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Abstract

The ability to transfer quantum information between systems is a fundamental component
of quantum technologies, and can generate correlations. However correlations in quantum
channels are less well studied than those in quantum states. Motivated by recent techniques
in randomized benchmarking (RB), we develop a range of results for efficient estimation of
correlations in channels. We extend the notion of unitarity - an average figure of merit that
captures the coherence of a quantum channel - to substructures within a bipartite quantum
channel. We define a correlation unitarity and prove that it provides a witness of nonsep-
arability – a strictly non-classical effect. We find that this measure can be estimated with
robustness to errors in state preparation and measurements (SPAM) for any separable or
Pauli quantum channel, andwe show that a benchmarking/tomography protocol withmid-
circuit resets can reliably witness nonseparability for sufficiently small reset errors. Related
experimental techniques, that we develop, can be used to study quantum incompatibility.
Incompatibility is a feature of quantum theory that sets it apart from classical theory, and
the inability to clone an unknown quantum state is one of the most fundamental instances.
We extend the definition of unitarity to general physical theories. Then, we introduce the
notion of compatible unitarity pair (CUP) sets, that correspond to the allowed values of uni-
tarities for compatible channels in the theory. We show that a CUP-set constitutes a sim-
ple ‘fingerprint’ of a physical theory, and that incompatibility can be studied through them.
We analytically prove quantumCUP-sets encode both the no-cloning/broadcasting and no-
hiding theorems of quantum theory. We then developRB protocols that efficiently estimate
quantumCUP-sets andprovide simulationsusing IBMQof the simplest instance. Finally,we
discuss ways in which the above methods provide independent benchmarking information
and test the limits of quantum theory on devices.
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channels E & Ē for the lower right surface of the CUP-set are shown. The fi-
nalRZ rotation is optional but aids in the estimation of CUPs through spectral
techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Circuit decomposition in IBM gateset for lower left isometric CUP-set sur-
face. Circuit for 2 qubit isometry CNOTαBA ◦ CNOTAB(ρ ⊗ |0〉〈0|), and com-
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1

Introduction

Everything is a quantum operation.

Irish folklore

Unknown

1.1 Quantum theory and quantum devices

Efficiently certifying and benchmarking non-classical features in quantum theory will be

central to the development of quantum technologies [6–12], which require precise control

andmanipulation of quantum systems. High-fidelity quantum gates and circuits are essen-

tial for scalable quantum computing so it is important to benchmark the effects of physical

noise on how accurately a target unitary is realized on the quantum device. For example,

noise due to unwanted coherent correlations or leakage can detrimentally affect error rate

thresholds required for fault tolerantquantumcomputing [13–15]. Therefore, thedetection

and quantification of non-classical effects not only impacts Noisy Intermediate Scale Quan-

tum (NISQ) devices [16] leading to improved circuit fidelities and error mitigation, but also

goes beyond our current era by providing necessary tools to test the physical assumptions of

quantum error correction.

On a high level, in the above we are considering how quantum theory can be used to test

quantum devices. However the opposite direction is also interesting. By quantifying and

measuringnon-classical effects onquantumdeviceswe can test the limits of quantumtheory

using existing technology.

1
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Figure 1.1: Interplay between the key concepts of this thesis. Three areas within quantum
technologies research are shown. Each arrow represents a line of inquiry towards a goal or a
researchquestion that couldbe asked. For example, (e) couldbe “Howdostructural features
of quantum theory limit the performance of quantum devices?”. Some of these arrows have
been better studied than others. One direction that has been lesswell studied is (b), which is
the primary focus of this work. By connecting benchmarking tools to fundamental features
of quantum theory, we obtain results that apply to the rest of the diagram including (d), (e),
and (f ).

Quantum physics places much stronger limits on how we can transform information,

compared to classical physics. These limits can be capturedby the notion of incompatibility,

that encapsulates fundamental impossibility results in quantum theory [17–20]. The most

commonly encountered form of incompatibility refers tomeasurements – position andmo-

mentum cannot be simultaneously measured with the same precision – leading to formula-

tionsofno informationwithoutdisturbance [21]. However, incompatibility canbedescribed

far more generally [22–24]. Two local processes on systemsA andB are said to be compat-

ible if there exists a global process that can produce both. The no-broadcasting theorem,

an extension of the famous no-cloning theorem, can be cast as the incompatibility of local

identity channels at A and B [20]. It is readily seen that if a physical theory admits perfect

cloning, such as classical theory, then the theory cannot have any form of incompatibility.

Quantum technologies open new directions to experimentally test foundational aspects

of quantum theory such as incompatibility [25–29]. However, current devices are inher-
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ently noisy [16, 30–32]. Errors in State Preparation and Measurement (SPAM) can have an

outsized effect on performance compared to errors in operations to evolve the system [33].

This presents a challenge in developing tests for foundational properties in a way that is ro-

bust to errors arising fromthe implementationof the experiment itself. Existingmeasures of

quantum incompatibility typically assume full access to theprocesses involved andare there-

fore not SPAM robust [22]. Such foundational tests can also produce valuable benchmarks

of errors [34], as they have clear operational significance rooted in fundamental properties of

quantummechanics.

Finally, we have a consideration of efficiency. Direct process tomography [35, 36] of a

quantumprocess–that is,measuringall inputs andoutputs–hasacomplexity that isknown

to scale exponentially with system size. Therefore to evaluate such processes we need aver-

age measures, that give less detail but that can be estimated efficiently in terms of system

size. Within the area of device benchmarking, techniques have been developed such as gate-

set tomography and randomized benchmarking (RB), which allow for efficient estimation

of average measures [37]. Further, these measures are robust against initial and final SPAM

errors.

Putting this together, in this work, our primary research question is as follows:

Canwe use benchmarking tools to capture fundamental features of

quantum theory?

This question is indicated by (b) in Figure 1.1. We undertake this question for the fol-

lowing three goals,which each are of interest independently and are indicatedby (f ), (d), and

(e) in Figure 1.1, respectively.

General goals

(1) To test the limits of quantum theory using current noisy quantum devices.

(2) To gain independent information about the nature of device noise.

(3) To provide efficient and robust certification of non-classical effects.

Within this thesis each chapter focuses on either mathematical results relating to quan-

tum theory or on deriving experimental methods to apply these results to quantumdevices.

Therefore we setup amathematical framework to tackle (1) within Chapter 2. However this

framework requires a fairly complex experimental set-up, and so inChapters 3 and4we focus

on (2) and (3) which require simpler – but related – experimental methods. Having gained

some experience and intuition we return to the experimental methods for (1) in Chapter 5.

We will shortly give a more precise version of each of these goals with the details of how

we approach them. However, beforewe can give this overview, wemust introduce some key
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concepts used throughout this work.

1.2 Mathematical preliminaries

We now introduce some mathematical concepts used throughout this work, before we can

give an overviewof the technical content of each chapter. We assume the reader has some fa-

miliarity with quantum mechanical fundamentals including linear algebra, Dirac notation,

and the quantum circuit model of quantum computation. For a complete introduction to

the mathematical tools of quantum information science we suggest: Nielsen & Chuang’s

iconic textbook [32], the excellent book of John Watrous [38], and the lecture notes from

John Preskill’s course onQuantumComputation [39]. A critical reference for the author has

been the lecture notes fromDavid Jennings’ course onAdvancedQuantumInformation [40].

1.2.1 Systems, states and quantum channels

Much of this work is framed around quantum devices where the smallest subsystems are

qubits and we characterize the device as a multi-qubit open quantum system. However, ex-

cept where explicitly stated, the results given here apply to any quantum system and do not

require the particular tensor product structure of a multi-qubit system.

The following notation is consistently used throughout this work. Consider an open

quantum system, X. We give it the dimension dX , and we denote the associated Hilbert

spaceHX . A valid quantum state, ρ, for this system is any dX × dX Hermitian matrix with

non-negative eigenvalues, eigs(ρ) ≥ 0, and normalized such that tr[ρ] = 1. We will use

lower-case Greek letters for quantum states i.e. ρ, σ, τ .

With this definition, a pure quantum state is then any state we can write in the form

ρ = |ψ〉〈ψ|, where |ψ〉 is a vector of length one in the Hilbert space associated with the sys-

tem. Pure states represent maximal knowledge of the state of the system. Mixed states can

always be written as a probabilistic convex combination of pure states, ρ =
∑r

i pi |ψi〉〈ψi|,
for
∑r

i pi = 1 with pi ≥ 0. Therefore mixed states can be thought of as ambiguity in the

state of the system. The degree to which a state is mixed is captured by its purity. This is an

important concept in this work and defined in the following way.

Definition 1.1. For any quantum state, ρ, the purity, γ(ρ), is defined as

γ(ρ) := tr
[
ρ2
]
. (1.1)

The purity has the following elementary properties that make it a useful measure of the

noisiness of a quantum state.
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Lemma 1.1 (Properties of purity). Consider the purity, γ, of any quantum state ρ in a

systemwith dimension dX . We have the bounds 1
dX

≤ γ(ρ) ≤ 1with γ(ρ) = 1 if and only

if ρ is a pure state. The purity is lower bounded by γ(ρ) = 1
dX

for the maximally mixed

state given by ρ = 1/dX where 1 is the dX × dX identity matrix.

Proofs for these properties can be found in [38] and essentially follow from considering

the decomposition ρ =
∑r

i pi |ψi〉〈ψi| for any quantum state. The maximally mixed state

representsnoknowledge as to the stateof the systemandgives the lowerboundof thepurity,

while the upper bound is given for a pure state representing complete knowledge.

S
u
m
m
a
ry The purity, γ(ρ), of a quantum state, ρ, is a measure of the level of knowledge we have

about the state of the system. Therefore it quantifies how noisy the state is.

Key parts of our work can be framed as generalizing the concept of purity to describe

moreandmoreof thebehaviourofquantumsystems–and finallydescribe the limitsofquan-

tum theory itself.

For any quantum system we will also want to perform measurements. Any quantum

measurement,M , with k outcomes on a dX dimensional system can be described by a set of

dX ×dX matrices,M = {M0,M1, ...,Mk−1}, with non-negative eigenvalues, eigs(Mj) ≥ 0,

andnormalized such that
∑k

i Mi = 1,where1 is thedX×dX identitymatrix. Further, given

a quantumstate, ρ, the probability of the jth outcome of themeasurement is p(j) = tr[Mjρ].

Mathematically, the above conditions ensure quantum measurements are restricted to the

set of Positive Operator-ValuedMeasures (POVMs).

Nowwe describe the behaviour of quantum systems, themain focus of this work.

Definition 1.2. A quantum channel, E , is any linear transformation ρ→ E(ρ) such that
σ = E(ρ) is a valid quantum state for all possible states ρ of the input system.

This definition is simple, but very powerful. Mathematically the definition above re-

stricts quantum channels to Completely Positive Trace-Preserving (CPTP)maps. More for-

mally, any quantum channel E : B(HX) → B(HY ) will be a map from the bound space of

operators on theHilbert space associatedwith the input system, sayHX , to the bound space

of operators on the Hilbert space associated with the output system, sayHY . We will only

give these details when it is necessarily to clarify how a channel acts. In general we will use

upper-case calligraphic Latin letters for quantum channels i.e. E ,F ,G.
Of particular importance is the unitary channel, U(ρ) := UρU †, for a unitary matrix

UU † = U †U = 1. Unitary channels describe the evolution of closed quantum systems. The

identity channel, id, is the particular unitary channel that leaves a system unchanged, such

that id(ρ) := ρ for all states ρ. However, the output system of a quantum channel need not
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be the same system as the input – therefore we can use channels to describe a wide range of

behaviour.

In fact, state preparation canbe cast as a channel from the trivial one-dimensional system

to a fixed state in a larger system, 1 → ρ. Similarly, discarding part of (or all of ) a system is

a channel – as it is a process that always sends valid states to valid states. This channel is the

partial trace, trB(ρAB) = ρA for an arbitrary bipartite systemAB. In fact, we can use quan-

tumchannels todescribe all themain aspects of quantumtheory including thepreparationof

states, their evolution, discarding subsystems through the partial trace, and measurement

updates.

Sometimes, it is important to clarify the input and output systems of channel. Under

such circumstanceswewill use subscripts for the systems, such that a channel froma system

X to a system Y is written EX→Y .

Quantum channels allow for a few different representations – ways of mathematically

writing downhow the acts –whichwewill introducewhen they are first used. The linearity

of quantummechanicsmeans that convex combinations of quantumchannels are also quan-

tum channels, such as pE + (1 − p)F for two quantum channels E andF . Quantum chan-

nels can also be applied in sequence, provided the output system dimension of first channel

matches the input systemdimensionof the secondchannel. For sequential channelswewrite

F ◦ E for the application of E followed byF . Note thatF ◦ E is also a quantum channel.

S
u
m
m
a
ry Quantumchannels,E ,F ,G, describe thebehaviourofquantumsystems. Theyarehighly

flexible and can express all the main elements of quantum theory.

As channels are so versatile, they are the natural tool to use to describe the dynamics of

quantum devices. For any algorithm (or any target process) we will want to: prepare some

pure state, evolve the state unitarily,1 performameasurement on the final state. Further, the

total desired evolutionmust be broken up into the individual native operations that form the

device gateset, Γ = {Ui}. Therefore wemight have a circuit similar to

|ψ〉〈ψ| U3 U2 U3 U1 U2 U4 M (1.2)

with time flowing from left to right.

In reality, all these operations will be noisy – unintended interactions with the environ-

ment and imprecise controlmean the devicewill not act as a closed quantumsystem. We can

use quantumchannels to describe this noise. Therewill be somequantumchannels describ-

ing the initial error is state preparation, |ψ〉〈ψ| → ρ, and the error in the final measurement,

M → M̃ . These are the aforementioned SPAM errors. The unitary evolution will also be

noisy so we replace each idealised operation with a channel, Ũi. Putting this together we

1We will assume the desired evolution here is unitary, for simplicity, however some important processes
such as error correction are inherently non-unitary.
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have a circuit similar to

ρ Ũ3 Ũ2 Ũ3 Ũ1 Ũ2 Ũ4 M̃ (1.3)

for the real world device.

We now turn to quantifying how ‘far’ the circuit in equation (1.3) is from the idealised

circuit in equation (1.2). This is calledbenchmarking, and the tools thathavebeendeveloped

in this area are crucial to our approach.

1.2.2 Benchmarking of quantum channels

The first obstaclewhenassessing theperformanceof adevice is scaleability. Naively, to learn

an unknown channel we have to see how the channel transforms each element of a complete

basis for the system. For a single qubit, this means preparing each of the 6 Pauli eigenstates,

performing the target operation, and measuring each of the 3 traceless Pauli observables.

This gives 18 parameters to estimate. For n qubits, this implies (22n − 1)2 variables, and so

is exponentially difficult as we scale up the number of qubits. State-of-the-art tomographic

techniques reduce this to 22n and this cannot be improved upon [41]. Therefore rather than

completely learning a channel, it is desirable to have techniques that give less detailed (but

still useful) information and require fewer experiments to be completed. Such techniques

are said to be efficient.

A second consideration iswhich errors in the circuit shown in equation (1.3) are the ones

which limit the performance of the device. For current devices, the SPAMerrors – the errors

for initially preparing states and the final measuring the system – can be an order of magni-

tude larger than the errors on individual elements of the gateset [33]. Further, to use quan-

tum error correction the required error threshold to reach is on the errors in the gateset and

not on SPAM errors [38, 42, 43]. Therefore techniques that can assess gateset errors inde-

pendently from SPAM errors are critical. For amore detailed discussion of SPAM errors, see

Chapter 4. Suchmethods that separate out the errors in a target process from SPAM errors

are said to be SPAM robust.

S
u
m
m
a
ry

As quantum devices continue to grow in system size and quality, it will be important to

develop furthermethods that can assess theperformanceof adevice. Two important con-

siderations are favourable scaling and isolating the limiting errors.

Putting this together, techniques that are efficient and SPAM robust would be advan-

tageous if they can be connected to meaningful information about the channel we want to

probe. One such family ofmethods are randomized benchmarking (RB) protocolswhich ex-

ploit properties of Clifford group to average a noise channel down to a simple one parameter

model which can be readily estimated.
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For the noisy computational gateset, Γ̃ = {Ũi}, we can write Ũi = Ei ◦ Ui for each ide-
alised target unitary followed by a error channel, Ei. This assumes that the error is Marko-

vian and independent ofwhere in the circuit the gate is placed [6]. A further assumption that

greatly simplifies analysis is that there is an error channel associated with the gateset that

is constant across the gateset, such that Ũi = E ◦ Ui. We discuss this assumption of gate-

independence in Chapter 4 and note that RB protocols have been shown to return accurate

estimates for an effective noise channel E even for highly gate-dependent noise [44, 45].

In the simplest instance, anRBprotocol returns an estimate of the average gate infidelity,

r(E), of an effective noise channelE associatedwith a noisy computational gateset – theClif-

ford group [32, 38, 46, 47]. For anyquantumchannel,E , the average gate infidelity is defined
as

r(E) := 1−
∫
dψ〈ψ|E(|ψ〉〈ψ|)|ψ〉, (1.4)

where integration is over pure states andwith respect to theHaarmeasure. We have r(E) =
0 if and only if E = id for the identity channel, id(ρ) := ρ for all states ρ [48]. Therefore this

infidelitymeasure captures theHaar-averagedeviationofE from the identity channel,which

corresponds toperfect preservationof the state of the system. In thisway, the infidelity is the

first-order moment (or mean value) for the channel.

S
u
m
m
a
ry The average gate infidelity, r(E), of a quantum channel, E , is simple measure that quan-

tifies the average deviation of the channel from the identity, id(ρ) = ρ.

The average gate infidelity for the effective noise channel E associated with a gateset can

be used to bound the worst-case error rate for the gateset, which is defined in terms of the

diamond norm [49]. This is the relevant quantity in the context of fault-tolerant computa-

tion [50, 51]. We have the following best known bounds [43] in terms of infidelity:

d

d+ 1
r(E) ≤ 1

2
||id− E||� ≤

√
d(d+ 1)r(E), (1.5)

where ||id − E||� is the diamond norm distance (see equation (4.1)) of the channel E to the

identity channel [38]. We discuss why the diamond norm cannot be directly estimated ef-

ficiently in Chapter 4. However, the above bounds are weak for highly coherent noise (i.e.

unintended unitary rotations) [43]. Therefore obtaining additional information about the

noise is vital.

Recent work has extended the core benchmarking toolkit, for example through higher-

ordermomentanalysis [52], characterbenchmarkingtechniques [53], theextensiontobench-

marking of logical qubits [54] and analogue regimes [55]. Simultaneous randomized bench-

marking [56]hasalsobeendevelopedasameans toquantify theaddressabilityof a subsystem

in a device and thus provide a basic assessment of the presence of cross-talk and correlation

errors.
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1.2.3 Unitarity of quantum channels

Ourwork exploits recent techniques from randomized benchmarking theory [5, 57–59] that

were originally introduced to provide additional information beyond the average gate infi-

delity, r(E), for noise channels. Specifically, if infidelity is the first order moment of a chan-

nel as discussed above, thenwe can gain additional independent information by considering

the second-ordermoment (or variance) of the channel. This variance is captured by the uni-

tarity, of a quantum channel, u(E), a measure of the coherence maintained by the channel.

The unitarity is of interest outside of benchmarking – and is a central quantity in this work.

Thereforewewill spendsome time introducing thedefinitionofunitarity and thenexploring

its key properties.

The most natural way to define the unitarity, u(E), of a quantum channel, E , is given
by an average of the purity of the channel across all input states, with the contribution from

the maximally mixed state, ρ = 1/dX , subtracted off. This allows us to see that the unitar-

ity is strictly a generalization from considering the purity of states to the purity of quantum

channels.

Definition 1.3. For any quantum channel, E , the unitarity u(E) is defined as

u(E) := dX
dX − 1

(∫
dψ tr

[
E(ψ)2

]
− tr

[
E(1/dX)2

])
, (1.6)

whereψ = |ψ〉〈ψ| and the integration iswith respect to theHaarmeasure over pure states

of a dX-dimensional input system [57].

Theunitarity can be formulated as a variance of the channel in the followingway. We can

define notation for integration of a variable over theHaar measure as 〈X〉 =
∫
dψX for any

X dependent ofψ. We have that 〈ψ〉 =
∫
dψ ψ = 1/dX as theHaar-average over all states is

simply themaximallymixed state,1/dX . Further, due to the linearity of quantumchannels,

we have 〈E(ψ)〉 =
∫
dψ E(ψ) = E(

∫
dψ ψ) = E(1/dX). Putting this together, as noted in

[60], the unitarity can be formulated as

u(E) = dX
dX − 1

tr[var(E)] = dX
dX − 1

tr
[〈
E(ψ)2

〉
− 〈E(ψ)〉2

]
. (1.7)

Due to the linearity of the trace,we can easily showthat this variance formulationof unitarity

is equivalent to the definition given in equation (1.6).

Theunitarityobeysnatural limitswhichmake it useful forquantifyinghownoisy aquan-

tum channel is. Specifically, unitarity takes its extremal values if and only if the correspond-

ing channel is of a particular form. We now introduce these two important classes of chan-

nels.

Firstly, we have completely depolarizing channels, D, where no information about the

input system is retained after the channel. These take the formD(ρ) := σ for any input state
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ρ and some fixed output stateσ, potentially in a completely different system. A simple exam-

ple of completely depolarizing channel isD(ρ) = |0〉〈0|which discards any input state ρ and
returns the single qubit computational basis state |0〉〈0|. Note that, in theory, ρ can be state
of any system (i.e. the state of the whole universe) and the output systemwill still be a single

qubit pure state. This illustrates the versatility of working with quantum channels. Com-

pletely depolarizing channels are of paramount importance in this work as they correspond

to themost noisy processes possible – all information is lost.

Secondly, we have isometric channels, V, which perfectly preserve all the information

about the input system. Isometries take the formV(ρ) := V ρV †whereV †V = 1 for identity

matrix on the input system. Isometries are generalizations of unitaries where the output

system dimension can be larger than the input. Isometries are completely reversible, like

unitaries, withV† ◦ V(ρ) = ρ. A simple example of an isometry would beV(ρ) = ρ⊗ |0〉〈0|,
where for any input state ρwe output ρwithin a larger system.

We summarize how these key channels relate to the unitarity in the following lemma.

Lemma1.2 (Properties ofunitarity). Consider theunitarity,u(E), of any quantumchan-

nel E . The unitarity obeys the bounds 0 ≤ u(E) ≤ 1with u(E) = 1 if and only if E = V ,
for an isometryV . The unitarity is lower boundedwithu(E) = 0 if and only if E = D, for

an completely depolarizing channel. Further, theunitarity is invariantunder local changes

of basis such that u(V ◦ E ◦ U) = u(E) for any initial unitary U and final isometry V .

Proofs for these properties are non-trivial, andwewill derive them inChapter 2whenwe

discuss generalizations of unitarity to other probability theories. They also appear in the lit-

eraturewithin [57] and [61]. Theunitarityattains its extremalvalues if andonly if thechannel

completely retains all information about the input system, for a isometryV, or loses all infor-
mation about the input system, for a completely depolarizing channel,D. We also have that

unitarity remains constant under final unitary rotations, e.g. changes of basis. This is simi-

lar to how the purity, γ(ρ), of a state, ρ, is invariant under unitary rotations, γ(U(ρ)) = ρ.

The above properties make unitarity a good measure of how well the channel transfers

quantum information andmaintains the coherence of any input state. Further, wewill show

that it is well suited as a tool for examining fundamental elements of quantum theory.

S
u
m
m
a
ry The unitarity, u(E), of a quantum channel, E , is a simple measure which quantifies how

well the channel preserves quantum information on average.

Crucially, theunitarity canbe estimated for effective noise channels onquantumdevices,

with an efficient and SPAM-robust RB protocol – similar to the infidelity. It provides im-

proved bounds on the diamond norm compared to infidelity, from (equation (32), [62]) we
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have:
K√
2
≤ 1

2
||id− E||� ≤

√
d3K2

4
+

(d+ 1)2r(E)2
2

(1.8)

whereK2 = d2−1
d2

(u(E) + 2d
d−1

r(E) − 1). When the channel E is unitary (u(E) = 1) both

bounds scale asO(
√
r(E)) which tightens the lower bound of equation (1.5). For a purely

stochastic channel, where the unitarity is directly related to the infidelity, both bounds scale

asO(r(E)), thereby tightening the upper bound of equation (1.5). While measures like the

diamond norm have clear operational significance, such as for single-shot channel discrimi-

nation, they are in general neither efficiently estimatable nor robust to SPAM-errors, in con-

trast to the unitarity.

Throughout this work we will show that the unitarity of a quantum channel is versatile

tool, that we can utilize for our aims of connecting benchmarking techniques with founda-

tional features of quantum theory.

1.3 Overview of thesis

With the essentialmathematical tools and concepts for thiswork established,wenowgive an

overview of the content of each chapter. This includes establishing additional motivations

aside from novel benchmarking of noise, and highlighting our key results.

1.3.1 Quantum incompatibility

Within benchmarking theory broadly we are considering how fundamentals from quantum

theory can be used to test the performance of quantum devices. However, we can also con-

sider the opposite direction – treating noise quantum devices as tools to probe the limits of

quantum theory. This was the first goal we introduced for this work.

The fact that unitarity is a measure of coherence for a channel suggests that it would be

good at capturing situations where quantum theory places limitations on the coherence of

channels. A famous example is the no-cloning theorem [17] which forbids a channel that

would produce copies of the unknown input state to two output systems. Wewill show that

the no-cloning theorem can be expressed in a simple manner using unitarity.

Abroadrangeofbehaviour is capturedbyquantumincompatibilityandwith this inmind,

initially we have the following aim:

Specific goal

(1) Formulate measures of quantum incompatibility that can be robustly and effi-

ciently estimated on quantum devices.

Existing criteria to decide the compatibility of quantumchannels canbe formulated gen-

erally in termsof semidefinite programming andby introducingwitnesses of incompatibility
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[63, 64]. The task has also been shown to be equivalent to the quantum statemarginal prob-

lem [65]. Other formulations rely on the Fisher metric [66] or on the diamond norm [67] to

capture information-disturbance trade-offs. Another approach is via robustness measures

[68, 69]. Evaluating thesedifferent figures ofmerit for incompatibility requires extensive op-

timisations that typically require a full description of the (quantum) processes involved.

The inability to clone a quantum state [17] can be shown to be an extremal case of in-

compatibility [22], and the ability to “hide” data in correlations can be viewed as being dual

to cloning. This problem arises in the black-hole information paradox [70–72], and the no-

hiding theoremwas established to prove the impossibility of hiding a qubit state in the quan-

tumcorrelationsof a closed system[70]. Thishas the implication thatblackhole information

must have some degree of spatial localization, either within the black hole interior or in the

external region to the black hole [70–72].

No-cloningandno-hidingcanalsoberelated tootherquantumimpossibility results such

asno-masking [73, 74] andno-deleting [75]. Therehavebeensomerecent experimental tests

of the no-hiding theorem [28] including the utilization of small scale quantum computers

[76]. No-cloning has also been tested in the context of information-disturbance [29]. How-

ever, herewe develop a broader framework that exploits recent theoretical ideas that arise in

the analysis of quantum technologies.

Our approach to thisproblem ismotivatedby ideas fromrandomizedbenchmarking the-

ory [11, 37]. Recall that such methods produce estimates of average channel properties (fi-

delity, unitarity etc.) in a way that is robust to state preparation and measurement errors

and does not require exponentially difficult process tomography. In particular, we will ar-

gue that the unitarity of a quantum channel, as a measure of coherence [5, 48, 57], is a nat-

ural means to simultaneously describe both no-cloning and no-hiding. We will show how

quantum incompatibility, and therefore the above no-go results, can be captured by unitar-

ity within a single inequality.

At a high-level, ourwork can be viewed as extending the simple concept of the purity of a

state,which is ameasureof disorder 2, towhat canbe viewedas apurity-measureof thephys-

ical theory itself. This extension serves as a simple and intuitive 2–dimensional “fingerprint”

of the theory. An example for quantum theory is shown in Figure 1.2.

1.3.2 Overview of Chapters 2 and 5

Ourmain focus is to simultaneously handle both classical andquantumtheories under auni-

fying umbrella using average channel properties that can be robustly estimated on quantum

devices.

2In quantum theory, this is γ(ρ) := tr
[
ρ2
]
for any state ρ.
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We start in Chapter 2, where we develop a generalization of the unitarity u(E) of a quan-
tum channel, that allows extensions of our work to more general physical theories [77–79].

We show that this generalized unitarity has key properties thatmake itwell suited to captur-

ing compatibility, compared to other averagemeasures such as fidelities [80, 81].

We briefly summarize the framework we develop to capture incompatibility of a theory

in Section 2.1. For any theory we consider a global process, GX→AB, from a systemX into

systemsAB, and where the subscript simply indicates the input and output systems of the

channel. Then we definemarginal channels

E := EX→A = trB ◦ GX→AB,

Ē := EX→B = trA ◦ GX→AB,
(1.9)

by tracing out A or B. Therefore E and Ē are obtained by discarding either part of the bi-

partite output state. This means E quantifies only the information that is transferred from

X → A and Ē only the information that is transferred fromX → B. These channels let us

define compatible unitarity pairs (CUPs), which we write as

(u(E), u(Ē)) ≡ (u, ū). (1.10)

If we restrictGX→AB to certain classes for channels, then range over all channels of that type,

we obtain a CUP-set – which depends only on the underlying physical theory, properties of

the given family of channels and the dimensions of the systems dX , dA& dB. In Section 2.1,

we show that CUP-sets allow us to compare and contrast fundamental aspects of different

physical theories, including incompatibility. Then in Section 2.2, we establish that classical

physics has aCUP-set exactly on the boundary of the unit square, while in stark contrast the

simplest CUP-set in quantum theory is described by a non-trivial shape in the (u, ū) plane

(see Figure 1.2).

WeexplainwhytheshapeofCUP-sets encodequantumincompatibilityandweprove (see

Theorem2.1) the following resultwhenGX→AB is restricted to the set of isometric channels:

Result (Incompatibility bound on isometric quantum CUP-set) Any point (u, ū) in an iso-

metric quantumCUP-set lies in the band defined by

dX
dX + 1

(
1

dA
+

1

dB

)
≤ u+ ū ≤ 1 (1.11)

where dX is the shared input system dimension, and dA & dB are the respective output dimen-

sions.

This provides a general constraint on any isometric quantum CUP-set, which will still be

a non-trivial shape within this band. In Section 2.3, we relate this result to the no-cloning

theorem and the impossibility of perfect hiding of quantum information under unitary evo-

lution, to which there is no classical equivalent. The above bounds are tight under general
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ū

Hiding
Zone

Cloning
Zone

C
est. C
est. values

Figure 1.2: Robust and efficient verification of quantum incompatibility. In classical the-
orywehave the ability to perfectly clone andperfectly hide classical information. In contrast,
quantum theory has fundamental incompatibility that prohibits the same behaviour. This
is captured by defining CUP-sets, and shown here is the estimation of the simplest quan-
tum CUP-set C. The reversible CUP-set for classical theory corresponds to the full bound-
ary of the unit square [0, 1]2, and allows perfect cloning (the point (1, 1)) and perfect hiding
(the point (0, 0)). Using benchmarking techniques we estimate C, shown here, on an IBM
Q device and find that it saturates the general quantum bounds we derive in Theorem 2.1.
Verifying such fundamental bounds provides a means to test the performance of emerging
quantum computers.

conditions that we discuss. Further, we show that when dX = dA = dB, these CUP-sets are

further constrained in a manner that captures the no-hiding theorem exactly (see Theorem

2.2).

With this framework for incompatibility established we must turn to the estimation of

CUP-sets on quantumdevices to complete our goal. However, to estimateCUP-sets reliably

we require techniques from device benchmarking [57, 82, 83]. Specifically, the benchmark-

ing methods that we extend for estimating CUPs are more complex than those we define in

the remainder of this thesis. Therefore we leave this discussion of experimental CUP-sets

until Chapter 5 after we consider more straightforward randomized benchmarking proce-

dures within Chapter 4.

In Chapter 5, we take a very direct approach by estimating a range of CUPs using the

SWAP test [84]. These methods are detailed in Section 5.2. Secondly, we consider how

techniques including randomized benchmarking, can be used to estimate CUPs in a SPAM-

robust way, see Sections 5.3.1 & 5.4. We show that – with some assumptions – quantum

CUP-sets can be estimated SPAM robustly on current devices (see Figure 1.2).

In the final part of Chapter 5, we discuss how the direct and robust methods compare,

and to what degree we can infer that current devices obey the limits of quantum theory en-
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capsulated by quantum incompatibility.

1.3.3 Quantifying coherent correlations

In Chapter 3, we extend of the core unitarity framework to build measures of the coherence

in and between subsystems and the coherence of correlations within a channel. Then, in

Chapter 4, we give an introduction to randomized benchmarking and show our new mea-

sures are accessible through RB protocols that allow for independent information about the

nature of device to be obtained beyond existing techniques. However, beyond noise anal-

ysis in quantum technologies, there are other motivations why one would like to be able to

efficiently assess correlative structures within quantum channels.

For example, consider a bipartite quantum channel EAB : B(HA⊗HB) → B(HA⊗HB)

from a bipartite quantum system AB to itself with A and B being subsystems. Correla-

tions within the channel are required for the transfer of a quantum state prepared on the

first subsystemA to the second subsystemB: for example to transform the input pure states

|ψ〉A ⊗ |φ〉B to |φ〉A ⊗ |ψ〉B via the SWAP unitary. This transformation is impossible under

product channels of the form EAB = EA ⊗ EB, with EA being a channel fromA toA and EB
being a channel from B to B, and so non-product channels are clearly required. However,

quantifying these channel correlations is adistinct problem frommeasuring the correlation–

generating abilities of a quantum channel. The SWAPunitary perfectly transfers a quantum

state onA toB, however it has zero correlationgenerating abilities as it sends the set of prod-

uct states ρA⊗ σB to itself. In contrast the channel that sends all quantum states onAB to a

Bell state ismaximal ingeneratingcorrelations, however it clearly transmits zero information

fromA toB.

Intermediate between these two extremal channels are separable channels that are de-

fined as a convex combination of product channels.

Definition 1.4. A separable channel, EAB , from a bipartite quantum systemAB to itself

can be written in the form

EAB =
∑
i

piEA,i ⊗ EB,i (1.12)

for some probability distributionpi of product channelsEA,i⊗EB,iwhich act independently

on subsystemsA andB.

Separable channels can only create classical correlations betweenA andB, but it is clear

they do not transfer any quantum information fromA toB.

Definition 1.5. A non-separable channel, EAB , from a bipartite quantum systemAB to

itself is a channel which cannot be written in the separable form given above.
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Channels that generate non-classical correlations through the transfer quantum infor-

mation fromA toBmust be non-separable. This includes the SWAP channel which trans-

fers themaximum amount of information between the subsystems.

Further, connections betweennon-classical channel correlations and correlationswithin

quantum states do exist. Specifically, the set of separable channels play a central role in the

resource theory ofLocalOperations andSharedRandomness (LOSR) [85–94], for the study

of non-classicality in quantum theory. It has recently been argued that this framework is

the appropriate setting in which to properly analyse Bell non-locality and the self-testing of

quantumstates [91, 92]. Thereforeanon-separablequantumchannel requires theconsump-

tion of state correlations, and an ability to efficiently and robustly certify non-separability in

a general quantum channel EAB implies the use of non-local quantum resources.

More broadly, since process tomography is exponentially hard, one can ask what non-

classical features of quantum channels [95, 96] can be accessed in practice. We know that ac-

tual physical systems only probe a very small region of the set of all possible quantum states,

dubbed the “physical corner ofHilbert space” [97, 98], and so a similar question for quantum

channels canbeaddressedbydrawingonrecentdevelopments in randomizedbenchmarking

theory.

1.3.4 Overview of Chapters 3 and 4

We now describe how, within Chapters 3 and 4, we address two more of the goals we gave

for this work. Firstly, to achieve of our goal of gaining independent information about the

nature of device noise, we will aim to:

Specific goal

(2) Enable novel benchmarking of the performance of quantum computers at the

level of subsystems.

Secondly, for our goal of providing robust certification of non-classical effects, we sepa-

rate out the following aims:

Specific goals

(3a) Quantify the degree towhich a quantum channel deviates frombeing separable

in a form that can be estimated efficiently and robustly.

(3b) Demonstrate an application of this approach by deriving an information-

disturbance relation that can be efficiently and robustly verified.

We shall show that the unitarity of a quantum channel is well-suited to aims (2), (3a) and

(3b), and suggests a route to analysing similar structural questions about bipartite quantum
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channels in a form that is amenable to efficient and SPAM-robust experiments.

We will show that for a bipartite quantum systemAB the concept of unitarity naturally

extends to a collection of subunitarities uX→Y (E) of a quantum channel E on a bipartite sys-

temAB. The subscripts denote the input and output subsystems under consideration. For

example, the subunitarity uA→A describes howmuch coherence is maintained within theA

subsystem by a channel; while the subunitarity uA→B captures the information transferred

by a channel fromA intoB.

Each of these subunitarities gives finer information about how the channel acts on the

quantum systemsA andB, and transfers information between subsystems. This allows us

to address both (2) and (3b) above. However we find that only non-trivial combinations of

subunitarities are estimatable in a SPAM-robust protocol, and so this forces us to develop

methods to estimate channel correlations for aim (3a).

Objective (3a) turns out to be substantially more challenging than (3b), and we begin in

Chapter 3with theproblemofquantifying channel correlations. InSection3.1, recalling that

the unitarity of a channel can be reformulated as a variance estimate, we construct a correla-

tion measure uc(EAB) that parallels the covariance between two classical random variables.

Assembling this correlationmeasure leads to defining the subunitarities in Section 3.2.

InSection3.1.2,weshowthat the simplest subunitarities canbe related to theunitarityof

marginal channels. This links toourgeneral results inChapter2onquantumincompatibility

and leads to a novel form of the information-disturbance relation in terms of subunitarities.

For a bipartite unitary, UAB, we have

uA→A(UAB) + uA→B(UAB) ≤ 1, (1.13)

where UAB is a bipartite channel describing unitary evolution of the joint system. What

the above captures is the inherent limits quantum theory places on transferring information

from one subsystem into others. For example, if the unitary is structured such that all the

information from subsystem A stays in subsystem A, then necessarily no information goes

from A to the other output subsystem, B. The above upper bound on the corresponding

subunitarities captures this exactly, as if uA→A(UAB) = 1 then necessarily uA→B(UAB) = 0.

In the final part ofChapter 3givenbySection 3.3,weprove that themeasureuc(EAB) cer-
tifies non-classical features of a channel. More precisely, we prove that over the set of separa-

ble quantum channels (i.e. convex combinations of product channels) it is strictly bounded

away fromtheglobalmaximum, and thusprovides awitnessofnon-separability forquantum

channels.

In Chapter 4 we address the problem of efficiently estimating the correlated unitarity of

effective noise channels in a benchmarking scenario. We begin with an exploration of ran-

domized benchmarking in Section 4.1. We then showhow existing protocols use properties

of a unitary 2-design to estimate the unitarity of gateset noise within Section 4.2.
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We then turn to our original protocols. For this we follow a similar approach to simulta-

neous randomized benchmarking in which one employs local 2-designs on each subsystem.

This is of relevance for quantifying cross-talk errors in quantumdevices. In Sections 4.3 and

4.4, we show that for bipartite separable channels the correlated unitarity can be obtained

efficiently in a SPAM-robust protocol. For more general non-separable channels, we show

in Section 4.5 that for weak reset errors that this can still be estimated and within a natural

model demonstrate explicitly that theprotocols canwitness non-separability over a substan-

tial range of reset errors.

We end the chapter by discussing the relation between our work and simultaneous ran-

domized benchmarking and show that our protocols provide additional, independent infor-

mation on cross-talk and correlative errors.
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A simple formulation of the

no-cloning and no-hiding theorems

“I do not know of any grottos,” replied Jacopo.

The cold sweat sprang forth onDantès’ brow.

“What, are there no grottos at Monte Cristo?” he asked.

“None.”

The Count of Monte Cristo

AlexandreDumas

The impossibility of cloning an unknown quantum state is one of the most famous in-

stances of incompatibility, and is captured by the no-cloning theorem [17, 22]. The no-

hiding theorem is another such instance, and can be viewed as being dual to no-cloning [70].

Such quantum features will play a key role in the development of quantum devices, and un-

derlie why quantum error correction must be intrinsically different from classical error cor-

rection [32]. Both extremes of quantum incompatibility can be described in a unified way

using quantum channels.

In this chapter, we develop a novel formulation of incompatibility that unifies both no-

cloning and no-hiding. Our approach is to consider how the unitarity of quantum channels,

a tool from device benchmarking, may be generalized for channels within other probability

theories – such as classical probability theory. Wewill use this generalized definition of uni-

tarity to establish a framework tomeasure the range of (in)compatibility allowed in a theory,

based around the unitarity of compatible channels under a theory.

We then derive bounds which strongly constrain the quantum case. Moreover, we show

that these bounds encode no-cloning and no-hiding exactly. We examine how our frame-

19
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work allows for a detailed comparisonwith classical probability theory –where both perfect

copying and perfect hiding are permitted.

Finally, we analytically explore the simplest non-trivial cases for both quantum and clas-

sical theory. These minimal examples of our general framework exhibit all the main fea-

tures and are simple enough to allow for testing on current devices. Critically, compared to

existing measures of incompatibility, our methods allow for efficient and robust estimation

on quantum devices. However the techniques required are fairly involved. So we relate the

discussion of estimation to Chapter 5 after we introduced more elementary benchmarking

protocols within Chapter 4.

2.1 CUP-sets and incompatibility

We now construct a framework to study fundamental incompatibilities of a physical theory

in a form that is sufficiently simple to allow for efficient and robust estimation. The analysis

in this chapter focuses on quantum and classical theory, but we can extend it to any general

probabilistic theory as described in Section 2.4.

2.1.1 Unitarity of a channel

We first introduce a measure – the unitarity – that quantifies how noisy a channel is. This

is generalization of the unitarity defined for quantum channels (see equation (1.6)). This

measure can also be viewed as the variance of the channel [60].

For both quantum and classical theory, we have the notion of a physical state x of a sys-

tem,whichmaybemixedorpure 1. Forexample, inclassical statisticalmechanicsapurestate

is amicrostate, while amacrostate is amixed state. Themost general evolutions of states are

called channels, and a channel E , is simply any map that takes valid states to states. For ex-

ample, the identity channel id(x) := x for all states x. We next need a couple of additional

concepts in order to define the unitarity of a channel.

Firstly, for both classical and quantum theory, we have a notion of geometry that arises

for the states. In quantum theorywe have theHilbert-Schmidt inner product. For twoHer-

mitian operatorsA andB this inner product is defined as 〈A,B〉 := tr[AB], and leads to the

definition of the purity of a quantum state ρ given by γ := 〈ρ, ρ〉 = tr[ρ2]. The same features

exist in classical theory, and for a given probability distribution (pk) describing a classical

state of a system we have its associated purity given by γ(p) := 〈p, p〉 :=
∑

k p
2
k. There-

fore, in either classical or quantum theory, we can define the purity of a state x as given by

γ(x) := 〈x, x〉 for the appropriate inner product. The purity provides ameasure of the nois-

iness of a given state, and for example can be associated to theminimal collision entropy over

1More precisely a pure state is an extremal point in the set of all states, such as |ψ〉〈ψ| in quantum theory,
while a mixed state is obtained from probabilistic mixtures of pure states.
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discriminating measurements in the theory [100]. Moreover, this quadratic-order measure

can be readily estimated for either classical or quantum theory.

Secondly, forbothquantumandclassical theorywehaveapreferredmeasuredµ(x)which

is non-zero over the set ∂S of pure states of the theory. For quantum theory this is theHaar

measure, while for finite-dimensional classical systems it is the uniform measure over the

discrete pure states.

We can now define a generalised unitarity, that captures howwell a channel in quantum

or classical theory preserves information.

Definition 2.1. The unitarity of a channel, E , under either quantum or classical theory

is given by

u(E) := α

∫
∂S
dµ(x) γ(E(x)− E(η)) (2.1)

where η :=
∫
∂Sdµ(x)x is the maximally mixed state under the theory, and where γ(x)

is the purity of a state x, defined as γ(x) := 〈x, x〉 given an inner product in the space of
states. The normalizing constant α is chosen such that u(id) = 1.

This unitaritymeasure has a range of nice properties, whichwewill provewithin the set-

ting of generalized probability theories given in Section 2.4. For example, in Lemma 2.3, we

prove thatu(E) = 0 if and only ifE is a completely depolarizing channel that acts asE(x) = y

for any state x and some fixed state y. Such a channel can be viewed as erasing all informa-

tion in the input state of the system. Additionally, for any theory in which γ(x) = 〈x, x〉
(i.e. quantum and classical theory), the unitarity is bounded between 0 and 1, and u(V) = 1

for all isometries V, which we prove in Corollary 2.2. Isometries are transformations that

perfectly preserve all information in the input state x. Similarly, for such theories, the uni-

tarity is invariant under changes of basis u(V ◦ E) = u(E) for any channel E and isometry V
(see Lemma 2.5), and extension of the invariance of the unitarity of quantumchannels under

unitaries given in [57].
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The generalised unitarity, u(E), captures the degree to which a channel, E , preserves in-
formation – in classical, quantum, or some other theory of physics. It is maximized for

channels that perfect preserve information about the input state andminimized for chan-

nels that completely discard the input state.

These attributes make this generalized unitarity a natural tool for capturing the incom-

patibility of channels.
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2.1.2 Defining cloning and hiding

Given a channelG from a subsystemX to subsystemsABwedefine themarginal channels as

trB ◦ G(x), (2.2)

trA ◦ G(x), (2.3)

where trA denotes the action of discarding the subsystemA, and similarly trB denotes dis-

cardingB. This is similar to themarginals of a bipartite quantum state, ρAB, where we have

ρA = trB[ρAB]. With the concept of amarginal channel,we candefinewhat itmeans to clone

or hide a state in a theory. The ability to perfectly clone/broadcast a statewithin a theory can

be defined as the existence of a channel G from an input systemX to two output systemsA

andB, such that

trB(G(x)) = id(x) = x, (2.4)

trA(G(x)) = id(x) = x, (2.5)

for all states x. In other words the input state is perfectly copied to both outputs, and A

and B are copies of X as spaces. Note that broadcasting is where one allows correlations

between the two output systems, while cloning does not have correlations and is normally

considered for pure states only. This distinction is not important here since we focus on the

marginal outputs only, and henceforth we refer to the above process as cloning. The no-

cloning theorem [17] can therefore be cast as a statement that, under quantum theory, there

is no channel G such that equations (2.4) and (2.5) both hold for all states x.

The no-hiding theorem in its original formulation [70] says that if a quantum state |ψ〉
evolves unitarily such that the output on one subsystem is a constant state – namely a com-

pletely depolarizing channel – then the state |ψ〉 can be perfectly recovered from the remain-

ing environment subsystem. We can formulate the no-hiding theorem in terms of the above

channel marginals in the following way. For a closed quantum system under unitary evo-

lution (e.g. when G = V), if trB(V(x)) = y for some fixed state y, then necessarily x

mustbecompletely recoverable at trA(V(x)). Therefore theno-hiding theoremrequires that

trC ◦ trA(V(x)) = x, up to final change of basis, and where the additional partial trace (trC)

may be required tomatch the dimension of the input system.

Channelmarginals can also capture amore general notion of hiding in any theory. More

precisely, we say thatwe can perform perfect hiding in a theory if there is a channelG from an

input systemX to two output systemsA andB such that for all input states xwe have

trB(G(x)) = D1(x) = y1 (2.6)

trA(G(x)) = D2(x) = y2, (2.7)
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whereD1 andD2 are completely depolarizing channels that send all input states to the fixed

states y1 and y2 respectively. In otherwords themarginal channels ofG fully erase any infor-

mation encoded in x. However, this is not everything. We also require that x is genuinely

encoded in the global correlations betweenA andB. Therefore, we additionally require that

G is a reversible transformation,G = R, whichmeans there is another channelF fromA and

B toX such thatF ◦G(x) = id(x) = x. This defines perfect hiding, but itmight be possible

to have partial hiding of a state, in the sameway as it is possible to partially clone a quantum

state.
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The no-cloning and no-hiding theorems are two extremes of quantum incompatibility.

We have shown that they both can be formulated in a concise manner using marginal

channels, trA ◦G and trB ◦G for a global processG fromX → AB. To capture no-hiding

we should consider isometries, G = V, for perfect hiding we should consider reversible

channels, G = R, while for no-cloning we should consider themarginals of any channel.

Wenext turn to quantifying howwell a theory (classical, quantumor amore general the-

ory) can both clone and hide. To completely capture hiding our framework should repro-

duce both quantum theory’s no-hiding theorem, as well as identify perfect hiding. We do

this through the above focus on marginal channels, and use the unitarity to quantify how

well these local channels preserve information.

2.1.3 Compatible unitarity pairs of a theory

We now label the two marginal channels defined in equation (2.2), which gives us the nota-

tion to proceed with our framework for incompatibility within channels.

Definition 2.2. For any channel, G, from an input system X to a joint system AB with

marginal systemsA andB, we define the marginal channels

E(x) := trB ◦ G(x), (2.8)

Ē(x) := trA ◦ G(x). (2.9)

We name the tuple of the unitarities of these channels a compatible unitarity pair (CUP)

and use the notation:

(u(E), u(Ē)) ≡ (u, ū). (2.10)

From the previous discussion of cloning and hidingwe found that the set of global chan-

nels,G, thatwe considermatters. For hiding,wemust consider the set of isometric channels

to capture quantum theory’s no-hiding theorem– aswell as the set of reversible channels for

perfect hiding in classical and quantum theory [101]. In contrast, for cloning we are free to

range over all possible channels within a theory.
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CUPs, (u, ū), capturehowa channel splits up informationbetween twoparties. Channels

under different theories will have different limits on how this can be done.

It is possible todescribe ageneral processonaopen system in termsof reversible channels

on (larger) closed systems for both quantum and classical theory [102, 103]. In quantum

theory, global isometries suffice (captured by a Stinespring dilation [38]), however classical

theory requires the use of auxiliary randomness [103]. As discussed in Section 2.3.3, the

reversible channels are defined as those channels,R, for which we have

〈R(x),R(y)〉 = c〈x, y〉 (2.11)

for all states x, y and a constant 0 < c ≤ 1, andwhere the inner product is usual one given in

Section 2.1.1 for quantum and classical theory. The isometric channels are a proper subset of

reversible channels for both classical and quantum theory. Any isometric channel V is a re-

versible channel forwhich c = 1. The smaller set of isometry channels are the traditional set

considered for incompatibility in quantum theory, due to the Stinespring dilation theorem.

When G ∈ V, the set of isometric channels, and E & Ē are its marginal channels – as

defined in equations (2.8) & (2.9) – then we write E ∼ Ē and say that these channels are

isometrically compatible. In this case, for quantum theory, the channels E & Ē are comple-

mentary to each other.

Similarly if G ∈ R, the set of reversible channels, then we write E ∼r Ē. Finally, when
we consider G to be the set of all channels in a theory, wewrite E ∼∗ Ē such that E and Ē are

marginals of any valid channelG fromX toAB. This notation is just to simplify definitions,

and does not suggest an equivalence relation.

We are now ready to define the central quantity throughwhichwe examine the (in)com-

patibility allowed in physical theories.

Definition 2.3. Wedefine the isometric CompatibleUnitarity Pair set (hereafter called

the isometric CUP-set) as

CX→AB := {(u(E), u(Ē)) ∈ R2 : E ∼ Ē} (2.12)

which is determined by both the dimensions of the particular state spaces andwhere E ∼r

Ē are the marginals of any the admissible isometry channels in the theory.

In a similarway,wedefine the reversibleCUP-set,CX→AB
r ,whenE ∼r Ē for themarginals

of any reversible channel. Finally,wedefine the fullCUP-set,CX→AB
∗ , for themarginals of any

valid channel, when E ∼∗ Ē. For the remainder of this work we shall drop the superscripts

specifying the subsystems and just write C, Cr and C∗ for the CUP-sets.
These abstract definitions are required to address quantum theory and classical theory

in a unified way. However we show that, in practice, for each theory CUP-sets are simple
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shapes in the 2-dimensional plane. These shapes encode the incompatibility of the theory in

intuitive geometrical way.
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CUP-sets, C, Cr and C∗, capture all theways information can be split up between two par-

ties with a quantum/classical channel. Therefore CUP-sets measure the level of (in)com-

patibility allowed in the theory itself.

Since the unitarity is bounded between 0 and 1, we have the following series of inclusions

C ⊆ Cr ⊆ C∗ ⊆ [0, 1]2. (2.13)

It turns out that CUP-sets can also be defined for general probabilistic theories, and we dis-

cuss this in Section 2.4. Note that for any theorywe have (0, 0) ∈ C∗, sincewe are always free
to discard the input state and prepare an arbitrary constant state on the output systems (for

which the unitarity vanishes). Likewise, since the identity channel is in any theory, and we

are free to swap/relabel subsystems (which is an isometric process) so that (1, 0) and (0, 1) lie

in C. These are common points for CUP-sets across different physical theories.

2.1.4 No-cloning and no-hiding through the CUP-set

No-cloning and no-hiding fit into this framework as follows. Firstly, if the physical theory

admits perfect cloning then this implies that (1, 1) ∈ C∗ since u(E) = 1 if and only if E = id

up to a final isometry [61]. We also note that it has been shown [19, 77] that broadcasting

is possible in a physical theory if and only if the theory has a simplex state space of perfectly

distinguishable states, and so essentially only classical theory has (1, 1) in its CUP-sets. The

no-cloning theorem can be cast compactly as a statement that – for quantum theory, the full

CUP-sets C∗ (and therefore all CUP-sets) exclude the point (1, 1).
Secondly, fromSection 2.1.2, theno-hiding theoremgiven in termsofmarginal channels

states that – for quantum theory under isometric evolution— if E = D (a completely de-

polarizing channel) then necessarily the input state can be completely recovered in the other

subsystem. In the case dX = dA = dB, this implies Ē = V, an isometry. We will show (see

Section2.3) that this statementof theno-hiding theorem is capturedexactlyby the isometric

quantum CUP-set C, as for the point (0, x) in C then x = 1 only. Additionally in the case of

unequal subsystems, the no-hiding theorem and the impossibility of perfect hiding implies

the point (0, 0)must still be strictly excluded from the isometric CUP-set C. We prove this

also holds in Section 2.3.

We also consider whether a theory admits perfect hiding with the addition of auxiliary

randomness. This is captured by the reversible CUP-sets, Cr. If the theory admits perfect

hiding with auxiliary randomness thenwe haveD1 ∼r D2 for some completely depolarizing

channelsD1 andD2. However, as we prove in Section 2.4, this statement is equivalent to the

existence of the origin in the reversibleCUP-set, (0, 0) ∈ Cr. Wewill show that the reversible
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CUP-setsof classicalprobability theoryalwayscontain (0, 0)whereas thequantumreversible

CUP-sets only contain (0, 0) under certain dimensional restrictions related to mixed state

purification.

Finally, for both quantum and classical theory we examine the case with the smallest

non-trivial dimensions in detail. Since quantum physics neither admits perfect cloning, nor

perfecthidingunderunitaryevolution, thesimplestquantumCUP-sets formnon-trivial sub-

sets of the unit square [0, 1]2, which we discuss shortly. In contrast, both (0, 0) and (1, 1)

always lie within the classical (reversible) CUP-sets, as we shall show shortly.

2.2 Classical CUP-sets

Wenowexplore howa classicalCUP-set captures the compatibility allowed in classical prob-

ability theory. We shall see that the CUP-sets of classical theory are radically different from

quantum theory, and so are a simple and vivid way to contrast the two theories.

2.2.1 Unitarity of classical channels

For a classical probability distribution on a ddimensional system, the pure states correspond

exactly to thed extremal points{xi}di=1 of the state space. Therefore, for classical theory, the

unitarity given in equation (2.1) reduces to

u(E) = d

d− 1

d−1∑
i=0

γ(E(xi)− E(η)), (2.14)

where η = 1
d

∑d−1
i=0 xi is themaximally mixed state.

Theonly isometric operationswith input andoutput systemsof the samedimensions are

those that permute the pure states. Recall that for any isometrywehaveu = 1 (seeCorollary

2.2). Furthermore, reversible classical channels are fully generated by the set of isometries

and auxiliary classical randomness [103–105], as they correspond to injective Boolean func-

tions. This allows us to characterise CUP-sets for classical theory.

The state space of a single probabilistic classical bit is a d = 2 system with two possible

pure states x0 := (1, 0) and x1 := (0, 1) in R2. Any pure state xi encodes the bit m ∈
{0, 1}. There are only two single-bit isometries: the identity channel id andNOT operation

for whichNOT (x0) = x1 &NOT (x1) = x0. For a two-bit system d = 4, we can define the

pure states through the tensor product of the single bit pure states e.g. xab := xa ⊗ xb for

a, b ∈ {0, 1}.

2.2.2 Cloning and hiding in classical theory

To clone/broadcast a classical mixed state bit in a state, x := (p, 1− p)with 0 ≤ p ≤ 1, one

simply brings in an auxiliary bit in the pure state x0 = (1, 0) and then performs a controlled-
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not (CNOT) gate, controlled on the statexwith the auxiliary bit as the target. Themarginal

distributions are then both given by x; the input information was perfectly copied to the

marginals. In terms of channels, the protocol is simply given by

V(x) = CNOT (x⊗ x0), (2.15)

which outputs a 2–bit state.

Hiding of a classical (deterministic) bit involves encoding a bit, x = (1, 0) or x = (0, 1),

entirely in correlations so that themarginal bit states are η = (1/2, 1/2), themaximally dis-

ordered state. However, we also require that the bit is still perfectly recoverable from the

total state. This can be done as follows: we introduce a single auxiliary bit in the state η,

which is viewed as an unknown key bit, and we perform a controlled-not gate on x that is

controlled on η. Equivalently we get

Rhide,1/2(x) = CNOT (η ⊗ x), (2.16)

which is a correlated 2–bit state. It has marginals η and also since CNOT ◦ CNOT = id

we can perfectly recover the bit from the joint 2–bit state. This is the classical one-time pad

protocol for encryption and the operation performs perfect hiding in classical theory [106].

2.2.3 The simplest classical CUP-set

Returning to a classical mixed state bit in a state, x := (p, 1 − p) with 0 ≤ p ≤ 1, the

most general isometries from a single bit into two bits take the form ofV(x) := πAB(x⊗x0)

where πAB is a permutation on the four basis states. There will be 6 such different isometric

operations, however they produce the same 3 points on the CUP diagram as follows. As the

unitarity of the marginal channels E and Ē are invariant under local isometries at A and B,

then separable operations πAB = πA ⊗ πB will give the point (u, ū) = (1, 0), corresponding

to E = id and Ē = D. The swap operation permuting the two systems will produce the

point (u, ū) = (0, 1). Finally, if the permutation corresponds to theCNOT operation with

control on system A, then on the CUP-set diagram this gives the point (u, ū) = (1, 1), as

E = Ē = id. We therefore have that

C = {(1, 0), (0, 1), and (1, 1)}, (2.17)

for the simplest non-trivial isometric CUP-set in classical theory.

2.2.4 Reversible classical CUP-set

We now consider the classical CUP-set produced by the set of reversible global operations

R. The following class of operations

Rp(x) = x⊗ (px0 + (1− p)x1) (2.18)
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introducesanauxiliary systemB prepared ina fixedprobabilistic state. This isnot isometric,

but satisfies trB ◦ Rp(x) = x, and is therefore reversible. All such channelsRp correspond

to point (u, ū) = (1, 0) of the CUP-sets. Generally, reversible operations are given by

R := πAB ◦ Rp (2.19)

where πAB is again the permutation of the four basis states.

Motivatedbythesingle-bithidingprotocol inSection2.2.2,weconsiderπAB = CNOTAB,

the controlled-not withA as the control and withB as the target, that generates the follow-

ing family of reversible maps

Rhide,p := CNOTAB ◦ Rp. (2.20)

These are partially-hiding channels with the perfect-hiding channel occurring for p = 1/2,

corresponding to the point (u, ū) = (0, 0). For general p ∈ [0, 1] we have (u, ū) = (1, p′)

with p′ = (1− 2p)2. Since we can swap output subsystems we also get (u, ū) = (p′, 1). The

remaining reversible channels are obtained from

Rbroad,p := CNOTBA ◦ Rp (2.21)

which gives the points (u, ū) = (0, p′)with p′ = (1 − 2p)2 and similarly, (u, ū) = (p′, 0) if

we swap the output subsystems. We therefore have that

Cr = {(t, 0), (0, t), (t, 1), and (1, t) for all t ∈ [0, 1]}. (2.22)

In other words the reversible CUP-set Cr is simply the border of the unit square [0, 1]2.

2.2.5 Full classical CUP-set

Finally, we consider the full 1 to 2 bit CUP-set, C∗, obtained by ranging over all single-bit to
two-bit systems. It can be shown (see Corollary 2.1) that if a global channel E fromX toAB

gives apoint (u, ū) in anyCUP-set andD is anyglobal, completelydepolarizing channel, then

the set of convex combinations pE + (1− p)D give the line segment joining (u, ū) to (0, 0).

This automatically implies that for classical theory we have

C∗ = [0, 1]2, (2.23)

sincewe can take convex combinations of reversible channels with a completely depolarizing

channel and the resulting line segments fill the unit square.
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The classical full CUP-set fills the unit square, capturing that there is no incompatibility

betweenmarginals. This follows from the existence of classical cloning (u, ū) = (1, 1) as

we can always disregard information to obtain any other point within the unit square.
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2.3 Quantum CUP-sets

Quantum CUP-sets are much more tightly constrained in the unit square [0, 1]2 than their

classical counterparts, andwerelate this toquantumno-go theorems. In this sectionwepro-

vide evidence for this statement, via tight analytical bounds on the sum of quantumCUPs.

For quantum theory, the general form for the unitarity given in equation (2.1) reduces to

familiar form given in Definition 1.3 in Chapter 1. Recall that, within the context of bench-

marking quantum devices, the unitarity u of the average noise channel E associated with a

gateset can be estimated using randomized benchmarking [107]. Further there are proto-

cols to estimate the unitarity of noise are efficient and robust against state preparation and

measurement (SPAM) errors [5], as we will discuss at length in Chapter 4. Wewill make use

of these properties in Chapter 5 when we estimate CUP-sets on devices.

2.3.1 Incompatibility and hiding via trade-off relations on CUP-sets

Wecannowestablish the followinggeneral boundson thequantumCUP-sets that arise from

isometric channels, C. This gives us a handle on the structure of such sets and in particular
how they relate to cloning and hiding.

Theorem 2.1 (General bounds on isometric quantumCUP-set C). Consider any input
system X of dimension dX and output systems A and B of dimensions dA and dB , with

dX ≤ dAdB. The associated isometric quantum CUP-set C ⊆ [0, 1]2 is confined to the

band in the (u, ū)–plane defined by

dX
dX + 1

(
1

dA
+

1

dB

)
≤ u+ ū ≤ 1. (2.24)

This bound is tight and the isometric quantum CUP-set C intersects the bounding lines

at (1, 0), (0, 1) and when dA = dB it also attains the optimal hiding point (u, ū) =

( dX
dA(dX+1)

, dX
dA(dX+1)

).

Proof. It can be shown [61] that the unitarity of a channel can be expressed as

u(E) = dX
d2X − 1

(dX tr
[
Ẽ(1/dX)2

]
− tr

[
E(1/dX)2

]
) (2.25)

where Ẽ is any complementary channel to E , which we can choose to be Ē. Applying the

above expression to the complementary pair (E , Ē)we then have that

u(E) + u(Ē) = dX
dX + 1

(tr
[
E(1/dX)2

]
+ tr

[
Ē(1/dX)2

]
). (2.26)
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For the lower bound, we bound each purity term individually. For any quantum state, ρ, for

a system of dimension dwe have the purity is lower bounded as tr[ρ2] ≥ 1/d, and therefore

u(E) + u(Ē) ≥ dX
dX + 1

(
1

dA
+

1

dB
). (2.27)

For the upper bound, we use the following property of complementary channels. We have

that E := trB ◦VX→AB& Ē := trA ◦VX→AB for an isometric channelVX→AB. Therefore the

state ρAB = VX→AB(1/dX) has the marginals ρA = E(1/dX) and ρB = Ē(1/dX). For a
general bipartite quantum state ρAB we have [108] that

γ(ρA) + γ(ρB) ≤ 1 + γ(ρAB), (2.28)

and therefore

u(E) + u(Ē) ≤ dX
dX + 1

(1 + γ(VX→AB(1/dX))). (2.29)

As VX→AB is an isometry

γ(VX→AB(1/dX)) = tr
[
(V (1/dX)V

†)2
]
=

1

dX
. (2.30)

Substituting this into the previous inequality we obtain,

u(E) + u(Ē) ≤ 1, (2.31)

which completes the proof.

These bounds place hard limits on the amount of quantum information that can be hid-

den in the correlations between systems, and also how it can be shared between local sys-

tems. The upper bound can be directly related to the no-cloning theorem, as if u = 1

for the identity channel then necessarily ū = 0 for the other marginal being completely

depolarizing. The perfect hiding point (0, 0) is always precluded from the isometric CUP-

set which is a consequence of the no-hiding theorem. Further, the upper bound is satu-

rated for the identity and swap-channels, while the lower bound can be saturated in the case

dX = dA = dB = d via a d2 dimensional generalization of the Controlled-NOT operation.
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CUP-sets capture the impossibility of perfectly copying unknown quantum information

in a simple and geometrical way. Namely, if we have u = 1 for complete transfer of infor-

mation fromX toA then necessarilywehave ū = 0 for no information going fromX toB.

Therefore cloning is forbidden.

In the case of equal input system and output subsystemdimensions, the isometric quan-

tumCUP-set is further restricted. Wenowproof that themarginal channels and unitarity of

such systems obey a series of equivalence relations. The details of the proof are not essential

to narrative here, but will lead to the appearance of another no-go theorem.
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Lemma 2.1. Consider an isometry, VX→AB , from an input system X and joint output system

AB with equal dimensions dX = dA = dB. This defines the complementary marginal channels

E := trB ◦ VX→AB and Ē := trA ◦ VX→AB. The pair E and Ē obey the following equivalence

relations

E = U ⇐⇒ Ē = D

m m (2.32)

u(E) = 1 ⇐⇒ u(Ē) = 0

whereD(ρ) = σ is a completely depolarizing channel to a fixed state σ.

Proof. We first prove E = U ⇐⇒ Ē = Dψ. Note that for any quantum channel F , its

complementary channel F̃ is unique up to an isometry on the output of F̃ [109]. Further,

we can write any isometry from n = log d to 2n qubits in the form VX→AB(ρ) = UAB(ρ ⊗
|0〉〈0|⊗n). Therefore it suffices to find any fixed dimension channel Ẽ complementary to E ,
and apply a final unitary rotation. The isometryVX→AB = UA⊗UB(ρ⊗|0〉〈0|⊗n) = UA(ρ)⊗
UB(|0〉〈0|⊗n)whereUA andUB are unitaries on the respective subsystemsA andB, gives the

required form for E , and we are free to set UB(|0〉〈0|) = |ψ〉〈ψ|which is the exact form of Ē.
Applying the same argument starting from Ē completes the inverse direction.

We now prove E = U ⇐⇒ u(E) = 1. For any quantum channel, F , we have F =

V ⇐⇒ u(F) = 1where V is an isometry [61]. For fixed input and output dimensions the

set of isometric channels is equal to the set of unitary channels, and so the relation holds.

Finally, we prove Ē = Dψ ⇐⇒ u(Ē) = 0. For any quantum channel, F , we have

F = D ⇐⇒ u(F) = 0 for a completely depolarizing channel D(ρ) = σ where σ is a

fixed (potentially mixed) state. Given the form of VX→AB, the only marginal channel, Ē ,
that disregards the input state completely is given by Ē(ρ) = trA ◦UA ⊗ UB(ρ⊗ |0〉〈0|⊗n) =
UB(|0〉〈0|⊗n) = |ψ〉〈ψ|, for some pure state. Therefore all completely depolarizing channels

generated by VX→AB must be to pure states,Dψ, and the condition holds.

These relations lead to a simple formulation of the no-hiding theorem as a further re-

striction on the shape of isometric quantumCUP-sets.

Theorem 2.2 (No-hiding bound on isometric quantumCUP-set C). Consider any in-
put systemX and output systemsA andB all of equal dimension. The associated quantum

CUP-set C is confined such that for

(u, ū) = (0, x) ⇒ x = 1. (2.33)

Proof. This follows directly from Lemma 2.1, where we have u(Ē) = 1 ⇐⇒ u(E) = 0 and

the definitions of u and ū.
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This restriction on isometric quantumCUP-sets encapsulates the no-hiding theorem in

the followingmanner. Here the no-hiding theorem states that if one marginal channel con-

tains no information about the input system, then necessarily all the information can be re-

covered through the othermarginal channel [70]. Therefore when dX = dA = dB, if E = D
then necessarily Ē = U , a unitary. From Theorem 2.2, these quantum CUP-sets capture

this geometrically, as for the point (0, x) in C then x = 1 only. Which corresponds exactly

(and only) to E = D and Ē = U , thereby capturing the no-hiding theorem. AS the unitarity

of a quantum channel is a simple measure that can be readily estimated with SPAM robust-

ness fordevicenoise, this opens apath to robust testingof anotherno-go theoremoncurrent

devices.
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CUP-sets capture the impossibility of hiding unknown quantum information through

unitary evolution in a simple and geometrical way. Namely, if we have u = 0 for no in-

formation going fromX toA, then necessarily we have ū = 1 for complete transfer of all

information fromX toB. Therefore no information is hid in the correlations.

We have established strong bounds on the shape of isometric quantum CUP-sets in the

2-D plane. Further the bounds encode quantum no-go theorems for arbitrary input and

output system sizes. However ultimately wewish to test this framework on actual quantum

devices. Towards this end,we should examine in detail the behaviour of a isometricCUP-set

when the input and output systems are the smallest non-trivial quantum systems – qubits.

2.3.2 The simplest quantum CUP-set

The simplest isometric quantum CUP-set is also the simplest quantum CUP-set in general

due to theseriesof inclusions inequation (2.13). Further, the smallestnon-trivialdimensions

will be when dX = dA = dB = 2, so we consider this case in detail. FromTheorem 2.1, for

the isometric CUP-set C, this gives the following bounds

2

3
≤ u+ ū ≤ 1. (2.34)

with the optimal hiding point given by (u, ū) = (1/3, 1/3).

For isometriesmappingsinglequbit to twoqubits,V(ρ) := UAB(ρ⊗|0〉〈0|), it is sufficient
to range over all unitariesUAB to explore the full parameter space of (u, ū) for C. The general
form of two qubit unitaries contains at most 3 CNOTs and 3 independently parametrised

single qubit rotations [1] (see Figure 2.2). However, the two parameter isometry set with

UAB = UAB(α, β) (for α, β ∈ R) (as in Figure 2.3) generates all possible complementary

channel pairs, up to local unitaries [1]. As the CUP-set is invariant under local unitaries, this

family suffices to fully describe it.

In Figure 2.1 we plot this simplest CUP-set, where 3 boundary curves can be identified.

The families of channels generating the boundary are of interest for structural reasons and
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Figure 2.1: Quantum CUP-sets. The simplest isometric and reversible CUP-sets under
quantum theory, with their analytical bounds (dX = dA = dB = 2). The isometricCUP-set
C generated by global isometries is the central boomerang-shaped region (blue). Extending
this to reversible operationsCr increases the set in thedirectionof (0, 0) to theboundarywith
theHiding Zone (yellow). The two diagonal red lines are obtained from the general analytic
upper and lowerbounds forCUP-sets inquantumtheory. In contrast, for classical theorywe
have that Cr is the border of the unit square, while C is the triple of points (1, 1), (1, 0), (0, 1).

will be key to the experimental implementation we devise. The curved upper curve is given

by a smooth interpolation between the identity channel and the SWAP channel that simply

swaps the outputs onA andB. More precisely it is given by UAB = SWAPα for 0 ≤ u ≤ 1

and 0 ≤ α ≤ 1. The analytical relationship between u& ū for the upper curve is

(u, ū) = (u, 3 + u− 2
√
1 + 3u). (2.35)

The analytical relationship betweenu and ū for the lower curves is linear, as shown in Figure

2.1. The lower right curve is given byUAB = CNOT αAB, over the domain 1
3
≤ u ≤ 1. While

the left curve is given by UAB = CNOTαBA ◦ CNOTAB over the domain 0 ≤ u ≤ 1
3
. The

derivations of the boundary curves are provided in Appendix A.2.

2.3.3 Reversible quantum CUP-set

A general reversible quantum CUP-set Cr (where dA, dB and dX are not necessarily equal)

is given by considering the marginals of the set of globally reversible channels. For dX <

dAdB this set will be strictly larger than the set of isometric channels. The set of reversible

quantum channels has been fully characterised [101]: E is a reversible channel if and only if
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ρ RZ(2γ − π
2
) • RZ(−π

2
) E(ρ)

|0〉〈0| RZ(
π
2
) • RY (

π
2
− 2α) RY (2β − π

2
) • Ē(ρ)

Figure 2.2: Circuit decomposition for generic 2 qubit isometryV(α, β, γ). For dX = dA =
dB = 2, all isometries can be expressed in the above form, where 0 ≤ α, β, γ ≤ π [1]. The
complementary channels E = trB ◦V & Ē = trA ◦V are shown, by ranging over α, β, γ we
can generate the isometric CUP-set C for 1 to 2 qubits.

ρ • E(ρ)

|0〉〈0| RY (
π
2
− 2α) RY (2β − π

2
) • Ē(ρ)

Figure 2.3: Sufficient circuit decomposition for 2 qubit isometry V(α, β). For dX = dA =
dB = 2, the above isometry is sufficient to generate all points (u, ū) of the isometric CUP-set
C for 1 to 2 qubits with 0 ≤ α, β ≤ π. This follows from the general decomposition given in
Figure 2.2, observing that the initial two gates do not change the state of the system, and the
invariance of unitarity under local unitaries.

there is a unitaryU and amixed state σ

E(ρ) = U(ρ⊗ σ)U †. (2.36)

Alternatively, E is a reversible quantum channel if and only if

〈E(ρ), E(τ)〉 = c〈ρ, τ〉 (2.37)

for all states ρ, τ and some constant c > 0. Here the inner product is the Hilbert-Schmidt

inner product given by 〈X,Y 〉 := tr
[
X†Y

]
. The latter demonstrates that reversible chan-

nels are a natural generalization of isometry channels. In fact, as for classical theory, we can

alwayswrite any reversible channelR as the convex combination of isometriesR =
∑r

i piVi
with

∑r
i pi = 1 and pi ≥ 0 (see Lemma 2.2). Therefore we can think of the reversible CUP-

set Cr as introducing auxiliary classical randomness to the isometric CUP-set C.

2.3.4 Upper bound for reversible CUP-sets

In the followingwe establish that the reversible quantumCUP-set,Cr, shares the sameupper

boundary as the isometric quantumCUP-set, C – adding randomness does not increase our

ability to clone information. However, the existence of a non-trivial lower bound for Cr, and
therefore the possibility of perfect hiding, will depend on the values of dA, dB and dX .

We now constrain Cr by showing show that any point (u, ū)within the set will obey the

same upper bound as C.
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Lemma 2.2. Given any input systemX of dimension dX and output systemsA andB of dimen-

sions dA, dB , with dX ≤ dAdB. The associated reversible quantum CUP-set Cr ⊆ [0, 1]2 is

bounded in (u, ū)–plane by

u+ ū ≤ 1. (2.38)

Proof. Wecan alwayswrite a reversible channelR(ρ) := UAB(ρ⊗σ)with apotentiallymixed

state σ, as the convex combination of isometries Vi as

R(ρ) = UAB(ρ⊗ σ) = UAB(ρ⊗
r∑
i

piψi) =
r∑
i

piUAB(ρ⊗ ψi) =
r∑
i

piVi(ρ) (2.39)

for somepure statesψi = |ψi〉〈ψi|. Wedefine themarginalsER := trB ◦Rand ĒR := trA ◦R.

Therefore we can write themarginal channel ER as

ER = trB ◦R =
r∑
i

pi trB ◦Vi =
r∑
i

piEi (2.40)

if we define Ei := trB ◦Vi and similarly for ĒR. As the unitarity is convex (see Lemma A.2)

we have

u(ER) = u(
r∑
i

piEi) ≤
r∑
i

piu(Ei) (2.41)

and similarly for ĒR. However u(Ei)+ u(Ēi) ≤ 1 for all i from our bound on isometric CUP-

sets in Theorem 2.1. Therefore we have

u(ER) + u(ĒR) ≤
r∑
i

pi(u(Ei) + u(Ēi)) ≤
r∑
i

pi = 1. (2.42)

Which completes the proof, as (u(ER), u(ĒR)) = (u, ū) in the reversible CUP-set.

Thereforewhile the reversibleCUP-set, Cr, may be larger than the isometricCUP-set, C,
it must obey the same upper bound.

Perfect hiding with classical randomness

In the case dX = dA = d and dB = d2, the reversible CUP-set Cr contains the point (0, 0)
andperfect hiding canbe achieved. However, as the channel is neither unitarynor isometric,

it does not constitute a violation of the no-hiding theorem. The following channel is some-

times called the quantum one-time pad [110] and illustrates a perfect hiding channel when

d = 2. Further, it can be straightforwardly generalized to higher dimensions.

Labeling the 4 Pauli operators on a single qubit as {Pi} = {1, X, Y, Z} we randomly

apply an operator to the input state and record which to a classical register, such that

R(ρ) =
1

4

4∑
i

PiρPi ⊗ |i〉〈i| . (2.43)
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where {|i〉〈i|} are the four computational basis states on two qubits. This channel has max-

imally mixed marginals, trA[R(ρ)] = 1/2 and trB[R(ρ)] = 1/4. Thus (u, ū) = (0, 0).

However there exists a quantum channel, R′, such that R′ ◦ R(ρ) = ρ for any state ρ.

Physically,R′ is implemented by measuring the classical register, B, and applying the cor-

responding Pauli operator to systemA, then discarding the register. The Kraus operators,

R′(·) =
∑

iR
′
i ·R

′†
i , for this channel will be of the form:

{R′
i} = {Pi ⊗ 〈i|} (2.44)

It is readily seen that
∑

iR
′†
i R

′
i = 1 and therefore that this is a valid quantum channel.

We can connect any channel to a isometric process in a higher dimension through the

stinespring dilation. This connects any reversible (or full) CUP-set to a isometric CUP-set

with high dimensional output systems. Applied to the above hiding channel,R, the follow-

ing isometry

V =
1

4

4∑
i

Pi ⊗ |i〉B ⊗ |i〉C (2.45)

givesR(ρ) = trC [V ρV
†]where the dimension of subsystemC is dC = 4. However by trac-

ing out theA subsystem, we find ρ can be completely recovered inBC. In fact, any bipartite

combination of the subsystems A, B and C defines a pair of marginal channels for the iso-

metricCUP-setsCwithdimensions (2, 16)or (4, 8). The lowerboundon isometricCUP-sets

given in Theorem 2.1 then guarantees that there is no arrangement ofA,B andC such that

bothmarginals are completely depolarising – confirming that quantum information cannot

be completely hidden, and can always be recovered fully in the unitary dynamics of the larger

system.

Boundaries of the simplest reversible CUP-set

In the case dX = dA = dB = 2, the reversible quantum CUP-set Cr is quite similar to C. It
has exactly the sameupperboundarybutdifferent lowerboundarieswhichare again straight

lines. We have the following analytical bounds for reversible CUPs of these dimensions

1

3
≤ u+ ū ≤ 1. (2.46)

Where the lower bound can be found algebraically from the general circuit decomposition of

a unitary on two qubits and using the characterisation theorem of reversible channels.

The lowerboundingcurves are straight lines, andgivenbyconsidering themarginal uni-

tarities of the reversible channel R(ρ) = UAB(ρ ⊗ 1
2
). The right lower surface is given

by UAB = CNOT αAB over the domain 1
3
≤ u ≤ 1. The middle lower surface is UAB =

CNOT αBA ◦CNOTAB for 0 ≤ u ≤ 1
3
. Finally, the left surface is given byUAB = CNOTαAB ◦

CNOTBA ◦ CNOTAB for u = 0.
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A similar construction to the lower boundaries of this reversible CUP-set appears in the

context of interleaved fidelity randomized benchmarking [111].

2.3.5 Full quantum CUP-set

Finally, the full quantum CUP-set C∗, is generated by the marginals any quantum channel

from X → AB. For example, in the simplest case, C∗ is given by the marginal unitarities

of any 1 to 2 qubit quantum channel. Then the upper boundary is given in equation (2.35),

which it shares with both Cr and C. More generally, for any system dimensions, any point

(u, ū) below the upper boundary given by C is part of the full CUP-set. This is readily seen

by considering a partially depolarizing channel on each output subsystem, as discussed in

Section 5.1.2.

2.4 Generalized incompatibility and reversibility

Generalized probability theories (GPTs), provide a broad framework in which one can com-

pare different physical theories and study their fundamental properties from an abstract, of-

ten information-theoretic viewpoint [77]. Our primary aim is tomeasure the incompatibility

ofquantumandclassical theory inamanner that canbecompared, capturesno-go theorems,

and – at least for quantum theory – can be efficiently computed on devices with robustness

to noise. However our work can be framed in a general GPT setting, which we explore in

this section. We also prove some properties of unitarity which were given following Defini-

tion 2.1. This assures the key properties hold across for quantum theory, classical theory

and other theories.

2.4.1 Unitarity of GPT channels

AGPT is defined by a closed, convex set S of states, and an effects spaceE, fromwhich the

allowed measurements on S are constructed. The extremal points of S are called the pure

states, and we denote this set by ∂S. We shall further assume that we can embed both the

state space S and effects space E in a Euclidean vector space, with inner product 〈·, ·〉. A

measurementM is given by any tuple of effectsM = {m1,m2, ...,mN}withmi ∈ E such

that
∑N

k 〈mk, x〉 = 1 for all states x in S. The probability of getting an outcomemk on a

state x is given by p(mk|x) = 〈mk, x〉. The dimension d of the state space is given by be

the maximal number of completely distinguishable states {x1, x2, ..., xd} in S, where a set
of states is completely distinguishable if there is a measurement M] = {m1,m2, ...,md}
that unambiguously identifies which of the states was measured through its deterministic

outcome. We callM] a sharpmeasurement. Any physical process corresponds to a channel
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E , which is a linearmap that sends any valid state x in the input system to another valid state

E(x) in the output system.

For a GPT, we define the following function, the purity γ(x) of a state x via

γ(x) := max
M]

∑
k

〈mk, x〉2, (2.47)

where the maximization is taken over all sharp measurements M] = {mk} in the theory

[112]. While this optimization is non-trivial it turns out that the optimal measurements are

simply the measurement of the pure states in classical theory (see Lemma 2.6), and in the

case of quantum theory a rank-1 projective measurement in the basis the state is diagonal

in (see Lemma 2.7). Additionally we can define a generalized maximally mixed state for any

GPT obtained by averaging over the pure states ∂S of the theory

η :=

∫
∂S
dµ(x)x. (2.48)

Together equations (2.47) & (2.48) allow for the unitarity of a channel, as given in equa-

tion (2.1), to be calculated for theories which do not have an inner product purity 〈x, x〉.
More generally, the constant α in equation (2.1) will depend on the structure of the state

space S and themeasure dµ(x).

2.4.2 Channel compatibility in general theories

While recent works deal with incompatibility of measurements in general theories [23, 24],

one can also extend to the notion of (in)compatible channels [113].

The way in which the state space of subsystems relates to the state space of the global

system is slightlynon-trivial, and thedetails canbe found in [77, 78, 114–116]. For composite

systemswealsohave thenotionof tracing-outordiscardingof subsystems, that corresponds

to the unit effect. We nowput subscripts to specify the systems involved, so that xA is a state

for systemA and xABC is a state for a tripartite systemABC. For a state xAB on a bipartite

systemAB we assume there is channel xAB → trA[xAB] =: xB that outputs a state xB onB

that results fromdiscardingor ignoring systemA. This amounts to computing themarginal

of a probability distribution. We also define the identity channel as id(x) = x for all x ∈ S.
GivenachannelE fromasubsystemX to subsystemsABwecandefine themarginal channels

as

trB ◦ E(x) and trA ◦ E(x). (2.49)

Two (ormore) channels in a theory are compatible if they arise asmarginal channels of a valid

global channel within the theory.

Given the structure of the perfect-hiding channel in classical theory, we therefore argue

that to capture no-go theorems, the appropriate set of global channels to consider in a theory
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is the set of reversible channels. In any theory, we say a channel E is reversible precisely if

there is a second channelF in the theory such thatF ◦ E = id such that the total channel is

the identity channel. For theories with an inner product between states, a particular subset

of reversible channels are isometry channels V, which preserve the inner product structure

i.e. for any pair of states y, z it satisfies 〈y, z〉 = 〈V(y),V(z)〉.
We also note that perfect cloning in classical theory involves an isometry channel, while

perfect-hiding in classical theory involves a non-isometric, but reversible channel. Therefore

if we restricted to only isometric channels in a theory this would suggest that is impossible

to hide a bit in classical theory, which is not true.

In light of this, we say that a theory admits perfect cloning precisely if there is a channel

E from a systemX into a bipartite systemAB such that the marginal channels are both the

identity channel. We also say that the theory admits perfect hiding precisely if there is a re-

versible channelR fromX into AB with marginals being two completely erasing channels

D1 fromX into A and D2 fromX into B. Here a channel D is completely erasing if for all

x ∈ S we haveD(x) = y for some fixed y.

Putting this together we have all the tools to examine incompatibility in a GPT using

compatible unitarity pairs and therefore CUP-sets. However as our primary aim is to com-

pare classical andquantumtheorywe leave explicit construction ofGPTCUP-sets for future

analysis.

2.4.3 Properties of unitarity for GPT channels

We now prove some technical details of unitarity within the GPT setting. This gives us a

collection of properties that hold for both classical and quantum theory.

Firstly,weshowthat theunitarityvanishes for channels that completelydiscard the input

state.

Lemma 2.3. For any GPT in which dµ(x) is non-zero over all of ∂S we have that u(E) = 0 if

and only if E = D, for a completely depolarizing channel D(y) = z for all input states y with

output state z fixed.

Proof. A sum of non-negative numbers is zero if and only if each number is identically zero.

Thereforewehave thatu(E) = 0 if andonly if 〈mk, E(x)−E(η)〉 = 0 for allmk in the optimal

measurement and for all x ∈ ∂S. Sincemk 6= 0 for all k this means that u(E) = 0 if and only

if E(x) − E(η) = 0 for all x, which is true if and only if E(x) = E(η) = y for all x and fixed

y.

For channels that discard the input state with some probability and transform it with

another probability, the unitarity also has a simple form.
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Lemma2.4. For anyGPTwith an inner product between states and effects, and inwhich dµ(x)

is non-zero over all of ∂S we have u(pE + (1− p)D) = p2u(E)where E is any channel, andD
is a completely depolarizing channelD(y) = z for all states ywith z fixed.

Proof. The proof follows from the expansion of the definition of unitarity under linearity,

and thatD(x)−D(η) = 0 (fromLemma 2.3). Putting this together

u(pE + (1− p)D) := α

∫
∂S
dµ(x) γ

(
p(E(x)− E(η)) + (1− p)(D(x)−D(η))

)
,

= α

∫
∂S
dµ(x) max

M]

∑
k

〈mk, p(E(x)− E(η))〉2,

= p2α

∫
∂S
dµ(x) max

M]

∑
k

〈mk, E(x)− E(η)〉2 = p2u(E).

(2.50)

Which is the required form.

The simple form given above for the unitarity when depolarizing channels are involved

can be directly applied to CUP-sets. It allows us to deform the CUP-set according to the

level of depolarization we apply.

Corollary 2.1. For any CUP-set if the global channel G fromX → AB gives the point (u, ū)

then the set of convex combinations pG + (1 − p)D gives the point (p2 u, p2 ū), where D is a

global completely depolarizing channelD(y) = z for all states ywith z fixed.

Proof. This follows fromLemma2.4with theobservation that themarginals trA ◦D&trB ◦D
of a completely depolarizing channel are also completely depolarising channels (to a different

fixed state).

Lemma 2.5. Consider a GPT inwhich γ(x) = 〈x, x〉. Then for any isometry, V , and any other
channel, E , we have u(V ◦ E) = u(E).

Proof. The proof follows from expansion of the definition of unitarity under linearity, and
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that 〈V(x),V(y)〉 = 〈x, y〉 for all isometries V and any states x and y. Then

u(V ◦ E) = α

∫
∂S
dµ(x) γ(V ◦ E(x)− V ◦ E(η)),

= α

∫
∂S
dµ(x) 〈 V ◦ E(x)− V ◦ E(η),V ◦ E(x)− V ◦ E(η)〉,

= α

∫
∂S
dµ(x) 〈V ◦ E(x),V ◦ E(x)〉

+ 〈V ◦ E(η),V ◦ E(η)〉

− 2 〈V ◦ E(x),V ◦ E(η)〉

= α

∫
∂S
dµ(x) 〈E(x), E(x)〉+ 〈E(η), E(η)〉 − 2 〈E(x), E(η)〉

= α

∫
∂S
dµ(x) 〈E(x)− E(η), E(x)− E(η)〉,

= α

∫
∂S
dµ(x) γ(E(x)− E(η)) = u(E).

(2.51)

Corollary 2.2. Consider a GPT in which γ(x) = 〈x, x〉. Then for any isometry, V , we have

u(V) = 1.

Proof. This follows directly fromLemma 2.5 with E = id.

2.4.4 Proofs for purity in classical and quantum theory

The following lemmas serve to illustrate that the general definition of purity for any GPT

given in equation (2.47) reduces to the familiar forms for both classical and quantum theory.

We first tackle classical theory.

Lemma 2.6. For any classical state x of dimension d, we have

γ(x) := max
M]

∑
k

〈mk, x〉2 = 〈x, x〉 (2.52)

where the maximization is taken over all sharp measurementsM] = {mk} of dimension d.

Proof. As discussed in Section 2.4, the pure states of classical probability theory are given by

the d extremal points {xi}di=1 of the state space. There is only onemeasurement that distin-

guishes d states, namelyM] = {xi}di=1 for the set of pure states. Further, for any (mixed)

state x, we can write x =
∑d

i pixi where
∑d

i pi = 1 and all pi are non-negative. Putting this

together we have

γ(x) =
d∑
k

〈xk, x〉2 =
d∑

i,j,k

〈xk, pixi〉 〈xk, pjxj〉 =
d∑

i,j,k

pipjδkiδji =
d∑
i

p2i . (2.53)

To complete the proof we observe that 〈x, x〉 =
∑d

i,j pipj 〈xi, xj〉 =
∑d

i p
2
i .
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The same result can be shown for quantum theory.

Lemma 2.7. For any quantum state ρ of dimension dwe have

γ(ρ) := max
M]

∑
k

〈mk, ρ〉2 = tr
[
ρ2
]
, (2.54)

where the maximization is taken over all sharp measurementsM] = {mk} of dimension d.

Proof. Wecanwrite anyquantumstate in its eigenbasis,ρ =
∑d

i λi |ei〉〈ei|, such that tr[ρ]
2 =∑d

i λ
2
i . AsM] completely distinguishes d states we have

max
M]

∑
k

〈mk, ρ〉2 = max
M]

d∑
k

(
d∑
i

λi tr
[
m†
k |ei〉〈ei|

]
)2,

= max
M

d∑
k

(
d∑
i

λiMki)
2,

(2.55)

whereMki := tr
[
m†
k |ei〉〈ei|

]
, and forms a doubly stochastic matrix given by

∑d
i Mki =∑d

kMki = 1. Expanding the purity

max
M]

∑
k

〈mk, ρ〉2 = max
M

d∑
i,j,k

λiλjMkiMkj,

= max
M

d∑
i,j

λiλj(M
TM)ij.

(2.56)

As the product of any two doubly stochastic matrices is doubly stochastic,
∑

i(M
TM)ij =∑

j(M
TM)ij = 1. We then use that the vector λ = (λ1, λ2, ..., λd)

T majorizes the vector

µ :=MTMλ. Such that

max
M]

∑
k

〈mk, ρ〉2 =
∑
i

λiµi ≤
∑
i

λ2i + µ2
i

2
≤
∑
i

λ2i . (2.57)

Where the last inequality follows the Schur-convexity of f(x) = x2. Equality holds as we

can choose themeasurement in the eigenbasis, which attains the bound.

This completes our discussion of unitarity, incompatibility andCUP-setswithin the set-

ting of generalized probability theories.

2.5 Conclusions

2.5.1 The long arm of purity

Oneway of viewing the approachwehave taken here, is thatwe are startingwith the concept

of purity and applying it with greater and greater abstraction in the sequence

States → Channels → Theories. (2.58)
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Letusmake thismoreprecise. In anygeneral theorywe canbeginwith an elementarynotion

of disorder of a state, which can be quantified via the purity γ(x). This can nowbe extended

to the channel level for the theory andwe obtain the unitarity u(E)which is the natural gen-
eralization of purity. Indeed if we view a state x as itself being a preparation channel 1 → x

from the trivial system to S then it is readily seen that we have that u(x) = γ(x) and the two

notions coincide. For more non-trivial channels it can be shown [61] that the unitarity co-

incides with the conditional purity of the Choi state of E. The unitarity is a variance-based
measure of the disorder of a channel from one input system to one output system.

We next extend this further to consider how order can be shared or distributed amongst

subsystems A andB of a theory and unitarity pairs (u, ū), and subsets of channels. Again,

this is a generalization of the preceding concept since ifB is the trivial system then (u, ū) =

(u(E), 0), which is just the unitarity of a channel. When applied to sets of channels this leads

to encodings of no-go results of the theory. In this sense CUP-sets are purity measures of a

given physical theory within the space of all operational theories.

2.5.2 Overview

Wehavederivedasimple formulationof information-disturbanceand incompatibility inquan-

tum theory, given through the set of compatible unitarity pairs (CUPs). These pairs of com-

patible channels can be defined in any generalized probability theory, and they capture key

limits of information transformation under the chosen theory.

Weundertook a thorough comparisonbetweenCUP-sets under quantum theory,where

they are tightly bound, and classical theory where the CUP-set lies on the boundary of the

unit square. We then explored the CUP-set for quantum theory in detail, including general

bounds on these sets, which we related to quantum no-go theorems.

However, to complete our aims we must connect our framework with efficient and ro-

bust estimation on quantum devices. However we will find the benchmarking techniques

required are more involved than those required for the estimation protocols of other results

in Chapter 4. Therefore we leave discussion of experimentally realizing the CUP-set frame-

work to Chapter 5.
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Quantifying local and correlated

coherence in quantum channels

The 1-norm and the 2-norm [...] these really are God’s

favourite norms!

QuantumComputing Since Democritus

Scott Aaronson

In this chapter, we establish several novel measures of coherence flow within bipartite

quantum channels. We then prove that our measures have a selection of desirable proper-

ties and examine how they act on specific families of channels. Specifically, we extend the

concept of the unitarity of a channel – a measure of howwell a channel preserves coherence

– to sub-structures of channels. These subunitarities capture the local coherence of a chan-

nel. Inspired by the covariance of random variables, we then use the subunitarities to build

ameasure of correlations in bipartite channels. Crucially, we prove thismeasure is a witness

of non-classical behaviour in channels, in particular non-separability. While thesemeasures

areof interest independently,wewill show in the followingchapter that theyappearnaturally

within the context of randomized benchmarking protocols. This is critical to our approach

aswe aim to producemeasures that can be efficiently and robustly estimated on devices. We

discuss the complications that arise during estimation in the Chapter 4.

3.1 Operational subunitarities of quantum channels

Wewish to formulate an experimentally accessiblemeasure of correlations in a general bipar-

tite quantum channel. Paralleling the situationwith quantum states, we say that a quantum

45
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channel EAB : B(HA ⊗HB) → B(HA ⊗HB) from a bipartite systemAB to itself is uncor-

related or alternatively a product channel if EAB = EA ⊗ EB for a channel EA fromA to itself

and EB fromB to itself. Otherwise it is said to be a correlated channel. We shall also consider

the set of separable channels, which take the formof a statisticalmixture of product channels

EAB =
∑

i piE iA ⊗ E iB for a probability distribution (e.g. pi ≥ 0 and
∑

i pi = 1). A quantum

channel is said to be non-separable if it lies outside the convex set of separable channels. The

extension to channels from input systemsAB to potentially different output systemsA′B′ is

obvious, but to avoid over-complicating notation we primarily focus on identical input and

output systems and only discuss themore general case in Section 3.1.2, where it is required.

The general definition is provided in Appendix B.2.

3.1.1 Elementary subunitarities of a channel

Given two classical randomvariablesX andY a simple and directmethod ofmeasuring cor-

relations is to compute the covariance ofX and Y . This is given as cov(X,Y ) := 〈XY 〉 −
〈X〉〈Y 〉, where the angle brackets denote taking the expectation value of the random vari-

able. Moreover, we have that cov(X,X) = var(X), the variance of the random variableX,

which in turn quantifies the noisiness ofX. The relevance here is, as discussed inChapter 1,

it has been noted [60] that the unitarity of a channel can be expressed as

u(E) = dX
dX − 1

tr[var(E)] = dX
dX − 1

tr
[〈
E(ψ)2

〉
− 〈E(ψ)〉2

]
, (3.1)

where 〈X〉 =
∫
dψX for anyX denotes taking the average of an operator-valued random

variable with respect to theHaarmeasure.

As the unitarity can be viewed as the variance of a quantum channel, we can ask if a form

of covariance for a quantum channel exists similar to the covariance of two random variables

in classical statistics. However, while there is a clear notion of a marginal distribution for a

joint probability distribution the situation is more complex for a bipartite quantum channel

where the reduction to ‘marginal channels’ depends on the structure of the initial state con-

sidered [118]. Instead, herewe take the basic formof covariance of two randomvariables as a

guide and construct a unitarity-based correlation measure uc(EAB) for a bipartite quantum
channel with certain desirable features.

As we want the measure uc(EAB) for quantum channels to function like cov(X,Y ) for

classical randomvariables,wemustdefine sensible channel equivalents to 〈X〉, 〈Y 〉and 〈XY 〉.
In the context of RB protocols on bipartite quantum channels we shall show in Section 4.4

that a natural marginal channel measure uA→A emerges that parallels the classical marginal

expectation 〈X〉. This is given by the following subunitarity uA→A of a bipartite quantum

channel.
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Definition 3.1. The subunitarity uA→A, of a bipartite channel, EAB , is defined as

uA→A(EAB) := u(EA), (3.2)

where EA(ρ) := trB[EAB(ρ ⊗ 1B

dB
)] for any state ρ of A and where 1B

dB
is the maximally

mixed state on the subsystemB.

Thesameconstructionapplies for theB subsystemwith theassociatedchannelEB(ρ) :=
trA[EAB(1A

dA
⊗ρ)], with 1A

dA
as themaximallymixed state onA, giving uB→B(EAB) := u(EB).

For both these subunitarities prepare the maximally mixed state on the other system – this

is logical, as this is the state that is obtained from averaging over all states and represents no

knowledge about the subsystem.

It is also clear thatwe can define two further subunitaritiesuA→B and uB→A between the

subsystems. These are defined as

uA→B(EAB) := u(EA→B) (3.3)

whereEA→B(ρ) := trA[EAB(ρ⊗ 1B

dB
)] for any input stateρofA andwhere 1B

dB
is themaximally

mixed stateon the subsystemB. Wecandefine a similar channelEB→A fromB toA such that

uB→A(EAB) := u(EB→A). Equivalentlywecouldmakeuseof theunitary,SWAP , that swaps

the subsystems A and B such that SWAP (ρA ⊗ ρB) = ρB ⊗ ρA for any states ρA and ρB.

Then we have the simple relation

uA→B(EAB) = uA→A(SWAP ◦ EAB), (3.4)

and similarly for uB→A.

From these definitions it is clear that the subunitarity uX→Y (EAB), withX,Y = (A,B)

being subsystems, is based on the situation in which a quantum state ρ is prepared on X

with themaximallymixed state on the other subsystem and then evolved under the channel

EAB. The quantity uX→Y (EAB) inherits the properties of unitarity and therefore measures

how close this global evolution is to being an isometric mapping of the state ρ onX into the

output system Y , thereby quantifying information transfer.

S
u
m
m
a
ry The subunitarity uX→Y (EAB) quantifies the amount of quantum information that flows

from subsystemX into subsystem Y within a channel EAB.

The subunitaritiesuA→A anduB→B for the bipartite quantum channel have the property

that when applied to product channels give

uA→A(EA ⊗ EB) = u(EA)

uB→B(EA ⊗ EB) = u(EB). (3.5)
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These relations imply that if we can also construct a subunitarity uAB→AB such that

uAB→AB(EA ⊗ EB) = u(EA)u(EB), (3.6)

then we can define a correlationmeasure that mirrors covariance in the following way.

Definition3.2. The correlationunitarity,uc(EAB), of a bipartite channelEAB is defined
as

uc(EAB) := uAB→AB(EAB)− uA→A(EAB)uB→B(EAB), (3.7)

where uA→A, uB→B and uAB→AB are subunitarities of the channel.

We can in fact construct this measure, however the subunitarity uAB→AB is more dif-

ficult to define than the local subunitarities uA→A and uB→B already given. The definition

of uAB→AB is most easily expressed in the Liouville representation, and is provided in Sec-

tion 3.2.2, and the justification for the naturalness of these terms is provided in Chapter 4

where we will show that these arise naturally from randomized benchmarking theory. The

technical reason for this is that they are the quantities that arise if one considers quadratic

order expectations over Haar random states where one includes the bipartite structure ex-

plicitly.

However, before deriving the remaining term in our correlation measure, in the next

sub-section we show how the above subunitarities lead to a statement of the information-

disturbance relation that is amenable to experimental verification.

3.1.2 Subunitarity formulation of information-disturbance

The information-disturbance relation [21] is a fundamental result in quantum theory and

can be summarized as saying that if a quantum channel is close to being a unitary – ormore

generally an isometric channel – then the leakage of quantum information into the environ-

mentmustbe“small”. This trade-off canbeexpressed in termsof thediamondnormdistance

of the channel fromaunitary channel for the output system, and the diamondnormdistance

of the complementary channel from a completely depolarizing channel for the environment.

However, such quantities can neither be estimated efficiently nor in a SPAM-robust form.

Within Chapter 2, we provided an alternative formulation of the information-disturbance

relation that does not suffer from these weaknesses. Here we show that we can express this

result in the languageof subunitarities,whereweconsider the trade-offswhenmovingquan-

tum information between subsystems of a bipartite process.

We nowmake a simplifying assumption1, we consider the evolution of the bipartite sys-

temtobeunitary,UAB. This is anatural assumption tomakewhenconsidering information-

1One can numerically verify that this assumption is not required for single qubit subsystems.
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disturbance, as wewant to include environmental effects within the total system, and there-

fore expect the total process to be unitary.

For this setting,wenowshow the following result on subunitarities that provides a state-

ment of quantum incompatibility [21, 22]. To our knowledge the question of efficiently and

SPAM-robustly testing such foundational results has not been previously considered, and so

sucha result opensup this possibilityby formulating in termsof quantities native to random-

ized benchmarking protocols. Given the ability to estimate unitarity in randomized bench-

marking protocols we therefore expect that our relation could also be verified efficiently and

robustlyusingexistinghardware. Wenowstateandprove thesubunitarity-based information-

disturbance relation.

Theorem 3.1 (Subunitarity information-disturbance relation). Consider a bipartite

unitary, UAB , on a joint systemAB. Then

uA→A(UAB) + uA→B(UAB) ≤ 1, (3.8)

where uA→A and uA→B are subunitarities of the bipartite channel.

Proof. We can prove that the above is a special case of our results for the reversible quantum

CUP-set in Chapter 2. From the definition of subunitarities (see Definition 3.1), we have

uA→A(UAB) = u(EA→A), (3.9)

for a channel EA→A(ρ) := trB ◦ UAB(ρ ⊗ 1
dB
). Similarly for the other output subsystem we

have uA→B(UAB) = u(EA→B) for a channel EA→B(ρ) := trA ◦ UAB(ρ ⊗ 1
dB
). It can be easily

checkedthat thechannelR(ρ) := UAB(ρ⊗ 1
dB
) is a reversible channel, as trB ◦U †

AB◦R(ρ) = ρ

for any stateρ. Therefore the channelsEA→A andEA→B are themarginals channels ofR such

that EA→A = trB ◦R and EA→B = trA ◦R.

However, for any reversible channel,R′, from a systemX to a joint systemAB, we have

shown in Lemma 2.2 that the unitarities of themarginals obey the following relation

u(trB ◦R′) + u(trA ◦R′) ≤ 1. (3.10)

SettingR′ = R for this specific reversible channel, we have

u(trB ◦R) + u(trA ◦R) ≤ 1,

u(EA→A) + u(EA→B) ≤ 1,

uA→A(UAB) + uA→B(UAB) ≤ 1.

(3.11)

Which completes the proof.
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The above result provides a compact form of information-disturbance [21], in the fol-

lowing way, and can be straightforwardly generalized to case of differing input and output

subsystem dimensions. For clarity, in this section, we shall put subscripts on the channels

to denote their input and output systems explicitly, andwrite Ei→j to denote a channel from

any system i into j. Recall that, from the definition of subunitarities, we have

uA→A(UAB) = u(EA→A), (3.12)

for EA→A(ρ) := trB ◦ UAB(ρ⊗ 1
dB
). Similarly for the other output subsystemwemust have

uA→B(UAB) = u(EA→B) for EA→B(ρ) := trA ◦ UAB(ρ ⊗ 1
dB
). With these operational re-

lations, Theorem 3.1 captures the tradeoff of information flow from a single subsystem, A,

into either subsystem of the bipartite systemAB.

More precisely, we can consider leakage of quantum information from a system into its

environment, which is of relevance to, for example, quantum computing in a noisy environ-

ment when one wishes to approximate a unitary channel as accurately as possible. We can

consider a quantum channel EA→A ≈ UX→A, which is approximately close to a target uni-

tary, UA→A, in terms of unitarity. We quantify this as u(EA→A) = u(UA→A) − ε for some

ε ≥ 0 quantifying the approximation. However the unitarity of a channel equals 1 if and

only if it is an isometry [57, 61] and so the monogamy relation of Theorem 3.1 implies that

u(EA→B) ≤ ε. Furthermore it is easily shown (see Chapter 2) that the unitarity vanishes if

and only if the channel is a completely depolarizing channel. This in turn implies that the

channel EA→B must be ε-close in terms of unitarity to a completely depolarizing channel. In

other words, the relation implies that the information leaking into the the other subsystem

necessarily decreases to zero as the channel EA→A approaches a unitary channel.

S
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We have shown that subunitarities also express an information-disturbance relation,

which is a foundational concept. We have uA→A(UAB) + uA→B(UAB) ≤ 1 for the

subunitarities of a unitary UAB. Therefore when all information stay in a subsystem,

uA→A(UAB) = 1, then necessarily the channel produces no correlations and transfers no

information to the other subsystem uA→B(UAB) = 0. This may open the path to robust

testing of information-disturbance on current highly noisy devices.

Information-disturbance is closely related to both the no-cloning and no-broadcasting

theorems [17, 20, 119, 120]. We discuss howunitarity can be used to address these quantum

no-go theorems in Chapter 2.

3.1.3 The Liouville representation of quantum channels

WenowintroducevectorizationofquantumstatesandtheLiouville representationof aquan-

tum channel. Thesemathematical tools will be extremely useful throughout this chapter.
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Consider quantum channels E : B(HX) → B(HX), where B(HX) denotes the space

of linear operators on the Hilbert spaceHX for a d-dimensional quantum system. We can

choose an orthonormal basis of operatorsX0, X1, . . . , Xd2−1 for B(HX) withX0 = 1/
√
d

such that with respect to theHilbert Schmidt inner product 〈Xµ, Xν〉 := tr
[
X†
µXν

]
= δµ,ν.

In particular, this means that X1, . . . , Xd2−1 are all traceless operators. We shall refer to

bases of this kind in the following compact way,Xµ = (X0 = 1√
d
1, Xi). We highlight that

we shall useGreek-labels (µ, ν, . . . ) for sums that runoverallbasis operators andLatin-labels

(i, j, . . . ) notation to run over just the traceless basis operators.

Wedefine vectorization of operators via |vec(|a〉〈b|)〉 := |a〉⊗|b〉 for computational basis

states [38]. This definition can be extended by linearity to get the mappingM → |vec(M)〉
for any operatorM ∈ B(HX). Then for any quantum channel E : B(HX) → B(HX) we

define its Liouville representation,L(E), through the relation

L(E)|vec(M)〉 = |vec(E(M))〉, (3.13)

for allM . To simplify things going forward, we shall adopt the notation that we denote all

vectorized quantities in boldface. This is similar to how a vector is sometimes represented in

boldface as v = (v1, v2, . . . , vn). So we write |M〉 := |vec(M)〉 and E := L(E). Using this
boldface notation we can re-express equation (3.13) in themore compact form

E |ρ〉 = |E(ρ)〉 , (3.14)

for any state ρ, and any channel E. Channel conjugation is particularly pleasing in this rep-
resentation as it becomesmatrix multiplication, such that

EF |ρ〉 = |E ◦ F(ρ)〉 , (3.15)

for any state ρ, and any channels E andF .

S
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matrix, acting on states, ρ, encoded in vectors, |ρ〉, such that E |ρ〉. This is particularly
useful for numerical calculations.

Using this notation we now give some useful quantum operations in the Liouville repre-

sentation that we use through out this work, with proofs following. Firstly, the channel to

trace out (tr) the system, and a channel we define to prepare (prep : prep(1) = 1/d) a new

system in themaximally mixed state

tr =
√
d 〈X0| and prep = |X0〉 /

√
d. (3.16)

This shows that the preparation of the maximally mixed state can be thought of as dual to

the trace. As the trace completely discards a system, this strengthens our decision to use the

maximally mixed state within the definition of subunitarities.
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A direct consequence of the above is that the completely depolarizing channel D(ρ) :=

1/d to themaximally mixed state is given by

D = prep · tr = |X0〉〈X0| . (3.17)

The identity channel (id(ρ) = ρ) also allows a very simple form in the Liouville representa-

tion: id = 1⊗2.

Proofs for the preceding equations

Proof. (of equation (3.16)) For the first partwehave tr[ρ] = tr[1ρ] =
√
d 〈X0|ρ〉 asX0 = X†

0.

We can then vectorize both sides and apply the definition of the Liouville representation of

a channel |tr[ρ]〉 =
√
d 〈X0|ρ〉 and tr |ρ〉 =

√
d 〈X0|ρ〉. Therefore tr =

√
d 〈X0|. For

the second part, definitionally, 1/d = X0/
√
d, prep(1) = X0/

√
d and the vectorization of 1

leaves itunchanged |1〉 = 1. Therefore |prep(1)〉 = |X0〉 /
√
dandprep |1〉 = |X0〉 /

√
d |1〉.

As 1 is the only valid state of the trivial system,we read offprep = |X0〉 /
√
d completing the

proof.

Proof. (of equation (3.17)) We haveD |ρ〉 = |1/d〉 = |X0〉 /
√
d. As 〈X0|ρ〉 = 1/

√
d for any

quantum state ρwe can writeD = |X0〉〈X0|.

3.1.4 Unitarity in the Liouville representation

Using equation (3.14)we candecompose any channelE : B(HX) → B(HX) in theorthonor-

mal basisXµ = (X0 =
1√
d
1, Xi) to find the Liouville representation

2 of any channel:

E =
d2−1∑
µ=0

|E(Xµ)〉〈Xµ| . (3.18)

In terms of matrix components we then have that

E =

( |X0〉 |Xj〉
〈X0| 1 0

〈Xi| x T

)
, (3.19)

where E00 = 1 and E0j = 0 follow from the fact that the channel is a completely positive

trace-preserving operation. The d2 − 1 component vector x corresponds to the generalized

BlochvectorofE(1/d),whichcharacterizes thedegree towhich thechannelbreaksunitality.
This suggests a measure of non-unitality for a quantum channel defined via x(E) := x†x,

2When the basisXµ is fixed as the Pauli basis then the Liouville representation of a channel is sometimes
referred to as the Pauli transfer matrix [121].
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with x = 0 if and only if the corresponding channel is unital. The matrix block T encodes

the remaining features of a channel and from equation (3.19) takes the form

T =
d2−1∑
i,j

〈Xi|E(Xj)〉 |Xj〉〈Xi| . (3.20)

In this notation, the unitarity of a channel is then given by the simple relation [57]

u(E) := 1

d2 − 1
tr
[
T †T

]
. (3.21)

This formgives us further insight into the lowerboundof unitarity. Wecanwrite tr
[
T †T

]
=

||T ||22 where ||M ||2 :=
√
tr[M †M ] is the Schatten 2-norm (or Frobenius norm) of a matrix

M [122]. As this is a norm, we have tr
[
T †T

]
= ||T ||22 = 0 if and only if T = 0. Therefore

the only possible non-zero data in the channel’s Liouville representation is thex vector. This

is a completely depolarizing channel to some fixed state. Putting this together, we have that

u(E) = 0 if and only if E is a completely depolarizing channel, as we would expect.

3.2 Generalized subunitarities of bipartite quantumchannels

The formgiven for the unitarity in equation (3.21)will allowus to define all the possible sub-

unitarities of a bipartite channel. We do this by examining how the Liouville representation

of a channel extends to bipartite situations.

3.2.1 Liouville decomposition of bipartite quantum channels

We can also compute Liouville representations of bipartite channels, EAB: B(HA ⊗HB) →
B(HA⊗HB),whereweassume for simplicity that the input andoutput systemsare identical.

For subsystemA,wechooseanorthonormalbasisofoperatorsXµ = (X0 =
1√
dA
1A, Xi),

wheredA isdimensionof thesubsystemA, andsimilarly forB abasisYµ = (Y0 =
1√
dB
1B, Yi).

Together these provide a basis for the full systemwhich is given in the Liouville representa-

tion as 3

|Xν ⊗ Yµ〉 := |Xν〉 ⊗ |Yµ〉 . (3.22)

From these definitionswe canbuild bipartite channels, such as the partial trace of subsystem

B

idA ⊗ trB =
√
dB idA ⊗ 〈Y0| . (3.23)

3Note that thebasis |X ⊗ Y 〉 is a tensorproductbasis for (HA⊗HA)⊗(HB⊗HB) andup to re-orderingof
(second and third)Hilbert spaces the same as vectorization of thematrixX⊗Y . As these basis are isomorphic,
the Liouville representation will be invariant under such permutations.
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where idA is the Liouville representation of the identity channel on subsystemA. This fol-

lowsdirectly fromequation (3.16). Similarly, combinationof thiswith the preparation chan-

nel onB leads to the complete depolarization channel for theB subsystem

idA ⊗DB = idA ⊗ (prepB · trB) = idA ⊗ |Y0〉〈Y0| . (3.24)

Finally we can express the unitary operation, SWAP : B(HA ⊗ HB) → B(HB ⊗ HA),

that swaps the states of both subsystems compactly in the Liouville representation. From

definition, we can write any bipartite state in the form ρ :=
∑

ν,µ λνµXν ⊗ Yµ. The SWAP

channel then acts on this state such that SWAP (ρ) :=
∑

ν,µ λµνYµ ⊗Xν. Therefore, from

inspection, the Liouville representation of the channel is

SWAP =

d2A−1,d2B−1∑
ν=0,µ=0

|Yµ ⊗Xν〉〈Xµ ⊗ Yν | . (3.25)

Having established these explicit forms, we will find they are useful in examining substruc-

tures of bipartite channels.

3.2.2 General subunitarities with the Liouville representation

We can further decompose the Liouville representations of bipartite channels, in a manner

that leads to a general definition of subunitarities. As {|Xν ⊗ Yµ〉}ν,µ forms a complete or-

thonormal basis forHA⊗HA⊗HB ⊗HB, the Liouville representation of EAB corresponds

to amatrix EAB whose entries satisfy

〈Xν ⊗ Yµ|EAB |Xν′ ⊗ Yµ′〉 = tr
[
X†
ν ⊗ Y †

µ EAB(Xν′ ⊗ Yµ′)
]
. (3.26)

This in turn provides the followingmatrix decomposition of EAB,

EAB =



|X0 ⊗ Y0〉 |Xj1 ⊗ Y0〉 |Xj1 ⊗ Yj2〉 |X0 ⊗ Yj2〉
〈X0 ⊗ Y0| 1 0 0 0

〈Xi1 ⊗ Y0| xA→A TA→A TAB→A TB→A

〈Xi1 ⊗ Yi2| xAB→AB TA→AB TAB→AB TB→AB

〈X0 ⊗ Yi2| xB→B TA→B TAB→B TB→B

 (3.27)

where i1 = {1, 2, ..., (d2A − 1)}, i2 = {1, 2, ..., (d2B − 1)} and similarly for j. Here we break

up the entireT matrix of the channel, from equation (3.19), according the subsystem contri-

butions. For example, the term TAB→B denotes the mapping of joint degrees of freedom of

the input systemAB into theB output subsystem.

With this notation in place, we can nowdefine all the possible subunitarities of the bipar-

tite channel.
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Definition 3.3. For any quantum channel EAB on a bipartite systemAB a subunitarity

uX→Y of the channel is defined as:

uX→Y (EAB) := αX tr
[
T †
X→Y TX→Y

]
, (3.28)

for anyX,Y ∈ {A,B,AB}, with αA = 1/(d2A − 1), αB = 1/(d2B − 1) and αAB =

αAαB.

Definition 3.3 provides a form for all nine choices of subunitarity. All these subunitarities

measure the amount of coherent information that flows from the subsystemX into the sub-

system Y . We highlight that Definition 3.3 allows us to construct a uAB→AB subunitarity,

using the elements of the basisXν ⊗ Yµ that do not feature the identity on either subsystem

(X0 or Y0). While uAB→AB does not admit a straightforward operational interpretation we

will shortly show that it has some useful properties and allows the construction of a corre-

lation measure that is estimatable in practice. We now show that this generalized definition

coincides with our previousmore operationally defined subunitarities.

Theorem 3.2. For EA(ρ) := trB[EAB(ρ⊗ 1B

dB
)]we have u(EA) = uA→A(EAB), the unitarity u

of the local channel equal to the subunitarity uA→A of the full channel.

Proof. From definition the sub-unital block

TA→A = 〈Xi ⊗ Y0|EAB |Xj ⊗ Y0〉 = tr

[
X†
i ⊗

1B√
dB

EAB(Xj ⊗
1B√
dB

)

]
,

= trA[X
†
i trB[EAB(Xj ⊗

1B

dB
)]] = trA[X

†
i EA(Xj)],

(3.29)

which gives the unital block T of EA. As TA→A,EAB
= TEA from definition uA→A(EAB) =

u(EA). Similarly u(EB) = uB→B(EAB) for EB(ρ) := trA[EAB(1A

dA
⊗ ρ)].

As these subunitarities of a bipartite channel are the unitaries of local quantum channels

between subsystems, we directly inherit useful properties of unitarity as a measure. This

includes invariance under local changes of basis (e.g. unitary rotations).

Corollary 3.1. The local subunitarities of any channel uA→A(E)& uB→B(E) are invariant un-
der local unitaries.

Proof. This follows directly fromTheorem 3.2, as the unitarity of any quantum channel E is

invariant under local unitaries, U and V, such that u(U ◦ E ◦ V) = u(E) [61].

It is straightforward to expand on this property of local subunitarities, and apply it to all

subunitarities. Under a local change of bases on the input and output subsystems we have

EAB → (VA ⊗ VB) ◦ EAB ◦ (U †
A ⊗ U †

B), (3.30)
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for local unitary channels denotedwithV andU . These changes of bases transform the sub-

matrices TX→Y under multiplication by orthogonal matrices. For example

TA→A → O1TA→AOT
2 , (3.31)

for orthogonal matrices O1,O2, with e.g. O2 arising from the unitary channel UA(Xi) =∑d2A−1
m=1 O2;i,mXm. This implies thatall the subunitarity termsare invariantunder local changes

of bases. We formally proof the case uAB→AB in Lemma 3.6, and those techniques can be di-

rectly applied to the remaining cases.
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capturing quantum information transfer. This is because we would expect any measure

of this resource to be independent of which basis the final measurement was taken in.

The subunitarities relate to the unitarity u(EAB) of the quantum channel EAB through a

weighted sum. Intuitively, the total coherence of a channel can be broken up into the coher-

ence in and between the subsystems of a channel.

Theorem 3.3. The unitarity of a bipartite channel EAB is obtained from theweighted sum of its

subunitarities:

u(EAB) =
1

d2AB − 1

∑
X,Y ∈{A,B,AB}

uX→Y (EAB)
αX

, (3.32)

where dAB = dAdB is the dimension of the total system and αi = 1/(d2i − 1).

Proof. This simply follows from block-matrix multiplication, giving

tr
[
T †T

]
=
∑

n,m=(A,B,AB) tr
[
T †
n→mTn→m

]
. Therefore (see equation (3.21)) the unitarity is

u(E) = 1
d2−1

∑
n,m=(A,B,AB) tr

[
T †
n→mTn→m

]
. Rearranging the dimensional constants (see

equation (3.28)) completes the proof.

A direct consequence ofTheorem 3.3 is that estimation of all the non-zero subunitarities

of a channel gives an estimation of its total unitarity. Wewillmake use of this propertywhen

examining channels with only a small number of non-zero subunitarities.

3.2.3 The subunitarities of product channels

Asdiscussed inSection 3.1, ourprimarily aim in exploring these subunitarities is touse them

to construct ameasure of correlations in bipartite channels. Towards this we now show that

for a product channel EA ⊗ EB, the subunitarity uAB→AB splits up into the local unitarities,

uAB→AB(E) = u(EA)u(EB).

Lemma3.1. For a product channel, EA⊗EB , the sub-unital blockTA→A = TA⊗|Y0〉〈Y0|where

TA :=
∑

i,j |EA(Xj)〉〈Xi|. Similarly TB→B = |X0〉〈X0| ⊗ TB where TB :=
∑

i,j |EB(Yj)〉〈Yi|.
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Proof. Fromdefinition,TA→A,ij = 〈Xi|⊗〈Y0| EA⊗EB |Xj〉⊗|Y0〉 = 〈Xi| EA |Xj〉 tr[EB(1/dA)].
For any trace preserving channel tr[E(1/d)] = 1 so TA→A =

∑
i,j 〈Xi| EA |Xj〉 |Xi〉〈Xj| ⊗

|Y0〉〈Y0|. The proof for TB→B follows similarly.

Lemma 3.2. For a product channel, EA ⊗ EB , we have TAB→AB = TA ⊗ TB.

Proof. Fromdefinition,TAB→AB =
∑d2A−1

ij

∑d2B−1
nm 〈Xi|⊗〈Yn| EA⊗EB |Xj〉⊗|Ym〉 |Xi〉〈Xj|⊗

|Yn〉〈Ym| =
∑d2A−1

ij

∑d2B−1
nm |EA(Xj)〉〈Xi| ⊗ |EB(Ym)〉〈Yn| = TA ⊗ TB.

Theorem 3.4. For a product channel, E = EA ⊗ EB , we have uAB→AB(E) = u(EA)u(EB).

Proof. From Lemma 3.2 we can write uAB→AB(E) = αA · αB tr
[
T †
A ⊗ T †

BTA ⊗ TB

]
= αA ·

αB tr
[
T †
ATA

]
tr
[
T †
BTB

]
= uA→A(E)uB→B(E). Asu(EA) = uA→A(E)andu(EB) = uB→B(E)

for any channel this completes the proof.

Putting this all together, we have the first key property of the correlation unitarity mea-

sure we first proposed in equation (3.7). Namely, that it vanishes for a product channel.

Corollary 3.2. The correlationunitarityuc(E) := uAB→AB(E)−uA→A(E)uB→B(E) of a prod-
uct channel EA ⊗ EB is uc(EA ⊗ EB) = 0.

Proof. This follows directly fromTheorem 3.4.

This is a key property for a correlation measure, as it should always be zero for channel

that generates no correlations – which is a product channel.

In the following chapter, we shall make use of the above decompositions of unitarity for

our benchmarking protocols to estimate local subunitarities and the correlation unitarity.

But before discussing the protocol, we first give core properties of our correlation measure

that demonstrate its usefulness for assessing the correlation structure of a given channel.

3.3 Correlation unitarity of bipartite quantum channels

The correlation unitarity, uc(E) := uAB→AB(E) − uA→A(E)uB→B(E), has now been fully

defined in terms of its constituent subunitarities, andwe now address the core properties of

this measure. The following result shows that it obeys natural conditions.

Theorem 3.5 (Properties of correlation unitarity). For any bipartite quantum channel

EAB , the correlation unitarity is bounded as uc(EAB) ≤ 1, and is invariant under local

unitary transformations on either the input or output systems. Moreover uc(EAB) = 0 for

product channels and uc(EAB) = 1when EAB is the SWAP channel modulo local unitary

changes of bases.
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Figure 3.1: Distribution of uc for 2–qubit unitaries. We plot the histogram of values of
uc(Usim) for 20,000 random 2 qubit unitaries, Usim. The correlation unitarities lie between 0
and 1, and must take the value uc(EA ⊗ EB) = 0 for product channels, and uc(SWAP ) = 1
for theSWAP channel. The value ofuc is invariant under local unitary changes of basis. The
upper bound for 2 qubit separable channels isu

sep
c ≤ 7/12, and is also shown on the plot. We

sampled using themethods of [2] and simulated using QuTip [3].

We have shown that the correlation unitarity vanishes for product channels, uc(EA ⊗
EB) = 0, in Corollary 3.2. Under our measure the SWAP channel generates the strongest

correlations, which follows from the fact it perfectly transfers all information between the

subsystems. Further, the correlation unitarity is invariant under local unitaries on the sub-

systems. Final rotations on the subsystems do not reduce the correlating effect of a channel,

and therefore it is pleasing that such operations do not change the value of the correlation

unitarity. Together these properties make uc a good working measure of the coherence of

correlations within a channel, and importantly within Chapter 4 we shall see it is accessible

through a randomized benchmarking protocol.

For the remainingproperties tobeproven,we tackle them individuallywith the following

lemmas.

Lemma 3.3. The correlation unitarity of a quantum channel, EAB is bounded as uc(EAB) ≤ 1.

Proof. Consider the subunitarity uAB→AB(EAB) = αAB tr
[
T †
AB→ABTAB→AB

]
. The matrix

TAB→AB has dimension (d2A − 1)(d2B − 1) × (d2A − 1)(d2B − 1). Using Holder’s inequality

[123], we can bound this subunitarity as

tr
[
T †
AB→ABTAB→AB

]
≤ ||TAB→AB||∞||TAB→AB||1 ≤ (d2A − 1)(d2B − 1) (3.33)

where we have used in the above that the eigenvalues of TAB→AB have modulus at most 1

[124], and the rankofTAB→AB is atmost thenumber of columnsor rows. Thereforewemust

have uAB→AB(EAB) ≤ 1. From the non-negativity of the Hilbert-Schmidt inner product,

the subunitarities uA→A and uB→B are strictly non-negative. Putting this together, we have

uc = uAB→AB − uA→A · uB→B ≤ uAB→AB ≤ 1, which completes the proof.
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Lemma 3.4. The correlation unitarity of the SWAP channel takes a value of uc(SWAP ) = 1

Proof. From equation (3.25) we have SWAP =
∑

ν,µ |Yν ⊗Xµ〉〈Xν ⊗ Yµ|. This makes the

unital block T a matrix with 1 along the minor diagonal and zero everywhere else. We can

then simply read off that uAB→AB = uA→B = uB→A = 1 and all other subunitarities are

zero. The correlation unitarity is then uc = uAB→AB − uA→A · uB→B = 1.

Lemma 3.5. Any channel E with uAB→AB(E) = uA→B(E) = uB→A(E) = 1 is equivalent to

the SWAP channel up to local unitaries.

Proof. From Theorem 3.3 under the given conditions the channel is unitary, and all other

subunitarities are zero. We can use that uA→B(E) = uA→A(SWAP ◦ E) = 1 and similarly

uB→B(SWAP ◦ E) = 1. With fixed system dimensions the unitarity equals 1 only for a

unitary, therefore we deduce that SWAP ◦ E = UA ⊗ UB, e.g. a product channel of local
unitaries on each subsystem. This implies that E = SWAP ◦ UA ⊗ UB, since SWAP 2 =

id.

Lemma 3.6. The correlation unitarity uc(E) of any quantum channel E is invariant under local

unitaries.

Proof. Firstly, the local subunitarities of any channel uA→A(E)& uB→B(E) are invariant un-
der localunitaries fromCorollary3.1. Therefore it remains toprove thatuAB is invariant. We

canwrite theLiouville representation of any product unitary in the our basis asUi,A⊗Ui,B =

(1⊕Oi,A)⊗ (1⊕Oi,B)whereOi,X are unitarymatrices of dimension (d2X − 1)× (d2X − 1)

obeying Oi,XO†
i,X = 1TX . Product channels have the additional property that TAB,Ui

=

TA,Ui
⊗ TB,Ui

= Oi,A ⊗ Oi,B. We define a channel E ′ = U1,A ⊗ U1,B ◦ E ◦ U2,A ⊗ U2,B:

namely, the channel with product unitaries before and after. The product unitarieswill have

block diagonal unital blockswhich canbe seen fromconsidering their only non-zero subuni-

tarities are uA→A, uB→B, & uAB→AB. Because of this simple structure the sub-unital block

TAB of E ′ is

TAB,E ′ = TAB,U1TAB,ETAB,U2 = O1,A ⊗O1,BTAB,EO2,A ⊗O2,B. (3.34)

We can now calculate the required subunitarity uAB(E ′) = αAB tr
[
T †
AB,E ′TAB,E ′

]
. From the

cyclical properties of the trace,

uAB(E ′) = αAB tr
[
T †
AB,ETAB,EO

†
2,A ⊗O†

2,BO2,A ⊗O2,B

]
,

= αAB tr
[
T †
AB,ETAB,E

]
= uAB(E).

(3.35)

This implies uc is invariant under local unitarities.
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3.3.1 Witness of non-separability

Under ourmeasure, the SWAP channel is the farthest from being a product channel, which

is consistent with the fact that it perfectly transfers quantum information from one subsys-

tem to the other. However, we can also consider intermediate regimes where no quantum

information is transferred, but the channel cannotbewritten in aproduct form. This iswhen

the bipartite channel is separable, namely it can be written as

EAB =
∑
k

pkEk ⊗Fk, (3.36)

for someprobabilitydistribution (pk),with local channelsEk andFk onA andB respectively.

Channels that cannot be written in this form are therefore non-separable channels.

The class of separable channels are also known as Local Operations with Shared Ran-

domness (LOSR) [93, 94]. The above definition generalizes that of separable states, and

defines a convex subset of channels. It turns out that the correlation unitarity is strictly

bounded over separable channels as the following establishes.

Theorem3.6 (Correlation unitarity is awitness of non-separability). Given a bipartite

quantum systemAB with subsystemsA andB of dimensions dA and dB respectively, for a

separable quantum channel, EAB , we have that

uc(EAB) ≤ C(dA, dB) ≤
17

24
< 1, (3.37)

where

C(dA, dB) = βA(1 + βB)(1−
1

min(d2A, d
2
B)

) +
1

4
(3.38)

where βi =
1

d2i−1
for di = 2 or βi =

di
d2i−1

otherwise.

Theproof of this bound is non-trivial, andwewill provide it directly after this discussion.

This bound is not tight in general, andwe provide sharper bounds in terms of the subsystem

dimensions. The dA = dB = 3 qutrit case provides the upper bound inC(dA, dB) and could

be improved, albeit via a non-trivial analysis of qutrit channels.

The consequence of the result is that, if the correlation unitarity can be efficiently esti-

mated, then obtaining values above the upper boundwitnesses non-separability in the chan-

nel. This provides a practicalway to certify quantum information transfer betweenA andB.
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The correlation unitarity, uc(EAB), is a witness of non-separability as it has a non-trivial
valueC(dA, dB)which cannot be exceeded if the channel EAB is separable. Therefore, for

an unknown channel if we measure uc(EAB) ≥ C(dA, dB), we can guarantee that ‘quan-

tum’ correlations have occurred in the channel, rather than purely ‘classical’ correlating

effects.



3.3 Correlation unitarity of bipartite quantum channels 61

The bound also relates to recent work on entanglement theory, where the operations

most studied are the set of Local Operations and Classical Communication (LOCC). Due

to the limitations of LOCC channels when it comes to analysing Bell non-locality [91], it has

been argued that LOSR channels provide a more sensible set. However, as LOSR channels

are precisely the set of separable channels then any violation of the bound in Theorem 3.6

implies the consumption of a resource state with respect to LOSR.

Proof of correlation unitarity as a witness of non-separability

The proof of the upper bound on correlation unitarity for separable channels turns out to be

non-trivial, and relies on bounds on the inner product of T–matrices, the unital portion of

quantum channels. We first establish basic ingredients we need for the analysis.

Definition 3.4. For any quantum channel, E : B(HX) → B(HY ), the Choi-Jamiołkowski state

J (E) given by

J (E) := E ⊗ id(ψ). (3.39)

for the input systemwith dimension dX , id : B(HX) → B(HX) is the identity channel, and the

stateψ = |ψ〉〈ψ| is a generalized Bell state, |ψ〉 := 1√
dX

∑dX
i |i〉 ⊗ |i〉with computational basis

states {|i〉} [32, 61].

The Choi-Jamiołkowski state is clearly a quantum state, as it is simply the output from a

bipartite quantum channel, E ⊗ id, acting on a valid input state. However the Choi state is

also a complete representation of the channel, E , as it encodes all the information about how

the channel acts. We can see this by explicitly substituting in the generalized Bell state, ψ.

For any channel, E , we then have

J (E) = 1

dX

dX∑
i,j

E ⊗ id(|i〉〈j| ⊗ |i〉〈j|),

=
1

dX

dX∑
i,j

E(|i〉〈j|)⊗ |i〉〈j| .

(3.40)

The set {|i〉〈j|} forms a complete basis for the input system. The Choi state tracks how the

channelE acts on each element of this basis, using the second subsystemas an index. There-

fore the Choi state,J (E), captures all possible information about the channel, E.
The purity of theChoi state can be related to the unitarity, however herewe use it for the

more abstract goal of bounding the T–matrices of channels. The following lemma relates

the Choi state to our favourite basis.
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Lemma 3.7. For any channel E : B(HX) → B(HY ) the Choi-Jamiołkowski state can be ex-

pressed in theXν basis as

J (E) = 1

dX

d2X∑
ν=0

E(Xν)⊗X∗
ν , (3.41)

whereXµ = (X0 = 1/
√
d,Xi) is a completely orthonormal basis forHX .

Proof. We have J (E) := E ⊗ id(ψ) = E ⊗ id( 1
dX

|1dX 〉〈1dX |), but one can directly show

|1dX 〉〈1dX | =
∑

ν Xν ⊗ X∗
ν . This follows from tr

[
X†
ν ⊗X†

µ |1d〉〈1d|
]

=
〈
1
∣∣X†

νX
∗
µ

〉
=

tr
[
X†
νX

∗
µ

]
and therefore |1d〉〈1d| =

∑
µ,ν tr

[
X†
νX

∗
µ

]
Xν ⊗Xµ. However

∑
µ tr
[
X†
νX

∗
µ

]
Xµ =∑

µ tr
[
X†
µX

∗
ν

]
Xµ = X∗

ν since tr
[
MT

]
= tr[M ] for anymatrixM , and the result follows.

We now have the following estimates for the magnitude of the overlap between unital

blocks of arbitrary channels. Wewill then relate this to the unitarity ofmixtures of channels

which appear when considering separable channels.

Lemma3.8. Given two channels E1 and E2with unital blocks in the Liouville representationT1

and T2, for the Hilbert-Schmidt inner product between themwe have

− d ≤ 〈T1, T2〉 ≤ d2 − 1, (3.42)

where d is the dimension of the Hilbert space.

We shall use this lemma to establish the upper bound on correlation unitarity for separa-

ble channels. However, we conjecture a stronger result that for any two quantum channels

E1, E2 that 〈T1, T2〉 ≥ −1. This, for example implies the bound for optimal inversion of the

coherence vector of a quantum state [125, 126] as a special case. The analyse to establish this

sharper bound appears to be non-trivial. Since it is not essential to our work we leave it as

an open problem. We do, however, establish this lower beyond for a subset of channels (see

Lemma 3.9 below).

Proof. In the Choi representation we have

J (E1) =
1

d

d2∑
µ

E1(Xµ)⊗X∗
µ and J (E2) =

1

d

d2∑
µ

E2(Xµ)⊗X∗
µ (3.43)

withXµ = (X0 = 1/
√
d,Xi). Therefore we have that

tr
[
J (E1)†J (E2)

]
=

1

d2

d2∑
µ,ν

tr
[
E1(Xµ)

†E2(Xν)
]
tr
[
XT
µX

∗
ν

]
. (3.44)

Since Choi matrices are positive semidefinite, then so is the above quantity. Furthermore,

tr
[
XT
µX

∗
ν

]
= δµν and so

tr
[
J (E1)†J (E2)

]
=

1

d2

d2∑
µ

tr
[
E1(Xµ)

†E2(Xµ)
]
≥ 0, (3.45)
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and therefore we have

d2∑
µ

〈E1(Xµ)|E2(Xµ)〉 =
d2∑
µ

tr
[
E1(Xµ)

†E2(Xµ)
]
≥ 0. (3.46)

Nowwe look at 〈T1, T2〉 = tr
[
T †
1T2

]
and expand with respect to same basis.

〈T1, T2〉 =
d2−1∑
i=1

〈Xi|T †
1T2 |Xi〉 =

d2−1∑
i=1

〈E1(Xi)|E2(Xi)〉 ,

=
d2∑
µ

〈E1(Xµ)|E2(Xµ)〉 − 〈E1(X0)|E2(X0)〉 .

(3.47)

Then it follows that

〈T1, T2〉 ≥ − 〈E1(X0)|E2(X0)〉 . (3.48)

However,

| 〈E1(X0)|E2(X0)〉 |2 ≤ 〈E1(X0)|E1(X0)〉 〈E2(X0)|E2(X0)〉 . (3.49)

and since
〈
Ei
(
1
d

)∣∣Ei (1d)〉 ≤ 1, we deduce that

|
〈
E1
(

1√
d

)∣∣∣∣E2( 1√
d

)〉
| ≤ d, (3.50)

and so we obtain the lower bound of

− d ≤ 〈T1, T2〉. (3.51)

The upper bound follows directly fromHolder’s inequality

〈T1, T2〉 ≤ ||T1||∞||T2||1 ≤ (d2 − 1) (3.52)

where we have used in the above that the eigenvalues of T1 and T2 have modulus at most 1,

and their rank is at most d2 − 1.

Having established bounds on the inner product of twoT -matrices for any two arbitrary

channels, we now prove an improved bound for two subsets of quantum channels. This will

increase the sharpness of our bound for separable channels with lower dimensions.

Lemma 3.9. Let E1 and E2 be two quantum channels. If we have that either

1. One of the channels is unital,

2. The channels are arbitrary d = 2 qubit channels,

then it follows that−1 ≤ 〈T1, T2〉 ≤ d2 − 1.
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The proof of this is as follows.

Proof. If one of the channels, E1 say, is unital then

〈T1, T2〉 ≥ − 〈E1(X0)|E2(X0)〉 = −〈X0|E2(X0)〉 = −〈X0|X0〉 = −1, (3.53)

where we use the orthonormality 〈X0|Xi〉 for all i = 1, . . . d2 − 1 and the fact that if E1 is
unital then E1(X0) = X0.

Now suppose that both E1 and E2 are qubit channels. Given any qubit channel E , the
corresponding Choi state take the form

J (E) = 1

4
(1+ x · σ ⊗ 1+

∑
i,j

Tijσi ⊗ σj), (3.54)

where {σi} are the Pauli matrices. As shown in [127] it is possible to perform local unitary

changesUA ⊗ UB of basis so that

UA ⊗ UB[J (E)] = 1

4
(1+ x · σ ⊗ 1+

∑
i

tiσi ⊗ σi), (3.55)

and so the channel is described, modulo local choices of basis, by the two vectors x and

t = (t1, t2, t3). The link between Tij and t is that T = OAdiag(t1, t2, t3)O
T
B for orthog-

onal matrices OA, OB corresponding to the local unitary rotations. It can be shown that if

J (E) is a valid quantum state (and so E a valid quantum channel) the vector x lies in the

Bloch sphere, and t lies in a particular tetrahedron T in R3. Moreover, if x = 0 then every

t ∈ T corresponds to a valid quantum state. Since x corresponds to the non-unitality of

the quantum channel E , this implies that if E is a quantum channel with non-unitality vector

x and T–matrix T then there exists another quantum channel Eu with the same T–matrix,

but which is unital. This implies that for the inner product 〈T1, T2〉 we can without loss of

generality assume that one channel is unital, and thus from the previous part of our proof

we obtain −1 ≤ 〈T1, T2〉. The upper bound for 〈T1, T2〉 is unchanged from the previous

lemma.

The final component we need before tackling the general bound is a simple form for the

correlation unitarity of separable channels.

Lemma 3.10. For a bipartite separable channel E :=
∑r

i piEA,i⊗EB,i the correlation unitarity
uc(E) can be decomposed as

uc(E) = αAαB(

r,r∑
i,j

pipj
〈
T iA, T

j
A

〉 〈
T iB, T

j
B

〉
−

r,r∑
i,j

pipj
〈
T iA, T

j
A

〉 r,r∑
m,n

pmpn 〈TmB , T nB〉) (3.56)

where T iA is the unital block in the Liouville representation of EA,i and T iB is the unital block of

EB,i.
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Proof. From definition the correlation unitarity is

uc(E) = αAαB(〈TAB→AB, TAB→AB〉 − 〈TA→A, TA→A〉 〈TB→B, TB→B〉). (3.57)

Since E is separable, in the Liouville representation linearity implies

|E(ρ)〉 =

∣∣∣∣∣
r∑
i

piEA,i ⊗ EB,i(ρ)

〉
=

r∑
i

piEA,i ⊗ EB,i |ρ〉 = E |ρ〉 (3.58)

therefore it follows that the relevant subunital blocks of the channel are simply the weighted

sum of the subunital blocks of each product channel:

TAB→AB =
r∑
i

piT
i
A ⊗ T iB, TA→A =

r∑
i

piT
i
A, TB→B =

r∑
i

piT
i
B, (3.59)

where T iA is the unital block in the Liouville representation of EA,i and T iB is the unital block

in the Liouville representation of EB,i. Thus the correlation unitarity is

uc(EAB) = αAαB(

r,r∑
i,j

pipj
〈
T iA ⊗ T iB, T

j
A ⊗ T jB

〉
−

r,r∑
i,j

pipj
〈
T iA, T

j
A

〉 r,r∑
m,n

pmpn 〈TmB , T nB〉),

= αAαB(

r,r∑
i,j

pipj
〈
T iA, T

j
A

〉 〈
T iB, T

j
B

〉
−

r,r∑
i,j

pipj
〈
T iA, T

j
A

〉 r,r∑
m,n

pmpn 〈TmB , T nB〉).

(3.60)

Which completes the proof.

With the preceding ingredients, and particularly with the compact form given above for

the correlation unitarity of separable channels, we are ready to prove the general bound. We

would expect that such a boundwould exist, because the correlation unitarity quantifies the

strength of the correlations in the channel in terms of quantum information. As separable

channels can only produce ‘classical’ correlations they should not saturate the value of the

correlation unitarity as themaximally correlating SWAP channel does.
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The followingproof isperhaps themostdifficult to follow in thiswork, aswehave stripped

awayall physics todealwith aprobabilitydistribution{pi} and themagnitudeof the inner

products tij =
〈
T iA, T

j
A

〉
and sij =

〈
T iB, T

j
B

〉
. The correlation unitarity of a separable

channel, uc, is then given by two terms

uc = f({pi}, {tij}, {sij})− f({pi}, {tij})f({pi}, {sij}) (3.61)

for three non-negative functions f(...) with 0 ≤ f(...) ≤ 1, (i.e. the subunitarities). In

order to upper bound uc overall we need tomaximize the first termwhile minimizing the

second.

However, the way the terms interact is subtle. Naively maximizing the first term also
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maximizes the second, and vice versa forminimizing the second term. Thereforewe have

to find a way to bound the first term using the second, and then perform an overall maxi-

mization.

We proceed by separating out the contributions to f({pi}, {tij}, {sij}) from when tij is

positive (tii or t+,ij) andnegative (t−,ij). We thenupperboundeachof these contributions

in terms of just f({pi}, {tij}), the summation
∑

i p
2
i for the probability distribution {pi},

andsomedimensional factors. This essentiallygivesus a total upperbound foruc in terms

of f({pi}, {tij}), f({pi}, {sij}) and {pi}. This is a lot easier to work with and we find it
leads to anon-trivial boundonuc in termsof thedimensionsof the subsystems. Finallywe

explicitly calculate the value of the upper bound for different dimensions to find an overall

numerical upper bound.

Proof. (Of Theorem 3.6) FromLemma 3.10,

uc(EAB) = αAαB(

r,r∑
i,j

pipj
〈
T iA, T

j
A

〉 〈
T iB, T

j
B

〉
−

r,r∑
i,j

pipj
〈
T iA, T

j
A

〉 r,r∑
m,n

pmpn 〈TmB , T nB〉)

(3.62)

where T iA is the unital block in the Liouville representation of EA,i and T iB is the unital block

of EB,i. To simplify notation we label the normalized inner products

tij := αA
〈
T iA, T

j
A

〉
and sij := αB

〈
T iB, T

j
B

〉
, (3.63)

anddefineA :=
∑r,r

ij pipjtij andB :=
∑r,r

ij pipjsij. In this notation the correlationunitarity

of the separable channel is just

uc(EAB) =
r,r∑
ij

pipjtijsij − AB. (3.64)

FromLemma 3.8 the range of any particular tij is

− βA ≤ tij ≤ 1 (3.65)

whereβA = dAαA applies to all channels andβA = αA holds for the case of qubit channels or

if one of the channels is unital. Additionally from the non-negativity of theHilbert Schmidt

inner product ti ≡ tii ≥ 0. Similarly for theB subsystem: −βB ≤ sij ≤ 1 and si ≡ sii ≥ 0.

We now bound the first term in equation (3.64) in relation to the second. Out of the r2

possible terms in the first term there are r terms that are equal to p2i tisi (namelywhen i = j).

Now suppose that out of the r2 − r remaining terms there are k terms where tij is negative:

t−,m, (m = {0, 1, ..., k − 1, k}), and r2 − (r + k) other terms where tij is positive: t+,n,
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(n = {0, 1, ..., r2− (r+k)− 1, r2− (r+k)}). We can thenwrite the correlation unitarity as

uc(EAB) =
r∑
i

p2i tisi +
r2−r∑
i 6=j

pipjtijsij − AB,

=
r∑
i

p2i tisi +
k∑

m=(ij),i 6=j

pipjt−,msm +
r2−r−k∑
n=(ij),i 6=j

pipjt+,nsn − AB,

=
r∑
i

p2i tisi −
k∑

m=(ij),i 6=j

pipj|t−,m|sm +
r2−r−k∑
n=(ij),i 6=j

pipjt+,nsn − AB.

(3.66)

Wenowbound the summation of positive and negative ti 6=j terms. As all t−,m ≤ 0 then since

|t−m| ≤ βA we can bound the summation of negative terms as

k∑
m=(ij),i 6=j

pipj|t−,m| ≤
k∑

m=(ij),i 6=j

βApipj ≤
r2−r∑
i 6=j

βApipj = βA(1−
r∑
i

p2i ) (3.67)

wherewe havemaximized k to include all r2− r possible terms, and used the simple relation

that
∑r

i p
2
i +

∑r2−r
ij pipj = 1. From definition,A =

∑r
i p

2
i ti +

∑r2−r
i 6=j pipjtij therefore the

whole summation of cross terms can be written as

r2−r∑
i 6=j

pipjtij =
r2−r−k∑
n=(ij),i 6=j

pipjt+,n −
k∑

m=(ij),i 6=j

pipj|t−,m| = A−
r∑
i

p2i ti. (3.68)

From this we can bound the summation of the positive terms using the previous bound in

equation (3.67):

r2−r−k∑
n=(ij),i 6=j

pipjt+,n = A−
r∑
i

p2i ti +
k∑

m=(ij),i 6=j

pipj|t−,m|,

r2−r∑
n=(ij),i 6=j

pipjt+,n ≤ A−
r∑
i

p2i ti + βA(1−
r∑
i

p2i ).

(3.69)

Since both t+,n ≥ 0 and |t−,m| ≥ 0 and all elements−min(βB,
√
sisj) ≤ si 6=j ≤

√
sisj ≤ 1,

then we can bound the summation containing t+,nsn elements as

r2−r−k∑
n=(ij),i 6=j

pipjt+,nsn ≤
r2−r−k∑
n=(ij),i 6=j

pipjt+,n ≤ A−
r∑
i

p2i ti + βA(1−
r∑
i

p2i ) (3.70)

and the summation containing t−,msm elements (assuming
√
sisj ≥ βB)

−
k∑

m=(ij),i 6=j

pipj|t−,m|sm ≤ βB

k∑
m=(ij),i 6=j

pipj|t−,m| ≤ βB(βA(1−
r∑
i

p2i )). (3.71)
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Putting all this together we get a bound on the correlation unitarity of

uc(EAB) ≤
r∑
i

p2i tisi + βB(βA(1−
r∑
i

p2i )) + A−
r∑
i

p2i ti + βA(1−
r∑
i

p2i )− AB,

≤
r∑
i

p2i ti(si − 1) + βA(1 + βB)(1−
r∑
i

p2i ) + A(1−B).

(3.72)

With no loss of generality we can set A ≤ B as A and B are interchangeable. Therefore

we have that A(1 − B) ≤ B(1 − B). As 0 ≤ B ≤ 1, this is maximized when B = 1/2.

Additionally as si ≤ 1 then si − 1 ≤ 0 and the whole first term is negative. Therefore

uc(EAB) ≤ βA(1 + βB)(1−
r∑
i

p2i ) +
1

4
. (3.73)

Further from the Cauchy-Schwartz inequality
∑r

i p
2
i ≥ 1

r
≥ 1

min(d2A,d
2
B)
. Putting this to-

gether we have:

uc(EAB) ≤ βA(1 + βB)(1−
1

min(d2A, d
2
B)

) +
1

4
. (3.74)

where we have βi =
di

d2i−1
for di > 2 and βi =

1
d2i−1

for di = 2. Firstly, for dA = dB = 2we

find that

uc(EAB) ≤
d2B

(d2A − 1)(d2B − 1)
(1− 1

d2B
) +

1

4
=

1

3
+

1

4
=

7

12
. (3.75)

We now eliminate the two other cases with a qubit subsystem. Firstly, (dA = 2, dB > 2)

yields

uc(EAB) ≤
1

d2A − 1
(1 +

dB
d2B − 1

)(1− 1

d2A
) +

1

4
,

≤ 1

3
(1 +

dB
d2B − 1

)(
3

4
) +

1

4
,

(3.76)

which ismaximised fordB = 3givinguc(EAB) ≤ 17/32 ≈ 0.53. Secondly, (dA > 2, dB = 2)

yields

uc(EAB) ≤
dA

d2A − 1
(1 +

1

d2B − 1
)(1− 1

d2B
) +

1

4
,

≤ dA
d2A − 1

(1 +
1

3
)(
3

4
) +

1

4
,

≤ dA
d2A − 1

(
4

3
)(
3

4
) +

1

4
,

≤ dA
d2A − 1

+
1

4
,

(3.77)



3.3 Correlation unitarity of bipartite quantum channels 69

which is maximised for dA = 3 giving uc(EAB) ≤ 5/8 ≈ 0.63.

Nowwe consider the twobroader cases. Firstly, (dA, dB > 2with dB ≥ dA)which yields

uc(EAB) ≤
dA

d2A − 1
(1 +

dB
d2B − 1

)(1− 1

d2A
) +

1

4
,

≤ 1

dA
(1 +

dB
d2B − 1

) +
1

4
,

(3.78)

which ismaximised fordA = dB = 3givinguc(EAB) ≤ 17/24(≈ 0.71). Secondly, (dA, dB >

2with dA > dB) which yields

uc(EAB) ≤
dA

d2A − 1
(1 +

dB
d2B − 1

)(1− 1

d2B
) +

1

4
, (3.79)

which is minimised for dA = 4, dB = 3 giving uc(EAB) ≤ 311/540 ≈ 0.58. This completes

the proof.

We have established the key property that was given in Theorem 3.6 – namely that our

correlation measure is a witness of non-separability in quantum channels. We will test to

whatdegree this strictly non-classical effect canbe estimatedonquantumdevices inChapter

4. However first we explore further properties of correlation unitarity.

3.3.2 Properties of correlation and sub-unitarity for Pauli channels

It is straightforward to compute the correlation unitarity, uc, for a range of channels. In this

section we consider how subunitarities can be decomposed for Pauli channels, and how this

leads to a simple form for the correlationunitarity of such channels. This decompositionwill

beusefulwhenweexplore estimation techniques, in the followingchapter, as recent research

suggests we can cast device noise as a Pauli channel [107].

Throughout this chapter, we have used an orthonormal operator basis, Xµ = (X0 =

1/
√
dA, Xi), for a dA dimensional quantum system. This basis can be fixed as the Pauli op-

erators, with the additional constraint thatX†
µ = Xµ. For a single qubit, these normalized

Pauli operators are given by Pµ = (1/
√
2, X/

√
2, Y /

√
2, Z/

√
2) for the usual Pauli ma-

trices obeying X |0〉 = |1〉, X |1〉 = |0〉, Y |0〉 = −i |1〉, Y |1〉 = i |0〉, Z |0〉 = |0〉 and
Z |1〉 = − |1〉. A Pauli channel E : B(HA) → B(HA) is then given by

E(ρ) =
∑
µ

pµPµρPµ (3.80)

with the condition
∑

µ pµ = dA. This suggests a simple form for the unital blockT of a Pauli

channel, and T is in fact diagonal. We now show this leads to a pleasing expression for the

unitarity.
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Lemma 3.11. Let E(ρ) =
∑

µ pµPµρPµ be a Pauli channel with
∑

µ pµ = dA acting on a

system of dimension dA, where the Pauli operators, Pµ = (P0 = 1/
√
dA, Pi), are normalized so

that tr[PµPν ] = δµν . The unitarity of E is given by

u(E) = 1

(d2A − 1)

((∑
µ

p2µ

)
− 1

)
. (3.81)

Proof. From definition 〈Pµ|E|Pν〉 = 〈Pµ|E(Pν)〉 = tr[PµE(Pν)]. Note that 〈P0|E|P0〉 =
1
d

∑
i pi = 1, and 〈P0|E|Pi〉 = 〈Pi|E|P0〉 = 0 from trace preservation. We can then check

directly that

tr[PjE(Pk)] =
∑
µ

pµtr[PjPµPkPµ],

=
1

dA

∑
µ

pµ(−1)η(Pµ,Pk)tr[PjPk],

=
1

dA
δjk
∑
µ

pµ(−1)η(Pµ,Pk).

(3.82)

Which gives a diagonal Liouville representation in the Pauli basis. It remains to prove the

formof the unitarity. Fromdefinition, the unitarity is determined in terms of its unital block

TE as

u(E) = 1

d2A − 1
tr[T †

ETE ] (3.83)

=
1

d2A − 1

∑
j 6=0

〈Pj |E|Pj〉2 =
1

d2A − 1
(
∑
µ

〈Pµ|E|Pµ〉2 − 1). (3.84)

The orthogonality relation
∑

µ(−1)η(Pω ,Pµ)(−1)η(PνPµ) = d2Aδων ensures that∑
µ

〈Pµ|E|Pµ〉2 =
1

d2A

∑
µ,ν,ω

pνpω(−1)η(Pν ,Pµ)(−1)η(Pω ,Pµ) (3.85)

=
∑
ν

p2ν . (3.86)

Therefore, we have

u(E) = 1

(d2A − 1)

((∑
ν

p2ν

)
− 1

)
, (3.87)

which completes the proof.

We now examine the subunitarities of bipartite Pauli channels. For simplicity, we shall

consider bipartite systems formedofA andB eachofnqubits, so theyhavedimensionsdA =

dB = d = 2n. A bipartite Pauli channel on two n-qubit systems will take the following form

E(ρAB) =
∑
α,β

pα,βPα ⊗ Pβ ρAB Pα ⊗ Pβ (3.88)



3.3 Correlation unitarity of bipartite quantum channels 71

and trace preserving condition requires
∑

α,β pα,β = 4n. The local channel atA is given by

EA(ρA) : = trB ◦ E(ρA ⊗ 1/d) (3.89)

=
∑
α

qα,0PαρAPα (3.90)

where the qα,0 :=
1
d

∑
β pα,β. Similarly atB:

EB(ρB) : = trA ◦ E(1/d⊗ ρB) (3.91)

=
∑
α

q0,βPβρBPβ (3.92)

where the q0,β := 1
d

∑
α pα,β. Note that both local channels are alsoPauli channels and there-

fore inherit the properties of the previous lemma.

The following result links the total unitarity of this bipartite Pauli channel to its subuni-

tarities and therefore the correlation unitarity.

Lemma 3.12. Consider a bipartite Pauli channel, E(ρAB) =
∑

α,β pα,βPα ⊗ Pβ ρAB Pα ⊗ Pβ ,

with equal subsystem dimensions, d = dA = dB. We then have that

uA→A(E) =
1

d2 − 1

(∑
α

q2α,0 − 1

)
, (3.93)

uB→B(E) =
1

d2 − 1

(∑
β

q20,β − 1

)
, (3.94)

uAB→AB(E) =
1

d2 − 1
((d2 + 1)u(E)− uA→A(E)− uB→B(E)). (3.95)

Proof. The relations for uA→A and uB→B follow directly from Lemma 3.11 with Theorem

3.2. The relation for uAB→AB follows from the fact that the Liouville representation of E is

diagonal so that TE = TA→A ⊕ TAB→AB ⊕ TB→B and thus

tr[T †
ETE ] =tr[T

†
A→ATA→A] + tr[T †

B→BTB→B] + tr[T †
AB→ABTAB→AB]. (3.96)

From definition, u(E) = 1
(d2)2−1

tr[T †
ETE ], so we have

u(E) = 1

d4 − 1
(tr[T †

A→ATA→A] + tr[T †
B→BTB→B] + tr[T †

AB→ABTAB→AB]),

=
1

d4 − 1
((d2 − 1)(uA→A(E) + uB→B(E)) + (d2 − 1)2(uAB→AB(E))),

=
1

d2 + 1
((uA→A(E) + uB→B(E)) + (d2 − 1)(uAB→AB(E))).

(3.97)

Rearranging the dimensional factors completes the proof.
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Corollary 3.3. Consider a bipartite Pauli channel, E(ρAB) =
∑

α,β pα,βPα⊗Pβ ρAB Pα⊗Pβ ,
with equal subsystem dimensions, d = dA = dB. The correlation unitarity is given by

uc(E) =
1

(d2 − 1)2

(∑
α,β

p2α,β − (
∑
α

q2α,0)
∑
β

q20,β

)
. (3.98)

Proof. Directly from above.

Lemma 3.12 proves that the unitarity of a Pauli channel is a weighted sum of three sub-

unitarities. Further, these are exactly the subunitarities we require for correlation unitar-

ity. This suggests that if we have only partial information about the subunitarities of a Pauli

channel, then the unitarity may provide additional information about the subunitarities.

Let usmake this precise with an example. For a Pauli channel, E , assumewe have access

to: the sum of the subunitarities,X =
∑

i=(A,B,AB) ui→i(E), and the total unitarity, u(E).
With just this information, we can identify uAB→AB(E) using Lemma 3.12 as

uAB→AB(E) =
1

d2 − 2
((d2 + 1)u(E)−X). (3.99)

However this is more than a mathematical curiosity. As we will find in Chapter 4, this sce-

nario appears within the context of benchmarking Pauli channels on quantum devices, and

allows us to estimate the correlation unitarity with increased robustness to SPAM errors.

S
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ForPauli channels,E , there are only threenon-zero subunitarities: uAB→AB(E),uA→A(E)
and uB→B(E). Further, we canwrite the total unitarity, u(E), as a weighted sum of these

terms. This will be useful when we consider benchmarking unknown noise channels.

3.3.3 Further interpretations of the correlation unitarity

There are other families of quantum channels for which the correlation unitarity, uc, can be

decomposed. For example, consider the channel

EAB =
∑
k

pkUk ⊗ Vk, (3.100)

where{Ui}
d2A
i=1 and{Vj}

d2B
j=1 are localunitaryerrorbases [128]onAandB respectively, namely

unitaries on each subsystem that also formanorthonormal basiswith respect to theHilbert-

Schmidt inner product. For this channel, uc(EAB) then takes the form

uc(EAB) =
∑
k

p2k − (
∑
k

p2k)
2. (3.101)

This quantity is maximized for p1 = p2 = 1/2. Therefore for any EAB of the form given

in equation (3.100) we have uc(EAB) ≤ 1/4. This bound is perhaps not surprising given

Theorem 3.6 as the channel is separable.
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Further insight into the correlation unitarity can be obtained by formulating it in terms

of two-point correlationmeasures. Wedefine the expectation of an observableO on a state ρ

as 〈O〉ρ := tr
[
O†ρ

]
. Now suppose we have local observablesOA andOB for the subsystems

A andB respectively. For anybipartite quantumchannel,E , andbipartite state,ψAB, we can
define the following correlation function

FOA,OB
(E , ψAB) := |〈OA ⊗OB〉EAB(ψAB)|2 − |〈OA〉EA(ψA)|2|〈OB〉EA(ψB)|2 (3.102)

where the channels EA and EB are local channels on A respectively B defined in Definition

3.1 and the input statesψA andψB are themarginals ofψAB.

The correlation function above becomes related to the covariance of classical random

variables when considering classical states embedded in a quantum system. We define the

state ρAB =
∑

x,y p(x, y)|x〉|y〉〈x|〈y| for |x〉, |y〉 computational basis states that diagonal-

ize the hermitian operators OA and OB and p(x, y) is a joint probability distribution with

marginals p(x) and p(y). Then correlation function is

FOA,OB
(id, ρAB) =|〈OA ⊗OB〉ρAB

|2 − |〈OA〉ρA|2|〈OB〉ρB |2,

=(〈OA ⊗OB〉ρAB
− 〈OA〉ρA〈OB〉ρB)(〈OA ⊗OB〉ρAB

+ 〈OA〉ρA〈OB〉ρB)

=cov(OA, OB)(〈OA ⊗OB〉ρAB
+ 〈OA〉ρA〈OB〉ρB).

(3.103)

where cov(OA, OB) = 〈OA ⊗OB〉ρAB
− 〈OA〉ρA〈OB〉ρB andmatches the covariance of clas-

sical random variablesX,Y .

The correlation unitarity of any bipartite quantum channel, E , can be expressed using

this correlation function as

uc(E) = αAB dAB
∑
i,j,m,n

FPi,Pj
(E , ψm,n) (3.104)

wherePi are theorthonormal tracelessPauli operatorsoneachsubsystem, andwhereψm,n =
Pm⊗Pn√
dAdB

is a “traceless state”, that can be statistically prepared viaψm,n = 1
2
(ψ+,m,n − ψ−,m,n)

for the two related quantum states ψ±,m,n = P0⊗P0±Pm⊗Pn√
dAdB

. We prove this relation in Ap-

pendixB.6. This form for the correlationunitarity gives some intuition for how theLiouville

representation a channel can be related to Pauli states andmeasurements.

3.4 Conclusions

We have introduced subunitarities and shown they allow the construction of a correlation

measurewhich is awitness of non-separability in bipartite channels. Overall, the correlation

unitarity amounts to aworking notion of correlation in a bipartite quantum channel, andwe

do not delve any further into its theoretical properties. In Appendix B.5, we also compare
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uc(EAB) to a normmeasure of correlation. While norm-basedmeasures are mathematically

more natural, our aim is to connect to benchmarking protocols, and so ultimately the utility

of this measure should be judged by how useful it is in practice. We find that subunitarities

arise very naturally in benchmarking protocols.



4

Estimation of coherent correlations

and non-separability via

benchmarking protocols

And though our separation, it piercedme to the heart,

She still lives inside of me, we’ve never been apart.

If You See Her, Say Hello

BobDylan

In the previous chapter we developed a collection of tools, based around unitarity, to ad-

dress subsystem features of a quantum channel. The introduction of subunitarities and the

correlation unitarity allowus to quantify coherence between subsystems of a bipartite quan-

tum channel in a simple and directmanner. We now turn to the question of how such quan-

titiesmay be estimated in practice in a protocol that is both efficient in the number of opera-

tions required and robust against SPAM errors.

As these quantities are generalizations of the unitarity – which can be efficiently esti-

mated through a benchmarking protocol – it turns out similarmethodswork for subunitar-

ities. However some complications do arise as we shall discuss.

This chapter is structuredas follows. Section4.1 is an introduction torandomizedbench-

marking where we give an overview of some key results from the literature. Then in Section

4.2 we summarize the main result of [57] by mathematically deriving how the unitarity of

noise appearswithin a randomized benchmarking protocol. The remainder of the chapter is

our original content. InSection 4.3we extend theunitarity protocol to subsystemsand show

75
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that this connects with the subunitarities we defined in Chapter 3. However the estimation

of individual subunitarities and our correlation measure require additional steps which we

describe in Section 4.4. Finally we show these methods give independent information be-

yond existing SPAM robust benchmarkingmethods.

4.1 Randomized Benchmarking Protocols

The certification of quantum devices is a fundamental problem of quantum technologies,

such as verifying that a physical device is actually performingwith a sufficiently high fidelity.

In the context of quantum computing it is desirable to provide a greater abstraction from

the underlying physical implementation and talk of benchmarking a logical gateset Γ :=

{U1,U2, . . . ,Un} of target unitary gates. Using some meaningful quantity, we then wish to

measure how ‘far’ the set of physical gates Γ̃ := {Ũ1, Ũ2, . . . , Ũn} are from idealised set 1.

Theworst-case error rates are givenby the set of diamondnormdistances, {||Ũi−Ui||�},
which are the relevant physical parameters for the fault tolerance theorem [38, 42]. For two

quantum channels E and F from a system with dimension dX to a system with dimension

dY , diamond norm distance between the channels is given by

||E − F||� := max
ρ

||E ⊗ idX(ρ)−F ⊗ idX(ρ)||1 (4.1)

where idX is the identity channel with dimension dX , the state ρ has dimension d2X , and

where ||M ||1 := tr
[√

M †M
]
is thematrix 1-norm for anymatrixM .

The diamond norm distance can be directly linked to the maximal probability of distin-

guishing two known quantum channels with a single measurement, and its calculation can

be cast as a semi-define programme [37]. However, it is not obvious [43] how to estimate the

set {||Ũi − Ui||�} directly; or to directly measure the diamond norm distance between two

quantum channels of interest. Additionally, estimating each value for the complete gateset

of a device will clearly scale very poorly with system size.

Tobenchmark errorswemust therefore considerweakermeasures. One suchmeasure is

the average fidelity between the idealised unitaries and physical unitaries across the gateset.

The average gate infidelity, given in equation (1.4), provides bounds on the diamond dis-

tance of the average noise associated with the gateset, of the form shown in equation (1.5).

Theproblemwith this route is that thebounds cannotbe tightened, and forE corresponding
to a non-Pauli error there is a weak link between r(E) and the diamond norm [43, 48, 49].

Randomized benchmarking techniques can be used to estimate r(E) and circumvent the

exponential complexity of tomography and the unavoidable SPAM errors. The core com-

ponents of a randomized benchmarking protocol generally involves the noisy preparation of

1In this chapter we use the notation (̃·) to denote the noisy real-world implementation of any idealised
operator (·).
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some initial quantum state ρ, which is then subject to a number k of physical gates Ũi that
approximate target unitaries Ui ∈ Γ, before a final imperfect measurement is performed for

somebinary outcomemeasurement{M,1−M}. If the gates applied correspond to a (noisy)
unitary 2-design, such asΓbeing theClifford group, then it can be shown that [6] the result-

ing statistics are exponentially decreasing in k, namely E[m(k)] = c1 + c2λ
k, for constants

c1 and c2 that contain the state preparation andmeasurement details. The decay constant λ

is then ameasure of the noisiness of the physical gateset Γ̃ = {Ũi} employed.

In the simplified model of gate-independent noise, in which each noisy gate can be de-

composed as Ũi = E ◦ Ui for some E that is independent of i, then it can be shown that

λ ∝ 1 − r(E), where r(E) is the average gate infidelity of the noise channel E. In the more

realistic case of gate-dependent noise the relationship between the decay parameterλ and the

physics of the set Γ̃ is subtle, due to gauge degrees of freedom in the representation of the

physical components [45]. However, despite these details the decay parameter can still be

related to the physical gateset and essentially corresponds to the average gateset infidelity

[44].
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By averaging over lots of random sequences of gates, an RB scheme simplifies the associ-

ated noise channel, E , down to a single parameter, r(E). This can be readily estimated, as

if we increase the length of the sequence, then r(E) can be related to the decay in the value
of some observable. This isolates estimation of the gateset noise, E , from SPAM errors.

At amore abstract level, a randomized benchmarking scheme admits a compact descrip-

tion in terms of convolutions of the channels Ũiwith respect to theClifford group [130]. The
decay law is then viewed in a Fourier-transformed basis where the channel compositions be-

comematrix multiplication over different irreps [7]. The resultant protocol then provides a

benchmark for the degree to which the physically realized channels {Ũi} form an approxi-

mate representation of the Clifford group [131, 132].

In the next section we expand on the components of the benchmarking scheme for the

case of unitarity benchmarking.

4.2 Unitary 2-designs & Unitarity Benchmarking Protocols

In this section, we now provide an outline of how the unitarity of a quantum channel can be

estimated in a benchmarking protocol, as described in [57]. We relegate proofs to the end of

the section.

Recall that by U we denote the Liouville representation of a unitary channel U(X) =

UXU †, and therefore it takes the explicit form,U := U ⊗ U∗. A probabilitymeasure µ over
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the set of unitariesU(d) is called a unitary 2-design if we have that∫
dµ(U)U⊗2 =

∫
dµHaar(U)U⊗2, (4.2)

where µHaar is the Haar measure over the group U(d). In practice we are interested in uni-

tary 2-designs which are finite, discrete distributions of unitaries. In particular the uniform

distribution over the Clifford group C of unitaries is a 2-design (in fact it is a 3-design [133]),
and therefore

1

|C|
∑
U∈C

U⊗2 =

∫
dµHaar(U)U⊗2 =: P (4.3)

where |C| is the number of elements in the Clifford group and we denote the resultant oper-

ator by P . For the space of bounded operators B(H) on the Hilbert spaceH, this operator

acts on the vectorized form of B(H ⊗ H). It can be shown (see Lemma 4.1) that P is the

projector onto the subspace

S := span{
∣∣1⊗2

〉
, |F〉}, (4.4)

where F is the unitary that transposes vectors in the two subsystems, |φ1〉 ⊗ |φ2〉 → |φ2〉 ⊗
|φ1〉. Wenowdefine an orthonormal operator basisXµ = (X0 = 1/

√
d,Xi) forB(H)where

d is thedimensionof the system, in a samewayas inChapter 3. Using this basis, in vectorized

form, we can (see Lemma 4.2) decompose the projectorP in the following way

P = |X0〉〈X0| ⊗ |X0〉〈X0|+
1

d2 − 1

d2−1∑
i,j

|Xi〉〈Xj| ⊗
∣∣∣X†

i

〉〈
X†
j

∣∣∣ ,
=: |0〉〈0|+ |1〉〈1| ,

(4.5)

where {|0〉 , |1〉} forms an orthonormal basis of the subspace S.

For a quantumchannel, E : B(H) → B(H), the projectorP can be directly related to the

unitarity. FromTheorem 4.1, as

PE⊗2P = |0〉〈0|+ u(E) |1〉〈1|+ x(E)√
d2 − 1

|1〉〈0| (4.6)

where x(E) is a measure of non-unitality of the channel such that x(E) = 0 if and only if E is

unital, meaning that E(1) = 1.
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We have the projector, P , induced by averaging over two copies of the unitary group.

When applied PE⊗2P this twirls any channel E into a simpler form based purely on the

values of the two parameters: unitarity, u(E) and non-unitality, x(E).

Further, if we consider placing this construction to a power, say k, we find that the uni-

tarity scales with k while the other factors remain constant such that

(PE⊗2P )k = |0〉〈0|+ u(E)k |1〉〈1|+ x(E)(u(E)k − 1)√
d2 − 1

|1〉〈0| ,

= |0〉〈0| − x(E)√
d2 − 1

|1〉〈0|+ u(E)k(|1〉〈1|+ x(E)√
d2 − 1

|1〉〈0|).
(4.7)
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This scaling and the previous link between sampling from theClifford group and the unitar-

ity of a quantum channel will be key to benchmarking protocol.

For the physical Clifford group gateset, Γ̃ = {Ũi}, we nowdefine an effective noise chan-

nel E via E := U † ◦ Ũ . Moreover in what follows we shall assume for simplicity that each

gate U ∈ Γ is subject to the same effective noise channel (but again this assumption can be

weakened and gate-dependent noise can be assessed [44]).

The unitarity of the noise channel, E , can then be estimated in the following way. We

prepare a quantum state ρ and now define

Us := U(s1,s2,...,sk) := Us1 ◦ Us2 ◦ · · · ◦ Usk , (4.8)

whereUsi ∈ Γ for all i in theClifford group gateset, and si labels the particular choice of uni-

tary. We also denote by Ũs the corresponding noisy implementation of the above sequence

s = (s1, s2, . . . , sk) of k unitaries. For any sequence s and some hermitian observableM we

estimate the quantity

m(s) := tr
[
M Ũs(ρ)

]
, (4.9)

and then randomly sample over the Clifford group for each step in the sequence to estimate

Es[m(s)2] := 1
|Γ|k
∑

sm(s)2. By exploiting the fact that theClifford group is a 2-design, and

specifically equations (4.3) and (4.4), it was shown in [57] that

Es[m(s)2] = c1 + c2u(E)k−1, (4.10)

for constants c1 and c2 that contain any errors due to state-preparation or measurement.

Therefore, by repeating this estimation for sequences of varying length we may extract an

estimation ofu(E) as a decay constant for the quantity in an efficient andSPAM-robustman-

ner.

To derive equation (4.10), we essentially expand every term in the estimation until we

obtain the form given in equation (4.6). The following sketches this process out, and will be
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covered inmore detail for the original protocols presented in the following section:

Es[m(s)2] :=
1

|Γ|k
∑
s

m(s)2 =
1

|Γ|k
∑
s

(tr
[
M Ũs(ρ)

]
)2,

=
1

|Γ|k
∑
s

〈M | Ũ skŨ sk−1
... Ũ s1 |ρ〉

2 ,

=
1

|Γ|k
∑
s

〈M | (E U sk)(E U sk−1
) ... (E U s1) |ρ〉

2 ,

=
1

|Γ|k
∑
s

〈M |⊗2 (E⊗2 U⊗2
sk
)(E⊗2 U⊗2

sk−1
) ... (E⊗2 U⊗2

s1
) |ρ〉⊗2 ,

=
〈
ME†∣∣⊗2

(
1

|Γ|
∑
ik

U⊗2
ik
)(E⊗2)k−1(

1

|Γ|
∑
ik−1

U⊗2
sk−1

) ... (E⊗2)1(
1

|Γ|
∑
i1

U⊗2
i1
) |ρ〉⊗2 ,

=
〈
ME†∣∣⊗2

P (E⊗2)k−1P ... (E⊗2)1P |ρ〉⊗2 ,

=
〈
M̃
∣∣∣⊗2

(PE⊗2P )k−1 |ρ〉⊗2 ,

=
〈
M̃
∣∣∣⊗2

(|0〉〈0|+ u(E) |1〉〈1|+ x(E)√
d2 − 1

|1〉〈0|)k−1 |ρ〉⊗2 ,

=
〈
M̃
∣∣∣⊗2

(|0〉〈0| − x(E)√
d2 − 1

|1〉〈0|+ u(E)k−1(|1〉〈1|+ x(E)√
d2 − 1

|1〉〈0|)) |ρ〉⊗2 .

(4.11)

Notewehave absorbed the final error channel into thenoise of themeasurement. As theuni-

tarity decays exponentially,u(E)k−1, with the length of the sequence,while the other factors

remain constant, we can isolate and estimate the unitarity independently. This allows the

constants c1 and c2 to be read off.

S
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By averaging over lots of random sequences of gates, a unitarity RB scheme simplifies

the associated noise channel, E , down to two parameters, u(E) and x(E). The unitarity,
u(E), can then be readily estimated, as if we increase the length of the sequence, u(E) can
be related to the exponential decay in the square of the value of some observable. This

isolates estimation of the gateset noise, E , from SPAM errors.

Proofs for the unitarity benchmarking protocol

First we show that a unitarity 2-design produces a projector into a subspace spanned by two

vectors which we can identify.

Lemma 4.1. The operator

P :=

∫
dµHaar(U)U⊗2 =

∫
dµHaar(U) (U ⊗ U∗)⊗2, (4.12)

onH⊗4 = V ⊕ V ⊥ is a projector into the subspace V = span(|1⊗2〉 , |F〉), where F is the Flip

operator on the subsystems, and therefore P = 0 on V ⊥.
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Proof. For any finite or compactgroupGwitha representationV , averagingover all elements

of the group gives a projector,

P =

∫
V (g) dg, (4.13)

onto the invariant subspace {|ψ〉 : V (g) |ψ〉 = |ψ〉 ∀ g ∈ G}.Therefore for V (U) = (U ⊗
U∗)⊗2, according to the above definition of an invariant subspace, wemust findX such that

V (U) |X〉 = |X〉 , (4.14)

or equivalently [X,U ⊗ U ] = 0.

We can decomposeU ⊗U into irreducible representations ofU(d). There are 2 of them:

the symmetric subspace and the alternating subspace. This is related to the fact that sym-

metric groupon two elements has two irreducible representations: the trivial one (1) and the

alternating one (F).
Using Schur’s lemma 2 the operatorX must be amultiple of the identity when restricted

to either of these two subspaces. Putting everything together, the invariant subspace is then

spanned by |1⊗2〉 and |F〉, which completes the proof.

An alternative line for the above proof is to invoke Schur-Weyl duality to give an exact

form forP in terms of the permutation operators (1,F) [134, 135].
Nowwe show that the unitary 2-design projector canbe decomposed into the samebasis

we used when examining the unitarity of quantum channels in the Liouville representation

(see Chapter 3).

Lemma 4.2. The operator P =
∫
dµHaar(U) U⊗2 can be decomposed as P = |0〉〈0| + |1〉〈1|

where

|0〉 = |X0〉 ⊗ |X0〉 ,

|1〉 = 1√
d2 − 1

d2−1∑
k=1

|Xk〉 ⊗
∣∣∣X†

k

〉
,

(4.15)

withXµ = (X0 = 1/
√
d,Xi).

Proof. The operator P is a projector into the invariant vector space V = span(|1⊗2〉 , |F〉).
Therefore, if we find an orthonormal basis for V , we can write the operator P using a linear

combination of basis elements such thatP 2 = P .

We define the tensor product of two vectorizedmatrices as: |A⊗B〉 := |A〉 ⊗ |B〉. Ap-
plying this definition to the first vector that spans the space |1⊗2〉 = |1〉 ⊗ |1〉 = d |X0〉 ⊗
|X0〉. Normalizing, the first eigenvector is therefore |0〉 := |X0〉 ⊗ |X0〉.

2Schur’s Lemma states that the only matrices that commute with all elements of an irreducible represen-
tation of a group are scalar multiples of 1.
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The Flip operator in our basis is given by considering the permutation of computational

basis states:

F :=

d,d∑
i,j

|j〉〈i| ⊗ |i〉〈j| =
d,d∑
i,j

|j〉〈i| ⊗ (|j〉〈i|)† =
d2∑
µ

Xµ ⊗X†
µ (4.16)

up to a dimensional factor. Therefore |F〉 =
∑d2−1

µ=0 |Xµ〉 ⊗
∣∣X†

µ

〉
. From inspection, the

second normalized eigenvector that spans this subspace is

|1〉 = 1√
d2 − 1

d2−1∑
k=1

|Xk〉 ⊗
∣∣∣X†

k

〉
. (4.17)

It is easily checked that 〈i|j〉 = δij.

We can nowwrite the decomposition of the projectorP = |0〉〈0|+ |1〉〈1| as

P = |X0〉〈X0| ⊗ |X0〉〈X0|+
1

d2 − 1

d2−1∑
i,j

|Xi〉〈Xj| ⊗
∣∣∣X†

i

〉〈
X†
j

∣∣∣ . (4.18)

This completes the proof.

Finallyweprove that,whenapplied to aquantumchannel, theunitary 2-designprojector

averages the channel such that unitarity of the channel can be isolated.

Theorem 4.1. Consider the operatorP =
∫
dµHaar(U)U⊗2 = |0〉〈0|+ |1〉〈1| decomposed in the

basisXµ = (X0 = 1/
√
d,Xi). For a quantum channel E , with fixed system dimension d we

have

PE⊗2P = |0〉〈0|+ u(E) |1〉〈1|+ x(E)√
d2 − 1

|1〉〈0| . (4.19)

where u(E) is the unitarity of the channel, and x(E) is the non-unitality of the channel.

Proof. We simply need to calculate each 〈i| E⊗2 |j〉 as PE⊗2P =
∑

i,j=(0,1) 〈i| E⊗2 |j〉 |i〉〈j|.
Firstly, we have 〈0| E⊗2 |0〉 = 〈X0| E |X0〉2 = tr[1E(1/d)]2 = 1. Secondly, we have

〈0| E⊗2 |1〉 = 1√
d2 − 1

d2−1∑
i

〈X0| E |Xi〉 〈X0| E
∣∣∣X†

i

〉
,

=
1√

d2 − 1

d2−1∑
i

〈X0| E |Xi〉 〈Xi| E† |X0〉 .

(4.20)

However 〈X0| E |Xi〉 = 0 for all i for a trace preserving channel. Therefore 〈0| E⊗2 |1〉 = 0.

For the third element we have

〈1| E⊗2 |0〉 = 1√
d2 − 1

d2−1∑
i

〈Xi| E |X0〉
〈
X†
i

∣∣∣ E |X0〉 ,

=
1√

d2 − 1

d2−1∑
i

〈Xi| E |X0〉 〈X0| E† |Xi〉 =
1√

d2 − 1
x(E).

(4.21)
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Finally, we have

〈1| E⊗2 |1〉 = 1

d2 − 1

d2−1∑
i,j

〈Xi| E |Xj〉
〈
X†
i

∣∣∣ E ∣∣∣X†
j

〉
,

=
1

d2 − 1

d2−1∑
i

〈Xi| E |Xj〉 〈Xj| E† |Xj〉 = u(E).

(4.22)

As this exhausts all the options so we have an exact form forPE⊗2P .

This completes our discussion of benchmarking of the total unitarity of a noise channel.

Nowwewill extend the core protocol to allow for the subunitarities of noise to be estimated.

4.3 Bipartite channel subunitarities via local twirls

The unitarity arose from considering a global twirl using a 2-design, it turns out that the

subunitarities arise in a similar fashion, but now by considering local twirls for a bipartite

quantum system. Specifically, we now have a bipartite quantum systemAB with local gate-

sets ΓA and ΓB, which we assume are unitary 2-designs, and a global gateset ΓAB.

For simplicity, we consider fixed subsystem dimensions, with dA and dB for subsystems

A andB respectively. TheHilbert space for the system takes the form,HA⊗HB, whereHA

andHB are the spaces associated with each subsystem. Bipartite quantum channels, E , on
the whole system act on the space of bounded operators E : B(HA ⊗HB) → B(HA ⊗HB).

We now define the tensor product of two vectorized matrices as: |A⊗B〉 := |A〉 ⊗ |B〉.
For theLiouville representation, E , of a bipartite channel, this reorders tensor product of the
Hilbert spaces; such that E acts onB(HA⊗HA⊗HB ⊗HB). This reordering is a powerful

‘trick’, and we believe it makes the following calculations easier to follow.

4.3.1 Local twirls of a bipartite system

Wenow examine independent twirls on each subsystem, C × C. In the Liouville representa-
tion we have

PAB :=

∫
dµHaar(UA)

∫
dµHaar(UB)U⊗2

A ⊗ U⊗2
B ,

=
1

|ΓA||ΓB|
∑

UA∈ΓA,UB∈ΓB

U⊗2
A ⊗ U⊗2

B .
(4.23)

Since the integrals are independent, it is readily seen thatPAB = PA⊗PB wherePA andPB

are local projections atA andB onto subspaces SA and SB, with

SA = span{|1A ⊗ 1A′〉 , |FAA′〉}, (4.24)
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where A′ is isomorphic to A, and we have a similar expression for SB. The next step is to

decomposePAB as we did forP in equation (4.5).

We define two orthonormal operator bases for each subsystem, in the same manner as

in Chapter 3. Firstly for subsystem A, we choose Xµ = (X0 = 1√
dA
1A, Xi), where dA is

dimension of the subsystemA, and tr
[
X†
µXν

]
= δµν. Similarly forB, an orthonormal basis

Yµ = (Y0 = 1√
dB
1B, Yi). Together these provide a basis for the full system which is given

in the Liouville representation as |Xν ⊗ Yµ〉 := |Xν〉 ⊗ |Yµ〉. Following from the tensor

structure in Lemma 4.2, simply

PAB = PA ⊗ PB =
∑

i,j=(0,1)

|i〉〈i|A ⊗ |j〉〈j|B (4.25)

where we have

|0〉A ⊗ |0〉B = |X0〉 ⊗ |X0〉 ⊗ |Y0〉 ⊗ |Y0〉 ,

|1〉A ⊗ |0〉B =
√
αA

d2A−1∑
n=1

|Xn〉 ⊗
∣∣X†

n

〉
⊗ |Y0〉 ⊗ |Y0〉 ,

|0〉A ⊗ |1〉B =
√
αB

d2B−1∑
m=1

|X0〉 ⊗ |X0〉 ⊗ |Ym〉 ⊗
∣∣Y †
m

〉
,

|1〉A ⊗ |1〉B =
√
αAαB

d2A−1,d2B−1∑
n,m=1

|Xn〉 ⊗
∣∣X†

n

〉
⊗ |Ym〉 ⊗

∣∣Y †
m

〉
,

(4.26)

withαi = 1/(d2i −1). Inwhat followswewill drop the subscript subsystem labels and always

haveA as the first subsystem andB as the second.

S
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Applying two local twirls simultaneously over the Clifford group, C ×C, gives a projector
PAB that contains ‘local’ terms describing the twirl on each subsystem, |1〉A ⊗ |0〉B and

|0〉A ⊗ |1〉B, while tracing out the other subsystem; and also a further ‘non-local’ term

|1〉A ⊗ |1〉B. These terms will directly connect with the subunitarities of a channel.

4.3.2 The matrix of subunitarities for local twirls

The projector PAB appears naturally within settings where local twirls are performed on a

device, such as in randomized benchmarking protocols. Therefore, we should consider the

structure of PABE⊗2PAB, where E : B(HA ⊗HB) → B(HA ⊗HB) is a bipartite quantum

channel. Wewill see that it relates to the subunitaritiesofE , themeasuresof coherencewithin

and between subsystems of a channel introduced in Chapter 3.

More precisely, we now show that the operator PABE⊗2PAB can be viewed as encoding

the quadratic order invariants of the quantum channel, and in particular the traceless com-

ponents form a 3 × 3matrix of subunitarities S for the bipartite quantum channel. We then
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examine how things simplify for particular important classes of quantum channels. Finally,

we study the structure of (PABE⊗2PAB)
k where k is some positive integer. This object is

key, as it appears prominently within protocols for estimating subunitarities.

Wenowcalculate thematrix elements ofPABE⊗2PAB in the basis defined in the previous

section. There are two mathematical properties that make use of liberally. Firstly, for each

subsystem, as the µ = 0 elements are proportional to the identity we haveX†
0 = X0 & Y †

0 =

Y0. Secondly, as the channel E is a CPTPmap,we have that E((Xµ⊗Yν)†) = (E(Xµ⊗Yν))†

for any elements of the basis, and so〈
X†
µ ⊗ Y †

ν

∣∣E ∣∣X†
σ ⊗ Y †

ω

〉
= tr

[
(X†

µ ⊗ Y †
ν )

†E(X†
σ ⊗ Y †

ω )
]
,

= tr
[
E†(X†

σ ⊗ Y †
ω )Xµ ⊗ Yν

]
,

= tr
[
E(Xσ ⊗ Yω)

†Xµ ⊗ Yν
]
,

= 〈E(Xσ ⊗ Yω)| |Xµ ⊗ Yν〉 ,

= 〈Xσ ⊗ Yω|E† |Xµ ⊗ Yν〉 ,

(4.27)

whereE† corresponds to the adjoint ofE that is definedvia tr[AE(B)] = tr[E†(A)B]. Futher-

more note that if the non-unital block of E is T , then the non-unital block of E† is T †.

We can now calculate the 16 possible combinations 〈a|E⊗2 |b〉. One element is simply

equivalent to the trace preserving property of a quantum channel

〈00|E⊗2 |00〉 = (tr

[
1√
d
E( 1√

d
)

]
)2 = 1. (4.28)

The remaining elements can be divided into 3 sub-blocks to be defined, such that

PABE⊗2PAB =

( |00〉 |ij〉
〈00| 1 0

〈ij| x S

)
where ij ∈ {10, 11, 01}. (4.29)

For thedefinitionof subunitarities in theLiouville representation,we refer the reader toDef-

inition 3.3.

Consider a diagonal 〈10|E⊗2 |10〉 element in the matrix S, from the above properties it

follows that

〈10|E⊗2 |10〉 = αA

d2A−1∑
i,j=1

(〈Xi| ⊗
〈
X†
i

∣∣∣⊗ 〈Y0| ⊗ 〈Y0|)E⊗2(|Xj〉 ⊗
∣∣∣X†

j

〉
⊗ |Y0〉 ⊗ |Y0〉),

= αA

d2A−1∑
i,j=1

〈Xi ⊗ Y0|E |Xj ⊗ Y0〉 〈Xj ⊗ Y0|E† |Xi ⊗ Y0〉 ,

= αA tr
[
TA→AT

†
A→A

]
= αA tr

[
T †
A→ATA→A

]
= uA→A(E),

(4.30)
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where caremust be takenwith the ordering of the spaces. Similarly, we have 〈01|E⊗2 |01〉 =
uB→B(E) and 〈11|E⊗2 |11〉 = uAB→AB(E).

Off diagonal elements in S can be calculated with an additional dimensional factor. For

example, following the same line

〈01|E⊗2 |10〉 =
√
αAαB

(d2B−1)(d2A−1)∑
i,j=1

〈X0 ⊗ Yi|E |Xj ⊗ Y0〉 〈Xj ⊗ Y0|E† |X0 ⊗ Yi〉 ,

=
√
αAαB tr

[
TA→BT

†
A→B

]
=

√
αB
αA

uA→B(E).

(4.31)

Further, we have elements such as

〈11|E⊗2 |10〉 =αA
√
αB

(d2A−1)(d2B−1)∑
k,j,n=1

〈Xj ⊗ Yn|E |Xk ⊗ Y0〉 〈Xk ⊗ Y0|E† |Xj ⊗ Yn〉 ,

=αA
√
αB tr

[
T †
A→ABTA→AB

]
=

√
αBuA→AB(E)

(4.32)

and 〈10|E⊗2 |11〉 = αA
√
αB tr

[
T †
AB→ATAB→A

]
= 1√

αB
uAB→A(E). The remaining ele-

ments of S can be found by swapping the labeling of the subsystems. Putting this together

we have the full matrix of subunitarities given by,

S =


|10〉 |11〉 |01〉

〈10| uA→A(E) 1√
αB
uAB→A(E)

√
αA

αB
uB→A(E)

〈11| √
αBuA→AB(E) uAB→AB(E)

√
αAuB→AB(E)

〈01|
√

αB

αA
uA→B(E) 1√

αA
uAB→B(E) uB→B(E)

. (4.33)

Pleasingly, every subunitarity of a bipartite channel is represented in S. We highlight that

the diagonal elements of S are of particular interest as they are exactly the components of

correlation unitarity, as previously defined.

The three elements 〈ij|E⊗2 |00〉with ij ∈ {01, 10, 11} quantify the non-unitality of the
channel for each subsystem to quadratic order, through theH-S inner product of the gener-

alized Bloch vector x for each subsystem. We can define xA := x†A→AxA→A and similarly for

B andAB. Therefore we have

〈10|E⊗2 |00〉 =
√
αA

d2A−1∑
i=1

〈Xi ⊗ Y0|E |X0 ⊗ Y0〉 〈X0 ⊗ Y0|E† |Xi ⊗ Y0〉 ,

=
√
αAx

†
A→AxA→A =

√
αAxA,

(4.34)

similarly 〈11|E⊗2 |00〉 =
√
αAαBxAB, 〈01|E⊗2 |00〉 =

√
αBxB. We group these together

into the vectorxT = (
√
αAxA,

√
αAαBxAB,

√
αBxB) to get the form of equation (4.29).
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The final three elements 〈00|E⊗2 |ij〉with ij ∈ {01, 10, 11} are required to the zero from
the tracepreservingpropertiesof aquantumchannel. Forexample, considering 〈00|E⊗2 |10〉
for E to be a valid TPmapwemust have 〈X0 ⊗ Y0|E |Xi ⊗ Y0〉 = 0 for all i. Therefore

〈00|E⊗2 |10〉 =
√
αA

d2A−1∑
i=1

〈X0 ⊗ Y0|E |Xi ⊗ Y0〉 〈Xi ⊗ Y0|E† |X0 ⊗ Y0〉 = 0. (4.35)

Through the same argument 〈00|E⊗2 |01〉 = 〈00|E⊗2 |11〉 = 0.

Finally, putting all elements together, labelingPABE⊗2PAB = (?)we get,

(?) =



|00〉 |10〉 |11〉 |01〉
〈00| 1 0 0 0

〈10| √
αAxA uA→A(E) 1√

αB
uAB→A(E)

√
αA

αB
uB→A(E)

〈11| √
αAαBxAB

√
αBuA→AB(E) uAB→AB(E)

√
αAuB→AB(E)

〈01| √
αBxB

√
αB

αA
uA→B(E) 1√

αA
uAB→B(E) uB→B(E)

.
(4.36)

Comparing this with decomposition of the Liouville representation of a bipartite channel E
in equation (3.27), we see that PAB produces the normalized purity of every sub-block of E.
As subunitarities are the normalized purity of sub-blocks of the unital block T , these values

are extracted, as well as the absolute value of the non-unital vector for both subsystems.

S
u
m
m
a
ry Two local twirls, C × C, produces a projector,PAB, that averages a bipartite channel on a

subsystem level to produce amatrix of the all the subunitarities of the channel, S.

Using the form of the top row ofPABE⊗2PAB, it is easily seen that

det
(
PABE⊗2PAB − λ1

)
= (1− λ) det(S − λ1) (4.37)

and therefore for any channel E the 4 eigenvalues of PABE⊗2PAB will be λ0 = 1 and the

3 eigenvalues of S. Within a subunitarity randomized benchmarking protocol, we would

expect to encounter the object (PABE⊗2PAB)
m for an integerm similar to the total unitarity

protocol. Before tackling the general case of decomposing this matrix, we first consider a

simpler case.

4.3.3 The matrix components for separable channels

For a product channel EA ⊗ EB the subunitarity matrix S takes a particularly simple form.

Since the channel is separable quantum information does not flow between A and B and

Theorem 3.4 tells us that uA→B(EA⊗EB) = uB→A(EA⊗EB) = 0 and uAB→AB(EA⊗EB) =
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uA→A(EA ⊗ EB) · uB→B(EA ⊗ EB). Thus, for a product channel E = EA ⊗ EB we have

PABE⊗2PAB =



|00〉 |10〉 |11〉 |01〉
〈00| 1 0 0 0

〈10| √
αAxA u(EA) 0 0

〈11| √
αAαBxAxB

√
αBu(EA)xB u(EA)u(EB)

√
αAu(EB)xA

〈01| √
αBxB 0 0 u(EB)

.
(4.38)

From this it is readily seen that the eigenvalues are {1, u(EA), u(EB), u(EA)u(EB)}. More

generally, for the case of a separable channel, EAB =
∑r

i piEA,i ⊗ EB,i, from Lemmas B.2 &

B.3 we find instead that, again labelingPABE⊗2PAB = (?),

(?) =



|00〉 |10〉 |11〉 |01〉
〈00| 1 0 0 0

〈10| √
αAxA uA→A(EAB) 0 0

〈11| √
αAαBxAB

√
αBuA→AB(EAB) uAB→AB(EAB)

√
αAuB→AB(EAB)

〈01| √
αBxB 0 0 uB→B(EAB)


(4.39)

and so now the eigenvalues are {1, uA→A(EAB), uB→B(EAB), uAB→AB(EAB)}. Therefore in
both these cases, (PABE⊗2PAB)

m, will have eigenvalues

{λi} = {1, uA→A(EAB)m, uB→B(EAB)m, uAB→AB(EAB)m}. (4.40)

Wewill see shortly that this exact formappearswithina randomizedbenchmarkingprotocol,

and that for separable (and product) channels the decay constants are simply the above three

subunitarities.

More generally, we do not have such a simple link between the eigenvalues and subuni-

tarities. Indeed, it may be the case that the matrix cannot be diagonalized fully, and so one

must instead use a Jordan decomposition to determine the decay law for the associated pro-

tocol. We provide these details in the next section.

4.3.4 Jordan decomposition for arbitrary bipartite channels

Forageneralbipartite channelEwecanuse the Jordannormal formof thematrixPABE⊗2PAB

to study the structure scales with a power, (PABE⊗2PAB)
m. This will be critical for estimat-

ing the subunitarities of channels where we have no knowledge about their structure.

Definition 4.1. Using the Jordanmatrix decomposition of any squarematrixM , we can find the

Jordan normal form such that

M = S−1JS, (4.41)

where S is a invertible matrix, and J is a block diagonal matrix of Jordan blocks [122].
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This gives a very simple scaling law.

Corollary 4.1. The Jordan matrix decomposition of a square matrixM to the power n follows

Mn = S−1JnS. (4.42)

Proof. This follows from definition as SS−1 = 1.

The above imply that if write PABE⊗2PAB, in a Jordan normal form, J , then the decay

lawof (PABE⊗2PAB)
mwill be determined entirely byJm. There are 3 possibilities that could

occur:

J =


1 0 0 0

0 λ1 0 0

0 0 λ3 0

0 0 0 λ2

 , J =


1 0 0 0

0 λ1 1 0

0 0 λ1 0

0 0 0 λ2

 , J =


1 0 0 0

0 λ1 1 0

0 0 λ1 1

0 0 0 λ1

 , (4.43)

where λi are the eigenvalues of the block S. Which form the Jordan decomposition takes

depends on the degeneracy of λi and whether the geometric and algebraic multiplicities of

each λi coincide [122].

For J diagonal, we have that

(PABE⊗2PAB)
m = S−1JmS = S−1


1 0 0 0

0 λm1 0 0

0 0 λm3 0

0 0 0 λm2

S, (4.44)

where {λi} are the eigenvalues of S. Therefore,

(PABE⊗2PAB)
m = S−1(|00〉〈00|+ λm1 |10〉〈10|+ λm2 |01〉〈01|+ λm3 |11〉〈11|)S (4.45)

where S is some invertible matrix.

If the Jordan decomposition of PABE⊗2PAB is not completely diagonal, then the object

(PABE⊗2PAB)
m still scaleswith the eigenvalues ofS but in a slightlymore complexmanner.

From above, the 2 remaining options are

(PABE⊗2PAB)
m = S−1


1 0 0 0

0 λ1 1 0

0 0 λ1 0

0 0 0 λ2


m

S = S−1


1 0 0 0

0 λm1 mλm−1
1 0

0 0 λm1 0

0 0 0 λm2

S, (4.46)

and

(PABE⊗2PAB)
m = S−1


1 0 0 0

0 λ1 1 0

0 0 λ1 1

0 0 0 λ1


m

S = S−1


1 0 0 0

0 λm1 λm−1
1

m(m−1)
2

λm−2
1

0 0 λm1 λm−1
1

0 0 0 λm1

S.

(4.47)
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1. Prepare the system in a state ρ.

2. Select a sequence of length k of simultaneous random noisy Clifford gates locally on
subsystemsA andB, starting with k = 1. E.g. for each gate UAB,i = UA,i1 ⊗ UB,i2.
3. Estimate the square (m)2 of an expectation value of an observableM , for this partic-
ular sequence of gates.

4. Repeat 1, 2& 3 formany random sequences s of the same length, finding the average
estimationEs[m(s)2] of (m)2.

5. Repeat 1, 2, 3& 4 increasing the length of the sequence k by 1.

6. Fit each value ofEs[m(s)2] against the corresponding k and obtain decay parameters
as in equation (4.55).

Protocol 1: SPAM robust subunitarity estimation (C × C)

Therefore, in this more general scenario the decay law behaviour of (PABE⊗2PAB)
m is still

described by the constants {λi}.
This gives us all the tools we require to define a novel unitarity benchmarking protocol

that we can relate to the subunitarities of a quantum channel.

4.3.5 Analysis of a local twirl unitarity benchmarking protocol

We now introduce a unitarity benchmarking protocol, Protocol 1, and prove that it allows

the eigenvalues of the matrix of subunitarities S to be estimated SPAM robustly, under the

assumption of gate-independent noise associated to the gatesetΓA⊗ΓB. We do not assume

the noise is local to each subsystem and it is therefore described by some bipartite channel.

The protocol implements a local twirling on each subsystem of the associated bipartite

noise, similar to the total twirl we encountered in the total unitarity protocol. We nowprove

this result analytically, and show that it gives us object (PABE⊗2PAB)
m thatwewehave been

examining in the previous section.

Lemma 4.3. Over all sequences s, and for a gate-independent noise channel E , the expectation
value of a observable M̃ squared can be written as:

Es[m(s)2] =
〈
M̃
∣∣∣⊗2

(PABE⊗2PAB)
k−1 |ρ〉⊗2 . (4.48)

with circuit of depth k, and sequences indexed via s = (sA, sB) with sA = (a1, a2, . . . , ak)

and sB = (b1, b2, . . . , bk) specifying the particular target unitary in each of the local gatesets

ΓAB = ΓA ⊗ ΓB.
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Proof. From equation (4.9), over all sequences we have

Es[m(s)2] :=
1

|ΓAB|k
∑
s

m(s)2 =
1

|ΓAB|k
∑
s

(tr
[
M Ũs(ρ)

]
)2

=
1

|ΓAB|k
∑
s

〈
M
∣∣∣Ũs(ρ)

〉2
=

1

|ΓAB|k
∑
s

〈M | Ũs |ρ〉2 ,

=
1

|ΓAB|k
∑
s

〈M | ŨskŨsk−1
... Ũs1 |ρ〉

2 ,

=
1

|ΓAB|k
∑
s

〈M | (E Usk)(E Usk−1
) ... (E Us1) |ρ〉

2 .

(4.49)

Which we can write equivalently as a bipartite system,

Es[m(s)2] =
1

|ΓAB|k
∑
s

〈M |⊗2 (E⊗2U⊗2
sk

)(E⊗2U⊗2
sk−1

) ... (E⊗2U⊗2
s1

) |ρ〉⊗2 . (4.50)

For each gate up to k, we can substitute the summation over Usk , such that

Es[m(s)2] = 〈M |⊗2 (
1

|ΓAB|
∑

Usk
∈ΓAB

E⊗2U⊗2
sk

)

(
1

|ΓAB|
∑

Usk−1
∈ΓAB

E⊗2U⊗2
sk−1

)

...(
1

|ΓAB|
∑

Us1∈ΓAB

E⊗2U⊗2
s1

) |ρ〉⊗2 ,

(4.51)

recalling that Us = UsA ⊗ UsB and the sequences expand as
∑k2

s =
∑k,k

sA,sB
. We now have

the form to use the property that the whole gateset forms a unitarity 2-design on each sub-

system. Namely, from equations (4.3) and (4.23), we have

1

|ΓAB|
∑

Usi∈ΓAB

E⊗2U⊗2
si

=

∫
dµHaar(UA)

∫
dµHaar(UB) E⊗2(UA ⊗ UB)

⊗2 (4.52)

for any index in the sequenceup tok. Substituting this into equation (4.51) reduces the sum-

mation to k identical integrals overUA andUB. So we can write

Es[m(s)2] = 〈M |⊗2 (E⊗2

∫
dµHaar(UA)

∫
dµHaar(UB) (UA ⊗ UB)

⊗2)k |ρ〉⊗2 . (4.53)

This is just the projectorPAB = PA ⊗ PB as decomposed in Section 4.3.1. Therefore with a

final substitution we can find desired form

Es[m(s)2] = 〈M |⊗2 (E⊗2PAB)
k |ρ〉⊗2 ,

= 〈M |⊗2 E⊗2(PABE⊗2PAB)
k−1 |ρ〉⊗2 ,

=
〈
E−1(M)

∣∣⊗2
(PABE⊗2PAB)

k−1 |ρ〉⊗2 ,

=
〈
M̃
∣∣∣⊗2

(PABE⊗2PAB)
k−1 |ρ〉⊗2 ,

(4.54)
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wherewehaveabsorbedthe finalnoise channel to thenoisymeasurementof thesystem. This

competes the proof.

It remains to give the final relation between the twirled error channel and the eigenvalues

of the associatedmatrix of subunitarities. The following result connects the benchmarking

protocol given in Protocol 1 to thematrix of subunitarities, S.

Theorem 4.2 (Derivation of subunitarity estimation protocol). Over all sequences s

with circuit of depth k, and for a gate-independent noise channel E , the expectation value
of a observable M̃ squared can be written as:

Es[m(s)2] = c00 + c10 λ
k−1
1 + c01 λ

k−1
2 + c11 λ

k−1
3 , (4.55)

where {cij} are constants related to SPAM errors and {λi} are the eigenvalues of the ma-
trix of subunitarities for the channel E given as

S =


uA→A(E) 1√

αB
uAB→A(E)

√
αA

αB
uB→A(E)

√
αBuA→AB(E) uAB→AB(E)

√
αAuB→AB(E)√

αB

αA
uA→B(E) 1√

αA
uAB→B(E) uB→B(E)

 . (4.56)

Proof. From Section 4.3.4, if the Jordan decomposition is diagonal we have

(PABE⊗2PAB)
k−1 = S−1(|00〉〈00|+λk−1

1 |10〉〈10|+λk−1
2 |01〉〈01|+λk−1

3 |11〉〈11|)S, (4.57)

where λi are the eigenvalues of thematrix S. Therefore fromLemma 4.3 we can write

Es[m(s)2] =
〈
M̃
∣∣∣⊗2

(PABE⊗2PAB)
k−1 |ρ〉⊗2 ,

=
〈
M̃
∣∣∣⊗2

S−1Jk−1S |ρ〉⊗2 ,

=
〈
M̃
∣∣∣⊗2

S−1(|00〉〈00|+ λk−1
1 |10〉〈10|+ λk−1

2 |01〉〈01|+ λk−1
3 |11〉〈11|)S |ρ〉⊗2 .

(4.58)

The transformationmatrixS can be absorbed into the initial state of the systemand the final

measurement such that

Es[m(s)2] =
〈
S−1†(M̃⊗2)

∣∣∣00〉 〈00∣∣S(ρ⊗2)
〉

+ λk−1
1

〈
S−1†(M̃⊗2)

∣∣∣10〉 〈10∣∣S(ρ⊗2)
〉

+ λk−1
2

〈
S−1†(M̃⊗2)

∣∣∣01〉 〈01∣∣S(ρ⊗2)
〉

+ λk−1
3

〈
S−1†(M̃⊗2)

∣∣∣11〉 〈11∣∣S(ρ⊗2)
〉
.

(4.59)
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Or simply,

Es[m(s)2] = c00 + c10 λ
k−1
1 + c01 λ

k−1
2 + c11 λ

k−1
3 . (4.60)

So if a channel E produces a diagonal Jordan decomposition J , the protocol will produce a fit

of this formwhere λi are the eigenvalues of S.
If any eigenvalues are degenerate the Jordan decompositionwill not be diagonal, and can

take two forms. Firstly,

Jk−1 =


1 0 0 0

0 λk−1
1 (k − 1)λk−2

1 0

0 0 λk−1
1 0

0 0 0 λk−1
2

 , (4.61)

where the fitwill take the following form: Es[m(s)2] = c0+c1 λ
k−1
1 +c2 λ

k−1
2 ,whereλi are the

degenerate eigenvalues of S, and constants ci are dependent onM,ρ, S, S−1&x. However,

with simple rearrangement we can get the required form of equation (4.60), such as with

c2 λ
k−1
2 = (c01 + c11) λ

k−1
2 . Secondly,

Jk−1 =


1 0 0 0

0 λk−1
1 λk−2

1
(k−1)(k−2)

2
λk−3
1

0 0 λk−1
1 λk−2

1

0 0 0 λk−1
1

 , (4.62)

where the fit will take the following form: Es[m(s)2] = c0 + c1 λ
k−1
1 , where λ1 is the degen-

erate eigenvalue ofS, and for different constants ci dependent onM,ρ, S, S−1 andx. Again,

with simple rearrangement we can get the required form of equation (4.60). This completes

the proof.

This completes the connection between Protocol 1 and the subunitarities of a channel.

S
u
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We have established that the subunitarities, uX→Y (E), of a bipartite channel, E , appear
naturally through the local twirling,C×C, of anovel randomizedbenchmarkingprotocol.

However the connection is non-trivial as the three decay parameters estimated through

Protocol 1 are the eigenvalues, {λi} of a matrix, S, of all subunitarities.

Our ultimate goal is to access individual subunitarities such as, uA→A(E), and the corre-
lation unitarity, uc(E), as these quantities have operational interpretations and useful prop-
erties as discussed in Chapter 3. In the following section, we summarize how Protocol 1 can

be used in practice to estimate particular subunitarities.

4.4 SPAM robust estimation of subunitarities for device noise

In the context of benchmarking we have the problem of determining the addressability of

qubits and the existence of crosstalk between qubits. For example, we want to implement
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some target unitaryUi⊗id onone qubit, while leaving all others unaffected. However, in re-

ality the physical channel performed Ũiwill involve an effective noise channel E that does not

factorize neatly with noise only on the target qubit. Instead, the noise channel will act non-

trivially on each subsystem of the bipartite split and could involve correlations that include

the leakage of quantum information. Learning the subunitarities and correlation unitarity

ofE would thereforegive independent informationbeyondexisting techniques. Wenowdis-

cuss under which circumstances such quantities can be estimated SPAM robustly for device

noise.

4.4.1 Estimation of subunitarities through local & global protocols

In what follows we again consider the averaged noise channel over the gateset, and so at the

simplest level of analysis assume thatwehave gate-independent noise. Amore general analy-

sis involving gate-dependent noise should be possible by following perturbative approaches

such as in [44, 136] and bymaking use of interleaved benchmarking [82].

We also note that the channel under consideration need not be a noise channel in such a

scheme, but could be a target channel on which we wish to do robust tomography. For this

context it would be possible to exploit recent methods that make use of randomized bench-

marking to do tomography of quantumchannels such as in [4]. We leave this kind of analysis

for later investigation in Chapter 5.

Under this average noise model assumption, we now perform a unitarity benchmarking

scheme by randomly sampling from ΓA ⊗ ΓB and obtain a circuit of depth k, with sequence

indexed via s = (sA, sB)with sA = (a1, a2, . . . , ak) and sB = (b1, b2, . . . , bk) specifying the

particular target unitary in the local gatesets. As before, we estimate the quantitym(s) :=

tr
[
M Ũs(ρ)

]
and also Es[m(s)2] for circuits of depth k. However, for these local twirls, this

quantity now has a different decay profile. As we have shown in Section 4.3.5 this quantity

behaves as

Es[m(s)2] = c00 + c01λ
k−1
1 + c10λ

k−1
2 + c11λ

k−1
3 , (4.63)

where (λ1, λ2, λ3) are the eigenvalues
3 of thematrix of subunitarities

S =


uA→A(E) 1√

αB
uAB→A(E)

√
αA

αB
uB→A(E)

√
αBuA→AB(E) uAB→AB(E)

√
αAuB→AB(E)√

αB

αA
uA→B(E) 1√

αA
uAB→B(E) uB→B(E)

 , (4.64)

with αX = 1
d2X−1

, and the constants c00, . . . , c11 contain the SPAM-errors. Therefore, the

subunitarities arise in the context of this benchmarking, albeit in a more non-trivial form to

3This implicitly assumes a non-degenerate form of a Jordan matrix decomposition. However degenerate
cases give rise to similar expressions. See Section 4.3.4 for details.
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the global protocol. For example, we have that

tr[S] =
∑
i

λi = uA→A(E) + uAB→AB(E) + uB→B(E), (4.65)

with similar relations existing for the other coefficients of the characteristic polynomial of S
[122]. Note that

∑
i λi = 3 if and only if E is a product of unitaries, E = UA⊗UB, and so this

sum of eigenvalues gives a blunt handle on howmuch E deviates from this regime.

By estimating the decay constants in equation (4.63) it is possible to obtain an estimate

of channel correlations that coincides with the correlation unitarity for a family of channels.

It is easily checked that for a product noise channel E = EA ⊗ EB we have the matrix of

subunitarities given by

S =

 u(EA) 0 0
√
αBu(EA)xB u(EA)u(EB)

√
αAu(EB)xA

0 0 u(EB)

 , (4.66)

where xA and xB are constants related to deviations from unitality (see Section 4.3.3). This

implies that eigenvalues of S are given by

{λi} = {u(EA), u(EB), u(EA)u(EB)}. (4.67)

It canbechecked that this simple linkwithsubunitarities extends toarbitrary separable chan-

nels, for whichλ1, λ2, λ3 are exactly equal to the subunitarities uA→A, uB→B, uAB→AB. This

provides away to compute the correlation unitarity. More precisely, givenλ1 ≥ λ2 ≥ λ3, we

may compute the quantity

C = λ3 − λ1 · λ2, (4.68)

where we use the fact that subunitarities are upper bounded by one to distinguish λ3 from

the other two. For a separable channel we haveC = uc and therefore get an estimate of the

correlation unitarity in a SPAM robust manner from Protocol 1.

S
u
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For separable noise channels, E , we can estimate the correlation unitarity, uc(E), in a

completely SPAM robust manner. However for an unknown channel (which might be

non-separable) we cannot guarantee the decay parameters are exactly the subunitarities.

Therefore we require additional information to estimate the correlation unitarity.

Beyond separable channels, while in general equation (4.68) is not equal to the correla-

tionunitarity,we coulduseC as awitness tonon-separability in the followingway. For a two

qubit channel, we have shown in Theorem 3.6 that uc(EAB) > 7/12means that EAB is non-

separable. As we haveC = uc for a separable channel, this implies that a value ofC > 7/12

means the corresponding channel must be non-separable. ThereforeC is a witness to non-

separability. However the problemwith this approach is that, for channels far from separa-

ble, the measure C is typically small or even negative. For example, for the SWAP channel
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0.7 0.8 0.9 1
p

0
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uc(F) |uc(F)− C|

Figure 4.1: SPAM error robust estimation of uc for generic quantum channels. The con-
vergence of the values of correlation unitarity andC as gate noise takes a product form, for a
2 qubit simulation. We show |uc − C| over p, whereF = pEA⊗EB+(1−p)G. The channels
EA, EB and G are sampled using themethods of [2] and simulated using QuTip [3].

we getC = −2. This means that, in practice, usingC on its own is not a particularly useful

measure for non-separable channels.

For non-separable channels the deviation of the eigenvalues from each of the subunitari-

ties canbeboundedbyusing theGirshgorinCircleTheoremorBrauer’sTheorem [122]. For

example, we obtain the bounds

|λ1 − uA→A(E)| ≤
1

√
αB

uAB→A(E) +
√
αA
αB

uB→A(E). (4.69)

Using identities for subunitarities, we can further show that

|λ1 − uA→A(E)| ≤
1

√
αB

[1− uA→A(E)]. (4.70)

These two inequalities are generallyweak, due to the factors ofαB andαA, but theydo imply

that the approximation is very goodwhen either the off-diagonal elements are small orwhen

the local unitarities are large. In such regimes Protocol 1 will return a good estimate of the

correlation unitarity asC ≈ uc. We demonstrate this with simulations in Figure 4.1.

Estimation of the three decay constants requires fitting noisy multi-exponential data.

This is non-trivial, but a range of methods have been developed to tackle this problem [7].

To assist with fitting, andmoreover identify the subunitarity uAB→AB, we may supplement

the local twirlingwith a global estimate of unitarity, and thenmakeuse of the decomposition

of unitarity into subunitarities. Specifically, for the case of unital separable channels, with

dA = dB = d, we have that

u(E) = uA→A(E) + uB→B(E) + (d2 − 1)uAB→AB(E)
d2 + 1

, (4.71)

and therefore we have the relation

uAB→AB(E) =
(d2 + 1)u(E)−

∑
i λi

d2 − 2
. (4.72)
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This means that separate estimations of u(E) and the decay constants (λi) provide an esti-

mateofuAB→AB(E), and soprovides additional independent informationon the termsenter-

ing the correlation unitarity. In practice, this will require careful consideration as the aver-

age noise channel associatedwith global gateset,Γ, (employed in the estimation of unitarity)

might be different than that associated with ΓA ⊗ ΓB.

4.4.2 Black box noise estimation with randomized compiling

Wenote that by using randomized compiling [107, 137] for the implementation of a quantum

circuit wemay reduce the noise channel to being a Pauli channel.

For Pauli channels, the decay constants (λi) exactly coincide with the three subunitar-

ities required for the correlation unitarity, in a similar manner to equation (4.66). How-

ever we lack the information to assign each decay constant to a particular subunitarity. We

showed in Chapter 3 that equation (4.72) holds for Pauli channels. Therefore, we can iden-

tify uAB→AB(E) assuming access to u(E). The remaining two subunitarities do not need to

be individually identified to calculate uA→A(E) ·uB→B(E), andwe have an estimate of uc(E).
Putting this together, assuming the same noise is associated with the global and local

gatesets as discussed above, with randomized compilingwe have a SPAM-robust estimation

of the correlation unitarity, uc(E).

S
u
m
m
a
ry

Recent research indicates we may be able to reduce device noise to a Pauli channel, E.
Then, if the noise is the same for the local and global gatesets, we can estimate the corre-

lation unitarity, uc(E) of device noise, E , with complete SPAM robustness.

Alternatively, since a general noise channel will not have λi coinciding precisely with the

subunitarities, by running the local twirling protocol with andwithout randomized compil-

ing one could witness the presence of non-Pauli noise.

4.5 Estimation of local subunitarities with resetting errors

While the local twirling protocol provides a means to estimate the correlation unitarity in

the case of any separable or Pauli channel, we would like to be able to estimate such corre-

lations for general non-separable channels. The obstacle here is to determine subunitarities

such asuA→A(EAB). However, this requires preparing themaximallymixed state on subsys-

temB and benchmarking the unitarity of the effective channel output onA. This presents

a problem of how accurately such a reset can be performed. Current devices, including ion-

traps [138] and IBM’s superconductingqubits [139], allow formid-circuitmeasurements and

resets. These dynamical circuits capabilities can be accessed through hardware-agnostic

SDKs [140, 141].
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1. Prepare the system in the state ρ.

2. Select a sequence of lengthk of randomnoisyClifford gates on subsystemA, starting
with k = 1. E.g. for each gate UA,i ⊗ idB
3. Estimate the square (mA)

2, of the expectation value of an observableMA on subsys-
tem A for this particular sequence of gates, while performing a resetDB(ρB) := 1

dB
of

theB subsystem after every gate.

4. Repeat 1, 2 & 3 for many random sequences of the same length, finding the average
estimationE[(mA)

2] of (mA)
2.

5. Repeat 1, 2, 3& 4 increasing the length of the sequence k by 1.

6. Fit the dataE[(mA)
2] against k and obtain decay parameters as in equation (4.10).

Protocol 2: SPAM effected subunitarity estimation (C × 1)

4.5.1 Estimation while utilizing the maximally mixed state

The local subunitarities uA→A(EAB) and uB→B(EAB) of any bipartite channel EAB are mea-

sures of interest in their own right. However the exact estimation of the subunitarity of gate

noise through unitarity benchmarking requires the repeated preparation of the maximally

mixed state on the ancillary subsystem. As shown in [54], this introduces additional noise

from the imperfect depolarization.

While challenging to do in a fully SPAM-robust way, from the form of equation (3.2) we

see that if it is possible to do a resetting of subsystem close to themaximallymixed state then

one can obtain an estimate of the subunitarity uA→A(EAB), and similarly for other single-

subsystem cases, by estimating the unitarity of the marginal channel EA = trB ◦EAB ◦ DB,

where DB(ρ) = 1
d
1B for a completely depolarizing channel to the maximally mixed state.

Within the benchmarking circuit this would mean performing a noisy reset D̃B on B after

each Ũi onA, with the aim of having D̃B ≈ DB. This is a non-trivial assumption, and so in

general the protocol will not be fully robust against reset errors. However, if these errors are

substantially smaller than the addressability errors one wishes to estimate then the protocol

returns an approximate estimate.

Themanner in which the induced error is modelled determines the accuracy of the pre-

dicted estimate of the subunitarity. Consider the casewherewemodel the noisy reset chan-

nel D̃B as

D̃B = EP ◦ (idA ⊗DB) ◦ EM , (4.73)

whereDB is the exact reset, andwhere EM and EP are SPAM errors on whole system related

to the imperfect reset of the subsystemB. Then it is straightforward4 to show that Protocol

4Theproof follows fromconsideringunitaritybenchmarkingprotocolwith theabove channels interleaved.
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Figure 4.2: Subunitarity estimation with reset error. Shown is a simulation of Protocol 2
to estimate the subunitarity uA ≡ uA→A(EAB), modelling the reset error associatedB as in
equation (4.75). This reset error is shown for different levels of depolarization p, including
p = 0 i.e. no reset. The channel EAB in this case has a theoretical value of uA→A(EAB) =
0.261. The protocol returns an estimate of the subunitarity accurate to ∼ 90% for reset
errors up to∼ 20%.

2 allows the estimation of the subunitarity of the combined channel

EsA [m(sA)
2] = c1 + c2uA→A(EM ◦ E ◦ EP )k−1 (4.74)

for a sequence of length k where E is the noise channel associated to the gateset. The con-

stants c1 & c2 depend on the initial and final SPAM and non-unitality of the channel E.
Givenapproximate estimatesofuA→A(EAB) anduB→B(EAB)wemay thenexploit the fact

that
∑

i λi = uA→A(EAB)+uB→B(EAB)+uAB→AB(EAB) to infer the value ofuAB→AB(EAB)
and thus compute the correlation unitarity for the channel EAB. Therefore, under the as-
sumption of sufficiently small resetting errors we may estimate the correlation unitarity for

an arbitrary channel. Note that in the context of the localCliffordgatesets the effective chan-

nel need not be the same in each protocol since Protocol 2 uses a different gateset. However,

we can use the same gateset in Protocol 2 as in 1, since the application of non-trivial Clifford

gates onB does not changematters if D̃B ≈ DB.

We can numerically test how sensitive the above protocol is to coherent resetting errors.

For example, one canmodel such reset errors as partially depolarizing with

D̃B = idA ⊗ (pDB + (1− p)idB), (4.75)

where p ∈ [0, 1]. In Figure 4.2, we plot the benchmarking decay curves and find that for

resetting errors up to∼ 20% the protocol returns an estimate of the subunitarity uA→A(E)
accurate to∼ 90%.
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Figure 4.3: Witnessing channel non-separability. Given a quantum channel EAB we con-
sider the ability to efficientlywitness its non-separability via correlationunitarity in thepres-
ence of resetting noise. This could be realized, for example, in the context of robust to-
mography using randomized benchmarking [4]. We consider a 1–parameter family of 2-
qubit channels obtained from a convex combination of the maximally non-separable SWAP
channel and the identity channel (a product channel). The contour plot compares the true
value of correlation unitarity uc(EAB) with the correlation measure Csim ≈ C estimating
equation (4.68) in the presence of reset errors. For two qubits, non-separability occurs if
uc(EAB) > 7/12. We simulate both Protocol 1 and 2, and we find that for a wide range
of reset errors we may witness non-separability for p, q & 0.5. The region of green where
p, q ≥ 1/2 is an artifact of our particular method, and with a more refined algorithm we
expect detection of non-separability also in this region.
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For general non-separable channels, to estimate the correlation unitarity we require an

additional protocol which is not fully SPAM robust. However, we find in practice that it

works reasonably well.

Note that the channel in equation (4.75) will not in general destroy correlations between

A andB, in contrast to a stronger, more simplistic error model of

D̃B(ρAB) = ρA ⊗ (
1

2
(1+ b · σ)), (4.76)

where one assumes a reset to a local qubit state with non-zero Bloch vector b. Under this

strongermodel assumption a simulation shows that such a scenario returns a good estimate

for the subunitarity for |b| ≤ 0.2.
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4.5.2 Estimation while utilizing computational basis states

There are further variants around the above protocol. For example, if resetting to states

other than themaximallymixed state have very low errors then this provides anothermeans

to estimate uA→A(EAB). For example, we will show shortly that if a low-error reset to the

pair of states 1
2
(1±b ·σ) is possible for some b then it can be shown that the average unitar-

ity of the output onA over the pair is always an upper bound on uA→A(EAB), and so would
provide a lower bound on the correlation unitarity. Therefore, this would allow witnessing

of non-separability under the preceding assumptions.

Recall the notation we introduced in Chapter 3 for quantum channels in the Liouville

representation. Protocol 2 requires the preparation of themaximallymixed state (|Y0〉 /
√
dB

in our notation) on subsystemB, albeit noisily. However, consider an alternative line, where

we randomly reset to one of the computational basis states. For two qubits, in the Liouville

representation we define the preparation channel

prepB,±Z := idA ⊗ (|Y0〉 /
√
2± |YZ〉 /

√
2), (4.77)

which prepares the state |0〉〈0| = 1
2
(1B ± Z) on subsystemB. For a bipartite channel E , the

related channel E+Z on qubitA is defined as

E+Z := trB · E · prepB,+Z = (idA ⊗ 〈Y0|) E (idA ⊗ (|Y0〉+ |YZ〉)), (4.78)

and similarly E−Z := trB · E · prepB,−Z.
We can calculate the structure of the unitarity of these channels using the Liouville rep-

resentation. The definition of unitarity can be written in our basis as

u(EA) =
1

d2 − 1

∑
ij

〈Xi| E† |Xj〉 〈Xj| E |Xi〉 , (4.79)

for some channel EA thatmapsB(HA) → B(HA). The unitarity of the channel E+Z can then
be related to the local subunitarity of the channel E as

u(E+Z) = uA→A(E) +
1

3

∑
ij

〈Xi ⊗ YZ | E† |Xj ⊗ Y0〉 〈Xj ⊗ Y0| E |Xi ⊗ YZ〉

+ 〈Xi ⊗ YZ | E† |Xj ⊗ Y0〉 〈Xj ⊗ Y0| E |Xi ⊗ Y0〉

+ 〈Xi ⊗ Y0| E† |Xj ⊗ Y0〉 〈Xj ⊗ Y0| E |Xi ⊗ YZ〉 ,
(4.80)

and similarly

u(E−Z) = uA→A(E) +
1

3

∑
ij

〈Xi ⊗ YZ | E† |Xj ⊗ Y0〉 〈Xj ⊗ Y0| E |Xi ⊗ YZ〉

− 〈Xi ⊗ YZ | E† |Xj ⊗ Y0〉 〈Xj ⊗ Y0| E |Xi ⊗ Y0〉

− 〈Xi ⊗ Y0| E† |Xj ⊗ Y0〉 〈Xj ⊗ Y0| E |Xi ⊗ YZ〉 .
(4.81)
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This follows from expansion of the definitions of the channels and the Liouville definition of

unitarity. By taking themean of the unitarity of these two channels we find

1

2
(u(E+Z) + u(E−Z)) = uA→A(E) +

1

3

∑
ij

〈Xi ⊗ YZ | E† |Xj ⊗ Y0〉 〈Xj ⊗ Y0| E |Xi ⊗ YZ〉 .

(4.82)

As the 2nd term in equation 4.82 is strictly non-negative we can use this measure to bound

the subunitarity of the target channel. Therefore, if we can better reset to one of the compu-

tational basis states, then we can bound the subunitarity uA→A via the following:

uA→A(E) ≤
1

2
(u(E+Z) + u(E−Z)) (4.83)

where E+Z(ρ) = trB[E(ρ ⊗ |0〉〈0|)] and E−Z(ρ) = trB[E(ρ ⊗ |1〉〈1|)]. This bound reaches

equality for a product channel, E = EA ⊗ EB, as the 2nd term in equation (4.82) always con-

tains the element 〈Y0| EB |Yi〉, whichmust be zero for a valid CPTPmap.

Additionally, it can be shown that the bound holds for any two orthogonal initial states

on qubitB, replacingZ with a general Bloch vector on qubitB. If we thenminimize over all

orthogonal states we get

uA→A(E) ≤ min[
1

2
(u(E+b) + u(E−b)) ], (4.84)

where E±b(ρ) = trB[E(ρ ⊗ 1
2
(1B ± b · σ))]. However it is not obvious how this minimiza-

tion could be performed efficiently (i.e. without many rounds of estimation with different

settings).

However, under theassumptionthatcomputationalbasis states induce fewererrorswhen

prepared compared to the maximally mixed state, then estimating u(E+Z) and u(E−Z)with
a RB protocol allows an upper bound to be placed on the local subunitarity uA→A(E), where
E is the noisy channel associated with the target gateset.

In such a case, the RB protocol would simply entail two experiments: firstly performing

unitarity RB on qubitAwith a reset of qubitB to |0〉, and then secondly with a reset to |1〉.
If we assume the reset is performed completely incoherently, butwith bipartite SPAMerrors

we have for the 1st experiment will produce a fit of the form

EsA [m(sA)
2] = c1 + c2u(E+Z,M ◦ E+Z ◦ E+Z,P )k−1, (4.85)

whereΛ+Z,M &Λ+Z,P are the bipartite SPAM errors associatedwith the noisy reset of qubit

B to |0〉. Similarly the 2nd experiment will produce a fit of the form

EsA [m(sA)
2] = c1 + c2 u(E−Z,M ◦ E−Z ◦ E−Z,P )m−1, (4.86)

where E±Z,M & E±Z,P are the bipartite SPAM errors associated with the noisy reset of qubit

B. Such amodification could then be usedwhen the preparation of amaximallymixed state
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is significantly noisier compared to computational basis state preparation and reset which

would detrimentally affect estimation of uA→A(E). In the case when E±Z,M,P ≈ id an upper

bound could be estimated as shown above.

4.5.3 Benchmarking non-local subunitarities directly

In theory, another source of information that could be exploited is the unitarity of the chan-

nel fromAB toA, given by

EAB→A(ρ) = trB ◦EAB(ρ). (4.87)

In terms of subunitarities this quantity can be decomposed as

u(EAB→A) =
1

(dAdB)2 − 1
(
1

αA
uA→A(EAB) +

1

αB
uB→A(EAB) +

1

αAαB
uAB→A(EAB)).

(4.88)

However, while this provides an expression in terms of subunitarities without requiring re-

setting, the standard benchmarking protocol will notwork here due to the input and output

systems being of different dimensions, and therefore a more involved protocol would be re-

quired.

4.6 Conclusions

4.6.1 Comparison with addressability of qubits

Several methods have recently been developed for detection [142], characterization [56, 143]

andmitigation [144]ofunwantedcorrelationsbetweensubsystems (specifically cross-talk) in

a quantum device from a hardware-agnostic andmodel independent perspective. Our work

adds to this toolkit new methods to characterize non-separable correlations and provides

information about noise channels that is independent from features captured by previous

works.

Simultaneous randomized benchmarking [56] compares the increase in error rateswhen

both subsystems are simultaneously and independently driven vs when one subsystem is

driven and the other is kept idle. This quantifies the amount of new errors experienced by

a subsystem as a result of simultaneously applying Clifford gates on the other. As it is the

case for Protocol 2, due to the local independent Clifford twirl on one subsystem, simulta-

neous RB is also affected by SPAM, and strong errors may be detected by deviations from

exponential decay [56].

To comparewith the information obtained from subunitarities, a quantity to detect cor-

relations can be determined from the simultaneous Clifford twirl as in [56]. We denote this

quantity by

a(EAB) := eAB − eA · eB. (4.89)
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Figure 4.4: Correlation unitarity vs. addressability. Correlation unitarity is largely inde-
pendent from existing addressability measures, while Kraus rank is a better indicator of the
the value of uc, which is consistent with it capturing the non-separable correlations between
subsystems. This suggests the measure might be suitable for benchmarking 2-qubit gates
where the unitary transfer of quantum information between subsystems is required. The
above plot is for random channels of different ranks from the distributions of Bruzda et al.
and simulated using QuTip [2, 3].

where EAB is an effective noise channel associated to the Clifford gateset acting locally on

each subsystemA andB. The three decay parameters eAB, eA and eB are extracted from the

randomizedbenchmarkingprotocol that applies simultaneous localCliffordgates to subsys-

temsA andB and are given in terms of the Liouville data for the channel as

eA = αA tr[TA→A],

eB = αB tr[TB→B],

eAB = αAαB tr[TAB→AB],

(4.90)

with the coefficients αX as defined earlier.

For a product channel, TAB→AB = TA→A⊗TB→B and therefore a(EA⊗EB) = 0. In this

manner, any deviation of a(E) from zero is taken as detection of correlated behaviour. Note

that in contrast to subunitarities, thesemeasures are not invariant under local basis changes

whichmakes it more problematic to interpret as a strict correlationmeasure.

It is easy to verify that the correlation unitarity provides independent information to a

simultaneous RB protocol. For example, the CNOT gate is undetected by the addressabil-
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ity correlation measure; however it is detected by correlation unitarity. Figure 4.4 shows

that this independence is generic for bipartite channels, and we find that there are regions

where the addressability correlationmeasure is zero or close to it, but the correlation unitar-

ity varies greatly.

4.6.2 Overview

Our starting point in Chapter 3 was to develop simple, yet effectivemeasures of correlations

in quantum channels and means to assess sub-structures of such channels. The approach

was motivated and guided by the idea of introducing measures that can be both efficiently

estimated through RB-type of techniques and interpreted operationally as to quantify non-

separable correlations, as we have shown in this chapter.

Certain subunitarities of a general bipartite channel can be interpreted as unitarities of

locally acting channels induced by state preparation and discarding on one subsystem. We

showed that they satisfy a set of inequalities that express an information-disturbance rela-

tion. This opens up new directions to analyse non-classical features of quantum channels

directly from their robust tomographic description [4].

In the context of benchmarking of quantumdevices, itwill be of interest to develophard-

ware implementations of the protocols here and determine how effective and useful they are

in practice. Such analysis will closely investigate the effects of reset errors for the subsys-

temunaddressed by target gates. Our simulations show that our second protocol, while not

fully robust can still allow small reset errors to estimate magnitudes of correlated noise, but

ultimately whether this is a reasonable assumptionmust be assessed for the system at hand.
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Efficient and robust verification of

quantum no-go theorems

Fear them not therefore: for there is nothing covered, that

shall not be revealed; and hid, that shall not be known.

King James Bible

Matthew 10:26

Within Chapter 2 we established a framework to capture the incompatibility of channels

for both quantum and classical theories, based around sets of Compatible Unitarity Pairs

(CUP-sets). For quantum theory, we showed that CUP-sets capture both the no-cloning

and no-hiding theorems, as well as broader quantum incompatibility. Having established

this relationship, we now turn to the estimation of quantum CUP-sets (both isometric and

reversible) on noisy quantum devices. As we based our framework on ideas from bench-

marking our ultimate goal is to produce robust schemes, however we should also test the

effectiveness of simpler techniques.

We therefore take two approaches here. For the first, we apply a ‘direct’ approach where

we construct the minimal possible circuits to estimate points on a CUP-set. To do this we

employ a SWAP test, a standard quantum circuit primitive to measure the purity of quan-

tum states, that we can relate to CUPs. However, these techniques do not differentiate be-

tweennoise in the channels generatingaCUP-set and thepreparationof theSWAPtest itself.

Therefore to achieve more accuracy wemove tomore involved techniques.

Our second approach is to consider ideas fromdevice benchmarking such as randomized

benchmarking and spectral methods [57, 83]. We show that, with some assumptions, both

107
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ρ • E(ρ)

|0〉〈0|
√
X RZ(π(1− α)) RZ(−π

2
) Ē(ρ)

Figure 5.1: Circuit decomposition in IBMgateset for lower right isometric CUP-set sur-
face. Circuit for 2 qubit isometry CNOT αAB(ρ ⊗ |0〉〈0|), and complementary channels E &
Ē for the lower right surface of the CUP-set are shown. The finalRZ rotation is optional but
aids in the estimation of CUPs through spectral techniques.

the simplest isometric and reversible quantum CUP-sets can be estimated more accuracy

and with robustness to some SPAM errors. The randomized benchmarking protocols we

introduce are different to those in Chapter 4, specifically because we now interleave a target

unitary but require less advancedmid-circuit measurements.

We test the performance of both approaches through simulations of a noisy IBMQquan-

tumdevice. We then discuss towhat degreewe can infer that current devices obey the limits

of quantum theory.

5.1 Initial considerations

In this section we discuss some considerations that apply to all the methods we use.

5.1.1 Decomposition with device gatesets

Our simulations using IBMQ focus on two qubit systems as this allows for the smallest non-

trivial quantumCUP-set. This was the isometric quantumCUP-set with dX = dA = dB =

2. Anymethod for estimating a point (u, ū) in theCUP-setwill require the preparation of the

associated channels (E , Ē). We have shown in Figure 2.3 that any pair can be generatedwith

twoCNOTsandtwosinglequbit rotationsabout thePauliY axis. Howeveradevicewill have

a specific gateset of operations, and so for any experimental relationwe should ensure (E , Ē)
canbedecomposed efficiently. This is particularly important in the current eradeviceswhen

noise prohibits circuits of evenmodest depth.

For a typical IBMdevice, the native gateset is given by the single qubit operationsRZ(θ),√
X andX, along with the two qubitCNOT gate. In Figures 5.2 and 5.1, we give themin-

imal circuits generating the boundary of the isometric quantumCUP-set in this gateset. As

the channels (E , Ē) can be efficiently decomposed this opens the path to estimation on a cur-

rent noisy IBM device.



5.1 Initial considerations 109

ρ • E(ρ)
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Figure5.2: Circuitdecomposition inIBMgateset for lower left isometricCUP-set surface.
Circuit for 2 qubit isometryCNOTαBA ◦CNOTAB(ρ⊗|0〉〈0|), and complementary channels
E & Ē for the lower left surface of the CUP-set are shown.

5.1.2 Effects of noise

The methods for estimating CUP-sets we employ can be separated into two stages: (i) the

preparation of the channels that generate the CUP-set, (ii) the estimation of the prepared

channel’s unitarity. Therewill be errors associatedwith both (i) and (ii). The errors in (i) are

our primary interest as they place a limit on the device’s performance at estimating CUPs.

However for the direct methods introduced shortly we cannot easily distinguish between

these errors, so refer to a noisy version, (·)N , of the whole process (uN , ūN) for estimating

(u, ū).

The simplestway tomodel hownoise affectsCUP-sets is through a depolarizing channel

given by

Dp := (1− p)id+ pD (5.1)

where id(ρ) = ρ&D(ρ) = σ, for σ another fixed quantum state. Given u(id ◦ E) = u(E ◦
id) = u(E) and u(D ◦ E) = u(E ◦ D) = u(D) = 0 then for any CUP-set we have

(uN , ūN) = (u(DpA ◦ E), u(DpB ◦ Ē)),

= ((1− pA)
2u, (1− pB)

2ū).
(5.2)

Therefore by varyingpA&pB independently aCUP-set canbeprojected towards either axis,

or towards the origin. We illustrate this process in Figure 5.3. As this allows us to reach

any point in the full CUP-set (C∗), we will use depolarization as a crude way to quantify how
‘noisy’ an estimated CUP-set is (C or Cr).
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Wehave shown that the channels generating the border of the simplest quantumCUP-set

can be efficiently decomposed into the gateset of a real device. Further, as the CUP-set

deforms in a simple way for depolarizing noise, we can use such noise as a blunt way to

compare the noisiness of experimental CUP-sets.
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Figure 5.3: CUP-set deformation through depolarization. The simplest quantum CUP-
set C is shownwhen one output is depolarized, (u(Dp ◦ E), u(Ē)) for different values of p.

5.2 Direct CUP-set estimation through state purity measure-

ments

In this section, we use formulations of unitarity in terms of quantum state purities to con-

struct simple circuits to estimate CUPs. We use these to estimate a representative selection

of points on the perimeter of the CUP-set using a simulation of an IBMQdevice.

S
u
m
m
a
ry We designed our framework of CUP-sets with SPAM robust methods in mind. However

we should first test the performance of more elementary techniques with lower experi-

mental overheads.

5.2.1 Estimation through complementarity formulation

Foranyquantumchannel,E , (with inputdimensiondX)wecanexpress theunitarity in terms

of purities as

u(E) = dX
d2X − 1

(
dXγ(Ẽ(

1

dX
))− γ(E( 1

dX
))

)
, (5.3)

where Ẽ is any channel complementary to E [61]. For the isometric CUP-set, C, any compat-

ible pair of channels (E , Ē) will be complementary to each other. Therefore, by estimating

the two purity terms in equation (5.3) we get the point (u, ū).

The purity of a quantum state can be estimated through a SWAP test [32]. For two un-

known quantum states, ρ& σ, the following circuit performs a SWAP test of the states

|0〉〈0| H • H 〈Z〉

ρ × I

σ × I

(5.4)
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|0〉〈0| H • H 〈Zi,j〉

|0〉〈0| X i E × I

|0〉〈0| Xj E × I

(a) For X1 = X & X0 = id, the above circuit gives an estimation of γ(E(1/2))
through the relation 1

4(〈Z0,0〉+ 〈Z0,1〉+ 〈Z1,0〉+ 〈Z1,1〉) = γ(E(1/2)).

|0〉〈0| H • • H 〈Z〉

|0〉〈0| H • E × I

|0〉〈0| × I

|0〉〈0| H • E × I

|0〉〈0| × I

(b)The above circuit gives an estimationof theChoi state puritywith 〈Z〉 = γ(J (E)).

Figure 5.4: Unitarity estimation with state purities. Circuits for estimation of unitarity
u(E) of single qubit channel E through SWAP test and state purity relations.

giving 〈Z〉 = tr[ρσ], for the expectation value of Pauli Z measured on the first qubit. The

central gate is the controlled SWAP (or Fredkin) gate.

With ρ = σ = E(1/2) or ρ = σ = Ē(1/2) (restricting to the case dX = dA = dB = 2),

we can use the SWAP test circuit on a quantum device to get direct, albeit noisy, estimation

(uN , ūN) of a point (u, ū) of theCUP-set. This however requires the preparation of themax-

imally mixed state, which we discuss in Section 5.2.3.

5.2.2 Estimation through Choi state formulation

For the reversible CUP-set, Cr, the resulting compatible pair of channels (E , Ē) are not nec-
essarily complementary to each other. While it is straightforward to derive complementary

channels for the families of channelswe consider, the number of purity terms to be estimated

from equation (5.3) doubles compared to C. Further, these new complementary channels

will necessarilyhave a largerdimension, thereby increasing the complexity of theSWAPtest.

However equivalently, andperhapsmorenaturally,we can formulate an approachusingonly

the channels (E , Ē) through the Choi-Jamiołkowski isomorphism.
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For any quantum channel E (with input dimension dX) we have

u(E) = dX
d2X − 1

(dXγ(J (E))− γ(E( 1
dX

))) (5.5)

whereJ (E) is the Choi-Jamiołkowski state of the channel (seeDefinition 3.4) which is given

by

J (E) := E ⊗ id(ψ). (5.6)

The stateψ = |ψ〉〈ψ| is a generalized Bell state, |ψ〉 := 1√
dX

∑dX
i |i〉⊗ |i〉, which has dimen-

sion d2X [32, 61].

Restricting to dX = dA = dB = 2, from equation (5.4) we can estimate the first purity

by preparing two copies of the Choi state e.g. ρ = σ = J (E). For a channel with dimension

d, the Choi state has dimension d2, therefore the number of target qubits in the controlled

SWAP for Cr is doubled compared to estimating C. The second term in equation (5.4) can

be obtained from ρ = σ = E(1/2). As this process must be repeated for u(Ē), estimating

points on Cr will generally require twice the number of experiments of C.
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For any channel E , we can relate the purity of certain states (such as theChoi state,J (E))
to the unitarity, u(E). For the channels that generate the CUP-set we can can then esti-
mate these purities directly through very simple quantum circuits.

5.2.3 Preparation of the maximally mixed state and experimental results

Bothof the abovemethods require thepreparationof themaximallymixed state. With auni-

tary circuit, we cando this (i) statistically, by averaging the results of experiments performed

on computational basis states, or (ii) by discarding information about a prepared pure state

(e.g. a marginal state of a Bell state). The former method requires more experiments while

the later introduces further uncertainty into the estimation.

We use (i) to estimate the isometric CUP-set C using complementarity formulation, as

it requires a smaller system size. The exact circuits for the complete purity estimations are

given inFigure 5.4(a). We then experimentally estimate a range ofCUPson the surface of the

CUP-set C on a simulated IBM device. The results of this experiment are shown in Figure

5.5(a) where a partially depolarizingmodel has been fitted to each surface.

Then we pair (ii) with estimation through the Choi state. The exact circuits for this

method are given in Figure 5.4(b). We again estimate a range of CUPs on the surface of the

reversible CUP-set Cr. The results of this experiment are shown in Figure 5.5 (b) where a

partially depolarizingmodel has been fitted to each surface.
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(a) Isometric CUP-set (C), estimated with com-

plementary channel method.
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(b)ReversibleCUP-set (Cr), estimatedwithChoi

state method.

Figure 5.5:Direct estimation of quantumCUP-sets. The two simplest quantumCUP-sets
are experimentally estimated directly through SWAP test schemes. A best fit depolarising
noise model has been applied to each surface (see Table 5.2).

5.2.4 Discussion of direct methods

The direct methods we have implemented have a few sources of errors. For any estimated

CUP, (uN , ūN), the largest error, in terms of the size of intended operation, will be on the

controlled SWAP gate(s). Secondly, as the SWAP test relies upon the final measurement

being taken in the correct basis, the direct methods are sensitive to even small final SPAM

errors.

Examining Figure 5.5 we observe variance in the data, even after a round of averaging

over 100 experimental runs has been performed. The lack of robustness to SPAM errors,

means thatwe cannot ascribe this variance to one source– itmay comeprimarily fromSPAM

(uN ≈ uN(E)) or it may occur in the preparation of the channel itself (uN ≈ u(EN)). This
is the main weakness with the direct methods, compared to methods we discuss in the fol-

lowing section. However, we note that even after the depolarizing fit is applied, for both C
and Cr the noisy estimatedCUP-set is found strictly below the no-cloning upper bound, and

therefore in the full CUP-set C∗.
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The direct methods work reasonably well, however we cannot separate the errors occur-

ring in the experimental procedure (the SWAP test) from themore fundamental errors in

the target channels (E and Ē). We thereforewill needmore advanced techniques to better

isolate the latter errors which are truly the limits of the device.

The size of parameters needed for thedepolarizing fit let us comparebetween the estima-

tion of C and Cr. From Table 5.2, the estimated depolarization is two to three times higher
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for Cr. As the channels required to generate Cr are very similar to C, we can prescribe this

increase directly to the larger overhead and complexity of the protocol for Cr.
Finally, we note that the direct methods rely on a SWAP test(s), and are therefore not

efficiently scaleable in number of qubits. From Figure 5.4 we can extrapolate that for (E , Ē)
beingn qubit channels wewould require a system of 4n+1 qubits. However thesemethods

are quite efficient in the number of runs required as detailed in Table 5.1.

5.3 SPAM robust CUP-set estimation through RB

With thedirectmethodof theprevious section,wemakenodistinctionbetweenerrors in the

implementation of the target channel, and errors in the estimation protocol including initial

state preparation and final measurement SPAM errors. This severely limits the usefulness

of the direct method as a measure of whether a device obeys the CUP-set’s informational

bounds. For example, in the extreme, we could imagine a device that implements any quan-

tum channel perfectly but has SPAM errors such that it applies a final Hadamard transform

on all qubits beforemeasurement. With the direct SWAP testmethod, this would only gen-

erate the point (0, 0) on theCUP-set diagram. From thiswemight conclude the device is not

acting as a closed quantum system –when in fact, prior to measurement, it was performing

perfectly.

With the above inmind, in this sectionwe consider protocols to estimate quantumCUP-

sets that are robust to SPAM errors. However will see that the SPAM robust protocols come

with a cost ofmuch larger operational overheads, and introducedifferent sources of potential

noise compared to the direct methods.

5.3.1 Estimation through randomized benchmarking

Through randomized benchmarking (RB) [57] we can estimate the unitarity u(ΛC) of the

average error channel ΛC induced by a computational gateset {UC} generating the Clifford
group. Here we use the notation Λ for noise channels to avoid confusion with the specific

channels that generate the CUP-set, (E , Ē).
If we interleave the target channel, E , (of fixed dimension) between rounds of random

Clifford unitaries in theRB protocol, we can estimate the unitarity of the joint channel u(E ◦
ΛC). Therefore in the limit ΛC = id the interleaved RB protocol returns an exact estima-

tion of u(E). More generally, as unitarity is proportional to theHilbert-Schmidt normof the

channel’s matrix representation we also have the relation u(E ◦ ΛC) ≤ u(E)||ΛC ||∞, where

||ΛC ||∞ corresponds to the largest singular value of the average noisy Clifford gateset chan-

nel. Thismayalsobedetermined, for examplevia spectralmethodsas inSection5.4 toobtain

more precise bounds for u(E) in the presence of noisy Clifford operations.
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1. Prepare the system in the state ρA ⊗ |0〉〈0|B.
2. Select a sequence of length k of random elements of the Clifford group, {UC,i}, on
subsystemA, starting with k = 1, while performing a reset on subsystemB after every
gate. E.g. for each gate UC,i ⊗D
3. Interleave the bipartite unitary UAB after every Clifford gate (such that the final gate
is a Clifford gate).

4. Estimate the square (mA)
2, of the expectation value of an observableMA on subsys-

temA for this particular sequence of gates.

5. Repeat 1, 2, 3&4 formany randomsequences of the same length, finding the average
estimationEρ[(mA)

2] of (mA)
2.

6. Repeat 1, 2, 3, 4& 5 increasing the length of the sequence k by 1.

7. Fit the data Eρ[(mA)
2] = c0 + c1s

k−1 where c0, c1 are real constants, and find the
estimated unitarity, s.

Protocol 3: Interleaved unitarity RB for marginal channel E(ρ) := trB ◦ UAB(ρ⊗ |0〉〈0|).

Applying interleaved RB to an estimation of the CUP-set follows from the above. How-

ever, in addition, it involves an interleaved implementation ofE using an ancilla initialisation,
the global unitaryUAB and a partial trace. We require the additional assumption thatwe can

performmid-circuit resets,D(ρ) := |0〉〈0|, and that the noisy version of these resets are in-
coherent – in that none of the state ρ is carried through even ifD induces some larger error

on the device. This allows us to include the errorD inΛC.

Through interleavedRBwecan estimate theunitarity of the following channel in aSPAM

robust manner

EN(ρ) = trB ◦ ΛAB ◦ UAB ◦ ΛC(ρ⊗ |0〉〈0|), (5.7)

where ΛAB is the noise channel we want to probe associated with the experimental imple-

mentation of (E , Ē), the channels generating the (isometric) CUP-set. In the noiseless limit

ΛC = ΛAB = id, Protocol 3 returns exactly u(E) in the isometric CUP-set C.
Protocol 3 gives the decay parameter that estimates s = u(EN) for the noisy channel EN

which includes thedevice errors frompreparationof the channelE , but alsoprotocol-specific
errors coming from the noisy randomCliffords.

The protocol for Ē is very similar but requires an additional SWAP operation which we

can absorb into the interleaved unitary, U ′
AB = SWAP ◦ UAB but this may have some re-

source costs associated with it. Allowing us to estimate u(ĒN) for

ĒN(ρ) = trA ◦ ΛAB ◦ UAB ◦ ΛC(ρ⊗ |0〉〈0|). (5.8)

Proofs showing that the above protocols indeed produce estimates of CUP-sets can be found
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shortly in Section 5.3.2. An examination of how the protocols behave under gate indepen-

dent noise is given in after this, in Section 5.3.3.
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With the (physically unrealistic) assumption there are no errors associatedwith the gate-

set or mid-circuit resets, ΛC = id, an interleaved unitarity RB protocol returns an exact

estimation of a point (u, ū) in the noisy CUP-set. This applies even in the presence of ini-

tial and final SPAM errors.

We implement these protocols on a simulated version of the ibm belem device, in an ef-

ficient manner (see Protocol 4) [5]. The results of the experiment for C are shown in Figure

5.6(a), and for Cr in Figure 5.6(b) where a depolarization model has been fitted to each sur-

face.

5.3.2 Interleaved unitarity protocol for (E , Ē) without noise

Wenow give a pictographic sketch of the proof for Protocol 3 without noise, showing that it

reduces to the form of a unitarity benchmarking protocol as discussed in Chapter 3.

Define the elements of the Clifford group on qubit A to be {UA,i}. We define channel

induced by averaging over many Clifford unitaries as

UA :=
1

N

N∑
i

CA,i. (5.9)

In the caseΛ = ΛC = id, the circuit diagram representation of Protocol 3 is

ρA UA
UAB

UA MA

|0〉〈0| D D I

Repeat k − 1 times

(5.10)

whereJ indicates the channel preparing |0〉〈0| andI the trace operation. AsIJ= D, the

circuit reduces to

ρA UA
UAB

UA MA

J I

Repeat k − 1 times

(5.11)

which further reduces to

ρA UA E UA MA

Repeat k − 1 times

(5.12)

Which is exactly the right form for the circuit to estimate u(E). The decay parameter e1 in

Protocol 3 is then exactly u(E) in this idealised case.
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The protocol to estimate u(Ē) is the same as for u(E) replacing UAB with SWAP ◦ UAB.
This follows from the fact that

Ē(ρ) := trA ◦ UAB(ρ⊗ |0〉〈0|) = trB ◦SWAP ◦ UAB(ρ⊗ |0〉〈0|). (5.13)

or as a circuit diagram

− Ē −
UAB

×

J ×I
= (5.14)

where we implicitly assume dA = dB, which is appropriate in this two qubit case.

Therefore, in the noise free limit, see how the protocols average the channels (E , Ē) over
theCliffordgroupandproduceanestimateof anypoint (u, ū). However, ofmore importance

is the behaviour of the protocol under device noise, which we shall explore now.

5.3.3 Interleaved unitarity protocol for (E , Ē) with noise

In this sectionwe set out theminimumassumptions required to produce interleaved unitar-

ity RB circuits, where all operations are assumed to be noisy. We then show how this effects

the estimation of CUP-sets. For channels, states, functions, anyX, we write the noisy ver-

sionXN .

For a two qubit system when we implement any gate or mid-circuit measurement, the

noise associated with the process may effect the whole device. Therefore we should model

errors as bipartite quantum channels. We make two simplifying assumptions about these

errors. Firstly, we consider the noise to be fixed across the Clifford group gateset, such that

ΛC,i = ΛC for all Ui. E.g. Ui,N = ΛC ◦ Ui ⊗ idB. Secondly, we assume the reset of a qubit

is perfectly incoherent, but potentially noisy. Therefore the total channel can be written as

DB,N = ΛD ◦ idA ⊗DB, with a general bipartite error channelΛD.

A direct consequence of these two assumptions is that we can write the noisy version of

the summation of Clifford unitaries UA,N and the reset operation as

UA,N ⊗DB,N

UA
ΛC

DB

=
(5.15)

whereΛC is an error channel associated with the operations together. Putting this together

with a noisy version of the interleaved unitary UAB,N = UAB ◦ ΛAB we can write a noisy

version of the circuit for Protocol 3:

ρN UA
ΛC UAB ΛUAB

UA
ΛC

MA,N

|0〉〈0|N DB DB I

Repeat k − 1 times

(5.16)
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Furtherwecanwrite the reset operations as trace andpreparationoperations inournota-

tion and absorb the initial and final error channels as SPAM errors in theA subsystem. This

leaves us with:

ρN UA
ΛC UAB ΛUAB

UA MA,N

J I

Repeat k − 1 times

(5.17)

As the protocol is SPAM robust, we get an estimation of the unitarity u(EN) of the channel
EN(ρ) := trB ◦ ΛAB ◦ UAB ◦ ΛC(ρ⊗ |0〉〈0|).

When we implement the protocol for Ē we will have an additional required operation,

SWAP , which we absorb into the joint unitary, U ′
AB = SWAP ◦ UAB, but there maybe

additional noise associated with it. We can write the noisy version of this in full generality

with U ′
AB,N = SWAPN ◦ UAB,N = ΛAB ◦ SWAP ◦ UAB. This leads to a noisy circuit of the

form

ρN UA
ΛC UAB

×
ΛAB

UA
ΛC

MA,N

|0〉〈0|N DB × DB I

Repeat k − 1 times

(5.18)

Finally, absorbing the initial and final error channels as SPAM errors in the A subsystem

leaves us with:

ρN UA
ΛC UAB

×
ΛAB

UA MA,N

J × I

Repeat k − 1 times

(5.19)

Giving an exact estimation of the unitarityu(ĒN) for the channel ĒN(ρ) := trA◦ΛAB ◦UAB ◦
ΛC(ρ⊗ |0〉〈0|).

Putting this together we have considered the gateset noise to be fixed across the gateset,

ΛAB, and have assumed the reset of a qubit is perfectly incoherent (but potentially noisy).

Undersuchcircumstances the interleavedunitarityRBprotocol estimates theunitarity,u(EN)
of a jointquantumchannel for aprocessEN whichcontains the targetprocessE and theabove
error channels.
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With some assumptions on the nature of device noise, the interleaved unitarity RB pro-

tocol still returns an estimation of a point (u, ū) in the CUP-set, however there will be

contributions from errors in the gateset and mid-circuit resets. However, it remains to

see how these techniques perform compared to the direct methods.
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1. Select a random sequence, Uk := Uk ◦ E ◦ Uk−1 ◦ E ◦ ... ◦ U2 ◦ E ◦ U1, of random
Clifford gates interleaved with target channel E.
2. Prepare the system in the state ρ±,i :=

1
d
(1± Pi) for all non-identity elements Pi, of

the Pauli groupP 6= 1. In the single qubit input and output case, the states ρ±,i are pure
states given by ρ±,i = {|+〉 , |−〉 , |+i〉 , |−i〉 , |0〉 , |1〉}.
3. Estimate theaveragepurityof the sequenceacrossall possible traceless inputandout-
put Pauli operators:

qk =
1

d2 − 1

d2−1∑
i,j

(tr[Pj Ck(ρ+,i)]− tr[Pj Ck(ρ−,i)])2.

4. Repeat 1, 2& 3 forNk random sequences of length k, finding the average estimation
E[qk] := 1

Nk

∑Nk

k qk.

5. Repeat 1, 2, 3& 4 increasing the length of the sequence, e.g. k = k + 1.

6. Fit the data withE[qk] = c1s
k−1, to find s the estimated value of u(E).

Protocol 4: Efficient interleaved unitarity RB for single qubit channel E , adapted from [5].

5.3.4 Efficient implementation of protocols

In the experiments for the SPAM robust CUP-set, we perform an efficient unitarity RB pro-

tocol, as introduced in [5]. Here we mean efficient in the sense that the protocol is optimal

rather than it scales linearly with system size. The protocol is particularly useful as it allows

for rigorous bounds on the variance in the associated decay curve, and therefore the value of

unitarity extracted 1. Protocol 4 summarizes the efficient unitarity RB protocol given in [5]

applied to ourmethods here, where we consider interleaving a single qubit channel.

Efficiency, in the sense of a linear scaling of operational costs with system size, can be

achieved inaunitaritybenchmarkingprotocol if onehas access to twocopiesof the system[5,

107]. However this approach requires the assumptions that: the local errors on each system

are identical, that entangled states across both systems can be created, and that there are

no unwanted (noise) correlations between the systems. These assumptions are extremely

unlikely to hold outside of a fault tolerant device. Therefore for our simulations using ibm

belemwe use the single system protocol given above.

5.3.5 Discussion of SPAM robust methods

We now discuss the limitations of the interleaved randomized benchmarking technique we

give for estimatingCUP-sets. While the protocol is robust to initial and final SPAMerrors, it

1This scheme could be straightforwardly applied to the subunitarity protocols given in Chapter 4.
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(a) Isometric CUP-set (C)
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Figure 5.6: SPAM robust estimation of quantumCUP-sets. The simplest quantumCUP-
sets are experimentally estimated through an interleaved unitarity randomized benchmark-
ing scheme. Abest fit depolarisingnoisemodel hasbeen fitted to each surface (seeTable 5.2),
where each surface is produced from 9 pairs of experimental values.

relies onmid-circuit measurements to perform resets whichmust be incoherent (but can be

noisy). Under this assumption, thedecayparameter of theprotocol gives a robust estimation

of theunitarity of the given channel, s = u(EN). If, aswemight expect on aNISQdevice, the

reset allows some coherent information through, then the decay parameter can no longer be

directly related to the unitarity, e.g. s = uN(EN). For further discussion see Section 5.3.3.
For the channels (EN , ĒN) to be close (in terms of unitarity) to the channels that gener-

ate the CUP-set (E , Ē), we need the errorΛC on one qubit Clifford unitaries to be small. As

the error preparing (E , Ē) should be of similar size to ΛC , then we expect that the approxi-

mately half of the depolarizing fit required in Figure 5.6 can be attributed to the preparation

of (E , Ē).

5.3.6 Comparison with direct methods

While theSPAMrobustmethods require an additional assumptionabout thenatureof resets

on the device, this is a vast improvement over the directmethods of Section 5.2,where errors

arising in the protocol and in the channel preparation could not be separated. Further, the

estimation of each CUP-set obtained through interleaved RB is significantly better in terms

of the required depolarizing fit than the direct methods (see Table 5.2). The variance in the

data points is also significantly lower for interleavedRB, evenwhenperforming an additional

round of averaging for the directmethods. However the number of individual runs required

for each data point is higher as shown in Table 5.1.
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ū

1 sample
10 samples
100 samples

(a) UAB = CNOTαAB

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

u

u

1 sample
10 samples
100 samples

0.0 0.2 0.4 0.6 0.8 1.0

α

0.0

0.2

0.4

0.6

0.8

1.0

ū
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Figure 5.7: Bound onCUP-set through randomunitaries. For two surfaces of the isomet-
ric CUP-set C (for a range of 50 discrete values of 0 ≤ α ≤ 1) we can test how quickly the
lower bound given in Lemma 5.1 converges towards the actual unitarity given in Theorem
5.1. Roughly, we observe, for boundwithin 1% of the unitarity we need 1 random setting if
u > 2/3, and at most 100 random settings for lower values.
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By adapting randomized benchmarking methods designed for SPAM-robust estimation

of device noise, we achieve a much better estimation of a CUP-set that more accurately

reflects the limits of the quantumdevice. This improves our ability to test whether quan-

tum devices obey the limits of quantum theory.

Additionally, we see that the interleaved RB protocol is very good at estimating points

where u or ū = 0, especially compared to the direct methods. This is likely due to the fact

that, for the directmethods, these points require the estimation of two non-zero purities for

any value of u, whereas the SPAM robust methods estimate a single decay parameter.

5.4 Estimation through spectral methods

Wenextdiscuss if spectralmethods (that estimate eigenvalues of a channel) are an alternative

SPAM robust path to estimate CUP-sets. We include two results that link unitarity to quan-

tities estimable through spectral tomography [83] whichmay be of independent interest.

5.4.1 Unitarity and channel eigenvalues

Any quantum channel E : B(H) → B(H) on a system H of dimension d has a (Liouville)

representation as a d2 × d2 matrix. Its non-unital d2 − 1 × d2 − 1 block TE has eigenvalues

{λi(E)} that are real or come in complex conjugate pairs [146]. Further, we can relate the
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singular values, {σi(E)}, of TE to the unitarity via [83]

u(E) = 1

d2 − 1

d2−1∑
i=1

σi(E)2. (5.20)

The set {λi(E)} can in theory be estimated SPAM robustly for some noisy target process

through spectral tomography [83]. Bounding the unitarity of a channel using its eigenvalues

may provide a route to estimating points on the CUP-set.

The following holds for all quantum channels of fixed dimension, and allows us to lower

bound the unitarity of a channel in terms of the eigenvalues of the channel under changes of

basis.

Lemma 5.1. For any quantum channel E , of fixed dimension d and unitary channels Ui and Uj
we have

u(E) ≥
d2−1∑
k=1

|λk(Ui ◦ E ◦ Uj)|2

d2 − 1
. (5.21)

Proof. For any quantum channel F , TF is real matrix [147]. From Weyl’s Majorant Theo-

rem [148],
∑d2−1

k |λk(F)2| ≤
∑d2−1

k σk(F)2 , where λk(F) denote eigenvalues and σk(F)

singular values of TF . WithF = Ui ◦ E ◦ Uj for unitary channels Ui& Uj it follows that

d2−1∑
k

∣∣λk(Ui ◦ E ◦ Uj)2
∣∣ ≤ d2−1∑

k

σk(Ui ◦ E ◦ Uj)2. (5.22)

Further more
d2−1∑
k

σk(Ui ◦ E ◦ Uj)2 =
d2−1∑
k

σk(E)2 = (d2 − 1) u(E) (5.23)

from the invariance of singular values under unitary rotations, which completes the proof.

Further, for a single qubit channel, we can always saturate the above bound.

Theorem5.1 (Variational formulationofunitarity). Forany single qubit quantumchan-

nel E , maximising over all single qubit unitary channels {Ui} and {Uj} gives

u(E) = max
Ui,Uj

3∑
k=1

|λk(Ui ◦ E ◦ Uj)|2

3
. (5.24)

Proof. From the previous lemma we have
∑3

k |λk(Ui ◦ E ◦ Uj)2| ≤
∑3

k σk(Ui ◦ E ◦ Uj)2 for
all Ui & Uj. However for a single qubit channel, E , we can always find [47] two specific uni-
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tariesU1 &U2 such thatTU1◦E◦U2 is a diagonalmatrix, and therefore the eigenvalues and sin-

gular values are equal {λi(U1 ◦ E ◦ U2)} = {σi(U1 ◦ E ◦ U2)} and
3∑
k

∣∣λk(U1 ◦ E ◦ U2)
2
∣∣ = 3∑

k

σk(U1 ◦ E ◦ U2)
2, (5.25)

saturating the inequality. Therefore over the complete set of single qubit unitary channels

{Ui} and {Uj}, from the above two equations

max
Ui,Uj

3∑
k

∣∣λk(Ui ◦ E ◦ Uj)2
∣∣ = 3∑

k

σk(U1 ◦ E ◦ U2)
2 (5.26)

which completes the proof.

Thepractical applicationofTheorem5.1 to thechannels thatgenerate the simplestCUP-

set (when (E , Ē) areboth singlequbit channels) is shown inFigure 5.7. Wenowconsiderhow

these results could be used if one has access to channel eigenvalues through benchmarking

protocol.

5.4.2 Estimation of CUP-set through spectral tomography

Putting this together, a spectral protocol to estimate a CUP-set would require the following

steps. For any point, estimate the eigenvalues of the channelUi ◦ E ◦ Uj through spectral to-
mography forM different randomly chosenUi&Uj. FromLemma 5.1, the set of estimated

eigenvalues provide a lower bound on u(EN)where EN is a noisy experimental implementa-

tion of Ui ◦ E ◦ Uj. Repeat for Ē to obtain a lower bound on u(ĒN) similarly. ForM → ∞,

and in practice for atmostM ≈ 100 (see Figure 5.7), fromTheorem 5.1 the estimated lower

bound becomes an estimation of exactly the required unitarities.

We performed the above sequence of spectral tomographic experiments on a simulated

version of the IBMQ device, ibm belem. However, using a similar number of resources to

the interleaved RB protocol, we were unable to extract eigenvalues accurately from the to-

mographic data. For state vector simulations with a fixed gateset error (and without sam-

pling) we were able to extract eigenvalues correctly. Therefore we suspect that the gate-

dependence of errors or issues with the finite sampling of expectation values impede the es-

timation process. While increasing the number of shots may help with the later, the experi-

mental overheadwould be greatly increased compared to the other techniques we consider.

S
u
m
m
a
ry

Alternative SPAM robust methods to estimate the CUP-set with a lower experimental

overhead would be desirable. Here we gave several results for how spectral tomography

could be used but were unable to extract CUPs with this method in practice. We leave

as future work the implementation of other techniques which may allow for the robust

estimation of CUP-sets, such as randomizedmeasurements [149].
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5.5 Conclusions

Quantum CUP-sets are simple and geometrical tools for analyzing the incompatibility of

channelsunderquantumtheory. Wehavedevelopedmethods toestimate the simplestquan-

tumCUP-sets throughdirectpurity relations, butalso–withsomeassumptions– inaSPAM

robust way through interleaved randomized benchmarking of unitarity. We then tested the

effectiveness of thesemethodswith simulations of an IBMdevice. In doing sowe completed

our aim of testing quantum theory using current quantum devices – where noise is a major

obstacle to producing reliable tests.

As quantum CUP-sets encapsulate quantum incompatibility they may be used as a tool

for benchmarking quantum devices. While estimating many points on the CUP-set may

not be an efficient method of benchmarking, the extremal points of the isometric CUP-set

(given for thequbit case by (0, 1), (1, 0) and (1/3, 1/3)), requires just 6 experiments. The ex-

tremal points capture both the coreCUP-set geometry and the unitarity-based information-

disturbance relation given in Theorem 2.1, and therefore are a natural minimal set.

Futureworkwill focuson implementing theestimationmethods forCUP-setondifferent

quantumhardware. Inparticular,wemay also consider randomizedmeasurements [149] for

direct purity estimation, which would give an additional method to produce the CUP-set,

withminimal implementation overhead.
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Concluding remarks

In the dime stores and bus stations,

People talk of situations,

Read books, repeat quotations,

Draw conclusions on the wall.

LoveMinus Zero

BobDylan

Our overarching research question in this workwaswhether tools from the benchmark-

ing of quantum devices could capture fundamental features of quantum theory. The uni-

tarity of a quantum channel is measure of coherence for the channel that appears naturally

within randomizedbenchmarkingprotocols. Toanswerour researchquestionwedeveloped

a range of results building on the unitarity and connecting with foundational ideas such as

quantumno-go theorems and strictly non-classical effects like non-separability in quantum

channels. We chose our research question because we could relate it to three useful goals.

These were:

(1) To test the limits of quantum theory using current noisy quantum devices,

(2) To gain independent information about the nature of device noise,

(3) To provide efficient and robust certification of non-classical effects.

We now briefly summarize howwe approached these goals, andwhether we achieved them.

Following this, we examine how the ideaswe have presented relate to other areas of research

and they could be built upon in future.
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6.1 Summary of results

WithinChapter 2,we extended theunitarity of quantumchannels to channels in other prob-

ability theories. Thenweused this generalisedmeasure to establish a framework for captur-

ing quantum incompatibility based around sets of compatible unitarity pairs – CUP-sets.

We showed these CUP-sets encode no-cloning and no-hiding and allow for a simple geo-

metrical comparison with classical theory.

Having taken an ‘outward’ looking approach in the first chapter, we turned ‘inwards’ in

Chapter 3. Namely, we considered how unitarity can be extended to subsystems within a

channel. We defined subunitarities which capture the coherence in and between subsys-

tems within a channel. We showed that these measures have nice properties for quantify-

ing subsystem information transfer and lead to a measure for the coherence of correlations

in a channel – the correlation unitarity – which is a witness to a strictly non-classical effect,

non-separability.

While the resultsweobtained in the first twochapters areof independent interest, as they

connectwith foundational ideas, to complete our goalswehad to devisemethods for estima-

tion on quantum devices. Therefore in Chapter 4 we proved that, with some assumptions,

subunitarities and the correlation unitarity can be estimated for device noise through ran-

domized benchmarking protocols. These protocols were efficient and robust to initial and

final errors in state preparation and measurements, however in general we required mid-

circuit resets which reduced robustness. When device noise can be assumed to be a Pauli

channel, through randomized compiling, we could estimate the correlation unitarity with

complete robustness. Further, we showed that our techniques work well in practice if the

reset errors are small. Finally, we showed that thesemethods give independent information

beyondexistingbenchmarking techniquesnamely in the formof anovelmeasureof coherent

correlationswhichweprovedwitnessesnon-separability andcanbe estimated inpractice. In

this way, we achieved goals (2) and (3).

We then turned to the estimation of CUP-sets in Chapter 5, where we showed that the

simplest quantum CUP-sets can be estimated on current devices. We gave straightforward

methods of estimation and more involved methods based on randomized benchmarking.

These lattermethods gave improved performance, aswe could separate someof the errors in

the preparation of the experiment itself from errors in the target quantum process we were

trying to probe. As we gave an estimation of CUP-sets for a simulation of a real device, we

come close to realizing goal (1). We hope to implement the same experimental procedures

on a physical quantum device in the near future.
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6.2 Outlook

We now give some opinions on how our work could be improved or built upon, and how it

may be connected to other areas of active research.

Our primary protocol for subunitarity estimation relies on fitting a multi-exponential

decay to noisy data. In general this is a hard problem, and there will be many fits that will

approximate the decay curve. The protocol could be substantially improved by exploiting

recent statistical techniques [151] or algorithms for multi-exponential fitting [7, 152].

Throughout this workwe have considered the error induced by a computational gateset

to be time-independent and gate-independent and averaged for the gateset considered. As

such, relaxing these constraints would be a natural line to develop [44, 153, 154].

Recently, many theoretical results have analysed how the effect of noise on quantum al-

gorithms results in a computation that can be efficiently simulated classically [155]. This

behaviour remains even for quantum advantage experiments [156]. Similarly, we have seen

that noise affects the quantum CUP-set by shifting it towards regions that exhibit classical

behaviour such as hiding. An interesting future directionwould be to connect these two as-

pects anddetermine if devicebenchmarkingviaCUP-sets canprovideadditional information

to bound finite size classical simulability of quantum circuits in the presence of noise.

While we expect classical devices to perform a perfect estimation of the isometric CUP-

set, the reversible classical CUP-set relies on a source of randomness to perform perfect hid-

ing. The accuracy of the estimated CUP-set can then be directly related to the bias in the

randomness. Therefore the CUP-set formulation could conceivably provide a means of as-

sessing the quality of a source of randomness.

Finally, in thisworkwe primarily considered two theories, classical theory and quantum

theory, however CUP-sets can be derived for more general physical theories. It would be

interesting to see how the structure of CUP-sets varies between different theories.





A

Material related to CUP-sets

This section contains proofs and technical statements thatwere omitted from thediscussion

in Chapter 2.

A.1 Convexity of unitarity

The following properties of unitarity are utilized within the proof of an upper bound on re-

versible quantumCUP-sets. Theymay be of independent interest.

LemmaA.1. For any convex combination of channelsE =
∑r

i piEi, the respective unitalmatrix,
TE , has the form: TE =

∑r
i piTEi .

Proof. TE =
∑d2X−1,d2Y −1

j,k 〈yk|E(xj)〉 |yk〉〈xj| =
∑d2X−1,d2Y −1

j,k 〈yk|
∑r

i piEi(xj)〉 |yk〉〈xj|. How-

everasquantumchannels are linear, this is
∑r

i pi
∑d2X−1,d2Y −1

j,k 〈yk|Ei(xj)〉 |yk〉〈xj| =
∑r

i piTEi.

LemmaA.2. The unitarity u(E) is a convex function of any quantum channel E .

Proof. From Lemma A.1, for any convex combination of channels E =
∑r

i piEi the corre-
sponding TE matrix is the convex combination of each individual term, TE =

∑r
i piTEi. All

norms are convex non-negative functions, including the l2 norm, || · || [122]. Further, if f(x)
is convex and non-negative function of x then f(x)2 is also convex. Therefore ||TE ||2 is a
convex function of TE . Putting this together with the appropriate dimension factor we have

u(E) = α||
r∑
i

piTEi ||2 ≤
r∑
i

piα||TEi ||2 =
r∑
i

piu(Ei) (A.1)

which completes the proof.
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A.2 Analytical form for quantum CUP-set surfaces

Wenow calculate the unitarity of several channels analytically. This gives us themathemat-

ical form for the surfaces of the (isometric) quantumCUP-set.

A.2.1 Upper surface (SWAPα)

LemmaA.3. For the isometry Vα(ρ) := SWAPα(ρ⊗ |0〉〈0|)where 0 ≤ α ≤ 1, we define the

marginals Eα(ρ) := trB[V(ρ)α] and Ēα(ρ) := trA[V(ρ)α]. The unitarities of eachmarginal are

u(Eα) =
(1− s)(3− s)

3
(A.2)

and

u(Ēα) = 1− (1− s)(3 + s)

3
(A.3)

respectively, where s = sin2(πα
2
).

If we consider the sum of themarginals fromLemma A.3 we have

u(Eα) + u(Ēα) = 1− 2s(1− s)

3
(A.4)

with 0 ≤ s ≤ 1 and produce a tighter bound on themarginals, namely for any isometrywith

dX = dA = dB = 2, for a given u(E)we have

u(Ē) ≤ 3 + u(E)− 2
√
1 + 3u(E). (A.5)

Proof. (ofLemmaA.3)Firstwemust obtain auseful analytical form forSWAPα. AsSWAP

is a unitary channel to derive the analytical form it is sufficient to find the unitary matrix U

that transforms the two qubit pure state |ψ〉 ⊗ |φ〉 such that

U |ψ〉 ⊗ |φ〉 = |φ〉 ⊗ |ψ〉 . (A.6)

From this definition we can write

U = |00〉〈00|+ |10〉〈01|+ |01〉〈10|+ |11〉〈11| ,

=
1

2
(1⊗2 +X⊗2 + Y ⊗2 + Z⊗2),

(A.7)

where {1, X, Y, Z} are the Pauli matrices on 1 qubit. Defining the Bell states as |Φ±〉 :=
1√
2
(|00〉 ± |11〉) and |Ψ±〉 := 1√

2
(|01〉 ± |10〉), we can diagonalise this unitary as

U = |Φ+〉〈Φ+|+ |Φ−〉〈Φ−|+ |Ψ+〉〈Ψ+| − |Ψ−〉〈Ψ−| ,

= |Φ+〉〈Φ+|+ |Φ−〉〈Φ−|+ |Ψ+〉〈Ψ+|+ eiπ |Ψ−〉〈Ψ−| .
(A.8)
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As SWAPα(ρ) = Uαρ(Uα)†, up to a global phase we can find [157]

Uα = |Φ+〉〈Φ+|+ |Φ−〉〈Φ−|+ |Ψ+〉〈Ψ+|+ eiπα |Ψ−〉〈Ψ−| , (A.9)

and through careful expansion

Uα = |00〉〈00|+ |11〉〈11|

+
1

2
(1 + eiπα)(|01〉〈01|+ |10〉〈10|)

+
1

2
(1− eiπα)(|01〉〈10|+ |10〉〈01|),

=
1

2
(1⊗2 + Z⊗2) +

1

4
(1 + eiπα)(1⊗2 − Z⊗2) +

1

4
(1− eiπα)(X⊗2 + Y ⊗2),

=
1

2
(1 + eiπα)1⊗2 +

1

4
(1− eiπα)(1⊗2 +X⊗2 + Y ⊗2 + Z⊗2),

=
1

2
(1 + eiπα)1⊗2 +

1

2
(1− eiπα)U.

(A.10)

If we now expand the isometry definition we have

V(ρ)α = Uαρ⊗ |0〉〈0| (Uα)†,

= (
1

2
(1 + eiπα)1⊗2 +

1

2
(1− eiπα)U)

(ρ⊗ |0〉〈0|)

(
1

2
(1 + e−iπα)1⊗2 +

1

2
(1− e−iπα)U †),

= cos
(πα

2

)2
1⊗2(ρ⊗ |0〉〈0|)1⊗2 + sin

(πα
2

)2
U(ρ⊗ |0〉〈0|)U †

+
i

2
sin(πα)1⊗2(ρ⊗ |0〉〈0|)U † − i

2
sin(πα)U(ρ⊗ |0〉〈0|)1⊗2,

= cos
(πα

2

)2
ρ⊗ |0〉〈0|+ sin

(πα
2

)2
|0〉〈0| ⊗ ρ

+
i

2
sin(πα)1⊗2(ρ⊗ |0〉〈0|)U † − i

2
sin(πα)U(ρ⊗ |0〉〈0|)1⊗2.

(A.11)

From this point it is relatively straightforward to show that the unital block T for the 1 qubit

channels Eα& Ēα will be

TE,α =


∣∣X/

√
2
〉 ∣∣Y /

√
2
〉 ∣∣Z/√2

〉〈
X/

√
2
∣∣ cos

(
πα
2

)2 1
2
sin(πα) 0〈

Y /
√
2
∣∣ −1

2
sin(πα) cos

(
πα
2

)2
0〈

Z/
√
2
∣∣ 0 0 cos

(
πα
2

)2
, (A.12)

and

TĒ,α =


∣∣X/

√
2
〉 ∣∣Y /

√
2
〉 ∣∣Z/√2

〉〈
X/

√
2
∣∣ sin

(
πα
2

)2 −1
2
sin(πα) 0〈

Y /
√
2
∣∣ 1

2
sin(πα) sin

(
πα
2

)2
0〈

Z/
√
2
∣∣ 0 0 sin

(
πα
2

)2
, (A.13)
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respectively. Therefore the unitarity of Eα is given by

u(Eα) =
1

3
tr
[
T †
E,αTE,α

]
= cos

(πα
2

)4
+

1

6
sin(πα)2 =

1

6
cos
(πα

2

)2
(5 + cos(πα)). (A.14)

For the other marginal, the unitarity of Ēα is given by

u(Ēα) =
1

3
tr
[
T †
Ē,αTĒ,α

]
= sin

(πα
2

)4
+

1

6
sin(πα)2 =

1

6
sin
(πα

2

)2
(5− cos(πα)). (A.15)

This completes the proof.

A.2.2 Lower right surface (CNOT αAB)

Lemma A.4. For the isometry V(ρ)α := CNOTαAB(ρ ⊗ |0〉〈0|)where 0 ≤ α ≤ 1, we define

the marginals Eα(ρ) := trB[V(ρ)α] and Ēα(ρ) := trA[V(ρ)α]. The unitarities of each marginal
are

u(Eα) = 1− 2s

3
(A.16)

and

u(Ēα) =
s

3
(A.17)

respectively, where s = sin2(πα
2
).

If we consider the sum of themarginals fromLemma A.4 we have

u(Eα) + u(Ēα) = 1− s

3
(A.18)

with 0 ≤ s ≤ 1.

Proof. (of LemmaA.4) The proof follows in a similar way to theSWAPα case. For the given

CNOTAB channel we use the notation CNOTAB(ρ) = UρU †, to clarify that we mean the

unitary matrix U itself. We can diagonalise U with respect to the computational basis by

applying a hadamard transformH = (Z +X)/
√
2 on the target qubit before and after such

that the sandwiched unitary is the controlled phase gate:

U =
1

2
(1⊗ 1+ Z ⊗ 1+ 1⊗X − Z ⊗X),

=
1

2
(1⊗H1H + Z ⊗H1H + 1⊗HZH − Z ⊗HZH),

= (1⊗H)
1

2
(1⊗ 1+ Z ⊗ 1+ 1⊗ Z − Z ⊗ Z)(1⊗H),

= (1⊗H)(|00〉〈00|+ |01〉〈01|+ |10〉〈10| − |11〉〈11|)(1⊗H),

= (1⊗H)(|00〉〈00|+ |01〉〈01|+ |10〉〈10|+ eiπ |11〉〈11|)(1⊗H).

(A.19)

Therefore we have

Uα = (1⊗H)(|00〉〈00|+ |01〉〈01|+ |10〉〈10|+ eiπα |11〉〈11|)(1⊗H),

= |0〉〈0| ⊗ 1+
1

2
(1 + eiπα)(|1〉〈1| ⊗ 1) +

1

2
(1− eiπα)(|1〉〈1| ⊗X).

(A.20)
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From the isometry definition we have V(ρ)α = Uαρ⊗ |0〉〈0| (Uα)†, substituting in the defi-

nition ofUα we can show that the unital block T for the 1 qubit channels Eα& Ēα will be

TE,α =


∣∣X/

√
2
〉 ∣∣Y /

√
2
〉 ∣∣Z/√2

〉〈
X/

√
2
∣∣ cos2(πα

2
) 1

2
sin(πα) 0〈

Y /
√
2
∣∣ −1

2
sin(πα) cos2(πα

2
) 0〈

Z/
√
2
∣∣ 0 0 1

, (A.21)

and

TĒ,α =


∣∣X/

√
2
〉 ∣∣Y /

√
2
〉 ∣∣Z/√2

〉〈
X/

√
2
∣∣ 0 0 0〈

Y /
√
2
∣∣ 0 0 0〈

Z/
√
2
∣∣ 0 1

2
sin(πα) sin2(πα

2
)

, (A.22)

respectively. Therefore, with some multiplication, the unitarity of Eα is given by u(Eα) =

1 − 2
3
sin2(απ

2
) and the unitarity of Ēα is given by u(Ēα) = 1

3
sin2(απ

2
). This completes the

proof.

A.2.3 Lower left surface (CNOTαBA ◦ CNOTAB)

LemmaA.5. For the isometryV(ρ)α := CNOTαBA ◦CNOTAB(ρ⊗ |0〉〈0|)where 0 ≤ α ≤ 1,

we define themarginals Eα(ρ) := trB[V(ρ)α] and Ēα(ρ) := trA[V(ρ)α]. The unitarities of each
marginal are

u(Eα) =
1

3
(1− s) (A.23)

and

u(Ēα) = 1− 2

3
(1− s) (A.24)

respectively, where s = sin2(πα
2
).

If we consider the sum of themarginals fromLemma A.5 we have

u(Eα) + u(Ēα) = 1− 1

3
(1− s) (A.25)

with 0 ≤ s ≤ 1.

Proof. (of Lemma A.5) Proof follows in the same way as the previous two lemmas. From the

previous lemmawe can write the unitarymatrix for the channelCNOTBA(ρ) := UBAρU
†
BA

as

UBA = (H ⊗ 1)(|00〉〈00|+ |01〉〈01|+ |10〉〈10|+ eiπ |11〉〈11|)(H ⊗ 1), (A.26)

and therefore

Uα
BA = (H ⊗ 1)(|00〉〈00|+ |01〉〈01|+ |10〉〈10|+ eiπα |11〉〈11|)(H ⊗ 1),

= 1⊗ |0〉〈0|+ 1

2
(1 + eiπα)(1⊗ |1〉〈1|) + 1

2
(1− eiπα)(X ⊗ |1〉〈1|).

(A.27)
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The unitarymatrix for the channelCNOTAB(ρ) := UABρU
†
AB is given in the Pauli basis as

UAB =
1

2
(1⊗ 1+ Z ⊗ 1+ 1⊗X − Z ⊗X), (A.28)

therefore from the isometry definitionV(ρ)α = Uα
BAUABρ⊗ |0〉〈0|U †

AB(U
α
BA)

† we can show

that the unital block T for the 1 qubit channels Eα& Ēα will be

TE,α =


∣∣X/

√
2
〉 ∣∣Y /

√
2
〉 ∣∣Z/√2

〉〈
X/

√
2
∣∣ 0 0 0〈

Y /
√
2
∣∣ 0 0 0〈

Z/
√
2
∣∣ 0 −1

2
sin(πα) cos2(πα

2
)

, (A.29)

and

TĒ,α =


∣∣X/

√
2
〉 ∣∣Y /

√
2
〉 ∣∣Z/√2

〉〈
X/

√
2
∣∣ sin2(πα

2
) −1

2
sin(πα) 0〈

Y /
√
2
∣∣ 1

2
sin(πα) sin2(πα

2
) 0〈

Z/
√
2
∣∣ 0 0 1

, (A.30)

respectively. Therefore, with some multiplication, the unitarity of Eα is given by u(Eα) =
1
3
cos2(απ

2
) and the unitarity of Ēα is given by u(Ēα) = 1 − 2

3
cos2(απ

2
). This completes the

proof.

A.3 Compatible fidelity pairs

Aswe discussed in Chapter 1, the unitarity appears when considering the variance of an ob-

servable for anRB sequence. The prototypicalmeasure estimated throughRB is the average

gate fidelity of noise, which canbe estimatedmore straightforwardly. FidelityRB scales bet-

ter with system size [5] than unitarity RB and rigorous analysis has been completed exam-

ining the gate dependence in noise for fidelity RB. Overall, average gate fidelity would seem

an easier SPAM robust tool to use compared to unitarity. It is therefore reasonable to ask if

fidelity can be used instead of unitarity in the analysis we have undertaken throughout this

work.

In this section,we illustrate that fidelity cannot be used to capture the no-hiding andno-

cloning theorems in the samemanner asunitarity, asdiscussed inChapter 2. Thearguments

could be extended to non-separability as discussed in Chapter 4.

For a fixed dimension d, consider the average gate fidelity, f(E), of a quantum channel,

E , is defined via f(E) = 1 − r(E) for the average gate infidelity given in equation (1.4) [48].
The fidelity is bounded 1

d+1
≤ f(E) ≤ 1 and takes the value f(E) = 1 if and only if E = id

[52]. The fidelity of a channel is upper bounded by its unitarity [83] with

(
df(E)− 1

d− 1
)2 ≤ u(E). (A.31)



A.3 Compatible fidelity pairs 137

0.0 0.2 0.4 0.6 0.8 1.0

f(E)

0.0

0.2

0.4

0.6

0.8

1.0

f
(Ē

)

C Analytical Boundary

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure A.1: Compatible Fidelity Pairs. The simplest non-trivial set, C, of compatible aver-
age gate fidelity pairs, (f(E), f(Ē)), are shown. The bound given in equation (A.32) con-
strains the set to within the unit circle.

These bounds are tight as they hold exactly for a partially depolarizing channel.

Letusconsider splittingquantuminformationbetweensubsystemsusingquantumchan-

nels. This was discussed in detail in Chapter 2. For simplicity, we will consider single qubit

channels. For the isometry, V(ρ) := UAB(ρ ⊗ |0〉〈0|), from one qubit to two qubits, we

define a pair of complementarity channels. These are the single qubit marginal channels

E := trB ◦V and Ē := trA ◦V. By ranging over all unitaries,UAB, we generate all compatible

channels, (E , Ē), andwe can examine possible ways to divide quantum information between

two parties.

Now let us consider pairs of compatible fidelities given by any tuple, (f(E), f(Ē)) for a
pair of compatible channels, (E , Ē). The set of all fidelity pairs will capture some of proper-

ties of the set of all compatible channels. For example, the no-cloning theorem excludes the

channels E = Ē = id from the set compatible channels, as f(E) = 1 if and only if E = id,

then the point (1, 1)must be excluded from the set of compatible fidelity pairs.

We can also more broadly constrain the set of fidelities analytically. Applying Theorem

2.1 to the bound in equation (A.31), and we immediately have

(2f(E)− 1)2 + (2f(Ē)− 1)2 ≤ u(E) + u(Ē) ≤ 1. (A.32)

Rather pleasingly, these bounds constrain the set of compatible fidelity pairs to bewithin the

unit circle. Through the general circuit decomposition given in Figure 2.2 we can generate

the complete set of compatible fidelity pairs, which is shown in Figure A.1. We observable

the bounds are tight at the points (1, 1/2) and (1/2, 1).
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Wenowdiscuss the limitationsofusing fidelity toquantify incompatibilitybetweenchan-

nels. First, we note that the fidelity of a completely depolarizing channel, D, is f(D) = 1
2
.

Fidelity is not invariant under local changes of basis, and the fidelity of a unitary channel,U ,
can be anywhere in the full range of 1

3
≤ f(U) ≤ 1. Given this, an experimental value of

f(E) = 1
2
can correspond to the complete loss of the input state (E = D) or complete re-

coverability (E = U ). For partial loss of information, we can extended this argument across

all values of f(E). This makes it difficult for fidelity to capture information-disturbance in

terms of recoverability, as a final unitary change of basis can give same fidelity as completely

discarding the input.

A direct consequence of the above is that the set of compatible fidelity pairs cannot easily

capture the no-hiding theorem. In terms of compatible channels, (see Chapter 4) the no-

hiding theorem states that if E = D then we must have Ē = U . Given f(D) = 1
2
, if we

examine the points (1
2
, x) in Figure A.1, we find x can take any value. Therefore we cannot

relate the loss of information at one marginal to the complete recovery of information at the

other. A similar argument applies to the no-cloning theorem, as for the point (1, x)whilewe

must have x = 1
2
, this does not uniquely identify a corresponding channel.

Putting this all together, while the average gate fidelity of a quantum channel is a highly

useful measure in the context of benchmarking, it doesn’t allow for the same expression of

incompatibility as our analysis using unitarity.

A.4 Interpretation of unitarity and reversibility

Our intuitive understanding of unitarity is that it measures how well a channel preserves

quantum information. However mathematically, the unitarity captures how close a chan-

nel is to an isometry. As we shall show shortly, for channels with equal input and output

dimensions these statements are equivalent – unitary channels are the only channels which

can be deterministically reversed for all input states. When we consider quantum channels

with differing input and output dimensions thenwemust bemore careful. In this sectionwe

consider what the unitarity of information preserving channels can tell us in general.

Whenweconsider all quantumchannels, the setof channels thatperfectlypreservequan-

tum information are reversible channels. We discussed these channels at length in Chapter

2. Recall, that a reversible channelR is defined as quantum channel for which there exists

another quantum channelR′ such that for all quantum states ρwe have

R′ ◦ R(ρ) = ρ. (A.33)

It can be shown [158] that this definition is equivalent to the following statement:

〈R(σ),R(ρ)〉 = c 〈σ, ρ〉 (A.34)
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for some constant c > 0 and for any two quantum states σ& ρ.

If we label the input system the dimension dX and the output system the dimension dY ,

thenR can always be written [158] in the following form:

R(ρ) = U(ρ⊗ τ) (A.35)

where τ is a (potentially mixed) quantum state with dimension dY /dX and U is a unitary on

the output system. Therefore when dX = dY the set of reversible channels is equal to the

set of unitaries on the system. Putting the above together with equation (A.34), we have

c = tr[τ 2], meaning the constant c captures the purity of the auxillary system introduced by

the channel. Maximizing andminimizing this purity gives us the following bounds

dX
dY

≤ c ≤ 1. (A.36)

Let us see how these properties relate to the unitarity.

LemmaA.6. The unitarity u(R) of a reversible channelR is given by

u(R) = c (A.37)

where c = 〈σ,ρ〉
〈R(σ),R(ρ)〉 for any input states σ& ρ.

Proof. We give the input system forR the dimension d. Withψ = |ψ〉〈ψ|, from definition

u(R) =
d

d− 1

∫
dψ 〈R(ψ),R(ψ)〉 − 〈R(1/d),R(1/d)〉 ,

=
d

d− 1

∫
dψ c 〈ψ, ψ〉 − c 〈1/d,1/d〉 = c u(id).

(A.38)

As u(id) = 1, this completes the proof.

Combining this result with equation (A.36), for any reversible channel,R, from an input

systemwith dimension dX to an output systemwith dimension dY must obey

dX
dY

≤ u(R) ≤ 1. (A.39)

Adirect consequence of this is that unitarity can be used towitness non-reversible behaviour

in a unknown quantum channel. Consider a channel, E , from a one qubit system to a two

qubits system. From the above bounds, if u(E) < 1
2
, the channel cannot be reversible.

To conclude, the unitarity of a channel is a measure of how close it is from being isomet-

ric. Therefore – outside of fixed dimensions – cannot be directly interpreted as quantifying

quantum information transfer. Howeverwe have shown that, even in the general case, it can

be used to boundhowmuchquantum information has be preserved in terms of reversibility.

To be exact, we have shown unitarity can act as a witness to the reversibility of a process,

thereby extending its usefulness.





B

Material related to subunitarities

and correlation unitarity

B.1 Review of notation

Throughout this appendix, we consistently use the same notation as inChapter 3, whichwe

review here.

Weconsider anopenbipartite quantumsystemwith an associated anHilbert spaceHA⊗
HB and dimension d = dAdB. Quantum channels act on the system such that EAB: B(HA⊗
HB) → B(HA ⊗ HB), and unless otherwise stated we assume for simplicity that the input

and output systems are identical. We denote all vectorized quantities in boldface, |M〉 :=

|vec(M)〉 for any operatorM ∈ B(HA ⊗HB) and similarly, we denote the Liouville repre-

sentation EAB := L(EAB) for any channel EAB, as detailed in themain text.

For subsystemA,wechooseanorthonormalbasisofoperatorsXµ = (X0 =
1√
dA
1A, Xi),

where dA is dimension of the subsystem A, and tr
[
X†
µXν

]
= δµν. Similarly for B an or-

thonormal basis Yµ = (Y0 =
1√
dB
1B, Yi). Together these provide a basis for the full system

which is given in the Liouville representation as

|Xν ⊗ Yµ〉 := |Xν〉 ⊗ |Yµ〉 . (B.1)

For simplicity, where there is no ambiguity on the local labelsµ and ν wewill sometimes use

a single-label notation |Zω〉 = |Xν ⊗ Yµ〉. In particular, we denote |Z0〉 = |X0〉 ⊗ |Y0〉.

141
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B.2 General definition of separability

Consider a quantum channel EAB→A′B′ : B(HA ⊗ HB) → B(HA′ ⊗ HB′). We define a

product channel as one that takes the form

EAB→A′B′ = EA→A′ ⊗ EB→B′ , (B.2)

for channels EA→A′ : B(HA) → B(HA′) and EB→B′ : B(HB) → B(HB′). The choice of

labeling of the output subsystems is for convenience, as a joint channel of the form EA→B′ ⊗
EB→A′ can be cast in the above form simply by relabeling A′ ↔ B′. A separable channel is

defined as a convex combination of product channels, namely

EAB→A′B′ =
∑
k

pkEkA→A′ ⊗ EkB→B′ , (B.3)

for some distribution pk and local channels between (A,A′) and (B,B′). A channel that is

not separable is defined to be non-separable.

B.3 Properties of the subunitarities of product channels

LemmaB.1. The subunitarity uA→AB(EA ⊗ EB) for a bipartite product channel EA ⊗ EB , de-
composes as

uA→AB(EA ⊗ EB) = uA→A(EA ⊗ EB)xB, (B.4)

where xB := x†B→BxB→B for the non-unital vector of the subsystemB of the channel EB.

Proof. From the definition of uA→AB we have

uA→AB(EA ⊗ EB) = αA

(d2A−1)(d2B−1)∑
k,j,n=1

〈Xj ⊗ Yn|E |Xk ⊗ Y0〉 〈Xk ⊗ Y0|E† |Xj ⊗ Yn〉 ,

= αA

(d2A−1)(d2B−1)∑
k,j,n=1

〈Xk|E†
A |Xj〉 〈Xj|EA |Xk〉 〈Y0|E†

B |Yn〉 〈Yn|EB |Y0〉 ,

= uA→A(EA ⊗ EB)
d2B−1∑
n=1

〈Y0|E†
B |Yn〉 〈Yn|EB |Y0〉 ,

= uA→A(EA ⊗ EB)xB
(B.5)

which completes the proof.

Swapping the subsystem labels we also have uB→AB(EA ⊗ EB) = uB→B(EA ⊗ EB)xA,
where xA := x†A→AxA→A for the non-unital vector of the subsystemA of the channel.
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B.4 Properties of the subunitarities of separable channels

Lemma B.2. The subunitarity uAB→A(E) for a bipartite separable channel E :=
∑r

i piEA,i ⊗
EB,i is zero.

Proof. From the definition of uAB→A we have

uAB→A(E) = αAαB tr
[
T †
AB→ATAB→A

]
,

= αAαB

(d2A−1)(d2B−1)∑
k,j,n=1

〈Xj ⊗ Yn|E† |Xk ⊗ Y0〉 〈Xk ⊗ Y0|E |Xj ⊗ Yn〉 ,

= αAαB

(d2A−1)(d2B−1)∑
k,j,n=1

r∑
i,j

pipj 〈Xj|E†
A,i |Xk〉 〈Xk|EA,j |Xj〉

〈Yn|E†
B,i |Y0〉 〈Y0|EB,j |Yn〉 .

(B.6)

For the channel to be trace preserving wemust have 〈Y0|EB,j |Yn〉 = 0 for all n& j. There-

fore uAB→A(E) = 0.

Additionally, swapping the subsystem labels, uAB→B(E) = 0 for any separable bipartite

channel E.

LemmaB.3. The subunitarityuA→B(E) for a bipartite separable channelE :=
∑r

i piEA,i⊗EB,i
is zero.

Proof. From definition

uA→B(E) = αA tr
[
T †
A→BTA→B

]
,

= αA

(d2A−1)(d2B−1)∑
k,j=1

〈Xj ⊗ Y0|E† |X0 ⊗ Yk〉 〈X0 ⊗ Yk|E |Xj ⊗ Y0〉 ,

= αA

(d2A−1)(d2B−1)∑
k,j=1

r∑
i,j

pipj 〈Xj|E†
A,i |X0〉 〈X0|EA,j |Xj〉

〈Y0|E†
B,i |Yk〉 〈Yk|EB,j |Y0〉 .

(B.7)

For the channel to be trace preserving we must have 〈X0|EA,j |Xj〉 = 0 for all j. Therefore

uA→B(E) = 0.

Additionally, swapping the subsystem labels, uB→A(E) = 0 for any separable bipartite

channel E.

Lemma B.4. For a unital bipartite separable channel E :=
∑r

i piEA,i ⊗ EB,i where EX,i are
local unital channels, the subunitarity uA→AB(E) is zero.
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Proof. From the definition of uA→AB we have

uA→AB(E) = αA tr
[
T †
A→ABTA→AB

]
,

= αA

(d2A−1)(d2B−1)∑
k,j,n=1

〈Xk ⊗ Y0|E† |Xj ⊗ Yn〉 〈Xj ⊗ Yn|E |Xk ⊗ Y0〉 ,

= αA

(d2A−1)(d2B−1)∑
k,j,n=1

r∑
i,j

pipj 〈Xk|E†
A,j |Xj〉 〈Xj|EA,i |Xk〉

〈Y0|E†
B,j |Yn〉 〈Yn|EB,i |Y0〉 .

(B.8)

For the channel tobeunitalwemusthave 〈Yn|EB,i |Y0〉 = 0 for alln. ThereforeuA→AB(E) =
0.

Additionally, swapping the subsystem labels, uB→AB(E) = 0 for any unital separable

bipartite channel E.

B.5 Comparison of correlation unitarity with normmeasures

We can compare the choice of definition for correlation unitarity with a norm, which sheds

light on its structure and limitations. Consider theHilbert-Schmidt norm (e.g. Schatten 2-

norm or Frobenius norm) given by ||M || :=
√

〈M,M〉 =
√
tr[M †M ] for a matrixM [122],

which is the square root of the Hilbert-Schmidt inner product of the matrix with itself. We

have the following expression

∆2 := ||TAB − TA ⊗ TB||2 (B.9)

where for the unital block we write TAB ≡ TAB→AB and similarly for TA and TB. As this is

a norm we have∆ = 0 if and only if TAB = TA ⊗ TB, namely if and only if the channel is a

product channel. We can expand this expression in terms of the inner product to obtain

∆2 = 〈TAB − TA ⊗ TB, TAB − TA ⊗ TB〉

= 〈TAB, TAB〉+ 〈TA ⊗ TB, TA ⊗ TB〉 − 〈TAB, TA ⊗ TB〉 − 〈TA ⊗ TB, TAB〉

= ||TAB||2 + ||TA||2||TB||2 − 2Re [〈TAB, TA ⊗ TB〉]

= ||TAB||2 + ||TA||2||TB||2 − 2||TAB|| ||TA|| ||TB|| cos θ

∆2 = t2AB + t2At
2
B − 2tABtAtB cos θ,

wherewe have defined an angular variable θ via the inner product betweenTAB andTA⊗TB

and replaced the norm values with tAB, tA, tB in the obvious way. Now the correlation uni-

tarity is givenbyuc = αAB(t
2
AB−t2At2B),with thedimensional prefactorαAB = 1

(d2A−1)(d2B−1)
.

Substituting for tAB into∆2 we have that

∆2 =
uc
αAB

+ 2(tAtB)
2 − 2

√
uc
αAB

+ (tAtB)2(tAtB) cos θ. (B.10)



B.6 Expression for correlation unitarity using an operational function 145

This implies a few things. Firstly, for uc = 0we have

∆2 = 2(tAtB)
2(1− cos θ), (B.11)

and so we see that uc vanishing does not imply a product channel unless one of the tA, tB

vanishes or if θ = 0. The expression also implies that θ is an independent parameter that

will in general vary the norm distance. Note that the benchmarking protocol gives us both

(tAtB) and uc but does not give us θ. Therefore our existing benchmarking does not return

enough to determine the norm distancemeasure.

The above highlights relevant data at quadratic order that our approach is not sensitive

to, but note that the cos θ term is bounded and so it still is the case that uc is acting as a

“distance” from being a product channel. Specifically, we have

uc
αAB

+ 2(tAtB)
2 − 2

√
uc
αAB

+ (tAtB)2(tAtB) ≤ ∆2 (B.12)

and

∆2 ≤ uc
αAB

+ 2(tAtB)
2 + 2

√
uc
αAB

+ (tAtB)2(tAtB). (B.13)

This implies that estimating uc and tAtB allows us to estimate the norm distance∆.

B.6 Expression for correlation unitarity using an operational

function

Finally, in this section we give the proof that the correlation unitarity of a channel can be

expressed using an operational function, FPi,Pj
(E , ψm,n) given in Section 3.3.3. This was

defined in the following way. For the expectation of an observable O on a state ρ we have

〈O〉ρ := tr
[
O†ρ

]
. Now suppose we have local observables OA and OB for the subsystems

A and B respectively. For any bipartite quantum channel, E , we can define the following

correlation function

FOA,OB
(E , ψAB) := |〈OA ⊗OB〉EAB(ψAB)|2 − |〈OA〉EA(ψA)|2|〈OB〉EA(ψB)|2 (B.14)

where the channels EA and EB are local channels on A respectively B defined in Definition

3.1 and the input statesψA andψB are themarginals ofψAB.

We now connect this function with the correlation unitarity of a bipartite channel.

Proof. (Of equation (3.104)) Using the Pauli basis we can show how the correlation unitarity

is related to the correlation function given in Section 3.3.3. We define the orthonormal Pauli

basisPµ = (P0 = 1/
√
dA, Pi) for subsystemA and (with slight abuse of notion) equivalently
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for subsystemB. Starting from the correlation unitarity we have

uc(EAB) = αAB

(
tr
[
T †
AB→ABTAB→AB

]
− tr

[
T †
A→ATA→A

]
tr
[
T †
B→BTB→B

])
= αAB(

∑
i,j,m,n6=0

| 〈Pi ⊗ Pj|TAB→AB |Pm ⊗ Pn〉 |2

− | 〈Pi|TA→A |Pm〉 |2| 〈Pj|TB→B |Pn〉 |2)

= αAB(
∑

i,j,m,n6=0

|tr[Pi ⊗ PjEAB(Pm ⊗ Pn)]|2

− |tr[PiEA(Pm)]|2|tr[PjEB(Pn)]|2),

= αAB dAB(
∑

i,j,m,n6=0

|tr[Pi ⊗ PjEAB(ψm,n)]|2

− |tr[PiEA(trB[ψm,n])]|2|tr[PjEB(trB[ψm,n])]|2),

= αAB dAB
∑
i,j,m,n

FPi,Pj
(E , ψm,n).

(B.15)

Which completes the proof.
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