identify a corresponding channel.

Putting this all together, while the average gate fidelity of a quantum channel is a highly
useful measure in the context of benchmarking, it doesn’t allow for the same expression of

incompatibility as our analysis using unitarity.

A.4 Interpretation of unitarity and reversibility

Our intuitive understanding of unitarity is that it measures how well a channel preserves
quantum information. However mathematically, the unitarity captures how close a chan-
nel is to an isometry. As we shall show shortly, for channels with equal input and output
dimensions these statements are equivalent — unitary channels are the only channels which
can be deterministically reversed for all input states. When we consider quantum channels
with differing input and output dimensions then we must be more careful. In this section we
consider what the unitarity of information preserving channels can tell us in general.

When we consider all quantum channels, the set of channels that perfectly preserve quan-
tum information are reversible channels. We discussed these channels at length in Chapter
2. Recall, that a reversible channel R is defined as quantum channel for which there exists

another quantum channel R’ such that for all quantum states p we have
R o R(p) = p. (A.33)
It can be shown [158] that this definition is equivalent to the following statement:

(R(0),R(p)) = c(o,p) (A.34)
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for some constant ¢ > 0 and for any two quantum states o & p.
If we label the input system the dimension dx and the output system the dimension dy,,

then R can always be written [158] in the following form:
Rip) =U(p>T) (A.35)

where 7 is a (potentially mixed) quantum state with dimension dy /dx and U is a unitary on
the output system. Therefore when dx = dy the set of reversible channels is equal to the
set of unitaries on the system. Putting the above together with equation (A.34), we have
¢ = tr[T?], meaning the constant c captures the purity of the auxillary system introduced by
the channel. Maximizing and minimizing this purity gives us the following bounds
Ix oo, (A.36)
Y

Let us see how these properties relate to the unitarity.
Lemma A.6. The unitarity u(R) of a reversible channel R is given by

u(R) =c (A.37)

(

— O’,p> y
where ¢ = Wfor any input states o € p.

Proof. We give the input system for R the dimension d. With ¢ = |¢))(1|, from definition

u(R) =~ [ (RO, RW)) — (ROLd), R(1/d)). o
A.38
- 6%1 dip e (i, ) — c(1/d,1/d) = culid).
As u(id) = 1, this completes the proof. O

Combining this result with equation (A.36), for any reversible channel, R, from an input

system with dimension dx to an output system with dimension dy- must obey

Z—j <u(R) < 1. (A.39)
A direct consequence of this is that unitarity can be used to witness non-reversible behaviour
in a unknown quantum channel. Consider a channel, &, from a one qubit system to a two
qubits system. From the above bounds, if u(£) < 3, the channel cannot be reversible.

To conclude, the unitarity of a channel is a measure of how close it is from being isomet-
ric. Therefore — outside of fixed dimensions — cannot be directly interpreted as quantifying
quantum information transfer. However we have shown that, even in the general case, it can
be used to bound how much quantum information has be preserved in terms of reversibility.
To be exact, we have shown unitarity can act as a witness to the reversibility of a process,

thereby extending its usefulness.






Material related to subunitarities
and correlation unitarity

B.1 Review of notation

Throughout this appendix, we consistently use the same notation as in Chapter 3, which we

review here.

We consider an open bipartite quantum system with an associated an Hilbert space H 4 ®
‘H g and dimension d = dadp. Quantum channels act on the system such that E45: B(H 4 ®
Hp) — B(Ha ® Hp), and unless otherwise stated we assume for simplicity that the input
and output systems are identical. We denote all vectorized quantities in boldface, | M) :=
|vec(M)) for any operator M € B(H . ® H ) and similarly, we denote the Liouville repre-
sentation € op := L(E4p) for any channel €45, as detailed in the main text.

For subsystem A, we choose an orthonormal basis of operators X,, = (X, = \/%7 14, X;),

where d 4 is dimension of the subsystem A, and tr [X ZX,,] = 0,,. Similarly for B an or-
thonormal basis Y, = (Y = ﬁ]l B, Y;). Together these provide a basis for the full system

which is given in the Liouville representation as
X, ®Y,) = |X) ©[Y) - (B.1)

For simplicity, where there is no ambiguity on the local labels 1t and v we will sometimes use
a single-label notation |Z,,) = | X, ® Y,). In particular, we denote | Zp) = |Xo) ® |Yp).
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B.2 General definition of separability

Consider a quantum channel Eap_ 45 : B(Ha @ Hp) — B(Ha @ Hp). We define a

product channel as one that takes the form
Eapsap = Easa @ Epopy, (B.2)

for channels E4, 40 : B(Ha) — B(Ha)and Epp : B(Hp) — B(Hp). The choice of
labeling of the output subsystems is for convenience, as a joint channel of the form €4, 5 ®
Ep_,4 can be cast in the above form simply by relabeling A’ <» B’. A separable channel is

defined as a convex combination of product channels, namely

Eapan = Y DhEhiu © b p, (B.3)
k

for some distribution py and local channels between (A, A’) and (B, B’). A channel that is

not separable is defined to be non-separable.

B.3 Properties of the subunitarities of product channels

Lemma B.1. The subunitarity us_,ap(Ea ® Ep) for a bipartite product channel 4 @ Eg, de-
composes as
Ua-aB(Ea ® EB) = uaa(Ea ® Ep)Tp, (B.4)

where xp == XJ;_; . pXB g for the non-unital vector of the subsystem B of the channel Ep.

Proof. From the definition of u4_, 4 p we have

(d%—-1)(dp~1)
Ua—aB(Ea ® ER) = ay Z (X;®Ya|E|Xe @Yo) (X ®Yo|ET|X; ®Y5),
k,jn=1
(d%4—1)(d%—1)
—ax Y (XelEV1XG) (X5 €41 Xe) (Yol £ |Ya) (Yal €5 V) ,
k,jn=1
d% -1
= uasa(Ea®Ep) Y (Yol EL V) (Yal €5 [Y0) ,
n=1
=Uus-4(Ea®Ep)rp
(B.5)

which completes the proof. O

Swapping the subsystem labels we also have up_,45(Ea ® E5) = upp(Ea @ Ep)Ta,

where 4 := XL _, 4X4— 4 for the non-unital vector of the subsystem A of the channel.
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B.4 Properties of the subunitarities of separable channels

Lemma B.2. The subunitarity uap—,(E) for a bipartite separable channel £ == Y\ p;€a; ®

Ep.i is zero.

Proof. From the definition of u4p_, 4 we have

uap—»4(€) = aaaptr |:T,1;B_>ATABHAi| ;

(d%4—1)(d%-1)
=aaap Y, (X;@YEN X @Ys) (Xi @Yol E|X; ®Y,) .

k.jn=1 (B.6)
(d3-1)(d3-1)

=oaon Y. > pipi (Xl EL; 1 Xe) (Xkl Eay|X;)

k,jn=1 i,

(Yl EL; [Yo) (Yol €5, |Ya) -

For the channel to be trace preserving we must have (Yp| €5 |Yn) = Oforall n & j. There-
foreusp ,4(E) = 0. O

Additionally, swapping the subsystem labels, u 45, 5(€) = 0 for any separable bipartite

channel €.

LemmaB.3. Thesubunitarityua_,g(E) forabipartite separable channel € ==Y p;E4,;REp.;i

is zero.

Proof. From definition

uaLp(€) = aAtr[TJHBTAHB},
(€, ~1)(d3,-1)
=ax Y (X ®Y[E X ®YL) (Xo®YilE|X;®Y0),

k=1 (B.7)
(d4—1)(d%—-1) &

=aq Y > vy (X1 EL, 1 Xo) (Xol €4, 1X;)

kj=1 ij

(Yol €L Vi) (Yil €5, Vo) -

For the channel to be trace preserving we must have (Xo| £4; |X;) = 0 forall j. Therefore
UA—-B (5 ) =0. ]

Additionally, swapping the subsystem labels, ug_, 4(£) = 0 for any separable bipartite

channel €.

Lemma B.4. For a unital bipartite separable channel £ = Y p;€a; @ Ep,; where Ex ; are

local unital channels, the subunitarity wa—, ap(E) is zero.
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Proof. From the definition of u4_, 45 we have

Uasap(E) = aatr [TJHABTAaAB] ;
(d4—1)(d%—1)
—ax Y (X®Y[ENX;0Y,) (X; 0V, €| Xk ®Y0),

k.jn=1 (B.8)
(3 —1)(d%—1)

=4 Z Zpipj (Xl 82,]' 1 X;5) (X;] €, | Xk)

k,jn=1 i,j
(Yo| EL; [Ya) (Y| €5, [Yo) -

For the channel to be unital we must have (Y| €5 ; |Yo) = Oforalln. Thereforeus,ap(€) =
0. ]

Additionally, swapping the subsystem labels, up_,45(E) = 0 for any unital separable
bipartite channel £.

B.5 Comparison of correlation unitarity with norm measures

We can compare the choice of definition for correlation unitarity with a norm, which sheds
light on its structure and limitations. Consider the Hilbert-Schmidt norm (e.g. Schatten 2-
norm or Frobenius norm) given by || M|| := \/(M, M) = /tr[MtM] for a matrix M [122],
which is the square root of the Hilbert-Schmidt inner product of the matrix with itself. We

have the following expression
A? = ||Tup — Ta @ Tp||? (B.9)

where for the unital block we write T4 = Tap_, ap and similarly for T4 and Tz. As this is
anorm we have A = Qifand only if Ty = T4 ® T, namely if and only if the channel is a
product channel. We can expand this expression in terms of the inner product to obtain
A =(Tup —Ta®@Tp, Tap — Ta @ Tg)
= (Tap, Tap) + {(Ta ®Tp, Ta®@Tg) — (Tap, Ta ®Tp) — (Ta ® T, Tap)
= |Tapll* + | Tall*| T5]|* — 2Re [{Tap, Ta ® Tp)]
= |Tapll* + I Tal*IT]1* = 2l|Tasl| [|Tall || T5|| cos 0
A% =% 5 + 415 — 2taptatp cos,
where we have defined an angular variable 6 via the inner product between Tygand T4 ® Ts

and replaced the norm values with ¢ 45, t 4, t 5 in the obvious way. Now the correlation uni-

tarity is given by u, = aap(t} 5 —t%4t%), with the dimensional prefactor aap = m :

Substituting for t 4 g into A? we have that

A% =

He -+ Q(tAtB)Z — 2\/ te + (tAtB)2(f}AtB) cos 6. (B.10)
OAB QAB
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This implies a few things. Firstly, for u. = 0 we have
A? = 2(tatg)*(1 — cos ), (B.11)

and so we see that u. vanishing does not imply a product channel unless one of the 4,5
vanishes or if § = 0. The expression also implies that 6 is an independent parameter that
will in general vary the norm distance. Note that the benchmarking protocol gives us both
(tatp) and u. but does not give us 6. Therefore our existing benchmarking does not return
enough to determine the norm distance measure.

The above highlights relevant data at quadratic order that our approach is not sensitive
to, but note that the cos # term is bounded and so it still is the case that u.. is acting as a

“distance” from being a product channel. Specifically, we have

de L o(taty)? — 2\/ Yo | (tatp)2(taty) < A2 (B.12)
OAB aAB
and
5 U 5 Ue )
A2 < Y Loty +2\/ 4 (tats)2(tats). (B.13)
QAB aAB

This implies that estimating u. and ¢ 4t 5 allows us to estimate the norm distance A.

B.6 Expression for correlation unitarity using an operational
function

Finally, in this section we give the proof that the correlation unitarity of a channel can be
expressed using an operational function, Fp, p,(£, ¥ ») given in Section 3.3.3. This was
defined in the following way. For the expectation of an observable O on a state p we have
(0), = tr[Ofp]. Now suppose we have local observables O and O for the subsystems
A and B respectively. For any bipartite quantum channel, £, we can define the following

correlation function

Fo,05(E 0ap) = (04 @ 0B)enwan)” — (O eawn)*{OB) eatwm |’ (B.14)

where the channels £4 and g are local channels on A respectively B defined in Definition
3.1 and the input states ¢4 and ¢ are the marginals of {4 5.

We now connect this function with the correlation unitarity of a bipartite channel.

Proof (Of equation (3.104)) Using the Pauli basis we can show how the correlation unitarity
is related to the correlation function given in Section 3.3.3. We define the orthonormal Pauli
basis P, = (FPy = 1/+/d 4, P;) for subsystem A and (with slight abuse of notion) equivalently
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for subsystem B. Starting from the correlation unitarity we have

Uc(gAB) = 0AB (tr [T,];BHABTABﬁAB] —tr [TIL%ATA—)A} tr [T;HBTB—)B])

=oup( Y |{(Pi®Pj|Tupap |Pn®Pa) |’

,5,m,n#0
— [ (Pi| Tacsa |Pm) | (Pj] Ts5 |Pa) |?)
=oup( Y|P ® PEap(Pr ® P
4.3,;m,n70 (B.15)
— |er[PEA(Pp)]|P[tr[PiER(P)]?),

= aup dap( Z |tr[P; @ PiEap(Vman)] I’

i’jam$n7£0

— [tr[Pi€a(trp[thm )] P[tr[P;Ep (trp[thmn])][7),
= aapdap Z Fp,p, (&, Vmn)-

7’7]7m7n

Which completes the proof. O]
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