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Abstract

In this thesis we study the bounded t-structures for some local Calabi-

Yau varieties, namely the total space of vector bundle over some del Pezzo

surface such that its canonical bundle is trivial. The main methods are

tilting theory and Happel-Reiten-Smalø’s tilting construction. The thesis

can be divided into two separated projects.

The first project is about the cotangent bundle of P2. For any full and strong

exceptional collection E on P2, we associate a quiver QE and construct a

functor from repQE to Coh (ΩP2) such that it sends the tilting object in

repQE to the tilting object in Coh (ΩP2). In this way we obtain a large

class of bounded t-structures in the associated Calabi-Yau category. We

also calculate the combinatorics of the t-structures given by the tiltings in

the sense of Happel-Reiten-Smalø.

The second project is about the canonical bundle of P1×P1. This is a math-

ematical interpretation of the physicists’ paper [26], in which they solved

the counting problem of the stable objects for certain stability conditions

on ωP1×P1 . The stability conditions which they consider are invariant under

an autoequivalence. We characterize all the stable objects for such stability

conditions and describe one connected component of the space of invariant

stability conditions.



Notations

D Essentially small triangulated category.

Db(X) Bounded derived category of coherent sheaves on a noethe-

rian and separated scheme X over C.
Db(A) Bounded derived category of right A-modules over a noethe-

rian (possibly graded) C-algebra A.
Db

0(A) Full subcategory of Db(A) with complexes having nilpotent

cohomology modules.

K0(D) (resp. K0(A)). Grothendieck group of an triangulated category D (resp. an

abelian category A).

supp(F ) Support of a complex of sheaves F ∈ Db(X).

thick(T ) Smallest thick subcategory of the object T (or set of objects)

in D.

repQ Category of finite dimensional representations of a quiver Q.

modfd-A Category of finite dimensional modules over A.

Given a triangulated category D, we write

Homi
D(A,B) := HomD(A,B[i]),

for A, B ∈ D. We denote by Hom•
D(A,B) =

⊕
i∈ZHom

i
D(A,B[i]) the total Hom-space.

Let Q = (Q0, Q1) be a quiver specified by a set of vertices Q0, a set of arrows Q1, and

source and target maps s, t : Q1 → Q0. In this thesis we compose the arrows on the

left, that is for b, a ∈ Q1, ba = 0 unless s(b) = t(a).

Denote by CQ the path algebra of Q, and given a two-sided I ⊂ CQ generated by

iv



CHAPTER 0. NOTATIONS v

linear combinations of paths of length at least 2, let A = A(Q, I) = CQ/I. We

write rep(Q, I) = modfd-A(Q, I). For each vertex i ∈ Q0 there is an associated one-

dimensional simple module Si ∈ rep(Q, I). Note that we have

nij = dimC Ext1A(Sj , Si)

where nij is the number of arrows from vertex i to j in our notations.
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Chapter 1

Introduction

There are many known examples of varieties being derived equivalent to non-commutative

algebras. The pioneering example is due to Beilinson [3] who proved that Db(Pn) is

generated by line bundles O,O(1), · · · O(n). This leads to the result that the functor

RHom

(
n⊕
i=0

O(i),−

)
: Db(Pn) −→ Db(A)

is a derived equivalence between Pn and the non-commutative algebra

A = End

(
n⊕
i=0

O(i)

)
.

Tilting objects

The work of Bondal, Rickard and Keller [7, 50, 38] proposed a general framework for

studying such equivalences, called the tilting theory. Suppose X is a smooth quasi-

projective variety. Let D = Db(X). An object T in D is called a tilting object if it

satisfies the following conditions

(i) RHomD (T, T [n]) = 0, unless n = 0;

(ii) T is a classical generator of D, i.e., the smallest thick subcategory containing T

which we denote by thick(T ) is D.

1
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Then RHom(T,−) induces a derived equivalence between X and the non-commutative

algebra B = End(T ). Tilting objects have become a powerful tool in studying the

derived category of varieties and their geometry. For example, if Y and Y + are 3-

dimensional smooth quasi-projective varieties over an affine variety and related by a

flop, inspired by the work of Bridgeland [12], Van den Bergh [55] proved there exists a

tilting object T in Db(Y ) such that

Db(Y ) ∼= Db(EndT ) ∼= Db(Y +),

which provided a new proof of the Bondal-Orlov conjecture [11] in dimension 3.

In fact the existence of tilting objects for projective varieties are rare, much more

progress has been made for non-compact (also called local) varieties, in particular for

local models of resolutions of singularities [5].

In this thesis, the example we are interested is when X = V is the total space of a vector

bundle over a del Pezzo surface Z such that the canonical bundle of X is trivial. Such

varieties are called local Calabi-Yau: for coherent sheaves (or complexes of sheaves)

F, G supported on the zero section, we have Serre duality

Exti(F,G) = ExtdimX−i(G,F )∗.

Therefore in this thesis, we usually work with the full subcategory Db
0(V) consisting of

objects which are supported on the zero section.

A first step to study Db(V) is to study Db(Z), and since Z is del Pezzo we can generalize

Beilinson’s approach. We can find a sequence of vector bundles E0, · · · , En called

exceptional and it is strong in the sense of [7] such that they generate Db(Z). Thereby

Db(Z) is derived equivalent to

A := EndZ(⊕iEi).

Then as observed in Bridgeland’s paper [14], if we pull back Ei along the projection

map π : V → Z, then we get a sequence of vector bundles Ti := π∗Ei such that they

also generate Db(V). In good cases, the direct sum ⊕iTi is still tilting. Therefore D
b(V)

is derived equivalent to

Â := EndV(⊕iTi).

T-structures
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The main goal of the thesis is to study the (non-degenerate) bounded t-structures

in Db
0(V) and the combinatorics of them. When we say a t-structure (D≤0,D≥0) is

bounded in D, if for every object E ∈ D, there exists an integer n > 0 such that

E[n] ∈ D≤0 and E[−n] ∈ D≥0. And it is non-degenerate, if ∩n∈ZD≤0[n] = 0 and

∩n∈ZD≥0[n] = 0. In this thesis we only consider the non-degenerate t-structures.

The main feature of the bounded t-structure is that it is determined by its heart

A = D≤0 ∩D≥0 (Lemma 2.1.1): for any object E ∈ D we have a collection of triangles

0 E0
// E1

//

��

E2
//

��

. . . // En−1
// En

��

E

A1

^^

A2

^^

An

``
(1.1)

with Ai[ki] ∈ A and k1 > k2 > · · · > kn. For example, given an abelian category A,

its bounded derived category Db(A) admits a standard t-structure where D≤0 is the

full subcategory of complexes without cohomology in positive degrees, the standard

t-structure is a bounded t-structure.

Tilting objects provide an important method for constructing new t-structures, since

given a tilting object in Db(V), the derived equivalence RHom(T,−) : Db(V) → Db(B)

gives us a new bounded t-structure (D≤0,D≥0) of Db(V) by pulling back the standard

one on Db(B):

D≤0 = {F ∈ D : RHomD(T, F [i]) = 0, i > 0} ,

D≥0 = {F ∈ D : RHomD(T, F [i]) = 0, i < 0} .

The heart A = D≤0 ∩ D≥0 is equivalent to mod-B by definition. We call (D≤0,D≥0)

the bounded t-structure induced by the tilting object T in this thesis.

Another very useful method for constructing new t-structure from given heartA of some

t-structure is provided by the idea of tilting with respect to a torsion pair, first intro-

duced by Happel-Reiten-Smalø [29]. We will recall the exact definition later (c.f. Sec-

tion 2.1). The Happel-Reiten-Smalø tilting enables us to find the adjacent t-structures

to the given one (see figure 1.1).

A special case of the tilting construction will be important for us: when B is obtained

from A by tilting at a torsion pair generated by a simple object. In this case, B is called

the left or right simple tilt of A (see figure 1.1). Then the combinatorics of t-structures
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S[1] ⊥S S

A

LSA

S S⊥ S[−1]

A

RSA

Figure 1.1: Left and right tilts of a heart.

arise by iteration of simple tilts. A useful way to illustrate the combinatorics is by

using the tilting exchange graph EG(D) - that is, the oriented graph whose vertices are

hearts in D and whose edges correspond to simple tilts between them. Tilting exchange

graphs will be useful for studying the space of stability conditions Stab(D), which we

will explain later. There is also a notion in cluster theory called the exchange graphs,

which has many links to various areas in mathematics (see survey [39]).

Given the heart of a t-structure A in D induced by tilting object T , a question that

one can ask is:

Can we describe the simple tilts of A by using tilting objects? More precisely, after

simple tilting, can we find another tilting object T ′ such that the resulting t-structure is

induced by T ′?

Note that this direction is first suggested and studied in Bridgeland’s paper [14, 16].

The first part of this thesis is devoted to studying the above problem for the derived

category of the cotangent bundle of P2.

Stability conditions

Inspired by Douglas’ work on π-stability for D-branes, Bridgeland introduced the notion

of a stability condition on a triangulated category in [17]. It was shown in [17] that

to any triangulated category D, one can associate a complex manifold Stab(D) which

parameterises stability conditions on D. Given the triangulated category D, one can
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ask the following three questions:

(i) Can we find a stability condition on D?

(ii) What is Stab(D) as a complex manifold?

(iii) Given a stability condition σ, can we count the set of (semi)stable objects in D
for σ?

The answer to the first question is closely related with the bounded t-structures. A

stability condition on D is a pair σ = (Z,A), where A is the heart of a bounded t-

structure in D, and Z is a group homomorphism called the central charge from the

Grothendieck group K0(A) to C which satisfies the Harder-Narasimhan property[17].

So far much progress towards this direction has been made for compact and non-

compact examples [18, 16, 19, 46, 33, 1]. And it seems that the non-compact example

is much easier with the help of tilting object: when A is induced by a tilting object in

the form ⊕n
i=1Ti, then A is of finite-length and consists of a finite set of non-isomorphic

simple objects. Then we only need to assign each simple object with a value in H

where

H := {z = rexp(iπϕ) | r > 0, 0 < ϕ ≤ 1} ⊂ C.

The Harder-Narasimhan property is automatically satisfied since A is of finite-length.

In this way, we get a subset U(A) ⊂ Stab(D) consisting of stability conditions with

fixed bounded heart A. By construction U(A) is isomorphic to Hn, where n is the

number of simple objects.

The answer to the second question in the non-compact case is related to the simple tilts

of t-structures. Given finite-length hearts A and B, U(A) ∩ U(B) is non-empty and of

codimension one when B is a simple tilt of A (Lemma 2.1.7). Therefore one can think

of U(A) as a cell of Stab(D) and EG(D) as the skeleton of space of stability conditions.

The answer to the final question is usually very hard in both compact and non-compact

examples. When D is a Calabi-Yau category of dimension 3, it is related to the

Donaldson-Thomas invariants [36, 43].

The second part of the paper is studying the space of stability conditions for local

P1 × P1, i.e., the total space X of canonical bundle over P1 × P1. The work is a
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mathematical interpretation of the work of Closset-Del Zotto [24] and Del Monte-

Longhi [26]. In their papers, the physicists found that there were surprisingly complete

answers to all questions in the above when we restrict to the invariant subspace of

Stab(X) under an autoequivalence of Db(X). In physcists’ language, we are considering

the collimation chamber of stability conditions.

Results for t-structures on the cotangent bundle of P2

We denote by π : X = TotΩP2 → P2 the bundle projection map. We consider the full

exceptional collection E = (E0, E1, E2) (see Definition 2.3.1) consisting of sheaves on

P2. Then ⊕iEi is a tilting object on P2, and we try to show that π∗ (⊕iEi) is a tilting

object for X.

However, this is not always possible. We need to use the helix theory: for any full excep-

tional collection E = (E0, E1, E2) on P2, one can associateH = (· · · , E−1, E0, E1, E2, E3, · · · )
a collection of exceptional objects satisfying Ei = Ei+3 ⊗ ωP2 . Any adjacent 3 objects

in H (called a thread) will be a full exceptional collection.

Now our first result on the tilting objects in Db(CohX) is stated as the following:

Theorem 1.0.1 (= Theorem 3.2.7). For any full and strong exceptional collection (see

Definition 2.3.1) E = (E0, E1, E2) on P2, one can always find a thread (Ei, Ei+1, Ei+2)

i ∈ Z in the corresponding helix H, such that the pullback
⊕i+2

i π∗Ei is a tilting object

in Db(CohX).

The tilting objects constructed in the above are not enough for characterizing the simple

tilts. Therefore we introduce a quiver associated with any full exceptional collection

E on P2, whose vertices correspond to Ti = π∗Ei, and number of arrows between two

vertices is given by the dimension of the vector space Ext1X(Ti, Tj). We denote the

resulting quiver by QE and call it the secondary quiver of E.

After analyzing possible types of the secondary quivers (which are all acyclic), we define

a functor FQ from mod-CQE to CohX, and prove the following theorem, which gives

us many more tilting objects associated with E:

Theorem 1.0.2 (=Theorem 3.4.5). For any full and strong exceptional collection E
on P2, FQ sends tilting objects in mod-CQE to tilting objects in Db(CohX).
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Here tilting objects in mod-CQE means they are tilting objects when viewed as objects

in Db(CQE).

Let Db
0(CohX) be the full subcategory of Db(CohX) consisting of objects with sup-

port on the zero section P2 ⊂ X and Db
0(B) be the full subcategory of Db(B) consist-

ing of objects whose cohomology modules are nilpotent over B. The derived equiv-

alence RHom(T,−) : Db(CohX) → Db(B = EndX T ) descends to equivalence be-

tween Db
0(CohX) and Db

0(B), this induces a t-structure on Db
0(CohX) whose heart

B ⊂ Db
0(CohX) is an abelian category which is equivalent to the category of nilpotent

modules over B. In the final section of this part, we calculate simple tilts from a given

one. The calculations involve an interesting autoequivalence on Db(CohX) which is

induced by the Mukai flop (see Proposition 3.5.5), first studied by Namikawa [48] and

Kawamata [37].

We remark that the combinatorics of simple tilts are complicated, and not all of them

are induced by the tilting objects we obtained above. However, our methods give many

tilting objects on Db(CohX) and should be useful for describing the tilting exchange

graph in the future research. We illustrate part of the tilting exchange graph and

corresponding Ext-quivers in figure 1.2: the vertices correspond to the simple objects

Si in the heart, the number over the arrows indicates the number of arrows, and black

arrows represent the elements in Ext1(Si, Sj), red arrows represent the elements in

Ext2(Si, Sj) (for details see Section 3.5).



8

A

C

Γ Γ′
Ψ

∼=

Ext-quivers of

A S0 S1 S2
1

3
10

3

3
1

3

3

3

C U0 U1 U2

73
27

10

3

3

73
27

75

75

Γ ∼= Γ′ W0 W1 W2

1
3

1
3

1

6

6

3

Figure 1.2: Part of the exchange graph and corresponding Ext-quivers of ΩP2
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Results for local P1 × P1

We again denote by π : ω → P1 × P1 the bundle projection map and pi : P1 × P1 → P1

i = 1, 2 the projection maps to each component. We write O(a, b) for the line bundle

p∗1O(a) ⊗ p∗2O(b). There is a full and strong exceptional sequence of line bundles on

P1 × P1:

E = (E0, E1, E2, E3) := (O(0, 0),O(1, 0),O(1, 1),O(2, 1)) ,

which generates Db(P1 × P1), and

T =
⊕

Ti :=
⊕
i

π∗Ei

is a tilting object in Db(ω). Then ω is derived equivalent to a non-commutative algebra

A = End(T ).

Suppose we have a presentation of the algebra A as the path algebra of a quiver Q

subject to relations, where the nodes of Q correspond to line bundles Ti. The quiver of

A will be

0 //
// 1

����

3

OO OO

2oo
oo

(1.2)

The symmetry of the shape of the quiver suggests that there should be an autoequiv-

alence of Db(ω), denoted by Φ, which exchanges the simple modules associated with

vertices 0 and 2, 1 and 3. We will realize Φ explicitly in Section 4.1.2.

Let C = Db
0(ω) be the full subcategory of Db(ω) consisting of objects supported on

P1 × P1. Let Stab(X) denote the space of stability conditions on C. We consider a

subspace of Φ-invariant stability conditions Stab(X)Φ.

Let φ be the automorphism of Grothendieck groupK0(C) induced by Φ. Then Stab(C)Φ

is locally modelled on Hom(K0(C),C)φ, the invariant central charges under φ. Note that
K0(C) ∼= Z4 has a basis γ0, · · · , γ3 which corresponds to the vertices of Q. Therefore

Hom(K0(C),C)φ ∼= C2.

Denote by A the heart in C induced by the tilting object T . We write U(A)Φ for the

subset of Stab(C)Φ consisting of Φ-invariant stability conditions with heart A. First we

characterize the stable objects for σ ∈ U(A)Φ: note that the Kronecker quiver K2

0 //
// 1
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can be embedded into Q (1.2) in 4 different ways. Therefore rep(K2) embeds into A
as full subcategories. For stability condition σ ∈ U(A)Φ, σ reduces to be a stability

function σ̄ on rep(K2). We are able to show that

Lemma 1.0.3. The stable objects in rep(K2) with respect to σ̄ are stable in A with

respect to σ.

The stable objects in rep(K2) are well known to be the indecomposable representations

(with respect to certain stability functions), their images in A are called objects of

special Kronecker types I and II (Definition 4.3.6). We show that these are in fact all

the stable objects for σ ∈ U(A)Φ:

Theorem 1.0.4 (=Theorem 4.3.23). Take σ ∈ U(A)Φ. The stable objects for σ and

their classes in Grothendieck group (up to a sign) are as follows:

(i) if argZ(γ0) < argZ(γ1), then the classes of stable objects are

nγ0 + (n+ 1)γ1, (n+ 1)γ0 + nγ1,

nγ2 + (n+ 1)γ3, (n+ 1)γ2 + nγ3,

γ0 + γ1, γ2 + γ3.

each of the first 4 classes corresponds to a unique stable object (up to a shift of

degree) called the special Kronecker of type I, and each of the last two classes

corresponds to a P1-family of stable objects;

(ii) if argZ(γ1) < argZ(γ0), then the classes of stable objects are

nγ1 + (n+ 1)γ2, (n+ 1)γ1 + nγ2,

nγ3 + (n+ 1)γ0, (n+ 1)γ3 + nγ0,

γ1 + γ2, γ3 + γ0.

each of the first 4 classes corresponds to a unique stable object(up to a shift of

degree) called the special Kronecker of type II, and each of the last two classes

corresponds to a P1-family of stable objects;

(iii) if argZ(γ0) = argZ(γ1), then the classes of stable objects are

γ0, γ1, γ2, γ3.

each class corresponds to a unique stable object Si (see Corollary 4.1.3).
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Moreover, via the autoequivalences of C we actually characterize the stable objects

for any stability conditions in one connected component (see Corollary 4.4.5). This

answers the question of counting the stable objects for the local P1 × P1. We proceed

to characterize a connected component of Stab(X)Φ.

Let K0(C)−φ be the subgroup of K0(C) whose elements are antisymmetric under φ.

We denote by K0(C) = K0(C)/K0(C)−φ the quotient group. Note that there is an

isomorphism

HomZ(K0(C),C) −→ HomZ(K0(C),C)φ.

We write ∆ ⊂ K0(C) for the set of the classes of the stable objects for σ ∈ U(A)Φ. The

connected component of Stab(C)Φ which contains U(A)Φ is denoted by
(
Stab(X)Φ

)
0
,

we have

· · ·
...

...
· · ·

Z(γ1) = Z(γ3)

Z(γ0) = Z(γ2)

Figure 1.3: Real slice of Hreg

Theorem 1.0.5 (=Theorem 4.4.6 and 4.4.8 ). The forgetful map

Z :
(
Stab(X)Φ

)
0
→ Hom(K0(C),C)

factors through

Z :
(
Stab(X)Φ

)
0
→ Hreg (1.3)

where

Hreg := Hom(K0(C),C) \
⋃
vvv∈∆

vvv⊥,

and vvv⊥ := {Z ∈ Hom(K0(C),C) | Z(vvv) = 0}. Moreover in (1.3) Z is a covering map.
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Relation with [24, 26]

Finally we explain the relation between our work with [24, 26]. We keep the notations as

above and introduce the notations for normalized stability conditions Un(A)Φ ⊂ U(A)Φ

by

Un(A)Φ = {(Z,P) : Z(δ) = i},

where δ is the class of a skyscrapper sheaf Ox, x ∈ P1×P1. Note that Z(γ0)+Z(γ2) =

Z(γ1) + Z(γ3) lies on the imaginary axis. It was shown by Closset-Del Zotto [24,

Appendix D] that there is a unique stable object in each slicing P(ϕ) where ϕ ̸= 1
2 + n

(n ∈ Z), and each such object corresponds to a representation of the Kronecker quiver.

In this thesis we analyze the special slicing P(12) in detail. For simplicity, we restrict

to the subset Un(A)Φ+ :=
{
(Z,P) : argZ(γ0) < argZ(γ1)

}
. We show that each stable

object in P(12) is isomorphic to s∗O{y}×P1 or s∗O{y}×P1(−1)[1] for y ∈ P1 (Theorem

4.3.22). The case for Un(A)Φ− :=
{
(Z,P) : argZ(γ1) < argZ(γ0)

}
is obtained by

applying an autoequivalence of Db(X). The key observation in the proof of the above

theorem was taken from [26], which is our Lemma 4.3.15: one can identify the action of

the autoequivalence T on the stability conditions in Un(A)Φ+ with the action of g̃ where

g̃ ∈ G̃L
+
(2,R), the universal covering space of GL+(2,R). The former autoequivalence

T plays an important role in the tilting process (Theorem 4.2.1).



Chapter 2

Preliminaries

In this chapter we assume D is a triangulated category such that

(i) D is a C-linear category: the Hom spaces are C-linear spaces, and composition

maps are bilinear.

(ii) D is of finite type, i.e. for any two objects A, B of D the vector space⊕
i∈Z

Homi
D(A,B)

is finite-dimensional.

(iii) D is algebraic in the sense of Keller[38].

(iv) D is saturated [8], i.e., all triangulated functors

D −→ D(C), Dop −→ D(C),

are representable.

§ 2.1 Simple tilts

The reader is assumed to be familiar with the concept of a t-structure [28]. We are only

considering the bounded t-structures. Recall that a t-structure (D≤0,D≥0) is bounded

13
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in D, if for every object E ∈ D, there exists an integer n > 0 such that E[n] ∈ D≤0

and E[−n] ∈ D≥0. The bounded t-structure is determined by its heart:

Lemma 2.1.1 ([17, Lemma 3.2]). Let A ⊂ D be a full additive subcategory of D. Then

A is the heart of a bounded t-structure (D≤0,D≥0) if and only if it satisfies the following

conditions:

(i) if n1 > n2 then HomD(A[n1], B[n2]) = 0 for any A, B ∈ A;

(ii) for every nonzero object E ∈ D there are a finite sequence of integers:

k1 > k2 > · · · > kn

and a collection of triangles

0 E0
// E1

//

��

E2
//

��

. . . // En−1
// En

��

E

A1

^^

A2

^^

An

``

(2.1)

with Ai ∈ A[ki] for all i.

In analogy with the standard t-structure on the derived category of an abelian category,

given A the heart of a bounded t-structure and any nonzero object E, we denote by

HkiA (E) := Aki [−ki] ∈ A the ith-graded cohomology group with respect to A, where Ai

appears in (2.1).

A heart of some t-structure will be called finite-length if it is artinian and noetherian

as an abelian category.

The following definition comes from Happel-Reiten-Smalø [30].

Definition 2.1.2 (Torsion pair). Let A be a heart of some bounded t-structure in the

triangulated category D. A pair of full subcategories (T ,F) of A is called a torsion pair

in A if it satisfies the following conditions

(i) HomA(T, F ) = 0 for T ∈ T and F ∈ F ;
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(ii) for any object A ∈ A, there exist M ∈ T and N ∈ F such that they fit into a

short exact sequence

0 //M // A // N // 0.

The following theorem was proved in [30, Proposition 2.1].

Theorem 2.1.3 (Happel-Reiten-Smalø). Let (T ,F) be a torsion pair in a heart A.

Let

A♯ :=
{
E ∈ D | H1

A(E) ∈ T , H0
A(E) ∈ F , HiA(E) = 0 for i ̸= 0, 1

}
,

A♭ :=
{
E ∈ D | H−1

A (E) ∈ F , H0
A(E) ∈ T , HiA(E) = 0 for i ̸= −1, 0

}
,

then A♯ and A♭ are hearts of bounded t-structures in D.

A special case of the tilting construction will be particularly important [41, Definition

3.7]. Suppose that A is a finite-length heart and S ∈ A is a simple object. Let ⟨S⟩
be the full subcategory consisting of objects E ∈ A all of whose simple factors are

isomorphic to S. Define the full subcategories

S⊥ := {E ∈ A | HomA(S,E) = 0}, ⊥S := {E ∈ A | HomA(E,S) = 0}.

Then we can either view (⟨S⟩, S⊥) or (⊥S, ⟨S⟩) as a torsion pair. Then we can define

new tilted hearts

LSA := ⟨S[1],⊥ S⟩, RSA := ⟨S⊥, S[−1]⟩, (2.2)

which we refer to as the left and right simple tilts of the heart A at the simple object

S.

Remark 2.1.4. It is easy to see that S[−1] is a simple object of RSA and that if the

category is of finite-length, then LS[−1]RSA = A. Similarly, if LSA is of finite-length

then RS[1]LSA = A, see Figure 1.1.

The following lemmas will be useful.

Lemma 2.1.5. Let (D≤0, D≥0) and (D̃≤0, D̃≥0) be two bounded t-structures of D, and

we denote by A and A′ their hearts respectively. If A ⊂ A′ then A = A′.
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Proof. Let E ∈ A′. Since for any object F ∈ D≤0, F has a finite filtration by objects

in A[ki] ⊂ A′[ki] for ki ≥ 0 by Lemma 2.1.1, so we have

HomD(F,E[−1]) = 0.

Therefore E[−1] ∈ D>0.

Similarly for any object G ∈ D>0, G has a finite filtration by objects in A[ki] ⊂ A′[ki]

for ki < 0, therefore

HomD(E,G) = 0.

Therefore E ∈ D≤0. So we have E ∈ D≤0 ∩D>0[1] = A. This proves the lemma.

Lemma 2.1.6. Take an autoequivalence Φ ∈ Aut(D). Let A ⊂ D be a heart of some

bounded t-structure and of finite-length, S ∈ A be a simple object. Then we have

Φ(LSA) = LΦ(S)Φ(A), Φ(RSA) = RΦ(S)Φ(A).

Proof. By the definition of simple tilts (2.2), we haveRΦ(S)Φ(A) =
〈
(Φ(S))⊥ ,Φ(S)[−1]

〉
.

It is easy to check Φ(S⊥) = (Φ(S))⊥, therefore RΦ(S)Φ(A) ⊂ Φ(RSA) by definition.

By Lemma 2.1.5 we have RΦ(S)Φ(A) = Φ(RSA). We leave the proof for left tilt to the

reader.

Given a heart of bounded t-structure A ⊂ D, we denote by SimA the set of all non-

isomorphic simple objects in A. The following theorem characterizes the new simple

objects in the tilted hearts [42, Proposition 7.6], see also [41, Proposition 5.4].

Proposition 2.1.7. Assume SimA is finite and A is of finite-length. Let S ∈ A be

such that Ext1A(S, S) = 0. Then after taking a left or right simple tilt, the new simple

objects are:

SimRSA = {S[−1]} ∪ {ϕS(X) : X ∈ SimA, X ̸= S} (2.3)

SimLSA = {S[1]} ∪ {ψS(X) : X ∈ SimA, X ̸= S} (2.4)

where

ϕS(X) = Cone
(
S[−1]⊗ Ext1(S,X) −→ X

)
,

ψS(X) = Cone
(
X −→ S[1]⊗ Ext1(X,S)∗

)
[−1].
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§ 2.2 Stability conditions

We collect some properties and theorems on the space of stability conditions introduced

in [17].

Definition 2.2.1 (Slicing). A slicing of D is a collection of full subcategories P(ϕ)

indexed by ϕ ∈ R, satisfying the following axioms:

(i) P(ϕ+ 1) = P(ϕ)[1];

(ii) HomD (P(ϕ1),P(ϕ2)) = 0 for ϕ1 > ϕ2;

(iii) for any nonzero object E ∈ D, we have a collection of triangles

0 E0
// E1

//

��

E2
//

��

. . . // En−1
// En

��

E

A1

^^

A2

^^

An

``

such that Ai ∈ P(ϕi), and

ϕ1 > ϕ2 > · · · > ϕn.

For any nonzero object E, we denote by ϕ+(E) = ϕ1 and ϕ−(E) = ϕn where ϕi is

defined as above. For any interval I ⊂ R, P(I) is defined to be the extension-closed

subcategory of D generated by objects E ∈ P(ϕ) for ϕ ∈ I.

We denote by Slice(D) the set of all slicings on D. Bridgeland introduced a generalized

metric in Slice(D):

Definition 2.2.2 ([17, Section 6] ). Let P1, P2 ∈ Slice(D), then the generalized metric

d : Slice(D)× Slice(D) → [0,+∞] is defined as

d(P1,P2) := sup
E ̸=0∈D

{
|ϕ+1 (E)− ϕ+2 (E)|, |ϕ−1 (E)− ϕ−2 (E)|

}
.

Before recalling stability condition on D, we first recall the stability function on an

abelian category A [52].
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Definition 2.2.3. A stability function on A is a group homomorphism Z : K0(A) → C
such that for any nonzero object A ∈ A, the complex number Z(A) lies in the subset

H = {z = rexp(iπϕ)|r > 0, 0 < ϕ ≤ 1} ⊂ C.

The phase of A is defined to be ϕ(A) = 1
πargZ(A) ∈ (0, 1]. An object E ∈ A is said to

be (semi)stable if for any subobject A ⊂ E we have

ϕ(A) < (≤)ϕ(E).

Definition 2.2.4 (Harder-Narasimhan property [17, Definition 2.3]). Let Z : K0(A) →
C be a stability function on the abelian category A. Then Z is said to have Harder-

Narasimhan property if for any nonzero object E ∈ A there is a filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · ·En−1 ⊂ En = E

such that each Fi = Ei/Ei−1 is a semistable object of phase ϕi and ϕ1 > ϕ2 · · · >
ϕn−1 > ϕn.

Definition 2.2.5 (Stability condition). A stability condition for D is a pair σ = (Z,A)

which consists of a heart of a bounded t-structure A in D, and a stability function (called

the central charge of σ) Z : K0(A) → C such that Z satisfies the Harder-Narasimhan

property.

The above definition of stability condition is equivalent to the following definition [17,

Proposition 5.3]:

Definition 2.2.6. A stability condition is a pair σ = (Z,P) which consists of a slicing

P ∈ Slice(D) and a group homormorphism called the central charge Z : K0(D) → C,
such that it satisfies the compatibility condition: if 0 ̸= E ∈ P(ϕ) for some ϕ ∈ R, then

Z(E) = rexp(iπϕ), r > 0.

The objects in P(ϕ) are called semistable of phase ϕ, and the simple objects in P(ϕ)

are called stable.

The following lemma will be useful later.

Lemma 2.2.7 ([17, Lemma 6.4]). If the stability conditions σ = (Z,P) and τ = (Z,P ′)

have the same central charge and d(P,P ′) < 1, then σ = τ .
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Definition 2.2.8 (Support property). Let σ = (Z,P) be a stability condition, by fixing

a norm ∥ · ∥ on K0(D)R = K0(D) ⊗Z R, σ is said to have support property if there

exists a constant C > 0 such that

∥E∥ ≤ C|Z(E)|

for any stable object E.

We denote by Stab(D) the set of all stability conditions with the support property. To

define the topology on Stab(D), Bridgeland [17] introduced the following definitions:

Definition 2.2.9. Let σ = (Z,P) ∈ Stab(D). The function ∥ · ∥σ : Hom(K0(D),C) →
[0,+∞] is defined as

∥W∥σ := sup

{
|W (E)|
|Z(E)|

: E semistable for σ

}
.

Lemma 2.2.10 ([17, Lemma 6.2]). For σ = (Z,P) ∈ Stab(D) and 0 < ϵ < 1
4 let

Cϵ(σ) := {τ = (W,Q) ∈ Stab(D) : ∥W − Z∥σ < sin(πϵ), d(P,Q) < ϵ} .

Then by varying σ, we get a basis for the topology of Stab(D).

The result on deformation of stability conditions is the main theorem of [17].

Theorem 2.2.11 ([17, Theorem 7.1]). Let σ = (Z,P) ∈ Stab(D). Suppose there exists

0 < ϵ0 <
1
8 such that if 0 < ϵ < ϵ0 and W ∈ Hom(K0(D),C) satisfying

|W (E)− Z(E)| < sin(πϵ)|Z(E)|

for any semistable object E ∈ D with respect to σ. Then there exists a unique stability

condition τ = (W,P ′) such that

d(P,P ′) < ϵ.

Corollary 2.2.12 ([17, Theorem 1.2]). Let D be a triangulated category. For each

connected component Σ ⊂ Stab(D) there are a linear subspace V (Σ) ⊂ Hom(K0(D),C),
with a well-defined linear topology, and a local homeomorphism Z : Σ → V which sends

a stability condition to its central charge Z.

Since K0(D) might have infinite rank, in practice we usually assume there is a quotient

group N of finite rank, and the quotient map is denoted by µ : K0(D) → N . Then let
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StabN (D) be the subspace of Stab(D) consisting of stability conditions whose central

charges Z : K0(D) → C factor through N . Then the following result is an immediate

consequence of Corollary 2.2.12.

Corollary 2.2.13 ([17, Corollary 1.3]). For each connected component Σ ⊂ StabN (D)

there are a linear subspace V (Σ) ⊂ Hom(N ,C), and a local homeomorphism Z : Σ → V

which sends a stability condition to its central charge Z. In particular, Σ is a finite-

dimensional complex manifold.

We recall some group actions on the space of stability conditions. Let G̃L
+
(2,R)

be the universal covering of GL+(2,R). Note that an element in G̃L
+
(2,R) can be

viewed as a pair (g, f) where g ∈ GL+(2,R) and f : R → R is an increasing map

with f(ϕ + 1) = f(ϕ) + 1, such that g and f induce the same action on the circle

S1 = {eiπϕ : ϕ ∈ R} = (R2 \ {0})/R>0.

Definition 2.2.14. The space of stability conditions carries a right action by G̃L
+
(2,R).

For g̃ = (g, f) ∈ G̃L
+
(2,R) and σ = (Z,P) ∈ Stab(D), then σ · g̃ = (Zg,Pf ) where for

[E] ∈ K0(D)

Zg(E) = g−1Z(E), Pf (ϕ) = P (f(ϕ)) .

The space of stability conditions also carries a left action by Aut(D). For T ∈ Aut(D),

denote by t the automorphism of K0(D) induced by T , then T (σ) = (Zt,PT ) where for

[E] ∈ K0(D)

Zt(E) = Z(t−1E), PT (ϕ) = T (P(ϕ)) .

Remark 2.2.15. From the definition of G̃L
+
(2,R)-action, σ and σ · g̃ have the same

set of semistable objects, but the phases have been relabelled. In particular, note that

the additive group C acts on Stab(D), via the embedding C ↪−→ G̃L
+
(2,R): an element

λ ∈ C acts by

λ : (Z, [P ]) 7→ (Z ′,P ′), Z ′(E) = e−iπλ · Z(E), P ′(ϕ) = P (ϕ+Re(λ)) .

In the end of this subsection, we recall the following important lemma:

Lemma 2.2.16 ([22, Proposition 7.6]). Fix 0 ̸= E ∈ D, then

(i) the set of stability conditions σ ∈ Stab(D) for which E is σ-stable is open;

(ii) the set of stability conditions σ ∈ Stab(D) for which E is σ-semistable is closed.
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Definition 2.2.17. Let A be the heart of a bounded t-structure in D which is of finite-

length, then we introduce a subset of stability conditions

U(A) = {σ = (Z,P)|P
(
(0, 1]

)
}.

The relation between simple tilts and stability conditions is the following:

Lemma 2.2.18 ([15, Lemma 5.5]). Suppose A is of finite-length. Let σ = (Z,P) ∈
U(A) the closure of U(A). Suppose that Z(Si) ∈ R<0 for some i, also ImZ(Sj) > 0 for

j ̸= i, and RSiA is finite length, then there is an open neighborhood V of σ such that

V ⊂ U(A)∪U(RSiA). Similarly suppose Z(Si) ∈ R>0 for some i and ImZ(Sj) > 0 for

j ̸= i, and LSiA is finite length, then there is an open neighborhood V ′ of σ such that

V ′ ⊂ U(A) ∪ U(LSiA).

§ 2.3 Exceptional collections, helices and mutations

We recall the definitions of exceptional collections, their generalizations called helices

and mutations.

Definition 2.3.1 (Exceptional collection). An object E in D is said to be exceptional

if

Homk
D(E,E) =

{
C if k = 0,

0 otherwise.

An exceptional collection E ⊂ D is a sequence of exceptional objects

E = (E0, · · · , En)

such that for all 0 ≤ i < j ≤ n, we have Hom•
D(Ej , Ei) = 0.

An exceptional collection E = (E0, · · · , En) is said to be strong if for all i, j

Homk
D(Ei, Ej) = 0, unless k = 0.

We write thick(E) ⊂ D for the smallest thick subcategory of D containing the elements

of an exceptional collection E ⊂ D. An exceptional collection E is said to be full if

thick(E) = D.
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From the definitions above, we have that for a full and strong exceptional collection E,
the object

⊕n
i=0Ei is a tilting object in D. Given an exceptional collection E in D, the

right orthogonal subcategory to E is the full triangulated subcategory

E⊥ = {X ∈ D : Hom•
D(E,X) = 0 for E ∈ E} .

Similarly, the left orthogonal subcategory to E is

⊥E = {X ∈ D : Hom•
D(X,E) = 0 for E ∈ E} .

The subcategory ⟨E⟩ is admissible due to [7, Theorem 3.2], i.e. the inclusion functor

i : ⟨E⟩ → D has left and right adjoint functors. Thus the fullness of E is equivalent to

E⊥ = 0 or ⊥E = 0.

We suppose E ∈ D to be exceptional. Given an object X ∈ D, the left mutation of X

through E is the object LE(X) defined up to isomorphism by the triangle

LE(X) // Hom•
D(E,X)⊗ E

ev // X // LE(X)[1],

where ev denotes the evaluation map. Similarly, given X ∈ D, the right mutation of X

through E is the object REX defined by the triangle

X
coev // Hom•

D(X,E)∗ ⊗ E // RE(X) // X[1],

where coev denotes the coevaluation map. Moreover, consider the left and right or-

thogonal subcategories of E, these two operations define mutually inverse equivalences

of categories (see [23, Appendix B])

⊥E
LE

++
E⊥

RE

kk (2.5)

Definition 2.3.2 (Standard mutation). Given a full exceptional collection E = (E0, · · · , En),
the mutation operation σi for each 0 < i ≤ n is defined by the rule

σi(E0, · · · , Ei−2, Ei−1, Ei, Ei+1, · · · , En)

= (E0, · · · , Ei−2, LEi−1(Ei), Ei−1, Ei+1, · · · , En)

This operation takes exceptional collections to exceptional collections [7, Lemma 2.1].

And it takes full collections to full collections [7, Lemma 2.2].

The following definition is due to Bondal[7], and we refer our reader to [23, Appendix

B] for the proof.
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Definition-Lemma 2.3.3 (Dual objects). Let E = (E0, · · · , En) be a full exceptional

collection and define

Fj = LE0LE1 · · ·LEj−1(Ej)[j], 0 ≤ j ≤ n.

Then Fj is called the dual object to Ej and satisfies

Homk
D(Ei, Fj) =

{
C if i = j and k = 0,

0 otherwise.

Under our assumptions for the category D, according to [8, Corollary 3.5] D has a Serre

functor SD. By definition of the Serre functor, we have that SD is an autoequivalence

of D and there are given bi-functorial isomorphisms

ϕE,G : HomD(E,G) −→ HomD (G,SD(E))∗

for E, G ∈ D. A motivating example of the Serre functor is the following: when

D = Db(Y ) for a smooth projective variety Y , then SD := −⊗ ωY [−dimY ] is a Serre

functor.

The relation between Serre functor and mutation is the following:

Lemma 2.3.4 ([23, Corollary 2.10]). Let E = (E0, E1, · · · , En) be a full exceptional

collection in D. Then

SD(En) = LE0 · · ·LEn−1(En).

The following definition first appeared in [51].

Definition 2.3.5 (Helix). A sequence of objects H = (Ei)i∈Z in D is a helix if there

exist positive integers (n, d) such that

(i) for each i ∈ Z the collection of objects (Ei, · · · , Ei+n) is called a thread and is a

full exceptional collection,

(ii) for each i ∈ Z one has Ei−n−1 = SD(Ei)[−d].

Given a full exceptional collection E, we can generate a helix using the Serre functor

SD by defining Ei−m(n+1) := (SD)
m(Ei)[−dm] for every integer m. We also have the
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mutation for helices: given a helix H = (Ej)j∈Z and an integer i modulo n + 1 , then

we can get a new helix σi(H) = H′ = (E′
j)j∈Z:

E′
j =


Ej−1 if j = i mod n+ 1

LEj (Ej+1) if j = i− 1 mod n+ 1

Ej otherwise

It is interesting to ask which properties are preserved under mutation, for example,

strong exceptional collection may not be preserved under mutation in general.

Definition 2.3.6 (Geometric helix[9]). A helix H = (Ei)i∈Z is called geometric if for

any i < j we have

Homk
D(Ei, Ej) = 0, k ̸= 0.

Equivalently, each thread (Ei, · · · , Ei+n) is a strong exceptional collection and

Homk
D

(
Ei, S

−l
D (Ej)[ld]

)
= 0, for k ̸= 0, l > 0, and all i, j.

Given a t-structure (D≤0,D≥0) of D, a helix H = (Ei)i∈Z is called pure if each element

Ei is contained in its heart.

We have the following important result.

Theorem 2.3.7 ([9, Theorem 2.3 and Lemma 2.5]). The purity and geometricity of a

helix of type (n, n) are preserved under mutations.



Chapter 3

T-structures on the cotangent

bundle of P2

This chapter studies the t-structures for X = TotΩP2 . We construct tilting objects

by using two methods and calculate the simple tilts from the t-structure induced by a

tilting object. This chapter is organized in the following way: we first recall some useful

properties for exceptional sheaves on P2, then we show how to obtain the tilting objects

for X by using the helix theory on P2 in section 3.2. As explained in the introduction,

we continue constructing more tilting objects by introducing an algebraic structure

called the secondary quiver in section 3.3 and construct a functor from the category of

representations of the secondary quiver to CohX, then in section 3.4 we show that the

above functor sends tilting objects in the category of representations to tilting objects

on X. Finally in section 3.5, we mainly calculate some (right) simple tilts from a given

t-structure induced by a tilting object.

§ 3.1 Exceptional objects on P2

First we recall the conception of (semi)stability of sheaves on Pn: fix an ample divisor

on Pn, here we can choose the hyperplane H, then the slope of a pure sheaf (see [35,

25
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Definition 1.1.2]) F is defined to be

µ(F ) :=
c1(F).Hn−1

r(F)
,

where r(F) is the rank of F .

Definition 3.1.1 ((Semi)stability). A pure sheaf F on Pn is called stable (resp. semi-

stable), if for any subsheaf E with strictly smaller rank than F , then we have

µ(E) < µ(F) (resp. µ(E) ≤ µ(F))

The following useful lemma is proved in [44, Propositions 2.9 and 2.10].

Lemma 3.1.2. If E is an exceptional object on P2, then E is a shift of a locally free

and stable sheaf.

A good proof of the following result is given by Bondal and Polishchuk [9, Example

3.2].

Lemma 3.1.3 (Gorodentsev, Rudakov). If (E0, E1, E2) is a full and strong exceptional

collection in Db(P2), then the positive integers (a, b, c) defined by a = dimHomDb(P2)(E0, E1),

b = dimHomDb(P2)(E1, E2) and c = dimHomDb(P2)(E0, E2) satisfy the Markov equa-

tion:

a2 + b2 + c2 = abc.

Using the above lemmas, we can compare the slopes between the bundles in an excep-

tional collection in Db(P2):

Lemma 3.1.4. Let E = (E0, E1, E2) be a full and strong exceptional collection consist-

ing of sheaves in Db(P2), then for j > i, we have µ(Ej) > µ(Ei).

Proof. If not, we suppose µ(Ej) ≤ µ(Ei) for some j > i. Then we claim that

HomP2(Ei, Ej) = 0 since

(i) if µ(Ej) = µ(Ei). Any non-trivial homomorphism between stable bundles of equal

slopes must be an isomorphism. However, since HomP2(Ej , Ei) = 0 by definition

of an exceptional sequence, therefore we have HomP2(Ei, Ej) = 0;
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(ii) if µ(Ej) < µ(Ei), then HomP2(Ei, Ej) = 0 since there is no map between stable

bundles from the one with bigger slope to the smaller slope.

Then by Lemma 3.1.3, we have a = b = c = 0. Thus there is no map among E0, E1

and E2.

Since the exceptional collection is full, we see that Db(P2) can be decomposed into two

subcategories ⟨E0⟩ and ⟨E1, E2⟩. But by [13, Example 3.2], this would imply that P2

is not connected, which is absurd.

The following known result will be useful to us:

Theorem 3.1.5. Let E = (E0, E1, E2) be a full exceptional collection which consists of

sheaves in Db(P2). Then E is strong.

Proof. By [44, Corollary 2.11], for i < j there is at most one ExtkP2(Ei, Ej) group which

doesn’t vanish, and such k ̸= 2. So either HomP2(Ei, Ej) ̸= 0 or Ext1P2(Ei, Ej) ̸= 0. By

using the Riemann-Roch theorem for exceptional sheaves, we have

χ(Ei, Ej) =
1

2
r(Ei)r(Ej)

(
(µ(Ei)− µ(Ej))

2 + 3(µ(Ej)− µ(Ei)) +
1

r2(Ei)
+

1

r2(Ej)

)
.

By Lemma 3.1.4, µ(Ej) > µ(Ei) when j > i. Thus χ(Ei, Ej) > 0, which implies

Ext1P2(Ei, Ej) = 0.

§ 3.2 First method of constructing tilting objects

First, we show for an object which classically generates the derived category of P2, then

the pull back of such an object under the bundle projection map π : X = TotΩP2 → P2

will classically generate Db(X). We say T ∈ Db(X) is a generator in the sense of [10,

Section 2.1], if Hom•
Db(X)(T,A) = 0 implies A = 0 in Db(X).

Lemma 3.2.1. Let E be an object which classically generates Db(P2), then π∗E clas-

sically generates Db(X).
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Proof. Let QCoh(X) be the category of quasi-coherent sheaves on X. By [10, Theo-

rems 2.1.2, Theorem 3.1.1], it is equivalent to show that π∗E generates the category

D (QCoh(X)). Since π : X → P2 is affine and flat, then (non-derived) π∗ and π∗ are

both exact. Thus we have Lπ∗ = π∗ and Rπ∗ = π∗.

For any object F ∈ D (QCohX), we have the adjunction

Hom•
D(QCohX) (π

∗E,F ) ∼= Hom•
D(QCohP2) (E, π∗F ) . (3.1)

Then for any F ∈ D(QCohX), suppose we have Hom•
D(QCohX) (π

∗E,F ) = 0, then due

to the adjunction (3.1) and the fact that E generates D(QCoh(P2)), we have π∗F = 0.

Since π∗ has no kernel (this can be verified by taking an open cover of P2, then applying

the definition of π∗), we have F ∼= 0.

Applying the same argument in reverse this means that π∗E classically generates

Db(X).

We need the following results on the vanishing of certain cohomology groups.

Lemma 3.2.2. Suppose E = (E0, E1, E2) is a full exceptional sequence of sheaves on

P2 such that for any i, j ∈ {0, 1, 2}, we have µ(Ei) − µ(Ej) ≤ 2. For any object

F ∈ Db(P2), we denote by F |H the restriction of F to the hyperplane H ⊂ P2.

Then we have for n > 0

H1
(
P1, E∗

i ⊗ Ej(n)|H
)
= 0, (3.2)

Proof. Let i, j ∈ {0, 1, 2}. By assumptions and Lemma 3.1.4 we know µ (Ei(−2)) =

µ(Ei)−2 ≤ µ(Ej). And since Ej and Ei(−2) are stable, we have Hom (Ej , Ei(−2)) = 0

or Hom (Ej , Ei(−2)) = C.

Using the Serre duality, we have

Ext2P2 (Ei, Ej(−1)) = HomP2 (Ej , Ei(−2))∗ .

Thus we have Ext2P2 (Ei, Ej(−1)) = HomP2 (Ej , Ei(−2))∗ = 0 or C.

Let H = P1 be a hyperplane in P2, then by the Grothendieck splitting theorem, we

denote by Ei|H =
⊕

m∈I O(sm)
⊕km the restriction of bundle Ei to H, where I is a finite



CHAPTER 3. T-STRUCTURES ON THE COTANGENT BUNDLE OF
P2 29

set of indices, sm ∈ Z, km > 0. We write E∗
i ⊗ Ej |H =

⊕
m∈I′ O(am)

⊕um for am ∈ Z
and um > 0. Let a0 be the smallest number of the set {am}m∈I′ . Now we consider the

tensor product of the restriction sequence with E∗
i ⊗ Ej :

0 // E∗
i ⊗ Ej(−1) // E∗

i ⊗ Ej // E∗
i ⊗ Ej |H // 0.

The long exact sequence in cohomology gives

· · · Ext1P2(Ei, Ej) Ext1H(Ei|H , Ej |H)

Ext2P2 (Ei, Ej(−1)) Ext2P2(Ei, Ej) · · ·

Now, Ext1P2(Ei, Ej) = Ext2P2(Ei, Ej) = 0 by the strong property of the exceptional

collection due to Theorem 3.1.5, and Ext2P2 (Ei, Ej(−1)) = 0 or C by the previous

argument, thus

Ext1H(Ei|H , Ej |H) ∼= H1
(
P1, E∗

i ⊗ Ej |H
)
= H1(P1,

⊕
m∈I′

O(am)
um) = 0 or C.

Then we can deduce that a0 ≥ −2. Then since n > 0, we have E∗
i ⊗ Ej(n)|H =⊕

m∈I′ O(am + n)um where am + n > −2 for any m ∈ I ′, thus

H1
(
P1, E∗

i ⊗ Ej(n)|H
)
= H1

(
P1,

⊕
m∈I′

O(ai + n)

)
= 0.

This finishes the proof of the lemma.

Proposition 3.2.3. Let E = (E0, E1, E2) be a full exceptional sequence of sheaves on

P2. Suppose for a pair of indices i, j ∈ {0, 1, 2} we have that µ(Ei)− µ(Ej) ≤ 2. Then

Hk
(
P2, E∗

i ⊗ Ej(n)
)
= 0,

for k > 0, n ≥ 0.

Proof. Let H = P1 be a hyperplane in P2. We argue by induction on n. For n = 0,

the claim follows from the strong property of the exceptional collection. Now assume

Hk
(
P2, E∗

i ⊗ Ej(n− 1)
)
= 0 for n ≥ 1 and k > 0, then we consider the short exact

sequence

0 // E∗
i ⊗ Ej(n− 1) // E∗

i ⊗ Ej(n) // E∗
i ⊗ Ej(n)|H // 0.
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By taking the associated long exact sequence and using the vanishing of Hk
(
P1, E∗

i ⊗ Ej(n)|H
)

for n > 0 (k = 1 follows from Lemma 3.2 and k > 1 always vanish because P1 is of

dimension 1), we have

Hk
(
P2, E∗

i ⊗ Ej(n− 1)
)
= Hk

(
P2, E∗

i ⊗ Ej(n)
)
) = 0.

The result follows from the induction.

Denote by T the tangent sheaf on P2, we have the following useful exact sequence:

Lemma 3.2.4 (Symmetric product of Euler sequence). We write P2 as P(V ), where

V is a linear space of dimension 3 (or for general n). Then we have the short exact

sequence of sheaves for k ≥ 1:

0 // Symk−1 (V ⊗O(1)) // Symk (V ⊗O(1)) // Symk T // 0. (3.3)

Proof. This follows directly from the following classical result in commutative algebra,

for the reader’s convenience we include a proof here: suppose there is a short exact

sequence of free A-modules

0 // A
e // N

p
// P // 0,

then there is a short exact sequence

0 // Symk−1N
ẽ // SymkN

p̃
// Symk P // 0

where ẽ := e ⊗ id⊗k−1 and p̃ := p⊗k. For an element n1 ⊗ · · · ⊗ nk ∈ SymkN whose

image under p̃ is 0, we have at least one ni such that p(ni) = 0. Since we are in

the symmetric power of modules we can assume that i = 1, so n1 = e(m) for some

m ∈ M . Thus n1 ⊗ · · · ⊗ nk is in the image of ẽ. Finally ẽ is injective following from

that Symk−1N is flat and e is injective.

Corollary 3.2.5. For a pair of vector bundles E and F on P2, we suppose

ExtkP2 (E,F (n)) = 0

for n ≥ 0 and k ≥ 1, then

ExtkX(π
∗E, π∗F ) = 0.
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Proof. We have

ExtkX(π
∗E, π∗F ) = ExtkP2(E,F ⊗ Sym• T ) =

⊕
n=0

Hk(P2, E∗ ⊗ F ⊗ Symn T )

by adjunction and π∗OX
∼= Sym• T . For each n ≥ 1, we tensor the exact sequence (3.3)

with E∗⊗F , and note that Symn (V (1)) ∼= O(n)(
n+2
n ). Thus we get an exact sequence:

0 // O(n− 1)(
n+1
n−1) ⊗ E∗ ⊗ F // O(n)(

n+2
n ) ⊗ E∗ ⊗ F // Symn T ⊗ E∗ ⊗ F // 0.

Then we take the long exact sequence of cohomology groups:

· · · Ext1P2 (E,F (n))
⊕(n+2

n ) Ext1P2 (E,F ⊗ Symn TP2)

Ext2P2 (E,F (n− 1))⊕(
n+1
n−1) Ext2P2 (E,F (n))

⊕(n+2
n ) · · ·

so Hk(P2, E∗ ⊗ F ⊗ Symn T ) vanishes due to the assumptions.

Theorem 3.2.6. Let E = (E0, E1, E2) be a full exceptional collection of sheaves on P2

such that µ(E2)− µ(E0) ≤ 2, then T =
⊕2

i=0 π
∗Ei is a tilting object in Db(X).

Proof. We firstly show that ExtnX(π
∗T, π∗T ) = 0, for n > 0. Since the Ext functor

commutes with direct sum, it is enough to show that for any i, j

ExtnX(π
∗Ei, π

∗Ej) = 0, for n > 0.

By Proposition 3.2.3 and Corollary 3.2.5, we have

Hn
(
P2, E∗

i ⊗ Ej ⊗ Sym• T
)
= 0,

for n > 0. Thus ExtnX(π
∗T, π∗T ) = 0 for n > 0.

Combining with Lemma 3.2.1 that π∗T is a classical generator, we conclude that π∗T

is a tilting object in Db(X).

As a corollary, we have
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Theorem 3.2.7. Let E = (E0, E1, E2) be a full exceptional collection of sheaves on P2.

We denote by H the corresponding helix generated by the Serre functor. There exists

a thread E′ = (Ei, Ei+1, Ei+2) in H such that E′ satisfies the conditions in Proposition

3.2.3. Thus the pull back of the direct sum of the objects in E′ is a tilting object in

Db(X).

Proof. We denote the corresponding helix by H = (· · · , E0, E1, E2, E3, E4, · · · ). Since

the Serre functor on P2 is −⊗O(−3)[2], we have

µ(Ei−3) = µ (Ei ⊗O(−3)) = µ(Ei)− 3.

We can consider the numbers a0 = µ(E2) − µ(E0), a1 = µ(E3) − µ(E1) and a2 =

µ(E4)−µ(E2). By Lemma 3.1.4, we actually have that the slopes in the helix are strictly

increasing, thus ai > 0. The sum a0 + a1 + a2 = µ(E4)− µ(E1) + µ(E3)− µ(E0) = 6.

Then one of the ai must be ≤ 2. Then we let T =
⊕i+2

j=i π
∗Ej , and due to Theorem

3.2.6, we have T is a tilting object in Db(X).

Finally we say something about the endomorphism algebra of the tilting object con-

structed above. By derived Morita theory, given a tilting object T . Then there is a

derived equivalence:

Φ = RHomX(T,−) : Db(X) −→ Db
(
B = EndX(T )

)
sending T to B. We take E to be a full exceptional collection consisting of sheaves and

satisfies the condition in Theorem 3.2.6.

Proposition 3.2.8. Let T =
⊕

i π
∗Ei be a tilting object. Then B = EndX T is noethe-

rian and has finite global dimension.

Proof. Since T is ample [31], the result follows from [45, Corollary 5.2.9].

Now since B is finitely generated, as pointed out by Bridgeland and Stern [23], we can

construct a quiver with relations (Q, I) such that B = CQ/I. The quiver is constructed
in the following way: the vertex i corresponds to π∗Ei (therefore we have three vertices
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in our case), and the number of arrows from vertex i to j equals the dimension of

irreducible maps from π∗Ei to π
∗Ej , i.e., the cokernel of the map⊕

k ̸=i, j
HomX(π

∗Ei, π
∗Ek)⊗HomX(π

∗Ek, π
∗Ej) −→ HomX(π

∗Ei, π
∗Ej).

Therefore B can be naturally graded by the length of the path.

Denote by Pi and Si the projective module and simple module associated with the

vertex i. We take the collection of dual objects F of E (Definition-Lemma 2.3.3) and

denote by s : P2 → X the embedding map of the zero section. Then Φ sends π∗Ei to

Pi and s∗Fi to Si by definition [23, Lemma 3.7].

§ 3.3 Secondary quiver and universal extension

Let E = (E0, E1, E2) be a full exceptional collection of sheaves in Db(P2) (then E is

strong by Theorem 3.1.5), and we denote Ti := π∗Ei, T = ⊕iTi. In general, T will not

be a tilting object, since we may have ExtnX(T, T ) ̸= 0, for n > 0.

Example 3.3.1. Let E =
(
Ω(1),O,O(2)

)
, note that µ (O(2))− µ (Ω(1)) = 5/2. Then

Ext1X (π∗O(2), π∗Ω(1)) ∼= C3.

so T = π∗Ω(1)⊕ π∗O ⊕ π∗O(2) is not a tilting object.

However, in general we have

Lemma 3.3.2. For any i, j = 0, 1, 2, we have

(i)

Ext≥2
X (Ti, Tj) = 0,

(ii) if i ≤ j then

Ext≥1
X (Ti, Tj) = 0.

Proof. (i) By Corollary 3.2.5, it is enough to show that for any i, j,

Hn
(
P2, E∗

i ⊗ Ej(k)
)
= 0, n ≥ 2,
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where k ≥ 0. The case k = 0 follows from the strong property of E. By restricting

the bundle E∗
i ⊗ Ej to a degree k curve C in P2 where k > 0, we have the short

exact sequence:

0 // E∗
i ⊗ Ej // E∗

i ⊗ Ej(k) // E∗
i ⊗ Ej(k)|C // 0

Then we take the cohomology groups, and use the vanishing of H≥2(C,E∗
i ⊗

Ej(k)|C) = 0 so we proved the first statement.

(ii) If i < j, then µ(Ei) < µ(Ej) by Lemma 3.1.4, therefore they satisfies the condi-

tions in Proposition 3.2.3 and we have

Hk
(
P2, E∗

i ⊗ Ej(n)
)
= 0

for k ≥ 1, n ≥ 0. By Corollary 3.2.5 we have

ExtkX(π
∗Ei, π

∗Ej) = ExtkX(Ti, Tj) = 0

for k ≥ 1, this proves the result.

Now we package the non-tilting information of T into the following algebraic structure,

and we call it the secondary quiver:

Definition 3.3.3 (Secondary quiver). Let E be a full exceptional collection on P2

consisting of sheaves and Ti := π∗Ei. Then let QE be the quiver with 3 vertices indexed

by 0, 1, 2, and the arrows from i to j correspond to a basis of Ext1X(Tj , Ti) as a C-
vector space. The quiver QE is called the secondary quiver of E. The category of right

finitely generated module of CQE is denoted by repQE = mod-CQE. We denote the

simple module at the vertex i in repQE by Si.

Remark 3.3.4. Denote by nij the number of arrows from i to j, in our conventions

(paths compose on the left and we consider right modules) we have nij = dimExt1(Sj , Si),

where Si is the simple module associated with vertex i. With the notations above, we

have Ext1CQE
(Si, Sj) ∼= Ext1X(Ti, Tj).

Proposition 3.3.5. QE takes one of the following forms:
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(i)

0

��

..
a01

��

a02

��

..

��1 2

where a0i ≥ 0, i ∈ {1, 2} denote the number of arrows. Then any object M in

repQE fits into the short exact sequence:

0 // Sm0
0

//M // Sm1
1 ⊕ Sm2

2
// 0

where mi ≥ 0.

(ii)

0

��

..
a02

��

1

a12
��

..
��

2

where ai2 ≥ 0, i ∈ {0, 1} denote the number of arrows. Then any object M in

repQE fits into the short exact sequence:

0 // Sm0
0 ⊕ Sm1

1
//M // Sm2

2
// 0

mi ∈ N.

From now on, we call the first quiver case 1, and the second quiver case 2.

Proof. There is no arrow from i to j for i ≥ j due to Lemma 3.3.2. The only case we

need to exclude is

0
a01 //
: // 1

a12 //
: // 2

where a12, a01 > 0. By definition of the arrows in the secondary quiver, this is equiva-

lently to say

Ext1X(Ti, Ti−1) ̸= 0, i = 2, 1.

By using Proposition 3.2.3, this implies µ(Ei)− µ(Ei−1) > 2, thus

µ(E2)− µ(E0) = (µ(E2)− µ(E1)) + (µ(E1)− µ(E0)) > 4. (3.4)

However, consider the helix H = (· · · , E0, E1, E2, E3, · · · ) generated by E. We have

µ(E3) = µ (E0(3)) = µ(E0) + 3, and µ(E2) < µ(E3) = µ(E0) + 3 by Lemma 3.1.4. So

(3.4) contradicts with this fact.
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Following an idea in [32, Section 3], we construct the tilting objects from any full

exceptional collection E. The procedure is called universal extension in loc. cit. and

we will use that name.

Definition 3.3.6 (Universal extension). Let E = (E0, E1, E2) be a full exceptional

collection consisting of sheaves in Db(P2) (then E is strong by Theorem 3.1.5) and

Ti := π∗Ei

(i) For the secondary quiver of case 1 in Proposition 3.3.5, we consider the objects

T̃m ∈ CohX (m = 1, 2) which are obtained from the extensions:

0 // T0 ⊗C Ext1X(Tm, T0)
∗ γm

// T̃m // Tm // 0. (3.5)

If we consider the short exact sequence as a triangle in Db(X), then the con-

nection map is the adjoint of the canonical evaluation map (which is called the

coevalutaion map):

coevm : Tm −→ T0 ⊗ Ext1X(Tm, T0)
∗[1].

The mapping cone over the coevaluation map defines the exact sequence (3.5)

uniquely up to isomorphism.

(ii) For the secondary quiver of case 2 in Proposition 3.3.5, we consider the object

T̃2 ∈ CohX, which is obtained from the following extension:

0 //
⊕

i=0,1 Ti ⊗C Ext1X(T2, Ti)
∗ δ // T̃2 // T2 // 0. (3.6)

Again if we consider the short exact sequence as a triangle in Db(X), the connec-

tion map is the coevaluation map:

coev : T2

coev0
coev1


−−−−−−→

⊕
i=0,1

Ti ⊗ Ext1X(T2, Ti)
∗[1].

Similarly the exact sequence (3.6) is defined unique up to isomorphism.

Theorem 3.3.7. For the secondary quiver of case 1 in Proposition 3.3.5, the object

T̃ := T0 ⊕ T̃1 ⊕ T̃2 is a tilting object in Db(X).

For the secondary quiver of case 2 in Proposition 3.3.5, the object T̃ := T0 ⊕ T1 ⊕ T̃2 is

a tilting object in Db(X).
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Proof. We prove the case 1, the proof of the case 2 is similar.

Firstly, since thick
(
T = ⊕iTi

)
= Db(X) by Lemma 3.2.1 and Ti ∈ thick

(
T̃
)
by defini-

tion, this shows that thick(T̃ ) = Db(X). Now we check the vanishing of Ext≥1(T̃ , T̃ ).

(a) We firstly show that Ext≥1
X (T0, T̃m) = 0 for m = 1, 2. We take the long exact

sequence of (3.5) associated with the functor Hom(T0,−):

· · ·Ext1X(T0, T0)⊗ Ext1X(Tm, T0)
∗ Ext1X(T0, T̃m) Ext1X(T0, Tm)

Ext2X(T0, T0)⊗ Ext1X(Tm, T0)
∗ Ext2X(T0, T̃m) · · · .

We have ExtkX(T0, T0) = 0 and ExtkX(T0, Tm) = 0 (k ≥ 1) because of the second

statement of Lemma 3.3.2. Thus Ext≥1
X (T0, T̃m) = 0 since the terms on the two

sides both vanish.

(b) Now we show that Ext≥1
X (T̃m, T0) = 0 for m = 1, 2. By taking the long exact

sequence associated with the functor HomX(−, T0):

· · · HomX(T0, T0)⊗ Ext1X(Tm, T0)

Ext1X(Tm, T0) Ext1X(T̃m, T0) Ext1X(T0, T0)⊗ Ext1X(Tm, T0)

Ext2X(Tm, T0) Ext2X(T̃m, T0) = 0 · · · .

can∗

Note that the connection map is the Yonneda product[47, Definition 4.16]

can∗ : HomX(T0, T0)⊗ Ext1X(Tm, T0) −→ Ext1X(Tm, T0)

id⊗ η 7−→ η.

Thus can∗ is surjective, then we can see that Ext1X(T̃m, T0) = 0.

Since Ext≥2
X (Tm, T0) = 0 due to the first statement of Lemma 3.3.2 and Ext≥1

X (T0, T0) =

0, we have that Ext≥2
X (T̃m, T0) = 0 since terms on the two sides both vanish.

(c) Then we check that Ext≥1
X (T̃m, T̃m) = 0. By taking the long exact sequence

associated with functor HomX(T̃m,−) (i ≥ 1):

· · · → ExtiX(T̃m, T0)⊗ Ext1X(Tm, T0)
∗ → ExtiX(T̃m, T̃m) → ExtiX(T̃m, Tm) → · · · .

(3.7)
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Since ExtiX(T̃m, T0) = 0 by part (b), so it is equivalent to check the vanishing of

ExtiX(T̃m, Tm).

Again we take the functor HomX(−, Tm) of the universal extension sequence:

· · · → ExtiX(Tm, Tm) → ExtiX(T̃m, Tm) → ExtiX(T0, Tm)⊗ Ext1X(Tm, T0) → · · · .

Note that Ext≥1
X (T0, Tm) = 0 since 0 < m = 1, 2 and ExtiX(Tm, Tm) = 0 be-

cause of Lemma 3.3.2. The cohomology groups on the both sides vanish, so we

have ExtiX(T̃m, Tm) = 0 for i ≥ 1. Return back to (3.7), and we obtain that

ExtiX(T̃m, T̃m) = 0.

(d) Finally we check that Ext≥1
X (T̃m, T̃n) = 0 when m, n ∈ {1, 2} (m ̸= n). Consider

the universal extension of Tn and we take the functor HomX(T̃m,−), then we

have a long exact sequence:

· · · → ExtiX(T̃m, T0)⊗ Ext1X(Tn, T0)
∗ → ExtiX(T̃m, T̃n) → ExtiX(T̃m, Tn) → · · · .

Because Ext≥1
X (T̃m, T0) = 0 by part (b), so it is equivalent to check that ExtiX(T̃m, Tn) =

0 for i ≥ 1.

Again we take the functor HomX(−, Tn) to the universal extension of Tm:

· · · → ExtiX(Tm, Tn) → ExtiX(T̃m, Tn) → ExtiX(T0, Tm)⊗ Ext1X(Tm, T0)
∗ → · · · .

Note that Ext≥1
X (T0, Tm) = 0 by Lemma 3.3.2. Since Ext≥1

X (Tm, Tn) = 0 by our

assumption of case 1 (there is no arrow between vertices n andm), thus we obtain

that

ExtiX(T̃m, Tn) = 0.

§ 3.4 The functor FQ and a second method of constructing tilting objects

Let E be a full exceptional collection of sheaves on P2. The object of this section is to

construct a functor from the category of representations of the secondary quiver repQE

to Coh(X), and we prove that the functor preserves the tilting objects and sends the

simple module Si at vertex i to Ti = π∗Ei.
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Let T̃ be the object obtained by the universal extension as in the Definition 3.3.6 and

Theorem 3.3.7. The endomorphism algebra End T̃ contains three idempotents ẽi which

are projection maps T̃ → T̃i. We denote by ei the idempotents in CQE.

We first define an map from the path algebra CQE to End T̃ :

Definition 3.4.1. We discuss the 2 cases in Proposition 3.3.5 separately

(i) For case 1, the quiver takes the form

0

��

..
a01

��

a02

��

..

��1 2

.

We define a map ι : CQE −→ End T̃ which sends ei to ẽi; and for an arrow

α ∈ Ext1X(Tm, T0) (m = 1, 2)

ι(α) : T0 −→ T̃m, ι(α)(t0) := γm(t0 ⊗ α∗), t0 ∈ T0

where α∗ is the dual element of α in Ext1(Tm, T0)
∗ and γm is defined in the

universal extension sequence (3.5):

0 // T0 ⊗ Ext1X(Tm, T0)
∗ γm

// T̃m // Tm // 0.

By extending ι linearly to CQE. Then ι is a map of algebras.

(ii) For case 2, the quiver takes the form

0

��

..
a02

��

1

a12
��

..
��

2 .

We define a map ι : CQE −→ End T̃ which sends ei to ẽi and for arrow α ∈
Ext1X(T2, Tm) (m = 0, 1)

ι(α) : Tm → T̃2, ι(α)(tm) := δ(tm ⊗ α∗), tm ∈ Tm

where again α∗ is the dual element of α in Ext1X(T2, Tm)
∗ and δm appeared in the

universal extension sequence (3.6)

0 //
⊕

i=0,1 Ti ⊗C Ext1X(T2, Ti)
∗ δ // T̃2 // T2 // 0.

By extending ι linearly to CQE. Then ι is a map of algebras.
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Definition 3.4.2. We denote A := CQE and B := End T̃ , where T̃ is defined in

Theorem 3.3.7. Then we define a functor FQ from

FQ : mod-A −→ Coh (X)

by the composition:

mod-A
−⊗AB// mod-B

−⊗B T̃ // Coh(X)

We have

Proposition 3.4.3. FQ is an exact functor.

Proof. We show the result only for case 1 in Proposition 3.3.5, since case 2 is quite

similar. In this case T̃ = T0 ⊕ T̃1 ⊕ T̃2.

Since mod-A is a category of finite length, we only need to show that the derived functor

of FQ sends Si to the objects in CohX, that is, it preserves the t-structure.

We consider the left derived functor of FQ:

LFQ : Db(mod-A) Db(mod-B) Db(X).
−⊗L

AB −⊗L
B T̃

In this case S0 = P0 where P0 := e0A. We also denote by P̃i = ẽiB ∼= HomX(T̃ , T̃i)

(i = 0, 1, 2) the projective modules in mod-B. Then by definition

LFQ(P0) ∼= P̃0 ⊗L
B T̃

∼= T0

in Db(X). Thus FQ is exact on S0.

For Sm where m = 1, 2. We have a triangle in Db(A):

S⊕a0m
0 = S0 ⊗ Ext1X(Sm, S0)

∗ η=
∑

k x
k
0m·
// Pm // Sm // S⊕a0m

0 [1]

where we denote by xk0m the arrow from the vertex 0 to m.

By taking the functor −⊗L
A B, we have a triangle in Db(B):

P̃0
⊕a0m ι(

∑
k x

k
0m·)∗ // P̃m // Sm ⊗L

A B
// P̃0

⊕a0m
[1] (3.8)
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where ι(
∑

k x
k
0m)∗ : HomX(T̃ , T0)

⊕a0m → HomX(T̃ , T̃m) is induced from ι(
∑

k x
k
0m) :

T⊕a0m
0 → T̃m. Then by taking the functor − ⊗L

B T̃ , and under the canonical isomor-

phisms P̃i ⊗L
B T̃

∼= T̃i, we have the morphisms between the distinguished triangles in

Db(X):

P̃0
⊕a0m ⊗ T̃

∼=
��

ι(
∑

k x
k
0m·)
// P̃m ⊗ T̃

∼=
��

// Sm ⊗A B ⊗B T̃

f

��

// P̃0
⊕a0m ⊗ T̃ [1]

��

T⊕a0m
0

γm
// T̃m // Tm

coev // T⊕a0m
0 [1]

the diagram is commutative since ι(
∑

k x
k
0m·) = γm by Definition 3.4.1. Then f is

induced from the morphism between the distinguished triangles. Therefore Tm ∼= Sm⊗L
A

B ⊗L
B T̃ = LFQ(Sm) in Db(X). Moreover, since the objects of lower triangle all lie in

Coh(X), we actually have a short exact sequence:

0 // LFQ(S0)⊕a0m ∼= T⊕a0m
0

// LFQ(Pm) ∼= T̃m // LFQ(Sm) ∼= Tm // 0.

So we have tested the exactness on any simple module Sm in mod-A, the exactness of

FQ is obtained.

The proof in the above theorem also implies

Corollary 3.4.4. For simple modules Si ∈ mod-A, we have FQ(Si) = Ti.

Here we say M is a tilting object in some abelian category, we mean M is a tilting

object in its corresponding derived category.

Theorem 3.4.5. Let E be a full exceptional collection consisting of sheaves on P2, QE

be its secondary quiver and A be the path algebra of QE. Then FQ sends tilting objects

in mod-A to tilting objects in Coh(X).

Proof. We prove case 1, the proof of case 2 is essentially the same. Firstly we show the

property of generating. Let R ∈ mod-A be a generator for Db(A), then Si ∈ thick(R)

for any i. Then under the correspondence of FQ, we have

FQ(Si) = Ti ∈ thick
(
FQ(R)

)
in Db(X) due to Corollary 3.4.4. Now because

⊕2
i=0 Ti generates D

b(X), thus we have

that FQ(R) generates the whole category.
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Given a tilting object R ∈ mod-A, we assume R fits into

0 // Sm0
0

// R // Sm1
1 ⊕ Sm2

2
// 0, (3.9)

and Ext1A(R,R) = 0. For any pair of objects M, N ∈ mod-A, Ext≥2
A (M,N) = 0 since

A is the path algebra of an acyclic quiver without relations. For the corresponding

object T̃ = FQ(R) under the above definition, we have

0 // Tm0
0

// T̃ // Tm1
1 ⊕ Tm2

2
// 0. (3.10)

By applying the functors HomX(−, Tm1
1 ⊕ Tm2

2 ), HomX(−, Tm0
0 ) and HomX(−, T̃ ) to

(3.10), we get the corresponding long exact sequences and put them in the first, second

and third row separately. Finally we get the commutative diagram:

0 //

��

EndX(T
m1
1 ⊕ Tm2

2 ) //

α1

��

HomX(T̃ , T
m1
1 ⊕ Tm2

2 ) //

γ1

��

HomX(T
m0
0 , Tm1

1 ⊕ Tm2
2 )

��

EndX(T
m0
0 )

β1
//

��

Ext1X(T
m1
1 ⊕ Tm2

2 , Tm0
0 )

α2

��

β2
// Ext1X(T̃ , T

m0
0 ) //

γ2

��

Ext1X(T
m0
0 , Tm0

0 ) = 0

��

HomX(T
m0
0 , T̃ )

θ1 // Ext1X(T
m1
1 ⊕ Tm2

2 , T̃ )
θ2 // Ext1X(T̃ , T̃ )

//

��

Ext1X(T
m0
0 , T̃ ) = 0

Ext1X(T̃ , T
m1
1 ⊕ Tm2

2 ) = 0

where the morphisms on the columns are obtained in the following way: we first apply

the functors HomX(T
m0
0 ,−), HomX(T

m1
1 ⊕ Tm2

2 ,−), HomX(T̃ ,−) and HomX(T
m0
0 ,−)

on (3.10) separately, then take the long exact sequences. The diagram is commutative

due to the naturality of derived functors.

We have a chain complex (not necessarily exact)

EndX(T
m1
1 ⊕ Tm2

2 )
⊕

EndX(T
m0
0 )

η=(α1
β1
)
// Ext1X(T

m1
1 ⊕ Tm2

2 , Tm0
0 )

f=θ2◦α2

=γ2◦β2
// Ext1X(T̃ , T̃ )

(3.11)

where f is surjective. To obtain Ext1X(T̃ , T̃ ) = 0, we only need to show that η is

surjective, since f ◦ η = 0. So we consider the corresponding diagram in repQE by
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applying Hom functors similarly to (3.9):

0 //

��

EndA(S
m1
1 ⊕ Sm2

2 )
ϕ̃

//

α̃1

��

HomA(R,S
m1
1 ⊕ Sm2

2 ) //

γ̃1
��

HomA(S
m0
0 , Sm1

1 ⊕ Sm2
2 ) = 0

��

EndA(S
m0
0 )

β̃1
//

��

Ext1A(S
m1
1 ⊕ Sm2

2 , Sm0
0 )

α̃2

��

β̃2
// Ext1A(R,S

m0
0 ) //

γ̃2
��

Ext1A(S
m0
0 , Sm0

0 ) = 0

��

HomA(S
m0
0 , R)

θ̃1 //

��

Ext1A(S
m1
1 ⊕ Sm2

2 , R)
θ̃2 //

��

Ext1A(R,R)
//

��

Ext1A(S
m0
0 , R) = 0

HomA(S
m0
0 , Sm1

1 ⊕ Sm2
2 ) = 0 Ext1A(S

m1
1 ⊕ Sm2

2 , Sm1
1 ⊕ Sm2

2 ) = 0 Ext1A(R,S
m1
1 ⊕ Sm2

2 ) = 0

As before, we have a chain complex:

EndA(S
m1
1 ⊕ Sm2

2 )
⊕

EndA(S
m0
0 )

η̃=(
α̃1
β̃1
)
// Ext1A(S

m1
1 ⊕ Sm2

2 , Sm0
0 )

f̃=θ̃◦α̃2
// Ext1A(R,R) = 0,

but now it is exact at the middle term by diagram chasing: for any q ∈ ker(f̃), there

exists s ∈ HomA(S
m0
0 , R) such that θ̃1(s) = α̃2(q). Since EndA(S

m0
0 ) ∼= HomA(S

m0
0 , R),

we denote by p1 the corresponding element of s in EndA(S
m0
0 ). Now consider q′ =

q − β̃1(p1), then we have α̃2(q
′) = 0. By the exactness we have p2 ∈ EndA(S

m1
1 ⊕ Sm2

2 )

such that α̃1(p2) = q′. So we proved that there exists an element (p1, p2) ∈ EndA(S
m1
1 ⊕

Sm2
2 )

⊕
EndA(S

m0
0 ) such that η̃(p1, p2) = q.

Thus η̃ is surjective since Ext1A(R,R) = 0 by assumption. Comparing the above exact

sequence with the chain complex (3.11), we have a commutative diagram:

EndA(S
m1
1 ⊕ Sm2

2 )
⊕

EndA(S
m0
0 )

η̃
//

FQ

��

Ext1A(S
m1
1 ⊕ Sm2

2 , Sm0
0 )

∼=
��

EndX(T
m1
1 ⊕ Tm2

2 )
⊕

EndX(T
m0
0 )

η
// Ext1X(T

m1
1 ⊕ Tm2

2 , Tm0
0 )

Now η is surjective since η̃ is surjective. Thus by the above arguments, we have shown

that Ext1X(T̃ , T̃ ) = 0.

The higher cohomology Ext>1
X (T̃ , T̃ ) vanishes since Ext>1

X (Ti, Tj) for any i, j . We have

proved the theorem.
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§ 3.5 Simple tilts and Ext-quivers

3.5.1 T-structures in Db
0(X)

In the final section we calculated some simple tilts from a finite length heart in Db
0(X),

where we denote by Db
0(X) the full subcategory in Db(X) consisting of objects whose

cohomology sheaves are set-theoretically supported on the zero section P2 ⊂ TotΩP2 .

Similarly, for some noetherian graded algebra W we denote by Db
0(W ) the full subcat-

egory of Db(W ) consisting of objects whose cohomology modules are nilpotent. The

derived equivalence induced by the tilting object will restrict to the following case:

Lemma 3.5.1 ([14, Lemma 4.4]). Let E be a full exceptional collection as in Theorem

3.2.6 and T =
⊕

i π
∗Ei ∈ Db(X). Then the equivalence

Φ = RHom(T,−) : Db(X) −→ Db(B = EndX T )

will restrict to an equivalence of full subcategories

RHom(T,−) : Db
0(X) −→ Db

0(B).

Proof. As explained in the end of Section 3.2. B can be written as a path algebra of a

quiver subject to relations. We denote by Si the simple module associated with vertex

i. The collection of dual objects to E is denoted by F. Then the result follows from the

fact that Db
0(X) is the smallest triangulated subcategory containing the objects s∗Fi

and Db
0(B) is the smallest triangulated subcategory containing the objects Si, while Φ

sends s∗Fi to Si.

The standard t-structure on Db(B) induces one on Db
0(B) in the obvious way, and

pulling this back using the equivalence

RHomX(T,−) : Db
0(X) −→ Db

0(B)

of Lemma 3.5.1 gives a bounded t-structure on Db
0(X). If T =

⊕
π∗Ei for some excep-

tional collection on P2 in Theorem 3.2.6, we denote the induced heart by B(E0, E1, E2).

Then B(E0, E1, E2) is a finite-length abelian category with 3 simple objects: denote

the dual exceptional collection of E by F = (F0, F1, F2) as in Definition-Lemma 2.3.3.

Then the simple objects in B(E0, E1, E2) will be

S0 := s∗F0, S1 := s∗F1, S2 := s∗F2. (3.12)
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where we denote by s : P2 → X the inclusion map.

Here we introduce a conception which encode the information of simple tilts:

Definition 3.5.2 (Ext-quivers). Let H be a t-structure of finite length in the triangu-

lated category D, then the Ext-quiver of H is the graded quiver Q(H) whose vertexes

are labeled by the simple objects Si, and whose graded k arrows Si → Sj corresponds to

a basis of HomD(Sj , Si[k]).

We denote by A the heart of the t-structure which is obtained from the tilting object

T = π∗O(−2)⊕ π∗O(−1)⊕ π∗O, that is A = B(O(−2),O(−1),O).

For the heart A, we list the following information:

Simple objects By definition of dual collection (Definition-Lemma 2.3.3), we have

F =
(
(O(−2), LO(−2)O(−1)[1],O(−3)[2]

)
,

the last identity F2 = LE1LE0E2 = E2 ⊗ ωP2 [2] follows from Lemma 2.3.4. For

the middle term, by definition

0 −→ LO(−2)O(−1) −→ HomP2

(
O(−2),O(−1)

)
⊗O(−2) = O(−2)3 −→ O(−1) −→ 0.

By comparing the above short exact sequence with the Euler sequence

0 // Ω // O(−1)3 // O // 0

we obtain that LO(−2)O(−1) ∼= Ω(−1). Therefore

S0 = s∗O(−2), S1 = s∗Ω(−1)[1], S2 = s∗O(−3)[2].

Dual Objects The dual objects in Db(X) which are P0 = π∗O(−2), P1 = π∗O(−1), P2 = π∗O
such that Hom•

Db(X)(Pi, Sj) = δijC.

Ext-quiver The arrows in the Ext-quiver which will be:

ExtiX(S0, S1) = ExtiX (s∗O(−2), s∗Ω(−1)[1])

= Exti+1
P2 (s∗s∗O(−2),Ω(−1))

=
2⊕

k=0

Exti+1−k
P2

(
O(−2)⊗ ∧kT ,Ω(−1)

)
=

2⊕
k=0

Hi+1−k
(
P2,Ω(1)⊗ ∧kΩ

)
,
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in the third equation T is the tangent sheaf and we use the formula obtained from

the Koszul resolution s∗s∗OP2 =
⊕

∧kT [k] in Db(P2) [34, Proposition 11.1]. We

firstly tensor the vector bundle Ω(1) by the exterior powers of the Euler exact

sequence:

0 // ∧kΩ // ∧kV (−1) // ∧k−1Ω // 0

Then we take the long exact sequence of cohomology groups, and do the induc-

tions on k of ∧kΩ. Finally we get

Hp(P2,Ω(1)⊗ ∧qΩ) =


C p = 1 and q = 1, 2

C3 p = 2 and q = 2

0 otherwise.

Thus we have

ExtiX(S0, S1) =

{
C3 i = 1, 3,

0 otherwise.

Similarly we have

ExtiX(S1, S2) =

{
C3 i = 1, 3,

0 otherwise.

ExtiX(S0, S2) =

{
C3 i = 2,

0 otherwise.

(m = 0, 2) ExtiX(Sm, Sm) =

{
C i = 0, 2, 4,

0 otherwise.

ExtiX(S1, S1) =


C i = 0, 4,

C10 i = 2

0 otherwise.

the other arrows can be obtained from the Serre duality

HomD(Si, Sj [k]) ∼= HomD(Sj , Si[4− k])∗.

We summarise the dimensions of Ext-groups between the simple objects in the

following table:
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dimC Extn(Si, Sj) n = 0 n = 1 n = 2 n = 3 n = 4

(i, j) = (0, 0) 1 0 1 0 1

(i, j) = (0, 1) 0 3 0 3 0

(i, j) = (1, 0) 0 3 0 3 0

(i, j) = (1, 1) 1 0 10 0 1

(i, j) = (1, 2) 0 3 0 3 0

(i, j) = (2, 1) 0 3 0 3 0

(i, j) = (2, 2) 1 0 1 0 1

(i, j) = (0, 2) 0 0 3 0 0

(i, j) = (2, 0) 0 0 3 0 0

Finally We draw the Ext-quiver of A as the following: the black arrows are of

degree 1, the red arrows are of degree 2:

S0 S1 S2
1

3
10

3

3
1

3

3

3

(3.13)

we omit the arrows of other degrees since they can be read from the Serre duality.

3.5.2 Mukai flops

According to the Ext-quiver (3.13) of A, we see that there is a symmetry between S0

and S2. In fact, we can write down explicitly the auto-equivalence of Db(X) which

interchanges S0 and S2. This is quite useful for simplifying the calculations of the

further simple tilts.

Definition 3.5.3 (Mukai flop). Let g : Z → X be a blow-up along the zero section of

the projection π : X → P2. The exceptional locus E(⊂ Z) of g is the incidence variety

in P2 × (P2)∨ where (P2)∨ is the dual projective space. By blowing down Z along the

projection E → (P2)∨, we obtain a birational map g+ : Z → X+ = TotΩ(P2)∨. The

resulting birational map

ϕ = g+ ◦ g−1 : X // X+
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is called a Mukai flop.

The following result was proved in [48, Theorem 3.1] [37, Corollary 5.7]:

Theorem 3.5.4 (Derived equivalence for Mukai flop). Let ϕ : X // X+ denote

the Mukai flop between X and X+, then we have a derived equivalence Φ : Db(X) →
Db(X+). Moreover, the derived equivalence can be restricted to Db

0(X) → Db
0(X

+).

Proof. Here we adopt the proof from [54, Example 5.3]: put OX(1) := π∗O(1). Then

we have a tilting object ε = ⊕2
i=0OX(−i) by Theorem 3.2.6. Since ϕ is an isomorphism

in codimension one, there is an equivalence between the categories of reflexive sheaves

on X and X+. Denote ε′ the sheaf corresponding to ε on X+. By results in [48, Lemma

1.3], we have

ε′ ∼=
2⊕
i=0

OX+(i).

Since we have the isomorphism of rings

ϕ∗ : EndX(ε) = A
∼= // A+ = EndX+(ε′)

so we have the equivalence of derived categories:

Φ : Db(X+) // Db(A+) // Db(A) // Db(X).

By restricting to the full subcategories, we have an equivalence:

Φ : Db
0(X

+) // Db
0(A

+) // Db
0(A)

// Db
0(X).

Then under the canonical isomorphism between P2 and (P2)∨, we can view Φ as an

autoequivalence of Db(X) (resp. Db
0(X)).

Proposition 3.5.5. Let E = (O(−2),O(−1),O), A be the associated bounded t-

structure on Db
0(X), and Si be the simple objects in A. Let Ψ :=

(
−⊗L OX(−2)

)
◦ Φ,

then we have Ψ(A) = A, and Ψ(Sj) = S2−j for j = 0, 1, 2.

Proof. Since by Theorem 3.5.4, OX(i) (−2 ≤ i ≤ 0) is sent to OX(−i) via Φ, then it fol-

lows that Ψ (OX(i)) = OX(−i−2) for −2 ≤ i ≤ 0. Thus we have Ψ
(⊕0

i=−2 π
∗O(i)

)
=⊕0

i=−2OX(i), and we get that Ψ(A) ∼= A.
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If we denote by P0 = OX(−2), P1 = OX(−1) and P2 = OX , then the Ψ(Sj) is uniquely

determined by the dual relation with Ψ (Pi), i.e

Hom•
Db(X) (Ψ(Pi),Ψ(Sj)) =

{
C i = j,

0 otherwise.

Since Ψ (Pi) = P2−i, thus we have Ψ(Sj) = S2−j for j = 0, 1, 2.

We proceed to calculate the simple tilts at Si of A, and their Ext-quivers:

3.5.3 Simple tilt at S1

Denote by C := RS1A the right simple tilt at S1, we list the following information:

Simple objects by Proposition 2.1.7, the simple objects are U1 = S1[−1] = s∗Ω(−1), U0, U2

where U0 and U2 fit into the following short exact sequences:

0 → s∗O(−2) → U0 → s∗Ω(−1)[1]3 = S1 ⊗ Ext1(S1, S0) → 0, (3.14)

0 → s∗O(−3)[2] → U2 → s∗Ω(−1)[1]3 = S1 ⊗ Ext1(S1, S2) → 0. (3.15)

Note that by Proposition 3.5.5 we have Ψ(U0) = U2 and Ψ(U2) = U0.

Dual objects The dual objects in Db(X) are T̃0, π
∗O(−2), π∗O, where T̃0 fits into the universal

extension sequence

0 // π∗Ω(−1) // T̃0 // π∗O3 // 0.

Note that T̃ := T̃0 ⊕ π∗O(−2) ⊕ π∗O is a tilting object, and obtained by the

universal extension of the pullback of E = (Ω(−1),O(−2),O).

Ext-quiver We calculate the dimensions of Ext-groups between the simple objects in the

appendix at the end of this chapter, the readers could refer to them for interest.

The dimensions of Ext-groups are summarised in the following table:
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dimC Extn(Si, Sj) n = 0 n = 1 n = 2 n = 3 n = 4

(i, j) = (0, 0) 1 0 1 0 1

(i, j) = (0, 1) 0 3 0 3 0

(i, j) = (1, 0) 0 3 0 3 0

(i, j) = (1, 1) 1 0 10 0 1

(i, j) = (1, 2) 0 3 0 3 0

(i, j) = (2, 1) 0 3 0 3 0

(i, j) = (2, 2) 1 0 1 0 1

(i, j) = (0, 2) 0 0 3 0 0

(i, j) = (2, 0) 0 0 3 0 0

Finally the Ext-quiver Q(C) will be:

U0 U1 U2

73
27

10

3

3

73
27

75

75

(3.16)

as before the black arrows are of degree 1, the red arrows are of degree 2, and we

omit the arrows of other degrees since they can be read from the Serre duality.

3.5.4 Simple tilt at S2

We denote Γ := RS2A and Γ′ := RS0A. Combining the Proposition 3.5.5 with Lemma

2.1.6 we have

Ψ (RS0A) ∼= RΨ(S0)Ψ(A) ∼= RS2A.

Thus Γ′ = RS0A ∼= Γ = RS2A. Under the equivalence we only need to calculate one of

the Ext-quivers (here we choose Γ):

Simple objects the simple objects are W0 = s∗O(−2), W1 = s∗O(−3)[1], W2 = s∗O(−4)[2].

Dual objects The dual objects in Db(X) are π∗O(−2), π∗Ω, π∗O(−1), and T = π∗O(−2) ⊕
π∗Ω⊕ π∗O(−1) is a tilting object;
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Ext-quiver • Calculations of ExtiX(W1,W0):

ExtiX (s∗O(−3)[1], s∗O(−2)) =
2⊕

k=0

Exti−k−1
P2

(
O(−3)⊗ ∧kT ,O(−2)

)
=

2⊕
k=0

Hi−k−1
(
P2,Ωk ⊗O(1)

)
=

{
C3 i = 1,

0 otherwise.

• Calculations of ExtiX(W2,W0):

ExtiX (s∗O(−4)[2], s∗O(−2)) =
2⊕

k=0

Exti−k−2
P2

(
O(−4)⊗ ∧kT ,O(−2)

)
=

2⊕
k=0

Hi−k−2
(
P2,Ωk ⊗O(2)

)

=


C6 i = 2,

C3 i = 3,

0 otherwise.

• Similarly for ExtiX(W2,W1), we have

ExtiX (s∗O(−4)[2], s∗O(−3)[1]) =
2⊕

k=0

Hi−k−1
(
P2,Ωk ⊗O(1)

)
=

{
C3 i = 1,

0 otherwise.

• For ExtiX(Wj ,Wj) (j = 0, 2) we have

ExtiX (Wj ,Wj) =

2⊕
k=0

Hi−k
(
P2,Ωk

)
=

{
C i = 0, 2, 4,

0 otherwise.

We summarise the dimensions of Ext-groups between the simple objects in the

following table:
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dimC Extn(Si, Sj) n = 0 n = 1 n = 2 n = 3 n = 4

(i, j) = (0, 0) 1 0 1 0 1

(i, j) = (0, 1) 0 0 0 3 0

(i, j) = (1, 0) 0 3 0 0 0

(i, j) = (1, 1) 1 0 1 0 1

(i, j) = (1, 2) 0 0 0 3 0

(i, j) = (2, 1) 0 3 0 0 0

(i, j) = (2, 2) 1 0 1 0 1

(i, j) = (0, 2) 0 3 6 0 0

(i, j) = (2, 0) 0 0 6 3 0

Finally the Ext-quiver Q(B) will be

W0 W1 W2

1
3

1
3

1

6

6

3

Appendix: calculations of Ext-quiver of RS1A

We keep using the notations as in Section 3.5.3. We need the following lemma for our

calculations:

Lemma 3.5.6. U0
∼= s∗P [1] where P ∈ CohP2 fits into the following short exact

sequence:

0 // P // Ω(−1)⊗HomP2 (Ω(−1),O(−2)) // O(−2) // 0 (3.17)

that is, P = LΩ(−1)O(−2) (the left mutation).

Proof. Since s is a closed immersion, then s∗ is exact. Then we push-forward (3.17) by

s∗, then shift the resulting short exact sequence by degree 1. Note that

Ext1(S1, S0) = Ext1X(s∗Ω(−1)[1], s∗O(−2))

= HomX(s∗Ω(−1), s∗O(−2))

= HomP2(Ω(−1),O(−2)),
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by comparing with (3.14), we have U0
∼= s∗P [1] by the uniqueness of the cone.

Moreover, P is again an exceptional object and (O(−3),Ω(−1), P ) forms a full and

strong exceptional collection on P2 by Theorem 2.10.

• To calculate ExtiX(U1, U0), we take the long exact sequence of (3.14) associated

with HomX(U1,−) = HomX(S1[−1],−):

Ext1X(U1, S0) = 0 Ext1X(U1, U0) Ext1X(U1, S
⊕3
1 ) = C30

Ext2X(U1, S0) = C3 Ext2X(U1, U0) Ext2X(U1, S
⊕3
1 ) = 0

Ext3X(U1, S0) = 0 Ext3X(U1, U0) Ext3X(U1, S
⊕3
1 ) = C3

Ext4X(U1, S0) = 0 Ext4X(U1, U0) Ext4X(U1, S
⊕3
1 ) = 0

δ

To determine the surjectivity of the connection map δ, we can show that

Ext2X(U1, U0) = 0: by the Serre duality, we have

Ext2X(U1, U0) = Ext2X(s∗Ω(−1), s∗P [1])

= Ext1X(s∗P, s∗Ω(−1))∗.

Then we use the Koszul resolution again, we have

Ext1X(s∗P, s∗Ω(−1)) = Ext1P2(s
∗s∗P,Ω(−1))

= Ext1P2(P,Ω(−1))⊕HomP2(P ⊗ T ,Ω(−1)).

The first component vanishes since P and Ω(−1) form part of a strong exceptional

collection. By (3.17) we get that c0(P ) = 5 and c1(P ) = −13, thus c0(P⊗T ) = 10

and c1(P ⊗ T ) = −11. So we have µ(P ⊗ T ) = −10/11 > µ(Ω(−1)) = −5/2.

Since P , T and Ω(−1) are slope semistable sheaves, and so is P ⊗ T (see [35,

Theorem 3.1.4]), there is no map between the semistable sheaves from the larger

slope to the smaller one, so HomP2(P ⊗ T ,Ω(−1)) = 0. We have shown that

Ext2X(U1, U0) = 0, by taking this to the above long exact sequence, we can read

that

ExtiX(U1, U0) =


C27 i = 1,

C3 i = 3,

0 otherwise.
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• For ExtiX(U1, U2), we apply the functor Ψ, and by using that Ψ(U1) = U1,

Ψ(U0) = U2, we have

ExtiX(U1, U2) = ExtiX(U1, U0) =


C27 i = 1,

C3 i = 3,

0 otherwise.

• To get Exti(U2, U0), we first take the long exact sequence of (3.15) associated

with Hom(−, U0) (note that ExtiX(S1, U0) = Exti−1
X (U1, U0)):

Ext1X(S1, U0)
3 = 0 Ext1X(U2, U0) Ext1X(S2, U0)

Ext2X(S1, U0)
3 = C81 Ext2X(U2, U0) Ext2X(S2, U0)

Ext3X(S1, U0)
3 = 0 Ext3X(U2, U0) Ext3X(S2, U0)

Ext4X(S1, U0)
3 = C9 Ext4X(U2, U0) = 0 Ext4X(S2, U0)

(3.18)

We first determine

ExtiX(S2, U0) = ExtiX(s∗O(−3)[2], s∗P [1]) = Exti−1
X (s∗O(−3), s∗P ),

where P was defined in the short exact sequence (3.17).

(i) i = 1, then

Ext1X(S2, U0) = HomX(s∗O(−3), s∗P )

= HomP2(O(−3), P ).

Then we take Hom(O(−3),−) to (3.17), and note that Ext1(O(−3), P ) = 0

since (O(−3),Ω(−1), P ) forms a strong exceptional collection, then we get

that

HomP2(O(−3), P ) = C6.

Thus Ext1X(S2, U0) = C6.

(ii) i = 2, then

Ext2X(S2, U0) = Ext1P2(O(−3), P )⊕HomP2(O(−3)⊗ T , P )
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then first component vanishes. We have c0 (T (−3)) = 2, c1 (T (−3)) = 0,

then µ(T (−3)) = 0 > µ(P ) = −13/5, so there is no map from T (−3) to P

since they are both semistable sheaves. Thus

Ext2X(S2, U0) = 0.

(iii) i = 3, then

Ext3X(S2, U0) = Ext2P2(O(−3), P )⊕ Ext1P2(O(−3)⊗ T , P )

⊕HomP2(O, P )

the first component vanishes, the third component vanishes because µ(O) >

µ(P ) and they are semistable sheaves. For the second component, we take

HomP2(T (−3),−) on the short exact sequence (3.17) and obtain the long

exact sequence

HomP2 (T (−3),O(−2)) // Ext1P2 (T (−3), P ) // Ext1P2 (T (−3),Ω(−1))3

��

Ext1P2 (T (−3),O(−2))

(3.19)

We have HomP2(T (−3),O(−2)) = Ext1P2(T (−3),O(−2)) = 0 by the Bott

formula. By taking HomP2(T (−2),−) on the Euler sequence, we have

Ext1P2(T (−2),Ω) = Ext1P2 (T (−3),Ω(−1)) = C3.

Return to (3.19), we have Ext1P2(T (−3), P ) = C9. So finally we have

Ext3X(S2, U0) = C9.

Taking the above infomation back to (3.18), we get that Ext3X(U2, U0) = 0 by the

exactness. By Serre duality and applying the autoequivalence Ψ, we can also get

Ext1X(U2, U0):

Ext1X(U2, U0) = Ext3X(U0, U2)
∗

= Ext3X (Ψ(U0),Ψ(U2))
∗

= Ext3X(U2, U0)
∗

= 0.

Ext2X(U2, U0) can be read from the exact sequence:

0 // Ext1X(S2, S0) = C6 // Ext2X(S1, S0)
3 = C81 // Ext2X(U2, U0) // 0.
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So we have Ext2X(U2, U0) = C75. In summary, we have

ExtiX(U2, U0) =

{
C75 i = 2,

0 otherwise.

And ExtiX(U0, U2) is obtained by the Serre duality:

ExtiX(U0, U2) = Ext4−iX (U2, U0)
∗

=

{
C75 i = 2,

0 otherwise.

• For ExtiX(U0, U0), we have HomX(U0, U0) = Ext4X(U0, U0)
∗ = C, and

Ext1X(U0, U0) = Ext1X(s∗P, s∗P )

= Ext1P2(P, P )⊕HomP2(P ⊗ T , P ).

Then the first component vanishes because P is exceptional. In the calculations

of Exti(U1, U0), we have µ(P ⊗ T ) = −10/11 > µ(P ) = −13/5. Then the second

component also vanishes.

Also we obtain Ext3X(U0, U0) = Ext1X(U0, U0)
∗ = 0.

Then we calculate the Euler characteristic χ(U0, U0), since [U0] = 3[S1] + [S0] in

the Grothendieck group:

χ(U0, U0) = χ (3[S1] + [S0], 3[S1] + [S0])

= 9χ(S1, S1) + 3χ(S1, S0) + 3χ(S0, S1) + χ(S0, S0)

= 75

We have χ(U0, U0) = 2 + dimExt2X(U0, U0) = 75, so Ext2X(U0, U0) = C73. In

summary, we have

ExtiX(U0, U0) =


C i = 0, 4,

C73 i = 2,

0 otherwise.

By applying the functor Ψ, we have

ExtiX(U2, U2) = ExtiX (Ψ(U0),Ψ(U0))

=


C i = 0, 4,

C73 i = 2,

0 otherwise.
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• Finally for ExtiX(U1, U1) we have

ExtiX(U1, U1) = ExtiX(S1, S1)

=


C i = 0, 4,

C10 i = 2,

0 otherwise.



Chapter 4

Invariant stability conditions on

local P1 × P1 (after [24, 26])

This chapter studies a subspace of stability conditions on X = TotωP1×P1 which are

invariant under an autoequivalence Φ of Db(X). We first construct the autoequivalence

Φ explicitly in section 4.1. Then we calculate the double simple tilts of a given t-

structure A in section 4.2 and relate the tilted heart to A by certain autoequivalences

of Db(X). Then in section 4.3 we prove one of the main results in this part: we give a

complete description of the stable objects (up to a shift of degree) for a set of Φ-invariant

stability conditions with the fixed heart. The description depends on the representation

theory of Kronecker quiver, which we will recall in the beginning of section 4.3. In the

final section, we describe a connected component of the space of Φ-invariant stability

conditions on X and show that all such stability conditions are algebraic in the sense

of [16, 2]. Throughout this chapter, we write Z = P1 × P1 and C = Db
0(X) the full

subcategory of objects which are supported on Z.

58
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§ 4.1 Quiver symmetry and autoequivalence

4.1.1 Quiver

There is a full and strong exceptional collection on Z:

E =
(
O(0, 0),O(1, 0),O(1, 1),O(2, 1)

)
1,

which has the dual collection

F =
(
O(0, 0),O(−1, 0)[1],O(1,−1)[1],O(0,−1)[2]

)
.

As in the introduction, we denote by π : X → Z the bundle projection map, pi :

Z = P1 × P1 → P1, i = 1, 2 the projection maps to each component. We denote by

s : Z ↪→ X the embedding map of the zero section.

Lemma 4.1.1. The pull back Q =
⊕

i π
∗Ei is a tilting bundle on X.

Proof. We have

ExtiX (π∗O(a, b), π∗O(c, d)) = ExtiZ (O(a, b), π∗π
∗O(c, d))

=
⊕
n=0

ExtiZ
(
O(a, b),O(c, d)⊗ (ω∗

P1×P1)
n
)

=
⊕
n=0

Hi
(
P1 × P1,O(c− a+ 2n, d− b+ 2n)

)
=

⊕
n=0

⊕
s+t=i

Hs(P1,O(c− a+ 2n))⊗Ht(P1,O(d− b+ 2n)).

For i > 0, Hi
(
P1 × P1,O(c− a+ 2n, d− b+ 2n)

)
= 0 unless

(i) c− a+ 2n ≤ −2, d− b+ 2n ≥ 0 or d− b+ 2n ≤ −2, c− a+ 2n ≥ 0;

(ii) c− a+ 2n ≤ −2, d− b+ 2n ≤ −2.

1The reason why we choose the above exceptional collection instead of the usual one on P1 × P1:

E′ =
(
O(0, 0),O(1, 0),O(0, 1),O(1, 1)

)
is given below, see the beginning of Chapter 4.2.
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Since −1 ≤ d − b ≤ 1 in our case, so only the first part of case 1 is possible. One

can easily verify the bundles in our exceptional collection do not belong to this case.

Therefore ExtiX(Q,Q) = 0 for i ̸= 0.

The proof of the generating property for Q is the same as in Lemma 3.2.1. We finished

the proof.

The endomorphism algebra B = EndX(Q) is noetherian [23, Theorem 3.6], therefore

we can write it as the path algebra of a quiver Q subject to relations, and grade it by

the length of paths. The vertex is indexed by i, and the number of arrows from i to j

is the dimension of space of irreducible maps from π∗Ei to π
∗Ej , i.e., the cokernel of

the map⊕
k ̸=i, j

HomX(π
∗Ei, π

∗Ek)⊗HomX(π
∗Ek, π

∗Ej) −→ HomX(π
∗Ei, π

∗Ej).

For a noetherian graded algebra A, we denote by Db
0(A) the full subcategory of Db(A)

consisting of objects whose cohomology modules are nilpotent and mod0-A the category

of nilpotent modules of A. The proof of the following result is the same as Lemma 3.5.1.

Corollary 4.1.2. There is a derived equivalence:

RQ := RHom(Q,−) : C = Db
0(X) −→ Db

0(B = EndX(Q)).

From now on until the end of the paper, we denote by A the heart of the t-structure

in C induced by Q, i.e. it is equivalent to mod0-B under RQ.

Let I = {0, 1, 2, 3} be the set of indexes.

Corollary 4.1.3. There are 4 simple objects up to isomorphism in A which are {Si}i∈I =
{s∗Fi}i∈I , here Fi is in the dual collection F.

Proof. We write Pi the projective B-module and Ci the simple B-module associated

with vertex i. Then mod0-B is the extension-closed subcategory of mod-B generated

by {Ci}i∈I and {Ci}i∈I is the set of all simple B-modules in mod0-B. By definition of

RQ, π
∗Ei is sent to Pi. Then s∗Fi is sent to Ci which follows from the definition of the

dual collection:

Hom•
Db(X)(π

∗Ei, s∗Fj) = Hom•
Db(Z)(Ei, Fj) = δijC.
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We write down the simple objects explicitly here:

S0 = s∗O(0, 0), S1 = s∗O(−1, 0)[1], S2 = s∗O(1,−1)[1], S3 = s∗O(0,−1)[2].

Proposition 4.1.4. The quiver Q = (Q0, Q1) of the endomorphism algebra EndX(Q)

is

0
x1 //

y1
// 1

x2
��

y2
��

3

x3

OO

y3

OO

2
x4

oo

y4
oo

(4.1)

Proof. The number of arrows from i to j can be calculated by the dimension of the

vector space Ext1X(Sj , Si) (we use the convention that paths compose on the left). By

using the Koszul resolution [34, Chapter 11] along the embedding map s, for any sheaf

F on Z we have

s∗s∗F ∼= F ⊕ (F ⊗ ω∗
Z [1])

in Db(Z). Therefore

ExtnX(s∗Fi, s∗Fj) = ExtnZ(Fi, Fj)⊕ Ext3−nZ (Fj , Fi)
∗.

For example

Ext1X (s∗O(1,−1)[1], s∗O(−1, 0)[1])

= Ext1Z (O(1,−1),O(−1, 0))⊕ Ext2Z (O(−1, 0),O(1,−1))∗

= H1
(
P1 × P1,O(−2, 1)

)
= C2.

The other calculations are similar. Therefore we get the given quiver Q.

We denote by I the relations of paths in EndX(Q) and repnil(Q, I)
∼= A the category

of nilpotent representations of quiver with relations.

Remark 4.1.5. Since B = EndX(Q) is graded 3-Calabi-Yau in the sense that the full

subcategory consisting of objects with finite dimensional cohomology modules Db
fin(B)

has Serre duality:

ExtiB(M,N) = Ext3−iB (N,M)∗, M, N ∈ Db
fin(B).
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Then work of Bocklandt [6] shows that the relations of EndX(Q) can be encoded in

compact form in a potential. Thus we can write

B = B(Q,W ) = CQ/(∂aW : a ∈ Q1)

for some non-uniquely defined element W ∈ CQ/[CQ,CQ]. In fact we can write down

the potential W explicitly here: keep the notations as in (4.1). Then

W = x4x3x2x1 + y4y3y2y1 − y4x3y2x1 − x4y3x2y1.

The corresponding relations are (for j ∈ Z4):

∂xjW = xj+3xj+2xj+1 − yj+3xj+2yj+1 = 0,

∂yjW = yj+3yj+2yj+1 − xj+3yj+2xj+1 = 0.

4.1.2 Autoequivalence and invariant stability conditions

The spherical object and spherical twist were introduced by Seidel and Thomas [53].

We briefly recall the definition and property here: for our use we simply consider

D := Db(V) where V is a local Calabi-Yau variety of dimension n.

Definition 4.1.6. An object S ∈ D is called n-spherical if the following conditions are

satisfied:

(i) For any F ∈ D, Hom•
D(F, S) and Hom•

D(S, F ) have finite (total) dimension over

C.

(ii) We have

ExtkD(S, S) =

{
C k = 0, n,

0 otherwise.

Let S be a spherical object in D, then the spherical twist TwS(E) of E ∈ D is defined

to be the cone of the canonical evaluation morphism:

Hom•(S,E)⊗ S // E // TwS(E)
[1]
//

The following important lemma is due to Seidel and Thomas.
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Lemma 4.1.7 ([53]). Let S be a spherical object in D, then TwS is an exact autoe-

quivalence of D.

Lemma 4.1.8. If E is an exceptional object on P1 × P1, then s∗E is a 3-spherical

object in Db(X).

Proof. The first condition satisfies since s∗E has compact support, therefore Hom•
D(F, s∗E)

and Hom•
D(s∗E,F ) have finite dimensions. By using the Koszul resolution as in Propo-

sition 4.1.4, we have

ExtnX(s∗E, s∗E) ∼= ExtnZ(E,E)⊕ Ext3−nZ (E,E)

=

{
C n = 0, 3,

0 otherwise.

Define τ : P1 × P1 → P1 × P1, τ(x, y) := (y, x), it has a natural extension to an

automorphism of ω = TotO(−2,−2) which we also denote by τ . We consider the

following functor

Ψ := τ∗ ◦ TwS0 ◦ (−⊗ π∗O(0, 1))

which is an autoequivalence of Db(X) since it is a composition of autoequivalences.

Lemma 4.1.9. Let A be the heart of the bounded t-structure induced by Q, and Si the

simple objects in A defined in Corollary 4.1.3. Then

Ψ(Si) = Si+1, i ∈ Z4.

Therefore Ψ reduces to be an autoequivalence of A.

Proof. By the projection formula, we have

s∗O(a, b)⊗ π∗O(j, k) = s∗ (O(a, b)⊗ s∗π∗O(j, k))

= s∗ (O(a, b)⊗O(j, k))

= s∗O(a+ j, b+ k).

(i) Recall S3 = s∗O(0,−1)[2]. Thus S3 ⊗ π∗O(0, 1) = s∗O(0, 0)[2] = S0[2]. Now

Ψ(S3) = τ∗TwS0(S0[2]) = τ∗S0 = τ∗s∗O(0, 0) = S0,
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where the second equality follows from the standard result, that if S is an n-

spherical object, then

TwS(S) ∼= S[1− n],

and n = 3 in our case.

(ii) For S0 = s∗O(0, 0), S0 ⊗ π∗O(0, 1) = s∗O(0, 1). By using the similar calculations

in Proposition 4.1.4, we have

Hom• (s∗O(0, 0), s∗O(0, 1)) = C2,

then TwS0 (s∗O(0, 1)) fits into the triangle:

s∗O(0, 0)⊕2 // s∗O(0, 1) // TwS0 (s∗O(0, 1))
[1]
//

By applying the exact functor s∗ to the short exact sequence on Z:

0 // O(0,−1) // O⊕2 // O(0, 1) // 0

and comparing with the above triangle, we have

TwS0 (s∗O(0, 1)) ∼= s∗O(0,−1)[1].

Thus Ψ(S0) = τ∗s∗O(0,−1)[1] = s∗O(−1, 0)[1] = S1.

(iii) For S1 = s∗O(−1, 0)[1], S1 ⊗ π∗O(0, 1) = s∗O(−1, 1)[1]. Since

Hom• (s∗O(0, 0), s∗O(−1, 1)[1]) = 0,

then TwS0 (s∗O(−1, 1)[1]) ∼= s∗O(−1, 1)[1]. So we have

Ψ(S1) = τ∗s∗O(−1, 1)[1] = s∗O(1,−1)[1] = S2.

(iv) For S2 = s∗O(1,−1)[1], S2 ⊗ π∗O(0, 1) = s∗O(1, 0)[1]. Since

Hom• (s∗O(0, 0), s∗O(1, 0)[1]) = C2[1],

then TwS0 (s∗O(1, 0)) fits into the triangle:

s∗O(0, 0)⊕2[1] // s∗O(1, 0)[1] // TwS0 (s∗O(1, 0))
[1]
//

by the same argument as above, we have

TwS0 (s∗O(1, 0)) ∼= s∗O(−1, 0)[2].

So we have

Ψ(S2) = τ∗s∗O(−1, 0)[2] = s∗O(0,−1)[2] = S3.
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Definition 4.1.10. We define the autoequivalence of C

Φ = Ψ2. (4.2)

We denote by φ and ψ the automorphisms of K0(C) induced by Φ and Ψ respectively.

Let Stab(X) denote the space of stability conditions satisfying the support condition

on C.

Definition 4.1.11 (Φ-invariant stability conditions). The space of stability conditions

which are invariant under Φ is denoted by Stab(X)Φ. Let U(A)Φ be the set of Φ-

invariant stability conditions with the fixed heart A. We denote the connected compo-

nent of Stab(X)Φ which contains U(A)Φ by(
Stab(X)Φ

)
0
.

From now on, we denote by γi = [Si] the class of Si in K0(A) = K0(C), i = 0, · · · , 3.

The subgroup of K0(A) whose elements are antisymmetric under φ is generated by

γ0 − γ2 and γ1 − γ3, and is denoted by K0(A)−φ. The quotient group is denoted by

K0(A) := K0(A)/K0(A)−φ.

The quotient map is denoted by ν : K0(A) → K0(A). Note that K0(A) is free abelian

of rank 2 with basis γ̄0, γ̄1 (we will abuse notation and still denote γi in the quotient

group). And there is a natural isomorphism

HomZ(K0(A),C) −→ HomZ(K0(A),C)φ.

Therefore we can equally define the Φ-invariant stability conditions to be those whose

central charges Z : K0(A) → C factor through K0(A) and the slicings are invariant

under Φ. For technical reason we will work with this definition.

By Corollary 2.2.13, the forgetful map
(
Stab(X)Φ

)
0
→ HomZ(K0(A),C) ∼= C2 is a

local homeomorphism.

At the end of this section, we recall the following definition from [21].
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Definition 4.1.12. Let Aut(C) be the group of exact C-linear autoequivalences of the

category C, then Aut∗(C) is defined to be the subquotient consisting of autoequivalences

which preserve the connected component
(
Stab(X)Φ

)
0
, modulo those which acts trivially

on it.

§ 4.2 Simple tilts and autoequivalence

In this section we use Proposition 2.1.7 to figure out the double simple tilts of A, that

is we will calculate A′ = LSi+2LSiA and RSi+2RSiA for i ∈ Z4.

We write A ∼= repnil(Q,W ) where W is the potential (see Remark 4.1.5). Then by the

result of Keller and Yang [40, Theorem 9.2]

A′ = repnil
(
µi+2µi(Q,W )

)
where µi is the mutation operation given by Derksen, Weyman and Zelvinsky [27]. For

simplicity we calculate how the quiver Q changes under the double mutations (take

i = 0 for example):

• 2 // •
2
��

•
2

OO

•
2
oo

µ0
==⇒ •

2
��

•2oo

2
��

•

4
??

•
2
oo

µ2
==⇒ •

2
��

•2oo

•
2
// •

2

OO

The resulted quiver is isomorphic to the original one after relabelling the vertices, which

implies that there should be an autoequivalence T relating A and A′. We give explicit

calculations below.

We simply write Li := LSi and Ri := RSi . Recall that there are 4 simple objects in A
up to isomorphism:

S0 = s∗O(0, 0), S1 = s∗O(−1, 0)[1], S2 = s∗O(1,−1)[1], S3 = s∗O(0,−1)[2].

Proposition 4.1.4 shows that there is no extension between Si and Si+2, for i ∈ Z4,

therefore LiLi+2A = Li+2LiA.

L0A: Since the only non-trivial extension to S0 is Ext1(S1, S0), thus the new simple

objects are

S′
0 = S0[1], S′

1, S′
2 = S2, S′

3 = S3,
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where S′
1 fits into the triangle

S⊕2
0 → S′

1 → S1 → S⊕2
0 [1].

Thus S′
1 fits into the short exact sequence

0 → s∗O(−1, 0) → s∗O⊕2 → S′
1 → 0. (4.3)

We already see the above short exact sequence in part 4 of the proof of Lemma

4.1.9, therefore S′
1 = s∗O(1, 0).

L2L0A: The new simple objects are

S̃0 = S′
0, S̃1 = S′

1, S̃2 = S′
2[1], S̃3

where S̃3 fits into the triangle

S⊕2
2 → S̃3 → S′

3 → S⊕2
2 [1].

Thus S̃3[−1] fits into the short exact sequence

0 → s∗O(0,−1) → s∗O(1,−1)⊕2 → S̃3[−1] → 0. (4.4)

We obtain S̃3 = s∗O(2,−1)[1].

Therefore in L2L0A we have the following simple objects up to isomorphism:

S̃0 = s∗O(0, 0)[1], S̃1 = s∗O(1, 0), S̃2 = s∗O(1,−1)[2], S̃3 = s∗O(2,−1)[1].

Theorem 4.2.1. Let T = −⊗ π∗O(1, 0) and TΨ = Ψ ◦ T ◦Ψ−1, then we have

L2L0A = T A; (4.5)

R3R1A = T −1A; (4.6)

L3L1A = TΨA; (4.7)

R2R0A = T −1
Ψ A. (4.8)

Proof. T A ⊂ L2L0A follows directly from the comparison of the simple objects after

reordering them. By Lemma 2.1.5 we have T A = L2L0A. We also have

Ψ ◦ T ◦Ψ−1(A) = ΨL2L0 ◦Ψ−1A

= Ψ ◦Ψ−1L3L1A by Lemma 2.1.6 and Lemma 4.1.9

= L3L1A.
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This proves the third identity. For the right mutation R3R1A, by using Remark 2.1.4

we have

RS0[1]RS2[1]LS2LS0A = A.

Note that RS0[1]RS2[1]LS2LS0A = RS0[1]RS2[1]T A = T RS1RS3A by Lemma 2.1.6, and

T (S1) = S0[1], T (S3) = S2[1]. Therefore combining with the above identities we have

RS1RS3A = T −1A.

Finally for R2R0A, the calculation is quite similar to that of L3L1A and we leave it to

the reader.

T and TΨ induce automorphisms t and tψ of the Grothendieck group K0(A). The

following results will be useful later:

Lemma 4.2.2. With respect to the basis {γi} of K0(A), the automorphisms t and tψ

have the matrix forms:

t =


2 −1 0 0

1 0 0 0

0 0 2 −1

0 0 1 0

 tψ =


0 0 0 1

0 2 −1 0

0 1 0 0

−1 0 0 2

 (4.9)

Proof. Follows directly from the calculations above.

It is easy to check that t and tψ preserve the subgroup K0(A)−φ. Therefore t and tψ

can be regarded as the actions on K0(A). In fact, when reducing to K0(A), t and tψ

have the matrix forms with respect to the basis {γ0, γ1}:

t|
K0(A)

=

[
2 −1

1 0

]
tψ|K0(A)

=

[
0 1

−1 2

]
, (4.10)

we have (
t|
K0(A)

)−1
= tψ|K0(A)

. (4.11)

We have the following relation in K0(A).
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Lemma 4.2.3. Let x = ([a : b], [c : d]) be a closed point in P1 × P1, δ be the class of

Ox in K0(A). Then we have

δ =
3∑
i=0

γi.

Proof. We write F1 = s∗O[a:b]×P1 , F2 = s∗O[a:b]×P1(−1)[1]. First we have the short

exact sequences

0 → s∗O(−1, 0) → s∗O → F1 → 0,

0 → s∗O(0,−1) → s∗O(1,−1) → F2[−1] → 0.

This gives [F1] = γ0 + γ1, [F2] = γ2 + γ3. Then we consider the short exact sequence

0 → s∗O[a:b]×P1(−1) → s∗O[a:b]×P1 → s∗Ox → 0 (4.12)

which gives δ = [F1] + [F2] =
∑

i γi as required.

The above lemma shows that [Ox] does not depend on x ∈ Z.

§ 4.3 Semistable Objects

4.3.1 (Semi)stable objects

In this section we describe the set of stable objects for stability conditions σ ∈ U(A)Φ .

The description relies on the known properties of stability conditions for the Kronecker

quiver.

Denote by K2 the Kronecker quiver

0 //
// 1

and rep(K2) the category of representations. We denote by C0 and C1 the simple

objects at vertices 0 and 1. Recall the underlying quiver Q of A (Proposition 4.1.4) is

0 //
// 1

����

3

OO OO

2oo
oo
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Definition 4.3.1. We define full subcategories of A ∼= repnil(Q, I) which can naturally

be identified with repK2. The objects of the full subcategories are

Subcategories Objects Dimension vectors Class in K0(A)

KI
1 Cp

µ1
//

µ2
// Cq

����

0

OO OO

0oo
oo

(p, q, 0, 0) pγ0 + qγ1

KI
2 0 //

// 0

����

Cq

OO OO

Cp
µ1

oo

µ2
oo

(0, 0, p, q) pγ2 + qγ3

KII
1 0 //

// Cp

µ1
��

µ2
��

0

OO OO

Cqoo
oo

(0, p, q, 0) pγ1 + qγ2

KII
2 Cq //

// 0

����

Cp
µ1

OO

µ2

OO

0oo
oo

(q, 0, 0, p) pγ3 + qγ0

The objects in KI
i , i = 1, 2 are called Kronecker type I, and the objects in KII

i , i = 1, 2

are called Kronecker type II.

The following lemma is obvious

Lemma 4.3.2. The full subcategories KI
i and KII

i , i = 1, 2 are equivalent to rep(K2).

They are Serre subcategories of A ∼= repnil(Q, I), i.e., they are closed under taking

quotients and subobjects.

We denote by ΞIi and ΞIIi the corresponding embedding functors from the full subcat-

egories to A.

Recall that for a finite acyclic quiver Q, K0(repQ) ∼= Z⊕|Q0| is generated by the simple

modules Si at each vertex i. We denote by nij the number of arrows from vertex i

to j. Then the Euler form on K0(repQ) is defined by χ([Si], [Sj ]) := δij − nji. For

ααα = (αi)i∈Q0 ∈ K0(Q), the quadratic form q(−) is defined as q(ααα) := χ(ααα,ααα). The

associated matrix of q is a symmetrization of the associated matrix of χ.
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When Q is Dynkin or affine Dynkin (for example, the Kronecker quiver), it is well-

known that q(−) is positive semi-definite. ααα is called a real root if q(ααα) = 1 and an

imaginary root if q(ααα) = 0. We need the following well-known result (for example, see

[4, Theorem 4.3.2]).

Theorem 4.3.3 (Indecomposable representations of Kronecker quiver). We identify

K0(repK2) ∼= Z2 using the basis ([C0], [C1]). Then

(i) for each real root (n, n+1) or (n+1, n) (n ≥ 0), there is a unique indecomposable

representation with this class in K0(repK2), up to isomorphism, which we will

denote by En,n+1 or En+1,n;

(ii) for each imaginary root (n, n) (n ≥ 1), there is a family of indecomposable rep-

resentations indexed by P1 with this class in K0(repK2), which we denote by Eλn
where λ = [a : b] ∈ P1.

The above are all the indecomposable representations in repK2 up to isomorphism.

We have the following characterization of stability conditions for Kronecker quivers by

Okada [49].

Lemma 4.3.4. Take a stability function Z : K0(repK2) → C and denote by ϕ(E) the

phase of a nonzero object E ∈ rep(K2)

(i) if ϕ(C0) < ϕ(C1), then every indecomposable representation of K2 is semistable,

moreover, all indecomposable representations except for Eλm when m > 1 are

stable.

(ii) If ϕ(C1) < ϕ(C0), then the only stable objects are C0 and C1. The semistable

objects are C⊕k
0 , C⊕k

1 for k > 1.

(iii) If ϕ(C0) = ϕ(C1), then all objects are semistable, and only C0, C1 are stable.

Proof. Since repK2 is of finite-length, Z satisfies the Harder-Narasimhan property au-

tomatically, therefore Z can be extended to a stability condition for Db(K2) ∼= Db(P1),

and is denoted by (Z,P).
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(i) Let T = O⊕O(1) be the tilting object in Db(P1), the functor RHom(T,−) sends

O and O(−1)[1] to C0 and C1 respectively. If ϕ(C0) < ϕ(C1), after rotating

by λ = i
(
π − ϕ(Ox)

)
where x is a closed point of P1, the resulting stability

condition λ · (Z,P) = (Z,P) has heart P(0, 1] = Coh P1 (see the following

figures). Therefore all line bundles and torsion sheaves are semistable, and in

. . .
Z
(
O(−1)

)
Z(O) Z

(
O(1)

)
Z
(
O(2)

)

Z(Ox)
. . .

Z
(
O(−1)[1]

) Z(Ox)
Z(O)

Z
(
O(1)

)
Z
(
O(2)

)

Central charges of repK2 Central charges after rotating

fact all line bundles and skyscraper sheaves are stable. They correspond to the

indecomposable representations of K2 by the functor RHom(T,−).

(ii) The second statement follows from the fact that C0 is a simple subobject of every

indecomposable representation except C1 and C1 is a simple factor object of every

indecomposable representation except C0.

(iii) If ϕ(C0) = ϕ(C1), then all nonzero objects in Rep(K2) have the same phase and

therefore are semistable.

Remark 4.3.5. Since KI
i and KII

i are equivalent to rep(K2) by Lemma 4.3.2, therefore

by Theorem 4.3.3 we can describe the indecomposable objects of Kronecker type I and

II.

Since we will only be interested in the stable objects in rep(K2) by Lemma 4.3.4, by

definition the stable representations are bricks, that is, End(M) = C if M ∈ rep(K2)

is stable. Then the following definition will be useful:

Definition 4.3.6 (Special Kronecker type). We call the indecomposable object of Kro-

necker type I and II special if it is a brick, or equivalently it is not isomorphic to the

image of Eλm under ΞIi or ΞIIi for m > 1.
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The following proposition gives us the geometric description of objects of special Kro-

necker types.

Proposition 4.3.7. Let l ≥ 0. We have the following correspondences between objects

in A and repnil(Q, I) under the equivalence RQ : A → repnil(Q, I) (we denote by x a

closed point of P1):

Objects of special Classes in K0(A) Objects of special Classes in K0(A)

Kronecker type I Kronecker type II

s∗O(l, 0) (l + 1)γ0 + lγ1 Ψ(s∗O(l, 0)) (l + 1)γ1 + lγ2

s∗O(l + 1,−1)[1] (l + 1)γ2 + lγ3 Ψ(s∗O(l + 1,−1)[1]) (l + 1)γ3 + lγ0

s∗O(−l − 1, 0)[1] lγ0 + (l + 1)γ1 Ψ(s∗O(−l − 1, 0)[1]) lγ1 + (l + 1)γ2

s∗O(−l,−1)[2] lγ2 + (l + 1)γ3 Ψ(s∗O(−l,−1)[2]) lγ3 + (l + 1)γ0

F1 = s∗O{x}×P1 γ0 + γ1 Ψ(s∗O{lx}×P1) γ1 + γ2

F2 = s∗O{x}×P1(−1)[1] γ2 + γ3 Ψ(s∗O{x}×P1(−1)[1]) γ3 + γ0

Proof. For example, since s∗O(l, 0) is indecomposable, therefore RQ (s∗O(l, 0)) is an

indecomposable representation:

RHom• (π∗O, s∗O(l, 0)) //
// RHom• (π∗O(1, 0), s∗O(l, 0))

����

RHom• (π∗O(2, 1), s∗O(l, 0))

OO OO

RHom• (π∗O(1, 1), s∗O(l, 0))oo
oo

By using the adjuncation isomorphism and π ◦ s = id we have

RHom•(π∗O(a, b), s∗O(c, d)) = RHom•
Db(P1×P1)(O(a, b), π∗s∗O(c, d)) (4.13)

= RHom•
Db(P1×P1)(O(a, b),O(c, d)) (4.14)

= H•(P1,O(c− a))⊗H•(P1,O(d− b)) (4.15)

The above calculation gives us the class of RQ(s∗O(l, 0)) in K0(A): (l + 1)γ0 + lγ1.

Therefore by definition RQ(s∗O(l, 0)) is of special Kronecker type I. For s∗O{x}×P1 , we

have:

RHom•
D(π

∗O(a, b), s∗O{x}×P1) = RHom•
P×P1(O(a, b),O{x}×P1)

= H•(P1,Ox)⊗H•(P1,O(−b))

= H•(P1,O(−b))
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Therefore, the class in K0(A) of RQ(s∗O{x}×P1) is γ0 + γ1, and RQ(s∗O{x}×P1) is of

special Kronecker type I. For other objects of special Kronecker type I, the calculations

are the same, and we leave them to the reader.

For F ∈ A, if RQ(F ) has dimension vector (p, q,m, n), then by Lemma 4.1.9, the

dimension vector of RQ(Ψ(F )) will be (n, p, q,m). For example RQ (Ψ(s∗O(l, 0))) has

the class in K0(A): (l + 1)γ1 + lγ2. Since it is still indecomposable, it is of special

Kronecker type II. For the other objects of special Kronecker type II the verifications

are exactly the same.

From now on, we often identify objects in repnil(Q, I) with the corresponding objects

in A without further comment.

Definition 4.3.8. We introduce the open subsets of U(A)Φ:

U(A)Φ+ = {σ ∈ U(A)Φ : ϕ(S0) = ϕ(S2) < ϕ(S1) = ϕ(S3)},

U(A)Φ− = {σ ∈ U(A)Φ : ϕ(S1) = ϕ(S3) < ϕ(S0) = ϕ(S1)}

Z(γ0) = Z(γ2)

Z(γ1) = Z(γ3)

Figure 4.1: Central charges of U(A)Φ+

Z(γ1) = Z(γ3)

Z(γ0) = Z(γ2)

Figure 4.2: Central charges of U(A)Φ−

Lemma 4.3.9. The autoequivalence Ψ induces a bijection between U(A)Φ+ and U(A)Φ−.

Proof. Given σ = (Z,A) ∈ U(A)Φ+, we denote by Ψ(σ) = (Zψ,Ψ(A) = A). By Lemma

4.1.9, Zψ(γi) = Z(γi−1), therefore Ψ(σ) ∈ U(A)Φ−. The statement follows immediately.

Theorem 4.3.10. Let σ ∈ U(A)Φ+, then the objects of special Kronecker type I are

stable for σ. For τ ∈ U(A)Φ−, then the objects of special Kronecker type II are stable

for τ .
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Proof. Let σ = (Z,P) ∈ U(A)Φ+. We define a stability function Z on repK2 by setting

Z(C0) = Z(γj), Z(C1) = Z(γj+1) where j = 0 or 2 and Ci are the simple modules at

the vertex i. Then ϕ(C0) < ϕ(C1) by our assumption. Note that by our definition, for

E ∈ repK2

ϕ(E) = ϕ(ΞIi (E)) (4.16)

for i = 1, 2. Let M = Ξ(E
(λ)
p,q ) be of special Kronecker type I. Suppose there is a

destabilising sequence of M in A:

0 // A //M // B // 0

with ϕ(A) ≥ ϕ(M).

By Lemma 4.3.2, A and B are both in KI
i . Therefore A = ΞIi (A

′) for some A′ ∈ repK2,

and ϕ(A) = ϕ̄(A′) > ϕ(M) = ϕ̄(E
(λ)
p,q ). We get that E

(λ)
p,q is not stable. However, this

contradicts with Lemma 4.3.4.

The proof for the second statement is similar. Note that for τ = (W,P), we define

stability function on repK2 with W (C0) =W (γj), and W (C1) =W (γj+1) where j = 1

or 3, we still have ϕ(C0) < ϕ(C1) by assumption.

We recall the following standard fact:

Lemma 4.3.11. Let Z : K0(A) → C be a stability function. Suppose there is a short

exact sequence in A:

0 → E′ → E → E′′ → 0,

such that E′ and E′′ are semistable objects of the same phase λ, then E will also be

semistable of phase λ.

Corollary 4.3.12. Let x ∈ P1 × P1, then Ox is semistable with respect to the stability

condition σ ∈ U(A)Φ+. For σ ∈ U(A)Φ−, there is a semistable object whose class in

K0(A) is δ = [Ox].

Proof. Let F1 = s∗O{x1}×P1 , F2 = s∗O{x1}×P1(−1)[1] where x1 = p1(x). By (4.12),

there is a short exact sequence in A:

0 → F1 → Ox → F2 → 0.
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By Proposition 4.3.7 and Theorem 4.3.10 F1 and F2 are stable for the stability condition

σ ∈ U(A)Φ+. Moreover, since Z(F1) = Z(γ0) + Z(γ1) and Z(F2) = Z(γ2) + Z(γ3)

therefore ϕ(F1) = ϕ(F2). So Ox is (strictly) semistable for σ with the same phase as

ϕ(Fi) by Lemma 4.3.11.

Suppose σ ∈ U(A)Φ−. We take Ψ−1(σ), by Lemma 4.3.9 Ψ−1(σ) ∈ U(A)Φ+. Therefore

Ψ(Ox) is semistable for σ. Since

ψ(δ) =
3∑
i=0

ψ(γi) =
3∑
i=0

γi = δ,

the claim is proved.

Remark 4.3.13. For σ ∈ U(A)Φ, we can conclude that there is a semistable object

whose class in K0(A) is δ. By the above corollary, the remaining case we need to verify

is that when ϕ(Si) = ϕ(Ox) for all i, however, each object in A is semistable in this

case.

The central charges of δ and other stable objects for σ ∈ U(A)Φ+ are depicted in the

figure 4.3.

...

Z(γ0) = Z(γ2)Z(γ1) = Z(γ2)

...

Z(γ0 + γ1) = Z(γ2 + γ3)

Z(nγ0 + (n+ 1)γ1) = Z(nγ2 + (n+ 1)γ3) Z((n+ 1)γ0 + nγ1) = Z((n+ 1)γ2 + nγ3)

Z(δ)

Figure 4.3: Central charges of stable objects and Ox for σ ∈ U(A)Φ+

Recall that T = − ⊗ π∗O(1, 0) and TΨ = Ψ ◦ T ◦ Ψ−1, the simple objects in A are

S0 = s∗O(0, 0), S1 = s∗O(−1, 0)[1], s∗O(1,−1)[1] and S3 = s∗O(0,−1)[2]. Finally we

mention another description of some objects of special Kronecker types I and II,

Lemma 4.3.14. Let n ≥ 0
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(i) T n(S0), T n(S2), T −n(S1), T −n(S3) are objects of special Kronecker type I with

classes in K0(A):

(n+ 1)γ0 + nγ1, (n+ 1)γ2 + nγ3, nγ0 + (n+ 1)γ1, nγ2 + (n+ 1)γ3.

(ii) T n
Ψ (S1), T n

Ψ (S3), T −n
Ψ (S0), T −n

Ψ (S2) are objects of special Kronecker type II with

classes in K0(A):

(n+ 1)γ1 + nγ2, (n+ 1)γ3 + nγ0, nγ1 + (n+ 1)γ2, nγ3 + (n+ 1)γ0.

Proof. Note that T n
(
s∗O(a, b)

)
= s∗O(a + n, b) by the projection formula, the result

follows directly from the table in Proposition 4.3.7.

For σ ∈ U(A)Φ+, we can alternatively illustrate the central charges of semistable objects

in the complex plane:

...

Z(S0) = Z(S2)Z(S1) = Z(S3)

...

Z(T −n(S1)) Z(T n(S0))

Z(δ)

Z(T −1(S1)) Z(T (S0))

4.3.2 There are no other stable objects

The goal of this subsection is to prove that for σ ∈ U(A)Φ, there are no other stable

objects other than the ones in Theorem 4.3.10.

For simplicity, we first restrict ourselves to the normalized stability conditions(
Stab(C)Φ

)
n
:= {σ = (Z,P) : Z(δ) = i} ⊂

(
Stab(X)Φ

)
0
,

where δ is the class of skyscrapper sheaf Ox in K0(A). Note that
(
Stab(C)Φ

)
n
is a

connected submanifold of
(
Stab(X)Φ

)
0
.
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Let Un(A)Φ ⊂
(
Stab(C)Φ

)
n
which consists of normalized stability conditions (Z,A)

with the fixed heart A, and Un(A)Φ± = {(Z,A) ∈ U(A)Φ± : Z(δ) = i}. For σ ∈ Un(A)Φ+,

we have

ϕ(S0) = ϕ(S2) < ϕ(Ox) =
1

2
< ϕ(S1) = ϕ(S3). (4.17)

Recall the group action on the stability conditions in Definition 2.2.14. Let T , TΨ be

the autoequivalences defined in Theorem 4.2.1. We first make the following important

observartion

Lemma 4.3.15. (i) For σ ∈ Un(A)Φ+, then T (σ) = σ · g̃ where g̃ = (g, f) ∈
G̃L

+
(2,R) such that f : R → R satisfies f

(
1
2

)
= 1

2 .

(ii) For σ ∈ Un(A)Φ−, then TΨ(σ) = σ · g̃ where g̃ = (g, f) ∈ G̃L
+
(2,R) such that

f : R → R satisfies f
(
1
2

)
= 1

2 .

Proof. Let σ ∈ Un(A)Φ+. We write T (σ) = (Zt,PT ). By viewing C ∼= R2, we let

e0e0e0 = Z(γ0) = Z(γ2), e1e1e1 = Z(γ1) = Z(γ3).

Then by (4.11), we have

Zt(γ0) = Z
(
t−1γ0

)
= Z (−γ1) = −e1e1e1;

Zt(γ1) = Z
(
t−1γ1

)
= Z (γ0 + 2γ1) = e0e0e0 + 2e1e1e1.

We define g ∈ GL+(2,R) such that

g(e0e0e0) = 2e0e0e0 + e1e1e1, g(e1e1e1) = −e0e0e0,

Note that 2(e0e0e0 + e1e1e1) =
∑

i Z(γi) = Z(δ) = i by Lemma 4.2.3, and g(e0e0e0 + e1e1e1) = e0e0e0 + e1e1e1,

therefore we see g preserves the positive imaginary axis. We can take g̃ = (g, f) ∈
G̃L

+
(2,R) be the unique lift of g such that f(12) =

1
2 . Let σ · g̃ = (Zg,Pf ). Then by

definition Zg(γi) = Zt(γi) for i = 0, 1. Therefore Zg = Zt.

We claim that the bounded hearts PT (0, 1] and Pf (0, 1] are the same, thus finishing

the proof of the first case. By Theorem 4.2.1 we have

PT (0, 1] = T (A) = LS0LS2A.
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Suppose S1, S3 ∈ P(ϕ), ϕ ∈ (0, 1]. Since g(e1e1e1) = −e0e0e0 = −Z(γ0) = −Z(γ2), therefore
f(ϕ) = ϕ(S0[i]) = ϕ(S2[i]) for some odd number i. Note that ϕ ∈ (1/2, 1] ⊂ (1/2, 3/2),

so

f(ϕ) ∈
(
f(

1

2
), f(

3

2
)

)
= (1/2, 3/2).

By our assumption,

ϕ(S0[1]) = ϕ(S2[1]) ∈ (1/2, 3/2).

Therefore, i = 1 and S0[1], S2[1] ∈ Pf (ϕ) which is contained in A′ = Pf (0, 1].

Suppose S0, S2 ∈ P(ω), ω ∈ (0, 1]. Then g(e0e0e0) = 2e0e0e0+e1e1e1 = Z(S̃1) = Z(S̃3) where S̃1 =

T (S0) and S̃3 = T (S2). By Lemma 4.3.14 they are of special Kronecker type I, therefore

they are semistable for σ by Theorem 4.3.10. We have f(ω) = ϕ(S̃1[n]) = ϕ(S̃3[n]) for

some even number n. Since ω ∈ (0, 1/2) ⊂ (−1/2, 1/2), so f(ω) ∈ (−1/2, 1/2). By our

assumption, ϕ(S̃1) = ϕ(S̃2) ∈ (−1/2, 1/2). Therefore n = 0 and S̃1, S̃3 ∈ A′.

Recall the simple objects in LS0LS1A are exactly S0[1], S2[1], S̃1 and S̃3 by our com-

putations in Section 4.2. We just proved LS0LS2A = ⟨S0[1], S2[1], S̃1, S̃3⟩ ⊂ A′, so by

Lemma 2.1.5 the two hearts are equivalent. We finished the proof of the first case.

For σ ∈ Un(A)Φ−, note that Ψ−1(σ) ∈ Un(A)Φ+ by Lemma 4.3.9, therefore by the first

part we have

TΨ(σ) = Ψ ◦ T ◦Ψ−1(σ)

= Ψ(Ψ−1(σ) · g̃)

= σ · g̃,

where g̃ = (g, f) ∈ G̃L
+
(2,R) such that f(1/2) = 1/2. This finishes the proof.

Corollary 4.3.16. If σ = (Z,P) ∈ Un(A)Φ+, then T ±1
(
P(12)

)
= P(12). Similarly, if

τ = (W,P ′) ∈ Un(A)Φ−, then T ±1
Ψ

(
P ′(12)

)
= P ′(12).

Proof. Let σ = (Z,P) ∈ Un(A)Φ+ and T (σ) = (Zt,PT ). By the above Lemma, T (σ) =

σ · g̃ = (Zg,Pf ) for g̃ = (g, f) ∈ G̃L
+
(2,R) such that f(1/2) = 1/2 , we have

Pf (1/2) = P(1/2).

The proof for the second statement is the same.
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Recall for any interval I ⊂ R, P(I) is the extension-closed subcategory of C generated

by the subcategories P(ϕ) for ϕ ∈ I. Recall the definition of Aut∗(C) in Definition

4.1.12. The following proposition will be useful:

Proposition 4.3.17. LetW be an element of Aut∗(C) such that for a stability condition

σ = (Z,P) we have W (σ) = σ · g̃ for some g̃ = (g, f) ∈ G̃L
+
(2,R). Suppose that E, F

are two semistable objects with phases ϕE < ϕF , then

W
(
P(ϕE , ϕF )

)
= P

(
ϕW (E), ϕW (F )

)
.

Proof. We write σ · g̃ = (Zg,Pf ), then Pf (I) = P
(
f(I)

)
for any interval I ⊂ R by

definition. Therefore by our assumption

W
(
P(ϕE , ϕF )

)
= P

(
f(ϕE), f(ϕF )

)
.

Since σ · g̃ and σ contain the same set of semistable objects, therefore W (E) and W (F )

are semistable for σ. So we have ϕW (E) = f
(
ϕE
)
and ϕW (F ) = f

(
ϕF
)
, this proves the

result.

Lemma 4.3.18. Given a stability condition σ = (Z,A) such that A is of finite-length

with the finite set of simple objects (up to isomorphism) {S0, S1, · · · , Sn}. Define the

linear cone in C:

C := {z ∈ C : z =

n∑
i=0

λiZ(Si), λi ≥ 0} \ {0}.

Then for any non-zero semistable object E ∈ P(ψ), ψ ∈ R, we have

Z(E) ∈ C ∪ (−C).

Proof. After shifting E, we may assume that E ∈ A. Since A is of finite-length,

E has a finite filtration by the simple objects Si. Then in K0(A) we have [E] =∑n
i=0 λi[Si], λi ≥ 0 (at least one λj ̸= 0). Therefore the result follows from the

linearity of Z.

The following important theorem characterizes the stable objects outside the ray ϕ = 1
2

in the upper half complex plane:
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Theorem 4.3.19. Take σ ∈ Un(A)Φ+, there is no stable object whose phase lies in the

intervals
(
0, ϕ(S0)

)
,
(
ϕ(S1), 1

)
, nor in the intervals(

ϕ (T m(S0)) , ϕ
(
T m+1(S0)

))
or
(
ϕ
(
T −m−1(S1)

)
, ϕ
(
T −m(S1)

))
,

for any integerm ≥ 0. Moreover, the stable objects of phases ϕ
(
T m(S0)

)
and ϕ

(
T −m(S1)

)
for m ≥ 0 are of special Kronecker type I.

Proof. Given σ = (Z,P) ∈ Un(A)Φ+, it is clear that there is no stable object of phase

in the interval (0, ϕ(S0)) ∪ (ϕ(S1), 1) by Lemma 4.3.18.

By Lemma 4.3.15 T (σ) = σ · g̃ for some g̃ ∈ G̃L
+
(2,R), therefore by Proposition

4.3.17 we only need to check that there is no stable object of phase in the intervals

(ϕ(S0), ϕ(T (S0))) and
(
ϕ(T −1(S1)), ϕ(S1)

)
, then apply T ±m we see that there is no

stable object of phase in other open intervals.

...

Z(S0) = Z(S2)Z(S1) = Z(S3)

...

Z(T −n(S1)) Z(T n(S0))

Z(δ)

Z(T −1(S1)) Z(T (S0))

Suppose E ∈ P (ϕ(S0) + ϵ) for 0 < ϵ < ϕ(T (S0))−ϕ(S0). We will take a C-action on σ

and reduce to the case in the beginning: we choose 0 < ϵ′ ≪ ϵ and let λ = −(ϕ(S0)+ϵ
′).

Then let σ′ := σ · λ = (Z ′,P ′). The phase of the semistable object for σ′ is denoted by

ϕ′(−). By definition of the C-action (see Remark 2.2.15) we have

ϕ′(S0[1]) = ϕ′(S2[1]) = ϕ(S0[1])− ϕ(S0)− ϵ′

= 1− ϵ′ ∈ (1/2, 1),

ϕ′ (T (S0)) = ϕ′ (T (S2)) = ϕ(T (S0))− ϕ(S0)− ϵ′ ∈ (0, 1/2).

We see that the heartA′ = P ′(0, 1] contains the simple objects {S0[1], S2[1], T (S0), T (S2)}
which generate LS0LS2A, we have LS0LS2(A) ⊂ A′ therefore A′ = LS0LS2(A) = T A
by Theorem 4.2.1 (see figure 4.4).
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Z ′(E)

Z ′(S0[1]) = Z ′(S2[1]) Z ′(T (S0)) = Z ′(T (S2))

Z ′(δ)

Figure 4.4: Central charges of simple objects and E, δ for σ′

Since A′ is of finite-length, and the phase of E for σ′ is ϕ(S0)+ ϵ−ϕ(S0)− ϵ′ = ϵ− ϵ′ ∈(
0, ϕ
(
T (S0)

))
, therefore E is not semistable for σ′ by Lemma 4.3.18. Since σ′ and σ

contain the same set of semistable objects, so E is not semistable for σ either.

Similarly, suppose E ∈ P (ϕ(S1)− ϵ), where ϵ ∈
(
0, ϕ(S1)− ϕ(T −1(S1))

)
, we choose

0 < ϵ′ ≪ ϵ. Let t = 1+ ϵ′−ϕ(S1) and τ := σ · t = (Z ′,P ′). For τ we have the phases of

ϕ′(S1[−1]) = ϕ′(S3[−1]) = ϵ′ ∈ (0, 1/2),

ϕ′
(
T −1(S1)

)
= ϕ′

(
T −1(S3)

)
= ϕ

(
T −1(S1)

)
− ϕ(S1) + 1 + ϵ′ ∈ (1/2, 1).

The heart A′ = P ′(0, 1] contains the simple objects {S1[−1], S3[−1], T −1(S1), T −1(S3)}
which generate RS1RS3A, RS1RS3A ⊂ A′ thereforeA′ = RS1RS3A = T −1A. The phase

of E for τ is ϕ(S1)− ϵ+ 1 + ϵ′ − ϕ(S1) = 1 + ϵ′ − ϵ ∈ (T −1(S1), 1], therefore E cannot

be semistable for τ again by Lemma 4.3.18, and is also not semistable for σ.

For the second statement, let E ∈ P (ϕ(S0)) be a stable object, we take the Jordan-

Hölder filtration of E:

0 ⊂ En ⊂ En−1 ⊂ · · ·E1 ⊂ E0 = E,

such that Ei/Ei−1 = Sj for j ∈ {0, · · · 3}. Since ϕ(S0) = ϕ(S2) ̸= ϕ(S1) = ϕ(S3), by the

linearity of Z the only graded factors appear in the filtrations are S0 and S2. Therefore

S0 or S2 is a subobject of E, thus must be isomorphic to E. Similarly if E ∈ P (ϕ(S1))

is stable, we prove that E is one of S1 and S3 exactly in the same way. Now we apply

T ±m on σ for m ≥ 0. Using Lemma 4.3.15 again, we see T ±m(σ) and σ contain the

same set of stable objects. Therefore the stable objects of phase ϕ
(
T m(S0)

)
are T m(S0)

and T m(S2), and the stable objects of phase ϕ
(
T −m(S1)

)
are T −m(S1) and T −m(S3).

By Lemma 4.3.14 they are of special Kronecker type I.
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Let σ ∈ Un(A)Φ−, we take Ψ(σ) ∈ Un(A)Φ+, then by the above Lemma the stable objects

for σ outside the ray ϕ = 1
2 are of special Kronecker type II.

The rest of this section is devoted to characterizing the stable objects on the ray ϕ = 1
2 .

Lemma 4.3.20. Let σ ∈ Un(A)Φ+ and E ∈ P(12), then π∗E is (set theoretically) sup-

ported on S × P1 where S is a finite set of closed points in P1.

Proof. According to Corollary 4.3.16, T n
(
P(12)

)
= P(12) ⊂ A for any integer n. There-

fore we have the vanishing of cohomology groups Extk(Q, E) = 0 for k ̸= 0, in partic-

ular:

0 = ExtkX (π∗O ⊕ π∗O(1, 1), E ⊗ π∗O(n, 0))

= ExtkZ (O ⊕O(1, 1), π∗E ⊗O(n, 0)) (projection formula)

= Hk
(
P1, (p1 ◦ π)∗E ⊗O(n)

)
⊕Hk

(
P1, (p1 ◦ π)∗

(
E(0,−1)

)
⊗O(n− 1)

)
where H means the hypercohomology of complexes and k ̸= 0. In general for a complex

F ⋆ ∈ Db(X), we have a spectral sequence [34, p.74]

Ep,q2 = Hq (X,Hp(F ⋆)) ⇒ Hp+q(X,F ⋆).

We write E′
0 = (p1 ◦ π)∗E and E′

1 = (p1 ◦ π)∗
(
E(0,−1)

)
. By taking n ≫ 0, then

Hi
(
P1, Hj(E′

m)⊗O(n)
)
= 0 for i ̸= 0, therefore the spectral sequence degenerates, we

have

Hk(P1, E′
m ⊗O(n)) =

⊕
j

Hk−j
(
P1, Hj(E′

m)⊗O(n)
)
= 0 for k ̸= 0. (4.18)

Fix j ̸= 0. Then H0
(
P1, Hj(E′

m)⊗O(n)
)

= 0 where n ≫ 0. This implies that

Hj(E′
m) = 0. Therefore E′

m is concentrated in degree 0 and is indeed a sheaf.

For m = 0, 1, now we have

Hk(P1, E′
m ⊗O(n)) = 0, k = 1, n ∈ Z. (4.19)

By taking n ≪ 0, and using the fact that every coherent sheaf on P1 splits into line

bundles and torsion sheaves [25], we have dim(supp E′
m) = 0.
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We denote S := suppE′
0 ∪ suppE′

1. Suppose s /∈ S, we consider the following fibre

product diagram with naturally-defined morphisms:

p−1
1 (s) �

� i //

pt

��

P1 × P1

p1
��

{s} �
�

j
// P1

(4.20)

We apply the flat base change theorem [34, Chapter 3.3] to π∗E, π∗
(
E(0,−1)

)
∈ Db(Z),

for any integer k

m = 0 : Hk(P1, i∗π∗E) = j∗E′
0 = 0

m = 1 : Hk
(
P1, i∗π∗(E(0,−1))

)
= Hk

(
P1, (i∗π∗E)⊗O(−1)

)
= j∗E′

1 = 0.

These vanishings imply that i∗π∗E = 0 (one can again use the structure theorem of

coherent sheaf on P1). Therefore π∗E is supported on S × P1.

Lemma 4.3.21. Suppose E ∈ A is isomorphic to the shift of a sheaf, and EndA(E) ∼= C
then it is the pushforward E = s∗F [i] for some F ∈ CohZ.

Proof. We follow the idea in the proof of [2, Lemma 3.1]: let Y be the scheme-theoretic

support of E. By definition, H0(OY ) acts faithfully on E, and EndA(E) = C.Id, there-
fore H0(OY ) ∼= C. Take the composition of the embedding of Y with the contraction

f : Y ↪→ X ↠ X̄ = SpecH0(OX),

as H0(f∗OY ) = H0(OY ) = C, so the scheme-theoretic image of Y under f is a point of

X̄. By definition of f , the point will be the origin (singular point), thus Y is contained

scheme-theoretically in the fiber of the contraction map. Since the scheme-theoretic

fiber of the origin is exactly Z = P1 × P1, so E = s∗F for some F ∈ CohZ.

Now we are able to characterize the stable objects on the ray ϕ = 1
2 .

Theorem 4.3.22. If σ ∈ Un(A)Φ+, let E be a σ-stable object in P(12), then there

exists a point x ∈ P1 such that either E = F1(x) = s∗O{x}×P1 or E = F2(x) =

s∗O{x}×P1(−1)[1].

If τ ∈ Un(A)Φ−, let E be a τ -stable object in P(12), then there exists a point x ∈ P1 such

that either E = Ψ(F1(x)) or E = Ψ(F2(x)).
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Proof. We prove the first statement, the second statement follows since Ψ exchanges

the stability conditions in Un(A)Φ+ and Un(A)Φ−, as also exchanges the objects of special

Kronecker type I and II.

Suppose E ∈ P
(
1
2

)
is stable and not isomorphic to F1(x1) and F2(x1) for any x1 ∈ P1.

We will show that there is a vector bundle F ∈ CohZ such that E ∼= s∗F [1]. We follow

the idea of proof in [2, Lemma 3.2]: since Fi are stable, therefore

HomX(E,Fn(x1)) = HomX(Fn(x1), E) = 0, n = 1, 2.

Note that we have the short exact sequence in A:

0 → F1(x1) → Ox → F2(x1) → 0,

where x ∈ Z such that p1(x) = x1, therefore there cannot be any nonzero map E → Ox

or Ox → E. Since Ox is semistable of phase 1/2, then Homi
X(E,Ox) = 0 for i ≤ 0, and

Serre duality gives HomX(Ox[i], E) = HomX(E,Ox[i + 3]) = 0 for i ≥ 0 and x ∈ Z.

Since E is supported on Z, there will be no homomorphisms with shifts of skyscraper

sheaves outside the zero-section. Therefore we can apply [20, Proposition 5.4] and

deduce that E is isomorphic to a two-term complex of locally-free sheaves

E−2 d−2

−−→ E−1.

Hence H−2(E) ⊂ E−2 is torsion free on X. However, since H−2(E) is supported on

Z, therefore it must vanish. The map d−2 is injective, so that E is isomorphic to the

shift of a sheaf F ′[1]. Since E is stable, End(F ′) ∼= C.Id, therefore we apply Lemma

4.3.21 and show that F ′ = s∗F where F ∈ CohZ. Since HomX(s∗Ox, s∗F [1]) ∼=
HomZ(Ox, F [1]) ⊕ HomZ(Ox, F ) = 0, therefore F has depth 2 and by Auslander-

Buchsbaum formula, F is actually locally free.

However, this contradicts with Lemma 4.3.20 which says that π∗E is supported on a

S × P1 ⊂ P1 × P1, where S is a finite set of points. Therefore we conclude that E is

isomorphic to either F1(x) or F2(x) for some x ∈ P1.

In summary, we have completed the description of the stable objects for σ ∈ Un(A)Φ:

Theorem 4.3.23. (i) If σ ∈ Un(A)Φ+, then the stable objects (up to a shift) are of

special Kronecker type I, and the classes of stable objects (up to a sign) in K0(A)
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are (n ∈ N)

nγ0 + (n+ 1)γ1, (n+ 1)γ0 + nγ1,

nγ2 + (n+ 1)γ3, (n+ 1)γ2 + nγ3,

γ0 + γ1, γ2 + γ3.

(ii) if σ ∈ Un(A)Φ−, then the stable objects (up to a shift) are of special Kronecker

type II, and the classes of stable objects (up to a sign) in K0(A) are (n ∈ N)

nγ1 + (n+ 1)γ2, (n+ 1)γ1 + nγ2,

nγ3 + (n+ 1)γ0, (n+ 1)γ3 + nγ0,

γ1 + γ2, γ3 + γ0.

(iii) if σ ∈ Un(A)Φ and ϕ(Si) = 1
2 for each i, then the stable objects (up to a shift)

are only {Si}i, and the classes of stable objects (up to a sign) in K0(A) are

γ0, γ1, γ2, γ3.

Proof. We have proved the first two cases in the above. For the last case, we do

induction on the length l(E) of object E ∈ A. When l(E) = 1, it is obvious. Then for

l(E) = n+1, by taking the Jordan-Hölder filtration of E, we have short exact sequence

0 → E′ → E → S⊕ni
i → 0.

Then E′ is semistable by our induction hypothesis, note that E′ has the same phase as

Si, by using Lemma 4.3.11 we see that E is also semistable of phase of Si. Therefore

we proved that there are no other stable objects other that Si, i = 0, · · · , 3.

By applying C-action we obtain the same description of stable objects for general

stability conditions in U(A)Φ.

§ 4.4 Space of invariant stability conditions

Recall from the introduction the subset ∆ ⊂ K0(A) is defined to be the set of classes

of stable objects for σ ∈ U(A)Φ in the quotient group K0(A) = K0(A)/K0(A)−φ. By

Theorem 4.3.23 ∆ consists of the following elements:

∆ =
{
n ∈ Z : nγ0 + (n+ 1)γ1, (n+ 1)γ0 + nγ1,±(γ0 + γ1)

}
.
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Recall also that

Hreg := Hom(K0(A),C) \
⋃
vvv∈∆

vvv⊥,

where vvv⊥ := {Z ∈ Hom(K0(A),C)|Z(vvv) = 0} is the hyperplane complement.

Note that Hreg is the complement of a family of hyperplanes in Hom(K0(A),C) ∼= C2:

nZ(γ0) + (n+ 1)Z(γ1) = 0

(n+ 1)Z(γ0) + nZ(γ1) = 0

Z(γ0) + Z(γ1) = 0

for n ≥ 0 (see Figure 1.3).

In the final section we prove Theorem 1.0.5 in the introduction: the forgetful map

Z :
(
Stab(X)Φ

)
0
→ Hom(K0(C),C)

factors through

Z :
(
Stab(X)Φ

)
0
→ Hreg.

Moreover, the above is a covering map.

Recall that a continuous map f : A→ B between topological spaces is called a covering

map, if every point b ∈ B has an open neighborhood V ⊂ B such that the restriction

of f to each connected component of f−1(V ) is a homeomorphism onto V .

We first analyze the boundary of Un(A)Φ. Recall {Si}i∈Z4 (Corollary 4.1.3) are the

simple objects which generate A and γi = [Si] are their classes. By definition ∂ Un(A)Φ

has four components of codimension-one submanifolds (real lines), which are

W+
i := {Z(γi) = Z(γi+2) ∈ R>0}, W−

i := {Z(γi) = Z(γi+2) ∈ R<0}

i = 0, 1. Though we cannot apply Lemma 2.2.18 directly, however, since we are

deforming σ while preserving the condition Z(γi) = Z(γi+2), the statement and proof

are exactly the same as there.

Lemma 4.4.1. (i) For any stability condition on W+
i (i = 0, 1) there exists an

open neighborhood V such that V ⊂ Un(A)Φ ∪ Un(LSiLSi+2A)Φ. Similarly, for

any stability condition on W−
i (i = 0, 1) there exists an open neighborhood V

such that V ⊂ Un(A)Φ ∪ Un(RSiRSi+2A)Φ.
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(ii) We have W+
i = Un(A)Φ ∩ Un(τA)Φ, where τ = T when i = 0 and τ = TΨ when

i = 1. Similarly, W−
i = Un(A)Φ ∩ Un(τA)Φ, where τ = T −1

Ψ when i = 0 and

τ = T −1 when i = 1.

Proof. In the following proof we will repeatedly use Lemma 2.1.5 that if A, A′ ⊂ D
are hearts of bounded t-structures and A ⊂ A′, then A = A′.

First we suppose σ ∈ W+
0 , that is Z(γ0) = Z(γ2) ∈ R>0. The objects S̃1 = T (S0)

and S̃3 = T (S2) lie in A, and are in the short exact sequences by the computations in

Section 4.2:

0 → S⊕2
i−1 → S̃i → Si → 0, i = 1, 3 (4.21)

where 2 = dimC Ext1(Si, Si−1)
∗. Since Hom(S̃1, S0) = Hom(S̃3, S2) = 0 the objects S̃i

lie in P(0, 1), and by choosing a small enough open neighborhood V of σ we can assume

this is the case for all stability conditions (Z,P) of V . We can split V into two pieces

V+ = {ImZ(S0) = ImZ(S2) > 0}, V− = {Im Z(S0) = ImZ(S2) ≤ 0}.

For σ ∈ V+, we can shrink V if necessarily such that Si ∈ P(0, 1) for all i. This

shows that A ⊂ P(0, 1] for all stability conditions in V+, therefore P(0, 1] = A and so

V+ ⊂ Un(A)Φ. On the other hand, for any stability condition (Z,P) ∈ V− the objects

S0 and S2 are in P(−1/2, 0], thus the heart P(0, 1] contains the objects S0[1], S2[1], S̃1

and S̃3. Since these are the simple objects of the finite length category LS0LS2A,

therefore P(0, 1] = LS0LS2A and so V− ⊂ Un(LS0LS2A)Φ. Therefore V ⊂ Un(A)Φ ∪
Un(LS0LS2A)Φ.

By applying Ψ on σ then Ψ(σ) ∈ W+
1 , that is Z(γ1) = Z(γ3) ∈ R>0, then there exists

an open neighborhood V of Ψ(σ) such that V ⊂ Un(A)Φ ∪ Un(LS1LS3A)Φ.

The proof for σ ∈W−
i is essentially the same by replacing the left double tilt with the

right double tilt.

For the second statement, by the first part we have

W+
i = Un(A)Φ ∩ Un(LSiLSi+2A)Φ, W−

i = Un(A)Φ ∩ Un(RSiRSi+2A)Φ.

By Theorem 4.2.1 we obtain the results.
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We denote by H the subgroup in Aut∗(C) (see Definition 4.1.12) generated by T and

TΨ.

Proposition 4.4.2. ⋃
g∈H

Un(gA)Φ =
(
Stab(C)Φ

)
n
. (4.22)

Proof. Since t(δ) = tψ(δ) = δ due to Lemma 4.2.2, therefore Un(gA)Φ ⊂
(
Stab(C)Φ

)
n

for any g ∈ H.

Now we show that the left side is open and closed, hence the inclusion is in fact an

equality.

First we prove the openess. For any σ ∈ Un(gA)Φ, considering the preimage of σ under

the autoequivalence g, σ = (Z,P) lies in Un(A)Φ. Suppose first that ImZ(γi) > 0 for

each i, then we can choose an open neighborhood U of σ such that each simple object

Si has phase (0, 1) for all stability conditions (Z,P) of U . Since A is the smallest

extension-closed subcategory of D containing Si it follows that A ⊂ P(0, 1] of all

stability conditions in U . Therefore P(0, 1] = A by Lemma 2.1.5 and so U is contained

in Un(A)Φ.

Now suppose σ lies on the boundary of Un(A)Φ, according to Lemma 4.4.1, there is

an open neighborhood V of σ such that V ⊂ Un(A)Φ ∪ Un(τA)Φ where τ is one of the

autoequivalences T ±1 and T ±1
Ψ . This finishes the proof of openess.

To check the left side of (4.22) is closed, we only need to show the collection of closed

sets is locally finite. Suppose

σ ∈
⋂

g∈H′⊂H
Un(gA)Φ.

It is obvious that Un(gA)Φ ∩ Un(g′A)Φ = ∅ if gA ≠ g′A. Taking the preimage under

some autoequivalence g, we suppose σ lies on the boundary of Un(A)Φ. Then this

intersection is finite since by Lemma 4.4.1, each boundary component corresponds to

exactly one of the autoequivalences T ±1 and T ±1
Ψ .

This finishes the proof of the equality (4.22).
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Lemma 4.4.3. For any special stability condition σ = (Z,P) ∈
(
Stab(X)Φ

)
0
, we have

Z(δ) ̸= 0 where δ = [Ox] for x ∈ Z. Moreover, there is an exact equivalence W ∈ H

and λ ∈ C such that λW (σ) ∈ U(A)Φ, the closure of U(A)Φ.

Proof. Suppose there exists τ = (Z1,P1) ∈
(
Stab(X)Φ

)
0
such that Z1(δ) = 0. In

particular there is no semistable object in τ whose class in K0(A) is δ. By Lemma

2.2.16 this is true in an open neighborhood of τ in
(
Stab(X)Φ

)
0
. Consider the stability

condition σ = (Z2,P2) in such neighborhood such that Z2(δ) ̸= 0. First we act by

some λ ∈ C so that λ · Z2(δ) = i. Then by (4.22) there exists some W ∈ H such

that σ′ = λW (σ) ∈ Un(A)Φ. By Remark 4.3.13 and Lemma 2.2.16 there does exist a

semistable object whose class is δ for σ′. Since δ is preserved by element of H, therefore

we conclude that there exists a semistable object E for σ whose class in K0(A) is δ.

This gives a contradiction.

Therefore for any stability condition σ = (Z,P), we have Z(δ) ̸= 0. Then by choosing

λ ∈ C such that λ · Z(δ) = i, and by (4.22) we can find W ∈ H such that λW (σ) ∈
Un(A)Φ ⊂ U(A)Φ. This finishes the proof.

We let t and tψ be the automorphisms of K0(A) induced by T and TΨ, the following

lemma is an easy consequence of Lemma 4.2.2:

Lemma 4.4.4. The automorphisms t±1 and t±1
ψ preserve ∆.

Proof. There are the following equivalent classes (up to a sign) in ∆ ⊂ K0(A):

nγ0 + (n+ 1)γ1, (n+ 1)γ0 + nγ1, γ0 + γ1. (4.23)

We apply Lemma 4.2.2 to the following calculations, for t, we have

t (nγ0 + (n+ 1)γ1) = (n− 1)γ0 + nγ1;

t ((n+ 1)γ0 + nγ1) = (n+ 2)γ0 + (n+ 1)γ1;

t (γ0 + γ1) = γ0 + γ1.
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Therefore t∆ ⊂ ∆. Similarly, for tψ we have

tψ (nγ0 + (n+ 1)γ1) = (n+ 1)γ0 + (n+ 2)γ1;

tψ ((n+ 1)γ0 + nγ1) = nγ0 + (n− 1)γ1;

tψ (γ0 + γ1) = γ0 + γ1.

Therefore tψ∆ ⊂ ∆. Due to equation (4.11) we actually verified all the cases.

Corollary 4.4.5. Let E be a stable object for σ ∈
(
Stab(X)Φ

)
0
, then the class [E] ∈

K0(A) lies in ∆.

Proof. By the above lemma, there is an autoequivalence W ∈ H and λ ∈ C such that

λW (σ) lies in the closure of U(A)Φ. Since the stable objects remain stable in an open

neighborhood V of λW (σ), we choose σ′ ∈ V such that σ′ ∈ U(A)Φ, it follows that

σ′ and λW (σ) contain the same set of stable objects. Therefore the classes of stable

objects for λW (σ) lie in ∆ by Theorem 4.3.23. Since by Lemma 4.4.4 the group element

in H preserves ∆, therefore [E] ∈ ∆.

Theorem 4.4.6. The image of the local homeomorphism

Z :
(
Stab(X)Φ

)
0
→ Hom(K0(A),C)

lies in Hreg.

Proof. By Corollary 4.4.5, the set of class of any stable object E for stability condition

σ = (Z,P) is exactly ∆. Since Z(E) ̸= 0, therefore Z(σ) ∈ Hreg.

We fix a norm ∥ · ∥ on K0(A)R = K0(A)⊗Z R. The induced norm on Hom(K0(A),C)
is denoted by ∥ · ∥∨.

Lemma 4.4.7. Let Z ∈ Hreg, there exists a constant C > 0 (depending on Z) such

that

∥vvv∥ ≤ C|Z(vvv)| (4.24)

for all vvv ∈ ∆.

Proof. Since all norms over finite dimensional space are equivalent, we might take

∥vvv∥2 = v20 + v21,
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where vi denotes the i-th component of a vector vvv ∈ K0(A)R with respect to the basis

γ0, γ1. For any vector vvv with the class in ∆, we have

∥vvv∥2 = n2 + (n+ 1)2 or 2,

for n ≥ 0. Suppose ∥vvv∥2 = 2, in this case vvv = γ0 + γ1. Since Z(γ0 + γ1) ̸= 0 by

definition. Therefore we can choose a constant c0 such that (4.24) holds.

Suppose argZ(γ0) ̸= argZ(γ1). Since Z(γi) ̸= 0, without loss of generality we take a

suitable GL(2,R)-action on the complex plane, such that Z(γ0) = 1, Z(γ1) = i. Now

suppose ∥vvv∥2 = n2 + (n+ 1)2, then in this case vvv = nγ0 + (n+ 1)γ1 or (n+ 1)γ0 + nγ1

in ∆, therefore |Z(vvv)|2 = n2 + (n+ 1)2. So we have

∥vvv∥ = |Z(vvv)|.

We can take c1 ≥ 1.

Finally we choose the maximum from c0 and c1 such that (4.24) holds for any vvv ∈ ∆.

Theorem 4.4.8 (Covering property). Z :
(
Stab(X)Φ

)
0
→ Hreg is a covering map.

Proof. We follow the idea in [17, Proposition 8.3]. We first show that Hreg is open. Let

Z ∈ Hreg. Lemma 4.4.7 shows that there is a constant C > 0 (depending on Z) such

that

∥vvv∥ ≤ C|Z(vvv)|

for all vvv ∈ ∆. Given ϵ > 0, we define an open subset

Bϵ(Z) =
{
W ∈ Hom(K0(A),C) : ∥W − Z∥∨ < ϵ/C

}
⊂ Hom(K0(A),C).

Then for W ∈ Bϵ(Z), we have

|W (vvv)− Z(vvv)| ≤ ∥W − Z∥∨∥vvv∥ < ϵ|Z(vvv)|

for vvv ∈ ∆. Therefore if ϵ < 1 then any W ∈ Bϵ(Z) satisfies W (vvv) ̸= 0 for vvv ∈ ∆. Hence

W ∈ Hreg, this shows that Hreg is open.

Now we fix a positive real number ϵ0 <
1
8 and assume that ϵ < sin(πϵ0). Given any

σ = (Z,P) ∈
(
Stab(X)Φ

)
0
with Z(σ) = Z, we define the open neighborhood of σ

Cϵ(σ) =
{
τ = (W,Q) ∈ Z−1(Bϵ(Z)) : d(P,Q) < 1/2

}
,



CHAPTER 4. INVARIANT STABILITY CONDITIONS ON LOCAL
P1 × P1 (AFTER [24, 26]) 93

where d(−,−) is defined in Definition 2.2.2. By Lemma 2.2.7, the map

Z : Cϵ(σ) → Bϵ(Z) (4.25)

is injective. Let W ∈ Bϵ(Z), then for any E stable for σ, by Corollary 4.4.5, we have

|W (E)− Z(E)| < sin(πϵ0)|Z(E)|.

Using the deformation result Theorem 2.2.11, we conclude that there is a unique stabilty

condition τ = (W,P ′) ∈ Cϵ(σ) such that Z(τ) = W and d(P,P ′) < ϵ. Thus the

map (4.25) is a homeomorphism. For each σ ∈ Z−1(Z), we prove Cϵ(σ) is mapped

homeomorphically by Z onto Bϵ(Z) exactly in the same way.

Finally we check that

Z−1 (Bϵ(Z)) =
⋃

σ∈Z−1(Z)

Cϵ(σ) (4.26)

is disjoint. Suppose there exists τ = (W,Q) ∈ Cϵ(σ)
⋂
Cϵ(σ

′), where we denote by

σ = (Z,P) and σ′ = (Z,P ′). Then

d(P,P ′) ≤ d(P,Q) + d(Q,P ′) < 1.

Therefore by Lemma 2.2.7 again, we have σ = σ′, which means Cϵ(σ) = Cϵ(σ
′). We

have finished the proof.
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