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Thesis Abstract 

Working memory (WM), the ability to temporarily maintain information for further 

processing, is known to have limited capacity around four chunks of information (Cowan, 

2001). The limited nature of WM and its critical involvement in our daily life, aging and 

several neuropsychological disorders, have motivated great interest in investigating effective 

WM enhancement interventions. However, the existing evidence in these interventions 

yielded discrepancies, raising concerns about the lack of theory-informed WM enhancement 

research, grounded in solid methodology, especially a formal and explicit assessment. 

Furthermore, the elusive results have questioned the replicability and robustness of 

previously reported effects, reflecting the replication and theory crises in the field. This PhD 

aims to address these concerns and crises. We first aim to empirically assess the robustness of 

the effects that are induced by two intervention methods, that is, transcranial direct current 

stimulation and WM training. We also aim to investigate the mechanisms underlying the 

cognitive changes from a recent theoretical account of cognitive training and transfer effects, 

that is, the capacity-efficiency mechanism (von Bastian et al., 2022). Finally, we aim to 

explore which contemporary computational visual WM models could better describe the 

limits of WM, especially when substantial cognitive changes are induced by interventions 

like WM training. The evaluation of these theory-driven, mathematically specified WM 

models could further facilitate a better understanding of the generalisability and replicability 

of implemented intervention programmes.  
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1.1 Working memory  

Working memory (WM) is a cognitive system that provides access to temporarily 

maintained information for further processing (Miyake & Shah, 1999). WM is well known 

for its limited capacity. Specifically, around four chunks of information that can be 

simultaneously maintained at a time (Cowan, 2001). WM underpins a wide range of 

cognitive processes (for a review, see Barrett et al., 2004), such as perception (Agam & 

Sekuler, 2007; Teng & Kravitz, 2019), reasoning (Conway et al., 2003; Kyllonen et al., 1990; 

Oberauer et al., 2008), executive functions (Miyake et al., 2000), and intelligence (Engle et 

al., 1999; Fukuda et al., 2010). Furthermore, WM capacity is crucial for our general learning 

abilities and scholastic performance (Alloway & Alloway, 2010). 

Like other fluid cognitive abilities, WM develops through the life span, and especially 

declines with age (Craik & Bialystok, 2006; Froudist-Walsh et al., 2018; Park et al., 2002). 

The early development of frontal-parietal neural networks is correlated with WM function in 

children (Alcauter et al., 2014; Fitch et al., 2016). Moreover, aging-related regional 

degeneration in neuronal structures (e.g., loss of dendrites and synapses) and dysregulation of 

neurotransmitters (e.g., decline in the efficiency of dopaminergic and cholinergic systems) 

have been shown to hinder long-term potentiation and neuroplasticity, and to contribute to 

WM impairment (Croxson et al., 2011; Froudist-Walsh et al., 2018; Sawaguchi & Goldman-

Rakic, 1991; Störmer et al., 2012; Tsukada et al., 2005). Furthermore, deficits in WM are 

often a frequent concurrent symptom in several neurological diseases or psychological 

disorders such as Alzheimer’s disease (AD) and mild cognitive impairment (MCI; Belleville 

et al., 2006), attention-deficit hyperactivity disorder (ADHD, Martinussen et al., 2005) and 

major depressive disorder (MDD, Rose & Ebmeier, 2006). Overall, the limited nature of 

WM, as well as its critical involvement in daily life, aging and several neuropsychological 

disorders have motivated great interest in investigating effective WM enhancement. 
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1.2 Theories of WM enhancement 

Klingberg (2010) has proposed an influential theory of neural plasticity mechanisms 

underlying WM capacity enhancement. Cognitive plasticity has been regarded as the core 

foundation for transferable intervention benefits. At the neural level, enhanced WM capacity 

is correlated to changes in dopaminergic receptors that modulate synaptic plasticity (McNab 

et al., 2009). Furthermore, at the cortical level, enhanced WM capacity is correlated with 

stronger brain activity and functional connection between cortical regions, in particular 

frontal and parietal regions (Olesen et al., 2004). When two tasks share similar dopaminergic 

systems they recruit or require overlapping brain networks, the improvement in one task by 

forming new plasticity is more likely to be transferred to the other task (Constantinidis & 

Klingberg, 2016).  

Following these previous accounts, WM enhancement interventions have long been 

aimed to enhance WM capacity and, thereby, potentially transfer to a broad range of related 

cognitive abilities (Jaeggi et al., 2008; Klingberg, 2010; Klingberg et al., 2002). However, the 

lack of consistent transfer benefits in existing evidence cannot be explained by such accounts 

that WM enhancement is a result of increased capacity (De Simoni & von Bastian, 2018; 

Melby-Lervåg & Hulme, 2013; Robison et al., 2017; Shipstead et al., 2012; von Bastian et 

al., 2019; S. Wang et al., 2019). To provide potential explanations for these discrepancies in 

past findings, a capacity-efficiency model has been introduced (von Bastian et al., 2022; von 

Bastian & Oberauer, 2014).  

According to the capacity-efficiency model, two pathways, not mutually exclusive, 

have been proposed to describe how WM can be enhanced. One pathway is through 

expanding capacity as a general resource (e.g., increasing the quantity of representations that 

can be held activated in WM). Expanded capacity should generalise to other cognitive 

domains that rely on the same capacity limit. The other pathway is through enhancing 
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efficiency in using the existing capacity, for example, by applying the initially acquired 

expertise, such as strategies to reduce cognitive load or optimise attention allocation, to a new 

task. Enhanced efficiency will only lead to transfer if the acquired expertise can be applied in 

the context or content that share some similarity (Barnett & Ceci, 2002). In specific, expertise 

can be developed paradigm-specifically and/or stimulus-specifically to provide faster access 

to new cognitive routines when facing new stimulus types or paradigms. Paradigm-specific 

expertise will lead to better performance in tasks with the same surface structure but different 

types of stimuli (e.g., recall the orientation of triangles or the shape of rings). Stimulus-

specific expertise will lead to better performance in tasks using the same type of stimuli but 

different paradigms (e.g., the orientation of triangles in a recall or recognition task). In the 

light of these theoretical frameworks, the potentials of interventions, such as non-invasive 

brain stimulation and computerised cognitive training, have been widely investigated 

regarding enhancing WM or preventing WM impairment (Goldthorpe et al., 2020; Karbach & 

Verhaeghen, 2015; Morrison & Chein, 2011; Siegert et al., 2021).  

1.3 Transcranial direct current stimulation 

Transcranial direct current stimulation (tDCS), as one of the most popular non-

invasive brain stimulation techniques, passes weak (i.e., low intensity), directs current to 

cortical areas to facilitate or inhibit spontaneous neuronal network activity as a promising 

neuromodulation tool (Brunoni et al., 2012). When tDCS operates, the current flows inwards 

the brain via anodal electrodes and outwards via cathodal electrodes, inducing changes in the 

electric field that affect neuronal behaviours (Nord & Jonathan, 2015; Pelletier et al., 2015). 

Anodal stimulation is typically assumed to increase cortical excitability to enhance cognitive 

functions, whereas cathodal stimulation decreases excitability and, thus, inhibits brain 

activities (Bikson et al., 2012; Nitsche & Paulus, 2000). At the neural level, tDCS-induced 

membrane polarisation is related to a range of changes in action potential threshold and 
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timing, synaptic plasticity, neurotransmitter modulation, and even neural network coherence, 

which therefore influences the function of the nervous system, including WM (Jackson et al., 

2016). 

TDCS potentiates WM enhancement by directly targeting the neural substrates of the 

WM processes involved. One well-documented example is prefrontal-parietal stimulation. 

The prefrontal cortex plays a top-down control role over WM storage (Curtis & D’Esposito, 

2003; Lara & Wallis, 2015). The prefrontal cortex does not maintain stimulus information in 

WM, yet it has access to that information and can reliably encode whether subsequent stimuli 

are targets or distractors (Pasternak et al., 2015; Stokes et al., 2013). At the same time, the 

posterior parietal cortex is the key neural locus of maintaining visual WM representations 

which is regulated by the prefrontal cortex (Lara & Wallis, 2015; Todd & Marois, 2004). 

Given the crucial roles of the dorsolateral prefrontal cortex (DLPFC) and the posterior 

parietal cortex (PPC) in regulating and maintaining WM representations (Curtis & 

D’Esposito, 2003; Ikkai & Curtis, 2011), stimulating these two brain regions may enhance 

WM performance.  

Indeed, tDCS over DLPFC and PPC showed some beneficial effects (Arciniega et al., 

2018; Baumert et al., 2020; Li et al., 2017). However, both DLPFC and PPC stimulation 

benefits failed to render replicable and robust empirical evidence (Dumont et al., 2021; 

Nikolin et al., 2018; Robison et al., 2017). Furthermore, at the meta-analytic level, only 

negligible to minimal effects of single-session tDCS have been observed. Specifically, 

previous reviews reported significant but relatively small tDCS effects to improve WM 

performance only in terms of reaction time (RT) but not accuracy (Brunoni & Vanderhasselt, 

2014; Dedoncker et al., 2016; Hill et al., 2016), whereas other reviews showed no substantial 

effects of tDCS on WM enhancement at all (Horvath et al., 2015; Mancuso et al., 2016; 

Medina & Cason, 2017b). 
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One of the reasons that could contribute to the observed elusive evidence for tDCS 

effects could be methodological variations. For example, researchers could choose either 

online or offline protocols where tDCS is administered during or before cognitive tasks, 

respectively. The variation of tDCS stimulation that was employed in single empirical 

studies, making it hard to identify optimal tDCS parameters for consistent benefits in WM 

enhancement. For instance, Fregni et al. (2005) have first reported small to medium effects of 

10-minute, anodal-DLPFC stimulation to improve accuracy but not reaction time. In contrast, 

Hoy et al. (2013) found that 20-minute anodal-DLPFC could only reduce reaction time. Both 

studies used the common dosage (1–2 mA up to 20 minutes) with differences in duration time 

and online/offline protocols, which has led to opposite patterns of WM performance changes 

in accuracy, warranting further investigations or replications of previously reported tDCS-

induced benefits with identical tDCS parameters.  

Another reason could be due to the used WM tasks that tap unclear underlying WM 

architecture. Previous studies predominately used n-back tasks to investigate tDCS-induced 

benefits in WM by stimulating DLPFC (for reviews, see Brunoni & Vanderhasselt, 2014; 

Dedoncker et al., 2016; Hill et al., 2016; Horvath et al., 2015; Mancuso et al., 2016; Medina 

& Cason, 2017; for empirical examples, see Fregni et al., 2005; Ohn et al., 2008; Zaehle et 

al., 2011). In addition to the inconsistent benefits, n-back tasks have been criticised for 

lacking robust associations with other WM tasks (Jaeggi et al., 2010; Kane et al., 2007; 

Redick & Lindsey, 2013; Wilhelm et al., 2013). Therefore, it remains unclear to what extent 

n-back task performance reflects the limited capacity of WM, let alone tDCS-induced 

substantial changes in WM (Meule, 2017). Other empirical PPC-tDCS studies have used 

change-detection tasks to achieve more reliable measures of WM capacity estimates (Dai et 

al., 2019; Frost et al., 2021). Similarly, administering a continuous-reproduction paradigm 

combined with computational models provides measures of latent components of WM 
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representations, such as capacity and precision. This advanced approach further enables us to 

differentiate the latent WM representations from construct-irrelevant noise, especially motor 

noise which explains the main source of previously claimed tDCS benefits in WM. Testing 

the effects of interventions on these latent components could facilitate the understanding of 

tDCS-induced enhancement as well as the nature of WM (S. Wang et al., 2019; Zhang & 

Luck, 2008).  

Overall, the inconsistency in prior evidence for tDCS effects could be due to the 

complex, variable tDCS parameters and unclear tapped WM components in the used WM 

tasks, making it hard to identify the optimal paradigm and true underlying mechanisms of 

tDCS effects. Therefore, investigating the replicable and robust effects of tDCS in enhancing 

WM is of great importance. 

1.4 Cognitive training  

An alternative intervention that has been designed to improve cognitive abilities is 

computerised cognitive training. Cognitive training typically involves the practice of one or 

more cognitive tasks over a short period of time, in repetitive or/and adaptive manner (Jaeggi 

et al., 2008; Moriya, 2019; von Bastian & Oberauer, 2014). The aim of cognitive training is 

to improve performance in both trained and untrained cognitive tasks. Improvement in the 

trained tasks refers to a training effect, whereas the generalisation of training effects to 

untrained tasks is called a transfer effect. Prior training research reported large and replicable 

training gains in the trained tasks whilst the transfer effect to untrained tasks and cognitive 

abilities has failed to yield consistent and robust evidence (Jaeggi et al., 2012; Karbach & 

Verhaeghen, 2015; Melby-Lervåg et al., 2016; Morrison & Chein, 2011; Shipstead et al., 

2012; von Bastian et al., 2022).  

Such inconsistencies could possibly stem from the methodological flaws from the 

early training studies. First, positive effects of WM training that were claimed in early WM 
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training research, spurring intensive research efforts on investigating WM training effects and 

the commercialization of numerous WM training programmes. However, these early claims 

often accompany a small sample size (for a review, see Redick et al., 2015). The small 

sample size translates into low statistical power (Button et al., 2013), which can lead to false-

positive interpretations on the strength of WM training programmes. Second, early training 

interventions have been criticised for an overestimated effect due to ineffective control of 

placebo effects and expectancy effects with only a passive control group (Boot et al., 2013; 

Simons et al., 2016; von Bastian & Oberauer, 2014). Placebo effects may arise in 

interventions like WM training when the desired outcome is known or suggested to 

participants who are eager to improve their cognitive abilities. Foroughi et al., (2016) 

demonstrated that placebo effects, but not cognitive training, led to an improvement in 

intelligence. An active control group design that can match the levels of boredom, perceived 

effort, and training expectation with the treatment group could exert good control of placebo 

effects and expectation control, facilitating the investigation on reliable, true training effects 

and their underlying mechanisms (Foroughi et al., 2016; Redick, 2019; Simons et al., 2016; 

von Bastian & Oberauer, 2014).  

In addition to addressing these concerns on methodology, a lack of theory-driven 

research on WM training can be reflected by these inconsistent findings on transfer effects. 

The metaphor that the brain is a muscle has often been used in many early training studies 

(Morra & Borella, 2015). Doing WM exercise makes capacity grow like a well-trained 

muscle. Therefore, it is assumed that WM training could work because of the increased 

number of discrete representations one can hold at a time, that is, increased capacity. 

Moreover, training on WM could lead to a broad transfer effect as increased muscle volume 

can afford heavier workloads in other complex cognitive tasks. However, the limited 

empirical evidence in transfer effects seems to speak against the muscular metaphor and the 
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notion of increased capacity only. Furthermore, emerging evidence in strategies use 

depending on the current task demands across different WM training sessions has brought 

attention to a different mechanism, such as enhanced efficiency by making a better use of the 

existing capacity (Gathercole et al., 2019; Redick et al., 2013; von Bastian & Oberauer, 

2014). Therefore, a more comprehensive, falsifiable theoretical framework is needed to 

investigate when and why training and transfer effects may occur (Redick, 2019; Smid et al., 

2020; von Bastian & Oberauer, 2014). The capacity-efficiency model proposed by von 

Bastian (2022) can potentially meet such a need by enabling us to test both views of 

increased capacity and enhanced efficiency through acquisition of strategies (also see section 

1.2).  

To recap, the elusive evidence for transfer effects that were reported in previous WM 

training research has casted concerns on methodological limits, and more importantly the 

lack of comprehensive, falsifiable theoretical frameworks when assessing the training and 

transfer effects and their underlying mechanisms. Thus, theory-informed research grounded 

in solid methodology is pivotal for providing robust evidence for the true efficacy of WM 

training, and thus facilitating a better understanding of the generalisability and replicability of 

implementation training interventions (Redick, 2019; The Improved Clinical Effectiveness 

through Behavioural Research Group, 2006; von Bastian et al., 2022). 

1.5 From explanatory theories to formal assessment of WM enhancement 

Like other psychology research, intervention research on non-invasive brain 

stimulation and cognitive training aiming to improve WM, has been suffering from the 

‘replication crisis’, that is, problematic failures or difficulties to replicate previously reported 

findings and/or form coherent theories developed from them (Open Science Collaboration, 

2015; The Improved Clinical Effectiveness through Behavioural Research Group, 2006). The 

replication crisis has raised the concerns on not only the issues of methodology, statistics, 
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publication bias, but also the lack of robust measurement practice and theory development. 

The latter concern also refers to a ‘theory crisis’ which contributes to poor testability of 

theories and hypotheses (Borsboom et al., 2021; Eronen & Bringmann, 2021; Fried & Flake, 

2018; Frischkorn & Popov, 2023; Maatman, 2021; Ngiam, 2023; Oberauer & Lewandowsky, 

2019).  

In addition to rigorous methodology, one way to address these crises is to have open 

theory – to guide researchers to conceptually analyse, specify, and formalise the explanatory 

theoretical frameworks that were previously proposed and debated using computational 

measurement models (Guest & Martin, 2021). Explanatory models provide theoretical 

explanations of the observed phenomena as well as the effects of experimental manipulations 

like interventions on WM. However, verbal descriptions of a theory do not necessarily lead to 

the same understanding between researchers. Taking one of the prominent debates in WM as 

an example, a discrete-slot view assumes an all-or-none information state, that WM is limited 

by the number of items that can be remembered with certain resolution of the remembered 

item information or not (Zhang & Luck, 2008); whilst a variable-precision view denies this 

all-or-none notion, suggesting an alternative explanation with the variation in memory 

strength due to noise in representations (Bays & Husain, 2008). If hypothesised WM capacity 

were tested without explicitly refined theory, claims that were drawn from the observed 

patterns of data could be mis-interpreted and/or mis-communicated by different research 

teams, which can be a precursor to the replication crisis (Guest & Martin, 2021; Ngiam, 

2023). To help to make the interpretations or predictions of an effect more reproducible, 

measurement models of WM can explicitly specify and quantitatively measure theoretically 

meaningful latent variables as their free parameters, such as capacity vs precision of WM, 

and thus enable other researchers to replicate the reported relationship (Farrell & 

Lewandowsky, 2018; Oberauer et al., 2018).  
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Despite the critical role of measurement models in open theory to address the 

replication and theory crises, the use of computational measurement models in investigating 

the underlying mechanisms of WM enhancement is still in its infancy with three aspects. 

First, one measurement model is often arbitrarily chosen without giving strong theoretical 

reasons and/or quantitatively comparing which possible measurement models most 

adequately capture cognitive changes in WM. Such practice can potentially prolong the 

current debates in theories if the inference based on an arbitrarily chosen measurement model 

was in turn used to support the original theoretical assumptions of the chosen model and 

against the unchosen competing models. Second, fewer existing studies with model 

comparison compared more than two models (often the Standard Mixture Model and the 

Swap Model were compared), which has limited practical implications for other widely used, 

adequate models. Third and more importantly, the majority of modelling studies are based on 

single-sessional studies (Bays, 2016; Bays & Husain, 2008; Oberauer, 2021; Schurgin et al., 

2020; Tomić & Bays, 2022; van den Berg et al., 2014; Williams et al., 2022; Zhang & Luck, 

2008). However, intervention research often requires an accurate quantification of 

performance changes across multiple testing sessions to make inferences on the training 

effects and their underlying mechanisms. Therefore, evaluating the application of a set of 

existing measurement models accounting for possible changes in different test sessions is 

needed.  

1.6 Aims of this PhD thesis 

Overall, the existing evidence in WM enhancement interventions such as non-

invasive brain stimulation and cognitive training yielded discrepancies, reflecting the lack of 

theory-informed research grounded in solid methodology, especially a formal, explicit 

assessment of these theories. To fill this gap, my PhD thesis has three core aims. In the 

context of the replication crisis, the first aim is to empirically assess the robustness of the 
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effects that are induced by intervention methods, such as tDCS and WM training. In light of 

the theory crisis, the second aim is to investigate the mechanisms underlying the cognitive 

changes from a recent theoretical account of cognitive training and transfer effects, that is, the 

capacity-efficiency mechanism (von Bastian et al., 2022; von Bastian & Oberauer, 2014). 

Last but not least, we aim to explore which contemporary computational visual WM models 

could better describe the limits of WM, especially when substantial WM changes are induced 

by interventions like WM training. The evaluation of these theory-driven, mathematically 

specified WM models could further facilitate a better understanding of the generalisability 

and replicability of implemented intervention programmes.  

In chapter 2, we aim to replicate the positive effects of tDCS that have been 

previously reported by Wang et al. (2019) after accounting for the possible problematic 

design of the original study. In chapter 3, we will investigate the effects of WM training and 

the underlying mechanisms of cognitive changes that are induced by training. In chapter 4, 

we will compare the contemporary VWM measurement models to select which model could 

capture VWM performance when intervention-induced changes are present or absent. 

Chapter 5 will highlight the main findings of this PhD thesis and the theoretical and practical 

implications of this specific research topic. Moreover, this chapter will reflect on directions 

for future research by discussing the limitations of this thesis.   
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Abstract 

In recent years, non-invasive brain stimulation has been highlighted as a possible intervention 

to induce cognitive benefits, including on visual working memory (VWM). However, 

findings are inconsistent, possibly due to methodological issues. A recent high-profile study 

by Wang et al. (2019) reported that anodal transcranial direct current stimulation (tDCS) over 

posterior parietal cortex (PPC), but not over dorsolateral prefrontal cortex (DLPFC), 

selectively improved VWM capacity but not precision, especially at a high VWM load. 

Given the broad implications of this finding, it is imperative to test its replicability. Thus, in 

the current pre-registered conceptual replication study, we accounted for the key potential 

methodological issues in the original study and tested an adequate number of subjects 

required to demonstrate the previously reported effects (n=48 compared to n=20). 

Participants underwent counterbalanced PPC, DLPFC and sham stimulation before 

completing 360 trials of a continuous orientation-reproduction task. We failed to replicate the 

selective effect of PPC stimulation. Instead, our results showed little credible evidence for 

effects of tDCS regardless of stimulation region and VWM load. The absence of tDCS effects 

was largely supported by substantial to strong Bayesian evidence. Therefore, our results 

challenge previously reported benefits of anodal PPC-tDCS on VWM.  

Keywords: visual work memory, tDCS, DLPFC, PPC  
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2.1 Introduction 

Visual working memory (VWM) refers to the active maintenance of visual 

information needed for higher cognitive processing in the present moment (Luck & Vogel, 

2013). Typically, WM is limited to maintaining three to four chunks of information (Cowan, 

2001). Like other fluid cognitive abilities, WM declines with age (Craik & Bialystok, 2006; 

Park et al., 2002). Furthermore, deficits in WM often occur with neurological diseases and 

psychological disorders. The limited capacity of WM, and its critical involvement in many 

disorders, has stimulated intensive research efforts into the effectiveness of WM 

enhancement interventions.  

In particular, there is growing interest in affordable and non-invasive brain 

stimulation techniques, such as transcranial direct current stimulation (tDCS). Benefits of 

tDCS have been demonstrated for healthy young adults (Fregni et al., 2005; Ohn et al., 2008; 

Hsu et al., 2014; Johnson et al., 2022; Jones & Berryhill, 2012; Karthikeyan et al., 2021; 

Tseng et al., 2012; Zaehle et al., 2011), healthy older adults (for a review, see Siegert et al., 

2021) as well as clinical cohorts with mild cognitive impairment and early Alzheimer’s 

disease (for reviews, see Chen et al., 2022; Hsu et al., 2015), attention-deficit hyperactivity 

disorder (for reviews, see Cosmo et al., 2020; Salehinejad et al., 2020) and major depressive 

disorder (for reviews, see Brunoni et al., 2012; Woodham et al., 2021).  

Typically, tDCS delivers weak currents from anode to cathode through the skull, 

generating electric fields to modulate cortical activities and facilitate neuroplasticity (Roche 

et al., 2015; Ruffini et al., 2013). Anodal stimulation is assumed to increase cortical 

excitability to enhance cognitive functions, whereas cathodal stimulation decreases 

excitability and, thus, inhibits brain activities (Bikson et al., 2012; Nitsche & Paulus, 2000). 

However, such polarity-specific effects of tDCS are likely an oversimplification when 

considering complex cognitive functions like VWM. For example, whereas excitatory effects 



 17 

of anodal stimulation are largely robust, inhibitory effects of cathodal stimulations are less 

consistent when it comes to studies investigating complex cognition rather than motor effects 

(for a review, see Jacobson et al., 2012). Taken together, regardless of inconsistent cathodal 

effects, anodal stimulation has been shown to consistently modulate the neural activities in 

the target brain regions and, thus, is a promising avenue to enhance the corresponding 

cognitive functions.  

Given that neural activation of frontal-parietal brain regions is known to be involved 

in the maintenance of VWM representations (Curtis & D’Esposito, 2003; Ikkai & Curtis, 

2011), a growing body of research has investigated the possible VWM benefits of anodal 

stimulation of the dorsolateral prefrontal cortex (DLPFC) and posterior parietal cortex (PPC) 

(Arciniega et al., 2018; Baumert et al., 2020; Li et al., 2017; Wang et al., 2019). However, 

some previous studies have showed null effects of tDCS for both DLPFC and PPC 

stimulation (Dumont et al., 2021; Nikolin et al., 2018; Robison et al., 2017). Some meta-

analyses quantifying the effectiveness of tDCS across multiple studies report medium effects 

of single-session tDCS on VWM (Brunoni & Vanderhasselt, 2014; Dedoncker et al., 2016; 

Wischnewski et al., 2021), while others report only negligible effects of single-session tDCS 

(Hill et al., 2016; Horvath et al., 2015; Mancuso et al., 2016; Medina & Cason, 2017a). These 

inconsistencies on the meta-analytic level point to several critical caveats of meta-analyses. 

Specifically, any conclusions drawn from meta-analysis depend on the included primary 

studies. First, if the included primary studies largely reported only positive effects, together 

with overestimated study-level effect sizes (Halsey et al., 2015), it can lead to high false-

positive rate of meta-analyses (Kvarven et al., 2020; von Bastian et al., 2019). Second, tDCS 

studies vary widely in their design, such as administering online or offline protocols 

(Živanović et al., 2021), stimulating different regions (Wischnewski et al., 2021), or using 

different VWM paradigms which may require different cognitive processes to one another 
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(Saucedo-Marquez et al., 2013). These methodological variations could have contributed to 

the inconsistencies observed across both single studies and meta-analyses. Therefore, 

replications of those studies that reported positive results, using the same parameters and 

cognitive paradigms, may yield more conclusive evidence as to whether tDCS is effective or 

not.  

The present, pre-registered replication study, therefore, focuses on a particularly high-

profile study by Wang et al. (2019) who recently reported selective benefits of anodal tDCS 

over the PPC, but not DLPFC, on VWM. Wang et al. used a continuous-reproduction VWM 

paradigm and fitted the mathematical standard mixture-model (Zhang & Luck, 2008) to 

estimate VWM capacity (quantity of representations maintained in VWM) and precision 

(quality of those representations). In this task, participants memorised the orientations of 2, 4, 

or 6 bars on a screen. After either a short (100 ms) or long (1000 ms) interval, participants 

were asked to reproduce the orientation of one of the bars by mouse-click. The deviation of 

the reproduced orientation from the original orientation was then used to estimate VWM 

capacity and precision for each participant, interval duration, set size, and stimulation 

condition. Wang et al. tested the effects of 15-min anodal tDCS over the left DLPFC and the 

right PPC relative to a sham condition with a within-subjects design in 20 participants. After 

excluding two participants due to their poor performance at set size 6, Wang et al. observed a 

selective increase in VWM capacity for the long retention interval at this set size after PPC 

stimulation relative to sham, but not after DLPFC stimulation, at any other set size, short 

retention interval, or on VWM precision.  

Wang et al. (2019) interpreted these findings as “causal evidence” (p. 535) of the role 

of the PPC for VWM functioning. They further argued that “tDCS could be used as 

promising non-invasive method to enhance [VWM]” (Wang et al., 2019, p. 535). Indeed, 

Wang et al.’s findings have several significant theoretical and practical implications to the 
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fields of VWM and tDCS. First, the findings from this study falsified the role of the anodal 

stimulation on DLPFC in improving VWM, thereby contradicting previous studies (Andrews 

et al., 2011; Fregni et al., 2005; Ohn et al., 2008; Zaehle et al., 2011). Second, by showing 

that tDCS selectively increases the capacity, but not the precision, of representations held in 

VWM, Wang et al.’s (2019) findings strongly favour theories conceptualizing the capacity 

limit of VWM as discrete memory slots (Zhang & Luck, 2008) over those assuming a 

flexible, continuous resource (Schneegans & Bays, 2016; Van Den Berg et al., 2012). Third, 

the promising benefits of PPC-tDCS suggests that VWM capacity can be expanded with a 

non-invasive, cost-effective method, with strong practical implications for clinical tDCS 

applications. Importantly, by employing a sham-control and through the null effects of 

DLPFC stimulation, Wang et al. (2019) excluded the possibility that these changes were 

driven by placebo effects or global excitability with tDCS (Dawood et al., 2019). 

Furthermore, Wang et al.’s (2019) additional control for sensory memory also ruled out the 

possibility that these changes were due to mere sensory processes or attentional regulation.  

Given these far-reaching implications, it is imperative to ensure that Wang et al.’s 

(2019) findings are robust and replicable. Replication studies can verify the reliability of the 

originally reported effects (Simons, 2014), and test the generalizability across conditions that 

inevitably differ from the original study (Nosek & Errington, 2020). This is particularly 

critical in the present replication study because, despite its important findings and 

implications, several aspects of Wang et al.’s (2019) study are potentially problematic and 

warrant further investigation. First, Wang et al. retained only a small sample of 18 

participants for analysis. The small sample size translates into low statistical power even for 

moderate effect sizes, and low statistical power can lead to false-positive findings (Button et 

al., 2013). The reported effect size is very large (d = 1.03), but this may reflect an 

overestimation due to low statistical power (Halsey et al., 2015). Second, Wang et al. (2019) 
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administered only 60 trials per design cell. Such relatively small numbers of trials increase 

bias and noise variance and thus reduce the precision of the parameter estimation (Lerche et 

al., 2017; Wiecki & Frank, 2013). Third, the counterbalancing of conditions was likely 

incomplete in Wang et al. (2019) and, thus, their design did not adequately control for 

possible carryover (e.g., practice) effects across sessions. Specifically, the study entailed 

three sessions (DLPFC, PPC, and sham stimulation), resulting in at least six possible 

sequences requiring counterbalancing. However, with 20 participants completing the 

experiment (and 18 included in the analysis), it is impossible to assign an equal number of 

participants to all sequences. Consequently, it cannot be excluded that carryover effects 

contributed to the previously reported effects. Finally, like many other studies, Wang et al. 

(2019) used rotated bars as stimuli. Thus, the unique angles of their stimuli effectively ranged 

only from 0° to 180°, leaving room for developing task-specific strategies. For example, 

participants may have realised they could simply memorise the location of just one end of the 

bar rather than the actual orientation of the bar, thereby making the task considerably easier.  

To address these potential issues of their study, in this pre-registered experiment, we 

aimed to replicate Wang et al.’s (2019) study, using a bigger sample size, larger number of 

trials, complete counterbalancing, and stimuli that use the full space of possible angles 

(360°). Our pre-registered hypotheses (https://osf.io/n9fkp) based on Wang et al.’s findings 

were as follows:  

Hypothesis 1: PPC stimulation will increase VWM capacity more than DLPFC 

stimulation. This effect is particularly pronounced at a high difficulty level of the task (i.e., 

set size 6). 

Hypothesis 2: Neither PPC nor DLPFC stimulation will improve VWM precision. 

https://osf.io/n9fkp
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2.2 Results 

  Figure 2.1 provides an overview of the study procedure, tDCS setup, and VWM task 

used. During each experimental session, participants first received either active PPC 

stimulation, active DLPFC stimulation or sham. Following short questionnaires, post-tDCS 

VWM performance was measured using a continuous orientation-reproduction task. During 

each trial of the VWM task, participants memorised the orientations of 2, 4, or 6 triangles on 

a screen. In this replication, we included only the relevant maintenance condition with a long 

(1000 ms) retention interval, after which participants were asked to reproduce the orientation 

of one of the triangles. The deviation of the reproduced orientation from the original 

orientation was then used to estimate VWM capacity and precision for each participant, set 

size, and stimulation condition. 
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Figure 2.2 

Study Overview 

 

Note. Panel A: Study procedure. Panel B: tDCS montages on head models (left) and current 

density distributions from the superior view (right). Red electrodes with a cross: anode; black 
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electrodes with a line: cathode. Panel C: Continuous orientation-reproduction task. PPC = 

right posterior parietal cortex; DLPFC = left dorsolateral prefrontal cortex; L = left; R = right.  

2.2.1 No Evidence for Enhanced VWM Capacity and Precision by tDCS  

Table 2.1 lists the descriptive statistics for tDCS effects on capacity and precision 

relative to sham. Wang et al. (2019) reported selective effects of tDCS relative to sham 

stimulation over the PPC, but not the DLPFC, on VWM capacity, but not precision. To test 

whether these effects can be replicated in our study, like Wang et al. (2019), we computed the 

differences in performance between the stimulation and the sham condition for each 

participant and set size. Using these difference scores as dependent variable, we then ran 

analyses of variance (ANOVAs) with the two within-subjects factors set size (2, 4, 6) and 

stimulation region (PPC and DLPFC) for each capacity and precision. Bayes factors (BFs) 

using the default priors (Cauchy distribution with r = 0.5) and Monte Carlo setting (iterations 

= 10,000) were calculated to evaluate the strength of evidence for the absence or presence of 

effects (Ly et al., 2016; Rouder et al., 2012). BF10 refers to the evidence in favour of the 

alternative hypothesis that capacity changes relative to sham not equal to zero, against the 

null effect that capacity changes equal to zero. 
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Table 2.1 

Descriptive Statistics of Performance Changes Relative to Sham (N = 48) 

Variable PPC DLPFC 
M SD CI M SD CI 

Capacity (∆K) 
Set size 2 -0.01 0.09 0.03 -0.02 0.11 0.03 
Set size 4 -0.01 0.43 0.13 -0.06 0.49 0.14 
Set size 6 -0.14 0.72 0.21 < 0.01 0.88 0.25 

Precision (∆SD-1) 
Set size 2 < -0.01 0.01 < 0.01 < 0.01 0.01 < 0.01 
Set size 4 < -0.01 0.01 < 0.01 < -0.01 0.01 < 0.01 
Set size 6 < -0.01 0.01 < 0.01 < -0.01 0.01 < 0.01 

Note. Capacity ranges from 0 to the set size; precision ranges from 0 to ∞. M = mean; SD = 

standard deviation; CI = 95% confidence interval of the mean value. PPC = right posterior 

parietal cortex; DLPFC = left dorsolateral prefrontal cortex.  

As shown in Figure 2.2, we found no evidence for tDCS-induced changes in capacity 

or precision. For capacity, in contrast to Wang et al. (2019), we found no significant main 

effects of stimulation region, F(1, 47) = 0.30, p = .584, η!"  < .01, η#" 	= .01, BF10= 1/21.30 ± 

1.05%, and set size, F(2, 94) = 0.17, p = .763, η!"  < .01, η#" 	< .01, BF10 = 1/6.86 ± 1.38%, and 

no interaction between stimulation region and set size, F(2, 94) = 1.48, p = .233, η!"  = .01, 

η#" 	= .03, BF10 = 1/6.46 ± 1.85%. Notably, the absence of these effects was supported by 

substantial to strong Bayesian evidence. If anything, although non-significant, PPC 

stimulation even induced marginal decreases in capacity relative to sham, opposite to the 

observed improvements in the original study. 
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Figure 2.2 

Transcranial Direct Current Stimulation Effects on Visual Working Memory Capacity and 

Precision Relative to Sham Stimulation

 

Note. Panel A: Changes in capacity relative to sham. Panel B: Changes in precision relative 

to sham. Left: Opaque symbols indicate group mean values, with the error bars representing 

95% confidence intervals. Transparent symbols indicate individual data points. Right: 

Density distributions of the data for both groups. PPC = right posterior parietal cortex. 

DLPFC = left dorsolateral prefrontal cortex. 

To directly replicate Wang et al.’s (2019) analysis on their main findings regarding 

capacity, we further ran one-sample t-tests against zero for each region of stimulation and set 

size (Table 2.2). Based on the pattern of results from Wang et al. (2019) that “enhanced 

memory capacity via tDCS was specific to PPC (not DLPFC) stimulation” (p. 533), we ran 

one-sided t-tests for PPC stimulation condition while two-tailed t-tests for DLPFC 

stimulation condition. Data at set size 2 violated the assumptions, therefore, the equivalent 

non-parametric one-sample Wilcoxon signed rank test were run for the condition of set size 

2. BFs were calculated using default Monte Carlo setting (iterations = 10,000) and an 

informative prior based the reported significant effect sizes in Wang et al. (2019). Again, 
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based on the pattern of results from the original study, we used Bayes factors (BF+0 and BF10) 

to quantify the strength of evidence for PPC and DLPFC stimulation, respectively. BF+0 

refers to the evidence in favour of the alternative hypothesis that capacity changes relative to 

sham are greater than zero, against the null effect that capacity changes equal to zero. For the 

PPC condition, we used the reported effect size (d = 1.03) as informative prior. For the 

DLPFC condition, only the range of effect sizes (ds = 0.078–0.409) was reported in the 

original study. Thus, we used the biggest effect size value as the informative prior (Cauchy 

distribution with r = 0.409).  

We observed neither PPC stimulation nor DLPFC stimulation effects compared to 

sham at any set size. Critically, in contrast to Wang et al.’s main finding that PPC stimulation 

increased relative capacity changes compared to zero at set size 6 with a large effect size 

(Cohen’s d = 1.03), this effect was absent in our data, t(47) = -1.35, p = .909, Cohen’s d = - 

0.20, 95% confidence interval (CI) = [-0.32, ∞), which was supported by strong Bayesian 

evidence, BF+0 = 1/20.20 ± < 0.01%. However, again, if anything, PPC stimulation tended 

toward decreasing capacity at set size 6. Furthermore, Wang et al. (2019) reported that the 

increase in capacity induced by PPC stimulation was significantly higher than that by DLPFC 

stimulation at set size 6, with a medium to large effect size (Cohen’s d = 0.71)1. Different to 

the original study, we found no credible evidence of a significant difference in relative 

capacity changes between the effects of the two stimulation sites at set size 6, t(47) = -1.03, p 

= .846, Cohen’s d = -0.15, 95% CI = [-0.38, ∞). The absence of this difference was supported 

by strong Bayesian evidence, BF+0= 1/12.14 ± < 0.01%. 

 

 
1 Although this was not mentioned in analysis plan of the pre-registration, it is added in the actual 

analysis to fully test Hypothesis 1.  
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Table 2.2 

One-Sample T-Tests for Capacity Changes Relative to Sham Against Zero 

Stimulation Set size Statistical value P Effect sizes BF Error (%) 

PPC 
2 476.00 .874 0.17 1/5.65a < 0.01 
4 -0.11 .546 -0.02 1/2.65a < 0.01 
6 -1.35 .909 -0.20 1/20.20a < 0.01 

DLPFC 
2 488.00 .424 0.12 1/2.13b 0.01 
4 -0.82 .419 -0.12 1/2.95b 0.01 
6 0.03 .976 < 0.01 1/3.92b 0.01 

Note. df = 47. Bonferroni-corrected threshold of 0.0083. PPC: Right posterior parietal cortex; 

DLPFC: Left dorsolateral prefrontal cortex. a BF+0: in favour of the alternative hypothesis that 

capacity changes relative to sham are greater than zero, against the null effect that capacity 

changes equal to zero; b BF10: in favour of the alternative hypothesis that capacity changes 

relative to sham not equal to zero, against the null effect that capacity changes equal to zero. 

Regarding tDCS effects on precision, we did not observe significant effects for any 

stimulation region or set size, consistent with the original results and our Hypothesis 2. A 

two-way repeated measures ANOVA showed no significant main effects of stimulation 

region, F(1,47) = 0.15, p = .700, η!"  < .01, η#" 	< .01, BF10 = 1/17.46 ± 0.75%, or set size, 

F(2,94) = 0.33, p = .718, η!"  < .01, η#" 	= .01, BF10 = 1/7.17 ± 1.18%. There was also no 

significant interaction effect, F(2,94) = 0.85, p = .432, η!"  < .01, η#" 	= .02, BF10 = 1/10.57 ± 

2.72%. The absence of these effects was supported by substantial to strong Bayesian 

evidence. 

2.2.2 Summary 

Like Wang et al. (2019), we observed no effects of tDCS on VWM capacity and 

precision induced by DLPFC stimulation. However, in contrast to the original study, PPC 

stimulation did not significantly enhance capacity selectively at set size 6, and also not at any 

other set size. The absence of tDCS effects was largely supported by substantial to strong 

Bayesian evidence.  
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2.3 Discussion 

This preregistered study aimed to replicate the benefits of non-invasive stimulation on 

VWM that were recently reported by Wang et al. (2019). Wang et al. found that tDCS over 

the PPC, but not the DLPF, selectively improved capacity, but not precision, when VWM 

load was high (set size 6). While accounting for the methodological issues from the original 

study, we found no credible evidence of such selective effects. Stimulation over the right PPC 

improved neither capacity nor precision of representations in VWM performance. In contrast, 

if anything, our results indicated that when VWM load is high, capacity slightly, although not 

significantly, decreased after right PPC stimulation compared to the sham condition. 

Therefore, our Hypothesis 1 (improvements of capacity) was rejected, while Hypothesis 2 (no 

improvements in precision) was confirmed.  

Our findings are consistent with recent studies that focused on other stimulation sites 

and used different paradigms, suggesting that the lack of an effect in our study is not specific 

to the present montage or paradigm. For instance, the absence of benefits of anodal PPC-

tDCS in the present study is consistent with other recent research (Dumont et al., 2021; 

Robison et al., 2017) that used other types of montage (left PPC) and/or VWM paradigms 

(change-detection). Like Dumont et al. (2021), our findings were largely supported by 

substantial to strong Bayesian evidence, challenging the existing positive effects (Hsu et al., 

2014; Tseng et al., 2012; Wang et al., 2019). Our results are also consistent with the results 

from Nikolin et al. (2018) that anodal DLPFC stimulation does not alter VWM performance, 

even using a different montage (i.e., cathode on the contralateral DLPFC) and VWM 

paradigm (n-back). Nikolin et al. further systematically tested different tDCS dosages, 

resulting in consistent null effects. Our findings add critically to the existing literature by 

demonstrating that it is unlikely that anodal DLPFC-tDCS produces improvements in VWM 

performance in healthy participants. 
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Our findings highlight the importance of replication studies investigating robust tDCS 

effects. Wang et al.’s findings would have far-reaching theoretical and practical implications 

for the scientific understanding of both tDCS effects and VWM processes. Our findings 

mirror the replication crisis that replication effect sizes are typically only a quarter or halve of 

the magnitude of original effects (Klein et al., 2018; Open Science Collaboration, 2015). Our 

replication attempt—which disconfirmed tDCS-induced increases in VWM capacity by 

stimulating right PPC—can serve as a starting point for more replications to further test the 

veracity of such tDCS effects (Brandt et al., 2014).  

In addition to inevitable differences like the characteristics of recruited participants 

and lab environment, our study used slightly different stimuli than the original study. Hence, 

our conceptual disconfirmation of the tDCS-PPC effects also questions the generalization of 

tDCS benefits. Similarly, Robison et al. (2017) recently failed to conceptually replicate the 

positive tDCS effects over PPC and DLPFC that were reported by Li et al. (2017), using a 

design similar but not identical to the original one. Altogether, these two examples of 

conceptual replication attempts are likely only the tip of the iceberg of a lack of replicability 

and generalization in tDCS research. Importantly though, any single replication study does 

not rule out that tDCS may benefit cognitive performance in general (Hedges & Schauer, 

2019; Maxwell et al., 2015).Therefore, more replications using the same tDCS setups are 

needed to advance this promising area of research.  

2.3.1 Conclusion 

We did not observe any benefits of single-session, anodal parietal or prefrontal tDCS on 

VWM capacity and precision. In particular, we failed to replicate the selective, large effect of 

parietal tDCS in increasing VWM capacity at a big set size that was reported by Wang et al. 

(2019). Indeed, the empirical evidence from our study consistently favoured the absence of 

any cognitive benefits after tDCS regardless of stimulation site and task difficulty. 
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Considering the complexity of tDCS parameters and setups, our null findings highlight the 

critical importance of conducting replications for building a robust and informative body of 

evidence on the effectiveness of non-invasive brain stimulation on cognitive performance. 

2.4 Method 

This experiment and our hypotheses were pre-registered on the Open Science 

Framework (https://osf.io/n9fkp). A pilot study served to test the feasibility of the study, the 

safety of current tDCS setup and the feasible workflow of the analysis. These pilot data were 

not included in the analyses of the present study. The study was approved by the University 

of Sheffield Research Ethics Committee. 

2.4.1 Participants  

A total of 48 healthy young adults were recruited (31 females, 17 males, all right-

handed, 22.65 ± 4.34 years old, range 18 – 33 years). All participants were retained for 

analysis. We chose this sample size for two reasons. First, although Wang et al. (2019) 

reported a large effect size of Cohen’s d = 1.03, yielding a (post-hoc) power of 1 - β = 0.98 

for their included sample of 18 participants for analysis, simulations have shown that effect 

sizes are often overestimated for such small samples (Halsey et al., 2015). Therefore, we ran 

an a priori power analysis based on a more conservative medium effect size of Cohen’s d = 

0.50, a power of 1 - β = 0.90 and an α-level of 0.05, resulting in a minimum sample size of 44 

(G*power 3.1; Faul et al., 2007). Second, fully counterbalancing the stimulation conditions 

(i.e., DLPFC, PPC and PPC/DLPFC sham) across three sessions results in 12 possible 

combinations; therefore, we recruited 48 healthy participants, which is a multiple of 12 and 

more than twice larger than the sample size in the original study.  

The inclusion criteria were similar to those in Wang et al. (2019): all participants had normal 

or corrected-to-normal vision, no metallic implant, and no history of any neurological or 

psychiatric illness. In addition, in the present study, only participants who were proficient in 
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English and educated to A-level or higher were included. Furthermore, we excluded 

participants who self-reported that they underwent neurostimulation within the past week, 

were on medication with known cognitive side-effects, in particular on memory and attention, 

or were currently using recreational drugs (e.g., cannabis, cocaine, or methamphetamines), or 

were pregnant. Participants were recruited through university volunteer systems, social media 

(e.g., Facebook), display of flyers, and word-of-mouth. Participants were compensated with 

£15 or £5 and course credits.  

2.4.2 Procedure 

This lab-based study used a within-subjects, randomized and single-blinded design 

(Figure 2.1 A). All participants came to the lab for three sessions. Each session lasted about 1 

hour, with an intersession-interval of at least 48 hours to allow for any possible after-effects 

of tDCS to return to baseline (‘wash out’). Upon arrival at their first session, participants 

gave their written informed consent for their participation and completed a questionnaire on 

demographic information (age, sex, main language, handedness, and education level). At 

each session, participants first received the tDCS. Next, they completed short post-

stimulation ratings (Appendix A) on their current pain, attention, and fatigue levels, followed 

by a tDCS adverse-effects questionnaire (Appendix B). Next, participants completed a 

computerised VWM task. In addition, to measure expectation effects, at the end of the third 

and final session, participants were asked to guess whether they had received active or sham 

stimulation at each session (Appendix C)2.  

 
2 Note that these data are not reported in this article, but results from analyses of these data can be 

found in the Supplementary Materials on OSF (also see Appendix F). Overall, the current tDCS setup did not 

lead to any severe adverse effect, which indicates the safety of the montage and paradigm. The pattern of results 

confirms that sham stimulation provided a good level of blindness, thereby preventing placebo effects. 
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2.4.3 TDCS Setup 

A battery-driven TCT Research tDCS 1ch device was used to deliver direct current 

via two saline-solution-soaked sponge electrodes (electrodes size: 5 x 7 cm2; https://trans-

cranial.com). Figure 2.1 B illustrates the current density model for the two active stimulation 

conditions simulated by MATLAB-based COMETS toolbox (Jung et al., 2013). Identical to 

the original study, the anodal electrode was placed at the target stimulation brain regions, that 

is, either the left DLPFC or the right PPC, while the cathodal electrode was placed on the 

contralateral cheek. In each session, participants received one of the three types of 

stimulation (active DLPFC, active PPC, or sham) for 15 minutes. The order of the three 

stimulation conditions was counterbalanced across participants. 

For half of the participants, sham stimulation was on the left DLPFC, and for the 

other half sham stimulation was on the right PPC. In the active stimulations, the tDCS current 

linearly reached 2mA within the first 30 s (20 s in the original study) and then remained 

stable until the last 30 s when the current gradually decreased until tDCS was turned off. The 

sham stimulation followed the same procedure, except that the tDCS was pre-set to turn off 

after 30 s. This procedure produces the expected typical ‘tingling’ sensation on the scalp and, 

thus, provides an effective control condition to minimise placebo effects. Regardless of the 

stimulation type, identical beeping sounds were generated at the beginning and the end of 

stimulation.  

To locate the stimulation regions, individuals’ head sizes (see Appendix D) were 

measured using a soft measure tape and wax pencil. EZ-EEG 

(http://clinicalresearcher.org/eeg/; Beam et al., 2009) was used to locate the left DLPFC (F3) 

accurately and efficiently from the nasion-inion, tragus-tragus and circumference lengths. 

The right PPC (P4) was located at the symmetrical point of left DLPFC (F3), centring at Cz, 

according to the international 10-20 system (Klem et al., 1999).  

https://trans-cranial.com/
https://trans-cranial.com/
http://clinicalresearcher.org/eeg/
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2.4.4 VWM Task  

Post-tDCS VWM performance was measured using a continuous orientation-

reproduction task (Figure 2.1 C). Each trial began with a fixation cross displayed centrally for 

1000 ms. Next, an array of two, four or six randomly orientated (0-360°) isosceles triangles 

that were arranged in a circular manner appeared on the screen for 200 ms. After a 1000 ms 

blank screen, one of the displayed triangles was randomly selected as the target stimulus and 

presented in a random orientation. Participants were instructed to reproduce the original 

orientation using the mouse. Reaction time and recall errors (i.e., angular distance between 

the targeted orientation and reported orientation) were recorded. Note that we did not 

manipulate the blank interval duration as Wang et al. (2019) did, as they did not observe any 

effect of tDCS in their short-interval (100 ms, labelled sensory memory) condition. 

During each session, participants first completed 30 practice trials (10 practice trials per set 

size, intermixed) with feedback. For this feedback, the original stimulus array was shown, 

overlaid by the reproduced angle in green for recall errors smaller than 15 degrees, in orange 

for errors between 15 and 45 degrees, and in red for errors larger than 45 degrees. Next, 

participants completed 360 trials without feedback (120 trials per set size, intermixed). The 

VWM task was executed with Tatool Web (www.tatool-web.com, von Bastian et al., 2013).  

2.4.5 Model Fitting 

First, we calculated recall errors for each set size and stimulation condition and fitted 

computational models to these recall errors. Specifically, we compared fits of the Standard 

Mixture Model (SMM; Zhang & Luck, 2008) and Swap Model (SM; Bays & Husain, 2008) 

using the MATLAB MemToolbox (Suchow et al., 2013). Following Wang et al.’s (2019) 

procedure, we computed the Akaike information criterion (AIC) and the Bayesian 

information criterion (BIC) to indicate relative fits of the models to the data separately for 

each participant, set size, and stimulation condition. As shown in Table 2.3, overall, both the 
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AIC and BIC favoured the SMM over the SM (60.65% and 87.04%, respectively). The AIC 

and BIC values of each participant in all conditions are listed in Appendix E, Table E1 and 

Table E2, respectively. Then, we used winning model (i.e., SMM) to estimate the capacity 

and precision parameters using maximum likelihood estimation. The SMM assumes a 

mixture of two components: a uniform distribution and a circular von Mises distribution. The 

height of the uniform distribution (g) represents random guess responses, which is used to 

calculate the probability of retrieving the target stimulus (Pm = 1-g). Capacity (K) is the 

product of Pm and the set size (K = Pm*N). The standard deviation (SD) of the von Mises 

distribution represents the precision of the retrieved representation of the target stimulus. A 

smaller SD is interpreted as higher precision. The precision is denoted by the inverse of the 

SD (SD-1). Following Wang et al.’s (2019) procedure, normalised values (∆K and ∆SD-1) 

were used for testing the hypotheses. Normalised values were computed for statistical 

analyses by subtracting capacity K and precision SD-1 in the sham condition from those in the 

active PPC and DLPFC conditions for each set size and participant. All statistical analyses 

were performed with R Statistical software (v4.1.3; R Core Team, 2022) and R packages 

rstatix (Kassambara, 2021), ez (Lawrence, 2016), lsr (Navarro, 2015), and BayesFactor 

(Morey & Rouder, 2021).  
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Table 2.3 

Summary of Model Fits Favoured the Standard Mixture Model Over the Swap Model 

Stimulation Set size AIC (%) BIC (%) 

Sham 
2 83.33 95.83 
4 50.00 85.42 
6 64.58 87.50 

PPC 
2 85.42 97.92 
4 56.25 81.25 
6 33.33 72.92 

DLPFC 
2 79.17 95.83 
4 45.83 85.42 
6 47.92 81.25 

Overall – 60.65 87.04 
Note. AIC: Akaike information criterion; BIC: Bayesian information criterion.  
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Abstract 

As of yet, visual working memory (WM) training has failed to yield consistent cognitive 

benefits to performance in untrained tasks, despite large improvements in trained tasks. 

Investigating the mechanisms underlying training effects can help explain these 

inconsistencies. In this pre-registered, pre-test/post-test online training study, we examined 

how training affects the quantity and quality of representations in visual WM using 

continuous-reproduction tasks. N = 64 young healthy adults were randomly assigned to an 

experimental group or an active control group to complete four training sessions of practice 

in an orientation-reproduction or visual search task, respectively. We observed that, in the 

trained task, only the quality, but not the quantity, of visual WM representations significantly 

increased in the experimental group relative to the control group. These improvements did 

not generalise to untrained stimuli or paradigms. Therefore, our findings suggest that training 

gains are not driven by enhanced capacity. Instead, gains in the quality of visual WM 

representations that are tied to specific stimuli and paradigms may reflect enhanced efficiency 

in using the existing visual WM capacity. 

Keywords: visual work memory, quantity and quality, training mechanism, capacity 

and efficiency  
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3.1 Introduction 

Working memory (WM) is a cognitive system providing temporary access to 

representations that are needed for complex cognition in the present moment. WM has a 

limited capacity of around four chunks of information that can be simultaneously maintained 

at a time (Cowan, 2001). The individual limit of WM capacity is strongly correlated with 

reasoning (Conway et al., 2003; Engle et al., 1999; Oberauer et al., 2008), executive 

functions (Miyake et al., 2000), and a range of other cognitive abilities (for a review, see 

Barrett et al., 2004). Furthermore, neurocognitive disorders such as ADHD (Martinussen et 

al., 2005) and age-related cognitive declines (Park et al., 2002) often go along with WM 

impairments.  

The central role ascribed to WM in human cognition has motivated research into 

training interventions aiming to enhance WM capacity and, thereby, potentially also 

reasoning and other related cognitive abilities (Jaeggi et al., 2008; Klingberg, 2010; 

Klingberg et al., 2002). WM training typically involves repeated practice on one or more 

WM tasks over a short period of time, aiming to improve performance in trained and 

untrained cognitive tasks. The improvements in related yet untrained cognitive abilities are 

referred to as transfer effects. However, so far, WM training has failed to yield consistent and 

robust cognitive benefits (Jaeggi et al., 2012; Karbach & Verhaeghen, 2015; Melby-Lervåg et 

al., 2016; Morrison & Chein, 2011; Shipstead et al., 2012; von Bastian et al., 2022). Although 

previous research reported large and replicable gains in the trained WM tasks, transfer effects 

on untrained tasks remain inconsistent and elusive. A focus on the theoretical mechanisms 

underlying training gains can yield important insights for when and why transfer effects may 

occur (Redick, 2019; Smid et al., 2020; von Bastian & Oberauer, 2014).  

The capacity-efficiency model of cognitive training and transfer effects (von Bastian 

et al., 2022; von Bastian & Oberauer, 2014) provides a framework for explaining these 
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inconsistencies in past findings by proposing two, not mutually exclusive, pathways of how 

training may induce change. One pathway is through expanding cognitive capacity itself. 

Expanded capacity should generalise to any untrained tasks that draw on the same capacity 

limit. WM training-induced enhancements of capacity would be reflected by an increased 

quantity of representations that are simultaneously maintained in WM. These improvements 

would be expected to yield broad benefits across a range of related cognitive abilities. 

However, given the lack of broad and robust transfer effects, it is unlikely that training 

expands working memory capacity (von Bastian et al., 2022).  

The other pathway is through enhancing efficiency in using the available capacity. 

Mechanisms of enhanced efficiency can be broadly grouped into compression and 

optimisation. Compression is to learn the regularities of information and making use of 

observed redundancies to reduce the overall cognitive load (Bavelier et al., 2012; Brady et al., 

2009). Compression-based efficiency can be paradigm-specific through learning the 

necessary routines and effective strategies for completing an ongoing task. For example, 

performance can be boosted by strategies such as chunking (e.g., remembering the three 

digits 8, 1, and 9 as one number 819). In addition, better metacognitive skills, such as 

improved introspection about self-performance in an ongoing task (Carpenter et al., 2019) 

could facilitate applying effective task strategies to a different context (Belleville et al., 

2014). Compression can also be stimuli-specific, for example through gaining a level of 

perceptual expertise that allows for more efficient coding of the stimuli (Curby & Gauthier, 

2007) by increasing the precision of their representations in WM (Scolari et al., 2008). 

Finally, efficiency can also be enhanced by optimizing attention allocation to different stimuli 

or task sets (De Simoni & von Bastian, 2018; Zerr et al., 2021). In contrast to the broad 

benefits that are expected to result from expanding capacity, enhanced efficiency is expected 

to be useful only in contexts where these efficiency mechanisms can be applied as well.  
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There is tentative evidence for training-induced enhancements in efficiency. For 

example, De Simoni and von Bastian (2018) found that the majority of participants reported 

the acquisition of paradigm-specific strategies during training, including cognitive load-

reducing strategies such as remembering only one of two items of a pair in an associative 

memory task. De Simoni and von Bastian also found that participants improved selectively in 

remembering which items they have encountered (i.e., item recognition) but not their current 

context (i.e., item recollection; e.g., the item’s location on the screen). De Simoni and von 

Bastian speculated that these improvements in recognition were possibly due to training-

induced acquisition of stimuli-specific expertise by which the precision of the item 

representations in memory was enhanced (see also Olson et al., 2005), thereby increasing 

success of retrieval. In the present study, we focus on investigating to what extent the 

acquisition of paradigm-specific and stimuli-specific expertise transfer to other contexts. 

Paradigm-specific expertise may lead to better performance in tasks with the same surface 

structure but different stimuli (e.g., recall the orientation of triangles or the shape of rings). 

Stimuli-specific expertise may lead to better performance in tasks using the same stimuli but 

different paradigms (e.g., the orientation of triangles in a recall or recognition task). 

To distinguish training effects through capacity from those through efficiency, WM 

models that differentiate between the quantity and the quality of representations maintained 

in WM are useful (Alvarez & Cavanagh, 2004; Awh et al., 2007; Fougnie et al., 2010; Olson 

& Jiang, 2002; Zhang & Luck, 2008). This distinction between the quantity (the number of 

remembered items) and quality (the precision of these items) has been supported by neural 

evidence demonstrating a dissociative role of different parietal-occipital subregions. 

Specifically, the inferior intraparietal sulcus (IPS) has been found to track the number of 

items at different locations, whereas the superior IPS and lateral occipital complex encoded 

the precision of the attended items (Todd & Marois, 2004; Xu & Chun, 2006). Furthermore, 
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WM quantity, but not quality, shows a strong connection with fluid intelligence (Fukuda et 

al., 2010).  

To date, only few existing studies have investigated training-induced changes 

specifically in the quantity and quality of visual WM representations (Buschkuehl et al., 

2017; Moriya, 2019; Ovalle Fresa & Rothen, 2019; K. Wang & Qian, 2021), and most of the 

existing studies offer only crude estimates of changes in quantity and quality of visual WM 

representations. For example, Moriya (2019) distinguished between the quantity and quality 

of visual WM representations using two versions of change-detection tasks, in which 

participants were asked to compare two memory arrays and detect whether they are identical 

or not. Moriya’s tasks varied in the extent to which the deviating stimulus differed from the 

memoranda: 45° in the quantity version, vs. 5° in the quality versions of the task. Moriya 

found significant effects of training for both the quantity and the quality versions of the 

change-detection tasks, but with asymmetric patterns of transfer: whereas training of the 

quantity task led to strong transfer to the quality version, training of the quality task yielded 

only weak transfer to the quantity version. However, performance changes in quantity and 

quality of visual WM were estimated by the same parameter (i.e., Pashler’s k, 1988) and, 

thus, conclusion about the two types of visual WM representations could only be drawn 

indirectly. Similarly, Wang and Qian (2021) reported training effects of the same change-

detection paradigm on the quantity of visual WM representations as well as transfer effects 

on the quality of visual WM representations, measured by a trained orientation-changed 

detection task and an untrained orientation continuous-reproduction task, respectively. 

However, Wang and Qian measured the quality of visual WM representations using the 

overall recall error which mixes quantity and quality of visual WM representations.  

Buschkuehl et al. (2017) trained participants in one of two variants of a colour-change 

detection task. Different to the Moriya (2019) and Wang and Qian (2021), Buschkuehl et al. 
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(2017) used transfer tasks that allowed for estimating the precision of WM representations. 

Despite substantial training improvements in change-detection performance, the authors 

found no transfer of these improvements to the precision of representations of colour and 

spatial features. However, like the other existing studies, Buschkuehl et al. did not use 

training tasks that allowed for distinguishing changes in the quantity from changes in the 

quality.  

Continuous-reproduction tasks, in which participants were asked to memorise and 

later reproduce features of stimuli on continuous dimensions (e.g., orientation or shape), 

probe high-resolution contents of visual WM directly (Gorgoraptis et al., 2011; Ma et al., 

2014; Wilken & Ma, 2004; Zhang & Luck, 2008). The dependent variable, that is, the 

difference between the original and the reproduced feature can then be used to estimate the 

quantity (or capacity) and quality (or precision) of visual WM representations using 

computational models such as the standard mixture model (SMM; Zhang & Luck, 2008). The 

SMM assumes a mixture of two components: a uniform distribution representing random 

guesses, and the standard deviation of a von Mises distribution (a circular normal 

distribution) around the target, representing that remembered information is remembered with 

a certain degree of precision. For example, Ovalle Fresa and Rothen (2019) used a continuous 

colour-reproduction task to train participants in visual long-term memory and applied the 

SMM. After six training sessions over the course of three days, participants’ precision in both 

visual long-term memory and visual short-term memory improved significantly. However, 

Ovalle Fresa and Rothen focused on long-term memory training, and did not assess transfer 

to substantially different stimuli and paradigms. Therefore, taken together, it remains unclear 

whether WM training effects are due to changes in quantity or quality of visual WM 

representations, and to what extent these changes are specific to the trained paradigm or 

stimuli. The present study fills this gap.  
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3.1.1 Present Study 

This pre-registered study investigated the mechanisms of training gains by 

distinguishing between quantity and quality of representations in visual WM. We 

administered a continuous orientation-reproduction training task for four training sessions. To 

examine the capacity-efficiency model and its proposed mechanisms of training and transfer 

effects, we used the SMM (Zhang & Luck, 2008) to estimate changes in the quantity (i.e., 

capacity) and the quality (i.e., precision) of visual WM representations from pre-test to post-

test and during training. Furthermore, we assessed transfer to two untrained tasks (shape 

reproduction and orientation-change detection). All effects in the experimental training group 

were evaluated relative to an active control group practising visual search, which has been 

shown to demand only minimal visual WM (Wolfe & Horowitz, 1998; Woodman et al., 

2001). Including an active control group controls for placebo effects and expectancy effects 

(Foroughi et al., 2016; Simons et al., 2016; von Bastian & Oberauer, 2014).   
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Table 3.1  

Hypotheses 

Mechanism 
Trained task (ORT) Untrained stimuli 

(SRT) 

Untrained 
paradigm 
(ODT) 

Quantity Quality Quantity Quality Performance 

Capacity Increase - Increase - Increase 
Efficiency 

Paradigm-specific 
expertise  

- Increase - Increase No change 

Stimulus-specific 
expertise - Increase - No change Increase 

Note. All performance changes are relative to changes observed in the active control group. 

Hyphens (-) refer to possible concurrent improvements. ORT: orientation-reproduction task; 

SRT: shape-reproduction task; ODT: orientation-change detection task. 

Our pre-registered hypotheses3 (https://osf.io/mk8fa) are summarised in Table 3.1 and 

stated as follows:  

(1) If visual WM training-induced performance gains reflect increased visual WM 

capacity, the experimental group will show larger gains in the quantity of visual WM 

representations in the trained task (orientation reproduction) and in the untrained structurally 

similar task (shape reproduction) as well as improved performance in the untrained 

structurally different task (orientation-change detection) above and beyond any 

improvements observed in the active control group. 

(2) If visual WM training-induced performance gains reflect acquisition of paradigm-

specific expertise, the experimental group will show larger gains than the active control group 

in the quality of visual WM representations in the trained task (orientation reproduction) and 

 
3 Hypotheses 2 and 3 were slightly reworded (while keeping the identical meaning) to facilitate understanding. 

Furthermore, paradigm-specific expertise was labelled task-specific expertise in the pre-registration. 



 46 

in the untrained, structurally similar task (shape reproduction), but no performance gains in 

the untrained, structurally different task (orientation-change detection).  

If, in addition to these improvements in quality, we would observe training-specific 

gains in the quantity of visual WM representations in both reproduction tasks, it would 

suggest that paradigm-specific expertise (e.g., strategies) hindered transfer to the structurally 

different task. If those training-induced quantity gains were observed in just one of the 

reproduction tasks, it would suggest that training-induced performance gains were primarily 

driven by gains in paradigm-specific expertise.  

(3) If visual WM training-induced performance gains reflect acquisition of stimuli-

specific expertise, the experimental group will show larger gains than the active control group 

in the quality of visual WM representations in the trained task (orientation reproduction) 

only, without any improvements in the quality of visual WM representations in the untrained, 

structurally similar task (shape reproduction). If this increased quality of visual WM 

representations is observed in the trained task but not in the shape-reproduction task, 

alongside increased visual WM performance in the orientation-change detection task, it 

would suggest that stimuli-specific expertise transferred across paradigms.  

Importantly, these hypotheses were not mutually exclusive as increases in visual WM 

capacity and acquisition of stimuli-specific and task-specific expertise may co-occur (von 

Bastian et al., 2023). 

3.2 Method 

This online training study used a pre-test-post-test, randomised-controlled design. 

Participants who had completed the pre-test were randomly assigned to the experimental 

group or the active control group where they practised an orientation-reproduction task or a 

visual search task, respectively, for four training sessions. Most participants (87% of the final 

sample included in the analysis) completed the four training sessions over four consecutive 
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days. Participants who missed a day were retained until they completed their sessions or 

withdrew. To ensure that participants could maximally complete one training session per day, 

they received a website link for the next day’s session only after they had completed the 

previous session. After the training sessions, participants completed the post-test. The pre-test 

and post-test were designed to assess training effects on performance in the orientation-

reproduction task and visual search task, as well as transfer effects to a shape-reproduction 

task and an orientation-change detection task.  

This experiment and its hypotheses were pre-registered on the Open Science 

Framework (https://osf.io/mk8fa). Pilot data from six participants were collected before the 

pre-registration. The pilot study served to test the feasibility of the study and the 

compatibility between the recruitment platform Prolific (https://www.prolific.co) and the 

experiment software Tatool Web (www.tatool-web.com, von Bastian et al., 2013). As the 

pilot study was successful with no further changes to the study materials, the pilot data were 

included in the current study. The study was approved by the University of Sheffield 

Research Ethics Committee. 

3.2.1 Participants  

The target sample size was 100 participants at post-test. An a priori power analysis 

assuming a small to medium within-between interaction effect size (Cohen’s f = 0.15) and 

power of 1-ß = 0.80 suggested a sample size of N = 90, which we increased by 10 

participants to account for possible dropouts. We recruited 108 healthy participants, aged 

from 18 to 35, to take part in a study on “Cognitive training” that was advertised on Prolific. 

We pre-screened participants by customising the allow list according to our pre-registered 

inclusion and exclusion criteria. After signing up for the study, participants gave online 

consent to taking part in the study by clicking a button. All participants who met the inclusion 

criteria and completed the study received £17.40. Before the start of recruitment, a list of 
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group assignments was randomly generated on GraphPad 

(https://www.graphpad.com/quickcalcs/randomize2/). Following this pre-generated list, 

participants who completed the pre-test were randomly assigned to either an experimental 

group or an active control group. Participants were blind to the group condition.  

The flow chart in Figure 3.1 illustrates participant recruitment, attrition, and retention. 

Eight participants (four from each group) dropped out, without giving a specific reason, after 

completing the pre-test. We replaced these eight participants who dropped out, so that we 

reached the target sample size of N = 100 participants who completed the post-test. After 

concluding data collection, data from 36 participants were excluded from analysis. Data from 

two participants in the experimental group were partially missing due to technical issues and, 

therefore, these data were excluded. In addition, although we instructed them otherwise, we 

noticed that some participants completed some sessions (pre-test, post-test or training) 

multiple times. We excluded all participants (11 per training group) for whom the number of 

additional trials exceeded 10% for any task (12 trials per task). Furthermore, seven 

participants from the experimental group and five from the active control group were 

excluded according to pre-registered criteria using reaction times (RT) and omission errors 

designed to identify participants who did not follow instructions in an online experiment 

setting4. Of the remaining 64 participants included in the analysis, 30 were in the 

experimental group and 34 were in the control group. Sensitivity analyses which included all 

these 12 participants who were excluded due to pre-registered criteria showed similar patterns 

of results and, thus, led to the same conclusions. Table 3.2 lists the participants’ 

 
4 Participants were excluded with any of the following three data patterns: RT of less than 1500 ms in 1/3 of the 

trials in the orientation-reproduction task and in the shape-reproduction task; RT of less than 300 ms in 1/3 of 

the trials in the orientation-change detection task and in the visual search task; omission errors in 1/3 of the trials 

in the visual search task.  

https://www.graphpad.com/quickcalcs/randomize2/
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demographics. Overall, the groups were comparable regarding their gender and age, but the 

evidence for the absence of group differences was ambiguous.  

Figure 3.1 

Participant Flow Chart  
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 Table 3.2 

Participant Demographics as a Function of Groups 

Measure Group Comparison 
Experimental Active 

Control 
Statistical 

Value 
p BF10 ± error % 

Group size: n 30 34    
Gender: 
female/male/non-binary 

8/22/0 17/17/0 2.73 .098 3.40 ± 0.00 

Age: M (SD) 22.73 (3.92) 21.94 (2.52) 0.33 .745 1/2.62 ± 0.00 
Note. Gender differences were tested with a chi-squared test and age differences with Yuen’s 

t-test. 

3.2.2 Materials  

Figure 3.2 illustrates the training and transfer tasks. In pre-test and post-test, each 

experimental task comprised 20 practice trials and 120 testing trials with a set size of the 

stimulus array of 4 items in the visual WM tasks, and 16 items in the visual search task. The 

order of representing different experimental tasks was random. Pre-test and post-test took 

approximately 40 min each. Participants underwent four training sessions. Each training 

session consisted of 360 trials, with 120 trials per set size (2, 4, and 6 in the orientation-

reproduction task, and 8, 16, and 24 in the visual search task). Set sizes were intermixed 

within each session. Each training session lasted approximately 30 min.  
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Figure 3.2 

Training and Transfer Tasks 

 

Note. Panel A: Orientation-reproduction task at set size four. Panel B: Shape-reproduction 

task at set size 4. Panel C: Orientation-change detection task at set size 4 in change condition. 

Panel D: Visual search task at set size eight in the change condition. 

3.2.2.1 Orientation-Reproduction Task 

Each trial began with a fixation cross displayed centrally for 1000 ms. Next, an array 

of randomly orientated (0-360°) isosceles triangles was arranged in a circular manner and 

appeared on the screen for 200 ms, followed by a 1000 ms blank screen. Then, one of the 

displayed triangles was randomly selected as the target stimulus and presented in a random 
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orientation. Participants were instructed to reproduce the original orientation by rotating the 

triangle with the computer mouse and click the left mouse-button to record their response.  

We measured recall errors, that is, the difference in degrees between the reproduced 

orientation and the target orientation, ranging from -π to π, to estimate capacity and efficiency 

parameters by fitting the SMM (Zhang & Luck, 2008) using the MemToolbox (Suchow et al., 

2013)5. The SMM consists of two components, a von Mise distribution approximating a 

circular normal distribution, and a uniform distribution: 

𝑃(𝑥) = (1 − 𝑔) $
"%&!(()

𝑒(∙+,-(.) + 𝑔 $
"%

,       (1) 

where x is the response, g is the proportion of random guess responses, κ is the concentration 

parameter of the von Mises distribution, and I0(κ) is the modified Bessel function of order 0. 

The SMM assumes that the target can either be recalled with a certain precision or not at all, 

leading to random guesses. Therefore, the probability of remembering the target (Pm) is 

calculated as 

𝑃𝑚 = 1 − 𝑔.           (2) 

The quantity of representations in visual WM, that is, capacity K is computed as the product 

of the probability of remembering the target and the set size N: 

𝐾	 = 	𝑃𝑚	 × 	𝑁.          (3) 

Finally, the quality of representations in WM, that is, precision, is computed as the 

inverse of the standard deviation (SD-1) of the von Mises distribution, which was converted 

from the concentration parameter κ.  

 
5 As noted in the pre-registration, we also explored fitting other existing visual WM models, such as, 

swap model (Bays, 2016), signal discrimination model (Oberauer, 2021), and target confusability competition 

model (Schurgin et al., 2020), to the data and conducted a series of systematic model comparisons. Overall, the 

SMM turned out to be the best fitting model for pre-test to post-test changes and, therefore, is reported here. The 

model comparisons will be reported elsewhere as this would exceed the scope of the present study. 
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3.2.2.2 Shape-Reproduction Task  

Following a central fixation cross for 1000 ms, an array of black ring-shaped objects 

with varying proportions filled in white were distributed on the screen in a circular manner 

for 200 ms. After a 1000 ms blank screen, one of the displayed objects was randomly selected 

as the target stimulus. The target stimulus was presented in black colour with a white bar. 

Participants were instructed to reproduce the original proportion of the white segment by 

rotating and left clicking the mouse. As for the orientation-reproduction task, capacity and 

precision were estimated based on the recall errors using the SMM. 

3.2.2.3 Orientation-Change Detection Task  

After a fixation cross presented centrally for 1000 ms, an array of randomly orientated (0-

360°) isosceles triangles appeared on the screen for 200 ms, followed by a 1000 ms blank 

screen. Immediately afterwards, a second array was presented until response. In half of the 

trials, the two arrays were identical. In the other half of the trials, one of the triangles in the 

second array was randomly selected and presented in a randomly selected, different 

orientation. Participants were instructed to press the ‘C’ or ‘M’ key of the keyboard to 

respond to a detection of change or match respectively. To measure visual WM capacity, we 

computed Pashler’s k (Pashler, 1988) for whole-display tasks using Equation 1 (Pashler, 

1988; Rouder et al., 2011):  

𝑘 = /012
$012

× 𝑁,           (4)  

where H and FA are the hit and false alarm rates and N is the display set size.  

3.2.2.4 Visual Search Task 

On each trial, participants first saw a fixation cross for 1000 ms. Then, an array of 

isosceles triangles with two or three semi-circular gaps, pointing to random directions, was 

presented. In half of the trials, all triangles had three gaps. In the other half of the trials, one 

of the triangles had only two gaps. Participants were instructed to press the ‘M’ key of the 
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keyboard within 5 s if all triangles had three gaps, or to press the ‘C’ key if one of the 

triangles only had two gaps. The overall accuracy which is calculated by the proportion of 

correct responses excluding omission errors (no response given after 5000 ms), as well as the 

mean reaction time (RT) for correct responses were measured and used for analysis.  

3.3 Results 

In addition to frequentist significance tests (including t-tests and analyses of variance, 

ANOVAs), Bayes factors (BFs) using the default priors from the BayesFactor package 

(Cauchy distribution with r = 0.5 for ANOVAs, r = 0.707 for t-tests; Poisson distribution for 

chi-square tests with a = 1) were calculated to evaluate the strength of evidence for the 

absence or presence of effects (Ly et al., 2016; Rouder et al., 2012). Table 3.3 lists the 

categorical labels for describing the strength of evidence adapted from Wetzels and 

Wagenmakers (2012). As most of the data violated the assumption of normality, we ran 

robust Yuen t-tests (Yuen, 1974) and report Algina-Keselman-Penfield robust effect sizes, δt 

(Algina et al., 2005). We calculated and report both general effect sizes, η3"  and partial effect 

sizes, η4" , for ANOVAs to facilitate further use in power analyses and meta-analyses (Lakens, 

2013). All statistical analyses were performed with R Statistical software (v4.1.3; R Core 

Team, 2022). The R packages rstatix (Kassambara, 2021) and ez (Lawrence, 2016) were used 

for frequentist significance tests. BayesFactor (Morey & Rouder, 2021) and WRS2 (Mair & 

Wilcox, 2020) were used for Bayesian and robust statistical tests.  
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Table 3.3 

Categorical Labels for Describing the Strength of Bayesian Evidence 

Bayes factors  
H10 H01 Categorical labels 

>100 <1/100 Decisive 
30 to 100 1/100 to 1/30 Very strong 
10 to 30 1/30 to 1/10 Strong 
3 to 10 1/10 to 1/3 Substantial 
1 to 3 1/3 to 1 Ambiguous 

1 1 No evidence 
Note. Adapted from Wetzels and Wagenmakers (2012). H10 = evidence in favour of the 

alternative hypothesis; H01 = evidence in favour of the null hypothesis.  

3.3.1 Training Performance  

Table 3.4 lists the descriptive statistics for the experimental group and the active control 

group in the orientation reproduction and visual search tasks during training. To analyse 

performance changes during training, we ran a repeated-measures ANOVA with the within-

subjects factors Time (training session 1 to 4) and Set Size (2, 4, 6).  
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Table 3.4 

Descriptive Statistics of Performance During Training 

 Training Session 
 1 2 3 4 

Measure M SD M SD M SD M SD 
Experimental Group (n = 30) 

Capacity (K)         
Set Size 2 1.88 0.15 1.88 0.19 1.89 0.12 1.89 0.16 
Set Size 4 2.76 0.71 2.92 0.74 2.93 0.73 2.87 0.79 
Set Size 6 2.97 1.29 3.15 1.30 3.28 1.29 3.25 1.33 

Precision (SD-1)         
Set Size 2 0.08 0.02 0.09 0.02 0.09 0.02 0.09 0.02 
Set Size 4 0.06 0.02 0.07 0.02 0.07 0.02 0.07 0.02 
Set Size 6 0.06 0.01 0.06 0.02 0.07 0.02 0.07 0.02 

Active Control Group (n = 34) 
Accuracy          

Set Size 8 0.91 0.07 0.92 0.09 0.94 0.05 0.93 0.05 
Set Size 16 0.84 0.07 0.84 0.10 0.87 0.08 0.86 0.08 
Set Size 24 0.73 0.09 0.73 0.09 0.77 0.09 0.77 0.09 

RT (ms)         
Set Size 8 2056 326 1998 305 1890 282 1918 321 
Set Size 16 2871 422 2806 401 2712 453 2707 428 
Set Size 24 3257 468 3192 452 3101 499 3066 447 

Note. Capacity ranges from 0 to the set size; precision ranges from 0 to ∞. RT = mean 

reaction time. 

3.3.1.1 Orientation Reproduction 

Figure 3.3 illustrates estimates of capacity and precision in the experimental group for each 

training session at set size levels 2, 4, and 6. There was a significant effect of Set Size on both 

capacity, F(2,58) = 39.28, p < .001, η3"  = .49, η4"  = .58, BF10 > 100 ± 0.66%, and precision, 

F(2, 58) = 46.12, p = < .001, η3"  = .37, η4"  =.61, BF10 >100 ± 0.67%. We observed a 

significant effect of Time on precision, F(3,87) = 6.56, p < .001, η3"  = .06, η4"  = .18, BF10 = 

3.03 ± 0.59%, but not on capacity, F(3,87) = 2.17, p = .097, η3"  = .01, η4"  = .07, BF10 = 

1/34.51 ± 0.83%. Furthermore, there was no interaction between Time and Set Size for 

capacity, F(6, 174) = 1.94, p = .078, η3"  = .01, η4"  = .06, BF10 = 1/60.01 ± 2.56%, or precision, 

F(6, 174) = 0.97, p = .444, η3"  = .01, η4"  = .03, BF10 = 1/41.37 ± 1.73%. Taken together, we 
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observed an effect of Set Size on capacity and precision that replicates the set size effect 

typically observed in visual WM, that is, the bigger the set size, the lower the probability of 

retrieving an item and its precision. In addition, there was only substantial evidence for 

significant performance improvement in precision during training.  

Figure 3.3 

Estimates of Capacity and Precision in the Experimental Group Over Four Training Sessions 

 

Note. Panel A: Estimates of capacity. Panel B: Estimates of precision. Data points with 

reduced opacity show individual estimates, solid data points represent group means. S1 to S4 

= training session 1 to 4.  

3.3.1.2 Visual Search 

During visual search training, there was a significant effect of Set Size on both accuracy, 

F(2,66) = 154.73, p < .001, η3"  = .68, η4"  = .82, BF10 > 100 ± 0.81% and mean RTs, F(2,66) = 

330.18, p < .001, η3"  = .82, η4"  = .91, BF10 > 100 ± 6.87%. We also observed an effect of 

Time on accuracy, F(3,99) = 8.50, p < .001, η3"  = .08, η4"  = .20, with, however, ambiguous 

Bayesian evidence, BF10 = 1/1.36 ± 0.85%, and mean RTs, F(3,99) = 7.54, p < .001, η3"  

= .08, η4"  = .19, BF10 = 1/6.99 ± 0.49%. Furthermore, there was no interaction between Time 
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and Set Size for accuracy, F(6,198) = 1.32, p = .249, η3"  = .01, η4"  = .04, BF10 = 1/61.71 ± 

1.73%, or mean RTs, F(6,198) = 0.48, p = .823, η3"  < .01, η4"  = .01, BF10 = 1/143.26 ± 2.27%. 

Taken together, we observed the set size effect in visual search with ambiguous evidence for 

performance improvements during training. 

3.3.2 Cognitive Performance Changes from Pre-Test to Post-Test 

Table 3.5 lists the descriptive statistics for the training and transfer tasks administered at pre-

test and post-test. First, we tested whether the experimental group and the active control 

group were comparable at baseline based on their pre-test performance using two-tailed t-

tests (Table 3.6). Next, we assessed training and transfer effects by running two-way mixed 

ANOVAs separately for each dependent variable, with the within-subjects factor Time (pre-

test, post-test), the between-subjects factor Group (experimental group, active control group), 

and their interaction. Table 3.7 provides an overview of the results of these analyses. For 

testing our hypotheses, we were primarily interested in the Time x Group interaction.  
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Table 3.5 

Descriptive Statistics of Cognitive Performance at Pre-Test and Post-Test 

Variable Group 
Experimental Active Control 

Pre-test Post-test Pre-test Post-test 
M SD M SD M SD M SD 

Training tasks 
Orientation reproduction         

Capacity (K) 2.57 0.77 2.89 0.73 2.35 0.91 2.67 0.69 
Precision (SD-1) 0.06 0.01 0.07 0.02 0.06 0.02 0.05 0.01 

Visual search         
Accuracy 0.76 0.14 0.81 0.13 0.78 0.09 0.86 0.10 
RT (ms) 2973 849 2985 633 3101 475 2636 509 

Transfer tasks 
Shape reproduction         

Capacity (K) 2.26 0.76 2.10 0.84 2.22 0.68 2.30 0.71 
Precision (SD-1) 0.05 0.02 0.06 0.03 0.04 0.02 0.04 0.03 

Orientation-Change detection         
Capacity (Pashler’s k) 2.09 1.12 2.37 0.70 2.05 0.82 2.01 0.72 

Note. Pashler’s k can range from 0 to set size. RT = mean reaction time. 

3.3.2.1 Baseline Comparisons 

There were no significant group differences, though the evidence was ambiguous for capacity 

in the orientation-reproduction task and precision in the shape-reproduction task, with 

participants in the active control group showing numerically slightly lower capacity in the 

former task and lower precision in the latter task at pre-test than participants in the 

experimental group. 
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Table 3.6 

Statistical Group Comparisons at Baseline 

Variable  df t p δt BF10 ± error % 
 Training tasks 

Orientation reproduction      
Capacity (K) 36.72 0.51 .610 -0.13 1/2.42 ± 0.01 
Precision (SD-1) 37.72 0.71 .484 -0.18 1/3.91 ± 0.01 

Visual search      
Accuracy 29.33 0.30 .766 0.08 1/2.93 ± 0.01 
RT (ms) 25.34 0.01 .993 0.00 1/3.06 ± 0.01 

 Transfer tasks 
Shape reproduction      

Capacity (K) 33.55 0.38 .707 -0.10 1/3.84 ± 0.01 
Precision (SD-1) 38.00 1.11 .274 -0.28 1/2.21 ± 0.01 

Orientation-Change detection      
Capacity (K) 37.49 0.54 .595 -0.14 1/3.87 ± 0.01 
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Table 3.7 

Analysis of Variance Effects of Training on Cognitive Performance 

Variable/Effect F p η3"  η4"  BF10 ± error % 
Orientation reproduction 

Capacity      
Time 18.12 < .001 .04 .23 > 100 ± 2.04 
Group 1.53 .221 .02 .02 1/1.58 ± 1.89 
Time x Group 0.00 .974 < .01 < .01 1/4.25 ± 3.26 

Precision      
Time 3.05 .086 .01 .05 1/2.78 ± 2.21 
Group 5.68 .020 .07 .08 2.87 ± 1.60 
Time x Group 25.63 < .001 .07 .29 > 100 ± 4.11 

Visual search 
Accuracy      

Time 24.79 < .001 .08 .29 > 100 ± 0.84 
Group 2.55 .116 .03 .04 1/1.23 ± 2.06 
Time x Group 1.55 .218 .01 .02 1/2.03 ± 4.33 

Reaction time      
Time 8.22 .006 .03 .12 6.61 ± 0.99 
Group 0.67 .417 .01 .01 1/2.80 ± 2.08 
Time x Group 9.09 .004 .04 .13 10.96 ± 2.40 

Shape reproduction 
Capacity      

Time 0.15 .704 < .01 < .01 1/5.18 ± 1.28 
Group 0.28 .596 < .01 < .01 1/3.31 ± 0.98 
Time x Group 1.36 .249 .01 .02 1/2.23 ± 3.69 

Precision      
Time 1.12 .293 .01 .02 1/3.47 ± 1.05 
Group 4.72 .034 .05 .07 1.63 ± 0.80 
Time x Group 1.72 .195 .01 .03 1/1.90 ± 2.33 

Orientation-Change detection 
Capacity      

Time 1.83 0.181 0.01 0.03 1/2.79 ± 1.00 
Group 1.06 0.306 0.01 0.02 1/1.98 ± 0.55 
Time x Group 3.12 0.082 0.01 0.05 1/1.05 ± 2.56 

Note. BF10 = Bayes factor in favour of the alternative hypothesis. Degrees of freedom df1 and 

df2 were 1, 62 respectively. 

3.3.2.2 Training Effects 

Orientation Reproduction. Figure 3.4 illustrates the pre-test to post-test changes in 

capacity and precision in orientation reproduction. The Time x Group interaction was not 

significant for capacity, F(1, 62) < 0.01, p = .974, η3"  < .01, η4"  < .01, with the absence of the 

interaction being supported by substantial evidence, BF10 = 1/4.25 ± 3.26%. These results 
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suggest that training-induced gains cannot be explained by an increase in quantity of 

representations activated in visual WM. 

Figure 3.4 

Pre-Post Changes in the Visual WM Training Task on Capacity and Precision  

 

Note. Panel A: Changes in capacity. Panel B: Changes in precision. Left: Small transparent 

data points show the mean values for each individual. Big solid data points show the mean 

values at group level, with the error bars representing standard errors. Right: Density 

distributions of the data for both groups.  

For precision, there was a significant Time x Group interaction effect, F(1, 62) = 

25.63, p < .001, η3"  = .07, η4"  = .29, which was supported by decisive evidence, BF10 > 100 ± 

4.11%. In the experimental group, precision significantly increased from pre-test (M = .06, 

SD = .01) to post-test (M = .07, SD = .02), t(17) = -4.43, p < .001, δt = -1.16, which was 

supported by decisive evidence, BF10 > 100 ± 0.00%. In contrast, in the active control group, 

precision decreased from pre-test (M = .06, SD = .02) to post-test (M = .05, SD = .01), t(21) = 

1.99, p = .059, δt = .28, though the evidence for this decrease was highly ambiguous, BF10 = 

1.38 ± 0.02%. Finally, precision was significantly higher in the experimental group than in 



 63 

the active control group at post-test, t(28) = 4.36, p < .001, δt = .71, supported by decisive 

evidence, BF10 > 100 ± 0.00%. Taken together, we found considerable training-induced gains 

in visual WM precision in the trained orientation-reproduction task, with large effect sizes for 

changes from pre-test to post test and for the comparison to the active control group at the 

post-test. To further explore the differences in changes between the experimental group and 

the active control group in the orientation-reproduction task (not pre-registered), we 

examined the distributions of participants’ responses at pre-test and post-test. As Figure 3.5 

illustrates, we observed a pattern of responses suggesting that, at pre-test, individuals in both 

groups tended to respond with familiar or canonical orientations, with peaks at 45o, 135o, 

225o, and 315o, χ2(7, N = 7680) = 6.30, p = .505, BF10 < 1/100 ± 0.00%. At post-test, 

however, the distribution of responses differed between the groups, χ2(7, N = 7680) = 44.58, 

p < .001, with decisive Bayesian evidence, BF10 > 100 ± 0.00%. Specifically, the 

experimental group showed a larger number of peaks in their response distribution, leading to 

a flattened density function and suggesting that, after orientation-reproduction training, 

participants’ responses included a larger range of finer differences between orientations. In 

contrast, the active control showed a similar pattern at pre-test and post-test. These 

observations may indicate that the experimental group was able to distinguish finer 

differences in orientations after training.   
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Figure 3.5 

Density of Pre-Post Responses Changes Differs Between Groups

 

Note. Purple histograms with dashed lines show the density of each response at pre-test, and 

the pink histograms with solid lines show the density of each response at post-test. Number of 

bins: 60. Experimental group: n = 30; active control group: n = 34; total responses per 

participant was 120 each at pre-test and post-test.  

Visual Search. For accuracy, the Time x Group interaction was not significant, F(1, 

62) = 1.55, p = .218, η3"  < .01, ηp2 = .02, with the active control group showing a numerically 

higher accuracy from pre-test to post-test than the experimental group. However, the 

evidence was ambiguous, BF10 = 1/2.03 ± 4.33%. For mean RTs, there was a significant 

Time x Group interaction effect, F(1, 62) = 9.09, p = .004, η3"  = .04, η4"  = .13, which was 

supported by strong evidence, BF10 = 10.95 ± 2.40%. Taken together, participants in the 

active control group showed larger increases in visual search speed after visual search 

training than the experimental group without sacrificing accuracy.  



 65 

3.3.2.3 Transfer Effects 

Shape Reproduction. We detected no significant transfer to a task using the same 

paradigm as the training task but different stimuli. The Time x Group interaction was not 

significant, F(1,62) = 1.36, p = .249, η3"  =.01, η4"  = .02, with, however, capacity decreasing in 

the experimental group and increasing in the active control group from pre-test to post-test. 

The evidence for the absence of this interaction was ambiguous, BF10 = 1/2.23 ± 3.69%. For 

precision, the Time x Group interaction was also non-significant, F(1,62) = 1.72, p = .195, η3"  

= .01, η4"  = .03, with precision, numerically, slightly improving in the experimental group and 

remaining stable in the active control group. The evidence supporting the absence of the 

interaction was again ambiguous, BF10 = 1/1.90 ± 2.33%.  

Orientation-Change Detection. Similarly, capacity in a different paradigm but with 

the same stimuli did not significantly improve after visual WM training. The Time x Group 

interaction approached significance, F(1,62) = 3.12, p = .082, η3"  = .01, η4"  = .05. 

Numerically, the experimental group performed better at post-test than pre-test, whereas the 

active control group’s performance remained stable. Again, the evidence for the absence of a 

transfer effect was near-perfectly ambiguous, BF10 = 1/1.05 ± 2.56%. Taken together, there 

was no transfer to a different type of stimuli or paradigm, with the caveat that the evidence 

was overall ambiguous.  

3.3.3 Summary 

We found evidence for improvements in the trained tasks, with the experimental 

group improving only in precision, but not in capacity, in the trained orientation-reproduction 

task, and the active control group improving in RTs in the trained visual search task. 

Therefore, we rejected Hypothesis 1 that training gains reflect increases in capacity, and we 

concluded that training gains are driven by increased efficiency. As the improvement in 

precision did not generalise to performance gains in the untrained shape-reproduction task, 
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we rejected Hypothesis 2 that training gains reflect the acquisition of paradigm-specific 

expertise, but with the caution that the evidence for the absence of an effect on precision in 

shape reproduction was ambiguous only. Similarly, there was also no significant effect of 

orientation-reproduction training on performance in the orientation-change detection task. 

Therefore, we also rejected Hypothesis 3 that stimulus-specific expertise would transfer to a 

different paradigm but, again, with the caveat that the Time x Group interaction approached 

significance, with only ambiguous evidence for the absence of an effect. Therefore, taken 

together, we found that training gains were stimuli-specific and task-specific, with some 

ambiguity regarding the potential of these gains in efficiency to generalise to other contexts.  

3.4 Discussion 

The objective of the study was to identify the mechanisms underlying visual WM 

training and transfer effects. Specifically, we tested (1) whether training-induced gains after 

orientation-reproduction training reflect expanded visual WM capacity or enhanced 

efficiency in using the available capacity by facilitating the acquisition of paradigm-specific 

or stimulus-specific expertise, and (2) whether such training benefits generalise to other types 

of stimuli and paradigms. For this purpose, we distinguished training gains in quantity from 

training gains in quality of visual WM representations and tested transfer effects to an 

untrained stimulus type (shape reproduction) and paradigm (orientation-change detection).  

The results showed that four visual WM training sessions improved the quality of 

visual WM representations in the trained task but not the quantity. Furthermore, we observed 

no transfer to different stimuli or a different paradigm. The evidence was ambiguous though, 

and there was a tendency that the experimental group numerically improved in the 

orientation-change detection task that used the same stimuli in a different paradigm. Notably, 

however, if anything, capacity decreased in the experimental group in the shape-reproduction 

task that uses different stimuli in the same paradigm. Taken together, these findings speak 
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against broad transfer through expanded capacity, which is consistent with the results from 

other recent WM training studies which reported limited evidence for transfer (Buschkuehl et 

al., 2017; De Simoni & von Bastian, 2018; Guye & von Bastian, 2017; Redick et al., 2013).  

Instead, these findings suggest that training gains are driven by a more efficient use of 

the available cognitive capacity (von Bastian & Oberauer, 2014; von Bastian et al., 2022). 

Furthermore, the lack of transfer effects supports the conclusion that the training-induced 

efficiency gains were both stimuli-specific and paradigm-specific: neither stimuli-specific 

expertise nor paradigm-specific expertise were generalisable to the same paradigm with 

different stimuli or a different paradigm with the same stimuli. More specifically, the 

untrained shape-reproduction task used the same paradigm as the trained visual WM task but 

tested the memory of shapes instead of orientations. The lack of transfer to this task suggests 

that training gains reflect gains in expertise in orientation discrimination which is specific to 

the stimuli employed in the trained task. Yet, the untrained orientation-change detection task 

used the same stimuli as the trained visual WM task and also tested memory of orientations, 

but we still did not observe any transfer. However, different to the trained paradigm, the 

untrained orientation-change detection task might capitalise on configural information, such 

as the internal representation of the relationship between all displayed orientations at the 

maintenance stage (Boduroglu et al., 2009; Buschkuehl et al., 2017). At the same time, at the 

recall stage, the task requirement to detect only one changed orientation out of all stimuli 

displayed could possibly reduce the need to focus on the feature precision of each stimulus. 

This could explain why efficiency gains in the trained task did not generalise to another 

visual WM paradigm using the same stimuli type.  

An alternative, not necessarily mutually exclusive, possibility is that the training gains 

in the orientation-reproduction task reflect a more refined motor control in reproducing the 

triangles’ orientation. However, the trained orientation-reproduction WM task and the 
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untrained shape-reproduction task arguably require a similar degree of refined motor control 

to reproduce the orientation or shape information, respectively, by rotating and clicking the 

mouse. Hence, if the observed training gains merely reflected better motor control, we should 

also have observed improvements in the untrained shape-reproduction task which requires 

similar levels of fine motor control. The observed lack of such improvements renders this 

possibility unlikely. 

The findings of the present study also provide some indications how stimuli-specific 

and paradigm-specific expertise may operate and interact. Our exploratory inspection of 

response distributions showed that the experimental group but not the active control group 

reported a larger number of different orientations after training, suggesting that training in the 

orientation-reproduction task may have catalysed the development of perceptual expertise 

allowing for discriminating finer differences in orientations. This is in line with other 

research showing that visual WM training can boost perceptual processing (Truong et al., 

2022). Improved perceptual processing due to stimuli-specific expertise may enhance the 

perceived perceptual distinctiveness (Olson et al., 2005). Given the premise that the active 

control group’s visual search training involved only little memory (Wolfe & Horowitz, 1998) 

while sharing similar encoding processing (Kong & Fougnie, 2019), the fact that we observed 

these precision gains only in the experimental group supports the conclusion that visual WM 

training-induced gains in efficiency operate at maintenance and recall stage. These stimulus-

specific efficiency gains allow for maintaining more precise internal feature representations, 

and/or discriminating these representations with higher resolution when recalling this feature 

information. 

Developing stimuli-specific, perceptual expertise may also help to use effective 

paradigm-specific strategies that operate at maintenance and recall stage. Specifically, we 

found that the experimental group did not only respond a larger number of orientations but 
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more peaks with canonical orientations after training. Participants may have used canonical 

orientations as a memory aid for the orientations (e.g., 90, 180, and 270 degrees like the 

numbers 3, 6 and 9 on a clock face). Increasing the number of available canonical 

orientations may benefit the effectiveness of such a strategy and increase overall 

performance. Note that this does not exclude the possibility that both experimental and active 

control training could have improved sensory discrimination at encoding stage.  

3.4.1 Limitations 

One major limitation of the current design is that the orientation-change detection task 

– the untrained paradigm using the same stimuli – did not allow for assessing precision (i.e., 

the quality of visual WM representations). Consequently, our results cannot fully rule out 

transfer of gains in the quality of visual WM representations to a different paradigm. Future 

research with a more fine-grained assessment of the stimulus features is required to identify 

the mechanisms underlying the transferable gains in quality of visual WM representations.  

Another potential limitation of this study is that four training sessions might not be 

intensive enough to induce transferable training gains in the quality of visual WM 

representations. Indeed, this possibility is consistent with our results that training gains in the 

quality of visual WM representations were not detected during training but only at post-test. 

Furthermore, the spacing of the training sessions may not have optimally supported learning. 

For example, a design with only one session a week may have allowed for better 

consolidation of learning effects (e.g., see Lampit et al., 2020). Future research is needed to 

better understand the optimal intensity and spacing of visual WM training interventions.  

Moreover, our training tasks were not adaptive, that is, all participants practised all set 

sizes irrespective of their individual performance. We chose this design to ensure sufficient 

measurement of all three set sizes for applying the SMM. However, it might have led to a 

decrease in motivation. A previous study showed no differences between adaptive and non-
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adaptive training both for motivation and training and transfer gains (von Bastian & Eschen, 

2016); however, in that study participants still received performance-based feedback. Such 

feedback likely encourages better engagement with the daily training sessions and reduces 

attrition, which could be useful especially in an online setting like the current study.  

Finally, we did not assess participants’ training experience, subjective training gains, 

or strategies they employed, because we aimed at minimizing the administration time for the 

benefit of participant retention. However, these data could have added important insights 

regarding the possible mechanisms underpinning the observed training gains (e.g., see De 

Simoni & von Bastian, 2018; Guye & von Bastian, 2017). Future research would benefit 

from including self-report measures for advancing understanding of training-induced change 

in cognitive performance.  

3.4.2 Conclusion 

To the best of our knowledge, the findings of the present study are the first to provide 

evidence from a continuous reproduction task that visual WM training induces stimuli-

specific and paradigm-specific gains in the quality but not in the quantity of visual WM 

representations. These findings support the notion that training enhances cognitive efficiency 

through the acquisition of expertise but not capacity. A better understanding of how training 

facilitates a more efficient use of the available visual WM capacity, and how the underlying 

training benefits are influenced by the characteristics of stimuli and paradigms, will be 

critical for harnessing the potential benefits of these training benefits.   
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Abstract 

Computational visual working memory (VWM) models are typically fitted to data from a 

single testing session. However, VWM performance can change substantially through 

training. The current study investigated which of four popular VWM measurement models 

can best account for these changes observed during training. We fitted the Standard Mixture 

Model (Zhang & Luck, 2008), Swap Model (Bays et al., 2009), Signal Discrimination Model 

(Oberauer et al., 2021) and Target Confusability Competition Model (Schurgin et al., 2020) 

to existing data across multiple testing sessions and set size conditions. We first compared 

these models in the experimental group (n = 30) before, during, and after training for an 

orientation-reproduction VWM task. We then compared the models in the active control 

group (n = 34) for their performance of untrained orientation-reproduction task. Furthermore, 

we compared these models in the untrained shape-reproduction VWM task for both groups. 

Overall, at the group level, the Standard Mixture Model accounted best for the changes 

occurring over and after four training sessions in the orientation-reproduction task. However, 

at the individual level, the preferred model switched across training sessions. The Target 

Confusability Competition Model fitted best to the data from the shape-reproduction task 

where training-induced changes were absent; still, similar switching patterns in model 

preferences as for the orientation-reproduction task were observed across testing sessions. 

Taken together, these findings speak against the notion that any single current measurement 

model can fully account for the dynamic changes in VWM performance that were observed 

in training studies.  

Keywords: visual work memory, model comparison, working memory training  
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4.1 Introduction 

To characterise and explain the limited span of visual working memory (VWM) that 

has been observed empirically, a variety of theoretical models have been developed to enable 

researchers to test their hypotheses and research questions (Wilken & Ma, 2004; Zhang & 

Luck, 2008; Bays & Husain, 2008, Oberauer et al., 2017; Schurgin et al., 2020; van den Berg, 

2012). However, due to subtle differences in definitions or assumptions made by theorists 

who use different metaphors to explain the VWM nature, these different theoretical models 

are often not explicitly distinguishable (Farrell & Lewandowsky, 2018; Oberauer et al., 

2018). Without a formal and distinguishable measurement, theoretical models can lead to 

discrepant, but not mutually exclusive, understandings of VWM. 

A particularly heated debate centres on the limits of VWM capacity. Specifically, 

some researchers argue that there is an upper limit on the quantitative number of discrete 

representations in VWM, with low memory precision resulting from a lack of discrete 

representations after reaching the limit (Zhang & Luck, 2008, 2011). Other researchers argue 

that variable precision of memory underpins the observed limits of capacity (Bays & Husain, 

2008; van den Berg et al., 2014; Zokaei et al., 2011). Precision manifests itself at varying 

levels of noisy representations of feature information. It has also been debated whether the 

source of memory precision can be modelled by the closeness to the content feature (e.g., 

orientation), the context feature (e.g., location) or the bindings between content and context 

(Bays, 2016; Oberauer, 2021; Tomić & Bays, 2022; Williams et al., 2022). Finally, a more 

recent theoretical notion has challenged all previous views on the source of precision by 

arguing that it stems from the perceptual similarity of stimuli features (Schurgin et al, 2020).  

In light of the current debates in VWM, using an adequate computational 

measurement model enables researchers to formulate testable hypotheses derived from 

precise theories, and thus address the ‘theory crisis’ – the poor testability of theories and 
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hypotheses (Borsboom et al., 2021; Eronen & Bringmann, 2021; Fried & Flake, 2018; 

Maatman, 2021; Ngiam, 2023; Oberauer & Lewandowsky, 2019; Popov, 2023). Four popular 

VWM measurement models aim to address these current debates: Standard Mixture Model 

(SMM; Zhang & Luck, 2008, 2011), Swap Model (SwapM; Bays et al., 2009; Schneegans & 

Bays, 2016), Signal Discrimination Model (SDM; Oberauer, 2021) and Target Confusability 

Competition model (TCC; Schurgin et al., 2020). These models have been widely assessed 

regarding their empirical explanatory adequacy, and applied to test a variety of research 

questions, typically using the continuous-reproduction paradigm (Heinen et al., 2016; Ovalle 

Fresa & Rothen, 2019; Sutterer & Awh, 2016; S. Wang et al., 2019; Williams et al., 2022; 

Zokaei et al., 2011). In this paradigm, individuals are asked to memorise and later reproduce 

features of stimuli in continuous dimensions (e.g., orientation, shape, colour or location) in 

order to probe high-resolution contents of VWM (Gorgoraptis et al., 2011; Ma et al., 2014; 

Wilken & Ma, 2004; Zhang & Luck, 2008; Bays & Husain, 2008;). Performance is assessed 

by the recall error, which is the difference between the reproduced feature and the originally 

presented feature of the target item. Using the recall error, these VWM measurement models 

allow for estimating theoretically essential latent information of VWM representations, and 

differentiating this information from noise (Oberauer, 2021; Oberauer et al., 2017).  

4.1.1 Standard Mixture Model 

The Standard Mixture Model (SMM; Zhang & Luck, 2008, 2011) is a two-component 

mixture model that distinguishes between the quantity (also called discrete slots or capacity) 

and quality (precision or resolution) of VWM representations. The SMM assumes that there 

is an upper limit on the quantitative number of items that can be remembered, estimated as 

capacity. The idea of an upper limit for VWM capacity is consistent with empirical evidence 

for a fixed number of items that can be remembered (Cowan, 2001; Miller, 1956; Pashler, 

1988). At the same time, the quality of VWM representations varies before reaching the 
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capacity limit. This variation is estimated as precision. After reaching the capacity limit, the 

SMM assumes that the target is either encoded and recalled with a certain precision or not at 

all. The distinguish roles of quantity and quality of VWM representations that were described 

in SMM has been supported by neural and behavioural evidence (Alvarez & Cavanagh, 2004; 

Awh et al., 2007b; Fougnie et al., 2010; Fukuda et al., 2010; Ngiam et al., 2022; Olson & 

Jiang, 2002; Rouder et al., 2008; Scolari et al., 2008; Souza et al., 2014; Zhang & Luck, 

2008).  

The SMM specifies two mathematical components, that is, a von Mise distribution 

approximating a circular normal distribution, and a uniform distribution, denoting response 

errors for trials where the feature information of the target item was remembered or not:  

𝑃(𝑥) = (1 − 𝑔) $
"%&!(()

𝑒(∙+,-(.0."#) + 𝑔 $
"%

,       (1) 

where x is the response, 𝑥56 is the target feature information, κ is the concentration 

parameter of the von Mises distribution which reflects the precision of representations (k > 0; 

the larger the k, the more concentrate about 𝑥56), g is the proportion of random guess 

responses, and I0(κ) is the modified Bessel function of order 0. The parameter for capacity is 

computed as the product of the probability of remembered information, 1-g, and the set size, 

n. The parameter for precision is computed as the inverse of the standard deviation (SD-1) of 

the von Mises distribution, which can be converted from the concentration parameter κ.  

4.1.2 Swap Model 

The Swap Model (SwapM; Bays et al., 2009; Schneegans & Bays, 2016) is a three-

component model. Like the SMM, SwapM also specifies whether the feature information of 

the target was remembered or not. In addition, SwapM has a third component representing 

swap (or binding) errors, which refer to mixing up target and non-target information. In 

contrast to the two-component SMM, SwapM assumes that VWM is limited to a resource 

that can be shared between all items in a visual scene, and the allocation of such resource is 
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highly flexible. For example, an item that is prioritized can be represented more precisely in 

VWM at the cost of decreased precision for other items (Emrich & Lockhart, 2017; Yoo et 

al., 2018). This theory provides an explanation for binding errors which have been widely 

observed in empirical research, and attributes them to the source of VWM limits (Schneegans 

& Bays, 2017; Zokaei et al., 2011).  

SwapM decomposes responses errors into three components – one von Mise 

distribution for the target item information, von Mise distributions for all non-targets, and a 

uniform distribution for random guess: 
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where x is the response, 𝑥56 is the target feature information, 𝑥59 is the non-target 

feature information, κ is the concentration parameter of the von Mises distribution which 

reflects the precision of representations, n is the set size, pT is the proportion of target 

information that was remembered, pN is the proportion of non-target information that was 

mistakenly reported, pU is the proportion of random guess responses (equivalent to g in 

SMM). pT, pN, pU sum to 1.  

4.1.3 Signal Discrimination Model  

The Signal Discrimination Model (SDM; Oberauer, 2021) assumes that the retrieval 

of representations in VWM is cue-based (e.g., the location of the probed item). Consequently, 

SDM quantifies the precision of representations not only on the feature (content) dimension 

but also on the cue (context) dimension. Thus, SDM distinguishes between three sources of 

low memory precision. First, similar to the SMM and SwapM, the SDM considers precision 

on the feature dimension. The degree of activation or reactivation of all features in the testing 

array is independent of a retrieval cue. Second, the activation of representations in VWM 

relies on binding between feature information and cue information. The strength of binding 

implies the extent to which the target is reactivated by a location cue at retrieval. The binding 
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strength is subject to the similarity of the spatial locations between the target and non-targets. 

Third, each response option has noise added to the signal strength in both dimensions. These 

theoretical mechanisms are supported by improved model fits when taking account into mis-

bindings between item-feature and cue information (Oberauer et al., 2017; Schneegans & 

Bays, 2017). Furthermore the empirical patterns of results that swap errors tend to increase 

when non-target items are spatially close to the target also support this notion (Emrich & 

Ferber, 2012; Rerko et al., 2014; Souza et al., 2014). 

The SDM models the response errors with an activation distribution of von Mises 

distributions on both the memory feature and cue information centred on the target. A 

probability function of choosing each response over possible responses is obtained by a 

signal-detection rule, equivalent to that the activation distribution is normalized by an 

exponent function:  
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where x is the response, 𝑥56 is the target feature information, 𝑦: is the location 

information of each item i of all n items (set size), 𝑦5 is the cue information (the location 

information of the target). κ and s represent the precision of the memory feature and cue 

representations, respectively. a and c are the memory strength of the memory feature and 

binding, respectively.  

4.1.4 Target Confusability Competition Model 

The TCC model builds on signal-detection accounts of memory. Unlike the other 

previously mentioned models that measure multiple psychological constructs by 

distinguishing the different sources of recall errors, the TCC model (TCC; Schurgin et al., 

2020) measures error distributions as a function of memory strength. The memory strength 

represents a formalised psychological similarity scaling function. TCC assumes that the 
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perceptual similarity of the stimulus features, which is independently measured by an 

additional perceptual task. The perceptual similarity is fixed across all participants and all 

memory strengths. Furthermore, noise accumulates and is added to similarity during the 

maintenance of memory. When the target feature is probed, the familiarity of the target 

feature gets boosted in the feature space by the amount of memory strength. Through a noisy 

signal-detection process, the feature information with the strongest maintained similarity will 

be recalled. Therefore, when the target feature is getting boosted, but the memory strength is 

weak, a non-target feature, even if far away from the target in the feature space, can 

sometimes get selected for recall. This is likely due to that the selected non-target’s 

psychological familiarity has resulted the strongest after adding the noise.  

In the TCC model, the recall error is modelled as an activation distribution of a 

Laplace distribution function. A response-selection probability function follows a signal 

detection rule which is the same as in the SDM (5):  

𝑆(𝑥) = 𝑑′ 9
"
exp	(−𝑘|𝑥 − 𝜃),       (6) 

where x is the response, 𝜃 is the mean, 𝑘 is the scaling rate (k > 0; the larger the k, the 

more spread out about the mean). 𝑑′ is the memory strength.  

4.1.5 Measurement Models in Use  

Owing to its limited span and critical involvement in higher cognition, VWM has 

often been chosen as a target cognitive construct for interventions like cognitive training. 

Cognitive training involves the repeated practice of cognitive tasks. Individuals’ performance 

is measured before and after training to assess any training-induced cognitive benefits relative 

to a control group undergoing an alternative intervention. However, whereas large 

improvements are consistently observed in the trained tasks, the evidence for transfer of these 

benefits to other cognitive abilities is inconsistent (von Bastian et al., 2022; Melby-Lervag et 

al., 2016). These inconsistencies may reflect a lack of understanding in theoretical 



 79 

mechanisms underlying training gains (Redick et al., 2019; Smid et al., 2020; von Bastian & 

Oberauer, 2014). Measurement models have been used to investigate mechanisms 

underpinning VWM changes, and thus aids to identify when and why interventions ought 

(not) to work (Heinen et al., 2016; Jiang et al., 2023; Ovalle Fresa & Rothen, 2019; S. Wang 

et al., 2019).  

Despite the advantages of using a measurement model to quantify and interpret the 

effects of interventions or experimental conditions, directly using parameters estimated from 

a chosen model can be problematic (Wilson & Collins, 2019). An extreme case is when the 

researcher who does not have specific theoretical assumptions and measurement aims runs 

inferential analyses using multiple existing similar competing models. One might choose a 

more complex model whose estimates show some significance in the inferential analyses, 

over another model that does not show any significance but would be equally adequate to 

explain and more likely to reproduce the empirical observations. This problematic approach 

is similar to p-hacking and reduces the reproducibility. A good practice to avoid this issue is 

to first evaluate and even compare the overall adequacy of a set of similar models, that is, 

whether the model explains the empirical findings and whether the explanations are 

sufficiently parsimonious and substantially plausible (Borsboom et al., 2021).  

So far, only a few previous studies have quantitatively compared which possible 

VWM measurement models most adequately capture cognitive changes (Donkin et al., 2013; 

Oberauer, 2021; van den Berg et al., 2014; S. Wang et al., 2019; Williams et al., 2022). Yet, 

theses existing findings revealed inconsistent patterns of model comparison results regarding 

measuring VWM representations. Moreover, the majority of modelling studies are based on 

single-session studies (Bays, 2016; Bays & Husain, 2008; Oberauer, 2021; Schurgin et al., 

2020; Tomić & Bays, 2022; van den Berg et al., 2014; Williams et al., 2022; Zhang & Luck, 

2008). However, intervention research like cognitive training often requires an accurate 
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quantification of performance changes across multiple testing sessions to make inferences on 

the training effects and their underlying mechanisms. Therefore, it is important to evaluate 

how well these models could account for these training-induced changes. 

4.1.6 Present Study 

To fill this gap, the current study explored which of these four VWM measurement 

models that have been widely used in empirical, or comparison studies can best account for 

cognitive changes through training. In particular, we compared the SMM (Zhang & Luck, 

2008), SwapM (Bays et al., 2009), SDM (Oberauer, 2021) and TCC (Schurgin et al., 2020) in 

a multi-session training data set, including different set size conditions. We first compared 

the models in an experimental group before, during and after training of an orientation-

reproduction task for which training-induced improvements were observed (see Chapter 3). 

We also compared the models in the active control group, who trained a visual search task, 

fitting data from their performance in an untrained orientation-reproduction task. For the 

active control group, training-induced improvements were absent but test-retest 

improvements from pre-test to post-test were still found. Then, we compared these models in 

both groups fitting data from an untrained shape-reproduction task to explore which 

measurement model fits best as a baseline for when neither training-induced nor training-

unspecific (test/retest) effects are observed. In addition, to explore how well the preferred 

model can account for dynamic cognitive changes at the individual level, we evaluated to 

what extent the best-fitting model switched from one testing session to another.  

4.2 Method 

4.2.1 Sample 

The sample included in the present study includes data of all 64 participants who 

completed the orientation-reproduction task and the shape-reproduction task. Data were 

originally collected in a visual working training study by Jiang et al. (2023; Chapter 3). The 
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experimental group (n = 30, 22.73 + 3.92 years old) practised an orientation-reproduction 

task at three different set sizes (2, 4, 6) for four training sessions, while the active control 

group (n = 34, 21.94 + 2.52 years old) practised a visual search task. Performance of both 

groups in the orientation-reproduction task and the shape-reproduction task were assessed at 

set size 4 at a pre-test and a post-test before and after training, respectively. For each 

individual, each condition per testing session consists of 120 observations (trials) for each 

VWM task. 

4.2.2 Orientation-Reproduction Task 

Each trial began with a fixation cross displayed centrally for 1000 ms. Next, an array 

of randomly orientated (0-360°) isosceles triangles was arranged in a circular manner and 

appeared on the screen for 200 ms, followed by a 1000 ms blank screen. Then, one of the 

displayed triangles was randomly selected as the target stimulus and presented in a random 

orientation. Participants were instructed to reproduce the original orientation by rotating the 

triangle with the computer mouse and click the left mouse-button to record their response.  

4.2.3 Shape-Reproduction Task  

Following a central fixation cross for 1000 ms, an array of black ring-shaped objects 

with varying proportions filled in white were distributed on the screen in a circular manner 

for 200 ms. After a 1000 ms blank screen, one of the displayed objects was randomly selected 

as the target stimulus. The target stimulus was presented in black colour with a white bar. 

Participants were instructed to reproduce the original proportion of the white segment by 

rotating and left clicking the mouse.  

4.2.4 Model Comparison 

The four VWM measurement models were fitted to each participant’s data using the 

Nelder-Mead simplex method (function fminsearchbnd in Matlab). In general, complex 

models fit data better than simple models with a cost of having more free parameters. 
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Therefore, model comparison should rank candidate models balancing the goodness of fit and 

parsimony. Two common model comparison methods, the Akaike information criterion 

(AIC; Akaike, 1974) and the Bayesian information criterion (BIC; Schwarz, 2007), were used 

to measure the relative goodness of fit and parsimony of the four VWM measurement models 

for each participant, testing session, set size condition and task type. The lower the relative 

value of AIC or BIC, the better the model was fitted into the data. Because the BIC gives a 

greater penalty on more complex models and is more appropriate when models are nested (as 

is the case for the SMM and SwapM), we drew conclusions based on BIC but report both the 

AIC and BIC values in the supplementary materials (Burnham & Anderson, 2004; Farrell & 

Lewandowsky, 2018). See relative AIC and BIC values of all models relative to the best 

fitted model for each participant, task, testing sessions, and set size in Table G1- G5 

(Appendix G).  

4.3 Results 

First, we aimed to select the best fitting model among the four VWM measurement 

models to capture performance in the trained task when substantial training-induced changes 

are present at the group level. For this purpose, we fitted these models separately to the 

orientation-reproduction data from the experimental group at pre-test, post-test, and the four 

training sessions, and for each set size (set size of 4 at pre-test and post-test; set size of 2, 4, 6 

during training). To select the best model when substantial, yet training-unspecific 

(test/retest), changes are present at the group level, we also fitted the four models to the data 

from the active control group who practised a visual search task, but their performance in the 

same orientation-reproduction task was measured during pre-test and post-post at set size 4. 

In addition, we fitted the models to the data from the shape-reproduction task. This task was 

trained by neither the experimental group nor the active control group and for which we did 

not observe any transfer effects (see Chapter 2). According to BIC values, Table 4.1 
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summarises the percentage of experimental group’s data that were best fitted by each model 

during training. Table 4.2 shows the percentage of both groups’ data that were best fitted by 

each model from pre-test to post-test.  

Table 4.1 

Percentage of Experimental Group’ Data That Were Best Fitted by Each Model During 

Training 

Session Set Size Model 
SMM SwapM SDM TCC 

Training 1 
2 40.00 20.00 20.00 20.00 
4 63.33 3.33 16.67 16.67 
6 26.67 20.00 33.33 20.00 

Training 2 
2 40.00 30.00 23.33 6.67 
4 63.33 3.33 13.33 20.00 
6 36.67 10.00 40.00 13.33 

Training 3 
2 30.00 26.67 23.33 20.00 
4 66.67 0.00 10.00 23.33 
6 33.33 16.67 30.00 20.00 

Training 4 
2 40.00 20.00 30.00 10.00 
4 83.33 0.00 3.33 13.33 
6 30.00 16.67 23.33 30.00 

Note. Based on Bayesian Information Criterion Values (BIC). The lower the BIC value, the 

better the model was fitted into the data set. The percentage of one person from the 

experimental group is 3.33%. SMM = Standard Mixture Model; SwapM = Swap Model; 

SDM = Signal Discrimination Model; TCC = Target Confusability Competition model.   
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Table 4.2 

Percentage of Both Groups’ Data That Were Best Fitted by Each Model from Pre-Test to 

Post-Test. 

Session Model 
SMM SwapM SDM TCC 

Experimental Group (n = 30) 
ORT     
Pre-Test 33.33 23.33 6.67 36.67 
Post-Test 50.00 6.67 10.00 33.33 
SRT     
Pre-Test 13.33 6.67 0.00 80.00 
Post-Test 13.33 3.33 0.00 83.33 

Active Control Group (n = 34) 
ORT     
Pre-Test 26.47 11.76 8.82 52.94 
Post-Test 35.29 29.41 5.88 29.41 
SRT     
Pre-Test 8.82 2.94 0.00 88.24 
Post-Test 11.76 0.00 0.00 88.24 
Note. Based on Bayesian Information Criterion Values (BIC). The lower the BIC value, the 

better the model was fitted into the data set. The percentage of one person from the 

experimental group is 3.33% while the percentage of one person from the active control 

group is 2.94%. SMM = Standard Mixture Model; SwapM = Swap Model; SDM = Signal 

Discrimination Model; TCC = Target Confusability Competition model. ORT = Orientation-

reproduction task; SRT = Shape-reproduction task. 

4.3.1 SMM captured performance during and post training best  

For the experimental group’s performance in orientation-reproduction task, the SMM 

showed an overall better model fit for 45.48% of participants relative to the other three 

models6 including all six testing sessions and three set size conditions. Especially, at set size 

4, SMM and TCC both fitted well at pre-test (the difference was no greater than one 

 
6 According to AIC values, SMM still came in a close second (33.57%) while the best fitted SDM 

(39.76%) only marginally fitted better to the training data, rendering less model selection uncertainty.  
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participant; Table 4.2), but the SMM became more predominant from the first training 

session (63.33%) onward (Table 4.1). At the post-test, although less participants’ data was 

best fitted by the SMM compared to the fourth training session (83.33%), the SMM was the 

best fitted to performance of 50% of participants (Table 4.2). This trend may be due to the 

SMM’s ability to explain the training-induced behavioural improvement in quality of VWM 

specific to this task (Jiang et al., 2023).  

In addition, model fits varied for set sizes during training (Table 4.1). Overall, the 

SMM was the preferred model at lower set sizes (2 and 4) among the other three models. 

Unlike at set size 4 where the SMM was best fitted to the majority of participants’ data 

(63.33% to 83.33%), only up to 40% of participants preferred SMM at set size 2. At a higher 

set size (i.e., 6), the SDM fitted better during the first training session. After the first training 

session, the SMM fitted well equally with SDM. During the last (fourth) training session, 

SMM fitted well equally with both SDM and TCC. While the evidence is less decisive at 

higher set size, these patterns of changes in the preferred VWM model suggest that, at least 

with only little training, the SMM captures performance at lower set sizes best, especially at 

set size 4.  

4.3.2 TCC was largely preferred when substantial changes were absent  

Overall, at the pre-test, the TCC model fitted the data best for 64.46 % of participants, 

from both the experimental group and the active control group, in both the orientation-

reproduction task and the shape-reproduction task. Moreover, the TCC model was preferred 

by over 80% of the participants at both pre-test and post-test in an untrained shape-

reproduction task for both groups (Table 4.2). The large preference for this model might 

reflect the absence of training gain that was transferred to the shape-reproduction task that 

was reported by Jiang et al. (2023). Indeed, in the orientation-reproduction task that was not 

trained by the active control group, when changes induced by the test-retest effect were likely 
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present in this group, the TCC was no longer the best fit, that is, the SMM was preferred 

(35.29%) over the TCC (29.41%) and SwapM (29.41%). Altogether, it might suggest that 

TCC can consistently measure limited VWM performance when any substantial change in 

performance is absent.  

4.3.3 No single model can yet capture the dynamic changes in VWM performance 

In the previous sections, model fits were interpreted at the group level; however, we 

observed considerable changes in preferred models at the individual level across testing 

sessions which we explored further. Table 4.3 summaries the percentage of changes in 

preferred models across all testing sessions at different set size for individuals from the 

experimental group completing the orientation-reproduction task. Figure 4.1 illustrates these 

dynamic changes in the preferred model in the experimental group during orientation-

reproduction training. Figure 4.2 demonstrates the dynamic changes in the preferred model 

from pre-test to post-test for both the experimental group and the active control group in both 

the orientation-reproduction task and the shape-reproduction task.  

Table 4.3 

Percentage of Changed Preferred Model for the Experimental Group (n = 30) in the 

Orientation-Reproduction Task Between Testing Sessions 

Set Size Pre-Test – T1 T1 – T2 T2 – T3 T3 – T4 T4 – Post-test 
2 - 53.33 80.00 73.33 - 
4 73.33 43.33 50.00 36.67 60.00 
6 - 66.67 63.33 56.67 - 
Note. The percentage of one person from the experimental group is 3.33%. En dashes 

represent from one testing session to the next testing session. T1 – T4: 1st training to 4th 

training session.   
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Figure 4.1 

Preferred Model Changes for the Experimental Group (n = 30) During Orientation-

Reproduction Training  

 
Note. Sankey nodes represent the proportion of individuals’ data was best fitted by the model. 

Sankey links represent whether the best model fit switched or not from one model to another 

between two testing sessions or remained unchanged. T1 – T4: 1st training to 4th training.   
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Figure 4.2 

Preferred Model Changes from Pre-Test to Post-Test 

 
Note. Sankey nodes represent the proportion of individuals’ data was best fitted by the model. 

Sankey links represent whether the best model fit switched or not from one model to another 

between two testing sessions or remained unchanged. ORT = orientation-reproduction task; 

SRT = shape-reproduction task. 

As shown in Table 4.3 and Figure 4.1, between training sessions, the lower and higher 

set size (i.e., 2 and 6 respectively) overall showed more switches in model preference 

compared to that at set size 4. Thereby, this overall pattern, again, suggested that the SMM 

accounted better for performance changes at set size 4. Furthermore, the percentage of 

switches in model preference dramatically increased from the pre-test to the first training 

session (73.33%), and from the last training session to the post-test (60%). During training, 

different set sizes were randomly presented, whereas only set size 4 was presented at pre-test 

and post-test, which may have possibly led participants to adjust their strategies. Therefore, 

the increase in the switches in model preference between these sessions might reflect a need 

for different VWM models when individuals obtain training benefits through the acquisition 

of strategies.  
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In addition, from the pre-test to post-test only, both groups showed a similar pattern of 

changes in model preference between the two types of VWM task. Specifically, more 

changes were observed in the orientation-reproduction task (60%) than in the shape-

reproduction task (23.33%, see Figure 4.3). Similarly, 70.58% of the active control group 

switched their model preference from pre-test to post-test in the orientation-reproduction task 

after training a different task (visual search), but only 20% of this group changed their 

preferred model in the shape-reproduction tasks. These patterns suggest that different models 

present better fits for different types of stimuli.  

Taken together, the overall pattern at the individual level suggests that, though SMM 

overall explains the performance in the orientation-reproduction task best at the group level, 

no single model can yet capture the dynamic changes in VWM performance during training. 

As discussed in Chapter 3, these changes could be due to acquisition of expertise or strategies 

by individuals to deal with different conditions including set size and stimulus type.  

4.4 Discussion 

The goal of the current study was to identify which possible VWM measurement 

models could better capture VWM performance when intervention-induced changes are 

present or not, across multiple testing sessions, without compromising parsimony. In a series 

of comparisons, we evaluated four VWM measurement models: the SMM (Zhang & Luck, 

2008), SwapM (Bays et al., 2009), SDM (Oberauer, 2021) and TCC (Schurgin et al., 2020). 

Overall, at the group level, we found that the SMM was the simplest and best-fitting model 

for our training data from the experimental group who showed substantial training-induced 

improvement in the quality of VWM performance from the pre-test to post-test. In contrast, 

when substantial cognitive changes were absent, the TCC fitted the data better. Furthermore, 

at the individual level, we found that participants were prone to switching their VWM model 

preference across testing sessions and conditions, suggesting that none of the current 



 90 

measurement models can fully account for the dynamic, substantial changes in VWM 

performance. These switches in model preference for the orientation-reproduction task data 

were present even in the active control group who did not train for this task but showed test-

retest practice effects, suggesting that model preference switches are not specific to training-

induced changes. In addition, changes in model preference were much less pronounced in the 

data from the untrained shape-reproduction task; hence, the stimulus type seems to also 

impact which VWM measurement model fits best.  

The pattern of our results that the SMM (Zhang & Luck, 2008) was favoured when 

substantial changes were present whereas the TCC (Schurgin et al., 2020) was preferred 

when changes were absent, provides three major implications for the debates on the nature of 

VWM representations as well as explanations on cognitive changes through intervention. 

Firstly, estimated parameters (capacity and precision) regarding the quantity and quality of 

VWM representations are dissociable if substantial changes have been induced. This idea is 

in line with previous intervention research where selective improvement in quantity or quality 

were observed (Ovalle Fresa & Rothen, 2019; Sutterer & Awh, 2016; S. Wang et al., 2019). 

Secondly, precision is limited that can be improved through intervention, such as brain 

stimulation (Heinen et al., 2016) or cognitive training (Jiang et al., 2023; Ovalle Fresa & 

Rothen, 2019). Thirdly, although, as suggested by the TCC model, perceptual familiarity can 

be a dominant source of imprecise memory, our results suggest it is not a main contributor to 

the observed substantial cognitive changes. To explain these substantial changes in VWM, it 

appears to be that a simple, generic view of changeable precision by SMM for the 

remembered feature information is sufficient, in comparison to more complex analysis of the 

limited precision by SwapM and SDM.  

Our observation of the changes in model preference for data from the same task also 

warrants a cautious note for researchers who use computational models like these four VWM 
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models to examine training-induced changes. In principle, the choice of a measurement 

model often depends on researchers’ measurement aims and theoretical assumptions. 

However, effects of study design, such as the number of testing sessions, conditions, and 

stimulus type, are typically neglected in modelling research but should also be considered 

when choosing a measurement model. More importantly, the fluctuations in model preference 

at the individual level could reflect dynamic changes in strategy use, which can be acquired 

through training or test-retest practice, as well as adjustments to different conditions, and type 

of stimulus.  

In addition, together with the stimulus-specific training-induced benefits observed in 

Chapter 3, the pattern at the pre-test that the SMM and TCC fitted the data from the 

orientation-reproduction task best, whereas the TCC fared best only for the data from the 

shape-reproduction task, suggests a possible effect of stimulus type on how stimulus 

information is stored in memory. Indeed, processing orientation information and shape 

information in VWM involves different neural networks (Faillenot et al., 1997). Furthermore, 

the memory strength for the shape feature may rely more on the subjective similarity of 

shapes (like colours), while orientations benefit less from their similarity. Such a stimulus-

specific effect is in line with the finding that substantial stimulus-specific variations in 

memory precision can distort the decision drawn from model comparison (Pratte et al., 2017).  

4.4.1 Limitations and Future Research 

One major limitation is that we determined the best-fitting model based on absolute 

minimum BIC values. However, for the data of some individuals, who probably tried out 

different strategies during the same session, might show minor differences in preferring 

different models. As a result, the BIC values for non-winning models might only be 

marginally bigger than that for the winning model, thus leading to ambiguous model 

comparison results for these individuals. Together with a relatively small sample size, this 
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uncertainty at the individual level might confound the overall pattern of our results. Future 

studies should include a bigger sample to enable accounting for these individual differences. 

A Bayesian hierarchical framework can be promising to address these limitations (Frischkorn 

& Popov, 2023); however, no feasible computational modelling existed at the time of the 

present data.  

Another limitation is that the current comparison study focused only on un-cued, 

partial-report continuous-reproduction paradigms. Although we accounted for the stimulus-

type (orientation vs shape), the possibility of paradigm-specific preferences on models cannot 

be excluded. Future research could test its generation to a different type of paradigm, for 

example, a pre-cued paradigm where participants are informed of the location of the target, or 

a whole-report paradigm where participants need to report all stimuli’s feature instead of one 

probed item as the target. The former might lead to better fits of the cue-based binding 

models such as the SDM, while the latter might lead to better fits of swap-error featured 

models like the SwapM.  

4.4.2 Conclusion 

To the best of our knowledge, the current study is the first to quantitatively compare 

all four popular VWM measurement models together, aiming to provide explanations for 

cognitive changes through interventions like cognitive training. The overall pattern of results 

at the group level supports that SMM can best account for substantial cognitive changes. In 

contrast, when substantial changes are absent, TCC can capture VWM performance better. 

However, at the individual level, none of the current models can fully account for the changes 

induced by training or test-retest effects.   
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Chapter 5 – General Discussion 

 

Contributions: 

Shuangke Jiang (conceptualization, writing – original draft and editing) 

Myles Jones (supervision and review) 

Claudia von Bastian (supervision, review, and editing)   
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5.1 Thesis main findings 

This thesis had three overarching goals addressing the replication and theory crises in the 

field of WM enhancement. The first goal was to empirically assess the replicability and 

robustness of the effects of tDCS on improving WM. The second goal was to investigate the 

mechanisms underlying cognitive changes by empirically testing predictions based on a 

capacity-efficiency theoretical model of training and transfer effects (von Bastian, 2021). The 

third goal was to evaluate a set of four existing VWM measurement models that were widely 

employed in the continuous-reproduction VWM paradigm, but their theoretical assumptions 

have been hotly debated.  

As shown in Chapter 2, we did not observe any benefits of single-session, anodal parietal 

or prefrontal tDCS on VWM capacity and precision. In particular, we failed to replicate the 

selective, large effect of parietal tDCS on increasing VWM capacity at a big set size that was 

reported by Wang et al. (2019). In Chapter 3, we found stimuli-specific and paradigm-

specific training gains in precision but not in the capacity of VWM representations. The 

pattern of our results supports that training gains are driven by a more efficient use of 

available cognitive capacity instead of expanding the existing capacity. In Chapter 4, we 

found that the Standard Mixture Model (Zhang & Luck, 2008) was the simplest and best-

fitting model for our training data of the experimental group who showed substantial training-

induced improvement while the Target Confusability Competition model was the simplest 

and best-fitting model when substantial cognitive changes were absent in a different group 

and a different WM task at the group level. However, at the individual level, none of the 

current models could fully account for the dynamic changes induced by training or training-

unspecific effects. 
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5.2 Theoretical implications 

The overall pattern of our empirical findings in Chapter 2 and Chapter 3 suggested that 

WM can be enhanced through interventions like WM training but not necessarily through a 

single session of tDCS. We investigated two possible pathways to enhance WM that were 

described in the capacity-efficiency theoretical models (von Bastian et al., 2021), and 

measured by the Standard Mixture Model (Zhang & Luck, 2008). Our findings speak against 

the first proposed pathway – through expanding capacity as a general resource – by showing 

the absence of changes in capacity estimates after both tDCS and training interventions. On 

the other hand, our findings support the second pathway – through enhancing efficiency in 

using existing capacity – by showing training-induced, but not tDCS-induced, enhancement 

in precision estimates.  

Also, investigating the intervention-induced changes in WM can aid better understanding 

of WM with the examples of our two empirical studies in Chapter 2 and Chapter 3. Data from 

both studies was best fitted by the measurement Standard Mixture Model which stems from 

the discrete-slot class of explanatory models. This class of models assumes a fixed upper 

limit on the quantitative number of items that can be remembered. After reaching the capacity 

limit, the information is stored in an all-or-none manner, that is, with a certain precision or 

not at all. The pattern of absent changes in capacity in both studies supports the notion of the 

upper limit on capacity which is less likely to be altered by both tDCS and WM training. 

Although by WM training only, the quality can still be improved.  

Nevertheless, the findings in Chapter 4 have warranted a cautious note for researchers, 

who use computational models like the four measurement models, Standard Mixture Model 

(Zhang & Luck, 2008, 2011), Swap Model (Bays et al., 2009; Schneegans & Bays, 2016), 

Signal Discrimination Model (Oberauer, 2021) and Target Confusability Competition model 

(Schurgin et al., 2020), to examine VWM changes induced by interventions like cognitive 
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training. Before any change occurs, perceptual familiarity may be a dominant source of 

imprecise memory, as assumed in the Target Confusability Competition model, but not a 

main contributor to substantial cognitive changes. When substantial changes are induced, the 

Standard Mixture Model is sufficient to explain these substantial changes in VWM. In the 

Standard Mixture Model, a simple generic view of limited precision of the remembered 

feature information is assumed. Nonetheless, different computational models and theoretical 

explanations are needed to fully account for dynamic individuals’ changes in cognitive status. 

Therefore, our current theoretical-computational understanding of VWM still needs further 

refining, especially in WM enhancement research where cognitive changes are more likely to 

be induced.  

5.4 Practical implications 

Our findings in Chapter 2 highlighted the importance of replication studies investigating 

the robust tDCS effect on improving VWM. Often weak or inflated statistically positive 

effects of tDCS were reported with a small sample size in the field. These claims have 

motivated its therapeutic application to vulnerable populations like older adults with mild 

cognitive impairment or Alzheimer’s disease. Accounting for possible caveats from the 

original study (Wang et al., 2019), our pre-registered replication included a bigger sample 

size, completed counterbalancing, a larger number of trials and a more challenging version of 

the task. The substantial evidence for a null effect that was observed in our replication study 

suggests that previously reported positive effects of tDCS and its therapeutic application need 

to be interpreted with caution without large-scale and multi-centre clinical trials. Thus, the 

replication approach from Chapter 2 directly addresses the replication crisis in the field and 

highlights the importance of pre-registering the difference between the original and 

replication studies.  
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Furthermore, our work in Chapter 3 has shown a need for shifting focus in the field from 

‘Can cognitive training improve WM or not’ onto ‘Why cognitive training can (not) improve 

WM’, to explain the inconsistent benefits through training. Owing to the development of 

theoretical explanatory models of training and transfer effects (e.g., the capacity-efficiency 

model; von Bastian et al., 2021), we are able to test theoretically informed hypotheses about 

possible training gains. Our findings have further drawn attention, from the capacity-driven 

mechanism, to investigating the efficiency-driven mechanism of training-induced gains 

through the acquisition of expertise or strategies.  

Last but not least, this thesis is characterised by investigating two types of interventions 

(i.e., tDCS and WM training) for studying WM enhancement. Our approach to combining 

cognitive enhancement research with computational measurement models of VWM in both 

Chapter 2 and Chapter 3 has strengthened the links between our hypotheses and the theory of 

VWM and its enhancement. This approach has contributed to not only addressing the theory 

crisis in the field but also facilitating the generalisability and replicability of interventions. 

5.5 Limitations and future research 

Despite these important implications, several general limitations need to be considered. 

One limitation of the employed tDCS technique in Chapter 2 – the low spatial resolution of 

conventional tDCS devices with two electrodes – can bring challenges to the assessment of 

the robust and replicable effects of tDCS. Conventional tDCS often results in widespread, 

diffuse modulation over the entire cortical surface owing to the large size and separation of 

electrode pads (Datta et al., 2009). The low spatial resolution translates into low precision 

when targeting brain regions corresponding to specific cognitive functions, preventing 

drawing consistent conclusions about the optimal parameters and causal nature of areas 

implicated in cognitive processes (Reinhart & Woodman, 2015). Together with individual 

differences in head anatomy and morphology of brain structures (e.g., sulci and gyri), this 
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may further make replications more challenging. Indeed, the effects of tDCS are highly 

variable, which also is sensitive to inter-individual differences in the tDCS-induced electric 

fields in the cortex (Laakso et al., 2019). In Chapter 2, we aimed to conceptually replicate the 

effects of such a conventional tDCS as reported in the original study by Wang et al. (2019). 

The low spatial resolution of tDCS and/or individual differences in head and brain anatomy 

may contribute to differences in the findings of tDCS studies. Future research should consider 

improving the spatial resolution and specificity of the stimulated head model. One way to 

improve the precision of tDCS is to use high-definition tDCS to modulate the exact neural 

networks that serve for the specific cognitive functions like VWM, augmenting 

computational models that simulate individual electric fields (Wischnewski et al., 2021). 

In addition to these methodological challenges in replicating the tDCS effects, one single 

replication like in Chapter 2 does not disprove the general effect of tDCS (Simons, 2014). 

One single replication study can add information about the reliability of the originally 

reported effects by providing accumulative evidence to the field, until it reaches a consistent 

conclusion. This single replication from a different lab has inevitable differences like the 

characteristics of recruited participants and lab environment, which could potentially 

contribute to the inconsistent findings. Therefore, accounting for robust effects of tDCS 

across samples and even experimental settings is of great significance for future replication 

studies. One good, though effortful, practice to examine true tDCS effects is direct 

replications by multiple laboratories, which accounts for the reliability and generalisability 

through internal meta-analyses with a good control of the methodological differences (Elliott 

et al., 2021; Pavlov et al., 2021; Simons, 2014; Strzelczyk et al., 2023).  

Another limitation is that we focused on behavioural data alone. In Chapter 3, we 

speculated that training gains are a result of the acquisition of stimuli-specific expertise (i.e., 

better sensory discrimination), possibly operating at the perceptual encoding stage. Moreover, 
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such expertise might boost the precision of VWM representations at the maintenance and 

recall stages. Confirming these hypotheses and gaining a better understanding of the stages at 

which these training-induced benefits occur will facilitate the implementation of more 

effective and transferable training interventions. To achieve this goal, future studies could 

combine the behavioural evidence with VWM-related EEG signals, such as contralateral 

delay activity, theta (4–8 Hz) and alpha (8–12 Hz) oscillations.  

Another limitation in Chapter 3 was that we did not measure directly which strategies 

participants used, which could also impact the interpretation of our findings reported in 

Chapter 4. Although we inspected the use of more cardinal orientations after training an 

orientation reproduction task, we were not able to directly differentiate strategies that were 

used by individuals between the trained, and untrained tasks with a different stimulus or 

paradigm type. This could limit our further understanding of the efficiency-driven training 

gains that were observed in Chapter 3, that is, whether these training gains are a product of 

acquired strategies that can be transferred to a different stimulus or paradigm type. At the 

same time, we were not able to identify the changes of strategy use during training, which 

could potentially provide evidential explanations on why a different measurement model is 

needed by individuals from one training session to another in Chapter 4. 

A general limitation of model comparisons is the inevitably arbitrariness of model 

selection criteria. We chose the overall optimal measurement model when training-induced 

was present among existing well-documented models at the group level based on Bayesian 

information criterion (BIC). BIC is theoretically motivated by the notion of a ‘true’ model 

among model candidates, so that, with increasing sample size, the probability of the ‘true’ 

model being selected also increases (Aho et al., 2014; Vrieze, 2012). We used the BIC and 

assumed that one of the possible models could so far provide the best explanation on training-

induced changes in Chapter 4. Although we only chose our model candidates as they are 
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widely used and applied to the continuous-reproduction paradigm, our study cannot exclude 

the possibility that other models also or better account for these cognitive changes. However, 

it is known that “Remember that all models are wrong; the practical question is how wrong 

do they have to be to not be useful.” (Box & Draper, 1987, p. 424). One solution for future 

research to balance it could be conducting factorial comparisons by combining the competing 

factors from all four models to increase the possible model space (van den Berg et al., 2014; 

Oberauer 2021).  

Moreover, another general limitation in terms of the choice of model comparison 

method exists. Our measurement aims were to evaluate which model would best detect 

training-induced changes in VWM which could possibly be generalised to different samples 

of data, like from different training programmes and even other intervention studies. A more 

conservative model comparison method like BIC suits our aims better (Evans, 2019). 

However, researchers who have different measurement aims might need a different model 

comparison method that could lead to different conclusions. For example, for those who are 

interested in which model can best predict the source of recall errors in VWM and believe the 

reality is more complex than the current model candidates, a more liberal method like Akaike 

information criterion (AIC) may be preferred. AIC enables detection of small effects that are 

often compromised by BIC. As a result, a more complex model might be preferred. Indeed, 

when based on AIC (as reported in supplementary materials in Chapter 4), overall, a more 

complex model, SDM, would fit the same data sample best. Still, it is an open question how 

to address such model selection uncertainty due to the choice of model comparison methods 

in the field (Burnham & Anderson, 2004; Yang, 2005). Future work could at least pre-

register their assumptions and measurement aims in order to avoid similar confusions that we 

encountered.  
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5.6 Conclusion 

Notwithstanding the above limitations, this thesis demonstrated a case study of 

addressing the replication and theory crisis in the field of WM enhancement. We highlighted 

the importance of pre-registered replication studies and theory-informed hypothesis testing. 

In contrast to previously reported positive effects, substantial evidence from our study 

favoured the absence of any cognitive benefits after tDCS regardless of stimulation site and 

task difficulty. Considering the complexity of tDCS parameters and setups, our null findings 

highlight the critical importance of conducting replications for building a robust and 

informative body of evidence on the effectiveness of non-invasive brain stimulation on WM 

enhancement. Also, this thesis supports the notion that training enhances cognitive efficiency 

through the acquisition of expertise or strategies, but training is unlikely to expand capacity 

per se. A better understanding of how training facilitates a more efficient use of the available 

VWM capacity, and how the underlying training benefits are influenced by the characteristics 

of stimuli and paradigms, will be critical for harnessing the potential training benefits. Last 

but not least, this thesis demonstrated that none of the current existing VWM measurement 

models meet the need for capturing dynamic cognitive changes as observed through WM 

interventions. A new or improved VWM measurement model with an explanatory theoretical 

framework (e.g., efficiency-driven mechanisms) that also fully accounts for the efficiency-

driven WM training benefits, is required.   
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Appendix A 

 

Post Stimulation Ratings – Session 1 / session 2 

Participant ID:_________ 

 

Please rate your “current” levels of pain, attention and fatigue.  

 

Minimal Pain                                                                                                              Maximal Pain 

I------------------I------------------I------------------I------------------I------------------I------------------I 

1                        2                      3                       4                        5                       6                        7 

 

Poorest Attention                                                                                                    Maximal Attention 

I------------------I------------------I------------------I------------------I------------------I------------------I 

1                        2                      3                       4                        5                       6                        7 

           

Minimal Fatigue                                                                                                           Maximal Fatigue 

I------------------I------------------I------------------I------------------I------------------I------------------I 

1                        2                      3                       4                        5                       6                        7 
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Appendix B 

 

tDCS Adverse Effects Questionnaire: 

Session: 

ID: 

 

Do you experience any of the 

following symptoms or 

side-effects? 

Enter a value (1–4) in the 

space below (1, 

absent; 2, mild; 3, 

moderate; 4, severe) 

If present: Is this related to 

tDCS? (1, none; 2, 

remote; 3, possible; 

4, probable; 5, 

definite) 

Headache 
  

Neck pain 
  

Scalp pain 
  

Tingling 
  

Itching 
  

Burning sensation 
  

Skin redness 
  

Sleepiness 
  

Trouble concentrating 
  

Acute mood change 
  

Others (specify) 
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Appendix C 

 

For each of the sessions you have completed you received either real or sham* tDCS.  

 

Please circle the appropriate answer.  

 

Which tDCS do you think you received during session 1?  Real / Sham / I am not sure 

 

Which tDCS do you think you received during session 2?  Real / Sham / I am not sure 

 

Which tDCS do you think you received during session 3?  Real / Sham / I am not sure 

 

 * The purpose of sham stimulation was to act as a control (placebo), ensuring participants experienced a 

similar itching feeling that receded over the first few seconds of active stimulation. Sham stimulation 

lasted for a few seconds from the initial time of the stimulation.  
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Table D1 
Individual Head Model 

Participant NI TT C 
1 38.00 35.00 61.50 
2 34.00 37.00 55.00 
3 34.00 37.00 56.50 
4 32.00 32.50 54.00 
5 36.00 35.00 56.00 
6 37.00 37.00 59.00 
7 35.00 33.50 55.00 
8 36.00 34.00 58.00 
9 35.00 34.00 55.00 
10 36.00 36.50 56.00 
11 33.00 36.00 55.50 
12 35.00 34.50 57.80 
13 34.00 36.50 56.50 
14 36.50 37.50 58.00 
15 37.00 36.50 60.50 
16 32.50 32.50 54.00 
17 33.00 36.00 57.00 
18 32.00 33.00 54.00 
19 36.00 37.50 58.00 
20 38.00 37.00 60.00 
21 35.50 35.50 57.00 
22 33.00 33.00 54.00 
23 35.50 35.00 58.00 
24 33.50 35.00 57.50 
25 32.00 35.00 53.00 
26 34.00 37.00 55.00 
27 37.00 36.00 56.50 
28 35.00 35.00 55.00 
29 34.00 35.00 56.00 
30 32.00 34.00 51.50 
31 35.00 34.00 57.00 
32 32.00 34.00 54.50 
33 36.00 37.00 56.00 
34 32.00 34.00 53.00 
35 34.00 35.00 52.00 
36 32.00 35.00 53.50 
37 35.00 38.00 56.50 
38 34.00 35.00 56.00 
39 36.00 37.00 58.00 
40 35.00 37.00 55.50 
41 32.00 34.00 53.50 
42 37.00 35.00 59.00 
43 36.00 35.00 56.50 
44 33.00 35.00 54.00 
45 36.00 36.00 56.50 
46 34.00 35.00 53.50 
47 35.00 36.00 58.00 
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Table D1 
Individual Head Model 

Participant NI TT C 
48 34.00 33.00 55.00 

Note. NI = length between nasion and inion (cm): TT = length from left tragus to right 
tragus (cm); C = circumference length (cm). 
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Table E1 
Differences in Relative Akaike Information Criterion Values (ΔAIC) 

Participant 
Sham PPC DLPFC 

Set size 
2 4 6 2 4 6 2 4 6 

1 -2.00 2.72 -2.00 -2.00 10.61 1.10 -2.01 7.92 5.65 
2 -2.00 12.18 11.40 -2.00 4.04 3.65 -2.00 6.36 5.64 
3 -2.06 -2.00 0.11 -2.25 -1.34 3.03 -2.00 -2.00 0.48 
4 2.17 3.14 -0.27 -0.52 -2.00 14.15 -2.00 0.08 -0.35 
5 -2.00 -1.74 -1.20 -2.00 -1.96 1.78 -2.00 -0.88 4.65 
6 -2.00 -1.69 2.61 -2.00 2.10 -0.53 -2.00 2.07 -0.69 
7 -2.00 1.13 -2.00 2.93 -1.84 -1.14 2.64 1.67 -1.80 
8 -1.55 0.94 -0.99 -1.14 1.00 5.69 -2.00 0.02 -2.00 
9 2.21 2.19 -1.14 -1.45 2.37 -2.00 -2.00 2.76 -0.72 
10 -2.00 -1.81 -0.93 -2.00 -0.69 8.61 5.36 0.97 -1.04 
11 -1.87 3.82 -1.70 -2.00 -0.83 -1.65 -2.00 3.94 -1.75 
12 -2.00 -1.79 -1.99 -2.00 -0.71 18.69 -2.07 -1.33 -1.68 
13 1.96 0.53 5.94 -1.66 6.71 0.11 1.20 4.83 1.38 
14 -2.00 -1.96 -1.08 -1.16 -0.91 -1.46 -2.00 -0.32 -0.34 
15 -2.00 10.32 10.30 -2.00 0.94 16.73 0.77 7.78 28.49 
16 4.75 -2.00 -1.91 2.24 -2.00 0.40 -0.29 -2.00 6.84 
17 -1.71 -2.00 -2.00 -2.00 7.14 1.83 -1.73 -1.89 -1.94 
18 0.91 1.93 1.06 -2.00 0.89 1.25 0.22 5.11 7.25 
19 -2.00 -2.00 -1.32 -2.00 1.43 -1.84 -2.00 0.19 -1.49 
20 -2.00 -2.00 -2.00 -2.00 2.02 0.78 -2.00 1.52 -0.87 
21 -2.00 -0.26 -0.17 -2.00 -1.22 5.03 -2.00 2.58 -2.00 
22 -1.81 -1.83 -2.00 3.18 -2.00 -2.00 -2.00 6.07 1.65 
23 -2.00 0.18 -0.10 2.60 1.10 1.61 -2.00 6.06 3.12 
24 -2.00 3.73 -0.10 -2.00 -2.00 -2.00 -2.01 -1.37 12.07 
25 -2.00 0.47 1.92 -2.00 7.94 4.18 -2.00 1.71 3.35 
26 -2.01 7.04 5.67 -2.00 -2.00 7.59 -2.00 -0.96 1.29 
27 -2.00 8.34 12.27 -2.00 -0.92 9.94 -2.00 0.22 -2.00 
28 7.34 6.74 2.95 -2.00 -1.02 4.87 -2.00 -2.00 0.27 
29 -2.00 -2.00 -2.00 -2.00 -2.00 1.03 -2.00 -0.05 -2.00 
30 -1.23 -0.39 7.61 -1.96 10.18 5.79 -2.00 2.80 7.68 
31 -1.12 -1.44 0.54 -1.47 -1.73 5.46 -2.00 -0.02 -0.41 
32 -2.00 0.17 -1.98 -2.00 -2.00 -1.94 -2.00 -0.71 1.12 
33 -1.35 -2.00 -2.00 -2.00 7.70 -1.82 -2.00 1.19 -1.07 
34 -2.00 -1.44 -2.00 -2.00 -2.00 7.48 -1.99 -2.00 1.42 
35 2.55 -1.97 -1.57 2.31 -0.89 2.84 -2.00 -1.77 -2.00 
36 3.97 -1.34 -1.88 -2.00 9.42 2.22 1.35 1.32 -0.96 
37 -0.39 7.62 -1.14 -2.06 0.76 2.46 -0.75 2.48 0.92 
38 -0.38 3.43 1.23 -2.00 -1.83 -2.00 9.43 -0.48 1.72 
39 -2.01 0.62 0.10 -2.11 -2.00 -1.08 -2.00 -2.00 -0.77 
40 -2.00 -2.00 -2.00 -2.01 -0.44 -2.00 -2.00 4.28 3.66 
41 -1.86 -1.35 -1.78 -2.00 -0.34 0.73 3.27 -2.00 1.97 
42 -2.00 -0.75 -1.86 -2.01 9.60 3.78 -2.00 4.18 5.34 
43 -2.00 1.03 2.22 3.27 -1.69 0.85 -1.93 -1.88 2.38 
44 -2.00 -2.00 -1.33 -2.02 -1.77 -0.78 -1.14 -1.74 -2.00 
45 -1.98 11.99 2.68 -2.12 0.41 9.60 -2.00 -0.79 4.17 
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Table E1 
Differences in Relative Akaike Information Criterion Values (ΔAIC) 

Participant 
Sham PPC DLPFC 

Set size 
2 4 6 2 4 6 2 4 6 

46 -2.00 3.93 -0.46 4.81 8.39 2.08 3.88 1.25 -1.90 
47 -2.00 3.27 -2.00 -2.01 -1.66 -1.96 -2.00 -2.00 2.28 
48 -1.24 -2.00 1.03 -2.00 0.91 -2.00 1.25 -1.38 -1.92 

Note. Negative values favours SMM while positive values favours SM. The lower value 

represents a better model fit. SMM, standard mixture model; SM, swap model. 
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Table E2 
Differences in Relative Bayesian Information Criterion Values (ΔBIC) 

Participant 
Sham PPC DLPFC 

Set size 
2 4 6 2 4 6 2 4 6 

1 -6.63 -1.91 -6.63 -6.63 5.98 -3.53 -6.63 3.30 1.02 
2 -6.63 7.55 6.78 -6.63 -0.59 -0.98 -6.63 1.73 1.01 
3 -6.69 -6.63 -4.52 -6.88 -5.96 -1.60 -6.63 -6.63 -4.15 
4 -2.46 -1.48 -4.90 -5.15 -6.63 9.53 -6.63 -4.54 -4.97 
5 -6.63 -6.36 -5.83 -6.63 -6.58 -2.84 -6.63 -5.50 0.02 
6 -6.63 -6.31 -2.02 -6.63 -2.52 -5.15 -6.63 -2.56 -5.32 
7 -6.63 -3.50 -6.63 -1.69 -6.47 -5.77 -1.98 -2.96 -6.43 
8 -6.17 -3.68 -5.62 -5.76 -3.63 1.06 -6.63 -4.61 -6.63 
9 -2.41 -2.43 -5.77 -6.08 -2.25 -6.63 -6.63 -1.87 -5.34 
10 -6.63 -6.44 -5.56 -6.63 -5.32 3.99 0.74 -3.66 -5.66 
11 -6.49 -0.80 -6.32 -6.63 -5.46 -6.28 -6.63 -0.68 -6.37 
12 -6.63 -6.41 -6.62 -6.63 -5.33 14.07 -6.70 -5.95 -6.31 
13 -2.67 -4.10 1.32 -6.28 2.09 -4.52 -3.43 0.21 -3.25 
14 -6.63 -6.59 -5.70 -5.79 -5.54 -6.09 -6.63 -4.94 -4.96 
15 -6.63 5.69 5.67 -6.63 -3.69 12.10 -3.86 3.15 23.87 
16 0.13 -6.63 -6.53 -2.38 -6.63 -4.23 -4.92 -6.63 2.22 
17 -6.33 -6.62 -6.63 -6.63 2.51 -2.80 -6.36 -6.51 -6.56 
18 -3.72 -2.70 -3.57 -6.63 -3.74 -3.37 -4.40 0.48 2.62 
19 -6.63 -6.63 -5.94 -6.63 -3.19 -6.47 -6.63 -4.43 -6.11 
20 -6.63 -6.62 -6.62 -6.63 -2.61 -3.84 -6.63 -3.10 -5.50 
21 -6.63 -4.88 -4.80 -6.63 -5.84 0.41 -6.63 -2.04 -6.63 
22 -6.43 -6.46 -6.63 -1.44 -6.63 -6.63 -6.63 1.44 -2.97 
23 -6.63 -4.44 -4.72 -2.03 -3.52 -3.01 -6.63 1.44 -1.50 
24 -6.63 -0.89 -4.72 -6.63 -6.63 -6.63 -6.63 -5.99 7.45 
25 -6.63 -4.15 -2.70 -6.63 3.31 -0.44 -6.63 -2.92 -1.28 
26 -6.63 2.41 1.04 -6.63 -6.63 2.97 -6.63 -5.58 -3.34 
27 -6.63 3.72 7.65 -6.63 -5.54 5.31 -6.63 -4.41 -6.63 
28 2.71 2.11 -1.67 -6.63 -5.65 0.25 -6.63 -6.63 -4.36 
29 -6.63 -6.63 -6.63 -6.63 -6.62 -3.60 -6.63 -4.68 -6.62 
30 -5.85 -5.02 2.98 -6.59 5.56 1.17 -6.63 -1.83 3.06 
31 -5.75 -6.06 -4.09 -6.10 -6.36 0.84 -6.63 -4.64 -5.03 
32 -6.63 -4.46 -6.60 -6.63 -6.63 -6.57 -6.63 -5.33 -3.51 
33 -5.98 -6.63 -6.63 -6.63 3.07 -6.44 -6.63 -3.44 -5.69 
34 -6.63 -6.07 -6.63 -6.63 -6.63 2.86 -6.62 -6.62 -3.21 
35 -2.07 -6.60 -6.20 -2.32 -5.52 -1.79 -6.62 -6.39 -6.63 
36 -0.66 -5.97 -6.50 -6.63 4.80 -2.41 -3.27 -3.30 -5.58 
37 -5.01 3.00 -5.76 -6.68 -3.86 -2.17 -5.37 -2.14 -3.70 
38 -5.01 -1.19 -3.40 -6.63 -6.46 -6.63 4.81 -5.11 -2.91 
39 -6.63 -4.00 -4.53 -6.74 -6.63 -5.70 -6.63 -6.63 -5.40 
40 -6.63 -6.63 -6.63 -6.63 -5.06 -6.63 -6.63 -0.35 -0.96 
41 -6.49 -5.97 -6.40 -6.63 -4.97 -3.90 -1.36 -6.63 -2.66 
42 -6.63 -5.37 -6.48 -6.64 4.97 -0.84 -6.63 -0.44 0.71 
43 -6.63 -3.60 -2.41 -1.35 -6.32 -3.78 -6.56 -6.51 -2.24 
44 -6.63 -6.63 -5.95 -6.65 -6.40 -5.40 -5.76 -6.36 -6.63 
45 -6.60 7.36 -1.95 -6.75 -4.21 4.97 -6.63 -5.41 -0.45 
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Table E2 
Differences in Relative Bayesian Information Criterion Values (ΔBIC) 

Participant 
Sham PPC DLPFC 

Set size 
2 4 6 2 4 6 2 4 6 

46 -6.63 -0.69 -5.08 0.19 3.77 -2.54 -0.75 -3.37 -6.53 
47 -6.63 -1.36 -6.63 -6.63 -6.29 -6.58 -6.63 -6.63 -2.34 
48 -5.87 -6.63 -3.60 -6.63 -3.72 -6.63 -3.38 -6.01 -6.54 

Note. Negative values favours SMM while positive values favours SM. The lower value 

represents a better model fit. SMM, standard mixture model; SM, swap model.  
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Appendix F 

 

Supplementary analyses for Chapter 2 – Does transcranial direct current stimulation 

enhance visual working memory? A replication study 

 
Blindness and post-stimulation rating  

To ensure participants were blind to the condition, we examined their self-reported 

guesses about which stimulation condition they thought they had received by running one-

sample Wilcoxon tests, as the data violated the assumption of normality. For the sham 

condition, guessing accuracy was 52.10%, which was not significantly different from chance 

guessing of 50%, V = 612.50, p = 0.78, r = 0.04, BF01 = 6.14 ± 0.06%. This result confirms 

that overall participants were not able to differentiate the sham stimulation from active 

stimulations, indicating our blinding was effective in preventing placebo effects.  

We also investigated the level of pain, attention, and fatigue after each stimulation. 

We found that only pain level after DLPFC stimulation (M = 1.83, SD = 1.10) was 

significantly higher than that after sham (M = 1.33, SD = 0.72), t(47) = 3.07, Bonferroni-

adjusted p = .011, Cohen’s d = 0.44, BF10 = 9.29 ± 0.00%. However, this did not affect their 

overall cognitive performance. Note that there was no significant difference between 

stimulation conditions regarding the levels of attention (Bonferroni-adjusted p ranged 0.067 

to 1.000) and fatigue (Bonferroni-adjusted p values were 1.000).  

Adverse tDCS Effects 

Overall, the current tDCS setup did not lead to any severe adverse effect, which 

indicates the safety of the montage and paradigms (Table F1). The most common adverse 

events reported in the total of 144 sessions (3 sessions for each participant) that were related 

to tDCS were tingling (58.3% of all experimental sessions) and itching (45.9%) sensations, 

followed by skin redness (30.5%)  
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Table F1 

Adverse Effects Self-Reported After Stimulation and Sham Sessions 

Adverse effect In general (%) tDCS-related (%) 
Tingling sensation 61.8 58.3 
Itching sensation 52.1 45.9 
Skin redness 34.7 30.5 
Headache 15.3 10.4 
Scalp pain 13.2 12.5 
Neck pain 5.6 2.1 
Concentration problems 14.6 7.6 
Sleepiness 36.1 13.2 
Acute mood change 4.9 3.5 

Note. Percentages refer to proportions of 144 sessions (3 sessions for each participant).   
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Table G1 
Akaike Information Criterion Values Relative to The Winning Model for The Experimental Group in Orientation Reproduction Task 

ID 

Session 
Pre-
Test T1 T2 T3 T4 Post-

Test 

Set Size 
4 2 4 6 2 4 6 2 4 6 2 4 6 4 

Standard Mixture Model 
1 0.00 0.00 11.13 6.89 0.81 11.90 5.23 0.00 0.00 13.48 10.17 3.09 1.17 2.70 
5 3.90 2.06 11.07 3.14 1.37 2.58 0.00 3.54 1.46 9.28 15.96 2.80 1.95 5.20 
8 2.98 0.00 2.54 3.31 8.25 8.71 0.00 0.00 2.29 1.10 10.48 2.06 1.10 0.00 
10 0.00 0.14 0.00 5.38 0.00 0.00 0.00 1.79 0.95 0.80 0.25 0.00 1.12 0.00 
11 0.00 5.04 8.05 0.32 2.26 3.20 2.11 0.00 0.00 0.00 3.83 0.00 5.27 0.48 
12 5.51 0.00 0.00 8.65 0.00 1.75 0.00 4.91 0.00 0.00 1.38 0.00 0.00 2.98 
14 7.78 1.47 18.05 10.22 16.62 6.93 0.72 5.94 0.00 2.73 0.90 12.97 2.11 0.63 
17 2.08 1.01 7.34 2.41 1.36 1.34 15.37 0.00 2.44 0.66 0.00 0.00 3.57 0.00 
18 3.00 2.36 7.58 10.28 0.00 2.71 2.76 1.98 0.00 0.00 12.18 0.25 0.00 6.53 
19 0.00 0.00 0.00 0.00 0.00 0.00 3.59 0.00 0.00 0.00 6.95 0.00 0.00 0.00 
20 3.65 3.21 8.12 0.00 2.31 17.40 0.00 0.00 14.51 0.00 0.00 9.70 7.43 0.00 
21 1.99 1.31 0.55 1.59 4.51 2.83 0.00 4.17 0.00 4.68 0.00 0.00 2.29 0.83 
22 3.24 0.00 1.82 5.76 0.63 12.46 0.00 5.33 6.64 1.14 0.00 0.27 3.21 0.98 
23 0.83 3.39 8.15 2.79 0.00 6.70 0.44 0.00 0.00 7.21 0.00 0.00 3.47 0.00 
24 10.01 3.21 5.68 0.00 3.37 5.32 0.92 7.45 0.18 1.90 1.23 0.00 0.00 0.00 
25 4.45 3.90 2.04 0.00 0.72 1.29 2.37 0.90 3.53 8.60 0.00 0.00 0.00 2.94 
26 0.00 0.00 0.67 0.00 0.00 0.00 11.56 13.14 0.82 4.80 0.00 0.00 0.09 0.80 
27 7.45 6.67 10.18 3.54 4.89 12.50 0.00 12.73 0.00 1.79 7.87 0.69 1.99 30.54 
29 7.79 16.75 0.00 6.26 5.44 0.00 15.36 6.91 1.30 7.22 20.92 6.43 0.00 8.61 
30 16.18 4.23 1.06 1.46 3.04 0.00 1.64 5.58 0.00 7.66 12.85 0.83 21.51 5.14 
32 0.00 0.00 0.07 0.00 0.00 0.30 1.26 14.78 0.94 0.00 0.00 7.23 0.00 0.85 
33 6.44 0.17 3.11 1.91 9.46 9.27 5.75 1.87 3.12 1.88 2.02 4.50 6.93 1.32 
34 0.44 0.00 3.70 3.75 0.00 0.00 0.00 1.29 11.04 0.00 0.00 2.24 4.98 7.08 
36 0.00 0.00 0.00 0.00 0.00 0.00 9.04 0.00 4.53 4.46 0.00 0.00 0.00 0.07 
37 0.00 0.00 1.73 0.00 0.00 1.81 0.00 4.62 0.00 0.00 0.00 0.47 1.99 0.00 
39 0.00 0.00 4.00 6.85 8.65 0.00 2.43 3.50 0.00 2.27 0.00 0.00 0.73 2.21 
40 23.31 7.10 0.00 18.65 7.84 0.00 4.08 8.28 1.13 3.46 5.33 0.00 1.94 21.01 
42 5.78 3.34 0.00 3.77 3.93 0.00 0.87 3.87 4.07 0.00 0.40 0.27 1.36 2.29 
44 1.93 0.53 1.22 4.66 0.00 0.00 15.25 0.00 9.31 0.00 6.69 3.25 1.43 9.73 
46 42.20 31.74 4.43 13.71 8.40 1.49 12.69 0.92 1.85 1.30 14.68 0.00 13.60 0.00 

Sum 160.94 97.62 122.30 125.31 93.86 110.48 113.44 113.49 70.09 86.43 134.08 57.05 89.23 112.92 
Swap Model 

1 1.00 0.54 13.13 5.54 0.00 13.90 6.75 2.00 2.00 0.00 3.45 5.09 0.00 4.64 
5 0.00 2.50 11.46 0.00 0.00 4.57 1.47 5.54 1.53 2.91 4.99 3.48 2.80 6.78 



 118 

Table G1 
Akaike Information Criterion Values Relative to The Winning Model for The Experimental Group in Orientation Reproduction Task 

ID 

Session 
Pre-
Test T1 T2 T3 T4 Post-

Test 

Set Size 
4 2 4 6 2 4 6 2 4 6 2 4 6 4 

8 0.00 2.00 4.54 0.30 5.84 4.52 0.03 2.00 3.38 0.81 3.53 3.99 0.00 2.00 
10 1.31 0.00 1.95 7.29 1.31 2.00 2.00 3.79 0.00 2.46 2.15 1.29 3.10 0.45 
11 2.00 6.68 8.04 2.20 0.00 5.20 0.00 2.00 2.00 1.46 0.02 2.00 2.97 2.09 
12 4.75 2.00 2.00 8.62 1.39 3.75 0.63 6.91 2.00 2.00 0.00 2.00 0.42 3.77 
14 1.80 0.00 20.05 8.14 3.77 8.93 0.88 0.00 2.00 4.73 2.35 11.81 0.77 1.85 
17 0.00 0.00 5.18 1.91 0.94 3.34 13.85 1.54 4.44 2.40 2.00 2.00 4.27 1.64 
18 5.00 1.87 0.00 5.35 0.62 4.43 2.88 0.53 1.54 0.65 0.06 0.00 1.99 0.00 
19 2.00 2.00 2.00 2.00 1.51 2.00 2.48 1.59 2.00 2.00 0.00 2.00 2.00 2.00 
20 4.02 5.21 4.94 2.00 4.05 19.40 1.99 2.00 13.63 2.00 2.00 11.70 6.29 2.00 
21 0.38 2.53 1.66 0.00 6.51 1.22 1.15 3.06 2.00 6.02 1.69 2.00 0.00 2.83 
22 0.00 2.00 2.73 0.00 0.72 9.45 1.84 7.31 8.54 0.00 2.00 1.63 5.21 0.00 
23 0.00 3.94 9.31 4.79 2.00 0.00 2.43 2.00 2.00 2.53 1.99 0.16 0.04 2.00 
24 0.00 1.56 2.39 1.83 0.00 6.05 1.42 0.00 2.18 0.00 2.83 2.00 2.00 1.97 
25 6.45 1.88 3.58 1.08 0.75 3.12 3.15 0.27 5.51 0.00 1.72 1.29 1.86 2.91 
26 1.62 1.98 2.67 0.69 0.77 2.00 6.60 5.20 2.82 0.00 0.12 2.00 0.00 1.47 
27 0.00 6.13 5.27 0.00 0.00 8.56 1.85 6.12 2.00 3.47 0.00 2.69 0.18 0.00 
29 5.58 0.00 2.00 3.40 0.00 2.00 9.95 5.02 3.30 8.12 8.75 8.43 2.00 9.97 
30 10.82 2.55 1.28 1.90 1.68 2.00 1.15 0.00 1.99 8.11 11.03 2.63 13.04 1.90 
32 0.77 2.00 2.07 1.94 1.99 0.00 2.73 0.00 2.94 0.67 1.62 8.14 2.00 1.63 
33 0.00 0.00 5.11 3.79 8.89 11.27 6.79 0.00 5.12 2.30 0.00 6.50 6.71 0.00 
34 2.44 0.93 3.39 3.52 1.33 2.00 2.00 3.29 12.49 0.58 2.00 2.94 5.24 2.94 
36 1.36 0.94 2.00 1.73 2.00 2.00 0.00 1.86 4.02 4.80 2.00 2.00 2.00 1.73 
37 1.28 1.51 3.67 1.17 1.14 2.05 2.00 6.62 0.36 1.87 1.71 0.00 3.91 1.93 
39 2.00 1.73 6.00 3.83 0.00 2.00 0.98 0.00 1.94 2.85 0.52 2.00 2.69 3.56 
40 0.00 4.66 0.46 12.37 0.92 2.00 3.18 0.00 3.13 3.94 2.90 2.00 2.34 8.16 
42 0.00 0.00 2.00 4.13 0.00 2.00 0.00 5.87 6.07 2.00 1.78 0.00 2.99 2.46 
44 1.20 0.00 3.22 2.69 1.85 2.00 9.12 2.00 8.98 2.00 1.30 3.55 0.00 4.60 
46 8.08 0.00 5.05 0.00 0.00 2.93 2.12 1.84 3.25 1.77 6.05 1.99 2.79 2.00 

Sum 63.86 57.15 137.16 92.21 49.97 134.71 91.40 78.35 113.16 72.45 70.55 97.31 79.62 79.26 
Signal Discrimination Model 

1 1.00 0.85 0.00 0.00 2.10 0.93 0.00 1.40 3.29 0.64 0.00 0.00 0.95 0.00 
5 2.65 0.00 0.00 1.90 1.99 0.00 0.42 6.34 0.00 0.00 0.00 0.00 1.34 0.00 
8 1.51 2.02 0.00 0.00 0.00 0.00 0.63 3.41 0.00 0.00 0.00 0.00 0.29 5.11 
10 3.43 3.39 5.48 7.21 1.89 2.02 4.07 5.58 1.34 3.71 2.80 2.82 5.01 0.07 
11 2.46 0.51 0.00 0.46 0.10 0.00 4.02 3.60 1.84 0.81 0.00 1.23 0.00 0.00 
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Table G1 
Akaike Information Criterion Values Relative to The Winning Model for The Experimental Group in Orientation Reproduction Task 

ID 

Session 
Pre-
Test T1 T2 T3 T4 Post-

Test 

Set Size 
4 2 4 6 2 4 6 2 4 6 2 4 6 4 

12 0.00 0.61 0.84 0.00 5.69 0.00 1.31 0.00 3.51 5.02 3.24 5.13 3.46 0.00 
14 0.00 1.24 0.00 0.00 0.00 0.00 0.00 4.51 1.01 0.00 0.00 0.00 0.00 0.00 
17 3.30 0.62 0.00 0.00 0.00 0.00 0.00 0.68 2.77 0.00 4.69 0.70 4.07 5.84 
18 6.32 0.00 5.37 0.00 0.65 0.00 0.00 0.00 7.91 1.93 0.00 0.59 4.05 1.91 
19 6.90 3.13 0.40 5.87 4.95 3.80 0.00 0.93 3.76 3.69 6.29 7.59 5.46 4.18 
20 0.37 1.49 0.00 1.94 0.00 0.00 3.40 1.91 0.00 1.91 2.61 0.00 0.00 1.30 
21 0.00 3.04 0.00 1.56 5.27 0.00 3.34 0.00 3.67 2.64 3.72 2.35 2.05 4.14 
22 1.60 6.15 0.00 0.82 0.00 0.00 5.27 0.00 0.00 1.74 4.67 0.00 4.05 0.17 
23 0.57 0.00 0.00 0.56 3.54 5.72 0.00 7.39 1.52 0.00 1.36 4.69 0.00 3.84 
24 2.12 3.51 0.00 2.16 0.46 0.00 0.00 2.57 0.00 2.30 0.00 3.37 3.92 2.89 
25 5.53 0.00 0.00 2.59 2.04 3.87 5.27 0.00 0.00 0.60 0.63 0.49 0.21 0.00 
26 5.84 6.59 0.00 4.27 2.93 0.13 0.00 0.00 0.10 3.02 3.19 3.45 4.50 0.00 
27 5.00 7.86 0.00 0.03 3.38 0.00 3.09 0.00 7.55 3.69 4.52 0.00 1.25 5.02 
29 2.50 3.89 1.88 0.00 4.89 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.91 0.00 
30 0.00 0.00 0.00 3.95 0.00 7.94 0.00 0.56 3.80 0.00 0.00 0.00 0.00 0.00 
32 4.90 3.60 0.00 6.07 2.39 4.08 0.00 11.77 0.00 1.65 1.02 3.87 2.22 0.00 
33 2.79 4.10 0.00 0.00 0.00 0.00 0.00 1.76 0.00 0.00 6.12 0.00 0.00 4.24 
34 4.67 2.10 0.00 0.00 3.67 5.61 3.62 3.97 0.00 2.77 1.33 0.00 6.80 2.47 
36 4.98 0.76 2.98 1.85 3.76 4.07 0.28 2.87 0.00 0.00 5.20 0.82 6.56 0.00 
37 0.28 1.65 0.00 3.83 5.53 0.00 3.85 7.44 4.76 2.36 4.53 5.10 5.66 3.11 
39 5.11 1.36 0.00 0.00 3.96 1.61 0.00 5.04 5.03 1.68 0.72 5.49 3.02 4.38 
40 1.68 0.00 6.13 0.00 0.00 7.04 0.00 9.08 0.00 0.00 0.00 1.10 0.00 0.00 
42 3.30 3.65 3.03 0.00 1.56 0.58 3.06 6.00 0.00 3.35 0.00 0.00 4.33 0.00 
44 0.00 2.47 0.00 0.00 1.28 3.69 0.00 3.57 0.00 1.35 0.00 0.00 1.71 0.00 
46 0.00 0.74 0.00 1.59 0.49 0.00 0.00 0.49 0.00 2.37 0.00 2.71 0.00 4.22 

Sum 78.79 65.32 26.10 46.65 62.50 51.27 41.60 90.86 51.86 47.20 56.64 51.50 71.83 52.90 
Target Confusability Competition Model 

1 11.26 9.17 36.20 12.31 9.80 0.00 20.60 7.28 20.54 16.95 18.69 24.40 5.17 5.01 
5 3.73 4.76 35.30 2.93 8.75 14.40 2.57 0.00 23.66 7.45 21.88 32.48 0.00 13.40 
8 2.87 0.50 6.19 7.93 4.97 2.55 6.42 5.42 4.32 14.68 7.78 2.66 6.85 8.66 
10 0.91 5.50 10.96 0.00 0.98 17.72 0.28 0.00 3.23 0.00 0.00 9.27 0.00 2.06 
11 5.88 0.00 2.59 0.00 16.26 15.35 6.97 32.08 11.40 5.95 12.95 9.32 7.43 10.96 
12 7.35 6.20 7.54 15.80 19.49 13.03 7.52 8.43 16.88 13.83 15.54 23.11 21.44 17.46 
14 13.20 13.27 30.13 21.65 20.50 19.68 14.77 19.98 13.38 13.39 24.75 10.11 6.42 6.84 
17 9.83 5.87 20.62 0.83 15.43 15.96 24.61 1.82 0.00 4.34 9.37 11.81 0.00 15.54 
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Table G1 
Akaike Information Criterion Values Relative to The Winning Model for The Experimental Group in Orientation Reproduction Task 

ID 

Session 
Pre-
Test T1 T2 T3 T4 Post-

Test 

Set Size 
4 2 4 6 2 4 6 2 4 6 2 4 6 4 

18 0.00 4.85 28.75 12.00 5.51 21.02 1.79 16.33 42.21 9.66 18.13 15.21 1.10 6.66 
19 17.74 13.82 23.88 16.60 18.06 20.10 18.08 9.09 18.31 14.15 30.93 21.87 11.58 6.24 
20 0.00 0.00 10.10 8.28 16.86 20.13 14.70 3.75 30.32 23.34 11.79 14.64 28.29 5.33 
21 12.07 0.00 16.79 2.96 0.00 6.08 1.16 2.51 12.67 0.00 21.86 24.28 2.75 0.00 
22 14.08 9.82 18.00 14.36 7.34 26.66 3.39 6.57 28.31 4.79 5.54 13.35 0.00 8.92 
23 4.99 16.66 21.86 0.00 11.63 40.18 10.52 14.76 14.01 10.92 12.43 31.72 13.51 8.33 
24 9.36 0.00 24.19 1.40 7.61 11.86 1.74 16.77 5.18 2.49 12.62 10.94 3.71 8.19 
25 0.00 11.30 20.79 2.36 0.00 0.00 0.00 6.96 7.81 9.07 0.04 8.13 2.96 3.40 
26 12.35 27.28 22.38 13.30 21.09 22.63 24.37 25.99 0.00 25.45 10.11 13.84 10.86 16.97 
27 13.04 0.00 19.85 2.67 1.81 28.58 0.09 17.22 34.87 0.00 13.44 19.98 0.00 28.80 
29 0.00 23.02 26.38 11.20 8.95 13.09 17.81 6.76 3.33 7.64 18.08 20.97 12.22 13.21 
30 14.61 6.12 7.02 0.00 2.91 26.56 1.69 11.90 0.66 12.28 15.19 14.10 26.63 7.44 
32 36.48 9.70 7.88 13.96 13.29 13.50 4.94 34.61 18.58 2.01 12.56 0.00 8.43 24.67 
33 21.91 24.70 26.80 8.63 8.04 28.47 29.49 20.22 26.26 23.32 12.04 17.48 8.00 36.86 
34 0.00 5.36 11.12 1.35 3.90 25.14 2.03 0.00 19.78 3.49 0.32 17.43 0.00 0.00 
36 6.52 0.17 7.83 0.55 4.65 13.95 10.87 11.28 8.79 4.98 17.46 4.62 17.93 6.80 
37 1.89 4.42 5.81 1.18 13.60 7.28 2.38 0.00 21.74 2.49 9.54 31.80 0.00 1.05 
39 9.21 4.72 3.78 8.38 18.49 24.12 1.04 11.98 19.02 0.00 11.30 52.78 0.00 0.00 
40 37.66 10.26 28.29 23.61 16.99 10.78 11.12 23.18 14.62 9.56 30.20 21.17 5.00 38.97 
42 7.34 10.08 21.34 10.35 11.07 1.88 7.33 0.00 0.86 0.40 2.50 18.64 0.00 4.87 
44 3.04 6.03 21.93 7.33 8.70 9.01 19.00 8.59 22.42 5.13 11.68 10.31 8.46 23.80 
46 41.60 34.65 2.76 10.90 21.00 3.93 13.52 0.00 6.16 0.00 16.45 0.96 15.12 1.29 

Sum 318.92 268.24 527.05 232.82 317.68 473.63 280.77 323.50 449.31 247.75 405.15 507.38 223.85 331.73 

Note. N = 30. This table includes IDs that were included for analysis. The value for winning model is 0. The smaller the value, the 
better the fit. Only set size of 4 was assessed at Pre-Test and Post-Test. T1 – T4: 1st training to 4th training session.  
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Table G2 
Bayesian Information Criterion Values Relative to The Winning Model for The Experimental Group in Orientation Reproduction 
Task 

ID 

Session 
Pre-
Test T1 T2 T3 T4 Post-

Test 
Set Size 

4 2 4 6 2 4 6 2 4 6 2 4 6 4 
Standard Mixture Model 

1 0.00 0.00 3.36 5.92 0.32 15.79 4.26 0.00 0.00 12.99 9.20 0.00 0.69 0.47 
5 2.96 1.09 3.30 2.66 0.89 0.00 0.00 4.02 0.00 8.31 14.99 0.00 2.44 0.00 
8 2.90 0.00 0.24 2.53 7.28 10.05 0.00 0.00 1.86 0.13 9.52 3.28 0.61 0.00 
10 1.88 0.00 0.00 5.87 0.00 0.00 0.21 2.28 1.60 1.28 0.74 0.00 1.61 0.73 
11 0.00 5.53 9.35 0.80 1.78 0.00 1.63 0.00 0.00 0.00 3.32 0.00 4.30 0.00 
12 0.95 0.00 0.00 7.68 0.00 0.00 0.00 3.94 0.00 0.00 0.89 0.00 0.00 0.00 
14 3.20 0.99 10.28 9.25 15.65 0.00 0.00 5.46 0.00 1.76 0.00 6.75 1.14 0.00 
17 0.00 0.52 0.00 2.06 0.39 0.00 14.40 0.00 6.32 0.00 0.00 0.00 4.05 0.00 
18 5.78 1.39 3.69 9.31 0.00 0.00 1.79 1.01 0.00 0.00 11.64 0.00 0.00 3.74 
19 0.00 0.00 0.00 0.00 0.00 0.00 2.62 0.00 0.00 0.00 6.46 0.00 0.00 0.00 
20 6.44 3.69 1.91 0.00 1.34 9.63 0.00 0.00 6.73 0.00 0.00 1.93 6.46 0.00 
21 0.00 1.79 0.00 1.10 4.99 0.63 0.00 3.20 0.00 5.17 0.00 0.00 1.80 3.61 
22 0.45 0.00 0.00 5.28 0.00 4.69 0.00 4.36 0.00 0.66 0.00 0.00 3.69 0.00 
23 0.00 2.42 0.38 3.27 0.00 2.82 0.00 0.00 0.00 6.24 0.00 0.00 2.94 0.00 
24 7.22 3.69 0.00 0.00 2.89 0.00 0.00 6.96 0.00 1.42 0.26 0.00 0.00 0.00 
25 7.24 2.93 0.00 0.00 1.20 5.17 2.86 0.15 0.00 8.12 0.44 0.00 0.00 2.33 
26 0.00 0.00 0.00 0.00 0.00 0.00 10.59 12.17 4.70 4.32 0.00 0.00 0.00 0.00 
27 4.66 7.15 2.41 3.06 4.40 4.73 0.40 11.76 0.00 2.27 7.38 0.00 2.47 27.76 
29 10.57 16.27 0.00 5.29 4.95 0.00 14.39 5.94 1.86 6.25 19.95 0.00 0.00 3.04 
30 10.61 3.26 0.00 1.94 2.07 0.00 0.67 5.10 3.23 6.69 11.88 0.00 20.54 0.49 
32 0.00 0.00 0.00 0.00 0.00 0.00 0.29 14.29 0.00 0.00 0.00 11.11 0.00 0.00 
33 3.65 0.00 0.00 0.94 8.49 1.50 4.78 1.39 0.00 0.91 1.54 0.00 5.96 0.00 
34 3.23 0.00 0.00 2.89 0.00 0.00 0.00 1.77 3.27 0.00 0.17 0.00 5.46 9.87 
36 0.00 0.32 0.00 0.00 0.00 0.00 8.55 0.00 0.00 3.49 0.00 0.00 0.00 0.00 
37 0.90 0.00 0.00 0.00 0.00 0.00 0.00 5.10 0.00 0.00 0.00 0.00 2.47 1.74 
39 0.00 0.00 4.10 5.88 8.16 0.00 1.88 3.01 0.00 2.75 0.00 0.00 1.22 5.00 
40 20.52 6.13 0.00 17.68 6.87 0.00 3.11 7.80 0.00 2.49 4.36 0.00 0.97 15.44 
42 2.99 2.85 0.00 2.80 3.45 2.01 0.39 4.35 7.10 0.08 0.00 0.00 1.85 0.21 
44 1.67 0.04 0.00 3.69 0.00 0.00 14.28 0.00 1.54 0.00 5.72 0.00 0.94 4.16 
46 36.63 31.26 5.55 13.23 7.91 1.44 11.72 1.41 0.00 1.79 13.71 2.92 12.63 1.50 

Sum 134.45 91.33 44.57 113.13 83.04 58.45 98.81 105.46 38.21 77.13 122.17 26.00 84.25 80.07 
Swap Model 

1 3.79 1.03 9.24 5.06 0.00 21.68 6.26 2.48 5.89 0.00 2.96 5.89 0.00 5.21 
5 1.85 2.01 7.58 0.00 0.00 5.88 1.96 6.51 3.96 2.42 4.51 4.57 3.77 4.36 
8 2.71 2.48 6.13 0.00 5.35 9.74 0.51 2.48 6.84 0.33 3.05 9.10 0.00 4.79 
10 5.98 0.35 5.83 8.26 1.79 5.89 2.69 4.76 4.54 3.43 3.12 5.18 4.07 3.97 
11 4.79 7.65 13.22 3.17 0.00 5.89 0.00 2.48 5.89 1.94 0.00 5.89 2.49 4.39 
12 2.98 2.48 5.89 8.14 1.88 5.89 1.11 6.43 5.89 2.48 0.00 5.89 0.90 3.58 
14 0.00 0.00 16.17 7.66 3.29 5.89 0.64 0.00 5.89 4.25 1.94 9.47 0.28 4.00 
17 0.71 0.00 1.72 2.05 0.46 5.89 13.36 2.03 12.21 2.22 2.48 5.89 5.24 4.43 
18 10.57 1.39 0.00 4.86 1.10 5.61 2.39 0.04 5.43 1.13 0.00 3.64 2.48 0.00 
19 4.79 2.48 5.89 2.48 1.99 5.89 1.99 2.08 5.89 2.48 0.00 5.89 2.48 4.79 
20 9.59 6.18 2.61 2.48 3.56 15.51 2.48 2.48 9.74 2.48 2.48 7.81 5.80 4.79 
21 1.17 3.50 4.99 0.00 7.48 2.91 1.64 2.58 5.89 6.99 2.18 5.89 0.00 8.40 
22 0.00 2.48 4.80 0.00 0.57 5.57 2.32 6.83 5.79 0.00 2.48 5.25 6.18 1.81 
23 1.95 3.45 5.42 5.76 2.48 0.00 2.47 2.48 5.89 2.04 2.47 4.04 0.00 4.79 
24 0.00 2.53 0.60 2.31 0.00 4.62 0.99 0.00 5.89 0.00 2.35 5.89 2.48 4.75 
25 12.02 1.40 5.43 1.57 1.72 10.89 4.12 0.00 5.87 0.00 2.65 5.17 2.35 5.09 
26 4.41 2.47 5.89 1.18 1.26 5.89 6.12 4.71 10.59 0.00 0.61 5.89 0.39 3.45 
27 0.00 7.10 1.39 0.00 0.00 4.68 2.73 5.63 5.89 4.44 0.00 5.89 1.15 0.00 
29 11.16 0.00 5.89 2.92 0.00 5.89 9.47 4.53 7.74 7.64 8.26 5.89 2.48 7.18 
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Table G2 
Bayesian Information Criterion Values Relative to The Winning Model for The Experimental Group in Orientation Reproduction 
Task 

ID 

Session 
Pre-
Test T1 T2 T3 T4 Post-

Test 
Set Size 

4 2 4 6 2 4 6 2 4 6 2 4 6 4 
30 8.04 2.07 4.10 2.87 1.19 5.89 0.66 0.00 9.11 7.63 10.55 5.68 12.56 0.03 
32 3.55 2.48 5.89 2.43 2.48 3.58 2.24 0.00 5.89 1.16 2.10 15.91 2.48 3.57 
33 0.00 0.32 5.89 3.30 8.40 7.39 6.31 0.00 5.89 1.82 0.00 5.89 6.23 1.47 
34 8.02 1.41 3.58 3.14 1.82 5.89 2.48 4.26 8.61 1.07 2.65 4.59 6.21 8.51 
36 4.15 1.74 5.89 2.21 2.48 5.89 0.00 2.35 3.38 4.31 2.48 5.89 2.48 4.44 
37 4.96 1.99 5.83 1.66 1.62 4.13 2.48 7.59 4.24 2.36 2.19 3.41 4.88 6.46 
39 4.79 2.22 9.99 3.34 0.00 5.89 0.91 0.00 5.83 3.82 1.00 5.89 3.66 9.14 
40 0.00 4.17 4.35 11.88 0.43 5.89 2.69 0.00 5.89 3.45 2.42 5.89 1.86 5.37 
42 0.00 0.00 5.89 3.64 0.00 7.89 0.00 6.84 12.98 2.56 1.87 3.62 3.96 3.17 
44 3.73 0.00 5.89 2.21 2.33 5.89 8.63 2.48 5.09 2.48 0.81 4.19 0.00 1.81 
46 5.29 0.00 10.06 0.00 0.00 6.77 1.64 2.81 5.28 2.74 5.56 8.80 2.30 6.28 

Sum 120.99 65.41 176.01 94.58 53.70 199.26 91.31 84.87 197.86 77.69 73.19 182.84 89.19 130.03 
Signal Discrimination Model 

1 6.57 1.82 0.00 0.00 2.58 12.59 0.00 2.37 11.06 1.13 0.00 4.69 1.43 3.35 
5 7.28 0.00 0.00 2.38 2.47 5.19 1.38 7.79 6.31 0.00 0.00 4.98 2.80 0.38 
8 7.00 2.99 5.47 0.19 0.00 9.11 1.60 4.38 7.34 0.00 0.00 9.00 0.78 10.69 
10 10.88 4.23 13.25 8.66 2.86 9.80 5.25 7.04 9.77 5.16 4.25 10.59 6.46 6.38 
11 8.03 1.97 9.07 1.92 0.58 4.58 4.50 4.57 9.61 1.78 0.47 9.00 0.00 5.09 
12 1.02 1.58 8.61 0.00 6.66 6.03 2.28 0.00 11.28 5.99 3.73 12.90 4.43 2.60 
14 0.99 1.72 0.00 0.00 0.00 0.84 0.25 4.99 8.78 0.00 0.07 1.55 0.00 4.94 
17 6.79 1.11 0.43 0.62 0.00 6.43 0.00 1.65 14.42 0.31 5.66 8.47 5.52 11.42 
18 14.68 0.00 9.25 0.00 1.62 5.07 0.00 0.00 15.69 2.90 0.43 8.11 5.02 4.69 
19 12.47 4.10 8.17 6.84 5.92 11.58 0.00 1.90 11.54 4.66 6.78 15.37 6.43 9.76 
20 8.73 2.94 1.56 2.91 0.00 0.00 4.37 2.88 0.00 2.88 3.58 0.00 0.00 6.88 
21 3.58 4.50 7.22 2.05 6.73 5.57 4.31 0.00 11.44 4.10 4.69 10.12 2.53 12.50 
22 4.39 7.12 5.95 1.30 0.34 0.00 6.24 0.00 1.13 2.22 5.64 7.50 5.50 4.77 
23 5.32 0.00 0.00 2.01 4.51 9.60 0.53 8.36 9.29 0.00 2.33 12.47 0.44 9.42 
24 4.91 4.97 2.10 3.13 0.94 2.45 0.05 3.06 7.59 2.78 0.00 11.14 4.89 8.46 
25 13.90 0.00 5.73 3.56 3.50 15.53 6.72 0.21 4.24 1.09 2.04 8.26 1.18 4.97 
26 11.42 7.56 7.10 5.24 3.90 7.90 0.00 0.00 11.76 3.50 4.15 11.22 5.38 4.77 
27 7.79 9.31 0.00 0.52 3.86 0.00 4.46 0.00 15.32 5.14 5.01 7.08 2.70 7.81 
29 10.86 4.37 9.65 0.00 5.37 7.96 0.00 0.00 8.33 0.00 0.00 1.34 1.88 0.00 
30 0.00 0.00 6.71 5.41 0.00 15.71 0.00 1.04 14.80 0.00 0.00 6.94 0.00 0.92 
32 10.47 4.57 7.70 7.04 3.36 11.55 0.00 12.26 6.83 2.62 1.99 15.53 3.19 4.72 
33 5.58 4.90 4.66 0.00 0.00 0.00 0.00 2.24 4.65 0.00 6.60 3.28 0.00 8.50 
34 13.03 3.07 4.07 0.10 4.64 13.38 4.59 5.42 0.00 3.74 2.47 5.53 8.26 10.84 
36 10.55 2.05 10.75 2.82 4.73 11.84 0.76 3.84 3.24 0.00 6.17 8.59 7.53 5.50 
37 6.75 2.62 6.04 4.80 6.50 5.97 4.82 8.90 12.53 3.33 5.50 12.40 7.12 10.43 
39 10.69 2.33 7.88 0.00 4.44 9.38 0.42 5.53 12.80 3.13 1.69 13.27 4.48 12.74 
40 4.47 0.00 13.90 0.00 0.00 14.81 0.00 9.57 6.65 0.00 0.00 8.87 0.00 0.00 
42 6.08 4.13 10.80 0.00 2.05 10.36 3.54 7.45 10.80 4.40 0.57 7.50 5.79 3.50 
44 5.32 2.95 6.55 0.00 2.25 11.46 0.00 4.54 0.00 2.32 0.00 4.52 2.19 0.00 
46 0.00 1.22 8.90 2.07 0.98 7.73 0.00 1.94 5.92 3.83 0.00 13.40 0.00 11.29 

Sum 219.55 88.13 181.53 63.57 80.78 232.40 56.07 111.92 253.14 66.99 73.82 253.62 95.94 187.30 
Target Confusability Competition Model 

1 8.47 8.69 24.54 10.86 8.83 0.00 19.14 6.79 16.65 15.98 17.23 17.43 4.20 0.00 
5 0.00 3.31 23.64 1.96 7.78 7.94 2.09 0.00 18.32 5.99 20.43 25.80 0.00 5.41 
8 0.00 0.02 0.00 6.66 3.51 0.00 5.93 4.94 0.00 13.22 6.33 0.00 5.88 5.88 
10 0.00 4.88 7.08 0.00 0.49 13.83 0.00 0.00 0.00 0.00 0.00 5.39 0.00 0.00 
11 3.09 0.00 0.00 0.00 15.29 8.27 6.00 31.59 7.52 5.47 11.96 5.44 5.98 7.69 
12 0.00 5.72 3.66 14.34 19.01 7.40 7.04 6.98 12.99 13.35 14.57 19.22 20.95 11.69 
14 5.83 12.30 18.47 20.19 19.05 8.86 13.57 19.01 9.49 11.94 23.37 0.00 4.97 3.42 



 123 

Table G2 
Bayesian Information Criterion Values Relative to The Winning Model for The Experimental Group in Orientation Reproduction 
Task 

ID 

Session 
Pre-
Test T1 T2 T3 T4 Post-

Test 
Set Size 

4 2 4 6 2 4 6 2 4 6 2 4 6 4 
17 4.96 4.90 9.39 0.00 13.98 10.73 23.15 1.34 0.00 3.20 8.88 7.92 0.00 12.75 
18 0.00 3.40 20.98 10.54 5.03 14.42 0.33 14.88 38.32 9.18 17.11 11.08 0.61 1.08 
19 14.96 13.33 19.99 16.11 17.58 16.21 16.62 8.61 14.43 13.66 29.96 17.98 11.09 3.46 
20 0.00 0.00 0.00 7.79 15.40 8.47 14.22 3.27 18.66 22.86 11.31 2.98 26.83 2.54 
21 7.29 0.00 12.35 1.99 0.00 0.00 0.67 1.06 8.78 0.00 21.37 20.39 1.78 0.00 
22 8.51 9.34 12.29 13.39 6.23 15.01 2.90 5.12 17.79 3.82 5.05 9.19 0.00 5.16 
23 1.37 15.21 10.20 0.00 11.14 32.41 9.59 14.28 10.12 9.46 11.94 27.84 12.50 5.54 
24 3.78 0.00 14.63 0.91 6.64 2.65 0.33 15.80 1.11 1.52 11.16 7.05 3.23 5.40 
25 0.00 9.84 14.86 1.88 0.00 0.00 0.00 5.72 0.40 8.10 0.00 4.24 2.48 0.00 
26 9.56 26.80 17.82 12.81 20.60 18.74 22.92 24.53 0.00 24.48 9.63 9.95 10.28 13.38 
27 7.46 0.00 8.19 1.70 0.84 16.92 0.00 15.76 30.98 0.00 12.46 15.41 0.00 23.22 
29 0.00 22.05 22.50 9.74 7.98 9.21 16.35 5.30 0.00 6.18 16.62 10.65 11.73 4.85 
30 6.25 4.67 2.08 0.00 1.46 22.67 0.24 10.93 0.00 10.82 13.74 9.38 25.18 0.00 
32 33.70 9.22 3.92 13.48 12.80 9.31 3.48 33.64 13.76 1.52 12.07 0.00 7.94 21.04 
33 16.34 24.05 19.80 7.18 6.59 16.81 28.03 19.25 19.26 21.86 11.07 9.09 6.54 32.75 
34 0.00 4.87 3.53 0.00 3.42 21.25 1.55 0.00 8.12 3.00 0.00 11.30 0.00 0.00 
36 3.73 0.00 3.95 0.07 4.16 10.06 9.90 10.79 0.38 3.53 16.97 0.74 17.44 3.95 
37 0.00 3.93 0.20 0.69 13.11 1.59 1.90 0.00 17.86 2.01 9.06 27.44 0.00 0.00 
39 6.43 4.24 0.00 6.92 17.52 20.24 0.00 11.01 15.13 0.00 10.81 48.89 0.00 0.00 
40 32.09 8.80 24.40 22.16 15.53 6.89 9.66 22.21 9.60 8.10 28.75 17.28 3.54 30.61 
42 1.76 9.11 17.45 8.90 10.11 0.00 6.36 0.00 0.00 0.00 1.62 14.49 0.00 0.00 
44 0.00 5.06 16.82 5.88 8.22 5.13 17.55 8.11 10.76 4.65 10.22 3.18 7.49 15.44 
46 33.24 33.68 0.00 9.93 20.03 0.00 12.07 0.00 0.42 0.00 15.00 0.00 13.66 0.00 

Sum 208.80 247.41 332.74 206.09 292.32 305.02 251.59 300.92 300.85 223.90 378.69 359.74 204.32 215.25 
Note. N = 30. This table includes IDs that were included for analysis. The value for winning model is 0. The smaller the value, the 
better the fit. Only set size of 4 was assessed at Pre-Test and Post-Test. T1 – T4: 1st training to 4th training session.  
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Table G3 
Information Criterion Values Relative to The Winning Model for The 
Active Control Group in Orientation Reproduction Task  

ID Pre-Test Post-Test 
AIC BIC AIC BIC 

Standard Mixture Model 
49 9.40 3.82 32.63 29.85 
50 0.22 0.93 7.11 4.32 
51 2.57 1.82 0.00 0.00 
52 3.82 3.16 5.37 0.00 
53 9.31 3.73 4.57 6.18 
54 2.77 3.11 5.85 3.06 
55 0.20 0.13 1.58 0.00 
56 0.00 0.66 0.00 0.00 
57 1.52 4.31 0.00 0.00 
61 4.66 5.44 0.00 2.24 
62 1.81 0.00 0.00 0.10 
64 11.20 5.62 0.00 0.00 
67 2.46 1.75 0.02 1.45 
69 6.46 3.67 0.00 0.00 
70 17.19 14.40 6.78 1.20 
71 1.18 3.26 0.00 0.84 
72 1.41 4.20 1.30 0.00 
74 0.74 0.00 11.28 5.71 
76 3.83 2.68 8.17 5.39 
79 1.51 0.00 4.88 0.85 
80 6.24 3.61 2.21 4.78 
81 0.00 0.00 0.00 0.00 
82 5.84 3.26 0.00 0.00 
83 5.28 1.94 19.86 15.44 
84 0.00 2.56 3.22 6.00 
86 2.17 0.00 5.95 1.21 
89 2.00 4.79 1.20 3.99 
90 25.55 22.76 13.37 10.58 
91 0.00 0.00 15.92 13.13 
92 0.00 0.00 7.07 9.86 
93 0.00 0.00 2.44 0.56 
94 0.00 0.29 4.58 0.00 
96 2.62 0.00 4.19 0.00 
97 0.00 1.35 3.47 0.69 

Sum 131.95 103.25 173.02 127.43 
Swap Model 

49 5.07 2.28 0.00 0.00 
50 0.00 3.50 0.00 0.00 
51 4.53 6.58 2.00 4.79 
52 1.44 3.56 6.03 3.45 
53 6.72 3.93 5.16 9.56 
54 3.58 6.69 0.00 0.00 
55 2.20 4.91 0.00 1.21 
56 1.35 4.79 1.98 4.76 
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Table G3 
Information Criterion Values Relative to The Winning Model for The 
Active Control Group in Orientation Reproduction Task  

ID Pre-Test Post-Test 
AIC BIC AIC BIC 

57 3.81 9.38 2.00 4.79 
61 0.30 3.87 0.95 5.98 
62 0.00 0.98 1.87 4.76 
64 6.38 3.59 1.78 4.56 
67 0.00 2.08 0.00 4.22 
69 0.00 0.00 1.79 4.58 
70 0.00 0.00 6.00 3.22 
71 0.55 5.42 2.00 5.63 
72 4.08 9.66 3.01 4.50 
74 0.00 2.05 9.51 6.72 
76 5.04 6.67 0.00 0.00 
79 0.00 1.28 1.24 0.00 
80 3.08 3.23 3.66 9.02 
81 1.30 4.09 2.00 4.79 
82 4.01 4.22 0.96 3.75 
83 0.56 0.00 1.63 0.00 
84 1.21 6.56 4.92 10.50 
86 0.00 0.62 1.95 0.00 
89 4.00 9.57 2.55 8.13 
90 0.00 0.00 0.00 0.00 
91 0.87 3.65 0.00 0.00 
92 2.00 4.79 8.32 13.90 
93 1.52 4.31 2.61 3.51 
94 1.58 4.66 6.58 4.79 
96 2.65 2.82 3.97 2.57 
97 1.98 6.11 0.00 0.00 

Sum 69.79 135.87 84.49 133.68 
Signal Discrimination Model 

49 0.00 0.00 10.42 13.21 
50 3.83 10.12 2.68 5.46 
51 0.00 4.83 3.73 9.30 
52 0.00 4.91 0.00 0.20 
53 0.00 0.00 0.00 7.19 
54 0.00 5.91 3.58 6.36 
55 0.00 5.50 1.92 5.92 
56 2.85 9.08 4.48 10.06 
57 5.55 13.91 4.72 10.29 
61 0.00 6.36 0.86 8.68 
62 2.22 5.98 2.37 8.05 
64 0.00 0.00 1.75 7.32 
67 0.52 5.39 4.11 11.12 
69 2.89 5.68 5.83 11.41 
70 6.84 9.63 0.00 0.00 
71 0.00 7.65 3.49 9.91 
72 5.43 13.79 0.00 4.27 
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Table G3 
Information Criterion Values Relative to The Winning Model for The 
Active Control Group in Orientation Reproduction Task  

ID Pre-Test Post-Test 
AIC BIC AIC BIC 

74 3.64 8.48 0.00 0.00 
76 0.00 4.42 4.46 7.25 
79 2.26 6.33 0.00 1.54 
80 0.00 2.94 0.00 8.14 
81 2.16 7.74 1.14 6.72 
82 0.00 2.99 2.81 8.38 
83 0.00 2.23 0.00 1.16 
84 2.97 11.10 1.06 9.43 
86 0.75 4.15 0.00 0.84 
89 5.56 13.93 4.05 12.42 
90 4.27 7.06 3.11 5.90 
91 2.62 8.19 9.08 11.87 
92 3.89 9.47 8.14 16.50 
93 2.97 8.54 0.00 3.69 
94 4.49 10.36 0.00 1.00 
96 0.00 2.95 0.00 1.39 
97 0.89 7.82 2.32 5.11 

Sum 66.62 227.47 86.12 230.08 
Target Confusability Competition Model 

49 21.49 13.13 55.56 49.98 
50 2.07 0.00 6.98 1.40 
51 3.53 0.00 2.96 0.17 
52 3.45 0.00 13.24 5.08 
53 20.56 12.19 1.18 0.00 
54 2.46 0.00 10.24 4.67 
55 2.86 0.00 8.74 4.37 
56 2.13 0.00 10.22 7.44 
57 0.00 0.00 11.43 8.64 
61 2.00 0.00 0.55 0.00 
62 18.71 14.12 2.68 0.00 
64 17.83 9.47 14.86 12.07 
67 3.50 0.00 1.35 0.00 
69 6.30 0.73 12.86 10.07 
70 27.44 21.86 22.21 13.84 
71 0.71 0.00 1.95 0.00 
72 0.00 0.00 5.18 1.10 
74 15.56 12.04 18.21 9.85 
76 3.94 0.00 19.93 14.36 
79 4.59 0.30 6.96 0.14 
80 5.42 0.00 0.22 0.00 
81 13.94 11.15 6.96 4.17 
82 5.37 0.00 7.29 4.51 
83 10.30 4.17 17.03 9.83 
84 0.23 0.00 0.00 0.00 
86 7.72 2.76 8.48 0.96 
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Table G3 
Information Criterion Values Relative to The Winning Model for The 
Active Control Group in Orientation Reproduction Task  

ID Pre-Test Post-Test 
AIC BIC AIC BIC 

89 0.00 0.00 0.00 0.00 
90 31.21 25.64 27.97 22.40 
91 17.70 14.91 16.59 11.02 
92 4.16 1.37 0.00 0.00 
93 6.31 3.52 4.67 0.00 
94 2.49 0.00 8.63 1.26 
96 29.54 24.13 27.79 20.81 
97 1.44 0.00 9.55 3.97 

Sum 294.96 171.48 362.47 222.11 
Note. N = 34. Performance was measured at set size 4. This table 
includes IDs that were included for analysis. The value for winning 
model is 0. The smaller the value, the better the fit. AIC = Akaike 
Information Criterion. BIC = Bayesian Information Criterion 
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Table G4 
Information Criterion Values Relative to The Winning Model for 
The Experimental Group in Shape Reproduction Task  

ID Pre-Test Post-Test 
AIC BIC AIC BIC 

Standard Mixture Model 
1 3.61 6.40 0.00 0.00 
5 5.57 5.54 1.11 2.76 
8 0.00 2.15 6.34 9.12 
10 1.61 4.40 2.85 5.63 
11 0.36 0.37 3.55 6.28 
12 0.00 0.84 4.67 7.46 
14 2.52 4.19 11.87 14.66 
17 3.25 0.46 0.00 2.58 
18 0.00 0.00 4.23 7.02 
19 11.00 13.79 0.00 0.00 
20 0.93 2.00 9.60 12.39 
21 0.52 3.25 3.79 6.58 
22 0.00 0.03 4.60 7.39 
23 3.74 6.52 4.00 6.78 
24 0.59 3.38 1.25 4.04 
25 3.71 0.92 5.44 4.89 
26 0.00 0.90 4.35 7.13 
27 4.44 7.23 10.81 13.59 
29 2.50 2.59 0.95 3.74 
30 4.29 2.47 3.54 6.33 
32 6.36 9.14 2.68 0.00 
33 0.89 3.68 10.99 13.77 
34 2.95 2.95 2.86 5.65 
36 0.00 0.00 0.00 0.00 
37 5.47 8.26 0.01 2.80 
39 2.71 5.49 5.58 8.37 
40 0.00 0.00 0.00 0.00 
42 1.70 4.49 1.70 3.96 
44 3.90 6.69 4.34 1.55 
46 0.00 0.00 2.49 5.28 

Sum 72.61 108.14 113.59 169.76 
Swap Model 

1 2.57 8.14 1.91 4.70 
5 0.00 2.76 0.00 4.44 
8 2.00 6.93 8.34 13.91 
10 2.63 8.21 4.62 10.19 
11 0.46 3.26 0.30 5.82 
12 1.86 5.49 5.95 11.53 
14 1.14 5.59 13.87 19.45 
17 0.00 0.00 2.00 7.36 
18 1.51 4.30 4.48 10.05 
19 13.00 18.58 2.00 4.79 
20 0.00 3.86 5.08 10.65 
21 1.04 6.56 5.79 11.36 
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Table G4 
Information Criterion Values Relative to The Winning Model for 
The Experimental Group in Shape Reproduction Task  

ID Pre-Test Post-Test 
AIC BIC AIC BIC 

22 0.91 3.73 6.60 12.18 
23 2.35 7.92 4.65 10.23 
24 2.42 8.00 3.25 8.83 
25 0.00 0.00 0.00 2.24 
26 2.00 5.69 5.23 10.80 
27 5.98 11.55 11.91 17.48 
29 4.50 7.37 2.95 8.52 
30 4.16 5.14 0.13 5.71 
32 8.36 13.93 0.00 0.10 
33 2.85 8.42 12.99 18.56 
34 0.00 2.79 4.07 9.65 
36 2.00 4.79 1.95 4.74 
37 0.39 5.96 1.74 7.32 
39 4.71 10.28 6.07 11.64 
40 2.00 4.79 2.00 4.79 
42 3.70 9.28 0.00 5.06 
44 3.67 9.24 0.00 0.00 
46 1.65 4.44 4.35 9.93 

Sum 77.85 197.01 122.23 262.02 
Signal Discrimination Model 

1 0.93 9.29 3.93 9.50 
5 1.07 6.62 1.34 8.56 
8 2.92 10.64 8.81 17.18 
10 4.80 13.16 5.07 13.43 
11 0.00 5.59 0.00 8.30 
12 2.62 9.04 4.60 12.97 
14 0.00 7.24 11.57 19.93 
17 0.87 3.66 2.86 11.01 
18 3.64 9.21 2.62 10.99 
19 7.83 16.19 3.42 8.99 
20 0.03 6.68 5.60 13.96 
21 0.00 8.31 7.04 15.40 
22 3.64 9.25 7.57 15.93 
23 3.93 12.29 4.42 12.78 
24 4.31 12.67 5.30 13.66 
25 1.99 4.78 2.21 7.23 
26 3.95 10.42 5.09 13.45 
27 7.36 15.72 10.08 18.45 
29 0.00 5.66 1.73 10.09 
30 0.00 3.76 1.09 9.45 
32 7.78 16.14 0.79 3.68 
33 1.16 9.52 11.29 19.66 
34 2.91 8.49 5.00 13.36 
36 2.66 8.24 1.50 7.07 
37 2.32 10.68 1.19 9.55 
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Table G4 
Information Criterion Values Relative to The Winning Model for 
The Experimental Group in Shape Reproduction Task  

ID Pre-Test Post-Test 
AIC BIC AIC BIC 

39 6.47 14.83 7.79 16.15 
40 1.42 7.00 3.46 9.04 
42 4.93 13.30 1.05 8.89 
44 5.62 13.98 4.49 7.27 
46 4.43 10.01 5.83 14.19 

Sum 89.59 292.38 136.72 360.14 
Target Confusability Competition Model 

1 0.00 0.00 2.79 0.00 
5 2.81 0.00 1.14 0.00 
8 0.64 0.00 0.00 0.00 
10 0.00 0.00 0.00 0.00 
11 2.77 0.00 0.06 0.00 
12 1.94 0.00 0.00 0.00 
14 1.12 0.00 0.00 0.00 
17 7.68 2.11 0.21 0.00 
18 4.24 1.45 0.00 0.00 
19 0.00 0.00 10.38 7.60 
20 1.71 0.00 0.00 0.00 
21 0.06 0.00 0.00 0.00 
22 2.76 0.00 0.00 0.00 
23 0.00 0.00 0.00 0.00 
24 0.00 0.00 0.00 0.00 
25 10.74 5.16 3.33 0.00 
26 1.89 0.00 0.00 0.00 
27 0.00 0.00 0.00 0.00 
29 2.70 0.00 0.00 0.00 
30 4.60 0.00 0.00 0.00 
32 0.00 0.00 16.92 11.45 
33 0.00 0.00 0.00 0.00 
34 2.79 0.00 0.00 0.00 
36 9.60 6.81 4.45 1.66 
37 0.00 0.00 0.00 0.00 
39 0.00 0.00 0.00 0.00 
40 7.57 4.78 18.50 15.71 
42 0.00 0.00 0.52 0.00 
44 0.00 0.00 12.06 6.49 
46 6.64 3.85 0.00 0.00 

Sum 72.25 24.17 70.35 42.90 
Note. N = 30. Performance was measured at set size 4. This table 
includes IDs that were included for analysis. The value for winning 
model is 0. The smaller the value, the better the fit. AIC = Akaike 
Information Criterion. BIC = Bayesian Information Criterion 
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Table G5 
Information Criterion Values Relative to The Winning Model for The 
Active Control Group in Shape Reproduction Task  

ID Pre-Test Post-Test 
AIC BIC AIC BIC 

Standard Mixture Model 
49 2.17 0.00 11.98 14.77 
50 0.00 0.00 4.43 7.22 
51 0.00 2.51 5.14 7.93 
52 2.13 4.91 6.06 8.85 
53 2.23 5.01 5.29 8.08 
54 10.06 7.27 2.02 0.00 
55 7.59 10.38 1.91 4.70 
56 9.32 12.11 2.75 5.54 
57 1.43 4.22 1.73 4.51 
61 9.42 10.20 6.48 9.27 
62 5.62 8.41 0.02 2.81 
64 7.59 10.37 0.00 1.38 
67 0.00 0.55 4.28 7.07 
69 5.63 8.42 8.89 6.45 
70 2.26 5.05 2.29 2.37 
71 0.46 1.39 2.75 5.54 
72 6.67 9.45 3.88 6.67 
74 7.44 10.23 10.05 12.84 
76 3.33 6.12 5.24 3.51 
79 6.04 8.82 10.28 13.06 
80 11.42 7.96 4.74 7.53 
81 5.27 6.81 0.00 0.00 
82 9.75 7.73 0.41 0.49 
83 9.76 10.75 3.91 6.70 
84 0.00 2.69 5.68 8.47 
86 5.67 8.46 0.00 0.00 
89 2.27 5.06 1.62 4.40 
90 0.52 3.31 0.00 1.69 
91 0.94 0.00 21.50 16.90 
92 0.00 1.36 2.69 5.48 
93 4.28 7.07 2.39 5.18 
94 4.84 7.63 4.15 2.67 
96 4.18 6.96 1.83 0.00 
97 2.15 4.94 3.41 6.20 

Sum 150.46 206.18 147.80 198.25 
Swap Model 

49 0.00 0.62 13.85 19.42 
50 1.50 4.28 6.43 12.01 
51 2.00 7.30 7.14 12.72 
52 4.13 9.70 6.98 12.55 
53 4.23 9.80 7.29 12.87 
54 0.00 0.00 0.00 0.76 
55 5.76 11.33 3.55 9.13 
56 11.32 16.90 4.04 9.62 
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Table G5 
Information Criterion Values Relative to The Winning Model for The 
Active Control Group in Shape Reproduction Task  

ID Pre-Test Post-Test 
AIC BIC AIC BIC 

57 3.43 9.00 1.92 7.49 
61 1.75 5.31 8.38 13.96 
62 7.62 13.20 0.03 5.61 
64 8.66 14.24 2.00 6.17 
67 1.27 4.60 5.31 10.88 
69 5.82 11.39 4.96 5.32 
70 2.28 7.85 3.92 6.79 
71 0.00 3.72 4.30 9.88 
72 8.67 14.24 5.88 11.46 
74 8.78 14.35 12.05 17.63 
76 5.33 10.90 1.02 2.07 
79 4.07 9.65 9.89 15.47 
80 6.13 5.46 2.44 8.02 
81 3.44 7.77 2.00 4.79 
82 5.83 6.60 0.17 3.03 
83 9.20 12.98 5.91 11.48 
84 1.90 7.38 7.68 13.26 
86 7.67 13.25 1.37 4.16 
89 4.27 9.85 3.40 8.97 
90 2.52 8.10 1.09 5.56 
91 0.00 1.84 11.66 9.85 
92 2.00 6.15 4.69 10.27 
93 3.17 8.75 0.69 6.26 
94 6.84 12.41 0.00 1.31 
96 2.58 8.15 0.00 0.96 
97 4.15 9.73 5.41 10.98 

Sum 146.32 296.82 155.46 300.69 
Signal Discrimination Model 

49 0.03 3.44 13.39 21.76 
50 3.45 9.02 7.80 16.16 
51 3.81 11.90 8.55 16.92 
52 5.40 13.77 5.57 13.93 
53 4.89 13.25 7.95 16.31 
54 2.61 5.40 1.67 5.22 
55 5.49 13.85 3.55 11.91 
56 10.69 19.05 3.30 11.66 
57 5.50 13.86 4.41 12.77 
61 0.00 6.35 9.95 18.31 
62 5.11 13.47 2.65 11.01 
64 6.78 15.15 3.75 10.71 
67 2.72 8.84 6.42 14.78 
69 4.31 12.67 0.00 3.14 
70 3.04 11.40 0.00 5.65 
71 1.22 7.72 6.64 15.01 
72 9.39 17.76 7.22 15.58 
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Table G5 
Information Criterion Values Relative to The Winning Model for The 
Active Control Group in Shape Reproduction Task  

ID Pre-Test Post-Test 
AIC BIC AIC BIC 

74 8.34 16.70 9.75 18.12 
76 4.80 13.16 0.00 3.84 
79 5.44 13.80 6.13 14.49 
80 0.00 2.12 1.24 9.61 
81 0.00 7.12 4.30 9.88 
82 0.00 3.56 0.00 5.65 
83 0.00 6.56 2.60 10.96 
84 2.55 10.81 8.47 16.83 
86 8.68 17.05 2.20 7.78 
89 6.21 14.57 5.07 13.44 
90 3.71 12.08 1.82 9.08 
91 1.71 6.34 0.00 0.98 
92 3.85 10.79 6.34 14.70 
93 5.22 13.58 2.56 10.92 
94 8.26 16.62 0.86 4.96 
96 4.16 12.52 0.28 4.03 
97 5.08 13.44 5.09 13.46 

Sum 142.44 387.71 149.55 389.55 
Target Confusability Competition Model 

49 5.10 0.14 0.00 0.00 
50 4.84 2.06 0.00 0.00 
51 0.27 0.00 0.00 0.00 
52 0.00 0.00 0.00 0.00 
53 0.00 0.00 0.00 0.00 
54 9.08 3.51 18.56 13.75 
55 0.00 0.00 0.00 0.00 
56 0.00 0.00 0.00 0.00 
57 0.00 0.00 0.00 0.00 
61 2.02 0.00 0.00 0.00 
62 0.00 0.00 0.00 0.00 
64 0.00 0.00 1.41 0.00 
67 2.24 0.00 0.00 0.00 
69 0.00 0.00 5.22 0.00 
70 0.00 0.00 2.71 0.00 
71 1.85 0.00 0.00 0.00 
72 0.00 0.00 0.00 0.00 
74 0.00 0.00 0.00 0.00 
76 0.00 0.00 4.52 0.00 
79 0.00 0.00 0.00 0.00 
80 6.25 0.00 0.00 0.00 
81 1.24 0.00 6.12 3.33 
82 4.81 0.00 2.71 0.00 
83 1.80 0.00 0.00 0.00 
84 0.09 0.00 0.00 0.00 
86 0.00 0.00 6.10 3.31 
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Table G5 
Information Criterion Values Relative to The Winning Model for The 
Active Control Group in Shape Reproduction Task  

ID Pre-Test Post-Test 
AIC BIC AIC BIC 

89 0.00 0.00 0.00 0.00 
90 0.00 0.00 1.10 0.00 
91 4.72 0.99 7.39 0.00 
92 1.43 0.00 0.00 0.00 
93 0.00 0.00 0.00 0.00 
94 0.00 0.00 4.27 0.00 
96 0.00 0.00 5.48 0.86 
97 0.00 0.00 0.00 0.00 

Sum 45.75 6.69 65.58 21.26 
Note. N = 34. Performance was measured at set size 4. This table includes 
IDs that were included for analysis. The value for winning model is 0. The 
smaller the value, the better the fit. AIC = Akaike Information Criterion. 
BIC = Bayesian Information Criterion 
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