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Abstract
This thesis is concerned with the improvement of numerical methods, specifically boundary-

element methods (BEMs), for solving Fredholm integral equations in both one- and two-

dimensions. The improvements are based on novel (computer-algebra-based) error analyses that

yield explicit forms of correction terms for a priori incorporation into BEM methods employing

piecewise-polynomial interpolation in the numerical approximation. The work is motivated by

the aim of reducing errors of BEM methods for low-degree interpolating polynomials, without

significantly increasing the computational cost associated with higher-degree interpolation. The

present thesis develops, implements and assesses improved BEMs on two fronts.

First, a modified Nyström method is developed for the solution of one-dimensional Fredholm

integral equations of the second kind (FIE2s). The method is based upon optimal approximation

and inclusion of an explicit form of orthogonal-polynomial integration error, and it can be extended

to systems of integral equations. It is validated, in both the single and system cases, on challenging

FIE2s that contain a finite number of (integrable) singularities, or points of limited differentiability,

within the integral kernels.

Second, BEMs are developed for solving two-dimensional FIE2s in the widely applicable context

of harmonic boundary value problems in which the boundary conditions may be either continuous

or discontinuous. In the latter case, modifying the BEM to conquer the adverse effect (on

convergence with decreasing mesh size) caused by boundary singularities requires considerable

additional theory and implementation; the motivation for doing so is that such singularities

arise naturally in the modelling of, e.g., stress fractures in solid mechanics and dielectrics in

electrostatics. For both non-singular and singular BVPs, standard BEMs are improved herein

by optimal approximation and inclusion of explicit forms of Lagrange-interpolation integration

errors. The modified BEMs are validated against pseudo-analytic results obtained by a conformal-

transformation method, for which a novel implementation of the inverse transformation (needed to

recover the physical solution) is included explicitly by use of an algebraic manipulator.

Through a set of test problems with known (or otherwise computable) solutions, both the one- and

two-dimensional modified methods, for both regular and singular BVPs, are demonstrated to show

marked improvements in performance over their unmodified counterparts.
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Chapter 1

Introduction

1.1 Background and motivation

Many problems in applied sciences can be modelled and formulated in two distinct ways, namely

as differential equations or integral equations. In the latter, the boundary and/or initial conditions

are incorporated a priori which, in practice, can often make integral-equation formulations

advantageous over their differential-equation counterparts.

Integral equations, categorised by the unknown function occurring under an integral sign, arise

in the modelling of a wide range of physical problems, e.g. in the mechanics of solids,

acoustics, viscous flow and electromagnetism. Hence there exists an abundance of research in

the study of integral equations, including both theoretical and numerical solution techniques,

e.g. Muskhelishvili [1953], Bernkopf [1966], Green [1969], Baker [1977], Tricomi [1985], Kress

[1990], Porter and Stirling [1990], Power and Wrobel [1995], Hackbusch [1995], and Atkinson

[1997]. Generally, there are two classifications: Volterra (VIEs) and Fredholm integral equations

(FIEs), with respectively variable and constant limits of integration. In this thesis we focus on

Fredholm integral equations due to their frequent occurrence in the representation of boundary-

value problems (BVPs).

A BVP, like an initial-value problem, is a partial differential equation coupled with additional

restraints whose solution, in general, lies beyond the reach of purely-analytical approaches.

Consequently there are numerous methods, such as finite elements and finite difference, which
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can be classified as domain methods, that provide approximate solutions to BVPs. Finite element

and finite difference methods are the most widely used spacial discretisation techniques, whereby

the governing partial differential equation is approximated locally by a discretised equation whose

solution is defined at a set of prespecified points in the domain. An alternative (global) approach,

upon which the present work concentrates, considers the reformulated integral-equation form of the

partial differential equation resulting from the divergence theorem, known as a boundary-integral

equation.

The philosophy behind various boundary-integral equation formulations is that the divergence-

theorem reformulation of the partial differential equation, in terms of an integral equation and an

accompanying fundamental solution (a Green’s function), reduces the spatial order of the problem

by one. For example, with reference to Laplace’s equation∇2φ = 0 in two-dimensions, by Green’s

integral formula (Green [1969]), the harmonic function φ defined within a domain Ω enclosed by

a boundary ∂Ω satisfies

φ(p) =
1

2π

∫
∂Ω

[
φ(q) log′ |p− q| − φ′(q) log |p− q|

]
dq, (1.1.1)

where p ∈ Ω∪∂Ω, q ∈ ∂Ω, the prime represents differentiation with respect to the outward normal

to ∂Ω at q and dq denotes the differential increment of ∂Ω at q. Eqn. (1.1.1) relates the harmonic

function φ at any point in the domain to the boundary distributions of both φ and φ′, in which if both

of the distributions are known, then φ may be obtained at any interior point. Alternatively, when

given one of the boundary distributions, (1.1.1) becomes closed-form equation whose solution

completes the boundary distribution data. Note, when only the boundary distribution φ′ is known,

(1.1.1) is an integral equation of the second kind (Atkinson [1997]).

The work presented in this thesis can be divided into two broad categories of integral equations1:

one-dimensional Fredholm integral equations of the second kind (FIE2) and two-dimensional

boundary-integral equation reformulations of Laplace’s equation, the latter of which motivated

the original work of Ivar Fredholm [1903] on the solvability of integral equations of the second

kind.

An explicit closed-form solution of a boundary-integral equation is generally not obtainable,

1Muskhelishvili [1953], Elliott [1979, 1989], Jen and Srivastav [1981], Monegato and Scuderi [1998], Smith [2000],

Jin et al. [2008]
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necessitating the development of numerical methods (Blue [1977], Fairweather et al. [1979],

Fairweather and Karageorghis [1998], Atkinson and Chandler [1990], Cheng [1994], Elliotis et al.

[2002, 2006]). Most uses of boundary-integral equations in engineering applications have involved

approximating the solution using piecewise-polynomial functions over a decomposition of the

boundary; such approximations are known as boundary element methods2 (BEM).

BEMs readily incorporate the boundary conditions; contrast this with the finite-element and finite-

difference methods, in which special relations are necessary at the mesh points along and/or near

the boundary. Furthermore, BEMs have proved to be a successful tool in solving numerous

engineering problems, e.g., elasticity, including crack problems, (Blue [1977], Jaswon and Symm

[1977]), fluid flow (Bush et al. [1984], Brebbia and Trevelyan [1986], Grilli and Svendsen [1990],

Hansen and Kelmanson [1994]) and heat conduction (Mera et al. [2001, 2002]).

As noted by Mason and Smith [1982], rigorous convergence and error analyses for BEMs are

particularly hard to achieve: Wendland [1982] and Hsiao and Wendland [2004] presented error

analyses for the asymptotic convergence of the BEM based on Galerkin methods, Rencis et al.

[1990] and Liang et al. [1999] considered a posteriori error of the BEM and Lu et al. [2004]

presented error analyses on the collocation Trefftz method for a harmonic problem. However,

these concentrate on error bounds rather than implementable formulae. The existence of literature

investigating the error in BEMs on a practical basis is sparse, e.g., Kelmanson [1985] presented a

technique for assessing the nature of the error incurred in the constant BEM for both harmonic and

biharmonic problems, providing an insight into the behaviour of the error in the numerical scheme.

In practical problems the boundary conditions often exhibit singular behaviour. Most commonly,

the singular behaviour arises from sudden changes in boundary geometry or conditions, e.g., sharp

corners (Kelmanson [1983a]) and changes in dielectric properties (Daly [1973]). The presence

of these boundary singularities have an adverse affect on the convergence rate of the solution

computed by the standard numerical techniques, such as BEMs (Motz [1946], Woods [1953]).

Consequently, the possibility of modifying the BEMs to improve the treatment of the boundary

singularities has received considerable attention (Symm [1973], Jaswon and Symm [1977], Xanthis

2Jaswon and Symm [1977], Brebbia [1978], Brebbia and Trevelyan [1986], Brebbia and Dominguez [1989], Fenner

[1983], Bush et al. [1984], Ingham and Kelmanson [1984], Kelmanson [1984], Manzoor [1984], Kelmanson [1985],

Aitchison and Karageorghis [1988], Brebbia and Dominguez [1989], Hsiao [2006], Ang [2007]
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et al. [1981], Ingham et al. [1981a], Manzoor [1984]). It was shown by Symm [1973] that,

by a suitable modification of the BEM, harmonic problems containing boundary singularities

could be accurately solved in an efficient manner. The improved accuracy, however, was often

obtained at the expense of a large increase in analysis. Alternatively, Xanthis et al. [1981] offered

a modification technique for harmonic problem which, compared with Symm [1973], required

minimal extra analysis. Both types of modified methods have been subsequently applied to physical

problems, e.g., in transmission-line singularities, (Ingham et al. [1981c]), heat transfer (Manzoor

[1984], Mohammadi et al. [2010]) and viscous flows (Wrobel [1981], Kelmanson [1983a,b]).

The discussion above motivates the investigation into improving the accuracy of numerical

methods, for both singular and nonsingular integral equations.

1.2 Aims and objectives

The present work aims to provide both accurate and reliable numerical methods for approximating

the solutions of integral equations. To achieve this, the present work is based on three main aims:

• To compute numerical solutions for one- or two-dimensional integral equations;

• To provide rigorous analyses of the numerical methods in order to yield an explicit

understanding of the numerical errors, and;

• To modify the existing numerical methods by incorporating this error information in an

explicit way, so that the accuracy of the approximate solution is improved for a minimal

increase in cost and effort.

The new modified methods, which are based on incorporating a priori, as accurately as possible, an

explicit form of the error in the standard method, are always validated by test problems to ensure

that improvements over existing methods are obtained in an economic and efficient fashion. As

part of the validation process for our new methods, the present work also focusses on deriving

pseudo-analytic solutions of singular BVPs.

Two specific objectives in the latter part of this thesis are: first, to modify the constant BEM so

4



Introduction

that it emulates higher-order Lagrangian interpolation (which would demand both more complex

algorithms and the solution of larger systems of equations) without increasing the size of the

system, and; second, to use the modified BEM to improve the numerical solution of a BVP in

the presence of a boundary singularity.

1.3 Outline of thesis

Throughout this thesis, three persistent themes are followed: to outline a numerical method and its

error formulae for solving an integral equation; to derive an explicit error formulae of the numerical

method, and; to build the explicit error formulae into the numerical method a priori thus defining

a, new, modified method. With these themes in mind, the structure is as follows.

In chapters 2 and 4 we present the modification techniques used to improve the numerical solutions

of one- and two-dimensional integral equations respectively. In chapters 3 and 6 we extend the

range of applications of the modification techniques to more complex integral equations.

In chapter 2 a FIE of the second kind (Fredholm [1903]) is presented in which the integrand is

singular at one or both extrema of the integration domain. Although there exist a plethora of

numerical solutions of FIEs (Kantorovich et al. [1964], Bernkopf [1966], Baker [1977], Anselone

[1981], Graham et al. [1985], Elliott [1979, 1989], Kress [1990], Hackbusch [1995]), the present

work considers the Nyström approach (Nyström [1930], Atkinson [1974, 1989, 1997], Benko et al.

[2008]). The Nyström method, which is based upon employing Gaussian quadrature, determines

the solution of the FIE at a set of predefined quadrature nodes, which is then extended to all

points in the domain (Patterson [1968], Porter and Stirling [1990], Crow [1993], Laurie [2001],

Ralston and Rabinowitz [2001], Smith [2000]). The cost of Nyström ’s method is minimised by

using a high-degree orthogonal-based quadrature rule (Karpenko [1966], Gerasoulis and Srivastav

[1982], Kelmanson and Tenwick [2010]) that requires only low numbers of quadrature nodes. A

modified Nyström method is then presented, the essence of which is to include the best possible

error estimate into the standard Nyström method a priori. Comparisons of solutions of test FIEs

are conducted to reveal the improved accuracy of the modified Nyström method compared with the

standard Nyström method.

5



Introduction

Chapter 2 illustrates the basic concept of the modified Nyström method, in particular its restriction

upon the type of integrand and the size of the integration domain. The restrictions of chapter 2 are

investigated in chapter 3, where a FIE with an integrand that is singular at multiple points within

the domain is considered: this integral equation is expressible as a system of FIEs. Numerical

techniques for solving of systems of FIEs have seen a sudden growth in popularity over the past

decade, to the extent that they now include: Adomian decompositions (Babolian et al. [2004]),

Chebyshev-collocation (Akyüz-Daşcıolu [2004]), block-pulse function methods (Maleknejad et al.

[2005]), Taylor-series methods (Maleknejad et al. [2006]), homotopy perturbation methods (Javidi

and Golbabai [2007]), Sinc-collocation (Rashidinia and Zarebnia [2007]) and Legendre wavelets

(Jafari et al. [2010]). However, we are primarily concerned with the approach of De Bonis and

Laurita [2008], as it is based on the aforementioned Nyström–type method which we also adopt.

As in chapter 2, a modification of the Nyström method for the system of FIEs is presented in

chapter 3, which is restricted to low numbers of quadrature nodes.

The standard and modified Nyström method for systems of FIEs, illustrated for only one internal

singularity, are applied to several different test problems with known exact solution to reveal

the superior accuracy of the modified Nyström method. The position of the singularity in the

integration domain, however, transpires to be essential for determining the extent of improvement

in the degree of accuracy in the modified Nyström method compared to the standard Nyström

method.

In chapter 4 we consider Laplace’s equation in two-dimensions, the boundary-integral equation

reformulation of which is conducted following the work of Jaswon [1963] and Symm [1963]. The

present work considers solving the boundary-integral equation using the constant BEM algorithm

(Brebbia [1978]). To gain a complete understanding of the behaviour of the constant BEM,

we present rigorous error analyses in terms of explicit error formulae. We remark that, to our

knowledge, the existence of error analyses that provide explicit error formulae for the BEM is

sparse (Mason and Smith [1982], Kelmanson [1985]).

Brebbia [1978] improved upon the constant BEM by taking higher-order piecewise-polynomial

functions over each element. However, this requires the solution of larger systems of equations than

in the constant BEM. Instead, in chapter 4 we present a novel modification technique to improve

the accuracy of the constant BEM, one that emulates the higher-order piecewise-polynomial
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functions without increasing the size of the discrete system. The new modified method, which

incorporates the leading behaviour of error into the standard method a priori, is illustrated for a

nonsingular test BVP revealing an improved accuracy over the unmodified method. Furthermore,

the illustration shows that the rate of convergence of the modified constant BEM is predictable

a priori, depending upon the degree of the leading order in the incorporated terms. That is, the

modification technique, which requires only a minor modification of the constant BEM, provides

an efficient, straightforward and computationally superior method to the higher-order piecewise-

polynomial BEMs.

Another contribution of the present work is to extend the modified BEM of chapter 4 to solve

a BVP in which there is a boundary singularity. Motz [1946] defined a BVP with mixture of

Dirichlet and Neumann boundary conditions, known as the “Motz problem”, in which the presence

of a boundary singularity was due to a sudden change in boundary conditions. The Motz problem

is a fundamental singular BVP, inspiring many subsequent studies to obtain pseudo-analytic or

numerical solutions3.

In chapter 5, a new singular harmonic BVP known as the “stripline problem” is presented, where

a flat strip of conducting metal is sandwiched in a grounded non-insulating material, as illustrated

in Fig. 1.3.1. The importance of the stripline problem is three-fold: first, its application in

electromagnetism; second, the presence of a singularity at the ends of the conducting strip, and;

third, its near-identical geometrical resemblance to the Motz problem. The similarity between

the Motz and the stripline is important because it indicates that the pseudo-analytic and numerical

methods for the Motz problem are applicable to the stripline problem (subject to minor adaptations)

and vice versa.

In a remarkable paper by Whiteman and Papamichael [1971], a conformal mapping technique is

presented to derive a near-exact (subject to machine precision) pseudo-analytic solution for the

Motz problem. Adapting the algorithms of Whiteman and Papamichael [1971] and Rosser and

Papamichael [1975], chapter 5 presents the derivation of a pseudo-analytic solution for the stripline

3Motz [1946], Kelman [1970], Whiteman and Papamichael [1971], Papamichael and Whiteman [1973], Papamichael

and Symm [1975], Blue [1977], Crank and Furzeland [1978], Kermode and McKerrell [1985], Li et al. [1987], Steinberg

[1987], Wigley [1988], Olson et al. [1991], Karageorghis et al. [1996], Poullikkas et al. [1998], Li and Lu [2000], Hu

[2003], Lu et al. [2004], Li et al. [2005], Dosiyev [2005], Bernal and Kindelan [2010], Pashos et al. [2010]
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Figure 1.3.1: As shown by Bart et al. [2009]:(a) 3D representation of a stripline configuration; the

blue central strip is the conducting metal. Here the dimensional parameters are: l (length of the

strip), w (width of the strip) and d (distance between the ground planes). (b) Cross-sectional field

pattern of a stripline. The field pattern is homogeneous, except for the field around the extreme

edges of the strip, due to the presence of singularities.

problem by the means of a conformal mapping technique: this constitutes the first direct attempt at

deriving the analytic solution of the stripline problem by the use of conformal mappings.

In chapter 6, a numerical approach is first presented for the solution of the stripline problem using

the constant BEM algorithm of Brebbia [1978]. As outlined in Motz [1946] and Woods [1953], the

existence of a singularity adversely affects the convergence rate of any standard numerical method.

Symm [1973] and Xanthis et al. [1981] presented two approaches in which the asymptotic nature

of the singularity may be incorporated into the constant BEM. The work of Symm [1973], Ingham

et al. [1981a], Manzoor [1984], Xanthis et al. [1981] and Kelmanson [1983a] cover a wide range of

BEM approximations for the solution of harmonic BVPs with boundary singularities. Ingham et al.

[1981c] in particular, considered a BEM solution of the stripline problem, although no numerical

results were presented for comparison making the pseudo-analytic solution ever more essential.

Based on the modification technique of chapter 4, in chapter 6 we improve the rate of convergence

in the methods of Symm [1973] and Xanthis et al. [1981]. The modified BEMs are again based on
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incorporating the leading behaviour of the error into the original BEM a priori. The application of

the modified BEMs is illustrated for the stripline problem where, by using the analytic solution in

chapter 5, its ability to improve the accuracy and the rate of convergence in the standard BEM is

shown. However, as only the leading behaviour of the singularity is accounted for in Symm [1973]

and Xanthis et al. [1981], it is hardly surprising that the accuracy of the modified BEM results are

restricted by the residual behaviour of the singularity.

In summary, chapters 4, 5 and 6 present distinct contributions to the solution of harmonic BVPs

including the modification and refinement of the constant BEM. Finally, a general summary is

given in chapter 7, concluding the key observations and achievements in the thesis plus any possible

future work extending from the work presented.
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Chapter 2

Numerical Solutions of

One-Dimensional Fredholm Integral

Equations of the Second Kind

In the early 20th century, Erik Ivar Fredholm [1903] made significant contributions to the field

of mathematics now known as Fredholm theory, which concerns classifying and solving related

types of integral equations. The basic form of a linear Fredholm integral equation for an unknown

function U(S) defined on S ∈ [a, b] is that of the first kind (FIE1),

F (T ) =

∫ b

a
K̃(T, S)U(S) dS, T ∈ [a, b], (2.0.1)

in which the interval limits a and b are real constants, K̃ is the kernel and F is the source function.

When U occurs both inside and outside the integral, a linear Fredholm integral equation of the

second kind (FIE2) is then defined by

U(T ) = F (T ) + Λ

∫ b

a
K̃(T, S)U(S) dS, T ∈ [a, b] (2.0.2)

which, provided F (T ) 6= 0, is inhomogeneous. Here the associated constant Λ plays the role of an

eigenvalue i.e. the existence and/or uniqueness of solutions of (2.0.2) may be affected by Λ; when

Λ is known a priori, it is often absorbed into the kernel. An analysis and implementation of new

numerical solution techniques for approximating the solution of (2.0.2) will form the substantial
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part of this chapter.

To demonstrate the efficacy of the new methods, we shall consider the challenging case of non-

infinitely differentiable kernel functions (and hence integrands of FIE2 (2.0.2)) with respect to

S ∈ (a, b), in which the kernel function is factorised into the form

K̃(T, S) = W (S)K(T, S), (2.0.3)

whereK(T, S) is infinitely differentiable butW (S), the “badly-behaved” part of the kernel, is not.

To admit the possibility that K̃(T, S) in (2.0.3) is either singular at the interval limits or limited-

continuously differentiable at the interval limits in the sense that one or more of its derivatives is

not finite at the interval limits (i.e. has end-point singularities), the singular behaviour is more

specifically given in the form

W (S) = (b− S)µ(S − a)ν , (2.0.4)

in which µ, ν > −1, so that the FIE2 may be singular but not hypersingular. We also admit the

possibility that the weight function W (S) can simply be equal to unity.

For our subsequent analysis, we proceed by mapping T, S ∈ [a, b] in (2.0.2) onto t, s ∈ [−1, 1] by

(T, S) =
1

2
[(b− a)(t, s) + (b+ a)] . (2.0.5)

Accordingly, rescaling Λ using

λ = Λ

(
(b− a)

2

)µ+ν+1

, (2.0.6)

the canonical form of FIE2 (2.0.2) becomes

u(t) = f(t) + λ

∫ 1

−1
w(s)k(t, s)u(s) ds, t ∈ [−1, 1], (2.0.7)

where the lower-case functions correspond to their upper-case counterparts in (2.0.2), and the

transformed weight function, which now has potential discontinuous derivatives at s = ±1, is

w(s) = (1− s)µ(1 + s)ν. (2.0.8)

Defining the integral operator K by

(Ku)(t) ≡
∫ 1

−1
w(s)k(t, s)u(s) ds, (2.0.9)
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the symbolic form of (2.0.7) is

u− λKu = f, (2.0.10)

with corresponding unique solution (Atkinson [1997])

u = (I − λK)−1f, (2.0.11)

where I denotes the identity operator and ‖(I − λK)−1‖ is bounded for any suitable norm ‖ · ‖.
An explicit closed-form solution u(t) of FIE2 (2.0.7) is generally not obtainable, necessitating the

implementation of numerical approximation techniques. We shall focus on applying the Nyström

method and describing novel modifications thereof that improve the accuracy of the approximate

solution.

The remainder of this chapter is structured as follows. First, the theory of approximating FIE2

(2.0.7) via the Nyström method using Gaussian quadrature is outlined in §2.1. In §2.2 a theoretical

error is included in the Nyström method, which forms the basis for a new, modified, Nyström

method. An explicit definition of the theoretical error is given in §2.3. Finally, the modified

Nyström method is validated by a series of test problems in §2.4. The validation highlights

the accuracy, reliability and robustness of the method, hence justifying its application to integral

equations in higher dimensions.

2.1 The Nyström method

The Nyström method is one of numerous techniques employed to approximate the solution u(t)

of (2.0.7), e.g. Kaneko and Xu [1994], Benko et al. [2008], Dick et al. [2007], Kang et al. [2003]

and Mastroianni and Monegato [2003]. The basis of the Nyström method is the optimally accurate

approximation of the integrand in (2.0.7) using an n-point quadrature of the form∫
Ω
g(s) ds ≈

n∑
j=1

cj,ng(σj,n), (2.1.1)

where cj,n are the weights and σj,n the abscissae defined by the particular choice of the integration

scheme. In (2.1.1) we use well-known integration schemes based upon orthogonal-polynomial

approximation of g(s): see, e.g., Delves and Mohamed [1988], Atkinson [1989], Ralston and
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Rabinowitz [2001] and Gautschi [2004]. Nyström [1930] originally adopted a high-order Gaussian

quadrature in (2.1.1).

Taking into account the factorisation of K̃(T, S) in (2.0.3), the nth-order Gaussian quadrature

(2.1.1) can be used to integrate only the continuous partK(T, S) of the integrand in (2.0.2). Hence,

by (2.0.3), the Nyström method is referred to as the product Nyström method (Atkinson [1997]).

In view of the explicit form of the weight function in (2.0.8), we shall employ Gauss-Jacobi

quadrature. Gauss-Jacobi quadrature is based on the Jacobi polynomials Pn(s;µ, ν) because these

are orthogonal on s ∈ [−1, 1] with respect to the weight function (2.0.8), i.e.

〈Pi, Pj〉 =

∫ 1

−1
(1− s)µ(1 + s)νPi(s;µ, ν)Pj(s;µ, ν) ds = δij , ∀i, j ∈ N, (2.1.2)

where δij is the Kronecker delta function. The explicit form of the Gaussian quadrature

approximation Knu of Ku in (2.0.9) is then

(Knu)(t) ≡
n∑
j=1

cj,nk(t, σj)u(σj), t ∈ [−1, 1], (2.1.3)

for which (Ku)(t) ≡ (Knu)(t) when k(t, s)u(s) is a polynomial of degree ≤ 2n − 1 (Atkinson

[1989]). In (2.1.3) the weights, cj,n, are defined by

cj,n = − An+1γn
AnPn+1(σj ;µ, ν)∂1Pn(σj ;µ, ν)

, (2.1.4)

where

An =
(2n+ µ+ ν)!

2nn!(n+ µ+ ν)!
(2.1.5)

is the leading coefficient in Pn(s;µ, ν), σj are the n distinct roots of Pn(s;µ, ν) for j = 1, . . . , n

and ∂1 denotes the partial differential of Pn(s;µ, ν) with respect to s. In (2.1.4) γn is given by

γn =

∫ 1

−1
(1− s)µ(1 + s)ν [Pn(s;µ, ν)]2 ds, (2.1.6)

that can be evaluated exactly (Abramowitz and Stegun [1972]). Using (2.1.5) and (2.1.6), the

weights cj,n in (2.1.4) can be evaluated explicitly (Kelmanson and Tenwick [2010]) as

cj,n =
2µ+ν(2n+ µ+ ν + 2)Γ(n+ µ+ 1)Γ(n+ ν + 1)

Γ(n+ 2)Γ(n+ µ+ ν + 2)Pn+1(σj ;µ, ν)∂1Pn(σj ;µ, ν)
(2.1.7)

for j = 1, . . . , n.

The quadrature error is defined to be

(Enu)(t) ≡ ((K −Kn)u)(t) (2.1.8)
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which, although is pointwise convergent to zero for a sufficiently differentiable function u(t),

(Enu)(t)→ 0, n→∞, (2.1.9)

is not norm convergent (Hackbusch [1995]), i.e.

‖En‖ ≥ ‖K‖ (2.1.10)

for all n ∈ N. But note that, by (2.0.9), (2.1.3) and (2.1.8),

‖Enu‖ → 0, n→∞ (2.1.11)

and, based upon a convergence analysis of the quadrature rule (2.1.3) for continuous integrands,

Atkinson [1997] proves the results, needed for our subsequent analysis,

‖EnK‖, ‖EnKn‖ → 0, n→∞. (2.1.12)

The Nyström application of FIE2 (2.0.7) is, in symbolic form,

un − λKnun = f, (2.1.13)

in which un is the finite-dimensional approximation to u and Kn is defined by (2.1.3). By (2.0.10)

and (2.1.13), the Nyström error u− un satisfies

(I − λKn)(u− un) = λ(K −Kn)u, (2.1.14)

which admits the observation that the error u − un is explicitly dependent upon the existence of

(I − λKn)−1. Both (2.1.13) and (2.1.14) require the invertibility of (I − λKn), which cannot be

assumed but can be shown as follows.

Since, by hypothesis, FIE2 (2.0.10) has the explicit solution (2.0.11), (I − λK) must be invertible

and so

‖(I − λK)−1‖ <∞. (2.1.15)

By (2.1.12) and (2.1.15), there exists an m ∈ N such that

‖EnKn‖ ≤
1

λ2‖(I − λK)−1‖ , (2.1.16)

15
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for n > m. That is,

λ2‖(K −Kn)Kn‖ <
1

‖(I − λK)−1‖ , n > m. (2.1.17)

Now

I = I − λKn + λKn = I − λKn + λ(I − λKn)(I − λKn)−1Kn

= (I − λKn)
[
I + λ(I − λKn)−1Kn

]
, (2.1.18)

and hence

(I − λKn)−1 =
[
I + λ(I − λKn)−1Kn

]
. (2.1.19)

Without any justification at this stage, we make the assumption that (2.1.19) can be approximated

by (Atkinson [1997])

(I − λKn)−1 ≈
[
I + λ(I − λK)−1Kn

]
, (2.1.20)

since Kn ≈ K. In order to check such an approximation, consider[
I + λ(I − λK)−1Kn

]
(I − λKn)

= (I − λKn) + λ(I − λK)−1Kn(I − λKn)

= (I − λKn) + λ(I − λK)−1Kn − λ2(I − λK)−1KnKn

= I + (I − λK)−1 [I − (I − λK)]λKn − λ2(I − λK)−1KnKn

= I + (I − λK)−1λ2(K −Kn)Kn, (2.1.21)

the right-hand side of which is invertible by geometric series theorem (Appendix A) because, by

condition (2.1.17), ‖(I − λK)−1λ2(K − Kn)Kn‖ < 1. Then the geometric series theorem also

implies∥∥∥[I + (I − λK)−1λ2(K −Kn)Kn
]−1
∥∥∥ ≤ 1

1− λ2‖(I − λK)−1‖‖(K −Kn)Kn‖
. (2.1.22)

Since the right-hand side of (2.1.21) is invertible, the same must be true for the left-hand side, thus

(I − λKn) is invertible and satisfies

(I − λKn)−1 =
[
I + (I − λK)−1λ2(K −Kn)Kn

]−1 [I + (I − λK)−1λKn
]
. (2.1.23)

By (2.1.22), the norm of (I − λKn)−1 is uniformly bounded for sufficiently large n as

‖(I − λKn)−1‖ ≤ 1 + |λ|‖(I − λK)−1‖‖Kn‖
1− λ2‖(I − λK)−1‖(K −Kn)Kn‖

≤ ξn, (2.1.24)
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in which

‖Kn‖ = max
t∈[−1,1]

n∑
j=1

|cj,nk(t, σj)| ≤ sup
n≥1

n∑
j=1

|cj,n| max
t,s∈[−1,1]

|k(t, s)| <∞ (2.1.25)

and ξn is a constant. Collecting the results, in particular (2.1.14) and (2.1.24), we have shown that

‖(u− un)‖∞ ≤ ξn|λ|‖(K −Kn)u‖∞, (2.1.26)

for sufficiently large n; hence the Nyström error converges to zero with n at the same rate as that

of the error of the quadrature scheme.

For the specific case of Gauss-Jacobi quadrature, the Nyström error bound in (2.1.26) can be

asymptotically estimated for large-n (Kelmanson and Tenwick [2009]) as

‖u− un‖∞ ≤
π

22n+µ+ν
‖∂2n[k(t, s)u(s)]‖∞, n→∞, (2.1.27)

in which ∂m denotes the mth derivative with respect to s. Taking logarithms of (2.1.27)

log ‖u− un‖∞ ≤ log π + log ‖∂2n[k(t, s)u(s)]‖∞ − (2n+ µ+ ν) log 2

= log π + log ‖∂2n[k(t, s)u(s)]‖∞ − (µ+ ν) log 2− 2n log 2, (2.1.28)

in which the first three terms on the right-hand side are constant. Letting c = log π +

log ‖∂2n[k(t, s)u(s)]‖∞ − (µ+ ν) log 2 then, by (2.1.28),

log ‖u− un‖∞ ≤ c− 2n log 2. (2.1.29)

Given the kernel function k(t, s) is, by construction, infinitely differentiable with respect to s,

(2.1.27) and (2.1.29) reveal that ‖u− un‖∞ converges to zero exponentially with n when ∂2nu(s)

is bounded.

In Fig. 2.1.1 the logarithm of the actual error ‖u− un‖∞ and error bound (2.1.27) in the Nyström

solution of a test FIE2 (with known solution) is depicted as a function of n. The exponential

convergence of ‖u− un‖∞ is reflected in Fig. 2.1.1 in both the maximum norm of the actual error

and the error bound (2.1.27), e.g. in the latter the linear line of best fit has gradient log 1/4, as

predicted by (2.1.29).

Our aim is to modify the standard Nyström method in such a way that, if un is the numerical

solution of the new modified Nyström method, we require

‖u− un‖ � ‖u− un‖, (2.1.30)
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Figure 2.1.1: Log plot of the maximum norm of the actual Nyström error ‖u − un‖∞ (black) and

the error bound (2.1.27) (red) for the test FIE2 with kernel K(T, S) = exp(−T 2S), Λ = 1/2,

[a, b] = [−2
3 ,

1
3 ], µ = 1/2, ν = 1/3 and exact solution U(S) = exp(S) cos(S) for different values

of n. The exponential convergence of the actual error of the Nyström method is evident here for

increasing n. As is the exponential convergence of error bound (2.1.27), whose line of best fit

through the logarithmic data is linear with a gradient of log 1/4, as predicted by (2.1.29).

particularly for low values of n in order to maximise the potential for practical applications.

2.2 The modified Nyström method

In order to modify the standard Nyström method of §2.1, we shall first establish the nomenclature

following that in Kelmanson and Tenwick [2009, 2010]. Recalling En ≡ K − Kn in (2.1.8), the

basis of the modified Nyström method lies in finding an error Ẽnu where

Ẽn ≈ K −Kn, (2.2.1)

whose effect is incorporated a priori into the standard Nyström method to achieve condition

(2.1.30). That is, we augment the standard Nyström method such that

un − λ(Knun + Ẽnun) = f, (2.2.2)
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where un denotes the solution of the modified Nyström method and, consistent with (2.1.12), we

hypothesise

‖ẼnK‖, ‖ẼnKn‖ → 0, n→∞. (2.2.3)

The difference between the real error Enu and its approximate counterpart Ẽnu is denoted as the

error discrepancy

(∆Ẽnu)(t) ≡ ((Ẽn − En)u)(t), (2.2.4)

whose norm converges in a pointwise sense

‖∆Ẽnu‖ → 0, n→∞, (2.2.5)

for suitably continuous functions u(t) and must, by construction, satisfy

‖∆Ẽn‖ → 0, n→∞. (2.2.6)

Equations (2.0.10), (2.2.2) and (2.2.4) define the modified Nyström error as the solution of the

perturbed FIE2

(I − λKn − λẼn)(u− un) = λ∆Ẽnu, (2.2.7)

which should be compared with the “standard” error (2.1.14). Furthermore, (2.2.7) demonstrates

the dependence of the modified Nyström error upon the existence of the inverse of (I−λKn−λẼn)

which, by (2.1.8) and (2.2.4), is equivalent to

(I − λK − λ∆Ẽn). (2.2.8)

Hence the modified Nyström method (2.2.2) can be alternatively stated as

(I − λK − λ∆Ẽn)un = f. (2.2.9)

Thus, the evaluation of the modified Nyström error (2.2.7) depends upon the invertibility of the

operator (I − λK − λ∆Ẽn). To prove this, we consider the identity (Kelmanson and Tenwick

[2010])

(I − λK − λ∆Ẽn)−1 = (I − λ(I − λK)−1∆Ẽn)−1(I − λK)−1, (2.2.10)

in which (I − λK)−1 exists by (2.0.11). Defining

An = λ(I − λK)−1∆Ẽn, (2.2.11)
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the limit in (2.2.6) implies there exists a sufficiently large N ∈ N such that (Groh and Kelmanson

[2008])

‖An‖ ≤ |λ|‖(I − λK)−1‖‖∆Ẽn‖ < 1, n ≥ N. (2.2.12)

Thus (I − An)−1 may be expanded by the geometric series theorem as the Neumann series

(I − An)−1 =

∞∑
j=0

Ajn, (2.2.13)

from which

‖(I − An)−1‖ ≤ 1

1− ‖An‖
,

i.e.

‖(I − λ(I − λK)−1∆Ẽn)−1‖ ≤ 1

1− |λ|‖(I − λK)−1‖‖∆Ẽn‖
. (2.2.14)

Hence provided the standard FIE2 (2.0.11) has a unique solution the limit in (2.2.6) exists, and we

have

‖(I − λKn − λẼn)−1‖ ≤ ζn, (2.2.15)

for some finite constant, ζn say. Thus the modified Nyström error (2.2.7) is bounded such that

‖u− un‖∞ ≤ ζn|λ|‖∆Ẽnu‖∞, (2.2.16)

i.e. the modified Nyström error is proportional to an error discrepancy. By contrast, (2.1.26) may

be written as

‖u− un‖∞ ≤ ξn|λ|‖Enu‖ (2.2.17)

in which, by construction,

‖∆Ẽnu‖ � ‖Enu‖. (2.2.18)

Therefore, by (2.2.16)-(2.2.18) we have

‖u− un‖∞ � ‖u− un‖∞, (2.2.19)

thereby achieving condition (2.1.30).
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2.2.1 Implementation of the modified Nyström method

As shown in §2.3, the standard and approximate Nyström error operands, En and Ẽn, are differential

operators whose direct action upon the unknown function un in (2.2.9) is prevented by expressing

(2.2.9) in the implicit form

un = f + λ(Kn + Ẽn)un, (2.2.20)

and then recursively replacing un that is directly acted upon by Ẽn. That is, by applying M

Neumann iterations to un whenever it occurs at the operand of Ẽn yields

un =
M∑
m=0

(λẼn)mf + λ
M∑
m=0

(λẼn)mKnun + (λẼn)M+1un, M > 0. (2.2.21)

By introducing the linear operator

Ẽ(λ,M)
n ≡

M∑
m=1

(λẼn)m, (2.2.22)

(2.2.21) can be represented in the more compact form

(I − λKn − λẼ(λ,M)
n Kn − (λẼn)M+1)u (M)

n = f + Ẽ(λ,M)
n f, (2.2.23)

where the M th iteration of un using (2.2.20) is denoted by u (M)
n . Here we take Ẽ(λ,0)

n ≡ 0 and

u
(0)
n ≡ 0 so that the standard Nyström method (2.1.13) is recovered when M = 0. The standard

Nyström error Enu is a high-order differential whose order is dependent upon n: by construction,

so is Ẽnu. However, as u (M)
n is yet to be determined, the error term ẼM+1

n u
(M)
n in (2.2.23) cannot

be found explicitly, and so has to be neglected. This is justified if and only if

‖λM+1ẼM+1
n ‖ � ‖I − λKn − λẼ(λ,M)

n Kn‖ ≤ ‖I − λKn‖+ |λ|‖Ẽ(λ,M)
n Kn‖, (2.2.24)

which, due Eqn. (2.2.22) and the pointwise convergence of ẼnKn in (2.2.3), leads to

‖ẼM+1
n ‖ ≤ ‖I − λKn‖|λM+1| , n→∞. (2.2.25)

This bound, referred to as the truncation condition, becomes increasingly stringent when |λ| > 1.

Provided condition (2.2.25) holds, (2.2.23) may then be approximated as(
I − λKn − λẼ(λ,M)

n Kn
)
u (M)
n = f + Ẽ(λ,M)

n f, (2.2.26)
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in which Ẽ(λ,M)
n now acts upon the known Kn and f only, both of which are computable. The

modified Nyström method (2.2.26) yields an approximate solution of FIE2 (2.0.2) whose error is

characterised by Eqn. (2.2.19). The method is entirely novel, and shall be implemented on several

test problems.

2.2.2 Collocation equations

Before implementing the modified Nyström method (2.2.26), we first look at the standard Nyström

method and the conditions thereupon. Taking a finite-dimensional space of candidate solutions

evaluated at a series of collocation points t = σi, i = 1, . . . , n, that are the roots of the Jacobi

polynomial Pn(t;µ, ν), a system of n linear equations are generated for the n nodal Nyström values

un(σi). Consequently, the collocated matrix-vector counterpart of the discrete approximation of

the FIE2 (2.1.13)

(I− λK)un = f , (2.2.27)

is satisfied by the n-dimensional vector (un)i = un(σi), where I is the n×n identity matrix and the

components of K and f are respectively Ki,j = cj,nk(σi, σj) and fi = f(σi) for i, j = 1, . . . , n.

The nodal un(σi) from system (2.2.27) are then used in (2.1.13) to interpolate a spectrally accurate

solution for other source points in the interval. Furthermore, by Atkinson [1997, Eqn. 4.1.54],

‖(I− λK)−1‖∞ ≤ ‖(I − λKn)−1‖, (2.2.28)

the right-hand side of which is, by (2.1.24), bounded. Thus (I−λK) is indeed invertible in (2.2.28)

and un in (2.2.27) can be found.

In practice the systems in (2.2.27) and (2.2.29) are usually solved by LU-factorisation, in which

an n-point quadrature yields a system that is inverted in 2n3/3 floating point operations. The

O(n3) cost of the Nyström-system inversion motivates, to some extent, the new modified-Nyström

approach, in which improved accuracy is sought using low-order quadrature rules.

The application of a collocation method to the modified Nyström method (2.2.26) at the points

t = σi similarly results in a n-dimensional vector ū
(M)
n consisting of nodal values u (M)

n (σi). This

new vector satisfies

(I− λK− λẼ(λ,M)
n K)u

(M)
n = f + Ẽ(λ,M)

n f , (2.2.29)
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where the components of K and f are identical to those in the standard Nyström method; in

addition, those of Ẽ(λ,M)
n K and Ẽ(λ,M)

n f require the explicit definition of Ẽ(λ,M)
n .

Provided the operator Ẽn closely approximates the existing quadrature operator En, both should

possess the same quantitative properties. For example, following (2.1.9), Ẽnu also converges to

zero in the pointwise sense,

(Ẽnu)(t)→ 0, n→∞. (2.2.30)

This implies that the linear operator Ẽ(λ,M)
n consisting of higher powers of Ẽn acting upon a given

matrix A = Ai,j ,

Ẽ(λ,M)
n A =

M∑
m=1

λmẼmn Ai,j , (2.2.31)

converges in a pointwise sense with increasing n. That is, for all A,

‖Ẽ(λ,M)
n A‖∞ → 0, n→∞. (2.2.32)

Therefore, given the proven invertibility of (I− λK) in the standard Nyström system, (I− λK−
λẼ(λ,M)

n K) in (2.2.29) is invertible if (Golub and Van Loan [1996], Groh and Kelmanson [2008])

‖λ(I− λK)−1Ẽ(λ,M)
n K‖∞ < 1, (2.2.33)

i.e.

|λ|‖(I− λK)−1‖∞‖Ẽ(λ,M)
n K‖∞ < 1, (2.2.34)

and this is indeed guaranteed for sufficiently large n because of (2.2.32).

2.3 Error analysis

We now consider the explicit form of the error Enu and its approximation Ẽnu required for the

implementation of the modified Nyström method. For any given orthogonal-polynomial quadrature

rule, the explicit form of the error (Enu)(t) is (Ralston and Rabinowitz [2001], Gautschi [2004])

(E∗nu)(t, s∗) ≡ βnδ∗n(u; t, s∗), (2.3.1)
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where, by the mean-value theorem,

βn =
γn

A2
n(2n)!

and δ∗n(u; t, s∗) =

[
∂2n

∂s2n
(k(t, s)u(s))

]
s=s∗

(2.3.2)

for some undefined s∗ ∈ [−1, 1]. Using An and γn in (2.1.5) and (2.1.6) respectively, for the

Gauss-Jacobi polynomials Pn(s;µ, ν),

βn =
2µ+ν+1√π Γ(n+ ν + 1) Γ(n+ µ+ 1) Γ(n+ µ+ ν + 1)

Γ(n+ 1
2) Γ(2n+ µ+ ν + 1) Γ(2n+ µ+ ν + 2)

, (2.3.3)

whose asymptotic behaviour (Kelmanson and Tenwick [2010]) yields

βn+1

βn
∼ 1

16n2
− 3

32n3
+

4− µ2 − ν2

32n4
+O(n−5), n→∞. (2.3.4)

This demonstrates the exponential convergence of βn to zero with increasing n independent of the

choice of µ and ν. A rather more complicated manipulation (Kelmanson and Tenwick [2010]) of

(2.3.3) yields the asymptotic formula

βn ∼
π

22n+µ+ν(2n)!

(
1 +

2µ2 + 2ν2 − 1

4n
+O(n−2)

)
, n→∞, (2.3.5)

which is highly accurate, even for low values of n. For example, when µ = ν = 1
4 , the two-term

asymptotic series for βn in (2.3.5) is in error from the true value in (2.3.3) by 3.01%, 1.45% and

0.86% for n = 2, 3 and 4 respectively. Alternatively, for µ = ν = −1
2 , Pn(s;µ, ν) = Tn(s), the

Chebyshev polynomial of the first kind, and for µ = ν = 1
2 , Pn(s;µ, ν) = Un(s), the Chebyshev

polynomial of the second kind, the coefficient of every inverse power of n in series (2.3.5) vanishes

so that, without error,

βn =
π

22n±1(2n)!
, µ = ν = ±1

2
,∀n. (2.3.6)

When µ = ν = 0 the weight function W (S) in (2.0.4) is simply equal to unity hence K̃(T, S), by

(2.0.3), is a nonsingular kernel such that it is infinitely-continuously differentiable and exists for

all T, S ∈ [a, b]. In this case, Gauss-Jacobi quadrature is equivalent to Gauss-Legendre quadrature,

i.e. Pn(s;µ, ν) = Pn(s), the Legendre polynomial of the first kind, and the constant βn in (2.3.2)

takes the form

βn =
22n+1(n!)4

(2n+ 1) [(2n)!]3
, (2.3.7)

with asymptotic behaviour (Kelmanson and Tenwick [2009])

βn →
π

4n(2n)!
, n→∞. (2.3.8)
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The error Enu in (2.3.1) cannot be explicitly implemented in the modified Nyström method as

δ∗n contains the undetermined parameter s∗. To overcome this, we apply the integral mean-value

theorem to δ∗n(u; t) to obtain

δ∗n = δn + ε∗n, (2.3.9)

where

δn(u; t) =
1

2

[
∂2n−1

∂s2n−1
[k(t, s)u(s)]

]s=1

s=−1

, (2.3.10)

in which u(s) must be (2n− 1)-times continuously differentiable for all s because k(t, s) satisfies

this property by construction. By the hypothesis ‖ε∗n‖ � ‖δn‖ for all n, (2.3.1) and (2.3.9) yield

the computable predicted error as

(Enu)(t) ≡ βnδn(u; t), (2.3.11)

which approximates the true error (E∗nu)(t, s∗) with a sub-error of order O(βnε
∗
n). We now define

the true and computable error discrepancies respectively as

∆E∗nu ≡ (En − E∗n)u (2.3.12)

and

∆Enu ≡ (En − En)u. (2.3.13)

Computation of the predicted quadrature error (2.3.11) requires, by (2.3.10), a knowledge of the

solution u(s). Although one could use finite-difference schemes, this is impractical for high-order

derivatives. An advantage of the new modified Nyström method is the circumvention of the need

to estimate the derivatives in (2.3.10) explicitly. This is so because En in (2.3.11) acts directly upon

Kn and f only by the argument immediately following (2.2.26).

2.3.1 Validation of the predicted error

To validate the predicted quadrature error (2.3.11), we quantify the error discrepancies (2.3.12) and

(2.3.13) using series of prespecified test problems. The test problems in both this section and the

remainder of the chapter are based on the FIE2

U(T ) = F (T ) + Λ

∫ 2
3

− 5
3

(
2

3
− S

)µ(
S +

5

3

)ν
exp(−T 2S)U(S) dS, (2.3.14)
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where given a known exact solution U(S) = exp(S) cos(S), the forcing function is defined by

F (T ) = exp(T ) cos(T )− Λ

∫ 2
3

− 5
3

(
2

3
− S

)µ(
S +

5

3

)ν
exp(−T 2S) exp(S) cos(S) dS.

(2.3.15)

For example, taking n = 2, 4, 6, 8 the theory is tested for FIE2 (2.3.14) with parameters µ = 1
2

and ν = 1
3 . Results are presented in Fig. 2.3.1, which demonstrates two facts: first, ∆Enu(t) is

both smaller in modulus and more uniform than the true error discrepancy ∆E∗nu(t, s∗); second,

the convergence of the true and predicted error discrepancies indeed satisfies

‖∆E∗nu‖∞, ‖∆Enu‖∞ → 0 n→∞, (2.3.16)

as required by (2.2.5).

For a given function F (p), its root-mean-square, denoted by σ(F ), is defined as

σ(F ) ≡

√√√√ 1

M

M∑
i=1

[F (ti,M)]2, (2.3.17)

where M is the number of mesh points ti,M over the internal grid. Using (2.3.17), the root-mean-

square values of ∆E∗nu and ∆Enu in Fig. 2.3.1 are given in Table 2.3.1. The data shows the mean

of the predicted error discrepancy is smaller than the mean of the true discrepancy and closer to

the exact global discrepancy (∆Enu) = 0. Thus the predicted error En, which is closer to the

exact global error, is potentially suited for FIE2s with oscillatory kernels K̃(T, S) as it takes the

mean-value of the oscillating data.

Further comparisons of the exact error Enu(t) in (2.1.9) against its predicted Enu(t) counterpart

can be seen in Fig. 2.3.2. In keeping with the discrepancy comparisons demonstrated in Fig. 2.3.1,

the error comparisons of Fig. 2.3.2 indicate good prediction of the true error by the predicted error,

where the slight discrepancy between lines and circles quantifies the sub-error ε∗n in (2.3.9). In

summary, we have demonstrated the ability to predict, with quantifiable accuracy, the action of the

error operator En that is key to the application of the new modified Nyström method.
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Figure 2.3.1: True error discrepancy ∆E∗nu(t, s∗) (dark) and predicted error discrepancy ∆Enu(t)

(light), for n = 2, 4, 6, 8 in (2.3.12) and (2.3.13) for a singular kernel function using Gauss-Jacobi

quadrature with µ = 1
2 and ν = 1

3 in the test FIE2 (2.3.14).

2.4 Comparison of numerical schemes

The theory of §2.1- §2.3 is now used to test the standard Nyström method against the modified

Nyström method for both nonsingular and singular kernel functions. Based upon the findings of

§2.3, we take Enu to approximate Ẽnu in the implementation of the modified Nyström method, in

which the required terms are therefore (E(λ,M)
n K)ij and (E(λ,M)

n f)i, previously seen in the vector-
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n σ(∆E∗nu) σ(∆Enu)

2 6.1984× 10−4 7.8009× 10−5

4 1.3465× 10−8 1.9759× 10−9

6 4.1956× 10−14 6.4700× 10−15

8 1.5386× 10−19 1.5008× 10−19

Table 2.3.1: The true root-mean-square error of ∆E∗nu and the predicted root-mean-square error of

∆Enu. Here we have a quantification of the errors in Fig. 2.3.1. The mean value of the predicted

error discrepancy is both smaller than the mean value of the true discrepancy and closer to the

exact global discrepancy (∆Enu) = 0.

matrix system (2.2.29). Defining

Dn,r [F (sr)] ≡
λβn

2

∂2n−1

∂s2n−1
r

[F (sr)]

∣∣∣∣sr=1

sr=−1

, (2.4.1)

then, by the definition of the error operator En in (2.3.10) and (2.3.11),

(E(λ,M)
n K)ij = cj,n (Dn,1[k(σi, s1)k(s1, σj)]

+Dn,1 [k(σi, s1)Dn,2 [k(s1, s2)k(s2, σj)]] + . . .) , (2.4.2)

and

(E(λ,M)
n f)i = Dn,1[k(σi, s1)f(s1)] +Dn,1 [k(σi, s1)Dn,2 [k(s1, s2)f(s2)]] + . . . , (2.4.3)

each terminating with Dn,M . Here the components of (2.4.2) and (2.4.3) comprise increasing

powers of βn that, by (2.3.4), converge exponentially to zero with increasing n. By (2.3.1), (2.3.9)

and (2.3.11), along with ‖Ẽn−En‖ = O(βnε
∗
n), it is clear that ‖Ẽn−En‖ → 0 exponentially with

n. Hence the M -term truncation (2.2.22) should approximate the action of En for relatively low

values ofM ; a maximum ofM = 3 will be imposed in the subsequent numerical implementations.

The modified Nyström method of §2.2 was implemented and validated for the test FIE2 (2.3.14)

with known exact solution U(S) and varying parameters Λ, µ and ν: the corresponding forcing

function F (T ) and quadrature rule Kn were generated using (2.3.15) and (2.1.3) respectively. For

notational convenience, we introduce the modified Nyström error,

e(M)
n u(t) ≡ ‖u− u (M)

n ‖∞, M ≥ 0. (2.4.4)
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Figure 2.3.2: Actual error Enu(t) (line) and predicted error Enu(t) (circles) for n = 2, 4, 6, 8 in

(2.1.9) and (2.3.11), computed using the Gauss-Jacobi quadrature of (2.1.3). The test problem is

the same as that used in Fig. 2.3.1. It is evident that discrepancy between both the curves scales

with βn and reflects the truncation ε∗n in (2.3.10).

Recalling that the original aim was to obtain improved accuracy in the modified Nyström approach

for low values of n over the standard Nyström approach, Figs. 2.4.1-2.4.5 show the modified

Nyström error (2.4.4) for low orders of quadrature for test FIE2 (2.3.14). For the results in Fig.

2.4.1 we take µ = ν = 0 to which we recover identical results to those generated independently

by Gauss-Legendre quadrature (Kelmanson and Tenwick [2009]). Fig. 2.4.1 shows the modified

Nyström error for the lowest possible order of quadrature n, where each separate sub-figure is for
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Figure 2.4.1: The modified Nyström errors e(M)
n u(t) of (2.4.4) for fixed n = 2 and different values

of Λ, computed using Gauss-Jacobi quadrature (2.1.3). The above numerical experiment uses

µ = ν = 0 in the test FIE2 (2.3.14). Successive modifications of the standard Nyström error,

M = 0 (−), are shown byM = 1 (�),M = 2 (◦) andM = 3 (+). Validating computations using

Gauss-Legendre quadrature yield results indistinguishable from those presented. These results are

also comparable with those in Kelmanson and Tenwick [2009].

a fixed value of Λ and separate curves on each sub-figure are for different values of M .

In Fig. 2.4.1 we note an impressive error reduction due to simply taking first-order error terms

(i.e. M = 1) in the modified Nyström method, for a crude quadrature based on only n = 2 nodes.

Fig. 2.4.1 also demonstrates two features: first, the convergence to zero of e(M)
n with M is most
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pronounced for |Λ| � 1 and least so for |Λ| � 1. This follows since (2.4.2) and (2.4.3) are power

series in λβn, equivalently Λβn via (2.0.6), so that the convergence of the error ‖Ẽn−En‖ is eroded

as |Λ| increases. Second, the results for M = 2 and M = 3 are indistinguishable for any Λ, which

indicates that the exponential decay of βn with n leads to negligible changes in computed data for

M as low as 3.

An identical trend in the behaviour of the modified Nyström error of Fig. 2.4.1 reoccurs in Figs.

2.4.2 and 2.4.3, in which µ = ν = −1
2 and µ = ν = 1

2 matching Gauss-Chebyshev (of the first

and second kind) quadrature.

In Figs. 2.4.4 and 2.4.5 the number of nodes in the quadrature are varied as n = 2 and n = 3

respectively for a highly singular test FIE2 in which µ = −4
5 and ν = − 9

10 . In Fig. 2.4.4(d)

the modified Nyström error when M = 3 is uniformly larger than that when M = 2, which

indicates a violation of condition (2.2.25) for |Λ| � 1. However, as Fig. 2.4.5(d) reveals, condition

(2.2.25) can be recovered by increasing n. Fig. 2.4.5 also demonstrates no gained accuracy in the

modified Nyström method by taking M > 1 when n = 3; the exponential convergence of βn in

(2.3.4) means that the omitted error ε∗n in operator En determines the accuracy threshold that can

be achieved.

When |b−a| > 2, the domain must be broken into subintervals: if not, then the power series (2.4.2)

and (2.4.3) will diverge when λβn > 1 via the scaling (2.0.6). The domain division ensures that

λβn < 1 in all subintervals. An in-depth analysis of such an amendment is considered in detail in

the following chapter.

Finally, note that the inclusion ofM error terms in the modified Nyström method requires a greater

number of operations to be undertaken than the standard Nyström method in order to obtain the

approximate solution u (M)
n , as evidenced by the increase in CPU system times of 626%, 2813%

and 8220% respectively for M = 1, 2 and 3 from the CPU system time for M = 0.
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Figure 2.4.2: The modified Nyström errors e(M)
n u(t) of (2.4.4) for fixed n = 2 and different values

of Λ, computed using Gauss-Jacobi quadrature (2.1.3). The above numerical experiment uses

µ = ν = −1
2 in the test FIE2 (2.3.14). Successive modifications of the standard Nyström error,

M = 0 (−), are shown byM = 1 (�),M = 2 (◦) andM = 3 (+). Validating computations using

Gauss-(first-kind-)-Chebyshev quadrature yield results indistinguishable from those presented.
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Figure 2.4.3: The modified Nyström errors e(M)
n u(t) of (2.4.4) for fixed n = 2 and different values

of Λ, computed using Gauss-Jacobi quadrature (2.1.3). The above numerical experiment uses

µ = ν = 1
2 in the test FIE2 (2.3.14). Successive modifications of the standard Nyström error,

M = 0 (−), are shown byM = 1 (�),M = 2 (◦) andM = 3 (+). Validating computations using

Gauss-(second-kind-)-Chebyshev quadrature yield results indistinguishable from those presented.
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Figure 2.4.4: The modified Nyström errors e(M)
n u(t) of (2.4.4) for fixed n = 2, different values of

Λ and a highly-singular kernel function with µ = −4
5 and ν = − 9

10 in the test FIE2 (2.3.14),

computed using Gauss-Jacobi quadrature (2.1.3). Successive modifications of the standard

Nyström error, M = 0 (−), are shown by M = 1 (�), M = 2 (◦) and M = 3 (+).
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Figure 2.4.5: The modified Nyström errors e(M)
n u(t) of (2.4.4) for fixed n = 3, different values

of Λ and a highly-singular kernel function with µ = −4
5 and ν = − 9

10 in the test FIE2 (2.3.14)

computed using Gauss-Jacobi quadrature of Eqn. (2.1.3). Successive modifications of the standard

Nyström error, M = 0 (−), are shown by M = 1 (�), M = 2 (◦) and M = 3 (+).
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2.5 Summary and discussion

The aim of this chapter was to modify the classical Nyström method so that it could accommodate

problems in which the kernels in FIE2s have challenging end-point singularities.

The presented new modified Nyström method enables the accurate treatment of singular FIE2 in a

computationally efficient and economical manner. The crudest modified Nyström method solutions

required an 626% increase in CPU system time compared against the CPU system time for the

classical Nyström method. The modified Nyström results were, however, more accurate than those

obtained from the classical approach: a substantial improvement throughout the entire solution

domain of approximately one hundredfold for only n = 2 quadrature nodes.

Numerous test FIE2s have been considered to demonstrate the applicability of the modified (and

classical) Nyström method with singular kernels, for which Gauss-Jacobi quadrature is appropriate.

The theory on which the modified Nyström method is founded has been conducted in the context

of general orthogonal polynomials, although is applicable to any such FIE2 with a kernel function

factorisable as a product of “well-behaved” and “poorly-behaved” functions, i.e. a product of

infinitely-differentiable and finitely-differentiable functions.

Further investigations in this area include: finding improved estimates of the true Nyström method

error Enu in order to reduce the inherent error ε∗n developed by the removal of second and higher-

order error terms in Enu; implementing Clenshaw-Curtis quadrature (Trefethen [2008]), based

on unevenly spaced abscissae, as an alternative to Gauss-Jacobi quadrature, and; extending the

Nyström method to a Chebyshev-spectral method (Boyd [2001]) that leads to nested quadrature

rules.

Given that in this chapter the outlined theory is for nonsingular or end-point singular kernel

functions only, in the subsequent chapter, we aim to extend the modified Nyström method to

solving FIE2s with more complicated singular kernel functions. In particular, we shall consider

kernel functions with singularities at any location in a bounded interval.
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Chapter 3

Numerical Solutions of

One-Dimensional Fredholm Integral

Equations of the Second Kind with

Internal Singularities

We progress from the end-point singular kernel functions in chapter 2 by considering the FIE2

U(T ) = F (T ) + Λ

∫ b

a
K̃(T, S)U(S) dS, T ∈ [a, b], (3.0.1)

with more complicated kernel functions; that is, K̃(T, S) is now singular (or finitely-continuously

differentiable) atm > 1 points say, {ξi}mi=1 ∈ (a, b). The aim of this chapter is to therefore develop

and apply the numerical solution techniques of chapter 2 to solve (3.0.1) in the presence of multiple

singularities.

Following chapter 2, the kernel function in (3.0.1) is factorised as

K̃(T, S) = W (S)K(T, S), (3.0.2)

where K(T, S) is again an infinitely-differentiable function. To admit the possibility that K̃(T, S)

in (3.0.2) has limited differentiability at multiple points {ξi}mi=1 ∈ (a, b), (2.0.4) is now amended
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to

W (S) =
m∏
i=1

|S − ξi|αi , (3.0.3)

in which the parameters αi > −1 for i = 1, . . . ,m, so that FIE2 (3.0.1) is singular but not

hypersingular.

The interval [a, b] in (3.0.1) is divided into m+ 1 subintervals

m⋃
i=0

[ξi, ξi+1], (3.0.4)

where

ξ0 = a < ξ1 ≤ ξ2 ≤ . . . ≤ ξm−1 ≤ ξm < ξm+1 = b, (3.0.5)

in which {ξi}mi=1 are located at the subinterval limits. Considering (3.0.2), the kernel function is

defined over each subinterval by

K̃(T, S) = Wp(S)Kp(T, S), S ∈ [ξp−1, ξp], p = 1, . . . ,m+ 1, (3.0.6)

where Wp(S) contains the “badly-behaved” (i.e. finitely-differentiable) part of the kernel and

Kp(T, S) is infinitely-differentiable. By (3.0.2) and (3.0.3),

W1(S) = W2(S) = |S − ξ1|α1 , (3.0.7)

and

K1(T, S) = K2(T, S) = K(T, S), (3.0.8)

if m = 1. Otherwise, for all m > 1

Wp(S) =


|S − ξ1|α1 p = 1

|S − ξp−1|αp−1 |S − ξp|αp p = 2, . . . ,m

|S − ξm|αm p = m+ 1

(3.0.9)

and

Kp(T, S) =



m∏
j=2

|S − ξj |αjK(T, S) p = 1

m∏
j=1

j 6=p,p−1

|S − ξj |αjK(T, S) p = 2, . . . ,m

m−1∏
j=1

|S − ξj |αjK(T, S) p = m+ 1.

(3.0.10)
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Without loss of generality, for the remainder of the chapter we presume only one singular interior

point, e.g. ξ1 = c say, exists within the interval [a, b]. This is sufficient enough to illustrate

the different principle of internal singularities without complicating the issue with over-complex

algebra. Weight function (3.0.7) is equivalent, on the first interval, to

W1(S1) = (c− S1)α, S1 ∈ [a, c], (3.0.11)

and, on the second interval, to

W2(S2) = (S2 − c)α, S2 ∈ [c, b], (3.0.12)

with α1 = α.

Given the existence of a unique singular point in (a, b), FIE2 (3.0.1) becomes

U(T ) = F (T ) + Λ

[∫ c

a
W1(S1)K1(T, S1)U(S1) dS1 +

∫ b

c
W2(S2)K2(T, S2)U(S2) dS2

]
,

(3.0.13)

where T ∈ [a, b]. Thus the domain of T does not match that of S1 or S2 in either integrand

in (3.0.13), hence (3.0.13) is not a FIE2 in the formal sense. However, if the solution U(T ) of

integral equation (3.0.13) exists when T ∈ [a, b] then it must also exist when T ∈ [a, c] ∪ [c, b]. In

other words, (3.0.13) is equivalent to the system of Fredholm integral equations of the second kind

U(T ) = F (T ) + Λ

[∫ c

a
W1(S1)K1(T, S1)U(S1) dS1 +

∫ b

c
W2(S2)K2(T, S2)U(S2) dS2

]
,

(3.0.14)

for T ∈ [a, c] and

U(T ) = F (T ) + Λ

[∫ c

a
W1(S1)K1(T, S1)U(S1) dS1 +

∫ b

c
W2(S2)K2(T, S2)U(S2) dS2

]
,

(3.0.15)

for T ∈ [c, b], where K1(T, S),K2(T, S),W1(S),W2(S) and F (T ) are given but U(T ) is yet to

be determined.

For compatibility with (2.0.5), the mapping of T, S1 ∈ [a, c] and T, S2 ∈ [c, b] onto t, s ∈ [−1, 1]

is achieved by a combination of

(T, S1) = 1
2 [(c− a)(t, s1) + (c+ a)], (T, S1) ∈ [a, c],

(T, S2) = 1
2 [(b− c)(t, s2) + (b+ c)], (T, S2) ∈ [c, b]. (3.0.16)
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Using (3.0.16), the FIE2s (3.0.14) and (3.0.15) have respective canonical forms

u1(t) = f1(t) + λ1

∫ 1

−1
w1(s)k(1,1)(t, s)u1(s) ds+ λ2

∫ 1

−1
w2(s)k(1,2)(t, s)u2(s) ds (3.0.17)

and

u2(t) = f2(t) + λ1

∫ 1

−1
w1(s)k(2,1)(t, s)u1(s) ds+ λ2

∫ 1

−1
w2(s)k(2,2)(t, s)u2(s) ds, (3.0.18)

for t ∈ [−1, 1], where

λ1 = Λ

(
c− a

2

)α+1

, (3.0.19)

λ2 = Λ

(
b− c

2

)α+1

, (3.0.20)

and the canonical form of the weight function, with potential discontinuous derivatives at s = ±1,

is

wi(s) =

 (1− s)α i = 1,

(1 + s)α i = 2,
(3.0.21)

corresponding to its transformed upper-case counterpartWi(Si) in (3.0.11) and (3.0.12). Similarly,

in (3.0.17) and (3.0.18), the functions ui(t), fi(t) and k(i,j)(t, s) with t, s ∈ [−1, 1] correspond to

their upper-case counterparts U(T ), F (T ) and Kj(T, Sj) in (3.0.14) and (3.0.15) in which T = Si

and i, j = 1, 2.

We note that applying the linear transformations (2.0.5) and (3.0.16) to (3.0.13) before splitting the

domain of T results in the canonical integral equation

u(t) = f(t) + λ1

∫ 1

−1
w1(s)k1(t, s)u1(s)ds+ λ2

∫ 1

−1
w2(s)k2(t, s)u2(s)ds, (3.0.22)

for t ∈ [−1, 1], where u and f are as defined in chapter 2. Essentially, (3.0.22) has three unknown

functions u(t), u1(s) and u2(s) and is therefore unsolvable.

Defining

k(t, s) =

 k(1,1)(t, s) k(1,2)(t, s)

k(2,1)(t, s) k(2,2)(t, s)

 , u(t) =

 u1(t)

u2(t)

 , f(t) =

 f1(t)

f2(t)

 ,

(3.0.23)

and

w(t) =

 w1(t) 0

0 w2(t)

 , (3.0.24)
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the vector form of the system of equations (3.0.17) and (3.0.18) is

u(t) = f(t) +

∫ 1

−1
k(t, s)λw(s)u(s) ds, (3.0.25)

where

λ =

 λ1 0

0 λ2

 , (3.0.26)

hence the vector λ cannot be taken outside the integral in (3.0.25). Now we define the linear

operator K(i,j)
λ by

(K(i,j)
λ uj)(t) ≡

∫ 1

−1
k(i,j)(t, s)λjwj(s)uj(s) ds, i, j = 1, 2, (3.0.27)

and matrix operators

Kλ =

 K(1,1)
λ K(1,2)

λ

K(2,1)
λ K(2,2)

λ

 and I =

 I 0

0 I

 , (3.0.28)

in which I denotes the identity operator. By (3.0.23), (3.0.24) and (3.0.26), we have

(Kλu)(t) ≡
∫ 1

−1
k(t, s)λw(s)u(s) ds, (3.0.29)

and the symbolic form of system (3.0.25) is

(I −Kλ)u = f (3.0.30)

which, provided f ≡ 0 and (I −Kλ)u = 0 has only the trivial solution u = 0, the unique vector

solution is

u = (I −Kλ)−1f . (3.0.31)

Using (3.0.23) and (3.0.28), the expanded form of (3.0.30) satisfies

u1 −K(1,1)
λ u1 −K(1,2)

λ u2 = f1 (3.0.32)

and

u2 −K(2,1)
λ u1 −K(2,2)

λ u2 = f2, (3.0.33)

with corresponding solutions

u1 = (I − K(1,1)
λ −K(1,2)

λ (I − K(2,2)
λ )−1K(2,1)

λ )−1(f1 +K(1,2)
λ (I − K(2,2)

λ )−1f2) (3.0.34)
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and

u2 = (I − K(2,2)
λ −K(2,1)

λ (I − K(1,1)
λ )−1K(1,2)

λ )−1(f2 +K(2,1)
λ (I − K(1,1)

λ )−1f1). (3.0.35)

When λ2 = 0, by (3.0.27), K(i,2)
λ = 0 for all i and (3.0.32) is reduced to

u1 −K(1,1)
λ u1 = f1. (3.0.36)

Similarly, when λ1 = 0 (3.0.35) reduces to

u2 −K(2,2)
λ u2 = f2. (3.0.37)

Eqns. (3.0.36) and (3.0.37) are FIE2s (Atkinson [1997]), the numerical solution of which was

discussed in chapter 2.

The remainder of this chapter is structured, parallel to that in chapter 2, as follows. In §3.1 we

numerically approximate the solution of system (3.0.30) via the vector-Nyström method using

Gaussian quadrature. In §3.2 the new, modified, vector-Nyström method for approximating the

solution of systems of FIE2s is discussed. Then §3.3 provides an error analysis of the standard

vector-Nyström method, whose approximation is essential in the implementation of the new

modified method. Finally §3.4 presents a series of validations of the modified vector-Nyström

method using prespecified test problems.

3.1 The vector-Nyström method

The past decade has seen systems of FIE2s (3.0.30) solved by various numerical methods

(Maleknejad et al. [2006], Babolian et al. [2004], Javidi and Golbabai [2007], Jafari et al. [2010]).

Rashidinia and Zarebnia [2007] applied a Sinc collocation method for solving system of linear

Fredholm integral equations. On ther other hand, a vector-Nyström method based on orthogonal-

Jacobi polynomials (discussed in §2.1) to approximate the solutions of a system of FIE2s, has been

proposed by De Bonis and Laurita [2008]. In this chapter, we extend the theory of Rashidinia and

Zarebnia [2007] and De Bonis and Laurita [2008] to solve the system of FIE2s in (3.0.25).

Owing to the composition of the weight function wj(s) in (3.0.21)

wj(s) ≡ (1− s)µj (1 + s)νj , (3.1.1)
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where

µj =

 α j = 1,

0 j = 2,
and νj =

 0 j = 1,

α j = 2,
(3.1.2)

hence we employ Gauss-Jacobi quadrature to approximate the integrals in (3.0.25). Analogous

with (3.0.28), the definition of the explicit orthogonal-polynomial quadratures approximating the

linear operators (3.0.27) are now

(K(i,1)
λ,n u1)(t) ≡

n∑
k=1

k(i,1) (t, σk)λ1c
(1)
k,nu1 (σk) , t ∈ [−1, 1] (3.1.3)

and

(K(i,2)
λ,n u2)(t) ≡

n∑
k=1

k(i,2) (t, ρk)λ2c
(2)
k,nu2 (ρk) , t ∈ [−1, 1], (3.1.4)

where i = 1, 2 and (K(i,j)
λ,n uj) ≡ (K(i,j)

λ uj) when k(i,j)(t, s)uj(s) is a polynomial of degree ≤
2n − 1 (Atkinson [1989]). In (3.1.3) and (3.1.4), the weights c(j)

k,n, defined in accordance with the

weight function wj(s), are

c
(j)
k,n =



− A
(1)
n+1γ

(1)
n

A
(1)
n Pn+1(σk;µ1, ν1)∂1Pn(σk;µ1, ν1)

, j = 1,

− A
(2)
n+1γ

(2)
n

A
(2)
n Pn+1(ρk;µ2, ν2)∂1Pn(ρk;µ2, ν2)

, j = 2,

(3.1.5)

where

A(j)
n =

(2n+ µj + νj)

2nn!(n+ µj + νj)!
(3.1.6)

is the leading coefficient in Pn(s;µj , νj) invariant for any choice of j because of the symmetry of

µj and νj in (3.1.2),

γ(j)
n =

∫ 1

−1
(1− s)µj (1 + s)νj [Pn(s;µj , νj)]

2ds, (3.1.7)

and ∂1 denotes the first-order partial derivative of Pn(s;µj , νj) with respect to s. The abscissae

σk and ρk, k = 1, . . . , n, in (3.1.3), (3.1.4) and (3.1.5) are the n distinct roots of Pn(s;µ1, ν1) and

Pn(s;µ2, ν2) respectively.

In what follows, all subsequent i, j, l and m take the values of i, j, l,m = 1, 2 unless otherwise

stated. By comparing (3.1.3) and (3.1.4) with (3.0.27), the quadrature error is defined as

(E(i,j)
λ,n uj)(t) ≡ ((K(i,j)

λ −K(i,j)
λ,n )uj)(t). (3.1.8)
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Although the quadrature error (3.1.8) is pointwise convergent to zero for a sufficiently differentiable

function uj(t),

(E(i,j)
λ,n uj)(t)→ 0, n→∞, (3.1.9)

it is not norm convergent (Hackbusch [1995]):

‖E(i,j)
λ,n ‖ ≥ ‖K

(i,j)
λ ‖ (3.1.10)

for all n ∈ N. However, by (3.1.9),

‖E(i,j)
λ,n uj‖ → 0, n→∞ (3.1.11)

and (Atkinson [1997])

‖E(i,j)
λ,n K

(l,m)
λ ‖, ‖E(i,j)

λ,n K
(l,m)
λ,n ‖ → 0, n→∞. (3.1.12)

Letting Eλn be the matrix operator combining the quadrature errors (3.1.8); acting upon vector

solution u, Eλn is defined by

(Eλnu)(t) =

 E(1,1)
λ,n E(1,2)

λ,n

E(2,1)
λ,n E(2,2)

λ,n

u(t). (3.1.13)

Then, by (3.1.11) and (3.1.12), corresponding to (2.1.12) we now have

‖Eλnu‖, ‖EλnKλ‖, ‖EλnKλn‖ → 0, n→∞. (3.1.14)

The Nyström approximation un,i to ui is, in symbolic-matrix form,

(I −Kλn)un = f , (3.1.15)

where, from (3.1.3) and (3.1.4),

Kλn =

 K(1,1)
λ,n K(1,2)

λ,n

K(2,1)
λ,n K(2,2)

λ,n

 . (3.1.16)

The vector-Nyström error u− un, by (3.0.30) and (3.1.15), satisfies

(I −Kλn)(u− un) = (Kλ −Kλn)u, (3.1.17)

44



Numerical Solutions of One-Dimensional Fredholm Integral Equations of the Second Kind with
Internal Singularities

and thus depends upon the existence of the matrix (I − Kλn)−1. The proof of the invertibility

of the matrix (I −Kλn) is similar to that for a single FIE2, as in §2.1. Recalling the hypothesis

that the system of FIE2 (3.0.30) has a unique solution, then (I −Kλ)−1 must exist and its norm

is bounded, i.e.

‖(I −Kλ)−1‖ <∞. (3.1.18)

Following Rashidinia and Zarebnia [2007], provided k(t, s) in (3.0.23) is continuous for t, s ∈
[−1, 1], by (3.1.14) and (3.1.18), there exists an m ∈ N so that for n > m

‖(Kλ −Kλn)Kλn‖ ≤
1

‖(I −Kλ)−1‖ . (3.1.19)

Extending (2.1.20)- (2.1.24), as shown by Rashidinia and Zarebnia [2007, Proof of Thm. IV],

(I −Kλn)−1 exists and is bounded for sufficiently large n as

‖(I −Kλn)−1‖ ≤ 1 + ‖(I −Kλ)−1‖‖Kλn‖
1− ‖(I −Kλ)−1‖‖(Kλ −Kλn)Kλn‖

≤ ψn, (3.1.20)

where ψn is a constant. Thus the vector-Nyström error (3.1.17) is bounded as

‖u− un‖∞ ≤ ψn‖(Kλ −Kλn)u‖∞ (3.1.21)

for sufficiently large n. Eqn. (3.1.21), by the definition of E(i,j)
λ,n in (3.1.8), is therefore equivalent

to

‖u− un‖∞ ≤ ψn‖Eλnu‖∞, (3.1.22)

in which the right-hand side converges to zero with increasing n by (3.1.14).

Recall for Gauss-Jacobi quadrature, by linearity with (2.1.27), the ith component of the Nyström

error vector bound can be estimated for large-n as (Kelmanson and Tenwick [2009])

‖ui − un,i‖∞ ≤
2∑
j=1

π

22n+µj+νj

∥∥∥∂2n

[
k(i,j)(t, s)uj(s)

]∥∥∥
∞
, n→∞, (3.1.23)

where k(i,j)(t, s) is infinitely differentiable with respect to s. Eqn. (3.1.23) shows ‖ui − un,i‖∞
converges to zero exponentially with n when ∂2nuj(s) is bounded for all j. Fig. 3.1.1 depicts the

exponential convergence of the actual error ‖ui− un,i‖∞ for a test FIE2 as its logarithm decreases

linearly with increasing n.
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Figure 3.1.1: Log plot of the maximum norm of the actual vector-Nyström error ‖ui − un,i‖∞ in

(3.1.23) for the test FIE2 (3.0.1) with kernel K(T, S) = exp(−T 2S), Λ = 1/10, [a, b] = [−5
4 ,

5
3 ],

α = 1/2 and exact solution U(S) = exp(S) cos(S) for different values of n. The two solutions of

the system of FIE2s are shown as i = 1 (black) and i = 2 (red). The pure-exponential convergence

of the actual error of the vector-Nyström method is evident here for increasing n by the linear

relationship.

We proceed by modifying the standard vector-Nyström method in such a way that, if un is the

solution of the new, modified, vector-Nyström method then

‖u− un‖∞ � ‖u− un‖∞, (3.1.24)

for low values of n, in precise accordance with (2.1.30).

3.2 The modified vector-Nyström method

The modified vector-Nyström method, with solution un, is based on incorporating the

approximation Ẽλnu to the real error Eλnu in the standard vector-Nyström method (3.1.15), so

that (Kelmanson and Tenwick [2009, 2010])

un − (Kλn + Ẽλn)un = f . (3.2.1)
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The matrix error operator Ẽλn acting upon vector u is defined by

(Ẽλnu)(t) =

 Ẽ(1,1)
λ,n Ẽ(1,2)

λ,n

Ẽ(2,1)
λ,n Ẽ(2,2)

λ,n

u(t), (3.2.2)

with components Ẽ(i,j)
λ,n ≈ E

(i,j)
λ,n ≡ K

(i,j)
λ −K(i,j)

λ,n which, consistent with (3.1.12), satisfy

‖Ẽ(i,j)
λ,n K

(l,m)
λ ‖, ‖Ẽ(i,j)

λ,n K
(l,m)
λ,n ‖ → 0, n→∞. (3.2.3)

Comparing (3.2.2) with the real error matrix operator (3.1.13), the error discrepancy matrix

(∆Ẽλnu)(t) ≡ ((Ẽλn − Eλn)u)(t), (3.2.4)

and the norm of (3.2.4) converges in a pointwise sense

‖∆Ẽλnu‖ → 0, n→∞ (3.2.5)

for some suitably continuous vector u(t) in which, as distinct from (2.2.6), we now have

‖∆Ẽλn‖ → 0, n→∞ (3.2.6)

because the modified method is based upon error discrepancies rather than the errors. That is, by

definition of error discrepancy matrix (3.2.4), the modified method (3.2.1) is equivalent to

(I −Kλ −∆Ẽλn)un = f , (3.2.7)

which combined with (3.1.15), yields the modified vector-Nyström error that satisfies

(I −Kλ −∆Ẽλn)(u− un) = ∆Ẽλnu. (3.2.8)

The existence of the modified vector-Nyström error clearly requires the existence of (I −Kλ −
∆Ẽλn)−1. To prove the existence of this operator we follow (2.2.10)-(2.2.14) in §2.2, e.g. by

considering the identity

(I −Kλ −∆Ẽλn)−1 = (I − (I −Kλ)−1∆Ẽλn)−1(I −Kλ)−1, (3.2.9)

(3.1.18) and (3.2.6) imply there exists a significantly large N ∈ N such that (Groh and Kelmanson

[2008])

‖(I −Kλ)−1‖‖∆Ẽλn‖ < 1, n ≥ N. (3.2.10)
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Letting

An ≡ (I −Kλ)−1∆Ẽλn, (3.2.11)

then, by (3.2.10), ‖An‖ < 1 when n ≥ N and the Neumann series (Appendix A) implies that

(I −An)−1 exists and is bounded by

‖(I −An)−1‖ ≤ 1

1− ‖An‖
; (3.2.12)

that is,

‖(I − (I −Kλ)−1∆Ẽλn)−1‖ ≤ 1

1− ‖(I −Kλ)−1‖‖∆Ẽλn‖
. (3.2.13)

Thus, provided the standard FIE2 system (3.0.31) has a unique solution and limit (3.2.6) exists

then, by (3.2.9), (I −Kλ −∆Ẽλn)−1 exists and is bounded according to

‖(I −Kλ −∆Ẽλn)−1‖ ≤ φn, (3.2.14)

for some constant φn. Furthermore, by (3.2.8) and (3.2.14),

‖u− un‖∞ ≤ φn‖∆Ẽλnu‖∞, (3.2.15)

for some constant φn and sufficiently large n.

Recalling the modified Nyström error bound (2.2.16) and standard Nyström error bound (2.2.17)

in §2, then regardless of whether there is a system of FIE2s or an individual FIE2, the modified

vector-Nyström error (3.2.15) is less than the standard vector-Nyström error (3.1.22) owing to the

former being composed of the error discrepancy rather than the error itself, i.e.

‖u− un‖∞ � ‖u− un‖∞, (3.2.16)

as

‖∆Ẽλnu‖∞ � ‖Ẽλnu‖∞. (3.2.17)

3.2.1 Implementation of the modified vector-Nyström method

As shown in §3.3, the standard and approximate vector-Nyström error-matrix operands, Eλn and

Ẽλn, are differential operators whose direct action upon the unknown function un in (3.2.1) are

circumvented by expressing (3.2.1) as

un = f + (Kλn + Ẽλn)un, (3.2.18)
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then recursively replacing un whenever it is directly acted upon by Ẽλn. That is, applying M

successive Neumann iterations to un whenever it occurs as the operand of the operator Ẽλn in

(3.2.18) yields

un =
M∑
m=0

Ẽλn
mf +

M∑
m=0

Ẽλn
mKλnun + Ẽλn

M+1un. (3.2.19)

Introducing the matrix operator

Ẽλ
(M)
n ≡

M∑
m=1

Ẽλn
m, (3.2.20)

the compact form of (3.2.19) is

u
(M)
n = f + Ẽλ

(M)
n f + Kλnu

(M)
n + Ẽλ

(M)
n Kλnu

(M)
n + Ẽλn

M+1u
(M)
n , (3.2.21)

where the explicit dependence of un on the M iterations is denoted by u(M)
n . We take un(0) ≡ un

and Ẽλn
(0) ≡ 0 so that, whenM = 0, (3.2.21) is equivalent to the standard vector-Nyström method

(3.1.15).

The implicit scheme (3.2.21) can be applied only if the error operator Ẽλn
M+1 acting upon u(M)

n is

neglected, as u(M)
n is yet to be determined. This is justified if

‖Ẽλn
M+1‖ � ‖I −Kλn − Ẽλ

(M)
n Kλn‖ ≤ ‖I −Kλn‖+ ‖Ẽλ

(M)
n Kλn‖. (3.2.22)

Eqn. (3.2.22) is referred to as the vector-truncation condition which, due to (3.2.3) and (3.2.20),

i.e.

‖Ẽλ
(M)
n Kλn‖ → 0, n→∞ (3.2.23)

becomes

‖Ẽλn
M+1‖ � ‖I −Kλn‖, n→∞. (3.2.24)

Vector condition (3.2.24) is more intricate than its scalar modified Nyström method counterpart

(2.2.25); for the system of FIE2s (3.0.25) there are four truncation conditions that contain 2M

products of error operands. For example, when M = 1, the expanded form of (3.2.24) is

‖Ẽ(1,1)
λ,n Ẽ

(1,1)
λ,n + Ẽ(1,2)

λ,n Ẽ
(2,1)
λ,n ‖ � ‖(I − K

(1,1)
λ,n )‖,

‖Ẽ(1,2)
λ,n Ẽ

(2,2)
λ,n + Ẽ(1,1)

λ,n Ẽ
(1,2)
λ,n ‖ � ‖K

(1,2)
λ,n ‖,

‖Ẽ(2,1)
λ,n Ẽ

(1,1)
λ,n + Ẽ(2,2)

λ,n Ẽ
(2,1)
λ,n ‖ � ‖K

(2,1)
λ,n ‖,

‖Ẽ(2,1)
λ,n Ẽ

(1,2)
λ,n + Ẽ(2,2)

λ,n Ẽ
(2,2)
λ,n ‖ � ‖(I − K

(2,2)
λ,n )‖, (3.2.25)
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which must be satisfied for all n. By standard norm inequalities, we have

‖Ẽ(i1,i2)
λ,n Ẽ(i3,i4)

λ,n +Ẽ(i5,i6)
λ,n Ẽ(i7,i8)

λ,n ‖ ≤ ‖Ẽ(i1,i2)
λ,n Ẽ(i3,i4)

λ,n ‖+‖Ẽ(i5,i6)
λ,n Ẽ(i7,i8)

λ,n ‖, ip = 1, 2,∀p, (3.2.26)

in which each term on the right-hand side converges to zero for significantly large n by (3.2.3), i.e.

‖Ẽ(i1,i2)
λ,n Ẽ(i3,i4)

λ,n ‖ ≈ ‖Ẽ(i1,i2)
λ,n (K(i3,i4)

λ −K(i3,i4)
λ,n )‖ → 0, n→∞, ip = 1, 2, ∀p. (3.2.27)

Due to the left-hand side of the conditions in (3.2.25) increasing in complexity with increasing M ,

the modified vector-Nyström method vector-truncation condition for systems of FIE2s is more

stringent than that in the modified Nyström method in §2.2 (Eqn. (2.2.25)). In addition, the

increasing complexity of (3.2.25) implies that, as per the modified Nyström method in §2.2, only a

low value of M should be taken in the numerical implementations of the modified vector-Nyström

method.

Provided condition (3.2.24) holds, the modified vector-Nyström method may be approximated as

(
I + Kλn + Ẽλ

(M)
n Kλn

)
u

(M)
n = f + Ẽλ

(M)
n f , (3.2.28)

with the error matrix operator Ẽλn acting only upon known matrix operator Kλn and vector f . The

error of the modified vector-Nyström method in approximating the solutions of systems of FIE2s,

as defined in (3.2.16) and (3.2.17), is therefore reduced by comparison with that in the standard

vector-Nyström method.

3.2.2 Collocation equations

In the standard vector-Nyström method, each equation in the system (3.1.15) is evaluated at a series

of collocation points thus generating a finite-dimensional space of candidate solutions. That is, the

first equation in (3.1.15) is collocated at t = σi, i = 1, . . . , n, that are the roots of the Jacobi

polynomial Pn(t;µ1, ν1) and the second equation in (3.1.15) is collocated at t = ρi, i = 1, . . . , n,

that are the roots of the Jacobi polynomial Pn(t;µ2, ν2), i.e.,

n∑
k=1

(
δik − k(1,1)(σi, σk)λ1c

(1)
k,n

)
un,1(σk)−

n∑
k=1

k(1,2)(σi, ρk)λ2c
(2)
k,nun,2(ρk) = f1(σi) (3.2.29)
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and

−
n∑
k=1

k(2,1)(ρi, σk)λ1c
(1)
k,nun,1(σk) +

n∑
k=1

(
δik − k(2,2)(ρi, ρk)λ2c

(2)
k,n

)
un,2(ρk) = f2(ρi),

(3.2.30)

where i = 1, . . . , n and δik is the Kronecker delta. Eqns. (3.2.29) and (3.2.30) are a system of

2n-linear equations for the nodal vector-Nyström values un,1(σi) and un,2(ρi), which via (3.1.15),

are used to interpolate solution un for any point in the interval [−1, 1].

Specifically, let

An =

 A
(1,1)
n A

(1,2)
n

A
(2,1)
n A

(2,2)
n

 (3.2.31)

be a particular collocated-equation matrix (CEM) with components

A
(1,1)
n ≡

[
δik − k(1,1)(σi, σk)λ1c

(1)
k,n

]
i,k=1,...,n

=
[
a

(1,1)
i,k

]
i,k=1,...,n,

A
(1,2)
n ≡

[
−k(1,2)(σi, ρk)λ2c

(2)
k,n

]
i,k=1,...,n

=
[
a

(1,2)
i,k

]
i,k=1,...,n,

A
(2,1)
n ≡

[
−k(2,1)(ρi, σk)λ1c

(1)
k,n

]
i,k=1,...,n

=
[
a

(2,1)
i,k

]
i,k=1,...,n,

A
(2,2)
n ≡

[
δik − k(2,2)(ρi, ρk)λ2c

(2)
k,n

]
i,k=1,...,n

=
[
a

(2,2)
i,k

]
i,k=1,...,n.

(3.2.32)

Taking the 2n-dimensional vectors xn and bn with components defined as

(xn)i =

 un,1(σi) i = 1, . . . , n,

un,2(ρi−n) i = n+ 1, . . . , 2n
(3.2.33)

and

(bn)i =

 f1(σi) i = 1, . . . , n,

f2(ρi−n) i = n+ 1, . . . , 2n,
(3.2.34)

then the collocated vector-Nyström system (3.2.29) and (3.2.30) are expressible as the 2n-system

Anxn = bn, (3.2.35)

with solution

xn = A−1
n bn. (3.2.36)

By De Bonis and Laurita [2008, Proof of Thm. 3.1], the maximum norm of CEMAn is

‖An‖∞ = max
{
‖(A(1,1)

n A(1,2)
n )‖∞, ‖(A(2,1)

n A(2,2)
n )‖∞

}
, (3.2.37)
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where

‖(A(1,1)
n A(1,2)

n )‖∞ = max
1≤i≤n

(
n∑
k=1

[
|a(1,1)
i,k |+ |a

(1,2)
i,k |

])
(3.2.38)

and

‖(A(2,1)
n A(2,2)

n )‖∞ = max
1≤i≤n

(
n∑
k=1

[
|a(2,1)
i,k |+ |a

(2,2)
i,k |

])
, (3.2.39)

each being bounded for Gauss-Jacobi quadrature (De Bonis and Laurita [2008, Eqn. 45]). De Bonis

and Laurita [2008] moreover show that

‖An‖∞ <∞ (3.2.40)

and that, for some positive constant τ ,

‖A−1
n ‖∞ ≤ τ‖(I −Kλn)−1‖, (3.2.41)

where the right-hand side is bounded by (3.1.20) and

cond(An) ≤ Ψ‖(I −Kλn)‖‖(I −Kλn)−1‖ ≡ Ψcond(I −Kλn), (3.2.42)

in which Ψ is some positive constant and cond(A) = ‖A‖‖A−1‖ is the condition number of

the arbitrary matrix A. Therefore, by (3.2.42), provided the vector-Nyström method is well-

conditioned, so is its CEM (3.2.31) and hence xn in (3.2.36) can be found.

The modified vector-Nyström method is similarly collocated at abscissae σi and ρi, i = 1, . . . , n,

that are roots of the respective Jacobi polynomials Pn(t;µ1, ν1) and Pn(t;µ2, ν2), providing a

discrete approximation of the FIE2 system (3.0.25)

Ãnx̃n = b̃n, (3.2.43)

satisfied by the 2n-dimensional vector

(x̃n)i =

 u
(M)
n,1 (σi) i = 1, . . . , n,

u
(M)
n,2 (ρi−n) i = n+ 1, . . . , 2n,

(3.2.44)

where

Ãn =

 Ã
(1,1)
n Ã

(1,2)
n

Ã
(2,1)
n Ã

(2,2)
n

 and b̃n =

 b̃n,1

b̃n,2

 . (3.2.45)
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Defining the matrix operator (3.2.20) as

Ẽλ
(M)
n =


[
Ẽ(M)
λ,n

](1,1) [
Ẽ(M)
λ,n

](1,2)[
Ẽ(M)
λ,n

](2,1) [
Ẽ(M)
λ,n

](2,2)

 , (3.2.46)

the components of the CEM Ãn in (3.2.45) are

Ã
(1,1)
n ≡

[
δi,k − k(1,1)(σi, σk)λ1c

(1)
k,n −

([
Ẽ(M)
λ,n

](1,1)
K(1,1)
λ,n +

[
Ẽ(M)
λ,n

](1,2)
K(2,1)
λ,n

)
i,k

]
i,k=1,...,n

=
[
ã

(1,1)
i,k

]
i,k=1,...,n,

Ã
(1,2)
n ≡

[
−k(1,2)(σi, ρk)λ2c

(2)
k,n −

([
Ẽ(M)
λ,n

](1,1)
K(1,2)
λ,n +

[
Ẽ(M)
λ,n

](1,2)
K(2,2)
λ,n

)
i,k

]
i,k=1,...,n

=
[
ã

(1,2)
i,k

]
i,k=1,...,n,

Ã
(2,1)
n ≡

[
−k(2,1)(ρi, σk)λ1c

(1)
k,n −

([
Ẽ(M)
λ,n

](2,1)
K(1,1)
λ,n +

[
Ẽ(M)
λ,n

](2,2)
K(2,1)
λ,n

)
i,k

]
i,k=1,...,n

=
[
ã

(2,1)
i,k

]
i,k=1,...,n,

Ã
(2,2)
n ≡

[
δi,k − k(2,2)(ρi, ρk)λ2c

(2)
k,n −

([
Ẽ(M)
λ,n

](2,1)
K(1,2)
λ,n +

[
Ẽ(M)
λ,n

](2,2)
K(2,2)
λ,n

)
i,k

]
i,k=1,...,n

=
[
ã

(2,2)
i,k

]
i,k=1,...,n

(3.2.47)

and collocated-equation vector (CEV) b̃n are

b̃n,1 =

[
f1(σi) +

([
Ẽ(M)
λ,n

](1,1)
f1(σi) +

[
Ẽ(M)
λ,n

](1,2)
f2(σi)

)
i

]
i=1,...,n,

b̃n,2 =

[
f2(ρi) +

([
Ẽ(M)
λ,n

](2,1)
f1(ρi) +

[
Ẽ(M)
λ,n

](2,2)
f2(ρi)

)
i

]
i=1,...,n.

(3.2.48)

The components of matrix operator (3.2.46) are summations of M products of the error operators

Ẽ(i,j)
λ,n : recall the left-hand side of truncation condition (3.2.25) when M = 1. Hence the explicit

composition of the components([
Ẽ(M)
λ,n

](j1,j2)
K(i1,i2)
λ,n

)
i,k

and
([
Ẽ(M)
λ,n

](j1,j2)
fi1(σi)

)
i

, ip, jp = 1, 2,∀p, (3.2.49)

require the definition of Ẽ(i,j)
λ,n .

Provided Ẽ(i,j)
λ,n closely approximates the exact quadrature operator E(i,j)

λ,n , both should possess the
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same quantitative properties., e.g. following (3.1.9),

(Ẽ(i,j)
λ,n uj)(t)→ 0, n→∞. (3.2.50)

Eqn. (3.2.50) implies the matrix operator Ẽλ
(M)
n , which consists of products of Ẽ(i,j)

λ,n , acting upon

an arbitrary matrix A = Ai,j

Ẽλ
(M)
n A =

M∑
m=1

Ẽλn
mAi,j , (3.2.51)

converges to zero in a pointwise sense with increasing n, i.e. (Kelmanson and Tenwick [2010])

‖Ẽλ
(M)
n A‖∞ → 0, n→∞. (3.2.52)

Letting En be the matrix (N.B. not operator) difference between the CEM An in the standard

vector-Nyström method (3.2.31) and the CEM Ãn in the modified vector-Nyström method (3.2.45),

namely

En = An − Ãn, (3.2.53)

then, by (3.1.15) and (3.2.28),

En = Ẽλ
(M)
n Kλn (3.2.54)

and thus (3.2.52) yields

‖En‖∞ → 0, n→∞. (3.2.55)

Therefore, provided A−1
n exists, Ãn is also invertible if and only if (Golub and Van Loan [1996],

Groh and Kelmanson [2008])

‖A−1
n ‖∞‖En‖∞ < 1, (3.2.56)

which is guaranteed for large n because of (3.2.41) and (3.2.55).

3.3 Error analysis

The explicit form of the error E(i,j)
λ,n uj , denoted as Ê(i,j)

λ,n uj , for any orthogonal-polynomial

quadrature is

(Ê(i,j)
λ,n uj)(t, s

∗) ≡ λjβ(j)
n δ̂(i,j)

n (uj ; t, s
∗), (3.3.1)
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where

β(j)
n =

γ
(j)
n[

A
(j)
n

]2
(2n)!

and δ̂(i,j)
n (uj ; t, s

∗) =

[
∂2n

∂s2n

(
k(i,j)(t, s)uj(s)

)]
s=s∗
, (3.3.2)

for some unknown s∗ ∈ [−1, 1]. The variables γ(j)
n and A(j)

n are respectively defined in (3.1.6) and

(3.1.7) for Gauss-Jacobi polynomial Pn(s;µj , νj).

Owing to the symmetry of µj and νj in (3.1.2) for j = 1, 2, (3.3.2) implies β(1)
n = β

(2)
n and so

β
(j)
n = βn for all j. Moreover,

βn =
2µj+νj+1√πΓ(n+ νj + 1)Γ(n+ µj + 1)Γ(n+ µj + νj + 1)

Γ(n+ 1
2)Γ(2n+ µj + νj + 1)Γ(2n+ µj + νj + 2)

(3.3.3)

is exponentially convergent to zero with n (Kelmanson and Tenwick [2010]) independently of µj

and νj .

In parallel with §2.2, the implementation of error (3.3.1) is possible only if the unknown parameter

s∗ is removed. Therefore, we apply the integral mean-value theorem to δ̂(i,j)
n in (3.3.2) so that

δ̂(i,j)
n = δ

(i,j)
n + ε̂(j)n , (3.3.4)

where

δ
(i,j)
n (uj ; t) =

1

2

[
∂2n−1

∂s2n−1

[
k(i,j)(t, s)uj(s)

]]s=1

s=−1

(3.3.5)

and k(i,j)(t, s) is continuously differentiable for all s, by construction, but uj(s) must be (2n− 1)-

times continuously differentiable for all j. By the hypothesis ‖ε̂(j)n ‖ � ‖δ(i,j)
n ‖ for all n, using

(3.3.1) and (3.3.4) we approximate the true error (Ê(i,j)
λ,n uj)(t, s

∗) as the mean value, over all s∗,

(E(i,j)
λ,n uj)(t) ≡ λjβnδ

(i,j)
n (uj ; t), (3.3.6)

referred to as the computable predictable error, with a sub-error of order O(βnε̂
(j)
n ).

Finally, a comparison between (3.3.1), (3.3.6) and the actual error (E(i,j)
λ,n uj) in (3.1.8) yields the

true and predicted error discrepancies respectively as

∆Ê(i,j)
λ,n uj ≡

(
E(i,j)
λ,n − Ê

(i,j)
λ,n

)
uj , (3.3.7)

and

∆E(i,j)
λ,n uj ≡

(
E(i,j)
λ,n − E

(i,j)
λ,n

)
uj , (3.3.8)
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which lead to the matrix forms

∆Êλn =

 ∆Ê(1,1)
λ,n ∆Ê(1,2)

λ,n

∆Ê(2,1)
λ,n ∆Ê(2,2)

λ,n

 and ∆Eλn =

 ∆E(1,1)
λ,n ∆E(1,2)

λ,n

∆E(2,1)
λ,n ∆E(2,2)

λ,n

 , (3.3.9)

corresponding to (3.1.13).

3.3.1 Validation of the predicted error

We validate the predicted quadrature error (3.3.6), by quantified discrepancies (3.3.7) and (3.3.8),

in a series of test problems. In both this section and the remainder of the chapter we will use the

test FIE2

U(T ) = F (T ) + Λ

∫ b

a
|S − c|α exp(−T 2S)U(S) dS, (3.3.10)

where given a known exact solution U(S) = exp(S) cos(S), the forcing function is defined by

F (T ) = exp(T ) cos(T )− Λ

∫ b

a
|S − c|α exp(−T 2S) exp(S) cos(S) dS. (3.3.11)

The theory is tested for n = 2 and parameters [a, b] = [−5
4 ,

5
4 ], c = 1

2(a + b) and α = 1
2 in FIE2

(3.3.10). A comparison of the predicted error discrepancy ∆E(i,j)
λ,n uj(t) against its true counterpart

∆Ê(i,j)
λ,n uj(t, s

∗) is depicted in Fig 3.3.1 for both solutions, u1(t) and u2(t), of system (3.0.25).

Each sub-figure in Fig 3.3.1 are for the different values of i, j = 1, 2 that correspond to the four

Gaussian quadrature approximated integrals in the system (3.2.28). Fig 3.3.1 demonstrates three

facts: first, ∆Eλnun is both more uniform and smaller in modulus than the true error discrepancy

∆Êλnun; second, the error discrepancies are converging to zero as n is increased in agreement

with (3.2.5), and; third, ∆Eλnun is closer to the exact global error discrepancy DeltaEλnun = 0

than ∆Êλnun.

Fig. 3.3.2 compares the individual components of the actual error (E(i,j)
λ,n uj) in (3.1.8) with the

predicted error (E(i,j)
λ,n uj) in (3.3.8), for only n = 2 in both solutions u1(t) and u2(t). Divergences

occur between E(i,j)
λ,n and E(i,j)

λ,n in Fig. 3.3.2 due to the latter having an error of order O(βnε̂
(j)
n ),

which decreases exponentially with n, from the integral mean-value estimation (3.3.4). The results

in Figs. 3.3.1 and 3.3.2 reflect those seen in the validations of §2.2 (Figs. 2.4.1 and 2.4.2), and show

a close correlation between that of the exact error and the predicted error. This is a demonstration
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Figure 3.3.1: True error discrepancy ∆Ê(i,j)
λ,n uj(t, s

∗) (light) and predicted error discrepancy

∆E(i,j)
λ,n uj(t) (dark) for i, j = 1, 2 and n = 2 in (3.3.7) and (3.3.8) for a singular kernel function

using Gauss-Jacobi quadrature with [a, b] = [−5
4 ,

5
4 ], c = 1

2(a + b) and α = 1
2 in test FIE2

(3.3.10).

of the justification to employ the predicted error operator E(i,j)
λ,n as an approximation to Ẽ(i,j)

λ,n in

the application of modified vector-Nyström method. With a validation prediction in place, we

may now define the composition of the terms
(
Eλ

(M)
n Kλn

)
ik

and
(
Eλ

(M)
n f

)
i

in (3.2.49), i.e. the

components of the CEM (3.2.47) and the components of the CEV (3.2.48). The operator matrix

Eλ
(M)
n Kλn comprise a series of products of E(i,j)

λ,n acting upon K(l,m)
λ,n , relative to quadrature based
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Figure 3.3.2: Actual error E(i,j)
λ,n uj(t) (line) and predicted error E(i,j)

λ,n uj(t) (circles) for i, j = 1, 2

and n = 2 in (3.1.8) and (3.3.6), for a singular kernel function computed using Gauss-Jacobi

quadrature (3.0.27). The test problem is same as that used in Fig. 3.3.1. It is evident that

the discrepancy between the curves results from the omission of ε̂(j)n in (3.3.6): this discrepancy

decreases rapidly with increasing n, and is not visible on this scale for n = 3.

on the Jacobi polynomial Pn(s;µm, νm). Defining

Hn,r [F (sr)] ≡
βn
2

∂2n−1

∂s2n−1
r

[F (sr)]

∣∣∣∣sr=1

sr=−1

, (3.3.12)
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then, by (3.3.6), the direct action of E(i,j)
λ,n upon K(l,m)

λ,n becomes


(
E(i,j)
λ,n K

(l,1)
λ,n

)
(t) = Hn,1λj

[
k(i,j)(t, s1)

n∑
k=1

k(l,1)(s1, σk)λ1c
(1)
k,n

]
m = 1,

(
E(i,j)
λ,n K

(l,2)
λ,n

)
(t) = Hn,1λj

[
k(i,j)(t, s1)

n∑
k=1

k(l,2)(s1, ρk)λ2c
(2)
k,n

]
m = 2,

(3.3.13)

where i, j, l = 1, 2. Eqn. (3.3.13) is extendible to the direct action of N error operators E(pj ,qj)
λ,n ,

j = 1, . . . , N , acting upon K(l,m)
λ,n , required for implementing Eλ

(M)
n in (3.2.20), e.g. when m = 1

 N∏
j=1

E(pj ,qj)
λ,n K(l,1)

λ,n

 (t) =Hn,1
[
λq1k

(p1,q1)(t, s1)Hn,2
[
λq2k

(p2,q2)(s1, s2) . . .

Hn,N
[
λqNk

(pN ,qN )(sN−1, sN)

n∑
k=1

k(l,1)(sN , σk)λ1c
(1)
k,n

]
. . .

]]
,

(3.3.14)

where pj , qj = 1, 2 for all j and N = 1, . . . ,M . A similar expression is obtainable when m = 2

from extending the second expression in (3.3.13).

By (3.3.6) and (3.3.12), the direct action of E(pj ,qj)
λ,n , j = 1, . . . , N , upon fm is

 N∏
j=1

E(pj ,qj)
λ,n fm

 (t) =Hn,1
[
λq1k

(p1,q1)(t, s1)Hn,2
[
λq2k

(p2,q2)(s1, s2) . . .

Hn,N
[
λqNk

(pN ,qN )(sN−1, sN)fm(sN)

]
. . .

]]
, m = 1, 2, (3.3.15)

where pj , qj = 1, 2 for all j and N = 1, . . . ,M . Evaluating (3.3.14) and (3.3.15) at t = σi or

t = ρi, i = 1, . . . , n, depending upon the integral equation in the system of FIE2s, the collocated

forms for
(
Ẽλ

(M)
n Kλn

)
ik

and
(
Ẽλ

(M)
n f

)
i

can be acquired.

The key attribute of expressions (3.3.14) and (3.3.15) lies in the demonstration of the increasing

powers of βn with increasing M , owing to the definition of Hn,r in (3.3.12). Consequently, due

to the aforementioned exponential convergence of βn in (3.3.3), the M -term truncation Ẽλ
(M)
n in

(3.2.20) should closely approximate the action of Eλn for relatively low values of M ; a maximum

of M = 2 shall be imposed in the subsequent numerical implementations.
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3.4 Comparison of numerical schemes

The standard and modified vector-Nyström method will now be validated for the test FIE2 (3.3.10)

with known exact solution U(S) = exp(S) cos(S) and constant Λ prescribed over interval [a, b].

The corresponding forcing function F (T ) and quadrature rule K(i,j)
λ,n are generated from (3.3.11)

and (3.1.3)-(3.1.7) respectively.

To proceed, we define a modified Nyström system error,

e
(M)
n,i ui(t) ≡

∥∥∥ui − u(M)
n,i

∥∥∥
∞
, M ≥ 0. (3.4.1)

The test problems, assimilated for low values of M and n to agree with our original aim, present

both solutions u1 and u2 of the system of FIE2s (3.0.25) unless otherwise stated. With this in mind,

Figs. 3.4.1-3.4.5 show the modified Nyström error (3.4.1) for low orders of quadrature. In Figs.

3.4.1 and 3.4.2 we have the modified vector-Nyström error in the approximate solutions u(M)
n,1 and

u
(M)
n,2 respectively for α = 0.5 and only n = 2 quadrature nodes, where each sub-figure is for a

fixed value of Λ and the separate curves on each sub-figure are for different values of M . The key

feature of the results in Figs. 3.4.1 and 3.4.2 are the smallest errors in the modified method when

|Λ| � 1 and the largest when |Λ| → 1. The reason for such behaviour is due to truncation condition

matrix (3.2.24) consisting of products of M + 1 error terms that are dependent upon λjβn, which

is approximately Λ
2 βn by (3.0.19) and (3.0.20), hence when |Λ| → 1 the four truncation conditions

present in the system are violated.

Since

lim
α→−1

|λj | = |Λ|, ∀j, (3.4.2)

the prescribed value of |Λ| also significantly affects the modified Nyström error (3.4.1) when the

weight function wj(s) becomes hypersingular, i.e. α → −1. In Fig. 3.4.3 α → −1 and Λ is

taken as |Λ| = 0.1 or |Λ| = 0.001, the former of which yields a converging modified Nyström

error with increasing M when α = 0.5 in Fig. 3.4.1. However, when |Λ| = 0.1 and α ≈ −1 Fig.

3.4.3(e) shows the modified Nyström error for M = 2 is uniformly larger than that for M = 1.

A reduction in |Λ| by two orders of magnitude, i.e. taking |Λ| = 0.001 (Fig. 3.4.3(f)), recovers

the accuracy in the modified Nyström error yet causes a negligible effect when M > 1. This is

a result of the product series (3.3.14) and (3.3.15) being a power series in λjβn, which by λj in
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Figure 3.4.1: The modified Nyström errors e(M)
n,i ui(t) (3.4.1) for fixed n = 2 and i = 1 and different

values of Λ, computed using Gauss-Jacobi quadrature of Eqn. (3.1.3). The above numerical

experiment uses [a, b] = [−5
4 ,

5
4 ], c = 1

2(b + a) and α = 0.5 in the test FIE2 (3.3.10). Successive

modifications of the standard vector-Nyström error, M = 0 (−), are shown by M = 1 (�) and

M = 2 (◦).

(3.0.19) and (3.0.20), the convergence of ‖Ẽλ
(M)
n −Eλ

(M)
n ‖ is eroded as |Λ| increases. On the other

hand, by the nested operations in (3.3.14) and (3.3.15), the effect of Eλ
(M)
n in the modified vector-

Nyström method is negligible when M increases if the magnitude of Λ is significantly small, i.e.

|Λ| ≤ O(10−3).
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Figure 3.4.2: The modified Nyström errors e(M)
n,i ui(t) (3.4.1) for fixed n = 2 and i = 2 and different

values of Λ, computed using Gauss-Jacobi quadrature of Eqn. (3.1.4). The above numerical

experiment uses [a, b] = [−5
4 ,

5
4 ], c = 1

2(b + a) and α = 0.5 in the test FIE2 (3.3.10). Successive

modifications of the standard vector-Nyström error, M = 0 (−), are shown by M = 1 (�) and

M = 2 (◦).

Another fundamental aspect in determining the accuracy of the standard and modified vector-

Nyström method is the positioning of the singular point c within the integration domain [a, b].

Further analysis of the position of c necessitates the introduction of the variable ξ, defined by the
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ratio between the distance from the singular point to either end-point as

ξ ≡
(
λ1

λ2

)
=

(
c− a
b− c

)α+1

. (3.4.3)

Clearly if c → a then ξ → 0 and similarly if c → b then ξ → ∞ as α > −1. In Fig 3.4.4 both

solutions of the FIE2 (3.0.25) are presented for different positions of c in the domain and fixed

α = 0, so that the test problem matches that used in Fig. 2.4.1 in §2.4. As ξ →∞ in Fig 3.4.4 the

modified Nyström error of u(M)
n,1 (t) in (3.2.28) matches that of u (M)

n (t) in (2.2.26) for a single FIE2

because of the scalings (3.0.19) and (3.0.20). The modified Nyström error of u(M)
n,2 (t) in Fig 3.4.4,

however, is fixed for all M > 0 owing to the dependency of the operator E(i,2)
λ,n upon λ2 (� 1 as

|b− c| � 1) in (3.3.6) causing Eλ
(M)
n in the modified method to be negligible. On the other hand,

if |c− a| � 1 or |b− c| � 1, the subintervals (3.0.4) must be divided into smaller subintervals to

prevent the divergence of the power series (3.3.14) and (3.3.15) by ensuring λjβn < 1.

A disadvantage to approximating systems of FIE2s is the large systems generated, e.g. (3.2.35) and

(3.2.43), that must be solved to obtain u(M)
n . That is, for only one interior singular point a 2n× 2n

system is generated and the CPU system times increase by 137% and 756% respectively forM = 1

and 2, compared to the CPU system time for the standard vector-Nyström method (i.e. M = 0).

Furthermore, compared with the CPU system times discussed in chapter 2 in which the standard

Nyström method solves a n × n system, even the simplest case of M = 0 in the vector-Nyström

method requires the solution of an 2n × 2n system thereby increasing the CPU system time by

approximately 100%.
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Figure 3.4.3: The modified Nyström errors e(M)
n,i ui(t) of (3.4.1) for fixed n = 2 and i = 1 for

different α and Λ, computed using Gauss-Jacobi quadrature of (3.1.3). The above numerical

experiment uses [a, b] = [−5
4 ,

5
4 ] and c = 1

2(b + a) in the test FIE2 (3.3.10). Successive

modifications of the standard vector-Nyström error, M = 0 (−), are shown by M = 1 (�)
and M = 2 (◦). The test problem become increasingly singular as α → −1, in which case the

modified vector-Nyström method breaks down for |Λ| = O(10−1).
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Figure 3.4.4: The modified Nyström errors e(M)
n,i ui(t) of (3.4.1) for fixed n = 2 and i = 1, 2,

for different locations of c ∈ (a, b), computed using Gauss-Jacobi quadrature of (3.1.16). The

above numerical experiment uses [a, b] = [−3
5 ,

2
3 ], α = 0 and Λ = 0.1 in the test FIE2

(3.3.10). Successive modifications of the standard vector-Nyström error, M = 0 (−), are shown

by M = 1 (�) and M = 2 (◦). Comparing sub-figure (e) with Fig. 2.4.1(a), as c → b the error

e
(M)
n,1 u1(t) → e

(M)
n u(t) for all t. However, as ξ → ∞ we have and erosion of improvement in

e
(M)
n,2 u2(t) as shown by sub-figure (d) and (e).

65



Numerical Solutions of One-Dimensional Fredholm Integral Equations of the Second Kind with
Internal Singularities

1e-09

1e-08

1e-07

1e-06

1e-05

–1 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
t

e(
M
)

2
,1

(a) n = 2

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

–0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
t

e(
M
)

2
,1

(b) n = 3

Figure 3.4.5: The modified Nyström errors e(M)
n,i ui(t) of (3.4.1) for fixed i = 1 and varying n =

2, 3 computed using Gauss-Jacobi quadrature of (3.1.3). The above numerical experiment uses

[a, b] = [−5
4 ,

5
4 ], c = 1

2(b + a), α = 0.5 and Λ = 0.01 in the test FIE2 (3.3.10). Successive

modifications of the standard vector-Nyström error, M = 0 (−), are shown by M = 1 (�) and

M = 2 (◦). Increasing n reduces the order of the error by up to two orders of magnitude whilst

restricting the impact of M > 1 in the modified vector-Nyström method, which is in accordance

with the results discussed in §2.2 Fig. 2.4.5.
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3.5 Summary and discussion

The aim of this chapter was to take the theory of chapter 2 for numerically approximating one-

dimensional singular FIE2s and to extend it to FIE2s in which the kernels were either singular or

of limited differentiability at more than one source point. In particular, this chapter was concerned

with the solution of FIE2s whose kernel functions had limited differentiability at more than one

point within the domain of integration, necessitating the solution of systems of FIE2s. The classical

vector-Nyström method, used to approximate the solution of the systems of FIE2s, proceeded to be

modified by a novel approach so that the accuracy in the vector-Nyström method was improved.

The theory for the modified vector-Nyström method has been conducted in the context of

orthogonal-polynomial quadrature and has been validated using a series of test problems, some

of which demonstrate a hundredfold error reduction for low orders of quadrature when compared

with the standard vector-Nyström approach. The new modified vector-Nyström method for systems

of FIE2s, albeit resembling the modified Nyström method for a single FIE2, is considerably more

intricate and complex to implement. It requires the satisfaction of four truncation conditions and

an implementation of a predicted error matrix, whose components are both high-degree products

of the quadrature scheme and the predicted errors for each integral in the system.

This chapter was concerned with a kernel function that had limited differentiability at only one

point within the domain of integration, for which the standard vector-Nyström method solution of

the system containing two FIE2s increased the CPU system time for the solution of a single FIE2

by 100%. For more complicated singular kernels, i.e. taking m > 1 limited-differentiable points

within the domain of integration, there will be a system of (m+1) FIE2s to which a (m+1)n-point

quadrature yields a system that is inverted in operations of order O((m+ 1)3n3).

Further investigations in this area include combining the theory in this chapter with that of chapter

2, so that the modified vector-Nyström method may be adapted to suit FIE2s with a mixture of

nonsingular and/or singular kernel functions, provided the function is factorisable into a product of

“well-behaved” and “badly-behaved” parts. In the proceeding chapters 4-6, we discuss extending

the theory in chapter 2 and 3 to approximate the solutions of higher-dimensional integral equations,

including practical estimates of the error inherent in the numerical method.
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Chapter 4

Improved Boundary Element Methods

for the Solution of Nonsingular

Harmonic Boundary Value Problems

Boundary-integral equations have frequently been used for the analysis of boundary values

problems (BVPs), e.g., Symm [1973], Brebbia [1978], Yeung [1982], Atkinson [1997], Ang

[2007]. The term boundary element method denotes any method that numerically approximates

the solution of boundary-integral equations.

The boundary element methods (BEM) have the advantage over the finite-element method (FEM)

and the finite-difference method (FDM) of superior convergence and reduced requirements in

computer storage and code (Bush et al. [1984], Brebbia and Trevelyan [1986], Mohammadi et al.

[2010]). This is because the FEM and FDM integrate the differential operator numerically, whereas

the BEM integrates it numerically only after Green’s formula is used to integrate the operator

analytically thus reducing the dimension of a BVP by one. That is, the BEM discretises only the

boundary of the domain to yield a finite-dimensional system, which is significantly smaller than

that generated by a FEM or FDM.

The BEM have been applied to numerous problems in the fields of mathematics, including the

solution of harmonic and biharmonic problems (Jaswon and Symm [1977], Blue [1977], Manzoor
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[1984], Kelmanson [1983b], Grilli and Svendsen [1990], Mera et al. [2002], Hsiao [2006], Helsing

[2009]). However, there exists only a limited amount of literature on the error analysis of the BEM,

and that which does exist often defines only asymptotic error estimates or error bounds, which are

not suitable for implementation (Wendland [1986], Rencis et al. [1990], Liang et al. [1999], Hsiao

and Wendland [2004]). Therefore the objective in this chapter is to analyse the error in the BEM

for a harmonic problem, thereby deriving practical error estimates. These practical error estimates

will be used to define a new modified BEM, whereby we aim to emulate higher-order inter-element

Lagrange interpolation without increasing the size of the system.

4.1 The boundary-integral equation

Partial differential equations with elliptic operators are ubiquitous in mathematics, physics,

engineering, e.g., hyperbolic operators in wave problems, diffusion operators in engineering

problems and Laplacian operators in static problems. Take the two-dimensional Laplace’s

equation, which satisfies

∇2φ = 0, (4.1.1)

in a domain Ω enclosed by a boundary ∂Ω. The boundary-integral equation form of (4.1.1)

is derived by invoking Green’s third identity (Muskhelishvili [1953], Christiansen [1974],

Fairweather et al. [1979]) so that at any field point p ∈ Ω ∪ ∂Ω∫
Ω

[
φ(Q)∇2G(p,Q)−G(p,Q)∇2φ(Q)

]
dΩ(Q) =

∫
∂Ω

[
φ(q)G′(p, q)− φ′(q)G(p, q)

]
dq,

(4.1.2)

in which Q ∈ Ω, G(p, q) = log |p − q|, q is the source point on the boundary and dq denotes the

differential increment of ∂Ω at q. The prime in (4.1.2) represents differentiation with respect to the

outward normal to ∂Ω at q. Using the Dirac-Delta property of the Green’s function G,

∇2G(p, q) = δ(p− q), (4.1.3)

together with its sifting property (Lighthill [1958]), (4.1.2) becomes

η(p)φ(p) =

∫
∂Ω
φ(q)G′(p, q) dq −

∫
∂Ω
φ′(q)G(p, q) dq, p ∈ Ω ∪ ∂Ω, q ∈ ∂Ω, (4.1.4)
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where

η(p) =


2π p ∈ Ω,

0 p /∈ Ω ∪ ∂Ω,

α p ∈ ∂Ω,

(4.1.5)

in which α is the internal angle between the tangents to ∂Ω on either side of p. In the case that the

field point p = q lies on the boundary (4.1.4) yields∫
∂Ω
φ(q)G′(q, q) dq −

∫
∂Ω
φ′(q)G(q, q) dq − αφ(q) = 0, q, q ∈ ∂Ω, (4.1.6)

where α = π provided that ∂Ω is smooth.

Integral equations (4.1.4) and (4.1.6) reveal the philosophy behind generalised BEMs. That is, in

(4.1.4) one can only solve for the field point p given the knowledge of the Dirichlet and Neumann

conditions along the entire boundary. However, we are concerned with the harmonic problem in

which either Dirichlet or Neumann conditions are given along the boundary. For example, if ∂Ω is

divided into two parts ∂Ωφ and ∂Ωφ′ , i.e. ∂Ω = ∂Ωφ ∩ ∂Ωφ′ , then the Dirichlet condition φ(x, y)

is prescribed along ∂Ωφ and the Neumann condition φ′(x, y) is prescribed along ∂Ωφ′ .

Eqn. (4.1.6) is essentially a closed-form equation between the potentials and their derivatives on

the boundary. In other words, given one type of boundary condition on ∂Ω the other is found

by (4.1.6). The completed boundary conditions can then be used in (4.1.4) to find the Laplacian

anywhere in Ω. Integral equation (4.1.4) always has a unique global solution φ(p) at any point

p ∈ Ω∪∂Ω provided the boundary conditions are continuous and at least once-differentiable along

∂Ω (Jaswon [1963]).

In general the solution of (4.1.4) will not be obtainable analytically, even if the entire boundary

solution is known, as it requires closed-form integrations. Therefore we need a robust numerical

method for determining the solution. Currently the closed-form infinite system (4.1.6) is solved by

some kind of finite-reduction method. It is an improvement upon this method that will be the focus

of this chapter.

The remainder of this chapter is structured as follows. In §4.2 we outline the constant BEM and its

inherent error for approximating the solution of integral equation (4.1.4). This method is validated

for a nonsingular test BVP. In §4.3 we present new, modified, constant BEMs. In §4.4, we validate

the modified BEM solutions of §4.3 for a nonsingular test BVP. The validation of the modified
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methods highlights their superior accuracy, hence justifying their application to singular BVPs in

chapter 6.

4.2 The constant boundary element method (CBEM)

For the remainder of this chapter p ∈ Ω∪ ∂Ω and q ∈ ∂Ω unless otherwise stated. Discretising the

boundary ∂Ω into n smooth elements (hence the name boundary element method), e(j) say, where

∂Ω =

n⋃
j=1

e(j), (4.2.1)

then (4.1.4) becomes

η(p)φ(p) =
n∑
j=1

∫
e(j)

φ(q)G′(p, q) dq −
∫
e(j)

φ′(q)G(p, q) dq. (4.2.2)

In the constant BEM (CBEM) (Jaswon and Symm [1977], Brebbia [1978], Manzoor [1984], Ang

[2007]), φ(q) and φ′(q) are respectively approximated by piecewise-constant functions φn,j and

φ′n,j over element e(j). The corresponding discretised form of (4.2.2), with approximate solution

φn(p), is

η(p)φn(p) =
n∑
j=1

{
φn,j

∫
e(j)

G′(p, q) dq − φ′n,j
∫
e(j)

G(p, q) dq

}
, (4.2.3)

in which φn,j ≡ φ(qn,j) and φ′n,j ≡ φ′(qn,j) where qn,j is the mid-point of e(j).

By introducing the operators

(G′nφn)(p) ≡
n∑
j=1

∫
e(j)

φn,jG
′(p, q) dq (4.2.4)

and

(Gnφ′n)(p) ≡
n∑
j=1

∫
e(j)

φ′n,jG(p, q) dq, (4.2.5)

(4.2.3) can be rewritten in symbolic form as

(G′n − ηI)φn − Gnφ′n = 0, (4.2.6)

in which I is the identity operator.

For the remainder of this chapter, unless otherwise stated, indices i and j take the values i, j =
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1, . . . , n. Collocating (4.2.6) at the mid-point of each element by taking p = qn,i yields the system

of n equations
n∑
j=1

{
(Aij − ηjδij)φn,j +Bijφ

′
n,j

}
= 0, (4.2.7)

where ηj = η(qn,j), δij is the Kronecker delta function and

Aij =

∫
e(j)

log′ |qn,i − q| dq,

Bij = −
∫
e(j)

log |qn,i − q| dq. (4.2.8)

The integrals in (4.2.8) may be evaluated analytically when element e(j) is a straight-line segment

(see Appendix B). Otherwise, integrals (4.2.8) may be evaluated using Gaussian quadrature with a

logarithmic weighting function (Mason and Smith [1982]) when e(j) is not linear.

Taking

Âij =

 Aij if i 6= j,

Aij − ηj if i = j,
(4.2.9)

(4.2.7) is equivalent to

n∑
j=1

Âijφn,j = −
n∑
j=1

Bijφ
′
n,j , i = 1, . . . , n. (4.2.10)

Linear system (4.2.10) can alternatively be denoted by Âφ = Bφ′ in which, by (4.2.7), only some

of the elements of φ and φ′ are known; hence (4.2.10) must be recast into the form HxC = g

where the vector xC contains the unknown mid-element nodal values of φn,j on ∂Ωφ′ and φ′n,j on

∂Ωφ. The dense system HxC = g is then solved using the NAG routine F07AAF. With all nodal

boundary data now prespecified or approximated, φn(p) in (4.2.3) can be computed directly from

the complete boundary distributions of φ and φ′.

When the boundary conditions are spatially dependent on the domain, the accuracy to which they

will be represented in the BEM depends upon the degree of the piecewise-polynomial interpolation.

However, whenever possible, the boundary conditions in (4.2.3) should be computed exactly.

There are two distinct types of solutions for the CBEM, the theoretical discretised solution φn in

(4.2.3) and the numerical discretised solution φ̃n. The theoretical discretised solution is generated

without having to go through the two-stage process, i.e. is simply based upon (4.1.4), whereas

for the numerical discretised solution you have to go through (4.1.6) and then (4.1.4). That is, the
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theoretical discretised solution enables the subsequent quantification of the error in the Lagrangian

interpolation, which we assume dominates the error in the BEM, whereas the numerical solution

includes both Lagrangian interpolation and matrix inversion errors. Throughout the remainder of

this thesis the theoretically and numerically derived solutions (and their corresponding errors) for

each numerical method will be defined in a similar format.

Based upon the theoretical discretised solution in (4.2.3), the numerical discretised solution φ̃n of

the CBEM satisfies

η(p)φ̃n(p) =
n∑
j=1

{∫
e(j)

φ̃n,j G
′(p, q) dq −

∫
e(j)

φ̃′n,j G(p, q) dq

}
, (4.2.11)

in which

φ̃n,j =

 φ(qn,j) if e(j) ⊆ ∂Ωφ,

φ̃(qn,j) otherwise,
and φ̃′n,j =

 φ′(qn,j) if e(j) ⊆ ∂Ωφ′ ,

φ̃′(qn,j) otherwise.
(4.2.12)

Recalling the operators defined in (4.2.4) and (4.2.5), the symbolic form of (4.2.11) is

(G′n − ηI)φ̃n − Gnφ̃′n = 0. (4.2.13)

In the case that the CBEM applies piecewise-constant polynomial interpolation with nodes

separated by a constant spacing h, the error ‖φ − φ̃n‖ is O(h2) (Atkinson [1989], Ralston and

Rabinowitz [2001]). In the remainder of this chapter the CBEM is modified in such a way as to

reduce these errors to O(hm) where m ≥ 2 is chosen a priori. Before attempting this, however,

we first analyse the error inherent in the constant BEM.

4.2.1 Error analysis of the CBEM

To recap we have φ(p) is the exact solution, φn is the theoretical discretised solution that satisfies

φn(p) =
1

η(p)

n∑
j=1

{
φn,j

∫
e(j)

G′(p, q) dq − φ′n,j
∫
e(j)

G(p, q) dq

}
, (4.2.14)

and φ̃n is the numerical discretised solution that satisfies

φ̃n(p) =
1

η(p)

n∑
j=1

{
φ̃n,j

∫
e(j)

G′(p, q) dq − φ̃′n,j
∫
e(j)

G(p, q) dq

}
. (4.2.15)
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The numerical CBEM error is defined as

ε̃n(p) ≡ φ(p)− φ̃n(p) (4.2.16)

which, by the linearity of (4.2.2) and (4.2.11), satisfies Green’s integral formulae, i.e.

η(p)ε̃n(p) =
n∑
j=1

{∫
e(j)

ε̃n,j(q) G
′(p, q) dq −

∫
e(j)

ε̃′n,j(q) G(p, q) dq

}
, (4.2.17)

where

ε̃n,j(q) =

 φ(q)− φn,j if e(j) ⊆ ∂Ωφ,

φ(q)− φ̃n,j otherwise,
(4.2.18)

and

ε̃′n,j(q) =

 φ(q)− φn,j if e(j) ⊆ ∂Ωφ′ ,

φ′(q)− φ̃′n,j otherwise.
(4.2.19)

On the other hand, the theoretical CBEM error is defined as

εn(p) ≡ φ(p)− φn(p) (4.2.20)

which, by (4.2.3), satisfies

η(p)εn(p) =

n∑
j=1

{∫
e(j)

εn,j(q) G
′(p, q) dq −

∫
e(j)

ε′n,j(q) G(p, q) dq

}
, (4.2.21)

where

εn,j(q) = φ(q)− φn,j (4.2.22)

and

ε′n,j(q) = φ′(q)− φ′n,j . (4.2.23)

The symbolic form of (4.2.21) is

(G′n − ηI)εn − Gnε′n = 0, (4.2.24)

in which we use the predefined operators G′n in (4.2.4) and Gn in (4.2.5), so that

(G′nεn)(p) ≡
n∑
j=1

∫
e(j)

εn,j(q)G
′(p, q) dq (4.2.25)
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and

(Gnε′n)(p) ≡
n∑
j=1

∫
e(j)

ε′n,j(q)G(p, q) dq. (4.2.26)

Consider now the Taylor expansion for φ and φ′ about node qn,j , namely

φ(q) = φn,j +
∞∑
k=1

(q − qn,j)k
k!

∂k

∂qk
[φ(q)]q=qn,j

(4.2.27)

and

φ′(q) = φ′n,j +

∞∑
k=1

(q − qn,j)k
k!

∂k

∂qk
[
φ′(q)

]
q=qn,j

. (4.2.28)

Letting

Jk,j(p) ≡
∫
e(j)

(q − qn,j)k G′(p, q) dq (4.2.29)

and

Kk,j(p) ≡
∫
e(j)

(q − qn,j)k G(p, q) dq, (4.2.30)

then both Jk,j(p) and Kk,j(p) may be determined exactly (see Appendix C). By (4.2.21),(4.2.22)

and (4.2.23) the infinite-series form of the theoretical error εn(p) satisfies

η(p)εn(p) =
n∑
j=1

∞∑
k=1

1

k!

{
∂k

∂qk
[φ(q)]q=qn,j

Jk,j(p)−
∂k

∂qk
[
φ′(q)

]
q=qn,j

Kk,j(p)

}
. (4.2.31)

We first utilise (4.2.31) to deduce the well-knownO(h2) error of the CBEM. The nodally evaluated

kth differentials of φ and φ′ are constant, therefore only the integrals Jk,j and Kk,j affect the order

of the CBEM error. Initially let qAn,j and qBn,j be points on ∂Ω marking the ends of boundary

segment e(j). For a general field point p ∈ ∂Ω ∪ Ω, if

a = |p− qAn,j|,

b = |p− qBn,j|,

h = |qAn,j − qBn,j|,

β = ∠qBn,jqAn,jp,

ψ = ∠qAn,jpqBn,j, (4.2.32)

we have the geometry as shown in Fig. 4.2.1. By (4.2.32), we have

Jk,j(p) =

∫ h−a cosβ

−a cosβ

(
x− h

2
+ a cosβ

)k a sinβ

x2 + a2 sin2 β
dx (4.2.33)
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qAj = (xA, yA) qBj = (xB, yB)q = (xq, yq)

p = (xp, yp)

β

ψ

a b

h

Figure 4.2.1: Notation for the analytic evaulation of the integrals Aij and Bij over element e(j)

and

Kk,j(p) =

∫ h−a cosβ

−a cosβ

(
x− h

2
+ a cosβ

)k
log
(
x2 + a2 sin2 β

) 1
2 dx, (4.2.34)

which can be evaluated exactly: when k = 1, (4.2.33) implies

J1,j(p) = a sinβ log

(
a2 − 2ah cosβ + h2

a2

) 1
2

+ ψa cosβ − ψh

2
, (4.2.35)

and (4.2.34) implies

K1,j(p) =
a2ψ sin 2β

2
− a2 cos 2β

2
log

(
a2 − 2ah cosβ + h2

a2

) 1
2

− ψh sinβ

2a
+
h cosβ

2a

(
log

(
a2 − 2ah cosβ + h2

a2

) 1
2

− 1

)
+
h2

4a
. (4.2.36)

The analytic expressions (4.2.33) and (4.2.34) were derived by Kelmanson (private communication,

2011), who also obtained exact expressions for Jk,j and Kk,j for higher values of k; these are

presented in Appendix C.

An analysis of the exact forms of the integrals Jk,j and Kk,j , e.g. (4.2.35) and (4.2.36), define the

leading behaviour of the error of the CBEM. However, particular consideration must be taken into

the behaviour of these integrals at specific field-point locations. When the field point is not close

to segment e(j), i.e. h/a � 1 in (4.2.32), the integrals (4.2.33) and (4.2.34) have a leading order

of O(h3). Furthermore, it can be shown (Kelmanson, private communication, 2011) that the order
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of (4.2.33) and (4.2.34) increase indefinitely with increasing k in a period two-cycle, e.g.

Jk,j(p),Kk,j(p) =



O(h3) when k = 1,

O(h5) when k = 2, 3,

O(h7) when k = 4, 5,

O(h9) when k = 6, 7.

(4.2.37)

Alternatively, if the field point p is close to element e(j) the orders of Jk,j(p) in (4.2.33) andKk,j(p)

in (4.2.34) are affected. For example, if the field point approaches the mid-point of e(j), we have

lim
p→qn,j

Jk,j(p) = 0, ∀k, (4.2.38)

and

lim
p→qn,j

K1,j(p) = O(h3). (4.2.39)

However, if the field point approaches either end-point of element e(j), we have

lim
p→qAn,j ,qBn,j

K1,j(p) = O(h2), (4.2.40)

or, if it lies close to the element, i.e. h/a = O(1), we have

K1,j(p) = O(h2), (4.2.41)

or, if the field point is in close proximity to a corner in the domain both J1,j and K1,j are O(h2).

When collocating the CBEM at the mid-points p = qn,i a system of n equations is generated in

which each coefficient has a local error of O(h3), therefore the inversion of the system will have

an expected order of O(h2) overall as n is proportional to 1/h. However, by (4.2.38)-(4.2.41), we

expect the error to be lower than O(h2) because the local O(h3) coefficients go to O(h2) in the

corners and at points along the boundary thus reducing the overall O(h2) nature.

4.2.2 Test case: nonsingular boundary value problem

As a test problem, we take the harmonic function

φ(x, y) = ex sin(y), (4.2.42)
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0

y

x

φ = sin(y)

φ′ = ex cos(1)

φ = e sin(y)

φ′ = −ex

∇2φ = 0

1

1

Figure 4.2.2: Graphical representation of the nonsingular test BVP.

in the unit square that satisfies Laplace’s equation (4.1.1) with the Dirichlet and Neumann boundary

conditions illustrated in Fig. 4.2.2.

The error in the numerical CBEM solution of the test BVP (Fig. 4.2.2) is depicted in Fig. 4.2.3.

The key aspects of Fig. 4.2.3 are: the convergence of the error with increasing number of elements

n and the prominently large errors at the corner points of the domain. The large errors at the corner

points reflect the theoretically predicted O(h2) behaviour of the integrals Jj,k in (4.2.33) and Kk,j

in (4.2.34) as the field point approaches the corners. It is also a direct result of the Maximum

principle (Jaswon and Symm [1977]) inherent in the solution of contained harmonic BVPs.

To give an insight into the behaviour of the CBEM error when n > 48, the three surfaces in Fig.

4.2.3 are depicted on individual contour plots for n = 48, 72 and 108 in Fig. 4.2.4. The contour

plots show a clear reduction in the CBEM error as n increases as per Fig. 4.2.3, however, the

contours also demonstrate the converging behaviour of the error peaks at the corners. As predicted

by the Maximum principle, Fig. 4.2.4 shows the largest of the error peaks occurs at the corner

furthest from the origin.

The CBEM error is furthermore analysed by computing its root-mean-square error (RMSE) and its

convergence rate. The former of these, the RMSE, is defined by

σ̃n ≡

√√√√ 1

M

M∑
j=1

(ε̃n(pM,j))
2, (4.2.43)

where M is the number of mesh points, chosen so that the mesh is not finer than the boundary

resolution. Note in the remainder of this chapter we take M = (n4 + 1)2 for the given test BVP.
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p)

Figure 4.2.3: Log plot of the error in the CBEM solution of the test BVP in Fig. 4.2.2, ε̃n(p) in

(4.2.16), where p is defined on the unit square. Here n = 48 (red), n = 72 (blue) and n = 108

(green). The CBEM error is converging to zero with increasing n, the rate of which is shown

in Table 4.2.1. Furthermore, the error ε̃n demonstrates the effect of the theoretically predicted

localised O(h) pollution when the field point approaches any corner.

The convergence rate on the other hand, is defined using Richardson’s extrapolation (Ralston and

Rabinowitz [2001]).

Richardson’s extrapolation

Richardson’s extrapolation determines the rate of convergence from numerical data generated on

two or more refined meshes. It assumes that the approximate solution φh to the exact answer φ

depends on the mesh size h according to

φ ∼ φh +Ahp, (4.2.44)

where the three unknowns φ, A and p can be estimated by using (4.2.44) for three different values

of h. Increasing h by a factor of α or αβ the two respective approximate solutions are

φ ∼ φαh +A

(
h

α

)p
and φ ∼ φαβh +A

(
h

αβ

)p
(4.2.45)

which, in combination with (4.2.44), yields the ratios

φ− φn
φ− φαn

= αp (4.2.46)
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(b) n = 72 (blue)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

y

 

 

−7

−6

−5

−4

−3

−2

(c) n = 108 (green)

Figure 4.2.4: Contour plots of log |ε̃n(p)|, the logarithm of the error in the CBEM solution of the

test BVP in Fig. 4.2.2, for n = 48, 72 and 108. These plots separate and quantify the three error

surfaces given in Fig. 4.2.3.

and
φ− φαn
φ− φαβn

= βp. (4.2.47)

Therefore,
φn − φαn
φαn − φαβn

=
(αβ)p − βp
βp − 1

≡ ρ, (4.2.48)

say. Eqn. (4.2.48) can be used to predict the order p. For example if α = β = 2

(i.e. ρ = 4) then (4.2.48) gives p = 2, i.e. second-order convergence is predicted.

By Richardson’s extrapolation (4.2.48), the RMSE, error convergence rate ρ and error order p in

the approximate CBEM solution φ̃n is defined in Table 4.2.1 where α = β = 1.5 (identical α and
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n σ̃n ρ p

48 0.0012 2.0357 1.7531

72 6.0309× 10−4 2.0595 1.7818

108 2.9283× 10−4

Table 4.2.1: The RMSE σ̃n, error convergence rate ρ and error order p in the CBEM solution of

the test BVP in Fig. 4.2.2, for n = 48, 72, 108 and α = 1.5 (= β). The results correspond to

the error depicted in Figs. 4.2.3 and 4.2.4. The CBEM error does not exhibit the expected O(h2)

behaviour (i.e. p 6= 2), due to the pollution at the corner points in the interpolation error. There

is also an error introduced by interpolating (using low order polynomials) the exact form of the

specified boundary conditions, and that the effect is exasperated as you go into the corners of the

domain where you get a geometric change in derivative.

β taken in Fig. 4.2.3). Theoretically we expect ρ = 2.25, so that the overall error in the CBEM is

O(h2), i.e. p = 2, however, p < 2 in Table 4.2.1. The reason for such an occurrence is due to two

factors: first, the O(h) pollution when the field point approaches a corner from integrals Jj,k in

(4.2.33) and Kk,j in (4.2.34); second, the interpolation error within the pre-inversion of the system

of equations (4.2.10), in itself, produces an error post-inversion in the approximated boundary data

φ̃n,j and φ̃′n,j used to determine the numerical discretised solution φ̃n in (4.2.11).

Our aim for the remainder of this chapter is to modify the standard CBEM, by reducing the

interpolation error within the pre-inversion of the system, so that the O(h2) error is recovered

without compromising on computational expense.

4.3 The modified constant boundary element method

Recall εn(p) in (4.2.20) is the true error of the CBEM that is expressible as an infinite-series in

accordance with (4.2.31). The modified method, with solution φn(p), is based upon taking the

leading terms in the theoretically deduced error εn and building them into the standard CBEM a

priori. That is, if εn contains the leading terms of εn then we have

φn(p) = φn(p) + εn(p). (4.3.1)
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The difference between the true and approximated errors, defined by the discrepancy

(∆εn)(p) ≡ (εn − εn)(p), (4.3.2)

means that, by (4.2.20) and (4.3.1), the modified CBEM error satisfies

φ− φn = φ− (φn + εn)

= εn − εn

= ∆εn. (4.3.3)

Thus the modified CBEM error is less than the standard CBEM error, owing to the former being

composed of an error discrepancy rather than the error itself, i.e.

‖φ− φn‖∞ � ‖φ− φn‖∞ (4.3.4)

as, by construction, ‖∆εn‖∞ � ‖εn‖∞. Consistent with (2.2.19) and (3.2.16) in the previous

chapters, Eqn. (4.3.4) demonstrates the philosophy behind finding improved methods: the error

of the improved method should be minimal in comparison to the error of the original method. We

now modify the CBEM in §4.2 by deriving an explicit form of the approximate error εn in (4.3.1)

because, once known, we can implement a modified CBEM whose solution φn satisfies (4.3.4).

4.3.1 Approximations of the CBEM error

Truncating the infinite-series of the CBEM error εn in (4.2.31) to order m, the truncated-series

error ε(m)
n satisfies

η(p)ε(m)
n (p) =

n∑
j=1

{∫
e(j)

ε
(m)
n,j (q) G′(p, q) dq −

∫
e(j)

ε
′(m)
n,j (q) G(p, q) dq

}
, (4.3.5)

where

ε
(m)
n,j (q) ≡

m∑
k=1

(q − qn,j)k
k!

∂k

∂qk
[φ(q)]q=qn,j

(4.3.6)

and

ε
′(m)
n,j (q) ≡

m∑
k=1

(q − qn,j)k
k!

∂k

∂qk
[
φ′(q)

]
q=qn,j

. (4.3.7)
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The symbolic form of (4.3.5) is

(G′n,m − ηI)ε(m)
n − Gn,mε′(m)

n = 0, (4.3.8)

in which, by the definitions of Jk,j and Kk,j in (4.2.29) and (4.2.30),

(G′n,mε(m)
n )(p) ≡

n∑
j=1

∫
e(j)

ε
(m)
n,j (q)G′(p, q) dq

=
n∑
j=1

m∑
k=1

1

k!

∂k

∂qk
[φ(q)]q=qn,j

Jk,j(p) (4.3.9)

and

(Gn,mε′(m)
n )(p) ≡

n∑
j=1

∫
e(j)

ε
′(m)
n,j (q)G(p, q) dq

=
n∑
j=1

m∑
k=1

1

k!

∂k

∂qk
[
φ′(q)

]
q=qn,j

Kk,j(p). (4.3.10)

The constant error analysis only allows the CBEM error to be expressed in terms of the solution,

which is of course, unknown a priori. The following approach circumvents this problem by using

estimates based not upon unknown derivatives, but rather on increasingly complex molecules of

existing Dirichlet and Neumann data to simulate those derivatives. Of course the number of points

that can be included in the molecule will be restricted by n: this restriction will be quantified later.

A finite-difference molecule is a closed-form expression defined by the order of the error a and the

degree of differentiation d, such that it has N points. By (4.3.9) and (4.3.10) we require derivatives

of order d = 1, . . . ,m, hence the number of atoms in each finite-difference molecule will range

from N = a + 1 to N = a + m − 1 if m is even or N = a + m if m is odd, each of which will

be centred on the n base points q = qn,j along each side of the domain. Thus standard central-

difference molecules can be applied at the base points that are further than a − m nodes from

each corner. For the remaining points, special asymmetric, ultimately one-sided, formulae must be

derived. An example is given in Fig. 4.3.1 in which m = 2 and a = 4.

By applying asymmetric central-difference molecules our finite-difference method will require a

minimum of only N points along each edge, whereas a standard central difference molecule would

require a higher number of forward and backward differences thus requiring a minimum of N +

(a − 2) points along each edge in order to maintain an error of order a. Note that although the
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Figure 4.3.1: Schematic representation of 4th-order finite-difference molecules for the second

derivative. Base points are indicated in black. The first molecule is centrally symmetric and applies

at all base points further than 2 from the corner (©); the second is asymmetric (�) and the third

is one-sided (4).

applied finite-difference molecules are restricted to evenly spaced elements for the purpose of the

test BVP, they can be easily modified to cope with arbitrary spaced grids if required, e.g. Fornberg

[1988, 1998].

By the use of finite-difference methods, the partial differential equations in (4.3.9) and (4.3.10)

are re-expressed as linear combinations of the nodal boundary data φn,j and φ′n,j . Let c(m)
k,j (p)

and d(m)
k,j (p), which consist of combinations of finite-difference coefficients and integrals Jk,j and

Kk,j , k = 1, . . . ,m, respectively define the coefficients of the nodal data φn,j and φ′n,j . Then the

finite-difference-series error ε(m,F)
n satisfies

(G′n,m − ηI)ε(m,F)
n − Gn,mε′(m,F)

n = 0, (4.3.11)

where, by (4.3.9) and (4.3.10),

(G′n,mε(m,F)
n )(p) ≡

n∑
j=1

∫
e(j)

ε
′(m,F)
n,j (q)G′(p, q) dq

=
n∑
j=1

m∑
k=1

c
(m)
k,j (p)φn,j

≡ (Cn,mφn)(p) (4.3.12)
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and

(Gn,mε′(m,F)
n )(p) ≡

n∑
j=1

∫
e(j)

ε
(m,F)
n,j (q)G(p, q) dq

=
n∑
j=1

m∑
k=1

d
(m)
k,j (p)φ′n,j

≡ (Dn,mφ′n)(p). (4.3.13)

Consistent with the true error of the CBEM (4.2.20), the discrepancies in the truncated-series error

and the finite-difference-series error are defined by

∆ε(m)
n (p) ≡ εn(p)− ε(m)

n (p) (4.3.14)

and

∆ε(m,F)
n (p) ≡ εn(p)− ε(m,F)

n (p). (4.3.15)

4.3.2 Validation of the error approximations

The approximate truncated-series CBEM errors ε(m)
n and ε(m,F)

n are validated using discrepancies

(4.3.14) and (4.3.15) for the nonsingular test BVP in Fig. 4.2.2. This experiment is first conducted

for ε(m)
n , where we do know the solution a priori, so that it can be compared with the numerical

approximated ε(m,F)
n for which the solution is not required.

In Fig. 4.3.2 the discrepancy in the truncated-series error ∆ε
(m)
n is depicted for different values of

n and m, which demonstrates two facts: first, as the truncation order m increases, ε(m)
n converges

to the exact error εn, i.e.

∆ε(m)
n (p)→ 0, n,m→∞; (4.3.16)

second, there is a close agreement between the error discrepancy surfaces when m = 2 and m = 3

regardless of n as the truncated-series error ε(m)
n in (4.2.37) consists of integrals Jk,j and Kk,j that

are order O(h5) for both values of m.

The RMSE of ε(m)
n is defined by

σn,m =

√√√√ 1

M

M∑
j=1

(
ε
(m)
n (pM,j

)2
, (4.3.17)
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p)

(a) n = 12

p)

(b) n = 24

p)

(c) n = 48

p)

(d) n = 96

Figure 4.3.2: Log plots of the discrepancy between the truncated-series error ε(m)
n and the true

error εn, ∆ε
(m)
n (p), in the CBEM solution of the test BVP in Fig. 4.2.2, for n = 12, 24, 48, 96

and different values of m. The varying shades in the surfaces from light to dark correspond to

m = 1, 2, 3 and 4 respectively. The truncated-series error is converging to the true error with

increasing m and n, reflected by the decrease in the absolute values of ∆ε
(m)
n on each sub-figure.

where M is the number of mesh points.

In Table 4.3.1 the RMSE and the rate of convergence of the truncated-series error ε(m)
n are

presented for the test BVP (Fig. 4.2.2) with different values of m and n. The RMSE of the

truncated-series error is fixed when m > 3 due to the convergence of the Taylor-series, therefore a

maximum of m = 4 will be imposed in the implementation of ε(m)
n . As for the rate of convergence

in truncated-series error, σn,m/σ2n,m, Table 4.3.1 shows it is tending to second order (i.e. ρ = 4)

with increasing n thus recovers the predicted O(h2) convergence. Although, most interestingly we

have σn,m/σ2n,m → 4+, which is not reflecting the O(h2) pollution, due to the construction of the
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m n σn,m σn,m/σ2n,m

1 12 0.0201 5.1475

24 0.0039 4.8112

48 8.1234× 10−4 4.3623

96 1.8622× 10−4

2 12 0.0190 5.0946

24 0.0037 4.7370

48 7.8670× 10−4 4.3057

96 1.8271× 10−4

3 12 0.0189 5.0816

24 0.0037 4.7348

48 7.8668× 10−4 4.3055

96 1.8271× 10−4

4 12 0.0189 5.0817

24 0.0037 4.7348

48 7.8668× 10−4 4.3055

96 1.8271× 10−4

Table 4.3.1: The RMSE σn,m and convergence rate σn,m/σ2n,m of the truncated error ε(m)
n (p) in

the CBEM solution of the test BVP in Fig. 4.2.2, for n = 12, 24, 48, 96 and m = 1, 2, 3, 4. By

the nomenclature of Richardson’s extrapolation in (4.2.48), for O(h2) error ρ = σn,m/σ2n,m = 4,

however, here ρ → 4+ as n → ∞ due to the mesh points being taken at the end-points of the

boundary elements.

mesh points. For example, recall Jk,j and Kk,j define the leading behaviour of the truncated-series

error ε(m)
n in (4.3.9) and (4.3.10). When the field point p is situated at either end-point of element

e(j) (denoted by qAn,j and qBn,j in Fig. 4.2.1), by (4.2.37) and (4.2.40), Jk,j(p) = O(h3) and

Kk,j(p) = O(h2), as

Kk,j(p = qAn,j) =
1

4
h2 +

(
1

12
log(h)− 1

9

)
h3 +

1

24
h4 + . . . (4.3.18)
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Figure 4.3.3: Contour plots of log |∆ε(m)
n (p)|, the logarithm of the discrepancy in the truncated-

series error in the CBEM solution of the test BVP in Fig. 4.2.2, for n = 48 andm = 4. The contour

plot corresponds to the dark surface in Fig. 4.3.2(c) and is used as a quantitative comparator for

the finite-difference-series error in Fig. 4.3.4.

and

Kk,j(p = qBn,j) = −1

4
h2 +

(
1

12
log(h)− 1

9

)
h3 − 1

24
h4 + . . . . (4.3.19)

However, over the n end-points along the boundary, where the mesh is defined, the coefficients of

the even powers of h in Kk,j cancel so that Kk,j = O(h3) and hence we recover σn,m/σ2n,m →
4+.

In the finite-difference method we chose the order of accuracy a priori so that its error is of order

O(ha). Although, the choice of the order of accuracy a, which determines the number of points in

the molecule, is restricted by n in the finite-difference-series error ε(m,F)
n : for the nonsingular test

BVP in Fig. 4.2.2

a ≤ n

4
−m, (4.3.20)

where m is truncation limit. With this in mind, the discrepancy in the finite-difference-series error

∆ε
(m,F)
n (p) is depicted in Fig. 4.3.4 for a = 2, 4, 6, 8 and fixed n = 48 and m = 4. Fig. 4.3.4

demonstrates that ε(m,F)
n converges to the exact error εn as the order of accuracy increases, i.e.

‖∆ε(m,F)
n ‖ → 0, a→∞. (4.3.21)

Also, by comparing Fig. 4.3.4 with the truncated-series error discrepancy equivalent in Fig. 4.3.3

where n = 48 and m = 4,

∆ε(m,F)
n → ∆ε(m)

n , a→∞. (4.3.22)
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(b) a = 4
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(c) a = 6
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(d) a = 8

Figure 4.3.4: Contour plots of log |∆ε(m,F)
n (p)|, the logarithm of the discrepancy in the finite-

difference-series error in the CBEM solution of the test BVP in Fig. 4.2.2, where the error has been

predicted using only linear combinations of nodal boundary values. Here n = 48, m = 4 and the

accuracy order a is varied as a = 2, 4, 6, 8. The contour plots are a quantitative comparison with

the discrepancy in the truncated-series error ∆ε
(m)
n (p) that is depicted in Fig. 4.3.3 for the same

n and m.

That is, when a ≥ 8 the finite-difference-series ε(m,F)
n approximates the truncated-series error

ε
(m)
n to at least eighth-order accuracy which, for the test problem considered in Fig. 4.3.3 and

Fig. 4.3.4, proves to be sufficient. For example, given the truncated-series error ε(4)
n approximates

the true error εn to O(10−17) degrees of accuracy in the test BVP, which is more than sufficient

for real-life applications, the finite-difference-truncated-series error ε(4,F)
n also approximates εn to

O(10−17) degrees of accuracy when a ≥ 8. Moreover, provided the accuracy is taken to be greater
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than or equal to eighth-order, ε(m,F)
n will be O(h2), consistent with ε(m)

n in Table 4.3.1. Hence the

truncated-series error ε(m)
n and its finite-difference equivalent ε(m,F)

n will be used to approximate

εn in the modified method of (4.3.1).

4.3.3 Implementation of the modified CBEMs

Given the validations of the error predictions in §4.3.2, we now build the error predictions into the

CBEM using the modified approach of (4.3.1). There will be two types of modified methods: one

dependent upon the truncated-series error ε(m)
n and the other upon the finite-difference-series error

ε
(m,F)
n . First, the truncated-series modified CBEM (MCBEM) with solution φ

(m)
n incorporates

ε
(m)
n , an approximate of the true error εn. Following (4.3.1), we therefore reformulate the standard

CBEM for φn using

φ(m)
n (p) = φn(p) + ε(m)

n (p). (4.3.23)

Recalling the predefined ε(m)
n,j in (4.3.6) and ε′(m)

n,j in (4.3.7), by Green’s integral formula, (4.3.23)

is expressible in integral form as

η(p)φ(m)
n (p) =

n∑
j=1

{∫
e(j)

[
φn,j + ε

(m)
n,j (q)

]
G′(p, q) dq −

∫
e(j)

[
φ′n,j + ε

′(m)
n,j (q)

]
G(p, q) dq

}
,

(4.3.24)

where, following §4.2, φ(m)
n is the theoretical discretised MCBEM solution. Using (4.2.6), the

symbolic form of (4.3.24) is

(
G′n − ηI

)
φ(m)
n + G′n,mε(m)

n − Gnφ′(m)
n − Gn,mε′(m)

n = 0 (4.3.25)

which, upon applying (4.3.8), is equivalent to

(
G′n − ηI

)
φ(m)
n − Gnφ′(m)

n + ηIε(m)
n = 0. (4.3.26)

Second, the finite-difference-modified CBEM (FDMCBEM) with solution φ
(m,F)
n incorporates

ε
(m,F)
n , an approximate of the truncated-series error ε(m)

n . As per (4.3.23), we reformulate the

standard CBEM using

φ(m,F)
n (p) = φn(p) + ε(m,F)

n (p), (4.3.27)
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where, by definition of the finite-difference-series error ε(m,F)
n in (4.3.12) and (4.3.13), φ(m,F)

n

satisfies the discretised boundary-integral equation

η(p)φ(m,F)
n (p) =

n∑
j=1

{
φn,j

[∫
e(j)

G′(p, q) dq +
m∑
k=1

c
(m)
k,j (p)

]

−φ′n,j

[∫
e(j)

G(p, q) dq +
m∑
k=1

d
(m)
k,j (p)

]}
. (4.3.28)

To match with the nomenclature of §4.2, φ
(m,F)
n in (4.3.28) is the theoretical discretised

FDMCBEM solution. The symbolic form of (4.3.28) is(
G′n − ηI

)
φ(m,F)
n + G′n,mε(m,F)

n − Gnφ′(m,F)
n − Gn,mε′(m,F)

n = 0 (4.3.29)

which, by (4.3.12) and (4.3.13), may be alternatively expressed in the form(
G′n + Cn,m − ηI

)
φ(m,F)
n − (Gn +Dn,m)φ′(m,F)

n = 0. (4.3.30)

Note when Cn,m = Dn,m = 0 (4.3.30) reduces to the standard CBEM in (4.2.6). Eqn. (4.3.30)

demonstrates that the FDMCBEM is a perturbation of the standard CBEM (4.2.6), whereby an

approximation of the error in the CBEM is included over each element e(j).

4.3.4 Collocation equations

To recap, the standard CBEM has a system of n collocated equations (4.2.10) expressible in the

form HxC = g, where g contains all prescribed boundary conditions. Now, collocating the

MCBEM (4.3.26) at the n mid-points p = qn,i defines a system HxMC = g + e, where e is

the n-dimensional error vector with components

ei =

n∑
j=1

{∫
e(j)

ε
(m)
n,j (q) G′(qn,i, q) dq −

∫
e(j)

ε
′(m)
n,j (q) G(qn,i, q) dq

}
. (4.3.31)

In system HxMC = g + e the vector xMC contains the unknown mid-element nodal values of

φn,j on ∂Ωφ′ and φ′n,j on ∂Ωφ which, once determined, can be used to compute φ(m)
n in (4.3.26)

directly thus defining the numerical discretised solution. That is, by linearity with the numerical

discretised CBEM solution in (4.2.11), the numerical discretised MCBEM solution φ̃(m)
n satisfies

η(p)φ̃(m)
n (p) =

n∑
j=1

{∫
e(j)

[
φ̃n,j + ε

(m)
n,j (q)

]
G′(p, q) dq −

∫
e(j)

[
φ̃′n,j + ε

′(m)
n,j (q)

]
G(p, q) dq

}
,

(4.3.32)

92



Improved Boundary Element Methods for the Solution of Nonsingular Harmonic Boundary Value
Problems

in which

φ̃n,j =

 φ(qn,j) if e(j) ⊆ ∂Ωφ,

φ̃(qn,j) otherwise,
and φ̃′n,j =

 φ′(qn,j) if e(j) ⊆ ∂Ωφ′ ,

φ̃′(qn,j) otherwise,
(4.3.33)

where φ̃(qn,j) and φ̃′(qn,j) are defined from the solution of the dense system HxMC = g + e. As

is evident from (4.3.30), the FDMCBEM is a variation of the CBEM, hence a collocation of the

FDMCBEM at the mid-points p = qn,i results in a discretised system (H + δH)xFC = g with

solution xFC containing the unknown mid-element nodal values of φn,j on ∂Ωφ′ and φ′n,j on ∂Ωφ.

In the dense system (H + δH)xFC = g the n× n matrix δH has components

δHi,j =



m∑
k=1

c
(m)
k,j (qn,i) if e(j) ∈ ∂Ωφ′ ,

m∑
k=1

d
(m)
k,j (qn,i) if e(j) ∈ ∂Ωφ.

(4.3.34)

Given the CBEM solution xC along with

xFC = (I + H−1δH)−1H−1g, (4.3.35)

where I is the identity matrix,

xC − xFC =
[
I− (I + H−1δH)−1

]
xC (4.3.36)

whose norm satisfies

‖xC − xFC‖ ≤
∥∥[I− (I + H−1δH)−1

]∥∥ ‖xC‖. (4.3.37)

By the geometric series theorem (Appendix A), (I + H−1δH)−1 in (4.3.35) exists and is bounded

if and only if (Golub and Van Loan [1996])

‖H−1δH‖ < 1, (4.3.38)

i.e.

‖(I + H−1δH)−1‖ ≤ 1

1− ‖H−1δH‖ . (4.3.39)

The solution of (H + δH)xFC = g, which is known as the numerical discretised solution,

completes the boundary distributions of φ and φ′, hence φ(m,F)
n in (4.3.28) can be computed
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directly. In other words, by analogy with (4.2.11), the solution of (H + δH)xFC = g, defined

by φ̃(qn,j) and φ̃′(qn,j), are elements of the numerical discretised FDMCBEM solution φ̃(m,F)
n that

satisfies

η(p)φ̃(m,F)
n (p) =

n∑
j=1

{
φ̃n,j

[∫
e(j)

G′(p, q) dq +

m∑
k=1

cmk,j(p)

]

−φ̃′n,j

[∫
e(j)

G(p, q) dq +

m∑
k=1

dmk,j(p)

]}
, (4.3.40)

where

φ̃n,j =

 φ(qn,j) if e(j) ⊆ ∂Ωφ,

φ̃(qn,j) otherwise,
and φ̃′n,j =

 φ′(qn,j) if e(j) ⊆ ∂Ωφ′ ,

φ̃′(qn,j) otherwise.
(4.3.41)

4.3.5 Error analysis of the modified CBEMs

Comparing the theoretical discretised MCBEM solution φ(m)
n in (4.3.24) with the exact solution

φ(p), the theoretical MCBEM error is defined as

εn,m(p) = φ(p)− φ(m)
n (p) (4.3.42)

where, by (4.3.2), (4.3.3), (4.3.14) and (4.3.23), we obtain

εn,m(p) = φ(p)−
(
φn(p) + ε(m)

n (p)
)

= εn(p)− ε(m)
n (p)

= ∆ε(m)
n (p). (4.3.43)

Similarly, by comparing the theoretical discretised FDMCBEM solution φ(m,F)
n in (4.3.28) with

the exact solution φ(p), the theoretical FDMCBEM error is defined as

ε(F)
n,m(p) = φ(p)− φ(m,F)

n (p) (4.3.44)

which, by (4.3.15) and (4.3.27), we obtain

ε(F)
n,m(p) = φ(p)−

(
φn(p) + ε(m,F)

n (p)
)

= φ(p)−
(
φn(p) + ε(m)

n (p)−∆ε(m,F)
n (p)

)
= ∆ε(m)

n (p) + ∆ε(m,F)
n (p). (4.3.45)
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Thus, by (4.3.43), we have

‖εn,m‖∞ = ‖∆ε(m)
n ‖∞, (4.3.46)

and, by (4.3.45), we have

‖ε(F)
n,m‖∞ ≤ ‖∆ε(m)

n ‖∞ + ‖∆ε(m,F)
n ‖∞. (4.3.47)

In other words, the MCBEM error (4.3.46) and the FDMCBEM error (4.3.47) are theoretically

proportional to error discrepancies and, as the standard CBEM error in (4.2.20) is proportional to

an error, we have

‖εn,m‖∞ � ‖ε(F)
n,m‖∞ � ‖εn‖∞. (4.3.48)

By construction, the MCBEM and FDMCBEM are methods that reduce the overall error of the

standard CBEM.

Alternatively, by respectively comparing the numerical discretised MCBEM solution φ̃
(m)
n in

(4.3.32) and the numerical discretised FDMCBEM solution φ̃
(m,F)
n in (4.3.40) with the exact

solution φ(p), the numerical MCBEM error is defined as

ε̃n,m(p) = φ(p)− φ̃(m)
n (p), (4.3.49)

and the numerical FDMCBEM error is defined as

ε̃(F)
n,m(p) = φ(p)− φ̃(m,F)

n (p). (4.3.50)

Therefore, by (4.3.48), we predict

‖ε̃n,m‖∞ � ‖ε̃(F)
n,m‖∞ � ‖ε̃n‖∞, (4.3.51)

thereby achieving the aim of the modifications in (4.3.4).

4.4 Comparison of the modified numerical schemes

Before computing the numerical errors of both the MCBEM and FDMCBEM, we first consider

their theoretical behaviours. By (4.3.43) and (4.3.45), the MCBEM error and the FDMCBEM

error are respectively dependent upon ε(m)
n and ε(m,F)

n that comprise the integrals Jk,j in (4.2.29)
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and Kk,j in (4.2.30), as seen in §4.3.2. Thus it is the behaviour of Jk,j and Kk,j that determines

the overall behaviour of the MCBEM and FDMCBEM errors. For example, in accordance with

(4.3.23) and (4.3.43),

εn,m = φ− φ(m)
n = φ− φn − ε(m)

n , (4.4.1)

in which the first two terms on the right-hand side are O(h2), therefore the order of the MCBEM

error εn,m is determined by the truncated-series error ε(m)
n . As the truncated-series error is defined

by the integrals Jk,j andKk,j , whose orders increase indefinitely with k in a two-cycle, as discussed

in (4.2.37), over n elements we have

εn,m =



O(h2) m = 1,

O(h4) m = 2, 3,

O(h6) m = 4, 5,

O(h8) m = 6, 7.

(4.4.2)

In §4.3.2 the finite-difference-truncated-series error recovered the behaviour of the truncated-series

error when the accuracy in the finite-difference scheme was taken to be sufficiently large, e.g. an

eighth-order accuracy in the finite-difference scheme was sufficient when m = 4. Therefore, the

order of the finite-difference-truncated-series error ε(F)
n,m will match the order of εn,m in (4.4.2),

provided the accuracy in the finite-difference scheme is sufficiently high, although a quantification

into the exact order of accuracy required is deferred until later.

Both the modified CBEMs of §4.3 are validated for the test BVP of Fig. 4.2.2 by a combination of

graphical and data analysis. Using (4.3.49) and (4.3.50), we define the RMSEs as

σ̃n,m ≡

√√√√ 1

M

M∑
j=1

(ε̃n,m(pM,j))
2 for the MCBEM, (4.4.3)

and

σ̃(F)
n,m ≡

√√√√ 1

M

M∑
j=1

(
ε̃

(F)
n,m(pM,j)

)2
for the FDMCBEM, (4.4.4)

where M is the number of mesh points pM,j over the internal grid. The convergence rate and order

of the MCBEM error and the FDMCBEM error are determined by Richardson’s extrapolation

formula (4.2.48), as discussed in §4.2.2.

Similar to the CBEM error ε̃n in §4.2.2, the MCBEM and FDMCBEM errors are computed for
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(a) m = 1 (b) m = 2

(c) m = 3 (d) m = 4

Figure 4.4.1: Log plots of the error in the MCBEM solution of the test problem in Fig. 4.2.2,

ε̃n,m(p), for different values of n and truncation limits m = 1, 2, 3, 4. Each surface corresponds

to n = 48 (red), n = 72 (blue) and n = 108 (green). The MCBEM errors are converging to zero

with increasing n, and furthermore, by comparison with the CBEM errors in Fig. 4.2.3, reduce the

overall error by up to eight orders of magnitude.

different values of n. To simplify the implementation of the modified methods, however, the

computations take a maximum of m = 4 only.

The MCBEM error ε̃n,m in the test BVP (Fig. 4.2.2) is depicted in Fig. 4.4.1. By comparison with

the standard CBEM error in Fig 4.2.3, Fig. 4.4.1 shows an impressive reduction in the MCBEM

error, even for the simplest case of m = 1. Furthermore, Fig. 4.4.1 demonstrates two features of

the MCBEM error: first, prominent error peaks at the corner points due to the O(h2) behaviour of

Jk,j and Kk,j ; second, the error is converging to zero with increasing n, although further analysis
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(d) m = 4

Figure 4.4.2: Contour plots of log(ε̃n,m(p)), the logarithm of the relative error in the MCBEM

solution of the test BVP in Fig. 4.2.2, for n = 48 and different values ofm. Here we have a detailed

quantification of the red error surfaces given in Fig. 4.4.1 for m = 1, . . . , 4. By comparison with

the CBEM error in Fig. 4.2.4(a), the scaling of the colour maps show the superior accuracy gained

by the MCBEM method when m > 1.

into its rate and order is deferred until after the errors of the FDMCBEM have been computed and

discussed.

As a quantification of the n = 48 error surfaces in Fig. 4.4.1, the MCBEM errors are also depicted

in four contour plots in Fig. 4.4.2 with fixed n = 48 and varying m. Compared with Fig. 4.4.1, the

contour plots in Fig. 4.4.2 provide a greater extent of detail of the behaviour of the errors over the

whole domain. In particular, the contours show the error converging to zero with increasing m and

prominent error peaks at the corners, the largest of which is at (x, y) = (1, 1) due the Maximum
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m n Exact σ̃n,m Approximate σ̃(F)
n,m

2nd Order 4th Order 6th Order 8th Order

1 48 5.8686× 10−5 6.0706× 10−5 5.9828× 10−5 6.0003× 10−5 6.0124× 10−5

72 2.4105× 10−5 2.4437× 10−5 2.4336× 10−5 2.4372× 10−5 2.4397× 10−5

2 48 2.4885× 10−7 3.5340× 10−6 3.1080× 10−7 3.1105× 10−7 3.2030× 10−7

72 5.0907× 10−8 7.1107× 10−7 6.2389× 10−8 6.3710× 10−8 6.5621× 10−8

3 48 5.0121× 10−9 3.2867× 10−6 1.5171× 10−8 5.1945× 10−9 5.1945× 10−9

72 9.3238× 10−10 6.6054× 10−7 1.6921× 10−9 9.4754× 10−10 9.4901× 10−10

4 48 1.2476× 10−11 3.2890× 10−6 1.2967× 10−8 9.0726× 10−11 1.8043× 10−11

72 1.2129× 10−12 6.6121× 10−7 1.2425× 10−9 4.6511× 10−12 1.6704× 10−12

Table 4.4.1: The RMSE of the MCBEM (exact) σ̃n,m and the FDMCBEM (approximate) σ̃(F)
n,m in

the solution of the test BVP in Fig. 4.2.2, taking α = 1.5 in (4.2.48), n = 48, 72,m = 1, 2, 3, 4 and

order of accuracy a = 2, 4, 6, 8 in the finite-difference method. Here the RMSEs are quantifications

of the error surfaces in Fig. 4.4.1 and Fig. 4.4.3 (n = 48 (red), n = 72 (blue)). When eighth-order

accuracy is taken in the FDMCBEM, the difference between the approximate RMSE and the exact

RMSE is the least for all m and n, which is in agreement with Fig. 4.3.4.

principle. Furthermore, by comparison with the contour plot of the CBEM error in Fig. 4.2.4(a),

the scaling of the colour maps show the superior accuracy gained by the MCBEM method when

m > 1.

For the FDMCBEM to closely approximate the MCBEM, we require the error in the finite-

difference molecule, which is dependent upon its chosen size, to be less than the new error that

we are seeking to find in the improvement, namely the MCBEM error. Although, in accordance

with in (4.3.20) of §4.2.1, the size of the molecule in the finite-difference method is restricted by n

and m in ε(m,F)
n . Bearing this restriction in mind, the effect of the error in the molecule upon the

accuracy of the FDMCBEM is depicted in Table 4.4.1, in which the size of the molecule (i.e. the

accuracy of order O(ha)) is varied.

When a = 2 in Table 4.4.1, i.e. the finite-difference method is taken to second-order accuracy, the

order of the FDMCBEM RMSE (approximate) only matches that of the MCBEM RMSE (exact)
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when m = 1. For m > 1, taking a = 2 in the finite-difference method adversely affects the overall

FDMCBEM error, as the finite-difference error is greater than that we are seeking to find thus

dominating the behaviour of ε̃(F)
n,m. Hence we require the accuracy of the finite-difference method

to be greater than second-order when m > 1.

Table 4.4.1 provides another interesting observation: when m = 1 the difference between the

approximate error ε̃(F)
n,m and the exact error ε̃n,m is the least when fourth-order accuracy is taken in

the finite-difference scheme. This follows since, by (4.4.2), ε̃n,1 is of O(h2) therefore fourth-order

accuracy is enough to recover O(h2) in ε̃(F)
n,1 , i.e. the error in the molecule of the finite-difference

method is less than the new error. However, Table 4.4.1 also shows that no further benefit is gained

for increasing the accuracy above fourth-order, as the errors from the integrals Jk,j and Kk,j in

ε
(m,F)
n will be the most dominant. Similarly, when m = 3, by (4.4.2), ε̃n,m is of O(h4) therefore

we expect no further improvement in ε̃(F)
n,3 when the accuracy is above sixth-order, as confirmed

by Table 4.4.1. That is, Table 4.4.1 shows no monotonic improvement between the degree of

the FDMCBEM error and the accuracy of the finite-difference approximation. Instead there is a

staggered improvement, because the inclusion of larger numbers of Jk,j and Kk,j does not always

compensate for the error in the finite-difference approximation.

For varying values of m, Table 4.4.1 quantifies the degree of accuracy required in the FDMCBEM.

For example, when a = 8 in the finite-difference method, Table 4.4.1 shows |σ̃n,m − σ̃(F)
n,m| is the

least for all n and m, hence eighth-order accuracy is taken in the subsequent implementation of the

FDMCBEM.

The errors of the FDMCBEM are depicted in Fig. 4.4.3 for the test BVP in Fig. 4.2.2. By adopting

eighth-order accuracy in the finite-difference scheme, the FDMCBEM errors in Fig. 4.4.3 are

indistinguishable from the MCBEM errors in Fig. 4.4.1 for all n and m. Moreover, by comparing

the FDMCBEM errors in Fig. 4.4.3 with the CBEM errors in Fig. 4.2.3, we note an impressive error

reduction in the FDMCBEM (up to eight-orders of magnitude), therefore achieving the original aim

of the modification in (4.3.51).

The orders (and convergence rates) of the MCBEM and FDMCBEM errors in Figs. 4.4.1 and 4.4.3

are presented in Table 4.4.2. Using the nomenclature of Richardson’s extrapolation in §4.2.2, the

convergence rates are denoted by ρ and orders by p. The errors of the modified numerical schemes

in Table 4.4.2 are converging to the theoretically predicted in orders in (4.4.2) with increasing n,
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(a) m = 1 (b) m = 2

(c) m = 3 (d) m = 4

Figure 4.4.3: Log plot of the error in the FDMCBEM solution of the test BVP in Fig. 4.2.2, ε̃(F)
n,m(p),

for m = 1, 2, 3, 4, fixed eighth-order accuracy in the finite-difference scheme and different values

of n. Each surface corresponding to n = 48 (red), n = 72 (blue) and n = 108 (green). By

comparison with Fig. 4.4.3, the FDMCBEM errors and the MCBEM are indistinguishable for all

n and m when a = 8.

i.e. O(h2) when m = 1, O(h4) when m = 2, 3 and O(h6) when m = 4. The orders are not

exactly as predicted in (4.4.2) owing to two reasons: first, the imposed truncation m in ε(m)
n and

ε
(m,F)
n that respectively define the MCBEM error in (4.3.43) and FDMCBEM error in (4.3.45),

and; second, the O(h) pollution at the corners which, as demonstrated by the CBEM errors in

Table 4.2.1, affects the overall accuracy of the numerical solution.

In addition, the results in Table 4.4.2 show the orders of the MCBEM and FDMCBEM errors are

alternating between converging to the predicted value from above and below as m increases. The
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m n,αn ρ p

Predicted Exact Approx Predicted Exact Approx

1 48, 72 2.25 2.4346 2.4644 2 2.1945 2.2245

72, 108 2.25 2.3412 2.3570 2 2.0980 2.1146

2 48, 72 5.0625 4.8884 4.8811 4 3.9137 3.9100

72, 108 5.0625 4.9681 4.9599 4 3.9535 3.9495

3 48, 72 5.0625 5.3756 5.4735 4 4.1480 4.1925

72, 108 5.0625 5.2416 5.2942 4 4.0857 4.1104

4 48, 72 11.3906 10.2861 10.8018 6 5.7484 5.8691

72, 108 11.3906 10.7969 10.9647 6 5.8680 5.9060

Table 4.4.2: The error convergence rate ρ and error order p in the MCBEM φ̃
(m)
n (exact) and the

FDMCBEM φ̃
(m,F)
n (approximated) solution of the test BVP in Fig. 4.2.2, for eighth-order accuracy

in the finite difference method, α = 1.5(= β) in (4.2.48), n = 48, 72, 108 and m = 1, 2, 3, 4. The

error orders in the MCBEM and FDMCBEM are approximately O(h2) for m = 1, O(h4) for

m = 2, 3 and O(h6) behaviour for m = 4 as predicted in (4.4.2).

reason for such behaviour is due to the errors ε(m)
n and ε(m,F)

n , which define the MCBEM error in

(4.3.43) and the FDMCBEM error in (4.3.45), comprise the integrals Jk,j in (4.2.29) and Kk,j in

(4.2.30) where k = 1, . . . ,m. Then (4.2.37) shows that we require only m = 1 to capture all of

the O(h2) behaviour of the error in both the MCBEM and the FDMCBEM. The interesting case

is m = 2 because we still expect O(h4) behaviour from the m = 3 term. This suggests that we

have a incomplete representation of the O(h4) behaviour when m = 2, and in practise we get an

under-specification. On the other hand, when m = 3 we get an over-specification of the O(h4)

behaviour (consistent with the over-specification in Table 4.3.1) and this repeats in a period-two

cycle in accordance with the period-two cycle implied by (4.2.37).

The O(h4) error in the MCBEM (and the FDMCBEM), which was recovered when m = 2 or

m = 3, is equivalent to the order of the error for a piecewise-quadratic BEM. However, the

modified methods are augmenting a piecewise-constant BEM, thus require only a n-dimensional

collocation system, whereas a quadratic BEM would require a 2n-dimensional collocation system.
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n RMSE (σ̃)

CBEM MCBEM FDMCBEM

48 1.2001× 10−03 1.2476× 10−11 1.8043× 10−11

72 6.0309× 10−04 1.2129× 10−12 1.6704× 10−12

Table 4.4.3: An overview of the RMSEs in the CBEM, the MCBEM and the FDMCBEM solution of

the test BVP in Fig. 4.2.2 for α = 1.5 in (4.2.48), n = 48, 72, m = 4 and order of accuracy a = 8

in the finite-difference method. Evidently both modified methods are superior in accuracy over the

standard CBEM for each value of n.

In other words, we have emulated the behaviour of higher-order Lagrangian interpolation without

increasing the size of the system, thereby achieving the aim of the modification.

In general, the order of the error in the MCBEM varies with m as O(hm+1) if m is odd,

O(hm+2) if m is even,
(4.4.5)

where m is chosen a priori, thus the error order can be enhanced beyond quadratic accuracy. The

accuracy of the error in the FDMCBEM on the other hand, which must be taken to a higher degree

if m is to be increased beyond m = 4, is restricted due to the accuracy in the finite-difference

method.

Increasing m in the modified methods, however, results in an increase in the required CPU system

time. For example, by comparison with the simplest case of m = 1, the MCBEM CPU system

time increases by 22%, 47% and 71% by increasing m to 2, 3 or 4 respectively. Similarly, by

comparison with the simplest case of m = 1, the FDMCBEM CPU system time increases by

28%, 77% and 92% by increasing m to 2, 3 or 4 respectively. Furthermore, by construction, the

required FDMCBEM CPU system time will be greater than the MCBEM CPU system time as the

FDMCBEM requires the derivation of the finite-difference molecules, e.g., an increase of 2% when

m = 4 and eighth-order accuracy is imposed.

Essentially, for any m, the required CPU system time in the MCBEM (and FDMCBEM) is less

than the required CPU system time for a standard BEM of an equivalent order of accuracy. For

example, the time taken to invert a n × n matrix in the MCBEM and FDMCBEM, which are
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of order O(hm), is 2n3/3. However, the time taken to invert a (m/2)n × (m/2)n matrix in a

BEM using higher-order Lagrangian interpolation, which is alsoO(hm), is 2(mn)3/24. Therefore,

because the modified methods require only the solution of a n×n system, they are computationally

superior over the standard BEMs that are based on higher-order Lagrangian interpolation, e.g. the

piecewise-quadratic BEM (Manzoor [1984]).

For the simplest case of m = 1 the CPU system time for the MCBEM is an increase from the

CBEM time by 222% when n = 48, although this increase in CPU system time is justified by

the higher order gained in the MCBEM over that in the CBEM. In practice, to obtain a solution

of higher accuracy one usually increases the number of elements taken in a BEM. If we apply

this principle to the CBEM, then only by taking n = 164 elements do we recover a RMSE of an

equivalent order to that in MCBEM in the case whenm = 1 and n = 48. However, as the MCBEM

requires a substantially smaller number of elements, the CBEM will increase the CPU system time

by 784% in order to match the accuracy in the new improved BEM, thus demonstrating that the

MCBEM is the superior BEM for solving (and improving) the accuracy of regular BVPs.
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4.5 Summary and discussion

In this chapter we have demonstrated the use of numerical methods to approximate the solution of

a nonsingular two-dimensional harmonic boundary value problem. This involved implementing a

piecewise-constant boundary element method, which was subsequently modified in a novel way,

so that the order of the error in the numerical solution could be chosen a priori.

The modification was based on an in-depth analysis of the behaviour of the piecewise-constant

boundary-element-method error, in which the unpredicted O(h) error peaks occurring in at the

corners of a domain were highlighted. The error peaks, which could be reduced by taking higher-

order Lagrangian interpolation, are subsequently reduced by a modified method without increasing

the size of the system.

For the test BVP considered, the error in the modified methods was shown to emulate the rate

of convergence normally associated with piecewise-quadratic boundary element methods (Brebbia

and Dominguez [1989], Manzoor [1984]) without the need to solve a larger system. In other words,

the modified methods require only a n-point collocation unlike the piecewise-quadratic boundary

element method that require a 2n-point collocation; the corresponding smaller dense system

requiring substantially less time to invert, and so making the modified methods computationally

advantageous. Moreover, by construction of the modified methods, the order of the error in these

methods can be further increased to emulate the order in Lagrangian interpolation of a degree

higher than second-order, again without increasing the size of the system.

The modified methods demonstrated a significant reduction (up to eight orders of magnitude) in

the error of the approximated solution in comparison to the standard piecewise-constant boundary

element method. However, this reduction is achieved at a cost of an increase in the CPU system

time of at least 222% upon that in the piecewise-constant boundary element method. On the other

hand, in order to match the superior accuracy of the modified method, the piecewise-constant

boundary element method would require a substantial increase in the number of elements thus

increasing the CPU system time, e.g. a 784% increase in CPU time is required to match the

accuracy of the modified method when m = 1 and n = 48.

Further investigations into the theory covered in this chapter involve finding improved estimates of

the exact piecewise-constant boundary element method error εn in order to reduce the error in the
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approximated εn that defines the modified method. We proceed by utilising the theory outlined in

chapter 4 to analyse the solution of singular harmonic boundary value problems in chapters 5 and

6.
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Chapter 5

Pseudo-Analytic Solution of a Singular

Harmonic Boundary Value Problem

Previously, in chapter 4 we considered improving the accuracy of the numerical solution of BVPs

that contained no additional difficulties. Now, we consider problems with inherent difficulties, i.e.

BVPs with the presence of a boundary singularity, otherwise known as singular BVPs.

Singular BVPs (SBVP), have attracted much attention (Whiteman and Papamichael [1971], Symm

[1973], Jaswon and Symm [1977], Blue [1977], Crank and Furzeland [1978], Xanthis et al.

[1981], Kelmanson [1984], Manzoor [1984], Mason et al. [1985], Aitchison and Karageorghis

[1988], Atkinson and Chandler [1990], Hansen and Kelmanson [1994], Elliotis et al. [2002], Li

et al. [2005], Elliotis et al. [2006], Helsing [2009], Xenophontos et al. [2010]): they arise in the

mathematical modelling of many real-world problems drawn from applied maths, physics and

engineering. Most commonly, the singularities are those arising from a sudden change in boundary

conditions, e.g. changes in dielectric properties (Daly [1973]), or a sudden change in boundary

geometry, e.g. in stress analysis in regions with cracks (Mason and Smith [1982]) and flow

near sharp corners (Kelmanson [1983a]). SBVPs can generally not be solved explicitly, therefore

numerical procedures are necessary.

To be able to quantify the accuracy of a given numerical procedure, one must be able to validate

the approximate solution against either existing results or an analytic solution. In the present work,

we consider the latter of these. That is, we present a method whereby we can derive the analytic
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Metal
strip

kept at
potential
φ = φ0

Dielectric

Shell kept at
potential φ = φ1

Figure 5.1.1: Schematic diagram of the physical origin of the stripline problem.

solution of a given singular BVP.

The remainder of this chapter is as follows. In §5.1 we present a singular harmonic BVP, considered

in this and the proceeding chapter. In §5.2 we outline the conformal transformation method,

by the analogy of Whiteman and Papamichael [1971] and Rosser and Papamichael [1975], for

determining a pseudo-analytic solution. Finally, in §5.3 we determine a pseudo-analytic (series)

solution of the singular harmonic BVP.

5.1 Singular harmonic boundary value problems

We consider BVPs with the presence of boundary singularities arising from a sudden change in

boundary conditions, as these occur in the vast majority of problems where we have no control

over the boundary conditions. An example of such a SBVP is seen in the analysis of transmission-

line singularities (Daly [1973], Postoyalko [1986]), such as the stripline problem. The solution of

the stripline problem is essential in electrical engineering owing to its many practical applications,

particularly its use in electromagnetic compatibility testing due to its ability to reduce random

fluctuations in electrical signals, i.e. noise. The physical stripline problem consists of a flat strip of

conducting metal that is contained within insulating material (forming a dielectric), all of which is

inside a grounded rectangular shell, as shown in Fig. 5.1.1.

The SBVP for the stripline (Ingham et al. [1981c], Postoyalko [1986]), summarised pictorially in

Fig. 5.1.2, results from considering only the upper-right quadrant of the dually symmetric physical

problem in Fig. 5.1.1. The stripline SBVP comprises solution of Laplace’s equation, ∇2φ = 0,

for the electrostatic potential φ in a two-dimensional domain. Moreover, the stripline SBVP in Fig.
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BXC
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φ = φ0 φ′ = 0

φ = φ1

φ = φ1φ = φ1

φ′ = 0 ∇2φ = 0

Figure 5.1.2: A pictorial summary of the stripline singular boundary value problem.

5.1.2 has a boundary singularity at O (the origin) due to a discontinuity between Neumann and

Dirichlet boundary conditions either side of O.

The stripline problem is an adaptation of the classical SBVP, which is known as the Motz problem

(Motz [1946]), presented in Fig. 5.1.3. The computation of approximate solutions of the Motz

problem has invited extensive research into a variety of techniques, some pseudo-analytic and

others numerical, e.g. Whiteman and Papamichael [1971, 1972], Papamichael and Symm [1975],

Blue [1977], Crank and Furzeland [1978], Wigley [1988], Karageorghis et al. [1996], Li and Lu

[2000], Hu [2003], Li et al. [2005] and, Li et al. [2006]. Utilising the near-identical geometrical

resemblance between the Motz and stripline problem, the research techniques developed for the

solution of the Motz problem can be extended to the stripline problem, subject to only minor

adaptations. For example, in §5.2 the pseudo-analytic solution of the stripline problem will be

derived using an adaptation of the conformal transformation method for the Motz problem.

D O A

BXC

x

y

φ = φ0 φ′ = 0

φ = φ1

φ′ = 0φ′ = 0

φ′ = 0 ∇2φ = 0

Figure 5.1.3: A pictorial summary of the Motz singular boundary value problem.
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The analytical solution of the stripline (and Motz) problem is expressible as an explicit series

obtained via separation of variables in polar coordinates (r, θ) centred at O in Fig. 5.1.3 and 5.1.2.

For either the Motz or stripline problem, the boundary conditions on θ = 0 and θ = π yield the

harmonic potential for (x, y) ∈ [ABCD]

φ(r, θ) = φ0 +

∞∑
i=1

air
i− 1

2 cos

[(
i− 1

2

)
θ

]
, (5.1.1)

where ai are expansion coefficients yet to be determined. The validity of (5.1.1) holds throughout

the entire domain (Rosser and Papamichael [1975]).

Several different approaches have been developed to approximate the unknown expansion

coefficients ai in (5.1.1), the conformal transformation method (Whiteman and Papamichael

[1971]) being one of the original. Other methods include: the Trefftz method (Trefftz [1926],

Lu et al. [2004]); the global element method (Hendry and Delves [1979], Kermode and McKerrell

[1985]); the least squares method (Li et al. [1987]); the singular basis function method (Olson et al.

[1991]); the block-grid method (Dosiyev [2005]); the boundary approximation method (Li et al.

[2006]), and; the hybrid BEM (Pashos et al. [2010]). In order to obtain “near-exact” (Papamichael

[1989], Arad et al. [1998], Hu [2003]) estimates of the coefficients ai in (5.1.1), we employ the

conformal transformation method (CTM), not least of which because it yields information that

forms a baseline comparator against which we test the results of our numerical methods in the

proceeding chapter.

5.2 The conformal transformation method (CTM)

The CTM is well-established and has been successfully applied to many types of boundary value

problems, e.g. Whiteman and Papamichael [1971, 1972], Papamichael and Sideridis [1979] and

Li and Lu [2000]. Because of the non-transparency of implementing the CTM, we take this

opportunity to describe the steps of the CTM in some detail, particularly because some of the

process has not yet been described in the literature.

The CTM is based on applying a sequence of conformal mappings, which preserves the angles

in a domain, to transform a complex harmonic BVP into a harmonic BVP for which there
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Ω

φ = φ1

φ′ = 0

φ = φ0
φ′ = 0

Ω∗φ′ = 0 φ′ = 0

φ = φ1

φ = φ0

Figure 5.2.1: The mapping of a generalised polygon in Ω, through a sequence of conformal

transformations, to a quadrilateral Ω∗ with a unique aspect ratio. The distribution of the Dirichlet

and Neumann conditions along the boundary of the polygon in Ω must be split in a two-two fashion

as shown. The heavy and thin lines denote boundary sub-arcs on which Dirichlet and Neumann

conditions are respectively applied.

exists a simple analytic solution. The CTM has been applied to many problems in mathematical

physics, e.g. aerodynamics, hydrodynamics, electromagnetism, acoustics, and thermal equilibrium

(Schinzinger and Laura [2003]). The application of the CTM, however, usually deals with solutions

of Laplace’s equation, as the harmonic function remains invariant under a CTM, i.e. the solution is

still harmonic after being transformed by a conformal map.

We are particularly interested in the CTM, because of its use in transforming a SBVP with a

mixture of Neumann and Dirichlet boundary conditions, to yield a final nonsingular BVP defined

on a quadrilateral (Whiteman and Papamichael [1971]). For example, provided the boundary

distributions φ and φ′ are split in a two-two fashion, as shown in Fig. 5.2.1, the transformation

is achieved through a sequence of conformal mappings. The boundary conditions in the final

transformed domain (right-hand side of Fig. 5.2.1) occur in two sets of pairs on opposite faces, e.g.

Dirichlet conditions on the north and south face and Neumann conditions on the east and west face.

The (linear) solution in the final domain space, after inverting the sequence of transformations back

to the original domain, defines the analytic solution of the SBVP.

We will illustrate the CTM by transforming a rectangular domain, consistent with the stripline
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problem in Fig. 5.1.2, with discontinuous boundary data into a quadrilateral with continuous

boundary data. To begin with, the generalised Schwarz-Christoffel mapping, used in the sequence

of transformations, is outlined; this includes the definition of complete and incomplete elliptic

functions of the second kind and the their inverses. Using the Schwarz-Christoffel mapping, the

aim is to provide a schematic overview of the sequence of transformations in the CTM, specific for

the stripline problem, thus determining the analytic solution (5.1.1).

5.2.1 Schwarz-Christoffel mapping: rectangular domains

The CTM comprises a sequence of Schwarz-Christoffel mappings (SCM). The SCM is used to

map vertices in a upper-half plane to the corners of a polygon in a complex domain. Let Ω be

the region in the complex plane bounded by a polygon P with vertices w1, w2, . . . , wn, given in

a counter-clockwise order, and interior angles a1π, a2π, . . . , anπ. Assuming Ω is bounded and

without any cusps or slits, i.e. αj ∈ (0, 2) for each j, then f denotes the conformal map of the

upper-half plane, Ω∗ say, onto Ω with kth prevertex zj = f−1(wj). If the n distinct points zj in

the real axis are such that |zj | <∞ for all j, then the Schwarz-Christoffel mapping is given by the

formula (Driscoll and Trefethen [2002]1)

w = f(z) = c1

∫ z

z0

n∏
j=1

(ζ − zj)(aj−1)dζ + c2, (5.2.1)

where z0 is a fixed lower limit, c1 and c2 are constants and wj = f(zj) for j = 1, . . . , n.

As we are concerned with the simple case of a rectangular polygon (to match with the stripline

problem), with length 2a and height b, the Schwarz-Christoffel mapping is as follows. Taking

n = 4 in (5.2.1), by Copson [1946], Nehari [1952] and Bowman [1953], the Schwarz-Christoffel

prevertices are z1 = (1, 0), z2 = (1/k, 0), z3 = (−1/k, 0) and z4 = (−1, 0), where the parameter

k is the elliptic modulus satisfying 0 < k2 < 1. Moreover, we have aj = 1/2 for all j = 1, . . . , n,

so that the Schwarz-Christoffel function f(z) in (5.2.1) maps z1, z2, z3 and z4 in the complex

z ≡ u+ iv upper half-plane to the corners of a rectangle w1, w2, w3 and w4 in the complex plane,

w ≡ x+ iy, as depicted in Fig. 5.2.2.

1The reference by Driscoll and Trefethen [2002] is given in preference to earlier/classic work on the Schwarz-

Christoffel method because of the level of detail presented.
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z1z4z3 z2
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1−1−1/k 1/k0 −a 0 a
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w3 w2
w

x

y

Figure 5.2.2: A Schwarz-Christoffel mapping wj = f(zj) from z = u + iv upper half-plane to

complex plane w = x + iy when n = 4 in (5.2.1). Here k the elliptic modulus, representing the

degrees of freedom in the prevertices {zj}.

Eqn. (5.2.1) may be written as an elliptic integral of the first kind2:

w = f(z) = c1

∫ z

0

4∏
j=1

(ζ − zj)(aj−1)dζ + c2,

= c

∫ z

0

1

[(1− ζ2)(1− k2ζ2)]
1
2

dζ,

= F (z, k) (5.2.2)

where c = kc1 and c2 = 0 (since the origin is mapped to itself). By (5.2.2), each vertex {wj} in

the rectangle in the w-plane on the right-hand side of Fig. 5.2.2 is related to {zj} in the z-plane by

a+ i0 = c

∫ 1

0

1

[(1− ζ2)(1− k2ζ2)]
1
2

dζ, (5.2.3)

a+ ib = c

∫ 1/k

0

1

[(1− ζ2)(1− k2ζ2)]
1
2

dζ, (5.2.4)

−a+ ib = c

∫ −1/k

0

1

[(1− ζ2)(1− k2ζ2)]
1
2

dζ, (5.2.5)

−a+ i0 = c

∫ −1

0

1

[(1− ζ2)(1− k2ζ2)]
1
2

dζ. (5.2.6)

Substituting ζ = −ζ̂ in (5.2.6) results in (5.2.3) and, by subtracting (5.2.3) from (5.2.4), the height

of the rectangle b satisfies

b = c

∫ 1/k

1

1

[(ζ2 − 1)(1− k2ζ2)]
1
2

dζ (5.2.7)

2Sometimes m is used in place of the elliptic modulus k where m = k2 (Abramowitz and Stegun [1972]).
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which, by the substitution ζ = 1/(1− k2
1x

2)
1
2 , where k2

1 + k2 = 1, (5.2.7) becomes

b = c

∫ 1

0

1[
(1− x2)(1− k2

1x
2)
] 1
2

dx. (5.2.8)

The complete elliptic function of the first kind (Abramowitz and Stegun [1972]) is

K(k) = F (1, k) ≡
∫ 1

0

1

[(1− ζ2)(1− k2ζ2)]
1
2

dζ, (5.2.9)

where, by (5.2.3) and (5.2.8),

a = cK(k), b = cK(
√

1− k2), (5.2.10)

so that
a

b
=

K(k)

K(
√

1− k2)
, (5.2.11)

which defines the value of the elliptic modulus k for known dimensions a and b.

When c = 1 in the integral (5.2.2), i.e.

F (z, k) =

∫ z

0

1

[(1− ζ2)(1− k2ζ2)]
1
2

dζ, (5.2.12)

F (z, k) is a incomplete elliptic function of the first kind which, when k is fixed, gives a one-to-one

relation between the complex z-plane and its mapped w-plane (the geometry of the rectangle).

Introducing the parameter m = k2, the incomplete elliptic function (5.2.12) can be equivalently

denoted by

F (sinφ,m) = F (φ|m) =

∫ φ

0

1(
1−m sin2 θ

) 1
2

dθ, (5.2.13)

where φ ≡ arcsin z corresponds to the amplitude (Rosser and Papamichael [1975]). In defining

F in (5.2.13), we have used the comma to imply that the argument preceding it is the sine of

the amplitude and the vertical line to imply the proceeding argument is the amplitude itself: this

notation is consistent with Abramowitz and Stegun [1972]. The elliptic function (5.2.13) is said to

be complete when the amplitude φ is π/2, i.e. K(m) = F
(
π
2 |m

)
= F (1, k).

We define the complementary parameter m′ by

m′ ≡ 1−m, (5.2.14)
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whence the complete elliptic integral (5.2.9) is

K(m′) = K ′(m) ≡
∫ π/2

0

1(
1−m′ sin2 θ

) 1
2

dθ. (5.2.15)

Eqns. (5.2.9) and (5.2.15) are used to define the nome and the complementary nome respectively

by

q(m) ≡ exp(−πK ′(m)/K(m)), (5.2.16)

q′(m) = q(m′) ≡ exp(−πK(m)/K ′(m)), (5.2.17)

as well as the supplementary functions

R(q) =
2π

K
√
m
, (5.2.18)

R′(q) = R(q′) =
2π

K ′
√
m′
. (5.2.19)

Note, (5.2.15)-(5.2.19) are consistent with Rosser and Papamichael [1975], whereby the prime

does not denote a differential, but rather the dependence of a function upon the complementary

parameterm′. Observing thatK(m) is a increasing function in (5.2.9) and, conversely, thatK ′(m)

is a decreasing function in (5.2.15) then, by construction of the nomes (5.2.16) and (5.2.17), q(m)

is a increasing function of m, whereas q′(m) is a decreasing function of m.

Since the stripline problem is defined on a rectangular domain, we require the inverse of the

Schwarz-Christoffel function in order to map the rectangle onto the complex line, i.e.

φ = F−1(w|m) ≡ sn(w,m), (5.2.20)

where sn is the Jacobi elliptic sine function. The Jacobi elliptic sine function (5.2.20) can be

expressed in the series form (Abramowitz and Stegun [1972]) as

sn(v,m) =
2π

K(m)
√
m

∞∑
n=0

qn+ 1
2

1− q2n+1
sin(2n+ 1)

(
πv

2K(m)

)
, (5.2.21)
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where q is defined in (5.2.16). By using (5.2.18) and sin(x) =
∑∞

n=0(−1)n(x2n+1/(2n + 1)!),

(5.2.21) yields

sn(v,m) =
2π

K
√
m

∞∑
r=0

(−1)r

(2r + 1)!

∞∑
n=0

qn+ 1
2 (2n+ 1)2r+1

1− q2n+1

( πv
2K

)2r+1

=
2π

K
√
m

∞∑
r=0

Ar(q)
( πv

2K

)2r+1

= R(q)
∞∑
r=0

Ar(q)
( πv

2K

)2r+1
, (5.2.22)

where

Ar(q) =
(−1)r

(2r + 1)!

∞∑
n=0

qn+ 1
2 (2n+ 1)2r+1

1− q2n+1
. (5.2.23)

Series (5.2.23) of the Jacobian elliptic sine function is essential in the following implementation of

the CTM.

5.2.2 The sequence of transformations in the CTM

Whiteman and Papamichael [1971] first used the CTM to reduce, by a sequence of transformations,

a complicated harmonic BVP into a simpler harmonic BVP whose solution could be deduced by

inspection. The explicit solution of the simpler harmonic BVP, however, transpires to be in terms of

elliptic functions (and their inverses) that, in practice, require numerical evaluation. Consequently,

we derive a “near-exact” solution in the CTM in the sense that the solution is restricted by only

machine precision.

Both the Motz and the stripline problem are specific cases of general harmonic BVPs that are

amenable to the CTM (Whiteman and Papamichael [1972]), the general form of which is
∇2φ = 0, in Ω,

φ known on Γ1,Γ3,

φ′ known on Γ2,Γ4,

(5.2.24)

where Ω is a simply connected open domain with closed boundary ∂Ω ≡ ∪4
i=1Γi in which Γ1 is

the adjacent sub-arc of Γ2, Γ2 is the adjacent sub-arc of Γ3, Γ3 is the adjacent sub-arc of Γ4 and

Γ4 is the adjacent sub-arc of Γ1. That is, the Dirichlet and Neumann boundary conditions on the
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(1, 0)(−1, 0)

(−1, 1) (1, 1)
z1

Â ĈB̂
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y

Figure 5.2.3: The z1-plane for the stripline SBVP in Fig. 5.1.2. The heavy and thin lines denote

boundary sub-arcs on which Dirichlet and Neumann conditions are respectively applied.

polygonal boundary are split in a two-two fashion, in accordance with Fig. 5.2.1. Specifically, for

the stripline problem of Fig. 5.1.2, the Dirichlet and Neumann boundary sub-arcs are shown in Fig.

5.2.3.

The idea behind the CTM is to apply a succession of four transformations, T1, T2, T3 and T4 say,

which include the Schwarz-Christoffel mapping (see §5.2.1), to transform an original SBVP in the

z1 ≡ x + iy plane onto a nonsingular harmonic BVP with solution φ in the z5 ≡ ξ + iη plane

where if z5 = (ξ, η) ∈ Ω∗ then

∇2φ = 0, in Ω∗. (5.2.25)

The composite transformation T = T4 ◦T3 ◦T2 ◦T1 is constructed so that, in the z5-plane, (5.2.25)

has an exact (linear in ξ or η) solution. Hence defining a the solution of the Motz and the stripline

problem, φ(p) = φ(p′), where p→T p′, p ∈ Ω and p′ ∈ Ω∗. Thus the goal is to determine the

(sequence of) conformal mappings T that transform the original BVP into (5.2.25).

The conformal mappings in T that transform the original BVP into (5.2.25) have already been

defined for the Motz problem (Whiteman and Papamichael [1971, 1972], Li and Lu [2000]),

therefore in this thesis we outline the conformal mappings for the stripline problem so that they

are readily available for others to use. In Fig. 5.2.3 each point of the rectangular domain of the

stripline SBVP (Fig. 5.1.2) in the (x, y)-plane is a complex number z1 = x+ iy. In particular, the

points Â, B̂, Ĉ and D̂ in Fig. 5.2.3, located where there is a change in boundary conditions, are

−1, 0, 1 and −1 + i. The boundary conditions in Fig. 5.2.3 are a zero normal derivative on the line

segment from D̂ to Â and from B̂ to Ĉ, value φ0 on the line segment from Â to B̂, and the value
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of φ1 on the line segment from Ĉ around to D̂ along the right and top side of the rectangle.

The mapping of the rectangular domain of the stripline problem onto an upper half-plane is

achieved using the theory of the Schwarz-Christoffel mapping in §5.2.1. Here we first take

k =
1√
2
, (5.2.26)

i.e. a = b = 1 in (5.2.11): then, because m = k2, we have m = 1
2 , for which value, (5.2.14) yields

m′ = m and, by (5.2.9) and (5.2.15),

K(m) = K ′(m). (5.2.27)

Therefore, (5.2.16) implies

q(m) = q′(m) = exp(−π). (5.2.28)

Through (5.2.10), Eqn. (5.2.26) also implies that c = 1/K(k) and so, by (5.2.2), we have

z1 =
1

K(k)

∫ z2

0

1

[(1− ζ2)(1− k2ζ2)]
1
2

dζ

=
1

K(k)
F (z2, k). (5.2.29)

Thus the inverse of (5.2.29) defines the first transformation in the sequence, T1, from z1 to the

upper-half plane z2 shown in Fig. 5.2.4, in which the points Â, B̂, Ĉ and D̂ on the rectangle map

to points Â′ = −1, B̂′ = 0, Ĉ ′ = 1 and D̂′ = −
√

2. Note, the red arrows in the right-hand diagram

in Fig. 5.2.4 denote the connection of the Dirichlet conditions at infinity in the transformed domain

that correspond to the same physical connection of the Dirichlet conditions in the original domain

in the left-hand diagram. That is, even though the boundary along the top of the rectangle and the

right-hand side of the rectangle share the same boundary condition type property, they do not share

the same geometric property, thus the transformed plane (right-hand diagram in Fig. 5.2.4) is a

manifestation of this disjointness.

By definition of the Jacobian elliptic sine function (5.2.20), the transformation T1 : z1 → z2 in the

CTM is

z2 = sn(Kz1,m). (5.2.30)
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0

Â ĈB̂

D̂

z1

Ω

x

y

u′

v′

Ĉ ′Â′D̂′ B̂′

1−1−
√

2 0

z2

Figure 5.2.4: Schematic representation of the transformation T1 : z1 → z2 from the full complex

plane z1 = x + iy to the upper half-plane z2. The heavy lines represent Dirichlet boundary

conditions otherwise they are Neumann. The points Â,B̂,Ĉ and D̂ map to points Â′, B̂′, Ĉ ′ and D̂′

by the inverse of a Schwarz-Christoffel mapping (Fig. 5.2.2), e.g. Â′ = f−1(Â). That is, the five

different sections of the original quadrilateral in the left-hand figure are mapped into five different

sections on the real line in the upper half-plane in the right-hand figure. The red arrows in the

right-hand diagram in Fig. 5.2.4 denote the connection of the Dirichlet conditions at infinity in the

transformed domain that correspond to the same physical connection of the Dirichlet conditions in

the original domain in the left-hand diagram.

The next step in the CTM is bilinear transformation T2 : z2 → z3 that transforms the upper-half

plane in z2 onto the upper half-plane z3, shown in Fig. 5.2.5. The bilinear transformation for the

stripline SBVP is (Whiteman and Papamichael [1971])

z3 =
2z2

1 + z2
, (5.2.31)

in which the points Â′, B̂′, Ĉ ′ and D̂′ in the z2-plane map to points Â′′ = −∞, B̂′′ = 0, Ĉ ′′ = 1

and D̂′′ = 4/(2−
√

2) in the z3-plane.

The third transformation T3 : z3 → z4 in the CTM, fixed for any BVP, is

z4 =
√
z3, (5.2.32)

which corresponds to a mapping from the upper half-plane z3 onto the first quadrant in the z4-

plane, shown in Fig. 5.2.6. The points Â′′, B̂′′, Ĉ ′′ and D̂′′ in the z3-plane map to points Â′′′ =∞i,
B̂′′′ = 0, Ĉ ′′′ = 1 and D̂′′′ =

√
4/(2−

√
2) in the z4-plane.
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Figure 5.2.5: Schematic representation of the transform T2 : z2 → z3 from the upper half-plane z2

to the upper half-plane z3 by bilinear transformation (5.2.31). The heavy lines represent Dirichlet

boundary conditions otherwise they are Neumann. Transform T2 maps the five different sections

on the real line in the upper-half plane in the left-hand figure into only four sections on the real

line in the upper-half plane in the right-hand figure.

u′′

v′′

Ĉ ′′Â′′ B̂′′ D̂′′

1 4/(2−
√

2)0

z3

u′′′

v′′′

Â′′′

Ĉ ′′′ D̂′′′B̂′′′

1
√

4/(2−
√

2)0

z4

Figure 5.2.6: Schematic representation of the transform T3 : z3 → z4 from the upper half-plane z3

onto the first quadrant in the z4-plane by (5.2.32). The heavy lines represent Dirichlet boundary

conditions otherwise they are Neumann. Transform T3 is the beginning of “folding” the four

sections into the closed final domain.

We now take a new variable, m say, defined explicitly by the bilinear transformation (5.2.31) as

m =
(2−

√
2)

4
. (5.2.33)
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u′′

v′′

Ĉ ′′′

Â′′′

B̂′′′ D̂′′′

1
√

4/(2−
√

2)0

z4

ξ

η

Ω∗

Â′′′′ D̂′′′′

Ĉ ′′′′B̂′′′′

φ′ = 0

φ = φ1

φ′ = 0

φ = φ0

1

H

0

z5

Figure 5.2.7: Schematic representation of the transform T4 : z4 → z5 from the first quadrant z4

onto the rectangle in the z5-plane by (5.2.34). The boundary conditions on the quadrilateral are

defined in (5.2.38) and its H is defined in (5.2.39). The heavy lines represent Dirichlet boundary

conditions otherwise they are Neumann. Transform T4 is the final “folding” to give a regular BVP

and an immediate recognition that the closed final domain admits an analytic harmonic-solution

that is linear in ξ.

From (5.2.15) and (5.2.29), we have

z5 =
1

K(m)

∫ z4

0

1

[(1− ζ2)(1−mζ2)]
1
2

dζ

=
1

K(m)
F (z4,m)

=
1

K
sn−1(z4,m), (5.2.34)

where

K = K(m). (5.2.35)

The last transformation T4 : z4 → z5 in the CTM, shown in Fig. 5.2.7, maps the first quadrant

z4 into a rectangle in the z5-plane. The rectangle of the z5-plane has corners at 0, 1, i(K
′
/K) and

1 + i(K
′
/K) where, analogously with (5.2.35),

K
′
= K ′(m). (5.2.36)

The points Â′′′, B̂′′′, Ĉ ′′′ and D̂′′′ in the z4-plane maps to points Â′′′′ = i(K
′
/K), B̂′′′′ = 0,

Ĉ ′′′′ = 1 and D̂′′′′ = 1 + i(K
′
/K) in the z5-plane.

By the sequence of composite transformations {Ti}4i=1 the original domain z1 = (x, y) ∈ Ω has
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Name of Action of Initial domain Final domain

transformation transformation

T1 z1 → z2 Quadrilateral in a full Complex line on a

complex plane upper half-plane

T2 z2 → z3 Complex line on a Complex line on a

upper half-plane upper half-plane

T3 z3 → z4 Complex line on a First quadrant in a

upper half-plane complex plane

T4 z4 → z5 First quadrant in a Quadrilateral in the first quadrant

complex plane of a complex plane

Table 5.2.1: Summary of composite transformations {Ti}4i=1 in the CTM.

been mapped onto a new closed domain z5 = (ξ, η) ∈ Ω∗, in which the transformed BVP has an

exact solution φ(p). In Ω∗ the stripline problem satisfies the PDE

∇2φ = 0 0 < ξ < 1, 0 < η < H, (5.2.37)

subject to the boundary conditions

φ(0, η) = φ0,

φ(1, η) = φ1,

φ
′
(ξ, 0) = φ

′
(ξ,H) = 0, (5.2.38)

in which H is the height of the rectangle (see Fig. 5.2.7) defined by

H =
K(
√

1−m2)

K(m)
. (5.2.39)

The nonsingular BVP (5.2.37) and (5.2.38) in Ω∗ (there are now no discontinuous boundary

conditions) has the general solution

φ(ξ, η) = φ(ξ) = (φ1 − φ0)ξ + φ0, (5.2.40)

which is symmetrical about the line η = H/2 over domain Ω∗.
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z1 z2 z3 z4 z5

Â (−1, 0) (−1, 0) (−∞, 0) (0,∞) (0, H)

B̂ (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

Ĉ (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)

D̂ (−1, 1) (−
√

2, 0) (2
√

2/(
√

2− 1), 0) ((2
√

2/(
√

2− 1)
1
2 , 0) (1, H)

Table 5.2.2: Composite transformations {Ti}4i=1 of the vertices (x, y) ∈ Ω in the z1-plane onto

(ξ, η) ∈ Ω∗ in the z5-plane for the stripline SBVP where H is defined in (5.2.39).

Although the outlined CTM theory corresponds to the stripline problem, Li and Lu [2000] showed

it can be applied to the Motz problem, subject to adaptations of the composite transformations

{Ti}4i=1.

5.2.3 Power-series solution of the CTM

In order to connect the final solution in the simplified domain z5 = (ξ, η) with the original solution

in domain z1 = (x, y), it is necessary to determine z5, z4, z3, z2 and z1 as power series. To this end,

we proceed to determine {zi}5i=2 as power series in z1 by the method of Rosser and Papamichael

[1975]. However, the corresponding solution φ(z1) will be referred to as the “near-exact” solution:

although this is an analytic solution, it is referred to as near-exact in the sense that some of the

infinite-power series will need to be truncated, and also, because of its restriction by the degree of

precision in the computer.

Introduced by Rosser and Papamichael [1975], the exact details of the power-series CTM solution

of a harmonic BVP are now difficult to obtain1. We aim to bring this method back into the light in

a form that is more detailed than the original, so that it can be used in related problems to generate

quasi-analytic solutions against which the results of numerical methods can be validated.

The power-series method is based on the harmonic series solution of the stripline problem (Fig.

5.2.3), namely

φ(z1) = φ0 +
∞∑
i=0

aiz
i+ 1

2
1 , (5.2.41)

1The author obtained a hard copy of Professor Papamichael’s rare paper directly through private communication
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where z1 = x+ iy. By taking the real part of both sides of (5.2.41), we obtain

φ(r cos θ, r sin θ) = φ0 +

∞∑
i=0

air
i+ 1

2 cos

(
i+

1

2

)
θ, (5.2.42)

in which the object of the exercise is to determine the coefficients ai as accurately as possible.

In order to calculate the coefficients ai we introduce the series F (x) defined by

F (x) ≡
∞∑
n=1

Fnx
n, (5.2.43)

whose jth power defines the coefficients F (j)
n of xn+j−1 in (F (x))j . That is,

(F (x))j =

∞∑
n=1

F (j)
n xn+j−1. (5.2.44)

By comparing powers of x in (5.2.44), (5.2.43) gives

F (1)
n = Fn (5.2.45)

and

F (j+1)
n =

n∑
r=1

FrF
(j)
n+1−r. (5.2.46)

Hence, provided Fn is known for 1 ≤ n ≤ N , F (j)
n can be calculated for all j and 1 ≤ n ≤ N .

If only the values for F (J)
n are required for 1 ≤ n ≤ N , one can derive them without finding F (j)

n

for 1 ≤ j ≤ J (Rosser and Papamichael [1975], Nijenhuis and Wilf [1975]). Taking the logarithm

of both sides of (5.2.44) yields

J logF (x) = log
∞∑
n=1

F (J)
n xn+J−1 (5.2.47)

which, after differentiating and rearranging, gives

J log

∞∑
n=1

F (J)
n xn+J−1

∞∑
k=1

kFkx
k−1 =

∞∑
n=1

(n+ J − 1)F (J)
n xn+J−2

∞∑
k=1

Fkx
k. (5.2.48)

Equating the coefficients of xM+J on both sides of (5.2.48) gives

J log

M+1∑
n=1

F (J)
n (M + 2− n)FM+2−n =

M+1∑
n=1

(n+ J − 1)F (J)
n FM+2−n, (5.2.49)
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hence, for M ≥ 1,

MF
(J)
M+1F1 =

M∑
n=1

(J(M + 1− n)− n+ 1)F (J)
n FM+2−n. (5.2.50)

If F1 6= 0 then (5.2.50) defines F (J)
n , beginning with

F
(J)
1 = (F1)J . (5.2.51)

Now, referring back to (5.2.41), let

Gi = ai−1, i ≥ 1, (5.2.52)

so that

φ(z1)z
1
2
1 =

∞∑
i=1

Giz
i
1 (5.2.53)

from which, by (5.2.43), the jth power satisfies

(φ(z1))j =
∞∑
i=1

Gi
(j)z1

i−1+jz
− j

2
1

=
∞∑
i=1

Gi
(j)z1

i−1+ j
2 , (5.2.54)

where Gi(j) is defined analogously to F (j)
i in (5.2.46).

In order to match the power-series solution (5.2.53) with the CTM solution φ in (5.2.40), we must

express the transformations {Ti}4i=1 in power-series form. The first of these transformations T1 in

(5.2.30), by sine series (5.2.22), can be expressed as

z2 = sn(Kz1,m)

= R(q)
∞∑
r=0

Ar(q)
(πz1

2K

)2r+1

=

∞∑
n=0

Cnz1
2n+1, (5.2.55)

where the coefficients Cn are determined by the explicit definition of Ar(q) in (5.2.23). By T2 in

(5.2.31), we have

z3 =
2
∑∞

n=0Cnz1
2n+1

1 +
∑∞

n=0Cnz1
2n+1

=

∞∑
n=0

Bnz1
n+1, (5.2.56)
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where the coefficients Bn are determined from Cn. Then, by T3 in (5.2.32),

z4 = z
1
2
1

( ∞∑
n=0

Bnz1
n

) 1
2

, (5.2.57)

in which the coefficients Bn are those in the power series

B(z1) =

∞∑
n=0

Bnz
n
1 , B0 6= 0, (5.2.58)

so that, because of (5.2.43), F (z1) and B(z1) are related by

B(z1) = B0(1 + F (z1)), (5.2.59)

so that Fn = Bn/B0 for n ≥ 1.

By construction of z4 in (5.2.57) the series expansion of [B(z1)]
1
J is required for J ≥ 1 where, by

(5.2.59),

[B(z1)]
1
J = B

1
J
0 (1 + F (z1))

1
J , (5.2.60)

and hence a new series, with coefficients Dn, is introduced that satisfies(
1 +

∞∑
n=1

Dnz
n
1

)
= (1 + F (z1))

1
J . (5.2.61)

Following (5.2.47)-(5.2.50), we take the logarithm of (5.2.61)

log

(
1 +

∞∑
n=1

Dnz
n
1

)
=

1

J
log

(
1 +

∞∑
k=1

Fkz
k
1

)
, (5.2.62)

then differentiate (5.2.62) with respect to z1 and clear all fractions to obtain

J

∞∑
n=1

nDnz
n−1
1

(
1 +

∞∑
k=1

Fkz
k
1

)
=

∞∑
k=1

kFkz
k−1
1

(
1 +

∞∑
n=1

Dnz
n
1

)
, (5.2.63)

which may be simplified as

J

[ ∞∑
n=0

(n+ 1)Dn+1z
n
1 +

∞∑
m=1

m∑
n=1

nDnFm−n+1z
m
1

]

=
∞∑
n=0

(n+ 1)Fn+1z
n
1 +

∞∑
m=1

m∑
n=1

(m− n+ 1)DnFm−n+1z
m
1 . (5.2.64)
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Matching the coefficients of zM
1 in (5.2.64) yields explicit expressions for the coefficients Dn,

namely

D1 =
F1

J
(5.2.65)

and

DM =
1

JM

[
MFM +

M−1∑
n=1

(M − n(J + 1))DnFM−n

]
, M ≥ 2. (5.2.66)

By combining (5.2.57), (5.2.58) and (5.2.60), and by taking J = 2 because of the transformation

T3 in (5.2.32), we have

z4 = [B(z1)z1]
1
2 (5.2.67)

= z
1
2
1 B

1
2
0 [1 + F (z1)]

1
2 (5.2.68)

which, as the series form of z4 is known from the definition (5.2.22) of the elliptic sn function,

defines Fj for all j ≥ 1 and, in effect, Dj through (5.2.65) and (5.2.66).

The first three transformations in the CTM have been defined in a power-series form with known

coefficients. The inverse for the final mapping T4 in (5.2.34), however, requires the parametric

inversion and comparisons of the coefficients of two infinite series. Instead, consistent with Rosser

and Papamichael [1975], we use the following. By the sn series (5.2.22) and T4 in (5.2.34),

z4 = sn(Kz5,m) (5.2.69)

=

∞∑
n=1

Enz
2n−1
5 (5.2.70)

=
∞∑
n=1

En(φ(z1))2n−1, (5.2.71)

this last result arising because z5 is the required solution φ. The coefficients En in (5.2.71) are

determined by matching the series in (5.2.71) with the known expression for the sn series (5.2.22),

i.e.

En = RAn−1(q)
(π

2

)2n−1
, (5.2.72)

where R = R(q) is dependent upon nome q and parameter m defined in (5.2.16), (5.2.18) and

(5.2.33).

We now have two expressions for z4, i.e. (5.2.67) and (5.2.71), that by definition must match,
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therefore
∞∑
n=1

En(φ(z1))2n−1 = [B(z1)z1]
1
2 . (5.2.73)

The combination of (5.2.53), (5.2.54), (5.2.60) and (5.2.73) yields

∞∑
n=1

En

∞∑
m=1

G(2n−1)
m z

m+n− 3
2

1 = z
1
2
1 B

1
2
0

(
1 +

∞∑
n=1

Dnz
n
1

)
, (5.2.74)

in which, by (5.2.45), G(1)
m ≡ Gm and (5.2.74) implies

E1

∞∑
m=1

Gmz
m−1
1 +

∞∑
r=2

∞∑
m=1

ErG
(2r−1)
m zm−2+r

1 = B
1
2
0

(
1 +

∞∑
m=1

Dmz
m
1

)
. (5.2.75)

By equating the coefficient of zM
1 when M = 0, we have

G1 =
B

1
2
0

E1
. (5.2.76)

Hence (5.2.75) simplifies to

E1

∞∑
m=2

Gmz
m−1
1 = B

1
2
0

∞∑
m=1

Dmz
m
1 −

∞∑
r=2

∞∑
m=1

ErG
(2r−1)
m zm−2+r

1 . (5.2.77)

By considering the coefficient of zM
1 for M ≥ 1 in (5.2.75), GM is deduced to be

GM =
1

E1

[
B

1
2
0 DM−1 −

M∑
r=2

ErG
(2r−1)
M+1−r

]
, M ≥ 2 (5.2.78)

which, by the relation ai−1 = Gi in (5.2.52), determines the coefficients in the expansion (5.2.41)

of the solution of the stripline problem, thereby solving the original SBVP. However, in practice

only a finite truncation, defined as φM , of the series in (5.2.41) is used, from which (5.2.41) is

approximated by

φM(z1) = φ0 +
M∑
i=0

aiz
i+ 1

2
1 . (5.2.79)

A summary of the power-series method described in this section is given in the flowchart of Fig.

5.2.8, which is subsequently implemented to derive a “near-exact” (i.e. truncated power-series)

solution of the stripline SBVP.
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T1 : z2 = sn(Kz1,m)

expressed as series

expansion C(z1)

T2 : z3 = z3(z2)

bilinear transformation

defines series B(z1)

T3 : z4 =
√
z3

series expressible in

the form [B(z1)z1]
1
2

B0 and F (z1) are

determined by

(5.2.58) and (5.2.60)

T4 : z5 = 1
K

sn−1(z4,m)

⇔ z4 = sn(Kz5,m)

z4 =

∞∑
j=1

Ejz5
2j−1

Ej is determined using

series expansion for

elliptic function sn

Ej is related to

B(z1) in (5.2.73)

Eqns. (5.2.65) and

(5.2.66) determine Dj

Expression for Gj in

terms of B0, Ej and Dj

aj−1 = Gj

Analytic expansion

solution

φ(z1) =
∞∑
j=0

ajz1
j+ 1

2

Figure 5.2.8: Flowchart summary of the power-series solution of the CTM. For implementation,

the infinite limits of the summations are truncated to M , in accordance with (5.2.79).

129



Pseudo-Analytic Solution of a Singular Harmonic Boundary Value Problem

5.3 Analytic solution of the stripline problem by the CTM

Recall, for the stripline SBVP in Fig. 5.1.2 that, by (5.2.26), we have m = 1/2 for which the

complete elliptic function (5.2.15) can be evaluated numerically as

K(m) = 1.85407467730 (5.3.1)

and, by (5.2.33), we also have

m =
2−
√

2

4
. (5.3.2)

Thus (5.2.9), (5.2.15), (5.2.18) and (5.2.28) are respectively evaluated (here using Maple 12) to be

K = K(m) = 1.63358630746, (5.3.3)

K
′

= K ′(m) = 2.40009445913, (5.3.4)

R = R(q) =
2π

K
√
m

= 10.0507419612, (5.3.5)

q = q(m) = exp

(
−πK

′

K

)
= 0.00989540694, (5.3.6)

all to 12 significant figures. Note that in the works of Rosser and Papamichael [1975], (5.3.3)-

(5.3.6) had to be approximated by highly-accurate computations of the truncated series, whereas

this feature is inbuilt in Maple in which the number of digits can be chosen a priori.

The power series for each of the transformations {Ti}4i=1 can be explicitly defined. For example

(5.2.55) becomes, for m = 1/2,

z2 = 2

[
v − v3 +

11

10
v5 − 13

10
v7 +

181

120
v9 − 351

200
v11 +

31861

15600
v13

− 185363

78000
v15 +

9777931

3536000
v17 − 2625613

816000
v19 + . . .

]
, (5.3.7)

where

v =
Kz1

2
. (5.3.8)

Similarly, applying the binomial theorem or Padé approximants to (5.3.7), the power-series form

of the bilinear transformation (5.2.31) for the stripline problem is

z3 = 4v

[
1− 2v + 3v2 − 4v3 +

51

10
v4 − 32

5
v5 +

79

10
v6

− 48

5
v7 +

1381

120
v8 − 1024

75
v9 +

3213

200
v10 + . . .

]
, (5.3.9)
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where v is as defined in (5.3.8).

By the definition of transformation T3, the square root of (5.3.9) yields

z4 = 2
√
v

[
1− 2v + 3v2 − 4v3 +

51

10
v4 − 32

5
v5 +

79

10
v6

− 48

5
v7 +

1381

120
v8 − 1024

75
v9 +

3213

200
v10 + . . .

] 1
2

. (5.3.10)

Comparing (5.3.10) with (5.2.68), we explicitly determine that

B0 = 2K, (5.3.11)

F (z1) = −Kz1 +
3K2z1

2

4
− K3z1

3

2
+ . . . . (5.3.12)

Therefore, by the construction of F (z1) in (5.2.43), we have

F1 = −K,F2 =
3

4
K2, F3 = −1

2
K3, . . . , (5.3.13)

thus (5.2.65) gives

D1 = −K
2

(5.3.14)

and Dj for j ≥ 2 is defined by (5.2.66).

Now, by (5.2.78) and the summary in Fig. 5.2.8, the computed Dj , Ej and B0 yield Gj for j =

1, . . . ,M and (5.2.52) yields approximations of the coefficients ai; the first ten ai are presented

in Table 5.3.1. The coefficients ai in the analytical expansion solution of the stripline problem

are presented, as they will affect subsequent discussions on both the accuracy of the CTM and the

numerical methods employed to solve the stripline SBVP.

Thus armed with a near-analytic solution, which was computed using 100 working digits, the CTM

solution φM of the stripline SBVP in (5.2.79) can be computed, along with its normal derivative on

all boundaries. To this end, Fig. 5.3.1 depicts the computed forms of φM , ∂φM/∂x and ∂φM/∂y.

In Fig. 5.3.1, the finite nature of the jump at the origin in both derivatives of φM is a result of

computing data on a finite mesh: in reality these jumps are infinite. Moreover, the discontinuities

occur only in terms of the normal derivatives of φM and not in terms of φM itself, from which it is

clear that discontinuous boundary data will adversely affect the performance of standard BEMs.

Using the power-series form of the CTM (Rosser and Papamichael [1975]), we have thus computed

a near-exact approximation of the solution of the singular stripline SBVP against which numerical

approximation techniques can be validated.
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i Ei ai−1

1 1.63358630746 589.395110654

2 −0.83296899732 −128.785658529

3 0.29778845257 25.3262556623

4 −0.14579375616 11.8583749967

5 0.06898886628 2.11607464631

6 −0.03159457003 −0.48639180785

7 0.01463391823 0.40467751314

8 −0.00678919036 0.12772352310

9 0.00314429524 0.04937289333

10 −0.00145646174 −0.02260300040

Table 5.3.1: The first ten coefficients Ei and ai in the stripline problem computed to 12 significant

figures, using (5.2.52) and (5.2.72) in Maple 12. The ai coefficients are presented because these

are the required coefficients in the original solution (5.2.79) in the z1 = (x, y)-plane. The Ei

coefficients on the other hand, are presented in keeping with Rosser and Papamichael [1975] so

that subsequent implementations, by other authors, of the CTM for the stripline problem can be

verified against these.
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Figure 5.3.1: The near-exact analytic solution φM and its normal derivatives, |∂φM/∂x| and

|∂φM/∂y|, on all boundaries of the stripline problem as derived by the power-series CTM for

φ0 = 500, φ1 = 1000 and M = 60. The finite nature of the jump at the origin in both derivatives

of φM is a result of computing data on a finite mesh: in reality these jumps are infinite.
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5.4 Summary and discussion

This chapter was based on the derivation of an pseudo-analytic solution of a two-dimensional

singular harmonic BVP using a conformal transformation method (CTM).

The CTM, although well-established, was extensively outlined owing to parts of the details being

difficult to obtain. The CTM maps the original bounded (singular) domain into quadrilateral

containing no singularities, and to which a quasi-analytic solution is known. Although the mapping

technique produces an analytic solution to the original problem, it involves elliptic functions and

integrals which have to be evaluated numerically, so that in practice only a near-exact solution can

be obtained.

The implementation of the CTM was achieved through a power-series method, which approximates

the solution to a pre-defined accuracy, by the analogy of Rosser and Papamichael [1975]. In this

chapter we outlined CTM and power-series for only the stripline problem, however, the theory is

applicable to more general BVPs (Whiteman and Papamichael [1971], Li and Lu [2000]).

Whiteman and Papamichael [1972] showed that the results by the CTM compare favourably with

those obtained previously by other methods, such as the (discrete) finite-difference and finite-

element method. Two obvious advantages of the CTM, over a discrete method, are: first, that

the original problem itself rather than some approximating problem is solved, and; second, that the

same technique produces the solution at all points right up to the singularities. The solution can

also be obtained at any desired point in the domain without the need to interpolate between the

values at mesh points.

The near-exact analytic solution derived in this chapter using the CTM, will serve as a basis to

which all numerical methods are validated against in the subsequent chapter.
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Chapter 6

Numerical Solutions of Singular

Harmonic Boundary Value Problems by

Improved Boundary Element Methods

In chapter 5 we derived a near-exact analytic solution of a singular harmonic BVP, known as the

stripline problem (see Fig. 5.1.2). Now, numerical methods are considered for solving the singular

stripline problem.

The boundary element method (BEM) has proved to be a successful tool for the numerical solution

of two-dimensional harmonic SBVPs (Symm [1973], Ingham et al. [1981a], Manzoor [1984]).

However, it is well-known that the presence of a boundary singularity tends to decrease the rate

of convergence of the numerical solution with decreasing element size (Motz [1946], Woods

[1953]). There exist numerous modified numerical schemes devised to cope with the presence

of boundary singularities. For example, Symm [1973] rendered the singular problem into a regular

one by employing the singularity subtraction method, in which the singularity’s known analytical

form, in terms of a series expansion, was subtracted from the entire solution before the numerical

procedure was employed. Xanthis et al. [1981] on the other hand, used the analytic nature of the

singularity to build in the singular behaviour on only those elements closest to the singularity, i.e.

the singularity incorporation method. More recently, Kelmanson and Lonsdale [1995] employed
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a singularity annihilation method which, by utilising a suitable Green’s function in the boundary-

integral equation reformulation, the boundary singularities are placed in a region in which the

Green’s function are asymptotically small, therefore annihilating most of the singular behaviour.

In this chapter, the aim is to illustrate the application of the singularity subtraction and singularity

incorporation method for the stripline SBVP using the constant BEM. The novel feature is that

modified BEM techniques, defined and applied in chapter 4, will be developed in order to improve

the accuracy of both the singularity subtraction and singularity incorporation methods. The pseudo-

analytic solution of stripline SBVP, which was derived in chapter 5 using a CTM, will be used to

validate the numerical methods.

The remainder of this chapter is as follows. In §6.1 we present the boundary-integral-equation

form of an harmonic BVP. In §6.2 we present BEMs for approximating the solution of a boundary-

integral equation for the stripline SBVP. In §6.5 we use the near-exact analytic solution of the

stripline problem of chapter 5 to validate the BEM solutions of §6.2. Finally, in accordance with

the modified technique of chapter 4, new, modified BEMs are defined in §6.6, that are validated for

the stripline SBVP in §6.7.

6.1 The boundary-integral equation

The stripline problem, which is defined in §5.1, satisfies Laplace’s equation, i.e.

∇2φ = 0, (6.1.1)

in the simply connected domain Ω enclosed by boundary ∂Ω. To recap on chapter 4, we derive the

boundary-integral-equation form of (6.1.1) as follows. First, for the remainder of this chapter, the

field point p ∈ Ω ∪ ∂Ω and the source point q ∈ ∂Ω unless otherwise stated. Then using Green’s

third identity, the elliptic partial differential equation (6.1.1) can be expressed as a boundary-

integral equation in terms of φ and its (outward) normal derivative φ′. That is,

η(p)φ(p) =

∫
∂Ω
φ(q)G′(p, q) dq −

∫
∂Ω
φ′(q)G(p, q) dq, (6.1.2)
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where G(p, q) = log |p− q| and

η(p) =


2π p ∈ Ω,

0 p /∈ Ω ∪ ∂Ω,

α p ∈ ∂Ω,

(6.1.3)

in which α is the internal angle between the tangents to ∂Ω on either side of p.

The data prescribed along ∂Ω in the stripline problem of Fig. 5.1.2 is a mixture of Dirichlet

and Neumann conditions. Namely φ(x, y) is prescribed on ∂Ωφ and φ′(x, y) on ∂Ωφ′ , where

∂Ωφ ∩ ∂Ωφ′ = ∂Ω. When p = q lies on the boundary, (6.1.2) becomes a closed-form equation

between the potentials and their derivatives on the boundary, and one can solve for the unknown

boundary data using∫
∂Ω
φ(q)G′(q, q) dq −

∫
∂Ω
φ′(q)G(q, q)− αφ(q) = 0, q ∈ ∂Ω, (6.1.4)

provided that ∂Ω is everywhere smooth. Approximate solutions of (6.1.4) completes the boundary

data, whereafter (6.1.2) can be used to find the harmonic function anywhere in Ω. In this chapter

we use boundary element methods (BEMs) to determine the approximate solutions of (6.1.4).

6.2 The constant boundary element method (CBEM)

In the BEM we first discretise the boundary ∂Ω into n smooth elements, e(j) say, where

∂Ω =
n⋃
j=1

e(j), (6.2.1)

so that (6.1.2) becomes

η(p)φ(p) =

n∑
j=1

∫
e(j)

φ(q)G′(p, q) dq −
∫
e(j)

φ′(q)G(p, q) dq. (6.2.2)

The constant BEM (CBEM) approximates φ(q) and φ′(q) by the piecewise-constant functions φn,j

and φ′n,j over each element. As the derivation of a the CBEM was discussed at length in §4.2 of

chapter 4, only the basic outline is reviewed in this chapter.

The discretised form of (6.2.2) with piecewise-constant solution φn is

η(p)φn(p) =

n∑
j=1

{
φn,j

∫
e(j)

G′(p, q) dq − φ′n,j
∫
e(j)

G(p, q) dq

}
, (6.2.3)
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Figure 6.2.1: Log plot of the relative error in the CBEM solution of the stripline SBVP, |ε̃n/φ|, for

different values of n. The singular point is located at (x, y) = (0, 0) and each surface corresponds

to n = 24 (red), n = 48 (blue) and n = 96 (green). The relative errors increase near the corners

owing to the O(h) pollution (theoretically predicted using (4.2.31) in §4.2.1), although this is

overshadowed by the large error in the neighbourhood of the singular point; this is an example of

the CBEM failing to model the singular behaviour.

in which φn,j ≡ φ(qn,j) and φ′n,j ≡ φ′(qn,j) where qn,j is the mid-point of e(j). Collocating

(6.2.3) at the mid-point of each element, by taking p = qn,i, i = 1, . . . , n, yields a system of n

equations (defined in (4.2.10)), whose solution yields approximations of the unknown boundary

data φn,j on ∂Ωφ′ and φ′n,j on ∂Ωφ. Using the approximated boundary conditions to complete

all the nodal data, φn(p) in (6.2.3) can be determined everywhere on Ω: this is referred to as the

numerical discretised solution φ̃n in (4.2.11).

Using the nomenclature of §4.2, the numerical CBEM error is defined by

ε̃n(p) ≡ φ(p)− φ̃n(p), (6.2.4)

and it is presented for the stripline SBVP in Fig. 6.2.1 and, in an alternative form, in Fig.

6.2.2. Figs. 6.2.1 and 6.2.2 both show a large error in the neighbourhood of the singular point

in comparison with the error over the remainder of Ω: this demonstrates the inability of the

piecewise-constant boundary representation to model the singularity arising from the discontinuity

in boundary conditions. The effect of the singularity is also evident in the root-mean-square error

(RMSE) σ̃n (defined in (4.2.43)), the error convergence rate ρ and the error order p of the CBEM
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Figure 6.2.2: Contour plots of log |ε̃n/φ|, the logarithm of the relative error in the CBEM solution

of the stripline SBVP, for n = 24, 48 and 96. The singular point is located at (x, y) = (0, 0). These

plots separate and quantify the three error surfaces given in Fig. 6.2.1. By comparing sub-figure

(b) with Fig. 6.2.1(a), the effect of the singularity is evidenced from the large errors about the

origin.

solution for the stripline SBVP in Table 6.2.1. By comparison with the corresponding CBEM

quantities for a nonsingular BVP in Table 4.2.1, Table 6.2.1 shows an increase in the RMSE and a

decrease in both the error convergence rate and order. In other words, the presence of a singularity

in a BVP has adversely affected the convergence of the CBEM with decreasing mesh size.

The CBEM errors for the stripline SBVP evidence the well-known adverse affect upon the

accuracy in any numerical method when that fails to model the behaviour of a singularity (Motz

[1946], Woods [1953], Ingham et al. [1981c]). As taking higher-order Lagrangian interpolation

approximations are ineffective at recovering the accuracy when computing the solution of a

singular problem, there are numerous techniques that modify the existing CBEM (Jaswon and

Symm [1977], Ingham et al. [1981a,b], Manzoor [1984], Kelmanson [1983a,b, 1984]). These
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n σ̃n ρ p

24 0.0336 2.4938 1.3183

48 0.0135 2.5489 1.3499

96 0.0053

Table 6.2.1: The RMSE σ̃n, error convergence rate ρ and the error order p in the CBEM solution

of the stripline SBVP, for n = 24, 48, 96 and α = 2 (= β). These results correspond to the errors

depicted in Fig. 6.2.2. Due to the singularity in the BVP, the error convergence rate and the error

order are a reduction upon that in the CBEM for a nonsingular BVP. For example, using Table

4.2.1, when n = 48, we find p ≈ 1.75 in the CBEM for a nonsingular BVP, whereas for a SBVP

the CBEM error is p ≈ 1.35.

techniques, however, are often based on approximating the harmonic function φ near the singular

point by the introduction of special functions displaying the required singular behaviour. In

this chapter, we consider two such techniques: the singularity incorporation method (SIM) and

the singularity subtraction method (SSM). In the SSM, the analytic form of the singularity is

subtracted throughout, yielding a uniformly nonsingular BVP (Symm [1973]), and in the SIM, the

analytic form of the singularity is built into only those boundary elements closest to the singularity

(Xanthis et al. [1981]). Hence the SSM yields a non-physical solution, which requires post-

processing, of a nonsingular BVP in which all physical boundary conditions are pre-processed,

whereas the SIM is used to compute a physical solution of a singular BVP in which the form of

the singularity is included as accurately as possible. Both methods necessitate determination of

unknown coefficients of eigenfunctions in the analytic form of the singularity.

Separable solutions of (6.1.1) in polar coordinates centred at (0, 0), give the analytic form of the

singularity as

φs(r, θ) = φ0 +

∞∑
i=1

αir
λifi(r, θ), (r, θ) ∈ Ω, (6.2.5)

where αi are unknown eigenfunction coefficients, λi are constants (which may be complex in

a biharmonic problem, Poullikkas et al. [1998]) and fi(λ, θ) represents the θ-dependence of the

eigensolution. Following (5.1.1), we have

fi(λ, θ) = cos(λiθ), i ∈ N, (6.2.6)
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and, by the boundary conditions either side of (0, 0) on y = 0,

λi =
(2i− 1)

2
, i ∈ N. (6.2.7)

That is, (6.2.7) reveals that φ has leading order O(r
1
2 ), and so φ′ has leading order O(r−

1
2 ), which

is the most dominant form of a singularity possible for harmonic problems. Hence if the SIM and

the SSM methods are effective on this type of boundary singularity they will readily cope with

weaker forms. The SIM and the SSM are now implemented and their results are compared with

one another, as well as the analytic solution generated by the CTM in §5.2.

6.3 The singularity incorporation constant boundary element

method (SICBEM)

Following Kelmanson [1983a], the elements e(j) in the domain discretisation (6.2.1) are numbered

anticlockwise from the singular point, as illustrated in Fig. 6.3.1. The SIM takes φ ≈ φs and

φ′ ≈ φ′s over the M elements either side of the singular point. Over the remaining (n − M)

elements, φ and φ′ are approximated by piecewise Lagrangian interpolation. For example,

the singularity incorporated constant BEM (SICBEM), with approximate solution φ(SI,M)
n , uses

piecewise-constant Lagrangian approximations over (n−M) elements, as per the CBEM, so that

η(p)φ(SI,M)
n (p) =

M∑
j=1

∫
e(j)

φ(M)
s (q)G′(p, q) dq +

n∑
j=M+1

∫
e(j)

φn,jG
′(p, q) dq

−
n−M∑
j=1

∫
e(j)

φ′n,jG(p, q) dq −
n∑

j=n−M+1

∫
e(j)

φ′(M)
s (q)G(p, q) dq, (6.3.1)

where φn,j ≡ φ(qn,j) and φ′n,j ≡ φ′(qn,j). The function φ(M)
s denotes the M th-order truncation of

φs in (6.2.5), i.e. (Manzoor [1984])

φ(M)
s (r, θ) = φ0 +

M∑
i=1

αir
λifi(λ, θ), (r, θ) ∈ Ω, (6.3.2)

whereby the number of unknowns in (6.3.1) is equal to n.

Without loss of generality, we take M = 2 in the SICBEM, as this is sufficient to illustrate the
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e(1) e(2)e(n)e(n−1). . . . . .
× ××× × ××

Figure 6.3.1: Anticlockwise numbering of the boundary elements in the discretised boundary from

the singularity point O, consistent with the stripline problem in Fig. 5.1.2.

impact of the singularity incorporation without complicating the issue with over-complex algebra.

Thus, by (6.2.6) and (6.2.7), φ(M)
s becomes

φ(2)
s (r, θ) = φ0 + α1r

1
2 cos

(
θ

2

)
+ α2r

3
2 cos

(
3θ

2

)
, (6.3.3)

which is applied to the two elements either side of the singularity, e(1) and e(n), in accordance with

Fig. 6.3.1. On e(n) the outward normal derivative of φ(M)
s is fixed in plane polar coordinates as

φ′(M)
s (r, θ) =

1

r

∂φM
s

∂θ
, (6.3.4)

so that, by (6.3.3), we have

φ′(2)s (r, θ) = −1

2

{
α1r

− 1
2 sin

(
θ

2

)
+ 3α2r

1
2 sin

(
3θ

2

)}
. (6.3.5)

Note, the first term on the right-hand side of (6.3.5) contains the highly-singular behaviour as

r → 0. In the stripline SBVP, φ(2)
s and φ′(2)s are applied only along y = 0, i.e. θ = 0 or θ = π, thus

(6.3.3) and (6.3.5) reduce to

φ(2)
s |θ=0 = φ0 + α1r

1
2 + α2r

3
2 ,

φ′(2)s |θ=π = −1

2
α1r

− 1
2 +

3

2
α2r

1
2 , (6.3.6)

so that (6.3.1) becomes

η(p)φ(SI,2)
n (p) =

∫
e(1)

(
φ0 + α1r

1
2 + α2r

3
2

)
G′(p, q) dq +

n∑
j=2

∫
e(j)

φn,jG
′(p, q) dq

−
n−1∑
j=1

∫
e(j)

φ′n,jG(p, q) dq −
∫
e(n)

(
−1

2
α1r

− 1
2 +

3

2
α2r

1
2

)
G(p, q) dq. (6.3.7)
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For the remainder of this chapter, unless otherwise stated, indices i and j take the values 1, . . . , n.

Discretising (6.3.7) at the mid-points p = qn,i yields the system of n equations

φ0Ai1 + α1Ci1 + α2Di1 +
n∑
j=2

φn,jAij +
n−1∑
j=1

φ′n,jBij +
α1

2
Ein +

3α2

2
Fin

=

 η1

(
φ0 + α1r1

1
2 + α2r1

3
2

)
i = 1,

ηiφn,i i = 2, . . . , n,
(6.3.8)

where r1 = r(qn,1) = |x1| is the mid-point of e(1), the coefficients are given by

Cij =

∫
e(j)

r
1
2G′(qn,i, q) dq, (6.3.9)

Dij =

∫
e(j)

r
3
2G′(qn,i, q) dq, (6.3.10)

Eij =

∫
e(j)

r−
1
2G(qn,i, q) dq, (6.3.11)

Fij = −
∫
e(j)

r
1
2G(qn,i, q) dq, (6.3.12)

and the integrals Aij and Bij are defined as in (4.2.8). In (6.3.9)-(6.3.12) r is the distance from

the origin to point q and the integrals may be evaluated analytically provided each element e(j) is

a straight-line segment (see Appendix D).

Using Âij in (4.2.9), system (6.3.8) is equivalent to

φ0Âi1 + α1

(
Ci1 +

1

2
Ein − η1δi1r1

1
2

)
+

n∑
j=2

φn,jÂij

= −α2

(
Di1 +

3

2
Fin − η1δi1r1

3
2

)
−
n−1∑
j=1

φ′n,jBij . (6.3.13)

Eqn. (6.3.13) can be cast into the form MxSI = t, in which the vector xSI contains the (n − 2)

unknown mid-nodal values of φn,j on ∂Ωφ′ and φ′n,j on ∂Ωφ and the two unknown singularity

coefficients α1 and α2. The vector t contains the prescribed boundary conditions, i.e. φ on ∂Ωφ,

φ′ on ∂Ωφ′ and φ0Âi1.

The collocated SICBEM (6.3.13) is a minor variation upon the corresponding CBEM system
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HxC = g, where

Mij =


(C11 − 1

2E1n − η1r1
1
2 ) H12 . . . H1(n−1) (D11 − 3

2F1n − η1r1
3
2 )

(C21 − 1
2E2n) H22 . . . H2(n−1) (D21 − 3

2F2n)
...

. . .
...

(Cn1 − 1
2Enn) Hn2 . . . Hn(n−1) (Dn1 − 3

2Fnn)

 , (6.3.14)

xSI,i =



α1

xC,2

xC,3

...

xC,n−1

α2


(6.3.15)

and

ti = gi + ei = gi − φ0Âi1. (6.3.16)

The dense system MxSI = t is solved using the NAG routine F07AAF, thus completing the

unknown boundary data in (6.1.4). With all nodal boundary data now prespecified or approximated,

φ
(SI,2)
n in (6.3.7) can be computed directly.

By analogy with the CBEM in chapter 4, there are two types of solutions for the SICBEM: the

theoretical discretised solution φ(SI,2)
n in (6.3.7) and the numerical discretised solution, the latter

of which is defined by φ̃(SI,2)
n . Consistent with the theoretical and numerical discretised solutions

of the CBEM, φ(SI,2)
n is defined by a fully specified boundary solution whereas φ̃(SI,2)

n is defined

by a partly specified (partly approximated) boundary solution. In other words, the theoretical

discretised solution is generated without having to go through the two-stage process, i.e. is simply

based upon (6.1.2), whereas the numerical discretised solution is defined by both (6.1.2) and

(6.1.4). Therefore the theoretical solution enables a quantification of the error in the Lagrangian

interpolation, which dominates the error in the BEM, whereas the numerical solution includes both

Lagrangian interpolation and matrix inversion errors. Throughout the remainder of this chapter,

we will define the theoretically and numerically derived solutions (and their corresponding errors)

in the same way.
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Based on φ(SI,2)
n in (6.3.7), the numerical discretised solution φ̃(SI,2)

n satisfies

φ̃(SI,2)
n (p) =

1

η(p)


∫
e(1)

(
φ0 + α̃1r

1
2 + α̃2r

3
2

)
G′(p, q) dq +

n∑
j=2

∫
e(j)

φ̃n,jG
′(p, q) dq

−
n−1∑
j=1

∫
e(j)

φ̃′n,jG(p, q) dq −
∫
e(n)

(
−1

2
α̃1r

− 1
2 +

3

2
α̃2r

1
2

)
G(p, q) dq

 , (6.3.17)

in which α̃i are the numerically computed forms of αi from solving (6.3.13), and

φ̃n,j =

 φ(qn,j) if e(j) ⊆ ∂Ωφ,

φ̃(qn,j) otherwise,
and φ̃′n,j =

 φ′(qn,j) if e(j) ⊆ ∂Ωφ′ ,

φ̃′(qn,j) otherwise.
(6.3.18)

6.3.1 Error analysis of the SICBEM

By comparing φ̃(SI,2)
n (p) with the exact solution φ(p), the numerical SICBEM error is defined by

ε̃(SI,2)
n (p) ≡ φ(p)− φ̃(SI,2)

n (p), (6.3.19)

which, by the linearity of (6.1.2) and (6.3.17), satisfies Green’s integral formulae, i.e.

η(p)ε̃(SI,2)
n (p) =

n∑
j=1

{∫
e(j)

ε̃
(SI,2)
n,j (q) G′(p, q) dq −

∫
e(j)

ε̃
′(SI,2)
n,j (q) G(p, q) dq

}
, (6.3.20)

where

ε̃
(SI,2)
n,j (q) =

 φ(q)− φ̃(2)
s (q) j = 1,

φ(q)− φ̃n,j j = 2, . . . , n
(6.3.21)

and

ε̃
′(SI,2)
n,j (q) =

 φ′(q)− φ̃′n,j j = 1, . . . , n− 1,

φ′(q)− φ̃′(2)s (q) j = n.
(6.3.22)

Note that in (6.3.21) and (6.3.22), φ̃(2)
s is the numerical form of φ(2)

s with singular coefficients α̃i

computed from solving MxSI = t. Therefore, by (5.1.1), we have

φ(q)− φ̃(2)
s (q) =

2∑
j=1

(aj − α̃j)rj−
1
2 cos

[(
j − 1

2

)
θ

]

+
∞∑
j=3

ajr
j− 1

2 cos

[(
j − 1

2

)
θ

]
(6.3.23)
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and

φ′(q)− φ̃′(2)s (q) =
2∑
j=1

(aj − α̃j)
(
j − 1

2

)
rj−

3
2 sin

[(
j − 3

2

)
θ

]

+

∞∑
j=3

(
j − 1

2

)
ajr

j− 3
2 sin

[(
j − 3

2

)
θ

]
. (6.3.24)

Similarly, by comparing φ(SI,2)
n (p) with the exact solution φ(p), the theoretical SICBEM error is

defined by

ε(SI,2)
n (p) ≡ φ(p)− φ(SI,2)

n (p). (6.3.25)

To simplify the following error analysis, we define the functions

φ(α,β)(q) ≡
β∑
j=α

ajr
j− 1

2 cos

[(
j − 1

2

)
θ

]
(6.3.26)

and

φ′(α,β)(q) ≡
β∑
j=α

(
j − 1

2

)
ajr

j− 3
2 sin

[(
j − 3

2

)
θ

]
, (6.3.27)

so that φ(p) = φ0 + φ(1,∞)(p) recovers solution (5.1.1). Then, by linearity of (6.1.2) and (6.3.7),

the theoretical error of the SICBEM (6.3.7) satisfies Green’s integral formulae, i.e.

η(p)ε(SI,2)
n (p) =

n∑
j=1

{∫
e(j)

ε
(SI,2)
n,j (q) G′(p, q) dq −

∫
e(j)

ε
′(SI,2)
n,j (q) G(p, q) dq

}
, (6.3.28)

where

ε
(SI,2)
n,j (q) =

 φ(3,∞)(q) j = 1,

φ(q)− φn,j j = 2, . . . , n
(6.3.29)

and

ε
′(SI,2)
n,j (q) =

 φ′(q)− φ′n,j j = 1, . . . , n− 1,

φ′(3,∞)(q) j = n.
(6.3.30)

In (6.3.29) we have φ(3,∞)(q) applied only on q ∈ e(1), where θ = 0 and r = x, hence, by (5.1.1)

and (6.3.26), ε(SI,2)
n,1 (q) is equivalent to

φ(3,∞)(q) =

∞∑
j=3

ajx
j− 1

2 , q = (x, y) ∈ e(1). (6.3.31)
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Similarly, in (6.3.30) we have φ′(3,∞)(q) applied only on q ∈ e(n), where θ = π and r = −x,

hence, by (5.1.1) and (6.3.27), ε′(SI,2)
n,n (q) is equivalent to

φ′(3,∞)(q) =

∞∑
j=3

(
j − 1

2

)
aj(−1)j(−x)j−

3
2 , q = (x, y) ∈ e(n). (6.3.32)

By comparison with the components of the CBEM error in (4.2.22) and (4.2.23), the SICBEM error

components (6.3.29) and (6.3.30) differ on the first and last element only; this is depicted in Fig.

6.3.2 for the stripline SBVP. Fig. 6.3.2 reiterates the results of the CBEM error in Fig. 6.2.1, namely

the CBEMs inability to model the true behaviour of φ and its derivative φ′ in the neighbourhood of

the singular point. Another feature of the results in Fig. 6.3.2 is that the SICBEM error is smaller

than the CBEM error. That is, on e(1)

‖ε(SI,2)
n,1 ‖∞ � ‖εn,1‖∞ (6.3.33)

and, on e(n),

‖ε′(SI,2)
n,n ‖∞ � ‖ε′n,n‖∞. (6.3.34)

Therefore, by (6.3.33) and (6.3.34), we have

‖ε(SI,2)
n ‖∞ � ‖εn‖∞, (6.3.35)

i.e. theoretically the SICBEM error ε(SI,2)
n is smaller than the standard CBEM error εn.

When the computed α̃j in the numerical discretised SICBEM satisfy

|aj − α̃j | � |aj |, (6.3.36)

where aj are the coefficients in the analytic solution (5.1.1), we have

φ(q)− φ̃(2)
s (q) ≈ φ(3,∞)(q) (6.3.37)

and

φ′(q)− φ̃′(2)
s (q) ≈ φ′(3,∞)(q). (6.3.38)

Hence (6.2.4), (6.3.20), (6.3.35) and (6.3.36) imply

‖ε̃(SI,2)
n ‖∞ � ‖ε̃n‖∞, (6.3.39)

where ε̃(SI,2)
n is the numerical discretised SICBEM error and ε̃n is the numerical discretised CBEM.

That is, the aim of reducing the error by using the SICBEM has been achieved.
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(a) j = 1 (b) j = n

Figure 6.3.2: Log plot of εn,1(q) on e(1) and ε′n,n(q) on e(n) for the stripline SBVP for n = 24.

Here we have the SICBEM error (dashed line) and the CBEM error (solid line). As the elements are

adjacent to singular point the piecewise-constant approximations in the CBEM error are poorly

modelling the behaviour of φ and φ′, as demonstrated by the vertical scalings. Furthermore, the

peaks in the CBEM result from the error changing sign: in reality these peaks are infinite yet

appear finite because they are computed on a finite mesh.

6.4 The singularity subtraction constant boundary element method

(SSCBEM)

The SSM, which differs from the SIM by removing the analytic form of the singularity throughout,

transforms the SBVP into a uniformly nonsingular BVP. Following Symm [1973], we define ψ(M)

by

ψ(M)(p) ≡ φ(p)− φ(M)
s (p) (6.4.1)

so that, by (6.3.2), the regular function ψ(M) satisfies

ψ(M)(p) = φ(p)− φ0 −
M∑
k=1

αkr
λkfk(λ, θ), (6.4.2)
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in which we ignore terms of order O(rλM+1) and higher. The series solution (5.1.1) of φ implies,

that near the singular point, we expect a residual behaviour of the form

ψ(M)(p) =

∞∑
k=M+1

αkr
λkfk(λ, θ). (6.4.3)

As the right-hand side of (6.4.1) satisfies Green’s integral formula, the same must hold for the

left-hand side of (6.4.1), i.e. ψ(M) is harmonic and so, by (4.1.4),

η(p)ψ(M)(p) =

∫
∂Ω
ψ(M)(q) G′(p, q) dq −

∫
∂Ω
ψ′(M)(q) G(p, q) dq. (6.4.4)

By (4.2.3), the CBEM approximation ψ(M)
n of ψ(M) satisfies

η(p)ψ(M)
n (p) =

n∑
j=1

{
ψ

(M)
n,j

∫
e(j)

G′(p, q) dq − ψ′(M)
n,j

∫
e(j)

G(p, q) dq

}
, (6.4.5)

where ψ(M)
n,j ≡ ψ(M)(qn,j), ψ′(M)

n,j ≡ ψ′(M)(qn,j) and qn,j is the mid-point of e(j). In accordance

with the notation of the SIM, we define ψ(M)
n in (6.4.5) as the theoretical discretised solution

of ψ(M), namely defined by a fully specified boundary solution. Thus, by a rearrangement of

(6.4.1), the singularity subtracted CBEM (SSCBEM), with solution φ(SS,2)
n approximating the exact

solution φ, is given by

φ(SS,M)
n (p) = ψ(M)

n (p) + φ(M)
s (p). (6.4.6)

The boundary data for ψ(M) in (6.4.2) is computed from φ
(M)
s and the prescribed boundary data

for φ (and φ′) in the stripline SBVP. That is, owing to the dependency of ψ(M) upon the analytic

form of the singularity φ(M)
s , the boundary data for ψ(M) will be dependent upon the unknown

coefficients αi. For example, for the stripline SBVP in Fig. 5.1.2, by (6.2.6) and (6.2.7),

ψ(M)
n (x < 0, 0) = 0, (6.4.7)

ψ′(M)
n (x > 0, 0) = 0, (6.4.8)

ψ(M)
n (x = 1, y) = φ1 − φ0 −

M∑
k=1

αkr
k− 1

2 cos

[(
k − 1

2

)
θ

]
, (6.4.9)

ψ(M)
n (x, y = 1) = φ1 − φ0 −

M∑
k=1

αkr
k− 1

2 cos

[(
k − 1

2

)
θ

]
, (6.4.10)

ψ′(M)
n (x = −1, y) = −

M∑
k=1

αk

(
k − 1

2

)
rk−

3
2 sin

[(
k − 3

2

)
θ

]
. (6.4.11)
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Contrary to the constant boundary data for φ and φ′ in the stripline SBVP, the boundary data for

ψ(M) in (6.4.9)-(6.4.11) are spacially dependent on the domain. Therefore, the accuracy to which

the boundary condition of ψ(M) will be represented in the BEM, depends upon both the degree of

the piecewise-polynomial interpolation and the index M .

Discretising (6.4.5) at the mid-point of each element by taking p = qn,i yields the system of n

equations
n∑
j=1

Âijψ
(M)
n,j = −

n∑
j=1

Bijψ
′(M)
n,j , (6.4.12)

where Âij and Bij are respectively defined in (4.2.9) and (4.2.8). System (6.4.12) contains M + n

unknowns: M singularity coefficients αk and n unknown mid-element nodal boundary data ψ(M)
n,j

on ∂Ωφ′ and ψ′(M)
n,j on ∂Ωφ. Taking M = 2 in the remainder of this section, so that the SSCBEM

can be validated against the SICBEM of §6.3, (6.4.2) becomes

ψ(2)
n (p) = φ(p)− φ0 −

(
α1r

1
2 cos

(
θ

2

)
+ α2r

3
2 cos

(
3θ

2

))
. (6.4.13)

Boundary conditions (6.4.7) and (6.4.8) imply that ψ(2)
n in (6.4.13) is zero in the locality of the

singular point, as is its normal derivative ψ′(2)
n . Thus, by (6.4.7) and (6.4.8), we take ψ(2)

n,1 = 0

and ψ′(2)
n,n = 0, which are known as the balancing approximations, and the number of unknowns in

system (6.4.12) is reduced from M + n to n.

Eqn. (6.4.12) can be cast into the form PxSS = q where the n-dimensional vector xSS contains

the (n − 2) unknown mid-element values ψ(2)
n,j on ∂Ωφ′ and ψ′(2)

n,j on ∂Ωφ and the two unknown

singularity coefficients α1 and α2. The vector q contains the balancing approximations and the

elements of the prescribed boundary data that do not depend on αk, e.g. φ0 and φ1 in (6.4.9) and

(6.4.10).

The dense system PxSS = q, solved using the NAG routine F07AAF, yields the discretised

boundary data to supplement the original boundary data in (6.4.7)-(6.4.11). Then using the

completed boundary data, we can compute ψ
(2)
n in (6.4.5) directly, which is defined as the

numerical discretised solution: to distinguish it from the theoretical discretised solution in (6.4.5),

we denote the numerical discretised solution by ψ̃(2)
n that satisfies

ψ̃(2)
n (p) =

1

η(p)

n∑
j=1

{∫
e(j)

ψ̃
(2)
n,j G

′(p, q) dq −
∫
e(j)

ψ̃
′(2)
n,j G(p, q) dq

}
, (6.4.14)
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where

ψ̃
(2)
n,j =

 ψ(2)(qn,j) if e(j) ⊆ ∂Ωφ,

ψ̃(2)(qn,j) otherwise,
and ψ̃

′(2)
n,j =

 ψ′(2)(qn,j) if e(j) ⊆ ∂Ωφ′ ,

ψ̃′(2)(qn,j) otherwise.
(6.4.15)

Consistent with the SICBEM of §6.3, φ̃(2)
s is the numerical form of φ(2)

s with singular coefficients

α̃i computed from solving PxSS = q.

Finally, by (6.4.6) and (6.4.14), the numerical discretised solution of the SSCBEM, φ̃(SS,2)
n

approximating the exact solution φ, is given by

φ̃(SS,2)
n (p) = ψ̃(2)

n (p) + φ̃(2)
s (p). (6.4.16)

Eqn. (6.4.16) shows that the singularity behaviour, which was subtracted throughout to yield a

non-physical solution, is re-included post-processing to recover the physical solution.

6.4.1 Error analysis of the SSCBEM

By comparing the numerical SSCBEM solution φ̃(SS,2)
n in (6.4.16) with the exact solution φ, the

numerical SSCBEM error is defined by

ε̃(SS,2)
n (p) ≡ φ(p)− φ̃(SS,2)

n (p). (6.4.17)

Whereas comparing the theoretical SSCBEM solution φ(SS,2)
n in (6.4.6) with the exact solution φ

yields the theoretical SSCBEM error defined by

ε(SS,2)
n (p) ≡ φ(p)− φ(SS,2)

n (p). (6.4.18)

Considering the right-hand side of (6.4.18), by (6.4.5) and (6.4.6) we have

φ(p)− φ(SS,2)
n (p) = φ(p)− (ψ(2)

n + φ(2)
s (p))

= φ(p)−

 1

η(p)

n∑
j=1

{∫
e(j)

ψ
(2)
n,j G

′(p, q) dq

−
∫
e(j)

ψ
′(2)
n,j G(p, q) dq

}
+ φ(2)

s (p)

]
(6.4.19)
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which, after applying the balancing approximations, becomes

φ(p)− φ(SS,2)
n (p) = φ(p)− 1

η(p)


n∑
j=2

∫
e(j)

[
φn,j − φ(2)

s (qn,j)
]
G′(p, q) dq

+

n−1∑
j=1

∫
e(j)

[
φ′n,j − φ′(2)

s (qn,j)
]
G(p, q) dq

− φ(2)
s (p). (6.4.20)

Using the functions φ(α,β) and φ′(α,β) in (6.3.26) and (6.3.27), (6.4.20) is equivalent to

φ(p)− φ(SS,2)
n (p) =

1

η(p)

{∫
e(1)

φ(3,∞)(q) G′(p, q) dq

+

n∑
j=2

∫
e(j)

[
φ(3,∞)(q)− φ(3,∞)(qn,j)

]
G′(p, q) dq

−
n−1∑
j=1

∫
e(j)

[
φ′(3,∞)(q)− φ′(3,∞)(qn,j)

]
G(p, q) dq

−
∫
e(n)

φ′(3,∞)(q) G(p, q) dq

}
. (6.4.21)

In other words, the theoretical error ε(SS,2)
n in (6.4.18) satisfies

η(p)ε(SS,2)
n (p) =

n∑
j=1

{∫
e(j)

ε
(SS,2)
n,j (q) G′(p, q) dq −

∫
e(j)

ε
′(SS,2)
n,j (q) G(p, q) dq

}
, (6.4.22)

where

ε
(SS,2)
n,j (q) =

 φ(3,∞)(q) j = 1,

φ(3,∞)(q)− φ(3,∞)(qn,j) j = 2, . . . , n
(6.4.23)

and

ε
′(SS,2)
n,j (q) =

 φ′(3,∞)(q)− φ′(3,∞)(qn,j) j = 1, . . . , n− 1,

φ′(3,∞)(q) j = n.
(6.4.24)

By comparing the components of the SSCBEM error in (6.4.23) and (6.4.24) with the components

of the SICBEM error in (6.3.29) and (6.3.30), we have ε(SS,2)
n,1 = ε

(SI,2)
n,1 and ε′(SS,2)

n,n = ε
′(SI,2)
n,n thus,

by (6.3.33) and (6.3.34),

‖ε(SS,2)
n,1 ‖∞ � ‖εn,1‖∞ (6.4.25)

and

‖ε′(SS,2)
n,n ‖∞ � ‖ε′n,n‖∞, (6.4.26)
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where εn,j and ε′n,j are the components of the CBEM error εn in (4.2.20).

To facilitate comparison of the remaining components in the SSCBEM error with those in the

SICBEM error and the CBEM error, we use the functions φ(α,β) and φ′(α,β) in (6.3.26) and (6.3.27)

to define the theoretical components of the CBEM error and the SICBEM error as

φ(q)− φn,j ≡ φ(1,∞)(q)− φ(1,∞)(qn,j) (6.4.27)

and

φ′(q)− φ′n,j ≡ φ′(1,∞)(q)− φ′(1,∞)(qn,j). (6.4.28)

The coefficients of φ(1,∞)(q) in the series solution (5.1.1) are such that |ai| > |ai+1| for all i in

the stripline SBVP (as shown in Table 5.3.1), therefore ‖φ(1,∞)‖ � ‖φ(3,∞)‖ and ‖φ′(1,∞)‖ �
‖φ′(3,∞)‖. Thus, by comparing the theoretical error components in the CBEM ((6.4.27) and

(6.4.28)), the SICBEM ((6.3.29) and (6.3.30)) and the SSCBEM ((6.4.23) and (6.4.24)), we have

‖ε(SS,2)
n ‖∞ � ‖ε(SI,2)

n ‖∞ � ‖εn‖∞, (6.4.29)

i.e. the SSCBEM error is uniformly smaller than the SICBEM error that is uniformly smaller then

the CBEM. Eqn. (6.4.29) is an extension of (6.3.39), and furthermore, it acts as a basis for the

hypothesis

‖ε̃(SS,2)
n ‖∞ � ‖ε̃(SI,2)

n ‖∞ � ‖ε̃n‖∞, (6.4.30)

through which we achieve the original aim of the SIM and SSM.

By definition of the theoretical errors in each of the BEMs, we can alternatively express (6.4.29) as

‖φ− φ(SS,2)
n ‖∞ � ‖φ− φ(SI,2)

n ‖∞ � ‖φ− φn‖∞, (6.4.31)

in which the modified methods (the SICBEM and the SSCBEM) have a minimal error in

comparison to the standard method (the CBEM), thereby providing a link with (2.2.19), (3.2.16)

and (4.3.4) in previous chapters. Also in agreement with the previous chapters, we now aim to

modify each of the new BEMs in such a way that we improve upon the existing errors. However,

before doing so, we require the analysis of the errors in both the standard SICBEM and SSCBEM

prior to any modification.
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6.5 Comparison of the numerical schemes for the stripline problem

We validate the SICBEM and SSCBEM against the standard CBEM by comparing the numerical

solutions of the stripline problem with the pseudo-analytic solution derived using the CTM chapter

5.

The relative errors of the SICBEM solution, depicted in Fig. 6.5.1, show a impressive reduction

in the localised peak about the singularity in comparison with the CBEM error in Fig. 6.2.2.

Furthermore, as the SICBEM is based on piecewise-constant approximations, then similar to the

CBEM it also has large errors at the corner points; for justification of this phenomenon we refer

the reader to the error analysis of the CBEM in §4.2.1. Unique to the SICBEM error, are the new

localised error peaks that occur at the left-hand end-point of the nth element. These are due to the

change between the incorporation of the analytic singular behaviour and the piecewise-constant

approximations.

The relative errors in the SSCBEM for the stripline SBVP are shown in Fig. 6.5.2. The SSCBEM

error peaks about the singular point when n is relatively low, e.g. n = 24 in Fig. 6.5.2. Although

the magnitude of the peak is significantly smaller than that in the CBEM error in Fig. 6.2.2 for an

equivalent n due to the improved modelling of the singular behaviour in the SSCBEM. However,

as the SSCBEM is based on piecewise-constant approximations, then similar to the CBEM, it also

has large errors at the corner points. Furthermore, the SSCBEM errors in Fig. 6.5.2 are a (ten-fold)

reduction on both the CBEM and SICBEM errors in Figs. 6.2.2 and 6.5.1.

A quantitative comparison of the BEMs errors in Figs. 6.2.2, 6.5.1 and 6.5.2 are given in Fig. 6.5.3,

where all the errors as presented over the same range. Fig. 6.5.3 is confirmation of (6.4.29) and

hypothesis (6.4.30), i.e. the SSCBEM error is uniformly smaller than the SICBEM error, which in

turn is uniformly smaller than the CBEM error. Alternatively, we could use the data in Table 6.5.1,

where the error in the coefficients of the SICBEM and SSCBEM are smaller than the errors in the

coefficients of the analytic series solution, i.e. |α̃i− ai| � |ai| for i = 1, 2, to prove the validity of

condition (6.3.36), thus confirming hypothesis (6.4.30).

Further analysis of the BEM results in Figs. 6.5.1 and 6.5.2 is achieved via Richardson’s

extrapolation of §4.2 which, by the nomenclature of (4.2.48), defines the rate of convergence ρ

and the order p of the error. Recall that Table 4.2.1 revealed that the CBEM error for a nonsingular
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Figure 6.5.1: Contour plots of log |ε̃(SI,M)
n /φ|, the logarithm of the relative error in the SICBEM

solution of the stripline SBVP, for M = 2 and n = 24, 48, 96. The singular point is located at

(x, y) = (0, 0). The SICBEM errors are an improvement upon the CBEM errors in Fig. 6.2.2 since

the incorporation of the analytic form of the singularity is the correct functional form, rather than

the piecewise-constant interpolation of the CBEM.

BVP was of order O(h1.75), whereas in Table 6.2.1 the order of the CBEM error for a singular

BVP was shown to have been eroded to O(h1.3). It is precisely this effect that the new methods

are designed to combat.

In Table 6.5.2 the rate of convergence and order of both the SICBEM and SSCBEM errors are

presented. Table 6.5.2 shows that although the convergence rate (and orders) of the errors in the

SICBEM and the SSCBEM are faster than those in the CBEM in Table 6.2.1, it is the SICBEM

error that is closer to the expected behaviour of O(h1.75). This phenomenon is due to the rate of

convergence of the SICBEM being based upon the rate of φ(SI,2)
n , whereas in the SSCBEM, it is

based upon the rate of ψ(2)
n , the latter of which is zero everywhere near the singularity by definition

in (6.4.1). Therefore we cannot directly compare the rates of convergence in the SSCBEM to that
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Figure 6.5.2: Contour plots of log |ε̃(SS,M)
n /φ|, the logarithm of the relative error in the SSCBEM

solution of the stripline SBVP, for M = 2 and n = 24, 48, 96. The singular point is located at

(x, y) = (0, 0). The SSCBEM errors are an improvement upon the CBEM errors in Fig. 6.2.2 since

its solution is computed by solving a regular BVP.

|α̃i − ai|
i |ai| SICBEM SSCBEM

1 589.3951 1.2235 0.7313

2 128.7857 8.9141 2.3576

Table 6.5.1: The error in the computed eigenfunction coefficients in the SICBEM and SSCBEM

solutions of the stripline problem, for M = 2 and n = 24. Here ai are the coefficients of the

pseudo-analytic series solution, as computed in chapter 5 for the stripline problem using the CTM.

The errors in the coefficients satisfy |α̃i−ai| � |ai| for i = 1, 2. That is, condition (6.3.36) for the

error hypothesis (6.4.30) is satisfied. The error in the eigenfunction coefficients of the SSCBEM is

smaller than that in the SICBEM owing to the SSM being computed on a nonsingular BVP.

in the SICBEM.
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Figure 6.5.3: A comparison of the logarithm of the relative errors in the CBEM, SICBEM and

SSCBEM solutions of the stripline SBVP, for n = 48 and M = 2 where the singular point is

located at (x, y) = (0, 0). The relative errors in the SSCBEM are uniformly smaller over Ω than

both the SICBEM and the CBEM.

SICBEM SSCBEM

n, 2n ρ p ρ p

24, 48 3.4895 1.8030 2.9550 1.5632

48, 96 3.3939 1.7629 3.0807 1.6233

Table 6.5.2: The convergence rate ρ and order p of the error in the SICBEM and SSCBEM solutions

of the stripline problem, for M = 2 and n = 24, 48, 96. The results correspond to the errors

depicted in Figs. 6.5.1 and 6.5.2. Compared with the standard CBEM error convergence rates in

Table 6.2.1, both the SICBEM and SSCBEM errors have improved the convergence rate by 37%

and 20% respectively. In fact, particularly for the SICBEM, the error order resembles that in the

CBEM for a nonsingular BVP in Table 4.2.1.
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Another feature of the data in Table 6.5.2 is the deceleration in the convergence rate in the SICBEM

error as n increases. By construction of the SICBEM, the size of the elements over which the

analytic form of the singular behaviour is incorporated is dependent on n. Thus with increasing n,

the region over which the correct functional form φ
(M)
s is incorporated is reduced and therefore its

convergence rate decelerates. In other words, SICBEM error varies with n, so that, empirically at

least, we postulate that there exists a significantly large N ∈ N such that when n ≥ N

ε̃(SI,2)
n = ε̃n, (6.5.1)

where ε̃n is the CBEM error, as shown in Fig. 6.2.2. A proof of (6.5.1) is beyond the scope of the

present work.

By construction of the SICBEM, the size of the elements over which the analytical behaviour of the

singularity is incorporated may be varied. For example, in Fig. 6.5.4 the first and last elements over

which the analytical behaviour of the singularity φ(M)
s in (6.3.2) is incorporated in the SICBEM

are of length 0.25 (the standard length of an element when n = 24) for all n. By comparison

with the standard SICBEM error in Fig. 6.5.4, fixing the length of the two elements reduces the

localised error peak that occurs when there is a change between piecewise-constant approximations

and the incorporation of the analytic behaviour of the singularity. This phenomenon suggests

that the region over which the singular behaviour is incorporated is sufficiently large to model all

the singular behaviour absent in the piecewise-constant method. Furthermore, by taking the two

elements to be of length 0.25 the order of the error in SICBEM, which is defined in Table 6.5.3, no

longer erodes when n > 24. That is, fixing the element length prevents the convergence rate in the

SICBEM error from decelerating as n increases whilst requiring no extra analysis or programming.

However, the optimum size of the elements over which the singularity behaviour is incorporated

can be determined for each BVP only by experimentation.

Our aim for the remainder of this chapter is to modify each of the outlined BEMs, using the

method of chapter 4, in such a way that the order of the error in the numerical solution of the

stripline problem is increased beyond the existing O(h1.8). Furthermore, by doing so we would be

demonstrating that the modified method of chapter 4 can: first, be extended to BEMs other than

the CBEM, and; second, be used to accurately solve singular BVPs.
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Figure 6.5.4: Contour plots of log |ε̃(SI,M)
n /φ|, the logarithm of the relative error in the SICBEM

solution of the stripline SBVP, for M = 2 and n = 24, 48, 96. The elements e(1) and e(n) over

which the singular behaviour is incorporated are of length 0.25 for all n and the singular point

is located at (x, y) = (0, 0). Compared with the standard SICBEM error in Fig. 6.5.1, fixing the

lengths of the two elements reduces the localised peaks near the singular point, although it requires

a non-uniform element distribution when n 6= 24.

6.6 Modified boundary element methods

In this section we obtain explicit expressions for the error incurred in the BEM, with the aim

of incorporating them a priori into the BEM to produce a method with a higher order of error

convergence. Hence the following modification technique is based on the modified CBEM in §4.3.

Namely, for any standard BEM with solution φ∗n and corresponding theoretical error defined by ε∗n,

the modified method with solution φn incorporates the leading behaviour of the error ε∗n into the

standard BEM a priori. For example, if εn contains the leading behaviour of ε∗n, then

φn = φ∗n + εn, (6.6.1)
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n, 2n ρ p

24, 48 3.3333 1.7370

48, 96 3.5129 1.8127

Table 6.5.3: The convergence rate ρ and order p in the error of the SICBEM solution of the stripline

SBVP, for M = 2 and n = 24, 48, 96. The results correspond to the errors depicted in Fig. 6.5.4.

The element e(1) and e(n) over which the singular behaviour is incorporated are of length 0.25 for

all n. By comparison with the original SICBEM error orders in Table 6.5.2, fixing the length of the

elements over which the singular behaviour is incorporated prevents the rate of convergence from

decelerating as n increases.

so that, letting the difference between the true error ε∗n and the approximation εn be defined by the

discrepancy

∆εn(p) ≡ ε∗n(p)− εn(p), (6.6.2)

the modified BEM error satisfies, by (6.6.1),

φ− φn = φ− (φ∗n + εn)

= ε∗n − εn

= ∆εn. (6.6.3)

Thus the error of the modified BEM is proportional to an error discrepancy which, as ‖∆εn‖ �
‖ε∗n‖, the modified BEM error is less than the standard BEM error, i.e. consistent with (4.3.4), we

have

‖φ− φn‖∞ � ‖φ− φ∗n‖∞. (6.6.4)

Considering the CBEM then, following (6.2.3), the theoretical CBEM error εn is defined by

εn(p) ≡ φ(p)− φn(p) (6.6.5)

which, by (6.2.2), satisfies

η(p)εn(p) =
n∑
j=1

{∫
e(j)

(φ(q)− φn,j) G′(p, q) dq −
∫
e(j)

(φ′(q)− φ′n,j) G(p, q) dq

}
. (6.6.6)
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As per the CBEM in (6.2.2)-(6.2.4), the derivation of the MCBEM was discussed at length in §4.3

therefore only a basic outline is reviewed in this chapter. Considering the Taylor expansions for φ

and φ′ about node qn,j , and defining the functions

Jk,j(p) ≡
∫
e(j)

(q − qn,j)k G′(p, q) dq (6.6.7)

and

Kk,j(p) ≡
∫
e(j)

(q − qn,j)k G(p, q) dq, (6.6.8)

then the infinite-series form of (6.6.6) is

η(p)εn(p) =
n∑
j=1

∞∑
k=1

1

k!

{
∂k

∂qk
[φ(q)]q=qn,j

Jk,j −
∂k

∂qk
[
φ′(q)

]
q=qn,j

Kk,j

}
. (6.6.9)

Following (6.6.1)-(6.6.4), by the nomenclature of chapter 4, the modified CBEM (MCBEM) with

solution φ(m)
n incorporates ε(m)

n , the approximate of the true error εn. That is, the MCBEM solution

is given by

φ(m)
n (p) = φn(p) + ε(m)

n (p), (6.6.10)

where

η(p)ε(m)
n (p) =

n∑
j=1

m∑
k=1

1

k!

{
∂k

∂qk
[φ(q)]q=qn,j

Jk,j −
∂k

∂qk
[
φ′(q)

]
q=qn,j

Kk,j

}
. (6.6.11)

A rigorous analysis and validation of the error prediction ε(m)
n to the true error εn was presented in

§4.3.2. By comparing φ(m)
n in (6.6.10) with the exact solution φ, the theoretical MCBEM error is

defined by

εn,m(p) ≡ φ(p)− φ(m)
n (p) (6.6.12)

which, by (4.3.2), (6.6.3) and (6.6.5), satisfies

εn,m(p) = φ(p)−
(
φn(p) + ε(m)

n (p)
)

= εn(p)− ε(m)
n (p)

= ∆ε(m)
n (p). (6.6.13)

Thus the error of the MCBEM (6.6.13) is proportional to an error discrepancy, in accordance with

the MCBEM error (4.3.43), which since ‖∆ε(m)
n ‖ � ‖εn‖, is less than the standard CBEM error.

By (6.6.4), we therefore have

‖εn,m‖∞ � ‖εn‖∞. (6.6.14)
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Figure 6.6.1: Contour plots of log |ε̃n,m/φ|, the logarithm of the relative error in the MCBEM

solution of the stripline SBVP, for n = 24, 48, 96. The singular point is located at (x, y) = (0, 0)

and m = 4, consistent with the MCBEM error for a nonsingular BVP in Fig. 4.4.2(d). The

most prominent error in the MCBEM remains in the neighbourhood of the singularity due to the

MCBEM failing to model the singular behaviour.

In keeping with the CBEM error in (6.2.4), the numerical MCBEM error is defined by

ε̃n,m(p) ≡ φ(p)− φ̃(m)
n (p), (6.6.15)

in which φ̃(m)
n is the numerical discretised form of φ(m)

n in (6.6.10), determined by the computed

boundary data from solving the collocated MCBEM in §4.3.4.

The numerical MCBEM error ε̃n,m is depicted in Fig. 6.6.1 for the singular stripline problem. By

comparison with the standard CBEM error in Fig. 6.2.2, Fig. 6.6.1 shows that the prominent error

peak in the neighbourhood of the singularity also occurs in the MCBEM. That is, by construction of

the MCBEM, the method fails to model the singular behaviour in the stripline SBVP. The reason

for such behaviour is that although we are building in the leading behaviour of the error in the

piecewise-constant approximations, the effect of the singularity remains, which in turn effects the
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Standard Modified

n σ̃n ρ p σ̃n,m ρ p

24 0.0336 2.4938 1.3183 0.0232 2.5375 1.3434

48 0.0135 2.5489 1.3499 0.0091 2.6028 1.3800

96 0.0053 0.0035

Table 6.6.1: The RMSE, error convergence rate ρ and error order p in the CBEM (standard) and

MCBEM (modified) solutions of the stripline SBVP, for m = 4 and n = 24, 48, 96. The results

correspond to the errors depicted in Figs. 6.2.2 and 6.6.1. Although the order in the MCBEM error

is higher than that in the standard CBEM error, it remains significantly lower than the order in the

MCBEM for a nonsingular BVP in Table 4.4.2.

accuracy of the MCBEM.

For further quantification of the behaviour of the MCBEM error, we consider two approaches:

first, finding the root-mean-square error (RMSE), and; second, using Richardson’s extrapolation

in (4.2.48) to define the convergence rate ρ and order p. Consistent with (4.2.43) and (4.4.3), the

RMSEs are defined by

σ̃n ≡

√√√√ 1

Mp

Mp∑
j=1

(
ε̃n(pMp,j)

)2 for the CBEM (6.6.16)

and

σ̃n,m ≡

√√√√ 1

Mp

Mp∑
j=1

(
ε̃n,m(pMp , j)

)2 for the MCBEM, (6.6.17)

where Mp is the number of mesh points over the internal grid that is not finer than the boundary

resolution. Note for the stripline BVP we take Mp = (n3 + 1)(n6 + 1).

Extending from the original data for the CBEM in Table 6.2.1, Table 6.6.1 presents the RMSE,

order and convergence rate of both the CBEM error and the MCBEM error. The data in Table

6.6.1 shows two features: first, the MCBEM error is smaller than the CBEM, as σ̃n,m � σ̃n for

all n, and; second, there is only a small deviation between the order (and convergence rate) in

the MCBEM error and the standard CBEM error, because both methods fail to model the singular

behaviour.

Recall in §6.5, we showed that the SICBEM and SSCBEM were successful modifications of
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the CBEM, whereby the error in the neighbourhood of the singular point could be significantly

reduced. Therefore, the culmination is achieved when joining the methods that incorporate the

singular behaviour with an augmentation by the predicted error.

6.6.1 The modified singularity incorporation method (MSICBEM)

In order to modify the SICBEM, we first establish the leading behaviour of its theoretical error

ε
(SI,M)
n , so that εn in (6.6.1) can be determined. Given that the SICBEM is based upon the CBEM,

then the leading behaviour of ε(SI,M)
n is based upon the leading behaviour of the CBEM error,

defined as ε(m)
n in (6.6.11). That is, recalling the SICBEM error in (6.3.28), we have (2n − 2)

components ε(SI,2)
n,j and ε′(SI,2)

n,j of ε(SI,2)
n , defined by

ε
(SI,2)
n,j ≡ φ(q)− φn,j , j = 2, . . . , n (6.6.18)

and

ε
′(SI,2)
n,j ≡ φ′(q)− φ′n,j , j = 1, . . . , n− 1, (6.6.19)

from taking piecewise-constant interpolation. We again use Taylor expansions of φ and φ′ about

the node qn,j so that, by (6.6.7) and (6.6.8), the theoretical SICBEM error ε(SI,2)
n in (6.3.28) satisfies

η(p)ε(SI,2)
n (p) =

∫
e(1)

φ(3,∞)(q) G′(p, q) dq +

n∑
j=2

∞∑
k=1

1

k!

∂k

∂qk
[φ(q)]q=qn,j

Jk,j

−
n−1∑
j=1

∞∑
k=1

1

k!

∂k

∂qk
[
φ′(q)

]
q=qn,j

Kk,j −
∫
e(n)

φ′(3,∞)(q) G(p, q) dq. (6.6.20)

Truncating the infinite-series in the SICBEM error ε(SI,2)
n in (6.6.20) to order m yields the

truncated-series SICBEM error ε(SI,2)
n,m that satisfies

η(p)ε(SI,2)
n,m (p) =

n∑
j=1

{∫
e(j)

ε
(SI,2)
n,m,j(q) G

′(p, q) dq −
∫
e(j)

ε
′(SI,2)
n,m,j (q) G(p, q) dq

}
, (6.6.21)

where

ε
(SI,2)
n,m,j(q) =


φ(3,∞)(q) j = 1,

m∑
k=1

(q − qn,j)k
k!

∂k

∂qk
[φ(q)]q=qn,j

j = 2, . . . , n
(6.6.22)
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and

ε
′(SI,2)
n,m,j (q) =


m∑
k=1

(q − qn,j)k
k!

∂k

∂qk
[
φ′(q)

]
q=qn,j

j = 1, . . . , n− 1,

φ′(3,∞)(q) j = n.

(6.6.23)

Since the error ε(SI,2)
n,m is the leading behaviour of the true error in the SICBEM ε

(SI,2)
n , we take

ε
(SI,2)
n,m in (6.6.1) and then the modified singularity incorporated CBEM (MSICBEM) with solution

φ
(MSI,2)
n,m is given by

φ(MSI,2)
n,m (p) = φ(SI,2)

n (p) + ε(SI,2)
n,m (p). (6.6.24)

Recall that in §6.3 we showed that collocating the standard SICBEM at the mid-points p = qn,i

generated a system of n equations (6.3.8) expressible in the form MxSI = t, where xSI contained

the unknown boundary data. Now, collocating the MSICBEM (6.6.24) at the same mid-points

p = qn,i yields a system of n equations, which is similarly expressible in the form MxMSI =

t + eMSI , i.e. augmented by an error vector. The solution vector xMSI now contains the unknown

mid-element nodal values of φn,j on ∂Ωφ′ and φ′n,j on ∂Ωφ and the two unknown singularity

coefficients α1 and α2. In the system MxMSI = t + eMSI , the error vector eMSI has components

eMSI
i =

n∑
j=1

{∫
e(j)

ε
(SI,2)
n,m,j G

′(qn,i, q) dq − ε′(SI,2)
n,m,j G(qn,i, q) dq

}
, (6.6.25)

in which ε(SI,2)
n,m,j and ε′(SI,2)

n,m,j are defined in (6.6.22) and (6.6.23). The solution of MxMSI = t +

eMSI yields the unknown boundary data that supplements the original boundary conditions in the

stripline SBVP. With a complete set of boundary data φ(MSI,2)
n,m in (6.6.24) can be computed at

any point in the domain which, in accordance with §6.3, we define as the numerical discretised

MSICBEM solution. Given φ(MSI,2)
n,m in (6.6.24) is the theoretical discretised solution, we define the

numerical discretised solution as φ̃(MSI,2)
n,m , which satisfies

φ̃(MSI,2)
n,m (p) = φ̃(SI,2)

n (p) + ε(SI,2)
n,m (p), (6.6.26)

where φ̃
(SI,2)
n is the numerical discretised solution of the SICBEM obtained by (6.3.17) and

(6.3.18).
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6.6.2 The modified singularity subtraction method (MSSCBEM)

In contrast to the MCBEM and the MSICBEM, the modification of the SSCBEM does not use the

leading behaviour of the theoretical SSCBEM error ε(SS,2)
n . In fact we require only the leading

behaviour of the error incurred in ψ(M)
n in (6.4.5).

The error in ψ(M)
n , defined by ε(ψ,M)

n , satisfies

η(p)ε(ψ,M)
n (p) =

n∑
j=1

{∫
e(j)

(
ψ(M)(q)− ψ(M)

n,j

)
G′(p, q) dq

−
∫
e(j)

(
ψ′

(M)
(q)− ψ′(M)

n,j

)
G(p, q) dq

}
. (6.6.27)

Note that in the present form of (6.6.27), the balancing approximations imposed in the SSCBEM

are not accounted for as they are specific to the BVP to which the BEM is applied.

As discussed in §6.4, the two balancing approximations for the stripline problem are ψ(2)
n,1 = 0 and

ψ
′(2)
n,n = 0, in which case (2n − 2) of the integrands in (6.6.27) contain the error resulting from

piecewise-constant interpolation. Therefore, using Taylor expansions of ψ and ψ′ about the node

qn,j , the terms ψ(2)(q)− ψ(2)
n,j and ψ′(2)(q)− ψ′(2)

n,j are expressible as infinite series so that (6.6.27)

becomes

η(p)ε(ψ,2)
n (p) =

n∑
j=1

{∫
e(j)

ε
(ψ,2)
n,j (q) G′(p, q) dq −

∫
e(j)

ε
′(ψ,2)
n,j (q) G(p, q) dq

}
, (6.6.28)

where

ε
(ψ,2)
n,j (q) =


ψ(2)(q) j = 1,

∞∑
k=1

(q − qn,j)k
k!

∂k

∂qk

[
ψ(2)(q)

]
q=qn,j

j = 2, . . . , n
(6.6.29)

and

ε
′(ψ,2)
n,j (q) =


∞∑
k=1

(q − qn,j)k
k!

∂k

∂qk

[
ψ′(2)(q)

]
q=qn,j

j = 1, . . . , n− 1,

ψ′(2)(q) j = n.

(6.6.30)

Truncating the infinite series of (6.6.29) and (6.6.30) to order m yields ε(ψ,2,m)
n , which is the mth

order truncation of ε(ψ,2)
n , that satisfies

η(p)ε(ψ,2,m)
n (p) =

n∑
j=1

{∫
e(j)

ε
(ψ,2,m)
n,j (q) G′(p, q) dq −

∫
e(j)

ε
′(ψ,2,m)
n,j (q) G(p, q) dq

}
, (6.6.31)
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where

ε
(ψ,2,m)
n,j (q) =


ψ(2)(q) j = 1,

m∑
k=1

(q − qn,j)k
k!

∂k

∂qk

[
ψ(2)(q)

]
q=qn,j

j = 2, . . . , n
(6.6.32)

and

ε
′(ψ,2,m)
n,j (q) =


m∑
k=1

(q − qn,j)k
k!

∂k

∂qk

[
ψ′(2)(q)

]
q=qn,j

j = 1, . . . , n− 1,

ψ′(2)(q) j = n.

(6.6.33)

Thus, given that ε(ψ,2,m)
n is an approximation of the true error ε(ψ,2)

n , we have

ψ(2)
n,m = ψ(2)

n (p) + ε(ψ,2,m)
n (6.6.34)

which, following (6.6.1), the modified SSCBEM (MSSCBEM) with solution φ(MSS,2)
n,m is given by

φ(MSS,2)
n,m (p) = ψ(2)

n,m(p) + φ(2)
s (p)

=
(
ψ2
n(p) + ε(ψ,2,m)

n (p)
)

+ φ(2)
s (p)

= φ(SS,2)
n (p) + ε(ψ,2,m)

n (p). (6.6.35)

In other words, the MSSCBEM in (6.6.35) is derived by incorporating ε(ψ,2,m)
n into the standard

SSCBEM a priori.

Recall that collocating ψ(2)
n (p) in the SSCBEM at the mid-points p = qn,i generated a system of n

equations (6.4.12) expressible in the form PxSS = q, where xSS contained the unknown boundary

data, as discussed in §6.4. Now, collocating ψ(2)
n,m(p) in (6.6.31) at the mid-points p = qn,i yields

a system of n equations expressible as PxMSS = q + eMSS, where xMSS contains the unknown

mid-element nodal values of ψ(2)
n,j on ∂Ωφ′ and ψ′(2)

n,j on ∂Ωφ and the two unknown singularity

coefficients α1 and α2. By the argument preceding (6.6.25) the error vector eMSS has components

eMSS
i =

n∑
j=1

{∫
e(j)

ε
(ψ,2,m)
n,j (q) G′(qn,i, q) dq −

∫
e(j)

ε
′(ψ,2,m)
n,j (q) G(qn,i, q) dq

}
, (6.6.36)

in which ε(ψ,2,m)
n,j and ε′(ψ,2,m)

n,j are respectively defined in (6.6.32) and (6.6.33).

The solution of PxMSS = q + eMSS yields the unknown boundary data that supplements the

original boundary conditions in the stripline SBVP. Using the complete boundary data ψ(2)
n,m in
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(6.6.31) can be determined at any point in the domain which, in accordance with (6.4.14) and

(6.4.15), we define as the numerical discretised solution ψ̃
(2)
n,m. To distinguish this from the

theoretical discretised ψ(2)
n,m in (6.6.34), ψ̃(2)

n,m is given by

ψ̃(2)
n,m = ψ̃(2)

n (p) + ε(ψ,2,m)
n , (6.6.37)

in which ψ̃(2)
n in (6.4.14) is the numerical discretised form of ψ(2)

n in the SSCBEM. Finally, by

(6.6.37), the numerical discretised MSSCBEM solution is

φ̃(MSS,2)
n,m (p) = ψ̃(2)

n,m(p) + φ̃(2)
s (p)

= φ̃(SS,2)
n (p) + ε(ψ,2,m)

n (p), (6.6.38)

where, in keeping with (6.4.16), φ̃(SS,2)
n (p) = ψ̃

(2)
n (p) + φ̃

(2)
s (p) and φ̃(2)

s is the series φ(2)
s with

computed coefficients α̃i.

6.6.3 Error analysis of the MSICBEM and MSSCBEM

Comparing the theoretical discretised MSICBEM solution φ
(MSI,2)
n,m in (6.6.24) with the exact

solution φ and following (4.3.42), the theoretical MSICBEM error is defined by

ε(MSI,2)
n,m (p) ≡ φ(p)− φ(MSI,2)

n,m (p), (6.6.39)

where, by (6.6.24) and (6.6.3), ε(MSI,2)
n,m is proportional to an error discrepancy. Namely, taking the

discrepancy

∆ε(SI,2)
n,m (p) ≡ ε(SI,2)

n (p)− ε(SI,2)
n,m (p), (6.6.40)

by (6.6.24), (6.6.3) and (6.6.39), we have

ε(MSI,2)
n,m (p) = φ(p)−

(
φn(p) + ε(MSI,2)

n,m (p)
)

= εn(p)− ε(MSI,2)
n,m (p)

= ∆ε(MSI,2)
n,m (p). (6.6.41)

Similarly, by comparing the MSSCBEM theoretical solution φ(MSS,2)
n,m in (6.6.35) with the exact

solution φ, the theoretical MSSCBEM error is defined by

ε(MSS,2)
n,m (p) ≡ φ(p)− φ(MSS,2)

n,m (p). (6.6.42)
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The MSSCBEM error in (6.6.42) is also proportional to an error discrepancy. That is, letting

the difference between the truncated error ε(ψ,2,m)
n and the exact error ε(ψ,2)

n be defined by the

discrepancy

∆ε(ψ,2)
n,m (p) ≡ ε(ψ,2)

n (p)− ε(ψ,2,m)
n (p), (6.6.43)

then (6.4.1), (6.4.6), (6.6.35) and (6.6.42) yield

ε(MSS,2)
n,m (p) = φ(p)− (φ(SS,2)

n (p) + ε(ψ,2,m)
n (p))

= ψ(2)(p) + φ(2)
s (p)− (ψ(2)

n (p) + φ(2)
s (p))− ε(ψ,2,m)

n (p)

= ε(ψ,2)
n (p)− ε(ψ,2,m)

n (p)

= ∆ε(ψ,2)
n,m (p). (6.6.44)

Thus, by (6.6.41), we have

‖ε(MSI,2)
n,m ‖∞ = ‖∆ε(MSI,2)

n,m ‖∞, (6.6.45)

and, by (6.6.44), we have

‖ε(MSS,2)
n,m ‖∞ = ‖∆ε(ψ,2)

n,m ‖∞. (6.6.46)

In other words, the errors in the MSICBEM (6.6.41) and the MSSCBEM (6.6.44), which are

proportional to error discrepancies, are smaller than the errors in both the SICBEM in (6.3.25)

and the SSCBEM in (6.4.18) as they are proportional to an error. Hence

‖ε(MSI,2)
n,m ‖∞ � ‖ε(SI,2)

n ‖∞ (6.6.47)

and

‖ε(MSS,2)
n,m ‖∞ � ‖ε(SS,2)

n ‖∞. (6.6.48)

Recall that in (6.4.29) we had

‖ε(SS,2)
n ‖∞ � ‖ε(SI,2)

n ‖∞ � ‖εn‖∞, (6.6.49)

where εn is the error in the standard CBEM. By (6.6.47) and (6.6.48), we now have

‖ε(MSI,2)
n,m ‖∞ � ‖ε(SI,2)

n ‖∞ � ‖εn‖∞ (6.6.50)

and

‖ε(MSS,2)
n,m ‖∞ � ‖ε(SS,2)

n ‖∞ � ‖εn‖∞, (6.6.51)
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thereby achieving the aim of modifying the SICBEM and SSCBEM. However, in contrast to the

original hypothesis in (6.4.29), we cannot theoretically quantify which of the MSICBEM and

MSSCBEM are of superior accuracy.

6.7 Comparison of the modified numerical schemes for the stripline

problem

To recap over §4.4, for a nonsingular BVP the modified CBEM recovered an error of orderO(hm),

where m could be chosen a priori. For example, in accordance with (4.4.2), the order of the error

in the MCBEM was theoretically predicted as

O(h2) m = 1,

O(h4) m = 2, 3,

O(h6) m = 4, 5,

O(h8) m = 6, 7.

(6.7.1)

The basis of the error order prediction in (6.7.1) for the modified CBEM is as follows. By (6.6.1)-

(6.6.3), for a modified BEM with solution φ the error εn is given by

εn = φ− φ = φ− φ∗ − εn, (6.7.2)

where φ∗ is the solution of a standard BEM, ε∗n is its error and εn contains the leading order of the

error ε∗n. Provided the first two terms on the right-hand side of (6.7.2) are of an equal order, the

order of the modified BEM was determined by the order of the incorporated error εn. However, for

a singular BVP the first two terms on the right-hand side of (6.7.2) are not of an equal order. This

is because the presence of a singularity adversely effects the convergence rate of a given numerical

BEM, as pictorially demonstrated by the error in the CBEM solution of the stripline problem in

Fig. 6.2.2 and in the MCBEM solution of the stripline problem in Fig. 6.6.1.

We applied the SICBEM and SSCBEM to recover the rate of convergence when a singularity exists.

However, as only the leading behaviour of the singularity is taken into account in the SICBEM and

SSCBEM, because φ(M)
s is implemented for finite values ofM , the singularity affects the numerical

methods. That is, we do not recover the theoretically predicted O(h2) in Table 6.5.2 for either
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method. Similarly, by construction of the MSICBEM and MSSCBEM, although they improve the

accuracy in the SICBEM and SSCBEM, we expect the error orders to be lower than the predicted

O(hm) error in (6.7.1). In the remainder of this chapter, we provide a quantification of the error

orders in the MSICBEM and the MSSCBEM for the stripline SBVP of Fig. 5.1.2 by a mixture of

graphical and data analysis.

Following (6.6.16) and (6.6.17), we define the RMSEs by

σ̃(SI,M)
n ≡

√√√√ 1

Mp

Mp∑
j=1

(
ε̃
(SI,M)
n (pM,j)

)2
for the SICBEM (6.7.3)

and

σ̃(SS,M)
n ≡

√√√√ 1

Mp

Mp∑
j=1

(
ε̃
(SS,M)
n (pM,j)

)2
for the SSCBEM, (6.7.4)

then similarly for the modified counterparts by

σ̃(MSI,M)
n ≡

√√√√ 1

Mp

Mp∑
j=1

(
ε̃

(MSI,M)
n,m (pM,j)

)2
for the MSICBEM (6.7.5)

and

σ̃(MSS,M)
n ≡

√√√√ 1

Mp

Mp∑
j=1

(
ε̃

(MSS,M)
n,m (pM,j)

)2
for the MSSCBEM, (6.7.6)

where Mp are the number of mesh points taken over the internal grid. The convergence rate and

order of the error in each of the BEMs will be defined using Richardson’s extrapolation in (4.2.48).

A depiction of the error in the MSICBEM solution of the stripline problem is given in Fig. 6.7.1

for n = 24, 48, 96 and fixed m = 4. By comparing Fig. 6.7.1 with the SICBEM counterpart

in Fig. 6.5.1, it is evident from the scalings of the contour colour mappings that the MSICBEM

error is substantially smaller than the SICBEM error, in accordance with (6.6.50). Moreover, in the

MSICBEM error of Fig. 6.7.1, the dominant error, which now exists in the neighbourhood of the

origin, is a demonstration of the O(rλM+1) error in the MSICBEM due to the finite truncation of

the correct functional form φ
(M)
s in (6.3.3).

The order of the errors in the SICBEM and MSICBEM solutions of the stripline problem in Figs.

6.5.1 and 6.7.1 are given in Table 6.7.1, along with the RMSEs and convergence rates for n =

24, 48 and 96. Along with its graphical counterpart, Fig. 6.7.1, Table 6.7.1 demonstrates three

features: first, taking only m = 4 leading terms in ε(SI,2)
n,m in the MSICBEM of (6.6.26) produces

171



Numerical Solutions of Singular Harmonic Boundary Value Problems by Improved Boundary
Element Methods

x

y

 

 

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

−10

−8

−6

−4

(a) n = 24

x

y

 

 

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

−10

−8

−6

−4

(b) n = 48

x

y

 

 

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

−10

−8

−6

−4

(c) n = 96

Figure 6.7.1: Contour plots of log |ε̃(MSIC,M)
n,m /φ|, the logarithm of the relative error in the

MSICBEM solution of the stripline SBVP, for M = 2, m = 4 and n = 24, 48, 96. The singular

point is located at (x, y) = (0, 0). Although a prominent localised error peak is occurring at the

singular point, its magnitude is prominently smaller than in the SICBEM error in Fig. 6.5.1.

Moreover, by comparison with Fig. 6.5.1, the scaling in the colour mapping shows that the

MSICBEM errors are smaller than the standard SICBEM errors, in accordance with (6.6.50).

a significantly smaller RMSE than in the standard SICBEM. Second, although a localised peak

remains about the singularity in the MSICBEM error, its magnitude is prominently smaller than

in the SICBEM error, e.g. an error of third order is obtained in the MSICBEM for only n = 24.

Third, the convergence rate in the MSICBEM error decelerates when n > 24 (consistent with

the SICBEM error in Table 6.7.1), due to the region of in which the correct functional φ(M)
s is

incorporated being dependent upon n.

In the standard SICBEM the length of the first and last elements were varied to prevent the eroding

order of the SICBEM error with increasing n. However, such a remedy is no longer plausible in the

MSICBEM owing to the modified method requiring a uniform element distribution. For example,
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Standard Modified

n σ̃
(SI,2)
n ρ p σ̃

(MSI,2)
n,m ρ p

24 0.0037 3.4895 1.8030 2.0788× 10−5 7.9977 2.9996

48 0.0010 3.3939 1.7629 2.5992× 10−6 4.3751 2.1293

96 3.0904× 10−4 5.9409× 10−7

Table 6.7.1: The RMSE σ, error order p and error convergence rate ρ of the SICBEM (standard)

and MSICBEM (modified) solutions of the stripline SBVP, for M = 2, m = 4 and n = 24, 48, 96.

The results correspond to the errors depicted in Figs. 6.5.1 and 6.7.1. We achieve an increase in

the rate of convergence (up to third order) by applying the MSICBEM. However, the convergence

rate rapidly decelerates with increasing n, due to the dependence of region over which the correct

functional φ(M)
s is incorporated upon n.

if n is doubled after fixing the length of an element then the discretised system in the MSICBEM

contains an error of O(8h3) instead of O(h3), thus resulting in a fixed maximum error, dependent

upon the length of the element, and minimal variation in the relative error for differing values of n;

this is demonstrated in the error of MSICBEM in Fig. 6.7.2.

As for the error in the MSSCBEM solution of the stripline problem, this is depicted in Fig. 6.7.3

for n = 24, 48, 96 and m = 4. By comparing Fig. 6.7.3 with the standard SSCBEM errors in

Fig. 6.5.2, the MSSCBEM has reduced only the localised error peaks that occur in the corners of

the domain in the standard SSCBEM error. That is, the SSCBEM has dealt with the singularity

therefore Fig. 6.7.3 is a manifestation of the dominance of the O(rλM+1) singular behaviour in the

MSSCBEM.

For a quantification into the effect of applying a MSSCBEM, we require the RMSE, error order

and error convergence rate of both the MSSCBEM and the standard SSCBEM solution of the

stripline problem for different values of n: this is presented in Table 6.7.2. Table 6.7.2 shows two

features: first, the MSSCBEM error is smaller than the standard SCCBEM error, as the MSSCBEM

RMSE is a reduction (up to a hundredfold) upon the SSCBEM RMSE, and; second, the order of

the MSSCBEM error is approximately double that of the SSCBEM error. That is, the error in the

MSSCBEM is of third order and, contrary to the MSICBEM error in Table 6.7.1, this does not

erode as n increases.
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(c) n = 96

Figure 6.7.2: Contour plots of log |ε̃(MSIC,M)
n,m /φ|, the logarithm of the relative error in the

MSICBEM solution of the stripline SBVP, for M = 2, m = 4 and n = 24, 48, 96. The singular

point is located at (x, y) = (0, 0) and the first and last elements are of length e(1) = e(n) = 0.25

to match with Fig. 6.5.4. The maximum error in each of the sub-figures is fixed, regardless of the

choice of n, due the large error being built into the pre-inversion of the MSICBEM.

Although errors of order O(h3) are shown in Tables 6.7.1 and 6.7.2 for m = 4 in the MSICBEM

and MSSCBEM solution of the stripline problem, we do not recover the theoretically predicted

error orders. That is, we do not recover an error of order O(h6) when m = 4, which was obtained

for a nonsingular BVP in chapter 4, in either modified method. The same is true for other valuesm,

as demonstrated in Table 6.7.3. This phenomenon is a demonstration of the O(rλM+1) truncation

of φ(M)
s , that is incorporated/subtracted from the CBEM in both the MSICBEM and MSSCBEM.

Thus it is the choice ofM that determines the magnitude of the residual singular behaviour of order

O(rλM+1) which, in turn, determines the order of the error in the modified BEMs. Hence to further

increase the order of the error in the numerical methods, we require a higher number of terms M

to be taken in the correct functional φ(M)
s in (6.3.2) in both the MSICBEM and the MSSCBEM.

174



Numerical Solutions of Singular Harmonic Boundary Value Problems by Improved Boundary
Element Methods

x

y

 

 

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

−7

−6

−5

−4

−3

(a) n = 24

x

y

 

 

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

−7

−6

−5

−4

−3

(b) n = 48

x

y

 

 

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

−7

−6

−5

−4

−3

(c) n = 96

Figure 6.7.3: Contour plots of log |ε̃(MSSC,M)
n,m /φ|, the logarithm of the relative error in the

MSSCBEM solution of the stripline SBVP, for M = 2, m = 4 and n = 24, 48, 96. The singular

point is located at (x, y) = (0, 0). By comparison with the standard SSCBEM errors in Fig. 6.5.2,

the MSSCBEM has significantly reduced the localised error peaks that occurred in the corners of

the unmodified error domain.

In Fig. 6.7.4 the errors of the MSICBEM and MSSCBEM solutions of the stripline problem are

given where the truncation limit M in φ
(M)
s is M = 4. When M = 4, the analytic form of

the singularity is built in over the first and last two elements in the MSICBEM, whereas for the

MSSCBEM, we now require four balancing approximations. By comparing Fig. 6.7.4 with the

original errors in the modified methods of Figs. 6.7.1 and 6.7.3 it is apparent, particularly in

the MSICBEM, that increasing M significantly reduces the relative errors. A quantification into

the error convergence rates and error orders in the MSICBEM and MSSCBEM for M = 4 are

presented in Table 6.7.4, along with the those for M = 2 for comparison. It is evident from the

data in Table 6.7.4, that the order in the MSICBEM error can be increased by taking higher values

of M . Note that further investigations reveal that when M = 6 the order of the MSICBEM error

175



Numerical Solutions of Singular Harmonic Boundary Value Problems by Improved Boundary
Element Methods

Standard Modified

n σ̃
(SS,2)
n ρ p σ̃

(MSS,2)
n,m ρ p

24 3.7166× 10−4 2.9550 1.5632 1.9903× 10−5 9.2686 3.2124

48 1.2577× 10−4 3.0807 1.6233 2.1474× 10−6 8.2169 3.0386

96 4.0825× 10−5 2.6134× 10−7

Table 6.7.2: The RMSE σ, error order p and error convergence rate ρ of the SSCBEM (standard)

and MSSCBEM (modified) solutions of the stripline SBVP, for M = 2, m = 4 and n = 24, 48, 96.

The results correspond to the errors depicted in Figs. 6.5.2 and 6.7.3. The increase in the error

order to O(h3) and the hundredfold decrease in the RMSE are evidence of the superiority in

MSSCBEM over the standard SCCBEM. Furthermore, the decrease in p with increasing n in the

MSSCBEM shows that the order its error is an over-specification, consistent with the error orders

in the modified BEMs in chapter 4.

MSICBEM MSSCBEM

m ρ p ρ p

1 4.5205 2.1765 3.1323 1.6472

2 9.3615 3.2267 3.9268 1.9734

3 9.2696 3.2125 4.6078 2.2041

4 9.2696 3.2125 8.2479 3.0440

Table 6.7.3: The convergence rate ρ and order p of the error in the MSICBEM and MSSCBEM

solutions of the stripline SBVP for m = 1, 2, 3, 4, n = 24 and M = 2. Here we take α = β = 2

in Richardson’s extrapolation (4.2.48). The order is increased in the errors of the MSICBEM and

the MSSCBEM by increasing m, as by doing so we incorporate a truncated explicit error of higher

degree of leading order within the modified methods.

is O(h4) when n = 24, i.e. we recover the rate of convergence of piecewise-quadratic BEM by

solving only a n × n system in the MSICBEM. Table 6.7.4 also shows that the order of the error

in the MSSCBEM, which requires a higher number of balancing approximations, erodes when M

is increased as the balancing approximations introduce additional errors. Thus the truncation limit

M in both the SSCBEM and MSSCBEM should be kept at low as possible: this is consistent with
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Figure 6.7.4: Contour plots of log |ε̃(MSIC,M)
n,m /φ| and log |ε̃(MSSC,M)

n,m /φ|, the respective logarithms

of the relative error in the MSICBEM and MSSCBEM solutions of the stripline SBVP, for M = 4,

m = 4 and n = 24, 48, 96. The MSICBEM error is less than the MSSCBEM error when M = 4

because increasing M in the MSICBEM increases the region over which the singular behaviour

is incorporated, whereas in the MSSCBEM, a higher number of balancing approximations are

required.

the findings of Jaswon and Symm [1977] who applied a singularity subtraction BEM to the Motz

problem.

Finally, an quantitative comparison of the errors in all the outlined BEMs in this chapter for the
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MSICBEM MSSCBEM

M = 2 M = 4 M = 2 M = 4

n, 2n ρ p ρ p ρ p ρ p

24, 48 7.9977 2.9996 13.8933 3.7963 9.2696 3.2125 8.2479 3.0440

48, 96 4.3751 2.1932 2.1998 1.1374 8.2169 3.0386 6.2737 2.6493

Table 6.7.4: The convergence rate ρ and order p of the error in the MSICBEM and MSSCBEM

solutions of the stripline SBVP, for M = 2, 4, n = 24, 48, 96 and m = 4. The results correspond

to the errors depicted in Fig. 6.7.4. The order is improved in the MSICBEM error when M is

increased, however, this is not the case for the MSSCBEM error due to the method requiring a

higher number of balancing approximations. Although when n > 24 the effect of the singularity

incorporation in the MSICBEM is reduced, as shown by the deceleration in its convergence rate.

Numerical Method RMSE (σ̃)

CBEM 0.0135

MCBEM 0.0091

SICBEM 0.0010

MSICBEM 2.5992× 10−6

SSCBEM 1.2577× 10−4

MSSCBEM 2.1474× 10−6

Table 6.7.5: Comparison of the RMSEs σ̃ in the CBEM, SICBEM, SSCBEM, MCBEM, MSICBEM

and MSSCBEM solutions of the stripline BVP, for n = 48, M = 2 and m = 4. The RMSEs

correspond to the error surfaces depicted in Fig. 6.7.5.

stripline SBVP is depicted in Fig. 6.7.5 and quantified in Table 6.7.5 for n = 48, m = 4 and

M = 2. Fig. 6.7.5 and Table 6.7.5 both show three features: first, the error in each of the modified

methods have smaller localised error peaks in the corners of the domain compared to their standard

counterparts; second, the SICBEM and SSCBEM (and the MSICBEM and MSCBEM) are superior

to the CBEM and MCBEM at modelling the singular behaviour, thus confirming (6.4.30) and

(6.6.50), and; third, out of the methods presented, the MSICBEM is the most accurate method for

modelling SBVPs.
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Figure 6.7.5: Comparison of the relative errors in the CBEM, SICBEM, SSCBEM, MCBEM,

MSICBEM and MSSCBEM solutions of the stripline BVP, for n = 48, M = 2 and m = 4 (in

accordance with Fig. 6.5.3).

In general, Fig. 6.7.5 is a demonstration of the applicability of the modified approach of chapter

4 to BEMs other than the CBEM, whereby improving the convergence rate of the unmodified

counterparts in the numerical solution of singular BVPs.
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6.8 Summary and discussion

This chapter was based on improving numerical methods for approximating the solution of a

two-dimensional singular harmonic BVP. This involved implementing modification techniques to

conquer the adverse effect on the convergence with decreasing mesh size caused by boundary

singularities.

The outlined work was concerned with approximating the solution of a singular stripline problem

due to its geometric resemblance to the fundamental Motz problem and its applicability in

electromagnetism. The near-exact analytic solution of the stripline problem, derived in chapter

5, was used to validate the numerical methods presented.

As a boundary singularity is present in the stripline problem the rate of convergence in the constant

boundary element method decreased by 20% compared to its rate in chapter 4 for a nonsingular

problem. Thus, following Symm [1973] and Xanthis et al. [1981], we used the analytic form of

the singularity to implement two modifications of the constant boundary element method: the

singularity incorporation method and the singularity subtraction method. Both the singularity

incorporation and subtraction methods showed improved convergence rates for the numerical

solution of the stripline problem compared to the constant boundary element method, thereby

decreasing the error in the constant boundary element method by up to two orders of magnitude.

In the latter part of this chapter we further improved the convergence rates of the singularity

incorporation and the singularity subtraction methods, by a modification technique based on an

optimal approximation and inclusion of the explicit form of the Lagrangian-interpolation errors.

In particular the modified singularity incorporation method demonstrated a significant reduction

(of up to four orders of magnitude) when taking only the first two leading orders terms in the

analytic form of the singularity. Furthermore, in both the modified singularity incorporation and

the modified singularity subtraction methods we obtained third-order convergence rates, double

that of the unmodified counterparts. The improvement in the rate of convergence of the error in

modified methods was, however, not to the extent seen in the nonsingular BVP (Table (4.4.2)) due

to the finite truncation of the analytic form of the singularity required for implementation.

Further investigations into the theory covered in this chapter include: defining a modified

singularity incorporation or singularity subtraction method that does not depend upon the explicit
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solution, e.g. using finite-difference methods as in chapter 4, and; extending the modification

technique to the singularity annihilation boundary element method (Kelmanson and Lonsdale

[1995, 1996]) as an alternative to the singularity incorporation and the singularity subtraction

methods.
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Chapter 7

Conclusions

Since brief but detailed summaries have been included at the end of each chapter, we provide here

a collective overview of the numerical methods, key achievements and outcomes of this thesis.

The primary theme throughout this thesis has been to investigate the error in the numerical

solutions of both one- and two-dimensional integral equations. In particular, by deriving explicit

approximations of the error inherent in the numerical methods, we aimed to modify each method

by including a priori estimates of the theoretical error, thus reducing the numerical error in

the approximate solution. Chapter 2 and 3 considered the solution of one-dimensional singular

Fredholm integral equations of the second kind (FIE2), whereas chapters 4, 5 and 6 concerned the

solution of two-dimensional harmonic BVPs, both nonsingular and singular.

In chapters 2 and 3 it was shown that a FIE2, whose integrand exhibited singular behaviour, could

be solved using a Nyström -quadrature method. The modified Nyström method enabled one to

obtain significantly improved accuracy in the numerical solution compared to the standard Nyström

method, particularly for low numbers of quadrature nodes. For example, for a n-point Gaussian

quadrature rule, a reduction in the Nyström error of two orders of magnitude was achieved using

the modified method for only n = 2.

The philosophy behind the first two chapters was to first define a modification technique for the

Nyström method, and then to build up the complexity of the types of problems to which the

modified Nyström method could be applied. The work in chapter 2 is an extension of Kelmanson
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and Tenwick [2010]. The work in chapter 3, on the other hand, is an extension of the standard

Nyström method for systems of FIEs presented in De Bonis and Laurita [2008]. The modification

of a Nyström method for systems of FIEs, however, is substantially more intricate and complex

than the modification for a single FIE; it is obtained at an expense of a large increase in analysis

and computer code.

In chapters 4, 5 and 6 we considered improving the numerical solutions of higher-dimensional

integral equations, namely those which were a reformulation of Laplace’s equation in two-

dimensions. The constant BEM in Brebbia [1978] was modified in chapter 4 by incorporating

the leading behaviour of the error into the BEM a priori. In particular, two variations of a modified

constant BEM were presented: one that used the exact boundary conditions, whereas the other used

finite-differences to approximate them. Validated against a test problem in which the exact solution

was known, it was shown how the modified BEMs were more accurate than the constant BEM. In

the test problem considered the modified BEM achieved a rate of convergence normally associated

with piecewise-quadratic Lagrangian interpolation, e.g. Ingham et al. [1981a], although without

requiring the solution of a larger system of equations. For example, only a n-point collocation is

required in the modified BEM whereas a 2n-point collocation is required in a piecewise-quadratic

BEM.

In chapter 6 it was shown how the modification technique of chapter 4 could be extended to

singular BVPs, particularly the stripline problem. However, with no existing results to validate the

numerical solutions against, the derivation of a pseudo-analytic solution was essential. Therefore,

in chapter 5 a pseudo-analytic solution of the stripline problem was derived using the conformal

transformation method of Whiteman and Papamichael [1971] and Rosser and Papamichael [1975].

An extensive overview of the steps in the conformal transformation method have been given, so

that they can be used in future by others.

Following the work of Symm [1973] and Xanthis et al. [1981], the asymptotic nature of the

singularity in the stripline problem was incorporated in to the constant BEM in chapter 6. These

methods were modified by the technique of chapter 4, in that the leading behaviour of the

error was incorporated into the BEMs a priori. Validations against the quasi-analytic conformal

transformation solution illustrated the excellent accuracy in the modified BEMs. However, it was

demonstrated how the modified methods were restricted in the degree of accuracy which could
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be recovered in the numerical solution of a singular BVP, as only the leading behaviour of the

asymptotic nature of the singularity was incorporated in Symm [1973] and Xanthis et al. [1981].

The methods of chapter 6 are applicable to the solution of a large number of physical problems

in the field of electrostatics, magnetostatics, steady-fluid flow and steady-heat conduction, as

demonstrated by their ability to model the singular stripline model.

There is scope for further developments into the modified methods presented in this thesis.

For example, the methods of chapter 3 were illustrated for only one (interior) singular point,

although the theory could be amended to cope with more complex singular problems if necessary.

Alternatively, given the numerical solution of singular BVPs in chapter 6, we could consider

developing modified BEMs that do not require a solution to be known a priori. Finally, we could

consider developing the modified BEMs in 4 and 6 for biharmonic problems, e.g. hair-line cracks,

although this would require dealing with coupled systems of integral equations.
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Appendix

A Geometric series theorem

Let A be a bounded operator. For

‖A‖ < 1, (A.1)

the Neumann series implies that (I − A)−1 exists and is bounded by

‖(I − A)−1‖ ≤ 1

1− ‖A‖ , (A.2)

where

(I − A)−1 =
∞∑
j=0

Aj . (A.3)
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B Analytic forms of Aij and Bij

When e(j) is a straight-line segment, the integrals in the CBEM (4.2.3) were first evaluated

analytically by Symm [1963]. His expressions are presented here for completeness.

Let qAj,n and qBj,n be points on ∂Ω marking the ends of boundary segment e(j). Given a general

field point p ∈ ∂Ω ∪ Ω and

a = |p− qAj,n|,

b = |p− qBj,n|,

h = |qAj,n − qBj,n|,

β = ∠qBj,nqAj,np,

ψ = ∠qAj,npqBj,n, (B.1)

we have the geometry as shown in Fig. 4.2.1. Using the notation of (B.1) we have the following

analytic expression for the integrals Aij and Bij in (4.2.8): first,

∫
e(j)

log |p− q| dq =

∫ qBj

qAj

log
[
(xp − xq)2 + (yp − yq)2

] 1
2 dxq,

=

∫ xB

xA

log
[
(xp − xq)2 + (yp − yq)2

] 1
2 dxq, (B.2)

where p = (xp, yp) is the field point and q = (xq, yq) the source point. After substituting x =

xp − xq and y = yp − yq, (B.2) is equivalent to

∫
e(j)

log |p− q| dq =

∫ xB−xp

xA−xp
log
[
x2 + y2

] 1
2 dx,

=

[
x
(

log
[
x2 + y2

] 1
2 − 1

)
+ y tan−1

(
x

y

)]xB−xp
xA−xp

,

= h(log(b)− 1) + a cos(β) log
(a
b

)
+ aψ sin(β). (B.3)

Second, using the Cauchy-Riemann equations for a complex function w = u+ iv

∂u

∂n
=
∂v

∂s
(B.4)
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where n and s are the unit normal and tangent vectors to ∂Ω at any given point. If ψ is the angle

made by the vector p− q with the outward normal to e(j) then log |p− q| = log(r) + iψ, thus∫
e(j)

log′ |p− q| dq =

∫
e(j)

∂

∂n
log(r) dq

=

∫
e(j)

∂

∂s
ψ dq

= ψ. (B.5)
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C Analytic forms of Jk,j and Kk,j

When e(j) is a straight-line segment, the integrals Jk,j and Kk,j used in the error analysis of §4.2.1

can, by extending the theory underlying Appendix B, also be derived analytically. Kelmanson

(private communication, 2011) has obtained these integrals for a general k using an automated

Maple process; they are presented here, for completeness, for k = 1, . . . , 4.

In order to simplify the expressions, let

µ =
h

a
, (C.1)

and

λ = log(1− 2µ cos(β) + µ2), (C.2)

by the notation of (B.1). The introduction of µ and λ facilitate the examination of the behaviour

of the integrals at specific field point locations, including: corners, element end-points, element

mid-point, or, collinear with the element.

Recall J1,j and K1,j were explicitly defined in §4.2.1. Therefore, by (B.1), (C.1) and (C.2), the

integral expressions for Jk,j in (4.2.29) and Kk,j in (4.2.30) for k = 2, 3 and 4 are

J2,j = a2

(
ψ cos 2β +

λ sin 2β

2
+

(
−ψ cosβ − λ sinβ

2
+ sinβ +

ψµ

4

)
µ

)
,

J3,j = a3

(
λ sin 3β

2
+ ψ cos 3β +

(−3ψ cos 2β

2
− 3λ sin 2β

4
+ sin 2β

+

(
3λ sinβ

8
+

3ψ cosβ

4
− sinβ − ψµ

8

)
µ

)
µ

)
,

J4,j = a4

(
ψ cos 4β +

λ sin 4β

2
+

(
sin 3β − λ sin 3β − 2ψ cos 3β

+

(−3 sin 2β

2
+

3ψ cos 2β

2
+

3λ sin 2β

4

+

(−ψ cosβ

2
− λ sinβ

4
+

5 sinβ

6
+
ψµ

16

)
µ

)
µ

)
µ

)
(C.3)
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and

K2,j = a3

(
ψ sin 3β

3
− λ cos 3β

6
+

(
−ψ sin 2β

2
+
λ cos 2β

4
− cos 2β

3

+

(−λ cosβ

8
+
ψ sinβ

4
+

cosβ

3
+

(
−1

9
+

log a

12
+

λ

24

)
µ

)
µ

)
, µ

)
K3,j = a4

(−λ cos 4β

8
+
ψ sin 4β

4
+

(−ψ sin 3β

2
+
λ cos 3β

4
− cos 3β

4

+

(−3λ cos 2β

16
+

3ψ sin 2β

8
+

3 cos 2β

8
+

+

(−ψ sinβ

8
+
λ cosβ

16
− 5 cosβ

24
+

µ

24

)
µ

)
µ

)
µ

)
,

K4,j = a5

(
ψ sin 5β

5
− λ cos 5β

10
+

(−ψ sin 4β

2
+
λ cos 4β

4
− cos 4β

5

+

(
2 cos 3β

5
+
ψ sin 3β

2
− λ cos 3β

4

+

(−ψ sin 2β

4
+
λ cos 2β

8
− 19 cos 2β

60
+

(−λ cosβ

32
+
ψ sinβ

16
+

7 cosβ

60

+

(
λ

160
+

log a

80
− 23

1200

)
µ

)
µ

)
µ

)
µ

)
µ

)
. (C.4)
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D Integrals Cij,Dij,Eij and Fij

By (B.1) in Appendix B, the integrals for Cij , Dij , Eij and Fij in Eqns. (6.3.9)-(6.3.12) over the

first (i.e. j = 1) or last (i.e. j = n)) elements are

Ci1 =

∫ x2

x1

x
1
2
q (yp − yq)

[(xp − xq)2 + (yp − yq)2]
dxq

=

∫ h−a cosβ

−a cosβ
(x+ a cosβ)

1
2

(
a sinβ

x2 + a2 sin2 β

)
dx, (D.1)

Di1 =

∫ x2

x1

x
3
2
q (yp − yq)

[(xp − xq)2 + (yp − yq)2]
dxq

=

∫ h−a cosβ

−a cosβ
(x+ a cosβ)

3
2

(
a sinβ

x2 + a2 sin2 β

)
dx, (D.2)

Ein =

∫ xn

xn−1

(−xq)−
1
2 log

[
(xp − xq)2 + (yp − yq)2

] 1
2 dxq

=

∫ h−a cosβ

−a cosβ
(h− a cosβ − x)−

1
2

(
a sinβ

x2 + a2 sin2 β

)
dx (D.3)

and

Fin = −
∫ xn

xn−1

(−xq)
1
2 log

[
(xp − xq)2 + (yp − yq)2

] 1
2 dxq

=

∫ h−a cosβ

−a cosβ
(h− a cosβ − x)

1
2

(
a sinβ

x2 + a2 sin2 β

)
dx. (D.4)

Integrals (D.1)-(D.4) may be evaluated analytically provided each element e(j) is a straight-line

segment (Kelmanson [1984]). Otherwise, these integrals must be evaluated numerically, which

shall be achieved by Patterson’s quadrature package D01AHF in Fortran.
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