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Preface

This research was funded by the Engineering and Physical Science

Research Council Doctoral Training Grant Studentship, provided

jointly by the University of Leeds and Public Health England, now the

UK Health Security Agency. The original plan for my PhD project was

to work with Public Health England and other experts in Ebola virus

epidemiology and immunology to develop mathematical models on

Ebola virus infections. The aim was to support the statistical analysis

of data sets in Chapter 3 of this Thesis and to use additional data

collected from experiments to formulate and calibrate several models

of Ebola infections.

However, as soon as the SARS-CoV-2 pandemic began, many of the

collaborators at Public Health England and elsewhere shifted their

attention to respond. As a result, not only was there a delay in

receiving the completed data set for statistical analysis, but many of

the experiments to obtain additional data were abandoned to focus

efforts on the pandemic, especially in the case of Public Health England,

a government agency.

To ensure there was enough content for this thesis and to stay within

viral immunology, new collaborations were formed that gave rise to the

additional work in this thesis. The first new collaboration was with St

Jude Children’s Research Hospital to investigate antibody responses in

SARS-CoV-2 infection. This new collaboration investigated potential

pre-existing immune responses to SARS-CoV-2 due to the circulation

of common coronaviruses that share sequence homology with SARS-

CoV-2. Since I had already begun statistical analysis for Ebola patient
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data, my supervisors and I thought this work investigating another

virus would fit within the scope of this Thesis.

The next collaboration was formed with Dmitry Grebennikov and

Gennady Bocharov to investigate defective interfering particles as a

potential therapeutic during SARS-CoV-2 infection, using determinis-

tic and stochastic modelling. Due to the pandemic, it seemed relevant

to explore SARS-CoV-2 and develop a model that would characterise

this as a potential treatment option for the future. Finally, a collab-

oration with Eva Perez from the Pirbright Institute was formed to

investigate Foot and Mouth disease. The analysis that was carried

out to investigate Foot and Mouth disease formed part of a research

proposal and allowed me to investigate and expand my knowledge

into viruses that are predominant in other species. Additionally, this

allowed me to gain a further understanding of the requirements for

research funding that is necessary in a research career.

‘I believe these collaborations allowed me to broaden my knowledge

about virus immunology and develop additional collaborations and

tools for my future career. The previous information also explains why

my thesis is not solely on Ebola infection but also on SARS-CoV-2

and Foot and Mouth disease.
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Abstract

There are a range of viruses that exist, that not only infect humans,

but also a wide range of other species. These viruses not only present

a threat to human health but also to economies, in particular, less

economically developed countries. Mathematical models and statisti-

cal analysis provide ways to understand viral dynamics and immune

responses better and test new hypotheses using information gathered

through biological experimentation. In Chapter 3, I will analyse two

cohort studies from viral outbreaks. The first study is on data from

the 2014 West Africa Ebola outbreak collected by Public Health Eng-

land (now known as the United Kingdom Health Security Agency) to

understand the longitudinal antibody and T-cell response of survivors

from the epidemic. St Jude Children’s Research Hospital undertook

the second study to understand possible associations between com-

mon coronaviruses and SARS-CoV-2, using data collected within the

hospital.

Chapter 4 introduces three potential stochastic models to investigate

type I interferon (IFN) antagonism, a tactic employed by several

viruses, including SARS-CoV-2, Ebola and Crimean Congo Haem-

orrhagic fever to avoid immune responses. Here Ebola virus is in-

vestigated as a case study. Finally, in Chapter 5, I examine two

mathematical models for viral infections. The first model explores

defective interfering particles as a potential therapeutic in SARS-CoV-

2 infections. The second model investigates foot and mouth disease

infections in vitro to examine differences between three strains, includ-

ing determining each strain’s time to infection and basic reproduction

number.
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Chapter 1

Introduction

1.1 Biological introduction

During our lifetime, we are exposed to a variety of viruses. For healthy individuals,

many of these pose little to no risk, and exposure often leads to increased resistance

compared to before infection, or immunity from a repeat infection (Chaplin, 2010).

However, there exist many viruses that not only have increased infectivity but are

also highly pathogenic, leading to increased mortalities amongst the infected. The

World Health Organisation (WHO) has listed several viruses that are a cause for

concern, either due to lack of efficient treatments or their potential to cause an

epidemic (WHO, 2015). Several of these have seen large outbreaks in recent years

and include SARS-CoV-2 (Wu et al., 2020), Ebola virus (EBOV) and Marburg

virus (Brolin Ribacke et al., 2016), Zika virus (Campos et al., 2015) and Crimean

Congo haemorrhagic fever virus (Appannanavar & Mishra, 2011).

For any virus to be successful and infect an organism, it must possess several key

attributes. First, it must be transmissible to infect new susceptible hosts to persist

amongst the population. Viruses use several routes to enter a host, including

respiratory, gastrointestinal or through genital tracts (Louten, 2016b). Examples

of viruses that use these routes include Influenza A and B viruses, Poliovirus,

and Human Papillomaviruses (HPV), respectively. Furthermore, viruses can be

spread through skin contact, in the case of herpes simplex virus-1 (HSV-1), or

through penetration into the dermis or subcutaneous tissue. This can occur by

injection or cuts, such as for Hepatitis A and Human Immunodeficiency virus
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(HIV), or through other vectors, such as ticks and mosquitoes (Piesman & Eisen,

2008; Tolle, 2009). Viruses can also be transmitted through contaminated organs

or blood products, as has been observed for several viruses and has even been the

cause of several infections in the 1980s (Weinberg et al., 2002).

Next, any virus that enters a host must be able to access a target site for repli-

cation and replicate within a particular cell, referred to as viral tropism (Louten,

2016a). Viral tropism can be receptor-dependent, requiring the correct cell surface

receptor, or receptor-independent, where intracellular molecules such as cytokines

determine the tropism (McFadden et al., 2009). The general steps for viral repli-

cation are attachment through a cell surface receptor, penetration into the cell,

un-coating of viral genomes, replication and assembly, whether that includes

integrating the host’s replication machinery or additionally providing its own,

maturation into an infective virion and finally, release (Ahlquist et al., 2003). The

viral release can be achieved either by budding, where the virions are released

gradually from the cell, or through the cell bursting and releasing all the viri-

ons simultaneously. Any virus will most likely go extinct without the ability to

replicate successfully within a host.

Finally, to persist in a host, any virus must be able to subvert the host’s immune

responses (Alcami & Koszinowski, 2000). Host immune responses are broken into

two distinct arms, the innate and adaptive immune responses. Innate immune

responses are non-specific and target a few highly conserved structures called

pathogen-associated molecular patterns (PAMPs). These can be for example blunt

or 5’-triphosphorylated ends of viral genomic ribonucleic acid (RNA) segments

or long double stranded RNA (Berke et al., 2013). An example of a PAMP is

viral ribonucleic acids (RNA) (Medzhitov & Janeway Jr, 2000). Innate responses

occur within the first few days of viral infection. Activation of innate immune

responses results in the expression of various genes, which produces many different

inflammatory cytokines, to initiate an infected cell state and trigger neighbouring

cells’ immune responses (Hoebe et al., 2004). The latter part of the immune

response is the adaptive arm, which takes place several days to weeks after

infection and is virus-specific. Antigen-presenting cells, such as macrophages and

dendritic cells (DCs), present small sections of the viral genome, referred to as

epitopes, through the major histocompatibility complex (MHC). MHC class I and
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II present epitopes to T-cells that allow a T-cell to recognise cells infected with a

pathogen (Swain, 1983). T-cells then lead a cell-mediated response to actively

kill cells infected with the virus by recognising the epitope presented by MHC

on the cell surface. Meanwhile, B-cells mount an adequate antibody response to

neutralise the virus within the host (Bonilla & Oettgen, 2010). While these two

routes are distinct, they depend on one another to form a coordinated and effective

immune response. Since viruses are obligate parasites and require the intra-cellular

machinery to replicate, many viruses encode proteins that antagonise or suppress

an immune response (Zinzula & Tramontano, 2013) to allow replication with

minimal interference.

SARS-CoV-2 and Ebola are the most recognisable viruses in the last decade.

In 2014 the West Africa EBOV outbreak led to a suspected 28,652 cases and a

reported 11,326 deaths (Bell, 2016). The 2019 SARS-CoV-2 pandemic, as of 8th

November 2023, has caused an over 777 million infections, and over 6.9 million

deaths have been recorded worldwide (World Health Organization, November

2023). These two viruses still threaten human health and will be the main focus

of the following work; an overview of each virus is provided.

1.2 SARS-CoV-2

In late 2019 an unknown agent was reported to be causing pneumonia in clusters

of patients in Wuhan, China (Zhu et al., 2020a). This would later be identified

as a Coronavirus (family Coronaviridae) and subsequently named SARS-CoV-2.

The WHO declared SARS-CoV-2 a “public health emergency of international

concern” on 30th January 2020 (Li et al., 2020a), rapidly spreading to 113

countries. By the 17th March 2020, it had caused a reported 179,112 infections

and 7,426 deaths (World Health Organization et al., 2020). The rapid spread of

SARS-CoV-2 would see many governments implement many different lockdowns

and social distancing measures to help combat the spread of infections (Tob́ıas,

2020). However, even with these measures, new infections occurred rapidly, which

meant many healthcare systems were pushed to breaking point, not only affecting

the ability of them to treat infected patients effectively but also at the detriment

of healthcare workers’ physical and mental well-being (Sanghera et al., 2020). The
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Figure 1.1: Structure of SARS-CoV-2 with spike protein (S), nucleocapsid

protein (N), membrane (M) and envelope protein (E). Figure taken from Lamers

& Haagmans (2022). Copyright License Number: 5596600336543.

effects of the global pandemic have also impacted the global economy, especially in

those countries that rely heavily on tourism to support their economy (Pinilla et al.,

2021). Thankfully, vaccine development became a priority, and several effective

vaccines now reduce the transmission and pathogenicity of the virus (Creech et al.,

2021). However, the emergence of new viral strains is still a cause for concern;

therefore, research into the virus continues.

Coronaviruses are divided into four genera: α-CoVs, β-CoVs, γ-CoVs and

δ-CoVS, of which only α and β are known to infect only mammals, γ infects

avian species and δ infects both (Naqvi et al., 2020). There are four coronaviruses

endemic in human populations these being hCCoV-NL63 (α), hCCoV-229E (α),

hCCoV-HKU1 (β), and hCCoV-OC43 (β), which infect the upper respiratory

tract causing common-cold symptoms (Liu et al., 2021). Two other coronaviruses

are severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle

East respiratory syndrome coronavirus (MERS-CoV), whose genome shares a

79% (Zhang & Holmes, 2020) and 50% (Abdelrahman et al., 2020) sequence

similarity with SARS-CoV-2 wild type respectively. Fatality rates of SARS

and MERS are ≈10%, and ≈35% respectively (Li et al., 2020b). SARS-CoV-2

however, has fatality rates that vary from 0.1%-18.1% (John Hopkins University

of Medicine , March 2023) depending on the country considered. In addition,

between January 2020, and December 2021, it is estimated there are 14.83 million

excess deaths as a consequence of the SARS-CoV-2 pandemic (Msemburi et al.,

2023). This is significantly higher than the 5.42 million cases reported to the
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WHO. Therefore mortality rates including excess deaths may be much higher.

The seven coronaviruses are all known to be zoonotic viruses, with five coming

from bat reservoirs (Singh et al., 2021).

SARS-CoV-2 is a novel beta coronavirus, whose ≈30 kb single-stranded

positive-sense RNA molecule genome encodes for six functional proteins: replicase

(ORF1a/1b), spike protein (S), envelope (E), membrane (M) and nucleocapsid

(N), with seven non-structural proteins interlaced amongst the others (Wang

et al., 2020). The structure of SARS-CoV-2 is illustrated in Figure 1.1 (Lamers

& Haagmans, 2022). Many of the current vaccines include antigens designed to

target the spike protein of the virus, while a select few include whole inactivated

virus (Creech et al., 2021). Mutants typically generated during the replication

process are a cause of concern regarding vaccine development since most vaccines

target the S protein. During the replication cycle, some of the processes that can

lead to the generation of new mutants are reading frame shifts, transcription or

translational errors, and viral recombination (Wang et al., 2021). Mutants for

SARS-CoV-2 can be formed by recombination of viral strains as shown by Jackson

et al. (2021). Additionally, treatments can lead to selection pressures that lead to

escape mutants as shown by Ragonnet-Cronin et al. (2023). The generation of

mutations and the population’s behaviour led to the rapid transmission of newly

emerged strains that allowed the pandemic to persist and the need for additional

booster vaccine programs (McLean et al., 2022).

As with many viruses, the host’s immune responses determine the outcome of

the infection. This was especially the case in the early stages of the pandemic,

where there were no recommended treatments or vaccines. Those individuals

who displayed an immediate onset of type I and III interferon (IFN) secretion

showed few or no symptoms with controlled viral replications (Vora et al., 2021).

However, like many other viruses, SARS-CoV-2 encodes four proteins that act

as IFN antagonists. These are non-structural proteins (NSP) 13, NSP14, NSP15,

and open reading frame (ORF) 6 (Yuen et al., 2020), and they result in a delayed

or poor IFN response, improved viral replication and increased symptom severity.

Furthermore, it has been shown in individuals with a poor IFN response; an

accumulation of inflammatory macrophages causes an increase in inflammatory
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cytokines and poor T-cell-mediated immune response, which harms the host’s

outcome. (Vora et al., 2021).

1.3 Ebola virus

Ebola virus is a member of the Filoviridae family in the order of mononegavirales.

The first reported case of a virus from this family was the Marburg virus (1967)

in Germany and former Yugoslavia (Feldmann & Geisbert, 16th November 2010).

EBOV was first reported in 1976 with two outbreaks in South Sudan and Zaire

(now known as the Democratic Republic of Congo (DRC)), where the causative

agent was identified, leading to the name Ebola after a river located in the DRC.

Currently, there are six reported species of ebolavirus, which are Ebola, Sudan,

Täı Forest, Bundibugyo, Reston, and Bombali virus. Four of these species are

infectious agents in humans (Zaire, Sudan, Täı Forest and Bundibugyo). Reston

virus has only been seen to cause disease in non-human primates (NHPs) and pigs.

Bombali virus has been recently found in bats, but whether it causes disease in

other animals or humans is unknown (Centers for Disease Control and Prevention,

October 2018; Geisbert et al., December 2003; Goldstein et al., 2018).

EBOV is a zoonotic virus; it can be transferred to humans by animals acting

as a reservoir, such as bats and NHPs. Transfer to humans can be from eating

contaminated bush meats or contact with infected fluids from the animals (Centers

for Disease Control and Prevention, October 2018). Intraspecies interactions allow

rapid transmission of the virus through various ways, such as caring for an infected

individual or handling the corpse from a fatality of the virus. Sexual intercourse

with an infected individual can cause transmission even after symptoms have ceased

presenting (Feldmann & Geisbert, 16th November 2010). The early symptoms of

EBOV are a primary reason that in the initial stages of infection, there is difficulty

confirming a diagnosis since they mimic many other infections. Mortality rates

between virus strains vary, with the Zaire strain having the highest fatality rates

of 60− 90%, whilst Sudan is lower at 40− 60%. Bundibugyo has only had two

reported outbreaks with fatality rates of 25% and 51%. Täı Forest virus has had

one reported case of which the infected individual recovered in 1994 (World Health

Organization, May 2019).
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1.3 Ebola virus

Figure 1.2: (a): Genome structure of EBOV 3’ leader non-coding region followed

by genes for nucleoprotein (NP), viral protein (VP) 35, VP40, glycoprotei (GP),

VP30, VP24, RNA polymerase (L on diagram) finally the 5’ trailer non-coding

region. (b): Life cycle of EBOV from its entry into the cells after being engulfed

via macropinocytosis by host cells cell membrane to its release of viral products

after binding and subsequent production of further virus particles and their release

from the cell by budding. Figure taken from Messaoudi et al. (6th October 2015).

Copyright License Number: 5596600082830.

EBOV is an enveloped, non-segmented, negative-stranded RNA virus of varying

lengths up to 1400nm but with a uniform diameter of 80nm (Feldmann & Geisbert,

16th November 2010). As can be seen in Figure 1.2(a), the genome consists of a 3’

non-coding leader followed by nucleoprotein (NP), viral protein (VP) 35, VP40,

glycoprotein (GP), VP30, VP24, RNA polymerase and finally the 5’ non-coding

region trailer (Messaoudi et al., 6th October 2015). All the genes code for a single

protein except for the GP region. The nucleoprotein associates with VP35, VP30

and RNA-dependant RNA polymerase to form the functional transcriptional-

replicase complex to allow viral replication. Viral proteins play a crucial role

in the subversion of the immune response: VP24 interferes with IFN signalling,
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1. INTRODUCTION

VP35 acts as an antagonist to IFN induction, and VP40 is a matrix protein that

mediates particle formation. VP30 acts as an NP transcription primer and plays

a role in viral replication to assemble virions (?).

Laboratory experimentation elucidated the pathogenesis of EBOV in humans

using NHPs such as Cynomolgus Macaques. These animals provide the best

analogue to humans due mainly to similarities in physiology (Geisbert et al.,

December 2003). Upon infection through contact with contaminated fluids, the

primary targets for the virus are macrophages and dendritic cells (DC) in lymphoid

tissues and Kupfer cells in the liver. Progression of infection leads to further

liver cells becoming infected and producing the virus. The infection also migrates

to adrenal glands and further collections of tissues to increase its ability to

replicate (Geisbert et al., December 2003; Messaoudi et al., 6th October 2015).

The effects on macrophages and DCs differ, with the former being induced to

produce pro-inflammatory chemokines and cytokines, whilst myeloid DCs have

their functions inhibited, and Plasmacytoid dendritic cells (pDCs) have been

shown to be refractory to EBOV infection (?)

1.4 Thesis objectives

Given the emergence of new SARS-CoV-2 strains and fresh outbreaks of the

EBOV, these viruses present an ongoing threat to the global population. There-

fore, it is essential to understand immune responses, viral replication dynamics,

and potential therapeutics to help minimise the risk associated with infection.

Mathematical modelling and statistical analysis can assist with understanding

the phenomena. Before any mathematical modelling can be formulated, it is

vital to understand the biological processes that drive the assumptions made.

This would be impossible without results from biological experimentation, which

will provide the backbone for models that we, as mathematicians, formulate to

investigate additional questions. Sudden viral outbreaks, such as the 2014 West

Africa outbreak and the SARS-CoV-2 pandemic, generate a lot of worry. However,

they also provide a wealth of data that can help guide our understanding of

disease progression and host immune responses and inform future modelling. It is,

therefore, essential to analyse this data and look for relationships between different

8



1.4 Thesis objectives

serological markers and co-variates, such as age, race, or geographical location.

These may suggest cross-reactivity among viral strains, long-term immunity in

longitudinal studies and the benefits of vaccination compared to natural infection.

Chapter 3 presents an opportunity to analyse two cohort studies from viral

epidemics. The first set of data comes from the 2014 West Africa Ebola outbreak

(Section 3.1) and is a collection of immune response data from individuals who are

known to have either been infected with EBOV, have been in close contact with an

infected individual, and confirmed negative individuals. The unique perspective

of this study is, subjects were asked to provide additional samples yearly to

investigate longitudinal responses to EBOV infection. Such data allows further

investigation into potential waning immunity and whether an individual could

become susceptible to a secondary infection. Furthermore, a genetic component

was also investigated. Major histocompatibility complex (MHC) alleles were typed

to examine if any correlations could be found between immune responses and

these alleles, as seen in other studies such as presented by Kiepiela et al. (2004).

The second study was the St. Jude Tracking of Viral and Host Factors Associated

with COVID-19 study (SJTRC) (Section 3.2) to investigate the longitudinal

host responses of SARS-CoV-2 for the same set of individuals before and after

infection or vaccination, something previous studies had lacked. Since SARS-

CoV-2 is also a coronavirus (Lamers & Haagmans, 2022), this study provided the

opportunity to examine potential cross-reactivity between endemic circulating

strains of human common coronaviruses (hCCoV) and whether this provided

any protection. Statistical methods introduced in Section 2.2 shall be used

to investigate differences amongst clinical groups and assess the differences in

longitudinal immune responses.

As highlighted previously, immune responses are broken into two distinct arms

innate and adaptive immune responses. Many viral genomes encode proteins to

antagonise these, with antagonism of type I IFN responses in the innate arm being

a primary target for many viruses, including EBOV and SARS-CoV-2. Therefore,

it seems prudent to investigate a mathematical model that can characterise this

inhibition of the viral pathway. One caveat, however, is that the pathway for type

I IFN is a highly complex system and data availability is limited in vivo due to

the early response. Therefore, a complex model, which could incorporate all the

9
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details, is impossible to parameterise. As a result, in Chapter 4, three minimal

stochastic models are introduced that aim to characterise, to a first approximation,

inhibition by viral proteins of type I IFN induction. When possible, stochastic

descriptors will be used to study model dynamics using matrix analytic approaches;

if the calculations are computationally tractable. Where these methods are not

possible, Gillespie simulations will be used in their place (Section 2.3.1). Some

small data sets are available in vivo for EBOV infection. Hence, EBOV will be

used as a case study where Bayesian inference methods will allow calibration of

each model, along with model selection (Section 2.4) to help determine which

model best characterises the data. To enable the parameterisation of each model,

mean field approximations will be determined. Additionally, this will allow for

assessing parameter identifiability and sensitivity (Section 2.5), providing necessary

information about our parameters, which must be carefully considered. All this

information together will be used to identify which model would be best suited

for limited data that comes from in vivo samples during viral outbreaks for future

analysis of other potential viruses, since many inhibit the type I IFN pathway.

SARS-CoV-2 has many different approved vaccines as summarised by Creech

et al. (2021). However, the continued emergence of new mutant strains and waning

immunity highlights a need for additional prophylactics. A potential prophylactic

is therapeutic interring particles (TIPS), sometimes called defective interring

particles (DIPS or DIS). DIPs naturally occur during viral replication. These

defective particles lack vital parts of the viral genome required to replicate. As a

result, DIPs sequester replication machinery from functional viruses and lead to

a reduction in the yield of infectious viruses (Wu et al., 2022). These have been

investigated within-host by Chaturvedi et al. (2021). However, little has been done

to understand the intra-cellular cellular level of replication of SARS-CoV-2 in the

presence of DIPs. Therefore, in Chapter 5, an extension of the model proposed by

Grebennikov et al. (2021) to include the intra-cellular replication of SARS-CoV-2

in the presence of DIPS is introduced. The model examines the dynamics of

co-replication and how initial dosages affect the overall release of SARS-CoV-2

virions. This model is provided in a deterministic and stochastic representation

to explore the differences between the approaches. The final part of Chapter 5

provides some preliminary investigation into in vitro replication dynamics of Foot
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1.4 Thesis objectives

and Mouth Disease virus (FMDV) with data sets provided for three viral strains.

Here a deterministic approach is taken for the model’s parameterisation and to

determine the sensitivity and identifiability of the parameters. From there, the

model is used to determine the basic reproduction number R0 along with the time

to infection. Finally, a stochastic model is introduced to investigate the effects of

initial MOI dosages on time to extinction and the probability of extinction within

the experimental window.
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Chapter 2

Mathematical background

Biological processes are subject to stochastic effects. From a modeller’s perspective,

describing these systems with deterministic approaches may be less preferential.

A key feature of many viruses is they require a low dose to cause an infection.

In these cases, deterministic modelling approaches will provide only opposing

outcomes. Either an infection persists and reaches a steady state or becomes

extinct. Stochastic processes permit a modeller to capture the inherent randomness

associated with small populations. This enables the study of different potential

outcomes given the same initial conditions and model parameters. Furthermore, it

allows for studying different descriptors, such as the mean time to viral extinction.

One of the limitations of deterministic models. That being said, stochastic

processes introduce extra mathematical details and complexity that limit the

analytical work that can be performed. As such, this highlights the necessity for

deterministic models that are easier to implement and understand. Therefore, a

balance between both stochastic and deterministic approaches is vital.

This chapter will introduce probability theory and an overview of stochastic

processes used to develop models in Chapter 4 and Chapter 5. Analytic methods

to study stochastic processes are outlined, and where these methods cannot be

implemented, stochastic simulation algorithms shall be used. Bayesian methods

for parameter inference and model selection are also introduced as these provide

a way for comparison between mathematical models and experimental data

and models incorporating different biological hypotheses. Furthermore, a brief
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2. MATHEMATICAL BACKGROUND

overview of multi-variate analysis concepts will also be presented that relate to

work undertaken in Chapter 3.

2.1 Probability theory

Here I will introduce some fundamental probability theories that will be an

underlying feature in the stochastic processes that I will consider. The following

definitions can be found in Allen (2010); Kijima (1997); Ross (2014).

Suppose for a random variable X that can take values from some sample space

S. Then for a value x ∈ S one can define the c.d.f. (cumulative distribution

function) as

FX(x) = P(X ≤ x), x ∈ S,

where FX(x) : R → [0, 1]. If X is a discrete random variable such that S is

countable then one can define the p.m.f. (probabilty mass function) as

fX(x) = P(X = x), x ∈ S.

Finally if X is a continuous random variable and there exists a function fX(x)

that is non-negative and integrable such that the following holds

P(a ≤ x ≤ b) =

∫ b

a

fX(x)dx, a, b ∈ S, a < b,

then I can call the function fX(x) the p.d.f. (probability density function).

For a continuous random variable, I can define the expectation of X as

E[X] =

∫
S

xfX(x)dx.

For a discrete random variable, one has

E[X] =
∑
x∈S

xfX(x).

These allow me to propose the following definitions.

Definition 2.1.1. The mean of a random variable X denoted µX is simply

the expectation of X, E[X] = µX . The variance denoted by σ2
X or Var(X) is
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2.1 Probability theory

given by Var(X) = E[(X − µX)
2] = E[X2]− µ2

X . The square root of the variance

gives the standard deviation (SD) of the random variable X. The skewness

denoted by µ̃3 or Skew(X) is the third standardised moment and is given by

Skew(X) = E[(X − µX)
3]/(E[(X − µX)

2])3/2. Kurtosis of a random variable is

defined as the fourth standardised moment, denoted by γ2 or Kurt(X) and is

given by Kurt(X) = E[(X − µX)
4]/(E[(X − µX)

2])2.

These definitions also allow me to define the expectation of a function g(X)

where X can be either a continuous or discrete random variable. In the continuous

case, I have

E[g(X)] =

∫
S

g(x)fX(x)dx,

whilst in the discrete case it can be defined as

E[g(X)] =
∑
x∈S

g(x)fX(x).

This gives the following definition of the probability generating function.

Definition 2.1.2. For a discrete random variable X defined on some set S ⊆
N ∪ {0}, the p.g.f. (probability generating function) is given by

PX(s) = E[sx] =
+∞∑
j=0

sjP(X = j),

for s ∈ R for which the sum converges.

Next, I will introduce several probability distributions. First, I present the

exponential distribution, which will be important when considering Markovian

stochastic processes. Followed by several other well-known distributions that are

used throughout this thesis.

Definition 2.1.3. A continuous random variable X with p.d.f. given by

fX(x) =

λe−λx, if x ≥ 0,

0, otherwise,

for some parameter λ > 0 is referred to as exponentially distributed with

parameter λ. The c.d.f. of an exponential distribution is given by

FX(x) = 1− e−λx, x ≥ 0.
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The mean and variance are given by

E[X] =
1

λ
, V ar(X) =

1

λ2
.

Definition 2.1.4. A random variable X is said to be normally distributed or

otherwise referred to as normal random variable X with parameters µ and σ2,

if its p.d.f. is given by

fX(x) =
1√
2πσ

e−(x−µ)/2σ2

, x ∈ R,

with the mean and variance given by

E[X] = µ, V ar(X) = σ2.

Definition 2.1.5. A random variable X is said to have a gamma distribution

with parameters α > 0 and λ > 0, if its p.d.f. is given by

fX(x) =


λe−λx(λx)α−1

Γ(α)
, if x ≥ 0,

0, otherwise,

where Γ(α), referred to as the gamma function, is defined as,

Γ(α) =

∫ +∞

0

e−yyα−1dy.

For a gamma random variable, the mean and variance are,

E[X] =
α

λ
, V ar(X) =

α

λ2
.

A special case of the gamma distribution with λ = 1/2 and α = n/2, where n

is a positive integer, is called the χ2
n (“chi-squared”) distribution with n degrees

of freedom. This special gamma distribution is frequently used in inferential

statistics, particularly hypothesis testing.

Definition 2.1.6. A random variable X is a uniform random variable on the

interval (α, β) if its p.d.f. is given by

fX(x) =

 1
β−α

, if α < x < β,

0, otherwise.
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2.2 Multi-variate analysis

The c.d.f. of a uniform distribution is given by

fX(x) =


0, if x ≤ α,

x−α
β−α

, if α < x < β,

1, if x ≥ β.

The mean and variance of a uniform random variable X are,

E[X] =
β + α

2
, V ar(X) =

(β − α)2

12
.

2.2 Multi-variate analysis

In Chapter 3, I will analyse two cohort studies of viral outbreaks. The first study

is from the UK Health Security Agency (UKHSA, formally PHE) on longitudinal

data of patients from the 2014 West Africa Ebola outbreak. The second study

is from St Jude Children’s Research Hospital investigating immune response to

SARS-CoV-2. Several multi-variate methods will be used during this analysis,

so several basic definitions are provided here. The definitions here come from

Manly & Alberto (2016) and Chatfield (2018). The first definition is for a sample

mean and sample variance. In what follows, capital letters such as X will denote

random variables. In contrast, lowercase x shall denote samples within a data set

or from a distribution.

Definition 2.2.1. Let X be a p-dimensional random variable such that XT =

[X1, . . . , Xp] where X1, . . . , Xp are uni-variate samples from X such that the jth

sample is denoted xT
j = (xj1, . . . , xjp). If there are n samples then the sample

mean of xi is defined as

x̄i =
n∑

j=1

xji/n,

where xji represents the jth sample for the ith variable. The sample mean vector

is defined as, x̄T = (x̄1, x̄2, . . . , x̄p), and often to referred by µ. The sample

variance of each p variables can also be defined,

s2i =
n∑

j=1

(xji − x̄i)
2/(n− 1).
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Also provided here are definitions for the sample covariance matrix and sample

correlation matrix. The sample covariance matrix is as follows,

Definition 2.2.2. Suppose there are p variables where the ith variable xi has

sample mean x̄i and variance s2i , whilst the kth variable xk has sample mean x̄k

and variance s2k. Then the sample covariance between xi and xk is given by

σik =
n∑

j=1

(xji − x̄i)(xjk − x̄k)/(n− 1).

One can write this in a matrix known as the sample covariance matrix which is

constructed as

S =



σ11 σ12 σ1p

σ21

σp1 σpp


where σii = s2i is the ith variable sample variance.

Definition 2.2.3. Suppose that for the ith variable xi with sample variance s2i
and the kth variable xk with variance s2k and sample covariance σik . Then the

correlation coefficient is given by

rik =
σik

sisk
.

This can be formed into a matrix known as the sample correlation matrix

written as,

R =



1 r12 r1p

r21

rp−1p

rp1 rpp−1 1


where rii = 1 and the matrix R is symmetric.
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2.2 Multi-variate analysis

If the variables have been standardised such that they have a sample mean of

zero and a sample variance of one, then the sample covariance matrix is just the

correlation matrix.

2.2.1 Multi-variate normality

One final definition will be for the multi-variate normal distribution.

Definition 2.2.4. A p-dimensional random variable X with mean vector µ and

covariance matrix Σ is said to be multi-variate normal distributed if it has a

p.d.f. of the form,

fX(x;µ,Σ) =
1

(2π)
p
2 |Σ| 12

exp{−1

2
(x− µ)TΣ−1(x− µ)},

this will be denoted as X ∼ Np(µ,Σ).

Before analysing a data set, it is essential to know whether the data is multi-

variate normal (MVN) to apply tests such as Hotelling’s T 2 (Chatfield, 2018). To

do this, use the following MVN test.

Mardia Test

The Mardia test uses extensions of skewness and kurtosis to assess a data sets

multi-variate normality. Suppose I have a p-dimensional random variable where n

samples set have been drawn (x1, . . . ,xn) then the skewness is defined as (µ̃3,p)

and Kurtosis (γ2,p) by the following measures,

µ̃3,p =
1

n2

n∑
i=1

n∑
j=1

m3
ij, γ2,p =

1

n

n∑
i=1

m2
ii,

where mij = (xi− x̄)S−1(xj− x̄) which is the Mahalanobis distance such that x̄ is

the sample mean vector and S is the sample covariance matrix. The test statistic

for skewness is (n/6)µ̃3,p which is approximately χ2 distributed with p(p+1)(p+2)

degrees of freedom. Meanwhile, the test statistic for Kurtosis is (γ2,p − p(p +

2))/(8p(p+ 2)
1
2 ) which is approximately normally distributed (≈ N(0, 1)). If the

sample size is small (n < 20) then an adjustment is required for the skewness

such that (nk/6)µ̃3,p ∼ χ2 where k = (p+ 1)(n+ 1)(n+ 3)/(n(n+ 1)(p+ 1)− 6)
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(Korkmaz et al., 2014; Mardia, 1974). The calculation for degrees of freedom

remains the same.

The null hypothesis asserts the data is multi-variate normally distributed.

These two tests are performed, and to reject the null hypothesis, either of the

tests must disagree. To accept the null hypothesis, both tests must agree.

2.2.2 Principal component analysis

Principal component analysis provides a way to examine relationships between

a set of p correlated variables by transforming them into a set of p uncorrelated

variables. These are referred to as principal components (PC). The principal

components are linear combinations of the original variables, where each PC can

potentially hold more variability than the original single variable. These new

variables are derived in a decreasing order such that the first PC accounts for the

most variance within the data possible. A full detailed explanation can be found

in Chatfield (2018).

Lets suppose I have a p-dimensional random variable XT = [X1, . . . , Xp] with

mean µ and covariance matrix Σ. One can define a new set of random variables

Y T = [Y1, . . . , Yp], which are uncorrelated, and the variance decreases from first

to last. Then each Yi can be taken as a linear combination of Xi such that;

Yj = α1jX1 + α2jX2 + · · ·+ αpjXp

= αT
j X,

where αT
j = (α1j, . . . , αpj) is a vector of constants. A condition is imposed

αT
j αj = 1, so distances within the space are preserved. The vectors αj can

be determined by calculating eigenvectors from the covariance matrix, where

eigenvalues are assumed to be ordered such that λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. Since

this new PC system is ordered such that the later components may only account

for a small part of the total variance, keeping them all is unnecessary. To choose

how many components are retained, one can use Kaiser’s rule and keep those

eigenvalues ≥ 1 (Kaufman & Dunlap, 2000) or those that account for 90% of the

total variance within the data (Manly & Alberto, 2016).
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2.2 Multi-variate analysis

2.2.3 Multi-variate ε test

Suppose I have two groups with samples x and y drawn from two random p-

dimensional distributions X and Y . A question may be asked whether there are

any statistical differences between these groups and hence their distributions. If

samples x and y are drawn from multi-variate normal distributions, then a wide

range of methods can be used. These are summarised in Manly & Alberto (2016)

and Chatfield (2018). However, if the samples are not drawn from multi-variate

normal distributions, one may wish to use non-parametric tests to investigate

similarities between groups. One such test is the multi-variate ε test, defined as

follows.

Suppose I have k ≥ 2 independent p-dimensional random samples x1,x2 . . . ,xk ∈
Rp with sample sizes n1, n2, . . . , nk, respectively, from p-dimensional distributions

X1,X2, . . . ,Xk. I consider the null hypothesis

H0 : X1 ≡X2 ≡ · · · ≡Xk (2.1)

and

H1 : X1 ̸= X2 ̸= . . . ̸= Xk (2.2)

Consider a pooled sample such that x1

⋃
x2

⋃ · · ·⋃xk = {w1,w2, . . . ,wn} so

the total sample size is
∑k

i=1 ni = n. Under the null hypothesis, each wi is

independent and identically distributed from a common distribution X. I first

define a desired significance level α then resample without replacement samples

of size n from the pooled sample {w1,w2, . . . ,wn} for B replicates such that

(B + 1)α ∈ Z+. Let mj =
∑j

i=1 ni with m0 = 0, then for each bootstrap replicate

w
(b)
1 ,w

(b)
2 , . . . ,w

(b)
n with b ∈ {1, . . . , B}, the kth sample of the bootstrap replicate

b is defined as, x
(b)
i = {w(b)

mi−1+1, . . . ,w
(b)
mi}. The statistic ε

(b)
n is defined as,

ε(b)n =
∑

1≤i≤j≤k

εni,nj
(x

(b)
i ,x

(b)
j ) =

∑
1≤i≤j≤k

e(x
(b)
i ,x

(b)
j ), (2.3)

where e(xi,xj) is defined for random samples xi and xj with sample size ni and
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nj as,

e(xi,xj) =
ninj

ni + nj

(
2

ni, nj

ni∑
l=1

nj∑
m=1

||xil − xjm||

− 1

n2
i

ni∑
l=1

ni∑
m=1

||xil − xim|| −
1

n2
j

nj∑
l=1

nj∑
m=1

||xjl − xjm||
)
.

(2.4)

One can then calculate the bootstrap estimate Pn(εn ≤ ε) as #ε
(b)
n ≤ε
B

for some

value ε, where I can reject the null hypothesis when the observed εn exceeds

100(1− α)% of the replicates (Efron, 1982; Székely et al., 2004). Here, #ε
(b)
n ≤ ε

means the number of ε
(b)
n statistics less than ε.

2.3 Stochastic processes

I shall now give definitions relevant to stochastic processes. These can be found

in Allen (2010) and Padma & Vijayalakshmi (2011). The first definition is that of

a stochastic process.

Definition 2.3.1. A stochastic process is a collection of random variables

X = {X(t) : t ∈ T} where X(t) ∈ S, such that S is our state space that can be

either finite or infinite (e.g. in the discrete case {0, 1, 2, . . . , N} or {0, 1, 2, . . . }).
Here T is defined as the index set, and since many of the applications I will

discuss shall be biological processes taking place in some given time interval, I

shall consider this as time T = [0,+∞).

The previous definition will allow me to define a continuous time Markov chain,

a particular case of a stochastic process, such that the future state only depends

on the current state and not on its past. The formal definition follows.

Definition 2.3.2. Let X be a collection of discrete random variables with values

in a finite or infinite “state space” S (e.g., {0, 1, 2, . . . , N} or {0, 1, 2, . . . }) with
index set T = [0,∞). The stochastic process X is called a continuous time

Markov chain (CTMC) if it satisfies

P(X(tn+1) = in+1|X(t0) = i0, X(t1) = i1, . . . X(tn) = in),

= P(X(tn+1) = in+1|X(tn) = in),
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2.3 Stochastic processes

for any set of real numbers that satisfy 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn+1 and any ij ∈ S,

j ∈ {0, . . . , n+ 1}.

Suppose I have a stochastic process and want to find the probability for that

process to go from state i at time s to state j at time t for two arbitrary states

i, j ∈ S. Then the following definition is given,

Definition 2.3.3. Given a CTMC X, the transition probability to get from a

state i at time s to a state j at time t is defined as,

pij(s, t) = P(X(t) = j|X(s) = i), s < t,

where i,j ∈ S. The CTMC is considered homogeneous if these probabilities only

depend on the length of time interval t− s and not on the particular values of s

and t. Hence

pij(s, t) = pij(t− s) = P(X(t) = j|X(s) = i) = P(X(t− s) = j|X(0) = i),

for s < t. The matrix containing transition probabilities, otherwise known as the

transition matrix, is defined as,

P(t) = (pij(t))i,j∈S,

where t ∈ [0,+∞).

Definition 2.3.4. From the transition probabilities pij(t) one can derive the

transition rates qij to form the generator matrix Q. Let me assume the transition

probabilities pij(t) are continuous and differentiable for t ≥ 0 and at t = 0,

pij(0) = 0, i ̸= j, pii(0) = 1, ∀i ∈ S.

Define for any i, j ∈ S

qij = lim
∆t→0+

pij(∆t)− pij(0)

∆t
= lim

∆t→0+

pij(∆t)

∆t
, i ̸= j, (2.5)

and similarly

qii = lim
∆t→0+

pii(∆t)− pii(0)

∆t
= lim

∆t→0+

pii(∆t)− 1

∆t
. (2.6)

23



2. MATHEMATICAL BACKGROUND

Since
∑

j∈S pij(∆t) = 1 (Allen, 2010; Padma & Vijayalakshmi, 2011) the following

holds,

1− pii(∆t) =
∑

j∈S ,j ̸=i

pij(∆t) =
∑

j∈S ,j ̸=i

[qij∆t+ O(∆t)],

resulting in the following expression for qii,

qii = lim
∆t→0+

−∑j∈S ,j ̸=i[qij∆t+ O(∆t)]

∆t
,

= −
∑

j∈S ,j ̸=i

qij, (2.7)

where
∑

j ̸=iO(∆t) = O(∆t). The limits in Equations (2.5) and (2.6) can be

expressed in terms of a matrix Q. Let P(∆t) be the infinitesimal transition matrix

and I be the identity matrix of the same size. Then the matrix Q is equal to

Q = lim
∆t→0+

P(∆t)− I

∆t
. (2.8)

Definition 2.3.5. Using the definitions in Equations (2.5), (2.6) and (2.8), I can

define the matrix of transition rates Q = (qij)i,j∈S known as the infinitesimal

generator matrix. For example if S = {0, 1, 2, . . . }, one gets

Q =


q00 q01 q02 . . .

q10 q11 q12 . . .

q20 q21 q22 . . .


.

Definition 2.3.6. From Definitions 2.3.5 and 2.3.3, I can define the forward and

backward Kolmogorov differential equations that describe the rate of change of the

transition probabilities. If P(t) is the transition matrix as defined in Definition

2.3.3, then the forward Kolmogorov differential equation in matrix form is given

by
dP(t)

dt
= QP(t) P(0) = I,

where I is the identity matrix. The backward Kolmogorov equations can be

defined in a similar manner,

dP(t)

dt
= P(t)Q P(0) = I.
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2.3 Stochastic processes

These equations define a system of differential linear equations, which can be

solved to find a solution of the form

P(t) = P(0) exp(Qt),

where the exponential matrix is defined as,

exp(Qt) =
+∞∑
k=0

(Qt)k

k!
.

Inter-event time

For a CTMC X = {X(t) : t ∈ T}, the time spent in a given state before jumping

to the next, can be described by the random variable Wn for the time of the nth

jump (assuming W0 = 0). The random variable {Wn}n∈N∪{0} are referred to as

waiting times. From these waiting times, a random variable Tn = Wn+1 −Wn ≥ 0

can be defined as the time between state changes. These are known as inter-event

times.

Assume at the nth jump; the CTMC is at state i such that X(Wn) = i ∈ S.

Then the probability of leaving the state i is α(i)∆t+ O(∆t). Here the process

moves to a new state in the time period ∆t, where

α(i) =
∑

j∈S ,j ̸=i

qij = −qii,

hence, the probability that the process remains in the same state, for the length

of time ∆t is

pii(∆t) = 1− α(i)∆t+ O(∆t).

Let Gn(t) be the probability that X(Wn) remains in state i for some time t ≥ 0

which in terms of the inter-event time Tn = Wn+1 −Wn > t means,

Gn(t) = P(Wn+1 > t+Wn} = P{Tn > t).

For t = 0 , then Gn(0) = P(Tn > 0) = 1. For sufficiently small ∆t,

Gn(t+∆t) = Gn(t)pii(∆t) = Gn(t)(1− α(i)∆t+ O(∆t)).
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Subtracting Gn(t) from both sides and dividing by ∆t and then letting ∆t→ 0+

one arrives at the following ODE,

dGn(t)

dt
= −α(i)Gn(t).

Using the initial condition Gn(0) = 1, the first order differential equation, can be

solved by separation of variables to give

Gn(t) = P(Tn > t) = e−α(i)t.

The above equation allows one to compute the c.d.f. of Tn, as

P(Tn ≤ t) = 1−Gn(t) = 1− e−α(i)t, t ≥ 0.

Therefore the inter-event time corresponds to an exponential random variable

with parameter α(i). Hence, Tn is an exponentially distributed random variable.

This leads to the following theorem.

Theorem 2.3.1. Let X be a CTMC with a transition matrix P (t) = (pij(t))i,j∈S

such that for sufficiently small ∆t,∑
j ̸=i

pij(∆t) = α(i)∆t+ O(∆t),

and

pii(∆t) = 1− α(i)∆t+ O(∆t),

where α(i) =
∑

j∈S ,j ̸=i qij = −qii. Then define the inter-event time as Tn =

Wn+1 − Wn (where Wn is the time of the nth jump resulting in a change in

the state space). Given X(Wn) = Tn, is an exponential random variable with

parameter α(i) as defined in Definition 2.1.3. The cumulative distribution function

(c.d.f) for Tn is Fn(t) = 1− e−α(i)t such that the mean and variance are

E[Tn] =
1

α(i)
, Var(Tn) =

1

α(i)2
if α(i) > 0.

A well-known CTMC is obtained when I consider a space of discrete states

S = {0, 1, 2, . . . } and assume that X can only move one unit to the left or right

in each jump. From this, one can define a general birth and death process for

a CTMC with birth rates λi and death rates µi for some small change in the

population ∆X(t) = X(t+∆t)−X(t). The definition is as follows.
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Figure 2.1: Depiction of a birth-death process with birth rate λi and death rate

µi.

Definition 2.3.7. A general birth and death process is a continuous time

Markov chain X which can either have a finite or infinite space state (S =

{0, 1, . . . N} or S = {0, 1, 2, . . . }). X can be defined in terms of the probabilities

as,

pij(∆t) = P(X(t+∆t) = j|X(t) = i)

=


λi∆t+ O(∆t), j = i+ 1 ,

µi∆t+ O(∆t), j = i− 1 ,

1− (λi + µi)∆t+ O(∆t), j = i ,

O(∆t), otherwise ,

for sufficiently small ∆t where λi ≥ 0, µi ≥ 0 for all i ∈ S and µ0 = 0.

The birth and death rates can be related to the generator matrix Q as follows

λi = qi,i+1, µi = qi,i−1 and qii = −(λi + µi). A depiction of a simple birth-death

process is shown in Figure 2.1. In this example, if λ0 = 0 then p00(t) = 1, and

this state is referred to as an absorbing state and the overall Markov process is

an absorbing Markov process.

2.3.1 Stochastic simulation algorithm

Gillespie simulations

Suppose I have a particular stochastic model that is of interest to simulate. There

are several stochastic simulation algorithms; one of the most famous methods is

the Gillespie simulation algorithm. Suppose for a CTMC X there is an initial
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state x(0) = x. Let r1, . . . , rn be a list of possible events or reactions with each

ri, having associated transition rate qi(x), that is as described for the generator

matrix in Definition 2.3.5. Then qi(x)∆t defines the probability that this reaction

occurs in a short time interval (t, t+∆t). One can then define ∆xi such that the

entries correspond to a change in x for a given reaction ri (Erban et al., 2007). This

method is carried out until a given condition is met. The Gillespie algorithm uses

the following theorem to draw a new time step ∆t from the exponential distribution

using the uniform distribution (Gillespie, 2007). Algorithm 2.1 describes the steps

for Gillespie simulations.

Theorem 2.3.2. Let U be a uniform random variable defined on [0, 1] and let T

be a continuous random variable on [0,+∞). Then T = F−1(U), where F is the

cumulative distribution function of the random variable T .

Theorem 2.3.1 has previously shown that an exponential distribution for

continuous-time Markov chains can describe the inter-event time. If then U = F (T )

where F is the c.d.f. of the exponential distribution with T being the inter-

event time and U a uniform random variable, then one can rearrange to find

T = F−1(U) as stated in Theorem 2.3.2. Calculating the inverse c.d.f. of F

produces T = −log(U)/α(x), where x is the current state of the process. Hence

the inter-event time can be constructed by transforming a uniform random variable.
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Algorithm 2.1: Gillespie simulation algorithm

Let t = 0 and set initial population x = x(0).

while some condition do

Draw two uniformly distributed numbers u1 and u2 from the unit
interval u1, u2 ∈ [0, 1];

Calculate qi(x) for i = 1, 2, . . . , n;

Calculate α(x) =
∑n

i=1 qi(x) otherwise known as the total
propensity function;

Choose small time increment ∆t = −log(u1)/α(x);

Update time t← t+∆t;

Select the reaction ri that satisfies
∑i−1

j=1 qj(x)

α(x)
< u2 ≤

∑i
j=1 qj(x)

α(x)
;

Update population x← x+∆xi;

end

2.4 Bayesian inference and model selection

This section introduces ideas of Bayesian inference that will be used to infer

parameters for the models presented, given observed experimental data. Two

variations of the Approximate Bayesian Computation (ABC) method will be

discussed based on Bayes’ theorem. Ross (2014) discusses Bayes’ theorem and

many other probability texts, which relate the conditional probabilities of two

events A and B. The relation is given by

P(A|B) =
P(A)P(B|A)

P(B)
.

In Bayesian inference this relation is instead formulated as

π(θ|D) =
π(θ)π(D|θ)∫
π(θ)π(D|θ)dθ (2.9)

where θ is a vector of model parameter values, and D is observed experimental

data. In this formula, π(θ) is known as the prior distribution and represents our
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prior beliefs about the parameter(s). Priors can be referred to as either informative:

such as a normal distribution, or non-informative: such as a uniform distribution.

Suppose an individual has strong prior knowledge about the true parameter value.

In that case, an informative prior gives increased density to the region of the

parameter space where the true value is thought to be. A non-informative prior

allows upper and lower bounds that cover a broad parameter space. π(D|θ) is
the likelihood of observing the data D given the parameter vector θ, and π(θ|D)

is the posterior distribution of our parameter vector θ as a result of our observed

data D. The integral in the denominator of (2.9) is a normalisation constant; as

such, (2.9) can be written in a simpler form as a proportionality equation,

π(θ|D) ∝ π(D|θ)π(θ)

In Sections 2.4.1 and 2.4.2 two methods for estimating the posterior distribution are

introduced that omit the calculation of the likelihood function. This is preferred

since calculating the likelihood function for mathematical models is not always

possible.

2.4.1 Approximate Bayesian computation-rejection

Given a mathematical model M, and a set of observed data D, which is parame-

terised by the vector θ, approximate Bayesian computation (ABC) can be used to

infer posterior distributions for the parameter values. ABC allows a user to define

a set of prior beliefs about parameter distributions, π(θ), and combine this with

model simulations and data to arrive at a posterior distribution π(θ|D). Given

a sample parameter set θ∗ ∼ π(θ), a user can simulate data D∗ ∼ π(D|θ∗) and

compare this with the experimental data D. If the simulated data is within a

given threshold distance ε with distance measure d(·, ·) from the experimental

data D, then the sample parameter set (θ∗,D∗) is accepted. Otherwise, the

parameter set is rejected, and this continues until N parameter sets are accepted.

Consequently, the method is presented in Algorithm 2.2.
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Algorithm 2.2: ABC rejection (Toni et al., 2009)

Let n = 0, choose a posterior sample size N , an acceptance threshold
ε, and distance measure d(·, ·) .

while n < N do

Sample θ∗ from π(θ).

Simulate a data set D∗ ∼ π(D|θ∗).

If d(D,D∗) ≤ ε, accept θ∗ and set n = n+ 1.
end

2.4.2 Approximate Bayesian computation- sequential Monte

Carlo

A significant drawback of the ABC rejection algorithm is its computational

inefficiency. Situations arise where the parameter space being sampled from is

large, either due to numerous parameters in the model, a wide interval for prior

distributions, or a non-informative prior is used. Consequently, to sample the

entire parameter space, many simulations are required, and as such, the probability

of acceptance is low. To overcome this, Toni et al. (2009) developed a new method

ABC- Sequential Monte Carlo (SMC). Toni et al. (2009)’s approach is iterative,

where the user implements ABC rejection multiple times to improve computational

efficiency and speed of convergence.

Keeping the notation introduced in Section 2.4.1, I introduce a decreasing

sequence of distance threshold values ε1 > ε2 > · · · > εT where T is the number

of iterations of ABC to run. Each iteration will generate an accepted sample

set of size N , where each of the N elements θ∗ is referred to as a particle using

the terminology defined by Toni et al. (2009). A whole sample of particles size

N is referred to as a population, where the method iterates until there are T

populations of accepted particles, where iteration T comprises the final posterior

distribution, which satisfies the distance measure such that d(D,D∗) ≤ εT .

For the first iteration, a rejection ABC is implemented where parameters

are sampled from prior distributions π(θ) and are accepted if they satisfy the
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distance measure d(D,D∗) ≤ ε1. Each particle from the posterior distribution

of the first iteration is assigned equal weight w
(n)
1 = 1/N for n = 1, . . . , N .

Subsequent iterations of the method will draw particles θ∗ by sampling the

posterior distributions of the prior iteration with weights wt−1 where t is the index

of the current iteration. Accepted parameters from the previous iteration are

perturbed using a perturbation kernel Kt(θ|θ∗). These are then used to simulate

the model and compare it to observed data. Once again, for each iteration, a

distance measure with a distance threshold is used to determine if these perturbed

parameters are accepted if d(D,D∗) ≤ εt. Each particle in the population is

assigned a weight determined by: the prior densities, the weights from the previous

iteration, and the choice of perturbation kernel. The procedure continues for T

iterations where N accepted parameter sets are achieved. Compared to rejection

ABC, this method allows for additional reduction in the parameter space between

successive iterations since the posterior distributions of the previous iteration

inform sampling. The choice of perturbation kernel is user-defined, and examples

include the component-wise uniform kernel or Gaussian kernel (Toni et al., 2009).

The algorithm for this method is shown in Algorithm 2.3.

2.4.3 Bayesian model selection

Bayesian model selection allows comparison between two or more mathematical

models to determine which has the highest probability to describe the observed

data D. Assume that a user has observed data that describes a biological

mechanism and proposed two potential mathematical models, M1 and M2 that

describe that mechanism. Bayesian model selection requires determination of the

Bayes factor, which is defined as,

B12 =
π(M1|D)/π(M2|D)

π(M1)/π(M2)
.

Here π(Mi) is the prior distribution of model Mi,i ∈ {1, 2} and π(M1|D) is the

posterior distribution for model Mi. Assuming uniform prior distributions, the

Bayes factor reduces to

B12 =
π(M1|D)

π(M2|D)
,

32



2.4 Bayesian inference and model selection

which provides the evidence of selecting M1 over M2. From ABC rejection an

estimate B̂12 can be obtained for B12. The model selection algorithm is summarised

in Algorithm 2.4.

Algorithm 2.3: ABC SMC (Toni et al., 2009)

Choose a sequence of threshold values ε1 ≥ ε2 · · · ≥ εT ≥ 0, posterior
sample size N , distance measure d(·, ·). Set t = 1 for the population
indicator and particle indicator n = 0.

while t < T do
Reset n = 0
while n < N do

If t = 1, then sample from the prior distribution (iteration 1).

Else sample θ∗ from a previous population {θ(n)
t−1} with the

associated weights wt−1 and perturb these to obtain
θ∗∗ Kt(θ|θ∗), with Kt(θ|θ∗) being the perturbation kernel. If
π(θ∗∗) = 0, then re-sample θ∗ until π(θ∗∗) ̸= 0 .

Simulate the data D∗ from πD|θ∗∗).
If d(D,D∗) ≤ εt, set θ

(n)
t = θ∗∗ and set n = n+ 1. Calculate

the weight for sample θ
(n)
t as,

w
(n)
t θ

(n)
t ) =

1 if t = 1
π(θ

(n)
t )∑N

j=1 w
(j)
t−1Kt(θ

(n)
t |θ(j)

t−1)
if t > 1

end

Normalise the weights, and set t = t+ 1.
end
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Algorithm 2.4: ABC rejection model selection (Toni et al., 2009)

Choose a posterior samples size N , an acceptance threshold ε, and
distance measure d(·, ·) . Set model indicator i = 1 and total
simulations per model r1 = r2 = 0.

while i ≤ 2 do

Let n = 0

while n < N do

Sample θ∗
i from π(θi).

Simulate a data set D∗
i ∼ π(D|θ∗

i ).

If d(D,D∗
i ) ≤ ε, accept θ∗

i and set ri = ri + 1

Set n = n+ 1.
end

Set i = i+ 1
end

Calculate pi =
ri
N

for i ∈ {1, 2}
Calculate B̂12 =

r1
r2

2.5 Sensitivity analysis and identifiability

In the preceding section, methods of Bayesian inference were introduced that allow

the parametrisation of mathematical models when data is available for comparison.

However, since a model may introduce a large number of parameters, of which

only a handful may have been quantified through biological experimentation, it is

vital to understand how variation in parameter values can affect the output of

a mathematical model. Careful consideration of the parameter values such that

these models continue to represent the biological system under investigation is

essential. Sensitivity analysis can be used for this purpose and provides the user

with a numerical quantification of a given parameter’s sensitivities (Sobol, 1993).

Together with parameter sensitivity, it is also essential to understand if unique

values to model unknown parameters can be obtained for a given model and the
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data collected via experimentation. Structural identifiability provides a method

to understand this.

2.5.1 Sobol global sensitivity analysis

The models developed within this thesis involve multiple parameters to represent

the biological mechanisms under investigation. Since many parameters require

calibration, it is important to identify which parameters have the greatest effect

on the overall model output. Global sensitivity analysis allows me to evaluate the

results of simultaneous changes in parameter values (Zhang et al., 25th February

2015). Consider the vector of parameters θ = (θ1, θ2, . . . , θn) such that the model

output is described as Y = g(θ). Sobol’s approach shall be used to determine

global sensitivities (Sobol, 1993). Each parameter θi can be considered as a

random variable with an associated range. Since Y is a function of these variables,

it is also a random variable with variance Var(Y ). I am interested in what

would happen if a known value is changed, i.e. consider the conditional variance

Var(Y |θi = θ∗i ). However, since the value of θ∗i is not known, I instead consider

the average conditional variance E[Var(θi = θ∗i )] where the expectation is with

respect to θi and the variance is taken over all remaining parameters θj, j ̸= i.

The law of total probability gives me the following expression,

Var(Y ) = E[Var(Y |θi)] + Var(E[Y |θi]),

from which the first-order Sobol index for parameter θi is defined as,

Si =
Var(E[Y |θi])

Var(Y )
. (2.10)

Furthermore, one can also investigate the result of multiple fixed parameter

values. Let Var(E[Y |θ−θj ]) be the expected reduction in the variance by fixing all

parameters except θj. Then the total effect of parameter θi can be defined as,

ST i =
E[Var(Y |θ−θi)]

Var(Y )
= 1− Var(E[Y |θ−θi ])

Var(Y )
. (2.11)

Sobol (1993) showed that these conditional variances are obtained if a function g,

integrable over [0, 1]n, may be decomposed into

g(θ) = go

n∑
i=1

gi(θi) +
∑

1≤i<j≤n

gij(θi, θj) + · · ·+ g1,2,...,n(θ1, θ2, . . . , θn). (2.12)
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It is assumed that terms in (2.12) have zero mean, as such squaring both sides

and integrating yields∫
g2(θ)dθ − g20 = Var(Y ) =

n∑
i=1

Vi +
∑

1≤i<j≤n

Vi,j + · · ·+ V1,2,...,n, (2.13)

where g0 = E[Y ] and

Vi = Var(E[Y |θi]) ,
Vi,j = Var(E[Y |θi, θj])− Var(E[Y |θi])− Var(E[Y |θj]) ,

...

V1,...,n = Var(E[Y |θ1, . . . , θn]) +
n∑

i=1

Var(E[Y |θi]) +
∑

1≤i<j≤n

Var(E(Y |θi,θ−θj)) + . . . .

The first n terms of Equation (2.13) give the first-order Sobol indices as defined

in Equation (2.10). Other terms in the expansion can be used to calculate higher-

order interactions. The total-order Sobol index STi defined in Equation (2.11) for

parameter θi is the sum of all contributions to the model variance,

ST i = S1 + Sij + Sik + · · ·+ Sijk + · · ·+ Si,...,n.

Generally, Si and ST i can be computed for all parameters; this will describe the

model in terms of the global sensitivity analysis properties. A larger sensitivity

index indicates a greater parameter influence on the model output (Sobol, 1993;

Zhang et al., 25th February 2015).

2.5.2 Structural identifiability

Structural identifiability allows a user to assess if, given a set of data, uniquely

defined parameter values within a given model can be obtained from biological

experimentation. The following definition of structural identifiability comes from

Chis et al. (2011).

Definition 2.5.1. Suppose there is a system of ODEs ẋ, and a set of experimen-

tally observed quantities y. These depend on the system’s state x and a vector of
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unknown parameters θ. This system is denoted by
∑

(θ) to highlight dependence

on the parameter vector θ. Assume a biological system is described by:

∑
(θ) :

ẋ = f(x,θ) +
∑nu

j=1 gj(x,θ)uj ,

y = h(x,θ) ,x(t0) = x0(θ),

where xT = (x1, . . . , xnx) ∈ M ⊂ Rnx is the state variable, with M a subset

of Rnx containing the initial state, uT = (u1, . . . , unu) ∈ Rnu a nu-dimensional

input vector with u1, . . . , unu smooth functions, and yT = (y1, . . . , yny) ∈ Rnu

in the ny-dimensional output of experimentally observed quantities. The vector

of unknown parameters is denoted by θT = (θ1, . . . , θnp) ∈ Θ, and in general

is assumed to belong to an open and connected subset of Rnp . The entries of

f , gT = (g1, . . . , gnu) and h are analytical functions of their arguments. These

functions and the initial conditions may depend on the parameter vector θ ∈ Θ.

Assuming perfect experimental data free of noise and continuous in time:

• A parameter θi, i = 1, . . . , np is structurally globally (or uniquely) identifiable

if for almost any θ∗ ∈ Θ,∑
(θ) =

∑
(θ∗) =⇒ θi = θ∗i ,

• A parameter θi, i = 1, . . . , np is structurally locally identifiable if, for almost

and θ∗ ∈ Θ, there exists a neighbourhood V (θ∗) such that

θ ∈ V (θ∗) and
∑

(θ) =
∑

(θ∗) =⇒ θi = θ∗i ,

• A parameter θi, i = 1, . . . , np is structurally non-identifiable if for almost

and θ∗ ∈ Θ, there exists no neighbourhood V (θ∗) such that

θ ∈ V (θ∗) and
∑

(θ) =
∑

(θ∗) =⇒ θi = θ∗i .

Structural identifiabilty can be assessed using the SIAN toolbox (Hong et al.,

2020) a Maple based program or using Castro & de Boer (2020) method of testing

identifiabilty using scaling.
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Chapter 3

Statistical analysis of patient data

from viral infections

Throughout this thesis, multiple biological hypotheses will guide the formulation

of several mathematical models. In studies investigating biological phenomena,

scientists often gather large amounts of data to either support or disprove their

theories and provide conclusions to their investigations. These findings subse-

quently inform model formulation by mathematicians to investigate additional

biological questions. In this chapter, two studies of viral outbreaks will be in-

vestigated. The first study is data provided by the UK Health Security Agency

(UKHSA), formally known as Public Health England (PHE), on patient data from

survivors of the 2014 West Africa Ebola outbreak. The second data set is from

adult immune response data to the SARS-CoV-2 virus during the early stages of

the 2020 SARS-CoV-2 pandemic, obtained from employees at St Jude Children’s

Research Hospital.

3.1 Ebola virus patient data

In early 2014 the World Health Organisation (WHO) reported an outbreak of

EBOV in Guinea, where the index patient would later be identified as an 18-

month-old boy who lived in rural Guinea (Brolin Ribacke et al., 2016; Carias et al.,

2019). This initial case soon spread to other village members and communities,

where subsequent infections would be identified in neighbouring Sierra Leone and
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Liberia. Cases continued to rise until international concern about the further

spread of EBOV led to additional intervention. This led to a gradual decline in

EBOV in late 2015. After the epidemic had ended, there were 28,652 suspected

infections, and 11,326 reported deaths (Bell, 2016). The renewed global concern,

along with the scale of the epidemic, led multiple research bodies to investigate

the kinetics of EBOV infections, along with long-term immunity in survivors of

EBOV infection (Thom et al., 2021; Timothy et al., 2019).

Public Health England began a collaborative study with multiple research

institutions to examine the longitudinal immune responses to EBOV of known

survivors and contacts. A study of this type would allow the scientific community

to understand better the antibody and T-cell responses to further exposure over

time. It would also allow investigation of any potential waning immunity, which

for many viruses such as SARS-CoV-2 has been shown to enable subsequent

reinfection (Stich et al., 2022). This study had two key responses to be examined.

The first was regarding antibody responses and how these could potentially

vary with time. MacNeil et al. (2011) showed within a 120-day period that

immunoglobulin (Ig) G levels remained relatively high, while IgM levels declined

with time, while Khurana et al. (2020) demonstrated a robust response over a

360-day period. The question remains whether, over the years, these responses

remain robust for both neutralising antibodies and IgG to the whole virus. The

second question is understanding IFN-γ responses and how these change over

time. IFN-γ has a half life of 30 minutes and 4.5 hours after intravenous and

intramuscular injection, respectively (Foon et al., 1985). IFN-γ is an essential

cytokine in both the innate and adaptive immune responses, where it can amplify

antigen presentation, maintain CD4 and CD8 T-cell activity and help mediate

anti-microbial functions (Kak et al., 2018). Rhein et al. (2015) has shown IFN-γ

to reduce the replicative ability of EBOV. However, IFN-γ in the presence of

several other cytokines such as interleukin (IL)-2, IL-10 and tumour necrosis factor

(TNF)-α has found to be a marker of a fatal outcome (Villinger et al., 1999). Since

IFN-γ is produced to maintain CD4 and CD8 activity, quantifying its production

can be used as a marker for T-cell activity.

In the following work, I investigate the longitudinal responses of a cohort of

individuals from the 2014 West Africa Ebola outbreak. Both antibody and IFN-γ
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responses will be analysed considering the individual’s infection status: whether

they were infected, a close contact, or negative control. Furthermore, human

leukocyte antigens will be investigated by adding a genetic factor and how these

correlate with IFN-γ responses and T-cell activity. This may indicate a particular

HLA gene that provides greater protection than others.

3.1.1 Data summary

Participants for this study were recruited from various treatment centres in Guinea,

mainly from Gueckedou, the epicentre of the outbreak and Coyah, a village located

roughly 385 miles away (Thom et al., 2021; Timothy et al., 2019). Blood samples

were collected from survivors 3-14 months post-infection, where survivor status

was confirmed either from treatment centre records or through the presentation

of a valid survivor’s certificate. Any additional pertinent data was gathered

from patients, and further data was collected from contact cases, including blood

samples where possible. Contact cases are individuals who lived with or cared for

infected individuals. Where possible longitudinal samples were taken one and two

years post-first sample collection, a subset of these individuals have year three

and four samples.

For each participant, blood samples were collected and used for the following

set of experiments: (i) Marburg ELISA was undertaken to quantify IgG antibody

responses using whole inactivated EBOV measured in arbitrary units, (ii) neutrali-

sation assays to quantify the levels of neutralising antibodies which is an indicator

of the amount of EBOV that is being stopped from entering the host’s cells,

measured in geometric mean neutralisation titres (GMT), (iii) ELISpot assays

to examine the amount of IFN-γ produced by an individual in response to the

glycoprotein in its entirety or individual sections, measured in spot forming units

(SFU), to be used as a marker of T-cell activity. In addition to these experiments

for 2015, an IgG ELISA was used to quantify the antigen expression to the glyco-

protein explicitly, while for 2016-2018, the experiments were for IgG ELISA using

World Health Organisation standards. Where possible, repeat measurements were

taken from the same individuals yearly; however, many individuals missed one

or more years worth of samples due to unknown circumstances. The Marburg
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SP GP1-1 GP1-2 GP1-3 GP1-4 GP1-5 GP1-6 GP1-7 GP2-1 GP2-2

1 676

1Figure 3.1: Schematic representation of the EBOV glycoprotein highlighting

notable regions used in ELISpot analysis. SP stands for signal protein.

ELISA here gets its name from Marburg, Germany, where the experiment was

performed. Not an ELISA in response to the Marburg virus. The GP was broken

down into 10 different sections as illustrated in Figure 3.1, with an overlap of

11 amino acids where SP is 46 amino acids long and the others have an average

length of 70 amino acids. Further details of the sub-units can be found in Tipton

et al. (2021).

The PHE longitudinal EBOV response cohort consists of 299 individuals

recruited from two regions in Guinea: Coyah and Gueckedou, which are 385

miles apart. 170 (56.9%) individuals were recruited to participate in the study

from Coyah, while 123 (41.1%) originated from Gueckedou, with the remaining

6 (2%) participants having an unspecified region. One of these individuals was

from a Western country that visited Guinea during the outbreak. As such, this

individual will be excluded from all future analyses, leaving 298 participants

to be examined. Within the cohort 146 (48.9%) are female, 138 (46.3%) are

male, while the remaining 14 (4.8%) participants did not provide their gender.

Each individual is also given an infection status: a survivor (confirmed infected),

negative control, and contact, as described in the introduction to this section. In

total there are 117 (59.4%) contacts, 25 (8.4%) negative controls and the remaining

152 (51%) are confirmed survivors with 4 individuals having an undefined status.

The average age of participants at the start of the study was 34.58 years (SD

11.85); however, 164 participants did not provide their age for part of the study.

Where possible, information regarding dates of symptom onset, treatment centre

admission, first positive result, and discharge was collected with other medical
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information regarding their HIV status and hepatitis B/C status. However, for

many individuals, pieces of this information were missing.

3.1.2 Analysis of EBOV response data

Many studies have investigated differences in immune responses to EBOV. Baize

et al. (1999) examined the differences in humoral responses for fatalities and

survivors, where survivors expressed higher levels of antibody isotypes M and

G than fatalities for circulating EBOV. Fatalities were also shown to express

higher levels of IFN-γ early in the infection, while survivors have delayed IFN-

γ production. These results were further supported by Colavita et al. (2019).

In the study presented here, there are no fatalities included and no data on

disease severity from ay source. Still, the differences in immune responses between

survivors, close contacts and negative controls were examined for differences in

humoral responses for IgG and neutralising antibodies. Analysing the response

data for close contacts of survivors may indicate potential cases of asymptomatic

individuals. Furthermore, one can explore the levels of IFN-γ produced that will

act as an indicator of the host’s T-cell responses (Thom et al., 2021). During

the 2014 West Africa outbreak, EBOV spread from Guinea to Liberia and Sierra

Leone. This spread amongst countries leads to two distinct lineages as noted by

Carroll et al. (2015) and further supported by Simon-Loriere et al. (2015), and

the possibility that individuals in different regions may be exposed to distinct

circulating strains and hence exhibit different immune responses. Since our cohort

includes two regions within Guinea, it would be interesting to examine whether

there are any differences in immune responses. Simon-Loriere et al. (2015) noted

that the original infectious strain originated in Guinea in Gueckedou, which spread

around the country and into Sierra Leone and Liberia. However, Carroll et al.

(2015) showed that different lineages of the virus spread from Liberia back into

Guinea, so it is possible that different regions were exposed to separate virus

lineages. Therefore, it is worth examining if the regional difference may imply

different circulating strains. In the following work, infection status and regional

differences will be investigated.
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Infection Year Mardia Skew (p-value) Mardia Kurtosis (p-value) MVN

Status

Contact 2015 2267.32 (≈ 0) 15.39 (≈ 0) No

2016 2929.99 (≈ 0) 23.18 (≈ 0) No

2017 1383.76 (≈ 0) 2.71 (6.7× 10−3) No

Survivor 2015 −1.5× 10−6 (1) 936.90 (≈ 0) No

2016 4805.81 (≈ 0) 41.52 (≈ 0) No

2017 6333.81 (≈ 0) 61.49 (≈ 0) No

2018 916.58 (7× 10−3) 2.73 (6× 10−3) No

Table 3.1: Results from the Mardia multi-variate normal test for each year and

group based on infection status. Test performed at the 5% significance level.

Since the analysis here will examine differences on a multi-variate level, as-

sessing whether the data provided follows a multi-variate normal distribution is

essential. If it does, methods such as Hotelling’s T-statistic can be used along

with several additional techniques summarised in Chatfield (2018). However, if

the data is not multi-variate normal, non-parametric techniques such as the ε-test

introduced in Section 2.2.3 will have to be used. To do this, the multi-variate

Mardia test described in Section 2.2.1 is applied to each year of data for the

infection status groups “survivor” and “contact”. Many of the “negative controls”

were missing one or more experimental samples, so they could not be included

in the normality test. The test only applies to IAG ELISA, Marburg ELISA,

IgG ELISA and ELISpot assay results. These are all continuous quantitative

measurements. The results from this test can be found in Table 3.1, which shows

that none of the data for any group by infection status and year is multi-variate

normally distributed and as such testing procedures that require an assumption

of multi-variate normality cannot be used with this data. For “contacts” in 2018,

there is insufficient data to perform the Mardia test using the R function, which

requires n > 6 observations. Meanwhile, the results of the Mardia test applied

to the cohorts are summarised in Table 3.2. Looking at the region also shows no

MVN; for 2018, there were no samples collected from Coyah, so it was impossible

to compare any results in 2018.

44



3.1 Ebola virus patient data

Region Year Mardia Skew (p-value) Mardia Kurtosis (p-value) MVN

Coyah 2015 5438.32 (≈ 0) 55.23 (≈ 0) No

2016 3055.54 (≈ 0) 21.58 (≈ 0) No

2017 1434.16 (≈ 0) 8.67 (6.7× 10−3) No

Gueckedou 2015 1415 (≈ 0) 4.86 (1.15× 10−6) No

2016 3324.75 (≈ 0) 30.96 (≈ 0) No

2017 2407.56 (≈ 0) 17.24 (≈ 0) No

2018 916.58 (7× 10−3) 2.73 (6× 10−3) No

Table 3.2: Results from the Mardia multi-variate normal test for each year and

group based on region. Test performed at the 5% significance level.

Examining regional differences in immune responses

The samples within this cohort were collected from two regions Gueckedou and

Coyah. Since Gueckedou was the origin of the epidemic, there may be differences

in responses in Coyah due to mutations within the virus before it arrived in the city.

When examining the antibody responses for neutralising antibodies and isotype G,

there is a time dependency on immune responses. Figure 3.2 shows the responses

for the three experiments for each year, which shows that, for 2015, individuals

from Gueckedou exhibit a higher antibody response with less variation, compared

to those individuals from Coyah. However, in 2016 this difference shifted with

those from Coyah exhibiting higher levels of antibodies, and by 2017 there was no

significant difference in antibody responses. One explanation for this difference

in responses could be due to the time each individual was infected. Since most

individuals in this study lack a symptom onset date, it is impossible to check

whether this difference is due to time. One could hypothesise that the differences in

2015 are explained by individuals in Gueckedou being infected earlier and therefore

having more time to produce effective IgG antibodies, while individuals in Coyah

may not have had as long to mount an effective IgG antibody response. By 2016

individuals in Gueckedou have reached a steady state in antibody levels after

infection, while individuals in Coyah still have slightly higher levels of antibodies

due to a more recent infection. As a result, by 2017, both regions have entered

a basal steady-state level of antibodies circulating in the blood, and hence the
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differences become statistically insignificant. This hypothesis would be consistent

with Rimoin et al. (2018), who found detectable levels of neutralising antibodies

40 years after infection with EBOV.

As mentioned by Carroll et al. (2015), responses may vary depending on

the region due to the different circulating lineages of the virus. Since there are

several years of data, it is possible to examine if the IFN-γ expression determined

by ELISpot is higher in one region than another for several years. Since this

experiment uses the glycoprotein (GP), which may express different genome

sequences due to mutation, T-cell responses may differ. Figure 3.3 illustrates the

results of principal component analysis for 2015 applied to ELISpot data for IFN-γ

where the GP is split into its various subunits to test whether a particular region

may elicit a different response to another. As seen from Figure 3.3, responses

from individuals in Gueckedou are more heterogeneous than those from Coyah.

Figure 3.4 illustrates the correlation circle for the results from PCA for the

GP subunits under consideration. The angle between variables represents the

correlation; the smaller an angle, the stronger the correlation, while negatively

correlated variables will have an angle greater than 90 degrees between them.

Furthermore, this figure also illustrates the quality of the representation in the

first two principal components. The distance of the variable from the origin shows

the quality of representation. From this information, it can be seen that except

for GP1-4, the first two principal components represents all GP subunits equally.

Furthermore, it also shows that subunits SP, GP1-1, GP1-2 and GP1-3 are highly

correlated with one another and share a minimal correlation with the remaining

subunits, which all share a high correlation. Altogether, this information suggests

that responses between these groups in 2015 differ and using the ε-test introduced

in Section 2.2.3 supports this with a p-value ≈ 5 × 10−3. Figure 3.5 presents a

uni-variate view of IFN-γ responses to each GP subunit for 2015. This figure

shows that the responses for individuals from Gueckedou are significantly higher

than those from Coyah. However, as hypothesised with the antibody responses in

Figure 3.2, this could be a result of time from infection. Taking the information

presented in Figures 3.2 and 3.5 suggests that at the time of sampling, individuals

from Coyah had more recent infections and had not yet had time to develop

an effective immune response and T-cell response to EBOV infections. This is
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Figure 3.2: Antibody responses assessed by ELISA, Marburg ELISA, and

neutralisation assays for each year where both regions in the cohort were available

for study. Statistical significance was determined by the Wilcoxon–Mann–Whitney

test with Bonferroni adjustment (ns, not significant; *p < 5× 10−2 **p < 10−2;

***p < 10−3; ****p < 10−4). Arbitrary ELISA units (AEU), geometric mean

neutralisation titre (GMT), international units (IU).
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Figure 3.3: PCA for Coyah against Gueckedou, considering IFN-γ ELISpot

result in response to EBOV GP broken down by GP subunit. The first PC

accounts for 61.8% of the total variance, while the second accounts for 19.1%.

Ellipses represents a 95% confidence region.

further supported by the information reported by Simon-Loriere et al. (2015)

that the incident cases of EBOV were first reported in Gueckedou. Performing

the ε-test on the data for 2016 and 2017 for the two regions returns p-values

< 10−2 for both years, indicating that there is still a difference in responses, even

though by this time responses should be more similar as seen in the antibody

data. When examining the data more closely for 2016 and 2017, one GP-subunit

remains significant for both years and follows the same trend. GP1-6 in individuals

from Coyah resulted in higher levels of IFN-γ in both 2016 and 2017, suggesting

that the strain circulating in Coyah at the time of infection shared a similar

sequence to the Kitwit variant used for all experiments performed in this study,
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Figure 3.4: Correlation circle of each GP subunit ELISpot for IFN-γ. The angle

between variables represents the correlation of variables with the length of the

line from the origin, representing the quality of representation. The PCs in this

figure match those presented in Figure 3.3.
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Figure 3.5: Box plots for each GP subunit for regions Coyah (n = 116) and

Gueckedou (n = 45) from ELISpot experiments to quantify IFN-γ production.

Statistical significance was determined by the Wilcoxon–Mann–Whitney test with

Bonferroni adjustment (ns, not significant; *p < 5×10−2 **p < 10−2; ***p < 10−3;

****p < 10−4). Spot forming units (SFU)
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Figure 3.6: GP1-6 ELISpot for IFN-γ concerning years 2016 and 2017 for

each cohort. In 2016 there were n = 84 and n = 78 individuals from Coyah and

Gueckedou, respectively. Meanwhile, in 2017 there were n = 62 individuals for both

cohorts. Statistical significance was determined by the Wilcoxon–Mann–Whitney

test with Bonferroni adjustment (ns, not significant; *p < 5× 10−2 **p < 10−2;

***p < 10−3; ****p < 10−4). Spot forming units (SFU)

particularly in the GP1-6 region. However, this hypothesis can not be tested

with the data provided during this study since no sequencing data is available

for the lineage of EBOV that each patient was infected with. If this data was

available, sequence alignments with the known lineages reported by Simon-Loriere

et al. (2015) and Carroll et al. (2015) could be used to identify whether there

was a regional difference in circulating lineages or whether there was a mixture of

lineages circulating. This would be particularly interesting for Coyah since the

epidemic spread from Gueckedou to this area.

Evidence for asymptomatic EBOV responses

Amongst this PHE cohort are different types of infection status: contact, negative

and survivor. It is expected that there will be differences in immune responses,

but Bellan et al. (2014) and Leroy et al. (2000) present evidence that there are

asymptomatic responses to EBOV. Hence, since the cohort includes contacts

with infected individuals, it is worth investigating whether these people did get
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infected or some were simply asymptomatic. Glynn et al. (2017) has previously

investigated the percentage of asymptomatic individuals and found around 2.6%

of contacts were asymptomatic. To study the differences in immune responses, it

is worth using PCA to provide a visualisation of the data in a reduced dimensional

form and see if our groups defined by infection status differ and whether we can

potentially identify any individuals who may be asymptomatic.

Figure 3.7 illustrates the first two principal components for the experimental

results from 2015 for IgG ELISA, Marburg ELISA, neutralisation assay and GP

IFN-γ ELISpot. The first two principal components account for 81.2% of the total

variance within the data. Using Kaiser’s rule would keep only the first principal

component. As seen from Figure 3.7, two distinct groups are being formed within

the data. The first group is individuals infected with the virus, and the second

is uninfected individuals, which is made up primarily of contacts and negatives.

The significant difference in these two groups comes from a shift in the negative

direction in the first principal component, and a slight shift in the negative in

the second principal component. The first two principal components account for

approximately 90% of the total variance for GP IFN-γ ELISpot and IgG ELISA.

In comparison, they only account for around 70% of the variance generated by the

Marburg ELISA and neutralisation assay. The correlation circle in Figure 3.8 also

shows a strong correlation between the neutralisation assay and both the Marburg

ELISA and IgG ELISA and a weaker correlation between the GP ELISpot and

neutralisation assay and Marburg ELISA. This makes sense since the Marburg

ELISA and neutralisation assay measure humoral responses. There is, however,

no correlation between the IgG ELISA and the GP ELISpot experiments.

Upon closer examination of Figure 3.7, it can be seen that there are four

individuals labelled as contacts (blue circles) who lie outside the 95% confidence

region. Two more individuals lie close to the boundary. The raw data shows these

individuals have patient IDs C017, C086, C098, C110, G012, G034 who are all

labelled as contacts of confirmed infected individuals. It is possible that these

individuals were actually asymptomatic and therefore did not seek treatment

for EBOV disease. Since the first two principal components represent all four

experimental outputs, these contacts will likely have immune responses to EBOV

if these are examined. They, therefore, will have circulating antibodies and T-cell
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Figure 3.7: PCA defined by infectious status, considering IFN-γ ELISpot result

in response to EBOV GP, neutralisation assay, IgG ELISA and Marburg ELISA

for 2015 samples. The first PC accounts for 62.5% of the total variance, while the

second accounts for 18.1%. Ellipses represent a 95% confidence region.

responses against EBOV. To investigate this, it is worth looking at each experiment

on a uni-variate level and seeing if these individuals have immune responses since

if they are, in fact, not infected, they should not produce an immune response.

The uni-variate box plots are shown in Figure 3.9.

From Figure 3.9, it can first be seen that for contacts, GP ELISpot and IgG

ELISA that there are no individuals marked as outliers, and hence do not fall

outside the overall pattern of the distribution. However, when the neutralising

antibody response and Marburg ELISA are examined, there are seven people and

six people, respectively, that lie outside the pattern of the distributions. When the

patients’ IDs are retrieved from the raw data, the six individuals with the highest
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Figure 3.8: Correlation circle for the four experimental outputs shown in

Figure 3.7. The angle between variables represents the correlation of variables

with the line length from the origin representing the quality of representation.

The PCs in this figure match those presented in Figure 3.3.

neutralising antibody levels and the six individuals in the Marburg experiment are

the same six individuals found during the PC analysis. All this evidence suggests

that these six individuals are not negative contacts but instead asymptomatic

individuals. Within this cohort, this would mean that 3.7% of individuals with

recorded values in 2015 are asymptomatic, which is consistent with the results

found by Glynn et al. (2017).

3.1.3 Longitudinal responses

The main reason for this study was to investigate the longitudinal responses of

the same group of individuals over several years. Data is available for 2015-2019;

however, to best understand the longitudinal effects, it is sensible to use the same

set of individuals and examine the trends in their immune response. To maximise
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Figure 3.9: Uni-variate plots for each experiment performed in 2015 considered

in Figures 3.7 and 3.8, where groups are defined by contact status. Statistical

significance was determined by the Wilcoxon–Mann–Whitney test with Bonferroni

adjustment (ns, not significant; *p < 5× 10−2 **p < 10−2; ***p < 10−3; ****p <

10−4).
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the number of individuals that can be used in the study, 2018 results are excluded

due to the lack of samples supplied this year. Including 2018 and only using those

individuals who provided a sample for all years would result in only 30 people

to study. Meanwhile, if 2018 is excluded, 84 individuals are available to explore

the trend in response. This is only true for the neutralisation assay and Marburg

ELISA results, while for GP ELISpot data, there are only 57 individuals with

complete experimental data between 2015-2017.

Figure 3.10a shows the longitudinal immune responses for the 57 individuals

who provided a complete set of samples between 2015 and 2017. As can be seen

from this figure, there is a lot of heterogeneity in responses, but for the most

part, most people are exhibiting an increase in IFN-γ production over time. Since

IFN-γ is an indicator of T-cell responses, this implies that the T-cell response is

increasing over time. To verify this, a linear mixed effects model was fitted to the

data, the results of which are shown in Figure 3.10b. The random effect was placed

on the individual’s response, and the link between time and IFN-γ production and

hence T-cell response was assessed. The linear mixed effects model results returned

a slope gradient with value 0.11 (to two decimal places) with p-value 1.98× 10−3.

Since the gradient of the slope is very shallow, it suggests that infected survivors

will see an increase in T-cells that can respond over time, and the ELISpot assay

should increase at 1.28 SFU per year. Most of the increase occurred between 2016

and 2017, with T-cell responses strengthening. This could be due to further T-cell

expansion or further development of the memory T-cells (Jameson & Masopust,

2009).

Adaken et al. (2021) reported a decline in neutralising antibody titres, while

Davis et al. (2019) reported a decline in IgG antibody responses to EBOV with

time. This is due to antibody decay, and in general, decay has been noted for

several viruses, including SARS-CoV-2 (Xia et al., 2021). Within this study,

both neutralising antibodies (neutralisation assay) were investigated along with

IgG antibodies (Marburg ELISA), and it is worth investigating whether, for this

cohort, the current data agrees with the findings by Adaken et al. (2021) and

Davis et al. (2019). Figure 3.11a illustrates the longitudinal responses for the 87

individuals who provided samples for 2015 through 2019 with 2018 excluded. As

can be seen from this figure, most individuals are experiencing a decrease in their
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Figure 3.10: GP ELISpot results in log10 SFU. (a) Individual immune responses

for patients with complete data for 2015 through 2017, where joined points is

data from one person. (b) Linear mixed effects model fit for complete cases. The

mixed effect was placed on the individual; the year was a fixed effect. The shaded

area represents a 95% credible region for the fit.

antibody levels, and this decay rate depends on the individual. A linear mixed

effects model was fitted to the Marburg ELISA data to determine the population

decay rate while considering this individual variation. Figure 3.11b shows the fit

from this analysis. The linear mixed effects modelling results, where the random

effect was placed on the individual, revealed that the population level gradient

is −0.023 with p-value 2.73× 10−9. This suggests that, on average, an infected

survivor’s IgG antibody response will decrease at 0.94 AEU per year. Hence, as

also found by Davis et al. (2019), the IgG antibodies are decaying; however, this

is slow, according to the data in this study.

Figure 3.12 illustrates the results from neutralisation assays to EBOV for 2015

to 2019, whereas before 2018 is excluded to maximise the available data. The box

plots in Figure 3.12 appear to be suggesting, as with the IgG antibody response,

that they are decaying. However, the responses for 2015 were lower than in 2016,

2017 and 2019. As mentioned in the previous sections, this could be because a

large number of individuals in the cohort for 2015 had not had enough time to
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Figure 3.11: Marburg ELISA results in log10 AEUs. (a) Individual immune

responses for patients with complete data for 2015 through 2019, where joined

points is data from one person. 2018 is excluded to maximise available data (b).

Linear mixed effects model fit for complete cases. The mixed effect was placed

on the individual; the year was a fixed effect. The shaded area represents a 95%

credible region for the fit.

develop an effective neutralising antibody response. For this reason, to assess

whether neutralising antibodies are decaying, only 2016, 2017 and 2019 will be

used to investigate the population’s average decay. Figure 3.13 illustrates both

the longitudinal responses for each individual (3.13a) along with the linear mixed

effects model fit (3.13b). As seen from Figure 3.13a, there is a lot of heterogeneity

in neutralising antibody responses, but most individuals see a reduction in their

neutralising antibody levels. This is supported by Figure 3.13b from which the

model fit provides a population average decay of 0.79 GMT per year with a p-value

of 2.43× 10−7. Hence, for our cohort, both IgG and neutralising antibodies are

decaying in agreement with Adaken et al. (2021) and Davis et al. (2019). However,

it is worth noting this rate of decay is very slow. Since it has been previously found

that survivors after 40 years still have detectable antibody titres (Rimoin et al.,

2018), likely, this decay is not linear and perhaps asymptotic. With additional

data it would be possible to investigate the true trend of the decay.
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Figure 3.12: Neutralisation assay boxplot in log10 GMT from 2015 through until

2019.

3.1.4 Human leukocyte antigen analysis

As mentioned in Chapter 1, one of the unique parts of this study was the genetic

component, particularly investigating associations with human leukocyte antigens

and different immune responses. There have been several studies that have

investigated the role of HLA on disease outcomes. Kiepiela et al. (2004) studied

the effects of HLA-A and HLA-B on mediating HIV responses, while Boon et al.

(2002) found that HLAs mediate the magnitude and specificity of CD8 T-cell

responses to influenza virus. In this section, two questions are to be investigated.

The first question is whether HLA type affects the production of IFN-γ and hence

the T-cell response; secondly, whether there are any regional differences in HLA

expression between Coyah and Gueckedou.

HLA type and the association with IFN-γ

IFN-γ is produced by CD8 and CD4 T-cells in response to infection as found

by both Gazzinelli et al. (1991) and Thom et al. (2021). However, in the case
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Figure 3.13: Neutralisation assay results in log10 GMT. (a) Individual immune

responses for patients with complete data for 2016 through 2019, where joined

points is data from one person. 2018 is excluded to maximise available data. 2015

is also excluded as an effective neutralising antibody response may not yet have

been formed. (b) Linear mixed effects model fit for complete cases. The mixed

effect was placed on the individual; the year was a fixed effect. The shaded area

represents a 95% credible region for the fit.

of EBOV, it was found by Thom et al. (2021) that CD8 T-cells produce the

majority of IFN-γ during infection. As a result, class I alleles will be investigated

in conjunction with the IFN-γ ELISpot data to see if there is any association

between HLA alleles and the amount of IFN-γ produced and, therefore, CD8

T-cell activity. Additionally, since the different subunits of the GP were also

tested, associations within specific GP subunits and HLAs can also be investigated.

In addition to the statistical analysis that may inform that a particular HLA

gives a differential response in a given subunit, the Immune Epitope Database

(IEDB) can be used to estimate the probability that a specific HLA can bind to

the epitope associated with a viral protein to allow antigen presentation to T-cells.

For each HLA allele, IEDB returns a score from 0 to 1, where 1 is the best score,

representing the binding probability. This is the probability of the HLA binding

to a region on the protein. For the following analysis, 108 individuals were used
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from 2016 who had complete GP ELISpot results and had their HLA typed to

allow maximum data.

Table 3.3 shows the alleles, with respect to each subunit of the GP, associated

with a significant difference in IFN-γ production in individuals that expressed

it, compared to those who do not. The reported p-value is before correction.

The SP subunit has five alleles that are statistically significant before correction.

These alleles are B42:01, C17:01, A23:01, A01:02 and A34:02. All alleles except

A01:02 show higher median levels of IFN-γ in individuals who express this allele

compared to those without. From IEDB, binding predictions for these alleles,

with respect to the SP subunit genome, found that all the HLA A alleles were

found to be poor binders to the SP proteins with scores of < 0.40, while B42:01

and C17:01 are both in the top 3 B and C alleles, respectively (scores of 0.89 and

0.83, respectively).

For the GP1-1 and GP1-2 subunits, individuals who expressed A80:01 have

higher levels of IFN-γ from ELISpot assays with medians of 85.83 and 158.33 SFU

for GP1-1 and GP1-2 respectively. However, binding predictions suggest that this

allele is a poor binder for GP1-2 with a score of 0.26. While for GP1-1, it is in the

top 20 potential binding alleles with a score of 0.52. GP1-1 additionally has A26:01,

which is not only a top binder with a score of 0.71 but also has individuals who

express this allele having three times higher median SFU, 85.83 SFU compared to

22.50 SFU. GP1-2 also has an additional allele B15:03 which results in an almost

50% increase in IFN-γ (62.50 SFU versus 42.22 SFU) compared to those who

do not present this allele. The GP1-3 subunit has alleles B15:16, C14:02 and

A33:01 that are all associated with a higher level of IGN-γ in ELISpot assays

compared to those who do not express the allele. Within the HLA C type, C14:02

is the best-predicted binder for the region with a score of 0.79, while A33:01

is in the top 10 with a score of 0.92, and B15:16 is only in the top 20 with a

score of 0.59. A23:01 is a poor binder with a score of 0.4, resulting in almost

a three times reduction in IFN-γ production compared to people lacking this

allele. GP1-4, like GP1-3, has three alleles that are associated with better IFN-γ

responses: C03:02 (92.5 SFU versus 35 SFU), B58:01 (95.69 SFU versus 35.83)

and A26:01 (61.94 versus 37.07). Meanwhile, C16:01 is associated with a lower

level of IFN-γ compared to those without. From binding predictions, B58:01 is
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Region Allele Median with Median without p -value IEDB Score

SP B42:01 51.67 5.69 1.6×10−4 0.83

C17:01 27.78 6.25 0.005 0.42

A23:01 20.83 5.56 0.009 0.41

A01:02 0.28 9.72 0.014 0.13

A34:02 53.89 7.36 0.017 0.36

GP1-1 A26:01 69.70 22.36 0.021 0.71

A80:01 85.83 22.50 0.025 0.52

GP1-2 A80:01 158.33 42.50 0.013 0.26

B15:03 62.50 42.22 0.017 0.58

GP1-3 B15:16 165.56 17.50 0.004 0.59

C14:02 165.56 17.50 0.004 0.92

A33:01 39.17 14.44 0.005 0.40

A23:01 8.89 22.5 0.021 0.79

GP1-4 C03:02 92.5 35.00 0.001 0.35

B58:01 95.69 35.83 0.002 0.28

C16:01 27.36 47.64 0.004 0.95

A26:01 61.94 37.08 0.038 0.18

GP1-5 C07:01 1.67 0.83 0.028 0.12

A30:02 2.78 0.83 0.046 0.07

B51:09 12.78 0.83 0.046 0.06

GP1-6 A26:01 63.89 5.00 0.016 0.52

A03:01 0.83 6.67 0.026 0.54

A30:01 19.17 5.00 0.029 0.05

GP1-7 B:49:01 19.44 7.50 0.005 0.39

A02:05 21.39 7.50 0.008 0.46

C17:01 17.78 7.50 0.015 0.41

A34:02 2.22 9.44 0.035 0.49

C06:02 4.79 10.00 0.045 0.05

GP2-1 B58:01 30.42 7.92 0.005 0.99

B07:02 3.33 11.67 0.0499 0.26

GP2-2 A29:02 82.78 8.06 0.037 0.07

Table 3.3: Alleles found to have significant difference before correction by Mann-

Whitney U test for ELISpot IFN-γ, with respect to each GP subunit. Median

ELISpot SFU expression with and without the allele is presented. Bold font

indicates significance after correction for multiple comparisons using Bonferroni’s

method at a 5% significance level.
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the second best for the B alleles with a score of 0.95, while the A and C alleles are

all poor binders with scores < 0.4. This supports the idea that expressing C16:01

negatively impacts IFN-γ production since it cannot bind to the GP1-4 region

and express this for T-cell recognition.

Within the GP1-5 region, there are three alleles identified. However, as seen

from Table 3.3, the SFU expression is low compared to many other GP subunits.

All three of these alleles are poor binders to the GP1-5 subunit with scores < 0.2;

hence, this could explain the poor responses in this region. Three alleles are

significant before correction with respect to the GP1-6 region: A30:01, A03:01

and A26:01. While A30:01 and A03:01 are average binders with scores ≈ 0.5,

A26:01 is a poor binder with a score of 0.05. However, individuals who possess

A26:01 express over ten times the SFU for IFN-γ compared to those who do

not. There could be additional biological reasons for this that the HLA does not

explain. GP1-7 has three alleles associated with higher responses in individuals

who express it. B49:01, A02:05 and C17:01 are all in the top 20 binders for each

HLA categorisation. C06:02 is identified as a poor binder with a score of 0.05,

which explains the lower expression than those who do not express it. Meanwhile,

A34:02 had a low binding score of 0.4, which explains the poor response in

individuals who express this allele. GP2-1 has one allele, B58:01, associated

with increased responses by those who possess it with a median value of 30.42

SFU compared to 7.92 SFU. IEDB binding predictions suggest this allele is a

suitable binder with a score of 0.99. Meanwhile, B07:02 is a poor binder with

a score of 0.26. As in several other cases, individuals who express this allele

have lower IFN-γ production than those who do not possess the allele (median

3.33 SFU with versus 11.67 without). GP2-2 has one allele that is associated

with an almost ten times increase in IFN-γ (82.78 SFU for individuals with

compared to 8.06 SFU without A29:02). However, this allele was identified to

be a poor binder, so, as with A26:01 there could be additional biological reasons

for the high SFUs. While these relations are significant before correction after

applying Bonferonni’s correction method, only one allele association with IFN-γ

in ELISpot assays remains significant, and that is for the SP subunit and allele

B42:01. However, with a larger sample size, it may be possible that associations
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found before correction hold. Finally, additional data would allow one to study

the association of pairs of HLAs and their effect on immune responses.

HLA frequency in different regions

I now examine differences in allele frequencies between the two locations. These

are summarised below in Table 3.4. This table shows upon initial inspection that

several alleles are expressed in higher frequencies in one population compared

to another. In particular, A23:01, A30:01, B53:01 and C17:01 and C06:02. A

two-proportion Z-test to examine whether these observed frequency proportions

can be considered different. This test determines whether the two proportions

are different with a null hypothesis that the proportions are identical. Further

details on calculating this statistic can be found in Agresti (2012). Performing

the two-proportion Z test on the previously mentioned alleles, with a significance

level of α = 0.05, shows A30:01 (p-value 0.0065) and B42:01 (p-value 0.045) are

the only two alleles whose differences are statistically significant. The remaining

alleles A23:01 (p-value 0.26), B53:01 (p-value 0.30), C17:01 (p-value 0.061) and

C06:02 (p-value 0.11) are all statistically insignificant, and hence their proportion

of expressed alleles are marginally different.

3.1.5 Discussion

In this subsection, I investigated the immune responses of EBOV survivors and

close contacts from the 2014 West Africa outbreak in a longitudinal cohort

study undertaken by Public Health England (now known as the UK Health

Security Agency). Previous studies have investigated the humoral responses to

EBOV, such as that presented by Baize et al. (1999) for survivors and fatalities.

Furthermore, several studies have investigated the differences in T-cell response

between fatalities and survivors and found that a broad T-cell diversity correlates

with survival (Speranza et al., 2018). However, few studies have investigated

the longitudinal responses of survivors after infection. Public Health England

endeavoured to carry out a longitudinal study of immune responses for survivors

of EBOV infection by recruiting participants from EBOV treatment centres to
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HLA-A C G HLA-B C G HLA-C C G

A02:01 0.143 0.163 B53:01 0.174 0.123 C04:01 0.197 0.235

A23:01 0.136 0.098 B35:01 0.129 0.180 C16:01 0.190 0.227

A03:01 0.041 0.065 B42:01 0.100 0.025 C07:01 0.127 0.109

A30:01 0.109 0.024 B15:03 0.100 0.066 C17:01 0.092 0.033

A30:02 0.068 0.114 B78:01 0.075 0.066 C02:10 0.070 0.059

A02:02 0.061 0.049 B58:01 0.075 0.066 C06:02 0.070 0.025

A33:03 0.061 0.049 B07:02 0.053 0.098 C03:02 0.056 0.059

A34:02 0.054 0.049 B08:01 0.038 0.033 C03:04 0.035 0.034

A68:02 0.054 0.089 B45:01 0.045 0.057 C07:02 0.035 0.076

A33:01 0.048 0.073 B18:01 0.045 0.008 C01:02 0.035 0.000

A74:01 0.048 0.041 B49:01 0.045 0.008 C05:01 0.028 0.008

A26:01 0.041 0.016 B56:01 0.030 0.000 C02:02 0.014 0.025

A01:02 0.027 0.024 B44:03 0.015 0.049 C14:02 0.014 0.008

A68:01 0.027 0.033 B27:03 0.023 0.057 C18 0.014 0.017

A02:05 0.020 0.024 B52:01 0.023 0.025 C03:03 0.007 0.025

A01:01 0.020 0.024 B57:03 0.023 0.000 C15:05 0.007 0.025

A66:01 0.014 0.008 B51:01 0.015 0.016 C08:04 0.007 0.000

A66:02 0.007 0.008 B15:16 0.015 0.008 C16:112 0.000 0.008

A24:02 0.007 0.000 B51:09 0.015 0.000 C08:02 0.000 0.025

A29:02 0.007 0.008 B82:01 0.015 0.008

A31:01 0.007 0.000 B27:05 0.008 0.000

A80:01 0.000 0.033 B50:01 0.008 0.016

A32:01 0.000 0.008 B40:02 0.008 0.000

B51:02 0.008 0.000

B15:10 0.008 0.016

B41:02 0.000 0.008

B14:02 0.000 0.008

B44:10 0.000 0.016

B35:08 0.000 0.008

B07:05 0.000 0.008

B57:02 0.000 0.008

B78:02 0.000 0.008

B14:01 0.000 0.008

Table 3.4: Summary of relative proportions of which HLA alleles appear amongst

the two regions in the cohort. C=Coyah, G=Gueckedou.
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provide repeated yearly blood samples to investigate both antibody response and

IFN-γ production, a marker of T-cell responses.

Within this study, there are two regions of interest where samples were collected.

This first location is Gueckedou which, as discussed by Simon-Loriere et al. (2015),

was the site of the incident case that resulted in the outbreak, and Coyah, another

city located 385 miles to the west. Due to the proximity of these cities to the

border with Sierra Leone and because there were three distinct lineages of EBOV

circulating during the outbreak (Carroll et al., 2015), it is possible that individuals

in these two regions mount different responses to EBOV. To investigate this, the

IFN-γ response to the glycoprotein was investigated between the two regions. It

was shown for 2015 that the responses from Gueckedou were higher than those

from Coyah. However, as the longitudinal data is examined, it was revealed

that the only statistically significant differences in responses corresponded to the

GP subunit GP1-6 for 2016 and 2017. The most likely reason for the difference

in responses in 2015 is that the infections from Coyah are more recent than

Gueckedou, and hence the adaptive immune response has not yet matured since

IFN-γ is a marker of T-cell response. However, the limited information on first

infections makes it impossible to confirm this hypothesis fully. The difference in

GP1-6 subunit response in 2016 and 2017 could be explained by better sequence

similarity between the Kitwit variant used for ELISpot experimental testing of

immune responses and the circulating strain present in Coyah. However, without

sequences from the individuals in both Coyah and Gueckedou, it is impossible

to identify similarities between strains using sequence alignment methods and

determine whether they were exposed to different strains that may explain the

difference in response to this GP subunit.

Within the cohort, individuals are classified according to infection status:

survivor, contact, and negatives. Survivors were confirmed from either treatment

centre databases or by the individuals supplying their EBOV survivor certificates.

Contacts are individuals who have come into close contact with an infected person

but presented with no symptoms. The principal component analysis showed that

six individuals could be potentially asymptomatic contacts, with four lying outside

the 95% confidence ellipse. Upon closer inspection of these individual responses, it

was found that these six individuals had not only IgG antibodies in response to the
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whole inactivated EBOV but also expressed neutralising antibodies. Since negative

controls do not express any antibodies or a meagre amount, this expression by

these six individuals is evidence of an asymptomatic immune response to EBOV.

In total, these 6 individuals account for 3.7% of individuals with results in 2015

that are asymptomatic. These results are consistent with Glynn et al. (2017), who

also found evidence of asymptomatic individuals in a separate cohort.

As mentioned in the introduction to this section, the main goal was to assess

the longitudinal immune responses of individuals who have been infected with

EBOV and survived. A previous study by Rimoin et al. (2018) found detectable

antibody response 40 years after infection with EBOV, which provides evidence

that antibodies can respond to repeated exposure to EBOV. Within the cohort

presented here with data from survivors, it was shown that antibody responses

were decreasing in magnitude, which is an indicator of antibody decay. It was

demonstrated for both neutralising antibodies and the IgG isotype that the gradient

at the population level was negative. In particular, the results for the Marburg

ELISA to test for IgG antibodies had a gradient of −0.023, which correlated

with a decrease of 0.94 AEU per year. Meanwhile, neutralising antibodies had

a gradient of −0.0998, which gives a reduction of 0.79 GMT per year. This

supports the idea that antibody decay and immune responses will weaken over

time, citeadaken2021ebola and Davis et al. (2019) both found similar results.

However, since the data is only from several years of observations, it is not

apparent whether this decay is linear or follows a different curve. Furthermore, it

was also shown that there was an increase in IFN-γ responses over time, with a

rise of 1.28 SFU per year. Since it was demonstrated that IFN-γ is predominantly

associated with CD8 T-cells (Thom et al., 2021), this could indicate that CD8

T-cells are increasing. However, due to the scale being in years, it is more likely

that the T-cell memory repertoire is growing rather than the T-cell effector pool.

Finally, a genetic component of immune responses was also examined, particu-

larly HLA association with IFN-γ responses. Thom et al. (2021) showed that in

EBOV infections, it was mainly CD8 T-cells that expressed IFN-γ, the Type I HLA

alleles were investigated against the ELISpot data for each GP subunit. Before

correction for multiple comparisons, various HLA alleles were associated with

either increased IFN-γ production by those who expressed the allele compared to
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those who did not. After correction, however, there remained only one allele that

was statistically significant in response to stimulation of the SP region. Individuals

who expressed B42:01 expressed a higher median level of IFN-γ at 51.67 SFU,

compared to 5.69 SFU for those who do not possess the allele. This indicates that

individuals possessing this allele may have a better T-cell response than those who

do not. With extra data, it is possible that associations found before correction

would hold after correction, but this cannot be confirmed without additional

data. Furthermore, it was shown that there is a regional difference in the alleles

expressed. A30:01 and B42:01 are expressed in higher proportions in Coyah than

in Gueckedou. However, the small sample size of the cohort is worth mentioning,

which may not represent the actual distribution of alleles in different regions.

There are several limitations of the study that has been presented here that

should be mentioned. The first issue is the inconsistency in recorded data. Many

individuals have missing fields within the data, such as age, date of entry into a

treatment clinic, missing genders and date of first positive result. A lot of this

demographic and date information would have allowed for detailed investigation

into the longitudinal responses since, for example, knowing all patients’ first

positive sample date would have allowed experimental results to be aligned for

better comparisons considering time from diagnosis. Furthermore, many patients’

missed one or more time points throughout the study, which led to reduced data,

and hence a reduction in the conclusions’ power since sample sizes were reduced

and inconsistent from year to year. In addition to missing data, there was a

change in experimental design between 2015 and 2016, where the standard of

IgG antibody detection for the GP was changed to meet WHO standards. Hence,

this data is not comparable due to different units. Another limitation of this

study is the lack of fatal patient data. While there have been many studies that

investigate the difference in fatal and survivor data, such as those by Speranza

et al. (2018) and Colavita et al. (2019), it would have been interesting to have

consistent experimental methods to allow comparison of the two cases within the

one cohort study. A final limitation of this study is the overall population size.

Since immune response are heterogeneous, and there are a wide array of alleles

for HLA, the size of the population needs to be large such that the statistical

analysis holds more weight. An increase in the population size would allow for
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more powerful conclusions to be made and, in the case of the HLA analysis, would

possibly show more associations to be statistically significant after correction.

Additionally, more data would allow comparing pairs of HLA alleles to see if pair

expression affects immune responses.
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3.2 St Jude Children’s Research Hospital SARS-

CoV-2 trace study

In March 2020, the World Health Organization declared SARS-CoV-2 a “public

health emergency of international concern” after cases rapidly spread to 113

countries. This outbreak was soon reclassified as a global pandemic leading many

countries to implement lockdown strategies to slow the spread of the virus, reduce

cases and ease pressure on health and social care providers (Tob́ıas, 2020). However,

many countries delayed implementation of lockdown procedures, supply shortages,

and poor knowledge of transmission dynamics led to most social and healthcare

settings being overwhelmed (Li et al., 2020a). Additional stress was added by

staff becoming infected, isolating due to exposure, or being overworked. These

compounding factors led many hospitals to implement strict testing regimens to

reduce transmission among staff and patients. This prompted St Jude Children’s

Research Hospital in Memphis, Tennessee, United States of America, to begin a

longitudinal study to understand host responses to SARS-CoV-2. Much of this

work is already published in Lin et al. (2022).

SARS-CoV-2 induces a wide range of responses from infected individuals, with

some experiencing mild to moderate disease or being asymptomatic while others

have severe respiratory distress that can lead to death. One of the unanswered

questions is the impact of previous exposure to human common coronaviruses

(hCCoV) on susceptibility and disease severity of SARS-CoV-2. As discussed in

Chapter 1 there are four circulating strains of hCCoVs that account for ≈ 30% of

all “common cold” infections and share a ≈ 30% sequence homology in the spike

protein (Hicks et al., 2021). Other studies have found cross-reactive antibodies

between hCCoV and SARS-CoV-2; however, little investigation has taken place to

understand whether this is beneficial or detrimental to SARS-CoV-2 infection (Ng

et al., 2020; Sealy & Hurwitz, 2021). Therefore, it is essential to investigate the

effects of pre-existing antibody responses of hCCoV on SARS-CoV-2.

Current investigations into pre-existing antibody responses have yielded mixed

and often opposing results, which requires clarification. Some studies, such as

those from Dugas et al. (2021), showed an increase in hCCoV antibodies was

associated with milder disease, while Shrock et al. (2020) and Aydillo et al. (2021)

70



3.2 St Jude Children’s Research Hospital SARS-CoV-2 trace study

found the opposite. These studies, however, lacked baseline measurements, so

they did not account for any change in antibody levels after infection. For these

reasons, St Jude Children’s Research Hospital wanted to investigate antibody

levels for SARS-CoV-2 and hCCoV with baseline samples presented. In the

following work, I will explore the relationships between hCCoV and SARS-CoV-2

to try and infer whether pre-existing responses affect the severity and SARS-CoV-2

antibody responses. Additionally, I will examine how demographic differences

could correlate with differences in hCCoV antibodies, such as race, gender and

age. Finally, I will examine antibody response differences between vaccinated and

infected individuals.

3.2.1 Data summary

A summary of the data is as follows. The St. Jude tracking of viral and host

factors associated with COVID-19 study (SJTRC), is a longitudinal study of

adult employees at St Jude Children’s Research Hospital. Participants provided

written consent for their participation and a completed questionnaire relating to

their demographic information and medical history. Upon enrolment, a baseline

blood sample was taken along with a nasal swab to determine infection status

by PCR. Subsequent weekly nasal swabs were taken when participants were on

campus to check for new infections. For individuals that tested positive, additional

blood samples were taken within two weeks (acute sample) and then three to

eight weeks (convalescent sample). Newly infected individuals also answered a

questionnaire on their symptoms every two weeks post-infection. Some individuals

would also provide post-convalescence samples for extra analysis sometime after

eight weeks. These samples allowed for investigating immune responses before

and after infection with SARS-CoV-2. Vaccinated individuals provided additional

samples after the first vaccination and then three to eight weeks after the second

vaccination. Due to the study’s timing, very few individuals received an additional

booster vaccine. For any analysis that examines differences in natural infection

against vaccination, individuals who had a vaccination and an infection were

removed, and in total, 1266 individuals participated in the study with varying

degrees of patient interaction.
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Blood samples allowed the analysis of several different immunological and

genetic markers. An enzyme-linked immunosorbent assay (ELISA) was undertaken

for every individual’s blood sample to detect antibodies against human common

coronaviruses (hCCoV) spike protein. This was undertaken with respect to the four

current endemic strains of hCCoV:, hCCoV-NL63, hCCoV-HKU1, hCCoV-229E

and hCCoV-OC43, with three types of antibodies to be detected. These antibody

types are immunoglobulin (Ig) M, IgG and IgA. The same antibodies were typed

for SARS-CoV-2, but responses were measured for the spike protein, receptor

binding domain (RBD), and nucleocapsid protein (N). All antibody results were

reported in normalised optical density (OD). However, very few samples from

baseline measurements were investigated against SARS-CoV-2; most data comes

from either post-vaccine or post-infection samples. A more detailed explanation

of the experimental methods can be found in Lin et al. (2022). Different cytokines

were also investigated using a cytometric bead array (CBA), a flow cytometry

application that allows users to quantify multiple proteins simultaneously. However,

this data will not be analysed in the work that follows. Many of the samples failed

to reach the threshold detection value. As such many samples were reported with

a minimum detection threshold value, which does not provide reliable information

for analysis.

Before investigating the immunological data, it is worth providing a summary of

the demographic data collected by St Jude. Overall, there were 1266 participants,

with 932 (74%) being female and 334 (26%) being males. The average age of all

participants is 43.8 (SD 12.02) years, with the most senior being 83 years and the

youngest 20 years. Amongst females, the average age is 43.5 (SD 11.9) years, with

the most senior female participant being 78 years, for male the average age is 44.5

(SD 12.3) years, with the oldest male 83 years. For both genders, the youngest

participant was 20 years. The cohorts average body mass index (BMI) is 27.56

(SD 6.07), with males having an average of 27.28 (SD 4.89) and females 27.67 (SD

6.45), the largest recorded BMI amongst females is 58.35 compared to the males

maximum 54.64. Within this cohort, 979 reported themselves as non-Hispanic,

white, Caucasians, with 32 reporting as Hispanic, white, Caucasians and five

labelled as “Other”, white Caucasian. There are also 116 Asian individuals, 103
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black individuals, one person of American Indian or Alaska Native descent and 32

individuals of unknown race. 41 people self-reported as immunocompromised.

3.2.2 Antibody response

In Chapter 1, it was stated that SARS-CoV-2 is a member of the same family as

human common Coronaviruses (hCCoV) and, in particular, is of the same linage

of hCCoV-HKU1 and hCCoV-OC43 which are all β-coronaviruses. It is unclear

whether pre-existing immune responses to hCCoV protect against SARS-CoV-2

infection (Sealy & Hurwitz, 2021). One may expect that antibodies to hCCoV

could provide additional support in eliciting an effective immune response to

SARS-CoV-2 infection if antibodies express cross-reactivity amongst viral strains.

However, if there is insufficient cross-reactivity of antibodies, expansion of the

hCCoV antibodies could hinder the formation of effective SARS-CoV-2 antibodies.

Previous studies have reported conflicting information on the hCCoV antibody

responses. Some studies, such as those from Dugas et al. (2021), showed no increase

in hCCoV antibodies, while Shrock et al. (2020) and Aydillo et al. (2021) reported

an increase in one or more hCCoV antibodies after SARS-CoV-2 infection. The

previously mentioned studies, however, may express inconsistencies in their results

due to not having a baseline measurement before infection with SARS-CoV-2.

This factor can be overcome in the study presented here since both a baseline and

post-infection or vaccination exist.

Before investigating the differences in endemic hCCoV, it is worth examining

if there is cross-reactivity between the four hCCoV viruses. Figure 3.14 illustrates

correlations between the four hCCoV viruses studied and three antibody isotypes:

IgG, IgA and IgM. What is interesting to note is that there are not only positive

correlations between alpha and beta coronaviruses but also, in general, correlations

between all four hCCoV in a given isotype. For example, OC43 for IgM has a

strong positive correlation with HKU1 and 229E and NL63. These correlations

within isotypes, rather than between viruses, suggest there is cross-reactivity

among hCCCoV-specific antibodies, with a higher degree of cross-reactivity in the

IgM response followed by IgA then IgG. This is in agreement with the findings of

Poston et al. (2021).
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Figure 3.14: Correlations between endemic hCCoV viruses for isotypes IgG,

IgM, and IgA using baseline samples. Correlations calculated using Spearman

correlation correction adjusted using Bonferroni method (*p < 5× 10−2)

Endemic hCCoV antibody isotypes in different demographics

As previously mentioned, one of the key differences between this study and others

is the availability of baseline samples to examine hCCoV responses before and after

infection and vaccination. Therefore, it is interesting to investigate the differences

in these baseline responses between different demographics. It is well known that

as we age, our immune systems go into decline; as such, one can expect a difference

in immune responses between those of an older age compared to a younger age.

As such, the cohort was classified into two groups “Younger” whose age was < 43

and “Older” with ages ≥ 43. The age of 43 was chosen as this is the median age in

the cohort. To examine the total variability caused by each antibody isotype with
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Figure 3.15: PCA for endemic hCCoV antibody isotypes for “Younger” and

“Older” groups. The first PC accounts for 28.6% of the total variance, while the

second PC accounts for 18.5%.

respect to each endemic strain of hCCoV, principal component analysis was used

to reduce the original set of 12 experimental variables into a new set of 12 principal

components. This will allow one to visualise any difference within responses of

the age classes. Figure 3.15 represents the first two PCs, accounting for 28.6%

and 18.5% of the variance, respectively. Using Kaiser’s rule, the first four PC

would be kept, accounting for 72.4% of the total variance in the data. Figure 3.15

shows that the two groups do not appear to differ significantly, with the “Older”

classification having a shift to the right in PC-1 and a shift downwards in PC-2.

This may imply some differences in the responses between these groups. However,

it is important to understand what these two PC represent. Figure 3.16 shows

the proportion of each original hCCoV antibody isotype that each PC represents.

As can be seen from Figure 3.16, the first principal component predominantly
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Figure 3.16: Representation proportion for each baseline hCCoV antibody

isotype experiment with respect to each PC.

represents hCCoV antibodies with respect to isotype IgM, while PC-2 and PC-3

represent isotypes IgA and IgG, respectively. Therefore, the shifts exhibited in

Figure 3.15 could represent differences in responses to these isotypes.

To investigate these differences, it may be more beneficial to consider these sets

of experiments at the uni-variate level. Figure 3.17 shows box plots comparing the

differences between the immune responses of the two age groups for each isotype.

From Figure 3.17, we conclude that older individuals have significantly higher

responses for antibody IgA for strains 229E (p-value < 0.001), HKU1 (p-value

< 0.0001), and NL64 (p-value < 0.0001) but not OC43. Conversely, younger

individuals show higher levels of isotype IgM for all hCCoV viral strains. This

could be explained by the fact that IgM is the first isotype produced (Janeway Jr

et al., 2001), so younger individuals who have not had repeated exposure to

hCCoV will have higher levels of IgM than of other isotypes. It has also previously
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been shown by Gorse et al. (2020) that older individuals express higher levels of

antibodies for hCCoV than younger individuals due to repeated exposure. This

also would help explain the differences in hCCoV antibody responses.

Gender and race may also be contributing factors in antibody responses to

hCCoV. Figure 3.18 presents box plots comparing responses between female

and male individuals in the cohort with baseline hCCoV samples. The plots in

Figure 3.18 show that females presented significantly higher titres of antibodies of

isotype IgM for all four hCCoV strains. Additionally, females also expressed higher

levels of IgA antibodies with respect to strains OC43 and NL63. Males presented

higher levels of antibodies for 229E (p-value < 0.01). Appendix Figure A.1

shows the difference in antibody responses between people of different races. The

predominant differences in responses are for 229E and OC43 for IgG antibodies

and HKU1, NL63, and OC43 for IgA. Most notably, responses for Black individuals

for isotypes IgG for 229E and OC43 are lower than White or Asian, while IgA

antibodies for HKU1, NL63, and OC43 are higher than Asian or white individuals.

Since the participants of this study work in a paediatric hospital, and their

interactions are with children, this may lead to increased exposure to hCCoVs. It

is interesting to see if there is any relation between patient contact and levels of

antibodies. Figure 3.19 illustrates the differences in antibody responses compared

to the status of patient contact. It shows that participants with direct contact

had higher levels of IgM antibodies for all four strains of hCCoV, with a more

significant amount than those who had no patient contact whatsoever. Figure 3.19

also shows that direct contact could result in higher levels of OC43 IgA than those

without contact. However, there was no significant difference between individuals

with indirect contact. If this data is taken together with data on gender response,

it would suggest that younger female participants with direct contact are more

likely to have elevated levels of hCCoV IgM antibodies.

Endemic hCCoV immune response after SAR-CoV-2 infection and

vaccination

Previous studies such as those presented by Ng et al. (2020) and Ladner et al.

(2021) have shown that hCCoV antibodies cross-react with SAR-CoV-2, which
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Figure 3.17: Box plots of hCCoV antibody isotype response compared between

younger (< 43 years) and older (≥ 43 years). Statistical significance was deter-

mined by the Wilcoxon–Mann–Whitney test with Bonferroni adjustment (ns, not

significant; *p < 5× 10−2; **p < 10−2; ***p < 10−3; ****p < 10−4).
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Figure 3.18: Box plots of hCCoV antibody isotype response compared between

female and male individuals. Statistical significance was determined by the

Wilcoxon–Mann–Whitney test with Bonferroni adjustment (ns, not significant;

*p < 5× 10−2; **p < 10−2; ***p < 10−3; ****p < 10−4).
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Figure 3.19: Box plots of antibody responses between individuals with direct,

indirect or no patient contact. Statistical significance was determined by the

Wilcoxon–Mann–Whitney test with Bonferroni adjustment (ns, not significant;

*p < 5× 10−2; **p < 10−2; ***p < 10−3; ****p < 10−4).
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is illustrated as an increase in antibodies early after infection. Therefore it is

important to see whether there is any change in levels of hCCoV antibodies before

infection with SARS-CoV-2 and hence any further cross-reactivity and potential

protection from infection. To examine this, baseline samples of individuals with

no previous SARS-CoV-2 infections (n = 1100) were compared against those who

became infected during the study (n = 151). Figure 3.20 shows box plots for these

two groups. From Figure 3.20, it can be seen that for most hCCoV antibodies,

there is no significant change in the expressed levels after infection compared to

before. However, both HKU1 and OC43 for IgG are expressed in higher titres

after infection than before. Since both OC43 and HKU1 are β-coronaviruses,

this could highlight the potential cross-reactivity seen by others (Ng et al., 2020).

Furthermore, this could also mean some protection provided by hCCoV antibodies

against SARS-CoV-2 infection. It is also interesting that those individuals who

never became infected express higher levels of IgM for 229E than those who

became infected. The fact that many of the hCCoV antibodies do not change is

consistent with previous studies that show hCCoV antibodies cannot neutralise

SARS-CoV-2 (Aguilar-Bretones et al., 2021).

Within the cohort, any individual who became infected during the study was

asked to take a questionnaire regarding their symptoms and severity. Most of

the cohort reported mild-moderate disease severity, with four reporting severe or

critical severity. Previous studies such as that by Garcia-Beltran et al. (2021) have

shown that levels of IgA and IgG for SARS-CoV-2 spike and receptor binding

domain (RBD) following infection correlate with disease severity. This could be

because individuals who struggle to control the virus due to poor immune responses

will express higher viral titres. Therefore, there is greater antigen exposure, and

responses could be an additional indicator of disease severity separate from

objective self-reported severity. Consequently, it seems necessary to investigate if

antibody responses correlate with disease severity. People who had samples taken

16-40 days post SAR-CoV-2 infection, with no vaccinations, were used, such that

only naive infections were considered. Kendall rank-correlation coefficient was

used to calculate the correlation between severity scores and antigen titres and

are illustrated in Figure 3.21(A). A false discovery rate corrected p-values. The

data in this figure suggests, similar to other studies, that the level of IgG specific
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Figure 3.20: Baseline hCCCoV-normalized were compared between individuals

that became infected (n = 151) during the study to individuals that remained

SAR-CoV-2 negative (n = 1, 100) using the Wilcoxon-Mann-Whitney test and

adjusted with Bonferroni method (ns, not significant; *p < 5× 10−2; **p < 10−2;

***p < 10−3; ****p < 10−4).
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for SAR-CoV-2 spike, RBD and N protein have a weak positive correlation with

increased disease severity (p-value < 0.05 after correction). Furthermore, for IgM,

higher levels with respect to spike and RBD suggest increased severity, along with

levels of IgA for spike. This information indicates that isotypes IgG and IgM for

SARS-CoV-2 correlate with disease severity. To further investigate this, one can

examine if there are any correlations between baseline hCCoV antibody levels

and SARS-CoV-2 specific antibodies 16-40 days post-infection. The result of this

analysis is summarised in Figure 3.21(B). Notably, higher levels of OC43 IgG

before infection positively correlate with spike IgG antibodies. This information,

taken with the previous knowledge on the correlation between spike IgG and

symptom severity, indicates that OC43 may be associated with increased disease

severity.

In addition to studying correlations between hCCoV and SARS-CoV-2 antibody

levels, one can also see if there is any relation between the magnitude change

in hCCoV responses before and after infection to SARS-CoV-2. A change in

hCCoV antibodies expressed in the early period of infection could be indicative of

B-cell activation that results in the production of new antibodies. Therefore, the

percentage change before and after infection in hCCoV antibodies was calculated

for samples within the first 15 days of infection. An increase in this period

would correspond to B-cell activation. Figure 3.21(C) shows an increase in β-

coronavirus IgG, and IgA is associated with higher levels of SARS-CoV-2 IgG and

IgM antibodies in early infection. Furthermore, since SARS-CoV-2 IgG and IgM

levels are also correlated with severity, as stated earlier, this increase in magnitude

could be associated with increased disease severity. However, these increases could

also be due to the cross-reactivity of antibodies for hCCoV with SARS-CoV-2.

Since there exist correlations between the increase in β-coronavirus antibodies

and SARS-CoV-2 in the early stages of infection, potentially due to newly generated

antibodies for SARS-CoV-2 that cross-react with hCCoV, then one would expect

to see a similar trend in response post-vaccination for individuals who have

had no other previous exposure to the virus. If no such trend exists, it would

suggest that the trends seen in infected people correlate with severity rather than

cross-reactivity. Figures 3.21(D) and 3.21(E) show the relationships between SARS-

CoV-2 antigen response to hCCoV baseline measurement and hCCoV percentage
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Figure 6. Existing hCoV antibodies influence the SARS-CoV-2 antibody response. (A) 
(A) The levels of antibodies in samples taken 16-40 days after SARS-CoV-2 diagnosis (n =
123) was compared to disease severity scores as described in Figure 5. The Kendall rank
correlation coefficients are indicated in the heatmap. P-values were corrected by false
discovery rate and the coefficient numbers were marked as significance when the adjusted p <
0.05. (B-E) Pearson’s formulation was utilized to calculate the correlation coefficients, with
multiple testing correction assessed with the TestCor package between (B) the level of hCoV
antibodies in the baseline sample compared to the SARS-CoV-2 antibody levels in samples
collected 16-40 days after SARS-CoV-2 diagnosis (n=41), (C) the percent change in hCoV
antibody in samples collected between 1-15 days after SARS-CoV-2 diagnosis compared to
SARS-CoV-2 antibody levels (n=43), (D) the hCoV antibody levels in the baseline sample
compared to SARS-CoV-2 antibodies 20-85 days after vaccination with Pfizer/BioNTech
BNT162b2 (n=256), and (E) the boost in hCoV in the sample collected after vaccination relative
to the baseline sample compared to SARS-CoV-2 antibody response (n=256).

hC
C

oV

Figure 3.21: (A) The normalised OD of antibodies in samples taken 16–40

days after SARS-CoV-2 diagnosis (n = 123) was compared to the five severity

scores. Kendall rank correlation coefficients are indicated in the heatmap. A false

discovery rate corrected p-values. *p < 0.05. (B–E) Pearson’s formulation was

utilised to calculate correlation coefficients, with multiple testing corrections with

the TestCor package between (B) normalised ODs of baseline hCCoV antibodies

compared to normalised ODs of SARS-CoV-2 antibody in samples collected 16–40

days after infection (n = 41), (C) the per cent change from baseline of hCCoV

antibodies compared to SARS-CoV-2 antibody in samples collected between 1 and

15 days after infection (n = 43), (D) baseline hCCoV-normalized ODs compared

to SARS-CoV-2 antibody 20–85 days after vaccination with Pfizer/BioNTech

BNT162b2 (n = 256), and (E) the increase in hCCoV antibodies relative to the

baseline sample compared to SARS-CoV-2 antibody in samples collected after

vaccination (n = 256).
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change respectively. From Figures 3.21(D) and 3.21(E) it can be seen that neither

baseline hCCoV antibodies nor an increase in hCCoV antibodies after vaccination

correlated with SARS-CoV-2 antibodies after vaccination. Figures 3.21(B)-(D)

highlight stark differences in the hCCoV responses to SARS-CoV-2 post-infection

and vaccination. It is worth highlighting there were significant correlations

between baseline hCCoV IgM response and SARS-CoV-2 spike IgM responses

after vaccination. IgM antibodies are typically more cross-reactive within hCCoV

compared to IgG or IgA (Chan et al., 2005), and hence there could be cross-

reactivity for IgM for SARS-CoV-2 since they are of the same family. However,

it has been shown that vaccination does not induce a robust IgM response in

many individuals (Banga Ndzouboukou et al., 2021), so little is known about the

effects on vaccine efficacy. Since there is no increase in vaccinated individuals

for IgA or IgG responses, these results may indicate that pre-existing hCCoV

antibody responses have a negative impact on SARS-CoV-2 immune response and

contribute to increased severity.

SARS-CoV-2 natural infection compared to vaccination

In the previous section, relationships between pre-existing hCCoV antibodies

were compared to SARS-CoV-2 antibodies both after infection and vaccination.

However, there was no investigation into the difference in SARS-CoV-2 antibody

levels after infection compared to vaccination. With this St Jude cohort, the main

two vaccines administered to participants were Pfizer/BioNTech and Moderna

vaccines, both of which are mRNA vaccines targeted at the spike (S) protein

of SARS-CoV-2 (Martinez-Flores et al., 2021). Since vaccines only contain a

fraction of the total genome, responses to parts that are not the S protein should

not exist in vaccinated individuals than in those who suffer a natural infection.

To investigate this, individuals who had an infection with no prior vaccination

(n = 159) were compared to those who had two jabs for a full vaccination (n = 744).

The following analyses will be for isotypes IgM, IgG and IgA with respect to

the S protein, RBD and N protein so that, in total, 9 variables are examined.

First, to visually inspect whether there were any differences between the two

groups, principal component analysis was used to reduce the number of variables.
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Figure 3.22: PCA for natural infection against vaccination for the first two

PCs. The first PC accounts for 37.8% of the total variance, while the second PC

accounts for 19.9% of the variance.

Figure 3.22 illustrates the first and second PC, which account for 37.8% and

19.9% of the variance, respectively. By Kaiser’s rule, only the first three principal

components would be kept and would account for 69.9% of the total variance.

Figure 3.22 shows two clear, distinguishable groups formed in the first two

PCs, with a slight overlap. Infected individuals are shifted predominantly down

from the origin compared to vaccinated individuals. Using the ε-test as introduced

in Section 2.2.3 to investigate whether the differences in these groups on a multi-

variate level are significant, I compare infected against vaccinated individuals,

taking into account all antibody responses. The results from this test give a p-value

of 9.9 × 10−4, which indicates the responses from these groups are statistically

significantly different. A question that remains to be answered is why are these

groups so different.
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Figure 3.24: Correlation circle of each antibody isotype IgG, IgM, IgA with

respect to SARS-CoV-2 RBD, S protein and N protein. The angle between

variables represents the correlation of variables with the length of the line from the

origin, representing the quality of representation. The PCs in this figure match

those presented in Figure 3.22.

Figure 3.23 presents the contribution of each variable to each component. For

PC-1, the main contributions come from antibodies IgG, IgM for all SARS-CoV-

2 proteins and N protein for IgA. As mentioned previously, the most notable

difference in Figure 3.22 is a shift in the second PC, for which IgG antibody

responses for RBD and S protein are the main contributors.

The correlation circle plotted in Figure 3.24 shows that SARS-CoV-2 IgG

antibodies for RBD and S protein are well represented in the first two principal

components. Furthermore, this figure also shows by the small angle between RBD

IgG and Spike IgG that these two variables have a strong positive correlation

indicating high levels of IgG towards spike are expressed alongside high levels of
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IgG to RBD. Spike IgM and N IgG are also highly correlated with one another,

and there are also weaker positive correlations between these variables and N for

all isotypes, RBD for IgA, and spike IgA. Spike IgA and N IgM have the worst

quality of representation in the first two principal components. Since the second

principal component is where the most significant difference between groups lies,

it is worth examining on a uni-variate level the antibody responses to RBD and S

for IgG.

Figure 3.25 shows responses for SARS-CoV-2 RBD, spike, and nucleoprotein

for each antibody isotype for infected individuals against vaccinated individuals. It

can be seen that individuals who have been immunised with no previous infection

express higher levels of IgG for the RBD and spike protein (p-value< 0.001).

Additionally, vaccinated individuals express higher IgA levels for the spike than

infected individuals. Isotype IgM is expressed in higher amounts for natural

infections against all three tested SARS-CoV-2 proteins and is also higher for IgA

with respect to the N protein and RBD. The differences in responses are likely

because the vaccine only contains mRNA for the spike protein in the two vaccines

considered. Hence naturally infected individuals will express higher antibody

levels for proteins not included in the vaccine. The differences in IgM response

could be explained by the fact that vaccinated people here are considered only if

they have two vaccinations. Therefore, since IgM responses are generated first

before the production of IgG and IgA, it is likely that this part of the response

is through the initial production stage, and the second dose of vaccine boosts

IgG responses. This is in agreement with Cho et al. (2021) who also found lower

expression of IgM and IgA after vaccination but higher levels of IgG.

In the previous section, when examining hCCoV responses, it was shown there

exists a difference in responses for people of different ages and races. It is worth

examining this demographic information now for people infected with SARS-

CoV-2 and vaccinated individuals. When examining the responses of infected

individuals separated by race shown in Appendix Figure A.2, it can be seen

there are no notable differences in immune responses. However, when this is

examined for vaccinated individuals against their race (Figure 3.26), it can be

seen for a few isotypes, there is a difference in immune responses depending on

the SARS-CoV-2 protein under consideration. For the RBD, IgA and IgM levels
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are higher in Asian and Black individuals than White individuals. While for

IgA, the antibody titre with respect to the N protein and Spike protein in Asian

individuals is higher than in White individuals but not for Black individuals. It

is interesting to note that antibody responses for IgG are similar between all

races. Since this is the most elevated after vaccination (Cho et al., 2021), it

is reassuring to see little variation between groups suggesting an equal level of

response. When examining whether age affects responses, there is no significant

difference in antibody responses of infected individuals (p-value> 0.05). However,

in vaccinated individuals (Figure 3.27), there is a significant difference in responses

for IgM with “Younger” individuals expressing higher levels of IgM compared

to “Older”. This is similar to antibody responses to hCCoV and is most likely

because “younger” individuals can produce a more robust IgM immune response

to new infections than “older” individuals. “Younger” individuals also express

higher levels of IgA for the RBD of SARS-CoV-2. This does not follow the trend

seen for hCCoV and could be a result of younger individuals typically possessing

stronger immune systems and hence producing more antibodies in response to

vaccination.

Discussion

In this subsection, I focused on the statistical analysis of antibody responses

to hCCoV and SARS-CoV-2 in a large cohort study undertaken by St. Jude

Children’s Research Hospital. It has been shown a virus that has antigenic

similarity to a virus from a previous infection can lead to activation of memory

B cells instead of a naive primary reaction (Guthmiller & Wilson, 2018). As a

result, this means that for viruses with antigenic similarity, there is a chance that

antibodies may cross-react and, as such, could provide some level of immunity

to new novel viruses. On the other hand, cross-reactivity could also hinder

the immune response since antibodies could bind to conserved sites, inhibiting

newly formed antigens, and potentially better binders, from binding and taking

effect (Cobey & Hensley, 2017). Since SARS-CoV-2 is a β-coronavirus and there

are four endemic coronaviruses in humans, there is potential for cross-reactivity

between endemic hCCoVs antibodies and SARS-CoV-2.
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The main goal of this work was to understand the differences in antibody

responses for both hCCoV and SARS-CoV-2 after infection with SARS-CoV-2 or

vaccination and investigate any potential cross-reactivity. Several studies have

investigated this and found conflicting results (Aydillo et al., 2021; Dugas et al.,

2021; Shrock et al., 2020). However, these studies lacked baseline samples before

either an infection or immunisation. Therefore this study allowed the unique

perspective to examine changes in hCCoV antibody responses and see if these

related to SARS-CoV-2 antibody response. Furthermore, since this study had

1266 participants, demographic information was collected, allowing investigation

into how demographics can impact antibody responses to both SARS-CoV-2 and

hCCoV.

Humans are repeatedly exposed to hCCoV (Edridge et al., 2020). As such,

in our cohort, the majority express antibodies for one or more hCCoV strains

when tested, and as such, there is potential for cross-reactivity. Figure 3.21 shows

that hCCoV boosted antibody response correlates with increased antibodies for

SARS-CoV-2. Hence, this indicates that increased hCCoV antibodies correlate

with disease severity. This agrees with the results presented by Dugan et al.

(2021), which also showed that an increase in non-neutralising antibodies did not

provide protection from SARS-CoV-2. However, when examining vaccination,

there were no significant increases in antibody responses for IgG and IgA, only for

IgM. Since IgM is highly cross-reactive and little is known about IgM responses

in vaccination, this data suggested that pre-existing hCCoV immune responses

have a negative impact on SARS-CoV-2 response and further cement that higher

levels of hCCoV antibodies may contribute to disease severity. Furthermore, it

was also shown that infected individuals expressed higher levels of IgG for HKU1

and OC43 than uninfected individuals, which supports cross-reactivity. However,

this cross-reactivity does not provide additional protection when taken together

with the previous information.

Age plays a role in the antibody responses for hCCoV, with “younger” individ-

uals expressing higher titres of IgM antibodies and “older” individuals expressing

higher levels of IgA and IgM. This is due to the specificity of responses increasing

with age due to repeated exposure to hCCoV. Meanwhile, younger participants
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have not had the same repeated exposure resulting in higher levels of IgM anti-

bodies which are highly cross-reactive and the first antibody isotype produced.

Regarding post-vaccine responses, as with hCCoV antibody responses, “younger”

individuals expressed higher IgM levels than “older” individuals. This shows that

“younger” people can develop higher levels of IgM due to vaccination than “older”

people. Since this isotype is cross-reactive, this may provide some additional

protection from infection with other strains of SARS-CoV-2. For hCCoV, it was

shown that IgG antibody responses were lower for Black individuals when com-

pared to White or Asian individuals but higher for IgA(Figure A.1). This pattern

is not seen for post-infection results, where most responses are not significantly

different. The post-vaccination results are similar, with Black individuals express-

ing higher levels of IgA for the RBD compared to White individuals. Furthermore,

Asian individuals also expressed higher IgA levels compared to White individuals.

This information indicated that demographic factors could play some role in the

vaccine responses and responses to circulating endemic hCCoV strains.

One of the most exciting aspects of this study was the ability to investigate the

antibody responses of people post-infection without any prior infection compared

to vaccinated individuals without any previous virus exposure. It was shown in

Figure 3.22 at a multi-variate level that there are apparent differences between

responses in these two groups, most of which are explained by differences in

response to the RBD and Spike protein for IgG. When investigating on a uni-

variate level, vaccinated individuals expressed significantly higher levels of IgG

for both the RBD and Spike along with Spike IgA. However, IgM with respect

to N, Spike, and RBD are much higher in naturally infected individuals along

with IgA for the N protein, and RBD in agreement with Cho et al. (2021). This

shows that naturally infected individuals have a broader response for all three

potential targets in all investigated isotypes. In contrast, vaccinated people have

incredibly high responses for a select few potential targets. This data indicated

that possible antigen-binding site changes could reduce vaccine effectiveness and

increase severity since responses to other SARS-CoV-2 proteins are not so strong.

As previously mentioned, the unique perspective of this study was that many

individuals had a baseline measurement and a secondary measurement to investi-

gate the effects of hCCoV. However, this study also had many limitations that
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may reduce the results’ power. The first limitation was the ages of the participants.

The youngest individual in the cohort was 20 years old, so responses from infants

through teenagers are not accounted for, while there are only 41 individuals 65+

years old. Therefore, the study does not fully cover the average population’s

distribution of ages; thus, some conclusions drawn from this study may not hold.

Another limitation, as mentioned, is severity scores. Not only did the study not

include many individuals who had severe disease, so correlations on severity may

be inaccurate, but also severity was self-reported, so there exists the possibility

of bias being introduced. Another potential issue is that most of the cohort is

female (74%), so male responses may not be well represented.

The data here demonstrates that SARS-CoV-2 infection and vaccination

activate existing memory B cells, specific for hCCoVs. Baseline levels of hCCoV

antibodies and the magnitude of which these antibodies increased after infection

or vaccination varied dramatically among individuals. Higher baseline levels or

an increase of β-coronavirus IgG and IgA after infection were associated with

increased SARS-CoV-2 antibody levels, correlated with greater disease severity.

Moving forward, several additional questions would be of interest to investigate.

The first is the longitudinal responses of infected and post-vaccination individuals.

These individuals could be repeatedly measured to study long-term and potential

waning immunity and determine the antibody decay rate in both scenarios. Since

there are now multiple strains of SARS-CoV-2, the breadth of the immune response

given vaccination or infection to a particular strain for all these strains would be

essential to investigate (CDC, 2022). This would allow further investigation into

cross-reactive antibodies amongst the strains and may indicate when subsequent

booster vaccines may be needed for a new strain. Finally, additional samples of

people with multiple vaccinations would allow investigation of antibody boost or

further specificity of antigens as seen in older individuals exposed to repeated

hCCoV infections.
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Figure 3.25: Box plots for each antibody isotype, with respect to SARS-CoV-

2 RBD, S and N protein for individuals infected with no vaccine (n = 159)

and people vaccinated with no infection (n = 744). Statistical significance was

determined by the Wilcoxon–Mann–Whitney test with Bonferroni adjustment (ns,

not significant; *p < 5× 10−2; **p < 10−2; ***p < 10−3; ****p < 10−4).
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Figure 3.26: Box plots for each antibody isotype, with respect to SARS-CoV-2

RBD, S and N protein for different races. Statistical significance was determined by

the Wilcoxon–Mann–Whitney test with Bonferroni adjustment (ns, not significant;

*p < 5× 10−2; **p < 10−2; ***p < 10−3; ****p < 10−4).
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Figure 3.27: Box plots of SARS-CoV-2 antibody isotype response compared

between younger (< 43 years) versus older (≥ 43 years) individuals based on

the median age of the cohort. Statistical significance was determined by the

Wilcoxon–Mann–Whitney test with Bonferroni adjustment (ns, not significant;

*p < 5× 10−2; **p < 10−2; ***p < 10−3; ****p < 10−4).

96



Chapter 4

Mathematical model of interferon

antagonism

The majority of work in this chapter is published in Locke et al. (2021). As

highlighted in Chapter 1 we are exposed to a diversity of pathogens throughout our

lives. Our bodies have evolved to provide us with intricate molecular and cellular

mechanisms to sense, prevent and respond to such infections. Cells in the first

line of protection, associated with the innate immune system, are equipped with

pattern-recognition receptors (PRRs) that sense pathogen-associated molecular

patterns (PAMPs), such as viral RNA (Ivashkiv & Donlin, 2014). Activation of

PRRs in infected cells leads to the secretion of type I interferon (IFN), the main

anti-viral cytokine (Escudero-Pérez & Muñoz-Fontela, 2019; Perry et al., June

2005; Randall & Goodbourn, 2008; Trinchieri, 2010). The binding of type I IFN to

its receptor, in turn, induces the transcription of a family of interferon-stimulated

genes (ISGs), whose protein products have both anti-viral activity and immuno-

modulatory effects (Audsley & Moseley, 2013; Escudero-Pérez & Muñoz-Fontela,

2019; Randall & Goodbourn, 2008).

The survival of a viral population in a host depends on viruses replicating and

avoiding intra-cellular host defences. Many viruses have developed strategies to

evade immune detection, thus, subvert these defences (Katze et al., 2002). There

exists a great diversity of such viral strategies. Here I will only consider those

mechanisms that interfere with intra-cellular pathways to regulate type I IFN

secretion or type I IFN signalling.
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Filoviruses, such as EBOV and Marburg virus, encode viral proteins that can

counteract type I IFN responses to replicate efficiently and minimise the therapeu-

tic anti-viral power of IFNs. Filoviruses possess viral proteins to antagonise the

IFN response due to their natural reservoir in bats. Bats possess highly effective

innate immune responses, and without the antagonism of viral proteins, the virus

would not be able to replicate and persist in bats (?). However humans who have

a less robust innate immune system, these type I IFN antagonist proteins, or viral

antagonistic proteins (VAPs), are essential to guarantee viral replication, prevent

the type I IFN-induced anti-viral state in infected and bystander cells, as well

as impair the ability of antigen-presenting cells to initiate adaptive immune re-

sponses (Messaoudi et al., 2015). This ability of filoviruses to replicate “unchecked”

by the host’s innate anti-viral response can partly account for their lethality.

Early innate immune evasion facilitates fast and excessive viral replication, which

results in a delayed and damaging host immune response (Escudero-Pérez &

Muñoz-Fontela, 2019). Unfortunately, filoviruses are not the only viral family to

actively avoid immune surveillance. Other examples include influenza A virus,

hepatitis B virus, and Bunyaviruses, such as Crimean-Congo haemorrhagic fever

(CCHFV) or Rift Valley fever viruses (Weber et al., 2002).

It is important to note that there is a difference, and even conflicting evidence,

between responses to in vivo and in vitro infection models. In EBOV infection,

for example, type I IFN production is abrogated after three days post-infection in

vitro, yet for in vivo infection, type I IFN cytokines are secreted during the entire

infective period (Bosworth et al., 2017; Geisbert et al., 2000; Kotliar et al., 2020).

It should also be highlighted that data availability in vivo is a challenge. Patients

do not seek treatment until they are symptomatic, and as such, the innate immune

response is typically missed in sampling. While mouse models exist, they are a

poor substitute compared to non-human primates; however, non-human primates

come with various ethical, cost, and bio-safety issues that must be considered.

In this chapter, I develop mathematical models of the intra-cellular molecular

processes known to antagonise type I IFN production by viral proteins (Audsley

& Moseley, 2013; Escudero-Pérez & Muñoz-Fontela, 2019). Existing mathematical

models of intra-cellular production of type I IFN have many parameters that

are difficult to estimate or do not account for viral protein antagonism of PRR
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pathways (Rand et al., 2012; Rinas, 2016; Zou et al., 2010). There are also models

that describe inter-cellular interactions via IFN α receptors (Schmid et al., 2015).

The goal is to model upstream and downstream mechanisms of viral protein

antagonism and to provide a case study applied to EBOV.

Three stochastic models formulated as continuous-time birth-and-death Markov

processes, are introduced for viral antagonism of type I interferon expression, with

each model considering a different molecular mechanism of antagonism. Stochastic

models can be relevant as some proteins may be expressed in low numbers, and I

will additionally consider competition for resources as introduced by Reuter (1961).

This will allow the investigation of stochastic descriptors, such as quantifying

the time scales to reach a particular level of signalling molecule and the overall

long-term behaviour of the system.

These proposed models will have several unidentified parameters that will

require determination. It is easier to fit a deterministic model than a stochastic

one. Therefore the linear noise approximation will determine a mean-field approx-

imation for each model. This mean-field approximation will be used for parameter

calibration. However, we must evaluate our models’ sensitivity to variation in

parameter values before determining these values. Sobol sensitivity analysis will

identify which parameters require careful calibration within a given model to

minimise the variance in the model output. Furthermore, assessment of parameter

identifiability given the limited available data will inform which parameters can

be obtained from the current data, covered in section 4.3. In section 4.4, the

proposed models are calibrated with clinical data from in vivo EBOV infection of

rhesus macaques (Kotliar et al., 2020), where model selection allows comparison

of the different biological hypotheses. The approach that will be presented could

be used to quantify inhibition of type I IFN secretion by other pathogens, such

as SARS-CoV-2 virus (Acharya et al., 2020; Schultze & Aschenbrenner, 2021),

Dengue and West Nile viruses (Chan & Gack, 2016), and Bunyaviruses (Elliott &

Weber, 2009; Vaheri et al., 2013).
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4.1 Stochastic models

In this section, I introduce three potential stochastic models that aim to charac-

terise the antagonism of type I IFN production, each incorporating a different

biological hypothesis. Matrix analytical methods are presented in section 4.1.1 to

investigate stochastic descriptors and how these can be constructed as levels in

block matrix form.

4.1.1 A first model of Type I IFN inhibition by viral

antagonistic proteins

A first mathematical model can be introduced to characterise the inhibition of type

I IFN secretion by a viral antagonistic protein (VAP), which considers the role of

the following proteins: RIG-I, viral RNA, VAP and TBK1, a protein kinase which

coordinates the activation of interferon-regulatory factor (IRF) proteins (Audsley

& Moseley, 2013; Escudero-Pérez & Muñoz-Fontela, 2019). The specific VAP will

depend on the virus under consideration; for instance, if the virus is EBOV, then

VAP is VP35, and in the case of Bunyaviruses, VAP is the non-structural protein

NS (Weber et al., 2002). Denote RIG-I by R, viral RNA by D, VAP by V , and

TBK1 by B. Driven by current experimental evidence taken from literature, the

following reactions (Audsley & Moseley, 2013; Escudero-Pérez & Muñoz-Fontela,

2019) are proposed as shown in Figure 4.1.

I will assume mass action kinetics in what follows. The first reaction describes

RIG-I and viral RNA binding to form a RIG-I:RNA complex (R : D) with rate kR,

and unbinding with rate qR. The second reaction describes VAP and viral RNA

binding to form a VAP:RNA complex (V :D) with rate kV , and unbinding with

rate qV . The last reaction describes activation, i.e., phosphorylation, of TBK1

with rate kB, and de-activation (de-phosphorylation) with rate qB. Denote the

activated B molecule by B∗. This model will now be referred to as model 1. Denote

by nR, nD, nV , and nB, the per cell total number of RIG-I proteins, viral RNA

molecules, VAP proteins and TBK1 proteins, respectively. Protein degradation

or synthesis is neglected, so that for the timescale considered, the total number

of molecules of a given species is conserved. Consider a continuous-time Markov
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RIG-I

PPP5’ PPP5’

RIG-I

+
R D R : D

kR
qR

VAP

PPP5’
kV
qV

+

PPP5’

VAP

V D V : D

TBK1
kB
qB

P

TBK1

B B∗

PPP5’

RIG-I

R : D

VAP

V

Figure 4.1: A first model of type I IFN inhibition by VAP (model 1). Model 1

considers the following molecules: RIG-I denoted R, viral RNA, denoted D, VAP

denoted V , and TBK1 denoted B. In this model, there are six reactions and three

molecular complexes.

process X1 = {X(t) = (nRD(t), nV D(t), nB∗(t)) : t ≥ 0} where, the number of RIG-

I:RNA (or R : D) complexes at time t ≥ 0 is denoted by nRD(t), the number of

VAP:RNA (or V :D) complexes by nV D(t), and the number of activated TBK1 (or

B∗) complexes by nB∗(t) (Allen, 2007). Conservation of molecules implies that the

number of free RIG-I molecules at any given time is given by R(t) = nR − nRD(t),

the number of free viral RNA is given by D(t) = nD − nRD(t) − nV D(t), the

number of free VAP molecules is given by V (t) = nV − nV D(t), and the number

of un-phosphorylated TBK1 molecules is given by B(t) = nB − nB∗(t). From the

condition that nRD(t), nV D(t), nB∗(t) ≥ 0, and from the previous comments it can

be shown that,
D(t) ≥ 0 =⇒ nRD(t) + nV D(t) ≤ nD(t)

B(t) ≥ 0 =⇒ nB∗(t) ≤ nB(t),

for all t ≥ 0, which specify the state space S1 of X1. Given that (nRD(t), nV D(t), nB∗(t)) =

(n1, n2, n3) at time t ≥ 0 then two situations arise nR+nV ≤ nD or nR+nV > nD
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(n1, n2, n3) = n

(n1 + 1, n2, n3)

(n1 − 1, n2, n3)

(n1, n2 + 1, n3)(n1, n2 − 1, n3)

(n1, n2, n3 + 1)

(n1, n2, n3 − 1)

q(n1,n2,n3),(n1+1,n2,n3)

q(n1,n2,n3),(n1−1,n2,n3)

q(n1,n2,n3),(n1,n2+1,n3)

q(n1,n2,n3),(n1,n2−1,n3)

q(n1,n2,n3),(n1,n2,n3+1)

q(n1,n2,n3),(n1,n2,n3−1)

1

Figure 4.2: Diagram of a process X1, showing possible states which the process

can move to from a general state (n1, n2, n3) and associated transition rates.

that result in two possible state spaces. In particular:

– if nR + nV ≤ nD, then S1 = {(n1, n2, n2) ⊂ (N ∪ {0})3 : n1 ≤ nR, n2 ≤
nV , n3 ≤ nB},

– if nR + nV > nD, then S1 = {(n1, n2, n2) ⊂ (N ∪ {0})3 : n1 + n2 ≤ nD, n3 ≤
nB}.

Which state space is necessary will depend on the values of nR, nV and nD, which

will be found. The overall dynamics of complex formation and dissociation, phos-

phorylation, and de-phosphorylation can be represented as transitions, sometimes

referred to as jumps between states. The notation (n1, n2, n3) → (n1
′, n2

′, n3
′)

implies a one-step transition from state (n1, n2, n3) to state (n1
′, n2

′, n3
′) as illus-

trated in Figure 4.2. From Definition 2.3.4, Figure 4.2 and reactions depicted in

Figure 4.1, by the assumption of mass action kinetics, the transition rates are

102



4.1 Stochastic models

given by

q(n,n′) =



kR(nD − n1 − n2)(nR − n1), if n′ = (n1 + 1, n2, n3),

qRn1, if n′ = (n1 − 1, n2, n3),

kV (nD − n1 − n2)(nV − n2), if n′ = (n1, n2 + 1, n3),

qV n2, if n′ = (n1, n2 − 1, n3),
kB(nB−n3)n1

κV +(nV −n2)
, if n′ = (n1, n2, n3 + 1),

qBn3, if n′ = (n1, n2, n3 − 1),

0, otherwise,

where n = (n1, n2, n3). These rates encode both upstream and downstream viral

antagonism in the type I IFN secretion pathway (Audsley & Moseley, 2013;

Escudero-Pérez & Muñoz-Fontela, 2019). Firstly RNA silencing is carried out by

VAP (or V ). This results in a competition process for viral RNA with RIG-I, since

both VAP and RIG-I can bind to viral RNA. This is the upstream mechanism of

viral antagonism to inhibit type I IFN expression. The birth rate related to n3

also describes activation of B in the presence of RIG-I:RNA complexes, n1. This

equation includes the antagonistic effect of VAP in the phosphorylation of TBK1,

encoded in the denominator, κV + (nV − n2), which implies free VAP lowers the

effective rate of TBK1 phosphorylation, with a carrying capacity κV . In this way,

model 1 incorporates a downstream inhibitory mechanism as well.

These rates allow the infinitesimal transition matrix from Definition 2.3.5 to

be defined. Model 1 considers a three-dimensional process; as a result, the state

space S1 can be organised in terms of levels such that,

S1 =

nB⋃
k=0

L(k) ,

where L(k) = {(n1, n2, n3) ∈ S1 : n3 = k} for 0 ≤ n3 ≤ nB. Consequently, the

three-dimensional construction of this process allows sub-levels to be constructed

within L(k). Define these sub-levels to be,

L(k) =

min(nV ,nD)⋃
r=0

l(k; r) ,

with l(k; r) = {(n1, n2, n3) ∈ S : n2 = r, n3 = k}, for 0 ≤ r ≤ min(nV , nD) and

0 ≤ k ≤ nB. These sub-levels l(k; r) are ordered as follows,

l(k; r) = {(0, r, k), (1, r, k), . . . , (min(nR, nD − r), r, k)} ,
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for 0 ≤ r ≤ min(nV , nD), 0 ≤ k ≤ nB. This ordering and using levels and

sub-levels give rise to an infinitesimal generator as in Definition 2.3.5, containing

the transition rates defined earlier. The infinitesimal transition generator matrix,

which follows a tri-diagonal block matrix structure, is defined as;

Q =



A00 A01

A10 A11 A12 0
A21 A22 A23

0 AnB−1nB

AnBnB−1 AnBnB


.

The blocks within this matrix are structured as:

• for 0 ≤ k ≤ nB,

Akk =



Bkk
00 Bkk

01

Bkk
10 Bkk

11 Bkk
12 0

Bkk
21 Bkk

22 Bkk
23

0 Bkk
r∗−1r∗

Bkk
r∗r∗−1 Bkk

r∗r∗


,

where r∗ = min(nV , nD).

• for 0 ≤ k ≤ nB − 1,

Akk+1 =



0

Bkk+1
10 0 0

Bkk+1
21 0

0
Bkk+1

r∗r∗−1 0


,
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• finally for 1 ≤ k ≤ nB,

Akk−1 =



0 Bkk−1
01

0 Bkk−1
12 0
0 Bkk−1

23

0 Bkk−1
r∗−1r∗

0


.

These matrices allow for a description of the different levels L(k). Matrix

Akk describes transitions for sub-levels l(k; r) for a fixed level l(k), while the

matrices Akk−1 and Akk+1 represent jumps from L(k) to L(k − 1) and L(k + 1),

respectively. The matrices B within the above matrices are described as follows,

for 0 ≤ r ≤ min(nV , nD), 0 ≤ k ≤ nB,

(Bkk
rr )ij =


kR(nD − i− r)(nR − i), for j = i+ 1,

−ω(i, r, k), for j = i,

qRi, for j = i− 1,

0, otherwise

, (4.1)

where 0 ≤ i, j ≤ min(nR, nD − r). For 0 ≤ r ≤ min(nV , nD)− 1, 0 ≤ k ≤ nB

(Bkk
rr+1)ij =

{
kV (nD − i− r)(nV − r), for j = i− 1,

0, otherwise
, (4.2)

where 1 ≤ i ≤ min(nR, nD − r) and 0 ≤ j ≤ min(nR, nD − r) − 1. For 1 ≤ r ≤
min(nD, nV ), 0 ≤ k ≤ nB

(Bkk
rr−1)ij =

{
qV r, for j = i+ 1,

0, otherwise
, (4.3)

where 0 ≤ i ≤ min(nR, nD − r) − 1 and 1 ≤ j ≤ min(nR, nD − r).For 1 ≤ r ≤
min(nD, nV ), 0 ≤ k ≤ nB − 1

(Bkk+1
rr−1 )ij =

{
kB(nB−k)i
κV +(nV −r)

, for j = i,

0, otherwise
, (4.4)
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where 0 ≤ i, j ≤ min(nR, nD − r). For 0 ≤ r ≤ min(nV , nD)− 1, 1 ≤ k ≤ nB

(Bkk−1
rr+1 )ij =

{
qBk, for j = i,

0, otherwise
, (4.5)

where 0 ≤ i, j ≤ min(nR, nD − r). ω(i, r, k) in Equation (4.1) are defined as

ω(i, r, k) = kR(nD − i− r)(nR − i) + qRi+ kV (nD − i− r)(nV − r)

+ qV r +
kB(nB − k)i

κV + (nV − r)
+ qBk.

(4.6)

From this definition of a generator matrix, it is possible to determine the stationary

probability distribution of our given model by solving (Lopez-Garcia et al., 2016),

Qπ = 0, πTe = 1 , (4.7)

where π is made up of row vectors π0,π1, . . . ,πnB
which contain ordered prob-

abilities π(n1,n2,n3) arranged to match levels of L(k). Depending on the state

space, which will be determined by initial protein numbers nD, nV , nR and nB,

matrix analytic methods can be utilised to determine the stationary distribution.

However, if initial protein numbers lead to a large state space, analytical methods

will be hindered due to computational limitations, primarily memory availability.

Consequently, stochastic simulation algorithms may be used to investigate the

steady-state distribution. In addition to the stationary probability distribution,

studying the model’s early time dynamics will be interesting. Particularly of

interest is the following random variable,

T(n1,n2,n3)(N3) = “time to reach a number N3 of activated TBK1 (n3)” ,

for N3 > 0, and some initial state n = (n1, n2.n3). To study this stochastic

descriptor, only values of n3 such that n3 < N3 need be considered, because

if n3 ≥ N3 then T(n1,n2,n3) = 0. From our original continuous-time Markov

process X1, a Markov process that considers the values of N3 needs to be defined.

Consider, X1(N3) with state space S1(N3), such that n3 ≥ N3 is one absorption

set N ′
3 =

⋃nB

k=N3
L(k) and a further set Su =

⋃N3−1
k=0 L(k) that contains all the
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transient states before a jump from N3− 1 to N3 in n3. Thus, the state space can

be written as,

S1(N3) = Su ∪N ′
3 .

To determine these times along with the higher moments of the distribution the

use of Laplace-Stieltjes transforms is beneficial. Its definition follows;

Definition 4.1.1. If X is a continuous random variable with a probability density

function f(z), then the Laplace-Stieltjes transform is given by the expectation

Lf(z) = E[e−zX ] =

∫ +∞

0

e−zXf(z)ds, R(z) ≥ 0 ,

where z is a complex number (Kijima, 1997).

Given proposed model 1, the Laplace-Stieltjes transform of T(n1,n2,n3)(N3) is

defined as,

L(n1,n2,n3)(z) = E[e−zT(n1,n2,n3)
(N3)], R(z) ≥ 0 . (4.8)

As a result, moments can be obtained by successive differentiation of equation (4.8)

with respect to z and evaluated at z = 0. In general, the moments can be expressed

as,

ml
(n1,n2,n3)

= E[T l
(n1,n2,n3)

(N3)] = (−1)l d
l

dzl
L(n1,n2,n3)(z)|z=0, l ≥ 1. (4.9)

Using first-step arguments the Laplace-Stieltjes transform is as follows,

L(n1,n2,n3) = (1− δn1nR
)
kR(nD − n1 − n2)(nR − n1)

z + ω(n1, n2, n3)
L(n1+1,n2,n3)(Z)

+ (1− δn10)
qRn1

z + ω(n1, n2, n3)
L(n1−1,n2,n3)

+ (1− δn2nV
)
kV (nD − n1 − n2)(nV − n2)

z + ω(n1, n2, n3)
L(n1,n2+1,n3)(Z)

+ (1− δn20)
qV n2

z + ω(n1, n2, n3)
L(n1,n2−1,n3)(Z)

+ (1− δn3N3−1)
kB(nB − n3)n1

(z + ω(n1, n2, n3))(κV + (nV − n2))
δn3N3−1L(n1,n2,n3+1)(Z)

+ (1− δn30)
qBn3

z + ω(n1, n2, n3)
L(n1,n2,n3−1)(Z)

+ δn3N3−1
kB(nB − n3)n1

(z + ω(n1, n2, n3))(κV + (nV − n2))
,

(4.10)
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where ω(n1, n2, n3) is as defined in Equation. (4.6) with i, r and k exchanged for

n1, n2 and n3, respectively. Here δij represent a Kronecker δ. These equations

describe the possible jumps between states of the state space S1(N3) for the Markov

Chain X1(N3). Like the infinitesimal generator matrix, the Laplacian transforms

in Equations 4.10 can be written in a block-matrix vector form. Assume a vector,

g(z) = (g1(z),g2(z), . . . ,gN3−1(z)). For each gk(z) = (gk
1(z),g

k
2(z), . . . ,g

k
r∗(z)) it

is constructed to match levels L(k) for 0 ≤ k ≤ N3. This can be written as

g(z) = A(z)g(z) + c(z), (4.11)

where,

A(z) =



A00(z) A01(z)

A10(z) A11(z) A12(z) 0
A21(z) A22(z) A23(z)

0 AN3−2N3−1(z)
AN3−1N3−2(z) AN3−1N3−1(z)


,

and,

c(z) =


0
0
...

cN3−1(z)

 .

The vector c contains probabilities for jumps from states with n3 = N3 − 1 to N3.

In the same way as the generator matrix Q, matrix A(z) can be further broken

down and can be defined as matrices B(z) which are described as follows, for

0 ≤ r ≤ min(nV , nD), 0 ≤ k ≤ N3 − 1,

(Bkk
rr )ij =


kR(nD−i−r)(nR−i)

(z+ω(i,r,k))p+1 , for j = i+ 1,
qRi

(z+ω(i,r,k))p+1 , for j = i− 1,

0, otherwise

, (4.12)

where 0 ≤ i, j ≤ min(nR, nD − r). For 0 ≤ r ≤ min(nV , nD)− 1, 0 ≤ k ≤ N3 − 1,

(Bkk
rr+1)ij =

{
kV (nD−i−r)(nV −r)

(z+ω(i,r,k))p+1 , for j = i− 1,

0, otherwise
, (4.13)
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where 1 ≤ i ≤ min(nR, nD − r) and 0 ≤ j ≤ min(nR, nD − r) − 1. For 1 ≤ r ≤
min(nD, nV ), 0 ≤ k ≤ N3 − 1,

(Bkk
rr−1)ij =

{
qV r

(z+ω(i,r,k))p+1 , for j = i+ 1,

0, otherwise
, (4.14)

where 0 ≤ i ≤ min(nR, nD − r) − 1 and 1 ≤ j ≤ min(nR, nD − r).For 1 ≤ r ≤
min(nD, nV ), 0 ≤ k ≤ N3 − 2,

(Bkk+1
rr−1 )ij =

{
kB(nB−k)i

(κV +(nV −r))(z+ω(i,r,k))p+1 , for j = i,

0, otherwise
, (4.15)

where 0 ≤ i, j ≤ min(nR, nD − r). For 0 ≤ r ≤ min(nV , nD)− 1, 1 ≤ k ≤ N3 − 1,

(Bkk−1
rr+1 )ij =

{
qBk

(z+ω(i,r,k))p+1 , for j = i,

0, otherwise
, (4.16)

where 0 ≤ i, j ≤ min(nR, nD − r). The vector cN3−1(z) = (cN3−1
1 (z), cN3−1

2 (z), . . .

, cN3−1
min(nV ,nD)(z)) is broken into the levels L(k) and can be further broken down

into levels l(k; r) such that,

cN3−1,r
i =

kB(nB − (N3 − 1))i

(z + ω(i, r, k))(κV + (nV − r))
, for 0 ≤ i ≤ min(nR, nD − r).

Use of definition (4.9) applied to (4.11) allows higher moments to be found.

ml =
l∑

p=0

(−1)p
(
l

p

)
dp

dzp
A(z)|z=0(−1)l−p dl−p

dzl−p
g(z)|z=0 + (−1)l d

l

dzl
c(z)|z=0

= A(0)ml +
l∑

p=1

(−1)p
(
l

p

)
Ap(0)ml−p + (−1)lcl (4.17)

The entries in derivatives of A(z) for 0 ≤ r ≤ min(nV , nD), 0 ≤ k ≤ N3 − 1 are

defined as

(Bkk
rr )

p
ij(z) =


(−1)pp!kR(nD−i−r)(nR−i)

(z+ω(i,r,k))p+1 , for j = i+ 1,

(−1)pp! qRi
(z+ω(i,r,k))p+1 , for j = i− 1,

0, otherwise

,
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where 0 ≤ i, j ≤ min(nR, nD − r). For 0 ≤ r ≤ min(nV , nD)− 1, 0 ≤ k ≤ N3 − 1,

(Bkk
rr+1)

p
ij(z) =

{
(−1)pp!kV (nD−i−r)(nV −r)

(z+ω(i,r,k))p+1 , for j = i− 1,

0, otherwise
,

where 1 ≤ i ≤ min(nR, nD − r) and 0 ≤ j ≤ min(nR, nD − r) − 1. For 1 ≤ r ≤
min(nD, nV ), 0 ≤ k ≤ N3 − 1,

(Bkk
rr−1)

p
ij(z) =

{
(−1)pp! qV r

(z+ω(i,r,k))p+1 , for j = i+ 1,

0, otherwise
,

where 0 ≤ i ≤ min(nR, nD − r) − 1 and 1 ≤ j ≤ min(nR, nD − r).For 1 ≤ r ≤
min(nD, nV ), 0 ≤ k ≤ N3 − 2,

(Bkk+1
rr−1 )

p
ij(z) =

{
(−1)pp! kB(nB−k)i

(z+ω(i,r,k))p+1(κV +(nV −r))
, for j = i,

0, otherwise
,

where 0 ≤ i, j ≤ min(nR, nD − r). For 0 ≤ r ≤ min(nV , nD)− 1, 1 ≤ k ≤ N3 − 1,

(Bkk−1
rr+1 )

p
ij(z) =

{
(−1)pp! qBk

(z+ω(i,r,k))p+1 , for j = i,

0, otherwise
,

where 0 ≤ i, j ≤ min(nR, nD − r). The derivative of vector c(z) will have the

entries

(cN3−1,r)pi = (−1)pp! kB(nB − (N3 − 1))i

(z + ω(i, r, k))p+1)(κV + (nV − r))
,

for 0 ≤ i ≤ min(nR, nD − r) and 0 ≤ r ≤ min(nV , nD). The proposed model

only includes two mechanisms of inhibition and one particular signalling pathway;

therefore, investigating additional mechanisms is of interest.

A second model of type I IFN inhibition by VAP: PACT protein

The model shown in Figure. 4.1 characterises two key aspects of the role of VAP:

upstream antagonism with RIG-I when binding to viral RNA and downstream

antagonism in the activation of TBK1. Yet, viruses explore additional mechanisms

to inhibit type I IFN secretion. The protein activator of the interferon-induced

protein kinase (PACT) has been identified as a secondary activator of RIG-I

during viral infections (Ho et al., 2016; Luthra et al., 2013). This molecule
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RIG-I

PPP5’ PPP5’

RIG-I

+
R D R : D

kR
qR

VAP

PPP5’
kV
qV

+

PPP5’

VAP

V D V : D

RIG-I

PACT PACT

RIG-I

+
R P R : P

kP
qP

VAP

+ PACT
VAP

PACT
kM
qM

V P V : P

TBK1
kB
qB

P

TBK1

B B∗

VAP

VPACT

RIG-I

PPP5’

RIG-I

R : D R : P

Figure 4.3: A second model of type I IFN inhibition by viral protein (model 2).

Model 2 includes the role of protein activator of the interferon-induced protein

kinase (PACT) molecules, since PACT has been identified as a secondary activator

of RIG-I during viral infections (Ho et al., 2016; Luthra et al., 2013). In this

model, there are ten reactions and five molecular complexes.
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provides an additional activation route for RIG-I, and thus, a boost to type I IFN

induction (see Figure. 4.3). However, just like RNA silencing, many viruses have

mechanisms to inhibit the interaction of PACT with RIG-I. Influenza virus protein

NS1, EBOV VP35 and MERS-CoV protein 4a (p4a) have all been identified to

cause antagonism of the interaction between PACT and RIG-I (Luthra et al.,

2013; Siu et al., 2014; Tawaratsumida et al., 2014). Therefore, to include this

second viral strategy of innate immunity inhibition, I propose a second model

which includes PACT, and all the other molecular species and reactions of model

1.

R, D, V and B retain their previous definitions (see Section 4.1.1), and

PACT is denoted by P . Based on this experimental evidence (Ho et al., 2016;

Luthra et al., 2013), the following set of reactions are proposed, illustrated in

Figure. 4.3. The first, second and final reactions remain unchanged from model

1 (see Figure. 4.3). The third reaction includes the binding of RIG-I and PACT

to form a RIG-I:PACT complex (R : P ) with rate kP , and dissociation rate qP .

The final new reaction (fourth reaction) includes the binding of VAP to PACT to

form a VAP:PACT complex (V : P ) with binding rate kM , and unbinding rate

qM . From here, this model will be referred to as model 2.

Denote by nR, nD, nP , nV , and nB, the per cell total number of RIG-I, viral

RNA molecules, PACT, VAP and TBK1, respectively. As previously described

neglects protein degradation and synthesis, so that the total number of molecules

for each protein species is conserved. Denote the total number of RIG-I:RNA

(R : D) complexes at time t ≥ 0 by nRD(t), VAP:RNA (V : D) by nV D(t),

RIG-I:PACT (R : P ) by nRP (t), VAP:PACT (V : P ) by nV P (t) and activated

TBK1 (B∗) by nB∗(t). As with model 1, conservation of molecules is assumed such

that at a given time R(t) = nR − nRD(t)− nRP (t), V (t) = nV − nV D(t)− nV P (t),

P (t) = nP−nRP (t)−nV P (t), D(t) = nD−nRD(t)−nV D(t) and B(t) = nB−nB∗(t)

for RIG-I, VAP, PACT, viral RNA and TBK1 respectively.

Let (nRD, nV D, nRP , nV P , nB∗) = (n1, n2, n3, n4, n5) = n and consider a CTMC

X2 = {n(t) : t ≥ 0} where state vector n ∈ S2 ⊂ (N ∪ {0})5 is a collection of

random variables representing the number of each molecule at time t. The state

space S2 can be identified from the conditions imposed by conserved proteins
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numbers (nR, nV , nP , nD, nB) and Figure 4.3. The non-null infinitesimal transition

rates can be defined as

q(n,n′) =



kR(nD − n1 − n2)(nR − n1 − n3), if n′ = (n1 + 1, n2, n3, n4, n5),

qRn1, if n′ = (n1 − 1, n2, n3, n4, n5),

kV (nD − n1 − n2)(nV − n2 − n4), if n′ = (n1, n2 + 1, n3, n4, n5),

qV n2, if n′ = (n1, n2 − 1, n3, n4, n5),

kP (nP − n3 − n4)(nR − n1 − n3), if n′ = (n1, n2, n3 + 1, n4, n5),

qPn3 if n′ = (n1, n2, n3 − 1, n4, n5),

kM(nP − n3 − n4)(nV − n2 − n4) if n′ = (n1, n2, n3, n4 + 1, n5),

qMn4, if n′ = (n1, n2, n3, n4 − 1, n5),
kB(nB−n5)(n1+n3)
κV +(nV −n2−n4)

, if n′ = (n1, n2, n3, n4, n5 + 1),

qBn5, if n′ = (n1, n2, n3, n4, n5 − 1),

0, otherwise.

Unlike model 1, the five populations under consideration lead to matrices with

extremely large dimensions. Consequently, studying stochastic descriptors using

matrix analytic methods is computationally limited due to the large amounts

of memory that would be required. Therefore, Gillespie simulations will be

implemented instead, using the Algorithm 2.3.1 to investigate this model.

A third model of type I IFN inhibition by VAP: PKR signalling pathway

So far, two models have been introduced which examine the effects of VAP on RIG-

I induced type I interferon induction. However, as discussed in the introduction

of this section, other PRRs exist. One such alternative pathway is protein kinase

R (PKR), which also binds to viral RNA, and the resulting bound complex, A:D

in Figure 4.4, induces the type I IFN secretion pathway (McAllister et al., 2010,

2012). Viruses can also target this pathway. Influenza, herpes simplex 1 and

Ebola viruses have been observed to inhibit the PKR pathway (George et al.,

2009; Schümann et al., 2009). From current experimental evidence, I introduce

a third and final mathematical model. In this model, the complex, A:D (see

Figure 4.4), plays the role performed by phosphorylated TBK1 in models 1 and 2,

as the downstream element in the pathway to induce type I IFN secretion. This

model does not consider the RIG-I pathway but describes the PKR one. Yet, I
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4. MATHEMATICAL MODEL OF INTERFERON ANTAGONISM

consider the role of RIG-I in sequestering viral RNA from both VAP and PKR,

and the role of RIG-I in sequestering PACT from VAP. This allows for competition

between molecular species which may impact the overall dynamics,

Consider molecules R, D, V and P , as in models 1 and 2. Let’s now introduce

A to represent PKR. From model 2, I retain the first four reactions shown in

Figure 4.3 to keep competition for viral RNA between VAP, RIG-I and PKR.

Previous reactions that involve free VAP molecules are also kept. The final

set of reactions considered, with rates kA and qA, respectively, are presented in

Figure 4.4. A fifth reaction is PKR binding to viral RNA, with rate kA, resulting

in the formation of a phosphorylated PKR:RNA (A:D) complex. This complex

can become un-phosphorylated and disassociate with rate qA. In the presence of

VAP, PKR can be actively de-phosphorylated and disassociated with rate qAV .

Thus, in this model, a new viral strategy exists to inhibit innate recognition

via type I IFN. Variables nRD(t), nV D(t), nRP (t) and nV P (t) represent the same

complexes as in model 2. The new variable, which describes complex A:D, nAD(t),

now represents the number of phosphorylated PKR:RNA complexes. This model

is referred to as Model 3. Similar to model 1 and model 2, conservation of proteins

is assumed such that D(t) = nD − nRD − nV D − nAD, R(t) = nR − nRD − nRP ,

V (t) = nV −nV D−nV P , P (t) = nP −nRP −nV P and A(t) = nA−nAD for dsRNA,

RIG-I, VAP, PACT and PKR respectively.

Let (nRD, nV D, nRP , nV P , nAD) = (n1, n2, n3, n4, n5) = n and consider a CTMP

X3 = {n(t) : t ≥ 0} where state vector n ∈ S3 ⊂ (N ∪ {0})5 is a collection of

random variables representing the number of each molecule at time t. The state

space S3 can be identified from the conditions imposed by conserved proteins

numbers (nR, nV , nP , nD, nA) and Figure 4.4. The-non null infinitesimal transition
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4.2 Linear noise approximation

rates can be defined as

q(n,n′) =



kR(nR − n1 − n3)(nD − n1 − n2 − n5), if n′ = (n1 + 1, n2, n3, n4, n5),

qRn1, if n′ = (n1 − 1, n2, n3, n4, n5),

kV (nV − n2 − n4)(nD − n1 − n2 − n5), if n′ = (n1, n2 + 1, n3, n4, n5),

qV n2, if n′ = (n1, n2 − 1, n3, n4, n5),

kP (nR − n1 − n3)(nP − n3 − n4), if n′ = (n1, n2, n3 + 1, n4, n5),

qPn3, if n′ = (n1, n2, n3 − 1, n4, n5),

kM(nV − n2 − n4)(nP − n3 − n4), if n′ = (n1, n2, n3, n4 + 1, n5),

qMn4, if n′ = (n1, n2, n3, n4 − 1, n5),

kA(nA − n5)(nD − n1 − n2 − n5), if n′ = (n1, n2, n3, n4, n5 + 1),

[qA + qAV (nV − n2 − n4)]n5, if n′ = (n1, n2, n3, n4, n5 − 1),

0, otherwise.

It is worth remembering that all reactions in this model are described by mass

action kinetics, except the one proportional to qAV . In this case, to model the

de-phosphorylation and disassociation enhancement caused by the VAP, I have

added a term proportional to the number of free VAP molecules, nV −nV D−nV P .

Finally, note that in this model, TBK1 is assumed to be either non-functional as

part of the signalling pathway, or insufficiently stimulated, to contribute to the

production of type I IFN.

4.2 Linear noise approximation

The dynamics of each proposed model can be described by the master equa-

tion (ME) otherwise known as the forward Kolmogorov equation in Defini-

tion 2.3.6 (Allen, 2010),

dpn(t)

dt
=

∑
n′∈S,n′ ̸=n

q(n′,n)pn′(t)−
∑

n′∈S,n′ ̸=n

q(n,n′)pn(t), ∀n ∈ S

where S represents the state space for a given model under consideration, with

initial condition p0(0) = 1. This equation is known to be difficult to solve

analytically and therefore is typically investigated using alternative methods. As

previously mentioned, Gillespie simulations can be used to study and simulate

stochastic models (Section 2.3.1). However, the linear noise approximation can
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RIG-I

PPP5’ PPP5’

RIG-I

+
R D R : D

kR
qR

VAP

PPP5’
kV
qV

+

PPP5’

VAP

V D V : D

RIG-I

PACT PACT

RIG-I

+
R P R : P

kP
qP

VAP

+ PACT
VAP

PACT
kM
qM

V P V : P

PKR PPP5’+
kA
qA

PPP5’

P

PKR

A D A : DqAV

VAP

V

1
Figure 4.4: A third model of type I IFN inhibition by viral protein (model

3). It includes the contribution of the PKR pathway. In this model, there

are ten reactions and five molecular complexes. In the presence of free VAP,

phosphorylated PKR is actively de-phosphorylated, as indicated by the red reverse

reaction arrow with rate qAV .
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4.2 Linear noise approximation

also allow investigation of these models (sometimes referred to as the system

size (Ω-) expansion); see Van Kampen (1992). The linear noise approximation

means that the master equation is expanded around a local steady-state in terms

of 1/
√
Ω where Ω is a specified volume, such as within a cell. This expansion

allows conversion from a macroscopic analysis to a mesoscopic analysis to study

fluctuations. First-order terms of 1/
√
Ω provide a deterministic approximation

that describes “mean-field” rates of change for each protein characterised by a

set of ordinary differential equations. Meanwhile, second-order terms explain

fluctuations for each protein around the mean-field steady-state expressed by the

linear Fokker-Planck equation (Peralta & Toral, 2018). I aim to apply this method

to each model proposed in Section 4.1.

First, it is useful to define the step operator E±k
i which when applied to a

function f of i, changes the value of i by ±k such that in general,

Ek
i [f(i)] = f(i+ k), E−k

i [f(i)] = f(i− k).

Therefore, from the rates defined in Section 4.1.1 the ME in terms of step operator

E±k
i for Model 1 are,

dpn
dt

= (E−1
n1
− 1)[kR(nD − n1 − n2)(nR − n1)pn] + (E1

n1
− 1)[qRn1pn]

+ (E−1
n2
− 1)[kV (nD − n1 − n2)(nV − n2)pn] + (E1

n2
− 1)[qV n2pn]

+ (E−1
n3
− 1)

[
kB(nB − n3)n1

κV + (nV − n2)
pn

]
+ (E1

n3
− 1)[qBn3pn],

(4.18)

where t is omitted for brevity. Model 1 will be investigated as a worked example.

Next, the macroscopic variables must be re-scaled such that any discrete variable

ni is written as a sum of the “mean” number of type i ∈ 1, 2, 3 particles and linear

noise (fluctuations) ξi of order Ω
1/2 such that,

ni = Ωmi + Ω
1
2 ξi. (4.19)

As a result, the probability density and step operator must undergo a change

variable. The probability density pn(t) changes variables to Π(ξ, t) which must be

differentiated with respect to time t to determine the time evolution,

dpn
dt

= ∂tΠ(ξ, t) + ∂ξΠ(ξ, t)
dξ

dt
. (4.20)
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Then, since the values of ni are fixed for the derivative of d
dt
pn then from Equa-

tion (4.19) it can be shown that,

0 =
dni

dt
= Ω

dmi

dt
+ Ω

1
2
dξi
dt

,

and hence

dmi

dt
= −Ω− 1

2
dξi
dt

. (4.21)

Substituting expression (4.21) into (4.20) gives the time evolution of the probability

density in terms of variables mi, ξi and the volume Ω as

d

dt
pn = ∂tΠ(ξ, t)− Ω

1
2

∑
i

dmi

dt
∂ξiΠ(ξ, t). (4.22)

The right hand side of the ME also need to be rewritten in terms of the new

variables. Therefore it is useful to approximate the step operator by using Taylor’s

expansion, where

E±1
ni

= 1± ∂ni
+

1

2
∂2
ni
+ . . . .

Applying the change of variable takes the step operator from ni + k to ξi +Ω− 1
2k,

hence the step operator becomes

E±1
ni

= 1± Ω− 1
2∂ξ +

1

2
Ω−1∂2

ξi
+ . . . . (4.23)

From here Equations (4.19), (4.20) and (4.23) can be substituted into Equa-
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4.2 Linear noise approximation

tion (4.18) to give,

∂tΠ− Ω
1
2

3∑
i=1

dmi

dt
∂ξiΠ = −k̃RΩ

1
2 (mR −m1)(mD −m1 −m2)∂ξ1Π

− k̃VΩ
1
2 (mV −m2)(mD −m1 −m2)∂ξ2Π

− kBΩ
1
2
m1(mB −m3)

κ̃V +mV −m2

∂ξ3Π

+ qRΩ
1
2m1∂ξ1Π+ qVΩ

1
2m2∂ξ2Π+ qBΩ

1
2m3∂ξ3Π

+ k̃V (mV −m2)(mD −m1 −m2)(
1

2
∂2
ξ2
)Π

+ k̃V (mV −m2)∂ξ2 [(ξ1 + ξ2)Π]

+ k̃V (mD −m1 −m2)∂ξ2(ξ2Π)

+ k̃R(mR −m1)(mD −m1 −m2)(
1

2
∂2
ξ1
)Π

+ k̃R(mR −m1)∂ξ1 [(ξ1 + ξ2)Π] (4.24)

+ k̃R(mD −m1 −m2)∂ξ1(ξ1Π)

+ kB
m1(mB −m3)

κ̃V +mV −m2

(
1

2
∂2
ξ3
)Π

− kB

[
m1(mB −m3)

(κ̃V +mV −m2)2
∂ξ3(ξ2Π)

]
− kB

[
(mB −m3)

(κ̃V +mV −m2)
∂ξ3(ξ1Π)

]
+ kB

[
m1

(κ̃V +mV −m2)
∂ξ3(ξ3Π)

]
+ qR

[
∂ξ1(ξ1Π) +

1

2
m1∂

2
ξ1
Π

]
+ qV

[
∂ξ2(ξ2Π) +

1

2
m2∂

2
ξ2
Π

]
+ qB

[
∂ξ3(ξ3Π) +

1

2
m3∂

2
ξ3
Π

]
,

where we simplify Π(ξ, t) to Π in the notation and,

kR =Ω−1k̃R , nR =ΩmR ,

kV =Ω−1k̃V , nV =ΩmV ,

nD =ΩmD , κV =Ωκ̃ .
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Collecting terms of order Ω
1
2 in Equation (4.24) and equating coefficients gives

the following ordinary differential equations,

dm1

dt
= k̃R(mR −m1)(mD −m1 −m2)− qRm1 ,

dm2

dt
= k̃V (mV −m2)(mD −m1 −m2)− qVm2 , (4.25)

dm3

dt
= kB

m1(mB −m3)

κ̃V +mV −m2

− qBm3 ,

where m1, m2 and m3 correspond to RIG-1:viral RNA complexes, VAP:viral

RNA complexes and activated TBK1 respectively. The ODEs in Equation (4.25)

could be obtained by considering Figure 4.1 as a purely deterministic system.

Collecting and equating terms of order Ω0 from Equation (4.24) provides the

linear Fokker-Planck equation of the form,

∂tΠ = −
N∑

i,j=1

Aij ∂ξi(ξjΠ) +
1

2

N∑
i,j=1

Bij ∂
2
ξiξj

Π , (4.26)

where there are N random variables. The matrix B is symmetric but the matrix

A, in general, is not, with their entries for model 1 as follows,

B11 = qRm
∗
1 + k̃R(mR −m∗

1)(mD −m∗
1 −m∗

2) ,

B22 = qVm
∗
2 + k̃V (mV −m∗

2)(mD −m∗
1 −m∗

2) ,

B33 = qBm
∗
3 + kB

m∗
1(mB −m∗

3)

κ̃V +mV −m∗
2

,

−A11 = qR + k̃R(mR −m∗
1) + k̃R(mD −m∗

1 −m∗
2) ,

−A12 = k̃R(mR −m∗
1) ,

−A21 = k̃V (mV −m∗
2) ,

−A22 = qV + k̃V (mV −m∗
2) + k̃V (mD −m∗

1 −m∗
2) ,

−A31 = −kB
[

(mB −m∗
3)

(κ̃V +mV −m∗
2)

]
,

−A32 = −kB
[

m∗
1(mB −m∗

3)

(κ̃V +mV −m∗
2)

2

]
,

−A33 = qB + kB

[
m∗

1

(κ̃V +mV −m∗
2)

]
,
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where (m∗
1,m

∗
2,m

∗
3) represents the steady-state solution of Equations (4.25). ODEs

that describe the first and second-order moments for the fluctuations can be

obtained by multiplying Equation (4.26) by ξi for i ∈ {1, 2, 3} and integrating.

These moments are defined as

d

dt
⟨ξj⟩ =

3∑
k=1

Ajk⟨ξk⟩ , (4.27)

d

dt
⟨ξiξj⟩ =

3∑
k=1

Aik⟨ξkξj⟩+
3∑

k=1

Ajk⟨ξiξk⟩+Bij , (4.28)

where ⟨·⟩ = E[·] for k, i, j ∈ {1, 2, 3}. From the definitions for first and second

moments in Equations (4.27) and (4.28) respectively, steady-state correlations can

be defined as,

Cij = ⟨ξiξj⟩ − ⟨ξi⟩⟨ξj⟩. (4.29)

This method can also be applied to model 2, to provide the deterministic mean-field

approximation as follows,

dm1

dt
= k̃R(mR −m1 −m3)(mD −m1 −m2)− qRm1 ,

dm2

dt
= k̃V (mV −m2 −m4)(mD −m1 −m2)− qVm2 ,

dm3

dt
= k̃P (mR −m1 −m3)(mP −m3 −m4)− qPm3 , (4.30)

dm4

dt
= k̃M(mV −m2 −m4)(mP −m3 −m4)− qMm4 ,

dm5

dt
= kB

(m1 +m3)(mB −m5)

κ̃V +mV −m2 −m4

− qBm5,

where

kR =Ω−1k̃R , nR =ΩmR , nP =ΩmP ,

kV =Ω−1k̃V , nV =ΩmV , kP =Ω−1k̃P ,

nD =ΩmD , κV =Ωκ̃V , kM =Ω−1k̃M .

The entries in matrices A and B for the general linear Fokker-Planck equation,
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given the steady-state solution (m∗
1,m

∗
2,m

∗
3,m

∗
4,m

∗
5) are,

B11 = qRm
∗
1 + k̃R(mR −m∗

1 −m∗
3)(mD −m∗

1 −m∗
2) ,

B22 = qVm
∗
2 + k̃V (mV −m∗

2 −m∗
4)(mD −m∗

1 −m∗
2) ,

B33 = qPm
∗
3 + k̃P (mR −m∗

1 −m∗
3)(mP −m∗

3 −m∗
4) ,

B44 = qMm∗
4 + k̃M(mV −m∗

2 −m∗
4)(mP −m∗

3 −m∗
4) ,

B55 = qBm
∗
5 + kB

(m∗
1 +m∗

3)(mB −m∗
5)

κ̃V +mV −m∗
2 −m∗

4

,

−A11 = qR + k̃R(mR −m∗
1 −m∗

3) + k̃R(mD −m∗
1 −m∗

2) ,

−A12 = k̃R(mR −m∗
1 −m∗

3) ,

−A13 = k̃R(mD −m∗
1 −m∗

2) ,

−A21 = k̃V (mV −m∗
2 −m∗

4) ,

−A22 = qV + k̃V (mV −m∗
2 −m∗

4) + k̃V (mD −m∗
1 −m∗

2) ,

−A24 = k̃V (mD −m∗
1 −m∗

2) ,

−A31 = k̃P (mP −m∗
3 −m∗

4) ,

−A33 = qP + k̃P (mP −m∗
3 −m∗

4) + k̃P (mR −m∗
1 −m∗

3) ,

−A34 = k̃P (mR −m∗
1 −m∗

3) ,

−A42 = k̃M(mP −m∗
3 −m∗

4) ,

−A43 = k̃M(mV −m∗
2 −m∗

4) ,

−A44 = qM + k̃M(mV −m∗
2 −m∗

4) + k̃M(mP −m∗
3 −m∗

4) ,

−A51 =
(mB −m∗

5)

κ̃V +mV −m∗
2 −m∗

4

,

−A52 =
−(mB −m∗

5)(m
∗
1 +m∗

3)

(κ̃V +mV −m∗
2 −m∗

4)
2
,

−A53 =
(mB −m∗

5)

κ̃V +mV −m∗
2 −m∗

4

,

−A54 =
−(mB −m∗

5)(m
∗
1 +m∗

3)

(κ̃V +mV −m∗
2 −m∗

4)
2
,

−A55 = qB +
(m∗

1 +m∗
3)

κ̃V +mV −m∗
2 −m∗

4

.
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Similarly for model 3 the deterministic mean-field approximation is given by,

dm1

dt
= k̃R(mR −m1 −m3)(mD −m1 −m2 −m5)− qRm1 ,

dm2

dt
= k̃V (mV −m2 −m4)(mD −m1 −m2 −m5)− qVm2 ,

dm3

dt
= k̃P (mR −m1 −m3)(mP −m3 −m4)− qPm3 , (4.31)

dm4

dt
= k̃M(mV −m2 −m4)(mP −m3 −m4)− qMm4 ,

dm5

dt
= k̃A(mA −m5)(mD −m1 −m2 −m3)− (qA − q̃AV (mV −m2 −m4)m5)

where

kR =Ω−1k̃R , nR =ΩmR , nP =ΩmP ,

kV =Ω−1k̃V , nV =ΩmV , kP =Ω−1k̃P ,

nD =ΩmD , κV =Ωκ̃V , kM =Ω−1k̃M .

nA =ΩmA , qAV =Ωq̃AV , kA =Ω−1k̃A .

The entries in matrices A and B in the general linear Fokker-Planck equation,
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given the steady-state solution (m∗
1,m

∗
2,m

∗
3,m

∗
4,m

∗
5) are,

B11 = qRm
∗
1 + k̃R(mR −m∗

1 −m∗
3)(mD −m∗

1 −m∗
2 −m∗

5) ,

B22 = qVm
∗
2 + k̃V (mV −m∗

2 −m∗
4)(mD −m∗

1 −m∗
2 −m∗

5) ,

B33 = qPm
∗
3 + k̃P (mR −m∗

1 −m∗
3)(mP −m∗

3 −m∗
4) ,

B44 = qMm∗
4 + k̃M(mV −m∗

2 −m∗
4)(mP −m∗

3 −m∗
4) ,

B55 = (qA + q̃AV (mV −m∗
2 −m∗

4))m
∗
5 + k̃A(mA −m∗

5)(mD −m∗
1 −m∗

2 −m∗
5) ,

−A11 = qR + k̃R(mR −m∗
1 −m∗

3) + k̃R(mD −m∗
1 −m∗

2 −m∗
5) ,

−A12 = k̃R(mR −m∗
1 −m∗

3) ,

−A13 = k̃R(mD −m∗
1 −m∗

2 −m∗
5) ,

−A15 = k̃R(mR −m∗
1 −m∗

3) ,

−A21 = k̃V (mV −m∗
2 −m∗

4) ,

−A22 = qV + k̃V (mV −m∗
2 −m∗

4) + k̃V (mD −m∗
1 −m∗

2 −m∗
5) ,

−A24 = k̃V (mD −m∗
1 −m∗

2) ,

−A25 = k̃V (mV −m∗
2 −m∗

4) ,

−A31 = k̃P (mP −m∗
3 −m∗

4) ,

−A33 = qP + k̃P (mP −m∗
3 −m∗

4) + k̃P (mR −m∗
1 −m∗

3) ,

−A34 = k̃P (mR −m∗
1 −m∗

3) ,

−A42 = k̃M(mP −m∗
3 −m∗

4) ,

−A43 = k̃M(mV −m∗
2 −m∗

4) ,

−A44 = qM + k̃(mV −m∗
2 −m∗

4) + k̃M(mP −m∗
3 −m∗

4) ,

−A51 = k̃A(mA −m∗
5) ,

−A52 = q̃AVm5 + k̃MA(mA −m5) ,

−A54 = q̃AVm
∗
5 ,

−A55 = (qA + q̃AV (mV −m∗
2 −m∗

4)) + kA(mD −m∗
1 −m∗

2 −m∗
5) + k̃A(mA −m∗

5) .

The deterministic mean-field approximations above will allow the calibration

of the model with reference to data. Also, these can be used to perform parameter

identifiability and sensitivity analysis. From there, fixed parameter values allow

for the determination of the steady-state values and correlations.
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4.3 Sensitivity analysis

4.3 Sensitivity analysis

In what follows, I will restrict my study to EBOV. In the case of EBOV, the

antagonistic viral protein to type I IFN secretion pathways is VP35 (Basler et al.,

2000; Dilley et al., 2017; Kimberlin et al., 2010). In this case, RIG-1 binds to

dsRNA. VP35 also binds to dsRNA, forming a competition process for this resource.

Given the limited experimental data available to parameterise these models, it

Figure 4.5: Time evolution of total-order Sobol sensitivity indices (model 1).

Model output for this model is activated TBK1, nB∗ . The shaded region accounts

for a 95% confidence interval.

is vital to understand the significance of each parameter on the corresponding

model output. To this end, Sobol sensitivity analysis can be used as presented

in Section 2.5.1. The choice of parameter ranges is summarised in Table 4.3 and

uses the Python package “SALib”. For each model, 104(2N + 2) parameter sets

were generated using a Satelli sampler, where N is the number of parameters for

the model being considered (Homma & Saltelli, 1996; Wainwright et al., 2014).

For model 1 (Figure. 4.1) and model 2 (Figure. 4.3), I examine how variation in
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4. MATHEMATICAL MODEL OF INTERFERON ANTAGONISM

parameter values affects the output, phosphorylated TBK1 (B⋆ in figures). For

model 3 (Figure. 4.4), I instead examine the effect of changes in parameter values

on the output, phosphorylated PKR:dsRNA complexes (A : D in figures).

Model 1 Model 2 Model 3

Parameter Index Parameter Index Parameter Index

Most important nB 0.887 nB 0.932 nA 0.868

kB 0.482 kB 0.462 nD 0.698

qB 0.236 qB 0.289 kR 0.266

nD 0.199 κV 0.225 nR 0.241

κV 0.165 nR 0.201 kA 0.238

nR 0.159 nV 0.142 kM 0.228

nV 0.133 nD 0.135 qAV 0.227

kV 0.050 nP 0.117 nV 0.226

kR 0.046 kR 0.100 kV 0.226

qV 0.029 kP 0.093 kP 0.226

qR 0.012 kM 0.074 nP 0.182

kV 0.071 qA 0.07

qP 0.053 qM 0.058

qM 0.051 qP 0.053

qV 0.038 qV 0.030

Least important qR 0.026 qR 0.014

Table 4.1: Total-order Sobol sensitivity indices for each proposed model. Param-

eters are listed from most important to least, according to the sensitivity index.

104 samples were generated with sensitivity to nB∗ for model 1, nB∗ for models 2,

and nAD for model 3.

Table 4.1 lists the total-order of Sobol sensitivity indices for each of the three

proposed mathematical models. For models 1 and 2, the analysis indicates that

the most critical parameter is nB, the total number of TBK1 molecules. Changes

in this parameter result in significant fluctuations in the chosen model output.

The TBK1 phosphorylation rate, kB, exhibits a large Sobol index of 0.482 and

0.462 for models 1 and 2, respectively. The binding rates kV and kR, along with

their associated unbinding rates, carry an insignificant contribution to variation in
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4.3 Sensitivity analysis

Figure 4.6: Time evolution of total-order Sobol sensitivity indices (model 2).

Model output for this model is activated TBK1, nB∗ . The shaded region accounts

for a 95% confidence interval.

model output (index ≤ 0.1) for both models 1 and 2. A similar trend is observed

for the binding and unbinding rates involving the protein PACT in model 2.

When considering the sensitivities of model 3, it is shown that unbinding rates

are insignificant, with a low index (< 0.1). Parameters nA and nD are the most

important ones in model 3. These have indices of 0.868 and 0.698, indicating

any change in these parameters results in large model output fluctuations. The

remaining parameters have a roughly equal level of importance. It is important

to note that the total number of molecules for each model output has the largest

sensitivity index in all three cases. In models 1 and 2, this is followed by the

TBK1 phosphorylation rate kB, while for model 3, it is the total number of viral

RNA, nD. Figures 4.5, 4.6 and 4.7 illustrate the time evolution of the sensitivity

indices for each model. As observed, each model’s two most important parameters

remain so for the entire time course. In models 1 and 2, the importance of qB
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Figure 4.7: Time evolution of total-order Sobol sensitivity indices (model 3).

Model output for this model is phosphorylated PKR, nAD. The shaded region

accounts for a 95% confidence interval.

increased with time. Other parameters show slight variation over time in their

index value. Figure 4.7 shows that the Sobol sensitivity indices for model 3 remain

constant with respect to time.

4.4 Parameter calibration and model selection

4.4.1 Kotliar et al. (2020) data

Kotliar et al. used single-cell transcriptomics and CyTOF-based single-cell protein

quantification to characterise peripheral immune cells during EBOV infection

in rhesus monkeys. Their analysis allowed them to conclude that the interferon

response is suppressed in infected cells. Here their transcriptomic data set will

be used for the parameter calibration of the mathematical models introduced

in the previous sections (see Section 4.1). In particular, approximate Bayesian
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computation sequential Monte Carlo will be implemented using the algorithm

in Section 2.4.2. Eighteen non-human primates (NHPs) were exposed to the

EBOV/Kikwit isolate (Kikwit-9510621 ) diluted to a target concentration of 103

plaque forming units (PFU) in a volume of 1 mL/dose. Two baseline blood samples

were collected between 0-14 and 14-30 days before infection. Post-infection (PI)

clinical observations and whole blood collection were carried out until eight days

PI (see Ref. (Kotliar et al., 2020, Figure 1)). 1.52× 105 genes were tested with

single-cell RNA-sequencing. Transcript counts (104) for IFN-β were extracted

from the data to perform parameter calibration for each mathematical model.

The data are summarised in Table 4.2.

Day Mean counts per 104 (SD)

0 0 (0)

3 1 (0)

5 3 (2.83)

6 2.6 (1.26)

8 0 (0)

Table 4.2: Mean transcript counts (with standard deviation) for IFN-β from a

longitudinal study of EBOV infection in macaques (Kotliar et al., 2020).

4.4.2 Parameter identifiability

Before carrying out model calibration, it is important to study the structural iden-

tifiability of the parameters. Since many of the parameters of these mathematical

models have not been previously determined, it is worthwhile to determine whether

an estimate of their values is given the limited data set (Castro & de Boer, 2020).

I have made use of Structural Identifiability Analyzer (SIAN), and the results

are as follows; for model 1, qB, kB, and nB are locally identifiable parameters.

This is because the variable nB∗(t), phosphorylated TBK1, is the model output

compared to data. Similarly, SIAN also showed that qV and qR are also locally

identifiable (Ilmer et al., 2021). Since qR and kR have been previously deter-

mined (Lou et al., 2017), these were omitted when considering the identifiability
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of our model (Lu et al., 2010). The remaining parameters are all unidentifiable.

Thus, it is reasonable to conclude that model 1 is structurally unidentifiable.

This analysis is repeated for model 2, where a similar trend is observed.

Disassociation rates for complexes R : D, V : D, R : P and V : P are all locally

identifiable, as well as kB, qB and nB. The rest of the parameters of this model

are unidentifiable, so model 2 is also unidentifiable. Finally, for model 3, it is

shown that all its parameters are locally identifiable. Therefore while carrying out

parameter calibration, it is important to remember that with the data at hand, for

models 1 and 2, there may be a limit to what knowledge can be obtained regarding

posterior distributions of their parameters. On the other hand, since parameters

for model 3 are locally identifiable, I should be able to characterise the posterior

distributions from this limited data set. However, multi-modal distributions may

be obtained since this is only local identifiability.

4.4.3 Parameter calibration

Three different mathematical models which require parameter calibration have

been introduced. Data presented in Table 4.2 will be used to calibrate these models

using approximate Bayesian computation sequential Monte Carlo (ABC-SMC)

as described in Section 2.4.2. The rates associated with RIG-I, kR and qV , are

fixed using values obtained from the literature (Lou et al., 2017). VAP rates, kV

and qV , are chosen to remain within the value of its dissociation constant (Basler

et al., 2000; Edwards et al., 2016). As described by Toni et al. (2009) K = 18

iterations are implemented of the ABC-SMC method with n = 2, 500 accepted

parameter sets. Assume all parameters follow a uniform prior distribution as

defined in Table 4.3. Uniform distributions are taken from the exponent base 10

to maximise the exploration of parameter ranges. Given a set of parameters, θ,

for any of the three mathematical models introduced in the previous sections, I

define a Euclidean distance measure to be

d(x,y|θ) =
√∑

t∈T

(x(t)− y(t))2 ,
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where T is the set of time points in the data set, x(t) denotes the output from the

mathematical model at time t for parameters θ, and y(t) represents experimental

data at time t. Note that in this case, x(t) will be the variable representing

phosphorylated TBK1 for models 1 and 2 (nB∗(t), n3 in model 1 and n5 in model

2). In comparison, for model 3, I consider phosphorylated PKR (nAD(t), n5 in

model 3). I assume a linear relationship between transcripts and protein numbers.

The first iteration threshold ε1 is defined as the median of 106 initial realisations

via ABC with prior samples obtained from the distributions in Table 4.3. Then

define threshold εk as the median distance from iteration k− 1. The perturbation

kernel will be uniform and used to perturb the parameter values during each

iteration.

Figures 4.8, 4.10 and 4.11 present posterior histograms from the final iteration

along with the model median and the 95% credible intervals. Tables 4.4, 4.5,

and 4.6 present posterior median and mean values for each parameter, with

95% credible intervals also reported. For models 1 and 2, nB∗(t) (n3 and n5,

respectively) is fitted to data, while for model 3, it is nAD(t) (n5).

Posterior histograms in Figure 4.8 for model 1 illustrate inference can char-

acterise the value qB, with a narrow posterior compared to its prior distribution.

This is particularly important since sensitivity analysis indicated this was the

third most important parameter, as shown in Table 4.1. Additionally, narrower

posterior distributions were obtained for kV , qV and nV . Sensitivity analysis

indicated that kB and nB were the two most important parameters to control

within this model. However, if the correlations are considered between these two

parameters, it shows a strong negative correlation between them (r = −0.83).
Therefore, it is only possible to learn about their ratio. There also exists a positive

correlation (r = 0.65) between nD and nV as shown in Figure. 4.9, so that with

the data set and Bayesian inference, only the ratio of these two parameters can

be estimated.

Inference for model 2 (see Figure. 4.10) indicates that very little is learnt for

most parameters, including the rates associated with PACT binding to VAP, kM ,

and its corresponding disassociation rate, qM . Sensitivity analysis revealed the

rates for TBK1 phosphorylation (kB) and de-phosphorylation (qB), along with

nB, the number of TBK1 molecules, is essential to minimise variation in model
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(a) Model 1 posterior histograms (b) Model 1 ABC-SMC time course

Figure 4.8: (a) Posterior histograms obtained from the ABC-SMC algorithm.

Blue histograms indicate prior distributions, and purple histograms illustrate

posteriors. (b) Model fit from accepted parameter sets obtained during the final

iteration of the ABC-SMC algorithm. Blue triangles represent data presented

in Table 4.2 plotted with its standard deviation. The black line illustrates the

point-wise median value from the accepted parameter sets (shaded in green) with

a 95% credible interval. These results represent 18 iterations with 2500 accepted

parameter sets for model 1.
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Parameter Search range Units Reference Model

kR 0.04836 h−1 per molecule pair Lou et al. (2017) 1,2,3

qR 7.632 h−1 per molecule Lou et al. (2017) 1,2,3

kV U [−7, 2] h−1 per molecule pair Basler et al. (2000); Edwards et al. (2016) 1,2,3

qV U [−6, 2] h−1 per molecule Basler et al. (2000); Edwards et al. (2016) 1,2,3

kP U [−7,−2] h−1 per molecule pair 2,3

qP U [−6, 0] h−1 per molecule 2,3

kM U [−7,−2] h−1 per molecule pair 2,3

qM U [−6, 0] h−1 per molecule 2,3

kB U [−6, 8] h−1 per molecule Zhang & Zou (2013); Zou et al. (2010) 1,2

qB U [−6, 3] h−1per molecule Zhang & Zou (2013); Zou et al. (2010) 1,2

kA U [−7, 2] h−1 per molecule pair 3

qA U [−6, 2] h−1 per molecule 3

qAV U [−6, 2] h−1 per molecule 3

κV U [1, 7] 1,2

nD U [0, 7] 1,2,3

nR U [0, 6] 1,2,3

nV U [0, 6] 1,2,3

nB U [0, 6] 1,2

nA U [0, 6] 3

Table 4.3: Parameter ranges used for Bayesian inference. Ranges were taken

based on the published data, with two to three orders of magnitude taken on either

side of these values (Basler et al., 2000; Bosworth et al., 2017; Edwards et al., 2016;

Lu et al., 2010; Zou et al., 2010). I consider uniform distributions of exponent

base 10 for all prior choices. Parameters kV and qV are restricted by making

sure their ratio, kV
qV
, lies within the dissociation constant range 3.40µM -1.1nM

reported in Refs. (Basler et al., 2000; Edwards et al., 2016).

output. As mentioned earlier, the inference of the parameters indicates narrow

posterior histograms, which illustrates that Bayesian inference is learning about

these three parameters. However, it is essential to note the median number of

molecules nB is low, which might not be a biologically reasonable value. Medians

presented in Figure. 4.8 and Figure. 4.10 have a comparable trend. Note that

model 2, additionally, has a rather sharp jump at the start of the time course.

This is most likely due to the inclusion of PACT as a secondary activator. Notably,

the credible intervals of model 1 are narrower than those of model 2.
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Parameter Median Mean Credible interval

kV 4.37× 10−6 2.04× 10−2 [1.42× 10−7, 5.58× 10−2]

qV 1.03× 10−5 3.42× 10−5 [1.35× 10−6, 2.22× 10−4]

kB 1.50 4.69× 102 [5.78× 10−4, 5.62× 10−3]

qB 1.29× 10−2 2.74× 10−2 [6.24× 10−3, 1.49× 10−1]

κV 6.70× 103 374× 105 [2.00× 101, 4.08× 106]

nD 3.37× 102 3.34× 103 [1, 2.92× 104]

nR 6.80× 101 2.82× 104 [1, 3.67× 105]

nV 1.39× 104 4.38× 104 [5.2× 101, 2.69× 105]

nB 2.26× 102 1.91× 104 [1, 2.54× 105]

Table 4.4: Summary statistics for each accepted parameter value sets from model

1. Mean, median and a 95% credible interval are summarised.

Figure 4.9: Left: Bivariate posterior histogram of log10(nD) and log10(nV )

showing a positive correlation (r = 0.65). Right: posterior distribution for the

ratio log10(nV /nD).
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Parameter Median Mean Credible interval

kV 5.19× 10−5 1.38 [1.96× 10−7, 1.52× 101]

qV 5.04× 10−6 6.36× 10−2 [1.07× 10−6, 4.81× 10−2]

kP 1.05× 10−5 3.45× 10−2 [1.60× 10−7, 1.00× 10−1]

qP 5.06× 10−2 3.03 [1.02× 10−5, 3.44× 101]

kM 6.08× 10−3 3.27 [2.12× 10−7, 3.89× 101]

qM 1.69× 10−3 6.83× 10−1 [1.45× 10−6, 4.949]

kB 1.55× 105 4.75× 106 [1.134, 4.95× 107]

qB 1.41× 10−1 3.29 [8.75× 10−3, 27.86]

κV 3.96× 103 2.67× 105 [1.7× 101, 2.68× 106]

nD 1.14× 102 2.64× 103 [2, 2.59× 104]

nR 9.2× 101 1.36× 104 [1, 1.36× 105]

nV 1.76× 104 6.74× 104 [1.98× 102, 4.57× 105]

nB 2 2.61× 103 [1, 2.97× 102]

nP 4.5× 101 1.98× 103 [1, 1.72× 104]

Table 4.5: Summary statistics for each accepted parameter value sets from model

2. Mean, median and a 95% credible interval are summarised.
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(a) Model 2 posterior Histograms (b) Model 2 ABC-SMC time course

Figure 4.10: (a) Posterior histograms obtained from the ABC-SMC algorithm.

Blue histograms indicate prior distributions, and purple histograms illustrate

posteriors. (b) Model fit from accepted parameter sets obtained during the final

iteration of the ABC-SMC algorithm. Blue triangles represent data presented

in Table 4.2 plotted with its standard deviation. The black line illustrates the

point-wise median value from the accepted parameter sets (shaded in green) with

a 95% credible interval. These results represent 18 iterations with 2500 accepted

parameter sets for model 2.

Figure 4.11 presents results from the Bayesian inference with model 3. The

median course is similar to those in Figure. 4.8 and Figure. 4.10. Compared

to model 2, the time course describes the data better. In contrast, the median

of model 1 is similar but has a smaller credible interval. Upon examination

of the posterior distributions, there is improved learning. Parameters for the

number of viral RNA (nD) and PKR molecules (nA) have narrow posterior

distributions compared to their prior ones. As mentioned in previous sections,

these are important parameters identified by Sobol sensitivity analysis. Thus,

such improved learning is a desired feature of model 3 compared to models 1 and
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2. Many parameters have narrower posterior distributions compared to their prior

ones, indicating overall learning for most parameter values. The binding and

disassociation rates of VP35 and PACT have the broadest posterior distributions.

Both rates could benefit from additional iteration steps of the ABC-SMC method.

Strong correlations exist particularly between kM and nA (r = −0.70) and nP

(r = −0.71), which means one can only learn about their. Figure. 4.12 illustrates a

positive correlation between qM and nV (r = 0.60), once again indicating learning

about their ratio.

Parameter Median Mean Credible interval

kV 3.87× 10−5 3.00× 10−2 [2.84× 10−7, 1.40× 10−2]

qV 1.92× 10−3 2.36× 10−1 [2.43× 10−6, 1.66]

kP 4.55× 10−6 7.74× 10−2 [1.79× 10−7, 3.15× 10−4]

qP 1.26× 10−5 3.20× 10−3 [1.22× 10−6, 1.38× 10−3]

kM 1.30× 10−1 3.30 [2.61× 10−7, 2.90× 101]

qM 1.14× 10−4 1.56 [1.72× 10−6, 1.81× 101]

kA 8.41× 10−2 2.30× 101 [6.54× 10−4, 2.80× 102]

qA 2.32× 10−3 1.71× 101 [4.90× 10−6, 2.07× 102]

qAV 6.31× 101 9.32× 101 [1.25× 101, 3.82× 102]

nD 1.30× 101 2.37× 103 [2, 5.98× 102]

nR 4.16× 103 9.90× 103 [3.24× 102, 5.16× 104]

nV 1.70× 101 3.46× 103 [1, 2.00× 104]

nA 1.20× 101 1.61× 104 [2, 2.00× 105]

nP 3.74× 102 2.19× 104 [1.40× 101, 1.76× 105]

Table 4.6: Summary statistics for each accepted parameter value sets from model

3. Mean, median and a 95% credible interval are summarised.

137



4. MATHEMATICAL MODEL OF INTERFERON ANTAGONISM

(a) Model 3 posterior histograms (b) Model 3 ABC-SMC time course

Figure 4.11: (a) Posterior histograms obtained from the ABC-SMC algorithm.

Blue histograms indicate prior distributions, and purple histograms illustrate

posteriors. (b) Model fit from accepted parameter sets obtained during the final

iteration of the ABC-SMC algorithm. Blue triangles represent data presented

in Table 4.2 plotted with its standard deviation. The black line illustrates the

point-wise median value from accepted parameter sets (shaded in green) with a

95% credible interval. These results represent 18 iterations with 2500 accepted

parameter sets for model 3.
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Figure 4.12: Left: Bivariate posterior histogram of log10(qM) and log10(nV )

showing a positive correlation (r = 0.60). Right: Posterior distribution of the

ratio log10(qM/nV ).

4.4.4 Model selection

The sensitivity of their associated parameters has been studied for the proposed

three separate mathematical models, and Bayesian inference has been used to

calibrate each model. Furthermore, their structural identifiability has also been

assessed. These initial findings would indicate that either model 1 or 3 would be

suitable to appropriately describe the data, since they have the best posterior his-

tograms and overall time course. The use of ABC model selection and calculation

of the Akaike information criterion (AIC) allows a way to quantify which model

better describes the data. Thus, an indication of which mechanism of type I IFN

inhibition is preferred (Anderson & Burnham, 2004). The second order AIC for

small sample sizes is defined as

AICc = −2log(L(θ)) + 2Kθ

(
ns

ns −Kθ − 1

)
,

with log(L(θ)) the log-likelihood given parameters θ, defined in Section 4.4.3, Kθ

defined as the number of estimated parameters for a given model, and ns(= 5)

the number of samples used to generate the data presented in Table 4.2. The AIC
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value generated will be compared for each model, with a lower index being an

indication of preferential model selection. I use a standard ABC rejection method

as described in Algorithm 2.4.1, which, unlike the ABC-SMC, does not perform

successive iterations. The ABC rejection method is run with ε = 3, and I count

how many sampling instances are required to accept a total of 105 parameter sets.

Table 4.7 summarises these results.

Models 1 and 2 have similar acceptance percentages: 5.35% of parameter sets

accepted for model 1 and 5.12% for model 2. Model 3 has the largest percentage

of accepted parameter sets at 9.03%, much higher than those by models 1 and

2. Note that model 3 has more parameters than models 1 and 2. Since we have

a small number of data points and many parameters, I use the second-order

AIC (Anderson & Burnham, 2004). This method gives AIC values of −19.25,
−15.75 and −15.80 for models 1, 2 and 3, respectively. This shows that accounting

for the number of parameters, model 1 is the best, followed by model 3, then

2. Taking into account the ABC rejection results, these results illustrate that

model 2 characterises the data poorly and is less suitable than models 1 and 3.

Now carrying out a pair-wise comparison between models 1 and 3. It shows a

probability of 0.372 for choosing model 1 and 0.628 for model 3. Bayesian model

selection indicates that model 3 better explains the limited data available.

Number of samples % accepted Relative probability

Model 1 1,868,652 5.35 0.274

Model 2 1,952,835 5.12 0.263

Model 3 1,107,525 9.03 0.463

Table 4.7: Table with number of sample parameter sets required for 105 sets to

be accepted. An Euclidean distance measure was used with ε = 3 as a threshold

value for acceptance. The percentage of accepted parameter sets is also shown.

4.5 Numerical Simulations

The previous section showed that model 2 poorly represented the data. Further-

more, model selection revealed it was the worst model with a low acceptance
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probability and the highest AIC value compared to models 1 and 3. Therefore,

it is reasonable to exclude model 2 from further analysis, and I will focus on

results generated using models 1 and 3. In what follows, median parameter values

for each model found during Bayesian inference are used (Tables 4.4 and 4.6 for

models 1 and 3, respectively). Furthermore, the analysis will be restricted to

stochastic simulations since the matrices and vectors generated to use matrix

analytical methods are too large to store in system memory with the current

high-performance systems available. An example of how these matrix methods

could be used in practice is described in Appendix A.2. In Section 4.1, it was

highlighted that from these models understanding the late-time behaviour of the

stochastic processes was of interest by investigating the steady-state distribution.

The other stochastic descriptor of interest is the mean time to reach a threshold

number N of activated TBK-1 (phosphorylated PKR for model 3). From the

van Kampen expansion carried out at the start of this chapter for each model,

correlations of stochastic variables can also be investigated.

Figure 4.13: Probability distribution for process X1 for number of phosphorylated

TBK-1 in steady-state from numerical simulations. The initial state for simulations

was n(0) = (0, 0, 0).

Figure 4.13 illustrates the stationary probability distribution for stochastic

process X1. This indicates that for late-time behaviour, there is a significant

probability > 0.8 that there will be no activated TBK-1 present. This results

from large amounts of viral protein VP35 competitively sequestering dsRNA with
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Figure 4.14: Left: Mean time to reach N phosphorylated TBK-1 for process X1.

Right: Probability of reaching N phosphorylated TBK-1 within 192 hours. The

initial state for simulations was n(0) = (0, 0, 0).

RIG-1. As a result, fewer RIG-1:dsRNA complexes are formed, which reduces

the induction of TBK-1. The distribution shifted to the left indicates a small

probability of reaching a steady-state of 1 or two activated TBK-1 molecules < 0.1.

Additionally, there is a small probability of 3-5 activated TBK-1 molecules, as

seen in the zoomed box in Figure 4.13. Figure 4.14 on the left panel presents the

mean time to reach a given number N of activated TBK-1 molecules (where an

empty bar means no state was reached). The right panel shows the probability

of reaching a given number of activated TBK-1. As seen from the left panel, the

likelihood of achieving a “N” molecules decreases as the threshold number of

molecules increases following an inverted logistic sigmoid curve until around 35

molecules, where the probability becomes effectively zero. The mean time follows

a logistic S curve, with the time to reach a given state increasing until it reaches

the maximum possible molecule level where the probability becomes zero.

Examining the stochastic correlations of Model 1 shown in Figure 4.15, it

is interesting to note that for stochastic variables n1 RIG-1:dsRNA and n2

VP35:dsRNA there exists a weak negative correlation, showing that as one
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Figure 4.15: Correlations with respect to time for the variables of the stochastic

process X1 for model 1.
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Figure 4.16: Probability distribution for the number of phosphorylated PKR in

steady-state from numerical simulations for process X3.

stochastic variable increases, the other will decreases. This makes sense due

to the competitive nature of VP35 and RIG-1 that we have established in this

model.

Figure 4.17: Left: Mean time to reach N phosphorylated PKR for process X3.

Right: Probability of reaching N phosphorylated PKR within 192 hours. The

initial state for simulations was n(0) = (0, 0, 0, 0, 0).
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Figure 4.18: Correlations with respect to time for the variables of the stochastic

process X3 for model 3.

From the median parameter values for model 3, the stationary probability dis-

tribution is shifted to the right with between 9-11 phosphorylated PKR molecules

being present in steady-state. For late-time behaviour, this shows that the sig-

nalling via PKR can still be achieved even with being de-phosphorylated with

a large probability. This is more consistent with what is witnessed in vivo ex-

perimentation since it is well documented not all IFN signalling is abolished.

Figure 4.17 shows the probability of reaching N phosphorylated PKR on the right

panel, while the left shows the mean time to reach this state. As can be seen states

up to 8 molecules are guaranteed to be reached, with the amount of time to reach

these exponentially increasing. For states 9-12, there is a large increase in time

to reach the given state. Furthermore, the probability of reaching these states

negatively correlates with the time to reach them. Figure 4.18 shows the negative

correlations obtained from the van Kampen expansion. This figure illustrates the

negative correlation between PKR:dsRNA and RIG-I:dsRNA complexes. This
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indicates the negative effect of forming RIG-I:dsRNA complexes on PKR:dsRNA

complexes. Furthermore, Figure 4.18 also shows a negative correlation between

PACT:VP35 and PKR:dsRNA complexes. This is because PACT binding to VP35

allows more PKR to successfully bind to dsRNA without being down-regulated

by VP35. Therefore, this highlights the benefits of PACT and PKR being in the

same system.

4.6 Discussion

In this chapter, I have focused on viral strategies to antagonise type I IFN

secretion pathways via PRRs. I have also proposed three potential mathematical

models with upstream and downstream type I IFN inhibition mechanisms. These

models have been formulated based on the current biological understanding of

the interactions between intra-cellular proteins. In particular, I have investigated

the role of RLRs, which detect viral RNAs and promote IFN responses. VAPs

potentially antagonise a given RLR signalling pathway in its upstream portion,

at the level of viral RNA recognition, by competing with RLRs for viral RNA

binding or removing PAMP signatures recognised by RLRs. Viral proteins such as

NS1 (Influenza A), VP35 (EBOV), and N (SARS-COV) all bind viral RNAs, thus

inhibiting PRRs from binding and signalling (Basler et al., 2000; Cui et al., 2015;

Donelan et al., 2003; Edwards et al., 2016; Zinzula & Tramontano, 2013). PAMPs

such as NP (Lassa Fever) and NSP14 (SARS-COV) are removed, preventing RLR

recognition. Downstream effects include the inhibition, mediated by VAPs, of

RLR-induced antiviral proteins. For instance, VAPs may modify the binding sites

of proteins, inhibit the formation of signalling complexes, or prevent translocation

and phosphorylation (Zinzula & Tramontano, 2013).

Mathematical models have been previously proposed to model interferon

inhibition by viruses (Rand et al., 2012; Rinas, 2016; Zou et al., 2010) or to

describe inter-cellular interactions via IFN-α receptors (Schmid et al., 2015).

These models are virus-specific or require detailed knowledge of many protein-

protein interactions along the signalling pathway under consideration. My aim

with this chapter was to characterise key biological hypotheses quantitatively while

avoiding, in principle, unnecessary complexity. Since clinical data sets from early

146



4.6 Discussion

viral infections are typically limited, it is essential to have mathematical models in

place that can be parameterised given this severe restriction. While the proposed

models do not include all possible mechanisms of viral protein antagonism and

inhibition of signalling pathways, which result in type I IFN induction, the three

models presented are a good first start. Moreover, these models can be generalised

to account for other mechanisms, proteins, or additional signalling pathways and

separate viruses. I proposed three different models for the inhibition of type

I interferon expression by VAPs. Each model considers a different biological

mechanism or an alternate signalling pathway. Figures 4.1, 4.3 and 4.4 represent

mechanisms which have been recently proposed in the literature (Donelan et al.,

2003; Edwards et al., 2016; Randall & Goodbourn, 2008; Zou et al., 2010). For

each model I have assessed its sensitivity and parameter identifiability, as well

as carried out model selection and parameter calibration. In particular, Sobol

sensitivity analysis identified which parameters would need to be closely controlled

for each model and its output. In each model, two parameters must be well

characterised to avoid large variations in my model outputs. For models 1 and 2,

these are the total number of TBK1 molecules, nB, and its activation rate, kB. In

the case of model 3, the most important parameters are the total number of PKR

molecules, nA, and the total copy number of viral RNA molecules, nD.

Unfortunately, very little is known about the values for the parameters consid-

ered in my models. Thus, I aimed to conduct Bayesian inference to narrow down

these values. To this end, carrying out a structural identifiability analysis was

also important. This analysis led to the following results: model 3 (considering

the PKR pathway) is locally identifiable, but models 1 and 2 are not. I note that

these results are in light of the limited data set I had at hand. Yet, this indicated

that even with limited data, model 3 might be better, compared to the other

two models, at allowing us to infer parameter values. This was further supported

by model selection and parameter inference: the PKR signalling pathway has a

higher percentage of acceptance as illustrated in Table 4.7 and narrower posterior

distributions for most parameter values (see Figure. 4.11). Model 2 was deemed

the worst model of the three: many parameters were non-identifiable, leading to

the worst percentage of parameter set acceptance from model selection, and broad

posterior distributions for its parameters. Model 1 cannot be rejected since it
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had the lowest AIC coefficient. However, as previously mentioned, this model is

structurally unidentifiable and leads to poor learning for most parameter values.

In this section, parameter estimation leads to poor estimates for the parameters

in models 1 and 2. In general, while the ABC-SMC method allows one to start

with large prior distributions and then narrow them, it reduces the potential to

learn about parameter values in this implementation. The first way to improve

this model fit would be to use an Euclidean alternative where the distances are

divided by the standard deviation at each time point. This allows one to fit closer

to the points with less variation than those with more considerable variation,

which may help narrow posterior distributions. A second way to increase the

estimated parameters’ reliability would be to use a mixed-effects model. Since

the experimental data used is from different rhesus monkeys, there is considerable

variation on an animal-to-animal basis and cellular basis for each animal. Using a

mixed-effects model would allow one to parameterise not only on a population

level but also in a monkey-specific way. This would improve the reliability of the

parameters gained from the model since one would not be averaging just over the

population.

While the models I have presented can be generalised to other viruses, it should

be remembered that additional biological phenomena have not been included in

the models. EBOV infection, which was examined as a case study, has several

specific features not characterised by the mechanisms included in these models.

Plasmacytoid dendritic cells (pDCs) have been shown to be refractory to EBOV

infection, whereas common dendritic cells are susceptible (Leung et al., 2011).

This could be due to the fact that pDCs express basal (or constitutive) levels of

IRF7 before infection (Honda et al., 2005), and, therefore, can be considered in an

antiviral state. Thus, when considering the development of a mathematical model,

it is vital to understand not only the virus but also the cellular tropism of the virus

and the host ( i.e., invertebrate or vertebrate); that is, which cells are the target

cells of the virus (Perelson, 2002). The main focus of this chapter was on type I

IFNs as essential antiviral cytokines, yet immune responses require a complex and

coordinated interaction of an extensive collection of cytokines and cells, which

have not been investigated. Developing such complex mathematical models would

require a more comprehensive data set. These models could be further expanded
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to incorporate other intra-cellular or viral mechanisms, or additional signalling

pathways. Additional data sets, e.g., from quantitative proteomics, could be used

to improve parameter inference for EBOV and other viruses of global concern and

public health threats.

A final point to consider is the difference between in vivo and in vitro infection.

These models have been parameterised with an in vivo data set. As discussed in the

introduction of this chapter, there is a stark contrast in responses when comparing

in vivo and in vitro infection. In particular, and for the in vitro case, type I IFN

production is abrogated after three days post-infection. whereas in the case of in

vivo infection type I IFN is present throughout the entire infective period (Bosworth

et al., 2017; Kotliar et al., 2020). Hence it is critical to keep this in mind when

developing a mathematical model. Along this line of thought, it is also important

to note that differences in in vivo experimental models can lead to different innate

immune responses. For instance, bats are a proposed reservoir for EBOV but are

known to be asymptomatic for the disease. Experiments have indicated that bats

have detectable viral RNA levels, but no detectable viremia (Paweska et al., 2016).

Yet, in the case of humans and non-human primates, the clinical presentation

tends to be symptomatic and with measurable viremia (Feldmann & Geisbert,

16th November 2010; Geisbert et al., December 2003). Bat dendritic cells have

shown an enhanced capacity to initiate IFN-dependent responses upon filovirus

infection in comparison with, for example, human cells (Olival et al., 2020). Other

studies have reported a difference in immune responses depending on the specific

tissue analysed: EBOV viral RNA levels persist in male gonads even after a

negative PCR test from blood samples (Mate et al., 2015). These factors would

need to be considered for further model development and experimental design for

data used to calibrate these models.
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Chapter 5

Mathematical models of viral

infection

Mathematical models combined with computational modelling are handy tools

when it comes to the study of viral infections. They offer relatively cheap and

quick methods that can be used instead of using in vivo or in vitro experiments

for predictive analysis. The role of mathematical models has never been more

relevant than in the last several years during the 2019 SARS-CoV-2 pandemic.

The predictive analysis allowed governments and health organisations to make

informed choices about public health policy and investigate the potential outcomes

if preventative measures were not implemented and followed by the general pub-

lic (Metcalf et al., 2020). There is a long-standing history of mathematical models

being used for modelling viral and bacterial infections such as, HIV (Perelson,

1999), Ebola (Liao et al., 2020) and Anthrax (Williams et al., 2021) to name a

select few. In this chapter, I will present two mathematical models: the first is for

intra-cellular replication of SARS-CoV-2 in the presence of defective interfering

particles. The second model was used to investigate the replication kinetics of

Foot and Mouth Disease virus (FMDV) in vitro. The latter work was preliminary

in support of a grant application.
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5.1 Defective interfering particles as a potential

therapeutic during SARS-CoV-2 infection

In December 2019, a new infectious agent was reported to the World Health

Organisation (WHO) that would later be identified as a novel coronavirus (SARS-

CoV-2) (Wu et al., 2020). The WHO declared SARS-CoV-2 a “public health

emergency of international concern” on the 30th January 2020 (Li et al., 2020a),

rapidly spreading to 113 countries. By the 11th March 2020, it had caused 118,319

infections and 4,292 deaths, and as a result, many countries began to initiate

lockdowns and introduce mask and social distancing mandates. Consequently, the

WHO declared SARS-CoV-2 a pandemic (Martellucci et al., 2020; World Health

Organization et al., 2020) and as of 29th July 2022, about 572 million infections and

over 6 million deaths have been recorded worldwide. Furthermore, the pandemic

seriously impacted the global economy leaving many businesses and governments

feeling the effects (Mohapatra et al., 2020). During the early stages of the

pandemic, treatment options were limited to chloroquine and remdesivir (Colson

et al., 2020; Morse et al., 2020). However, several effective vaccines have since been

developed that provide protection and reduce transmission, with many countries

rolling out mass vaccination programs (Castells & Phillips, 2021). Although

vaccines for SARS-CoV-2 now exist, new strains due to mutations have led to

further concerns about vaccine effectiveness (Boehm et al., 2021; Jangra et al.,

2021). This fact, together with waning immunity and the existence of individuals

who are unable to be vaccinated or out-right refuse to do so, highlight the need

for additional therapeutics and prophylactics (Fu et al., 2020; Naqvi et al., 2020)

in addition to booster programmes (Du et al., 2022).

One such potential therapy is viral interfering particles. During viral replication,

mutants, lacking essential parts of the viral genome, are generated (Alnaji &

Brooke, 2020; Fatehi et al., 2021) which are unable to replicate in the absence

of wild type (WT) virus. These are known as defective interfering particles

(DIPs). DIPs can be exploited to make therapeutic interfering particles (TIPs),

which inhibit the replication of WT virus by competing with WT gene segments

for resources required during viral replication and assembly (Bdeir et al., 2019;

Chaturvedi et al., 2021). TIPs/DIPs have been investigated for several viruses,
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including HIV, Ebola, influenza and SARS-CoV-2 and have been found to cause

a reduction in viral titres (Bdeir et al., 2019; Chaturvedi et al., 2021; Smither

et al., 2020). However, caveats exist in their production; for instance, how the

DIP genome is formed to allow for faster replication than WT and which sections

must be conserved to allow replication. DIPS are also virus-specific, and little

is known about how mutations change replication dynamics (Fatehi et al., 2021;

Rouzine & Weinberger, 2013).

From a mathematical modelling perspective, a long-standing effort exists to de-

scribe transmission dynamics at the population level and within-host level (Greben-

nikov et al., 2022) in the presence of DIPs. At the within-host level, DIPs as

therapeutics have been studied by Perelson & Ke (2021) and Zhao & Xing (2021).

However, little effort has been devoted to investigating the intra-cellular replication

kinetics of DIPs in the presence of WT virus. Grebennikov et al. (2021) have

recently proposed a model for SARS-CoV-2 intra-cellular replication dynamics.

This model allowed for the quantification of the viral genomes and proteins during

the replication cycle. Here, the aim is to extend this model to explore co-infection

with DIPs and the effect of DIPs on the replication dynamics of the WT virus on

a intracellular level.

In this section, I formulate a mathematical model of SARS-CoV-2 replication

in a cell co-infected with DIPs. As in the paper presented by Grebennikov et al.

(2021), I will follow a deterministic approach to calibrate model parameters. I use

the sensitivity analysis described in Section 2.5.1 to study the impact parameters

have on the release of both WT and DIP virus particles. I also introduce a

stochastic description of this model to compare against the deterministic one.

Finally, I will also investigate how initial doses of each virus affect virus particle

production (WT and DIPs), to quantify DIP inhibition of WT replication and

the reliance of DIPs on the WT replication machinery.

5.1.1 Mathematical model

In what follows, I use a system of ordinary differential equations to describe the

biochemical reactions associated with the intra-cellular replication of SARS-CoV-2

in the presence of DIPs. The system of ordinary differential equations (ODEs) is
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Figure 5.1: Biological scheme of the competitive replication of the infectious

SARS-CoV-2 and defective interfering particles. Figure provided by Dmitry

Grebennikov.

formulated under the assumption of mass-action kinetics and Michaelis-Menten

approximations, based on the biological scheme presented in Figure 5.1. The

equations describe cell entry, RNA release, RNA transcription and DIP parasitism

of WT replication machinery. This is followed by translating new RNA molecules

and competition for nucleocapsid and structural proteins. Finally, new WT virions

and DIPs are assembled and released from the cell. Later I will describe the model

as a stochastic process.

Cell entry and RNA release

Binding of the free infectious WT virion to the cellular trans-membrane protein

ACE2 via the receptor binding domain of the spike protein allows entry and release

of the viral RNA into the host cell. Subsequently, the virus will then bind to the

cellular or endosomal membrane, which causes un-coating and release of viral

genomic RNA. These processes are described by equations specifying the rates

of change of free, receptor-bound, and fused virions, as well as the viral RNA
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genome in the cytoplasm:

d[V wt
free]

dt
= −kbind[V wt

free]− dwt
V [V wt

free] + kdiss[V
wt
bound], (5.1)

d[V wt
bound]

dt
= kbind[V

wt
free]− (kfuse + kdiss + dwt

V )[V wt
bound], (5.2)

d[V wt
endosome]

dt
= kfuse[V

wt
bound]− (kuncoat + dwt

endosome)[V
wt
endosome], (5.3)

d[gRNAwt
(+)]

dt
= kuncoat[V

wt
endosome]− dwt

gRNA[gRNAwt
(+)]. (5.4)

Here [V wt
free] is the number of extra-cellular free infectious virions, [V wt

bound] the

number of virions bound to ACE2 and activated by transmembrane serine protease

2 (TMPRSS2), [V wt
endosome] is the number of virions in endosomes, and [gRNAwt

(+)]

the number of single-stranded (ss)-positive sense genomic RNA. Free WT virus

binds to ACE2 receptors with rate kbind and can be cleared with rate dwt
V . Bound

WT virus can then fuse to the cellular or endosome membrane with rate kfuse or

disassociate from the receptor with rate kdiss. The clearance rate for bound WT

virus remains as previously described for free WT virus since there have been no

major structural changes to the virion. Upon fusion and forming of an endosome,

the viral RNA can be un-coated with rate kuncoat. Virions in the endosome can

degrade with rate dwt
endosome. Finally, the newly un-coated genomic RNA can be

degraded with rate dwt
gRNA. A similar set of equations is used to describe the cell

entry and RNA release of non-infectious defective interfering particles:

d[V dip
free]

dt
= −kbind[V dip

free]− ddipV [V dip
free] + kdiss[V

dip
bound], (5.5)

d[V dip
bound]

dt
= kbind[V

dip
free]− (kfuse + kdiss + ddipV )[V dip

bound], (5.6)

d[V dip
endosome]

dt
= kfuse[V

dip
bound]− (kuncoat + ddipendosome)[V

dip
endosome], (5.7)

d[gRNAdip
(+)]

dt
= kuncoat[V

dip
endosome]− ddipgRNA[gRNAdip

(+)]. (5.8)

Here [V dip
free] is the number of extra-cellular free DIPs, [V dip

bound] the number of DIPs

bound to ACE2 and activated by TMPRSS2, [V dip
endosome] the number of DIPs in

endosomes, and [gRNAdip
(+)] the number of ss-positive sense genomic RNA. DIPs
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for SARS-CoV-2 would require a functional spike (S) protein to bind to ACE2

receptors and mediate cell entry successfully. Consequently, it was assumed that

the rates for kbind, kdiss, kfuse, and kuncoat are the same for both WT virus and

DIPs. However, degradation rates related to cell entry will differ between WT and

DIPs since the shorter genome of DIPs might imply a different degradation rate.

RNA transcription and DIP parasitism

The released WT viral genomic RNA undergoes translation into non-structural

viral polyproteins, [NSP ], with the rate ktransl according to the length of open

reading frame 1 (ORF1) fORF1, which operate to form the viral replication and

transcription complex, , i.e., the RNA-dependent RNA polymerase (RdRp).

These NSPs can become degraded with rate dNSP . The main function of the

RdRp replication complex is to generate a negative-sense full-length genome and

subgenomic RNAs. As DIPs lack the ability of self-replication, the conditional

transcription of DIP RNAs results in competition with WT SARS-CoV-2 for

replication proteins (Chaturvedi et al., 2021). Using WT virus trans elements by

DIPs reduces [NSP ] availability for transcribing WT viral RNA. This is encoded in

Equation (5.9). From positive sense genomic RNA ([gRNAwt
(+)]) negative genomic

RNA strands ([gRNAwt
(−)]) are generated proportionally to RdRp with rate kwt

tr(−)
.

These negative strains can degrade with rate dwt
gRNA(−)

. The subsequent formation

of negative RNA strands allows the formation of positive sense genomic and

subgenomic strands required to form new virions. These are denoted by [gRNAwt],

and are produced with rate kwt
tr(+)

. New positive strands form ribonucleocapsids

are recruited with the rate kwt
complex proportional to the maximal number of N

proteins available. These strands have a degradation rate dwt
gRNA. The abundance

of non-structural proteins, [NSP ], the negative sense genomic and subgenomic

RNAs, [gRNAwt
(−)], and positive sense genomic and subgenomic RNAs, [gRNAwt],

associated with the replication of the infectious virions is described by the following
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equations:

d[NSP ]

dt
= ktranslfORF1[gRNAwt

(+)]− dNSP [NSP ]

− (kwt
trans(−)

[gRNAwt
(+)] + kwt

trans(+)
[gRNAwt

(−)]+ (5.9)

kdip
trans(−)

[gRNAdip
(+)] + kdip

trans(+)
[gRNAdip

(−)])[NSP ],

d[gRNAwt
(−)]

dt
= kwt

tr(−)
[gRNAwt

(+)]θRdRp − dwt
gRNA(−)

[gRNAwt
(−)], (5.10)

d[gRNAwt]

dt
= kwt

tr(+)
[gRNAwt

(−)]θRdRp − (kwt
complexθcomplex + dwt

gRNA)[gRNAwt],

(5.11)

where

θRdRp =
[NSP ]

[NSP ] +KNSP

, θcomplex =
[N ]

[N ] +KN

. (5.12)

Equation (5.9) reflects the fact that non-structural proteins are translated only

from the viral genomic RNA of infectious WT virions. Transcription of negative-

sense viral genomic and subgenomic RNAs described by Equations (5.10) and

(5.11) is regulated by the positive-sense viral genomic RNA. The set of equations

for transcription of negative sense and positive sense DIP subgenomic RNAs, ,i.e.,

[gRNAdip
(−)], [gRNAdip], are as follows:

d[gRNAdip
(−)]

dt
= kdip

tr(−)
[gRNAdip

(+)]θRdRp − ddipgRNA(−)
[gRNAdip

(−)], (5.13)

d[gRNAdip]

dt
= kdip

tr(+)
[gRNAdip

(−)]θRdRp − (kdip
complexθcomplex + ddipgRNA)[gRNAdip].

(5.14)

The rates for kdip
tr(−)

and kdip
tr(+)

could all be assumed to be faster than those of WT

due to the shorter length of DIP genomes. The degradation rates would depend

on the overall stability of DIP genomes for positive and negative sense strands.

Translation and competition for nucleocapsid protein and

other structural proteins

DIPs compete with WT virions for packaging proteins, e.g., nucleocapsid N pro-

teins ([N ]) (Chaturvedi et al., 2021). Structural S, envelope E, and membrane M
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proteins are translated from positive sense subgenomic RNAs in the endoplasmic

reticulum (ER) and are considered in the mathematical model as a single popula-

tion, [SP ]. Nucleocapsid proteins, on the other hand, are translated in cytosolic

ribosomes from positive-sense RNAs. SP and N proteins are required to form

virus-like particles, WT or DIPs. N proteins are translated with the rate ktransl

over the length of the genome fN from positive sense WT virus gRNAwt. Similarly,

SP are translated with the same rate over genome length fSP . N proteins are lost

to ribonucleocapsid (N − gRNAwt) formation with rate kwt
complex requiring nwt

N N

proteins. Furthermore, DIPs undergo the same process, requiring ndip
N N proteins.

SP is only required for virion assembly with rate kwt
assemb for WT virions requiring

nwt
SP structural proteins. ndip

SP structural proteins are required for DIPs with rate

kdip
assemb. It can be assumed that ndip

SP ≤ nwt
SP and ndip

N ≤ nwt
N since the shorter

DIP genome will require fewer N proteins for formation of the ribonucleocapsid

(N − gRNAdip) and construction of a complete DIP. N proteins and SP structural

proteins degrade with rates dN and dSP , respectively. The set of equations to

describe these dynamics are as follows:

d[N ]

dt
= ktranslfN [gRNAwt]− kwt

complexn
wt
N θcomplex[gRNAwt]

− kdip
complexn

dip
N θcomplex[gRNAdip]− dN [N ], (5.15)

d[SP ]

dt
= ktranslfSP [gRNAwt]− kwt

assembn
wt
SP θ

wt
assemb[N -gRNAwt]

− kdip
assembn

dip
SP θ

dip
assemb[N -gRNAdip]− dSP [SP ], (5.16)

where

θwt
assemb =

[SP ]

[SP ] +Kwt
Vrel

nwt
SP

, (5.17)

and

θdipassemb =
[SP ]

[SP ] +Kdip
Vrel

ndip
SP

, (5.18)

Assembly and release of WT SARS-CoV-2 and DIPs

New virions are assembled in the endoplasmic reticulum-Golgi compartment,

where N-RNA complexes become encapsulated. These assembled virions can

then exit an infected cell by exocytosis via a lysosomal pathway, budding, or cell
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death (Mendonça et al., 2021; V’kovski et al., 2021). No competition is associated

with releasing new infectious virions and DIPs. Still, the rates θwt
assemb and θdipassemb

associated with viral assembly will be regulated by the availability of structural

proteins, since DIPs will likely require fewer than WT virions. dN -gRNAwt describes

the degradation rate of WT ribonucleocaspids, dwt
assembled the degradation rate of

newly assembled WT virions. Newly assembled WT virions are released with

rate kwt
release, and released WT virions can be cleared with the rate dwt

V . A similar

set of rates are defined for DIPS. The rates of change for the ribonucleocapsid

[N -gRNA], assembled [Vassembled] and released [Vreleased] infectious SARS-CoV-2

and DIPs are described below:

d[N -gRNAwt]

dt
= kwt

complexθcomplex[gRNAwt]

− (kwt
assembθ

wt
assemb + dwt

N -gRNA)[N -gRNAwt], (5.19)

d[V wt
assembled]

dt
= kwt

assembθ
wt
assemb[N -gRNAwt]

− (kwt
release + dwt

assembled)[V
wt
assembled], (5.20)

d[V wt
released]

dt
= kwt

release[V
wt
assembled]− dwt

V [V wt
released], (5.21)

and

d[N -gRNAdip]

dt
= kdip

complexθcomplex[gRNAdip]

− (kdip
assembθ

dip
assemb + ddipN -gRNA)[N -gRNAdip], (5.22)

d[V dip
assembled]

dt
= kdip

assembθ
dip
assemb[N -gRNAdip]

− (kdip
release + ddipassembled)[V

dip
assembled], (5.23)

d[V dip
released]

dt
= kdip

release[V
dip
assembled]− ddipV [V dip

released]. (5.24)

In this study, I aim to analyse the model behaviour for different initial conditions,

[V wt
free](0) and [V dip

free](0), and thus, understand the replication dynamics of WT

virus particles in the presence of DIPs, and how the initial dose of WT and DIP

particles regulates infection and production kinetics of WT virions. Here I study

the amount of WT virus and DIPs released over time.
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Sensitivity analysis

To evaluate the model response to variation in parameter values, Sobol global

sensitivity analysis was performed on four different model outputs using the method

described in Section 2.5.1. I first considered the variability of WT genomic RNA,

[gRNAwt], and DIP genomic RNA, [gRNAdip], as a result of changing parameter

values within a set range summarised in Tables 5.2, 5.3 and 5.4. Secondly, I

investigated how parameter variability affects the release kinetics of both WT

[V wt
released] and DIP [V dip

released] particles by 48 hours post-infection. Understanding

which parameters cause the most variability in this model would allow model

calibration with careful consideration to minimise output variation.

Figure 5.2 illustrates the first and total-order sensitivities for WT genomic

RNA, [gRNAwt], and DIP genomic RNA, [gRNAdip], as an output of the proposed

model. For [gRNAdip] the parameter kdip
tr(−)

was identified to contribute the largest

variation. kdip
tr(−)

is associated with the transcription of negative sense RNAs for

DIPs, which is vital in the formation of new positive sense genomic and subgenomic

RNAs. The rate kdip
tr(+)

was also identified as a parameter sensitive to change, since

it is associated with the transcription of positive-sense RNAs. Consequently, kwt
tr(−)

was the second most important parameter in minimising variation in model output

for [gRNAwt] (Figure 5.2), following the same reasoning as for DIP positive sense

genomic RNA.

A parameter that was of great importance, and not only causes a large variation

in model outputs of [gRNA] for WT or DIPs, but also [V ·
released], was the threshold

parameter of non-structural proteins, KNSP . KNSP causes the most variation

for [V dip
released] and [gRNAwt] compared to any other parameter, and for [V wt

released]

(Figure 5.3) and [gRNAdip] (Figure 5.2) it is the second most important parameter.

KNSP is associated with the transcription of both negative and positive sense

genomic RNAs, and changes in the value of this parameter will modify the number

of WT virions and DIPs released. kwt
tr(−)

was identified as an important parameter

to minimise variation in the release of both WT [V wt
released] and DIPs [V dip

released].

Consequently, transcription of negative sense WT genomic RNAs is vital in

producing positive stranded gRNA that is then translated to form structural

proteins S, M and E [SP ] and nucleocapsid proteins [N ] that are required to
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Figure 5.2: First and total-order sensitivities from 104 samples with 95% con-

fidence interval (black line). (Left:) sensitivities for the variable [gRNAdip].

(Right:) sensitivities for the variable [gRNAwt].
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Table 5.5: Fold-log reductions for 24 and 48 hours post-infection as reported in

Ref. Chaturvedi et al. (2021) for TIP2.

Time (hours) Fold log reduction (2 d.p.)

24 1.20

48 1.14

form new particles. Parameters associated with WT virion or DIP assembly

are also important to monitor to reduce variation in model outputs. Several

parameters identified by Sobol sensitivity analysis have been previously estimated

by Grebennikov et al. (2021) and are summarised in Table 5.2. Table 5.4 lists

other parameters that require estimation.

Parameter calibration

Several parameters were introduced in this extension of the model proposed

by Grebennikov et al. (2021), which have not been previously quantified. To

estimate their values, I performed Bayesian parameter calibration. Since experi-

mental data sets on co-infection with DIPs are limited, I aimed to achieve the

fold reduction experimentally quantified by Chaturvedi et al. (2021). Chaturvedi

et al. (2021) investigated two SARS-CoV-2 DIPs as TIPs. Both DIPs had shorter

genomes, around 6%-10%, than the WT virus. Chaturvedi et al. performed a

virus yield-reduction assay by transfecting Vero cells with TIP or control RNAs

(one µg/million cells) 24 hours before infection with SARS-CoV-2 at a MOI=0.05,

and harvesting culture supernatants for titration at various time-points (24, 48,

or 72 hours post-infection). More details on the manufacture of these DIPs can

be found in Chaturvedi et al. (2021). They discovered that these particles lead to

a 1.5− 1.2 log fold reduction in virus produced compared to control samples and

highlighted the potential of DIPs as therapeutic. I compared the fold reduction

generated by therapeutic interfering particle two (TIP2) (Chaturvedi et al., 2021)

for 24 and 48 hours to the fold reduction from the mathematical model of [V wt
released]

against the original model proposed by Grebennikov et al. These fold reductions

are summarised in Table 5.5. The ABC rejection algorithm as presented in Sec-

tion 2.4.1 was used with 106 sample sets. Since a choice of ε is hard to determine,
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Figure 5.3: First and total-order sensitivities from 104 samples with 95% confi-

dence interval (black line). (Left:) sensitivities for the variable [V dip
released]. (Right:)

sensitivities for the variable [V wt
released].
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Figure 5.4: Virus particle release kinetics predicted by the model with initial

conditions [V wt
free](0) = 10 and [V dip

free](0) = 10 within 48 hours after model cali-

bration using ABC rejection and data from Chaturvedi et al. (2021). Median

parameter values summarised in Table 5.4 were used for previously unknown

parameter values. (Yellow line:) shows the reference solution to a model where

DIPs are not considered in the replication dynamics. (Purple line:) illustrates

the production of WT virions [V wt
released] with DIPs (blue line) [V dip

released].

I took the 0.1% of parameter sets instead, minimising the Euclidean distance.

Samples were taken in the exponent of the search ranges stated in Table 5.4.

As a result, this sample size would provide a large coverage of parameter space.

Figure 5.4 illustrates the model output where median parameter values are used

from the accepted 0.1% sample sets. From these median values, I obtained a

fold change of 1.08 (2 d.p.) at 24 hours post-infection and 1.14 (2 d.p.) at 48

hours post-infection, compared to the reference solution originally determined

by Grebennikov et al. (2021). Posterior histograms in Figure 5.5 showed that

with the data set and the mathematical model, Bayesian inference has led to poor

learning for all but one newly introduced parameter. Posterior distributions are

still wide, with kwt
trans(+)

being the only one with narrow posteriors hence being

structurally identifiable. This was due to a lack of longitudinal data to compare

modelled DIP replication dynamics. Improving the parameter estimates would
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require additional data that, is not currently available. The question remains

how additional experimental outputs would affect the structural identifiability

of the parameters. To investigate this, one can use the SIAN toolbox and input

additional observed outputs to see how identifiability changes.

The following results are generated by using SIAN. Suppose that observed

experimental data exist for not only [V dip
released] and [V wt

released], but also [V dip
endosome]

and [V dip
assembled] assessing the structural identifiability now allows one to locally

identify fifteen of the newly introduced parameters, only three of the parameters

are unidentifiable these being kdip
tr(−)

, kdip
tr(+)

and kdip
trans(+)

. This is also the outcome if

experimental data quantified the structural proteins [SP ] and nucleocapsid proteins

[N ]. Local identifiability implies that several sets of values work to represent the

data. However, it would be beneficial to know how much experimental data would

be required to obtain some or all parameters as globally identifiable. If it were

possible to experimentally quantify [V dip
released], [V

wt
released], [V

dip
endosome], [V

dip
assembled],

[SP ], [N ] and [NSP ] and use all these experimental outputs to calibrate this model

only three parameters remain unidentifiable. In contrast, all other parameters

become globally identifiable with unique solutions. kdip
tr(−)

, kdip
tr(+)

and kdip
trans(+)

all

remain unidentifiable and would still have wide posteriors after calibration. To

make every parameter globally identifiable, one would also need to experimentally

quantify [gRNAdip
(−)] for negative sense DIP genomic RNA. In total, there would

need to be eight total experimental outputs to make this model globally identifiable

on the 18 newly introduced parameters giving a unique solution for each parameter.

Figure 5.6 illustrates the time evolution for each variable in Table 5.1 given the

median values found via ABC rejection. From the upper panels of Figure 5.6, it

can be seen that the entry kinetics of the WT virus into the cell are similar to those

of the reference solution. DIPs, however, enter the cell at a faster rate than WT

virions. It is important to remember that it was assumed there are sufficient ACE2

receptors, and thus, there is no competition between WT and DIP for receptor

binding. The number of non-structural proteins is greatly reduced (Figure 5.6

middle left panel), peaking at 7 hours with ≈ 20 molecules as opposed to the

reference solution, which peaks at roughly 13 hours with ≈ 40 molecules. The

production of [gRNAwt
(−)] halves and peaks earlier in the time course, with a greater

number of DIP negative sense genomic RNA than WT. Consequently, there was
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Figure 5.5: Posterior histograms of the top 0.1% of sampled parameter sets as

a result of 106 samples. Table 5.4 lists the search ranges for the above posterior

histograms. (Purple histogram:) Posterior histogram of accepted parameter

sets, (blue histogram:) histogram of prior beliefs and (black dashed line:) the

median parameter value listed in Table 5.4 that are used to generate Figures 5.4-

5.12.
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an approximate fold reduction of positive sense genomic RNA, ribonucleocapsid

proteins, assembled and released WT virus particles.

Stochastic Markov chain based model

The deterministic model (5.1)-(5.24) can be translated into a stochastic framework

in terms of a continuous-time Markov chain (CTMC) X. The stochastic model

allows one to obtain the probability distributions rather than the mean field

estimates for the variables, and to compute the probabilities of productive cell

infection at low MOI. It is convenient to estimate the model parameters for the

system of ODEs, and then leverage these estimates in the Markov chain to perform

stochastic simulations. The Markov chain corresponding to equations (5.1)-(5.24)

is presented in Table 5.6. It includes the state transition events and the propensities

qi for the i-th process. Each population will be considered a random variable

such that one can investigate stochastic descriptors. Notice that the processes

of ribonucleocapsid formation (i = 33, 34) and virion assembly (i = 37, 38) are

formulated as single events with simultaneous changes of three variables. In these

processes, the protein abundances are decreased by the corresponding number of

protein molecules np needed to form a complex or assemble a pre-virion particle

(i.e., by nwt
N , ndip

N , nwt
SP or ndip

SP ). Alternatively, one can formulate the MC with three

separate processes for each assembly event, in which the protein molecules are

decreased by only one molecule with the propensity multiplied by np (see Sazonov

et al. (2022) for an example of the extended MC formulation). I will use Gillespie

simulations described in Section 2.3.1 to evaluate this stochastic model. From these

simulations, stochastic descriptors for the expected total number E[V (·)
released(24)]

and median total number of WT virions and DIPs released at 24 hours can be

examined for varying initial doses of DIPs and WT virus. Furthermore, the

probability of a productive infection at 24 hours can also be investigated. The

probability of a productive infection is defined as P(V wt
released(24) > 0). These are

investigated in the following section.
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Figure 5.6: Time-dependent state variables of the mathematical model for the

life cycle of SARS-CoV2-2 including the wild-type virions and defective interfering

particles with initial conditions [V wt
free](0) = 10 and [V dip

free](0) = 10 over a 48-hour

time course. (Upper left:) free WT or DIP virions bind and fuse to the cell

ACE2 receptors, (upper right:) virions entering endosomes and the un-coating of

viral positive sense genomic RNA. (Middle left:) transcription and translation to

form a negative sense genome and ORF1 to form non structural proteins (NSPs),

which is then followed by (middle right:) the production of new positive sense

genomic RNAs and translation of N protein. (Bottom left:) translation of

structural proteins and formation of ribonucleocapsid molecules, which lead to

(bottom right:) the assembly and release of new virions, both WT and DIP.

(Dashed lines:) represent the reference model solution proposed by Grebennikov

et al. (2021).
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Table 5.6: The Markov chain: individual transitions and their associated rates.

i Transition Rate, qi
Entry and RNA release (WT):

1 [V wt
free]→ [V wt

free]− 1, [V wt
bound]→ [V wt

bound] + 1 kbind[V
wt
free]

2 [V wt
free]→ [V wt

free]− 1 dwt
V [V wt

free]

3 [V wt
free]→ [V wt

free] + 1, [V wt
bound]→ [V wt

bound]− 1 kdiss[V
wt
bound]

4 [V wt
bound]→ [V wt

bound]− 1, [V wt
endosome]→ [V wt

endosome] + 1 kfuse[V
wt
bound]

5 [V wt
bound]→ [V wt

bound]− 1 dwt
V [V wt

bound]

6 [V wt
endosome]→ [V wt

endosome]− 1, [gRNAwt
(+)]→ [gRNAwt

(+)] + 1 kuncoat[V
wt
endosome]

7 [V wt
endosome]→ [V wt

endosome]− 1 dwt
endosome[V

wt
endosome]

8 [gRNAwt
(+)]→ [gRNAwt

(+)]− 1 dwt
gRNA[gRNAwt

(+)]

Entry and RNA release (DIPs):

9 [V dip
free]→ [V dip

free]− 1, [V dip
bound]→ [V dip

bound] + 1 kbind[V
dip
free]

10 [V dip
free]→ [V dip

free]− 1 ddipV [V dip
free]

11 [V dip
free]→ [V dip

free] + 1, [V dip
bound]→ [V dip

bound]− 1 kdiss[V
dip
bound]

12 [V dip
bound]→ [V dip

bound]− 1, [V dip
endosome]→ [V dip

endosome] + 1 kfuse[V
dip
bound]

13 [V dip
bound]→ [V dip

bound]− 1 ddipV [V dip
bound]

14 [V dip
endosome]→ [V dip

endosome]− 1, [gRNAdip
(+)]→ [gRNAdip

(+)] + 1 kuncoat[V
dip
endosome]

15 [V dip
endosome]→ [V dip

endosome]− 1 ddipendosome[V
dip
endosome]

16 [gRNAdip
(+)]→ [gRNAdip

(+)]− 1 ddipgRNA[gRNAdip
(+)]

ORF1 translation and competitive viral RNA replication:

17 [NSP ]→ [NSP ] + 1 ktranslfORF1[gRNAwt
(+)]

18 [NSP ]→ [NSP ]− 1 dNSP [NSP ]

19 [NSP ]→ [NSP ]− 1 kwt
trans(−)

[gRNAwt
(+)][NSP ]

20 [NSP ]→ [NSP ]− 1 kwt
trans(+)

[gRNAwt
(−)][NSP ]

21 [NSP ]→ [NSP ]− 1 kdiptrans(−)
[gRNAdip

(+)][NSP ]

22 [NSP ]→ [NSP ]− 1 kdiptrans(+)
[gRNAdip

(−)][NSP ]

23 [gRNAwt
(−)]→ [gRNAwt

(−)] + 1 kwt
tr(−)

θRdRp[gRNAwt
(+)]

24 [gRNAwt
(−)]→ [gRNAwt

(−)]− 1 dwt
gRNA(−)

[gRNAwt
(−)]

25 [gRNAwt]→ [gRNAwt] + 1 kwt
tr(+)

θRdRp[gRNAwt
(−)]

26 [gRNAwt]→ [gRNAwt]− 1 dwt
gRNA[gRNAwt]

27 [gRNAdip
(−)]→ [gRNAdip

(−)] + 1 kdiptr(−)
θRdRp[gRNAdip

(+)]

28 [gRNAdip
(−)]→ [gRNAdip

(−)]− 1 ddipgRNA(−)
[gRNAdip

(−)]

29 [gRNAdip]→ [gRNAdip] + 1 kdiptr(+)
θRdRp[gRNAdip

(−)]

30 [gRNAdip]→ [gRNAdip]− 1 ddipgRNA[gRNAdip]

Translation and ribonucleocapsid formation:

31 [N ]→ [N ] + 1 ktranslfN [gRNAwt]

32 [N ]→ [N ]− 1 dN [N ]

33
[gRNAwt]→ [gRNAwt]− 1, [N ]→ [N ]− nwt

N ,

[N -gRNAwt]→ [N -gRNAwt] + 1
kwt
complexθcomplex[gRNAwt]

34
[gRNAdip]→ [gRNAdip]− 1, [N ]→ [N ]− ndip

N ,

[N -gRNAdip]→ [N -gRNAdip] + 1
kdipcomplexθcomplex[gRNAdip]

35 [SP ]→ [SP ] + 1 ktranslfSP [gRNAwt]

36 [SP ]→ [SP ]− 1 dSP [SP ]

Assembly and release:

37
[N -gRNAwt]→ [N -gRNAwt]− 1, [SP ]→ [SP ]− nwt

SP ,

[V wt
assembled]→ [V wt

assembled] + 1
kwt
assembθ

wt
assemb[N -gRNAwt]

38
[N -gRNAdip]→ [N -gRNAdip]− 1, [SP ]→ [SP ]− ndip

SP ,

[V dip
assembled]→ [V dip

assembled] + 1
kdipassembθ

dip
assemb[N -gRNAdip]

39 [N -gRNAwt]→ [N -gRNAwt]− 1 dwt
N -gRNA[N -gRNAwt]

40 [N -gRNAdip]→ [N -gRNAdip]− 1 ddipN -gRNA[N -gRNAdip]

41 [V wt
assembled]→ [V wt

assembled]− 1, [V wt
released]→ [V wt

released]− 1 kwt
release[V

wt
assembled]

42 [V wt
assembled]→ [V wt

assembled]− 1 dwt
assembled[V

wt
assembled]

43 [V wt
released]→ [V wt

released]− 1 dwt
V [V wt

released]

44 [V dip
assembled]→ [V dip

assembled]− 1, [V dip
released]→ [V dip

released]− 1 kdiprelease[V
dip
assembled]

45 [V dip
assembled]→ [V dip

assembled]− 1 ddipassembled[V
dip
assembled]

46 [V dip
released]→ [V dip

released]− 1 ddipV [V dip
released]
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Dose response analysis

In Figure 5.4 the release kinetics depending on initial doses [V wt
free](0) = [V dip

free](0) =

10 was examined for the deterministic model. However, one can expect that initial

infection doses might vary from cell to cell. Therefore, examining the release

kinetics of WT virions under different initial conditions seemed prudent. Figure 5.7

illustrates the total of WT virions (left) and DIPs (right) released with initial

conditions [V wt
free](0) = 1-20 and [V dip

free](0) = 0-20 over a 24 hour time period. As

can be seen from Figure 5.7, a low dose of DIPs (MOI= 1) with a high dose of WT

virus (MOI= 20) results in ≈21% reduction of the WT particles released during

DIP co-infection. Furthermore, as the initial number of WT virions was decreased

with DIPs fixed at a MOI= 1, a continued decrease in WT virus released during

co-infection is observed compared to the single infection case. As the dose of DIPs

was increased, the total of WT virions released rapidly decreased. By a MOI=10

for WT and MOI= 4 for DIPs, WT particles only account for approximately 30%

of particles released. These deterministic results were consistent with median

estimates from the stochastic model presented in Figure 5.8. In contrast, the

mean estimates in Figure 5.9 showed marginally higher release in WT virus and

lower release of DIPs.

Figure 5.10 shows the result from stochastic simulations for varying initial

doses of wild type virus ([V wt
free](0) = 1-10) and DIPs ([V dip

free](0) = 0-10). This

figure illustrates that the efficacy of DIPs is dose-dependent, with a higher dosage

leading to a reduction in WT virus released regardless of the WT initial dose. This

is the same trend seen in Figures 5.8 and Figure 5.9, with mean predictions higher

than median predictions. Figure 5.11 illustrates the probability of a productive

infection. A productive infection is defined as the WT population releasing virus

before going extinct. The likelihood of a productive infection tends to be one as

the initial dosage of the WT virus hits 20 virus particles, likely due to increased

available resources for replication. However, the probability is affected by the

initial dosage of DIPs, which is reduced as the dose increases. The increased

number of DIPs will sequester more replication machinery, leading to fewer copies

of WT virions. Additionally, productive infection is almost guaranteed for high

174



5.1 Defective interfering particles as a potential therapeutic during
SARS-CoV-2 infection

Figure 5.7: Effects of varying initial dose on viral particle release in the deter-

ministic model. Left: Total WT virions released over the 24 hours post-infection

for varying initial conditions of free WT virions [V wt
free](0) = 1-20 and free DIPs

[V dip
free](0) = 0-20. Right: Total DIPs released for varying initial doses.

Figure 5.8: Effects of varying initial dose on viral particle release in the stochastic

model. Left: Median total WT virions released over the 24 hours post-infection

for, varying initial conditions of free WT virions [V wt
free](0) = 1-20 and free DIPs

[V dip
free](0) = 0-20. Right: Total DIPs released for varying initial doses.
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Figure 5.9: Figure: Effects of varying initial dose on viral particle release in the

stochastic model. Left: Expected total WT virions released over the 24 hours

post-infection, for varying initial conditions of free WT virions [V wt
free](0) = 0-20

and free DIPs [V dip
free](0) = 0-20 from the stochastic model. Right: Total DIP

particles released for varying initial doses.

Mean and median numbers of WT virions released at 24 h.p.i. 
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Figure 5.10: Stochastic model outputs for varying initial conditions. The mean

and median values for the distribution of WT virions released at 24 hours post-

infection, for varying initial conditions of free WT virions [V wt
free](0) = 1-10 and

free DIPs [V dip
free](0) = 0-10.
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Figure 5.11: The probability of a productive infection P(V wt
released(24) > 0) for

varying initial doses of both WT [V wt
free](0) = 1-20, and DIPs [V dip

free](0) = 0-20 at

24 hours post-infection.

dosages of the WT virus. Still, as shown from Figure 5.8, the overall number of WT

and potentially infectious particles is reduced even if an infection is guaranteed.

Figure 5.12 shows virus particle release kinetics predicted by the deterministic

model with fixed initial conditions for WT virions [V wt
free](0) = 10 and varying

initial conditions for DIPs [V dip
free](0) = 1-100. DIP release peaks at a MOI= 6

and then decreases as the dose increases. This is due to a lack of WT virus

proteins that allow replication of DIPS, and as such, DIPs reach a replication

threshold. An increase in dose continues to affect the release of WT virions, so

that for an MOI = 40 total WT virion production is < 30 virions released over

the 24 hours considered. This highlights the ability of DIPs to compete (with an

advantage) for replication resources with WT virions. Consequently, if the dose is

high enough, DIPs sequester so many intra-cellular resources that WT production

is significantly reduced.
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Figure 5.12: Total WT released after 24 hours for increased initial doses of

DIPs. Virus particle release kinetics predicted by the model with fixed initial

conditions for WT virions [V wt
free](0) = 10, and varying initial conditions for DIPs

[V dip
free](0) = 1-102. (Purple line:) illustrates the release of WT virions [V wt

released]

with DIP release (blue line) [V dip
released].
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Discussion

In this section, using a mathematical model, I investigated the intra-cellular

replication kinetics of the WT virus in the presence of DIPs. To this end, I

extended the model proposed by Grebennikov et al. (2021), which focused on

the intra-cellular replication kinetics of SARS-CoV-2, to include co-infection with

defective interfering particles, given their therapeutic potential (Rand et al., 2021;

Roux et al., 1991). In particular, I investigated the ability of DIPs to reduce WT

viral load by competing for resources required to replicate and encapsulate the

viral genome to form new virions. Since DIP genomes lack key fragments, they

need a “helper” virus, which encodes non-structural and structural proteins, for

their replication. There is evidence of DIPs leading to a reduction in virus titres

for several viruses, including influenza A, dengue fever and SARS-CoV-2 (Bdeir

et al., 2019; Chaturvedi et al., 2021; Li et al., 2021). With the emergence of new

SARS-CoV-2 strains, the effectiveness of DIPs (derived from a particular viral

strain) against novel ones remains to be investigated.

I aimed to assess the hypothesis that DIPs lead to a reduction not only in

WT virions released but also, negatively impact the transcription of positive-sense

genomic RNAs. Additionally, I investigated the effects of initial infection dose

(WT and DIP) in releasing new WT virions and DIPs. Since experimental data

sets are minimal, it is essential to note that the parameter values obtained in

this section are based on the data set from Chaturvedi et al. (2021), and are not

globally identifiable; hence an infinite set of parameter values could be considered.

Identifying unique parameters would require additional experimental data. It

was shown that four experimentally observed outputs for [V dip
released], [V

wt
released],

[V dip
endosome], [V

dip
assembled] were sufficient to make fifteen of the eighteen new parameters

locally identifiable. Hence, there would be a finite set of parameter values that

would satisfy the data. Furthermore, it would require eight experimental outputs

[V dip
released], [V

wt
released], [V

dip
endosome], [V

dip
assembled], [SP ], [N ], [NSP ] and [gRNAdip

(−)] to

make the parameters globally identifiable and as a result unique.

The extension of the model presented by Grebennikov et al. (2021) required

new parameters to account for the kinetics of DIPs. Therefore, it was necessary to

investigate the sensitivities of all model parameters. In particular, I made use of
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Sobol sensitivity analysis to understand how variation in parameter values affects

four different model outputs: [gRNAwt], [gRNAdip], [V wt
released], and [V dip

released]. I

found several parameters that affect all four model outputs: KNSP , the threshold

number of non-structural proteins, k
wt/dip
tr(−) , transcription rates of negative sense

genomic RNA for WT virus and DIPs, respectively, and k
wt/dip
tr(+) , the transcription

rates for positive sense genomic RNA. The rates associated with cell entry, kfuse

and kuncoat, also lead to variation in model outputs. Finally, suppose I examine

the sensitivity of the outputs WT and DIP release. In that case, I find that their

associated assembly rates, kwt
assembl and kdip

assembl, are the most sensitive parameters.

DIPs have the potential as therapeutics; thus, it is essential to explore how

initial infection doses of WT and DIP alter the release of WT virus, to inform a

treatment plan. I show that even a low MOI= 1 of DIPs can cause a reduction of

approximately 50% in released WT virus compared to an infection in the absence

of DIPs. Figure 5.7 illustrates how increasing the dose of DIPs leads to a reduction

in the fraction of released WT virions, independently of the initial WT infection

dose. These trends are consistent with the results from the stochastic model also

shown within this paper (Figure 5.8). The doses of both WT virus and DIPs also

affected the probability of a productive infection which decreased with increased

DIPs but is almost guaranteed for high doses of WT virus. I also investigated, the

effect of the initial MOI of DIPs given a fixed amount of WT virus (MOI=10) on

particle release. My results show that while DIP release peaks at an initial DIP

dose of MOI=5, the release of WT virions decreases in a dose-dependent manner.

Furthermore, by an initial DIP dose of MOI=40 WT virion release is effectively

inhibited.

The deterministic and stochastic models I presented are a good first approxima-

tion to the kinetics of WT and DIP co-infection. Yet, there are several biological

processes which have not been considered. First and foremost, I omitted the

anti-viral response of the cell. While I need not consider the adaptive immune

response since the time interval is 48 hours, the innate immune response would

play a pivotal role (Dempsey et al., 2003; tenOever, 2016). As discussed in Chap-

ter 4, viral RNA can be detected, leading to the production of type IFNs, which

can inhibit viral replication and eventual viral clearance. Furthermore, innate

immune responses have been shown to be induced by DIPs binding to PRRs,
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providing additional stimuli and magnifying the anti-viral cellular response (Rand

et al., 2021). Consequently, it would be ideal to extend the proposed model to

consider the role of an innate immune response. Another limitation of the model

is that I do not distinguish between infectious and non-infectious particles for

WT virions. This would be important to understand the potential infectivity of

the virus particles released. I also failed to characterise the natural generation

of DIPs during the WT replication cycle (which is inherently characterised by

mutations). This process would contribute to releasing other defective interfering

particles, potentially reducing the number of WT virions released. However, fully

calibrating such a model would require data which is not currently available.

To conclude, I believe the proposed model shows the potential benefits of DIPs

as a therapeutic tool to reduce WT virus production. I also have shown that

even low doses of these particles can positively limit WT virus production and

reduce the probability of a successful infection. This reduction continues, in a

dose-dependent manner, to reduce virus production significantly. Future work

will focus on incorporating immune responses and the natural production of DIPs

into the mathematical model presented here. Still, it will require further carefully

curated data to assist in parameter estimation, which was a limitation of this

model and investigation. Alternatively, certain aspects of the model could be

simplified to reduce the model complexity and number of parameters that need to

be calibrated.
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5.2 In vitro replication of Foot and Mouth Dis-

ease Virus

Foot-and-mouth disease virus (FMDV) of genus Aphthovirus, family Picornaviri-

dae causes disease in livestock, especially cattle, pigs, sheep, and several other

species (Grubman & Baxt, 2004). It is endemic in many countries and can result

in large outbreaks; examples include the 1997 Taiwan outbreak (Yang et al.,

1999) and the United Kingdom in 2001 (Gibbens et al., 2001; Thompson et al.,

2002). This has led to global concern due to the loss of cattle and financial

implications that impacted the tourism and agricultural sectors. The 2001 UK

outbreak resulted in a £3.1 billion loss to the British economy and the destruction

of 4 million animals to control measures (Thompson et al., 2002).

The dynamics of disease spread have been thoroughly investigated using mathe-

matical modelling, including investigation of transmission routes such as farm-farm

and within-farm. Additionally, models have examined the effects of control strate-

gies on the overall spread of disease (Hayama et al., 2013; Mushayabasa et al.,

2011). In contrast, very little has been done to model the within-host dynamics

of FMDV infection. Howey et al. (2012) formulated a deterministic model that

investigated within-host dynamics along with an antibody and IFN response,

utilising in vivo data sets for parameter calibration and analysis. However, there

is little investigation into the in vitro modelling of FMDV, so it seems fitting to

investigate it.

Here I wish to investigate a simple model to capture in vitro replication

dynamics of FMDV similar to those previously studied for Influenza virus and

EBOV (Gonzàlez-Parra et al., 2018; Liao et al., 2020). I will perform parameter

calibration using experimental data provided by Eva Perez from The Pirbright

Institute along with analysing parameter identifiability and sensitivity (Wainwright

et al., 2014). Furthermore, I will investigate strain variability of parameters

using data from infections with South African Territories (SAT) strains 1-3.

Additionally, I examine the basic reproduction number (Yang, 2014) and time to

infection (Gonzàlez-Parra et al., 2018). Due to the lack of stochastic models for

FMDV in the literature, I will propose a stochastic model to reflect the random

nature of the infection process. This stochastic model will use parameters found
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using the deterministic fitting. From this stochastic model, I will investigate the

mean time to extinction depending on different initial infective doses. Furthermore,

the probability of the virus population going extinct in the experimental window

of 72 hours will also be investigated. First, I provide a brief overview of the

experimental protocol and data curated by Eva Perez from The Pirbright Institute.

5.2.1 FMDV in vitro experimental data

The following describes the experimental protocol used to obtain the experimental

data available. For growth curves, 1 × 105 IBRS2 cells were seeded in 24 well

plates. Cells were infected with South African territories (SAT) 1, SAT2 or SAT3

at different MOIs for 1 hour at 37◦C (MOIs are orientative as viruses were not

titrated by plaque assay). Cells were washed thrice in PBS, and 1 ml of completed

media was added to the wells. Plates were stored at -80◦C at different times

postinfection (0, 4, 8, 24, 28, 32 and 72 hours). For titrating the supernatants,

plates were defrosted, the supernatant was transferred to a tube, centrifuged

at 13000 rpm for 5 minutes to pellet the cell debris, and the supernatants were

transferred to a new tube. Supernatants were then titrated by TCID50 in IBRS2

cells (cells infected for 30 hours and the max viral titre tested in the plate is 6.2

log10 TCID50 ). The results of these experiments are summarised in Table 5.7.

Mock yield assays were carried out as follows: 100µL aliquots of SAT1, SAT2

and SAT3 were incubated at 37◦C and stored at -80◦C at different time points

post-incubation (0, 2, 4, 6, 8, 24 and 28 hours). Samples were titrated by TCID50

in IBRS2 cells after 48h postinfection and three-fold dilution across the plate,

(max titres of 7.3 log10 TCID50/ml). The results of these mock yield assays are

summarised in Table 5.8.

5.2.2 Deterministic model

Given the experimental data collected by Eva Perez, I wish to propose a mathe-

matical model, described by a system of ordinary differential equations (ODEs), to

characterise viral replication in vitro for FMDV. Equations (5.25)-(5.28) have been

used previously in both EBOV and influenza infections (Gonzàlez-Parra et al.,

2018; Liao et al., 2020). However, compared to the models used by Gonzàlez-Parra
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SAT1

MOI 1.6× 10−1 1.6× 10−2 1.6× 10−3 1.6× 10−4

Time (hours)

0 0 0 0 0

4 3.41 2.47 0 0

8 3.88 2.24 1.77 0

24 4.59 6.2 6.2 6

28 4.12 5.06 4.59 4.59

32 4.12 5.06 6 5.53

72 0 0

SAT2

MOI 4× 10−1 4× 10−2 4× 10−3 4× 10−4

Time (hours)

0 0 0 0 0

4 3.41 2.47 0 0

8 3.88 3.41 2.24 0

24 4.82 5.76 5.06 4.35

28 4.35 5.06 5.29 4.12

32 3.18 4.35 5.06 5.06

72 0 0

SAT3

MOI 10−3 10−4 10−5 10−6

Time (hours)

0 0 0 0 0

4 0 0 0 0

8 0 0 0 0

24 5.06 3.65 3.41 2.24

28 5.06 4.35 3.65 2.47

32 5.53 4.59 4.59 4.35

72 0 0

Table 5.7: log10TCID50/ml measurements for FMDV growth curves for each

strain of South African territories (SAT) 1, 2 and 3. Each strain was tested with

four initial MOIs, with measurements taken over a 72-hour experimental window.
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Time (hours) SAT1: MOI 0.16 SAT2: MOI 0.4 SAT3: MOI 0.001

0 5.12 5.59 3

2 3.94 4.41 0

4 3.47 4.41 0

6 2.77 3.47 0

8 2.77 2.77 0

24 0 0 0

28 0 0 0

Table 5.8: Mock yield assay results for each strain of SAT FMDV. Each mock

yield assay was performed over 28 hours with a single MOI for each strain.

Measurements are in log10TCID50/ml.

et al. (2018) and Liao et al. (2020), I will not consider an Erlang distribution of

the eclipse and infective phases. I will assume these stages follow an exponential

distribution instead. A model schematic for Equations (5.25)-(5.28) is illustrated

in Figure 5.13.

T E

I

c

δV

k

ρ

β

Figure 5.13: Model schematic of viral replication used to describe viral replication

with target cells (T ), eclipse phase (E), infected cells (I) and free virus (V ).
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dT

dt
= −βTV , (5.25)

dE

dt
= βTV − kE , (5.26)

dI

dt
= kE − δI , (5.27)

dV

dt
= ρI − cV . (5.28)

This mathematical model considers target cells (T ), which become infected

with rate β ( mL
TCID50·h) in the presence of infectious virus (V ). These newly infected

cells enter a eclipse phase (E), where with rate k (h−1) they become productively

infected cells (I). Infected cells produce new infectious virus with rate ρ (TCID50

cell·h ),

and die with rate δ (h−1). Infectious virus decays with rate c (h−1) becoming

non-infectious. I assume that cells will only die after they have entered the infected

compartment. Furthermore, assume that infected cells will only produce infectious

particles until death. Since the experiments did not quantify non-infectious and

infectious virus, it would not possible to quantify a model that had both of

these virus types. This mathematical model aims to capture the infectious virus

quantified by experimental TCID50 values. I will use this model to characterise

infection of three distinct viral strains of FMDV: South African territories (SAT)

1, 2 and 3. Each SAT strain was tested at four different multiplicities of infection

(MOI), which I aim to characterise with the model. Experimental data will

allow one to perform parameter calibration as described in the next section. The

interpretation of each parameter is summarised in Table 5.9 along with units.

5.2.3 Parameter calibration

Before performing parameter calibration, assessing the structural identifiability

and sensitivities was essential. Analysing these will inform me which parameters

can be determined from the currently available data and which must be carefully

chosen from literature. I will use Sobol global sensitivity analysis to assess the

importance of parameters in the model output, which will be infectious virions

released (V ). I include the initial virus dose V0 in this analysis. Figures 5.14a
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(a) First-order Sobol indices. (b) Total-order Sobol indices.

Figure 5.14: First and Total-order Sobol indices with respect to time. A time

course of 72 hours was chosen to reflect the experimental design. I include the

initial dose of virus V0 in my analysis to see how this affects the model output.

Model output considered is V for infectious virions released.

and 5.14b show the first and total-order Sobol indices with respect to the time

course. These figures show that δ, ρ and c are the most important parameters

since they cause the largest variation in the model output. This is what intuition

would suggest since ρ is the virus’s production rate, determining the amount of

virus released from a cell. While, c is the rate at which the virus is cleared. δ is

important since this is the death rate of infected cells. The longer an infected cell

is alive, the more virus can be replicated before the cell dies. The infection rate β

was the remaining parameter affecting model outputs, while the parameter k and

initial condition V0 carry little consequence on the model output. Consequently,

low first-order Sobol indices indicate I should examine higher-order sensitivities.

Figure 5.15 illustrates interactions between parameters with ρ and δ along with ρ

and c having the largest interactions. If c and δ are small compared to ρ, more

virions can be produced, so their interaction with ρ is important.

To assess the structural identifiability, SIAN (structural identifiability analyser)

was used. This online tool determined that β is a globally identifiable parameter

given that the virus released over time is the only experimental output quantified.

c, δ and k are locally identifiable and ρ is an unidentifiable parameter (Ilmer et al.,
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Figure 5.15: Second-order Sobol interactions. These quantify the effect varying

one parameters has on other parameters. It can be seen that δ and ρ have the

largest interactions followed closely by ρ and c.

2021) given the single experimental output. Global identifiability of β implies

that I can approximate the true value given the data, while for c, δ and k multiple

combinations of these parameter values will fit the current data. Furthermore, for

ρ, I do not expect to learn anything from parameter calibration. Additional data

would be required to make all parameters globally identifiable and improve the

model fit. For example, if the number of infected cells was tracked and provided

as an experimental output, it would be possible to identify global solutions of β, c

and ρ. Furthermore, δ and k would be locally identifiable with only two solutions

per parameter.

Infectivity decays over time exponentially (Gonzàlez-Parra et al., 2018; Liao

et al., 2020) and as such, in the absence of target cells can be described by

V (t) = V0 exp
−ct where V0 is the initial concentration of virus (TCID50

ml
). Since

mock yield experimental data was available (as summarised in Table 5.8), it can

approximate the value of c in the ODEs. Hence if one assumes the data follows

an exponential decay, it can be transformed into a straight line by taking the log

base 10. Therefore it can be described by,

log10(V (t)) = log10(V0)− ct. (5.29)

As such, linear regression can be used to determine the values of c since this

is now an equation of a straight line. Linear regression algorithms in R were
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Figure 5.16: Regression lines fitted using a linear model function in R. The

parameter c is defined as 0.19h−1 (p-value 1.2×10−3), 0.22h−1 (p-value 6.5×10−4)

and 0.66h−1 for SAT1, SAT2 and SAT3 strains respectively. P-values were

calculated to a 95% confidence level.

used to calculate these values. I determine that c is defined as 0.19h−1 (p-value

1.2 × 10−3), 0.22h−1 (p-value 6.5 × 10−4) and 0.66h−1 for SAT1, SAT2 and

SAT3 strains respectively. These best fits from the regression are illustrated

in Figure 5.16. Since values for the viral decay rate c of each strain have been

estimated using mock yield assay data and linear regression, this left four further

parameters to estimate. From identifiability analysis, I did not expect to learn

about the true value of ρ, and it is possible to find multiple suitable values for δ

and k. β should be estimated from what data is currently available. Approximate

Bayesian computation (ABC) will be used to obtain parameter estimates as laid

out in Section 2.4.1. For each strain, there were four multiplicity of infections

(MOIs) with a single time-course for each (no replicates). Due to the lack of

replicates, using a Euclidean distance measure seemed logical. In this parameter

calibration, the distance measure is defined such that,

d(x,y|θ) =
√∑

t∈T

(x(t)− y(t))2 ,

where T is the set of time points in the data set, x(t) denotes the output from the

mathematical model at time t for parameters θ, and y(t) represents experimental

data at time t. Here I will compare the free virus V to the experimental data.
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Parameter interpretation search range Units

β rate of infection [10−7, 10−3] mL
TCID50·h

k (length of eclipse phase)−1 [100, 102] h−1

δ (length of infective phase)−1 [100, 102] h−1

ρ viral production rate [100, 104] TCID50
cell·h

c rate of viral decay h−1

Table 5.9: Table of parameters with biological interpretation and search ranges

used in approximate Bayesian computation. Values for c are fixed using linear

regression. c is defined as 0.19h−1 (p-value 1.2×10−3), 0.22h−1 (p-value 6.5×10−4)

and 0.66h−1 for SAT1, SAT2 and SAT3 respectively.

Since the experimental method has an initial infection time of one hour and then

cells are washed, I incorporated this into the model. To account for this I will run

the model from t = 0 to t = 1 with initial conditions T (0) = 105, E(0) = I(0) = 0,

with the initial virus calculated as,

V0 = T0 ×MOI,

where the MOIs are defined in Table 5.10. I then use the result from an initial

hour to run this model from t = 1 until t = 72 where the new initial conditions

were defined as T (1) = T ∗, E(1) = E∗, I(1) = I∗ and V (1) = 0. Here T ∗, E∗, and

I∗ are the results from the initial hour. For each strain, I will run the model to

generate 107 parameter sets where the top 1% are accepted such that the total

Euclidean distance for all four provided MOIs is minimised.

The results of the ABC algorithm are summarised in Table 5.11 and a model

fit with posterior distributions in Figure 5.17. As seen for all strains of SAT,

the analysis learns a lot about parameters β as illustrated in narrower posteriors

compared to prior distributions. Consequently, SAT1 and SAT2 have narrower
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Strain MOIs

SAT1 [1.6× 10−1, 1.6× 10−2, 1.6× 10−3, 1.6× 10−4]

SAT2 [4× 10−1, 4× 10−2, 4× 10−3, 4× 10−4]

SAT3 [1× 10−3, 1× 10−4, 1× 10−5, 1× 10−6]

Table 5.10: List of MOIs for each FMDV virus strain.

posteriors than SAT3. This is likely due to poor SAT3 mock yield data providing

a poor estimate of the viral decay rate c. For parameters k and δ, I have learned

very little about these parameter values with posterior distributions similar to

the priors. As highlighted previously through structural identifiability, multiple

possible parameter values will suit the available data. There is some learning

of the parameter ρ, but overall the posterior distributions are still wide. From

this, it can be seen that the median rate of infections β is lower for SAT1 (10−6.14

mL/TCID50 · h) than SAT2 (10−5.74) and SAT3 (10−5.46), and k and δ are

comparable for all three strains. Furthermore, in agreement with Perez-Martin

et al. (2022) the production rate ρ for SAT1 (101.99 TCID50/cell · h) is higher

than that of SAT2 (101.50) and SAT3 (101.52). For SAT1 and SAT2 there are

negative correlations between β and ρ (r = −0.411 and r = −0.414 respectively).

Additionally, there are strong positive correlations between δ and ρ (r = 0.871 and

r = 0.889 for SAT1 and SAT2 respectively). These are illustrated in Figures 5.18

and 5.19 for SAT1 and SAT2 respectively. These correlations indicate that the

analysis provides knowledge of the ratios β/ρ and δ/ρ. This is also illustrated in

Figures 5.18 and 5.19.

Time to infection and R0 number

The time to infection can be calculated using the equation

Tinf =

√
2

ρβ
.
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(a) SAT1

(b) SAT2

(c) SAT3

Figure 5.17: Posterior probability distributions of parameters for the model

presented in Equations (5.25)-(5.28) in purple from 105 accepted parameter sets.

blue indicates prior distributions before ABC. Median model fit from 105 accepted

parameters sets. The Blue dashed line represents a point-wise median model fit,

with light blue 95% credible intervals. Black dots represent experimental data for

each MOI.
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Figure 5.18: Correlated parameters β and ρ (r = −0.411) top left figure with a

density histogram of the ratio in the top right figure. Highly correlated parameters

δ and ρ (r = 0.871) bottom left with a density histogram of the ratio in the

bottom right. All parameters from fitting SAT1 experimental data.
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Figure 5.19: Correlated parameters β and ρ (r = −0.414) top left figure with a

density histogram of the ratio in the top right figure. Highly correlated parameters

δ and ρ (r = 0.889) bottom left with a density histogram of the ratio in the

bottom right. All parameters from fitting SAT2 experimental data.
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Parameter SAT1 SAT2 SAT3

β 10−6.14[−6.58,−5.69] 10−5.74[−6.27,−5.22] 10−5.46[−6.71,−4.66]

k 100.95[0.04,1.95] 100.97[0.04,1.95] 100.90[0.03,1.94]

δ 100.85[0.03,1.88] 100.96[0.04,1.95] 100.86[0.04,1.93]

ρ 101.99[0.91,2.93] 101.50[0.36,2.69] 101.52[0.17,2.84]

c 0.19 0.22 0.66

Table 5.11: Estimated parameters of FMDV infection in vitro for SAT1, SAT2

and SAT3. The data show a median with 95% credible region.

The infecting time is when a single new cell is infected as described by Gonzàlez-

Parra et al. (2018). I find the infection time Tinf is defined as 169.28 (h), 186.42

(h) and 133.26 (h) for SAT1, SAT2 and SAT3 respectively. The basic reproduction

number R0 can be calculated using next-generation matrix methods as described

by Diekmann et al. (2010). From Equations (5.25)-(5.28) I have two infectious

compartments in the model, these are

dE

dt
= βTV − kE ,

dI

dt
= kE − δI .

(5.30)

In a disease-free equilibrium I have that dV/dt = 0 so I find V can be expressed

as,

V =
ρ

c
I.

Consider the equations in (5.30) written in the form dxi/dt = Fi(x)− Vi(x) for

i = 1, 2, . . . ,m. In this arrangement, Fi(x) is the rate of appearance of new

infections in compartment i, and Vi(x) is the rate of other transitions between

compartment i and other infectious compartments (Diekmann et al., 2010; Van den
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Driessche, 2017). Therefore one can define two matrices F and V which are defined

as,

F =

[
∂Fi(x0)

∂xj

]
, V =

[
∂Vi(x0)

∂xj

]
, for 1 ≤ i, j ≤ m. (5.31)

From this the basic reproduction number is defined,

R0 = ρ(FV −1)

where ρ is the spectral radius. Consequently, performing this analysis with the

equations (5.30) the matrices F and V are defined to be,

F =

0 βρT0

c

0 0

 , V =

 k 0

−k δ

.

Thus, to determine the basic reproduction value, the spectral radius of,

FV −1 =

βρT0

cδ
βρT0

cδ

0 0

. (5.32)

It can be shown that the disease free equilibrium would be defined as X0 =

(T0, 0, 0, 0). Hence the non-zero basic reproduction number is to be defined as,

R0 =
ρβT0

cδ
.

From median value prediction of the parameters listed in Table 5.11 and given the

initial number of cells in the experiment was T0 = 105, I find the basic reproduction

number for SAT1, SAT2 and SAT3 to be 5.196, 2.85 and 2.54 respectively. This

shows for SAT1 and SAT2, infection is always guaranteed, with SAT1 leading to

more than double the secondary infections than SAT2. Following the trend in

the data, SAT3 leads to fewer secondary infections than the other two circulating

strains in agreement with Perez-Martin et al. (2022).
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Stochastic Model

Now consider a stochastic model of the system previously studied, with a fixed

initial population of cells T0. As previously introduced, T is the random variable for

the number of uninfected cells, E eclipse phase cells, I infected cells and released

virus V . These will be modelled using a stochastic approach: as a continuous

time Markov process (CTMC) X = {X(t) = (T (t), E(t), I(t), V (t)) : t ≥ 0}. Here,
T (t), E(t), I(t) and V (t) are the number of each population from T , E, I and V

at time t. Lets denote (T (t), E(t), I(t), V (t)) = (nT , nE, nI , nV ) = n. Here, the

condition is imposed that nT + nE + nI ≤ T0 as such I can define the state space

S of X for t ≥ 0 as S = {(nT , nE, nI , nV ) ∈ (N ∪ {0})4 : nT + nE + nI ≤ T0}. The
transition rates can be defined as,

q(n,n′) =



βnTnV if n′ = (nT − 1, nE + 1, nI , nV − 1),

knE, if n′ = (nT , nE − 1, nI + 1, nV ),

δnI , if n′ = (nT , nE, nI − 1, nV ),

ρnI , if n′ = (nT , nE, nI , nV + 1),

cnV , if n′ = (nT , nE, nI , nV − 1),

0, otherwise.

This stochastic formulation can be compared against the deterministic formula-

tion and also allows the study of stochastic descriptors using Gillespie simulations.

In the experiments presented, several different initial doses were considered. From

the plots presented in Figure 5.17, the viral population would be expected to

go extinct if the time course were extended. It would therefore be interesting

to investigate two stochastic descriptors relating to the extinction of the viral

population. First is the probability for the viral population to go extinct within

the 72-hour experimental time frame, as several of the populations go extinct

according to the data. Since there is no influx of new susceptible cells, the viral

population will always go extinct given enough time. Therefore the probability

can be defined as,

P(V (t) = 0|V (0) = iT (0)), t ≤ 72,

where i will be a initial MOI in the range [10−5, 1], and each strain of FMDV

will be evaluated. The second stochastic descriptor will be the expected time

197



5. MATHEMATICAL MODELS OF VIRAL INFECTION

for the population to reach extinction for a given initial dose of the virus. It is

interesting to examine how long the viral population can persist in vitro with a

limited number of susceptible target cells to infect. Let T0 be the time for the

virus population to become extinct. Then a descriptor can be defined as,

E[T 0|V (0) = iT (0)].

Matrix analytic methods such as those introduced in Section 4.1.1 could be used

here. However, due to these experiments’ large initial population sizes, this method

is not computationally possible with the current high-performance systems. This

results from the matrices associated with the method getting too large to store

and solve efficiently. Instead, stochastic simulation algorithms will be used as

introduced in Section 2.3.1.

Figure 5.20: (A) Deterministic model output using median parameter values

for each strain summarised in Table 5.11, using initial MOI= 0.01. (B) Single

realisation of the Gillespie stochastic simulation algorithm for each strain using

median parameter values.

Figure 5.20(A) shows illustrative examples of the deterministic model out-

put using median parameter values from Table 5.11 for an initial MOI of 0.01.

Figure 5.20(B) shows a single realisation of the Gillespie stochastic simulation

algorithm described in Section 2.3.1 for the same set of parameter values and

initial MOI. To investigate the mean time to extinction, 104 realisations of the

Gillespie algorithm were run for a range of MOIs in [10−5, 1]. The results are
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Figure 5.21: Mean time to extinction of the viral population with MOIs in

the range [10−5, 1] for each viral strain using median parameters values. A

95% confidence region is plotted for each. Means for each MOI result from 104

realisations from the Gillespie algorithm.

illustrated in Figure 5.21 with a 95% confidence interval. SAT1 and SAT2 present

similar behaviour when considering the initial MOI and time to extinction. Be-

tween [0, 10] initial infectious viral particles, the time to infection rapidly increases

for both, with SAT1 increasing from ≈ 3.7 (C.I [0.09, 13.8]) hours to ≈ 90 (C.I

[8.5, 120]) hours while SAT2 goes from ≈ 2.5 (C.I [0.07, 9.2]) hours to ≈ 110

(C.I [6.1, 160]) hours. SAT1 achieves a maximum mean time to extinction of

98.7 hours for initial infectious particles between VO ∈ [20, 30]. From here, the

time to extinction begins to decrease; however, this is gradual. For SAT1, the

stochastic simulations also disagree with the experimental outputs. Simulations

suggest the viral population will never go extinct for higher infectious MOIs

within the 72-hour experimental window, as observed. This is further supported

by Figure 5.22, which illustrates the probability of going extinct for each viral

strain for a range of initial MOIs. As can be seen from Figure 5.22 above MOIs of

10−3.31, the viral population is guaranteed to survive longer than 72 hours. SAT2

reaches a maximum mean time until extinction at an initial infectious dose of 30

viral particles, after this, the mean time begins to decrease. Unlike SAT1, as the

initial MOI surpasses 10−1, the probability of the viral population going extinct

in the 72 hours increases as demonstrated by Figure 5.22. This is in agreement
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with the experimental observations for the higher doses. It also indicates that for

SAT2, a high infectious dose does not guarantee a long-term persistent infection.

This is likely because SAT2 has a lower production rate ρ, which leads to fewer

viruses. Additionally, there is a higher death rate for infected cells and a higher

decay rate for virions than SAT1. SAT2-infected cells, therefore, have less time to

produce new viruses and less time for new viruses to infect target cells. In the

initial infection, the higher decay rate also means viruses decay before infecting

a target cell. As a result, not every cell becomes infected, and there is a chance

for the infection to become extinct before every cell is infected. For strains SAT1

and SAT2, Figures 5.21 and 5.22 highlight the potential of small infectious doses

in the range of MOIs [10−5, 10−4] to cause a successful and persistent infection.

SAT3 follows a similar trend to SAT1 and SAT2 with the maximum mean time of

54.6 hours to extinction between [20 : 30] initial infectious particles. The mean

time then decreases similarly to SAT1 and SAT2. However, from Figure 5.22,

since the maximum mean time is 54.6, the probability that SAT3 goes extinct in

the experimental window is guaranteed with probability 1. However, it is worth

remembering due to the mock yield assay for SAT3 leading to a high decay rate,

this is to be expected and is not necessarily reflective of the actual dynamics.

Discussion

In the preceding work, I did a preliminary investigation into modelling in vitro

replication dynamics for Foot and Mouth disease virus. Since little mathematical

modelling was done in this scenario, it seemed appropriate to investigate the

replication dynamics with this preliminary work forming part of a proposal

submitted by Dr. Anna Jolles in collaboration with Eva Pérez. Following the

ideas used by Gonzàlez-Parra et al. (2018) and Liao et al. (2020), a deterministic

mathematical model was introduced to characterise replication. The sensitivity

analysis performed on the model showed that the three most important parameters

that cause variance in virus release are: the rate of decay c, the death rate of

infected cells δ and the viral production rate ρ. Parameters c and ρ are directly

related to the ODE for virus particles, so this makes sense as to why they are

important. δ is also important since if cells die at a higher rate, then the virus
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Figure 5.22: Probability of extinction within the 72-hour experimental time win-

dow for each viral strain. These probabilities are generated using 104 realisations

of the Gillespie algorithm for each MOI in the [10−5, 1] range.

will have to reproduce at a higher rate to compensate and be able to continue to

infect cells. This is further supported by the second-order interactions of ρ with δ

and c.

Another point to investigate was what can be determined about parameter

values given limited data, mock yield assays and growth curves, even with a simple

model. Since mock yield assays were available, it allowed the determination of the

decay rate c for each viral strain, while the others would need to be determined

through parameter fitting. Structural identifiability analysis showed that only β

would be globally identified for the available growth curves, with δ and k only being

locally identifiable while ρ would be unidentifiable. If additional experimental data

were available, such as the number of infected cells during the experiment, β and

ρ would be globally identifiable, with δ and k only having two unique solutions.

The available data for parameterisation achieved good model fits with relatively

narrow credible intervals for SAT1 and SAT2 as shown in Figure 5.17, but SAT3

had much larger intervals. Figure 5.17 also supports the results of identifiability

analysis for β and ρ. It is shown in Table 5.11 that SAT1 has the lowest rate of

infectivity. At the same time, SAT2 and SAT3 are similar. However, SAT1 has
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a higher viral production rate; this agrees with Perez-Martin et al. (2022) who

saw genome in serum earlier for SAT1 compared to SAT2 and SAT3 in vivo. The

parameterisation of this model for each strain also allowed determination of the in

vitro basic reproduction number, which showed for SAT1, SAT2 and SAT3 that

since R0 > 1 a productive infection is always possible.

From this deterministic model, a stochastic approach was developed to in-

vestigate the effect of initial MOI doses on the mean time to extinction of the

viral population and the probability of it going extinct in the experimental win-

dow. This was interesting because the experiments for each MOI indicated the

population would go extinct within 72 hours. Stochastic simulations agreed that

this is the case for SAT3, which is guaranteed with probability 1 as indicated

in Figures 5.22 and 5.21. However, for SAT1 and SAT2, stochastic simulations

did not agree with experimental growth curves. For SAT1, extinction was only

guaranteed for low infectious MOIs and was not for MOIs greater than 10−5

within the experimental window, in disagreement with the experimental results.

SAT2 follows a similar trend as SAT1 for low MOIs, but unlike SAT1, for MOIs

larger than 10−1, the probability of extinction begins to increase; however, not

with probability 1. This could be due to the median parameter values obtained

through the fitting, or it could be due to the formulation of the model not fully

encapsulating the mechanism that led to a reduction in viral titres seen in the

experiments.

Even though the work in this chapter is a preliminary investigation, it is

important to discuss several limitations and potential improvements that could be

made to both the deterministic and stochastic approaches. First, unlike Gonzàlez-

Parra et al. (2018), and Liao et al. (2020), Erlang distributed compartments

for cells in the eclipse and infected compartments have not been used. This

could result in different behaviour in the overall replication kinetics with the

potential for the eclipse phase to be drawn out and delay the production of

new virions. For infected cells, this could lead to more opportunities for virus

production. However, with limited data, it would be difficult to identify how many

intermediate stages would be needed to characterise this data correctly. Another

point of contention is that the virus has not been analysed as infectious and

non-infectious particles. Since during viral replication, non-infectious interfering
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and non-interfering particles are generated (Brooke, 2014), it is important to

distinguish the difference in a model since if it was not included, it leads to an

overestimation of the infectious virus generated. Another factor and a running

theme of this thesis that has not been considered is innate immune responses. In

this short time frame of 72 hours, the innate immune system will play a significant

role in controlling the replication of FMDV. Therefore immune dynamics should

be incorporated into the model to make it a more accurate representation.

One major drawback of the model presented is the characterisation of released

infectious virions. While virions egress from the cell, accumulation of virus within

the cell and damage to the plasma membrane from egress eventually results in

cell lysis (Sarry et al., 2022). This catastrophe will result in a “burst” of new

infectious viruses into the extracellular medium. The deterministic and stochastic

models presented do not consider this mechanism of cell death, an essential part of

the virus replication dynamics. One approach for the deterministic model would

include an extra term relating to virus-induced cell lysis and a burst term N for the

number of viruses released. For a stochastic approach, one could use the methods

employed by Williams et al. (2021) and Carruthers et al. (2020) to develop a birth

and death process with catastrophe. These methods would allow one to calculate

a distribution of rupture sizes for a cell and the mean time to rupture. This can

be incorporated into a within-host model with dose responses already examined

for the three strains. While this work is only preliminary, I believe it presents

an excellent start to investigating in vitro replication dynamics. Exploring and

expanding the mathematical model to incorporate additional biological details is

worthwhile.
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Appendix A

Appendix

A.1 St Jude children’s Research Hospital SARS-

CoV-2 trace study

Figures A.1 and A.2 are both referenced in Chapter 3 but placed here due to their

low statistical significance results. Figure A.1 illustrates the hCCoV antibody

response for all four endemic strains depending on race. Figure A.2 illustrates

antibody responses to SARS-CoV-2 proteins depending on race.
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Figure A.1: Box plots of hCCoV antibody isotype response compared between

races. Statistical significance was determined by the Wilcoxon–Mann–Whitney

test with Bonferroni adjustment (ns, not significant; *p < 0.05 **p < 0.01;

***p < 0.001; ****p < 0.0001).
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Figure A.2: Box plots of SARS-CoV-2 antibody isotype response compared

between races for infected individuals with no vaccination (n = 159). Statistical

significance was determined by the Wilcoxon–Mann–Whitney test with Bonferroni

adjustment (ns, not significant; *p < 0.05 **p < 0.01; ***p < 0.001; ****p <

0.0001).
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A.2 Matrix analytic methods in practice

In Chapter 4, matrix expressions were introduced to calculate the steady state

distribution and expected time to reach a threshold level of phosphorylated TBK-1

n3 for model 1. Due to the initial number of proteins found during parameter

estimation, matrix analytical approaches were impossible. The matrix sizes

become too large to store in the system memory. As a result, in Chapter 4,

stochastic simulation techniques were used instead. Here I present an example

of using the matrix analytical approach to obtain the steady-state distribution

and the algorithm to calculate them. The algorithm to calculate the steady state

is presented in Algorithm A.1. The results of this calculation are presented in

Figure A.3 where the initial number of proteins is set nD = 30, nR = 10, nV = 10,

nB = 5 and all other parameters are the medians presented in Chapter 4. I also

provide the algorithm for the Laplace-Stieltjes transforms gN (z) and the l-th order

moments mN,(l) of time to reach a given state T(n1,n2,n3)(N3) (Algorithm A.2).

Algorithm A.1: Steady state distribution π

H0=A00

for k = 1, . . . , nB − 1 do
Hk = Akk −Akk−1H

−1
k−1Ak−1k

end
π∗

nB
= 1

for k = nB − 1, . . . , 0 do
π∗

k = −π∗
k+1H

−1
k

end
for k = 0, . . . , nB do

πk =
1∑nB

j=0 π
∗
j ej(r)

π∗
k

end
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Figure A.3: Example of steady-state distributions using matrix analytical

methods where initial proteins are set to nD = 30, nR = 10, nV = 10, nB = 5 and

all other parameters are the medians presented in Chapter 4.
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Algorithm A.2: Algorithm for the Laplace-Stieltjes transforms gN (z)

and the l-th order moments mN,(l)

Part 1
HN

0 (z)=Ij(0)−A00(z)
for k = 1, . . . , N − 1 do

HN
k (z) = Ij(k) −Akk(z)−Akk−1(z)H

N
k−1(z)

−1Ak−1,k(z)

g
N,(0)
N−1 = HN

N−1(z)
−1cN−1(z)

end
mN

N−1(z)
−1 = gN

N−1(0)
for k = N − 2, . . . , 1, 0 do

gN
k (z) = HN

k (z)−1Akk+1(z)g
N
k+1(z)

m
N,(0)
k = gN

k (0)
end
Part 2

m
N,(0)
N−1 = gN

k (0)
for N − 2, . . . , 1, 0 do

m
N,(0)
k = gN

k (0)
end
for p = 1, . . . , l do

P
N,(p)
0 =

∑p
k=1

(
p
k

)
(−1)k(A(k)

00 (0)m
N,(p−k)
0 +A

(k)
01 )m

N,(p−k)
1 }

end
for j = 1, . . . , N − 1 do

P
N,(P )
j =

Aj,j−1(0)H
N
j−1(0)

−1P
N,(p)
j−1 +

∑p
k=1

(
p
k

)
(−1)k(A(k)

j,−1m
N,(p−k)
j−1 +

A
(k)
jj (0)m

N,(p−k)
j + (1− δj,N−1A

k
jj+1(0)m

N,(p−k)
j+1 )

m
N,(p)
N−1 = HN

N−1(0)
−1(P

N,(p)
N−1 + (−1)pcpN−1(0))

end
for j = N − 2, . . . , 1, 0 do

m
N,(p)
j = HN

j (0)−1(P
N,(p)
j +Ajj+1(0)m

N,(p)
j+1 )

end

A.3 SARS-CoV-2 DIPs parameter references

kbind - Ozono et al. (2021); Walls et al. (2020),

dwt
V - Baccam et al. (2006); Baggen et al. (2021); Bocharov & Romanyukha (1994),
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kdiss - Ozono et al. (2021); Walls et al. (2020),

kfuse - Zhu et al. (2020b),

kuncoat - Zhu et al. (2020b),

dwt
endosome - Baggen et al. (2021); Heldt et al. (2015),

ktransl -Buccitelli & Selbach (2020); Irigoyen et al. (2016),

1/fORF1 - Kim et al. (2020),

dNSP - Buccitelli & Selbach (2020); Gasteiger et al. (2003),

kwt
tr(−) - Buccitelli & Selbach (2020),

dwt
gRNA - Buccitelli & Selbach (2020); Nelson et al. (2008),

kwt
tr(+) - Adelman et al. (2002),

kwt
complex - Chen et al. (2013); Klein et al. (2020); Spencer & Hiscox (2006); Spencer

et al. (2008); Zinzula et al. (2021),

KN - Bar-On et al. (2020); Cubuk et al. (2021); Jack et al. (2021),

1/fN - Viehweger et al. (2019),

1/fSP - Viehweger et al. (2019),

dN - Gasteiger et al. (2003),

dSP - Gasteiger et al. (2003),

nwt
SP - Klein et al. (2020); Neuman et al. (2011); Yao et al. (2020),

nwt
N - Klein et al. (2020),

Kwt
V rel - Bar-On et al. (2020); Gordon et al. (2020),

kwt
assemb - Heldt et al. (2015); Shcherbatova et al. (2020),

dwt
N−gRNA - Buccitelli & Selbach (2020); Nelson et al. (2008),

kwt
release - Mooney et al. (2014); Shcherbatova et al. (2020),

dwt
assembled - Baggen et al. (2021),

ddipV - Baccam et al. (2006); Baggen et al. (2021); Bocharov & Romanyukha (1994),

ddipendosome - Baggen et al. (2021); Heldt et al. (2015),

kdip
tr(−) - Buccitelli & Selbach (2020),

ddipgRNA - Buccitelli & Selbach (2020); Nelson et al. (2008),

kdip
tr(+) - Adelman et al. (2002),

kdip
complex -Chen et al. (2013); Klein et al. (2020); Spencer & Hiscox (2006); Spencer

et al. (2008); Zinzula et al. (2021),

ndip
SP -Klein et al. (2020); Neuman et al. (2011); Yao et al. (2020),

Kdip
V rel - Bar-On et al. (2020); Gordon et al. (2020),
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kdip
assemb -Heldt et al. (2015); Shcherbatova et al. (2020),

ddipN−gRNA - Buccitelli & Selbach (2020); Nelson et al. (2008),

kdip
release -Mooney et al. (2014); Shcherbatova et al. (2020),

ddipassembled - Baggen et al. (2021).
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