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Abstract 

As an environmentally friendly transport option, electric vehicles (EVs) are endowed with the 

characteristics of low fossil energy consumption and low pollutant emissions. In today's 

growing market share of EVs, the safety and reliability of the powertrain system will be directly 

related to the safety of human life. Reliability problems of EV powertrains may occur in any 

power electronic (PE) component and mechanical part, both sudden and cumulative. These 

faults in different locations and degrees will continuously threaten the life of drivers and 

pedestrians, bringing irreparable consequences. Therefore, monitoring and predicting the real-

time health status of EV powertrain is a high-priority, arduous and challenging task. 

The purposes of this study are to develop AI-supported effective safety improvement 

techniques for EV powertrains. In the first place, a literature review is carried out to illustrate 

the up-to-date AI applications for solving condition monitoring and fault detection issues of 

EV powertrains, where recent case studies between conventional methods and AI-based 

methods in EV applications are compared and analysed. On this ground this study, then, 

focuses on the theories and techniques concerning this topic so as to tackle different challenges 

encountered in the actual applications. In detail, first, as for diagnosing the bearing system in 

the earlier fault period, a novel inferable deep distilled attention network is designed to detect 

multiple bearing faults. Second, a deep learning and simulation driven approach that combines 

the domain-adversarial neural network and the lumped-parameter thermal network (LPTN) is 

proposed for achieve IPMSM permanent magnet temperature estimation work. Finally, to 

ensure the use safety of the IGBT module, deep learning -based IGBT modules’ double pulse 

test (DPT) efficiency enhancement is proposed and achieved via multimodal fusion networks 

and graph convolution networks.  

Key words: Electric vehicle; neural network; deep learning; powertrain; IGBT; bearing; 

PMSM; reliability
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𝑄 Query matrix 

𝑅 Resistance 

𝑅௦ the ohmic resistance 

𝑉 Value matrix 

𝑉௡௘௪ down sampled vibration signal 

𝑉௦ the original collected vibration signal 

𝐰௖௟௔௦௦ the class token 

𝐰ௗ௜௦௧௜௟௟ the distillation token 

𝑊ை The parameter matrix of linear transforms 

𝑋 Input matrix 

𝑌௦ The category spaces of the learning objectives of source domain 

𝑌௧ The category spaces of the learning objectives of target domain 

𝐳௅
଴ the Transformer encoder 

𝛼 Weight parameter 

𝛽 Weight parameter 

𝛿 the impulse function 

𝜃 Temperature 

ℒ஽ Loss function of the domain classifier 

ℒௌ Loss function of the source domain 

ℒ்  Loss function of the target domain 

𝜙(∙) The mapping function 

𝜎(∙) Softmax function 

𝜇 hyperparameter 

𝜆 hyperparameter 

𝛾 hyperparameter 
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 Introduction 

1.1 Motivation 

Human life and industry are inseparable from the help of electric powertrain systems, which 

can bring great convenience to human beings. In today's growing market share of electric 

vehicles (EVs), the safety and reliability of the powertrain system will be directly related to the 

safety of human life. Reliability problems of EV powertrains may occur in any power electronic 

(PE) component and mechanical part, both sudden and cumulative. For instance, permanent 

magnets of the permanent magnet synchronous motor (PMSM) will be demagnetized if it 

operates in a high temperature environment for a long time; in the DC-bus, the failure of 

capacitors and switches will be caused by various reasons such as aging and overstress; the 

wear and damage of motor bearings can also cause serious safety hazards. These faults in 

different locations and degrees will continuously threaten the life of drivers and pedestrians, 

bringing irreparable consequences. Therefore, monitoring and predicting the real-time health 

status of EV powertrain (Fig. 1-1) is a high-priority, arduous and challenging task [1].  

 

Fig. 1-1. Diagram of regular EV powertrain system (this thesis is main focous on the 

componments in red square). 

Condition monitoring and fault diagnosis are important topics in the field of health monitoring. 

For the sake of high reliability, EV’s powertrain needs two classes of online condition 

monitoring in real time: the first-class is the prediction that does not directly cause failures, 

such as battery remaining useful life (RUL) prediction; the second-class is the online real-time 
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monitoring also before faults occur, such as motor bearing damage fault monitoring. The fault 

diagnosis can achieve the effect of the second-class condition monitoring, that is, real-time 

identification of fault occurrence, type and location. There are many techniques that are 

sufficient to support powertrain condition prediction and fault diagnosis. It is mainly divided 

into conventional methods based on mathematical models and data-based method. However, 

conventional methods usually lack not sensitivity to fault time and are hard to make a prognosis 

for fault time. Therefore, academia and industry gradually began to use AI-based technology 

to overcome and solve these problems. Almost all AI-based methods require the support of 

signal data. For example, the methods in [2], [3] collect and utilize vibration signals; papers 

[4], [5] rely on motor current signals to identify health status. These two types of signals are 

also the most common sources of data. Besides, researchers have also tried using thermal 

images [6], [7], [8], infrared information [9], [10] and acoustics signals [11], [12], etc. 

Particularly, paper [13] suggests a combinational-logic-based method to confirm the possibility 

of EV powertrain fault appearance. They are widely used to diagnose many types of faults in 

motors, inverter, batteries and even gearboxes [4], [5].  

In EVs, powertrain components require the intervention of health monitoring methods to 

reduce the possibility of catastrophic issues and losses, as well as provide warnings for 

predictive maintenance. In other words, some AI techniques could make the electric powertrain 

more intuitive and transparent, allowing people to early deal with possible failures. Therefore, 

people need the help of AI technology to solve many problems in the powertrain system. This 

is also inseparable from the advantages of machine learning (ML) and deep learning (DL) 

algorithms. 

In past years, expert systems [14], fuzzy logic systems [15] and simple fully-connected 

artificial neural networks (ANN) were early attempts at powertrain troubleshooting. Recently, 

modified and improved supervised learning algorithms based on decision tree (DT), support 

vector machine (SVM), some ensemble algorithms (such as adaptive boost (Adaboost), random 

forest (RF), etc.) and some deep learning methods are often employed. Unsupervised learning 

algorithms such as autoencoder (AE), K-nearest neighbours (K-NN) and some clustering 

algorithms are able to skip the step of manual data labeling during training. Usually, neural 

network-based methods such as multilayer perceptron (MLP), convolutional neural network 

(CNN), deep belief network (DBN), recurrent neural network (RNN) (including long and short-

term memory network (LSTM) and gated recurrent unit (GRU)) are becoming more and more 
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popular among researchers because these can avoid the feature extraction stage (typical 

application is in Fig. 1-2). Many scholars have made partial reviews on the application of AI 

technology in the monitoring of machine health conditions. For instance, [16] summarizes the 

induction motor (IM) as the target, not for EV operation, nor for the entire electric powertrain, 

and the review has outdated. In [17], the field described is relatively broad, and no detailed 

discussion is given for the application in specific EVs. [18] reviews emphatically from the 

perspective of rotating machinery, and the diagnosis methods for PE components are not 

included. Overall, there are insufficient review works on AI technique-based condition 

monitoring and fault diagnosis for the whole EV powertrains. In addition, the intrinsic 

properties (e.g., advantages and challenges, etc.) of the AI-supported methods were not clearly 

discussed in comparison with the traditional ones previously. Hence, it is significant and urgent 

to carry out a relatively comprehensive review to provide guidelines for future study 

concerning AI-supported health improvement of EV powertrains.  

 

Fig. 1-2. Typical applications of AI approaches for condition monitoring and fault 

detection of electric powertrains. 

This research focuses on AI-supported approaches (especially health condition monitoring and 

fault diagnosis techniques) for EV powertrain components safety improvement applications. 

The motor is the most important part of an EV powertrain. Therefore, the objective of this 

thesis research is on the application of motor-related components, such as motor bearings, rotor 

permanent magnets in the motor and IGBTs in the inverter used for motor control. The 

progressive objectives of this study can be summarized as follows:  
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i. To review AI-based fault detection and condition monitoring approaches for EV 

powertrains to reduce personal and maintenance cost and ensure human’s life. 

Electric powertrain used in electric vehicles (EVs), which is constituted by motor, 

transmission unit, inverter and battery packs, etc., is a highly-integrated system. Its 

reliability and safety are not only related to industrial costs, but more importantly to the 

safety of human life. This review contributes to comprehensively summarizing artificial 

intelligence (AI)-based/AI-supported approaches in EV powertrain condition 

monitoring and fault diagnosis that can be used in EV applications. The application of 

AI on PE in EV is a new attempt, which can solve many issues with better performance 

than traditional methods, and even achieve functions that the conventional methods 

cannot achieve. 

ii. To propose an AI-based method to solve the health monitoring problem of 

mechanical bearings in electric powertrain. Bearing, as a vital component in electric 

powertrains, is increasingly used globally such as in electric vehicle (EV). Their 

damages and faults may bring huge cost loss to owners and even threaten personal 

safety. The AI-supported inferable deep distilled attention network (IDDAN) method 

is proposed to solve this problem. Firstly, it attempts to apply the self-attention-based 

network to build an advanced fault diagnosis model. Secondly, this paper optimizes the 

structure of networks through knowledge distillation (KD) technique to require a lighter 

and fast model. Thirdly, this paper proposes a new data augmentation strategy for 1-D 

vibration signals to provide large-scale pre-training samples for IDDAN.  

iii. To develop a deep learning based permanent magnet temperature (PMT) 

estimator without target machine labelled data. PMSMs are vulnerable to damage 

from high temperatures, which can cause the demagnetization of the permanent 

magnets (PMs). To prevent demagnetization, accurate real-time estimation of the PM 

temperature (PMT) is crucial. The PMT measurement in practical applications is still 

challenging because the PM is in the rotor and the rotor is rotating. Firstly, due to the 

difficulty in acquiring labeled PM data, lumped-parameter thermal network (LPTN)-

based simulation provides a convenient way to obtain a large amount of simulation data. 

Secondly, this simulation dataset serves as the source domain data to train the proposed 

modified Transformer-based long sequence time-series regression (MT-LSTR) model, 

which generates coarse predicting labels (CP-labels). The CP-labels can be used to label 

the target domain dataset collected from a real interior permanent-magnet synchronous 
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motor (IPMSM). Finally, the proposed domain-adversarial adaptation regression 

(DAAR) model is trained with both feature-level and domain-level adaptations to 

obtain a well-trained online PMT estimator.  

iv. To develop a novel double pulse test (DPT) efficiency enhancement method, which 

can estimate and supplement switching transient waveforms of all working 

conditions. Thereby, dynamic electrical characteristics of the IGBT are obtained by 

estimated waveforms of DPT. Double pulse is a basic experimental method for 

analyzing the dynamic characteristics of power switching devices, which runs through 

the research and development of devices, applications and the design of drive protection 

circuits. IGBT dynamic electrical characteristics are of great significance in practical 

application and are usually obtained through DPT. However, DPTs of IGBTs under 

various working conditions is time-consuming and laborious. Traditional estimation 

methods are based on detailed physical parameters and complex formula calculations, 

making deployment difficult. We propose a multimodal attention fusion network 

(MAFN) to capture and fuse the features of switching transient waveforms between 

different positions thereby improving the expressive power and performance of the 

model. On the other hand, this method first proposes to utilize the graph convolutional 

network (GCN) to embed DPT data under multiple working conditions into graph 

structure, which can use the graph structure information to fuse the features of spatially 

correlated working conditions data to obtain reliable estimation result. 

1.2 Dissertation Outline 

The dissertation consists of seven chapters. These chapters are all focus on the objects in EV 

motor: bearing, rotor PM and inverter. An outline of the structure is organized as follows: 

Chapter 1 introduces the motivation of this study. Besides, the main objectives and a brief 

introduction of the research contents are illustrated. 

Chapter 2 reviews comprehensively AI-based fault detection and condition monitoring 

approaches for EV powertrains. This review is the first contribution to comprehensively 

summarize both the feature engineering methods and artificial intelligence (AI) algorithms 

(including machine learning, neural networks and deep learning) in electric powertrain 

condition monitoring and fault diagnosis approaches and also explains the motivation, 
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advantages, shortcomings and challenges of AI-supported methods through summary, 

classification, comparison and quantitative analysis of cases between conventional methods 

and AI-based methods. 

Chapter 3 designs an inferable deep distilled attention network (IDDAN) method which is a 

self-attention mechanism and transfer learning-based method to diagnose and classify multiple 

bearing faults in various motor drive systems efficiently and accurately. Compared with 

convolutional networks, the self-attention-based network can better extract the global feature 

information and easier to benefit from large amounts of pre-training data. Its significance is to 

accurately classify various faults of the target machine when the labeled data of the target 

machine is not enough to directly train the diagnosis model. Experiments show that the self-

attention mechanism-based model is more likely to benefit from large-scale data. After testing, 

compared with many methods and other exist similar methods, the proposed method achieves 

higher classification accuracy and better performance. 

Chapter 4 designs a simulation-driven unsupervised transfer learning approach that leverages 

the domain-adversarial adaptation regression (DAAR) model to enable online and accurate 

estimation of PMT. This PMT estimator can transferred knowledge from the model that trained 

by simulated data. In experiments, simulation data generated from MATLAB/Simulink is used 

for offline training, while the effectiveness of the proposed method is validated using the 

IPMSM temperature dataset provided by Paderborn University (PU). 

Chapter 5 designs a novel DPT efficiency enhancement method based on graph convolution 

network (GCN) and feature fusion technology, which can estimate and supplement switching 

transient waveforms of all working conditions. Thereby, dynamic electrical characteristics of 

the IGBT are obtained by estimated waveforms of DPT. The method is verified to be effective 

and accurate on real dataset collected on two batches of IGBTs. 

Chapter 6 concludes all chapters of this dissertation and discusses the future trends for this 

research field. The future works includes that the use of advanced AI algorithms. For solve 

more types of engineering issues, it is necessary to apply more novel algorithms to solve 

practical industrial problems.
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 Review of AI-based Applications for EV 

Powertrain Safety Improvement 

Electric powertrain used in electric vehicles (EVs), which is constituted by motor, transmission 

unit, inverter and battery packs, etc., is a highly-integrated system. Its reliability and safety are 

not only related to industrial costs, but more importantly to the safety of human life. This review 

contributes to comprehensively summarizing artificial intelligence (AI)-based/AI-supported 

approaches in EV powertrain condition monitoring and fault diagnosis that can be used in EV 

applications. The application of AI on PE in EV is a new attempt, which can solve many issues 

with better performance than traditional methods, and even achieve functions that the 

conventional methods cannot achieve. This review is the first contribution to comprehensively 

summarize both the feature engineering methods and artificial intelligence (AI) algorithms 

(including machine learning, neural networks and deep learning) in electric powertrain 

condition monitoring and fault diagnosis approaches and also explains the motivation, 

advantages, shortcomings and challenges of AI-supported methods through summary, 

classification, comparison and quantitative analysis of cases between conventional methods 

and AI-based methods. 

AI-based methods usual contains two parts: data preprocessing (feature engineering) and AI 

algorithm. The following sections include feature engineering at section 2.1 and AI methods at 

section 2.2-2.4. 

2.1  Feature Engineering 

Feature extraction is usually used to analyse the waveform signal such as current signal and 

vibration signal [19], [20], but if the extracted feature information is not completely contributed 

to the fault classification, it is necessary to use feature selection technology to find 

representative features to achieve the purpose of reducing the feature size and enhancing fault 

diagnosing efficiency [19]. 
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 Feature Extraction 

The step after data preprocessing is often to extract features of the vibration signal, current 

signal, etc., which extract the fault information contained in the signal. The most famous and 

important method in signal processing is the Fourier transform (FT), which is widely used 

signal processing because it has the function of transforming the signal back and forth from the 

time domain to the frequency domain and helping analyze the components of the signal. For 

the signal that is discretized into discrete sampling points, the FT becomes the discrete Fourier 

transform (DFT). However, due to a large amount of DFT calculation and the high 

computational complexity, the earliest version of fast Fourier transform (FFT) was proposed 

by J. Cooley and T. Tukey in 1965 [21], which reduced the amount of calculation by several 

orders of magnitude. This allows computers to process signals more quickly, thereby 

promoting the rapid development of communications and signal processing. FFT has made 

great progress in fault diagnosis methods based on Fourier analysis [22]. Yang et al. [23] 

applies FFT in MCSA to analyze the stator current data of IMs and calls the obtained feature 

the FFT-ICA feature of stator current. Romero-Troncoso et al. [24] uses the improved FFT 

after fractional resampling for IM periodic monitoring tasks. In the paper [25], FFT banded 

RMS value input CNN for gearbox fault identification. FFT is also used to extract the fault 

spectrum characteristics of the three-phase current when diagnosing the multiple insulated gate 

bipolar transistors (IGBTs) open-circuit faults and current sensor faults in the three-phase pulse 

width modulation inverter [26]. Under necessary circumstances, quantum Fourier transform 

(QFT) can accelerate the FFT exponentially [27]. Short-time Fourier transform (STFT) 

contribute to deal with the problem of FT about losing all time-domain information. E. H. E. 

Bouchikhi [28] applies STFT to analyse IM stator current to diagnose bearing faults. 

Continuous wavelet transform (CWT) introduces the wavelet mother function to achieve 

dynamic resolution in the time domain and frequency domain. Using CWT can get the 

complete time-frequency domain information of signals, avoiding the loss of information of 

the original signal to the utmost extent [29]. Discrete wavelet transform (DWT) is a new type 

of spectrum analysis tool that discretizes the scale and translation of basic wavelets. It can not 

only observe the frequency domain characteristics of local time-domain processes but also 

observe the time domain characteristics of local frequency domain processes, so even those 

non-stationary processes can be transformed and processed well. The type and number of 
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features used in fault diagnosis methods could be extracted by DWT, but when extracting fault 

characteristics of motor bearings, key information may be lost near the fault characteristic 

frequency. Some research on IM proves that DWT can make fault identification more accurate 

than traditional FFT [30]. Therefore, it is also one of the time-frequency domain techniques 

preferred by researchers. In [31], the author uses DWT to diagnose faults in motor transient 

operation. Frequency domain methods often fail to detect faults from nonstationary signals, 

such as bearing vibration signals [32].  

In addition to STFT and wavelet transform (WT), other signal time-frequency domain analysis 

techniques, such as wavelet packet transform (WPT), Wigner-Ville distribution (WVD) [33], 

empirical mode decomposition (EMD) [34], empirical wavelet transform (EWT) and spectral 

kurtosis (SK) analysis, etc. are also widely employed.  

WT is a very successful method in time-frequency domain EV powertrain health monitoring, 

which can also reduce noise in the noisy working environment. However, the high-frequency 

band is not split where the modulation information of machine fault exists. WPT can extract 

key components through a band-pass filter to decompose the signal into different levels, which 

is helpful for the correct extraction of fault feature information. In paper [35], the CAA 

algorithm was used to improve the feature correlation according to the weight of the feature 

after the author extracted the fault features used by this method from the time domain, statistical 

feature, and frequency domain through wavelet packet transform (WPT). Then it reduces the 

dimensionality of fusion features through principal component analysis (PCA) and the support 

vector machine (SVM) is a diagnostic classifier. This is the basic process of a fault diagnosis 

method based on fault characteristics. WPT obtains a variety of the wavelet packet feature 

quantities through its multi-scale time-frequency analysis: energy, fluctuation coefficient, 

skewness, and margin factor. To pursue higher diagnostic accuracy, T. Gao [36] uses 

generalized discriminant analysis (GDA) to fuse wavelet packet features to eliminate redundant 

information. However, the feature extraction of WPT will not be able to extract effective fault 

information due to lack of adaptability [37], [38]. The WFM method combines WPT with 

manifold learning, which can suppress background noise in the time-frequency domain and 

enhance the signal [39]. The small-amplitude transient pulse at the beginning of the bearing 

failure can be extracted by the WFM method [40]. 
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Methods such as FFT, STFT and WVD are more suitable for processing linear signals with 

high stability. WT has great advantages in analyzing non-stationary and non-linear signals, but 

it also has its shortcomings such as the certain bands of the defect information and the selection 

of the base function [41]. In addition, there are EMD, local mean decomposition (LMD) [42] 

and other adaptive methods are applied to the time-frequency domain analysis of powertrain 

fault signals. EMD is a signal decomposition method that can adaptively decompose any signal 

into a set of intrinsic module functions (IMF) with different frequency characteristics. This is 

a major advancement in analysing non-stationary signals. Ge et al. proposed a rolling bearing 

fault diagnosis method based on ensemble EMD (EEMD) [43], wavelet semi-soft threshold 

(WSST) signal reconstruction and multi-scale entropy (MSE). First, use EEMD to decompose 

the bearing vibration signal into IMF, and then use the Pearson correlation coefficient to filter 

the high-frequency IMFs that contain more noise information. The WSST method denoises the 

high-frequency IMFs for signal reconstruction. The feature vector is constructed by using the 

MSE method to calculate the MSE value of the reconstructed signal. In paper [44], the author 

uses the EMD-SVM method to diagnose the neutral point clamped three-level inverters (NPC). 

The EMD-based feature extraction method is widely used in the intelligent diagnosis of 

bearings and rotating machinery [45], [46] in EV, and the stator as well [47]. However, EMD 

methods decompose the signal according to its time-scale characteristics. If the signals 

collected from different sensors are processed under the condition of without a pre-set basis 

function, the position of the fault feature in the EMD will be uncertain. Therefore, the best 

choice is to use WT related methods with a fixed wavelet basis function to decompose all 

signals when using deep learning diagnosis methods.  

Empirical wavelet transform (EWT) combines the adaptability of EMD decomposition and the 

advantages of WT, which is a useful adaptive tool for vibration signal processing and can also 

decompose the original signal into different modes [48]. In the paper [49], there is a hybrid 

automatic bearing fault detection method that combines EWT and fuzzy logic system (FLS) to 

locate the early degradation of the bearing state under different working conditions. Paper [50] 

proved that EWT is more effective than EMD in the diagnosis of rolling bearings. However, 

the EWT method still has some problems. On the one hand, it is difficult to determine adaptive 

and robust boundaries of the EWT segments; on the other hand, the filtered signal still has 

noise and redundant vibrations, which will mask weaker fault features, which is not conducive 
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to detecting early-stage faults [51]. There is also spectral kurtosis (SK) analysis in time-

frequency domain technology that can handle both stationary and nonstationary signals [52]. 

To take advantage of the powerful ability of convolutional neural network (CNN) (Fig. 2-1) to 

automatically extract features, time-domain vibration signals which include adequate once or 

more types of faults information are transformed to two-dimensional (2D) grey-scale images 

through continuous wavelet transform (CWT) [53]. In addition, CNN is good at processing 

continuous wavelet transform scalogram (CWTS) generated by CWT. S. Guo [54] adds the 

Pythagorean spatial pyramid pooling (PSPP) layer to the top layer of CNN, so that the fault 

features obtained by the PSPP layer from CWTS (Fig. 2-2) can be passed to the convolutional 

layer below for secondary extraction. Feature extraction methods related to neural networks 

include AE, but traditional AEs cannot stably obtain various meaningful signals from 

vibrations. Sparse autoencoder (SAE) is another neural network-based method for failure 

features extraction. The author of the paper [55] proposed to use normalized sparse autoencoder 

(NSAE) constructs local connection network (LCN), namely NSAE-LCN. NSAE-LCN 

overcomes two shortcomings of traditional autoencoders: machine feature extraction may learn 

similar features and shift variant properties may lead to machine health misclassification.  

 

Fig. 2-1. Schematic diagram of the classical CNN. 
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Fig. 2-2. Continuous Wavelet Transform Scalogram (CWTS) (The darker pixels 

correspond to larger wavelet coefficients) of a ball fault bearing signal [54]. 

Entropy-related methods are also an important tool for feature extraction in fault diagnosis, and 

there are now many derivative methods. A diversity entropy (DE) based novel method called 

multiscale diversity entropy (MDE) is extended to deal with multiscale analysis for a 

comprehensive feature description by combining with the coarse graining process [56]. This 

entropy method is designed for fault diagnosis of rotating machinery such as rotor and gearbox 

[57]. In the paper [58], the frequency band entropy (FBE) based on information entropy (IE) 

and STFT are introduced to extract the fault feature frequency of rolling element bearings. This 

method in the paper [59] is improved by WPT based on the Daubechies wavelet. Some entropy 

methods can play an auxiliary role in the construction of feature vectors. Permutation entropy 

(IPE), multi-scale entropy (MSE), multi-scale permutation entropy (MPE), weighted 

permutation entropy (WPE), and fine-sorted dispersion entropy (FSDE) calculate the entropy 

values of signal reconstructed by EMD and variational mode decomposition (VMD) [60], [61] 

to construct the feature vectors which will be used as the input data and classification basis for 

subsequent AI fault classification methods such as types of support vector machine (SVM). 

Summary of pros and cons from all literatures mentioned before are shown in TABLE 2-1.  

TABLE 2-1 Summary of Pros and Cons of Feature Extraction Methods 

Method 
Related 

Papers 
Advantages Shortcomings 
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FT/DFT/FFT 

[22], 

[23] 

[24], 

[26] [27] 

 To be suitable for signal with 
characteristics of 
discreteness and finiteness 

 Computer calculation 
convenient 

 Good frequency domain 
resolution 

 Time domain information 
completely lost 

 The transient signal of the fault 
characteristic cannot be displayed 

 Low noise resistance 
 Sensitive to low signal-to-noise 

ratio 
 Overlapping of closely-located 

spectral components, nonstationary 
signals and spectral leakage 

STFT [28]  Time domain information is 
retained after transform 

 Fixed time and frequency 
resolution 

 Choice difficultly of window width 

CWT [29]  Dynamic time and frequency 
resolution 

 Computer cannot perform CWT on 
the continuous signal 

DWT 

[30], 

[31], 

[32] 

 Computer processing 
acceptable 

 Controllable wavelet 
decomposition scale 

 Less retained information than 
CWT 

 The loss of the invariant translation 
property 

WPT 

[35], 

[36], 

[37], 

[38] 

 Decomposition of high 
frequency components more 
detailed than CWT 

 Usually more computational time 
than CWT 

WVD [33] 

 High resolution in time and 
frequency domain 

 To combine with EMD and 
EEMD to analyze signal 
IMFs 

 Cross-terms generating frequently 

EMD 

[34], 

[43], 

[44], 

[45], 

[46], 

[47] 

 Signal decomposition based 
on its time scale 
characteristics 

 Uncertain location of the fault 
features 

 To consume a lot of computing 
resources to decompose the 
calculation steps 

 To be suffered from the mode 
mixing, distorted components and 
the end effects 

VMD 
[62], 

[63] 

 To avoid effectively the 
mode mixing problem of 
EMD and LMD 

 Higher computational 
efficiency and good noise 
robustness 

 To setting the number of 
decomposition modes and the 
penalty factor difficultly 

 Loss of information or excessive 
decomposition probably occur 

LMD 
[42], 

[64] 

 To get the calculation of 
instantaneous frequency (IF) 
and instantaneous amplitude 
without Hilbert transform 

 Difficult data processing from 
multiple channels in health 
monitoring 
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Hilbert–

Huang 

transform 

(HHT) [65] 

[66], 

[67] 

 To calculate the 
instantaneous amplitude and 
instantaneous frequency of 
intrinsic mode functions 
(IMFs) 

 To highlight the IMF time-
frequency representation and 
visualize the modulation of 
each component 

 To be suffered from end effects and 
mode mixing 

Singular value 

decomposition 

(SVD) [68] 

[69], 

[70] 

 Non-linear filtering to 
effectively eliminating 
random noise components 

 The quality of the noise reduction 
signal affected by different 
reconstruction orders 

 Information loss when weak faults 

EWT 

[48], 

[49], 

[50], 

[51] 

 High efficiency, accuracy 
and reliability. 

 To reduce signal noise 

 To determine difficultly adaptive 
and robust boundaries of the EWT 
segments 

 Noises and redundant vibrations 
exist after filtering 

CNN 

[53], 

[54], 

[71] 

 To extract features 
automatically 

 Adjustable extraction level 

 To find the most suitable network 
structure difficultly 

 To be more suitable for image 
signals 

In summary, different feature methods has different advantages and disadvantages. Therefore, 

in practical applications, the appropriate method needs to be selected based on the actual 

situation. 

 Dimensionality Reduction and Feature Selection 

Principal Component Analysis (PCA) prepares for fault diagnosis before entering the dataset 

and convert existing features to low-dimensionality, reduce feature space, and avoid high-

dimensional data redundancy [72], [73]. PCA use a group of fundamental function to 

reasonably optimize the minimum error of data model. The author introduces the algorithm of 

combining independent component analysis (ICA) in the kernel technique to improve the 

feature extraction of condition monitoring and fault diagnosis in IMs. ICA is formulated in the 

kernel-inducing feature space and developed through two-phase kernel ICA algorithm: 

whitened using kernel principal component analysis (kernel PCA) plus ICA. Kernel PCA 

spheres data and makes the data structure become as linearly separable as possible by virtue of 

an implicit nonlinear mapping determined by kernel. ICA seeks the projection direction in the 

kernel PCA whitened space, making the distribution of the projected data as non-Gaussian as 

possible. In [73], the performance of the classification process due to the choice of kernel 
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function is presented to show the excellent characteristic of the kernel function. And this 

research demonstrates the clustering feature using ICA is better than PCA does. In the article 

[74], a machine learning-based fault diagnosis method for single VFD-fed IMs have been 

developed. Gharavian et al. [75] compared the FDA-based and PCA-based feature selection 

results in the fault diagnosis of EV gearboxes. PCA may not be the optimal feature reduction 

method in a specific problem. 

PCA and ICA are the most popular unsupervised learning feature dimensionality reduction 

techniques. For feature selection through supervised learning methods, Linear Discriminant 

Analysis (LDA) and Random forest Decision tree (RFDT) can be used [76]. What the 

difference is PCA follows the direction of maximum variance for optimal reconstruction, 

whereas LDA is to obtain the optimal low-dimensional representation result of the original data 

set by maximizing the between-class scatter matrix meanwhile minimizing the within-class 

scatter matrix. Since LDA operates based on labelled information, it can obtain better results 

than PCA when there are sufficient labelled samples [77]. LDA has been used in lots of fault 

detection works. Many works of literature explore the application of the combination of LDA 

and MCSA methods to various parts, online monitoring of operating conditions through voltage 

and current analysis, and estimation of the severity of the fault through the magnitude of the 

sub-harmonic amplitude. Paper [78] solved the problem of difficulty in detecting faults with 

sub-harmonics in the MCSA-LDA method, using harmonic amplitude instead of sub-

harmonics as fault detection and classification function. Jin et al. [77] proposed a combination 

of trace ratio linear discriminant analysis (TR-LDA) and VA, which was applied to the bearing 

fault analysis of IM and brushless DC motors. TR-LDA is a variant of LDA based on the TR 

criterion. It is an excellent solution to the TR problem and can be extended to deal with non-

Gaussian data sets encountered in many real-world fault diagnosis problems. LDA can also be 

used in the global spectrum analysis of vibration signals to improve the effect of fault diagnosis 

of ball bearings [79].  

In addition, AI-based optimization algorithms have outstanding performance in feature 

selection, such as particle swarm optimization (PSO) and differential evolution (WBDE) [80]. 

Lee et al. [81] pointed out through experiments that PSO is the key technology to find the 

optimal weight of damage-sensitive feature vectors in the bearing system. In [82], the GA is 

utilized to reduce the number of features and select the most important ones from the feature 

database to reduce power consumption and reduce model computational complexity. In the 
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paper [83], GA combined with random forest (RF) algorithm to produce a new method RFOGA 

for machine fault detection, which is more accurate than only RF.  

2.2  Condition Monitoring and Fault Diagnosis for Motors 

The motor is the vital part of the EV powertrain system. With respect to the demand for 

motor performance in different environments, the motors should be endowed with fast speed, 

high output power and high efficiency. Now, the mainstream motors used in EVs include 

PMSMs and IMs [84], which are mainly discussed in this section. It is important to ensure their 

correct operation. 

As the working environments and working conditions of the EV motors are ever-changing, 

the motor parameters change constantly. For this situation, AI-based methods are well-suited 

to accurately diagnose faults of different parts (stator winding, rotor PM, bearing) of EV motors 

and can show marked performance [85]. The stator, rotor and bearings will be described 

separately for the motor. Table 2-2 shows the main contributions and applied AI algorithm of 

each literature with used signals and feature methods. 

TABLE 2-2 Summary of Contribution and AI Algorithms of Each Paper with 
Signals and Feature Methods 

Parts 
Pape

r 
Signals 

Feature 

Method 

AI 

Algorithm 
Contributions 

Bearin

g 

[53] Vibration 
CWT-

CNN 
CNN-RF 

 To converted into 2D gray-scale images by 
CWT 

 the ensemble of multiple RF classifiers 
used  

[54] Vibration 
CWTS-

CNN 

PSPP-

CNN 
 To suggest adding PSPP layer on the top of 

CNN 

[86] Vibration SDAE 
SDAE-

LSTM 

 To discover the initial anomaly in advance 
 Sliding window algorithm used in SDAE 
 To use LSTM for predict the behavior of 

data in advance 

[87] Vibration DWAE 
DWAE-

ELM 

 To enhance unsupervised learning ability 
by constructing DWAE 

 To diagnose multiple types and levels of 
rolling bearing faults 

[71] Vibration CNN 
CNNEPD

CNN 

 To propose new bearing fault detection 
model CNNEPDNN 

 Features with different discriminative 
abilities fused by CNNEPDNN 
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[4] 
Stator 

current 
WPT SVM 

 To propose a hybrid method based on 
optimized stationary WPT 

 SVM combining with artificial immune 
system 

[88] AE DWPT MCSVM 

 To take the relative wavelet packet energy 
(RWPE) and wavelet packet node kurtosis 
(WPNK) as fault characteristics 

 To adopt OAA MCSVM classifier 

[89] Vibration - RF 

 To solve the problem of slow diagnosis and 
repeated voting in traditional RF 

 RF algorithm processed on SPARK 
platform 

[2] 

 
Vibration WPT RF 

 To propose a novel hybrid RF approach 
 To enhance the anti-noise ability of the RF 

algorithm 

[90] 

 
Vibration 1D-LBP GRA  To suggest a new method of bearing fault 

diagnosis combining 1D-LBP and GRA 

[91] AE 
TVMRE

A 
GA-DFA 

 To use GA to select the most discriminative 
features 

 GADFA improves the classification 
accuracy rate by 7.3%-46.6% 

[92] 
Rotor 

speed 
- AVPCA 

 To propose a concise diagnosis method 
based only on rotor speed 

 To suggest a modified AVPCA algorithm 

[93] Vibration 

Deep 

residual 

network 

DNN 
 Simultaneous fault location detection and 

severity identification 
 To visualize DNN 

[94] Vibration ResNet 
DeepRes

Net 

 To propose IFMs transfer method 
 To use ResNet to solve the problem of CNN 

gradient disappearance 

[95] Vibration 

Short-

time 

periodo

gram 

k-NN 
 To detect faults based on GMS 
 Diagnosis is based on the same distribution 

of training data and test data 

[96] Vibration 
1-D 

CNN 
DCTLN 

 Transfer learning based 
 To learn and recognize features 

automatically by 1-D CNN 

[97] Vibration 

SK 

based, 

MFCCs 

CNN 

 To use MFCCs and delta cepstrum to 
feature extraction 

 Filter method based on SK to suppress 
noise 

[98] Vibration VCN VCN  To design 1-D vision ConvNet (VCN) 
 Different working conditions adaptable 
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[99] Vibration CNN 
CNN-

SVM 

 To construct CNN-SVM diagnostic model 
 To apply residual learning to prevent CNN 

gradients from disappearing 
 To use transfer learning to solve the 

problem of insufficient data 

Rotor 

[100] 
Motor 

current 
SWPT 

SVDD-

SVM 

 To embed SVDD in MSVM algorithm 
 The training decision boundary based on 

hyper-sphere 

[101] 
Stator 

current 
RUWPT 

DAGSV

M 

 To combine RUWPT and DAGSVM 
 To extract one new parameter by RUWPT 

[102] 
Stator 

current 

Hilbert 

transfor

m (HT) 

MLP 

 To replace DFT by HT 
 the amplitude and frequency of the 

harmonic from stator current envelope 
(SCE) spectrum as NN inputs 

[103] Vibration DBN DBN 
 Vibration imaging as feature source 
 DBN applied to feature extraction and 

classification 

[104] Vibration 
DC-

CNN 
DC-CNN 

 Vibration imaging as feature source 
 DC-CNN applied to feature extraction and 

classification 

[8] 
Thermal 

images 
CNN CNN 

 Thermal Image as input of CNN 
 To apply parameter transfer for limited 

training data 

[105] Vibration 
SDP-

CNN 

SDP-

CNN 
 Vibration signal transfer to SDP image 

[106] 
Displace

ment 

SVI-

MCNN 

SVI-

MCNN 

 To construct shaft vibration image (SVI) 
through displacement signal 

Stator 

[107] Vibration 
DTCW

T 
PNN 

 Orthogonal Least Squares Regression 
(OLSR) applied to optimize the size of the 
PNN 

 DTCWT applied 

[108] 
Stator 

current 
- ANN 

 To binary code input signal 
 To design new process addition and mean 

of the set of same rank 

[109] 
Stator 

current 
- 

PSO-

ANN 
 PSO optimized ANN 
 Simulation in SIMULINK environment 

[110] 
Stator 

current 
CNN CNN 

 The original three-phase current is input 
 Steady-state current fault detection 
 No load affect 

[111] 
Stator 

current 
ST SVM  Two SVM model for two faults 

 ST applied 
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[112] 
Stator 

current 

SWT, 

DWT 
ANN 

 Several ANN build a modular neural 
network (MNN) 

 Feature extraction by combining SWT and 
DWT 

[85] 
Stator 

current 
DWT ENN 

 To detect and locate faults early 
 For ITSC fault 
 Discrete Wavelet Energy Ratio (DWER) as 

feature 

In summary, although the same task is solved, the reference signals that can be relied on may 

be different. The specific reference signal to be used needs to be determined based on the actual 

situation and practical application. 

 Stator Inner-turn Short-circuit Fault Diagnosis 

Stator faults mainly include inner-turn short-circuit (ITSC), phase-to-phase short-circuit, and 

ground short-circuit. According to surveys [113], the ITSC accounts for about 33 percent of all 

IM failures. 

EV wheel traction motors have relatively high requirements for power/torque density, and their 

working conditions are complex and poor, which are more likely to cause serious ITSC fault. 

When ITSC is serious, it will evolve into phase-to-phase short-circuit fault and ground short-

circuit fault, which will lead to high-temperature operation of the motor and irreversible 

demagnetization of the magnets, and catastrophic accidents will occur. Fig. 2-3 illustrates the 

principle of ITSC fault, which assumes that one branch of phase C has ITSC faults and the fault 

winding in series. 
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Fig. 2-3. Schematic diagram of ITSC fault of PMSM stator. 

For EV applications, the conventional method to detect ITSC faults is based on electromagnetic 

characteristics and thermal characteristics. Paper [114] introduces a Volterra kernel 

identification-based on-line fault diagnosis method, which refers to the variation of the stator 

branch voltage and current in the event of ITSC. However, the disadvantage of this type of 

method is that it is difficult to detect when ITSC failures are early or weak. 

Paper [115] is a method based on the finite element model and thermal network coupling model, 

which uses an open-loop physics-based back electromotive force (EMF) estimator for EV 

PMSM ITSC fault detection. Similarly, in paper [116], the ITSC fault state of the PM alternator 

(PMA) was analysed by proposed the electromagnetic-thermal coupled model-based method. 

It can realize that the shortcoming includes requiring extremely strong prior knowledge and 

model knowledge, weak fault identification is difficult, and limited fault degree identification. 

Due to no prior knowledge of the process or its model parameters is required, these AI-based 

data-driven methods have recently been applied to resolve ITSC failures. It is analysed here 

through a case study containing multiple representative methods. Paper [85] classifies ITSC 

faults based on the evidence of discrete wavelet energy ratio (DWER) by using Elman neural 

network (ENN). Paper [107], this researcher employs the dual-tree complex wavelet transform 

(DTCWT) to obtain fault features from vibration signals and import features into the 

probabilistic neural network (PNN) whose size is optimized by the orthogonal least squares 

regression (OLSR) algorithm. Paper [111] uses the Stockwell transform (ST) to extract 

different fault features in different frequency bands and proposes a parallel and different SVM 

model to diagnose two ITSC faults simultaneously. The severity of ITSC can also be quantified. 

Paper [110] quantifies the level of ITSC failure for the line start PMSM (LSPMSM). It can be 

concluded that, people are accustomed to supervised training on data through deep learning 

models to avoid model knowledge. 

TABLE 2-3 Performance of AI-Based Methods and Suitable Working Conditions 

Methods Application targets Working conditions The best accuracy 

DTCWT-PNN [107] IM Early faults 95.25% 

DWER-ENN [85] IM Early faults and locating ≈1 

SVM-based [111] IM 2 types of ITSC 96% 
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CNN-based [110] LSPMSM 4 types of ITSC 97.75% 

As obtained from Table 2-3, mentioned AI-based methods have a good ability to achieve high-

precision early diagnosis of ITSC faults and multi-level fault diagnosis. Therefore, the 

motivation of employing AI-based methods is to make up for the shortcomings of traditional 

methods. 

As for the disadvantage mentioned in [115], it is a good choice to perform calculations and 

build a new EMF estimator for each machine before using the AI based method in the actual 

EV motor. Through transfer learning and meta-learning technologies, the problem that the 

same estimator cannot take care of the diagnosis work of a large number of machines can be 

solved. This is a possible future trend for solving such faults. 

In summary, for the ITSC fault, the training data of most AI-based methods are stator currents, 

which advantage is that it is very easy to measure and collect when EV driving.  

 Rotor PM Temperature Monitoring 

PM temperature is essential to ensure high performance and reliable control of PMSM for EV 

applications. Conventional PM temperature estimation methods can be divided into three major 

types: thermal model-based methods [117], back electromotive force (BEMF)-based methods 

[118], and high-frequency voltage injection-based methods [119].  

Due to the rotation of the rotor, it is hard to measure the PM temperature, especially in actual 

EVs. In a laboratory environment, PM temperature can be measured by battery-powered 

equipment, infrared sensors, slip rings, etc. These measurement methods cannot be performed 

in actual EV driving.  

The data-driven PM temperature estimation method needs a huge amount of training data 

collected from the practical EV powertrains for the AI model [120]. Therefore, the application 

of AI in the PM temperature prediction of EV rotors still faces huge challenges. In this article, 

the proposed deep learning-based will solve this problem to a certain extent. 

2.3 Health monitoring in Mechanical Bearing 

 Bearing RUL prediction 
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RUL predictions of rolling bearings play a vital role in reducing unplanned maintenance fees 

and improving the reliability, availability, and safety of EVs. 

Bearing failure prediction methods mainly include conventional model-based methods, AI-

based data-driven methods and hybrid prognostics methods. Among them, the model-based 

approach is to establish mathematical and physical models to describe the degradation process 

of bearings. Recently, paper [121] extracts features from the time-domain and time-frequency 

domain of bearing vibration signals and generates an extended Kalman filter (EKF) estimator 

by learning and determining parameters. Qian et al. [122] proposes an enhanced particle filter 

(PF) and designs the RUL online prediction framework. 

However, the shortcomings and limitations of the model-based conventional method are that it 

requires a priori knowledge of the estimated parameters, and assumptions and simplifications 

will lead to uncertainty in the estimation. AI-based data-driven methods can solve this problem. 

In paper [123], a multi-objective deep belief networks ensemble (MODBNE) method is 

proposed, which uses a multi-objective evolutionary algorithm combined with traditional DBN 

training technology to simultaneously evolve multiple DBNs and combine the final evolved 

DBNs to build an integrated model for RUL estimation. In addition, RVM and CNN-based 

models are also used in some papers [124], [125], [126] which can guarantee superior 

performance in the test. 

Table II compares the performance of five state-of-the-art methods using the same vibration 

data from accelerated degradation tests of rolling element bearings. In the experiment, 

cumulative relative accuracy (CRA) is used to express the accuracy of the method. The closer 

the CRA value is to 1, the more accurate the RUL estimation result of the prediction method 

is. Analyzing the data in the case, the hybrid method seems to provide faster and more accurate 

RUL predictions. 

TABLE 2-4 Quantitative Comparison of Five Different Methods 

Categories Methods Test target 

The best 

convergence 

speed rank 

The best 

accuracy 

(CRA) 

EKF-based [121] 2 0.88 
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Conventional 

model-based 

method 

PF-based [122] 

Real experimental data of 

LDK UER204 rolling 

element bearings 

3 0.783 

AI-based data-

driven method 

MODBNE [123] 5 0.901 

RVM-based 4 0.657 

Hybrid 

prognostics 

method 

[127] 1 0.961 

It should be noticed that the use of AI-based data-driven methods for bearing RUL prediction 

is still a challenge because it is difficult to obtain marked life test data under real EV operating 

conditions. Almost all current AI-based research can only be verified in the laboratory. 

 Multiple fault diagnosis 

Motor bearing damages are usually divided into six main types: fatigue, wear, corrosion, 

electrical erosion, plastic deformation, and fracture and cracking [128]. Each type of damages 

can have different development states and lead to sudden failure [129]. Rolling element bearing 

is one of the most used bearings in EV motors. Fig. 2-4 provides the example of bearing failures 

and faults positions on bearing. As shown in Fig. 2-4, bearing damages can occur at the inner 

ring, rolling elements, cage, and outer ring.  
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Fig. 2-4. Rolling bearing faults in the structure of EV powertrains. 

Recent conventional methods for bearing faults diagnosis mainly include dictionary 

construction-based methods [130], [131] and the sparse denoising methods in time-domain and 

time-frequency domain [132]. These methods have unavoidable disadvantages in EV 

applications: 

1) The calculation process of the dictionary construction-based method is complicated and 

time-consuming, and it is difficult to diagnose online real-time faults in EVs. 

2) Building a sparse denoising model for bearing fault diagnosis requires prior knowledge of 

bearing parameters, which may hinder its application in the EV industry. 

3) These conventional methods have many hyperparameters, which makes it difficult to 

maintain the models. 

Therefore, relying solely on traditional PE methods, it is difficult or impossible to clearly detect 

the specific fault location and fault type. However, during EV driving, it is necessary to know 

the health status of the bearing in real time to avoid driving accidents in time.  

The commonly used machine learning classifiers suited for EV bearing issues are SVM and 

RF. They are usually only used to classify faults based on existing features but cannot directly 

extract deep fault features from the signal. This existing feature needs to be manually extracted 

from the initial signal using some signal processing methods, and then input into the classifier 

for classification work [4] [88] [89] [2]. However, AI-based approaches which combine feature 

extraction with AI classification algorithms not only consume a lot of time and manpower for 

manual data labelling before model training but also lack flexibility for different machines. 

CNN is a neural network that has attracted much attention due to its powerful functions. 

Convolutional layers and pooling layers in CNN have powerful automatic feature extraction 

capabilities, while fully-connected layers are generally applied for fault identification. The 

number of layers depends on the complexity of the application task. Here are two typical cases.  

Paper [53] uses a combined method of CNNs and machine learning classifiers. On the one hand, 

LeNet-5 based convolutional layers extracts the shallow to deep fault features of time-domain 

vibration signals; on the other hand, multiple independent RF classifiers are separated by 

multiple local and global feature information obtained in different convolutional layers. Fig. 5 
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show the flowchart of the proposed signal-to-image method in [53]. In paper [54], a special 

variant of CNN, Pythagorean spatial pyramid pooling CNN (PSPP-CNN), can also deeply 

extract and analyse the deep fault information from continuous wavelet transform scalogram 

(CWTS), so as to achieve high-precision fault diagnosis under the condition of variable speed 

and full speed.  

 

Fig. 2-5. One example of method for signal-to-image conversion [53]. 

CNN model based could classify fault types directly [54] [97].Meanwhile, CNN could also be 

a part of diagnosis model as well. In paper [99] and  [71], CNN is just as a powerful feature 

extractor. Therefore, SVM and NNs can also be followed by the convolutional layers for 

classification of fault types [99] [53]. Fig. 2-6 illustrates fault diagnosis process of 

convolutional layer with ML classifier. The ML classifier is used to accurately classify the deep 

fault feature information extracted and output from the feature image by the 2-D CNN model. 

In the paper [71], the author combines deep neural network (DNN) and convolutional layers to 

get a fault diagnosis architecture CNNEPDNN for bearings, which recognize faults according 

to features with different discriminative powers. To address the gradient decay problem of deep 

CNN models, papers [94] and [93] combine residual structures with convolutional layers to 

avoid gradient disappearance during CNN training. 
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Fig. 2-6. Flowchart of 2-D CNN and ML classifie based fault diagnosis structure. 

In order to show the difference between various signal-to-image conversion methods, this paper 

uses the bearing vibration signal in the CWRU dataset to demonstrate the difference between 

methods (coutinuous 1-D wavelet transform, short-time Fourior transform, Hilbert-Huang 

transform, spectrogram, specgram and constant-Q Gabor transform) and is summarized in Fig. 

2-7. These methods also work in other collected signals. 
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Fig. 2-7. Bearing vibration signal conversion using different signal-to-image methods 

(i.e. Coutinuous 1-D wavelet transform, short-time Fourior transform, Hilbert-Huang 

transform, Spectrogram, Specgram and Constant-Q Gabor transform) on CWRU 

rolling element bearing vibration signal dataset. 

The 1-D CNN model was used to extract the deep features and final classification of the one-

dimensional signals in the paper [96] and [98]. 1-D CNN can directly process 1-D bearing 

vibration signals, eliminating the need for a complex signal imaging step. Thence, compared 

with 2-D CNN, 1-D CNN based model is more suitable for EV real-time applications. The 1-

D convolution is to take a dot product between a kernel w௖ ∈ 𝑅௠ and the 𝑗th segmented signal 

(𝑗th piece of sub-signal from the whole signal) 𝑠௝ି௠ାଵ:௝
௜ ∈ 𝑅௠ to get convolution features: 

           𝑐௝ = Relu൫∑ w௖ ∗ 𝑠௝ି௠ାଵ:௝
௜ + 𝑏௖

௡
௜ୀଵ ൯                                      (2-1) 

where ∗ is a 1-D convolution operator, w௖ is referred to as the convolution kernel, 𝑏௖ is the 

corresponding bias, 𝑛  is the number of kernels, and 𝑐௝  is the 𝑗 th output point of the 

convolutional layer. Relu(∙) is an activation function. Fig. 2-8 explains why 1-D CNN is more 

advantageous in actual EV applications. Table 2-5 aims to summarize and compare the 

performance of the CNN-based method of the above method with the same dataset which is a 

labeled bearing dataset from case western reserve university (CWRU). It can be seen from 

Table 2-5 that 1-D CNN, the accuracy of 1-D CNN with transfer learning technique is slightly 

lower than other CNN-based methods. This is because other methods use the CWRU dataset 

as both training data and verification data, but the diagnosis model in paper [96] is a general 

model which transfers fault-related knowledge from other bearing systems and tests directly 

on the CWRU dataset. Therefore, it does not mean that the diagnostic effect of the 1-D CNN 

model is not as good as other CNN models. This is because the performance of the model on 

different tasks depends on the number of parameters of the model, hyperparameter settings and 

data quality, etc. 
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Fig. 2-8. Architecture comparison between regular CNN based method and 1-D CNN 

based method (1-D CNN can omit the signal-to-image step than regular CNN). 

TABLE 2-5 Performance of CNN-based Methods under CWRU Bearing Data 

Papers Methods Test target Top-one accuracy 

[53] CNN+RF 

CWRU dataset 

99.08% 

[54] PSPP-CNN 97.79% 

[71] CNNEPDNN 98.1% 

[99] CNN+SVM 98.75 

[96] 1-D CNN+Transfer learning 90.8% 

Data are a vital part of AI-based diagnosis methods. Due to the difficulty of collecting the 

bearing fault data for a specific type of EV, the most suitable AI technology would be transfer 

learning. Transfer learning makes the model trained in the source domain still applicable in the 

target domain. And greatly saves the time to construct a bearing health recognition model. Fig. 

2-9 demonstrates the principle of transfer learning. 
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Fig. 2-9. The principle of transfer learning and the difference with traditional NNs. 

For transferring fault diagnosis tasks where there is no available labeled data in the target 

domain, the method based on transfer learning is better than the classic method without transfer 

learning. Paper [96] proposed a deep convolutional transfer learning network (DCTLN) based 

on transfer learning technology, which can learn features directly from vibration signals.  

AI-based methods should preferably use the same dataset for comparative analysis. Therefore, 

Table 2-6 analyses and compares five transfer learning methods suitable for EV bearing fault 

diagnosis on the CWRU bearing dataset, which includes deep domain confusion (DDC) [133], 

domain adversarial training of NNs (DANN) [134], transfer component analysis (TCA) [135] 

and deep domain adaptation neural-network-based fault diagnosis (DAFD) [136]. It can be 

concluded that transfer learning is a promising tool in the field of EV bearing diagnosis. In 

addition, the DCTCL method has relatively high accuracy and is suitable for intelligent fault 

diagnosis of unmarked data of EV bearings. 

TABLE 2-6 Performance of Transfer Learning-Based Method Based on CWRU 
Dataset 

Papers 
Methods 

name 
Feature learning Top-one accuracy 

[96] DCTCL Directly from vibration signal 90.8% 

[133] DDC Directly from vibration signal 88.5% 
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[134] DANN Directly from vibration signal 88.5% 

[135] TCA Manually extract features 42% 

[136] DAFD Vibration signal spectrum 54.9% 

Thermal images-based AI diagnosis is an advanced and novel attempt for motor bearing failure. 

For example, in paper [8], thermal images of bearing failure can be analysed directly by the 

proposed modified CNN model without any signal pre-processing. However, due to the 

particularity of the working environment of the EV motor and the high integration of EV 

components, this method is hardly implemented on the EV currently. 

2.4 Condition Monitoring and Fault Diagnosis in Inverter 

The rapid growth of the EV industry makes people pay more attention to the safety of low-

voltage and high-power inverters. In fact, the health of parts such as the power transistors in 

the inverter is closely related to the reliability of the entire device. The commonly used inverter 

fault diagnosis techniques mainly include three types: model-based methods, expert systems 

and AI-based methods [137]. Therefore, the amount of literature on AI-based EV inverter 

methods is relatively small compared to other methods.  

Currently, most of the power devices in EV inverters are insulated gate bipolar transistors 

(IGBTs). This is because the IGBT has the advantages of low state voltage drop and high input 

impedance. IGBT is taken as the main research object in this section. Fig. 2-10 shows three 

periods of IGBT failure: early failure period, random failure period and wear failure period 

with different failure rates. 
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Fig. 2-10. Power devices/IGBTs failure rate in lifetime and AI intervention timing. 

 RUL prediction for IGBT 

EVs use IGBTs for efficient power conversion. IGBTs are exposed to electrical, thermal, and 

mechanical stresses during operation, and these stresses can cause performance degradation, 

which in turn can lead to wire-bond lift-off and solder fatigue.  

In EV applications, they may experience increased thermal cycling (temperature rise and fall), 

resulting in thermomechanical stress in the weak part of the IGBT package interconnection. 

Unexpected failures of IGBT will endanger the reliability of EV. By monitoring the trend of 

the fault precursor trajectory, this degradation can be identified at an early stage. 

IGBT RUL estimation methods are roughly divided into physics-based analysis methods and 

AI data driving methods. Among them, the physics-based method can provide a universal fault 

propagation method for the IGBT under test. However, these general physical models cannot 

represent the degradation of all IGBTs. Furthermore, due to the cumulative random behavior 

(CRB) of thermal stress and mechanical stress, these methods have poor adaptability to 

dynamic environments. 

The data-driven methods predicted by IGBT RUL are divided into conventional data-driven 

methods and AI-based data driving methods. Both two types of data-driven methods can avoid 

complex physics and random uncertainty. Paper [138] proposes an RUL estimation approach 
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based on the auxiliary particle filter (APF) to reduce the estimated variance by increasing the 

dimensionality of the sample and maintaining the diversity of the sample. Paper [139] also 

proposed a PF-based method for building a fault precursor by fusing the junction temperature 

(Tj) and collector-emitter on voltage (VCE(on)). Paper [140] uses Gaussian process regression 

(GPR) for applying a Bayesian inference (BI) on RUL estimation of the IGBT device. 

Bayesian-based estimation methods can accurately track linear trends. PF can track non-linear 

trends, but when the trajectory has both linear and non-linear trends, their performance will 

decrease, especially when subjected to harsh measurement noise. In addition, these algorithms 

are computationally expensive and require a large number of samples to perform complex prior 

probability estimation. Paper [141] develops an algorithm that can be embedded and supports 

real-time decision-making on board. The probability of the state of health in the degradation 

process is obtained by performing a random process on the estimation result. Table 2-7 

compare and analyze the performance of the conventional data-driven methods and the AI-

based method. 

Fig. 2-11 presents the comparison of six feature values of the five measurable signals in EV 

inverter. In general, VCE(on) has a great comprehensive performance. 

TABLE 2-7 Quantitative Analysis of Data-Driven Cases 

Types Method Experiment target 
Reference 

parameter 

Accurac

y 

(RMSE) 

Convention

al data-

driven 

method 

PF-based 

[139] 

Simulation data from the IGBT module 

based on Hefner physical model from 

Saber software 

Fusing VCE(on) 

and Tj 
≤0.357 

APF-based 

[138] 

Infineon Technologies FS30R06W1E3 

IGBT data 
VCE(on) 0.178 

AI-based 

data-driven 

method 

TDNN-based 

[141] 

Power cycling tests data from 

Nottingham university 
VCE(on) ≤1.15 
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Fig. 2-11. Performance comparisons of the fault evidence signals of IGBT (VCE(on) is the 

collector-emitter on voltage, VGE  is  the gate-emitter voltage, VGE(Th) is the gate-emitter 

threshold voltage, Ic is the collector current, TON/TOFF donates the ratio of switch turn on 

time and turn off time). 

 IGBT open-circuit fault monitoring and detection 

The open-circuit fault of IGBT is a relatively long timing problem, which will cause the whole 

system to gradually overheat and eventually collapse. This is also the reason why IGBT open-

circuit fault is easier to detect and diagnose than short-circuit fault. When an IGBT is short-

circuited, an abnormal short-circuit current usually occurs for only a few milliseconds, so it is 

difficult for the AI algorithm to detect a short-circuit fault. Even if the occurrence of a short-

circuit fault is detected, it is difficult to take action to remedy before the system is damaged. 

Fig. 2-12 illustrates the internal circuit principle of three cases of IGBT open circuit fault, 

which presents that the current flows wrongly when open-circuit of T1 happens in three cases. 
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Fig. 2-12. Schematic diagram of IGBT open-circuit fault principle (assuming T1 open-

circuit). 

At present, in the field of electrical inverter fault diagnosis, the mainstream diagnosis methods 

include methods based on mathematical models of fault mechanisms, methods based on the 

expert system, and data-driven AI-based methods. The traditional methods have been applied 

and have achieved considerable results in diagnosing open-circuit faults. However, some 

shortcomings of these methods still exist. Model-based diagnosis methods need to establish a 

high-precision mathematical model describing the fault evolution mechanism. This method can 

achieve better results in actual applications. However, it is very difficult to establish a high-

precision system fault model with complex multi-variable. In addition, the established fault 
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mathematical models are usually designed to solve specific device and are difficult to transplant 

to solve similar or other devices. Furthermore, with the increasing complexity of 

electromechanical devices, fault diagnosis methods based on mathematical models are 

restricted in practical application. Therefore, with the rise of AI, people began to try intelligent 

diagnosis methods based on ML and NNs. 

In the application of EV powertrain, SVM is a commonly used ML algorithm when diagnosing 

IGBT open circuit faults. For example, paper [142] uses SVM as a classifier to obtain fault 

types. Similarly, paper [143] compares algorithms such as MLP, SVM, and K-means and 

believes that SVM can obtain better classification results. The difference is that [142] uses fast 

Fourier transform (FFT) to extract fault features from inverter output voltage, while [143] uses 

wavelet transform (WT) to extract fault information from three-phase currents of DC/AC 

inverter. Table 2-8 is a good case to compare the performance of AI-based methods (K-means, 

self-organizing map (SOM), MLP, SVM) for EV powertrain voltage source inverter (VSI). The 

advantages and disadvantages of these ML technologies for EV inverter open-circuit fault 

detection could be summarized in Table 2-9. 

TABLE 2-8 Quantitative Analysis of Four ML Technologies Used in The Case 

Methods Test target Accuracy Training time Complexity 

MLP [143] 

EV powertrain VSI 

inverter 

High 5s High 

SVM [143] High 1s Low 

SOM [143] - 5s Medium 

K-means 

[143] 
- 

2s 
Medium 

 

TABLE 2-9 The Advantages And Disadvantages of Four AI Technologies Used for 
IGBT Open-Circuit Fault Detection in EV Powertrains 

Technologies Advantages Disadvantages 

MLP [143] 

Can solve all the problems with its 

complex and nonlinear relationships. 

No limit on the number of outputs. The 

high accuracy performance. 

Needs a very heavy and complex 

training. Due to split the data with a 

line, it has lowest margin of safety and 

highest risk. 
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SVM [143] 

Low training process. Low programming 

complexity. Low Implementation and 

testing time. Due to the data separation 

zone, has the most safety marginalized and 

least risky. 

To solve very complex problems. 

Doesn't have a particular way to set the 

variables. 

SOM [143] 

The training algorithm is simple and easy 

and does not need to determine the 

complex output. 

Doesn't have accuracy in complex and 

non-linear data. 

K-means 

[143] 

The training algorithm is simple and easy 

and does not need to determine the 

complex output. 

Doesn't have accuracy in complex and 

non-linear data. 

Furthermore, for detecting open-circuit faults of neutral point clamped (NPC) inverters, paper 

[144] uses modern compressed sensing theory to process the voltage signal into the proposed 

least-squares SVM with gradient information (G-LS-SVM) for fault classification. The author 

of paper [145] innovatively uses the upper, middle and down bridge voltages signals as the 

classification evidence for multi-layer SVM. Differently, [146] apply NN model is used as the 

classifier. 

The frequency of use of NN based deep learning models in related research is gradually 

increasing [147] [148] [149] [150]. Its most representative model is the ANN used in paper 

[151]. Other variants of NN have also received much attention. For example, the feed-forward 

back propagation neural network (FFBPNN) in paper [152] is used to diagnose IGBT open-

circuit faults under variable load conditions at different frequencies and has good performance. 

Diagnosis methods based on SVM, MLP, ANN and other algorithms still require complicated 

and time-consuming manual extraction and marking of fault features, which could be avoided 

by deep learning algorithms with the ability to automatically extract features such as CNN. In 

paper [153], the author proposes to apply global average pooling (GAP) for modifying CNN 

model to diagnose the open-circuit fault of the DC-DC inverter, which extracts 12 types of fault 

features from signal transformed images. We use the 12 types of IGBT open-circuit faults 

dataset to test the performance of various ML and DL algorithms, including: SVM, K-NN, 

BPNN, DNN, CNN, CNN-GAP (Table 2-10). More related papers can refer Table 2-11. 
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TABLE 2-10 Quantitative Analysis of Six AI Technologies Used in Cases 

Methods Test target Average accuracy Training time Decision time 

SVM [153] 

12 types of IGBT open-

circuit faults data from 

the DC-DC inverter 

simulation model 

96.13% 22.79s 4.14s 

K-NN 

[153] 
95.15% 0.04s 0.07s 

BPNN 

[153] 
80.32% 78.19s 0.05s 

DNN [153] 97.01% 396.5s 0.27s 

CNN [153] 99.27% 901.26s 2.95s 

CNN-GAP 

[153] 
99.95% 824.89s 2.49s 

 

TABLE 2-11 Summary of Contribution and AI Algorithms of Each Paper with 
Signals and Feature Methods 

Paper Signal Input 
Feature 

Method 

AI 

Algorithm 
Contributions 

[144] Voltage  G-LS-SVM  To use the compressed sensing theory to 
sparsely express the voltage fault signal 

[152] Current DWT FFBPNN 

 To be a new method of three phase VSI fault 
diagnosis 

 Threshold needless under variable load 
conditions 

[146] Voltage 
JADE–

ICA 
NN  To use JADE-ICA algorithm to overcome the 

effects of nonlinearity and time difference 

[143] Current WT 

MLP, 

SVM, 

SOM, K-

means 

 To analyze 5 dynamic modes and 5 static 
modes 

[142] Voltage 
FFT, 

RPCA 
SVM  To select the output voltages of the inverter as 

the fault characteristic signal 

[153] 
1-D time-

series 
CNN 

CNN-GAP 

model 

 To learn features directly from the original 
one-dimensional time-series data 

 To be fast and more accurate 
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voltage and 

current 

[147] 
Three-phase 

current 
ICA NN  To use ICA for three-phase current signal 

processing 

[145] 

Upper, 

middle and 

down bridge 

voltages 

DFT 
multi-layer 

SVM 

 To Use a novel multi-layer SVM to detect the 
open circuit fault of the inverter 

[148] 

Upper, 

middle and 

down bridge 

voltages 

PCA 
multi-layer 

ANN 

 To propose a novel multilayer neural network 
to diagnose all possible open-circuit faults 

[149] Current CNN CNN  To learn fault features independently through a 
convolutional network 

[150] 
Three-phase 

currents 

Park’s 

transfor

m 

BPNN 
 To apply Park’s transform to obtain the three-

phase current base wave amplitude as the 
feature variable for fault detection 

[151] 
Three-stator 

currents 
CEEMD HHT-ANN 

 To use HHT to detect the harmonic 
characterizing the fault based on CEEMD of 
the three-stator currents 

2.5 Summary 

This chapter reviews four aspects about AI-supported EV powertrain safety improvement 

topics. With the rapid development of AI, support methods that are developed based on this 

technology can further enhance the electric powertrain condition monitoring and fault 

diagnosis. This study presents a comprehensive review of this, and it can be learned from this 

paper that AI-based data-driven method can avoid the need for accurate physical models of the 

system, and AI can also help build accurate system models. A large number of experiments 

and case studies have proved that both the AI data-driven method and the AI-supported model-

based method have high accuracy and performance, and some advanced AI technologies can 

achieve functions and effects that cannot be achieved by conventional methods. Therefore, the 

application of AI in PE has important practical significance. The main contributions include: 
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1) This review focuses on feature engineering and three main components of EV powertrain 

and summarizes the recent research on EV. The motivation, advantages and challenges of 

using AI methods in PE problems are explained. 

2) This review carries out the quantitative comparative analysis on condition monitoring and 

fault diagnosis methods in specific fields. In each application field, specific practical case 

studies on EV and quantitative comparative analysis with traditional methods are provided. 

Based on the characteristics of EV, this review analyses the feasibility, advantages and 

disadvantages of each method in the practical application of EV. 

3) Usually, for bearing fault diagnosis tasks, the vibration signal is a commonly used signal 

because the vibration sensors are widely installed in powertrains. Similarly in gearbox, the 

vibration signal is a best choice for fault diagnosis tasks. For health monitoring tasks in 

motor and inverter, stator current signal is a better choice because this signal is easiest to 

collected and obtained. 
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 Inferable Deep Distilled Attention Network 

for Diagnosing Multiple Motor Bearing Faults 

This chapter aims to propose an AI-based method to solve the health monitoring problem of 

mechanical bearings in electric powertrain. Bearing, as a vital component in electric 

powertrains, is increasingly used globally such as in electric vehicle (EV). Their damages and 

faults may bring huge cost loss to the industry and even threaten personal safety. This chapter 

proposes an inferable deep distilled attention network (IDDAN) method which is a self-

attention mechanism and transfer learning-based method to diagnose and classify multiple 

bearing faults in various motor drive systems efficiently and accurately. Compared with 

convolutional networks, the self-attention-based network can better extract the global feature 

information and easier to benefit from large amounts of pre-training data. Its significance is to 

accurately classify various faults of the target machine when the labeled data of the target 

machine is not enough to directly train the diagnosis model. Firstly, this chapter attempt to 

apply the self-attention-based network to build an advanced fault diagnosis model. Secondly, 

this paper optimizes the structure of networks through knowledge distillation (KD) technique 

to require a lighter and fast model. Thirdly, this paper proposes a new data augmentation 

strategy for 1-D vibration signals to provide large-scale pre-training samples for IDDAN. 

Experiments show that the self-attention mechanism-based model is more likely to benefit from 

large-scale data. After testing, compared with many methods and other exist similar methods, 

the proposed method achieves higher classification accuracy and better performance. 

3.1 Introduction 

The electric motor drive system has been widely used in industry and human life. The reliability 

and safety of its components bear the responsibility of human life and industrial cost. The 

reliability issues of the electric powertrain may appear on any components. The bearing plays 

a critical and necessary role in motor drive system. According to incomplete statistics, 40-70% 

motor and electric powertrain faults are caused by various degrees of rolling bearing damage 

[154]. Such faults are leading to the higher costs in industrial applications and its maintenance. 
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Therefore, real-time condition monitoring and bearing fault diagnosis (BFD) in all motor drive 

system is gradually becoming more important and higher-priority work. 

The safety and stability of bearings have attracted increasing attention in both academic and 

engineering. Scholars and engineers have employed many traditional methods to detect which 

type of bearing fault in some motor drive systems. The conventional method of bearing fault 

diagnosis mainly relies on advanced signal processing technology to extract effective features 

for analysis. Paper [155] proposes an adaptive morphological filter (AMF) to analyze the 

vibration and acoustical signals of the bearing to determine the fault type. Paper [156] proposes 

the sparse elitist group lasso denoising (SEGLD) algorithm to online diagnose bearing faults 

in industry. This is because part of the information contained in the motor stator current signal 

or the bearing vibration signal collected by the measurement is not related to the bearing fault, 

such as the supply fundamental and its harmonics, noise, etc. The core contributions of the 

paper [157] and [158] are both to solve this problem. On the other hand, judging from the 

current trend of big data, artificial intelligence (AI) can bring about better convenience and 

more advantageous new ideas for bearing fault diagnosis. 

The AI-based BFD methods have characteristics of model independence, does not require 

professional mechanical knowledge, and has excellent performance. Paper [159] uses graph-

mapped spectrum (GMS) to represent fault information in bearing vibration signals and applies 

K-nearest neighbour (K-NN) classifier to identify fault types. Paper [160] combines 

information fusion (IF) technology with convolutional neural network (CNN) to diagnose 

bearing faults. Paper [161] is also based on supervised learning of AI. The method proposed in 

this paper is based on CNN to identify damage to rotor bearings from infrared images. 

Supervised learning is a classic method in AI-based methods. However, for some machines, it 

is difficult to obtain sufficient labeled data for supervised training in real situations. People 

need new ways to solve this problem. 

To solve the above problem of lack of labeled data, transfer learning technology is used in 

bearing multiple fault diagnosis. It obtains a pre-trained model with rich domain knowledge 

from a machine, and then adapts it to the target machine with a small amount of data. Due to 

the difficulty in obtaining bearing fault data, there are many similar methods based on transfer 

learning recently. Paper [162] proposes an intelligent bearing fault diagnosis system combining 

AlexNet and transfer learning technology. The deep convolutional transfer learning network 

(DCTLN) proposed in paper [163] can make the model still effective in the target domain. 
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These methods are almost all proposed based on CNN [164], [165]. Paper [166] uses Bayesian 

network as a fault diagnosis model for bearing fault detection and proposes varying coefficient 

transfer learning (VCTL) to obtain knowledge and correlation from the resource domain. Paper 

[167] uses the bearing vibration data obtained by computer simulation to pre-train the model, 

and then achieve the general effect of the model through transfer learning. However, traditional 

network models such as SVM, and CNN have the ability of automatic feature learning, but still 

face many challenges. For example, CNN cannot focus on learning to important discriminate 

features of faults and ignore useless features. Furthermore, global information cannot be 

extracted due to the limitation of convolution kernel size. The new type of neural network based 

on self-attention mechanism will improve the current situation. 

Based on the transfer learning and a new self-attention mechanism, an inferable deep distilled 

attention network (IDDAN) is proposed to diagnose bearing multiple faults. The network can 

accumulate the advantage of optimized feature mapping across the network through the 

intervention of the self-attention mechanism, which uses global information to adaptively 

enhance more discriminative features and suppress irrelevant features. With the proposed data 

augmentation technique, it is possible to explore how much each method benefits from large 

amount of data samples. In addition, the knowledge distillation (KD) technique [168] makes 

the trained network lighter and increases the inference speed. The contributions of this chapter 

are summarized as follows: 

1) It originally proposed a new data augmentation method of 1-D vibration signals and 

applied it to the bearing fault diagnosis framework. Models can benefit from data 

augmentation to become more generalizable. Experiments show that this strategy 

cooperates well with the self-attention module to obtain accurate diagnosis results. 

2) Self-attention mechanism based neural network is introduced in transfer learning-based 

intelligence diagnosis method. The types of bearing faults are complex and diverse, which 

poses a higher challenge to the feature recognition ability of the diagnosis model. Self-

attention mechanism based can enhance more discriminative features and suppress 

irrelevant features during training. 

3) An advanced bearing multiple fault diagnosis method, IDDAN, is proposed based on data 

augmentation technique, self-attention networks, transfer learning and KD technique and 

works under various working conditions. The model size of the method is lighter than 

commonly used models so as to increase computing efficiency. 
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In this chapter, Section 3.2 introduces related theories for further understanding the architecture 

introduced in Section 3.3. Section 3.3 describes the proposed method in detail. Section 3.4 

presents the case study and experiment result. Finally, Section 3.5 provides a conclusion of this 

chapter. 

3.2 Self-attention Mechanism and Related Theories 

 Self-Attention Mechanism 

Self-attention is a special form of attention mechanism. The output of attention mechanism 

(see Fig. 3-1) could be presented as (3-1) [169].  

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛ை௨௧௣௨௧ = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉)                                      (3-1) 

where 𝑄, 𝐾 and 𝑉 respectively stand for the Query matrix, Key matrix, and Value matrix. Let 

input vector 𝑋  be the input and get 𝑄 = 𝑊ொ𝑋 , 𝐾 = 𝑊௄𝑋 , 𝑉 = 𝑊௏𝑋  (𝑊ொ , 𝑊௄  and 𝑊௏  are 

parameter matrixes). The dimension of 𝑋, 𝑄, 𝐾 and 𝑉 can be set for each task. 

 

Fig. 3-1. Diagram of computing process of attention mechanism. 

The scaled dot-product is used in the calculation process as shown in (3-2): 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ൬
ொ௄೅

ඥௗೖ
൰ 𝑉                                  (3-2) 

Among (3-2), 𝑑௞ is the dimension of 𝐾, the softmax function is a function that turns a vector 

of K real values into a vector of K real values that sum to 1, which formula could be presented 

as (3-3). The input values can be positive, negative, zero, or greater than one, but the softmax 

transforms them into values between 0 and 1, so that they can be interpreted as probabilities. It 
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is usual to append a softmax function as the final layer of the neural network to convert the 

scores to a normalized probability distribution.  

𝜎൫𝒵൯
௜

=
௘𝒵೔

∑ ௘
𝒵ೕ಼

ೕసభ

                                                        (3-3) 

 Multi-Head Attention Mechanism 

Multi-head attention is to project the ℎ group 𝑄, 𝐾, 𝑉 through different linear transforms, and 

connect the final result. In self-attention mechanism, each group of 𝑄, 𝐾, 𝑉 is the same. 

𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑ଵ, ℎ𝑒𝑎𝑑ଶ, … , ℎ𝑒𝑎𝑑௛)𝑊ை               (3-4) 

𝐻𝑒𝑎𝑑௜ = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛൫𝑄𝑊௜
ொ

, 𝐾𝑊௜
௄ , 𝑉𝑊௜

௏൯                              (3-5) 

In both (3-4) and (3-5), 𝑊ை represents for the parameter matrix of linear transforms. In detail, 

𝑊௜
ொ

∈ ℝௗ೘೚೏೐೗×ௗೖ , 𝑊௜
௄ ∈ ℝௗ೘೚೏೐೗×ௗೖ , 𝑊௜

௏ ∈ ℝௗ೘೚೏೐೗×ௗೡ  and 𝑊௜
ை ∈ ℝ௛ௗೡ×ௗ೘೚೏೐೗  (𝑑௞ = 𝑑௩ =

𝑑௠௢ௗ௘௟/ℎ). 

 Classic KD Theory 

Neural network models can solve a variety of complex problems, but these models are usually 

huge and have a large number of parameters, making it difficult or impossible to deploy to edge 

devices. KD is a new method of compressing neural models. The obtained new smaller network 

trained through KD technology can achieve the same or similar effect as the original network 

[170]. 
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Fig. 3-2. Schematic diagram of complete KD process. 

Fig. 3-2 shows that the essence of KD is the process of pre-trained larger teacher network 

teaching smaller student network. The training dataset is applied to both the teacher network 

and the student network at the same time. The soft label is the output of the teacher network in 

each layer. The cross-entropy between it and the soft prediction value output by the student 

model is 𝐿௦௢௙௧. 𝐿௛௔௥  is defined as the cross-entropy of the hard prediction value output by the 

student model and data label. Therefore, the objective function of the KD process is composed 

of weighted 𝐿௦௢௙௧ and weighted 𝐿௛௔௥ௗ: 

𝐿 = 𝛼𝐿௦௢௙௧ + 𝛽𝐿௛௔௥ௗ                                               (3-6) 

where 𝛼 and 𝛽 are weights of 𝐿௦௢௙௧ and 𝐿௛௔௥ௗ, respectively. The propose of the KD strategy is 

to minimize 𝐿. 

 Transfer Learning Problem 

The essence of the model pre-training is transfer learning [171]. To clearly explain the proposed 

architecture in Section 3.3, here it is necessary to introduce two types of domains in transfer 

learning: the source domain 𝐷௦ and the target domain 𝐷௧. Both domains are composed of the 

feature space 𝑋 and the probability distribution 𝑃(𝑋) of the data. The category spaces of the 

learning objectives of transfer learning in 𝐷௦ and 𝐷௧ are represented by 𝑌௦ and 𝑌௧, respectively. 

When 𝐷௦ ≠ 𝐷௧, the data distribution before and after transfer is also different. Transfer learning 

can improve the performance of the target task learning function 𝑓௧  when 𝐷௦ ≠ 𝐷௧ . The 

following Fig. 3-3 shows the principle of transfer learning to process unlabelled data task and 

what is different process between transfer learning and traditional neural networks. 

This paper aims to looking for a multi-fault diagnosis architecture that can be quickly deployed 

on any machine and monitor its health conditions. From the perspective of transfer learning, 

the data used for pre-training 𝑋 = {𝑥ଵ, 𝑥ଶ ⋯ 𝑥௡} and the corresponding label space 𝑌௦ =

൛𝑦௫భ
, 𝑦௫మ

⋯ 𝑦௫೙
ൟ  compose source domain 𝐷௦ = {𝑋, 𝑌௦} . The unlabelled data of the target 

machine is 𝑋௧ = {𝑥௧ଵ, 𝑥௧ଶ ⋯ 𝑥௧௡}, where 𝑥௧௡ is the data samples of the target task. The more 

adequate samples in 𝐷௦, the larger the category space, the stronger generalization ability, and 

the better performance of the model after pre-training transfer. 
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Fig. 3-3. The comparison and difference of the learning process between traditional 

neural networks and transfer learning. 

3.3 Intelligent Diagnosis Framework Based on Inferable Deep 

Distilled Attention Network (IDDAN) 

The proposed diagnosis method consists of four main modules (as shown in Fig. 3-4): data 

augmentation, backbone network, distillation strategy and transfer inference. Transfer 

inference helps IDDAN become more adaptable to the target domain through fine-tuning by 

the very small amount of data after the pre-training stage. Particularly, the first and second 

parts of Fig. 3-4 show how the bearing vibration signal is collected and pre-processed in the 

context of the current application. 
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Fig. 3-4. The architecture demonstration of the proposed method. 

 Data Augmentation Strategy 

The data augmentation method of IDDAN's pre-training data in the source domain adopts 

multi-scale and multi-timescale signal conversion which is a special data augmentation method 

proposed for the collected 1-D bearing vibration signals. 

Multiscale signal conversion is similar to the idea of cropping and zoom in computer vision, 

which can improve the generalization ability of pre-trained IDDAN. In other words, the domain 

adaptation ability of the IDDAN can be improved when transferring knowledge from the source 

domain to the target domain. Defining the length of each vibration signal as 𝐿௦  and the 

sampling rate of as 𝑓௦, the principle of data enhancement can be expressed as Fig. 3-5. 
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Fig. 3-5. The data augmentation strategy diagram of the data used for IDDAN pre-

training. 

It can be obtained from Fig. 3-5 that the strategy of data augmentation could be presented by 

equation (3-7): 

ቊ
𝑉௦௘௚௠௘௡௧௘ௗ =

௅ೞ

௞
𝑉௢௥௜௚௜௔௡௟, 𝑘 ∈ ℕ∗

𝑉௡௘௪(𝑡) = ∑ 𝑉௦(𝑛𝑇)𝛿(𝑡 − 𝑛𝑇)ஶ
௡ୀିஶ

                                    (3-7) 

where 𝑘 is the number of segments after each signal cutting, 𝑉௢௥௜௚௜௔௡௟ is the original vibration 

signal, 𝑉௦௘௚௠௘௡௧௘ௗ is the segmented vibration signal, 𝑉௡௘௪(𝑡) is down sampled vibration signal, 

𝑉௦(𝑡) is the original collected vibration signal, 𝛿 represents the impulse function, 𝑇 = 1 𝑓௦⁄ . In 

this data augmentation step, collected 1-D vibration signals are mainly processed in two ways:  

1) Each vibration signal used for IDDAN pre-training step is segmented multiple parts, and the 

size of each segment is 𝐿௦ 2⁄ , 𝐿௦ 3⁄ , 𝐿௦ 4⁄ , 𝐿௦ 5⁄ , etc.  

2) Each vibration signal used for IDDAN pre-training step is resampled by sampling rate 𝑓௦ 2⁄ , 

𝑓௦ 3⁄ , 𝑓௦ 4⁄ , etc. 

Through this data augmentation method, the amount of data can be increased efficiently, 

providing sufficient data for IDDAN pre-training to improve the effect of knowledge transfer. 
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 Backbone Network 

The bearing health status recognition is realized through self-attention based network module 

as the main body. The backbone of IDDAN is a modified transformer network, which includes 

one transformer encoder and a linear classifier. The transformer encoder is constructed by one 

multi-head attention module, one feed-forward module and two normalization layers, which 

can automatically learn global features with the help of the self-attention mechanism [172]. A 

linear classifier is used to identify and distinguish bearing health conditions. As mentioned in 

Section 3.1, the self-attention mechanism can be processed parallelly with global capabilities, 

long-distance information will not be weakened [173]. Self-attention could be considered as a 

CNN with a learnable receptive field. In other words, self-attention can learn receptive field 

automatically, but the receptive field of CNN needs manual adjustment and optimization of 

parameters. 

 

Fig. 3-6. The structure presentation of IDDAN (MSA block and FNN block are both in 

the Transformer encoder). 

As shown in Fig. 3-6, the self-attention module includes a position embedding module, a 

transformer encoder (feature extraction in Fig.3-4), and a linear layer. The linear layer can be 

regarded as a condition classifier to classify the global features extracted by the self-attention 

mechanism in the transformer encoder.  
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The vibration signal of a certain length is first converted into the time-frequency map 

representation. For handling these 2D signal representations, the transformer encoder reshapes 

the image 𝐱 ∈ ℝு×ௐ×஼ into a sequence of flattened 2D patches 𝐱௣ ∈ ℝே×൫௉మ∙஼൯, where (𝐻, 𝑊) 

is the resolution of the signal representation, 𝐶  is the number of channels, (𝑃, 𝑃)  is the 

resolution of each image patch. The effective input sequence length could be calculated through:  

𝑁 = 𝐻𝑊 𝑃ଶ⁄                                                           (3-8) 

where N stands for the resulting number of patches. These patches representing machine health 

information have positions in the original time-series signal. Position embedding can achieve 

the effect of abstracting data in time series and represent relative or absolute position 

information in the input sequence. The implementation process of position embedding in this 

chapter is as follows: 

𝐳଴ = ൣ𝐱ୡ୪ୟୱୱ;  𝐱௣
ଵ𝐄; 𝐱௣

ଶ𝐄; ⋯ ;  𝐱௣
ே𝐄൧ + 𝐄௣௢௦                            (3-9) 

where 𝐄 ∈ ℝ൫௉మ∙஼൯×஽ , 𝐄௣௢௦ ∈ ℝ(ேାଵ)×஽ , 𝐄  is the patch embedding projection and is 𝐷  the 

constant latent vector size through all of transformer layers. The patches with marked positional 

information need to perform a normalization operation before entering the multi-head self-

attention (MSA) mechanism. This chapter adopts layer normalization (LN) [174]. The state at 

the output of the Transformer encoder 𝐳௅
଴ serves as the image representation 𝐲 = LN(𝐳௅

଴). Both 

during pre-training and fine-tuning, a classification head is attached to 𝐳௅
଴.  

𝐳′ℓ = MSA൫LN(𝐳ℓିଵ)൯ + 𝐳ℓିଵ                                        (3-10) 

where ℓ = 1, ⋯ , 𝐿 . MSA is an extension of standard self-attention (SA), which runs SA 

operations 𝑘 times (The calculation principle has shown in Section 3.2.1). 

MSA(𝐳) = [SAଵ(𝑧); SAଶ(𝑧); ⋯ ; SA௞(𝑧)]𝐔௠௦௔                         (3-11) 

For calculating MSA in this chapter, we set SA(𝐳) = 𝐴𝐯  and 𝐔௠௦௔ ∈ ℝ௞∙஽೓×஽ ,where 𝐴 =

softmax൫𝐪𝐤⊺ ඥ𝐷௛ൗ ൯  ( 𝐴 ∈ ℝே×ே , 𝐷௛ = 𝐷 𝑘⁄  and [𝐪, 𝐤, 𝐯] = 𝐳𝐔௦௔ , 𝐔௦௔ ∈ ℝ஽×ଷ஽೓ ). LN is 

employed before both MSA block and FFN block, and residual connections after every block. 

Our FFN block contains two layers: one hidden layer at pre-training time and by a single linear 

layer at fine-tuning time: 

𝐹𝐹𝑁(𝑥) = max(0, 𝑥𝑊ଵ + 𝑏ଵ) 𝑊ଶ + 𝑏ଶ                               (3-12) 
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where two different parameters 𝑊ଵ and 𝑊ଶ from layer to layer are used, and a gaussian error 

linear unit (GELU) activation function is applied between layers [175]: 

𝐺𝐸𝐿𝑈(𝑥) = 𝑥 ⋅
ଵ

ଶ
ቂ1 + erf ቀ

௫

√ଶ
ቁቃ ≈ 0.5𝑥 ቀ1 + tanh ቂඥ2 𝜋⁄ (𝑥 + 0.044715𝑥ଷ)ቃቁ   (3-13) 

Both the class and the distillation embeddings of IDDAN are associated with linear condition 

classifier. The final health condition prediction result is determined by the addition of the 

softmax [176]outputs of the two routes: 

𝐶𝑙𝑎𝑠𝑠௣௥௘ௗ௜௖௧ = 𝐿𝑖𝑛𝑒𝑎𝑟[𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑂௖௘) + 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑂ௗ௘)]                 (3-14) 

where 𝑂௖௘ and 𝑂ௗ௘ are the output of the two classifiers respectively. 

 Backbone Network 

Backbone network’s distillation process is carried out simultaneously with pre-training. In the 

output of the softmax layer, in addition to positive examples, negative labels also carry a lot of 

information. This training method of KD makes each sample bring more information to student 

model than the traditional training method. 

Firstly, in order to improve the recognition accuracy of health conditions, the teacher model is 

chosen as VGG-16. It is a strong feature extractor and classifier. In this distillation strategy, 

the hard decisions of the teacher model 𝑦୲ = argmax௖𝑍୲(𝑐) (𝑍୲ is the logits of the teacher 

model) are true labels. The applied hard-label distillation objective should be defined as: 

ℒ௚௟௢௕௔௟
ு௔௥ௗ஽௜௦௧௜௟௟ =

ଵ

ଶ
ℒେ୉(𝜓(𝑍ୱ), 𝑦) +

ଵ

ଶ
ℒେ୉(𝜓(𝑍ୱ), 𝑦୲)                      (3-15) 

where ℒେ୉ represents the cross-entropy, and 𝑍ୱ is the logits of the student model (IDDAN). 

For the image represents of machine signal, it is possible that hard labels will change according 

to the DA (Section 3.1 in this paper). In this hard-label distillation loss function, the teacher 

prediction 𝑦୲ has the same role with the true label 𝑦. 

Fig. 3-6 demonstrates that the distillation token, the class token, and patch tokens interact 

through the self-attention layers in the transformer encoder. The output of the distillation token 
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is the hard-label predicted by the teacher model. In this method, the class token 𝐰௖௟௔௦௦ and the 

distillation token 𝐰ௗ௜௦௧௜௟௟ are trained by back-propagation algorithm:  

𝐰(𝑚 + 1) = 𝐰(𝑚) − 𝜂
డ௃൫𝐰(௠)൯

డ𝐰(௠)
                                         (3-16) 

𝐽(𝐰) represents the training error at any instance, 𝑚 denotes the number of iterations, and 𝜂 >

0 is the pre-set learning rate before training. This paper employs the gradient-based parameter 

optimizer AdamW [177] (a modified optimizer of the original Adam), replacing L2 

regularization of Adam with weight decay. 

 Transfer Inference Objectives 

The transfer inference stage of IDDAN includes fine-tuning and condition classification. Fine-

tuning is a pivotal step to infer the pre-trained model to the target task through the transfer 

learning method. 

The backbone network can be divided into feature extractors and classifiers. The feature 

extractor extracts the low-level features of the image. In the pre-training stage, the proposed 

vibration signal data augmentation strategy can obtain large-scale pre-training samples of the 

source domain, and the pre-model trained with large-scale data has a higher generalization 

ability to extract the underlying features. Therefore, during the transfer process, the bottom 

layer weights are frozen, and the high layer weights are opened. In this paper, the FFN layers 

and linear classifier layer in the pre-trained IDDAN will be updated with parameters in fine-

tuning (has been demonstrated in Fig. 3-4). This is because the previous self-attention layers 

and layer normalization layer are used to obtain a general representation from the image, and 

the latter FFN layer and linear classifier are more relevant to downstream special fault 

diagnosis tasks. 

3.4 Experimental Results 

To verify the approach proposed in section 3.3, this chapter uses three professionally measured 

bearing datasets. The below three datasets could be consider to collected from EV motors. 

 Experiment Data and Description 
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1) Dataset A: KAt-DataCenter bearing dataset [154] contains a variety of faults to perform 

fault diagnosis experiments. This dataset focuses on not only artificial bearing damages 

but also real damages. It could prove better than the proposed approach in this paper is 

competent for different kinds of bearing fault diagnosis. The tested motor is a 425W 

permanent magnet synchronous motor (PMSM) which has the nominal torque 𝑇 =

 1.35 𝑁𝑚, the nominal speed 𝑛 =  3000 𝑟𝑝𝑚, the nominal current 𝐼 =  2.3 𝐴 and the 

number of pole pair 𝑝 =  4. 

2) Dataset B: The IMS bearing dataset is measured by provided by the Center for Intelligent 

Maintenance Systems (IMS), University of Cincinnati [177]. Recorded vibration signals 

include normal condition, rolling element fault, inner race fault, outer race fault. Each data 

describes a test-to-failure experiment and consists of individual files that are 1-second 

vibration signal snapshots recorded at specific intervals. Each file consists of 20,480 points 

with the sampling rate set at 20 kHz and collected by NI DAQ Card 6062E. 

3) Dataset C: Experiments of the CWRU bearing dataset were conducted using a 2 hp 

Reliance electric motor, and acceleration data were measured at locations near to and 

remote from the motor bearings [178]. Motor bearings were seeded with faults using 

electro-discharge machining. Faults ranging from 0.007 inches in diameter to 0.040 inches 

in diameter were introduced separately at the rolling element fault, inner race fault, and 

outer race fault. Vibration data was collected at 12,000 samples per second, and data was 

also collected at 48,000 samples per second for drive end bearing faults. Speed and 

horsepower data were collected using the torque transducer. 

These three bearing datasets include vibration signals while they are obtained from different 

machines and different operation conditions. Their detailed information is displayed in Table 

3-1. 

TABLE 3-1 Detailed Information of Various Experiment Bearing Datasets 

Dataset 

names 
Bearings Conditions Speed (rpm) Load conditions 

KAt PMSM bearing 

Normal 1500 0.1Nm, 0.7Nm 

Inner ring fault 1500 0.1Nm, 0.7Nm 

Outer ring fault 1500 0.1Nm, 0.7Nm 

IMS Rexnord ZA-2115 bearing 
Normal 2000 6000 lbs 

Inner ring fault 2000 6000 lbs 
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Rolling element 

fault 
2000 6000 lbs 

Outer ring fault 2000 6000 lbs 

CWRU Motor bearing 

Normal  1750 0, 1,2,3 HP 

Inner ring fault 1750 0, 1,2,3 HP 

Rolling element 

fault 
1750 0, 1,2,3 HP 

Outer ring fault 1750 0, 1,2,3 HP 

 Transfer Multiple Fault Diagnosis of the IDDAN 

a) Experiments Setting 

The planned transfer diagnosis experiment is shown in Fig. 7, which includes the use of each 

dataset and the partition of training data and test data. In this experiment, all used data are 

bearing vibration signals collected from different machines or devices. Therefore, this 

experiment put the target on testing the ability and performance of inferencing trained IDDAN 

to a new machine. It can be found that the dataset A and B are mixed as pretraining data. This 

is because the dataset A does not include vibration signal samples of rolling element fault. In 

No. 2 experiments, samples of two damage levels are also not included in the dataset B. No.1 

experiment tests the accuracy of the proposed method with standard data amount (2000) which 

come from two different datasets, while No. 2 experiment tests with a larger amount of data 

(40000). The No.1 and No. 2 can be considered to evaluate the performance of DA. 

In this section, the percentage of the dataset means that the data is picked evenly from each 

fault and each working condition in the dataset. 20% of the target domain dataset is used in this 

section as the fine-tuning dataset. 
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Fig. 3-7. Diagram of different transfer diagnosis experiments. 

b) Validation 

We evaluate the proposed IDDAN through two designed experiments shown in Fig. 3-7. In the 

first experiment, dataset A plus B refers to the source domain dataset and C refers to the target 

domain dataset. In the second experiment, A plus B after DA process turn into the source 

domain data, and C also refers to the target domain dataset. In each experiment, the training 

data includes all the labeled samples from the source domain dataset and the fine-turning data 

uses 20% labeled data from the target domain dataset. Then, we randomly take 50% of 

unlabeled samples as the test data. The test dataset is not contained in the training set. 

The detailed information of training parameters is demonstrated as follows. The CPU and GPU 

devices for training are I9-12900K and RTX 3080Ti respectively. The epoch for pre-training 

and fine-tuning is set to be 500 and 150 respectively. In addition, the patch size is set as 32, the 

number of attention heads is 6. This step is trained using the AdamW optimizer with a learning 

rate 3 × 10ିସ. In the fine-tuning step, the dimension of the MLP block is set as 2048, the 

resolution of target domain time-frequency images increases to 256 from 224. The training loss 

of experiments is plotted in Fig. 3-8. As shown in Fig. 3-8, the initial loss in the fine-tuning 

stage is significantly lower than in the pre-training stage. 
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Fig. 3-8. The pre-training loss (500 epoch) and the fine-tuning loss (150 epoch) carve. 

The No.1 experiment is repeated ten times with those pre-set parameters. In each experiment, 

all accuracies of the transfer diagnosis are over 82% and the average accuracy is around 85%. 

For obtaining a baseline testing accuracy, we set a control transfer test using the CNN model 

to condition recognition. In this CNN module, the number of convolutional layers is 5, and the 

size of the convolution kernel is set to be 3. The 5 pooling layers are followed by each 

convolutional layer separately and the size of the pooling kernel is 2. The CNN model is also 

pre-trained and fine-tuned using the same data samples. According to the same experiments 

times with IDDAN, the average accuracy is around 89% and the lowest accuracy is 85%. It 

means that the proposed IDDAN method can effectively diagnose the normal condition and 

three faults of bearing, but the accuracy of the CNN-based model is slightly higher than IDDAN 

with a small number of pre-training samples. 

 Fault Diagnosis Analysis of The Proposed Method 

a) Effect analysis of data augmentation 

Due to the difference between the self-attention mechanism and the convolutional network, 

self-attention-based network structures benefit more from large-scale data [172]. The 

experiments of this part take the same settings as Fig. 3-7 and the data augmentation strategy 

in Section III-A is applied in the experiment. We use MATLAB (signal processing toolbox) to 

perform the proposed data augmentation method on all vibration signals in the source domain 

dataset, followed by the signal-to-image conversion. The samples used in the No. 2 experiment 

were expanded from 2000 to 40000, reaching 20 times the original pre-training samples. 

In this section, the No.2 experiments in Fig. 3-7 should be repeated several times. In these 

experiments, the amount of data used in the fine-tuning stage as a percentage of the total target 

domain data (𝑃்) is kept as 20%. It can be found that all accuracies of the transfer diagnosis 
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are over 92% and the average accuracy is around 95%. To provide visual insights into the 

effects of features transferring from the source datasets and target dataset, we use the t-

distributed stochastic neighbour embedding (t-SNE) technique to map the high-dimensional 

features into a 2-D space. Fig. 3-9 demonstrates the feature recognition ability of the last layers 

before softmax layer when we completed the fine-tuning step. 

 

Fig. 3-9. t-SNE visualization of features after fine-tuning (𝑷𝑻 = 20%). (a) Before training. 

(b) Small amount of pre-training samples. (c) CNN method with large amount of pre-

training samples. (d) IDDAN with large amount of pre-training samples. 

b) FLOPs and parameters analysis of KD 

When deploying the model in a device such as an electric vehicle (EV), the floating point 

operations (FLOPs) of the method must be considered. FLOPs describe the computing power 

required by the deployed device, and the number of parameters describes the required memory 

size. 

In this paper, the KD strategy is used to further reduce the model parameters and required 

FLOPs, reducing the burden on equipment and memory. Fig. 3-10 illustrates FLOPs of IDDAN, 

which compares the number of model parameters and FLOPs between IDDAN and common 

deep learning frameworks. 
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Fig. 3-10. t-SNE visualization of features after fine-tuning (𝑷𝑻 = 20%). 

As shown in Fig. 3-10, the IDDAN achieves a relatively minimum requirement for FOLPs and 

parameter quantities compared to some commonly used frameworks. In detail, the required 

FLOPs of IDDAN are 2.8GFLOPs and the number of parameters is 22.1M, which is obviously 

less than the teacher model VGG-16. 

 Test Results Comparison 

a) Multiple methods comparison 

The dataset of bearing vibration signals under various working conditions is shown in Table 3-

2. Therefore, a very harsh transfer learning test environment is formed, which can well detect 

the performance of the proposed method. However, the number of labeled samples provided 

by the target domain is also the key to performance. We divide nine grades according to 𝑃்  

from less to more: 1%, 5%, 10%, 15%, 20%, 25%, 30%, 40% and 50%. The test data is still 

50% unlabeled data of the target domain. It is necessary to compare the performance of the 

different methods. In this comparison, the historically outperforming classical algorithms 

support vector machine (SVM) and CNN are replaced with IDDAN, and short-time Fourier 

transform (STFT) and Hilbert-Huang transform (HHT) will be replaced with continuous 

wavelet transform (CWT). Data augmentation (DA) is also added as a controllable condition. 

Results of all tests are summarized in Table 3-2, which shows that the proposed method can 

achieve the best performance if 𝑃் ≥ 10%. 
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TABLE 3-2 Fault Diagnosis Results of Various Methods 

               𝑷𝑻 

Methods 
1% 5% 10% 15% 20% 25% 30% 40% 50% 

STFT+SVM 69.8% 73.9% 75.5% 77.2% 78.8% 82.7% 83.2% 87.3% 88.6% 

STFT+CNN 67.9% 71.7% 78.4% 79.7% 85.3% 90.9% 91.0% 91.5% 92.4% 

STFT+IDDAN 66.4% 66.8% 77.6% 78.1% 80.7% 84.4% 86.6% 93.2% 92.6% 

HHT+SVM 71.6% 74.0% 80.9% 82.5% 80.4% 83.2% 81.5% 84.1% 89.8% 

HHT+CNN 66.9% 75.5% 80.2% 84.6% 87.9% 91.3% 91.9% 90.7% 92.7% 

HHT+IDDAN 60.1% 64.9% 77.1% 79.4% 84.2% 85.3% 90.6% 92.5% 93.6% 

CWT+SVM 71.0% 79.4% 82.2% 83.7% 86.1% 87.8% 88.9% 90.5% 90.4% 

CWT+CNN 69.9% 75.9% 80.3% 82.2% 89.5% 92.3% 92.2% 93.2% 93.9% 

CWT+CNN+DA 71.4% 79.3% 86.7% 90.9% 94.1% 95.6% 95.7% 96.1% 96.2% 

CWT+IDDAN 67.5% 69.2% 76.0% 80.5% 84.4% 87.9% 92.2% 92.7% 93.2% 

CWT+IDDAN+DA 70.4% 85.5% 87.2% 92.2% 95.9% 96.7% 97.3% 99.0% 99.5% 

 

b) Comparison with other methods 

To demonstrate the performance of the proposed IDDAN, three different existing bearing 

diagnosis methods are used for comparison. Table 3-3 shows the comparison of the diagnostic 

results of other methods collected from the paper with the proposed IDDAN in transfer fault 

diagnosis experiments (𝑃்=50%). All methods are tested on CWRU dataset.  

TABLE 3-3 Fault Diagnosis Results Compared with Other Existing Methods 
(PT=50%) 

Methods Transfer method 
Target domain 

dataset 
Average accuracy 

CNN Fine-tuning CWRU 93.9% 

CNN-DA Fine-tuning CWRU 96.2% 

DDC [179] Maximum mean discrepancy CWRU 78.2% 

DCTLN [163] Multiple domain adaptation CWRU 86.8% 

DANN [180] Domain adversarial CWRU 80.9% 
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IDDAN  Fine-tuning CWRU 93.2% 

IDDAN-DA  Fine-tuning CWRU 99.5% 

The results demonstrate that fine-tune-based methods outperform all compared methods. The 

accuracy of the CNN model is better than IDDAN in experiments without DA. However, 

IDDAN overtakes the CNN model after going through DA supporting. According to 

application conditions, it could be divided into two categories:  

1) There is no any labeled data collected from the target domain machine. In this condition, 

domain adaptation-based methods are widely used for solving transfer learning problems. 

The most advanced research is based on the maximum mean discrepancy (MMD) of data 

samples. For example, the deep domain confusion (DDC) is to add an adaptation layer and 

an MMD module to the traditional CNN structure [179]. The domain adversarial training 

of neural networks (DANN) is the use of deep neural networks capable of domain 

discrimination [180]. The deep convolutional transfer learning networks (DCTLN) add two 

domain adaptation losses to the CNN loss function to optimize the MMD distance between 

the source domain and target domain [163]. However, this method will not reach the 

highest accuracy when diagnosing faults in the target domain.  

2) There are a few labeled data collected from the target domain machine. Fine-tuning is 

currently widely used in computer vision to further adapt to the target domain after pre-

training. And the accuracy of the model after fine-tuning is often related to the amount of 

pre-trained data. The application scenario is that the target domain can only provide a small 

amount of label data. At the same time, the self-attention mechanism included in IDDAN 

is proved to be more dependent on large-scale pre-training samples. 

 Multi-Level Fault Detection and Results 

For further testing the ability of the proposed diagnostic method to identify fault features, we 

set two damage levels of inner ring fault and outer ring fault. In detail, the inner fault and the 

outer fault in CWRU bearing dataset are divided into 0.007 inches and 0.021 inches, while the 

inner fault and outer fault in KAt bearing dataset are also subdivided into two severity levels: 

within 2mm, between 2mm and 4.5mm. 

The experiments are repeated several times with the proposed data augmentation process in the 

pre-training stage and the best experimental result is chosen to present. The result shows that 
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faults recognition accuracies of the CNN-based transfer method and IDDAN are around 84% 

and 92% ( 𝑃் =50%). The t-SNE features visualizations are demonstrated in Fig. 3-11. 

According to the information from sections 3.4.3, 3.4.4 and 3.4.5, we can further compare and 

analyse the effectiveness of IDDAN and other methods. We can observe the following points: 

1) Compared with the classical CNN based transfer learning method, IDDAN achieves higher 

classification accuracy when given enough pre-training data. This means that transfer 

learning-based diagnosis accuracy has been further improved. Its purpose is to accurately 

classify various faults of the target machine when the labeled data of the target machine is 

not enough to directly train the diagnosis model. 

2) When classifying the inter ring fault and outer ring fault into two damage levels (inter ring 

fault level 1, inter ring fault level 2, outer ring fault level 1 and outer ring fault level 2), the 

classification accuracy of the transfer learning-based diagnosis model decreases 

significantly. This is due to the high similarity between features of different damage levels.  
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Fig. 3-11. t-SNE visualization of features after fine-tuning (PT =50%). (a) CNN-based 

transfer method with large amount of pre-training samples. (b) IDDAN with large 

amount of pre-training samples. 

As can be intuitively seen in Fig. 3-11, the classification model produces confusion between 

different fault types and levels. The proposed method has only smaller feature confusion part 

than CNN-based method when PT = 50%. 

3.5 Summary 

This chapter proposes the self-attention mechanism in the field of online fault diagnosis of 

motor bearing with higher accuracy and proposed a new diagnosis framework based on IDDAN 

for solving the problem that it is hard to obtain enough labeled data to train a diagnosis model 

for a new target machine. Our experiment results present that the fine-tune-based transfer 

learning method could get better accuracy on the same dataset and the IDDAN has a better 

performance by pre-training using large-scale data. The mentioned DA method provides 

sufficient pre-training samples for IDDAN. Meanwhile, when IDDAN consumes large-scale 

data for pre-training, its diagnostic accuracy could surpass the CNN-based transfer learning 

model. The following points could conclude from this chapter:  

1) The chapter proposes a self-attention mechanism-based intelligent fault diagnosis method 

IDDAN for deploying on new machines with a small number of labeled data by transfer 

learning.  

2) The proposed DA method in Section 3.3.1 effectively expands the number of pre-training 

samples and has an excellent effect on IDDAN.  

3) The IDDAN obtain a higher recognition accuracy of multiple bearing fault conditions with 

a large amount of pre-training data than the classic CNN-based method. When PT=50%, The 

diagnosis accuracy of the proposed IDDAN method tested on CWRU dataset is 93.2%, the 

diagnosis accuracy of the proposed IDDAN-DA method tested on CWRU dataset is 99.5%, while 

the accuracy of the classic CNN-based method tested on CWRU dataset is 93.9%. 
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 Domain-Adversarial Adaptation 

Regression Model for IPMSM Permanent Magnet 

Temperature Estimation 

This chapter aims to proposes a simulation-driven unsupervised transfer learning approach that 

leverages the domain-adversarial adaptation regression (DAAR) model to enable online and 

accurate estimation of PMT. Permanent magnet synchronous motors (PMSMs) are widely 

applied for industrial use as well as electric vehicles due to their remarkable electrical 

characteristics. However, PMSMs are vulnerable to damage from high temperatures, which 

can cause the demagnetization of the permanent magnets (PMs). To prevent demagnetization, 

accurate real-time estimation of the PM temperature (PMT) is crucial. Firstly, due to the 

difficulty in acquiring labeled PM data, lumped-parameter thermal network (LPTN)-based 

simulation provides a convenient way to obtain a large amount of simulation data. Secondly, 

this simulation dataset serves as the source domain data to train the proposed modified 

Transformer-based long sequence time-series regression (MT-LSTR) model, which generates 

coarse predicting labels (CP-labels). The CP-labels can be used to label the target domain 

dataset collected from a real interior PMSM (IPMSM). Finally, the DAAR model is trained 

with both feature-level and domain-level adaptations to obtain a well-trained online PMT 

estimator. In experiments, simulation data generated from MATLAB/Simulink is used for 

offline training, while the effectiveness of the proposed method is validated using the IPMSM 

temperature dataset provided by Paderborn University (PU). 

4.1 Introduction 

In recent years, permanent magnet synchronous motor (PMSM) is widely used in electric 

vehicles and other occasions due to its high torque and power densities along with a high degree 

of efficiency [181]. However, permanent magnets (PMs) are prone to irreversible 

demagnetization when overloaded under high thermal stress and must be monitored in various 
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industrial applications. Due to its complex rotating structure, the rotor is extremely difficult to 

monitor with embedded thermal sensors. Forcibly burying the sensor will lead to a sharp 

increase in production costs. These issues have led to the desire for accurate real-time 

estimation methods of PM temperature (PMT). 

There are various physical model-based methods proposed and developed for estimating PMT, 

including lumped-parameter thermal networks (LPTNs)-based method [182], [183], flux 

observer-based method [184], [185], high-frequency (HF) signal injection-based method [186], 

[187], [188], signal fusion-based method [189], [190], [191]. Relatively speaking, LPTNs are 

one of the more successful and efficient approaches to approximate heat transfer within 

machines based on thermodynamic theory [192]. In conventional methods, LPTN is the 

representative of non-invasive method that does not require additional hardware and achieves 

high estimation accuracy for PMT with fewer model parameters. Paper [182] applies four 

nodes LPTN which model the stator yoke, stator winding, stator teeth, and the permanent 

magnets and achieves PMSM temperature estimation within 8°C error. To consider power 

losses of electromechanical power conversion of PMSM in more detail, [192] considered and 

introduced an extended iron loss model in LPTN to minify the error of temperature estimation. 

However, for a certain PMSM, the parameterization of its LPTN must rely on the knowledge 

intervention of domain experts. The geometry of the PMSM and the cold-blooded system will 

have a big impact on this. Two common PMT estimation methods, HF signal injection [193] 

[186] and flux observer [184], [185], are also used by industries. The principle of these two 

methods is to indirectly calculate the PMT value through the thermal properties of the electrical 

model parameters such as PM flux linkage or winding resistance. In addition, typical observers 

(Luenberger, Gopinath and Kalman, etc.) and direct thermal estimators can be merged and 

extended to new signal fusion method. Paper [190] combines Kalman filter and a state-space 

model to estimate PMT. And paper [191] combines a LPTN operating at low speeds and a 

Gopinath-style flux observer-based PMT observer operating at medium and high speeds. 

However, this type of methods is usually limited by high additional computational load and 

large application effort in the development stage. 

Data-driven approaches often do not require domain expertise or specific drivetrain 

specifications for their topological designs (data collection and algorithm designing). Paper 

[194] attempts a data-driven approach, using residual deep recurrent and convolutional neural 
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network (RNN and CNN) to achieve highly dynamic temperature estimation of PMs. The 

authors of [194] trained a deep learning model using exhaustive data collected by testing, 

resulting in accurate predictions of PMT while avoiding expert thermal modeling. Paper [195] 

provides an empirical evaluation of several machine learning (ML) models, revealing the 

potential of simpler ML models in terms of regression accuracy, model size, and their data 

demand. In recent years, hybrid methods in between LPTNs and black-box ML models are 

currently advancing, which allow to incorporate general pre-knowledge regarding the 

underlying physical phenomena with a certain degree of interpretability [196], [197]. 

Furthermore, hybrid method generally has higher estimation accuracy than physical model-

based methods and supervised black-box methods. For example, paper [197] proposes a 

thermal neural network (TNN) which consolidated knowledge in the form of LPTNs, and data-

driven nonlinear function approximation with supervised ML. However, real-world data is an 

expensive and limited resource. In many cases, we do not have the required labeled data to 

train a ML model. When estimating different PMSM temperatures, it is difficult for us to obtain 

the corresponding rotor temperatures as training data. Therefore, this will be a significant 

hurdle for the deployment of deep learning-based methods in industry. Details of state-of-the-

art methods on PMT estimation are summarized in Table 4-1. 

TABLE 4-1 Summary of Up-to-data Existing Methods 

Method type 
Related 
works 

Description Deficiencies 

LPTN-based 
[182], 

[183] 

Consisting of four thermal 
nodes is designed to model 
PMSM. 

Requires some prior 
knowledge of model 
parameters. 

Flux observer-
based 

[184], 

[185] 

Estimating magnetization and 
PMT through fundamental 
wave flux observers. 

Lower accuracy at low 
motor speed. 

Neural network and 
LPTN-based hybrid 

method 

[197], 

[196], 

[198] 

An approach combining neural 
networks and PMSM thermal 
model. 

Supervised by real PMT 
labels. 

HF signal injection-
based 

[186], 

[187], 

[188] 

HF signal is injected into the 
machine to estimate the HF 
resistance. 

Causes extra loss and EMI 
problems. 

Signal fusion-based 
[190], 

[191] 

Noninvasive method 
computing by PMSM steady-
state equation. 

High additional 
computational load at run 
time. 
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Supervised ML-
based 

[194], 

[195], 

[199], 
[200] 

Forecasting PMT through a 
well-trained neural network 
model. 

Training requires labeled 
PMT data. 

Simulation and 
transfer learning-

based 

The 
proposed 

Estimating PMT by 
transferring pre-trained 
knowledge from simulation 
data. 

Training requires 
simulated PMT data. 

To solve this problem, this paper proposes a simulation-driven and domain adaptation-based 

approach for real-time estimate PMT without measured PMT labels. Physical model-based 

simulation provides a solution for acquiring the datasets required for deep learning [201]. 

Domain adaptation techniques, as a type of transfer learning, can generalize the knowledge 

learned by model training without supervision [202]. It can not only perform model transfer in 

classification tasks, but also solve regression problems. For example, paper [203] proposes 

their deep transfer learning-based approach for online predicting remaining useful life (RUL) 

of rolling bearings. Up to now, deep learning model transfer between actual collected datasets 

has been successfully applied. Model transfer from simulated dataset to real dataset has only 

been applied once in the fault classification task [201]. The simulation-based domain 

adversarial adaptation regression (DAAR) scheme proposed in this paper can be used as a 

general method to build the deep learning estimation model for interior PMSMs (IPMSMs). In 

this chapter, the simulated IPMSM temperature data will be used as the source domain data in 

the domain adaptation framework. Experiments prove that the deep transfer learning-based 

PMT estimation model constructed by this method is effective and has high accuracy. 

The main novelties and technical contributions of this paper can be summarized as follows: 

1) Different from previous data-driven methods, the proposed approach can estimate PMT of 

target motor without labels from real measurement. 

2) LPTN-based simulation model provides time-series IPMSM dataset under multi-working 

conditions for well training a modified Transformer-based long sequence time-series 

regression (MT-LSTR) model which provides coarse predicting labels (CP-labels) for 

feature adaptation and domain alignment processes. 

3) This chapter proposes a novel DAAR method to real-time estimate PMT without labeled 

real data of target motor. CP-labels can be target domain labels of the DAAR model. 
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The rest of this chapter is presented as follows: In Section 4.2, necessary preliminaries are 

described synoptically. Section 4.3 describes the proposed approach based on PM thermal 

model simulation and domain regression adaptation technique. Section 4.4 presents the 

collected simulation dataset and the real experimental dataset, the Paderborn University (PU) 

IPMSM temperature dataset [194]. A detailed experimental validation is placed in Section 4.5 

and results on the PU dataset [194] has been analysed. Section 4.6 is the conclusion of the 

whole chapter. 

 Description of Transfer Learning Problem 

The essence of the model pre-training is transfer learning [171]. To clearly explain the proposed 

architecture in Section III, here it is necessary to introduce two types of domains in transfer 

learning: the source domain 𝐷ୱ and the target domain 𝐷୲. Both domains are composed of the 

feature space 𝑋 and the probability distribution 𝑃(𝑋) of the data. The category spaces of the 

learning objectives of transfer learning in 𝐷ୱ and 𝐷୲ are represented by 𝑌ୱ and 𝑌୲, respectively. 

When 𝐷ୱ ≠ 𝐷୲, the data distribution before and after transfer is also different. Transfer learning 

can improve the performance of the target task learning function 𝑓୲ when 𝐷ୱ ≠ 𝐷୲ or 𝑌ୱ ≠ 𝑌୲. 

The following Fig. 4-1 shows the principle of transfer learning to process unlabelled data task 

and what is different process between transfer learning and traditional neural networks. From 

the perspective of transfer learning, the data used for pre-training 𝑋 = {𝑥ଵ, 𝑥ଶ ⋯ 𝑥௡} and the 

corresponding label space 𝑌ୱ = ൛𝑦௫భ
, 𝑦௫మ

⋯ 𝑦௫೙
ൟ  compose source domain 𝐷ୱ = {𝑋, 𝑌ୱ} . The 

unlabelled data of the target machine is 𝑋୲ = {𝑥୲ଵ, 𝑥୲ଶ ⋯ 𝑥୲௡}, where 𝑥୲௡ is the data samples of 

the target task. The more adequate samples in 𝐷ୱ, the larger the category space, the stronger 

generalization ability, and the better performance of the model after pre-training transfer. 
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Fig. 4-1. The difference diagram of the learning procedure between traditional neural 

networks and unsupervised transfer learning. 

 Domain Adversarial Neural Network 

Domain adversarial neural network (DANN) is a kind of unsupervised domain adaptation-

based transfer learning, first proposed in [204]. DANN benefits from the idea of generative 

adversarial network (GAN) but unlike GAN because the domain adaptation problem does not 

require a generator but a feature extractor. As demonstrated in Fig. 4-1, a normal DANN 

consists of three parts: feature extractor 𝐺୤(∙ ; 𝜃୤) , label predictor 𝐺୷൫∙ ; 𝜃୷൯  and domain 

classifier 𝐺ୢ(∙ ; 𝜃ୢ). The goal of DANN is to extract features from the source and target domain 

separately so that the domain classifier cannot distinguish between the two. Therefore, the 

network loss of domain adaptation problem generally consists of two parts: training loss ℒ୷ 

and domain discrimination loss ℒୢ. As shown in Fig. 4-2, feature extractor and label predictor 

constitute a feed-forward neural network. During the training process, on the one hand, the 

network must continuously minimize the loss of the label predictor; on the other hand, the 

network must continuously minimize the loss function of the domain discriminator, which is 

connected with the feature extractor through a gradient reversal layer (GRL). 
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Fig. 4-2. Architecture diagram of the regular DANN. 

4.2 The Proposed PMT Estimation Approach 

In this section, a self-supervised simulation-driven domain regression adaptation method is 

proposed for real-time PMT estimation, as shown in Fig. 4-3. This proposed approach includes 

three parts: (1) Simulated PMT related signals acquirement. An LPTN-based thermal network 

is achieved by MATLAB/Simulink for collecting completed labeled temperature data; (2) 

Supervised model training using simulated data for learning information of source domain. A 

modified Transformer-based long sequence time-series regression (MT-LSTR) model is 

trained for generating coarse predicting labels (CP-labels) of feature adaptation and domain 

alignment processes; (3) The domain adversarial adaptation regression (DAAR) model which 

updates from classic DANN is used to perform the regression task of PMT estimation. It can 

extract domain-invariant feature information in source domain data based on CP-labels. Thus, 

the online real-time high-precision estimation model is obtained in the joint optimization 

guided by the multi-loss function. Fig. 4-3 illustrates the summarised architecture of the 

proposed approach. In this diagram, details of any part can be found in this section. 
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Fig. 4-3. Structure diagram of the whole proposed approach. (The approach includes 

three parts: simulation data acquisition part, MT-LSTF model part, DAAR part. In this 

figure, part 1 provides source domain dataset 𝓓𝐒 to the training procedure of part 3, part 

2 provides target domain dataset 𝓓𝐓 to the training procedure of part 3). 

 IPMSM Modelling for PMT Simulation Data Acquisition 

Electric machine is essentially a non-homogeneous thermal body, which could be expressed as 

a combination of an external thermodynamic environment and serval temperature nodes that 

connect each other by thermal resistances [205]. In this paper, we choose a LPTN-based 

IPMSM model to obtain all simulation data related to PMT. This paper employs the grey box 

model low-order LPTN of IPMSM that content a large number of nodes and machine’s prior 

knowledge of material and geometry. 

PMSM physical simulation model is vital for acquiring simulated PMT dataset. The low-order 

LPTN proposed by Wallscheid and Böcker is a physical model that effectively simulates the 

four most important components of IPMSM: stator yoke, stator winding, stator teeth and PMs 

[182]. Fig. 4 illustrates the structure of IPMSM’ LPTN used in this section. In this paper, 

LPTN-based thermal network is constructed by MATLAB/Simulink for obtaining time-series 

simulation data. 
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Fig. 4-4. Structure diagram of the low-order LPTN. [182] (𝜽𝐂𝐋 donates the cooling liquid 

temperature, 𝜽𝐒𝐘 donates the stator yoke temperature, 𝜽𝐒𝐖 donates the stator winding 

temperature, 𝜽𝐒𝐓  donates the stator teeth temperature, 𝜽𝐏𝐌  donates the PMT, 𝜽𝐀𝐀 

donates the ambient air temperature, every 𝑹 represents the thermal resistance between 

two nodes, and every 𝑷 represents the inner heat generation within the system from 

different motor components (heat sources)). 

The inner heat generation within the IPMSM thermal system can be called as motor losses. The 

copper losses are equal to the stator winding losses, which can be calculated based on the actual 

current: 

𝑃௩,େ୳ = 𝑃௩,ୗ୛ = 3 ∙ 𝐼ଶ ∙ 𝑅ୱ(𝜃ୗ୛, 𝑛) (4-1) 

where 𝑅ୱ  is the ohmic resistance. The difference between the copper losses 𝑃௩,ୗ୛  and the 

overall power losses 𝑃௩ are called residual losses, and assumed to be equal the the iron losses 

in the stator and rotor parts: 

𝑃෨௩,୊ୣ = 𝑃෨௩,୰ୣୱ = 𝑃௩൫𝐼, 𝑖୯, 𝑛൯ − 𝑃෨௩,ୗ୛൫𝐼, 𝑛, 𝜃ୗ୛,଴൯ = 𝑃෨௩,୔୑ + 𝑃෨௩,ୗଢ଼ + 𝑃෨௩,ୗ୘ (4-2) 

where 𝑃෨௩ denotes the equivalent copper losses in the different motor components of this system 

at reference temperature 𝜃଴. Then the loss can be computed by: 

𝑃௩,ୗଢ଼ = 𝑃෨௩,ୗଢ଼ ∙ ൣ1 + 𝛼୊ୣ ∙ ൫𝜃ୗଢ଼ − 𝜃ୗଢ଼,଴൯൧ (4-3) 

𝑃௩,ୗ୘ = 𝑃෨௩,ୗ୘ ∙ ൣ1 + 𝛼୊ୣ ∙ ൫𝜃ୗ୘ − 𝜃ୗ୘,଴൯൧ (4-4) 

𝑃௩,୔୑ = 𝑃෨௩,୔୑ ∙ ൣ1 + 𝛼୊ୣ ∙ ൫𝜃୔୑ − 𝜃୔୑,଴൯൧ (4-5) 

with 𝛼୊ୣ ∈ {ℝ| −1% K⁄ ≤ 𝛼୊ୣ ≤ 0}  

where the temperature coefficient 𝛼୊ୣ is set as negative value, -1% is equal to -0.01. As content 

of the low-order LPTN of IPMSM, the seven thermal resistance of this model is different to be 

calculated. The three resistances 𝑅ୗଢ଼,ୗ୛, 𝑅ୗ୛,ୗ୘ and 𝑅ୗଢ଼,ୗ୘ associated with the stator can be 

calculated from the heat transfer Eq. (4-6) for the nodes inside the stator. 
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𝑅௜,௝ =
𝑙௜,௝

𝜆௜,௝ ∙ 𝐴௜,௝
 (4-6) 

with 𝑖, 𝑗 ∈ [SY, SW, ST] and 𝑖 ≠ 𝑗  

where 𝑙௜,௝  is the effective conduction length from node 𝑖  to node 𝑗 , 𝜆௜,௝  is the thermal 

conductivity of material, 𝐴 donates the effective cross section area. The value of the thermal 

resistance from the stator yoke to the cooling liquid jacket 𝑅େ୐,ୗଢ଼  relies too much on the 

physical shape information, so it can only be roughly estimated by Eq. (4-7) in this LPTN 

model. 

𝑅େ୐,ୗଢ଼ = 𝑅େ୐,ୗଢ଼,଴ ∙ ൣ1 + 𝛼େ୐,ୗଢ଼ ∙ ൫𝜃େ୐ − 𝜃஼௅,଴൯൧ (4-7) 

with 𝛼େ୐,ୗଢ଼ ∈ ൛ℝ| −1% K⁄ ≤ 𝛼େ୐,ୗଢ଼ ≤ 0ൟ  

In above formula, coefficient 𝛼େ୐,ୗଢ଼ will be negative. The values of resistances 𝑅୔୑,ୗ୘, 𝑅ୗ୛,୔୑ 

and 𝑅୔୑,୅୅ are defined to calculate model heat transfer: 

𝑅୔୑,௜(𝑛) = 𝑅୔୑,௜,଴ ∙ 𝑒
ି

௡
௡ౣ౗౮

∙
ଵ

௕ౌ౉,೔ + 𝛼୔୑,௜ (4-8) 

with 𝑅୔୑,௜,଴ ∈ ൛ℝ|0 ≤ 𝑅୔୑,௜,଴ ≤ 𝑅୔୑,௜,଴,୫ୟ୶ൟ  

𝑎୔୑,௜ ∈ ൛ℝ|0 ≤ 𝑎୔୑,௜ ≤ 𝑎୔୑,௜,୫ୟ୶ൟ  

𝑏୔୑,௜ ∈ ൛ℝ|0 ≤ 𝑏୔୑,௜ ≤ 𝑏୔୑,௜,୫ୟ୶ൟ  

with 𝑖 ∈ [SW, ST, A]  

The temperature simulation data of PMs are obtained by MATLAB/Simulink simulation model 

based on the low-order LPTN. The simulated dataset is for the training of MT-LSTR model 

shown as Part 2 of Fig. 4-3, and also for training the DAAR model in part 3 of Fig. 4-3. 
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 MT-LSTR Model for CP-labels Generating 

In this section, MT-LSTR mode is built for transferring prior knowledge to the online PMT 

estimating function. The whole structure of this model is illustrated in Fig. 4-5. The MT-LSTR 

model can recursively predict the sequence of the online temperature through learning from 

offline simulation data. Then we compute the CP PMT label of online tested IPMSMs using 

this well-trained MT-LSTR model. 

In this model, we originally employ modified Transformer-based LSTR model based on 

Informer model [206]. The whole structure of MT-LSTR model is shown in Fig. 4-5. 

 

Fig. 4-5. Structure diagram of MT-LSTR and CP-labels generating. (The parameters 

transfer process means that the CP-labels of real dataset should be forecasted by the 

model trained by simulated data) (Source domain data is from simulation (both reference 
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signals and label) and CP-labels provide semi-supervised information for the training of 

DAAR model) (Detailed presentation of the part 2 in Fig. 4-3). 

The encoder in Fig. 4-5 uses multi-head probsparse self-attention to give higher weight to the 

dominant feature from the 𝑗 to 𝑗 + 1 layers, and the activation function uses exponential linear 

unit (ELU): 

𝑥௝ାଵ
௧ = MaxPool ൬ELU ቀConv1d൫ൣ𝑥௝

௧൧൯ቁ൰ (4-9) 

In order to enable the MT-LSTR model to further extract prior knowledge from offline 

simulation data and prevent outliers in training data from causing gradient explosion, the off-

line training of MT-LSTR model combines mean square error (MSE) and mean absolute error 

(MAE) as the loss function used for optimization parameters of Informer decoder: 

𝐿ఋ൫𝑦, 𝑓(𝑥)൯ = ൞

1

2
൫𝑦 − 𝑓(𝑥)൯

ଶ
          , when |𝑦 − 𝑓(𝑥)| ≤ 𝛿

𝛿|𝑦 − 𝑓(𝑥)| −
1

2
𝛿ଶ, when |𝑦 − 𝑓(𝑥)| > 𝛿

 (4-10) 

where 𝛿 is a hyperparameter which decides how to deal with outliers. 𝐿ఋ can ensure that the 

model updates parameters at a fast speed when |𝑦 − 𝑓(𝑥)| > 𝛿 and ensure that the model can 

obtain the global optimal value more accurately when |𝑦 − 𝑓(𝑥)| ≤ 𝛿. Loss function (4-10) 

should be minimized by Adam gradient descent optimizer [207] to seek a group of well-

optimized network weights 𝑊௫. 

MT-LSTR should transfer off-line trained weight parameters from source domain to target 

domain to online generate CP-labels. The value of predicted PMT is computing by decoder and 

FC layers: 

where 𝐶𝑜𝑛𝑐𝑎𝑡 is a mathematical operator, 𝐿୲୭୩ୣ୬ represents the length of the token, 𝑑୫୭ୢୣ୪ is 

the dimension of the model, 𝑊 is the weight matrix. 

𝑥ୢୣ
௧ = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑥୲୭୩ୣ୬

௧ , 𝑥଴
௧), 𝑥୲୭୩ୣ୬

௧ ∈ 𝑅௅౪౥ౡ౛౤×ௗౣ౥ౚ౛ౢ (4-11) 

𝑌 = 𝑊 ∙ 𝑋, 𝑑 = 𝑑୭୳୲ (4-12) 
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 Domain Adversarial Adaptation Regression (DAAR) Model with 

Multi-Working Condition for PMT Transfer Estimation 

In many practical cases, the speed and torque set during the source domain data acquired 

through the simulation process are highly random as well as the verification data, which means 

that the source domain and target domain data have the characteristics of strong distribution 

complexity. The source domain and target domain data are designed to simulate the complex 

and changeable real working conditions in the actual application of the IPMSM. If we use the 

CP-labels value of the target domain obtained from the MT-LSTR model directly as the 

estimated value of PMT, it is not accurate enough, which is determined by the cumulative 

prediction error caused by the different distribution of the data in the two domains. Since the 

true labels are unavailable at all, CP-labels are still valuable for the domain adaptation 

regression, which can provide necessary target domain supervision information that classic 

DANN does not have during training. This means that CP-labels can provide data distribution 

alignment direction and domain-invariance features for DANN's domain adaptation task. 

Compared with traditional DANN, CP-labels can benefit to establish a more precise domain 

adaptation prediction model. 

 

Fig. 4-6. Architecture of the DAAR model for PMT high-precision estimation.(The DAAR 

model includes a feature extractor 𝑮𝐅(𝒙; 𝜽𝐅), a source domain regressor 𝑮𝐒(𝒛𝐒; 𝜽𝐒) with 

source domain regression loss 𝓛𝐒(𝜽𝐅, 𝜽𝐒), a target domain 𝑮𝐓(𝒛𝐓; 𝜽𝐓) with target domain 
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regression loss 𝓛𝐓(𝜽𝐅, 𝜽𝐓) and 𝑮𝐃(𝒛; 𝜽𝐃) with adversarial loss 𝓛𝐃(𝜽𝐅, 𝜽𝐃) and a softmax 

layer) (Detailed presentation of the part 3 in Fig. 4-3 ). 

The architecture in Fig. 4-6 is our DAAR model. This similar structure was first proposed in 

[201] and used for DANN-based classification task and in this paper for regression forecasting 

task. Compared with classic DANN model, DAAR model has two different parts named source 

domain recursive predictor 𝐺ୗ(𝑧ୗ; 𝜃ୗ), target domain recursive predictor 𝐺୘(𝑧୘; 𝜃୘) and two 

similar parts named feature extractor 𝐺୊(𝑥; 𝜃୊)and domain classifier 𝐺ୈ(𝑧; 𝜃ୈ). 𝜃ୗ, 𝜃୘ and 𝜃୊ 

donate the parameters of 𝐺ୗ, 𝐺୘ and 𝐺ୈ, respectively. In this model, we use the pre-trained 

Informer encoder in MT-LSTR as 𝐺୊, which is enough to extract deep features from both 

source domain and target domain. This means using the transfer learning method to directly 

move the parameters trained in Fig. 4-3.Part 2 as the initial parameters of 𝐺୊. This strategy can 

better increase the speed of model training and converge to the optimal result faster. 𝐺ୗ and 𝐺୘ 

consists of two fully-connected (FC) layers (Eq. (4-13)) and one output point. 𝐺ୗ and 𝐺୘ aim 

to forecast PMT value and calculate ℒୗ(𝜃୊, 𝜃ୗ) and ℒ୘(𝜃୊, 𝜃୘) assisted with source labels 𝑌ୗ 

and target domain CP-labels 𝑌୘, respectively. 𝐺ୈ includes two FC layers and one softmax layer, 

which has an adversarial loss ℒୈ(𝜃୊, 𝜃ୈ). 𝐺ୗ, 𝐺୘ and 𝐺ୈ all adopt the cross-entropy (CE) loss 

function which is mainly used to determine how close the actual output is to the expected output. 

Equations of FC layers and softmax layer are shown in (4-13) and (4-14), in which 𝑊 is the 

weight matrix, 𝑧  is the input vector, 𝐾  donates the number of classes in the multi-class 

classifier, 𝑒 is the natural constant. 

𝑌 = 𝑊 ∙ 𝑋 (4-13) 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥൫𝑧௜൯ = 𝑒௭೔
෍ 𝑒௭೔

௄

௝ୀଵ
൘  (4-14) 

In the source regressor, the input of 𝐺ୗ൫𝑧ୗ
௜ ; 𝜃ୗ൯: ℝୈ → [0,1] is 𝑧ୗ

௜ = 𝐺୊൫𝑥ୗ
௜ ; 𝜃୊൯. 𝐺୊  has the 

function of extracting a 𝐷-dimensional feature vector 𝑧ୗ
௜ . ℒୗ

௜ (𝜃୊, 𝜃ୗ) donates the loss function 

of 𝐺ୗ and could be defined as: 

ℒୗ
௜ (𝜃୊, 𝜃ୗ) = CE൫𝐺ୗ൫𝐺୊൫𝑥ୗ

௜ ; 𝜃୊൯; 𝜃ୗ൯, 𝑦ୗ
௜ ൯ (4-15) 
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where ൫𝑥ୗ
௜ , 𝑦ୗ

௜ ൯ is the 𝑖-th given example of source domain dataset ൛𝑥ୗ
௜ , 𝑦ୗ

௜ ൟ
௜ୀଵ

௠
. In the target 

regressor, the input of 𝐺୘൫𝑧୘
௜ ; 𝜃୘൯: ℝୈ → [0,1] is 𝑧୘

௜ = 𝐺୊൫𝑥୘
௜ ; 𝜃୊൯. The loss function of 𝐺୘ can 

be represented as: 

ℒ୘
௜ (𝜃୊, 𝜃୘) = CE൫𝐺୘൫𝐺୊൫𝑥୘

௜ ; 𝜃୊൯; 𝜃୘൯, 𝑦୘
௜ ൯ (4-16) 

where ൫𝑥୘
௜ , 𝑦୘

௜ ൯ is the 𝑖-th given example of target domain dataset ൛𝑥୘
௜ , 𝑦୘

௜ ൟ
௜ୀଵ

௡
. In the domain 

classifier, a domain classifier 𝐺ୈ൫𝑧௜; 𝜃ୈ൯ learns a logistic regressor 𝐺ୈ: ℝୈ → [0,1], in which 

𝑧 = 𝐺୊൫𝑥௜; 𝜃୊൯. ℒୈ
௜ (𝜃୊, 𝜃ୈ) donates the loss function of 𝐺ୈ and could be defined as: 

ℒୈ
௜ (𝜃୊, 𝜃ୈ) = CE൫𝐺ୈ൫𝐺୊൫𝑥௜; 𝜃୊൯; 𝜃ୈ൯, 𝑑௜൯ (4-17) 

where 𝑑௜  represents the binary domain label of the 𝑖-th example, which is used to indicate 

whether this sample belongs to the source domain or the target domain. 

In domain level, we separately introduce L2 loss ℒ୐ଶ(𝜃୘, 𝜃ୗ)  to represent the difference 

between source and target domain model parameters. In feature level, ℒ୅୮୲൫𝑧ୗ
௜ , 𝑧୘

௜ ൯ is designed 

to reduce the distance between the features of two domain, maximize domain confusion and 

make DAAR models more discriminative and domain invariant. ℒ୅୮୲  can be obtained by 

summing maximum mean discrepancy (MMD) loss [202] ℒ୑୑ୈ൫𝑧ୗ
௜ , 𝑧୘

௜ ൯ and 1-D Wasserstein 

distance-based loss ℒ୛ୟୱୱୣ୰ୱ୲ୣ୧୬൫𝑧ୗ
௜ , 𝑧୘

௜ ൯ [208]. 

ℒ୐ଶ(𝜃୘, 𝜃ୗ) = |𝜃୘ − 𝜃ୗ|ଶ (4-18) 

ℒ୅୮୲൫𝑧ୗ
௜ , 𝑧୘

௜ ൯ = ℒ୑୑ୈ൫𝑧ୗ
௜ , 𝑧୘

௜ ൯ + ℒ୛ୟୱୱୣ୰ୱ୲ୣ୧୬൫𝑧ୗ
௜ , 𝑧୘

௜ ൯ (4-19) 

ℒ୑୑ୈ൫𝑧ୗ
௜ , 𝑧୘

௜ ൯ = ะ
1

𝑚
෍ 𝜙

௠

௜ୀଵ

൫𝑧ୗ
௜ ൯ −

1

𝑛
෍ 𝜙൫𝑧୘

௜ ൯

௡

௜ୀଵ

ะ

ℋ

ଶ

ℒ୛ୟୱୱୣ୰ୱ୲ୣ୧ ൫𝑧ୗ
௜ , 𝑧୘

௜ ൯ = inf
గ∈୻(௉౏,௉౐)

න ห𝑧ୗ
௜ − 𝑧୘

௜ ห d𝜋
ℝ×ℝ

൫𝑧ୗ
௜ , 𝑧୘

௜ ൯

 (4-20) 

where 𝑚  and 𝑛  are the number of samples in source domain and target domain. 𝜙(∙) is a 

mapping function, Γ(𝑃ୗ, 𝑃୘) represents the set of probability distributions on ℝ × ℝ. Therefore, 
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the total loss of the DAAR model could be represented as: 

ℒୈ୅୅ୖ =
1

𝑚
෍ ℒୗ

௜ (𝜃୊, 𝜃ୗ)

௠

௜

+
1

𝑛
෍ ℒ୘

௜ (𝜃୊, 𝜃୘)

௡

௜

− 𝜇ℒୈ
௜ (𝜃୊, 𝜃ୈ) + 𝜆ℒ୐ଶ(𝜃୘, 𝜃ୗ) + 𝛾ℒ୅୮୲൫𝑧ୗ

௜ , 𝑧୘
௜ ൯

=
1

𝑚
෍ ℒୗ

௜ (𝜃୊, 𝜃ୗ)

௠

௜

+
1

𝑛
෍ ℒ୘

௜ (𝜃୊, 𝜃୘)

௡

௜

+ 𝜇 ൭
1

𝑚
෍ ℒୈ

௜ (𝜃୊, 𝜃ୈ)

௠

௜

+
1

𝑛
෍ ℒୈ

௜ (𝜃୊, 𝜃ୈ)

௡

௜

൱ + 𝜆ℒ୐ଶ(𝜃୘, 𝜃ୗ) + 𝛾ℒ୑୑ୈ൫𝑧ୗ
௜ , 𝑧୘

௜ ൯

+ 𝛾ℒ୛ୟୱୱୣ୰ୱ୲ୣ୧୬൫𝑧ୗ
௜ , 𝑧୘

௜ ൯ 

(4-21) 

 Implement Procedure of DAAR 

In the training process, the parameters in DAAR model will be updated with each iteration by 

using optimizer Adam to obtain the optimal parameters. The pseudocode of the whole 

procedure of the proposed approach is shown in Algorithm 1. 

Algorithm 1: DAAR model training with target domain CP-labels 

Input: Labeled source domain dataset 𝒟ୗ = ൛𝑥ୗ
௜ , 𝑦ୗ

௜ ൟ
௜ୀଵ

௠
 obtained from IPMSM thermal 

simulation, target domain dataset CP-labels 𝒟୘ = ൛𝑥୘
௜ , 𝑦୘

௜ ൟ
௜ୀଵ

௡
, required hyperparameters 𝜇, 𝜆 

and 𝛾. 

Output: The forecasted PMT value 𝑦୘ and PM estimation accuracy of testing data 𝒟୲ୣୱ୲. 

1 Transfer and keep parameters of encoder of MT-LSTR model as initial parameters θ୊ of 
𝐺୊. Initialize parameters 𝜃ୗ, 𝜃୘ and 𝜃ୈ of 𝐺ୗ, 𝐺୘ and 𝐺ୈ; 

2 for each training iteration do 

3   Forward propagation through 𝐺୊, 𝐺ୗ and 𝐺ୈ; 

4   Input 𝒟ୗ into 𝐺୊ to extract source domain features 𝑧ୗ with parameters 𝜃୊; 

5   Compute ℒୗ
௜ ൫𝐺ୗ, 𝑦ୗ

௜ ൯ and ℒୈ
௜ ൫𝐺ୈ, 𝑑௜൯ by using Eq. (4-15) and Eq. (4-17) with the 

parameters 𝜃ୗ and 𝜃ୈ; 

6   Forward propagation through 𝐺ୗ and 𝐺ୈ; 

7   Input 𝒟୘ into 𝐺୊ to extract target domain features 𝑧୘ with parameters 𝜃୊; 

8   Compute ℒ୘
௜ ൫𝐺୘, 𝑦୘

௜ ൯ and ℒୈ
௜ ൫𝐺ୈ, 𝑑௜൯ by using Eq. (4-16) and Eq. (4-17) with the 

parameters 𝜃୘ and 𝜃ୈ. 

9   Compute ℒ୐ଶ with two domain regressor parameters 𝜃ୗ and 𝜃୘; 

10   Compute ℒ୅୮୲ by adding two feature level losses ℒ୑୑ୈ and ℒ୛ୟୱୱୣ୰ୱ୲ୣ୧୬ (Eq. (4-
20)); 

11   Compute the total loss ℒୈ୅୅ୖ by using Eq. (4-21). 
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12   Backpropagation with Adam optimizer to minimize ℒୈ୅୅ୖ. 

13   Update the parameters 𝜃୊, 𝜃ୗ, 𝜃୘ and 𝜃ୈ; 

14   Obtain a group of optimal parameters 𝜃୊
∗, 𝜃ୗ

∗, 𝜃୘
∗ and 𝜃ୈ

∗ of DAAR model; 

15 end  

16 Evaluate the model with testing data 𝒟୲ୣୱ୲ and compute the final forecasted PMT value 
𝑦୘. 

4.3 Experimental Datasets 

 Experimental Dataset Description 

The PMT dataset comprises several sensor data collected from a IPMSM deployed on a test 

bench (Fig. 4-7(a)), which were collected by the LEA department at PU [194]. Fig. 4-7(b) 

shows the cross-section of this IPMSM. The whole dataset includes 55 drive circles/profiles 

and totally 185 hours, in which each drive circle contains several hours sampled data. In 

validation experiments, we retain the data of 10 drive circles in the PU dataset as test data, and 

all the rest of the data is used for the training of DAAR model. All signals are sampled at 2Hz, 

which include coolant liquid temperature 𝜃େ୐, stator winding temperature θୗ୛, stator tooth 

temperature 𝜃ୗ୘ , motor speed 𝑣 , PMT 𝜃୔୑ , stator yoke temperature 𝜃ୗଢ଼ , currents in d/q-

coordinates 𝐼 /𝐼୯, voltages in d/q-coordinates 𝑈ୢ/𝑈୯, ambient air temperature 𝜃୅୅and torque 

𝜏. All data are collected by using a standard control strategy. According to the work condition, 

the data set consists of multiple measurement sessions. Most driving cycles denote random 

walks in the speed-torque-plane in order to imitate PMSM complex work conditions in real-

world driving to a more accurate degree than just constant excitations and ramp-ups and -downs 

would. Furthermore, to simplify the complexity of model training and reduce the complexity 

of this method in practical applications, we use heatmap to visualize the correlation matrix to 

find which features are most suitable as model training data. 

As shown in Fig. 4-7(c), features which have the absolute value of correlation coefficient 

between 𝜃୔୑ and themselves|𝜌|≥0.45 are selected as the features required for training and 

estimation of this method. Among them, the correlation coefficient between 𝜃ୗ୛, 𝜃ୗ୘, and 𝜃ୗଢ଼ 

are all 𝜌≥0.8. Considering that too high or too low correlation will have some negative impact 

on training so that we only keep θୗ୛ in these three stator temperatures. In this paper, five 
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reference signals for PMT estimation are chosen as 𝑣, 𝜃ୗ୛, 𝜃େ୐, 𝜃୅୅, 𝐼 . 

 

(a) 

 

(b) 
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(c) 

Fig. 4-7. (a) Test bench used in this paper with a three-phase automotive traction IPMSM 

for PU temperature dataset [194]. (b) Schematic cross-section of the IPMSM used in the 

test bench [197]. (c) The correlation coefficient visualization of all features using Python 

heatmap function. 

 Simulated Time-series PMT Related Signals 

The motor is excited by designed driving cycles that specify a reference motor speed and a 

reference torque. Simulated datasets are collected by many pseudo-random combinations of 

speed and torque. In the case of extremely sufficient simulation data, we can approximately 

consider that this dataset contains almost all working conditions of the PMSM used in the real 

world. And the signal length of the simulation signals is set equal to the length of the real ones. 

In this paper, we consider a simulated motor of the same type slightly different from the 

experimental motor, to reflect the proposed domain adaptation model can be used in cases 

where two domain datasets have certain differences. The type of PMSM for both PU and 

simulation dataset are interior. For IPMSM of PU, the power rating is 52kW, the voltage is 

177V, the current rating is 283A, the torque rating is 250 N·m and the cooling type is water- 
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glycol; For IPMSM of simulation, the power rating is 23.4kW, the voltage is 325V, the current 

rating is 80A, the torque rating is 40 N·m and the cooling type is simulated liquid cooling. This 

procedure should generate simulated signals of different working conditions, all of which are 

time-series that present the feature signals of v, θSW, θCL, θAA, Id and label signal θPM. 

In order to visualize the difference and distance between simulated data and real data, we 

choose three short real drive circles to show real and simulated time-series curves in Fig.4-8. 

For example, in an acceleration drive circle, rotor speed increases from zero to 5000 rpm and 

θSW and θPM rise constantly; In a ramp-up period, rotor speed is decreasing to a lower value, 

with θSW and θPM rise laxly. In a constant speed period, θSW and θPM are basically maintained 

at an upper limit, and θCL is slowly rising. In all working conditions, θAA is kept constant at 

20℃. For simulating complex drive circles, speed and torque are controlled to change at the 

speed-torque-plane. To be similar to the working conditions in PU dataset, the speed is changed 

between 0 to 6000 rpm, and the torque is changed between -300 to 300 N·m. 

All data analysis and experiments are conducted on computing device equipped with AMD 

Ryzen 9 5900X processor, 32 GB memory and NVIDIA GeForce RTX 3080Ti. 
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Fig. 4-8. Comparison of simulation data and experimental real data in the time domain 

under three short drive circles. 

4.4 Verification Result 

This section describes the validation results based on the proposed PMT estimation approach 

in Section 4.2 and experimental datasets in Section 4.3. 

 Performance Index 

The result of the proposed method is evaluated using two quantitative indexes: MAE and root 

mean square error (RMSE), which are represented by Eq. (4-22) and Eq. (4-23), respectively. 

These evaluation metrics provide a clear indication of the accuracy of the PMT estimation task. 

The MSE and MAE measures assess the level of deviation between the estimated PMT values 

and the ground truth. Together, these indexes provide a comprehensive assessment of the 

accuracy and fidelity of the proposed method in estimating PMT values. 

MAE =
1

𝐿ୱ
෍|𝑦௡ − 𝑦ො௡|

௅౩

௡ୀଵ

 (4-22) 

RMSE = ඩ
1

𝐿ୱ
෍(𝑦௡ − 𝑦ො௡)ଶ

௅౩

௡ୀଵ

 (4-23) 

where 𝑦௡ and 𝑦ො௡ are the true value and estimated value of the DPT waveform amplitude, 𝑛 is 

the 𝑛th sample point, and 𝐿ୱ  is the length of samples. These indexes are used to evaluate 

performance of methods under different working conditions in Section 4.4.4. 

 Results of CP-labels Generation 

In this part, we want firstly to discuss the reason to choose MT-LSTR model to do the 

forecasting work. For validating the performance of proposed method, we try to obtain CP-

labels by using three classic regression model with drive circle 17 of PU dataset: support vector 

regression (SVR) [209], random forest regression (RFR) [200], long short-term memory 
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(LSTM) network [210]. SVR estimator choose radial basis function (RBF) kernel. For further 

parameters, regularization parameter set as 1, kernel coefficient for RBF set as 1 𝑛୤ୣୟ୲୳୰ୣୱ⁄ . For 

the RFR estimator, the number of trees set as 20, the number of features to consider when 

looking for the best split is 𝑛୤ୣୟ୲୳୰ୣୱ , the optimizer set as MSE. For LSTM algorithm, the 

network includes two LSTM layers, three FC layers and two dropout layers with dropout rate 

0.2. The learning rate sets as 0.01, learning rate decay is 0.0005, and the optimizer chooses as 

Adam. For MT-LSTR model, the encoder includes one attention block, two one-dimensional 

convolutional layers and two layer-normalization layers. The activation function is ReLU. The 

kernel size of convolutional layer is 1, the rate of dropout layers is 0.1. The training epoch of 

all four algorithms is 100. Fig. 4-9 provides four examples of CP-labels generating of each 

comparative algorithms to show the capacity of MT-LSTR. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 4-9. Evaluation of forecasting performance and error by comparing algorithms 

(Smoothed result for drive circle 17) (a) RFR, (b) SVR, (c) LSTM, (d) MT-LSTR 

(proposed). 

Fig. 4-9(a) presents the forecasted CP-labels by using RFR. The overall trend between real data 

and forecasting data is different, but the error value is much higher in the condition of PM cool 

down. Fig. 4-9(b) shows there are significant errors and deviations between the forecasted data 

and actual data trends. In Fig. 4-9(c), the overall forecasted trend is roughly similar. As Fig. 4-

9(d) shown, the trend error and absolute error are both the lowest among the four subfigures. 

In general, it can be seen from Fig.4-9(d) that the overall trend between the CP-labels and real 

data remains consistent. We are confident that the forecasted results can provide valuable 

supervised information for the further DAAR step. 
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 Results of PMT Estimation 

As introduced in Section 4.3, the encoder of MT-LSTR is transferred to feature extractor of 

DAAR model to accelerate model training. The transfer process of both the model and 

parameters maximizes the training speed of the DAAR source and target regressors. To 

visualize the effect of the transfer process, Fig. 4-10 illustrates the performance of the 

regressors with the transfer process, as well as without the transfer process. Source regressor 

is tested on the selected data segment from source domain dataset. Target regressor is tested on 

PU dataset [14]. It should be noticed that the feature extractor without transfer process will be 

given a set of initial parameters during parameter initialization RandomUniform. 

 

(a) 
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(b) 

Fig. 4-10. The performance of the regressors with and without transfer process (random 

initialization parameters) (Before DAAR training): (a) Source regressor, (b) Target 

regressor. 

Following the DAAR training, we provide Fig.4-11(a) to demonstrate the probability density 

function distribution (PDFD) of the extracted features, and Fig.4-11(b) to present a baseline 

model. The baseline model is a CNN model that predicts the target domain directly after 

training with source domain data, and thus does not undergo the process of domain adaptation 

transfer learning.  

In order to demonstrate the effect of the DAAR model, we use the t-distributed stochastic 

neighbour embedding (t-SNE) dimensionality reduction technology to map the features 

extracted from the source domain and target domain data to the two-dimensional (2D) feature 

space to further observe the model effect before and after training. Fig. 4-12 shows the features 

of the last layer of 𝐺୊. After DAAR training, the data distribution of the source domain and the 

target domain in this space are significantly close. This means that the trained network has 

learned domain-invariant features and can be competent for the PMT estimation task of the 

target domain. 

 

(a) 
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(b) 

Fig. 4-11. The PDFD of source domain data and target domain data. (a) Baseline CNN, 

(b) DAAR(proposed). 

 

(a) 
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(b) 

Fig. 4-12. The feature space of source domain data and target domain data (a) before 

DAAR training and (b) after DAAR training. 

To demonstrate the effectiveness of the method in practical applications, Fig. 4-13 displays the 

results of PMT estimation on four specific profiles (69, 72, 73 and 76) from the PU dataset that 

are not included in the training data. In these drive circles, the torque ranges from -300 to 

300N·m, the motor speed ranges from 0-6000rpm. As each profile contains a large number of 

data points, we applied a downsampling preprocessing prior to the estimation to remain 100 

points for each test profile. According to the results of four profiles in Fig. 4-13, the maximum 

estimation error of the DAAR model is 9.79°C. The average error is 3.24°C for Profile 69, 

4.13°C for Profile 72, 4.98°C for Profile 73 and 4.74°C for Profile 76. For comparison, 

the maximum error of the no domain adaptation CNN model is 34.86°C. The average error is 

14.27°C for Profile 69, 19.58°C for Profile 72, 12.35°C for Profile 73, 20.77°C for Profile 

76. These results demonstrate that the proposed method significantly improves the PMT 

estimation accuracy. 
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(a) 

 

(b) 
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(c) 

 

(d) 



Chapter 4 Domain-Adversarial Adaptation Regression Model for IPMSM Permanent Magnet Temperature 

Estimation 

 

P a g e | 110  

 

Fig. 4-13. The PMT estimation results (estimated PMT value and absolute error value) 

on four specific profiles from PU dataset (The torque ranges from -300 to 300N·m, the 

motor speed ranges from 0-6000rpm in profile 69, 72, 73 and 76). 

 Results of Comparative Experiments 

In this section, comparative analysis includes two parts. In the first part, we introduce 6 popular 

regression algorithms to conduct a comprehensive comparison of CP-labels generation process. 

Each algorithm is trained using the entire simulation dataset and is required to generate CP-

labels for the same piece of test data. Table 4-2 compares computing efficiency of many other 

methods for PMT prediction and CP-labels generation. In Table 4-2, 𝐿 represents the number 

of training examples, 𝑘  represents the number of decision trees, 𝑚  donates the number of 

features and 𝑑 is the depth of decision tree. As shown in Table 4-2, the offline training time of 

the MT-LSTR is slightly longer than classic machine learning and deep learning algorithms 

and the real-time inference time is also slightly longer than theirs. However, compared with 

the classic Transformer algorithm, the performance of the MT-LSTR is better. Although, 

compared with popular machine learning algorithms, the inference time and fitting time are 

longer, but can produce better results. It is cost-effective to exchange the offline learning time 

for the prediction performance. 

TABLE 4-2 Model Computing Efficiency Comparison in Training of CP-Label 
Generating Process 

Model 
Time 

complexity 

Memory 

complexity 

Offline training 

time (s) 

Real-time CP-

labels 

generating (s) 

SVR [209] 𝒪(𝐿ଷ) 𝒪(𝐿ଶ) 6.97 × 10ଷ 4.11 × 10ିଵ 

RFR [200] 𝒪(𝑘𝑚𝐿 log 𝐿) 𝒪(𝑘𝑑) 6.53 × 10ଷ 3.64 × 10ିଵ 

LSTM [210] 𝒪(𝐿) 𝒪(𝐿) 1.22 × 10ସ 7.58 × 10ିଵ 

Transformer  𝒪(𝐿ଶ) 𝒪(𝐿ଶ) 2.43 × 10ସ 8.91 × 10ିଵ 
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MT-LSTR 

(proposed) 
𝒪(𝐿 log 𝐿) 𝒪(𝐿 log 𝐿) 1.83 × 10ସ 8.78 × 10ିଵ 

 

In the following section, we totally summaries 9 other artificial intelligence-based methods for 

PMT estimation, which are evaluated in terms of estimation accuracy (introduced in Table 4-

3). Method 1 utilizes SVR model to extract features from signals [195]. Method 2 and 4 use a 

LSTM layer of 16 neurons added with the output of a 16-neuron FNN layer applied on the 

current time step as residual connection and two convolution blocks with a FNN, respectively 

[194]. Method 3 uses FNN to obtain past temperature and operating conditions to predict 

temperature [199]. Method 5 uses the MT-LSTR model proposed in this paper. Since there is 

no transfer learning-based related literature for PMSM PMT estimation, we design Method 6-

8 to compare the performance of the same model (in method 2-4) before and after adding the 

transfer learning framework. 

TABLE 4-3 Details of 10 PMT Estimation Methods for Comparation 

Method Type of method Implementation 

1 [195] 
Machine learning without transfer 

learning 
SVR 

2 [194] 

Deep learning without transfer 

learning 

LSTM 

3 [199] FNN 

4 [194] TCN  

5 (ours) MT-LSTR in Section 4-3 

6  

Deep model with unsupervised 

transfer learning 

LSTM with domain adaptation 

7 FNN with domain adaptation 

8 TCN with domain adaptation 
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Proposed 
Deep model with semi-supervised 

transfer learning 
MT-LSTR with DAAR 

However, the method without transfer learning (Methods 1-4) cannot successfully learn 

knowledge from target domain. Method 5 is the part 2 of the proposed approach. For the 

transfer learning methods with domain adaptation (Methods 6-8), these methods can obtain 

target domain knowledge through classic unsupervised domain adaptation [204]. We select 6 

drive circles from the PU dataset as the test dataset to evaluate performance under complicated 

working conditions. Due to the high sampling frequency of the dataset, we again applied a 

downsampling preprocessing prior to the estimation to remain 100 points for each test circle. 

Table 4-4 presents MAE and RMSE values of these methods. Fig. 4-14(a)-(b) show the detailed 

change of motor speed and torque under 6 working conditions; Fig. 4-14(c)-(h) demonstrate 

PMT estimation results of methods introduced in Table 4-4. 

TABLE 4-4 Performance of Methods for Comparison Under 6 Complex Working 
Conditions 

Drive 

circle 

id 

50 51 53 54 55 57 

Indexe

s 

MA

E 

RM

SE 
MAE 

RMS

E 

MA

E 

RM

SE 
MAE 

RMS

E 

MA

E 

RM

SE 
MAE 

RMS

E 

1 
44.5

87 

50.39

1 

115.1

09 

117.0

91 

46.1

38 

46.91

2 

56.92

7 

58.09

2 

80.3

62 

81.09

7 

107.4

55 

110.4

71 

2 
26.4

46 

29.74

5 

99.52

9 

103.9

62 

30.4

77 

32.44

3 

109.1

97 

110.2

95 

36.0

21 

38.33

4 

17.35

7 

23.64

2 

3 
55.9

32 

60.24

2 

46.33

3 

47.88

6 

34.3

12 

38.21

8 

32.51

0 

40.53

5 

41.5

62 

33.81

2 

82.29

6 

83.12

5 

4 
45.4

05 

48.36

5 

38.21

6 

40.92

9 

46.4

65 

47.10

1 

62.73

2 

66.98

9 

45.1

59 

46.42

1 

112.0

07 

124.2

05 

5 
25.4

66 

29.84

3 

29.01

4 

29.80

5 

9.69

5 

12.52

4 

70.51

5 

76.22

3 

51.7

58 

49.39

6 

25.92

8 

28.02

1 

6 
11.4

88 

14.08

6 

14.99

5 

18.99

4 

6.11

4 
8.434 

12.23

2 

13.87

4 

14.2

18 

16.80

2 

16.07

8 

20.84

8 
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7 
12.8

96 

15.78

6 

17.97

9 

21.14

3 

6.51

2 
8.675 

15.46

3 

12.11

1 

17.8

64 

20.96

3 

47.06

1 

65.33

9 

8 
23.9

68 

26.96

2 
9.813 

12.79

8 

11.9

56 

14.37

2 

16.47

0 

20.19

0 

24.0

67 

25.53

8 

14.92

4 

18.37

2 

Propos

ed 

4.11

1 
6.161 6.464 9.257 5.82 7.314 8.656 

10.95

8 

4.29

9 
6.262 7.030 8.957 

 

(a) Speed conditions 

 

(b) Torque conditions 
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(c) 

 

(d) 
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(e) 

 

(f) 
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(g) 

 

(h) 

Fig. 4-14. The PMT estimation results of the 8 methods on 6 test drive circles with their 

detailed working conditions. ((a) The speed change of 6 drive circles (b) The torque 
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change of 6 drive circles (c) Drive circle 50 (d) Drive circle 51 (e) Drive circle 53 (f) Drive 

circle 54 (g) Drive circle 55 (h) Drive circle 57). 

 Discussion 

a) Error analysis 

Firstly, the training set in the source domain is obtained by simulation. This training dataset 

should contain samples should be collected under various working conditions as much as 

possible. Secondly, there are certain differences between the simulation model and the real 

PMSM, making the trained MT-LSTR model better suited for simulation data. In practical 

applications, all aspects of the PMSM system cannot be exactly the same, so it is necessary to 

generalize the estimation model from the source domain to the target domain through a method 

based on domain adaptation. Therefore, in this paper, we consider a simulated motor of the 

same type but with slight differences compared to the experimental motor, to reflect the 

proposed domain adaptation model can be used in cases where two domain datasets have 

certain differences. Finally, the limitations of semi-supervised transfer learning result in DAAR 

model that can only adapt to the target domain as efficiently as possible, thus affecting accuracy. 

b) Estimation accuracy optimization and improvement 

The training set of the MT-LSTR should encompass as many samples as possible and 

generalize as many operating conditions as possible. Such training will prevent overfitting, 

resulting in a model with enhanced generalization capabilities. 

If conditions permit, the parameters, operating system and control method of the simulated 

motor and the experimental motor should strive to align as closely as possible. When targeting 

specific PMSMs in practical applications, enhancing the quality of source domain data will 

effectively improve the accuracy of the final estimate. For example, source domain data is 

acquired directly from a PMSM model developed through multi-physics finite element analysis 

(FEA) using tools like Motor-CAD or ANSYS to enhance authenticity. 

4.5 Summary 
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This chapter proposes a novel DAAR model with an MT-LSTR CP-labels generator for 

precisely estimating PMT of IPMSM. Through the above experimental analysis, the following 

conclusions can be drawn: 

1) The proposed method can effectively reduce the PDF discrepancy between source and 

target domains. During experimentation, the offline training time of MT-LSTR is 

1.83 × 10ସ seconds, and real-time CP-labels generating time is 8.78 × 10ିଵ seconds. 

2) By verifying on 4 PU PMSM subdatasets, the DAAR model demonstrated a maximum 

estimation error of 9.79°C, and average estimation errors of 3.24°C, 4.13°C, 4.98°C 

and 4.74°C across four different test profiles. 

3) In comparative experiments on 6 complex drive circles of PU dataset, the minimum 

estimation MAE and RMSE are 4.111 and 6.161 while the maximum MAE and RMSE are 

8.656 and 10.958. 

Since this chapter focuses on IPMSM, we will attempt to acquire source domain data directly 

from the surface-mounted PMSM (SPMSM). The performance of this approach on the SPMSM 

will be investigated in future work. 
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 IGBT Module DPT Efficiency 

Enhancement Via Multimodal Fusion Networks and 

Graph Convolution Networks 

IGBT dynamic electrical characteristics are of great significance in practical application and 

are usually obtained through double pulse test (DPT). However, DPTs of IGBTs under various 

working conditions is time-consuming and laborious. Traditional estimation methods are based 

on detailed physical parameters and complex formula calculations, making deployment 

difficult. This paper proposes a novel DPT efficiency enhancement method based on graph 

convolution network (GCN) and feature fusion technology, which can estimate and supplement 

switching transient waveforms of all working conditions. Thereby, dynamic electrical 

characteristics of the IGBT are obtained by estimated waveforms of DPT. This chapter 

proposes a multimodal attention fusion network (MAFN) to capture and fuse the features of 

switching transient waveforms between different positions thereby improving the expressive 

power and performance of the model. On the other hand, this method first proposes to utilize 

GCN to embed DPT data under multiple working conditions into graph structure, which can 

use the graph structure information to fuse the features of spatially correlated working 

conditions data to obtain reliable estimation result. The method is verified to be effective and 

accurate on real dataset collected on two batches of IGBTs. 

5.1 Introduction 

Insulated-gate bipolar transistors (IGBTs) are now widely used in a variety of medium-power 

or high-power PE converters [211], such as full-bridge inverters [212], [213] and boost 

converters [214]. IGBT is one of the key components in the PE system, and its performance 

directly affects the efficiency, response time, switching frequency, power density, reliability 

and stability of the system. Therefore, design engineers, researchers and manufacturers of PE 

systems need to fully verify the dynamic behavior of the IGBT and estimate its power loss to 
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judge whether the corresponding requirements are satisfied. However, the parameters given in 

the specification are measured under specific conditions. The external parameters in practical 

applications are personalized and often vary, so some of these parameters cannot be used 

directly. As shown in Fig. 5-1, any wrong choice or improper use may directly or indirectly 

cause the failure of the IGBT, resulting in serious consequences. To evaluate the behavior of 

the switch of the IGBT and observe parameters, the most effective method is the double pulse 

test (DPT).  

The DPT method is the standard method for characterizing and evaluating the dynamic 

electrical performance of IGBTs, which is achieved with an inductive load and a power supply 

[215]. The inductor is used to replicate circuit conditions in a converter design. The power 

supply is used to provide voltage to the inductor. An arbitrary function generator is used to 

output pulses that triggers the gate of the IGBT and thus turns it on to start conduction of current. 

The parameters describing the behavior of the switch of the IGBT mainly include the turn on 

delay time 𝑡don, the current rise time 𝑡ri, the turn off delay time 𝑡doff, the current fall time 𝑡fi, 

the turn on loss Eon and the turn on loss Eoff [216]. Due to some limitations of DPT in practical 

application, some estimation methods are proposed to analyze and evaluate the electrical 

characteristics of IGBT. 

 

Fig. 5-1. Significance of IGBT DPT indicated by cause of failures. 

Conventionally, there are three commonly used methods to obtain the static and dynamic 

characteristics of IGBT: Circuit simulation [217], [218], behavioral model [219] and 

electrothermal model [220], [221] and [222]. Device-level circuit simulation is based on IGBT 

physical model such as Kraus’s model [223], Hefner’s [224] and Wang’s [217]. For example, 
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the simulation program with integrated circuit emphasis (SPICE) is a popular IGBT circuit 

simulation tool that can improve the accuracy of the simulation by using more physics 

knowledge of devices [225], [226]. However, these methods always require detailed physical 

information about the IGBT model and circuit topology. In addition, these methods bring 

computational burden while pursuing higher accuracy. The features of the behavioral model 

are ignoring device physics to a certain extent, more convenience, and fast simulation speed 

[227]. Recent paper [219] proposes an FPGA-based IGBT behavioral model to simulate IGBT 

fast transients in PE circuits without any iterative solving algorithm. However, this type of 

method cannot represent the switching transients without information of parasitic parameters 

and diode reverse recovery. Although the electrothermal model can use electrical and thermal 

couplings to solve the heat-flow calculation and consider the temperature effect, adding multi-

dimensional thermal fields and considering packaging characteristics in the simulating 

estimation process will greatly increase the complexity of the model. 

For accurate estimation of dynamic characteristics of IGBTs, researchers prefer to directly 

perform curve fitting on DPT results under specific working conditions, and then estimate 

switching transient waveforms based on measurement results and data sheets. For example, the 

electrical transient model (ETM) has proposed to simulate static and dynamic behaviors of 

IGBT-diode switching cell in order to determine semiconductor losses by using specially 

developed algebraic equations [228], [229]. However, this type of method ignores the effect of 

temperature on the device and relies heavily on mathematical formulas and parameter 

extraction. Until recently, [215] added temperature as a parameter to the original ETM to 

determine the losses of the IGBT diode during the simulation. However, this method can still 

not get rid of the dependence on many physical parameters. These characteristics of related 

methods are summarized in Table 5-1. 

TABLE 5-1 Superiority and Weakness of IGBT DPT Estimation Methods 

Type of methods 
Related 

papers 
Superiorities Weaknesses 

Circuit simulation 
[217], 

[218] 

Relatively high accuracy 

Strong interpretability 

Relying on physics 

information of devices 

High computational difficulty 
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Behavioral model [219] 

Ignoring device physics 

More convenient 

Fast simulation speed 

Relying on parasitic 

parameters and diode reverse 

recovery 

Electrothermal 

model 

[220], 

[221], 

[222] 

Considering temperature 

effect 

High complexity 

High computing requirement 

ETM 
[228], 

[229] 

Accuracy limitation 

Easy access to parameters 

Involving complex 

mathematical formulas 

Deep learning-

based 
Ours 

Ignoring device physics 

High accuracy 

Transferable model for other 

devices 

Fast getting estimation result 

Requiring training data 

With the development of artificial intelligence techniques, deep learning-based algorithms are 

increasingly used in industrial applications. Essentially, measured DPT waveforms are various 

time-series signals, which have correlations with input parameters such as gate voltage, 

temperature, and load current. 

In this article, GCN with multimodal attention fusion network (MAFN), referred to as 

MAFGCN, are proposed to estimate IGBT DPT waveforms. A novel MAFN is first proposed 

to capture the relationship between different positions in input signals, thereby improving the 

expression ability of the fusion feature. The GCN-based module is used to estimate switching 

transient waveforms of the IGBT diode, obtain the dynamic behavior of the switching unit 

under various working conditions, and determine the switching loss of the IGBT at the same 

time. The highlight of this method is that through DPT data of a small number of working 

conditions, DPT results of all working conditions can be quickly estimated, and the model can 

be extended to other types of IGBTs. The number of required DPTs can be greatly reduced, 

saving labor costs and time. The complete algorithm and model are implemented in Python and 

validated with experimental data obtained from a DPT rig. 

There are three technical contributions in this paper: 
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1) This chapter proposes a GCN-based approach to obtain IGBT dynamic characteristics 

through estimating DPT waveforms, which embeds DPT data under each working 

conditions into spatial graph structure. 

2) MAFN is proposed to provide strong impressive features to GCN module so that graph 

convolutional layers can capture core feature of DPT waveforms successfully. 

3) For generalizing the well-trained model to other devices, a specific transfer strategy is 

introduced. 

The rest of the sections structured as following. Section 5.2 presents the applicability analysis 

of graph structure embedding in DPT. Section 5.3 detailly describes the proposed method. 

Section 5.4 introduces the designed experiment platform and data measurement. Experiment 

validations and results are reported in Section 5.5. Finally, Section 5.6 concludes this chapter.  

5.2 Applicability Analysis of Graph Structure Embedding of DPT 

Data 

 Designed DPT Procedure 

In our DPT experiment, the upper device is the freewheeling diode (FWD), the lower-side 

IGBT is the device under test (DUT). The diagram of the applied DPT circuit is shown in Fig. 

5-2. A DPT is a tool that enables a power switch to be turned on and off at different current 

levels as also shown in Fig.5-2. By adjusting the switching times T1, T2 and T3, the turn-on 

and turn-off waveforms of DUT can be controlled and measured over the full range of operating 

conditions. For the second pulse, it is important to build up current in the complementary device 

or diode so that when the switch turns on, the effects of any reverse recovery current can be 

evaluated. A load inductor limits the rate of 𝑑𝑖 𝑑𝑡⁄ . 
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Fig. 5-2. The circuit diagram of DPT for deploying the experimental platform. 

Two consecutive pulses generated by the pulse function generator are transmitted to DUT. By 

adjusting the first pulse duration, the switching transient can be captured at the desired current 

level at the end of the first pulse and at the beginning of the second pulse. VDC is the dc-link 

voltage, Lload is the load inductance, Vge is the gate voltage, Vce is the collector voltage, Ic 

is the collector current, and IL is the load current. In the gate drive, the positive voltage V+ 

=15V, the negative voltage V- = -10V, the gate resistance is Rg=2.5Ω. 

During T଴ to Tଵ, the first pulse is applied to IGBT and the IGBT is turned on. A constant 

voltage VDC is added to the load inductance L୪୭ୟୢ which makes the current through it increases 

in linear: 

𝐼ୡ =  
𝑉ୈେ ∙ T

L୪୭ୟୢ
 (5-1) 

According to equation (5-1), IL which is also Ic of IGBT, depends on VDC, L୪୭ୟୢ and pulse 

duration time T. It is feasible to set the current by the method of controlling T with fixed VDC 

and L୪୭ୟୢ. 

During Tଵ to Tଶ, IGBT is turned off, but the current flowing through L୪୭ୟୢ cannot be suddenly 

changed. So, the current will commutate to FWD of counterpart arm. The duration time from 

Tଶ to Tଷ of turning-off is not of importance during test condition. Therefore, in this experiment, 
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we set it between 10μs and 20μs to meet the experimental requirements. After the reverse 

recovery process, the current flow into IGBT through L୪୭ୟୢ again like period T଴ to Tଵ. At Tଷ, 

the IGBT will be turned off again. Based on the 𝑃୭୬ and 𝑃୭୤୤, the switching loss 𝐸୭୬ in turn-on 

transient and 𝐸୭୤୤ in turn-off transient are calculated by oscilloscope as: 

𝐸୭୬/୭୤୤ = 𝑃୭୬/୭୤୤(𝑡ଶ) − 𝑃୭୬/୭୤୤(𝑡ଵ) = න 𝑉ୡୣ𝐼ୡ𝑑𝑡
௧మ

௧భ

 (5-2) 

From switching transient waveforms generated by DPT, we can also get information of IGBTs 

about turn-on/turn-off delay (𝑡ୢ(୭୬)/𝑡ୢ(୭୤୤)), rise time (𝑡୰), fall time (𝑡୤), 𝑡୭୬/𝑡୭୤୤ (turn-on/turn-

off time), 𝑑𝑣 𝑑𝑡⁄ , and 𝑑𝑖 𝑑𝑡⁄ , etc. 

 External Influencing and Limitation Factors 

When using the data-driven method, we hope that the changes in the data are only related to 

the working conditions. In this case, the model obtained after training is more accurate and 

general. In this part, the main external influencing factors of IGBT DPT switching transient 

waveforms are discussed. 

The first influencing factor is the measurement error. In fact, this is unavoidable in experiments 

due to the limitation of equipment precision, uncertainty and random error, etc.  

Secondly, using different DC busbars (VDC) also affects the switching transient voltage 

waveform. Different structures of the DC bus can lead to changes in the parasitic inductance 

Lୗ. At a high current change rate 𝑑𝑖 𝑑𝑡⁄ , the induced potential of Lୗ is superimposed on the 

IGBT, which will affect the waveform of 𝑉ୡୣ: 

𝑉ୡୣ = −Lୗ

𝑑𝑖

𝑑𝑡
+ 𝑉ୈେ (5-3) 

That is manifested that high Lୗ at the IGBT turn-on transient will result in low 𝐸୭୬, and the 

turn-on time will be extended; too high Lୗ at the turn-off transient will cause 𝑉ୡୣ to overshoot 

the rated voltage of the IGBT, cause overvoltage breakdown fault, and reduce the tail current. 

Furthermore, different FWD of the circuit will affect turn-on transient overcurrent peak 𝐼୮ୣୟ୩ 

and 𝐸୭୬. During the turn-on transient of the IGBT, the reverse recovery characteristic (RRC) 
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of FWD can lead to 𝐼୮ୣୟ୩ in the collector current, which affects the turn-on rate and turn-on 

loss. In addition to being affected by 𝑑𝑖 𝑑𝑡⁄ , RRC is also related to the stored charge 𝑄୰୰ of the 

diode. 𝐼୮ୣୟ୩ can be expressed as 

𝐼୮ୣୟ୩ = 𝐼୐ +
ඨ2

𝑑𝑖
𝑑𝑡

𝑄୰୰

𝑆𝐹
 

(5-4) 

where 𝑆𝐹  is the reverse recovery softness factor of FWD [230]. 𝑄୰୰  is determined by the 

forward conduction current 𝐼୐ before reverse recovery and the remaining carrier lifetime of the 

diode itself 𝜏ୌ: 

𝑄୰୰ ≈ 𝐼୐𝜏ୌ (5-5) 

Under a fixed 𝐼୐, different 𝑄୰୰ of the diode will affect 𝐼୮ୣୟ୩, resulting in a change in 𝐸୭୬. 

However, we should notice that the same users or same manufacturers usually tend to use the 

same DC busbars and FWD. Therefore, external influencing factors have little impact on the 

stability and accuracy of the data-driven method proposed in this paper. In other words, the 

proposed model is personalized for a specific practical application from the training step. 

 Graph Structure Embedding for DPT Estimation Problem 

This paper proposes to embed DPT data for all working conditions in a labeled graph of GCN. 

GCN belongs to the category of deep learning, which learns and trains based on graph structure 

data. GCNs enable prediction and inference tasks at both the node level and the graph level by 

effectively capturing the relationship between the topological structure of graph data and node 

features [231]. 

It can be seen from the experiment that the DPT transient waveforms under various working 

conditions are correlated, and the degree of correlation is different. We propose to treat each 

working condition of DPT as a node of the graph structure. The DPT switching transient 

waveforms of unmeasured nodes could be accurately estimated through the correlation between 

each node, so as to obtain the complete IGBT dynamic electrical characteristics. Fig. 5-3 

demonstrates the principle and strategy of graph structure embedding for DPT estimation 
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problem. 

 

Fig. 5-3. The principle of graph structure embedding for DPT estimation problem. 

In DPT data measurement, 𝑉ୈେ = ቄ𝑉ୈେ
(ଵ)

, 𝑉ୈେ
(ଶ)

, 𝑉ୈେ
(ଷ)

ቅ , 𝐼୐ = ቄ𝐼୐
(ଵ)

, 𝐼୐
(ଶ)

, 𝐼୐
(ଷ)

, 𝐼୐
(ସ)

, 𝐼୐
(ହ)

, 𝐼୐
(଺)

ቅ . 

Therefore, total measured working conditions 𝐶୵ = ቄቀ𝑉ୈେ
(௜)

, 𝐼୐
(௝)

丨 1 ≤ 𝑖 ≤ 3, 1 ≤ 𝑗 ≤ 6ቁቅ, in 

which 𝑖, 𝑗 ∈ ℕା. As shown in Fig. 5-3, the number of 𝐶୵ is 18. The DPT dataset measured 

under Tୡ
(଴) is the training data, and the DPT dataset measured under case temperature Tୡ =

40℃, 60℃, 80℃, 100℃  are labels. That means the well-trained model can estimate DPT 

waveforms under any Tୡ. 

5.3 The Proposed Methodology 

The proposed method MAFGCN consists of three main parts: graph construction module, 

MAFN block, GCN-based module and optional graph transfer module: 1) In order to capture 
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more comprehensive DPT waveform information and enhance the overall performance of the 

model, the input data needs to be input to the proposed MAFN for feature extraction and fusion. 

The overall input data is denoted by 𝑋; 2) SCC-based graph construction block conveys an 

adjacency matrix 𝐴௜௝ to GCN module; 3) Spatial GCN-based module is trained by output of 

the MAFN and 𝐴௜௝ to integrate the information of graph nodes to provide spatial dependence 

for the DPT waveform estimation; 4) The graph transfer block can generalize the model so that 

it can be used to predict DPT results of other batch IGBT modules and even other brand IGBT 

modules. Fig. 5-4 illustrates the complete architecture of the proposed method. 

 

Fig. 5-4. Structure of the proposed (MAFGCN) method (the GCMCN method includes a 

MAFN module, a graph construction block, a GCN-based spatial module and an optional 

graph transfer block, in which a residual operation between the input and output of the 

of GCN module for improving the effect of feature fusion and preventing the gradient 

disappearance problem during training). 

 Data Input and MAFN Block 

Appropriate input variables and their input forms should be selected from the data acquisition 

module to ensure the accuracy and reliability of DPT waveform estimation method. The total 

input data collected by this method from the DPT system is: 

𝑋 = ቄ𝑋௏ౝ౛
, 𝑋௏ౙ౛

, 𝑋ூౙ
, 𝑋௉౥౤

, 𝑋௉౥౜౜
ቅ (5-6) 

These input variables are the core waveforms in DPT and the final estimated target waveforms. 

For each training of the model, one type of data in 𝑋 should be as input data to the next step. 
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Dataset 𝑋 contains a total of 5 variables, which means that the model needs to be completely 

trained 5 times to obtain a complete DPT estimation result. 

Attention mechanism can solve the defects that RNN cannot perform parallel computing and 

CNN cannot capture the long-distance relationships in sequence [232]. The designed MAFN 

as a multimodal feature fuser consists of three self-attention modules with different number of 

attention head as shown in Fig. 5-5. Fewer attention heads provide more stable and consistent 

feature representations, while more attention heads can capture more fine-grained relations and 

patterns of the input sequence. Selected dataset will firstly be input into MAFN module to get 

most expressive feature representations as the input of GCN module. The details are as follows. 

Self-attention (SA) as a special attention mechanism. This module uses multi-head self-

attention (MSA) mechanism network. Input 𝑋 needs to go through positional encoding process. 

For the ℎth head, the weights of SA can be calculated by 

SA(𝑄௛, 𝐾௛, 𝑉௛) = softmax ቆ
𝑄௛𝐾௛

୘

ඥ𝑑௞

ቇ 𝑉௛ (5-7) 

where 𝑄௛ = 𝑋𝑊௤
௛ , 𝐾௛ = 𝑋𝑊௞

௛ , 𝑉௛ = 𝑋𝑊௩
௛ . 𝑊௤

௛ , 𝑊௞
௛  and 𝑊௩

௛  are linear transformation 

matrix of 𝑄௛, 𝐾௛ and 𝑉௛, respectively. Weights of SA of each head are weighted and spliced to 

obtain the representation of MSA: 

MSA(𝑄, 𝐾, 𝑉) = Concat(ℎ𝑒𝑎𝑑ଵ, ⋯ , ℎ𝑒𝑎𝑑௛)𝑊୓ (5-8) 

ℎ𝑒𝑎𝑑௛ = SA(𝑄௛, 𝐾௛, 𝑉௛) (5-9) 

where 𝑊୓ donates the output weight matrix of MSA. The output of MSA (𝑋௜
୑ୗ୅) needs to go 

through a feed-forward network (FFN) as the final representation 𝑋ୗ୅୑. FFN includes two 

fully-connected (FC) layers: 

FFN = ReLU(𝑊୊୊୒𝑋௜
୑ୗ୅ + 𝑏) (5-10) 

where ReLU(∙) is the activation function, 𝑊୊୊୒ is weight matrix, 𝑏 is the bias. Outputs of three 

self-attention modules 𝑋௜
ୗ୅୑ should be fused following strategy: 
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𝑋୊୳ୱୣୢ = ෍ 𝑤௜
୊୳ୱ୧୭୬

ଷ

௜ୀଵ

𝑋௜
ୗ୅୑ (5-11) 

where 𝑤௜
୊୳ୱ୧୭୬  donates the weight of the 𝑖 th self-attention module. 𝑋୊୳ୱୣୢ , as the most 

expressive feature representation of DPT sequence, will be the input of GCN-based module. 

 

Fig. 5-5. Detailed structure of the MAFN block. 

 Graph Construction Module 

As described in Section 5.2.3, the whole DPT dataset can be embedded into a graph structure 

with multiple nodes. In this paper, this method applies the Spearman correlation coefficient 

technique to calculate and visualize the spatial correlation between subdatasets under each 

working condition, which is constrained by linear relationships so as to does not lose 

nonlinearity information. 

According to the training data, we should firstly calculate the SCC between each two nodes. 

Given two input sequences 𝐷ଵ = ൫𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௟ೞ
൯  and 𝐷ଶ = ൫𝑦ଵ, 𝑦ଶ, ⋯ , 𝑦௟ೞ

൯ , the Spearman 

correlation coefficient 𝜌 can be calculated by 

𝜌 = 1 −
6 ∑ 𝑑௜

ଶ௟ೞ
௜ୀଵ

𝑙௦(𝑙௦
ଶ − 1)

 (5-12) 

where 𝑙௦ is the length of the input sequence, 𝑑௜ = 𝑅௫ − 𝑅௬ is the difference between ranks of 
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variables 𝐷ଵ and 𝐷ଶ. The calculation principle of 𝑅௫ and 𝑅௬ can refer to [233], which will not 

be explained in detail here. 

This method uses 𝜌 as the similarity index between nodes to build an adjacency matrix. In 

GCN, the graph can be referred as 𝐺 = (𝑃, 𝐸), in which 𝑃 = {𝑝ଵ, 𝑝ଶ, 𝑝ଷ, ⋯ , 𝑝ே} is the set of 𝑁 

nodes and 𝐸 is the edge set. In the set 𝐸, element 𝑒௜௝ ∈ 𝐸 is the edge between node 𝑝௜ and node 

𝑝௝. To presents the correlations between nodes, the adjacency matrix can be identified as 𝐴 ⊂

ℝே×ே, and elements 𝑎௜௝ in 𝐴 can be computed by 

𝑎௜௝ = ൜
𝑤௜௝, 𝑖𝑓൫𝑝௜, 𝑝௝൯ ∈ 𝐸

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5-13) 

where 𝑤௜௝ ∈ [0,1] is the degree of relevance between node 𝑝௜ and 𝑝௝. In this method, 𝑤௜௝ = 𝜌௜௝. 

Due to 𝜌௜௝ ∈ [−1,1], further normalization process is not required here. 

To reduce the number of edges in the labeled graph and reduce computational cost, we preserve 

strong correlations between nodes and eliminate weak correlations. Therefore, 𝐴௜௝  can be 

updated as 

𝑎௜௝ = ൜
𝑎௜௝ , 𝑖𝑓𝑎௜௝ < 𝜂

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5-14) 

where 𝜂 is a preset threshold so that any 𝑎௜௝ less than 𝜂 will be reset to 0. If the device has 

sufficient computing power, this step can be ignored. 

 Spatial GCN-based Estimation Module 

Instead of applying regular convolutional and recurrent networks, this method formulates the 

problem on graphs and build the model with complete convolutional structures, which enable 

much faster training speed with fewer parameters [234].  

After embedding nodes according to the strategy in Section II.C and building an adjacency 

matrix [235], GCN is used to integrate the information of neighbor nodes into the target node 

to provide spatial dependence for the DPT waveform estimation task. The calculation process 

of graph convolution is: 
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𝑍(௞ାଵ) = ReLU൫𝐿௡௢௥௠𝑍(௞)𝑊(௞)൯ (5-15) 

𝐴ሚ = 𝐴 + 𝐼ே (5-16) 

𝐿௡௢௥௠ = 𝐷ି
ଵ
ଶ𝐴ሚ𝐷ି

ଵ
ଶ (5-17) 

where 𝑍(௞) is the input of the (𝑘 + 1)th graph convolution layer, 𝑊(௞) is the layer-specific 

trainable weight matrix of the (𝑘 + 1)th layer, ReLU(∙) is the activation function, 𝐿௡௢௥௠ is the 

normalized Laplace matrix, 𝐷 is the degree matrix of node, 𝐼ே is the identity matrix. In this 

paper, the number of GCN layer is set as 2. The output layer is a FNN layer. The structure of 

the spatial GCN module is shown in Fig. 5-4. 

 Graph Transfer Block 

For generalizing the model to estimate other IGBTs with large parameter differences and less 

data, the transfer learning strategy is proposed. However, this transfer learning operation is not 

necessary if testing IGBTs from the same batch or similar batches. There are two main steps 

of this block: graph reconstruction and fine tuning. Fig. 5-6 shows the detailed flowchart of 

this graph transfer block. 

In the graph reconstruction step, the graph structure of the target IGBT 𝐺୘ = (𝑃୘, 𝐸୘) should 

be redefined, in which 𝑃୘ = {𝑝ଵ
୘, 𝑝ଶ

୘, 𝑝ଷ
୘, ⋯ , 𝑝ே

୘}, 𝐸୘ is the edge set. The adjacency matrix 𝐴௜௝
୘  

should be recalculated according to 𝐺୘: 

𝐴௜௝
୘ = ቊ

𝑤௜௝
୘ , 𝑖𝑓൫𝑝௜

୘, 𝑝௝
୘൯ ∈ 𝐸୘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5-18) 

where 𝑤௜௝
୘ = 𝜌௜௝

୘  is degree parameters. To obtain a pre-trained model with 𝐺୘, the whole should 

be retrained using 𝑋. Then the retrained model is fine-tuned by the DPT dataset of the target 

IGBT 𝑋୘ = ቄ𝑋௏ౝ౛

୘ , 𝑋௏ౙ౛

୘ , 𝑋ூౙ

୘ , 𝑋௉౥౤

୘ , 𝑋௉౥౜౜

୘ ቅ. We should note it is allowed if the amount of data in 

𝑋் ≪ 𝑋. 
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Fig. 5-6. Detailed flowchart of the graph transfer learning block. 

 Implement Procedure of MAFGCN 

The implementation process of the proposed MAFGCN is divided into training stage and 

verification stage. The entire algorithm updates parameters with each iteration. The pseudocode 

of the whole procedure of MAFGCN is shown in Algorithm 1. 

Algorithm 1: The proposed MAFGCN with multimodal feature fusion for DPT estimation. 

Input: The DPT dataset 𝑋 = ቄ𝑋௏ౝ౛
, 𝑋௏ౙ౛

, 𝑋ூౙ
, 𝑋௉ቅ obtained from real DPT experiment that is divided 

into training set 𝑋୲୰ୟ୧୬, validating set 𝑋୴ୟ୪ and testing set 𝑋୲ୣୱ୲. The DPT dataset from similar IGBT 

module 𝑋୘ = ቄ𝑋௏ౝ౛

୘ , 𝑋௏ౙ౛

୘ , 𝑋ூౙ

୘ , 𝑋௉
୘ቅ. 

Output: The estimated PDT results at  𝑋ୣୱ୲ and 𝑋ୣୱ୲
୘  and estimation accuracy of testing data. 

In the training and validating stages of MAFGCN: 

1 Collect dataset from real IGBT modules and obtain 𝑋 and 𝑋୘. Initialize parameters of the 
whole MAFGCN; 

2 Calculate 𝐴௜௝  (Eq. (5-13)) through Eq. (5-12); 

3 Compute and obtain updated 𝐴௜௝ through Eq. (5-14); 

 Training the MAFN module: 

 4 Input dataset 𝑋୲୰ୟ୧୬ into three MSA networks to extract features 𝑋௜
୑ୗ୅; 

 
5 

Forward propagation through three MSA networks with parameters 𝑄௛ , 𝐾௛ , 𝑉௛  and 
𝑊୓; 

 6 Calculate 𝑋௜
ୗ୅୑ by using Eq. (5-10); 

  Forward propagation through FFNs with parameters 𝑊୊୊୒ and 𝑏; 

 7 Calculate 𝑋୊୳ୱୣୢ by using Eq. (5-11); 
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 Training the GCN module with residual operation: 

 8 Input MAFN result 𝑋୊୳ୱୣୢ into GCN; 

 9 Calculate GCN output by using Eq. (5-15)-(5-17); 

 10 Forward propagation through 𝑍(௞) with parameters 𝑊(௞); 

 Compute the loss function ℒ and update parameters of the entire model; 

 Backpropagation with RMSprop optimizer to minimize ℒ; 

 Update the parameters of the entire MAFGCN model; 

 Compute the performance indexes of the model on 𝑋୴ୟ୪; 

In the graph transfer block: 

 11 Calculate 𝐴௜௝
୘  (Eq. (5-18)) through Eq. (5-12); 

 12 Retraining MAFGCN with the input 𝑋୘(Tୡ
(଴)); 

 
13 Fine-tune by the dataset 𝑋୘(Tୡ

(଴)) and update the parameters of the entire MAFGCN 
model; 

In the testing stage: 

14 Evaluate the model with testing data 𝑋୲ୣୱ୲ and 𝑋୘ under Tୡ
(ଵ)

, Tୡ
(ଶ)

, Tୡ
(ଷ)

, Tୡ
(ସ), and compute 

accuracy of estimated PDT results. 
 

5.4 Setup of DPT Platform and Data Acquisition 

This section will provide information about the setup of the DPT platform. The experimental 

and validation datasets are collected from this described DPT bench. 

In order to collect accurate and reliable data, we have carried out a series of real DPT 

experiments. Based on the circuit in Fig. 5-2 in Section 5.2, a DPT platform was designed and 

implemented for characterizing IGBTs and diodes. As shown in Fig. 5-7, the DPT 

measurement device is composed of high voltage power supply, capacitor bank, laminated DC 

busbar, load inductances, DPT and drive circuit, measuring devices (voltage probe and current 

probe), oscilloscope and pulse generator. 
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Fig. 5-7. Setup of the DPT measurement platform. 

The main DUTs are DIM1200FSS12-A000 and Dynex DIM1200FSS12-A076 from Dynex 

semiconductor. Both of two IGBTs are single switch 1.2kV, n-channel enhancement mode, 

IGBT module. This IGBT has a wide reverse bias safe operating area (RBSOA) plus 10μs short 

circuit withstand. The main applications of these IGBTs are high power inverter and motor 

controller. The parameters of the tested IGBTs are summarized in Table 5-2. 

TABLE 5-2 Parameters of IGBT Methods 

Batch DIM1200FSS12-A000 DIM1200FSS12-A076 

VCES 1.2kV 1.2kV 

VCE(sat) (typ) 2.2V 2.2V 

IC (max) 1200A 1200A 

IC(PK) (max) 2400A 2400A 

The variables of test conditions are Tୡ, VDC, IL and turn-on/turn-off transient: 

Tୡ: 25℃, 40℃, 60℃, 80℃ and 100℃; 

VDC: 200V, 400V and 600V; 

IL: 50A, 200A, 400A, 600A, 800A and 1000A; 

Transient condition: turn-on, turn-off. 
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where the number of total test conditions is 180. Each IGBT was subjected to 10 double-pulse 

tests for each test condition. Measurement data of each batch includes 1800 groups, and a total 

of 4800 groups of data are obtained. Test time t, Vge, Vce, Ic, Pon and Poff are included in 

each group data. We apply four channels oscilloscope to observe and output waveforms of Vge, 

Vce, Ic, Pon and Poff. Waveforms of channels 1,3 and 4 are respectively represented as Vge, 

Ic and Vce as shown in Fig. 5-8. There are examples of collected waveforms on oscilloscope 

with the working condition of Tc=25℃, VDC=580V, Ic =400A. 

 

Fig. 5-8. Typical example waveforms of the measured and collected DPT result on 

oscilloscope at working condition Tc=25℃, VDC=580V, Ic =400A ( (a) in turn-off 

transient. (b) the complete DPT waveforms (c) in turn-on transient. 

5.5 Experimental Result 

This section describes the experimental validations based on the proposed DPT estimation 

approach in Section 5.3 and the collected dataset in Section 5.4. 

 Performance Criteria 

The proposed method is evaluated using three quantitative indexes: mean absolute error (MAE), 

root mean square error (RMSE) and Logcosh error (LE), which are represented by Eq. (5-19), 

Eq. (5-20), and Eq. (5-21), respectively. These evaluation metrics provide a clear indication of 

the accuracy of the DPT waveform estimation task. The MSE and MAE measures assess the 

level of deviation between the estimated waveform and the ground truth, while the CS captures 

the similarity between the two waveforms in terms of their shape and direction. Together, these 

indexes provide a comprehensive assessment of the accuracy and fidelity of the proposed 

method in estimating the DPT waveform. 
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MAE =
1

𝐿ୱ
෍|𝑦௡ − 𝑦ො௡|

௅౩

௡ୀଵ

 (5-19) 

RMSE = ඩ
1

𝐿ୱ
෍(𝑦௡ − 𝑦ො௡)ଶ

௅౩

௡ୀଵ

 (5-20) 

LE =
1

𝐿ୱ
෍ ቆ

𝑒௬ො೙ି௬೙
+ 𝑒ି(௬ො೙ି௬೙)

2
ቇ

௅౩

௡ୀଵ

 (5-21) 

where 𝑦௡ and 𝑦ො௡ are the true value and estimated value of the DPT waveform amplitude, 𝑛 is 

the 𝑛th sample point, and 𝐿ୱ is the length of DPT signals. 

 Experiments Settings and Result 

Firstly, we should number the data collected from the two types of IGBTs in Section 5.4. The 

1800 groups collected from DIM1200FSS12-A000 are referred as Dataset A; the 1800 groups 

collected from DIM1200FSS12-A760 are referred as Dataset B. This method can estimate DPT 

results under 144 different working conditions (except 36 kinds under 25℃). The use condition 

of these datasets is listed in Table 5-3.  

TABLE 5-3 The Use of Two Measured DPT Datasets 

Dataset Data division Detailed use 

A 
90% in Tୡ = 25oC, 40oC, 60oC, 80oC and 100oC Training and validating data 

10% in Tୡ = 40oC, 60oC, 80oC and 100oC Testing data 

B 
90% in Tୡ = 25 oC Graph fine-tuning data 
10% in Tୡ = 40oC, 60oC, 80oC and 100oC Testing data 

Due to limited space, turn-on and turn-off transient detailed experimental result under one 

working condition (Tc=100℃, VDC=400℃, Ic=1000℃) in Dataset A and one (Tc=80℃, 

VDC=400V, Ic=600A) in Dataset B are illustrated in Fig, 5-9 and Fig, 5-10 respectively. Batch 

size is set as 64 and training epoch is 100. The RMSprop optimizer is chosen with initial 

learning rate 1 × 10ିହ. All data are normalized before model training. 
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(a) Turn-on transient 

 

(b) Turn-off transient 
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Fig. 5-9. Turn-on and turn-off transient waveforms of IGBT DIM1200FSS12-A000 DPT 

estimating results at the working condition Tc=100℃, VDC=400V, Ic=1000A ((a) turn-

on transient, (b) turn-off transient). 

Fig. 5-9(a) and (b) demonstrate the performance of the proposed method on turn-on transient 

and turn-off transient, respectively. It can be found that when using the data test of 

DIM1200FSS12-A000, the DPT waveform estimation is highly accurate. 

 Graph Transfer Estimation Result 

After the graph transfer operation, we performed a complete DPT result estimation verification 

for the IGBT batch DIM1200FSS12-A076. 

 
(a) Turn-on transient 
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(b) Turn-off transient 

Fig. 5-10. Turn-on and turn-off transient waveforms of IGBT DIM1200FSS12-A076 DPT 

estimating results at the working condition Tc=80℃, VDC=400V, Ic=600A ((a) turn-on 

transient, (b) turn-off transient). 

As shown in Fig. 5-10, the transferred model can correctly estimate the DPT results of 

DIM1200FSS12-A076. In order to make the experimental results more reliable, we conducted 

DPT result estimation experiments under all working conditions. The experimental 

performance of the proposed MAFGCN method tested on 40℃, 60℃, 80℃ and 100℃ 

(average value of 36 working conditions at each Tc) is summarized in Table 5-4. However, 

MAFGCN is the first deep learning-based method for IGBT DPT waveform estimation so that 

we cannot compare with similar methods in other literature. 

TABLE 5-4 Performance of The Proposed Method Tested on Two Batches of IGBTs 
(Average Value of 36 Working Conditions at Each Tc) 

Tୡ 40℃ 60℃ 80℃ 100℃ 
Batc

h 
DIM1200FSS12-A000 

Inde
xes 

MA
E 

RM
SE 

LE MA
E 

RM
SE 

LE MA
E 

RM
SE 

LE MA
E 

RM
SE 

LE 

Vge 
0.03
79 

0.09
53 

1.001
9 

0.03
54 

0.10
85 

1.008
6 

0.05
47 

0.09
12 

1.029
6 

0.04
82 

0.07
13 

1.009
5 
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Vce 
1.26
84 

1.94
97 

2.456e
+11 

1.59
83 

3.06
13 

5.654e
+20 

1.26
59 

2.15
45 

8.699e
+14 

1.39
73 

2.31
64 

8.869e
+16 

Ic 
2.54
74 

6.01
22 

5.654e
+21 

3.56
45 

6.61
28 

4.894e
+27 

3.89
73 

7.54
86 

4.263e
+32 

6.76
81 

9.21
25 

8.308e
+38 

Eon/
Eoff 

0.00
02 

0.00
03 

1.000
0 

0.00
02 

0.00
04 

1.000
0 

0.00
02 

0.00
04 

1.000
0 

0.00
03 

0.00
04 

1.000
0 

Batc
h 

DIM1200FSS12-A076 

Inde
xes 

MA
E 

RM
SE 

LE MA
E 

RM
SE 

LE MA
E 

RM
SE 

LE MA
E 

RM
SE 

LE 

Vge 
0.15
98 

0.29
59 

3.048
9 

0.05
68 

0.13
87 

1.021
4 

0.19
35 

0.28
25 

1.068
8 

0.16
52 

0.25
44 

1.031
1 

Vce 
0.25
65 

0.89
75 

9.671e
+2 

1.31
12 

2.84
85 

8.699e
+17 

0.19
92 

1.02
31 

7.626e
+3 

1.84
69 

4.05
45 

4.549e
+19 

Ic 
1.98
57 

11.9
497 

1.620e
+35 

2.49
63 

10.9
862 

1.620e
+31 

2.79
17 

13.3
959 

1.620e
+37 

2.24
89 

11.2
167 

2.816e
+33 

Eon/
Eoff 

0.00
02 

0.00
04 

1.000
0 

0.00
03 

0.00
05 

1.000
0 

0.00
04 

0.00
07 

1.000
0 

0.00
04 

0.00
08 

1.000
1 

5.6 Summary 

This chapter proposes a novel DPT waveform result estimating method, referred to as 

MAFGCN. The MAFGAN comprehensively considers the correlation between each working 

condition to build a spatial graph structure and embeds DPT waveform data. This method also 

designs MAFN block connected to GCN to ensure that the model can capture excellent 

temporal feature representations and preform high accuracy. Through the above experimental 

analysis, the following conclusions can be drawn: 

1) This MAFGAN based on deep learning and graph neural network is accurate for IGBT 

DPT estimation. These reliable estimates can be used to calculate the dynamic electrical 

characteristics of the IGBT module. 

2) The estimation of the test datasets of the same and similar batches of IGBTs has high 

accuracy (as shown in Table 5-4). 

3) Through graph transfer process, the well-trained model can be used to estimate other batch 

IGBTs. For IGBT batches with certain differences, the proposed method can still accurately 

estimate the correct DPT results. 

In the feature work, we will try to use the proposed MAFGCN with graph migration method to 

estimate other brands of IGBT module (e.g., Infineon) DPT results at all working condition 
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with only DPT data at room temperature. In the case of the same graph structure, the proposed 

method has great potential. 
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 Conclusions and Future Work 

6.1 Conclusions 

As an eco-friendly transportation method, EVs have been witnessing an exponential growth. 

However, it must be acknowledged that the technologies concerning EVs are not entirely 

mature and there are still many problems that need in-depth explorations. Notably, the crash 

safety of EVs is attracting significant attention from not only the scholars and manufacturers 

but also the ordinary people now, making it a valuable topic for research. Reliability problems 

of EV powertrains may occur in any power electronic (PE) component and mechanical part, 

both sudden and cumulative. These faults in different locations and degrees will continuously 

threaten the life of drivers and pedestrians, bringing irreparable consequences. Therefore, 

monitoring and predicting the real-time health status of EV powertrain is a high-priority, 

arduous and challenging task. Through using the developed AI-supported techniques, 

contributing to improving safety of EV powertrains. The main work and contributions of this 

study can be summarized as follows: 

In Chapter 2, four aspects about AI-supported EV powertrain safety improvement topics are 

reviewed. With the rapid development of AI, support methods that are developed based on this 

technology can further enhance the electric powertrain condition monitoring and fault 

diagnosis. This study presents a comprehensive review of this, and it can be learned from this 

paper that AI-based data-driven method can avoid the need for accurate physical models of the 

system, and AI can also help build accurate system models. A large number of experiments and 

case studies have proved that both the AI data-driven method and the AI-supported model-

based method have high accuracy and performance, and some advanced AI technologies can 

achieve functions and effects that cannot be achieved by conventional methods. Therefore, the 

application of AI in PE has important practical significance. Firstly, this chapter focuses on 

feature engineering and three main components of EV powertrain and summarizes the recent 

research on EV. The motivation, advantages and challenges of using AI methods in PE 

problems are explained. Secondly, this chapter carries out the quantitative comparative analysis 

on condition monitoring and fault diagnosis methods in specific fields. In each application field, 

specific practical case studies on EV and quantitative comparative analysis with traditional 
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methods are provided. Thirdly, based on the characteristics of EV, this review analyses the 

feasibility, advantages and disadvantages of each method in the practical application of EV. 

In Chapter 3, the self-attention mechanism in the field of online fault diagnosis of motor bearing 

with higher accuracy and a new diagnosis framework based on IDDAN for solving the problem 

that it is hard to obtain enough labeled data to train a diagnosis model for a new target machine 

are proposed. Our experiment results present that the fine-tune-based transfer learning method 

could get better accuracy on the same dataset and the IDDAN has a better performance by pre-

training using large-scale data. The mentioned DA method provides sufficient pre-training 

samples for IDDAN. Meanwhile, when IDDAN consumes large-scale data for pre-training, its 

diagnostic accuracy could surpass the CNN-based transfer learning model. Firstly, this chapter 

proposes a self-attention mechanism-based intelligent fault diagnosis method IDDAN for 

deploying on new machines with a small number of labeled data by transfer learning. Secondly, 

the proposed DA method in Section 3.3.1 effectively expands the number of pre-training 

samples and has an excellent effect on IDDAN. Thirdly, the IDDAN obtain a higher recognition 

accuracy of multiple bearing fault conditions with a large amount of pre-training data than the 

classic CNN-based method. 

In Chapter 4, a novel DAAR model with an MT-LSTR CP-labels generator for precisely 

estimating PMT of IPMSM is proposed. Through the above experimental analysis, the 

proposed method can effectively reduce the PDF discrepancy between source and target 

domains. During experimentation, the offline training time of MT-LSTR is 1.83 × 10ସ 

seconds, and real-time CP-labels generating time is 8.78 × 10ିଵ seconds. By verifying on 4 

PU PMSM subdatasets, the DAAR model demonstrated a maximum estimation error of 9.79°

C, and average estimation errors of 3.24°C, 4.13°C, 4.98°C and 4.74°C across four 

different test profiles. In comparative experiments on 6 complex drive circles of PU dataset, 

the minimum estimation MAE and RMSE are 4.111 and 6.161 while the maximum MAE and 

RMSE are 8.656 and 10.958. Since this chapter focuses on IPMSM, we will attempt to acquire 

source domain data directly from the surface-mounted PMSM (SPMSM). The performance of 

this approach on the SPMSM will be investigated in future work. 

In Chapter 5, This chapter proposes a novel DPT waveform result estimating method, referred 

to as MAFGCN. The MAFGAN comprehensively considers the correlation between each 

working condition to build a spatial graph structure and embeds DPT waveform data. This 
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method also designs MAFN block connected to GCN to ensure that the model can capture 

excellent temporal feature representations and preform high accuracy. Experimental analysis 

has proved that the MAFGAN based on deep learning and graph neural network is accurate for 

IGBT DPT estimation. These reliable estimates can be used to calculate the dynamic electrical 

characteristics of the IGBT module. Secondly, the estimation of the test datasets of the same 

and similar batches of IGBTs has high accuracy (as shown in Table 5-4). Finally, through graph 

transfer process, the well-trained model can be used to estimate other batch IGBTs. For IGBT 

batches with certain differences, the proposed method can still accurately estimate the correct 

DPT results. 

All in all, in terms of the topic about AI-based powertrain safety improvement applications, 

this research combines both theoretical analysis and simulation/experimental validation to 

investigate and develop novel AI algorithm for solve more and hard engineering problems. 

6.2 Future Work 

Based on the conclusions above and considering the limitations of the existed work, future 

research could be carried out in the following. 

Most AI-based data-driven methods applied in EV powertrains can achieve high-precision 

prediction and fault diagnosis without prior knowledge and physical model knowledge. On the 

other hand, many model-based conventional methods can build more accurate physical models 

by the intervention of AI. 

In EV applications, most of the existing AI-based fault diagnosis methods are supervised 

learning methods. The supervised learning method is characterized by the need to use a large 

amount of labeled data for AI model training. In particular, the data labeling work that relies 

on the method of manually extracting the fault features from signals requires a lot of manpower 

and time. Although the trained model can achieve higher accuracy, it is not cost-effective in 

actual EV applications. 

At present, there have been a few studies applying transfer learning to solve health monitoring 

problems in EV powertrains [96]. Using transfer learning can make the AI model transfer 

knowledge from the existing data to reduce or even eliminate the need for training data of the 

machine to be tested. Using unlabeled data can directly detect failures. 
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Self-supervised learning methods can also solve the expensive and time-consuming data 

labeling problem. Fig. 6-1 demonstrates the diagram of contrastive self-supervised learning for 

condition classification. For example, in paper [236], more actions of unsupervised learning 

had been taken than simply feature extraction from historical fault signals and supervised 

classification. It detects the severity of many types of faults with various motor speed and 

conduct data analysis with unlabeled data. Interestingly, this method can detect the faults of 

three different components in the powertrain at the same time (Fig. 6-2) and can diagnose the 

severity of each fault. 

 

Fig. 6-1. Flowchart of the contrastive self-supervised learning diagram. 
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Fig. 6-2 Faulty components of electric powertrain: small gear tooth damage (left), Outer-
race damaged bearing (mid) and 10% inter-turn short-circuit fault in the stator (right) 
[236]. 

From this example, it can be analysed that another AI application prospect is to propose a single 

model for multi-component, multi-fault and multi-severity diagnosis. Both the existing AI-

based methods and conventional methods can only diagnose the faults of a single component, 

or even single fault. In order to monitor and diagnose the health status of the entire EV 

powertrain, multiple methods or models are often needed. Therefore, achieving the single-

model full diagnosis can greatly reduce the burden of on-board computing devices. 

The EV industry is rapidly evolving, and new technologies, components, and architectures are 

being introduced. Transferring diagnostic models to new generations of EV powertrains 

requires continuous updates and adaptations to accommodate new features and fault 

characteristics. The training of the EV fault diagnosis model is very time-consuming. Aiming 

at the problem that EV companies need to frequently update and upgrade their condition 

monitoring and fault diagnosis models, here are two application prospects and corresponding 

AI technologies: Quickly updating and upgrading the model and quickly rebuilding the model: 

 Quickly updating and upgrading the model 

Continuous learning technology is applied to the fault diagnosis model of EV 

powertrains, so that it can add new diagnosis tasks to the previously trained model (Fig. 

6-3). In particular, by combining IoT and cloud computing, it can be achieved that quick 

updates and upgrades of the model in EV powertrain safety applications. This approach 

significantly reduces the time and cost associated with traditional model updates and 
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upgrades. However, considerations such as data privacy, network security, and 

compliance need to be addressed, and the updated and upgraded models should undergo 

thorough testing and validation to ensure stability and reliability. 

 

Fig. 6-3. Schematic diagram of quickly updating and upgrading the model. 

  Quickly rebuilding the model 

Meta-learning technology is applied to the fault diagnosis model of EV powertrains. A 

learn-to-learn model can be trained, which has the knowledge to quickly establish new 

fault diagnosis models and can directly assign empirical parameters to the new model 

and achieve excellent performance. 

 Apply advanced powerful AI algorithms 

Although current AI-based methods predict EV motor RUL, battery RUL and SOC, etc. 

are relatively accurate, there are still errors. The future of AI is aimed at reducing 

prediction errors. RNN models such as LSTM are currently the main AI technology for 

dealing with prediction problems, but the disadvantage of LSTM is that it cannot 

consider global information and cannot be calculated in parallel in the device. At 

present, no one has used the Transformer model in EV prediction applications. It has a 

unique attention mechanism and can be calculated in parallel, which reduces the 

prediction time while improving accuracy. This will be a trend for AI to improve 
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performance in EV applications in the future. 

 Applications based on large models and large language models (LLMs) 

Furthermore, recent-emerged large-scale parametric language models such as ChatGPT 

have a certain impact on EV powertrain safety application. ChatGPT can provide an 

interactive interface for users to communicate and describe potential issues or 

symptoms related to the EV powertrain. It can ask clarifying questions, gather relevant 

information, and assist users in diagnosing faults or determining the next steps for 

condition monitoring. 
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