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Abstract 

 

Glioblastoma (GBM) is the deadliest primary brain tumour in adults with a median survival of 

14-20 months from initial diagnosis. Despite aggressive treatment involving maximal surgical 

debulking followed by radiation therapy and chemotherapy, GBM remains incurable owing 

to a high rate of fatal recurrence. Understanding why unresected tumour cells survive 

treatment is necessary to better treat this disease. GBM tumours recur due to the presence 

of treatment-resistant cells, and this resistance phenotype is posited to be mediated by 

several epigenetic mechanisms including DNA methylation, histone modifications and 

chromatin remodelling. Work within the Glioma Genomics group in Leeds has specifically 

highlighted a potential role for histones, so this study focuses on understanding the role of 

histone modifications in GBM treatment resistance. More specifically, this group has recently 

proposed, for the first time, that Jumonji and AT- Rich Interacting Domain 2 (JARID2) plays a 

role in tumour recurrence via chromatin remodelling in GBM. JARID2 is an accessory protein 

of Polycomb Repressive Complex 2 (PRC2) which is the sole complex responsible for 

trimethylation on lysine 27 of histone H3 (H3K27me3). JARID2 promotes PRC2 recruitment to 

chromatin and regulates its enzymatic activity. PRC2 and JARID2 have a fundamental role in 

neurodevelopment but the role in GBM treatment resistance needs to be investigated. This 

can be achieved by generating genome-wide profiles of histone modifications associated with 

JARID2, and the binding of JARID2 itself, in paired primary (untreated) and recurrent (post-

treatment) samples. Despite the tremendous work in generating global genome-wide 

profiling of histone modifications in various types of cancers, few genome-wide maps for 

H3K27me3 are available for GBM, therefore, current interest is placed on generating and 

comparing genome-wide mapping of histone modifications to locate and identify key 

epigenetic changes that are associated with GBM development and progression. Another 

histone mark (H3K4me3, which is a transcriptional activator) is known to work in concert with 

H3K27me3 during cell lineage determination in the brain, so it was also deemed necessary to 

prolife this mark.  Thus, this study aimed to establish a workflow for generating and 

comparing the global distribution patterns of two histone modifications, along with binding 

patterns of the catalytic component of PRC2 (Enhancer of zeste homolog 2: EZH2) and JARID2, 

in paired primary and recurrent GBM samples. My hypothesis is that histone remodeling is 

driving the changes in the gene expression observed in GBM through treatment. I established 
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a workflow and then generated a genome- wide chromatin landscape for H3K27me3, 

H3K4me3 and EZH2 binding from matched fresh frozen pair primary and recurrent GBM 

samples of our in-house dataset. Then, I performed an integrative analysis on histone marks 

along with EZH2 by correlating their modifications with the changes in gene expression. The 

analysis was performed on a subset of genes that have been found to be dysregulated in 

GBM’s patient following standard treatment due to the epigenetic remodeling of their 

promoters. The findings revealed that these genes are significantly found in the bivalent state, 

but the balance of histone marks is altered by therapy. Also, it revealed that histone 

modifications are driving gene expression in those genes more than the others This leads to 

the hypothesis that this bivalency is what causes the tumours to be able to adapt to 

treatment. I concluded that JARID2 genes facilitate tumour recurrence through 

transcriptional reprogramming in patients following standard therapy. Additionally, it implies 

that bivalent areas promote GBM tumorigenicity and are linked to chemo-resistance.  
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Chapter 1 

Introduction 

 
1.1. An overview of glioblastoma (GBM) 

1.1.1. Clinical characteristics and Classification of GBM  

Among all invasive cancers, malignant brain tumours account for a small proportion (approximately 

2%), with gliomas comprising 80% of those (1-3). Glioblastoma (GBM), previously known as 

glioblastoma multiforme, is the most prevalent, aggressive and untreatable subtype of glioma in 

adults, accounting for more than 60% of all brain tumours. The term multiform denoted that GBM 

is heterogeneous in nature, consisting of a variety of cellular phenotypes and distinct mutational 

profiles (4-6). GBM is often diagnosed in older patients with a median age of 64 years at diagnosis. 

The incidence rate rises considerably with age, peaking between 75 and 84 years and drops after 85 

years (7, 8). According to several international studies, the overall annual incidence rate of GBM 

ranges from 3.19 to 4.17 cases per 100,000 people and is rising in many countries (8). Additionally, 

GBM incidence has been found to be higher in males as compared to females (3.97 vs. 2.53 in the 

United States) (9). 

The World Health Organization (WHO) has classified GBM as grade IV astrocytoma (6, 10). It is 

further clinically subdivided into primary (de novo) and secondary GBMs. Primary GBMs arise de 

novo, supposedly from glial cells or their progenitors, without any precursor lesions or prior 

symptoms. It accounts for about 90% of GBM cases. On the other hand, 10% of GBM cases are 

secondary GBM, which arises from pre-existing lower-grade astrocytoma (1, 2). The transcriptional 

and genomic characteristics of these two groups can be used to distinguish between them. The most 

prevalent mutations in primary GBM, for example, include p16 deletion, phosphatase and tensin 

homolog on chromosome ten (PTEN) mutation, EGFR amplification with loss of heterozygosity (LOH) 

on chromosome 10q, and oncogene amplification of the mouse double minute 2 (MDM2) gene. On 

the other hand, secondary GBM is associated with mutations in retinoblastoma (RB), tumour protein 

53 (TP53) and LOH on 17p, 10q, and 19q (11, 12). 

It has been demonstrated that these genetic alterations modulate the oncogenic pathways, leading 

to GBM invasion and progression. Disruption of the growth factor tyrosine kinase receptor pathway 

(EGFR), P53 pathway that includes MDM2 and TP53, retinoblastoma (RB) tumour suppressor 

pathway and Wnt signaling pathway have been found to be critical for GBM development and 

progression (13, 14). The detail of signaling pathway disruptions in GBM is provided below. 
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1.1.2.  Signaling pathways disruption in GBM 

The most common changes in primary GBM, accounting for 40% to 60% of cases, are EGFR 

amplification and overexpression. EGFR, the transmembrane receptor tyrosine kinase protein, is 

essential for controlling cellular growth, migration, differentiation, and tumour-induced 

neovascularization (15, 16). Aberrant EGFR contributes to aberrant activation of several 

downstream signaling pathways. For instance, activation of EGFR leads to the activation of the 

phosphatidylinositol-3-kinase (PI3K)/AKt and the mammalian target of rapamycin (mTOR) signaling 

pathways (PI3K-AKt-mTOR) which induce cancer proliferation, tumour development and therapy 

resistance (16, 17). Additionally, amplification and overexpression of EGFR result in an abnormal 

activity of son of sevenless 1 (SOS1) and growth factor receptor bound protein 2 (GRB2) which 

enhance cell proliferation, tumour transition, migration and development (14). Several small-

molecule kinase inhibitors such as gefitinib, erlotinib, afatinib, dacomitinib and osimertinib have 

been tested against EGFR in the context of GBM, however, these inhibitors did not show any 

therapeutic efficacy in the clinical trials (15, 18). This is mainly due to the challenges in targeting 

EGFR which include the presence of mutations, GBM heterogeneity and ineffective blood-brain 

barrier penetration (18). 

P53 pathway including MDM2 and TP53 is also one of the most commonly altered pathways in 

numerous types of cancer including GBM. It is mostly implicated in the prevention of the tumour by 

orchestrating a wide range of cellular responses, such as damaged cell apoptosis, maintaining 

genomic stability, inhibiting angiogenesis, and regulating cell metabolism and the tumour 

microenvironment (19, 20). Disruption of P53 signaling pathways including MDM2 and TP53 is 

occuring in 87% of GBM cases, leading to defects in the mechanisms governing cell cycle arrest, 

senescence, DNA repair and apoptosis (21). Deregulation of these mechanisms has been found to 

be associated with GBM progression. The key participant in the P53 signaling pathway is encoded 

by TP53, and is often altered in GBM (28-30% of cases) and other forms of malignancies (19). The 

second alteration of P53 mutation is MDM2 amplification. MDM2, an E3 ubiquitin ligase, 

ubiquitinates p53 in order to degrade it by the proteasome. MDM2 amplification has been found in 

different types of cancers and it is often associated with a poor prognosis (21, 22). Growth arrest, 

apoptosis, DNA repair, and other tumour suppressor mechanisms can all be lost as a result of p53 

inactivation by MDM2 amplification (23). Several small molecule inhibitors have been developed to 

inhibit tumour progression in patients with P53 deregulation. Atorvastatin and rosuvastatin, the 

FDA-approved drugs for P53 mutation, have been shown to successfully inhibit the growth of 
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tumours in the cells that harbor P53 mutation. However, the clinical safety and efficacy need to be 

assessed (24). The MDM2 inhibitors nutlins, idasanutlin, navtemadlin, APG-115, BI-907828, 

CGM097, siremadlin, and milademetan have been extensively studied. Although several of these 

inhibitors have progressed to clinical development, their effectiveness has not yet been established 

(25). To determine the effectiveness of MDM2 inhibitors in the treatment of GBM and to pinpoint 

the patient population that would benefit most of this therapeutic strategy, more study is required. 

retinoblastoma (RB) tumour suppressor pathway, which consists of retinoblastoma tumour 

suppressor (RB), cyclin-dependent kinases inhibitors and activators, and the E2F-family of 

transcription factors, is essential for controlling cell cycle progression and cell death (26). In GBM, 

the pRB pathway was disrupted in 78% of the primary GBM patients, and 7.6–11% of cases had RB 

gene deletions or mutations (27). The most common RB pathway alterations in GBM are 

Cyclin/CDK4-6 amplification (15%), CDKN2A/B deletions or inactivating mutations (40%), and RB1 

gene deletions or inactivating mutations (40%) (12, 28, 29). Several CDK inhibitors have been 

developed to reactivate pRB, and only PD0332991 (Palbocicilib), an inhibitor of CDK4/6 has been 

shown to prevent the downstream suppression of pRb (30). However, for such highly selective drug, 

more trials are required to assess its treatment efficacy since tumour evolution may easily develop 

bypass mechanisms to get around such a single agent (31). 

In addition, aberrant activation of WNT signaling has been shown to facilitate GBM development 

and invasion by maintaining stem cell characteristics (14). In general, Wnt pathway is involved in 

the regulation of key biological processes such as cellular proliferation, polarity, differentiation, 

motility, and stem cell activity, which are all essential for development, regeneration, and 

homeostasis (32). WNT is typically activated in GBM by genetic abnormalities, such as a loss in FAT1, 

a detrimental WNT signaling effector that is present in 20% of GBM patients (33). Due to their crucial 

involvement in carcinogenesis and cancer progression, as mentioned above, WNT pathway proteins 

have been recognized as a desirable and reliable cancer target (32). WNT pathway inhibitors have 

been developed over the past ten years, and some of these have even undergone clinical trials. But 

so far, there haven't been any FDA-approved medications that target WNT pathways (33). 

Despite enormous advances in understanding the biology of cancer and in the improvements of cancer 

diagnosis and treatment, the prognosis for GBM has remained unchanged for 2 decades (34, 35). 

Patients with GBM have a very poor prognosis with a median survival of 14-20 months from initial 

diagnosis, making it a critical matter of public health (1, 36). TMZ resistance and tumour recurrence 



 4 

are the main reason behind this poor prognosis: almost 100% of GBM tumours recur (3, 6, 37). 

Therefore, it is important to understand the reasons behind GBM recurrence and the mechanisms 

that GBM develops to resist treatment in order to design more effective therapeutic strategies (3). 

Extensive evidence has recently suggested that GBM heterogeneity mediates tumour recurrence 

and treatment resistance (38, 39). Therefore, understanding tumour heterogeneity is a crucial step 

in advancing personalized medicine and enhancing clinical outcomes (5, 40). 

 

1.2. Challenges in GBM therapy 

1.2.1. Current treatment regimen 

Current standard management of GBM consists of maximal surgical debulking followed by radiation 

therapy (RT) with concomitant and adjuvant temozolomide (TMZ), a DNA alkylating 

chemotherapeutic agent (36, 40). Following Stupp et al. (2005)'s seminal study, this standard of care 

was initially implemented in 2005 (41). GBM patients receive treatment with the Stupp regimen 

after a safe surgical excision of the tumour. This regimen consists of radiation therapy administered 

as 60 Gy total in daily fractions of 2 Gy; concurrent daily TMZ administration (75 mg/m2/day) from 

the first to the last day of radiation therapy; and adjuvant TMZ administration (six cycles, 150-200 

mg/m2/day for 5 days during each 28-day cycle) (41-43). Research has demonstrated that the 

addition of TMZ to radiation therapy increases the overall survival of patients by two months (42). 

TMZ, commercially known as Temodar, is an orally administrated chemotherapeutic agent that is 

rapidly and completely absorbed after oral administration due to its biochemical characteristics 

(44). Additionally, TMZ penetrates the BBB since it is a tiny lipophilic molecule, making it the drug 

of choice for treating GBM patients (45). TMZ is known to cause cell cycle arrest at G2/M, which 

ultimately results in apoptosis. At physiological pH (pH > 7), TMZ gets activated through a non-

enzymatic conversion into a short-lived active metabolite 5-(3-methyltriazen-1-yl)-imidazole-4-

carboxamide (MTIC). MTIC is further hydrolysed to produce 5-amino-imidazole-4-carboxamide (AIC) 

and the highly reactive methyldiazonium cation. The latter preferentially adds a methyl group to 

guanine residues at the oxygen-6 (O6, 6%), nitrogen-7 (N7, >70%), and nitrogen-3 (N3, 9%) at 

adenine residues. This results in the production of the cytotoxic bases O6-methylguanine (O6-MeG), 

N7-methylguanine (N7-MeG), and N3-methyladenine (N3-MA), which have a positive, clinical effect. 

The alkylation of DNA, particularly at the O6 and N7 sites of guanine, is thought to be the cause of 

MTIC's cytotoxicity, which results in DNA double strand breaks and apoptosis (45, 46). Methylation 
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of guanine at O6 (O6-MeG), despite only present in a small percentage (7%), is cytotoxic, mutagenic, 

and essential for TMZ-induced cytotoxicity. It results in the insertion of thymine instead of cytosine 

residues during DNA replication leading to cell death (47). 

Although TMZ is still the primary medication used to treat GBM today, numerous studies have 

shown that cells can develop resistance to TMZ. More than 50% of GBM patients who receive TMZ 

treatment do not respond to the treatment, leading to tumour progression and recurrence (48). The 

main TMZ resistance mechanisms are provided below in details. 

 

1.2.2. TMZ resistance and tumour relapse 

Several molecular mechanisms related to DNA damage repair have been shown to contribute to 

TMA resistance, including O6-methylguanine-DNA methyltransferase (MGMT), mismatch repair 

pathway (MMR), and base excision repair (BER, the poly (ADP)-ribose polymerase (PARP) pathway) 

(48). To date, the main contributor to TMZ resistance is MGMT due to its role in preventing DNA 

damage from DNA alkylation, leading in a diminished TMZ cytotoxic effect (49). The MGMT gene, 

which is located on chromosome 10q26, encodes a DNA-repair protein that removes methyl groups 

from the O6 position of guanine, repairing TMZ-induced DNA damage and reducing the 

effectiveness of the medication (50). 

A measure of intrinsic resistance to TMZ is the epigenetic status of MGMT, which includes promoter 

methylation, histone modifications, and miRNA modulation of transcription levels (51, 52). MGMT 

expression is governed by the CpG methylation state of the MGMT gene promoter region (53). For 

instance, promoter hypermethylation, which is associated with silencing of MGMT gene, reduces 

MGMT protein expression, preventing it from performing its function as a DNA damage protector 

and enhances the response to the chemotherapy (53, 54). In contrast, the unmethylated MGMT 

promoter is associated with the enhancement of MGMT protein production, which results in TMZ 

resistance (49). There is growing evidence from meta-analysis studies that MGMT status might be 

subject to alteration during tumour’s treatment, development, or recurrence (55). After recurrence 

following TMZ treatment, it has been noticed that tumours with initial MGMT methylation had a 

lower methylation ratio, indicating that the decrease in MGMT promoter methylation is a 

mechanism for developing therapeutic resistance to TMZ (44). 

Another predictive marker of response to TMZ is the identification of mutation in Isocitrate 

dehydrogenase (IDH) gene (56, 57). IDH enzymes are categorized into three isoforms namely IDH1, 



 6 

IDH2 and IDH3. These enzymes are involved in several metabolic processes such as lipid metabolism, 

Krebs cycle and redox regulation. The enzyme IDH1 is located in the cytoplasm and peroxisomes, 

whereas the enzymes IDH1 and IDH2 are localized in the mitochondrial matrix (57, 58). As primary 

roles, IDH enzymes catalyze the oxidative decarboxylation of isocitrate to produce -ketoglutarate 

(KG) in the citric acid cycle (58). IDH mutations are a frequent event in all human malignancies 

including GBM. The prevalence of IDH mutations is considerably higher in secondary GBM, which 

accounts for 73% of clinical cases, than in the primary GBM (57, 58). Based on IDH status, GBMs can 

be classified as either GBM-IDH-wt (wild type) or GBM-IDH-mut (mutant) (59). In GBM, Patients with 

mutant IDH1 have a better disease outcome compared with the patients with wild type IDH1 (58). 

There has been a growing attempt to incorporate molecular tumour features into GBM diagnosis 

and treatment, however, due to the involvement of numerous molecular processes, TMZ resistance 

mechanisms are still not fully understood (44). In addition to these molecular biomarkers, TMZ 

resistance and tumour recurrence have been found to be strongly associated with intrinsic intra-

tumour heterogeneity that GBM cells poses (10, 40). 

 

1.2.3. GBM Heterogeneity and tumour recurrence 

Ninety per cent of GBM tumours recur within 1-2 cm from the resected tumour edge because of the 

infiltrative nature of the GBM (1, 2). Infiltrative GBM cells spread into the surrounding brain 

parenchyma and migrate along the white matter tracts or the blood vessels (3, 4). These areas 

cannot be removed surgically due to the risk of neurological damage, making a complete surgical 

resection impossible and meaning that the unresected cells left behind serve as an origin of 

recurrence. The recurrent tumours exhibit tremendous cellular and molecular heterogeneity 

compared to those in the initial tumour therefore, they are usually not sensitive to the original 

treatment (5, 6). 

From the histopathological point of view, GBM appears as an irregular heterogeneous tumour 

consisting of differentiated and undifferentiated cells characterized by self-renewal and 

proliferation (10, 38). In general, GBM displays remarkable heterogeneity within a single tumour 

(intra-tumour heterogeneity) and between tumours (inter-tumour heterogeneity) (37, 39, 60). 

Intra-tumour heterogeneity refers to the presence of subpopulations of cells with different 

phenotypes owing to variability in cellular transcriptomic, genetic and epigenetic features. These 

subpopulations harbour distinct molecular signatures conferring different levels of sensitivity to 

therapies (6, 60). Several reports have shown that intratumoral heterogeneity serves as a potential 
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hallmark that contributes to tumour progression and poor responsiveness to therapy (5, 61). 

Glioblastoma’s heterogeneity can be explained by two main proposed models as in the case of other 

cancers: the stochastic (or clonal evolution) model and the hierarchical cancer stem model (35, 62, 

63). 

The clonal evolution model (Figure 1.1a) hypothesizes that during tumour progression, a normal cell 

undergoes a series of genetic mutations or epigenetic alterations, inherited or acquired, leading to 

the formation of cancer cells (6, 35, 38). These cells are then clonally proliferated and expanded in 

response to tumour microenvironment selective pressures such as acidosis, hypoxia, immune 

evasion and competition for spaces and resources and give rise to clonal outgrowths. Clones with 

growth advantages will expand to form tumour bulk that harbours multiple sub-clones of cells with 

stem-like properties and the clones with less fitness will probably become extinct. These sub-clones 

may undergo other waves of cumulative mutations, resulting in complex sub-clonal cells with 

different biological features and molecular profiles (1, 6, 36). On the other hand, the cancer stem 

model (Figure 1.1b) proposes that tumours are mainly initiated and maintained due to the presence 

of a subset of stem cell-like cells termed cancer stem cells (CSCs). These cells exhibit high plasticity, 

tumorigenic and indefinite self-renewal features. Only these CSCs can proliferate and give rise to 

new tumours which have different molecular profiles compared to the mother cells. CSCs divide 

asymmetrically to form bulk tumours constituting new CSC, progenitor cells and differentiated 

cancer cells, with the symmetric division responding to expanding the stem cell population (1, 38, 

64). Figure 1.1 illustrates the mechanisms of tumour initiation and maintenance based on the two 

proposed models. In both models, the resulting sub-clones possess the ability to resist treatment 

and, therefore, they survive and expand resulting in the re-occurrence of the disease. While the 

cancer stem cell model better explains inter-tumour heterogeneity, the clonal evolution model 

better describes the development of intra-tumour heterogeneity (40, 65). 
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Figure 1-1: The proposed models for tumour initiation and progression. (A) The clonal evolution 

model proposes that normal cells (dark green) undergo a series of mutations, leading to the 

formation of cancer cells. These cells are then clonally proliferated and expanded and give rise to 

clonal outgrowths. Clones with growth advantages will expand to form tumour bulk that harbours 
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multiple sub-clones of cells with stem-like properties. (B) The cancer stem model hypothesizes that 

tumours are mainly initiated due to the presence of a subset of stem cell-like cells termed cancer 

stem cells (CSCs) (Light green). These cells exhibit high plasticity, tumorigenic and indefinite self-

renewal features. Only these CSCs can proliferate and give rise to new tumours. CSCs divide 

asymmetrically to form the bulk of the tumour with new CSC, progenitor cells and differentiated 

cancer cells and symmetrically to expand the stem cells.   

 

 

Thus far, numerous investigations have shown that tumour heterogeneity is the key component of 

tumour recurrence and progression and this includes complex genetic mutations, epigenetic 

abnormalities, growth rate, protein modification and apoptosis. It causes a significant challenge in 

designing new therapeutic agents, therefore understanding the molecular events that drive GBM 

resistance is essential in designing more effective therapeutic strategies (10, 66). 

This work focuses on understanding the epigenetic mechanisms involved in GBM resistance and 

recurrence as recent work conducted by our group has shown that transcriptional changes occur 

dynamically after treatment in GBM. The study included gene expression analysis on 45 matched 

pairs of primary and recurrent GBM tumours and the results showed that genes that contain a 

Jumonji and AT-Rich Interacting Domain 2 (JARID2) binding site in their promoters are commonly 

and significantly dysregulated after standard treatment. JARID2 has a role in chromatin remodelling 

and epigenetic modifications, specifically via histone marks, as outlined below (67). 

 

1.3. The role of epigenetic alterations in drug resistance and recurrence in GBM 

1.3.1. Overview of Epigenetics 

Research in the post-genomic era revealed the involvement of epigenetic alterations in 

tumorigenesis in almost all cancers, including GBM. These alterations can result in different profiles 

of gene expression and, thus, elicit phenotypic changes (68, 69). Nearly all cells of multicellular 

organisms share the same genetic information, meaning that they contain identical 

deoxyribonucleic acid (DNA). However, during cell development, each single cell differentiates into 

a distinct cellular phenotype (70, 71). Waddington used the term ‘epigenetics’ to describe this 

phenomenon, which is currently defined as long-term heritable changes in DNA conformation and 

chromatin structure that affect gene expression without affecting the underlying DNA sequence (69, 

72, 73). The communication of epigenetic information is mediated by multiple mechanisms 
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including DNA methylation, covalent histone modification, non-coding RNA and chromatin 

remodelling. These mechanisms are controlled by sets of modifier enzymes termed writers, readers 

and erasers that respectively add, recognize and remove the epigenetic modifications on DNA and 

histone proteins (68, 74, 75). Numerous studies indicated that these modifications are critical to 

regulating chromatin structure and DNA accessibility, thereby regulating gene expression. It is 

believed that chromatin is the main barrier to transcription, therefore, understanding chromatin 

structure and how epigenetic alterations remodel its structure will be essential in targeting 

epigenetic mechanisms that are associated with tumour resistance in order to design appropriate 

therapeutic targets for different types of tumours including GBM (76-78). 

 
1.3.2. Chromatin Structure and Function 

Genomic DNA within the nucleus of eukaryotic cells is tightly compacted and condensed into arrays 

of nucleosomes called chromatin. Nucleosomes, the fundamental basic and recurring unit of 

chromatin, are composed of approximately 147 bp of DNA encircled around a histone octamer of 

two copies each of four core histone proteins: two H2A/H2B dimers and a central H3/H4 tetramer 

(79-81). The adjustment of the wrapping of DNA around this octamer comprises the physical 

foundation for the regulation of transcription of nucleosomal DNA (75, 82). In addition to these core 

histones, a linker histone protein H1 stabilizes and organizes the nucleosomes into a higher-order 

chromatin structure through its binding to the linker DNA, the DNA between adjacent nucleosomes 

(78, 83, 84). Nucleosome spacing defines the structure of the chromatin and can be widely divided 

into euchromatin, which is a less condensed form that corresponds to the transcriptionally active 

regions, and heterochromatin; a highly condensed form that corresponds to the inactive 

transcriptional regions (74, 78, 85). 

Chromatin conformation is essential for the regulation of gene expression and chromosome 

function since it effectively controls all DNA processes such as transcription, DNA replication and 

DNA repair (77, 78, 86, 87). A growing body of evidence has shown that chromatin structure and 

DNA accessibility to transcriptional machinery are dynamically regulated by modifications to both 

DNA and core histone tails. These modifications involve two major mechanisms: DNA methylation 

and histone modifications (75, 84, 87). Details of these two mechanisms are provided below. 



 11 

1.3.3. DNA methylation in GBM 

DNA methylation is a silencing chemical modification that occurs de novo and is maintained 

during cell division by the enzymatic family of DNA methyltransferase (DNMTs) on the cytosine 

residues of the DNA molecule (40, 88). The enzyme covalently transfers a methyl group from S-

adenosyl-methionine to the carbon-5 position of cytosine (C5), thus forming 5-methyl-cytosine 

(5mC). DNA methylation occurs most commonly at the CpG islands (C = cytosine, p = phosphate 

bond and G = guanine) of the promoter regions of genes, where a cytosine residue occurs next to 

guanine residue causing the chromatin to compact and making it inaccessible to the transcriptional 

machinery (69, 89, 90). It is involved in several evolutionary biology-related processes such as 

genomic imprinting, silencing retroviral elements, regulating the expression of germline-specific 

genes and X chromosome inactivation. Additionally, it plays a crucial role in the regulation of 

transcriptional potential and regulation of gene expression (69, 91). However, recent studies 

suggested that aberrant DNA methylation of gene promoters is a crucial process contributing to the 

progression and oncogenesis of multiple cancers (90, 92).  

It has been reported that global loss of methylation, termed hypomethylation, in the CpG islands of 

the promoter regions of the genes induces genetic instability and facilitates transcriptional 

activation of oncogenes, leading to mutagenesis and tumour progression. Whereas, an increase in 

the level of methylation, termed hypermethylation, is associated with gene silencing of tumour 

suppressor genes, which is a hallmark of carcinogenesis (90, 93, 94). The correlation between DNA 

methylation and tumour progression has been extensively studied in multiple types of cancer, 

including GBM, using several methods such as DNA methylation arrays, methylation-specific PCR 

and bisulfite sequencing (40, 88, 95). In GBM, drug resistance was found to be modulated by 

promoter hypermethylation and the best known, and clinically utilised, example is the 

hypermethylation of O-6-methylguanine-DNA methyltransferase (MGMT), a DNA damage repair 

gene that protects cancer cells from chemotherapeutic alkylating agents. Silencing of this gene was 

found to be significantly associated with longer survival of GBM patients, therefore, such change 

appears as a promising target for GBM treatment (94, 96). Hypomethylation of gene promoters was 

also reported in GBM and one particular important example is a promoter hypermethylation of 

SOX2 ((Sex Determining Region Y)-box 2) that is considered to be a stem cell-related transcription 

factor (TF). This family of transcription factors is found to be associated with glioma progression (40, 

88). 
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DNA methylation is one of the best-addressed epigenetic modifications in cancer and in particular 

in GBM (69, 77, 92), but less widely characterised is the role of histone modifications in the 

regulation of gene expression and chromatin state in cancer. Recent research has been increasingly 

focused on the role of post-translational modifications (PTMs) of histones in cancer and, specifically, 

in GBM for gaining deeper insight into the complex interplay of different epigenetic modifications 

in cellular processes. These studies improve our knowledge of how these modifications alter 

chromatin structure at all stages of cancer development from initiation to progression (97, 98). 

Despite the expanding body of GBM research, little is known about how the epigenome promotes 

the progression of GBM and the exact epigenetic mechanisms of therapy resistance in GBM need 

to be elucidated. There is an increased interest in generating genome-wide histone modification 

maps for gliomas as there are very limited data on this field (10, 89, 99).    

1.3.4. Epigenetic modifications: role of histone modifications in chromatin machinery 

Histones are highly conserved, alkaline proteins with a positively charged N-terminal tail 

constituting 20-35 residues and protruding from the globular domain of the histone (74, 80, 81). 

These tails are subjected to a remarkable number of covalent post-translational modifications 

including methylation, acetylation, ubiquitination and phosphorylation. These modifications are 

catalyzed by different modification enzymes that cooperate to regulate the chromatin state. The 

“histone code hypothesis” suggests that DNA transcription is regulated by various patterns of 

histone modifications which may have an impact on nucleosome stability and hence, the dynamic 

state of the chromatin (74, 77, 85, 100). 

Histone modifications involve covalent addition and removal of various molecules on the N-terminal 

tail of the histone. Most of them are dynamic and enzymatically reversible in nature and can be 

returned back to their original state during normal physiology and by epigenetic therapy (101, 102). 

The most extensively modified histone is H3, followed by H4. It has been reported that covalent 

modifications on the residues of histone proteins, and more specifically methylation and 

acetylation, have either a direct or indirect effect on the chromatin structure, thereby, leading to 

alterations in gene transcription (102, 103). These transcriptional alterations in gene expression are 

found to be associated with the development and progression of various types of cancers including 

GBM (81, 101, 104). In this study, I am particularly interested in understanding the role of histone 

methylation in gene regulation. This is because histone methylation functions remain largely 

unknown due to its complexities (68, 104). An example of this complexity is that histone methylation 
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does not cause any change in histone charge but rather creates a docking site for chromatin-related 

proteins that contain a specific methyl binding domain (68, 75). Whereas, histone acetylation causes 

a change in histone charge that affects the interaction between the negatively charged DNA and 

histone, causing a partial unwinding of the DNA from the nucleosome (75). Another layer of 

complexity is that histone methylation can be associated with either active transcription 

(methylation at H3K4 and H3K36) or repressed transcription (methylation at H3K27 and H3K9) 

depending on the methylation sites or the extent of its methylation, whereas histone acetylation of 

lysine residues is usually associated with active transcription (76, 101). Therefore, it is still unclear 

how histone methylation regulates gene expression to promote cancer cell initiation and survival 

(101, 102). Histone methylation will be addressed in this study so an overview of it is given below in 

more detail. 

1.3.4.1 Histone Methylation in GBM 

 
Histone methylation takes place primarily on the N-terminal tail of both lysine and arginine residues 

and is catalysed by histone methyltransferases (HMTs) (92, 104). HMTs catalyze the covalent 

transfer of methyl groups from S-adenosylmethionine (SAM) to the specific lysine and arginine 

residues of histone proteins. Lysine residues are methylated by lysine methyltransferases (KMTs) 

and can be mono-, di- and tri-methylated, while, arginine residues are methylated by arginine 

methyltransferases (PRMT) and can be only mono- or di-methylated (101, 102, 104). Variations in 

the number of methyl groups added and the type of the modified residues can elicit different 

chromatin statuses and, thus, different transcription patterns. For instance, trimethylation of lysine 

27 (H3K27me3) and lysine 9 (H3K9me3) of histone 3 is associated with transcriptionally repressed 

heterochromatin, whereas, di- and trimethylation of lysine 4 of histone 3 (H3K4me3) is associated 

with transcriptionally active euchromatin (87, 102, 105). In this study, I will focus mainly on the most 

well-characterized H3 methylation, namely H3K27me3 and H3K4me3. 

It has been demonstrated that these two methylations are mainly enriched in the promoter region 

of the gene (61, 63). Notably, some gene promoters are bivalent i.e. contain both the repressive 

mark H3K27me3 and the active mark H3K4me3. Bivalent regions were initially hypothesized to be 

prevalent in embryonic stem cells (ESCs), but recent studies confirmed the existence of bivalent 

regions in terminally differentiated cell types as well as glioma stem cells (GSCs) (64, 65). These 

regions serve as an epigenetic control mechanism   enabling rapid regulation of genes associated 

with cell differentiation and lineage determination during embryogenesis (48, 64). Bivalent 

promoters were initially thought to keep genes in a poised state but enable them for rapid activation 
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upon appropriate developmental cues and/or environmental stimuli, while maintaining a 

transcriptionally repressed state (36, 47). However, recent subsequent studies have proposed a 

unifying model which showed that bivalent regions do not poise genes for rapid activation but 

protect gene promoters from de novo DNA methylation, while maintaining a reversibly repressed 

state. Further, H3K4me3 at bivalent promoters is instructive for rapid activation of transcription and 

that activation of bivalent genes is neither greater nor more rapid than that of other 

transcriptionally repressed genes without H3K4me3 (106, 107) .  

In general, H3K27me3 is mediated by histone methyltransferase Enhancer of Zeste 2 Polycomb 

Repressive Complex 2 Subunit (EZH2), a subunit of Polycomb Repressive Complex 2 (PRC2), which 

mediates maintenance and self-renewal of stem cells by trimethylation of H3K27 and suppresses 

stem cell differentiation. Whereas, H3K4me3 is catalyzed by Trithorax protein complexes (101, 102, 

108).  

PRC2 is composed of three core subunits: suppressor of zeste 12 (SUZ12), embryonic ectoderm 

development 1 to 4 (EED1-4), and the catalytic subunit enhancer of zeste 1 or 2 (EZH1/2). Besides 

these core components, PRC2 interacts with other cofactors that regulate its enzymatic activity and 

modulate its binding to chromatin. These include retinoblastoma binding proteins 4 and 7 

(RBBP4/7), adipocyte enhancer-binding protein (AEBP2) and Jumonji AT-rich interaction domain 

(JARID2) (Figure 1.2) (109, 110). 
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Figure 1-2: The PRC2 complex in mammals with core components and cofactor proteins. PRC2 is 

composed of three core subunits: suppressor of zeste 12 (SUZ12), embryonic ectoderm 

development 1 to 4 (EED1-4), and the catalytic subunit enhancer of zeste 1 or 2 (EZH1/2). In 

addition, PRC2 interacts with other cofactors components such as retinoblastoma binding protein 4 

and 7 (Rbbp4/7), adipocyte enhancer-binding protein (Aebp2) and jumonji AT-rich interaction 

domain (JARID2). These components regulate PRC2 enzymatic activity and modulate its binding to 

chromatin (110). 

 

PRC2 plays a central role during development and in cell differentiation (67). Several studies 

revealed that regulation of histone modifications by PRC2 is a key factor of tumour cell plasticity, 

which is necessary for glioblastoma cells to survive and adapt to their microenvironment (69, 71). 

Disruption of PRC2 activity, through overexpression of its enzymatic subunit EZH2, leads to poor 

prognosis in GBM patients, further highlighting the relevance of this histone modification in glioma 

biology. EZH2 and PRC2 were found to suppress many genes involved in cell-cycle regulation, cell 

differentiation and proliferation and self-renewal. It has been found that overexpression of EZH2 in 

glioma cells leads to an increase in glioma cell self-renewal, proliferation and migration (69, 103, 

111).  In addition to EZH2, it has been recently shown that a Jumonji and AT-Rich Interacting Domain 

2 (JARID2), an accessory protein of PRC2, has the capability to bind DNA and thus dock PRC2 to 

specific sites where it can deposit its associated histone marks. Additionally, numerous studies 

reported the strong relationship between PRC2 and JARID2 in regulating the catalytic activity of 

PRC2 which is mediated by EZH2-mediated methylation (110, 112). JARID2 either activates or 

inhibits the catalytic activity of PRC2 (110). 

This was further emphasized by previous work in our group which highlighted JARID2 as a potential 

master regulator of transcriptional changes through treatment but furthermore showed that these 

changes were taking place at genes that are commonly found to be bivalent in both normal brain 

and glioma tissue (67). The work included transcriptional analysis of 217 pairs of GBM samples that 

are specifically wild-type for isocitrate dehydrogenases (IDHwt) and recurred locally following 

standard treatment (i.e. radiation and Temozolomide). As described in Section 1.2.2, patients with IDH1 

mutations have a better prognosis compared to those with IDHwt (71).  Recent studies reported that 

wild-type IDH enzymes play a critical role in promoting GBM growth and recurrence (See section 

1.2.2. for more detail) (72). To characterize the changes in transcriptional profiles in these two 

groups through treatment transcriptional analysis was performed. Two sources of paired GBM 

samples were used for this purpose, the Discovery cohort which consists of 168 longitudinally paired 
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samples from 84 patients and the Validation cohort which consists of 46 paired samples from 23 

patients. RNAseq data for the discovery cohort was processed in house, whereas, for the validation 

cohort, RNAseq data was processed via a distinct pipeline within the Glioma Longitudinal AnalysSiS 

(GLASS) consortium. Differential expression analysis was performed using Deseq2 and the results 

revealed that genes that were differentially expressed between matched primary and recurrent 

GBM samples were enriched for terms associated with neurodevelopment and cell lineage 

determination. In order to examine if particular regulators were implicated in these dysregulated 

genes in primary versus recurrent GBMs, gene set enrichment analysis (GSEA) was performed per 

patients using a novel, comprehensive gene sets for DNA-binding factors. A gene was assigned to a 

DNA-binding factor’s gene set if its promoter (transcription start site from gencodev27 ±1kbp, or ±2 

or 5kbp where specifically stated) included a binding site for a DNA-binding factor in at least two 

separate ChIPseq experiments. GSEA showed that genes that contain a Jumonji and AT-Rich 

Interacting Domain 2 (JARID2) binding site in their promoters (JBSgenes) were commonly and 

significantly dysregulated during standard treatment. JBS genes are subsets of genes with JARID2 

binding sites in their promoters. Gene set enrichment analysis revealed the association of these 

genes with key signaling pathways that are critical for GBM development such as signaling pathways 

regulating pluripotency of stem cells, neuroactive ligand-receptor interaction, Wnt signaling, 

Adenosine 3ʹ,5ʹ-cyclic monophosphate (cAMP) pathway, mitogen-activated protein kinase (MAPK) 

pathway and pathways in cancer such as PI3K-AKt-mTOR pathway P53 signaling pathways, vascular 

endothelial growth factor (VEGF) signaling pathway and Neurogenic locus notch homolog protein 

(NOTCH) signaling pathways. Genetic alterations in these pathways have been found to be 

associated with GBM proliferation, invasion, proliferation, self-renewal and cell survival.  

Further analysis involved the examination of the stability of inclusion within the leading edge to see 

whether the same JBSgenes were causing the enrichment across patients. Of the 5234 JBSgenes in 

the Discovery cohort, 443 were found in the leading edge (LE) of at least 50% of patients (LE50) and 

81 in more than 70% of patients (LE70). The Validation cohort showed similar results, with 444 genes 

found in LE50 and 87 genes in LE70. Further analysis was performed on these sets to examine the 

directionality of dysregulation, and the results showed that the direction of the fold change in 

expression of the LE70 genes from primary to recurrence (Log2FC) was consistent within patients, 

but varied between individuals. The LE70 genes were upregulated from primary to recurrence in 

60% of patients (referred to as Up responders) while the same genes were downregulated in the 

other 40% of patients (referred to as Down responders). With the same proportion of Up and Down 

responders, this finding was recapitulated in the Validation cohort. These findings suggested that 
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JBSgenes drive patient enrichment; for example, the identical genes are downregulated in D 

response patients and increased in U response patients regardless of response subtype. To 

investigate therapy-driven changes in gene expression across these two responders, transcriptional 

reprogramming from primary to recurrent was performed using principle component (PC1) analysis 

on Log2FC profiles. The analysis showed that genes with the highest principle component 1 (PC1) 

were enriched for JBSgenes across these two responder types.  This finding further confirmed that 

through treatment, up and down responder patients undergo transcriptional reprogramming in opposing 

directions, driven by a specific set of genes with JBSgenes enrichment being the most significant. These 

findings demonstrated that JBSgenes facilitate GBM recurrence through treatment by indirect 

transcriptional reprogramming of surviving cells and in opposing directions. The role of JARID2 in 

chromatin remodeling and epigenetic modifications, specifically via histone marks, is outlined 

below. 

 

1.4 The role of JARID2 in relation to PRC2 in GBM progression 

 
At the molecular level, JARID2 is the best-characterised cofactor of PRC2. It is a member of the 

jumonji family of proteins and contains a DNA binding domain known as the AT-rich interaction 

domain (ARID); a zinc finger domain; a jumonji N (JmjN) and jumonji C (JmjC) domain (110, 113). 

Multiple studies have shown that JARID2 is required for the complete recruitment of PRC2 to its 

target genes and that late or incomplete recruitment of PRC2 to chromatin, along with lower 

enzymatic activity, is observed in the absence of JARID2 (114). Despite the fact that JARID2 has a 

DNA-binding domain, its DNA-binding affinity is low and requires stimulation from other factors 

(115). 

A model has been proposed of increased stimulation of the JARID2-PRC2 interaction in vitro via the 

additional interactions with specific long non-coding RNAs (lncRNAs) that also maximize PRC2 

recruitment to DNA, resulting in increased H3K27me3. However, the role of JARID2 in PRC2 

recruitment through lncRNA in specific contexts, such as during epigenetic reprogramming in GBM, 

remains unclear (113, 114). 

 

The latest ENSEMBL (release 96) human gene annotation revealed the presence of three different 

JARID2 isoforms as shown in Table 1.1. Isoform one is considered to be the canonical gene product.
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JARID2 isoforms Predicted protein size (kDa) Length (amino acid) 

Isoform 1 140 kDa 1,246 aa 

Isoform 2 120 kDa 1.074 aa 

Isoform 3 105 kDa 960 aa 

 
 
Table 1-1: Table 1: JARID2 isoforms from ENSEMBL release 96 (April 2019). 

Table includes JARID2 isoforms based on ENSEMBL release, their protein sizes in kDa and the 
corresponding length in amino acids. 

 
A recent study has identified the presence of a novel form of JARID2 that exists predominantly in 

lineage-committed human cells with a molecular weight of approximately 75 kDa. This form, 

denoted DN-JARID2, results from the cleavage of the N-terminal region from full-length (i.e. 140kDa) 

JARID2 leaving a stable C-terminal region. It was shown that DN-JARID2 is important for cell 

differentiation as its formation results in the dissociation of PRC2 and subsequent activation of 

previously repressed genes (112). 

 

Our preliminary data suggest that gene expression changes associated with JARID2 occur during 

GBM recurrence. To investigate this further, we need to characterise and compare the binding site 

profiles of JARID2 (preferably both cleaved and un-cleaved forms) and EZH2 (as the catalytic subunit 

of PRC2) and the prevalence of H3K27me3 and H3K4me3 in paired primary and recurrent GBM 

samples. Genome-wide mapping has emerged as a new opportunity to decipher the histone code 

and enhance our understanding of how these modifications work together to regulate gene 

expression and how they contribute to diseases, and more specifically to the development of 

cancers (75, 116). For example, can the active mark (H3K4me3) and the repressive mark 

(H3K27me3) occur on the same nucleosome and what will be the effects of these integrations on 

the transcriptional machinery. Such information cannot be obtained by single-gene studies; 

therefore, genome-wide mapping is a powerful indicator for the identification and characterization 

of the combinatorial patterns of histone modification for each cell type at each gene locus (117). 
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1.5 Genome-wide mapping of histone marks and other regulatory domains in GBM 

 

Genome-wide mapping of histone modifications, referred to as chromatin state maps, provides 

precise, descriptive data about the regulatory roles of histone modifications on gene expression, 

which is more informative than RNA expression profiling (117, 118). In the past few years, chromatin 

immunoprecipitation followed by sequencing (ChIP-seq) has emerged as a powerful tool for 

mapping and identifying global genome-wide patterns of these modifications (117, 119). 

Considerable amounts of genome-wide data have been generated via ChIP-seq for diverse sets of 

human cancers including prostate, breast, lung, colon and melanoma (97). Despite the presence of 

large numbers of histone modifications that seem to be involved in the regulation of gene 

expression, H3K27me3 and H3K4me3 have been successfully profiled on a large scale in different 

types of cancers. For instance, genome-wide analysis of the H3K27me3 profile in prostate cancer 

showed extensive enrichments of this mark in promoter regions in advanced disease in comparison 

to the normal tissues, suggesting the correlation of H3K27me3 with prostate cancer progression 

and aggressiveness (120). In another study, genome-wide profiling of 8 histone marks namely 

H3K4me3, H3K4me1, H3K27me3, H3K9me3, H3K36me3, H3K27ac, H3K9ac and H3K79me2 in 5 

major breast cancer subtypes revealed the presence of subtype-specific chromatin state signatures 

for these major breast cancer subtypes (121). Despite the tremendous and exciting work in 

generating global genome-wide profiling of histone modifications in various types of cancers, few 

genome-wide profiling datasets for H3K27me3 are available for GBM, therefore, current interest is 

placed on generating and comparing genome-wide mapping of histone modifications to locate and 

identify key epigenetic changes that are associated with GBM development and progression (96, 

116). This study aims to generate and compare the epigenomic profiles of H3K27me3 and H3K4me3 

along with the binding site profiles of JARID2 (preferably both cleaved and un-cleaved forms) and 

EZH2 in matched pairs of primary and recurrent GBM samples using epigenomic mapping 

approaches. An overview of these, including workflow and subsequent sequencing data analysis, is 

provided below.          

 

1.6 Epigenomic mapping technologies 

1.6.1 Sequencing technologies 

 

Studies on genomes, epigenomics, and transcriptomics have been made possible only because of 

the remarkable developments in high-throughput sequencing technologies over the past 20 years 

(122, 123). Traditionally, DNA sequencing information was elucidated using a low throughput 
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technique called Sanger sequencing. This technique was first introduced by Frederick Sanger and 

his colleagues in the 1970s (122, 124). 

 

A further significant development in DNA sequencing happened around 1977, when Sanger’s chain-

termination technique was developed to involve the use of chemical analogues of the 

deoxyribonucleotides (dNTPs) known as dideoxyribonucleotides (ddNTPs). This chemical lacks the 

3ʹ hydroxyl group that is required for the elongation of the DNA strand, and therefore, the lack 

inhibits its binding with the 5’ phosphate of the next dNTP. In this technique, Sanger et al. mixed 

radiolabelled ddNTPs into a DNA elongation reaction and performed four parallel polymerase 

reactions consisting of each single ddNTPs which is then ranning on polyacrylamide Gel. Because 

there will be a radioactive band in the appropriate lane at that location of the gel, autoradiography 

may be used to determine the nucleotide sequence of the original template (122, 124). In the 

following years, Sanger sequencing underwent a number of improvements which involved the 

replacement of radiolabelled molecules with fluorophores and the incorporation of capillary-based 

electrophoresis for better detection. These improvements aided to the development of high 

throughput sequencing (HTS) technologies or sometimes called next generation sequencing (NGS). 

These technologies can sequence multiple DNA molecules simultaneously, enabling hundreds of 

millions of DNA molecules to be sequenced at a time (122). The fundamental concepts behind NGS 

are similar to Sanger sequencing. Nucleotides that have been dye-labelled are added to the growing 

DNA strand, and the colour of the dye is used to identify each base (124). NGS works by fragmenting 

the genome (i.e. DNA or RNA sample) into smaller pieces which are treated by enzymes to 

synthesize the complementary DNA strands. The latter is then subjected to DNA sequencing. A 

typical NGS workflow involves DNA fragmentation, library preparation, clonal amplification of DNA 

libraries, sequencing and data analysis (125). The first commercial NGS machine was the 454 

machine, introduced by Life Science in 2004. Other platforms emerged later such as Illumina/Solexa, 

ABI SOLiD, HiSeq X, NextSeq 500, NovaSeq and Ion Torrent (126).  

 

One of the areas on which high throughput sequencing technologies has had high impacts on it is 

genome-wide mapping of chromatin accessibility and histone (123, 127). Chromatin 

immunoprecipitation followed by sequencing of the enriched DNA (ChIP-seq) is the first of these 

technologies that made the identification and characterisation of transcription factor binding sites 

and genome-wide histone marks possible in a large region of the genome with high resolution (117, 

127). Here, I will discuss the most commonly used HTS technologies in more detail. 
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1.6.2 Chromatin immunoprecipitation coupled with sequencing (ChIP-seq) 

ChIP-seq has been the method of choice for identifying and mapping histone modifications on a 

genome-wide scale with higher genomic coverage and spatial resolution since 2007  (128, 129). The 

basic and fundamental procedure of this technique is mainly depending on the isolation and 

enrichment of target proteins by immunoprecipitation which is then purified and added to the 

universal adapter for PCR amplification, followed by sequencing using HTS (130). In short, ChIP-seq 

starts with crosslinking of proteins and their bound DNA using formaldehyde followed by shearing 

the crosslinked chromatin into small fragments (~200-600bp) using sonication. DNA fragments 

associated with the protein of interest are pulled down/immunoprecipitated using protein-specific 

antibodies. These pulled-down fragments are subjected to reversal crosslinking and the resulting 

DNA fragments are sequenced using HTS (128, 131) (Figure 1.3). 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-3: Schematic representation of the ChIP-seq workflow. Chip-seq starts with crosslinking 

of proteins and their bound DNA using formaldehyde followed by shearing the crosslinked 
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chromatin into small fragments (~200-600bp) using sonication. DNA fragments associated with the 

protein of interest are pulled-down/ immunoprecipitated using protein-specific antibodies. These 

pulled-down fragments are subjected to reversal crosslinking and the resulting DNA fragments are 

sequenced using HTS. 

 

Despite the fact that ChIP-seq has become a gold standard for mapping histone modifications across 

the genome with higher resolution and less noise (132), it is still fundamentally limited. The primary 

reported limitation is that it requires abundant starting materials in the range of 1-20 million cells 

per immunoprecipitation to assess transcription factors or histone proteins. Additionally, high cost 

of sequencing and reagents are still limiting factors for most researchers, though the situation has 

improved and the cost is decreasing with the development of new generation sequencing 

technologies. Moreover, issues related to experimental design in terms of control sample, the 

sequencing depth and the quality of the antibodies poses substantial challenges in applying ChIP-

seq (131-133). The ENCyclopedia Of DNA Elements (ENCODE) consortium published a set of 

technical design guidelines and considerations for ChIP-seq experiments in order to reduce bias and 

background noise and aid the consistent generation of high quality genome-wide data (134). The 

detail of these guidelines is provided below. 

 

1.6.2.1 ENCODE guidelines for proper ChIP-seq experimental design 

 
The analysis of each ChIP-seq experiment requires a suitable control data set since DNA breakage 

during sonication is not constant and generates uneven fragmentation of the genome. It has been 

noted that some regions of open chromatin tend to be fragmented more easily than closed regions. 

In addition, platform-specific sequencing efficiency biases may lead to non-uniformity. In order to 

assess the relevance of a peak in the ChIP-seq profile, it should be compared to the same location 

in a matched control sample (135, 136). There are two reported types of control samples that are 

frequently utilized: input DNA (a portion of the DNA sample that has been cross-linked and 

fragmented under the same conditions as the immunoprecipitated sample) and a “mock” IP DNA 

(DNA sample that has been immunoprecipitated with a control antibody that reacts with an 

irrelevant, non-nuclear antigen such as immunoglobulin, G (IgG). These controls have been tested 

for different types of artifacts and the results show that there is no consensus on which type is more 

convenient and suitable for downstream analysis. Input DNA has been used widely in nearly all ChIP-

seq analyses so far (134, 135). 
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With regards to antibody quality, a successful ChIP experiment and the value of ChIP-seq data 

critically depend on the quality of the antibodies used. The selection of antibodies that can target 

the protein of interest with high sensitivity and specificity was addressed extensively in ENCODE 

guidelines. Antibodies with higher sensitivity and specificity will give a high enrichment level in 

comparison with the background which facilitates the accurate detection of binding events (134, 

137). There are several commercially available antibodies, some of which are marked as ChIP grade, 

however, their quality is highly variable and can even differ across batches of a certain antibody 

(137). Multiple commercial antibodies have been tested as part of ENCODE project, and the 

validation results revealed that 20–35% of these antibodies were unsatisfactory (135). Therefore, 

ENCODE developed specific guidelines to assess the specificity of the antibodies used in ChIP 

applications. 

The suggested primary mode of assessment for histone modifications involves a standard 

immunoblot analysis on protein lysates from whole cell extract (WCE) (138). To pass the 

immunoblot test, 50% of the signal should be observed in a single band and ideally, this band should 

correspond to the expected size of the target protein. In the absence of a band at the expected size 

or in the presence of multiple non-specific bands, further tests should be performed. Therefore, 

ENCODE listed secondary modes of characterization to assess the sensitivity and specificity of the 

tested antibodies. This involves knockdown or knockout of the target protein using either small 

interfering ribonucleic acid (siRNA) or short hairpin RNA (shRNA) followed by immunoblot analysis, 

or immunoprecipitation of an epitope-tagged version of the protein (IP) followed by Western or 

mass spectrometry (MS) (See chapter 2, section 2.2.5 for the detail of these techniques) (139). At 

least one successful characterization is required to ensure the specificity of the antibody. For the 

knockdown approach, the antibody passes the test if a reduction in signal of > 50% is observed in 

comparison to the control sample and no reduction is observed in the control knockdown sample 

(i.e. scrambled siRNA). If the antibody fails to pass these parameters, immunoprecipitation of an 

epitope-tagged version of the protein followed by Western analysis or mass spectrometry (MS) can 

be used. This is considered a powerful approach for identifying physiologically relevant protein-

protein interactions. This approach involves the detection and comparison of an overexpressed or 

exogenous epitope-tagged version of protein with the endogenous version (138). The antibody 

passes this test if a comparable and clear band is observed for the overexpressed (larger band) or 

exogenous epitope-tagged protein (band seen with antibodies against the protein tag) at the 

expected size of the target protein. Despite the fact that these approaches provide confidence 
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concerning an antibody’s acceptance, the validation is laborious, time-consuming and expensive 

(134, 137). 

In addition to ChIP experimental design guidelines, ENCODE documented parameters that should 

be considered when evaluating and analysing ChIP-seq data (134). Computational analysis pipeline 

steps, which are needed for the comprehensive characterization of epigenetic states in the ChIP-

Seq profiling dataset, were ascertained and the details and potential tools for each step are provided 

in the following section. 

 

1.6.2.2 Computational pipeline for ChIP-seq data analysis 

ChIP-seq generates a massive amount of data that requires computational analysis to identify the 

epigenetic landscapes and key chromatin signatures in an accurate manner (135).  A generic 

computational ChIP-seq pipeline includes raw data quality assessment, trimming low-quality reads, 

sequence alignment, peak detection and data visualization, most often using either the UCSC 

genome browser or integrative genomic viewer (140). Once the data are visualized, different 

downstream analyses can be performed either by analysing the resulting peaks, such as peak 

annotation in relation to the transcription start site (TSS), or characterizing and annotating the 

chromatin states (141). 

In general, raw sequencing data generated from the NGS platform contains short DNA sequences 

with quality scores (140). A ChIP-seq pipeline starts with assessing the quality of raw sequencing 

data, and the most commonly used tool is FastQC (142). This tool provides a comprehensive 

overview of the main quality metrics that help the user to spot any issue with the data such as the 

quality score of the sequence, GC content, sequence duplication level, overrepresented sequence 

and the percentage of adapter content. The second step of the pipeline is filtering and trimming 

low-quality reads and adapter sequences and there are several well-established tools for data 

trimming such as Trimmomatic, cutadapt and trim galore (143). Trimmed reads are then mapped to 

an appropriate reference genome and there are many mapping tools that have been developed. 

This includes Burrows-Wheeler Aligner (BWA) (144), bowtie (145), Efficient Large Scale Alignment 

of Nucleotide Database (ELAND) (146), MAQ (147) and SOAP2 (148). The selection of the 

appropriate tool is mainly depending on the speed requirement, the sequencing platform and the 

hardware resources (140, 149). Mapped reads are then subjected to several quality checks in order 

to assess and evaluate ChIP-seq data as suggested by ENCODE (134). This includes: 
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• global ChIP enrichment in terms of the fraction of all mapped reads that are located in 

identified peak regions (FRiP); 

• the fraction of nonredundant mapped reads (NRF) which is defined as the proportion of 

reads that uniquely map to specific locations in the genome to all reads that are uniquely 

mappable;  

 

 

• the normalized strand coefficient (NSC), ratio of the background cross-correlation to the 

fragment-length cross-correlation peak; 

• the relative strand correlation (RSC), the proportion between the fragment-length peak 

and the read-length peak. 

These are the main quality metrices that were suggested by ENCODE to inspect the quality of 

ChIP-seq data (150, 151). A measure of library complexity in terms of PCR bottlenecking 

coefficients 1 and 2 (PBC1 and PBC2) was also suggested. These  measure the skewness in the 

distribution of read counts per location is towards 1 read per location (151). PBC1 is defined as: 

PBC 1 = N1/Ndistinct 

Where N1 = number of genomic regions where a single read map precisely and uniquely and 

Ndistinct = the number of genomic regions where at least one unique mapping reads maps. 

Whereas, PBC2 is defined as the number of genomic regions where single read maps 

uniquely to the number of genomic regions where two reads map uniquely (PBC 1 = N1/N2)    

 According to ENCODE guidelines and practices, for good quality data (134): 

• FRiP should be < 3; 

• NRF should be > 0.9;  

• NSC should be > 1; 

• RSC should be > 1; 

• PBC1 should be > 0.9; 

• PBC2 should be >3. 

NRf = Number of unique start positions of uniquely mappable reads
"#$%&'	)*	uniquely mappable reads
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A step-by-step ChIP-seq analysis pipeline is provided in Chapter 2, section 2.2.8.1.   

The primary objective of ChIP-seq analysis is to identify the functional components of the human 

genome and explain the binding features of the target proteins accurately. Several peak calling tools 

and algorithms were developed and published to fulfil this purpose such as model-based analysis of 

ChIP-seq (MACS), SPP, PeakSeq and CisGenome (140, 152).  These tools were optimized and tested 

by ENCODE on publicly available data on 12 histone modifications and the results suggested that 

are no major differences among these tools and that the performance of each peak calling tool 

mainly depends on the peak calling parameters that are chosen by the submitter. These parameters 

include peak position, signal value in terms of fold enrichment and the p-value. Peak calling tools, 

in general, determines areas that are enriched as a result of protein binding by using the coverage 

properties of ChIP and Input samples (153).  

MACS2 is one of the most commonly used peak callers (154). It performs several steps ranging from 

filtering duplicated reads and building the peak model to peak detection and statistical assessment 

to evaluate if the location of enrichment is likely to be a true binding site. MACS2 workflow started 

by removing the duplicated (i.e. redundancy) reads at the same locations (i.e. reads with the same 

coordination and strands) as these reads may interfere with the true ChIP signal. MACS2 offers a 

variety of options for handling these reads and by default, only one read is kept at each location. 

Then MACS2 builds the model by scanning the whole dataset of the ChIP sample and simulating the 

distance between the paired forward and reverse strand peaks. Finding enriched regions, those with 

high confidence fold enrichment (M-fold) than the background, in the genome is done by sliding a 

window across the genome. Next, MACS2 randomly uses 1000 regions with fold enrichment 

between 10 and 30 to build the model between the positive and negative strands peaks and 

estimates the fragment length ‘d’ (Figure 1.4). 
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Figure 1-4: Schematic diagram showing how MACS2 build a peak model using the estimated DNA 

fragment length ‘d’. 

 

After that, MACS2 extends the readings in the 3' direction by d/2 during the real peak detection 

phase. Then, in the presence of the control sample, MACS2 linearly scale the control and ChIP 

sample to the same read number. Next, potential peaks are chosen by scanning the genome once 

again with a window size that is twice the fragment length (i.e. 2d). To account for regional biases 

in reading background levels, MACS2 computes a p-value for each peak using a dynamic (λ)Poisson 

distribution. If a control sample is available, it is used to calculate the local background. Finally, p-

values are calculated using the Benjamini-Hochberg correction (155). MACS2 workflow is 

summarized in Figure 1.5. 
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Figure 1-5: General workflow of peak calling with MACS2.MACS2 performs multiple steps ranging 

from removing redundancy reads and building the peak model to peak detection and statistical 

assessment to determine if the location of enrichment is likely to be a true binding site. 

In the presence of replicated samples, ENCODE suggested the use of an irreproducibility discovery 

rate (IDR) to assess peak consistency between replicates (134). The IDR framework provides very 
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reliable thresholds based on reproducibility and unifies a method for measuring the reproducibility 

of findings from duplicate experiments. The IDR technique generates a curve that quantitatively 

examines when the results are no longer consistent across duplicates, in contrast to the typical 

scalar metrics of reproducibility. The IDR approach, to put it simply, compares two sorted ChIP-seq 

peaks. These sorted lists should offer identifications over the complete range of high 

confidence/enrichment (signal) and low confidence/enrichment (noise), i.e. they shouldn't be pre-

thresholded. The IDR approach then fits the bivariate rank distributions over the repetitions to 

distinguish between signal and noise based on a specified level of rank consistency and 

identification repeatability, or the IDR threshold (156). According to ENCODE guidelines, the 

replicates are considered concordant if the consistency ratio is less than 2 (134).  

Despite the presence of different peak calling tools and algorithms, these tools summarize only one 

ChIP-seq dataset (one experiment with a single antibody) at a time in which a single mark can be 

studied in isolation through the identification of narrow or broader domains. Therefore, a 

segmentation approach called ChromHMM was developed to conceptually integrate and combine 

information of multiple marks across multiple datasets (157). 

 

1.6.2.2.1 Integrative Epigenomic data analysis with integration with ChromHMM  

ChromHMM enables the researcher to characterize and annotate the chromatin states across 

multiple cell types using epigenomic information (157). It is based on a multivariate Hidden Markov 

Model (HMM) which is a probabilistic model that specifically models multiple ‘observed’ events 

based on invisible ‘hidden’ states. HMM uses the probabilistic nature of a multi-state model to 

identify each segment based on the combinatorial presence and absence of multiple marks and the 

spatial constraints of how these mark combinations occur relative to one another across the 

genome (157, 158). There are actually several tools that implement HMM in the recognition of 

chromatin states, aside from ChromHMM, including Segway and EpiCSeg (157, 159, 160). However, 

ChromHMM is the most widely used tool for chromatin state identification and annotation and 

more specifically in ENCODE and RoadMap projects (157). ChromHMM divides the genome into 

intervals of 200 nucleotides by default, which is corresponding to the resolution of a nucleosome 

and spacer area, however, the interval size can be changed by a user-specified parameter. Then, it 

evaluates whether each mark is present or absent for each genomic interval based on the 

significance of the observed read count compared to a Poisson background distribution. 
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ChromHMM learns a chromatin state model and an annotation of state occurrences across the 

genome using the generated presence-absence calls (159). 

ChromHMM differs from the remaining tools in a number of ways. Unlike other tools which model 

the signal levels of each mark independently, ChromHMM focuses its modelling power on 

combinations of epigenomic marks by employing binary presence/absence input features. This has 

made it possible for ChromHMM to identify chromatin states such as a state associated with Zinc 

finger genes and putative bivalent promoter states that are frequently missed by other methods 

when applied to the same datasets. Additionally, ChromHMM can be used for large-scale 

applications because of its reliable and effective implementation, which includes multi-core 

parallelization. This is proved by learning models based on a dozen markers across more than 100 

cell and tissue types while using the whole genome for training. Furthermore, ChromHMM is easy 

to use and install and can work with aligned reads to generate chromatin state enrichment analysis 

(157). Despite these characteristics, ChromHMM possesses some limitations. First, there is a 

significant loss of information when the read count is converted into a binary value, as it is 

impossible to differentiate between different degrees of activity. Second, choosing a threshold is 

crucial for the final segmentation, however, there is no clear way of deciding which threshold to 

use. Third, the model assumes that the presence of one mark is independent of the other mark 

which is inconsistent with other observations (160). 

1.6.3 Cleavage under targets & release using nuclease (CUT&RUN) 

To alleviate some of the reported limitations of ChIP-seq (See section 1.6.1) and to enhance the 

profiling of protein-DNA interactions accurately, a new method was developed by Skene and 

Hanikof. Cleavage under targets and release using nuclease (CUT&RUN) is a feasible replacement 

for ChIP-seq that relies on a target-specific primary antibody and micrococcal nuclease (MNase) to 

isolate the binding sites of DNA-protein complexes. An overview of the CUT&RUN technique, the 

general workflow along with the analysis pipeline are presented in detail in Chapter 6. 

As the purpose of this study is to understand JARID2-associated epigenetic remodelling in GBM in 

recurrent versus primary tumours, I decide to use the ChIP-seq, as a traditional approach, along with 

CUT&RUN to facilitate genome-wide profiling of histone marks H3K27me3 and H3K4me3 along with 

EZH2 and JARID2 as a regulatory element in matched pairs of primary and recurrent GBM tumours. 
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2. Hypothesis 

 
Mechanisms associated with JARID2 facilitate chromatin remodelling in GBM cells, enabling them 

to adapt to treatment. Characterising and comparing the binding profiles of JARID2 and EZH2 (the 

catalytic subunit of PRC2) and the histone marks H3K27me3 and H3K4me3 in matched pairs of 

primary and recurrent GBM samples will give insights into the role of chromatin remodelling in 

conferring treatment resistance in GBM.  

 
3. Aims and objectives 

The main aim of this project was to develop a workflow that would enable the generation of 

genome-wide chromatin state map of H3K27me3, H3K4me3, JARID2 and EZH2 binding for paired 

primary and locally recurrent IDH wildtype GBM brain tumours from patients that had received 

standard treatment.  

To address this aim I had to achieve several objectives, the results of which each constitutes a results 

chapter in this thesis 

Objective 1: Validate antibodies against JARID2, as this has not been commonly used in chromatin 

profiling 

Objective 2:  Develop a computational pipeline for analysing chromatin profiling data in paired 

samples 

Objective 3: Apply the optimised workflow to a pair of patient samples to begin gaining insight into 

treatment resistance in GBM 

Objective 4: Ascertain whether CUT&RUN could be applied to patient GBM samples, as a potential 

superior approach to ChIPseq 
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Chapter 2 

Materials and Methods 

 

2.1 Materials and Reagents 

2.1.1 Reagents 

 

2.1.1.1 Radio-immunoprecipitation assay (RIPA) lysis buffer 

 
Tris-HCl (pH 8.0)   50mM    Sigma-Aldrich 

NaCl     150mM   Sigma-Aldrich 

NP-40     1% [v/v]   Sigma-Aldrich 

SDS     0.1% [v/v]   Melford laboratories Ltd 

Sodium Deoxycholate   0.1% [v/v]   BDH 

proteinase inhibitor cocktail      Sigma-Aldrich (P8340) 

 

2.1.1.2 IP incubation buffer 

 
NaCl     25mM    Sigma-Aldrich 

Tris-HCl (pH 8.0)   20mM    Sigma-Aldrich 

EDTA     2mM    Ambion 

Glycerol    10% [v/v]   Sigma-Aldrich 

Ethanol    10% [v/v]   Sigma-Aldrich 

Proteinase inhibitor cocktail  1x    Sigma-Aldrich (P8340) 

 

2.1.1.3 Wash buffer for IP 

 
NaCl     150mM   Sigma-Aldrich 

Tris-HCl (pH 8.0)   50mM    Sigma-Aldrich 

EDTA     0.5mM    Ambion 

NP-40     0.1% [v/v]   Sigma-Aldrich 

Proteinase inhibitor cocktail  1x    Sigma-Aldrich (P8340)
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2.1.1.4 Tris Acetate-EDTA (TAE) buffer (50x) 

 
Tris HCl (pH 8.3)   2M    Sigma-Aldrich 

Glacial acetic acid   0.9M    Sigma-Aldrich 

EDTA     0.5mM    Sigma-Aldrich 
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2.2 Methods 

2.2.1 Ethical considerations and patient samples 

 
All tumour samples that were available for this research project in the form of fresh frozen 

tissues were used in accordance with ethical approval acquired from NHS NRES Committee 

South Central - Oxford A (REC 13/SC/0509). 

 

2.2.2 Antibodies selection 

 
A key component, required for all of my project aims, is to first validate JARID2 antibodies for 

ChIP and CUT&RUN applications. This is critical to ensure that the antibody-antigen 

interaction is specific and suitable for its intended applications. Four JARID2 antibodies were 

selected that target different regions of the JARID2 protein, since this would provide potential 

for analysing different protein species and may increase the chances of the epitope being 

accessible in the context of ChIP and CUT&RUN. The selection was based on the available 

reviews and whether it has been tested for the planned applications (i.e. Chip-seq and 

CUT&RUN assays). JARID2 antibodies that have been used in this study are listed in detail in 

Table 2.1. 

As per the ENCODE guidelines, the specificity of these antibodies was confirmed by siRNA 

knockdown of JARID2 in M059K, HEK293T and GBM63 cell lines, and subsequent assessment 

of western blots to determine whether the antibody in question indicated a similar reduction 

at the protein level. Antibodies used in ChIP-seq assay (i.e. H3K27me3, H3K4me3 and EZH2 

were provided by Active Motif (Table 2.2). 

For CUT&RUN, H3K4me3 and IgG antibodies were provided in the CUT&RUN kit, whereas, the 

H3K27me3 antibody was selected based on other publications which reported the success of 

this antibody in different ChIP-seq and CUT&Tag experiments. Table 2.2 lists all the primary 

and secondary antibodies used in this study. 
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JARID2 targeted regions Species 

raised in 

Polyclonal/ 

monoclonal 

isotype 

WB dilution 

(1/X) 

IP dilution Supplier Catalogue number 

1-100 aa of the N-terminal regions of isoform 1 

(140kDa) 

Rabbit Polyclonal, IgG 1:1000 N/A Novus Biology NB100-2214 

Around Asp 1114 of isoform 1 (140kDa) and 

isoform 2 (120kDa)   

Rabbit Monoclonal, IgG 1:1000 N/A Cell signaling 

Technology 

D6M9X 

100-200aa of isoform 1 (140kDa) Rabbit Monoclonal, IgG 1:1000 5ug per IP Abcam Ab 192252 

1130- 1230 aa of isoform 1 (140kDa) Mouse Polyclonal, IgG 1:1000 N/A Abcam Ab 93288 

 

Table 2-1: List of JARID2 antibodies used in this study. 
Table includes the JARID2 antibodies, their targeted regions, the species that the they raised in, the type of isotype, western blot and IP dilutions, 
the supplier and the catalogue number. 
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Table 2-2: List of all other primary and secondary antibodies used in this study. 
Table includes the primary and secondary antibodies that were used in this study, the species that the they raised in, the type of isotype, western 
blot dilutions, IP dilutions, applications, the supplier and the catalogue number.

Antigens Species 

raised in 

Polyclonal/ 

monoclonal 

isotype 

WB dilution 

(1/X) 

IP dilution Applications Supplier Catalogue number 

H3K27me3 Rabbit Polyclonal N/A N/A CUT&RUN Diagenode C15410195 

H3K27me3 Rabbit Polyclonal N/A N/A ChIP-seq Active Motif 39155 

H3K4me3   Rabbit Monoclonal N/A N/A CUT&RUN Cell signaling Technology 86652 

H3K4me3 Rabbit Polyclonal N/A N/A ChIP-seq Active Motif 39159 

EZH2 Rabbit Polyclonal N/A N/A ChIP-seq Active Motif 39901 

Flag Mouse Monoclonal 1:1500 5ug per IP WB/IP Millipore F1804 

ß-actin Mouse Monoclonal 1:10000 N/A WB Sigma-Aldrich  A1975 

GAPDH Rabbit Monoclonal 1:10000 N/A WB Cell signaling Technology 21118s 

HRP-linked 

antibody 

Rabbit Monoclonal/

polyclonal 

1:2000 N/A WB Cell signaling Technology 7074s 

HRP-linked 

antibody 

Mouse Monoclonal/

polyclonal 

1:2000 N/A WB Cell signaling Technology 7076P2 
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2.2.3 Cell cultures 
2.2.3.1 Cell lines cultures 

 
Routine cell culture was carried out using standard aseptic techniques in a tissue culture room. 

M059K and HEK293T cells were available and purchased originally from the American Type Culture 

Collection (ATCC). M059K cells were routinely cultured in T-75 flasks in Dulbecco's Modified Eagle 

Medium/Nutrient Mixture F-12 (DMEM/F12, ThermoFisher Scientific, Cat No: 11320033) 

supplemented with 10% Fetal bovine serum (FBS, ThermoFisher Scientific, Cat No: 10270106), 0.5 

mM non-essential amino acid (NEAA, ThermoFisher Scientific, Cat No: 11140050) and 1 mM sodium 

pyruvate (ThermoFisher Scientific, Cat No: 11360070). Whereas, HEK293T cells were routinely 

grown in Dulbecco's Modified Eagle Medium (DMEM, Sigma-Aldrich, Cat No: D6429) containing 10% 

FBS and 1% Penicillin/Streptomycin (ThermoFisher Scientific, Cat No: P0781). Cell cultures were 

incubated at 37oC in 5% CO2. 

The cells were passaged when they were over 70% confluency. During cell passaging, the media was 

removed and the cells were washed twice with 1x Dulbecco’s phosphate-buffered saline (PBS, 

Sigma-Aldrich, Cat No: D8537). Cells were trypsinized with 1ml of 1x pre-warmed Trypsin/EDTA 

(Sigma-Aldrich, Cat No: 59418C) and incubated in a 5% CO2 incubator at 37oC for 5 min. To inactivate 

the trypsin, 9 ml of fresh pre-warmed media was added to the flask. The cells were centrifuged at 

200 x g for 5 minutes at room temperature to collect the pellet, and then they were resuspended in 

10 ml of new medium. According to the supplier's recommendations, both cells were sub-cultured 

in a split ratio of 1:8 every two to three days. 

 

2.2.3.2 Primary cell cultures 
 
2.2.3.2.1 Poly-L-Ornithine and laminin coating protocol for primary cell cultures 
 
To promote neural cell growth and enhancement of attachment of GBM primary cells plastic ware 

was coated with materials for poly-L-Ornithine and laminin. Specifically, Flasks were coated first by 

the addition of a 10ml working solution of poly-L-ornithine (10µg/ml, Sigma-Aldrich, Cat No: P3655) 

and incubated at RT for an hour. Flasks were rinsed once with TC grade water (Sigma-Aldrich, Cat 

No: W3500) and 10ml working solution of laminin (2µg/ml, Sigma-Aldrich, Cat No: L2020) was added 

and the flasks were kept in room temperature overnight and stored at -20oC. 
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2.2.3.2.2 Cell cultures 
 
Prior to culturing primary cells, coated flasks were thawed and the laminin solution was removed. 

Then the flasks were rinsed once with PBS. GBM63 cells were maintained in Neurobasal-A serum 

free-media (ThermoFisher Scientific, Cat No: 10888022) supplemented with N2 supplement 

(Invitrogen, Cat No: 17502048) and B-27 (Invitrogen, Cat No: 17504044) at a final working 

concentration of 0.5x.  These two supplements support the proliferation and survival of neural cells 

in the culture. In addition, 20ng/ml each of working concentration of human recombinant epidermal 

growth factor (EGF, R&D systems Cat No: 236-EG-200) and basic fibroblast growth factor (bFGF, 

Peprotech Cat No: 100-18B-1000) were added to the media and incubated under the same 

conditions as described in Section 2.2.3.1. The cells were cultured for up to 6 – 12 weeks to achieve 

sufficient confluency (70-80% confluency) the cells were passaged to a new culture to avoid over 

confluency as described above (see Section 2.2.3.1). 

 

2.2.4 Molecular biology technique 

2.2.4.1 Transfection of cells with lipofectamine RNAiMAX and siRNA to knockdown gene 

expression 

 
An initial attempt to validate JARID2 antibodies is to knock down JARID2 gene using a small 

interfering RNA (siRNA) assay. ON-TARGETplus JARID2 siRNA SMARTpool and On-TARGETplus non-

targeting pool (Dharmacon-horizon Discovery, Cat No: L-009244-00-0005 and Cat No: D-001810-10-

05, respectively) were used for the transfection experiment. The SMARTpool is a mixture of 4 siRNA 

provided as a single reagent and it targets 4 exons. The exact localization of siRNA targets at the 

human genomic DNA level (Table 2.3) were checked using the NCBI Basic Local Alignment Search 

Tool (BLAST) and the Ensemble genome browser. Upon arrival, siRNAs were resuspended in 250µl 

of RNase-free 1x siRNA buffer (Dharmacon-horizon Discovery, Cat No: B-002000-UB-100) for a final 

concentration of 20µM. 

 

siRNA target Sequence  

JARID2 GAAGAACGGGUGGUACGUA 

GCUCAGGACUUACGGAAAC  

GACAAAGGCGUCCUCAAUG  
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AAUGAAGCGUCGCCAUAUA  

 
Non-target UGGGUUUACAUGUCGACUA 

UGGUUUACAUGUUGUGUGA 

UGGUUUACAUGUUUUCUGA  

UGGUUUACAUGUUUUCCUA  
 
Table 2-3: Sequences of JARID2 and non-target siRNA used for knock-down 
Table includes the siRNA target and the related siRNA target sequences. 

 

M059K cell line was transfected using the following transfection protocol. On the day of 

transfection, the cells were seeded in a 6-well culture plate at a density of 2 x 105 cells per well. 

Simultaneously, transfection complexes were prepared by adding 15µl of lipofectamine RNAiMAX 

(ThermoFisher Scientific, Cat No: 13778075) to 250µl Opti-MEM reduced serum media (Gibco, Cat 

No: 11564506) in one Eppendorf. Whilst, 15µl the 20µM stock siRNA was added to 250µl of Opti-

MEM in another Eppendorf for a final concentration of 150 nM.  The 2 solutions were then mixed 

thoroughly and incubated at room temperature for 20 min. Finally, 500µl of the transfection mixture 

was added to each well-containing 1.5ml of the diluted cell suspension and cultured for up to 72 

hrs. 

The experiment was repeated as described above by this time HEK293T and GBM63 cells were 

transfected with 50 nM for 72 hrs (This task was completed by Marilena Elpidorou, a postdoc in the 

Stead group). The workflow of the transfection is summarized in Figure 2.1. 
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Figure 2-1: Schematic representation of siRNA reverse transfection procedure for 6-well plate. On 

the day of transfection, M059K cells were counted and plated in 6-well culture plates at a density 

of 2 x 105 cells per well after being suspended in a full growth medium. Simultaneously, transfection 

complexes were made by adding 10µl and 15µl of lipofectamine RNAiMAX to 250µl of Opti-MEM 

reduced serum media in one Eppendorf and 20 µM of stock siRNA (final concentrations of 100nM 

and 150nM per well) to 250µl of Opti-MEM in another Eppendorf. The contents of both Eppendorfs 

were then carefully combined and incubated for 20 minutes at room temperature. Finally, 1.5ml of 

the diluted cell suspension and 500µl of the transfection mixture were added to each well, and the 

cells were then grown for up to 72 hrs. 

 

2.2.4.2 Total RNA extraction, purification and quantification 

Following the transfection of siRNAs into M059K cells, the cells were lysed directly using the RNeasy
 

Plus Mini kit (Qiagen, Cat No: 74134) following the manufacturer’s protocol at the time points of 24, 

48 and 72 hrs. In short, cells were trypsinized as described in Section 2.2.3.1 followed by 

resuspension of pellets in RLT plus buffer to lyse the cells. the lysates were transferred into a 

QIAshredder spin column placed in a 2ml collection tube, centrifuged for 2 min at maximum speed 

(i.e. > 8000 x g) and the homogenized lysates were transferred to a gDNA eliminator spin column 
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placed in a 2ml collection tube. It was then centrifuged for 30s at > 8000 x g and the flow-through 

was placed into a new 2ml collection tube. Next, 600µl of 70% of ethanol (Sigma-Aldrich) was added 

to the flow-through, mixed well by pipetting and transfer the mix into a new RNeasy spin column 

placed in a 2ml collection tube. The mixture was centrifuged for 15s at > 8000 x g and the flow-

through was discarded. Then, 700µl of RW1 buffer was added to the RNeasy spin column, 

centrifuged for 15s at > 8000 x g to wash the spin column membrane and the flow-through was 

discarded. After that, 500µl of RPE buffer was added to the RNeasy spin column and centrifuged for 

15s at > 8000 x g. This step was repeated again and then the RNeasy spin column was placed into a 

new 1.5 ml collection tube followed by the addition of 25µl of RNase-free water to elute the DNA 

and centrifuged for 1 min at > 8000 x g. The eluted RNA was then quantified and the quality was 

assessed using Nanodrop-1000 Instrument (ThermoFisher Scientific). 

2.2.4.3 Preparation of cDNA for the quantitative polymerase chain reaction (qPCR) 
 
Quantitative polymerase chain reaction (qPCR) was performed after initially reverse transcribing 

RNA (up to 400µg) into complementary DNA (cDNA) using high capacity RNA-to-cDNA kit (Applied 

biosystem, Cat No: 4387406), following the manufacturer’s protocols. The resultant cDNA was 

diluted with 55µl of RNase-free water (ThermoFisher Scientific, Cat No: AM9906). 3µl of the diluted 

cDNA was aliquoted in the corresponding wells of MicroAmp® Optical 96-Well Reaction Plates 

(Applied Biosystems). Then, 12µl of master mix (see Table 2.4 for the list of master mix reagents) 

for JARID2 probe (Hs01004467_m1, ThermoFisher Scientific, Cat No: 4331182) or GAPDH 

(Hs99999905_m1, ThermoFisher Scientific, Cat No: 4331182) probe was added for each well in 

3 technical triplicates reactions in a total volume of 15µl. The QuantStudio 5 Real-Time PCR 

equipment was used to run the plate after it had been sealed with MicroAmp Optical Adhesive film 

(Applied Biosystems). The relative expression levels of the JARID2 gene were calculated with the 

2^∆∆Ct method using GAPDH as endogenous control and negative siRNA as a control sample. 

 

Component Volume (µl) per sample Supplier/Catalogue number 
TaqMan master mix 7.5 µl ThermoFisher Scientific/ Cat No: 4444557 
TaqMan probe 0.75 µl ThermoFisher Scientific, Cat No: 

4331182 
RNase free water 3.75 µl ThermoFisher Scientific, Cat No: AM9906  
Total 12 µl  
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Table 2-4: TaqMan reaction mix for JARID2 and β-actin probe 
Table include the component of the TaqMan reaction mix and the volume (µl) of each component 
for each sample. 

  

2.2.4.4 Plasmids 

JARID2 plasmid (pCR8, Addgene, Cat No: 114443) was received as transformed bacteria in a stab 

culture format. The stabs culture was scraped with a sterile inoculating needle followed by an 

immediate streaking of the bacteria onto an LB agar plate containing 100ug/ml spectinomycin. The 

plate was incubated overnight at 37oC to allow for bacterial growth. Then, a single colony was 

selected and transferred to a new 5 ml of LB broth using a pipette tip and was left in the tube for a 

few seconds and then incubated in an orbital shaker (Excella E25, Eppendorf, Hamburg, Germany) 

at 37oC at 250rpm overnight, to ensure adequate aeration for the culture. Then, DNA was extracted 

and purified from the bacterial culture using a mini Prep kit (Qiagen, Cat No: 27104) following the 

manufacturer’s protocol as described below. 

 

2.2.4.5 Plasmid DNA purification – Plasmid DNA mini preps 

DNA was extracted from bacterial cultures by centrifuging 1 ml of the bacterial culture at 6800 x g 

for 3 min at room temperature. The pellet was resuspended in 250μl of resuspension buffer (P1) 

followed by the addition of 250μl of alkaline lysis buffer (P2). The reaction was mixed by inverting 

the tube 4-6 times until the solution become clear and then 350μl of neutralizing buffer (N3) was 

added. The mixture was mixed immediately by inverting the tube 4-6 times and then centrifuged 

for 10 min at 17,900 x g. 800μl of the supernatant was added to a QIAprep spin column and 

centrifuged for 60s at 17,900 x g to bind DNA to the column. The QIAprep spin column was first 

washed with 0.5ml of buffer PB and centrifuged for 60 s. The second wash was performed with 

0.75ml of PE buffer and centrifuged again for 60 s. The spin column was placed in a clean 1.5 ml 

microcentrifuge tube and the DNA was eluted from the spin column by adding 30μl of EB buffer and 

left to stand for 1 min followed by a centrifugation for 1 min at 17,900 x g. Prior to cloning, the DNA 

concentration was measured using a Nanodrop-1000 Instrument (Thermo Fisher Scientific). 

2.2.4.6  Gateway cloning 
 
Gateway cloning technology enables to effectively and rapidly transfer DNA fragments between 

cloning vectors for gene functional analysis and protein expression. It is based on particular 
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recombination sites known as attB site in E.coli and attP site in bacteriophage lambda (λ). The 

cloning reaction is mediated by two proprietary enzyme mixtures termed LR clonase and BP clonase, 

which produce two distinct forms of recombination reactions known as LR reaction and BP reaction, 

respectively and they are summarized in Figure 2.2 (161). 

 

 

 

Figure 2-2: Schematic diagram of gateway cloning technology. Gateway cloning technology is an 

effective and reversible technique for transferring DNA fragments across plasmids. The site-specific 

recombination between the "att" sites is used in this procedure. The LR reaction, as described 

above, recognizes the attL and attR sites between an entry vector and a destination vector, 

respectively, and creates the desired expression vector. An entry clone of interest is produced by 

the reversible BP reaction, which takes place between the attB and attP sites of an expression vector 

and a donor vector, respectively. 

 

In the present study, LR Cloning Gateway (Thermo Fisher Scientific, Cat No: 11791020) was used 

following the manufacturer’s protocol. In brief, a reaction mix was prepared by adding 150ng of 

Gateway Entry (pENTR) vector, 150ng of Destination vector (pDEST) and 4μl TE buffer (PH 8.0). We 

used JARID2 (pCR8) as the entry vector and the GW306 N-term expressing the 3x flag tag (a kind gift 

from Professor Colin A. Johnson) as a destination vector. The LR Clonase II enzyme mix was thawed 

on ice for about 2 min and vortexed twice for 2 s before usage. Then, 1μl of the enzyme mix was 

added to the reaction mix, vortexed twice and incubated at 25
o
C for 1 hr. After incubation, 1μl (2μg) 

of proteinase K solution (Invitrogen, Cat No: 10665795) was added to the above reaction mix and 

incubated at 37oC for 10 min to stop the reaction. The resulted expression plasmids (i.e.3xFlag-

tagged JARID2) were transformed into E. coli DH5-Alpha Competent cells (New England Biolabs, Cat 

No: C2987I) (see Section 2.2.4.7) and the DNA was extracted using mini preps from bacterial 

cultures (see Section 2.2.4.5). Sequence verification of the plasmid was performed using Sanger 

sequencing with the primers listed in Table 2.5 (See Section 2.2.4.9).  
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2.2.4.7  Transformation of competent bacteria and culture preparation 

An aliquot of E. coli DH5-Alpha competent cells was gently thawed and kept on ice. 2μl of the 

resulting plasmid DNA was added to 25μl of the competent cells, pipetted gently up and down and 

incubated on ice for 30 min. During the incubation time, a water bath was prepared at 42oC and a 

SOC medium (New England Biolabs, Cat No: B9020S) was put in it. After the 30 min incubation, a 

heat shock was performed on the transformed cells at 42oC for 45s and transferred immediately on 

ice for 2 min. Then, 200μl of pre-warmed SOC media was added to each transformation mix and 

incubated in an orbital shaker for 1 hr at 37oC and at 250rpm (Excella E25, Eppendorf, Hamburg, 

Germany). Next, 50μl of the transformed cells were plated on an LB agar plate with the appropriate 

antibiotic that selects plasmids which contain an antibiotic resistance gene. The plate was incubated 

upside down to avoid condensation of agar gel for 16 hrs at 37oC. The bacterial cultures were then 

prepared as described in Section 2.2.4.4. 

Primer design was carried out using web-based software found at 

https://www.sigmaaldrich.com/webapp/wcs/stores/servlet/LogonForm?storeId=11001. It enables 

the researchers to design intronic primers for exonic PCR amplification. The following criteria were 

considered when designing the primers: an optimum annealing temperature of 50-80oC, a minimum 

of 20pb generating PCR products of 200-600bp in length and a guanine-cytosine content (GC) 

between 30-70% to ensure stable binding between the template and the primer. In addition, the 

primers were designed with the absence of secondary structure which is defined as the base pairing 

interactions within a single nucleic acid polymer or two polymers as the presence of them can result 

in poor or no yield of PCR product. Primer sequences were checked using the BLAST tool 

(http://blast.ncbi.nlm.nih.gov/Blast) to ensure that they are uniquely and specifically bound to the 

gene of interest. Primer sequences used for this purpose are listed in Table 2.5. 

The primers were provided by Sigma-Aldrich and they were diluted using dH2O to a stock solution 

with a final concentration of 100μM which is then diluted further to reach a working concentration 

of 2μM. 
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Table 2-5: List of primers used for cloning verification. 
Table includes gene name, nucleotide sequence of each primer and the primer melting temperature 
(TmO) 

 

2.2.4.8  Sequence verification of 3xFlag-tagged JARID2 plasmid via Sanger DNA sequencing 

Verification of the resulted expression plasmid (3xFlag-tagged JARID2) was achieved using BigDyeÒ 

Terminator v3.1 Sequencing Kit (ThermoFisher Scientific, Cat No: 4337455) after purification. The 

sequencing reaction was carried out in a 96-well sequencing plate in a total volume of 10μl and 

consisted of 1μl Big Dye® 39Terminator v3.1, 1.5μl Big Dye® Sequencing Buffer (5x), 1μl of either 

the 5’ or the 3’ primer at 2μM, 5.5μl of dH2O and 1μl of purified plasmid. The plate was placed in a 

Veriti Thermal Cycler (Thermo Fisher Scientific) and the mixtures were subjected to the following 

incubations: denaturation for 1 min at 96°C, followed by 45 cycles of 96°C for 10s, 50°C for 5s, 60°C 

for 4 min, and then hold at 4°C until ethanol precipitation. The precipitation was achieved by adding 

5μl of 125mM EDTA (pH8.0) and 60μl of 100% ethanol to each mixture followed by centrifugation 

for 30 min at 3100 x g and 22°C. The plate was then subjected to an inverted spin for 15s at 18 x g 

followed by the addition of freshly prepared ethanol (70%). Next, the contents were centrifuged 

again at 800 x g for 15 min at 4°C and subjected to an inverted spin for 15s at 18 x g. The precipitated 

pellets were then left to air dry, face up and protected from light for 15 min at room temperature. 

The resulted dry pellets were resuspended in10μl of highly deionized formamide “Hi-Di” (Thermo 

Fisher Scientific, Cat No: 4311320) to hydrate each DNA sample. The plate was put on the ABI 3130xl 

Genetic Analyzer using standard protocols and a POP7 polymer (Applied Biosystems). Sequencing 

data was visualized and analysed using 4Peaks (Mek&Tosj.com). 

Gene name Primer sequence TmO 

JARID2 CMV forward CGCAAATGGGCGGTAGGCGTG 76.9 

JARID2 internal forward GCCTAAGACAGAAGATTTTCTTA 57.5 

JARID2 internal forward GCAAACAGGTGCTATCCCTC 63.5 

JARID2 BSPEI side GCGAGGAATATCATGAGCATGT 65.0 

JARID2 EcoNI side GCCCGAGTGCAAGCTCAACGAT 73.5 

JARID2 NotI side GCCATTCTCCATGGAGAAGTTA 64.0 

JARID2 hGH poly (A) signal side TTAGGACCAGGATCAGAACG 60.9 

JARID2 SV40 promoter GTGAAGAAGGAAGTGCCGGA 66.5 

JARID2 NeoR/KanR side GGGAGCAGGCTTCAGCTAAC 65.2 

JARID2 internal forward ATGGAGAAGGAGATCCTGGA 62.6 

JARID2 internal forward TTCCATACATTGACTACTTA 49.4 
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2.2.4.9  Transient transfection for gene over-expression 

Prior to transfection, HEK293T cells were sub-cultured in a 6-well plate and allowed to reach 60-

70% confluency as described in Section 2.2.3.1. On the day of transfection, transfection complexes 

were prepared by mixing 250μl of Opti-MEM reduced serum media (Gibco, Cat No: 11564506) with 

6μl of lipofectamine 2000 (ThermoFisher Scientific, Cat No: 11668030) in a fresh Eppendorf tube. 

The mixture was mixed gently by flicking the tube and then incubated for 5 min at room 

temperature. Then, 1μg of plasmid DNA was added to the complex, vortexed, spun down and 

incubated for 20 min to facilitate the encapsulation of the plasmid in the lipid bilayer of 

Lipofectamine 2000. Before the transfection, the normal culturing media (i.e. DMEM) was replaced 

with Opti-MEM followed by the addition of the transfection complexes to each well. The cells were 

mixed gently with the complexes by rocking the plate back and forth and incubated for 5 hrs. After 

that, the media was changed back to DMEM to avoid loss of transfection activity. Lysates were then 

prepared after 48 hrs-96 hrs for protein analysis as described in Section 2.2.5.1. 

 

2.2.5 Methods of protein analysis 

2.2.5.1 Preparation of cell extracts and determination of protein concentrations 

 

Prior to protein analysis, cells were collected and subjected to cell lysis. Cells in each well of 6-well 

plates were washed twice with 500 µl of ice-cold PBS and incubated with 350 µl of ice-cold PBS for 

5 min on ice. The cells were then detached using cell scrapers and transferred into 1.5 ml tubes. 

Next, cells were centrifuged at 14000 x g for 5 min and the supernatant was removed followed by 

the resuspension of the pellet in 80 µl of radio-immunoprecipitation assay lysis buffer (RIPA lysis 

buffer, see Section 2.1.1.1 for the buffer recipe) containing proteinase inhibitor cocktail (Sigma-

Aldrich, Cat No: P8340). The suspension was incubated on ice for 30 min followed by centrifugation 

at 14000 x g for 10 at 4o C. Finally, the supernatant was removed carefully and transferred into a 

new 1.5 ml tube. The protein in each sample was determined and quantified using the Pierce Tm BCA 

protein assay kit (ThermoFisher Scientific, Cat No: 23225) as per manufacturer’s instructions.  The 

concentration of the protein was measured on spectrophotometer at a wavelength of 595nm and 

compared to a range of diluted albumin (BSA) standards. The BSA standards ranges from 0 to 2000 

µg/ml.  
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2.2.5.2  SDS-PAGE and western blotting 

For immunoblotting, equal amount of protein (20µg) per sample was mixed with equal volume of 

2x laemmli sample loading buffer, heated for 5 min at 95oC on a heat block and were kept on ice 

until needed. Samples were electrophoresed in 4-15% mini-PROTEAN TGX precast gels (Bio-Rad, Cat 

No: 4561083). Precision Plus ProteinTM All Blue Protein Standards (Bio-Rad, Cat No: 1610373) was 

used as a protein standard (i.e. a ladder). The gel was run in 1x pre-mixed running buffer 

(Tris/Glycine/SDS, Bio-Rad Cat No: 1610732) at 120V for approximately 1.5 h. Proteins were 

transferred onto Trans-Blot Turbo mini nitrocellulose transfer (0.2µm, Bio-Rad, Cat No: 1704158) 

using Trans-Blot Turbo transfer system (Bio-Rad, 17001915). The transfer was performed for 7 min 

at 25V. 

For the purpose of optimization, the experiment was repeated using different protocol. After 

heating, samples were electrophoresed 4-12% NuPAGE Bis-Tris gel (ThermoFisher Scientific, Cat No: 

NP0326BOX) along with Plus ProteinTM All Blue Protein Standards. The gel was placed in a transfer 

tank filled with 1x NuPAGE MES-SDS running buffer (ThermoFisher Scientific, Cat No: NP0002) and 

ice. It was run for 1.5 h at 120V. Prior to protein transfer, polyvinylidene difluoride (PVDF, 0.2µm, 

ThermoFisher Scientific, Cat No: LC2002) was activated by ethanol. Proteins were then transferred 

onto PVDF using NuPAGE transfer buffer (ThermoFisher Scientific, Cat No: NP00061) for an hour at 

30V.  

2.2.5.3  Antibody binding and visualization of the targeted protein 

After protein transfer, the membrane was blocked in 20 ml blocking buffer (5% Marvel milk solution 

in PBS solution containing 0.1% tween 20 (ThermoFisher Scientific, Cat No: 85115) and incubated 

for 1 h and at room temperature. For Flag antibody, the membrane was blocked in 3% bovine serum 

albumin solution (BSA, Sigma Aldrich, Cat No: A4503) in 1x PBST for 30 min at room temperature. 

After incubation, the membrane was probed with primary anti-JARID2 antibody diluted in 5% Milk 

solution at a concentration of 1:1000 and incubated overnight on the shaker in the cold room (4oC). 

For Flag antibody, the membrane was probed with primary anti-flag antibody diluted in 3% BSA at 

a concentration of 1:1500. Next, the membrane was washed three times with 1x PBST buffer at 

intervals of 10 min and incubated with the secondary anti-rabbit IgG-HRP-linked antibody diluted in 

5% Milk for JARID2 antibodies or 3% BSA for Flag antibody at a concentration of 1:5000 for 1h at 

room temperature. After that, the membrane was washed again as described above and then 

SuperSignal West Femto substrate solution (ThermoFisher scientific, Cat No: 34095) was added as 
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recommended by the manufacturer to develop the membrane. The image of the membrane was 

obtained using ChemiDocTM MP Imaging System with a UV transilluminator. To immunoblot the 

membrane with different primary antibody, it was stripped with 5ml of RestoreTM Plus stripping 

buffer (ThermoFisher Scientific) for 10 min, blocked with 20 ml blocking buffer and then washed 

three times. The same membrane was later re-probed with primary GAPDH antibody or beta-actin 

as loading controls at a concentration of 1:10000. The membrane was processed as described 

above. The analysis was performed on Image Lab (v. 6.0.1) software (Bio-Rad) and the intensity of 

all bands was quantified and compared to GAPDH or beta-actin depending on which loading control 

used in the experiment. 

 

2.2.5.4  Co-immunoprecipitation (Co-IP) using protein A agarose 
 
Co-immunoprecipitation is a traditional assay to study protein-protein interactions by 

overexpressing a whole cell lysate for a specific protein and “pull down” any other protein that are 

associated with it (162).  

Prior to co-immunoprecipitation (Co-IP), all buffers such lysis buffer, incubation buffer, and wash 

buffer were prepared and kept on ice (See Sections 2.1.2.2, 2.1.2.5 and 2.1.2.6 for buffer recipe). 

The overall experiment was divided into 5 steps. The first step consisted of lysates preparation as 

described in Section 2.2.5.1. In the second step, the collected lysates were homogenized with 20G 

needle and the suspension was gently rocked on an orbital shaker (Excella E25, Eppendorf, 

Hamburg, Germany) for 15 min at 4oC to lyse the cells. The suspension was then centrifuged in pre-

cooled centrifuge at 14,000x g for 15 min and the supernatant was transferred immediately to a 

fresh clean Eppendorf tube. The protein concentration was determined as described in Section 

2.2.5.1 and 500μg of protein per pull down was transferred to a new tube and filled up to a volume 

of 1000μl with the incubation buffer. In the third step, protein A agarose slurry was prepared. 200μl 

of protein A/G agarose beads (Roche diagnostics) were washed twice with PBS with and centrifuged 

for 1 min at 1000x g. In the second wash, 50% of the bead slurry was restored with PBS. In the fourth 

step, the lysates were pre-cleared with the bead slurry to minimizes non-specific binding of protein 

to the agarose. The pre-clearing was achieved by the addition of 80μl of the bead slurry to the 

lysates and incubated for 30 min at 4oC on an orbital shaker. The lysates were then centrifuged at 

1000x g at 4oC for 1 min to remove the protein A agarose and the supernatant was transferred to a 

fresh Eppendorf tube. Next, the supernatant was coupled with target protein-specific antibodies 
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(1μg of antibody for each 500μg of protein) for 2 hrs at 4oC on an orbital shaker. The 

immunocomplex was then captured by the addition of 80μl of protein A agarose slurry and the 

mixture was incubated on an orbital shaker overnight at 4oC. After incubation, the mixture was 

centrifuged for 1 min at 1000x g and the supernatant was discarded to collect the pre-coupled 

agarose beads. Next, the samples were washed quickly three times with 500μl of ice-cold wash 

buffer. In the fifth step, the pre-coupled agarose beads were resuspended in 20μl of 2x SDS, mixed 

by inverting and incubated for 30 min at room temperature to dissociates and elutes the 

immunocomplex from the agarose. Finally, the mixture was spun for 2 min at 14,000x g and the 

supernatant was transferred to a new Eppendorf tube. The sample was processed for western 

blotting as described in section 2.2.5.2 and section 2.2.5.3 to identify potential protein-protein 

interaction. The Co-IP protocol was summarized in Figure 2.3. 

 

 

 

 

 

 

 

 

 

 

Figure 2-3: Schematic diagram of co-immunoprecipitation procedure and principles. Lysates from 

transfected cells were prepared and the protein concentration was determined. 500μg of protein 

was used for each IP. The immunocomplex was captured by the addition of protein A agarose slurry. 

Agarose beads which contain the protein of interest was dissociated and eluted from the pre-

coupled agarose beads and the supernatant was processed via western blot analysis. 
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2.2.6 Chromatin Immunoprecipitation sequencing (Chip-seq) 

2.2.6.1 Tissue sectioning 

 
Formalin-fixed, paraffin-embedded patient samples were acquired from the Brain Tumour 

Northwest Research Tissue Bank at Royal Hospital Preston. They were used in this study following 

project specific favourable ethical opinion from the National Research Ethics Service Committee 

South Central - Oxford A (Research Ethics Committee code 13/SC/0509). The samples were 

specifically selected as paired primary and locally recurrent IDH wildtype GBM brain tumours from 

a patient that had received standard treatment 

The block was sectioned according to instructions given by Active Motif company which performed 

2 Chip-seq experiments on this sample. The tissue block was kept into the block holder of the 

microtome which is a cutting tool that is used to produce thin slices of the tissues known as sections. 

For the purpose of this work, 20 sections of 10µm thick was provided for each Chip reaction. Total 

of 5 1.5ml tubes each with 20 curls were prepared for H3K4me3, H3K27me3, EZH2, JARID2 and input 

reactions. 

 

2.2.6.2  Library preparation and sequencing 

Tissue sections were sent to Active Motif (Carlsbad, CA) for ChIP-Seq analysis. Active Motif 

performed the chromatin preparation, ChIP protocols, library preparation, and library sequencing. 

Cells were dampened with 0.125 M glycine and fixed with 1% formaldehyde for 15 min. The fixed 

cells were mixed with lysis buffer and then agitated in a Dounce homogenizer. With the use of Active 

Motif's EpiShear probe sonicator (cat# 53051), the resulting lysates were sonicated, and the DNA 

was sheared to an average length of 300–500bp. 

To prepare the input sample, fractions of chromatin were treated with RNase and proteinase K. the 

mixture were heated to break down crosslinks. This was followed by SPRI beads clean-up (Beckman 

Coulter), and Clariostar quantification (BMG Labtech). With the use of protein G agarose beads, an 

aliquot of chromatin (50 ug) was precleared (Invitrogen). 4 ug of an anti-JARID2 (Novus biology), 

anti-H3K4me3, anti-H3K27me3 and anti-EZH2 was used to identify genomic DNA areas of interest. 

Complexes were cleaned, then treated with RNase and proteinase K after being eluted from the 

beads using SDS buffer. Crosslinks were broken down overnight at 65 oC, and ChIP DNA was then 

extracted using phenol-chloroform, followed by ethanol precipitation. 
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SYBR Green Supermix was used in triplicate for quantitative PCR (qPCR) experiments on particular 

genomic regions (Bio-Rad). By running qPCR for each primer pair using input DNA, the signals were 

adjusted for primer efficacy. 

Using the ChIP and input DNAs, Illumina sequencing libraries were prepared using the conventional 

enzymatic procedures of end-polishing, dA-addition, and adaptor ligation. A robotic system (Apollo 

342, Wafergen Biosystems/Takara) was used to carry out the steps. The resultant DNA libraries were 

measured and sequenced using Illumina's NextSeq 500 following a final PCR amplification step (75nt 

reads, single end). 

2.2.7 Cleavage under targets and release using nuclease (Cut&Run) 

2.2.7.1 Disaggregation of tissues into a single cell suspension 

Prior to performing CUT&RUN, cells were dissociated from 2 fresh frozen patient tumours namely, 

NB17/39 and NB169/12. All steps were processed on ice unless otherwise stated. Tissues were 

placed onto clean and pre-cooled 6cm petri dish followed by the addition of 400μl accutase (Sigma-

Aldrich, Cat No: A6964) drop by drop on one side and some Neurobasal-A serum free-media (NB) 

on the other side of the dish. Using 2 sterile scalpels, the tissue was chopped quickly until it became 

creamy consistency, transferred into 50ml sterile centrifuge tube using glass pasteur pipette and 

resuspended directly with 40ml cold PBS. The solution was then spun at 200 x g for 5 min at 4oC and 

the supernatant was discarded. Finally, the pellet was resuspended in fresh NB medium and kept it 

ready for CUT&RUN assay. 

 

2.2.7.2  CUT&RUN workflow 
 
Tissues and cell cultures were harvested as described in Sections 2.2.3.1 and 2.2.7.1 respectively 

before use. The cells were counted using haemocytometer and trypan blue to get 1 million cells for 

each antibody/MNase reaction. An additional 1 million cells were obtained for input sample (i.e. no 

antibody). Cells were pelleted by centrifugation for 3 min at 600 x g at room temperature. 

CUT&RUN was carried out following the same principles and instructions as per manufacturer’s 

protocols (Cell Signaling Technology, Cat No: 86652). The first step consisted of cell preparation and 

binding of primary antibody. During this step, the cell pellet was first resuspended in 1 ml of 1x 

CUT&RUN wash buffer (Cell Signaling Technology, Cat No: 31415), centrifuged for 3 min at 600 x g 

followed by the removal of the supernatant. The pellet was washed a second time. Next, 100μl of 

1x wash buffer was added to each reaction followed by the addition of 10μl of activated bead 
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suspension. Concanavalin A magnetic beads (Cell Signaling Technology, Cat No: 82307) were 

activated before adding to the cell suspension by adding 10μl of beads slurry per reaction with 100μl 

concanavalin A bead activation buffer (Cell Signaling Technology, Cat No: 91275) and the tube was 

mixed gently and placed on a magnetic stand until the solution become clear. The supernatant was 

discarded and the beads was washed again by the activation buffer as described above. 10μl of the 

activation buffer was added to the pellet and resuspended gently. Cell suspension with the activated 

concanavalin A bead slurry was rotated for 5 min at room temperature. After that, the suspension 

was briefly centrifuged at 100 x g to remove cell-bead suspension from the cap of the tube and the 

tube was placed on the magnetic stand until the solution became clear. The supernatant was 

discarded and 100μl of antibody binding buffer (Cell Signaling Technology, Cat No: 15338) was 

added to the cell pellet (i.e. cell-bead suspension). Then, 100μl was aliquoted separately for each 

antibody/MNase reaction followed by the addition of 2μg of the antibody and the mixture was 

mixed gently. The mixture was then rotated at 4oC for 2 hrs. during the incubation period, the 

digitonin buffer (Cell Signaling Technology, Cat No: 16359) and pAG-MNase pre-mix solution were 

prepared for the second step which is the binding of pAG-MNase enzyme (Cell Signaling Technology, 

Cat No: 57183).  

After incubation, the sample was centrifuged briefly at 100 x g to remove cell-bead suspension from 

the cap of the tube and the tube was placed on the magnetic stand until the solution turns clear. 

Next, the supernatant was discarded and the cell-beads suspension was resuspended with 1ml of 

digitonin buffer. The tube was placed again on the magnetic stand until the solution became clear 

followed by the removal of the supernatant. Then, 50μl of pAG-MNase pre-mix solution was added 

and mixed gently by pipetting up and down. After that, the sample was rotated at 4oC for 2 hrs. 

After rotation, the pAG-MNase suspension was briefly centrifuged at 100 x g to remove cell-bead 

suspension from the cap of the tube and the tube was placed on the magnetic stand until the 

solution turns clear. At this stage, the antibody should be bound to its epitopes and the pAG-MNase 

should bound to the constant region of the antibody. The supernatant was discarded and 1ml of 

digitonin buffer was added to resuspend the beads. The tube was placed on the magnetic stand 

again until the solution turns clear and the supernatant was discarded followed by the addition of 

150μl of digitonin buffer. Next, the tube was placed on ice for 5 min to cool before digestion and 

then the MNase was activated by the addition of 3μl cold Calcium Chloride (Cell Signaling 

Technology, Cat No: 55676). The sample was incubated for 30 min at 4oC. After 30 min, the enzyme 

cleaved the DNA underlying the antibody and the reaction was stopped by the addition of 150μl of 

stop buffer (Cell Signaling Technology, Cat No: 48105) followed by an incubation for 10 min at 37oC. 
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This buffer will allow the pAG-MNase to cut the DNA fragment to diffuse into the supernatant. At 

this stage, the third step of CUT&RUN workflow is started in which the DNA is digested and diffused. 

Finally, the sample was centrifuged 4oC for 2 min at 16,000 x g, placed on the magnetic stand until 

the solution turns clear and the supernatant, containing the pAG-MNase-antibody targeted DNA 

complex was transferred to a new 1.5 ml microcentrifuge tube. This is the enriched chromatin 

samples and can be stored at -20oC for up to 1 week. The CUT&RUN workflow was summarized in 

Figure 2.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4: A schematic representation of CUT&RUN workflow and sequencing. Prior to 

performing CUT&RUN, cell culture or tissue were harvested to single cell suspension and counted 

via haemocytometer and trypan blue to get 1 million cells for each antibody/MNase reaction and 

input sample. The first step in CUT&RUN workflow was the preparation of the sample by washing 

the cell suspension twice with 1x CUT&RUN wash buffer, coated with Concanavalin A magnetic 

beads and immobilized them from on-target chromatin. Then, an antibody to the target of interest 

was added to the suspension and incubated for 2hrs at 4oC. Next, the enzyme pAG-MNase was 

added and upon activation of it with Ca2+ ion, the enzyme cleaves the desired chromatin fragment. 

After that, the fragmented DNA/chromatin was diffused out of the cell and purified using DNA spin 
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column. Then, the input sample was prepared and purified. Finally, the purified DNA was quantified 

via qPCR and only 5ng of the purified DNA was processed for library preparation and sequencing. 

 
2.2.7.3  Optimization of sonication conditions for input samples 
 
Chromatin fragmentation should be tested and optimized before starting any experiment that 

required DNA shearing. For a successful CUT&RUN experiment, DNA fragments of 100-600 bp in 

length is recommended. In this work, the sonication conditions of the input sample were optimized 

using 4 conditions: 15, 20, 25 and 30 cycles of 30 sec ON/ 30 sec OFF with the Bioruptor UCD-200 

sonicator (Digenode). DNA fragment sizes of the sonicated samples were determined using gel 

electrophoresis (see Section 2.2.7.5). 

 

2.2.7.4  Preparation of the input sample 
 
Input sample prepared from step 1 of CUT&RUN workflow (See section 2.2.7.2) was processed as 

follows. 200μl of DNA extraction buffer was added to the harvested cells and the sample was 

incubated at 55oC with shaking. After 1 hr, the sample was placed on ice immediately. Due to the 

fact that only fragmented DNA (i.e., 10kb) can be purified using DNA purification spin columns, the 

cells were lysed and the chromatin was fragmented to a size of 100-600 bp by sonication (See 

Section 2.2.7.3). The sonication conditions were optimized as recommended by the manufacturer 

and the optimal sonication condition was selected for the remaining work. (See Section 2.2.7.3 for 

sonication optimizations). The sonicated sample was centrifuged at 4oC for 10 min at 18,500 x g 

and the supernatant was transferred to a new 1.5 ml microcentrifuge tube prior to DNA purification. 

 

2.2.7.5  Agarose gel electrophoresis 
 
15μl of the sonicated sample was loaded in an agarose gel for DNA fragments evaluation. Agarose 

gel was prepared by dissolving 1g of agarose powder (Biolin, London, UK, Cat No: BIO-41025) in 100 

ml of 1x TAE buffer. 6µl of SYBR DNA gel stain (Sigma-Aldrich, Cat No: 59430) was added to the 

melted agarose solution and poured into the gel cassette. Sample was loaded on the gel immersed 

in 1x TAE buffer along with a hyperLadder 100 bp Plus (Bioline, Cat No: BIO-33056). The gel was run 

at 80V for 1-1.5 hrs and the gel was observed on a ChemiDoc XRS gel imaging system (Bio-Rad). 
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2.2.7.6  DNA purification using spin columns 
 
DNA from enriched and input samples (resulted from Section 2.2.7.2 & 2.2.7.3, respectively) was 

purified using DNA purification buffers and spin columns (ChIP, CUT&RUN) assay kit (Cell Signaling 

Technology, Cat No: 14209S) as described by the manufacturer’s instructions. Prior to DNA 

purification, 24 ml of ethanol (96-100%) was added to the DNA wash buffer before use. Then, 1.5 

ml of DNA binding buffer was added twice to each sample (i.e. enriched chromatin or input sample), 

vortexed briefly followed by the transfer of 600μl of the mix to a DNA spin column in the collection 

tube. The sample was centrifuged at 18,500 x g in a microcentrifuge for 30s. 750μl of DNA wash 

buffer was added to the samples and they were centrifugated twice at 18,500 x g for 30s. Next, 

sample eDNA was eluted in 50ul following a centrifugation at 18,500 x g for 30s.  

  

2.2.7.7  DNA quantification by quantitative polymerase chain reaction 
 
Initial quantification of DNA was carried out via quantitative polymerase chain reaction (qPCR) in 

20µl containing 10µl of SYBR-Green mix (Sigma-Aldrich, Cat No: S4438), 2µl of Human RPL30 exon 

3 primer (Cell signaling Technology, Cat No: 7014), Human RPL30 intron 2 primer (Cell signaling 

Technology, Cat No: 7015) and SAT2 primer (Novus Biology, Cat No: NBP1-71655 at a final 

concentration of 5µM , 0.2µl of ROX dye (ThermoFisher Scientific, Cat No: 12223012), 5µl of nfH2O 

and 2µl of purified DNA. Each sample was tested in triplicates. A three-step cycle programme with 

different melting temperature were applied and repeated 40 times. The cycling steps were listed in 

Table 2.6. 

 

 

Step Temperature time Number of cycles 

Initial denaturation 95oC 3 min 1 cycle 

Denaturation 95oC 15 s  

40 cycles Annealing and extension 60oC 60 s 

 
Table 2-6: PCR reaction conditions program for CUT&RUN DNA quantification 
Table includes PCR step, temperature (oC), time and number of PCR cycles 
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The analysis was performed manually by calculating the IP efficiency using the percent input method 

as follows: 

Percent Input = 100% x 2(C[T] 100%Input Sample – C[T] IP Sample)  

 

Signals from each immunoprecipitation are quantified as a percentage of the total amount of 

chromatin used as an input. The enrichment of each sample was compared to that of IgG, which 

was utilized as a control sample. 

 

2.2.8 Library preparation and sequencing 
 

Prior to library preparation, the purified DNA resulted from DNA purification step (See Section 

2.2.7.6) was read in Qubit fluorometer using the Qubit HS assay reading. Library preparation was 

performed using NEBNext Ultra Library Prep kit for Illumina (BioLabs, Cat No: E7370L), with slight 

adaptations. These changes were recommended from the CUT&RUN protocol. Briefly, 5ng of 

purified DNA was added to 55.5μl nuclease free water (nfH2O) followed by the addition of 9.5μl of 

NEBNext End Prep master mix. The reaction mixture was placed on the Veriti thermal cycle (Thermo 

Fisher Scientific) with heated lid set to ≥ 75oC and run using end repair program as follows: 30 min 

at 20oC, 30 min at 50oC and hold at 4oC. The temperature was reduced from 65oC to 50oC to avoid 

denaturing small DNA fragment. Prior to adapter ligation, NEBNext adaptor was diluted to 0.6uM 

(25-fold dilution) for sample with less than 5ng and 10-fold dilution for those with 5ng. Then, the 

adaptor ligation mix was prepared and 16μl was added to each sample followed by the addition of 

2.5μl of the diluted NEBNext adaptor. The mixture was subjected to an incubation for 15 min at 

20oC in the thermal cycle with heated lid set to ≥ 40oC. Then, 3μl of USER enzyme was added to each 

sample, and the samples were then placed in a thermal cycle for 15 min at 37oC with a heated lid 

set to 40oC. 

Adaptor-ligated DNA was cleaned up and purified using AMPure XP beads (Beckman Coulter, Cat 

No: a63381) with a final concentration of 1.1X instead of 0.9 to increase capture of small fragments. 

Following purification, the library was amplified in a 12 cycle PCR reaction using NEBNext oligos kit, 

and purified again with AMPure XP beads. The size and quality of the fragmented DNA was 

evaluated using high sensitivity HSD1000 TapeStation tapes (Agilent Technologies), according to 

manufacturer’s instructions. Library with adapter dimer was re-cleaned up again at 0.8x twice to 

remove the adaptor dimers and re-assessed again on HSD1000 TapeStation tapes. Then, the purified 
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library was washed twice with 80% ethanol, eluted into 26μl of elution buffer (EB, Qiagen, Cat No: 

19086) and only 22μl of the elution was recovered. The eluted sample was re-evaluated on HSD1000 

TapeStation tapes to ensure that the library is free of contamination. The suitable library along with 

a negative control were read in Qubit 1X dsDNA HS kit assay following the manufacturer’s protocol. 

Sample was pooled at 5x the concentration and sequenced on the Illumina NextSeq 500 platform 

(Illumina, San Diego, CA) using a 75bp paired end protocol. 

 

2.2.9 Optimization of computational pipeline 

2.2.9.1 ChIP-seq pipeline design and implementation 

A broad variety of computational tools have been designed to analyse ChIP-seq data and 

comprehend the genome-wide mapping of protein-DNA interactions from sequencing read. A 

general pipeline was developed and implemented on Linux platform (i.e. ARC3). The pipeline 

functions to converts a set of multiplexed Fastq files into either a bed format that can be used as 

input for various programs such as ChromHMM or Bedtools, or a bigWig file that can be used to 

visualize dense and continuous data as a graph in the genome browser tool. Figure 2.5 outlines the 

proposed ChIP-seq processing pipeline from quality assessment of raw sequencing reads to 

promoter status calling step and the list of tools used to develop the pipeline is presented in 

Appendix A. 
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Figure 2-5: A schematic representation of the proposed ChIP-seq pipeline. 

 

The pipeline was first developed using an external dataset. This dataset, published in Liau et al., was 

obtained from the NCBI Gene Expression Omnibus via accession number GSE74557. Fastq files 

(single-end reads) were downloaded for two cell lines (GSC8 and GSC8per), which each underwent 

ChIP-seq to detect the location of both H3K27me3 and H3K4me3 marks, compared to input DNA 
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controls (Appendix B). GCS8 cells are a patient-derived GBM cell line cultured in serum-free (stem-

cell permissive) conditions; GSC8per cells are GSC8 cells that persist following prolonged (>8 week) 

treatment with dasatinib. The pipeline was implemented and optimized further using an in-house 

ChIP-seq dataset. DNA from a fresh frozen pair of samples in our lab underwent ChIPseq (performed 

externally at Active Motif, Inc) to assess EZH2, H3K27me3, H3K4me3 in both samples, and JARID2 

in the recurrent sample. 

Raw sequencing files created by the Illumina NextSeq 500 platform were obtained in “FASTQ” 

format. The sequencing data usually consists of millions of short reads with the length of 

approximately 36-75 nucleotides. The first step in the proposed pipeline was to examine the quality 

of the obtained data using FastQC (v0.11.9). FastQC is a quality analysis tool that is designed to 

perform a set of quality checks on the raw sequence data and spot any potential issues or biases in 

a QC report. The obtained reads were run on FastQC and it provided a QC report for each sample. I 

focused on assessing per sequence quality score, sequencing depth and length, sequence 

duplication levels and adapter content of each sample as these metrices considered the key quality 

metrices for ChIP-seq quality assessment. Once the sample passed the quality check, the adapter 

sequences and more specifically Illumina adapter sequences along with low quality ends of phred < 

10 were trimmed using Cutadapt (v3.6). By default, a minimum overlap length of 3 was allowed to 

reduces the number of falsely trimmed bases and reads that are shorter than 20 bases are discarded 

to avoid having empty reads (i.e. reads that have a length of zero) in the final output. The quality of 

the trimmed reads is checked again and only samples that passed the quality check proceed to 

mapping. 

Prior to mapping, the human reference genome (Release 39, GRCh38.p13) was downloaded from 

gencode https://www.gencodegenes.org/human/releases.html in the FASTA format which contains 

all the nucleotide sequence of the GRCh38.p13 version on all regions, including reference 

chromosomes, scaffolds, assembly patches and haplotypes. The reference genome was indexed 

using bwa (v0.7.17) and the trimmed reads were aligned to it with default parameters to generate 

sequence alignment map (SAM) file. Samtools (v1.11) was used to convert SAM file was to binary 

alignment map (BAM) file and then sorted and indexed. The alignment statistics were inspected and 

only the samples with a mapping rate > 80% was post-processed. 

Samples with high mapping rate were post-processed by removing unmapped reads, mate 

unmapped reads, reads that align to more than one place (i.e. secondary alignment) and reads with 
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low mapping quality score (i.e. MAPQ < 25) using samtools. In addition, PCR duplicates were marked 

and removed using picard tool (v2.21.2) with default parameters. A report that summarized the 

main quality metrices in terms of percentage of duplicate reads, estimated library size and the 

number of unmapped reads was generated. Library complexity, defined as an estimation of the 

number of the distinct molecules in the given library, was inspected using Picard tools and Bedtools 

(v2.30.0). This included the assessment of the prevalence of uniquely mapped reads, which is known 

as the non-redundant fraction (NRF), PCR bottlenecking coefficient 1 and 2 (PBC1 and PBC2), 

normalised strand cross-correlation coefficient (NSC) and relative strand cross-correlation 

coefficient (RSC) (See Chapter 1, Section 1.6.1.2 for detailed definitions of these terms). The 

genomic coverage across the sample was assessed by generating the coverage track (Bigwig) and 

this was done by converting the resulting BAM file to the Bigwig file using the ‘bamCoverage’ 

function of the deeptools (v3.5.1) with default parameters. 

To identify the enriched peaks in each sample, MACS3 (v2.2.7.1) was used. Post-processed 

experiment files, along with sample-matched input control files, were used for the peak calling with 

default settings, except that I set the ‘--broad’ option to call broad peaks for H3K27me3, JARID2 and 

EZH2. P-value thresholds were set at 0.01 and 0.1 for narrow and broad peaks respectively. Bed files 

are the output format from MACS, giving the genomic location of each peak and its intensity. The 

reproducibility at the level of peak calling between replicates was measured using irreproducible 

discovery rate (IDR) with a q-value of 0.1 and IDR-threshold of 0.05. 

 

2.2.9.2  Development of a bespoke approach to call the promoter status along with the 

integration of expression data 

 

For genome-wide profiling of the histone and chromatin-binding proteins, I developed two 

approaches that enabled me to identify the co-occurrence of chromatin marks across a pre-defined 

promoter region. Approach 1 was developed via adoption of ChromHMM (See Section 2.2.8.2.1) to 

output promoter calling status so I could characterize the chromatin states in those specific regions 

in our datasets. ChromHMM tool is used widely to annotate and characterize the chromatin states 

across multiple experiments. Approach 2 defines and calls the chromatin states by scoring the 

enrichment of signal in defined regions compared to the background across the same sized windows 

across all genomic regions (See Section 2.2.8.2.2). 
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For the purpose of this work, I used the definition of the promoter which is +/- 1kb around the 

transcription start site (TSS). I created the promoter file from the gencode annotation (Version 27, 

GRCh38.p10) file which includes detailed gene annotation on the reference chromosomes, 

scaffolds, assembly patches and alternate loci (i.e. haplotypes). A simple script was developed in an 

integrated development environment (IDE) for Java known as NetBeans (v8.2) and the annotation 

file in a GTF format along with the chromosome size file in a text format were used as inputs. The 

latter was generated from the index file of the human reference genome (Release 27, GRCh38.p10) 

using samtools and it contains the chromosome name and it corresponding chromosome size in a 

tab delimited file. The script took these two files as inputs, searched for the gene transcript and 

extracted the chromosome number, chromosome start position whether it is located in the positive 

strand or negative strand, the gene id and the transcript id. The script then used the start position 

and expanded the region around it by 1000bp either side. It merged all the transcript ids that have 

the same gene id and start position (TSS) in one line. The final output was presented in a tab 

delimited file and contains the chromosome number, the promoter region as start and end position, 

the gene id and the transcript ids. 

 

 

2.2.9.2.1 Chromatin state discovery and development of promoter calling approach using 

ChromHMM 

 
Before using ChromHMM (v1.23), the post-processed bam file was converted to a bed file using the 

Bamtobed function of the Bedtools. The bed file was then binarized with the commands 

“BinarizeBed -b 200” of the ChromHMM. Two files are required to binarize the data, the 

chromosome size (See Section 2.2.8.2) and the cell mark file table. The latter is a tab delimited file 

in which each row contains the name of the bed file and the corresponding control bed file for each 

cell type and mark. Figure 2.6 shows the selected options of cell mark file table for handling multiple 

cell types for ChromHMM. 
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Figure 2-6: A diagram showed the selected options of cell mark file table for handling multiple cell 

types for ChromHMM. Cell mark file table is designed by effectively concatenating multiple cell 

types to adjust the binarization threshold locally during the binarization step of ChromHMM. This 

results in one common and shared model. 

 

Next, a newly trained model was developed using the learnModel function of ChromHMM with 

default parameters but, depending on the analysed data, the number of states to be modeled can 

be decided by the user. In our case, models were trained to segment the genome into 4 chromatin 

states for the external dataset (in which two histone modifications were experimentally assessed) 

and 8 chromatin states for the in-house dataset (in which two histone modifications and a 

transcription factor were experimentally assessed). The states were then labelled, based on the 

probability of observing the histone marks in each state, as active (H3K4me3 only), repressive 

(H3K27me3 only) or bivalent (both marks present). In general, the resulting files (more specifically 

the emission file (.txt) and the segments file (.bed)) were used for downstream analysis. 

To call the promoter status in our regions of interest, a java program was developed in NetBeans. 

The program took the segment and emission files resulting from ChromHMM, and the pre-defined 

promoter file and gene expression file as inputs. The program was designed first to search for an 

intersection between each segment and the promoter region. Then, the number of intersected 



 63 

bases was calculated and reported in the corresponding emission column (Figure 2.7). The resulting 

tab delimited file was merged with the gene expression file based on the TSS id. These data were 

then analysed to get the distribution of the chromatin states across the promoter regions. 

 

 

 

 

 
 
 
 
 
 

Figure 2-7: A diagram showing the steps of generating the java program in NetBeans to call the 

promoter status using the ChromHMM based approach. A java program was developed in 

NetBeans to generate the promoter status calling file. The programme took the pre-defined 

promoter file, gencode annotation file, ChromHMM emission file and segment file as inputs and 

processed them to generate the promoter calling file. The program started by intersecting each 

segment with the promoter region, assign each intersection with its corresponding emission and 

then calculate the sum of intersected bases for each emission. The final call for each promoter was 

assigned based on the emission that harbour the highest number of intersected bases. 

 

2.2.9.2.2 Development of an alternative pipeline to characterize enriched genomic region 

This approach was developed into a programme called GBMProm in partnership with AD 

Bioinformatics, in parallel to me coding the ChromHMM-based approach as above. The main idea 

behind the approach is to identify the enrichment of reads binding in a given genomic region and 

score the number of reads in that region in comparison to a suitable background (See Appendix C 
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for the full R code of GBPprom approach). The use of the background is to ensure that the changes 

in read depth are not related to the genomic copy number and GC content. 

Prior to generating the read count, reads that align to notoriously difficult-to-accurately-map regions 

of the genome (i.e. blacklisted regions) were filtered out. The average read count per genomic 

region/window (!) of fixed size (w, which equates to 2-kb for my definition of a promoter i.e. 1kb 

either side of a TSS) was calculated (See Appendix C.1) by counting the number of aligned reads for the 

ChIP experiment (nrChIP) and control/background (nrinput), which is non-immunoprecipitated input 

DNA, and inputting that to the following equation: 

 

  

 

Where λChIP and λinput are the average read count per genomic region/window for ChIP experiment 

and input (i.e. control) sample respectively, W is 2-kb sliding window, nrChIP is the number of aligned 

reads for ChIP experiment, nrinput is the number of aligned reads for control/background and the 

genomeSize is the size of fixed intervals of the ChIP and control samples. 

 

Reads mapping in promoter regions were also counted for both the ChIP experiment and the input 

control. The probability of read enrichment for each promoter regions was counted and the scaling 

value (ɛ) was calculated as follows: 

 

"#$%&' =
)*_,*-.-/0*#$%&'

!#$%&'
 

 

Where ɛ is the scaling value (i.e. the deviation in the promoter read count from what is expected in 

the input experiment), nrinput is the number of aligned reads for control/background in the promoter 

region, W is 2-kb sliding window and λinput is the average read count per input (i.e. control) sample 

for the promoter region. 

 

λChIP =
1	 × 	)*4567	 
80)-.09:;0

 λinput =
1	 × 	)*#$%&'	 

80)-.09:;0
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Then, based on the assumption that random read alignment would follow a Poisson distribution, A, 

with parameter λ(ChIPpromoter), the significance of the signal per promoter in each window was 

evaluated using a nominal p-value which is defined as P (A ≤ a) in which: 

  

 

If ("#$%&' > 1){ D	~	F-:GG-)("#$%&'	H	!4567)} 

Else { D	~	F-:GG-)(!4567)} 

 

In statistics, Poisson distribution defines as a discrete frequency distribution that provides the 

likelihood of the number of independent events occurring within a certain time. Once all promoter 

p-values have been calculated, multiple testing correction was performed using the Benjamini-

Hochberg (BH) procedure with a default False Discovery Rate (FDR) value < 0.05. BH is a procedure 

used in testing multiple hypothesis by controlling FDR, which is defined as the proportion of false 

positive test results to the total number of positive test results. FDR was used here to elucidate the 

significance of promoter signal in which promoters that had a corrected P value < 1 x 10 -5 after 

correction are considered significant. The above steps were performed using calculate promoter 

signal script (See appendix C.2). 

The FDR-adjusted p-values were used to score promoters as enriched or not and this was initially 

set to a default of 1 x 10 -5 because this was selected within the publication I based this approach 

on (122- 125). The program gives a score of 0 if the adjusted p-value for each of the histone mark is 

higher than the selected threshold or 1 if the adjusted p-value is lower than the threshold at the 

promoter region. By combining scores, all possible chromatin states were defined in a certain order 

(See appendix C.3 for the full R script of scoring the enrichment of each promoter region). Figure 2-

8 shows a workflow diagram of this alternative pipeline to characterize enriched genomic region. To 

simplify the analysis of the chromatin states, I characterized these combined binary annotations to 

label promoters (i.e. active, repressive, etc). 
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Figure 2-8: A workflow diagram of the orthogonal pipeline to call enriched genomic region. 

 

A comparison between both promoter calling approaches were performed. For this purpose, I 

selected few promoters randomly and I assessed the reported promoter call from both approaches 

by visualizing the enrichment of each mark and see which approach gave the right call based on the 

enrichment. Also, I integrated the RNA-seq data to correlates the enrichment with gene expression 

at the selected promoters. Once the best approach was selected, I tried to analyse the external 

dataset and see if the selected approach along with the optimized p-value is suitable for the analysis 

and generates results similar to those published in the paper. I assessed the chromatin state 

transitions between GSC8 and GSC8per and the changes in gene expression. 

 

2.2.9.3 CUT&RUN analysis pipeline 
 

CUT&RUN raw sequencing data was analysed using the pipeline that was described in Section 

2.2.8.1 with slight modifications. Once the sample was post-processed, the quality of the data in 

terms of fragment size distribution, adapter content percentage, library size and read duplication 

rate was assessed. This was different in ChIP-seq data processing pipeline in which library 

complexity was computed as described in Section 2.2.8.1. The distribution of the fragment size of 

each sample was assessed using the bamPEFragmentSize function of Bedtools with default 

parameters. The remaining metrices were obtained from picard tool. 

With regards peak calling, I applied MACS3 as described in Section 2.2.8.1. In addition, I applied 

SEACR (v1.3) as recommended by CUT&RUN guidelines with default parameters and the output was 
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compared with MACS3 outputs. Based on the results, I optimized the parameters of the selected 

tool to get better results. The pipeline was then processed exactly as described above. 
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Chapter 3 
Experimental optimization and validation of JARID2 antibodies 

 
3.1 Introduction 
 

The primary aim of this study is to compare the epigenetic profiles of JARID2 and EZH2 binding and 

prevalence of H3K27me3 and H3K4me3 in patient–derived GBM cell lines derived from the primary 

and matched recurrence from the same patient. This can be achieved by performing ChIP-seq on 

these cell lines, however, the success of ChIP-seq experiments mainly relies on antibodies that can 

recognize the target proteins correctly. Therefore, it is necessary to validate all antibodies used in 

the ChIP-seq experiment to generate high-quality data. Antibodies against EZH2, H3k27me3 and 

H3k4me3 were validated in our group previously, so as per objective 1, I focused on validating 

JARID2 antibodies as this validation is central to my project. In this chapter, I detailed the 

approaches that I used to assess the specificity and the sensitivity of the selected JARID2 antibodies 

according to the ENCODE and modENCODE consortia and demonstrate that one antibody should 

work for our intended applications.  

 
3.1.1 Antibodies 

 

For many decades, antibodies have been crucial in the development of protein detection. They are 

among the most frequently used reagents in biomedical research, and in diagnostic and therapeutic 

applications (138, 163). Protein-based biochemical assays such as western blot and 

immunoprecipitation, cell-based assays such as flow cytometry and immunohistochemistry and 

proteomic assays use antibodies. Antibodies, also known as immunoglobins, naturally exist as a 

protective Y-shaped glycoprotein produced by B-lymphocytes in response to a foreign antigen. The 

antibody structure is composed of four polypeptide chains compromising, two identical heavy 

chains (H) and two identical light chains (L) linked to each other by disulphide bonds (Figure 3.1) 

(164, 165). Each chain of the heavy and light chains consists of constant (CH and CL) and variable 

domains (VH and VL). 
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Figure 3-1: Schematic representation of antibody structure. An antibody consists of four 

polypeptide chains: two identical heavy chains and two identical light chains connected by 

disulphide bonds (Red lines). Each light and heavy chain contains an amino-terminal variable (V) 

region and constant (C) region.  

   

This structure, in simplistic terms, facilitates antibody molecules to carry out two main dual 

functions in various regions of its structure. The first function is the recognition of the antigens 

which is achieved by antigen-binding fragment (Fab) and the second function is the removal of the 

antigen which is promoted by the interaction of the crystallizable fragment (Fc) with phagocytes or 

components of the complement pathway (164, 166, 167). Five major isotypes of antibody molecules 

can be found in the serum - IgM, IgG, IgA, IgD and IgE but the most frequently used isotype is IgG 

(164, 168). They are differing in the constant domain of the heavy chain they contain and their 

function (167). Two different types of antibodies have been made available to researchers to fulfil 

different research needs: monoclonal antibodies (mAbs) and polyclonal antibodies (pAbs). The 

details of these two types along with their production strategy are described below. 
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3.1.2 Commercial production of research antibodies 
 
Production of antibodies has emerged as an important element across many research disciplines. 

The antibodies are mainly produced by safe immunization of a purified antigen into host species, 

commonly mice or rabbits. This results in high expression levels of antigen-specific antibodies in the 

serum that can subsequently be extracted from the host animals (168-170). The generation of mAbs 

are first established by Kohler and Milstein in 1975 using a hybridoma technique and they awarded 

Nobel prize for this (171).  In the case of mAbs, immortal myeloma cells are fused with antibody-

secreting spleen cells from immunized animals to produce monoclonal hybridoma cell lines, which 

express a particular and unique antibody in the cell culture (170, 172, 173). In the case of pAbs, host 

animals are injected with antigen or antigen/adjuvant combinations in order to induce efficient 

antibody responses. Serum must typically be collected in order to monitor the response and to get 

the antibody. PAbs are capable of recognizing several different epitopes on the antigen, whereas, 

mAbs bind only to one single epitope on the antigen. The production of pAbs production is 

inexpensive and relatively quick in comparison to the generation of mAbs which is considered more 

expensive and time consuming (169, 172-174). Also, the generation of mAbs from hybridoma cell 

lines introduces genetic variability during hybridoma formation and this results in a frequent lacking 

of antibody specificity. The main reported issues of pAbs are batch-to-batch variations, high 

background and cross reactivity (175).  

 

Antibodies used as experimental reagents, typically, are classified as either primary antibodies that 

bind directly to specific antigens of interest or secondary antibodies that bind to the target-bound 

primary antibodies (170, 176)(Figure 3.2). Secondary antibodies are usually conjugated with 

fluorophores, such as rhodamine or fluorescein isothiocyanate (FITC), or enzymes, such as 

horseradish peroxidase (HRP) or alkaline phosphatase (AP), or biotin to enhances the detection and 

visualization of unconjugated primary antibodies bound to antigens (176-178). The selection of 

conjugate is dependent upon the desired application. These applications include western blotting, 

flow cytometry, ELISA, immunopurification, immunohistochemistry (176, 179). Despite the 

presence of various types of antibodies, their production requires careful designing, planning and 

implementation (169). 



 71 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2: Schematic representation of primary and secondary antibodies. Primary antibodies are 

antibodies that bind directly to an antigen, whereas, secondary antibodies are antibodies that bind 

to the target-bound primary antibodies. The secondary antibodies are usually conjugated or labelled 

with either fluorophore or enzymes such as horseradish peroxidase (HRP), alkaline phosphatase 

(AP), rhodamine, fluorescein isothiocyanate (FITC), or biotin to facilitate the detection of the signal.  

 

Commercial-scale production of antibodies is increasing each year to meet the market demands and 

much effort has therefore been made to generate high quality and stable antibodies (180, 181). 

However, the quality of the commercial research antibodies has been repeatedly put into question 

lately (175, 182). Major challenges that the scientists face are the lack of highly specific antibodies 

and inadequately validated antibodies (182, 183). Nonspecific antibodies often lead to inaccurate 

and irreproducible findings, therefore, confirming antibody specificity is critical to achieve accurate 

and consistent data (180, 182). Antibodies must be validated for each intended application and the 

validation criteria should at least include target specificity, especially in the application in which it is 

going to be used, and reproducibility (138, 139). 
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3.1.3 Antibody Validation   
 
Antibody validation can be defined as the procedure of assessing the selectivity, specificity and the 

reproducibility of the selected antibody (138, 139). Despite the fact that antibodies play a prominent 

role in the reproducibility of research data, there are no universal guidelines that define how 

antibodies should be validated but there are some accepted standardized methods that can be used 

to determine its validity (138, 183). Given this limitation, the main objective (objective 1) of this 

work is to set up a method to validate the specificity of the selected antibodies and make it available 

as antibodies validation mechanisms for any future work. 

I applied different methods as recommended by ENCODE consortium to assess the specificity of the 

selected antibodies and this involves a primary and a secondary method (See Chapter 1, Section 

1.6.1.1). First, I applied the knockdown approach to knockdown the target protein using small 

interfering ribonucleic acid (siRNA) followed by western blot analysis (See Chapter 2, Section 2.2.4.1 

for detail of siRNA assay). As described in Chapter 2, Section 2.2.4.1, siRNA knockdown is a 

biological mechanism where small synthetic interfering RNA mediates gene silencing by targeting 

and degrading mRNA transcript (184, 185). This assay is routinely used in the scientific laboratories 

to evaluate the specificity of a new antibody, because if mRNA is degraded, it means no more 

protein can be made and so cells with the gene knocked down by siRNA should have a reduced band 

on the Western Blot. However, even if the antibody is specific, siRNA knockdown is not always 

completely effective and it is usually transient, thus depending on the reduction level of mRNA and 

the stability of the target protein, there could not be a noticeable reduction in a band on the 

Western Blot (186-188). This can lead the researchers into attempting another effective method of 

validation which is overexpressing the protein in question and inspecting for a denser band (183). 

 

I next used an overexpression method in which an epitope tagged version of JARID2 was 

overexpressed, immunoprecipitated with tag antibody and immunoblotted using protein specific 

antibody. This method enables us to confirm the specificity of the selected antibodies (See Chapter 

2, Section 2.2.4.9). It has been widely used as a complementary assay to verify the antibody 

specificity. It is one of the most commonly applied method to study and identify protein-protein 

interaction (134). This interaction is detected only if the antibodies against the protein of interest is 

specific to its target. The main advantage of using epitope tagged protein is to test the specificity of 

antibodies against the protein of interest in IPs pulled down with different antibodies (i.e. flag) (138, 

189, 190). 
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The selection of JARID2 antibodies was based on the available reviews and publications and whether 

they were tested and used for Chip-seq application. The list of all selected JARID2 antibodies are 

provided in the Table 2.1 (See Chapter 2, Section 2.2.2). 

 

In this chapter, I present the approaches used to validate JARID2 antibodies and the results obtained 

from each approach. Also, I described how I troubleshooted the problems with the obtained results. 

 

3.2 Results 

 

3.2.1 JARID2 siRNA knockdown effectively induces the mRNA degradation of target transcripts  

JARID2 exists as three separate transcript isoforms based on the latest ENSEMBL (release 96) human 

gene annotation (Figure 3.3). Genomic alignments of each individual sequence of the SMARTpool 

siRNA reagents (See Chapter 2, Section 2.2.4.1 for a detail descriptions of these reagents) with the 

human reference genome indicated that these transcripts can each be targeted by at least two out 

of four smart pool siRNAs.  

 

 

 

 

 

 

 

Figure 3-3: Schematic representation of JARID2 isoforms showing siRNA binding sites and qPCR 

TaqMan probes. JARID2 exists as three different isoforms, each encoding a protein of differing 

molecular weight (140, 120 and 106kDa). Genomic alignment of each individual sequence of the 

SMARTpool siRNAs used in this study (blue arrows) indicated that all three isoforms are adequately 

targeted. qPCR probes are represented by green lines. Translation start sites are represented by 



 74 

curved arrows. Schematic Adapted From: Al-Raawi, D. et al., 2019. A novel form of JARID2 is 

required for differentiation in lineage-committed cells. The EMBO journal, 38(3), p.e98449.  

 

Validation of the selected JARID2 antibodies was first performed using siRNA knockdown of JARID2 

in the M059K GBM cell line. M059K cells were transfected with either pooled siRNA targeting JARID2 

or a pool of non-targeting siRNA which was used as a negative control for 24 hr, 48 hr and 72 hr. 

Knockdown efficiency of JARID2 in the mRNA level was examined and quantified using qPCR. qPCR 

analysis showed a successful knockdown of JARID2 up to 72 h. (Figure 3.4 a). As shown below, the 

expression level of JARID2 in cells that were transfected with JARID2 siRNA was lower than the cells 

that were transfected with non-targeting siRNA by more than 70%.  

The experiment was repeated using HEK293T cells (a human embryonic kidney cell line known to 

be highly transfectable) and the GBM63 patient-derived GBM cell line. These cells were transfected 

with siRNAs at final concentrations of 50nM for only 72h. A similar result was obtained in which a 

successful knockdown of JARID2 was observed at the 72hr time point (Figure 3.4 b). The expression 

of JARID2 was reduced by > 75% in the cells that were transfected with JARID2 siRNA, compared 

with control. In the first experiment, the reduction was observed at 24 h and this suggested that 

Lipofectamine® RNAiMAX, as the siRNA transfection reagent, is suitable for siRNA transfection 

assay. It is also indicating that this reagent is compatible with the selected cell lines. 
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Figure 3-4: siRNA knockdown efficiency of JARID2 in M059K, HEK293T and GBM63 cells. Total 

cellular RNA was extracted from MO59K cells transfected with 150nM of JARID2 siRNA or non-

targeting control siRNA for 24, 48 or 72 h and JARID2 transcript quantified using TaqMan qRT-PCR 

(A). Total cellular RNA was extracted from GBM63 and HEK293T cells transfected with 50nM of 

JARID2 siRNA or non-targeting control siRNA for 72 h and JARID2 transcript quantified using TaqMan 

qRT-PCR (B). Graphs depict relative gene expression normalized to a house keeping gene, GAPDH. 

Bars represent mean ± S.D of 3 technical replicates. 

 

 

 

3.2.2 JARID2 siRNA knockdown had no observable effect on the JARID2 protein level  
 
JARID2 exists as three different isoforms, each encoding a protein of different molecular weight 

(140, 120 and 106kDa). In addition, a cleaved product of full-length JARID2 denoted ΔN-JARID2 (~80 

kDa) was recently identified (Figure 3.5). For the purpose of this study, four different JARID2 

antibodies (See table 2.1 in Chapter 2, section 2.2.2 for the list of antibodies) that targets different 

regions of JARID2 protein were used in this study. 
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Figure 3-5: Schematic diagram represent the isoforms of JARID2 protein with their functional 

domain. Three different isoforms of JARID2 protein was identified with different molecular weight 

(140, 120 and 106kDa) along with the cleaved product of full-length JARID2 (ΔN-JARID2, ~80 kDa). 

The diagram shows the main functional domain of JARID2: JumonjiN (JmjN, red), AT-rich DNA 

binding domain (ARID, blue) and JumonjiN (JmjC, green). Regions with different protein sequences 

from the canonical isoforms are represented in yellow. Reproduced from 

https://www.uniprot.org/uniprotkb/Q92833/entry by UniProt consortium, 2023. 

 
To assesses the knockdown efficiency on the protein level and to see if the knockdown in the protein 

level reflects the qPCR results, I immunoblotted the protein lysates from M059K cells transfected 

with JARID2 siRNA and non-targeting siRNA for 24, 48 or 72 h. The immunoblot was first performed 

on a nitrocellulose membrane using JARID2 antibody (Novus biology) that recognizes the N-terminal 

region of JARID2 (expected to detect the full length 140kDa form of JARID2). Protein expression 

analysis did not show any reduction in JARID2 signal in the same order as the transcript levels (Figure 
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3.6 a), with JARID2 isoforms 1 and 3 quantified via normalisation to the loading control, GAPDH 

(Figure 3.6 b&c). I did not observe the expected change in protein level between JARID2 siRNA 

transfected cells and non-target siRNA transfected cells. In addition, non-specific bands were 

observed. 
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Figure 3-6: Western blot analysis of the efficiencies of siRNA knockdown of JARID2 in M059K cells. 

Total protein was extracted from M059K cells transfected with either JARID2 siRNA and non-target 

(control) siRNA for 24 hrs, 48 hrs and 72hrs (A). Western blot was carried out using a JARID2 

antibody that recognizes the N-terminal region of JARID2 protein with GAPDH (37kDa) used as 

loading control. western blot analysis did not show any reduction in JARID2 signal in the same order 

as the transcript levels. Also, multiple non-specific bands were observed. The blue arrows show the 

possible JARID2 140kDa and 105kDa bands. The bar graphs represent the quantification of the 

western blot results of JARID2 signal of (B) isoform 1 (140kDa) and (C) isoform 3 (105kDa) 

normalized to GAPDH using image lab. 

 

The western blot in Figure 3.6 had used nitrocellulose membrane as a transfer substrate. There is 

some evidence that antibody binding can be dependent on the type of membrane and so this was 

initially repeated using polyvinylidene difluoride (PVDF) membrane instead. Unfortunately, this 

resulted in complete absence of JARID2-assoicated bands at 140 kDa (Figure 3.7 a). Interestingly, 

the predominant band was observed at ~ 105 kDa in this case and a faint band was observed at ~ 

75 kDa which could represent the cleaved N-terminus of JARID2 in the truncated protein isoform. 

Signal intensities of isoform 3 (105kDa) was quantified and normalized to GAPDH (Figure 3.7 b). 

Different results were generated using nitrocellulose and PVDF membrane, thus, it was difficult to 

evaluate the knockdown of JARID2. 
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Figure 3-7: Western blot analysis of the efficiencies of siRNA knockdown of JARID2 expression in 

transfected M059K cells. Total protein was extracted from M059K cells transfected with JARID2 

siRNA and non-targeting siRNA and western blot was carried out using PVDF membrane and JARID2 

antibody that recognizes the N-terminal region (Novus biology) of JARID2 protein with GAPDH 

(37kDa) used as loading control (A). A complete absence of JARID2 isoform 1 (140kDa) band in all 

lanes was observed and strong bands were observed for all samples at 105kDa. The bar graphs 

represent the quantification of the western blot results of JARID2 signal of (B) isoform 3 (105kDa) 

normalized to GAPDH using image lab. 

 
I reverted to the nitrocellulose membrane and attempted the second antibody (i.e. from Cell 

signaling technology), which recognizes the C-terminal region of JARID2 protein sequence and may 

be expected to detect the full length (140kDa), isoform 3 and the cleaved C-terminus form (80kDa) 

of JARID2 (Figure 3.8). An almost complete absence of 140 kDa band was noticed for all samples 

and therefore, it was difficult to evaluate the knockdown for this canonical isoform at the protein 

level. However, clear bands (strong signal) were observed at 105kDa and ~75kDa for all samples. 

Using this antibody, more non-specific bands were observed in comparison with the first (N-

terminal detecting) antibody. Signal intensities of isoform 3 (105kDa) and the cleaved form were 

quantified and normalized to GAPDH (Figure 3.8 b&c).  
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Figure 3-8: Western blot analysis for validation of knockdown of JARID2 using siRNA in M059K 

cells. (A) Western blot of M059K cells transfected with JARID2 siRNA and non-target siRNA for 24h, 

48h and 72h carried out using nitrocellulose membrane and anti-JARID2 (CST) that recognizes the 

C-terminal region of JARID2 protein sequence. A complete absence of the canonical JARID2 protein 

(140 kDa) was observed and clear bands were observed in all lanes at ~75kDa and 105kDa. The bar 

graphs represent the quantification of the western blot results of JARID2 signal of (B) isoform 1 

(140kDa) and (C) isoform 3 (105kDa) normalized to GAPDH using image lab.  
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Western blot analysis was then attempted on GBM63 and HEK293T lysates in 3 technical replicates 

with two different antibodies that recognize the N-terminal (ab192252) and the C-terminal regions 

(ab93288), and similar results were obtained. No reduction in the intensity of the canonical (140kDa) 

isoform (Figure 3.9 a-b) was observed. Fewer non-specific bands were observed for the N-terminal 

antibody (i.e. ab192252) in comparison with all antibodies that were used in this study. These 

findings might imply issues with antibody specificity, therefore, the N-terminal antibody (ab192252) 

was selected as optimum for the remaining experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 
 

 
 
 

 
 

 
 
Figure 3-9: Representative image of western blot of siRNA transfected samples. Western blot of 

siRNA transfected cell lines (i.e. GBM63 and HEK293T) probed for two JARID2 antibodies: anti-

JARID2 ab192252 (A) and ab93288 (B) with β-actin displayed as a loading control. Same lysate was 
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divided into 3 technical replicates and each replicate was loaded in each well. There is no reduction 

in JARID2 intensity after 72 hours.       

 

3.2.3 The specificity of the selected JARID2 antibodies was verified via overexpression of the full 

length tagged JARID2 and co-immunoprecipitation (Co-IP) assays 

 
3.2.3.1 Construction of JARID2 expressing plasmids 
 
Next, I aimed to verify the specificity of the selected JARID2 antibody through overexpression of 

JARID2 protein and examine the presence of the exogenous version of this protein in the transfected 

cells. In this experiment, the design and construction of a full length JARID2 plasmid bearing 3xFlag 

tags (3xflag-JARID2) was achieved using LR cloning gateway methodology (see Chapter 2, Section 

2.2.4.6; this was completed by Dr Marilena Elpidorou, a postdoc in the Stead group). The maps of 

each plasmid are provided in Appendix D. The resultant expression plasmid was purified and verified 

by Sanger sequencing using CMV, M13 and SV40 primers along with internal primers designed 

within the JARID2 sequence (see table 2.5 in chapter 2, section 2.2-4.8). 

 

3.2.3.2  Immunodetection of the exogenous flag-tagged JARID2 protein via western blot 
 
The specificity of the selected JARID2 antibodies were verified via the overexpression of the tagged 

version of the gene followed by western blot assay. The experiment was performed on HEK293T 

cells transfected with the experimental flag-tagged plasmid, 3xflag-JARID2 and an empty GW306 

control plasmid (see Chapter 2, Section 2.2.4.9). Cells were grown to 60-70% confluency, lysed, 

protein extracted and analysed by western blotting to characterize JARID2 expression. 

 

Protein expression analysis of HEK293T plots confirmed the recognition of an overexpressed N-

terminally flag-tagged JARID2 protein in the cells that have been altered to overexpress JARID2. As 

shown in Figure 3.10, a higher molecular weight band, present only in the transfected cells was 

visualized using a flag-tag antibody (Figure 3.10a) and JARID2 (ab192252) antibody (Figure 3.10b). 

The flag-tag is only 8 amino acids long which corresponds to approximately 1 kDa in molecular 

weight. Also, a JARID2-associated band at 140 kDa was detected using JARID2 antibody (Figure 

3.10b), which was not detected in a membrane probed with flag-tag antibody. This indicates that 

flag-tagged JARID2 was successfully expressed in HEK293T cells as a result of the overexpression 

experiment. On the other hand, no band of flag-tagged JARID2 protein was observed in non-
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transfected cells or cells transfected with control plasmid. The absence of this band in these cells 

confirms that the signal is specific to transfection with flag-tagged JARID2 plasmid. It confirms that 

anti-JARID2 antibody (i.e. ab192252) is target-specific. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-10: Overexpression of flagged-tagged JARID2 in HEK293T cells. (a&b) Western blot 

analysis of HEK293T cells transfected with flagged-tagged JARID2 and an empty vector revealed the 
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expression of exogenous and 3xflag-tagged JARID2 in cells transfected with flagged-tagged JARID2 

construct only using anti-flag and anti-JARID2 (ab192252) antibodies. β-actin was used a loading 

control.  

 

To verify this observation further, an immunoprecipitation (IP) experiment was carried out on 

lysates transfected with plasmids encoding either flag-tagged JARID2 or GW306 control as a control 

(see Chapter 2, Section 2.2.5.4). To perform the IP, the transfected cells were subjected to IP with 

JARID2 (ab192252) or flag antibodies. The resulted pull-down protein complexes were run on 

western blot along with whole cell extracts and probed with either JARID2 (ab192252) or flag 

antibodies. Results obtained from western blot analysis showed that flag-tagged JARID2 protein was 

detected and bound by anti-JARID2 antibody and efficiently pulled down using protein A-agarose 

(Figure 3.11 a-b). A clear strong signal at ~143 kDa was observed in cell transfected with flag-tagged 

JARID2 construct and in IPs pulled with JARID2 and flag antibodies. No bands of flag-tagged JARID2 

protein were observed in non-transfected cells or cells transfected with control plasmid. 

Additionally, JARID2-associated band at 140 kDa was observed in a membrane immunoblotted with 

JARID2 antibody (Figure 3.11 b, Lane 1,2,3,5 and 7). These results together, demonstrated that 

overexpression studies and IP make use of epitope tags (i.e. flag tag) for studying the specificity of 

the antibody. In general, in the above tested applications and conditions, the specificity of JARID2 

antibody and more specifically ab192252 was validated and proved.  
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Figure 3-11: Western blot of overexpressed protein after co-immunoprecipitation assay. HEK293T 

cells were transfected with either 3xflag-tags or GW306 plasmids for up to 96 h. Co-

immunoprecipitation of purified 3xflag-tag JARID2 protein using antibodies against flag-tag and 

JARID2 (ab192252). The western blot was developed with anti-flag (a) and anti-JARID2 antibody 

(ab192252) (b) and both confirmed the expression of flagged-tagged JARID2 protein in the cells 

transfected with 3xflag-tag JARID2 plasmid compared to non-transfected and cells transfected with 

empty vector. Red arrows represent the IgG heavy chain at a molecular weight of ~ 50 kDa. 
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3.3 Discussion 
 

Antibodies are among the most widely used tools for protein detection, however, proper validation 

of their applicability for a given application is required before use. The specificity and the sensitivity 

of an antibody determines its usefulness (189). Several studies concentrate on recently identified 

proteins, such as in this project, hence an antibody to such a protein is not likely to have any proper 

validation. In this chapter I aimed to validate the selected JARID2 antibodies for the use in ChIP-seq 

and CUT&RUN assays as it is central to my project. I purchased several JARID2 antibodies from 

various suppliers that were sold as JARID2-specific (Table 2.1 in Chapter 2, Section 2.2.2).  

 

Several methods have been established to quantitatively evaluate the performance of the 

antibodies. This includes western blot (WB), siRNA, immunoprecipitation (IP), immunofluorescence 

(IF), knockdown or knock out of the target protein, immunoprecipitation with an epitope-tagged 

version of the protein and immunoprecipitation followed by mass spectrometry (138). For ChIP-seq, 

ENCODE consortia suggested a primary and a secondary mode of assessments to characterize the 

specificity of antibodies (134). In the context of this project, I investigated the feasibility of these 

assays in characterizing the specificity of the antibodies. As an initial attempt, I used siRNA 

knockdown assay to determine the specificity of JARID2 antibodies in different cells lines using 

SMARTpool siRNA reagents that target different JARID2 regions (Figure 3.3). I demonstrated that 

siRNA knockdown of JARID2 caused significant reduction in the mRNA level as early as 24 h post 

transfection (Figure 3.4 a&b) but not at the protein level. The signal for JARID2 was still present 

(Figures 3.6a, 3.7a, 3.9a and 3.9a). Also, a complete absence of JARID2 band at the expected 

molecular weight of 140 kDa was observed when a PVDF membrane was used (Figure 3.7a) and 

when the membrane was probed with CST antibody (Figure 3.8a).  In addition, several additional 

bands above and below the expected molecular weights for different JARID2 isoforms was observed 

and this also raises concerns about nonspecificity. Beside this, the presence of JARID2 protein after 

attempted knockdown might indicate that the protein is quite stable, therefore, remain relatively 

constant for a long period of time. Lack of specificity with commercial antibodies is relatively 

common; for example, this was reported by other group who tested two antibodies against HoxA1 

and phospho-4EBP1 on lysates from ten cell lines using a simple western blot assay. They reported 

a complete absence of H0xA1 band at the expected molecular weight of 37 kDa in 9 cell lines out of 

10. Likewise, they showed the presence of nonspecific bands at lower signal value level for both 

tested antibodies (138). On the contrary, Shuaib et al., examined the specificity of AGO1 antibody 
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for ChIP-seq application using the same approach. They showed that siRNA knockdown of AGO1 in 

HepG2 cells resulted in a successful degradation of AGO1 mRNA and a subsequent loss of the 

encoded protein in the cells that were transfected with siRNA against AGO1 compared to the cells 

that were transfected with control siRNA (191). Similarly, a successful knockdown in the mRNA and 

protein level was observed for siRNA-mediated WDR18 and EZH2 at 48 h post transfection (192). 

 

It has been noted that mRNA level and the protein level do not always correlate with each other 

and mRNA measurement can overestimate knockdown of genes whose protein products have long 

half-lives or present in abundant quantities (184). To address this limitation, I applied an alternative 

approach to assesses the specificity JARID2 antibodies. Overexpression of an epitope tagged version 

of protein followed by western blot was used. In the present study, FLAG-tagged JARID2 expression 

plasmid was constructed first using LR gateway cloning technology prior to the overexpression 

experiment. I emphasized the success of LR cloning gateway experiment and the creation of 3x 

Flagged-tagged JARID2 expression plasmid via Sanger sequencing. After verification, plasmid 

transfection was performed aimed at overexpressing the exogenous Flagged-tagged version of 

JARID2 in HEK293T. HEK293T cells transfected with an empty vector and un-transfected cells were 

used as reference. The success of exogenous JARID2 transfer into the cells was confirmed by a 

simple western blotting experiment. Western blot analysis shows a clear band for the fused Flag-

tag at a molecular weight of ~143 kDa (Figure 3.10a) when the membrane was probed with anti-

Flag antibody and this indicates the success of the transfection experiment. The detection of the 

overexpressed Flag tag along with JARID2 (Figure 3.10b) reveals that JARID2 antibody (i.e. 

ab192252) is target-specific. Also, I confirmed the applicability of the epitope-tags approach in 

evaluating antibody specificity through its capability in distinguishing the endogenous from the 

overexpressed (i.e. exogenous) proteins. Despite this, only few studies reported the use of this 

approach for antibody validation (183, 193, 194).   

 

The specificity was further verified through immunoprecipitation (IP) assay. In the present study, I 

performed an IP experiment to evaluate the use of the JARID2 antibody (i.e. ab192252). Lysates 

from HEK293T cells overexpressed with plasmids encoding either flag-tagged JARID2 or GW306 

control as a control were subjected to IP with JARID2 (ab192252) and flag antibodies followed by 

western blot. Western blot analysis indicated that this antibody is target-specific due to the 

presence of strong signal at the expected molecular weight of JARID2 (i.e. 140 kDa) in the samples 

that were immunoprecipitated with anti-JARID2 antibody (Figure 3.11 B, Lane 7). Together, these 
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findings showed that epitope tags, such as flag tag, are used in overexpression experiments and IP 

to investigate the antibody's specificity. Generally speaking, the specificity of the JARID2 antibody, 

and more particularly ab192252, was confirmed and proven in the aforementioned evaluated 

applications and settings. Instead of being utilized for validation, gene overexpression and co-IP 

were used to characterize protein-protein interactions (195-197). 

 

Collectively, the results indicated that the specificity of the available commercial antibodies is not 

as advertised and they often yield misleading results. Also, even if the antibody was designed to 

detect specific target protein, they may not always be successful in doing so in all applications. I 

concluded that among all the selected JARID2 antibodies, anti-JARID2 antibody (ab192252) is target-

specific and performs well in all applications that have been tested in this work. 
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Chapter 4 
Developing the computational approach 

This chapter summarizes the development of ChIP-seq data analysis pipeline and the development 

of a promoter status calling approach to classify whether multiple DNA binding factors or histone 

modifications were present in a pre-defined promoter region or not. The chapter outlines the major 

steps involves in a typical ChIP-seq computational analysis workflow based on the ENCODE 

consortium. In addition, it presents comprehensive details on the performance of the developed 

approaches in calling and characterizing the promoter states across the promoter regions. The 

developed approaches were applied on two datasets: an external dataset published in Liau et al 

(198) and in-house dataset derived from DNA from a fresh frozen pair of primary and matched 

recurrent GBM samples. The results from both approaches were compared to see which approach 

is producing results that make the most biological sense. The selected approach was used for further 

downstream analysis aiming to call the promoter status for H3K4me3, H3K27me3, JARID2 and EZH2 

binding in the above-mentioned datasets. 

4.1 Introduction 

As described earlier, epigenetics is the field of biology that studies how cells regulate gene activity 

without involving alterations in DNA sequence in a manner that is usually reversible. The well-

understood phenomenon of DNA methylation, histone modifications, chromatin remodeling and 

non-coding RNAs are the main molecular mechanisms that mediate epigenetic phenomena (69, 90, 

199). These mechanisms impact chromatin condensation, nuclear organization and the 

transcriptional state of the associated DNA, and therefore play a prominent role in modulating gene 

activity. Studying these mechanisms is important to discover regulatory regions and their cell type-

specific activity patterns and for interpreting disease-association studies (200, 201). Several studies 

have demonstrated that these epigenetic modifications take place mainly in the gene promoter 

which is commonly referred to as a genomic region at which the transcription of the gene is initiated 

(202, 203). It contains the transcription start sites (TSS) (+1bp) and it is often located directly 

upstream of the gene or at the 5’ end of the transcription starts sites.  As shown in Figure 4.1, the 

promoter is divided into three parts: (1) the core promoter which serves as a binding platform for 

the transcription machinery and it contains an RNA polymerase binding site typically situated ~ 34bp 

up stream of the transcription start site (TSS); (2) the proximal promoter a region that is normally 

found at ~ 250bp up stream of the TSS and contain several primary regulatory elements; (3) the 

distal promoter which is located upstream of the proximal promoter and contains transcription 
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factor binding sites along with additional regulatory elements such as enhancers and silencers (178, 

204). 

 

 

 

 

 

 

 

 

 

Figure 4-1: Schematic representation of the upstream regions that contribute to the full promoter 

region. The promoter region composed of the core promoter where transcription is initiated at the 

transcription start site (TSS, represented by black arrow) which is located at the 5’ end of a gene 

RNA polymerase II (Pol II). The proximal region is located upstream of the core promoter (~250 bp) 

and facilitates transcription through the binding of the transcription factors. Upstream of the 

proximal region is the distal promoter region. Different regulatory elements, including silencers, 

enhancers, and cis-elements (orange rectangular boxes), which control gene expression at the 

transcriptional level, are present in these two locations. 

 

The definition of the promoter region is not yet set. In this study, I used the definition of the 

promoter which is +/- 1kb around the TSS because it has been used in our group previously and 

found that a subset of genes is dysregulated in GBM’s patient following standard treatment due to 

the epigenetic remodeling of their promoters via mechanisms involving JARID2 as an adaptive 

response that mediates tumour recurrence. 

 

Genome-wide chromatin state annotations (“Chromatin state maps”) provide a rich source of 

information about the epigenomic landscape and how it contributes to cell identity, development, 

lineage specification and disease, yielding insights beyond what is typically obtained by RNA 

expression profiling. In recent years, genome wide mapping of chromatin states in humans has been 

via high throughput sequencing technologies (205-207). Chromatin immunoprecipitation (ChIP) 
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coupled with sequencing is the most widely used technique to generate genome-wide map of 

histone modifications associated with diverse regulatory and epigenetic functions, including 

H3K27me3, H3K4me3, H3K4me1, H3K9me3 and H3K27ac (207, 208). Nowadays, multiple consortia 

such as NIH Roadmap, Epigenomics, Encode, blueprint and DEEP are providing genome-wide maps 

of histone modifications generated by ChIP-seq (209, 210). 

 

The pattern of histone binding in different regions of the genome was originally identified using 

different peak finding tools as described in Chapter 1, Section 1.6.1.2. These tools separate the 

genome into regions of high and low enrichment of binding signal irrespective of the genomic 

function of these regions (152, 153, 211). The most commonly used tool is MACS2 and it has been 

used extensively to identify peaks in different studies (155, 212). However, these tools summarize 

only one ChIP-seq dataset (one experiment with a single antibody) at a time (212, 213). To integrate 

information across multiple datasets, researchers have shifted to unsupervised clustering 

approaches such as k-means and Hidden Markov Models (HMMs). These approaches enable the 

researchers to study various combinations of histone modifications and assign different regions of 

the genome into classes, or states, depending on the presence, absence or even the strength of 

signal for these modifications (157, 214). One of the most prominent approaches is ChromHMM 

which has proven its usefulness in determining the combinatorial patterns of multiple epigenetic 

marks as explained in Chapter 1, Section 1.6.1.2. It is a completely unsupervised HMM approach 

that defines the chromatin state through the presence or absence of histone marks or TF binding 

within specific segments of the genome but, these segments cannot be predefined by the user (157, 

214, 215). I decided to utilize ChromHMM to output promoter status calling because it has been 

widely used to annotate the epigenome in Roadmap and in the ENCODE projects. it has been applied 

on 111 Roadmap primary cell lines and 16 ENCODE cell lines with six histone marks. In addition, it 

was used to characterize cancer subtypes according to their chromatin profile (216-218).  In this 

study, I wished to be able to specifically call each promoter region’s status according to the presence 

or absence of binding or modification signal from multiple ChIPseq experiments on the same 

sample. 

 

One way to do this is was via adoption of ChromHMM to output promoter calling status so I could 

characterize the chromatin states in those specific regions in our datasets. I developed a bespoke 

java programming approach to use the standard ChromHMM output to assign a call for each 

promoter region, specifically, as per my objective 2. I denote this approach Approach 1 and I will 
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use this term in the context. To identify alternative methods, I also looked into the literature and 

tried to find if, and how, others had attempted to solve this problem. I found an approach in which 

a chromatin call was generated by scoring the enrichment of signal in defined regions compared to 

the background across the same sized windows across all genomic regions. I denote this approach 

Approach 2. I decided to apply both approaches and compare the outputs to see which is producing 

results that make the most biological sense. 

 

In this chapter, I present the general ChIP-seq analysis workflow step-by-step based on ENCODE 

consortia guidelines, from quality assessment to chromatin-state annotation (see Figure 2.6 in 

Chapter 2, Section 2.2-8.1). I then describe how I developed the promoter calling status approaches 

and compared the output from them (Figure 4.2). I conclude with which approach I decided to adopt 

for application to my cell lines and patient data. 

 

 

 

 

 

 

 

Figure 4-2: Schematic workflow of the proposed promoter calling status approaches. Two 

approaches have been developed. Approach 1 was developed based on ChromHMM output which 

was adapted via a bespoke java programming to assign a call for each promoter region. Approach 2 

was developed by scoring the enrichment of signal as 0 (not enriched) or as 1 (enriched) in defined 

regions compared to the background across the same sized windows. Both approaches were 

compared to determine which approach I should proceed with for my cell lines and patient datasets. 
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4.2 Results 
 
4.2.1 Identification of datasets for optimizing promoter status calling approaches 

As described in Chapter 2, Sections 2.2-8.1, I developed the ChIP-seq pipeline and the promoter 

calling approach using an external dataset, published in Liau et al, as the work discussed in this paper 

is very central to my project. This study investigated the changes in H3K27me3 and H3K4me3 

between GSC8 (an untreated patient-derived GBM stem cell line) and GSC8per (which are GSC8 cells 

that persist following a long-term treatment). These data are, therefore, relevant for the pipelines I 

need to develop but also enable me to analyse biologically relevant samples. I will be able to both 

compare the results obtained with those from the paper final results but also incorporate or 

consider the findings when analysing my own samples. 

In addition, DNA from a fresh frozen pair of primary and matched recurrent GBM samples in our lab 

underwent ChIPseq (performed externally at Active Motif, Inc) to assess EZH2, H3K27me3 and 

H3K4me3 in both samples and JARID2, though unfortunately this was only successful in the 

recurrence. These in-house ChIPseq data were also used to aid the development and optimisation 

of the ChIPseq data pipeline. None of these datasets have any biological replicates.  

4.2.2 ChIP-seq data pre-processing and read mapping 
 
The pipeline was developed and optimized using the external dataset first. In general, more than 15 

million 38bp single-end ChIP-seq reads were reported for this dataset except for one sample which 

has less than 10 million (see Table 4.1). The initial step in the proposed ChIP-seq pipeline was the 

quality evaluation of raw sequencing reads using FastQC. The program provided a simple checkpoint 

for the quality of the obtained data. Table 4.1 summarizes the main statistics of each analysed 

sample. The key quality metrices in the generated report including per sequence quality score, total 

number of sequences processed, sequence duplication levels and adapter content. 

 

Sample name Sample description Mean Sequence 

quality (phred 

score) 

Total 

sequence 

GC content 

SRR4420628 Input_GSC8per 35 30206748 40% 

SRR4420631 Input_GSC8 32 21983479 38% 

SRR4420639 H3K4me3_GSC8per 35 19437096 50% 
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SRR4420644 H3K4me3_GSC8 33 5142695 50% 

SRR4420649 H3K27me3_GSC8per 35 21435974 41% 

SRR4420654 H3K27me3_GSC8 32 16932524 40% 

 

Table 4-1: Main quality metrices for the external dataset from FastQC program. 
Table includes the sample name of the external dataset, their description, mean quality score of the 
sequence, total number of sequence and the percentage of GC content across the reads 

    

The quality scores at each position for all reads were high with a median quality score above 30. 

This indicated that the likelihood of incorrect base call is 1 in 1000 and the base call accuracy is 

99.9%. A better base call is usually associated with higher score. In general, the quality of the calls 

is divided into three categories: reads with very good quality score (> 28), reads with reasonable 

score (between 20 and 28) and reads with poor quality score (< 20). The proportion for each of the 

four nucleotides was relatively constant across all reads and this explains the absence or lower 

existence of overrepresented sequence. The GC composition pattern showed a slight deviation from 

the theoretical along the read length. No adapter content and overrepresented sequences were 

found in these samples; therefore, I proceed directly to the mapping step. The main alignment 

statistics are listed in Table 4.2. Almost all reads of all samples were mapped properly with an 

average mapping percentage of 99.9% with a uniquely mapped read of 93%. These values indicating 

high mapping efficiency. Mapped reads were processed further using Picard tools to remove 

unmapped and duplicated reads. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sample name Total number 

of mapped 

reads 

Alignment 

percentage 

Uniquely 

mapped reads 

(%) 

Input_GSC8per 30205279 100% 93.8% 

Input_GSC8 21981769 99.99% 93.7% 

H3K4me3_GSC8per 19436522 100% 93.7% 

H3K4me3_GSC8 5142495 100% 94.0% 

H3K27me3_GSC8per 21434808 99.99% 93.3% 

H3K27me3_GSC8 16931104 99.99% 93.3% 
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Table 4-2: Mapping statistics of the external datasets. 
Table includes the total number of mapped reads, the alignment percentage and the percentage of 
uniquely mapped reads of each sample of the external dataset. 

 

4.2.3 Assessment of library complexity and ChIP enrichment 

After processing, library complexity in terms of non-redundant fraction (NRF), relative strand cross-

correlation coefficient (RSC), normalized strand cross-correlation coefficient (NSC) and PCR 

bottleneck coefficient (PBC1 and PBC2) (see Chapter 1, Section 1.6.1.2 for definitions) was 

calculated and evaluated according to ENCODE guidelines as shown in Table 4.3. An NRF fraction of 

0.9 was observed suggesting a high complexity of the sequencing libraries for these samples. Also, 

higher enrichment of ChIP fragment (i.e. NSC & RSC > 1) around the targeted sites (i.e. around 

H3K27me3, H3K4me3, EZH2) over the background was observed. In general, this dataset showed 

an ideal library complexity and this confirms the absence of overrepresented/ duplicated reads in 

this dataset as described above.
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Table 4-3: Summary of library complexity and ChIP enrichment of the external dataset. 
Table summarized the library complexity of each sample of the external dataset in terms of NRF, NSC, RSC, PBC1, PBC2 and PCR bottlenecking 

 

 

Sample name Non-

redundant 

fraction 

(NRF) 

Complexity Relative Strand 

Cross-

correlation 

coefficient 

(NSC) 

Normalized 

Strand Cross-

correlation 

coefficient 

(RSC) 

PBC1/PBC2 Bottlenecking 

level 

Input_GSC8per 0.9 Ideal 2.01 1.5 0.9/87003.3 None 

Input_GSC8 0.9 Ideal 2.33 2.0 0.9/63549.1 None 

H3K4me3_GSC8per 0.9 Ideal 1.75 1.42 0.9/38331.6 None 

H3K4me3_GSC8 0.9 Ideal 1.09 1.22 0.9/102282.7 None 

H3K27me3_GSC8per 0.9 Ideal 1.88 1.63 0.9/83346.8 None 

H3K27me3_GSC8 0.9 Ideal 2.08 1.38 0.9/61149.2 None 
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4.2.4 Peak identification  

Initial identification of enriched regions (peaks) was performed using MACS2 pairing each 

ChIP-seq sample with its input control. Despite the fact that I need to call the promoter status 

as described above, I performed peak calling because it is considering a standard step that is 

done with ChIP-seq data analysis after read mapping and it is widely used by the researchers 

to identify true areas of enrichment along the genome. Additionally, I called the peaks in order 

to check and compare my findings with the published results. This will help me to ensure that 

the bam files processing is working correctly.  

Using the default or recommended parameters for broad peaks with a broad cut-off value of 

0.1 as mentioned in Chapter 2, Section 2.2-8.1, peak models for H3K27me3 histone mark and 

EZH2 datasets were generated. Peak models for H3K4me3 histone mark datasets were 

generated using the default parameters for narrow peak (see Chapter 2, Section 2.2-8.1 for 

more details) with a q-value of 0.01. The total number of significant peaks for H3K27me3 and 

H3K4me3 across the whole genome is plotted in Figure 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3: Identifications of H3K27me3 and H3K4me3 in the external dataset across the 

whole genome. Bar plots of the number of identified H3K27me3 and H3K4me3 peaks in GSC8 

and GSC8per samples across the whole genome.     
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A significant reduction of H3K27me3 mark by approximately 68% was observed in GSC8per 

cell state in comparison with GSC8 cell state. This finding agreed with Liau et al, which 

identified a global loss of H3K27me3 that was suggested to cause the transition of cell from 

naïve to persister state. Liau et al identified a complete loss of H3K27me3 in GSC8per of HEY1, 

FABP7 and DLX2 genes in comparison with GSC8, whereas, much smaller peaks were 

observed in GSC8per for SALL2 and METAP1D genes in comparison with the GSC8 state. My 

peak calling method also reproduced these more specific, gene-level findings (Figure 4.4) and 

this indicated that the processing of bam files is working well. 

 

 

 

 

Figure 4-4: ChIP-seq profiles of H3K27me3 at genomic loci of HEY1, FABP7, SALL2, MATAP1D 

and DLX2 according to my data processing. Examples of a complete absence of H3K27me3 

peak in HEY1, FABP7 and DLX2 genomic loci in GSC8per in comparison to GSC8. A global 

reduction in H3K27me3 peaks was observed in SALL2 and METAP1D genomic loci.  

 

4.2.5 Chromatin state analysis 

4.2.5.1  Chromatin state discovery (Approach 1) 

To characterise JARID2 and EZH2 binding profiles and the location of specific histone marks 

(H3K27me3 and H3K4me3) in primary and recurrent GBM samples, I employed the most 

widely used tool ChromHMM. I originally developed and implemented the promoter calling 

status approach on the aforementioned external dataset from Liau et al. 
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Prior to generating the chromatin state model, the resulting post-processed bam files were 

converted to bed files using bamtobed function of Bedtools (version 2.30). All bed files were 

binarized using the binarizeBed function of ChromHMM with default parameters. By default, 

the interval parameter value is set to 200bp to divide the genome into segments. All input 

samples were used as controls to adjust the binarization locally as described in Chapter 2, 

section 2.2-8.2.1. The binarized data was used as input to train the model using the 

learnModel function of ChromHMM. The common model of chromatin states was generated 

by effectively concatenating multiple cell types (see Figure 2.7 in Chapter 2, Section 2.2-8.2.1) 

corresponding to two histone mark (H3K27me3 and H3k4me3) resulting in one shared model 

for all cell types with cell-type-specific annotations. A model with 4 functionally distinct 

chromatin states were generated based on the selected learn model parameters as shown in 

Figure 4.5. These states are Null (neither mark), repressed (i.e. H3K27me3 only), bivalent (i.e. 

both H3K27me3 and H3K4me3 exists and active (i.e. H3K4me3 only). 

 

   

 

 

 

 

 

 
 
 
 
 
Figure 4-5: ChromHMM model based on an external dataset from Liau et al. Emission profile 

from a 4-State LearnModel based on the two histone modifications studied.  Each state is 

represented by a separate row, and each mark is represented by a different column. 

ChromHMM identifies functionally distinct chromatin states representing null (state 1), 

repressive (state 2), bivalent (state 3) and active (state 4). The probability of each state is 

indicated by a different shade of blue; a darker shade of blue indicates a higher likelihood of 

seeing the mark in that condition. 
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The learned emission parameters were returned in a four-column segmentation file (.txt 

format) and a heatmap image. The segmentation file contains segments (partitions of the 

genome) along with corresponding emission states (i.e. E1, E2, E3, etc). The image file is the 

representation of the emission file in which each row is a state and each column is an input 

data file ("histone mark" or EZH2 or any other mark). In each state, the probability vector 

represents the likelihood of finding each mark in that particular state. The darker the blue 

colour the greater the probability of observing the mark in that state. I then annotated each 

candidate state based on the probability of each mark in that state. The corresponding 

annotation of the observed states along with their emission probability were given in 

Appendix E. 

As we were interested in characterizing chromatin state in promoter regions, we used our 

pre-defined promoter regions which is +/- 1kb either side of the TSS. I used the gencode 

annotation file version 27 that contains comprehensive gene annotation of the reference 

chromosomes, scaffolds, assembly patches and alternate loci (haplotypes) to create the 

promoter file as described in Chapter 2, Section 2.2-8.2. I developed the promoter status 

calling approach using Java programming language in NetBeans IDE. In brief, four different 

source files with .java extension were created with one main method that contain some 

statements and information about the methods, variable and constants that I used to 

generate the desired output. The pre-defined promoter file, the resulting segmentation file 

and the emission file from learnModel function of ChromHMM was used as inputs to create 

the promoter calling file in .txt format. The resulting file was formatted to include the 

information of the promoter region in terms of chromosome number, start position, end 

position, transcript ID and gene ID.  In addition, the number of overlapped bases for each 

state in each promoter region and the final promoter call/emission was included in the 

resulted file.  The final promoter call was assigned based on the state that harbor the highest 

number of bases as shown in Figure 4.6. The promoter calling files produced by Approach 1, 

were compared with Approach 2. The latter is described below and the analysis of the 

comparison is in Section 4.2.4.3. 
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Figure 4-6: Schematic representation of promoter calling status assignment based on 

approach 1. The pre-defined promoter file, the resulting ChromHMM segment files and 

emission file were used as input to generate the promoter calling status file. The final state 

call was assigned based on the state that harboured the highest number of bases. 

 

4.2.5.2 Promoter enrichment method (Approach 2) 

In parallel with the above-mentioned approach, I inspected the literature to see how others 

tried to define promoter regions in terms of multiple histone marks, and how they 

score/quantify them. I identified an alternative approach in which a group defined enriched 

regions based on read counts against a background model (Figure 4.7). 
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Figure 4-7: Schematic diagram of the development of promoter enrichment method 

(Approach 2). Enriched intervals were identified by comparing the mean fragment count in a 

fixed window size (distance between orange circles) against background. Read count 

intersecting within each fixed size window was first counted for a local enrichment of ChIP or 

control (i.e. input DNA, fragmented but not immunoprecipitated) signal across the genomic 

region and then across the promoter region (Identified within a red rectangle). For any given 

window, the normalized enrichment is calculated from the significance of the read count 

compared with the null hypothesis of no enrichment, using a Poisson test. The score given is 

either 0 (not significantly enriched) or 1 (significantly enriched). 

 

Genomic regions enriched for each of the histone mark were detected as explained in Chapter 

2, Section 2.2-8.2.2 by comparing the mean fragment count of the aligned reads in a fixed 

size window (w) of 2-kb. In short, the number of reads intersecting with each fixed-size 

window across the whole genome were counted for a local enrichment of ChIP versus 

control/background signal. Under the assumption that random read alignment follows a 

Poisson distribution with parameter λChIP, calculated across the whole tiled genome first and 

then this value was used within significance testing of the read count in each promoter 

window. The calculation used the read depth within the corresponding window in the 

matched input control, as a factor of the average window read count in the same control, to 

weight λChIP. In our case, the p-value threshold was initially set to a default of 1 x 10-5 because 

this was selected within the publication I based this approach on.  

This approach was developed into a programme called GBMProm in partnership with AD 

Bioinformatics, in parallel to me coding Approach 1, as explained above. GBMProm calculates 

a p-value for enrichment of each histone mark or DNA binding factor within a promoter 

region. The default p-value threshold of 1 x 10-5 was used to classify a binary score (i.e. the 

program gives a score of 0 if the adjusted p-value for each of the histone mark is higher than 

the selected threshold or 1 if the adjusted p-value is lower than the threshold at the promoter 

region). By combining binary scores from all experiments, defined in a certain order, the 

overall chromatin state of each promoter was ascertained. For example, the first score 

represents the enrichment state of H3K27me3 and the second score represent the 

enrichment state of H3K4me3 (and the third for EZH2, which was not studied in the external 
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dataset). So, ‘000’ means zero enrichment of all marks, ‘100’ means the enrichment of 

H3K27me3 only, ‘110’ means the enrichment of both marks and ‘010’ means the enrichment 

of H3K4me3 only (see Table 4.4 below). I then characterized these combined binary 

annotations to label promoters as shown in Table 4.5 as active, repressive or bivalent based 

on the existence of each element (see Section 4.2.4.3 for more detail). 

4.2.5.3 Comparing and contrasting approaches 

4.2.5.3.1 Quantitative comparison between emission/call occurrence across the promoter 

regions between ChromHMM and enriched pipeline approaches 

First, I compared how each approach characterizes the observed chromatin states. Despite 

the fact that each approach calls the final chromatin states for each promoter region 

differently as described above, both approaches gave a similar characterization and 

description of the resulting chromatin states for each sample (Table 4.4). An almost similar 

enrichment pattern of each state was observed for both approaches (Figure 4.8 a&b). 

State (emission 
order) 

ChromHMM emission Enriched pipeline 
Call 

Enriched pipeline 
state 

E1 Null 000 Null 
E2 Repressed 100 Repressed 
E3 Bivalent 110 Bivalent 
E4 Active 010 Active 

 

Table 4-4: Chromatin states calls from Approach 1 and Approach 2 for the external dataset. 
Table includes ChromHMM emission, enriched pipeline call and state 
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Figure 4-8: Comparison of the characterized chromatin states between Approach 1 (a) and 

Approach 2 (b) in GSC8 and GSC8per samples. Bar plots shows the occurrence of each state 

across the promoter regions. The X-axes represent the chromatin states, while the Y-axes 

represent the number of chromatin states occurrence in the GCS8 and GCS8per samples. 

  

 
4.2.5.3.2 Integration of RNA-seq data to optimize promoter calling parameters 

To determine which approach was giving the most accurate promoter call, I integrated RNA-

seq data with the output of each approach. The advantage of this integration is to see which 

approach best links changes in the chromatin states with the observed changes in the gene 

expression, based on what we know of the activating or repressive roles of these marks on 

gene expression. The integration was performed by intersecting RNA-seq-derived expression 

data for the samples in question with the promoter calling file from Approach 1 and Approach 

2, respectively. The output files included, the promoter region, the final chromatin calls for 

both the pre- and post-treatment sample, the associated gene expression data in terms of 

FPKM and the change in gene expression through treatment as log2FC. 

First, using the external dataset, I selected several promoter regions, at random, where there 

was a discrepancy between the promoter call from the two approaches. I loaded the bigwig 
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files from bam files for each histone mark in IGV to visually assess the enrichment of each 

mark at the selected region in comparison with the input (i.e. control sample with no mark) 

(Figure 4.9 a-d). Also, I loaded the segment file from ChromHMM in IGV to visualize the state 

segmentations across the selected promoter region. Then, I compared the final promoter 

status call from both approaches based on their algorithms (See sections 4.2.5.1 and 4.2.5.2 

for explanations of the algorithms). Next, I integrated RNA-seq data to assess the correlation 

of the final call with gene expression (Table 4.5). 

Promoter region Final 
Approach 1 

promoter call 

Approach 2 
promoter call  

Notes for 
ChromHMM 

high 
resolution 

Notes from IGV and 
RNA-seq data 

Cell state: primary cell (GSC8) 
chr2:164621848 
 

E2: Repressed 110 – Bivalent 
 
 

E1:152 
E2:1048 
E3:800 
 

The call from 
approach 1 is 
inconsistent with 
IGV result. It agrees 
that the signal is 
present but not the 
majority. The call 
from approach 2 is 
consistent with IGV 
result (Figure 4.9 a). 

chr12:132610543 
 

E2: Repressed 010- Active 
 

E2:1400 
E3:600 
 

The call from 
approach 1 is 
inconsistent with 
IGV result. It agrees 
that the signal is 
present but not the 
majority. The call 
from approach 2 is 
consistent with IGV 
result due to the 
presence of high 
signal of H3K4me3 
(Figure 4.9 b). 

chr1:10694479 
 

E3- Bivalent 010- Active E2:879 
E3: 1121 

The call from 
approach 1 is 
inconsistent with 
IGV result. It agrees 
that the signal is 
present but not the 
majority. The call 
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from approach 2 is 
consistent with IGV 
result due to the 
presence of high 
signal of H3K4me3.  

chr8:22579646 
 

E2- Repressed 110-Bivalent E2:1200 
E3:800 

The calls from both 
approaches are 
inconsistent with 
IGV result. There is a 
clear signal of 
H3K4me3.   

chr8:23084403 
 

E2: repressed 000- Null E2:2000 The calls from both 
approaches are 
inconsistent with 
IGV result. IGV 
analysis indicated 
the presence of 
H3K4me3 signal and 
the gene expression 
revealed higher 
gene expression for 
this cell state. 

Cell state: Persistent cell (GSC8per) 
chr7:151814840 
 

E1: Null 010- Active E1: 1400 
E4: 600 

The call from 
approach 1 is 
inconsistent with 
IGV result. It agrees 
that the signal is 
present but not the 
majority. The call 
from approach 2 is 
consistent with IGV 
result as there is a 
clear signal of 
H3K4me3 (Figure 
4.9 c). However, 
gene expression 
analysis indicated a 
reduced expression 
of genes as it goes 
from GSC8 to 
GSC8per.  

chr1:925738 
 

E2: Repressed 110: Bivalent E2: 1138 
E3: 862 

The calls from both 
approaches are 
inconsistent with 
IGV result as it 
supposed to be 
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called active based 
on IGV analysis 
(Figure 4.9 d). There 
is a clear signal for 
H3K4me3.I tried to 
correlate this with 
gene expression but 
the results indicated 
a reduced 
expression of gene 
as it goes from GSC8 
to GSC8per. 

chr2:164621848 E4: Active 110- Bivalent E1: 648 
E4: 1352 

The call from 
approach 1 is 
inconsistent with 
IGV result. It agrees 
that the signal is 
present but not the 
majority. The call 
from approach 2 is 
consistent with IGV 
result as there is a 
clear signal for both 
marks (Figure 4.9 f). 

chr12:132610543 E3: Bivalent 110- Bivalent E1: 543 
E2: 257 
E3: 1000 
E4: 200 

Both approaches 
called this promoter 
as bivalent which is 
consistent with IGV 
result. However, the 
signal from 
H3K4me3 is 
apparent and the 
bivalency is just 
starting. This finding 
is nicely correlated 
with gene 
expression analysis 
which showed an 
increase in the 
signal due the high 
enrichment of 
H3K4me3. 

chr13:20192898 
 

E3: Bivalent 010- Active E2: 600 
E3: 1400 

The call from 
approach 1 is 
inconsistent with 
IGV result. The call 
from approach 2 is 



 108 

consistent with IGV 
result as there is a 
clear signal for 
H3K4me3 mark. 
Gene expression 
analysis showed an 
increase in the gene 
expression in this 
cell state. 

 

Table 4-5: IGV results of the called chromatin states using Approach 1 and Approach 2 for 
the external dataset. 
Table includes the promoter region, the final call from Approach 1 and approach 2, notes 
from ChromHMM high resolution and notes from IGV and RNA-seq data for the external 
dataset 
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Figure 4.9: Integrative genomic viewer (IGV) browser tracks of H3K4me3, H3K27me3 
aligned to a human reference genome in comparison to the input (i.e. control) sample and 
the state segmentations from ChromHMM. The upper blue tracks represent read 
enrichments of H3K4me3 and H3K27me3 in comparison to the input sample across three 
different promoter regions (a,b and c). The lower tracks at the bottom of the image represent 
the state segments resulted from ChromHMM. The tracks are aligned to a human reference 
genome (hg38). E1, E2, E3 and E4 represent ChromHMM emissions for each segment. The 
annotation of each emission is determined based of the probability of observing each mark 
in that state (See figure 4.5 and table 4.4 for emission annotations). 

 

Based on the above results, there is a clear disagreement between both approaches at the 

selected promoters; however, Approach 2 seems to best annotate the promoters in 

comparison to Approach 1. This might be due to the fact that Approach 1 picks up signals in 

that region, but the choice of ‘most prevalent state’ across the promoter is removing that 

signal (Figure 4.5). For example, in figure 4.9a and table 4.5, ChromHMM indicates that 

H3K4me3 and H3K27me3 signals are present at that promoter region, but because 
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ChromHMM is sub-sectioning the promoter region into separate segments with its 

corresponding state, it was difficult to assign one final call for that promoter region using the 

information given by ChromHMM. The developed approach (i.e. Approach 1) was designed 

to call the promoter status in our regions of interest (i.e. +/- 1kb either side of the TSS) and 

the final call was assigned based on the state that harbors the highest number of bases, as 

shown in Figure 4.6. However, based on the given examples (Figure 4.9 a-c), the assignment 

of the final call based on the ‘most prevalent state’ is neglecting the signal of the other mark.    

 In general, the quantitative analysis, the assessment of chromatin transition and the 

correlation of the chromatin states with its gene expression indicated that Approach 2 is more 

accurate than Approach 1. 

4.2.5.3.3 Optimization of p-value threshold 

Despite the fact that Approach 2 calls the promoter status accurately, it still required further 

optimization by increasing the stringency. This was achieved by changing the p-value 

threshold at which significance is reached and a promoter is scored as containing the mark 

(1) versus not doing (0). Promoters in the GSC8 samples for which the H3K4me3 p-value is > 

0.05 (i.e. that do not contain the active mark) were filtered. Then, I created boxplots of the 

gene expression of promoters with H3K27me3 at p-values thresholds ranging from 1x10-5 to 

1x10-23 as shown in Figure 4.10a. I counted the number of the promoters marked as having 

the H3K27me3 mark at each p-value threshold to see how increased stringency of calling 

affected scored as ‘1’. I quantified the percentage of the reduction in these promoters as the 

p-value threshold decreased from 1x10-5 to 1x10-23. The idea is to select a suitable p-value 

where we see a plateau in gene expression for what are considered ‘repressed’ promoters. 

Changes in the gene expression were observed to plateau for promoters with H3K27me3 

mark at a p-value of 1x10-15. I repeated the above approach for the GSC8per samples (Figure 

4.10b) and a change in gene expression was observed at 1x10-13 and 1x10-15.  Next, I applied 

the above approach for those promoters in GSC8 that do not contain the repressive mark (i.e. 

H3K27me3 p-value is > 0.05) and I plotted the gene expression of promoters with H3K4me3 

at p-values thresholds ranging from 1x10-5 to 1x10-23 (Figure 4.10c). Similar steps were applied 

for H3K4me3 promoters in GSC8per samples and I plotted their gene expression (Figure 

4.10d). No changes were observed at any selected p-values in the promoters with H3K4me3 
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mark in both cell states. In view of the above results, I decided to select a p-value of 1x10-15 

for further downstream analysis for both marks to ensure ease of use of the programme. 
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Figure 4-10: The box plots of log2-transformed gene expression of promoters with each 

histone mark in GSC8 and GSC8per samples using different p-value thresholds. (a) Box plots 

showing the gene expression of GSC8 promoters with H3K27me3 mark only and do not 

contain H3K4me3 mark (i.e. H3K4me3 p-value is > 0.05) at p-values thresholds ranging from 

1x10-5 to 1x10-23. (b) Box plots showing the gene expression of GSC8per promoters with 

H3K27me3 mark only and do not contain H3K4me3 mark (i.e. H3K4me3 p-value is > 0.05) at 

p-values thresholds ranging from 1x10-5 to 1x10-23. (c) Box plots showing the gene expression 

of GSC8 promoters with H3K4me3 mark only and do not contain H3K27me3 mark (i.e. 

H3K27me3 p-value is > 0.05) at p-values thresholds ranging from 1x10-5 to 1x10-23. (d) Box 
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plots showing the gene expression of GSC8per promoters with H3K4me3 mark only and do 

not contain H3K27me3 mark (i.e. H3K27me3 p-value is > 0.05) at p-values thresholds ranging 

from 1x10-5 to 1x10-23. The X-axes represent the p-value thresholds, while the Y-axes 

represent the log2-transformed gene expression of the promoters in GSC8 and GSC8per 

samples. The horizontal lines in each column of the plot represents the mean gene expression 

value. 

 

In order to ensure that the selection of this p-value is suitable for the analysis, I decided to 

assess the enrichment of H3K27me3 in GSC8 naïve and GSC8per using it, in comparison to 

some of the specific findings in the published paper. This was to check that my bespoke 

method would yield those same results. It was stated in the paper that Notch 1 intracellular 

domain-associated genes (N1ICD) that have the H3K27me3 mark in GCS8 tend to lose it in 

GSC8per. I examined these genes and I found either a reduction (Figure 4.11 a) or complete 

loss (Figure 4.11 b) of H3K27me3 signal in GSC8per in comparison to GSC8 naïve. The gene 

expression was studied and I found clear changes in the gene expression in GSC8 naïve and 

GSC8per due to the loss of H3K27me3 mark (Figure 4.12). The reduction of H3K27me3 causes 

an increase in the gene expression of NTRK2 and SGK4. These findings suggested that 

Approach 2 along with the optimized p-value of 1x10-15 is generating comparable results to 

those in the paper. 
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Figure 4-11: Distribution of H3K27me3 mark in N1ICD-associated loci between GSC8 naïve 

and GSC8per. Chromatin state transition of H3K27me3 in the promoter regions of NTRK2 (a) 

and SGK4 (b) genes between GSC8 naïve and GSC8per. SGK4 gene has only one reported state 

transition across its promoters which is repressive to bivalent. Whereas, NTRK2 gene has two 

reported state changes: two promoters with bivalent-active transition and two promoters with 

repressive-repressive transition. n refers to the number of promoters for each gene.  
 

 

 

 

 

 

 

Figure 4-12: Gene expression analysis of N1ICD-associated loci between GSC8 naïve and 

GSC8per shows the effect of a reduction in H3K27me3 signal. Increases in the expression of 

gene promoters in NTRK2 (a), SGK4 (b) due to the global reduction in H3K27me3 enrichments 

in GSC8per in comparison to GSC8 naïve. A decrease in the expression of gene promoter in 

DPF3 (D) was also observed. The X-axes represent the cell types, while the Y-axes represent 

the log2-transformed gene expression of the promoters in GSC8 and GSC8per samples. The 

horizontal lines in each column of the plot represents the mean gene expression value.  
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4.3  Implementation and optimization of the developed ChIP-seq pipeline and promoter 

calling status approaches on an in-house ChIPseq dataset 

 

An in-house dataset (see Section 4.2.1) was also used to develop and implement ChIP-seq 

pipeline and optimize the promoter calling approaches. This is useful to ensure the 

reproducibility of the results and that the developed pipeline is designed to be applicable for 

different datasets. I applied the above described steps on this dataset typically from quality 

assessment of raw reads to promoter calling approach comparison. 

 

More than 30 million 75bp single-end ChIP-seq reads were collected from high throughput 

sequencing for all samples except the JARID2 experiment (Table 4.6). The quality of each 

sample was evaluated: the mean quality score per read was > 35 in all cases. Quality 

assessment indicated the existence of overrepresented sequence and adapters. The GC 

composition is more than 40% and this amount of GC content in the library causes a deviation 

in the distribution of GC content from the normal distribution level. In our case, the sum of 

deviations from the normal distribution is between 15% and 30%.
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Table 4-6: Main quality metrices of the in-house dataset from FastQC program. 
Table summarized the quality metrices of an in-house dataset in terms of mean quality score 
of the reads, total number of sequence and the percentage of GC content across the reads 

  

Sample 

name 

Sample description Mean Sequence 

quality (phred 

score) 

Total 

sequence 

GC content 

EZH2_P EZH2-ChIP of primary 

fresh frozen GBM tissue 

35 37947592 46% 

EZH2_R EZH2-ChIP of recurrent 

fresh frozen GBM tissue 

35 37334507 

 

42% 

H3K4me3_P H3K4me3-ChIP of 

primary fresh frozen 

GBM tissue 

35 37423744 61% 

H3K4me3_R H3K4me3-ChIP of 

recurrent fresh frozen 

GBM tissue 

35 38895833 63% 

H3K27me3_P H3K27me3-ChIP of 

primary fresh frozen 

GBM tissue 

35 47456449 53% 

H3K27me3_R H3K27me3-ChIP of 

recurrent fresh frozen 

GBM tissue 

35 35582578 51% 

JARID2_R JARID2-ChIP of recurrent 

fresh frozen GBM tissue 

35 49455157 45% 

Input_P Input-ChIP of primary 

fresh frozen GBM tissue 

35 34625927 

 

40% 

Input_R Input-ChIP of recurrent 

fresh frozen GBM tissue 

35 31639635 43% 
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Due to the presence of adapter content and overrepresented sequences, I trimmed these 

sequences and I filtered low quality reads using Cutadapt. Trimmed reads were re-assessed 

again using FastQC as described above and these trimmed reads were mapped to the human 

reference genome. The main alignment statistics was obtained (Table 4.7) and the results 

suggested that the reads for each sample were mapped properly with a uniquely mapping 

percentage of more than 80%. 

 

                

 

 

 

Table 4-7: Mapping statistics of the in-house datasets. 
Table summarizes the mapping statistics of each sample of in-house dataset in terms of total 
number of mapped reads, the alignment percentages and the percentages of uniquely 
mapped reads  

 

 

Then, the library complexity was evaluated and an NRF value between 0.6 and 1 (Table 4.8) 

was observed for all samples except the H3K27me3-ChIP of the primary sample which has a 

lower library complexity (NRF < 0.4). The classification of library complexity was based on 

ENCODE guidelines in which the complexity is called ideal if an NRF value is > 0.9, acceptable 

if it is between 0.7 and 0.9 and concerning if it is < 0.7. 

 

Sample name Total number 

of mapped 

reads 

Alignment 

percentage 

Uniquely 

mapped 

reads 

EZH2_P 3040728 82% 87% 

EZH2_R 35067574 94% 88% 

H3K4me3_P 35483357 96% 80% 

H3K4me3_R 34957858 96% 80% 

H3K27me3_P 41776595 91% 90% 

H3K27me3_R 33188331 94% 92% 

JARID2_R 47543358 96% 88% 

Input_P 33123148 96% 87% 

Input_R 30607299 97% 87% 
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Table 4-8: Summary of library complexity and ChIP enrichment of the in-house dataset. 

Table summarizes the library complexity of each sample of in-house dataset in terms of NRF, library complexity, NSC, RSC, PBC1, PBC2 and PCR 
bottlenecking level  

Sample name Non-

redundant 

fraction 

(NRF) 

Complexity Relative 

Strand Cross-

correlation 

coefficient 

(NSC) 

Normalized 

Strand Cross-

correlation 

coefficient 

(RSC) 

PBC1/PBC2 Bottlenecking 

level 

EZH2_P 0.8 Compliant 1.05 3.61 0.8/4.1 Mild 

EZH2_R 0.7 Acceptable 1.05 4.57 0.7/3.5 Mild 

H3K4me3_P 0.7 Acceptable 2.03 1.17 0.7/3.6 Moderate 

H3K4me3_R 0.6 Acceptable 2.34 1.20 0.6/2.8 Moderate 

H3K27me3_P 0.4 Concerning 1.38 1.31 0.4/1.4 Moderate 

H3K27me3_R 0.6 Acceptable 1.23 1.51 0.6/2.2 Moderate 

JARID2_R 0.7 Acceptable 1.02 1.5 0.7/2.5 Moderate 

Input_P 1.0 Ideal 1.01 1.01 1.0/30.3 None 

Input_R 1.0 Ideal 1.01 1.01 1.0/33.4 None 
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The ENCODE consortium endorses an NRF of > 0.8 for 10 million reads. Therefore, I 

downsampled the read depth to 10 million for this dataset and I reassessed the library 

complexity again. An NRF of > 0.9 was observed for all samples (See Table 4.9). As shown in 

Table 4.8, higher enrichment of ChIP fragment (i.e. NSC & RSC > 1) around the targeted sites 

(i.e. around H3K27me3, H3K4me3, EZH2 and JARID2) over the background was observed. In 

general, this dataset showed an acceptable library complexity. 

 

 

 
 
 
 
 
 
 

 

Table 4-9: Library complexity of the in-house dataset after down-sampling the reads to 10 
million. 
Table includes the NRF value of subsampled samples and the library complexity for each 
sample of an in-house dataset. 

 

Sample name NRF_subsample to 10 

million reads 

Complexity 

EZH2_P 0.9 Ideal 

EZH2_R 0.9 Ideal 

H3K4me3_P 0.9 Ideal 

H3K4me3_R 0.8 Compliant 

H3K27me3_P 0.8 Compliant 

H3K27me3_R 0.8 Compliant 

JARID2_R 0.8 Compliant 

Input_P 1.0 Ideal 

Input_R 1.0 Ideal 
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Then, I assessed the applicability of Approach 1 on this dataset. A model with 8 chromatin 

states was characterized by ChromHMM as shown in Figure 4.13. These states are in order 

null (neither mark), weakly repressed (i.e. weak H3K27me3 signal), repressed (i.e. H3K27me3 

signal only), bivalent (i.e. both H3K27me3 and H3K4me3 signal exists) with higher signal of 

H3K27me3, bivalent with higher signal of H3K4me3, active (i.e. H3K4me3 only), bivalent with 

higher signal of H3K4me3 along with EZH2 signal, and weak bivalent along with EZH2 signal. 

 

 

 

 

 

 

 

 

 

 

Figure 4-13: ChromHMM model based on an in-house dataset. Emission profile from an 8-

State LearnModel based on the two histone modifications and EZH2. Each row corresponds 

to a different state, and each column corresponds to a different mark. ChromHMM identifies 

functionally distinct chromatin states representing null (state 1), weakly repressed (state 2), 

repressed (state 3), bivalent-R (both marks are present but with higher probability of the 

repressive mark, state 4), bivalent-A (both marks are present but with higher probability of 

the active mark, state 5), active (state 6), bivalent-A + EZH2 (state7, both marks are present 

but with higher probability of active mark in addition with EZH2),  weak bivalent + EZH2 (state 

8, both marks are present but both occur with lower probabilities in addition to EZH2). The 

probability of each state is represented by blue colour, the darker blue colour corresponds to 

a greater probability of observing the mark in the state. 

 

The resulting segment file from ChromHMM was used to generate the final promoter calling 

file as described above. In addition, I applied Approach 2 to call the final promoter status and 

this was compared with the resulting file from Approach 1 to further determine and confirm 



 122 

which I should progress with. The characterization of the resulting promoter states was 

determined as shown in Table 4.10. A noticeable difference in the characterization of the 

promoter states between the two approaches were observed. The biggest difference seems 

to be in the loss of EZH2 signal using Approach 1. 

 

State (emission 
order) 

ChromHMM emission Enriched pipeline 
Call 

Enriched pipeline 
state 

E1 Null 000 Null 
E2 Weakly repressed 010 Active 
E3 repressed 110 Bivalent 
E4 Bivalent-Repressive 111 Bivalent+EZH2 
E5 Bivalent-Active 100 Repressive 
E6 Active 011 Active+EZH2 
E7 Bivalent-active + EZH2 001 EZH2 
E8 Weak bivalent + EZH2 101 Repressive+EZH2 

 

Table 4-10: Chromatin states calls based on approach 1 and approach 2 for an in-house 
dataset. 
Table includes the emission state from ChromHMM and the promoter call from enriched 
pipeline 

 

In order to further compare and contrast between the two promoter calling approaches, I 

performed a quantitative analysis by comparing the occurrence of the chromatin states calls 

that were resulted from Approach 1 and Approach 2. A considerable difference in the 

characterization of the chromatin state between both approaches was found (Figure 4.14 a-

b). For example, approach 2 identifies some promoters with EZH2, whereas, an absence of 

promoters with EZH2 was noticed in approach 1. Similarly, promoters with bivalent state were 

found using approach 2 but not in approach 1.  
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Figure 4-14: Comparison of the characterized chromatin states between approach 1 (a) and 

approach 2 (b) in the primary and recurrent samples of the in-house dataset. Bar plots 

shows the occurrence of 8 chromatin states across the promoter regions from an in-house 

dataset. The X-axes represent the chromatin states, while the Y-axes represent the number 

of chromatin states occurrence in the primary and recurrent samples.  

 

Then, I visually assessed the chromatin state calls across randomly selected promoters as 

described above and I correlated the chromatin state call with its gene expression to 

determine which approach annotates the promoter correctly (Table 4.11).  

 

Promoter region Final 
approach 1 

promoter call 

Approach 2 
promoter call  

Notes for 
ChromHM

M high 
resolution 

Notes from IGV and RNA-
seq data 

Cell state: primary cell 
chr1:911435 
 
 

E3: Repressed 111 – 
Bivalent+EZH2 
 
 

E3: 1035 
E4: 965 
 
 

IGV analysis indicated the 
presence of high signal of 
H3K27me3 followed by 
H3K4me3 and EZH2 which 
means that this Promoter 
should called bivalent with 
the presence of EZH2.  



 124 

Approach 1 called this 
promoter as repressed 
despite the fact that the 
bivalent state is present 
but the signal for this state 
is not the majority. 
Approach 2 called this 
promoter as bivalent with 
the presence of EZH2 
which is correct. 

chr1:19923617 
 

E1: Null 001: EZH2  
 

According to IGV analysis, 
the call from approach 1 is 
consistent with IGV result 
as there is a clear signal for 
EZH2. There is a loss in 
EZH2 signal using 
Approach 1. 

chr8:22141902 
 

E6- Active 110- Bivalent E5:400 
E6: 1298 
E8:302 

According to IGV, the call 
from approach 1 is 
inconsistent with IGV 
result. It agrees that the 
signal for both marks are 
present but not the 
majority, therefore it was 
called active. The call from 
approach 2 is consistent 
with IGV result due to the 
presence of high signal of 
H3K4me3 and H3K27me3.  

chr19:40750448 
 

E7- Bivalent-
active + EZH2 

011-Active + EZH2 E6:800 
E7:1200 

According to IGV, the call 
from approach 2 is 
consistent with IGV result 
due to the presence of 
clear signals of H3K4me3 
and EZH2 and the absence 
of H3K27me3 signals. 
There is a clear loss of EZH2 
signal using Approach 1.   

chr3:51978080 
 

E8: Weak 
bivalent + 
EZH2 

010- Active E6:320 
E8: 1680 

The call from approaches 
are inconsistent with IGV 
result despite the fact that 
there is signals for 
H3K4me3 and EZH2. 
Approach 1 called it 
bivalent, however, there is 
no signal for H3K27me3. 
Approach 2 called it active 
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but it loses the call of EZH2 
which is clearly present. 

Cell state: Recurrent 
chr3:78670540 
 

E1: Null 001- EZH2 E1: 2000 
 

According to IGV, there is a 
clear signal for EZH2, 
therefore, the call from 
approach 2 is consistent 
with IGV result. There is a 
clear loss of EZH2 call using 
Approach 1.  

chr10:80208209 
 

E1: Null 100: Repressive E1: 1009 
E4: 200 
E5: 191 
E6:200 
E8: 400 

According to IGV, the call 
from approach 2 is 
consistent with IGV result 
as there is a clear signal of 
H3K27me3 in the 
recurrent sample. 

chr17:42745049 
 

E6: Active 110- Bivalent E3: 49 
E4: 400 
E5:400 
E6:1151 

According to IGV, the call 
from approach 2 is 
consistent with IGV result 
due to the presence of 
H3K4me3 and H3K27me3 
signals. Approach 1 agrees 
that the signal for both 
marks is present (i.e. 
bivalent) but not the 
majority. 

chr9:127399964 
 

E8: Repressed 010- Active E6: 436 
E8: 1564 
 

The call from approach 2 
is consistent with IGV 
result due to the presence 
of H3K4me3 signal. 
Approach 1 agrees the 
signal for H3K4me3 is 
there but not majority 
 

chr5:173235206 
 

E4: Bivalent-
Repressive 

111- Bivalent + 
EZH2 

E4: 2000 Both approaches called 
this promoter region as 
bivalent, however 
Approach 1 indicated that 
there is a high signal of 
H3K27me3 in comparison 
to H3K4me3 therefore it 
called it bivalent + 
repressive. Approach 2 
called it bivalent with EZH2 
which is more accurate 
due to the presence of 
EZH2 signal. 
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Table 4-11: IGV results of the called chromatin states using approach 1 and approach 2 for 
an in-house dataset. 
Table includes the promoter region, the final call from Approach 1 and approach 2, notes 
from ChromHMM high resolution and notes from IGV and RNA-seq data for an in-house 
dataset 

 

Based on the above results, there is a clear disagreement between both approaches, 

however, Approach 2 annotates all the promoter regions accurately with a better resolution 

in comparison to Approach 1. In addition, and as I mentioned above, the biggest difference 

seems to be in the loss of EZH2 signal using Approach 1. I further optimized Approach 2 by 

increasing the stringency of the p-value and I repeated the same steps as in section 4.2.4.4 to 

determine the suitable p-value where we see a plateau in gene expression for what are 

considered either ‘repressed’ promoters (Figure 4.15 a-b) or ‘active’ promoters (Figure c-d). 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 



 127 
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Figure 4-15: The box plots of log2-transformed gene expression of promoters with each 

histone mark in the primary and recurrent samples of the in-house dataset using different 

p-value thresholds. (a) Box plots showing the gene expression of the primary promoters with 

H3K27me3 mark only and do not contain H3K4me3 mark (i.e. H3K4me3 p-value is > 0.05) at 

p-values thresholds ranging from 1x10-5 to 1x10-23. (b) Box plots showing the gene expression 

of the recurrent promoters with H3K27me3 mark only and do not contain H3K4me3 mark (i.e. 

H3K4me3 p-value is > 0.05) at p-values thresholds ranging from 1x10-5 to 1x10-23. (c) Box plots 

showing the gene expression of the primary promoters with H3K4me3 mark only and do not 

contain H3K27me3 mark (i.e. H3K27me3 p-value is > 0.05) at p-values thresholds ranging from 

1x10-5 to 1x10-23. (d) Box plots showing the gene expression of the recurrent promoters with 

H3K4me3 mark only and do not contain H3K27me3 mark (i.e. H3K27me3 p-value is > 0.05) at 

p-values thresholds ranging from 1x10-5 to 1x10-23. The X-axes represent the p-value 

thresholds, while the Y-axes represent the log2-transformed gene expression of the 

promoters in the primary and recurrent samples. The horizontal lines in each column of the 

plot represents the mean gene expression value. 
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A plateau in the gene expression was observed in the promoters with H3K27me3 at a p-value 

threshold of 1x10-15. It was difficult to confirm this selection for the promoters with H3K4me3 

mark only, therefore, a p-value of 1x10-15 was selected to be used for further downstream 

analysis. 

 

4.4 Discussion  

High throughput sequencing technology have made it feasible to identify several epigenome 

markers across the genome in various cell lines (128). It is useful to annotate specific genomic 

regions with regards their distinct chromatin states to give more detailed characteristics of 

epigenetic signatures (e.g., poised promoter, active enhancer) for each cell. Chromatin 

immunoprecipitation (ChIP) followed by sequencing is one of the most commonly used 

technologies to create genome-wide chromatin-state maps (219). 

 

This chapter aimed to assemble a ChIP-seq data analysis pipeline and adopt or develop a 

promoter status calling approach to classify whether multiple DNA binding factors or histone 

modifications were present in a pre-defined promoter region or not. For the purpose of this 

work, I developed a ChIP-seq analysis pipeline based on the ENCODE consortium. A typical 

ChIP-seq computational analysis workflow consists of five main steps namely raw data quality 

assessment, trimming low quality reads and adapter sequences, sequence alignment, 

removal of the duplicated reads and peak calling. I demonstrated the applicability of the 

proposed ChIP-seq analysis pipeline on an external dataset from Liau et al (198). I showed 

that the results generated from this pipeline was similar to those in the paper in which a 

global reduction in H3K27me3 peaks was observed in the GSC8per cells in comparison to 

GSC8 cells (Figure 4.3). This finding suggested that the bam file processing is working 

correctly. Numerous studies implement this general ChIP-seq pipeline to generate global 

epigenomic profiles of different histone marks across multiple cell lines (198, 220, 221).    

 

As this study aimed to call and score each promoter region’s status according to the presence 

or absence of binding or modification signal from multiple ChIPseq experiments on the same 

sample, two promoter status calling approaches were developed as described in Sections 



 130 

4.5.2.1 and 4.5.2.2. Approach 1 was developed via adoption of ChromHMM to output 

promoter calling status. A bespoke java programming approach was developed to use the 

standard ChromHMM output to assign a call for each promoter region, specifically, as per my 

objective 2. Approach 2 was developed by scoring the enrichment of signal in defined regions 

compared to the background across the same sized windows across all genomic regions 

(Figure 4.2). The success of this approach in detecting and scoring the enrichment of 

transcription factors and histone modifications across different cell lines was reported in 

several studies (206, 222-224).  

 

The performance of each approach was compared to see which is producing results that make 

the most biological sense. An inspection of raw data determined that Approach 1 does detect 

signal in the promoter region but the choice of ‘most prevalent state’ across that region 

removes that signal from the call, leading to a loss of resolution (Table 4.10). One was to 

resolve this may have been to set a different threshold in deciding which states to call. 

Approach 2 worked best upon inspection at default setting, however, in some promoters, the 

final promoter calls were inconsistent with IGV results and this might be linked to the p-value 

that was used as default in this study (i.e. 1x10-5).  

 

The issue of inconsistency between the promoter call and the IGV results was solved by 

optimising the threshold. I tested different p-value thresholds that can be used for further 

analysis and the results suggested the use of a p-value threshold of 1x10-15.  I was able to 

show that Approach 2 with the optimized p-value is generating reproducible results in which 

a significant reduction or a clear absence of H3K27me3 mark in GSC8per in comparison to 

GSC8 naïve was observed (Figure 4.11 and 4.12). This finding was similar to those reported in 

the paper (198). 

 

In view of the above reported findings, I concluded that Approach 2 enables us to score the 

enrichment of histone marks along with EZH2 in the promoter regions as per our objective 2. 

Therefore, I employed the developed pipeline to detect and score the enrichments of the two 

histone marks along with along with EZH2 and JARID2 in our in-house dataset and the analysis 

is provided in the next chapter (see Chapter 5).  
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Chapter 5 

Genome-wide profiling of H3K4me3, H3K27me3 and EZH2 and their roles in gene 

transcription in a primary and recurrent GBM sample 

 

5.1 Introduction 

As described in Chapter 1, section 1.3.4, the N-terminal tail domains of histone proteins are 

subjected to numerous post-translational modifications including methylation, acetylation, 

ubiquitination, and phosphorylation. These modifications alter the structure of the chromatin 

either directly or indirectly, leading to alterations in gene transcription (74, 77, 80). These 

transcriptional changes in gene expression have been linked to tumour progression and 

metastasis of several cancer forms, including GBM (81, 101). H3K27me3 and H3K4me3 are 

the most well-characterized H3 methylation and their role in cancer development has been 

extensively studied (102). In addition to these marks, EZH2, a subunit of Polycomb Repressive 

Complex 2 (PRC2), generally mediates H3K27me3, which suppresses stem cell differentiation 

while mediating stem cell maintenance and self-renewal by trimethylating H3K27 (101). 

Numerous studies showed that regulation of histone modifications by PRC2 is a key factor of 

tumour cell plasticity and it is necessary for glioblastoma cells to survive and adapt to their 

microenvironment. Poor prognosis in GBM patients is caused by disruption of PRC2 function, 

which is caused by overexpression of its enzyme component EZH2, underscoring the 

significance of this histone modification in glioblastoma biology. Numerous genes involved in 

cell-cycle control, cell differentiation, proliferation, and self-renewal were discovered to be 

suppressed by EZH2 and PRC2 (69, 103)(see Chapter 1, section 1.3.4.1 for more detail). 

 

Recent studies demonstrated the role of JARID2 in regulating gene expression through its 

colocalization with EZH2, which promotes the recruitment of PRC2 (110). Contribution of 

EZH2 and JARID2 was found to be associated with tumour progression and carcinogenesis 

(112). The role of JARID2 was emphasized in our group and the preliminary data suggest that 

gene expression changes associated with JARID2 occur during GBM recurrence. The work 

highlighted JARID2 as a potential master regulator of transcriptional changes through 

treatment, but furthermore showed that these changes were taking place at genes that are 

commonly found to be bivalent in both normal brain and glioma tissue (67). I decided to 
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investigate this further by characterising and comparing the binding site profiles of EZH2 (as 

the catalytic subunit of PRC2) and the two histone marks in a matched pair of primary and 

recurrent fresh frozen GBM samples. I used genome-wide approach for this purpose. It has 

been demonstrated that profiling of histone modifications provides precise descriptive data 

that can be used to infer the regulatory effects of histone modifications on gene expression 

(see Chapter 1, section 1.3.4.1) (117). I had also planned to profile the binding of JARID2 but 

the limiting factor was the amount of tissue available, meaning a full repertoire of antibodies 

could not be used. The timing of this aspect of the work was during COVID19, when the 

complete validation of the JARID2 antibodies were to complete. Given that ChIP validated 

antibodies existed for EZH2 and the two histone marks, these were prioritised. 

 

This chapter summarizes the generation and the analysis of genome-wide chromatin states 

of H3K27me3, H3K4me3 and EZH2 binding for a matched pair of primary and recurrent fresh 

frozen GBM samples from an Up responder (one in which the genes dysregulated through 

treatment are increased in expression from primary to recurrence). It outlines the analysis 

that was performed to quantify the presence of the histone marks, along with EZH2 binding, 

in gene promoter regions using the genomic enrichment approach. Also, it provides a 

comprehensive comparative analysis of chromatin states between the primary and recurrent 

samples. The difference in the prevalence of all marks between samples was statistically 

examined using Chi-squared tests. The analysis was first performed globally across all 

promoter regions. Then, I focused on analysing a subset of genes that was found to be 

dysregulated in GBM’s patients following standard treatment. These genes are connected by 

containing JARID2 binding sites, according to publicly available ChIPseq datasets, and have 

been coined the JARID2-Binding Site genes (JBS genes). The JBS genes were included in gene 

set enrichment analysis applied to a gene expression data from a cohort of paired GBM 

samples, and were found to be the most significant gene set that is dysregulated through 

treatment in GBM patients. Within these JBS genes, I looked specifically at those JBSgenes 

that were in the leading edge (i.e. had driven the gene set’s enrichment in the gene expression 

data) of at least 50% of patients (denoted as LE50) and in the leading edge of at least 70% of 

patients (denoted as LE70). Next, I examined the state transitions through treatment across 

all promoters, in JBS, LE50 and LE70 genes (see chapter 1, section 1.3.4.1 for more details).  
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To gain insight into the role of H3K4me3 and H3K27me3 in transcriptional regulation of the 

genes, I integrated the chromatin state maps with gene expression data. I examined the 

impact that the amount of H3K4me3, H3K27me3 and EZH2 binding at each promoter region 

had on gene expression across all gene subsets (i.e. JBS, LE50, LE70 and non-JBSgenes). I used 

a penalised regression approach called ridge regression to see how well the changes in the 

binding of each histone mark of ChIP experiments can predict the changes in gene expression. 

 

Regression analysis is an important statistical method for describing and characterizing the 

relationship between a single dependent variable (Y) and one or several independent variables 

(X). The analysis generates a model that predicts the effect of one or more explanatory 

variables on the response variable (225, 226). Regression has been widely employed in every 

scientific and technological discipline, as well as in finance and economics. In genetic studies, 

ridge regression has been used to accurately predict the level of gene expression (227). The 

most common types of regression analysis are simple linear regression, multiple regression, 

least absolute shrinkage and selection operator (Lasso) regression and ridge regression (226). 

Simple regression, as its name implies, is the most basic type of regression. It is used to study 

the effect of one independent variable on one dependent variable only when the relationship 

is linear (226). Linear regression is specified by the equation: 

 

Y =  a × X + b 

 

Where Y is the dependent variable, a is the slope of the line, b is the y-intersect of the line and 

X is the independent variable (i.e. features). 

 

The slop a is called regression coefficient and it gives an indication of how much the 

independent variable X contributed to the explanation of the dependent variable Y. In many 

cases, the contribution of a single independent variable is insufficient to fully explain the 

dependent variable Y. Therefore, multivariable regression analysis should be performed (226, 

228).  
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Multiple regression is similar to simple linear regression except that it involves one or more 

independent variables to predict the outcome of dependent variable (229). Multiple linear 

regression equation can be expressed as follow:  

 

y = a1x1 + a2x2 + a3x3 + ..... + anxn + b 

 

Where Y is the dependent variable, a1, a2, a3, …., an are the coefficients, b is the y-intersect 

of the line and x1, x2, x3 , …, xn are the independent variable (i.e. features). 

 

 

Multiple linear regression enables the analysts to characterize the variation in the model and 

the relative contributions of each independent variable to the overall variance (230). 

However, as the number of variables increases, the model becomes complex and the analysts 

must carefully consider how many features to keep and which ones to eliminate. The process 

of feature selection in machine learning is an important step to preventing overfitting (231). 

LASSO is one of the regularized linear regression that can be used for feature selection and 

parameter elimination by adding the penalty term L1 regularization to the absolute value of 

magnitude of coefficients to lower the coefficient to zero. LASSO uses the advantage of 

feature selection to build models for datasets that suffer from the multicollinearity problem 

(i.e. independent variables are highly correlated) (232, 233). Ridge regression (RR) is another 

type of the regularized regression model that is used to simplify model complexity, but instead 

of performing feature selection, it estimates and shrinks the coefficients of correlated 

predictors toward zero. RR penalizes the total squared regression coefficients with an L2 

penalty like regular sum of square residuals methods (184, 186, 233) as follows: 

 

     RSS + λΣβj
2 

 

Where RSS is sum of the square residuals, λ lambda is the shrinkage penalty, Σ a Greek symbol 

that means sum and β is the weights of the coefficients of the independent variables  
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The sum of square residuals is calculated as follows:   

 

      RSS = Σ(yi – ŷi)2  

 

Where yi is the actual response value for ith observation and ŷi is the predicted response value 

based on the multiple linear regression model. 

 

The shrinkage factor which is “λΣβj2 “and the amount of the penalty can be controlled using 

λ. Choosing a suitable λ value is critical. For instance, the penalty term is ineffective when λ 

=0, and ridge regression will result in the conventional least squares coefficients. However, as 

λ approaches infinity, the shrinkage penalty becomes more significant and the ridge 

regression coefficients approach zero (234). It has been shown that in terms of the prediction 

errors, RR perform the best among the other regression approaches. This is because RR 

estimates a regression coefficient for each predictor variable rather than performing variable 

selection (188). Despite this, the main challenge in RR applications is the selection of the ridge 

parameter that controls the level of shrinkage of the regression coefficients (189). 

 

5.2 Results 

5.2.1 Chromatin states in a primary versus matched recurrent GBM sample differ most at 

the genes for which expression is most commonly dysregulated through treatment 

 
I initially focused on comparing the epigenetic landscape of a matched pair of primary and 

recurrent fresh frozen GBM samples as described in Chapter 4, section 4.2.1. This is 

essential to explore the change in epigenetic marks in response to treatment. I performed 

this comparison by profiling histone H3 lysine 4 trimethylation (H3K4me3; an active mark 

responsible for transcriptional initiation), H3 lysine 27 trimethylation (H3K27me3, a 

repressive mark responsible for transcriptional inhibition) and Enhancer of Zeste 2 Polycomb 

Repressive Complex 2 Subunit (EZH2, the catalytic subunit of PRC2 that is responsible for 

trimethylating lysine-27 of histone 3 i.e. creation of the repressive H3K27me3 mark) and 

calling their status using the genomic enrichment approach with optimised parameters (see 

Chapter 4) at our pre-defined promoter regions. In summary: the chromatin state map was 
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generated by scoring the enrichment of signal in defined regions compared to the 

background across the same sized windows (i.e. 2-kb) across all genomic regions. 

 

I started the analysis by annotating the chromatin state of each promoter into readily 

interpretable annotation based on the giving score of each element (i.e. H3K4me3, 

H3K27me3 and EZH2). The program gives a score of 0 if the adjusted p-value for each of the 

histone mark is higher than the selected threshold or 1 if the adjusted p-value is lower than 

the threshold at the promoter region. The results suggested the presence of 8 distinct 

chromatin states (Table 5.1) across the promoter regions of each sample as shown in Figure 

5.1. 

 

State (emission order) Enriched pipeline Call Enriched pipeline state 
E1 000 Null 
E2 010 Active 
E3 110 Bivalent 
E4 111 Bivalent+EZH2 
E5 100 Repressive 
E6 011 Active+EZH2 
E7 001 EZH2 
E8 101 Repressive+EZH2 

 

Table 5-1: Chromatin states calls based on approach 2 for an in-house dataset. 
Table includes the emission state order, the state call and its corresponding annotations 
based on enriched pipeline (approach 2 from Chapter 4) 

 

Figure 5.1 indicates that the distribution pattern of the chromatin states across the promoter 

regions is similar for the primary and recurrent samples with the dominant state of null (i.e. 

no histone mark or EZH2 signal) followed by active (H3K4me3 alone) and then bivalent 

(H3K4me3 and H3K27me3). I assessed whether the prevalence of all marks differed between 

samples statistically using a 2x8 Chi-squared test. Results indicated that there is no significant 

difference in the distribution (Chi-square P-value > 0.05).  Then, I examined the significance 

of the individual states that showed a visual difference in their enrichment (i.e. active and 

bivalent) between the primary and recurrent samples using 2x2 contingency tables (e.g. a 2 x 

2 being ‘active x all other states’ in ‘primary x recurrent’). Again, I found no significant 

difference in their distributions (Chi-square P-value > 0.05).  
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Figure 5-1: Distribution of 8 distinct chromatin states across the promoter regions of the 

primary and recurrent samples of our in-house dataset. Bar plots show the percentage of 

each state across the promoter regions resulted from approach 2. The x-axis represents the 

chromatin states 

 

The Stead group have discovered that a subset of genes is dysregulated in GBM patients 

following standard treatment, hypothesising this being due to the epigenetic remodeling of 

their promoters via mechanisms involving JARID2 (67). Hence, I decided to closely explore the 

extent to which the distribution of the chromatin states vary in this subset of genes (JARID2 

binding site genes – JBS genes) vs non-JBS gene promoters (Figure 5.2). Whilst the 

distributions of the chromatin states between the primary and recurrent samples appear to 

be the same when investigating all genes, the distributions are substantially different in JBS 

gene versus non-JBS gene promoters. According to Figure 5.2, the difference between JBS 

genes and non-JBS genes pertains to the active and bivalent promoter states. There are more 

active promoters in non-JBS genes and more bivalent promoters in JBS genes. The difference 

in the distribution of these two marks was assessed statistically via chi-squared test using 2x2 

contingency table and the result was significant for the primary sample (Chi-squared P-value 

is 4.7 x 10-75) showing that JBS genes are significantly more likely to be bivalent. This is also 

true in the recurrent GBM (Chi-squared P-value is 3.3 x 10-05). 
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Figure 5-2: Distribution of the chromatin states in JBS and non-JBS gene promoters of the 

primary and recurrent sample. Bar plots show the percentage of each state in JBS and non-

JBS gene promoters. The x-axis represents the chromatin states. 

 

To expand the analysis, I again explored the distribution of chromatin states in the JBSgenes, 

but also specifically those JBSgenes that were in the leading edge of more than 50% of 

patients (denoted as LE50) and in the leading edge of more than 70% of patients (denoted as 

LE70) as explained in Chapter 1, section 1.3.4.1. Results are shown in Figure 5.3. These gene 

subsets are our genes of interest and previous work in our group showed that they are most 

commonly and significantly dysregulated in GBM samples through treatment, thus, we think 

they are candidate drivers of treatment resistance when they change in expression.  
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Figure 5-3: Distribution of the chromatin states in JBSgenes, LE50 and LE70 gene sets in the 

primary and recurrent sample. Bar plots show the percentage of each state in JBSgenes, LE50 

and LE70 in the primary and recurrent samples. The x-axis represents the chromatin states. 

 

The distribution patterns of the chromatin states are visually the same in each set of genes 

except for: 1) the repressive mark for which there appeared to be a larger reduction through 

treatment compared to all JBS genes, though this did not prove to be significant (Chi-squared 

P-value is >0.05); and 2) the bivalent state which is noticeably gained in response to 

treatment, compared to the full JBS gene set (Chi-squared P-value is 3.4E-05). 

 

5.2.2 Chromatin state transition analysis revealed that JBS gene promoters tend to be 

bivalent through treatment 

To investigate whether the relative gain in proportion of bivalent promoters at leading edge 

genes (Figure 5.3) is caused by a shift away from other states, while the bivalent state 

remains stable, or transit to a bivalent state, I studied the chromatin state transitions 

through treatment at each individual promoter. I plotted the percentage of each observed 

transition for all promoters and for JBS, LE50 and LE70 genes (Figure 5.4). 
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Figure 5-4: Genome-wide chromatin state transition in an in-house dataset. The bar plots 

show the percentage of state transitions across all promoters, JBS gene, LE50 and LE70 gene 

promoters. 

 

The most popular state transition is null-null (promoters that are null [000] in the primary and 

remain null in the recurrence) in all cases, except LE50 genes where it is almost equally 

prevalent as bivalent-bivalent. However, the second most prevalent transition is active-active 

across ‘all’ promoters whereas it is bivalent-bivalent when looking specifically in the JBS, LE50 

and LE70 gene subsets. There is a significant increase in the proportion of repressive-bivalent 

promoter transitions (promoters that only harbour the H3K27me3 mark in the primary 

tumour, making them repressive, but additionally gain the H3K4me3 mark in the recurrence, 

making them bivalent) in the LE50 (Chi-squared P-value is 0.043) and LE70 (Chi-squared P-

value is 0.0005) gene subsets compared to when all genes are analysed. This suggests that 

the enrichment in bivalency in our genes of interest is partially driven by changes from 

repressive to bivalent state, but is mostly caused by retention of bivalency within these gene 

subsets where we know expression increases during treatment.  
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These findings might indicate that the change in gene expression specifically in JBS gene 

promoters might not be a consequence of epigenetic remodelling based on these specific 

histone marks, or alternatively that it cannot simply be explained by our binary classification 

of chromatin state. To interrogate the latter, I decided to perform a more in-depth analysis 

of the exact level of the mark present at each promoter (i.e. H3K4me3, H£K27me3 and 

EZH2), especially those which are bivalent. The hypothesis here is that, although the 

promoter remains in a bivalent state, the balance between the repressive (H3K27me3) and 

active (H3K4me3) mark may alter in ways that elicit changes in gene expression. Therefore, 

I decided to examine the strength of each signal at promoters. 

   

 

5.2.3 The level of the repressive mark (H3K27me3) and the active mark (H3K4me3) in JBS 

gene promoters associates with the changes in the gene expression 

The genomic enrichment program gives a score of 0 or 1 to report the absence or presence 

of the mark. However, this output does not account for the amount of H3K27me3, H3K4me3 

and EZH2 binding at each promoter. The above findings suggest that the change in gene 

expression at JBSgenes is not driven on the presence or absence of the mark. However, it 

could still be impacted by the amount of the mark present at that promoter. Therefore, I 

decided to score the amount of mark at each promoter as described below. 

 

The program determines enrichment of the ChIP signal across a specified region (in our case, 

promoters) based on a Poisson test p-value: the smaller the p-value the greater the signal for 

a given histone mark or protein binding (Figure 5.5a). As shown in Figure 5.5a, it is possible 

for two peaks to be significant (i.e. less than a 0.05 threshold) despite the fact that they differ 

in the size. To increase the resolution of our investigation, I wanted a continuous score that 

more intuitively relays the strength of ChIP signal. This can be achieved using -log10 (adjusted 

p-value), to make a more human-readable scale in which higher scores indicate greater 

enrichment; this facilitates the analysis of studying the amount of mark binding at each 

promoter. 
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Figure 5-5: Schematic representation of the old and new scoring system of the mark signal 

to assesses the level of mark/binding (i.e. signal) at each promoter. (a) The significance of 

the signal was reported based on the p-value in which the smaller the p-value the greater the 

signal for that mark. The new scoring system (b) is to calculate the -log10(adjusted p-value) 

which flips the data so that the higher the score the more signal.    

 

I calculated the change in the amount of signal through treatment by subtracting the score 

for each ChIP’d mark in the recurrent from the score of the mark in the primary (to give the 

delta score). I plotted the delta scores of H3K27me3, H3K4me3 and EZH2 for promoters in 

each gene group (i.e. JBS, LE50, LE70 and non-JBS genes) to give Figure 5.6 (a-c).  
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Figure 5-6: Box plot of the changes in scores (delta score) for (a) H3K27me3, (b) H3K4me3 

and (c) EZH2 in the JBS, LE50, LE70 and non-JBS gene sets. Each boxplot represents the 

changes in the amount of signals at promoters for genes in each gene set through treatment. 

The red dotted line denotes a delta score of zero i.e. no changes in the ChIP signal.            
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As shown in Figure 5.6a, the H3K27me3 signal predominantly changes through treatment, 

except at non-JBS gene promoters. JBS genes have greater loss of H3K27me3, with the LE50 

and LE70 gene subsets, which we think are driving the treatment resistance when they change 

in expression, undergoing larger reductions in signal from this mark indicating a greater loss 

of H3K27me3 at these genes. On the other hand, the of H3K4me3 signal increases more 

through treatment (Figure 5.6b) specifically in our genes of interest. So, across LE50 and LE70, 

despite there being retention of a bivalent state (Figure 5.4b) there is a reduction of 

H3K27me3, and an increase of H3K4me3, which coincides with the expression of these genes 

being upregulated during treatment in this Up-responder patient. With regard EZH2, LE50 

and LE70 are more likely to reduce EZH2 signal, as may be expected because there is a clear 

reduction of H3K27me3. EZH2 is responsible for catalysing H3K27 trimethylation so a 

reduction in EZH2 binding is directly linked with a reduction in the H3K27me3 mark. 

 

I then further examined the signals specifically in the genes that stay bivalent through 

treatment, and similar findings were observed. There is a clear reduction of H3K27me3 

(Figure 5.7a) and EZH2 binding signal (Figure 5.7b) in JBS, LE50 and LE70 genes in comparison 

to non-JBS genes and a noticeable increase in signal from the H3K4me3 mark (Figure 5.7c).   
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Figure 5-7: Box plot of the changes in (a) H3K27me3, (b) H3K4me3 and (c) EZH2 delta score 

for JBS, LE50, LE70 and non-JBS gene sets for genes that stay bivalent through treatment. 

Each boxplot represents the changes in the amount of mark binding at each gene set for genes 

that stay bivalent through treatment. The red dotted line represents the delta score of zero 

where there are no changes in the amount of mark binding. 

 

To investigate whether these (changes in) epigenetic scores directly associate with (changes 

in) gene expression, I used ridge regression. I built several models using gene expression in 

the primary or recurrent sample, or log2FC in gene expression through treatment, as 

response variable and either the per-sample score, or delta score, for H3K4me3, H3K27me3 

and EZH2 as predictor variables. In ridge regression, the R2 value indicates how much of the 

variability in the response variable is captured in the model i.e. how accurately the predictor 

variables can predict the response. Gene expression is a hugely complicated biological 

phenomenon, resulting from orchestration of many players, so a simplified model is not 

expected to be able to adequately predict gene expression, or changes therein, but I wanted 

to use this approach to compare R2 value across models and see if the histone marks, and 

EZH2 binding, were more predictive in the gene sets in question. For the purpose of this work, 

I used ridge regression to build several models. In the first model, I used the score (i.e. -log10 
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(adjusted p-value)) of two histone marks (i.e. H3K4me3 and H3K27me3) along with EZH2 of 

the primary sample as predictor variables and the gene expression as the response variable 

and I fitted these parameters in a simple regression model as follow:  

 

y = a1x1 + a2x2 + a3x3 + ..... + anxn + b 

 
Where Y is the response variable (i.e. gene expression), a1, a2, a3, …., an are the coefficients, 

b is the y-intersect of the line and x1, x2, x3 , …, xn are the independent variable (i.e. features). 

 

 

I repeated the model and this time I used the score (i.e. -log10 (adjusted p-value)) of two 

histone marks (i.e. H3K4me3 and H3K27me3) along with EZH2 of the recurrent sample as 

predictor variables. I build the third model using the delta score of H3K27me3, H3K4me3 and 

EZH2 as predictor variables and the log2FC as response variable. I applied each model for each 

gene subset (i.e. non-JBSgenes, JBSgenes, LE50 and LE70 genes) and in each model, I 

calculated the R2 value. In all models, the R2 value which describes how well the model is 

predicting the response variable was very low. This is likely because gene expression is such 

a complicated phenomenon that these marks alone cannot suitably model it. But, 

interestingly, we found the R2 values are higher for our gene sets of interest (Figure 5.7) which 

implies that those marks are more important for driving gene expression in those genes than 

the others. 
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Figure 5-8: Ridge regression analysis of different regression models cross our genes of 

interest (i.e. Non-JBSgenes, JBSgenes, LE50 and LE70). The bar plots showed the R2 values of 

different regression models using the two-histone marks along with EZH2 as predictors and 

the gene expression of the primary or recurrent samples, or the the log2FC, as the response 

variable across non-JBSgenes, JBSgenes, LE50 and LE70 genes. 

 

5.3 Discussion 

Protein-DNA interactions control a wide range of biological activities, including the regulation 

of gene expression, DNA replication, packaging of chromosomal DNA, and disease states. 

Genotype and expression analyses are strengthened by epigenetic data (235). Genome-wide 

mapping of chromatin states including histone variations and post-translational modifications 

have become key research focuses, therefore, tremendous efforts have been made to 

understand these interactions (75). The main hypothesis for my research is that histone 

remodeling is driving the changes in the gene expression observed in GBM through 

treatment, and herein I was trying to acquire evidence for (or against) that. To look into this, 

I generated a genome-wide chromatin landscape for H3K27me3, H3K4me3 and EZH2 binding 

from matched fresh frozen pair primary and recurrent GBM samples of our in-house dataset. 
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I called the promoter status of the primary and recurrent samples using the developed 

promoter calling status from Chapter 4. Then, I performed an integrative analysis on histone 

marks along with EZH2 by correlating their modifications with the changes in gene expression. 

I found that the pattern of distributions and the occurrence of chromatin states between both 

samples were insignificant (Chi-square P-value > 0.05). Similar results were obtained for 

human colorectal cancer sample and paired normal mucosa in which the profiles of histone 

modifications between these two samples were similar (236). 

 

The chromatin state distribution was generated for subsets of genes (i.e. JBSgenes, LE50 and 

LE70 genes) that are found to be dysregulated in GBM patients following standard treatment 

due to the epigenetic remodeling of their promoters (67). I found that the amount of 

H3K4me3, H3K27me3 and EZH2 binding at JBS, LE50 and LE70 caused a change in gene 

expression. Interestingly, I found that the bivalent state is predominant in these genes. 

 

Primary-to-recurrent chromatin state transitions were studied to investigate whether JARID2 

binding genes stay bivalent through treatment or acquire the bivalency through state 

transition. The results suggested that these genes tend to be bivalent through treatment and 

this bivalency drives the recurrence of the tumour. However, for LE50 and LE70 genes, the 

enrichment in bivalency was found to be partially driven by changes from repressive to 

bivalent state. Despite the fact that bivalent promoters do not poise genes for rapid activation 

and that bivalent genes are transcriptionally inactive (106), upregulation of these gene sets 

was observed in U response subtype patients. This might indicate that the change in gene 

expression specifically in the promoter of these two sets of genes might not only be a 

consequence of epigenetic remodeling based on these specific histone marks, or alternatively 

that it cannot simply be explained by our binary classification of chromatin state. It has been 

noted that as cancer develops, bivalent promoters lose their histone modifications while 

gaining DNA methylation (237). There is a strong correlation between the 

H3K27me3/H3K4me3 ratio and the DNA hypermethylation of bivalent promoters in cancers 

(238). Evidence suggests that the orchestration of gene expression throughout cancer 

development and tumorigenesis may depend on DNA hypermethylation and histone 

modification (239). This correlation was further studied by another group who reported the 



 149 

presence of two different classes of bivalent promoters: promoter with low 

H3K27me3:H3K4me3 ratio (loBiv) and was substantially enriched for the activating marks 

H3K4me3 and H2AZ and promoters with high H3K27me3:H3K4me3 ratio (hiBiv) and had 

increased occupancy by PRC1/2 components. The study also showed that loBiv genes might 

be more compatible with transcription. These findings might explain the reason behind the 

upregulation of these genes while they are in the repressed state (238, 240). In general, 

bivalent regions are found to be associated with chemo-resistance and facilitate GBM 

tumorigenicity. Several studies reported that a substantial number of genes in tumours have 

bivalent promoters and this bivalency alters the expression of genes and confers phenotypic 

plasticity (192-194). Bivalent genes offer new therapeutic opportunity for the management of 

several types of cancers including GBM in the future (241). 

Also, the analysis suggested that JARID2 genes promote tumour recurrence through 

transcriptional reprogramming in GBM patients following standard therapy. JARID2, in 

general, contributes to GBM malignancies through several cancer-related signaling pathways 

such as cancer cell epithelial-mesenchymal transition and stem cell maintenance (242). 

Deregulation of JARID2 was found to be associated with tumour initiation and progression in 

different types of cancers. For instance, high expression of JARID2 promoted epithelial and 

mesenchymal transition (EMT) in hepatocellular carcinoma (HCC) tissues, lung and colon 

cancers (243, 244). In addition, alteration of JARID2 expression in bladder cancer patients was 

found to be positively associated with cell invasion and sphere forming ability. Similarly, 

alteration in JARID2 expression promotes the proliferation and invasion of ovarian cancer 

through the PI3k/AKt signaling pathways (245). Several knockdown experiments were 

performed in order to understand the role of JARID2 in tumour initiation and progression and 

the results suggested that knockdown of JARID2 lowered the population of tumour-initiating 

cells and inhibits the proliferation, invasion and the EMT in different types of cancers (243, 

244). Collectively, these studies provide insights into the possible role of JARID2 in the 

proliferation, invasion and metastasis of cancers, nevertheless, its role remains unclear (244). 

Also, it provides evidence that JARID2 can be used as a potential therapeutic target in the 

treatment of cancers. There is a need for a therapeutic agent (i.e. small molecular inhibitors) 

that can directly target JARID2 and inhibit its expression in GBM patients (242, 246). To 
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effectively treat GBM patients, the exact pathways need to be investigated in order to develop 

potent targeted chemotherapeutic drugs. 

I concluded that histone remodeling is associated with the changes in gene expression, 

however, this work hasn’t proved that this remodeling is causing the changes in gene 

expression, it could be that gene expression changes result in histone remodelling. However, 

my data justifies the need to study this further e.g. by looking into histone modifiers and to 

show that when histone methylation is stopped, it stops the gene expression changes in order 

to provide a causal link.  
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Chapter 6 

Experimental optimizations and computational analysis of CUT&RUN experiments 

 

6.1 Introduction 

6.1.1 Overview of CUT&RUN 

 

Over the past few decades, Chromatin immunoprecipitation coupled with high throughput 

sequencing (ChIP-seq) has become a well-established approach for genome-wide profiling of 

chromatin associated proteins and chromatin states, including post-translational 

modifications (PTMs) (136). ChIP-seq typically involves formaldehyde fixation (cross-linking) 

of bulk chromatin inside the cells which is followed by mechanical shearing or enzymatic 

cleavage into shorter fragments. The cross-linked DNA is then immunoprecipitated with the 

protein-factor of interest (128, 131). However, the solubilization of chromatin by sonication 

causes the disruption of the cells and their nuclei, and often results in capture 

of/contamination by non-immunoprecipitated fragments meaning  very deep sequencing is 

needed in order to resolve the targeted protein binding sites (247). In general, current 

standard ChIP-seq protocols have some limitations and are not free from artifacts. The 

primary reported limitations as described in Chapter 1, Section 1.6.1 are the need for 

abundant starting materials, in the range of 1-20 million cells per immunoprecipitation, and 

the cost. Additionally, ChIP-seq suffers from poor resolution and low signal to noise ratio (131-

133). To address some of these limitations, an in-situ method called Cleavage Under Targets 

and Release Using Nuclease (CUT&RUN) was developed by Skene and Hanikof as an 

alternative to ChIP-seq. This method is an improved chromatin immunocleavage (ChIC)-

targeted nuclease strategy (248). It isolates protein-DNA complexes on native chromatin by 

binding the transcription factors or histone modifications with target-specific primary 

antibodies that have been tethered to micrococcal nuclease (MNase) tagged protein A (pA). 

The latter interacts with immunoglobulin G (pAG-MNase) and cleaves DNA either side of the 

antibody binding location, with the fragment then eluting out of the cell (Figure 5.1) (249). 

Since only the targeted fragments enter into solution, with the majority of DNA left behind in 

the cell/nucleus, CUT&RUN has extraordinarily low background levels and this require less 

depth in sequencing in comparison to ChIP-seq. Hence, the CUT&RUN assay outperforms 
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ChIP-seq in resolution and signal-to-noise ratio. In addition, CUT&RUN requires low cell input 

with a simple cost-effective workflow which can be completed within 1-2 days (248, 250). 

Comparison of CUT&RUN to ChIP-seq protocols are summarized in Table 6.1. 

 

Method / Parameters ChIP-seq CUT&RUN 

Number of input cells required 107 - 108 cells 5,000 – 250,000 

Input sample Fragmented chromatin Intact cells or nuclei 

Resolution Poor High 

Signal-to-noise ratio Low High 

Fragmentation bias GC bias No 

Protocol time 

(Cells to DNA) 

3-5 days 1-2 days 

Chromatin fragmentation  Sonication pAG-MNase digestion 

Sequencing depth required >30 million 3 -5 million 

 

Table 6-1: Summarizes the main differences between ChIP-seq and CUT&RUN protocols (96, 
196) 
Table summarizes the main differences between ChIP-seq and CUT&RUN assays  

  

CUT&RUN has been tested and applied widely on different cell lines including human 

embryonic stem cell lines and diffuse midline glioma (DMG) patient derived cell lines to profile 

different histone marks such as H3K4me3, H3K4me3 and H3K27ac (251, 252). It has been also 

been applied widely to map yeast transcription factor (TF) binding sites and several GATA1 

motifs. It became clear that CUT&RUN had higher enriched areas in a smaller window at the 

peak center in comparison to ChIP-seq. This reflects the high resolution of this technique as 

mentioned above (248). The method was modified by other groups and tested on Drosophila 

tissues, fresh frozen mouse tissue and xenograft tissue. The adapted protocol reliably 

generates an efficient epigenome profile of transcription factor binding sites and histone 

modifications (248, 253).  
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Several CUT&RUN protocols have been developed making it possible to use on frozen or fresh 

tissues and cells with low starting numbers of intact cells or nuclei. The improved CUT&RUN 

protocol and its workflow is presented below (253). 

6.1.2 CUT&RUN experimental workflow 

CUT&RUN is a simple and straightforward technique that can be completed in 1-2 days using 

general laboratory equipment (253). A typical CUT&RUN workflow is presented in Figure 6.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-1: Typical CUT&RUN workflow. Workflow of CUT&RUN assay from cell harvesting to 

library preparation and sequencing. 

 

In order to isolate the targeted DNA from the protein-DNA complex, intact cells or unfixed 

nuclei are first harvested, washed in a buffer solution and coupled to activated Concanavalin 

A-coated magnetic beads to facilitate cell handling and reduce cell loss during successive 

washes. Cell membranes are then permeabilized with antibody buffer which contain digitonin 
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so that the primary antibody can enter the nuclei and bind to its target in situ (Chromatin-

associated protein or PTM). At this stage of the protocol, pAG-MNase is added to each sample 

and pAG domain of the pAG-MNase fusion protein binds to the heavy chain of the primary 

antibody. This is subsequently directing the enzyme to the desired chromatin region. This 

incubation is performed in the presence of the digitonin buffer which is free of Calcium 

Chloride (CaCl2) to inhibit the premature activation of the MNase. The final step is to initiate 

the DNA digestion by the addition of Calcium ions (Ca2+). This will promote the cleavage and 

the release of antibody-bound chromatin from genomic DNA, out of the nuclei, into the 

supernatant, where it can be easily collected and purified using either a DNA spin column or 

phenol/chloroform extraction. The purified enriched DNA is then quantified using qPCR or 

used directly for library preparation and sequencing (248, 249). 

 

Similar to ChIP-seq, the success of CUT&RUN is largely depending on the antibody’s affinity 

for its targets and its specificity under the binding conditions. Therefore, the antibodies 

should be successfully tested for specificity using immunoprecipitation (IP) or 

immunofluorescence (IF) (249). The primary reported limitation of this technique is that the 

amount of DNA recovered can be very low. Analysing samples with very low DNA is usually 

difficult and even with sensitive equipment such as capillary electrophoresis Agilent 

TapeStation and Qubit, it is hard to detect the cleaved fragment or measure the sample’s 

concentration (254). To address this limitation, it is recommended to increase the PCR 

amplification cycles to 12-15 cycles in order to generate a library with DNA concentration of 

10-30 ng/µl (249). 

 

Despite the fact that different technologies have been developed to profile the transcription 

factor binding and chromatin states, an end-to-end computational pipeline for analysing such 

data is still lacking. To fill this gap, a simple and flexible bioinformatics pipeline for CUT&RUN 

data analysis and visualization was developed. The details of this pipeline are explained in the 

following section (249). 

 

6.1.3 CUT&RUN analysis pipeline 

As with many high-throughput sequencing technologies, CUT&RUN generates massive 

datasets that require appropriate computational pipelines designed specifically to analyse 
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these data. CUT&RUNTools has been introduced as a flexible computational pipeline that 

provides complete data analysis and includes quality assessment, trimming of low quality 

reads, sequence alignment, pre-processing of reads and filtering, peak calling, data 

aggregation and visualization, motif finding and motif footprinting steps. It uses GNU parallel 

processing to increase the computing performance in the main steps such as read trimming, 

mapping and filtering. The tool was implemented using Python, R and Bash script (249). 

 

In general, this module takes raw FASTQ files as inputs and perform an initial trimming with 

Trimmomatic. Due to the presence of short fragments in CUT&RUN experiment which mainly 

occur because of fine cutting by pAG-MNase, the trimming is optimized with settings that are 

most effective for detecting adapter contamination in short reads. Trimmomatic is a fast 

command line tool that trims and filters poor quality reads and removes adapters. In addition 

to Trimmomatic, a separate tool called Kseq is also used to filter and trim reads with 6 bp or 

less from the 3’ end of each read. Then, the trimmed reads are aligned to the reference 

genome using the most commonly used tool, bowtie2. Uniquely mapped reads with high 

mapping quality are retained for further analysis. MACS2 is mainly applied to call peaks with 

default parameters. The remaining steps include motif finding using MEME, motif 

footprinting analysis using CENTIPEDE and determining direct binding sites (249). 

 

CUT&RUNTools reports some quality metrices to evaluate the quality of CUT&RUN datasets. 

These include library size, adapter content percentage, fragment size distribution, reads 

duplication reads, alignment percentage, number of enriched peaks and enrichment of 

expected motifs. The library size, determined by the number of reads in the sample library, 

should be at least 10 million reads, and ideally at least 15-20 million. The percentage of reads 

with adapter, or percentage of reads kept after read trimming, should be less than 10-15% in 

a good-quality dataset. The fragment size distribution should be within the expected range (≤ 

120 bp) but this is mainly applicable for transcription factor binding analysis because reads 

with < 120 bp are likely to contain TF binding sites. The percentage of read duplication should 

be low (10% –a maximum of 15%). The fraction of reads that map concordantly to the 

reference genome is used to compute the alignment percentage. A good dataset should have 

a high alignment percentage, > 90%. Users are encouraged to make their own decision on 

these metrices as there is no single score that captures the overall quality (249, 255). 
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In order to achieve Aim 1 (Objective 4), I decided to investigate whether CUT&RUN could be 

used to study protein-DNA interactions and histone modification locations in GBM. I 

performed the assay for H3K4me3, H3K27me3 and JARID2 on GBM63 patient derived cell 

lines and fresh frozen patient tumours. I present, in this chapter, the optimization of this assay 

on the above-mentioned samples and I describe the main challenges that I faced, especially 

in the library preparation. Also, I show that the ChIP-seq analysis pipeline that I developed in 

chapter 4 is compatible to use for CUT&RUN assay. In general, a complete analysis of these 

samples from quality assessment of raw data to peak calling is described in detail. 

 

6.2 Results 

To investigate protein–DNA interactions and histone modification locations in GBM samples 

as per Aim 1 (Objective 4), I initially performed and optimized CUT&RUN assays on 2 biological 

replicates of patient derived cell lines (GBM63) using antibodies against histone modifications 

H3K4me3 and H3K27me3 and JARID2, following the manufacturer’s protocol. The two main 

criteria to consider when optimizing this assay are what sonication conditions to use for the 

input sample to generate the optimal DNA fragment size of 100-600 bp and what is the most 

suitable control DNA sample for downstream analysis. 

 

6.2.1 Sonication condition was successfully optimized for CUT&RUN experiment on 

patient derived cell lines (GBM63) 

The sonication condition for the input DNA sample was optimized at high power setting at 

4oC for 15,20,25 and 30 cycles of 30 sec ‘On’ and 30 sec ‘Off’. The fragment length at each 

tested condition was checked by running an aliquot of each sample in 1% agarose gel. An 

intense stained part of smear DNA was found between 100 and 200 bp at 20, 25 and 30 cycles 

(Figure 6.2) which would suggest that the majority of the sonicated DNA is at that fragment 

size at these sonication conditions. No band was observed at the sonication condition of 15 

cycle and this might be due to insufficient amount of loaded DNA. In view of these results, 

and since 20, 25 and 30 cycles show similar outcomes, I decided to use 25 cycles rather 30 in 

order to save some time during my following experiments. In general, the selected sonication 

condition will allow me to obtain the highest amount of chromatin fragments with an optimal 

fragment length between 100-200 bp region as recommended. 
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Figure 6-2: Agarose gel analysis of the length of input DNA fragmented by sonication at 15, 
20, 25 and 30 cycles. 

 

 

6.2.2 Quantitative real-time PCR (qPCR) analysis revealed a successful amplification of 

H3K4me3 in both replicates and unsuccessful amplifications of H3K27me3   

An initial check of the H3K4me3 and H3K27me3 amplifications were evaluated using qPCR to 

check for enrichment in the reactions of both GBM63 replicates. A CUT&RUN validated 

antibody for H3K4me3 is provided with CUT&RUN kit, as positive control. A PCR primer set of 

the human RPL30 gene is provided also with CUT&RUN kits to be used in conjunction with 

H3K4me3 antibody. This gene locus is universally activated, therefore, always contains the 

H3K4me3 histone mark, and can be used to verify that the CUT&RUN experiment has worked. 

I examine the literature and identified SAT2 as a gene which is commonly present in 

heterochromatin, and has been used as a positive control for the presence of H3K27me3 
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(116). Due to the absence of positive control for JARID2, the enrichment of JARID2 target-

sites was not assessed via qPCR. 

 

Quantitative PCR was performed on the enriched H3K4me3 reaction, H3K27me3 reaction, IgG 

reaction and sonicated input DNA using SYBR-green. The reason for using two control samples 

(i.e. input DNA and IgG) was to determine which one is better to be used as control to 

normalize the signal of CUT&RUN reaction and assesses the significance of enrichment, so 

that regions with high level of background binding (i.e. artifacts) can be ignored during 

analysis. 

 

The amount of DNA released by an immune-linked enzyme of each sample is represented as 

a signal in relation to the overall amount of chromatin input, which is equal to 1 (Percent 

input for 100,000 cells) as shown in Figure 6.3a. The data are normalized using spike-in DNA 

added to each reaction. The qPCR analysis revealed a successful enrichment of H3K4me3 in 

both replicates, suggesting that the protocol had been completed correctly (Figure 6.2a and 

b). H3K27me3 enrichment was assessed only in the second GBM63 replicate due to the delay 

in receiving the positive control for this mark. A slight enrichment of H3K27me3 was observed 

in comparison with input sample as shown in Figure 6.3b. The lack of better enrichment for 

the H3K27me3 experiment may be due to: 1) improper binding of H3K27me3 antibody, 2) 

Lack of universality of the H3K27me3 mark within the SAT2 gene.  
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Figure 6-3: Enrichment of H3K4me3 and H3K27me3 relative to the total amount of input 

chromatin in GBM63 replicates using qPCR. Enriched chromatin sample and input DNA from 

CUT&RUN assay was amplified and quantified using qPCR with SYBR-green. A successful 

amplification of H3K4me3 was observed in both replicates (a&b). A lower amplification was 

observed for H3K27me3 in the second replicate (b). A primer set of RPL30 and SAT2 were 

used as a positive control for H3K4me3 and H3K27me3 respectively. The amount of 

immunoprecipitated DNA in each sample is represented as signal relative to the total amount 

of input chromatin, which is equivalent to 1 (Percent input for 100,000 cells). The data are 

normalized using spike-in DNA added to each CUT&RUN reaction. 

 

6.2.3 DNA sequencing and CUT&RUN data analysis 

 

Prior to Library preparation, all purified DNA samples of H3K4me3, H3K27me3, JARID2 and 

input DNA were quantified initially using Quant-iT kit, however, none of the samples had any 

readable DNA. The samples were then re-quantified on Qubit HS kit which is highly selective 
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for double stranded DNA (dsDNA) over single stranded DNA. (ssDNA), protein, RNA and free 

nucleotides. Only the input samples seem to have a reading and the remaining samples had 

a yield which is too low to read on Qubit kit (See Appendix F). On investigation, I realised that 

this is considered normal as a successful CUT&RUN experiment can often yield less than 5ng 

of DNA from 100,000 starting materials. As mentioned above, the recommendation based on 

CUT&RUN kit in this case is to increase the number of PCR amplification cycles to 12-15 cycles 

in order to generate a library with DNA concentration of 10-30 ng/µl. So, I followed this 

recommendation and I used 5ng of the samples that had a readable concentration, diluting 

down the samples that had higher concentrations and used all of the volume of the remaining 

samples that have no or very low ng/ul readings for library preparation. Additionally, I used 

12 cycles for PCR amplification during library preparation as recommended. Bioanalyzer 

traces were used to assess the size of the DNA fragments and only the input samples had an 

average size of fragments around 250bp (See Appendix F) as the remaining samples has low 

or no readable concentrations as described above. Therefore, the library was prepared by 

assuming that all samples had an average fragment size of 250 bp. The final libraries were 

cleaned up twice and then checked again on Bioanalyzer. The results indicated the presence 

of adapter dimer contamination peaks in 6 samples. The samples were pooled at 5x the 

concentration and the sequencing performed on the NextSeq 550 MO platform. The input 

data was formatted in FASTQ format and paired-end sequencing reads with 76 bp were 

generated for each sample.  

 

The data was analysed according to the developed ChIP-seq pipeline as described in Chapter 

2, section 2.2-8. In brief, an initial quality assessment of the FASTQ files was performed using 

FASTQC to check for poor quality reads and adapter content. All samples had good quality 

scores with a highest peak observed at 35 which means that Q35 have more read number 

than other quality scores. The samples were then quality and adapter trimmed using cutadapt 

and then checked again for the adapter content. No adapter content was found after the 

trimming step. The trimmed data was then aligned to human reference genome using bwa-

mem with default parameters. I then employed samtools to compute the alignment statistics 

as shown in Table 6.2. The alignment percentages for all samples ranged between 83% - 99%, 

except for one sample which has an alignment percentage < 80%. 
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Table 6-2: Mapping statistics of the analysed replicated samples of GBM63 cell lines. 
Table summarizes the mapping statistics of GBM63_P17 and GBM63_P18 samples. 

 

Mapped reads were post-processed using picard tools to remove unmapped, non- primary 

alignments, reads with low mapping quality (MAPQ > 25) and duplicated reads. The quality 

metrics in terms of fragment size distribution, adapter content percentage, library size, read 

duplication rate were assessed. With regards to adapter content, the percentage of adapter 

content in each sample is less than 5%. The library size for each sample is > 20 million and the 

read duplication rate is < 10% and this is ideal for CUT&RUN data. In general, these samples 

fulfil almost all metrices except the alignment percentages which is lower than the suggested 

guidelines (See section 6.1.3). 

 

Sample name Total number 

of reads 

Total number of 

mapped reads 

Alignment percentages 

GBM63_P17 (1st replicate) 

GBM63_Input 7498080 7406085 98.77% 

GBM63_IgG 10731027 7847117 73.13% 

GBM63_H3K4me3 8781117 8188563 93.25% 

GBM63_H3K27me3 32225150 31504004 97.76% 

GBM63_JARID2 9358396 8410477 89.87% 

GBM63_P18 (2nd replicate) 

GBM63_Input 11826068 11716488 99.07% 

GBM63_IgG 10846359 9405655 86.72% 

GBM63_H3K4me3 9513035 8817327 92.69% 

GBM63_H3K27me3 42247651 40259617 95.29% 

GBM63_JARID2 9752249 8363500 85.76% 
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6.2.4 Peak detection is increased when CUT&RUN reaction and Input DNA sample as 

control are combined 

Enriched regions (peaks) for H3K27me3, H3K4me3 and JARID2 were identified using MACS2 

pairing each CUT&RUN reaction with its input DNA sample as controls. The peaks were called 

first using the input DNA sample as control because the pipeline was optimized and validated 

for the use of input DNA sample as control. In addition, input DNA sample was recommended 

by ENCODE and was cited many times to be used as control to identify the significant peak 

regions and filtering out false-positive signals. JARID2 and H3K27me3 peaks were called using 

the default parameters for broad peaks (i.e. broad peak cut-off value of 0.1) as described in 

Chapter 2, Section 2.2.8 and the total number of significant peaks was reported (Table 6.3). 

H3K4me3 peaks were identified using the default parameters for narrow peak with a q-value 

of 0.01. The results revealed the presence of a lower number of H3K27me3 and JARID2 peaks 

and a higher number of H3K4me3 peaks. 

 

Sample H3K4me3 H3K27me3 JARID2 

GBM63_1st replicate 18047 1613 4 

GBM63_2nd replicate 15095 3619 10 

 

 
 
Table 6-3: Summary of the enriched peaks of the GBM63 cell lines (replicates) called by 
MACS2. 
Table includes the number of H3K4me3, H3K27me3 and JARID2 peaks for GBM63 replicates 
resulted from MACS2  

 

Due to the lower number of obtained H3K27me3 and JARID2 peaks, I tried to optimize MACS2 

parameters and I used only H3K4me3 samples for this purpose because of the success of 

CUT&RUN experiment. I re-called the peaks using the following conditions: IgG as control and 

a q-value of 0.1, IgG as control and a q-value of 0.05 and the input as control and a q-value of 

0.1 to see if I can get a higher number of peaks and all these tested parameters resulted in 

higher number of peaks in comparison to the default parameters (Table 6.4). 
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Table 6-4: Comparison of MACS2 peaks for H3K4me3 samples using different q-value cut-
off and controls 
Table summarizes the number of H3K4me3 peaks for GBM63 replicates with different q-value 
and control samples 

 

In view of these results, I decided to use the input as control and a q-value of 0.1 to call the 

peaks for H3K4me3. I then attempted to use SEACR as an alternative tool to call peaks and 

enriched regions, to verify whether it gave improved results, but it resulted in many fewer 

peaks (Table 6.4). Stringent thresholding, and input sample as control, were used to call 

peaks. This finding proves the capability of MACS2 to call peaks with high resolution and 

evaluate the significance of the enriched region. Additionally, MACS2 can accurately capture 

local biases in the genome sequence enabling more sensitive and robust prediction. 

 

Sample H3K4me3 H3K27me3 JARID2 

GBM63_1st replicate 2 12 6 

GBM63_2nd replicate 0 395370 10 

 

Table 6-5: Summary of the enriched peaks of the GBM63 cell lines (replicates) using SEACR 
Table includes H3K4me3, H3K27me3 and JARID2 peaks for GBM63 replicates resulted from 
SEACR 

 

Sample H3K4me3 peaks 

Number of peaks with IgG as control and q-value of 0.1 

GBM63_1st replicate 20563 

GBM63_2nd replicate 17146 

Number of peaks with IgG as control and q-value of 0.05 

GBM63_1st replicate 20358 

GBM63_2nd replicate 16615 

Number of peaks with input as control and q-value of 0.1 

GBM63_1st replicate 20664 

GBM63_2nd replicate 17496 
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Taking the qPCR and peak calling results together, it seems that CUT&RUN experiment 

worked successfully for H3K4me3 but not for H3K27me3 or JARID2 and this might be due to 

the non-specificity of the antibody used in this experiment which affects their ability to bind 

to chromatin associated protein or the MNase digestion as described above. 

 

6.2.5 Consistent CUT&RUN enrichments of H3K4me3 was observed across biological 

replicates using IDR measures 

The significance of the resulting H3K4me3 peaks across the two biological replicates was 

further assessed using the irreproducible discovery rate (IDR) as recommended by ENCODE 

(The description of this test can be found in Chapter 2, Section 2.2.8). Using the input sample 

as control, a q-value of 0.1, and IDR threshold of 0.05, a high reproducibility between 

H3K4me3 replicates were observed (Figure 6.4). The upper left figure plots the peak ranks in 

replicate 1 against the peak ranks in the second replicate, showing that a high proportion of 

the called peaks are replicated i.e., that they pass the specified IDR threshold (points colored 

in black). Peaks that do not pass the IDR threshold are represented by points colored in red. 

The upper right plot is analogous to the upper left one but with the log10 score plotted for 

peaks in both replicates. The bottom plots show the peak rank versus IDR scores for each 

replicate separately, with boxplots showing the IDR distribution in each 5% quantile.  
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Figure 6-4: An IDR plot of called peaks in GBM63 replicates. High reproducibility was 

observed for these two replicates using MACS2 parameter of q-value of 0.1 and input sample 

as control.  Peak ranks for the 1st replicate versus the 2nd replicates (Upper left) and log10 

peak ranks of replicate 1 versus replicate 2 (Upper right). Peak versus IDR scores was also 

plotted (Bottom plots). An Idr threshold of 0.05 was used.   

 

 

Due to the lower enrichment of H3K27me3 and JARID2, these samples were not processed 

for any further analysis such as promoter calling pipeline. In general, the optimization and the 

implementation of CUT&RUN was successful for H3K4me3 in the selected cell lines. These 

results indicated that the success of CUT&RUN experiment is mainly depends on the quality 

of the antibody used. It also showed that the quality of the antibodies in terms of sensitivity 

and specificity remains still a major issue. 
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6.3 Failure of CUT&RUN experiment on fresh frozen patient tumors due to the limited size 

of the tissue sample 

In parallel with the cell lines, I tried to optimize CUT&RUN assay to generate a genome-wide 

mapping of chromatin states from fresh frozen patient tumors. I started with two 

independent samples as described in Chapter 2, Section 2.2.7.1. The tissues were harvested 

and the cells were prepared for counting to collect 100,000 cells for each reaction and input 

sample, however, I was unable to see any cells and only fibers and tissue appeared on the 

hemocytometer. Therefore, I divided the harvested suspension equally for each reaction 

and the input. I proceeded with CUT&RUN assay and library preparation as outlined above 

and as I described in Chapter 2, Section 2.2.7.8. Purified DNA of the anti-H3K4me3 reaction 

applied to the first tissue sample (NB17/39) was quantified by qPCR and the results showed 

a significant enrichment of the RPL30 gene in comparison with the input sample, suggesting 

that the experiment had worked (Figure 6.5). 

 

 

 

 
  

 

  

 

 

 

 

 

Figure 6-5: Amplification of H3K4me3 relative to the total amount of input chromatin in 

fresh frozen patient tumours (NB17/39) using qPCR. Enriched H3K4me3 sample and input 

DNA from CUT&RUN assay was amplified and quantified using qPCR with SYBR-green. A 

successful amplification of H3K4me3 was observed. A primer set of RPL30 was used as a 

positive control for H3K4me3. The amount of immunoprecipitated DNA in each sample is 

represented as signal relative to the total amount of input chromatin, which is equivalent to 
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1 (Percent input for 100,000 cells). The data are normalized using spike-in DNA added to each 

reaction. 

 

A qPCR for the second tissue was not performed due to the COVID-19 pandemic and I decided 

to proceed with library preparation for the sake of time. The quality of the purified DNA was 

checked as described above, using Qubit HS kit and Bioanalyzer HS chip (See Appendix F). The 

results indicated the presence of DNA for the input sample, but the CUT&RUN reactions had 

very low or no readable DNA. Final libraries were assessed on the Bioanalyzer to check for 

presence of adapter dimer peaks or poor-quality libraries. The results revealed the presence 

of adapter dimer peaks. The samples were pooled at 5x the concentration and it were 

sequenced on the NextSeq 550 MO platform. 76bp paired-end reads in FASTQ format were 

generated for each sample. 

 

The data was analyzed and processed according to the proposed ChIP-seq and CUT&RUN 

pipeline (See Chapter 2, Section 2.2.8.1 and 2.2.8.2.3 for the detail description of the 

proposed pipelines). FASTQ files was passed through FASTQC to perform an initial check on 

the quality of the sequencing data. The samples passed all the quality checks except the 

adapter content parameter. FASTQ files were quality and adapter trimmed using cutadapt 

and then was checked again using FASTQC, to ensure the removal of adapters. The samples 

were aligned to the human reference genome and the alignment statistics were evaluated. 

An alignment percentage of more than 90% was reported for all samples except: the IgG 

samples for both tissues; and H3K4me3, H3K27me3 and JARID2 for the second tissue. The 

alignment percentages for these samples ranged between 45% - 70% (Table 6.5). 

 

Sample name Total number 

of reads 

Total number of 

mapped reads 

Alignment percentages 

NB17/39_Input 10770403 10664358 99.02% 

NB17/39_IgG 6633664 5564686 83.89% 

NB17/39_H3K4me3 8186191 7523515 91.90% 

NB17/39_H3K27me3 38330933 36864035 96.17% 

NB17/39_JARID2 4768810 4526159 94.91% 
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NB169/12_Input 9100242 8964059 98.50% 

NB169/12_IgG 12069552 6452046 
 

53.46% 

NB169/12_H3K4me3 12757653 7126473 55.86% 

NB169/12_H3K27me3 54174393 38420467 70.92% 

NB169/12_JARID2 14719974 6671350  45.32% 

 

Table 6-6: Mapping statistics of the analysed fresh frozen patient tumours. 
Table includes the mapping statistics of NB17/39 and NB169/12 samples in terms of total 
number of reads, total number of mapped reads and the alignment percentages. 

 

 

The samples were post-processed as described in Chapter 2, Section 2.2.8 and the quality 

metrices were assessed according to CUT&RUN assay guidelines. The samples passed all 

parameters except the alignment percentage. Peaks were then called for the two histone 

marks and JARID2 and the results indicated the presence of very low number of peaks for all 

samples (Table 6.6). 

 

 

Sample H3K4me3 H3K27me3 JARID2 

NB17/39 9544 2 9 

NB169/12 1 10 1 

 
Table 6-7: Summary of the enriched peaks of fresh frozen patient tumours by MACS2 
Table includes the number of H3K4me3, H3K27me3 and JARID2 peaks for NB17/39 and 
NB169/12 samples resulted from MACS2 

 

 

This finding indicated the failure of CUT&RUN experiment on these two tissues. This might be 

due to the fact that tissues are often quite limited in terms of biological materials and sample 

size, or that the cells were not intact. Alternatively, the protocol may not have worked on 

isolated nuclei (though these may also not be intact). It was impossible to proceed with the 
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promoter calling pipeline and therefore, I was unable to profile the chromatin landscape for 

the two histone marks in these tissues. 

 

6.4 Discussion 

Numerous biological processes such as regulation of gene expression, DNA replication, 

transcription, packaging of chromosomal DNA and disease states are governed by protein-

DNA interactions. This epigenetic information is complementary to genotype and expression 

analysis (235). Tremendous efforts have been made to understand these interactions, and as 

a result, genome wide mapping of transcription factor binding sites, chromatin-associated 

complex and chromatin states including histone variants and post-translational modifications 

has become a major focus of research (75). For over 30 years, ChIP-seq has been the powerful 

and predominant tool of mapping protein-DNA interactions. However, the requirement of 

high amounts of starting material, the high background signal, which limits sensitivity, 

artifacts resulting from cross linking and solubilization, the GC bias in the fragments, poor 

resolution and high sequencing cost remain major limitations of this technique (131, 133, 

134). 

 

Efforts have been made by researchers to overcome these issues, which led to the 

development of CUT&RUN. Since its introduction, the advantages of CUT&RUN over ChIP-seq 

has facilitated rapid profiling of protein-DNA complexes with high resolution (248). Here, I 

decided to try and take advantage of this technique. I performed CUT&RUN on 2 biological 

replicates of a patient derived GBM cell line (GBM63) and two fresh frozen GBM patient 

tumors to profile the histone modifications and define the chromatin states that drive the 

occurrence of the disease. Peak analysis demonstrated the failure of the CUT&RUN 

experiment for both the cell lines and the tissue samples. The assay worked well in cell lines 

for the histone mark H3K4me3, for which the antibody is provided with the kit as a positive 

control. The number of the obtained H3K27me3 and JARID2 peaks were substantially lower 

compared to those that have been seen in glioma as reported in the literature, though these 

reported results are all from studies using ChIP-seq as there is a lack of availability of 

CUT&RUN information about the number of H3K27me3 and JARID2 peaks (116, 256, 257). In 

one study, the number of H3K27me3 ChIP-seq peaks that was found in the primary and K27M 

mutant Pediatric high-grade glioma were 21,217 and 15,853 peaks respectively (257). In 
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another study, the number of ChIP-seq peaks of H3K27me3 in SN186 glioma stem cell line 

was 5965 peaks (116). With regards JARID2: 3644 and 4916 peaks were found in a liver 

carcinoma cell lines (HepG2) and a normal liver cell line (THLE-2), respectively, using MACS 

version 1.4 (256).  

 

CUT&RUN has been used widely in a number of research projects to profile transcription 

factor binding sites and the histone modifications. In humans, it was used to identify the 

HGATAA GATA1 recognition motif using GATA1 antibodies. GATA1 is related to a master 

regulator in erythroid lineage cells. The results prove the ability of CUT&RUN to identify this 

motif correctly (249). In addition, it was applied on K562 cells using anti-MAX and ant-MYC, 

which  was performed previously with ChIP-seq experiment, and the results were comparable 

with ChIP-seq findings (258). Furthermore, as expected, CUT&RUN provided a high resolution 

in identifying these motif sites. This technique was applied recently on budding yeast and the 

group was able to profile histone co-occupancies genome-wide with high efficiency and 

resolution (259). Moreover, genome-wide mapping of histone modifications in Plasmodium 

falciparum was successfully generated using CUT&RUN. 

 

I concluded that the failure of CUT&RUN experiments in cell lines was mainly due to the 

quality and non-specificity of the selected H3K27me3 and JARID2 antibodies for CUT&RUN. 

With regards to tissues, the failure is mainly due to the fact that that tissues are often quite 

limited in terms of biological materials and size. In general, and as with ChIP-seq, CUT&RUN 

efficiency is mainly depending on the amount and quality of the starting materials and on the 

quality of the antibody used in the experiment. 

 

 

 

 

 

 

 

 

 



 171 

Chapter 7 

Final thesis discussion 

 

7.1 Summary of key findings 

Glioblastoma is the most aggressive and the most common brain tumour in adults with a 

median survival time of 14-20 months from initial diagnosis. The current standard treatment 

strategies consist of maximal surgical debulking followed by radiotherapy and chemotherapy 

(35, 36). The use of radiotherapy in combination with chemotherapy have relatively little 

effect on survival with a median overall survival increase of only approximately 2.5 months 

(260). This poor prognosis could be explained by the presence of subpopulations of cells that 

infiltrate into the surrounding brain parenchyma and serve as an origin of recurrence. These 

cells are typically resistant to the initial therapy because they exhibit tremendous cellular and 

molecular heterogeneity and have further evolved from the primary tumour to be even more 

treatment resistant (3, 4). 

Numerous studies have demonstrated that tumour heterogeneity which encompasses 

complicated genetic alterations, epigenetic abnormalities, growth rate, protein modification, 

and apoptosis is the primary factor in tumour recurrence and progression (10, 66). Like other 

cancers, GBM harbours several genetic mutations that disrupt pathways related to cancer 

(68). Recent advances in molecular and genetics profiling and characterization of tumours 

have led to the identifications of new targetable approaches that targets several molecular 

changes and pathways alterations such as EGFR mutations, TP53 mutations and PTEN 

mutations. However, these scientific developments have not yet be proven to be successful 

in preventing the recurrence of GBM, thus failed to improve the prognosis of GBM patients 

(89, 261, 262). Deeper understanding of the mechanisms that drive GBM resistance is the key 

to improving GBM treatment and is essential in designing more effective therapeutic 

strategies (262). 

GBM recurrence and gliomagenesis have been extensively studied in an effort to identify and 

understand the mechanisms that potentiate GBM’s aggressiveness (68). The Cancer Genome 

Atlas (TCGA) research network carried out whole genome sequencing of GBM tumours, and 

discovered a connection between epigenetic phenomena and GBM progression (20). 
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Epigenetic modifications have been recently found to be involved in the tumorigenesis of 

almost all cancers, including GBM (81, 101). Numerous studies suggested that these 

alterations are essential for controlling DNA accessibility and chromatin structure, which 

regulates gene expression. Since chromatin is thought to be the major transcriptional 

impediment, it will be crucial to comprehend chromatin shape and how epigenetic changes 

modify it in order to target epigenetic pathways linked to tumour resistance (76, 78). The two 

most prevalent epigenetic processes associated with all malignancies are DNA methylation 

and histone alterations. The most extensively researched epigenetic alteration in cancer, and 

notably in GBM, is DNA methylation. In contrast, little is known about how histone changes 

affect chromatin state and the regulation of gene expression in cancer (69). In order to 

acquire a greater understanding of the intricate interaction of various epigenetic changes in 

cellular processes, recent research has been increasingly focused on the function of post-

translational modifications (PTMs) of histones in cancer and, especially, in GBM (98). Despite 

the growing volume of knowledge regarding GBM, little is understood about how the 

epigenome aids in the GBM progression, and the precise epigenetic pathways behind 

therapeutic resistance in GBM still need to be clarified. Because there is limited data on this 

field, there is a growing interest in creating a genome-wide histone modification map for 

gliomas (10, 89). 

Recent developments in high-throughput technologies have enabled researchers to precisely 

identify locations (and the associated, affected genes) of histone modifications, and the 

coordinators thereof, which coordinate gene expression. ChIP-seq is one of the powerful tools 

for mapping and identifying global genome-wide patterns of these modifications (117, 123). 

The present study aimed to understand the epigenetic mechanisms involved in GBM 

resistance and recurrence, as recent work conducted by our group has shown that 

transcriptional changes occur dynamically after treatment in GBM. I hypothesized that 

histone remodelling is driving the changes in the gene expression observed in GBM through 

treatment. To investigate this, a genome-wide profiling of H3K4me3, H3K27me3 and EZH2 by 

ChIP-seq for matched primary and recurrent GBM samples was generated. My findings 

suggest that bivalency is key to enabling GBM tumour cells to adapt to treatment. Bivalency 

refers to the regions that marked with both the repressive mark H3K27me3 and the active 

mark H3K4me3, keeping gene expression repressed but poised for transcription (263). 
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Bivalent regions were first found in the developmental gene promoters of embryonic stem 

cells (ESCs), but they have also been observed in cancer cells that have stem cell-like 

characteristics including glioma stem cells (GSCs) (116, 241). Recent researches pointed out 

toward the role of bivalent genes in the heterogeneity and plasticity of different types of 

cancers including gliomas (241, 264). Consistent with this, I found that JARID2 binding genes 

stay bivalent through treatment or acquire the bivalency through state transition and this 

bivalency promote tumour recurrence in GBM patients. This finding highlights the role of 

JARID2 genes in GBM recurrence and chemo-resistance. 

Collectively, bivalent genes and their underlying processes will likely be more understood in 

the future, opening up new prospects for the development of patient-specific and selective 

treatment methods based on personalized and precision medicine, as well as for the 

identification of novel biomarkers for the diagnosis and progression of illness. In addition, 

JARID2 can be used as a novel therapeutic target for the treatment of GBM patients.   

7.2 Future work and directions in GBM 

This study can be further expanded in a number of different ways. Firstly, there is a need to 

validate the specificity and the sensitivity of JARID2 antibodies for the intended application 

which is here, CUT&RUN. One way to further validate the selected antibodies is through 

immunoprecipitation of the target protein followed by mass spectrometry (MS). This 

approach is regarded as the gold standard for identifying and measuring a specific set of 

proteins in a sample. Mass spectrometry is the only validation technique that can specifically 

identify the antibody target(s), isoforms, post-translational modifications, and target-

associated proteins that are present in a sample. Only MS is capable of characterizing 

antibodies with this degree of specificity and depth (265, 266). 

 

Second, ChIP-seq or CUT&RUN experiments should be performed to profile the binding of 

JARID2 in GBM in order to closely examine its role in treatment resistance mechanisms in 

GBM patients. I had planned to profile the binding of JARID2 but the limiting factor was the 

amount of tissue available so I was able only to profile the two histone marks (i.e. H3K4me3 

and H3K27me3) along with EZH2 binding. These were prioritised because the company we 
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used (owing to the COVID pandemic meaning our labs were shut) had in-house validated 

antibodies for these protein (modifications) but not for JARID2. 

Third, to further study the link between histone modifications and changes in gene 

expression, there is a need to look into histone modifiers and to show that when histone 

methylation is stopped, it stops the gene expression changes, in order to provide a causal link. 
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3xflag-JARID2  Jumonji and AT-Rich Interacting Domain 2 plasmid bearing 3xFlag tags  
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CO2   Carbon dioxide 
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EDTA   Ethylenediaminetetraacetic acid 
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EGF   Epidermal growth factor 
EGFR   Epidermal growth factor tyrosine kinase receptor 
ELAND   Efficient Large-Scale Alignment of Nucleotide Database  
ELISA   The enzyme-linked immunosorbent assay 
EMT   Epithelial and mesenchymal transition 
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ESC   Embryonic stem cell 
EZH1   Enhancer of Zeste 2 Polycomb Repressive Complex 1 Subunit  
EZH2   Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit  
FABP7   Fatty Acid Binding Protein 7 
FBS   Fetal bovine serum  
Fc   Crystallizable fragment  
FDR   Fold discovery rate 
FITC   Fluorescein isothiocyanate  
FPKM   Fragments Per Kilobase of transcript per Million mapped reads 
FRiP   Fragment of reads in peak 
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GBM   Glioblastoma 
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GLASS   Glioma Longitudinal AnalysSiS 
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GSEA   Gene set enrichment analysis 
GTF   Gene transfer format 
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H3K36me3  Trimethylation of lysine 36 of histone 3  
H3K4me3  Trimethylation of lysine 4 of histone 3  
H3K9me3  Trimethylation of lysine 9 of histone 3 
HCC   Hepatocellular carcinoma  
HEK293T  A human embryonic kidney cell line  
HEY1   Hes related family bHLH transcription factor with YRPW motif 1 
HiBiv   High H3K27me3:H3K4me3 ratio 
HMM   Hidden Markov Model  
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HRP   Horseradish peroxidase  
HTS   High throughput sequencing  
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mAbs   Monoclonal antibodies 
MACS   Model based analysis of ChIP-seq  
MAPQ   Mapping quality 
MAPK   Mitogen-activated protein kinase 
MDM2   Mouse double minute 2 
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MMR   Mismatch repair pathway 
mRNA   Messanger Ribonucleic acid 
MS   Mass spectrometry 
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mTOR   Mammalian target of rapamycin 
N3-MA   N3-MA 
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NB   Neurobasal media 
NCBI   National centre for biotechnology information 
NEAA,   Non-essential amin acid 
NGS   Next generation sequencing 
NOTCH   Neurogenic locus notch homolog protein  
NRF   Nonredundant Fraction 
NRF   Non-redundant Fraction 
NSC   Normalized strand coefficient  
NSC   Normalized strand cross-correlation coefficient  
NTRK2   Neurotrophic tyrosine receptor kinase 
O6-Meg  O6-methylguanine  
pAbs   Polyclonal antibodies 
pAG-MNase  Protein A/G micrococcal nuclease  
PAGE   Polyacrylamide Gel Electrophoresis 
PARP   Poly (ADP)-ribose polymerase    
PBC1   PCR bottlenecking coefficients 1 
PBC2   PCR bottlenecking coefficients 2 
PBS   Dulbecco’s phosphate buffered saline 
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PC1   Principle component 1 
PCR   Polymerase chain reaction  
PRC2   Polycomb Repressive Complex 2 
PRMT   Arginine methyltransferases 
PI3K   Phosphatidylinositol-3-kinase 
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QC   Quality control 
qPCR   Quantitative polymerase chain reactio 
RBBP4/7  Retinoblastoma binding protein 4 and 7 
RB   Retinoblastoma 
RIPA   Radio-immunoprecipitation assay  
RNA   Ribonucleic acid  
RNA,   Ribonucleic acid  
RNAseq  Ribonucleic acid sequencing  
RPL30   Ribosomal protein L30 
RR   Ridge regression 
RSC   Relative strand correlation  
RSC   Relative strand cross-correlation coefficient 
RT   Room temperature 
SALL2   Spalt Like Transcription Factor 2 
SAM   Sequence alignment map  
SAT2   Spermidine/Spermine N1-Acetyltransferase Family Member  
SDS   Sodium Dodecyl Sulfate 
SEACR   Sparse Enrichment Analysis for CUT&RUN 
SGK4   Serine/threonine protein kinase 4 
shRNA   Short hairpin Ribonucleic acid 
siRNA   Small interfering ribonucleic acid 
SOS1   Son of sevenless 1 
SOX2   Sex Determining Region Y-box 2 
ssDNA   Single stranded DNA 
SUZ12   Suppressor of zeste 12  
TAE   Tris-acetate-Ethylenediaminetetraacetic acid 
TC   Tissue culture 
TE   Tris Ethylenediaminetetraacetic acid 
TF   Transcription factor  
TMZ   Temozolomide 
TP53   Tumour protein 53 
TSS   Transcription start site  
UV   Ultraviolet 
VEGF   Vascular endothelial growth factor 
w   Window of fixed size 
WB   Western blot 
WCE   Whole cell extract 
WHO   World Health Organization 
β-actin   Beta-actin 
ΔN-JARID2   Cleaved product of full-length JARID2  
λ   Lambda 
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Appendices 

Appendix A 
 

A.1  List of tools and software used to develop the ChIP-seq analysis pipeline 
 

Tool/software 
 

Version Availability 

FASTQC 0.11.9 https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 
 

GATK 4.2.5 https://github.com/broadinstitute/gatk/releases 
 

BWA 0.7.17 https://github.com/lh3/bwa 
 

Samtools 1.11 https://github.com/samtools/samtools 
 

Bedtools 2.30.0 https://github.com/arq5x/bedtools2 
 

Picard 2.21.2 https://broadinstitute.github.io/picard/ 
 

MACS3 2.2.7.1 https://github.com/macs3-project/MACS 
 

ChromHMM 1.23 https://github.com/jernst98/ChromHMM 
 

R 4.0.3 https://www.r-project.org 
 

Netbeans 8.2 https://netbeans.apache.org 
 

Python 3.8.5  
qsubsec 3.0a28 https://github.com/alastair-droop/qsubsec 

 
Cutadapt 3.6 https://github.com/marcelm/cutadapt 

https://cutadapt.readthedocs.io/en/stable/ 
 

Deeptools 3.5.1 https://github.com/deeptools/deepTools 
Miniconda3 4.11 https://docs.conda.io/en/latest/miniconda.html 
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Appendix B 
 
B.1 List of Fastq files (single-end reads) for two cell lines (GSC8 and GSC8per), which 

each underwent ChIP-seq to detect the location of both H3K27me3 and H3K4me3 marks, 

compared to input DNA controls. 

 
Sample name SRR number Histone mark 

Input_GSC8 SRR4420628 Null 

Input_GSC8per SRR4420631 Null 

H3K4me3_GSC8 SRR4420639 Narrow peak 

H3K4me3_GSC8per SRR4420644 Narrow peak 

H3K27me3_GSC8 SRR4420649 Broad peak 

H3K27me3_GSC8per SRR4420654 Broad peak 
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Appendix C 
 
C.1 A script for generating the genomic read count 
 
# A function to write a given message to stderr: 
log.message <- function(..., verbose=NA){ 
    if(is.na(verbose)){ 
        verb <- get0('.verbose', ifnotfound=TRUE) 
    } else { 
        verb <- verbose 
    } 
    if(identical(verb, TRUE)){ 
        message(sprintf(...)) 
        flush(stderr()) 
    } 
} 
 
# A function to exit with a given error: 
error <- function(..., exit.code=1, verbose=TRUE){ 
    m <- sprintf('ERROR: %s', sprintf(...)) 
    if(identical(interactive(), TRUE)){ 
        stop(m) 
    } else { 
        log.message(m, verbose=verbose) 
        quit(save='no', status=exit.code) 
    } 
} 
 
# A function to quietly load a vector of libraries from character strings: 
loadLibrary <- function(x, verbose=NA){ 
    log.message('loading library "%s"', x, verbose=verbose) 
    if(identical(interactive(), TRUE)){ 
        res <- require(x, character.only=TRUE, quietly=TRUE) 
    } else { 
        res <- suppressWarnings(suppressPackageStartupMessages(require(x, character.only=TRUE, 
quietly=TRUE))) 
    } 
    if(!identical(res, TRUE)) error('failed to load package "%s"', x) 
} 
 
loadGenome <- function(filename){ 
    genome <- read.table(filename, sep='\t', colClasses=c('character', 'numeric', 'logical', 'character'), 
col.names=c('chr', 'length', 'isCircular', 'genome')) 
    return(Seqinfo(genome$chr, seqlengths=genome$length, isCircular=genome$isCircular, 
genome=genome$genome)) 
} 
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# Attempt to load argparse and construct the input arguments: 
if(!identical(interactive(), TRUE)){ 
    loadLibrary('argparse', verbose=FALSE) 
    parser <- ArgumentParser(description='Generate window read counts from a given BAM file') 
    parser$add_argument('-v', '--verbose', dest='verbose', default=FALSE, action='store_true', help='provide 
verbose output') 
    parser$add_argument('-e', '--display-empty', dest='empty', action='store_true', help='return all windows, 
even empty ones') 
    parser$add_argument('-b', '--blacklist', dest='blacklist', default=NULL, metavar='BED', help='genome 
blacklist') 
    parser$add_argument(dest='genome', metavar='FILE', help='Genome definition file') 
    parser$add_argument(dest='windows', metavar='BED|n', help='Input window BED file or window size') 
    parser$add_argument(dest='bam', metavar='BAM', help='Input BAM file to process') 
    args <- parser$parse_args()     
} else { 
    args <- list( 
        'verbose' = TRUE, 
        'empty' = FALSE, 
        'blacklist' = '/Users/alastair/Documents/Work/ad-bioinformatics/projects/LS2020-
GBMProm/metadata/blacklist/ENCFF356LFX.bed', 
        'genome' = '/Users/alastair/Documents/Work/ad-bioinformatics/projects/LS2020-
GBMProm/metadata/genome/GRCh38-genome.txt', 
        'windows' = '/Users/alastair/Documents/Work/ad-bioinformatics/projects/LS2020-
GBMProm/metadata/promoters/promoters-1k.bed', 
        # 'windows' = '2000', 
        'bam' = '/Users/alastair/Documents/Work/ad-bioinformatics/projects/LS2020-
GBMProm/input/bam/control_P.bam' 
    ) 
} 
 
# Set the global verbosity: 
.verbose <- args$verbose 
 
# Load the necessary libraries: 
for(l in c('GenomicAlignments', 'Rsamtools')){ 
    loadLibrary(l) 
} 
 
# Read in the genome: 
log.message('reading genome file "%s"...', args$genome) 
genome <- loadGenome(args$genome) 
 
# Process the input windows, either from a BED file or from a specified window size: 
suppressWarnings(res <- as.numeric(args$windows)) 
if(is.na(res)){ 
    log.message('generating windows from "%s"', args$windows) 
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    tryCatch({ 
        window.coltypes <- sapply(read.table(args$windows, sep='\t', header=FALSE, nrows=1), class) 
        windows <- read.table(args$windows, sep='\t', header=FALSE, colClasses=window.coltypes, 
comment.char='#') 
        if(ncol(windows) < 3) stop() 
        windows <- windows[, 1:3] 
        colnames(windows) <- c('chr', 'start', 'end') 
        windows <- makeGRangesFromDataFrame(windows) 
        log.message('%s windows loaded from file', format(length(windows), big.mark=',')) 
    }, error= function(e){error('failed to load input regions from "%s"', args$windows)}) 
} else { 
    suppressWarnings(args$windows <- as.integer(args$windows)) 
    if(is.na(args$windows) || (args$windows < 1)) error('invalid window size') 
    log.message('generating length %d genomic windows ', args$windows) 
    windows <- tileGenome(genome, tilewidth=args$windows, cut.last.tile.in.chrom=TRUE) 
    log.message('%s windows across the genome', format(length(windows), big.mark=',')) 
} 
 
# Read in the reads: 
tryCatch({ 
    log.message('loading reads from from "%s"...', args$bam) 
    reads <- GRanges(readGAlignments(args$bam)) 
    log.message('%s reads loaded from file', format(length(reads), big.mark=',')) 
}, error= function(e){error('failed to load reads from "%s"', args$bam)}) 
 
# Narrow the reads to their central nucleotide: 
reads <- resize(reads, width=1, fix='center') 
 
# Read in the blacklist, if provided: 
if(!is.null(args$blacklist)){ 
    tryCatch({ 
        log.message('loading blacklist from "%s"...', args$blacklist) 
        blacklist <- read.table(args$blacklist, sep='\t', header=FALSE, colClasses=c('character', rep('numeric', 2)), 
col.names=c('chr', 'start', 'end')) 
        blacklist <- makeGRangesFromDataFrame(blacklist, seqinfo=genome) 
        blacklist <- reduce(blacklist) 
    }, error= function(e){error('failed to load blacklist from "%s"', args$blacklist)}) 
    # Mark blacklisted regions: 
    log.message('marking blacklisted regions...') 
    windows$blacklist <- windows %over% blacklist 
} 
 
# Count the overlapping reads: 
log.message('mapping reads to windows...') 
windows$counts <- countOverlaps(windows, reads) 
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# Convert the window counts to a data.frame: 
log.message('writing output...') 
res <- data.frame( 
    'chr' = seqnames(windows), 
    'start' = start(windows), 
    'end' = end(windows) 
) 
if('blacklist' %in% colnames(mcols(windows))){res$blacklist <- c('N', 'Y')[as.numeric(windows$blacklist) + 1]} 
res$count <- windows$counts 
 
# Trim empty counts, if requested: 
if(!identical(args$empty, TRUE)){ 
    res <- res[res$count > 0, ] 
} 
 
# Write the output to stdout: 
write.table(res, file=stdout(), sep='\t', quote=FALSE, row.names=FALSE, col.names=TRUE) 
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C.2 A script for calculating the promoter signal 
 
#!/usr/bin/env Rscript 
# This script runs the promoter tests 
# A function to write a given message to stderr: 
log.message <- function(..., verbose=NA){ 
    if(is.na(verbose)){ 
        verb <- get0('.verbose', ifnotfound=TRUE) 
    } else { 
        verb <- verbose 
    } 
    if(identical(verb, TRUE)){ 
        message(sprintf(...)) 
        flush(stderr()) 
    } 
} 
 
# A function to exit with a given error: 
error <- function(..., exit.code=1, verbose=TRUE){ 
    m <- sprintf('ERROR: %s', sprintf(...)) 
    if(identical(interactive(), TRUE)){ 
        stop(m) 
    } else { 
        log.message(m, verbose=verbose) 
        quit(save='no', status=exit.code) 
    } 
} 
 
# A function to quietly load a vector of libraries from character strings: 
loadLibrary <- function(x, verbose=NA){ 
    log.message('loading library "%s"', x, verbose=verbose) 
    if(identical(interactive(), TRUE)){ 
        res <- require(x, character.only=TRUE, quietly=TRUE) 
    } else { 
        res <- suppressWarnings(suppressPackageStartupMessages(require(x, character.only=TRUE, 
quietly=TRUE))) 
    } 
    if(!identical(res, TRUE)) error('failed to load package "%s"', x) 
} 
 
# A function to load a genome file: 
loadGenome <- function(filename){ 
    genome <- read.table(filename, sep='\t', colClasses=c('character', 'numeric', 'logical', 'character'), 
col.names=c('chr', 'length', 'isCircular', 'genome')) 
    return(Seqinfo(genome$chr, seqlengths=genome$length, isCircular=genome$isCircular, 
genome=genome$genome))} 
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# A function to read a single window file: 
readWindowFile <- function(filename, seqinfo){ 
    res <- read.table(filename, sep='\t', header=TRUE, colClasses=c('character', rep('integer', 2), 'character', 
'integer')) 
    res$blacklist <- c('N'=FALSE, 'Y'='TRUE')[res$blacklist] 
    res <- res[res$chr %in% seqnames(seqinfo), ] 
    return(makeGRangesFromDataFrame(res, keep.extra.columns=TRUE, seqinfo=seqinfo)) 
} 
 
# A function to load a pair (control, experiment) of window files: 
readWindowFilePair <- function(control.filename, experiment.filename, seqinfo, filter.blacklist=FALSE){ 
    control <- readWindowFile(control.filename, seqinfo=seqinfo) 
    experiment <- readWindowFile(experiment.filename, seqinfo=seqinfo) 
    stopifnot('control and experiment genome window mismatch'=all(control == experiment)) 
    res <- GRanges( 
        seqnames=seqnames(control),  
        ranges=ranges(control),  
        strand=strand(control), 
        seqinfo=seqinfo(control) 
    ) 
    res$blacklist <- control$blacklist 
    res$control <- control$count 
    res$experiment <- experiment$count 
    if(identical(filter.blacklist, TRUE)){ 
        res <- res[res$blacklist == FALSE] 
        mcols(res)$blacklist <- NULL 
    } 
    return(res) 
} 
 
# A function to select a set of counts from a window object: 
selectCounts <- function(x, source=c('experiment', 'control'), lower.quantile=NA, upper.quantile=NA, 
rm.zero=TRUE){ 
    source <- match.arg(source) 
    x <- mcols(x)[[source]] 
    if(identical(rm.zero, TRUE)){ 
        x <- x[x != 0] 
    } 
    if(!is.na(lower.quantile)){ 
        lower.threshold <- quantile(x, lower.quantile) 
        x <- x[x >= lower.threshold] 
    } 
    if(!is.na(upper.quantile)){ 
        upper.threshold <- quantile(x, upper.quantile) 
        x <- x[x < upper.threshold] 
    } 
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    return(x)} 
 
# A function to calculate the probability of expression for each promoter region: 
calculateSignalProbabilities <- function(x, l.exp, l.con, adjust.method='fdr'){ 
    # Calculate the moderated lambdas: 
    epsilon <- x$control / l.con 
    epsilon.mod <- epsilon 
    epsilon.mod[epsilon.mod < 1] <- 1 
    mcols(x)$lambda.mod <- l.exp * epsilon.mod 
    # Calculate p-values: 
    mcols(x)$p.value <- ppois(x$experiment, lambda=x$lambda.mod, lower.tail=FALSE) 
    mcols(x)$p.adj<- p.adjust(mcols(x)$p.value, method=adjust.method) 
    # Return the data: 
    return(x) 
} 
 
# Attempt to load argparse and construct the input arguments: 
if(!identical(interactive(), TRUE)){ 
    loadLibrary('argparse', verbose=FALSE) 
    parser <- ArgumentParser(description='Test promoter p-values') 
    parser$add_argument('-v', '--verbose', dest='verbose', default=FALSE, action='store_true', help='provide 
verbose output') 
    parser$add_argument('--lambda-gcontrol', dest='lambda.gcontrol', metavar='<l>', type='double',  default=1, 
help='control genome lambda (default 1)') 
    parser$add_argument('--lambda-gexp', dest='lambda.gexp', metavar='<l>', type='double',  default=1, 
help='experiment genome lambda (default 1)') 
    parser$add_argument('--alpha', dest='threshold.alpha', metavar='<a>', type='double',  default=0.05, 
help='FDR significance threshold (default 0.05)') 
    parser$add_argument(dest='genome', metavar='genome', help='Genome definition file') 
    parser$add_argument(dest='control.promoters', metavar='control', help='control promoter window file') 
    parser$add_argument(dest='experiment.promoters', metavar='experiment', help='experiment promoter 
window file') 
    args <- parser$parse_args()     
} else { 
    args <- list( 
        'verbose' = TRUE, 
        'lambda.gcontrol' = 19, 
        'lambda.gexp' = 17, 
        'threshold.alpha' = 0.05, 
        'genome' = '/Users/alastair/Documents/Work/ad-bioinformatics/projects/LS2020-
GBMProm/metadata/genome/GRCh38-genome.txt', 
        'control.promoters' = '/Users/alastair/Documents/Work/ad-bioinformatics/projects/LS2020-
GBMProm/pipelines/original/windows/promoters/control_P-promoters.windows', 
        'experiment.promoters' = '/Users/alastair/Documents/Work/ad-bioinformatics/projects/LS2020-
GBMProm/pipelines/original/windows/promoters/EZH2_P-promoters.windows' 
    )} 
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# Set the global verbosity: 
.verbose <- args$verbose 
 
# Load the necessary libraries: 
for(l in c('GenomicRanges')){ 
    loadLibrary(l) 
} 
log.message('control genomic lambda is %d', args$lambda.gcontrol) 
log.message('experiment genomic lambda is %d', args$lambda.gexp) 
log.message('calculating significance at %0.6f%%', args$threshold.alpha * 100) 
 
# Log the file locations: 
log.message('input files:') 
log.message('  genome file       : %s', args$genome) 
log.message('  control windows   : %s', args$control.promoters) 
log.message('  experiment windows: %s', args$experiment.promoters) 
 
# Load the genome seqinfo object: 
genome <- loadGenome(args$genome) 
 
# Load the promoter window counts: 
log.message('reading promoter window counts...') 
promoter.windows <- readWindowFilePair(control=args$control.promoter, 
experiment=args$experiment.promoter, seqinfo=genome, filter.blacklist=TRUE) 
log.message('%d promoter locations across genome', length(promoter.windows)) 
 
# Calculate the normalised counts ratio: 
promoter.windows$logFC <- log2(promoter.windows$experiment / promoter.windows$control) 
 
# Calculate the per-promoter modification factors: 
mcols(promoter.windows)$modification.factor <- promoter.windows$control / args$lambda.gcontrol 
mcols(promoter.windows)[promoter.windows$modification.factor < 1, 'modification.factor'] <- 1 
mcols(promoter.windows)$test.lambda <- args$lambda.gexp * promoter.windows$modification.factor 
 
# Calculate the lambdas: 
calculate_promoter_pois_pvalue <- function(test.stat, test.lambda){ 
    res <- poisson.test(test.stat, test.lambda, alternative='greater') 
    return(res$p.value)} 
 
# Run the poisson tests: 
mcols(promoter.windows)$pvalue <- apply(mcols(promoter.windows), 1, function(i){ 
    calculate_promoter_pois_pvalue(i['experiment'], i['test.lambda']) 
}) 
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# Calculate the adjusted p-values: 
mcols(promoter.windows)$padj <- p.adjust(mcols(promoter.windows)$pvalue, method='fdr') 
 
# Write significance: 
promoter.windows$significant = as.factor(c('ns', 'sig')[as.numeric(promoter.windows$padj <= 
args$threshold.alpha) + 1]) 
n.sig <- table(promoter.windows$significant)['sig'] 
log.message('%d/%d (%0.2f%%) promoters significant at %0.6f%% threshold', n.sig, 
length(promoter.windows), (n.sig/length(promoter.windows)) * 100, args$threshold.alpha * 100) 
 
# Write the output: 
output <- as.data.frame(promoter.windows) 
colnames(output) <- c('chr', 'start', 'end', 'width', 'strand', 'control_counts', 'experiment_counts', 'logFC', 
'mod_fac', 'lambda_test', 'p_value', 'p_adj', 'significant') 
output$strand <- NULL 
write.table(output, file=stdout(), sep='\t', quote=FALSE, row.names=FALSE) 
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C.3 A script for scoring the enrichment of each promoter region based on the corrected p-
values. 
This script takes the output of window read count of the promoter regions and calculate all 
possible promoter states based on the corrected p-value with a threshold of P < 0.00001. 
 
 
# Load the necessary libraries: 
library(GenomicRanges) 
library(jsonlite) 
library(ggplot2) 
 
# Set the analysis arguments: 
args <- list( 
    'comparisons' = file.path('.', 'analysis.json'), 
    'input.dir' = file.path('..', '..', 'results'), 
    'expression' = file.path('..', '..', '..', '..', 'input', 'expression', 'promoter-expression.txt'), 
    'genome' = file.path('..', '..', '..', '..', 'metadata', 'genome', 'GRCh38-genome.txt'), 
    'result.dir' = file.path('..', 'results'), 
    'threshold' = 0.00001) 
 
# Load the genome: 
message(sprintf('loading genome data from "%s"...', args$genome)) 
genome <- read.table(args$genome, sep='\t', colClasses=c('character', 'numeric', 'logical', 'character'), 
col.names=c('chr', 'length', 'isCircular', 'genome')) 
genome <- Seqinfo(genome$chr, seqlengths=genome$length, isCircular=genome$isCircular, 
genome=genome$genome) 
 
# Load the expression data: 
message(sprintf('loading expression data from "%s"...', args$expression)) 
expression <- read.table(args$expression, sep='\t', header=TRUE, col.names=c('chr', 'pos', 'logFC', 'P', 'R')) 
expression$start <- expression$pos 
expression$end = expression$start 
expression$pos <- NULL 
expression <- expression[expression$chr %in% seqlevels(genome), ] 
expression <- makeGRangesFromDataFrame(expression, keep.extra.columns=TRUE, seqinfo=genome) 
expression <- sort(expression) 
 
# Load the sample file: 
message(sprintf('loading sample data from "%s"...', args$comparisons)) 
samples <- jsonlite::fromJSON(args$comparisons) 
sample.labels <- names(samples) 
names(sample.labels) <- sapply(samples, '[[', 'label') 
samples <- as.data.frame(sapply(sort(setdiff(unique(unlist(lapply(samples, names))), 'label')), function(ctype){ 
    sapply(samples, '[[', ctype)})) 
rownames(samples) <- names(sample.labels) 
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# Define the valid datasets: 
message('building input file list...') 
valid.datasets <- list() 
for(sample.id in rownames(samples)){ 
    sample.label <- sample.labels[sample.id] 
    for(ctype in colnames(samples)[which(samples[sample.id,]==TRUE)]){ 
        dataset.label <- sprintf('%s%s', sample.id, ctype) 
        dataset.filename <- file.path(args$input.dir, sprintf('%s_%s', sample.label, ctype), sprintf('%s_%s-
signal.txt', sample.label, ctype)) 
        if(!file.exists(dataset.filename)){ 
            stop(sprintf('%s signal file "%s" missing', dataset.label, dataset.filename)) 
        } 
        valid.datasets[[dataset.label]] <- dataset.filename 
    } 
} 
 
# Load the raw data: 
message('loading target data...') 
d.raw <- sapply(valid.datasets, function(filename){ 
    output <- read.table(filename, sep='\t', header=TRUE, colClasses=c('character', rep('numeric', 10), 'factor')) 
    return(makeGRangesFromDataFrame(output, keep.extra.columns=TRUE, seqinfo=genome)) 
}, simplify=FALSE) 
 
# Build the data: 
d <- GRanges( 
    seqnames = seqnames(d.raw[[1]]), 
    ranges = ranges(d.raw[[1]]), 
    seqinfo=genome 
) 
 
# Merge with expression data: 
message('calculating expression data overlaps...') 
o <- findOverlaps(query=resize(d, width=1, fix='center'), subject=expression) 
d$expression_logFC <- NA 
mcols(d)[queryHits(o), 'expression_logFC'] <- expression[subjectHits(o)]$logFC 
d$expression_P <- NA 
mcols(d)[queryHits(o), 'expression_P'] <- expression[subjectHits(o)]$P 
d$expression_R <- NA 
mcols(d)[queryHits(o), 'expression_R'] <- expression[subjectHits(o)]$R 
 
# Merge the binding data: 
message('merging sample data...') 
for(dataset in names(d.raw)){ 
    # Add both value and p-value to output here! 
    mcols(d)[[sprintf('%s_lambda_mod', dataset)]] <- d.raw[[dataset]]$lambda_mod 
    mcols(d)[[sprintf('%s_pvalue', dataset)]] <- d.raw[[dataset]]$p_value 
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    mcols(d)[[sprintf('%s_padj', dataset)]] <- d.raw[[dataset]]$p_adj 
    mcols(d)[[dataset]] <- as.numeric(d.raw[[dataset]]$p_adj <= args$threshold)} 
 
# Calculate all possible promoter statuses: 
status.label <- paste(rownames(samples), collapse=':') 
 
# Get the ctype status factors: 
for(ctype in colnames(samples)){ 
    status.levels <- expand.grid(lapply(1:nrow(samples), function(i){c('0', '1')})) 
    for(i in which(!samples[[ctype]])){ 
        status.levels[, i] <- rep('0', nrow(status.levels)) 
    } 
    status.levels <- unique(apply(status.levels, 1, paste, collapse='')) 
    res <- rep('', length(d)) 
    for(sample.id in rownames(samples)){ 
        col <- sprintf('%s%s', sample.id, ctype) 
        if(col %in% names(valid.datasets)){ 
            v <- mcols(d)[, col] 
        } else { 
            v <- rep('0', length(d)) 
        } 
        res <- sprintf('%s%s', res, as.character(v)) 
    } 
    mcols(d)[[ctype]] <- factor(res, levels=status.levels) 
} 
 
# Write the data to the resuts file: 
res.filename <- file.path(args$result.dir, 'original-results.txt') 
message(sprintf('writing combined data to "%s"...', res.filename)) 
write.table(d, file=res.filename, sep='\t', quote=FALSE, row.names=FALSE) 
 
# A function to plot p-value histograms: 
plot.pHist <- function(x, col, filename){ 
    g <- ggplot(x, aes_string(col, fill='label')) 
    g <- g + geom_histogram(bins=100, show.legend=FALSE) 
    g <- g + scale_y_continuous(trans=scales::pseudo_log_trans()) 
    g <- g + theme_classic() 
    g <- g + facet_grid(rows=vars(label)) 
    g <- g + labs(x='p-value', y='Count') 
    ggsave(g, filename=filename, width=12, height=16, units='in')} 
 
# Extract the p-values for each dataset: 
d.pvalues <- data.frame( 
    'label' = factor(rep(names(d.raw), each=length(d.raw[[1]]))), 
    'pvalue' = unlist(sapply(d.raw, function(i){mcols(i)$p_value}, simplify=FALSE)), 
    'padj' = unlist(sapply(d.raw, function(i){mcols(i)$p_adj}, simplify=FALSE))) 
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# Plot the p-value histograms: 
plot.pHist(d.pvalues, 'pvalue', file.path(args$result.dir, 'pvalue-density.pdf')) 
plot.pHist(d.pvalues, 'padj', file.path(args$result.dir, 'padj-density.pdf')) 
 
# Extract the expression by status: 
d.expression <- rbind.data.frame( 
    data.frame(expression=d$expression_P, status=d$P, ctype=factor('P', levels=c('P', 'R'))), 
    data.frame(expression=d$expression_R, status=d$R, ctype=factor('R', levels=c('P', 'R'))) 
) 
d.expression <- d.expression[complete.cases(d.expression),] 
d.expression <- d.expression[d.expression$expression > 0,] 
 
# A function to plot the expression data boxplots: 
plot.expression <- function(x, filename, notch=TRUE){ 
    g <- ggplot(x, aes(x=status, y=expression, fill=ctype)) 
    g <- g + geom_boxplot(outlier.shape = NA, notch=notch) 
    g <- g + theme_classic() 
    g <- g + coord_cartesian(ylim=c(0, quantile(x$expression, 0.9))) 
    g <- g + theme(axis.ticks=element_blank(), panel.grid=element_blank(), panel.background=element_blank(), 
panel.border=element_blank()) 
    g <- g + theme(axis.title.x=element_blank(), axis.text.x=element_text(angle=0, vjust=0.5, size=10, 
family='mono'), plot.subtitle=element_text(colour='grey25'), legend.title=element_blank()) 
    g <- g + labs(y='Expression') 
    ggsave(g, filename=filename, width=16, height=8, units='in')} 
 
# Plot the expression data: 
plot.expression(d.expression[d.expression$ctype=='R',], file.path(args$result.dir, 'expression-R.pdf'), 
notch=TRUE) 
plot.expression(d.expression, file.path(args$result.dir, 'expression-PR.pdf'), notch=TRUE) 
 
# A function to plot logFC by status change: 
plot.dStatus.logFC <- function(x, filename){ 
    g <- ggplot(x, aes(x=status, y=logFC)) 
    g <- g + geom_boxplot(outlier.shape = NA, fill='grey95') 
    g <- g + theme_classic() 
    # g <- g + coord_cartesian(ylim=c(0, quantile(x$logFC, 0.9))) 
    g <- g + theme(axis.ticks=element_blank(), panel.grid=element_blank(), panel.background=element_blank(), 
panel.border=element_blank()) 
    g <- g + theme(axis.title.x=element_blank(), axis.text.x=element_text(angle=90, vjust=0.5, size=4, 
family='mono'), plot.subtitle=element_text(colour='grey25'), legend.title=element_blank()) 
    g <- g + labs(x=sprintf('Change in Promoter Status P -> R', status.label), y='LogFC') 
    ggsave(g, filename=filename, width=16, height=8, units='in')} 
 
# # Plot the expression by promoter status change: 
d.status <- data.frame( 
    'status' = factor(sprintf('%s->%s', d$P, d$R)), 'logFC' = d$expression_logFC) 
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d.status <- d.status[complete.cases(d.status), ] 
plot.dStatus.logFC(d.status, file.path(args$result.dir, 'logFC-P_R.pdf')) 
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Appendix D 
 

D.1 Plasmids used for LR cloning gateway 
 
The following maps represents the entry plasmid (pCR8 JARID2), the destination plasmid 

containing 3x Flag tags (GW306 Nterm pDEST 3xFlag) and the resulted full length JARID2 

expression plasmid (3xflag-JARID2) obtained from https://www.addgene.org. 
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Appendix E 
 
E.1 Emission probability of each state from ChromHMM tool for an external dataset 
 

ChromHMM state 

(Emission order) 

H3K27me3 H3K4me3 State annotation 

1 0.00206885 2.20E-04 Null 

2 0.179155112 1.11E-04 Repressive 

3 0.207145188 0.881164871 Bivalent 

4 4.35E-04 0.93974177 Active 

 
 
 
E.2 Emission probability of each state from ChromHMM tool for an in-house dataset  
 

ChromHMM 

state 

(Emission order) 

EZH2 H3K4me3 H3K27me3 State annotation 

1 0.001716529 5.18E-06 0.002019955 Null 

2 0.003861848 1.94E-04 0.035216851 Weakly repressed 

3 0.011549223 0.023353844 0.820056696 Repressed 

4 0.042815413 0.873189627 0.952889896 Bivalent-R 

5 0.045083269 0.998411301 0.888182423 Bivalent-A 

6 0.013410972 0.949221719 0.023634553 Active 

7 0.517699958 0.998867682 0.335493269 Bivalent A+ EZH2 

8 0.039354017 0.056239687 0.024649069 Weak bivalent + EZH2 
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Appendix F 
 

F.1  Agilent 2100 Bioanalyzer DNA 1000 assay 
 

The following traces outline a typical bioanalyzer DNA 1000 assay trace, evaluating the 

DNA concentrations after DNA purification step of CUT&RUN assay.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Instrument Name: DE13805962 Firmware:

Serial#:

Assay Information:

C.01.069

DE13805962

Instrument Information:

Assay Origin Path: C:\Program Files (x86)\Agilent\2100 bioanalyzer\2100
expert\assays\dsDNA\DNA 1000 Series II.xsy

Assay Class:

Version:
Assay Comments:

DNA 1000

2.3
DNA Analysis 25 -1000 bp
 
© Copyright 2003-2009 Agilent Technologies, Inc.

Chip Information:

Chip Comments:

Type: G2938C

Chip Lot #:

Reagent Kit Lot #:

15576_2C 15576_PN GBM63_P17_input

GBM63_P17_IgG GBM63_P17_JARID2 GBM63_P17_H3K27me3

GBM63_P17_H3K4me3 NB17_39_input NB17_39_IgG

NB17_39_JARID2 NB17_39_H3K27me3 NB17_39_H3K4me3

2100 Expert (B.02.10.SI764) © Copyright 2003 - 2018 Agilent, Inc. Printed: 12/02/2021 13:23:17

2100 expert_DNA 1000_DE13805962_2021-02-11_14-38-48.xad Page of1 18

Created:
Modified:

11/02/2021 14:38:48
12/02/2021 13:22:40Data Path:

DNA 1000
C:\...-11\2100 expert_DNA 1000_DE13805962_2021-02-11_14-38-48.xad

Assay Class:

Electrophoresis File Run Summary
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F.2  Agilent 2100 Bioanalyzer High Sensitivity DNA assay 
 

The following traces outline a typical bioanalyzer DNA 1000 assay trace, evaluating the 

DNA concentrations after DNA purification step of CUT&RUN assay. 

  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Instrument Name: DE13805962 Firmware:

Serial#:

Assay Information:

C.01.069

DE13805962

Instrument Information:

Assay Origin Path: C:\Program Files (x86)\Agilent\2100 bioanalyzer\2100
expert\assays\dsDNA\High Sensitivity DNA.xsy

Assay Class:

Version:
Assay Comments:

High Sensitivity DNA Assay

1.03
Copyright © 2003-2010 Agilent Technologies

Chip Information:

Chip Comments:

Type: G2938C

Chip Lot #:

Reagent Kit Lot #:

GBM63_P18_input GBM63_P18_IgG GBM63_P18_JARID2

GBM63_P18_H3K27me3 GBM63_P18_H3K4me3 NB169_12_input

NB169_12_IgG NB169_12_JARID2 NB169_12_H3K27me3

NB169_12_H3K4me3

2100 Expert (B.02.10.SI764) © Copyright 2003 - 2018 Agilent, Inc. Printed: 12/02/2021 13:21:45

2100 expert_High Sensitivity DNA Assay_DE13805962_2021-02-12_12-27-53.xad Page of1 17

Created:
Modified:

12/02/2021 12:27:53
12/02/2021 13:20:02Data Path:

High Sensitivity DNA Assay
C:\...gh Sensitivity DNA Assay_DE13805962_2021-02-12_12-27-53.xad

Assay Class:

Electrophoresis File Run Summary


