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It is seeing which establishes our place in the surrounding world; we explain that world with

words, but words can never undo the fact that we are surrounded by it.

John Berger
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Abstract

Human and non-human pose estimation has been studied within the computer vision commu-

nity for many decades. The progress made within this area has permitted its application to

solve multiple tasks, for example, human activity recognition, animal tracking, video surveil-

lance, autonomous driving, and behaviour analysis. Despite the tremendous advancement in

developing methods and creating datasets for pose estimation tasks, there remains a lack of

tools that work with minimal assumptions about data availability. In other words, most state-

of-the-art approaches for pose estimation heavily rely on large datasets containing 2D or 3D

annotations used during the training phase. This could make their adaptation to other domains

challenging, particularly to the animal domain, where 2D and 3D annotations are scarce.

Throughout the chapters of this thesis, we explore developing and adapting self-supervised deep

learning methods for both 2D and 3D pose estimation. Our focus is on creating methods that

require minimal or no annotated data for training. This approach provides flexibility in the

resulting methods, allowing these to work with diverse skeletal structures with little to no effort

in the adaptation process. We start working in this direction by adapting a 2D human pose

estimation model to the animal domain. To achieve this, we incorporate a prior of synthetically

generated 2D poses, allowing self-supervised training and eliminating the need for manual anno-

tations of input images. We apply this method to explore unlabelled data, as demonstrated by

our successful implementation using a dataset of recordings featuring genetically modified mice.

Similarly, our proposal in the human domain involves developing a self-supervised method for

estimating 3D poses directly from images. Unlike previous works dealing with the same task,

our approach requires no 3D annotations for training. Our method builds upon ideas from re-

cent human pose estimation literature and adopts elements from our mice pose estimator. This

makes the formulation work with only unlabelled images and an unpaired prior of 2D poses for

training. We further experiment with adapting this method to different conditions and body
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structures. Ultimately, we demonstrate that it also works well for a different skeletal structure

and when utilising a prior of 2D poses generated through synthetic data rather than relying on

annotations from existing datasets.
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Chapter 1

Introduction

Our ability to see is fundamental, like talking, walking, or touching. We acquire this skill

through unconscious self-instruction during childhood, and once our brains develop it, seeing

becomes automatic [1]. We can visually perceive things even before describing them adequately

with words. Although we cannot fully interpret what we see, it constitutes our visual perception

of the surrounding world and gives us a sense of belonging to a particular space. Understanding

how our visual system works and how to replicate it within computer systems represents one

of computer vision’s foundations and has been heavily investigated in recent decades. Thanks

to the advances in computer vision and many related areas, we have successfully imitated

fundamental concepts of human vision into algorithms. As a result, machines can now efficiently

recognise and categorise objects in digital images.

Modern computer vision systems have numerous cross-disciplinary applications [2, 3, 4, 5] that

require them to perform more complex tasks than simply recognising and categorising objects in

images. One such task is pose estimation, which involves developing methods to understand a

given object’s overall structure by identifying keypoints. For instance, from an image depicting

a person, a machine can recognise where the hands or the head are in the image. Knowing the

locations of the body parts provides insight into how an object interacts with its environment

or other objects. In addition, it produces a low-dimensional kinematic representation of the

object via its body keypoints, which proves beneficial for many applications [6, 7, 8, 9, 10, 11,

12, 13].

The rise of deep learning has led to a surge in 2D and 3D pose estimation methods based on this
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paradigm. In particular, supervised deep learning approaches [14, 15, 16] gained popularity and

rapidly established benchmarks for pose estimation. However, supervised methods assume that

carefully labelled data exists in large amounts. Unfortunately, the labelled data only represents

a small fraction of the vast volume of unlabelled images and videos freely available online. The

challenge for pose estimation and computer vision is to develop more approaches requiring less

direct supervision, such as semi-supervised, self-supervised, and unsupervised methods, to make

the most of the abundant unlabelled data.

Significant progress has also been made towards self-supervised deep learning methods for 2D

and 3D pose estimation. Nevertheless, several exciting questions remain in this field, some

of which motivated the research conducted in this thesis. For example, to what extent can

self-supervised deep learning methods learn cues that are not explicitly visible to the human

eye on the images? Is it feasible to deduce 3D information solely from 2D observations? How

can we learn those 2D observations exclusively from unlabelled data? What are the minimum

assumptions for training self-supervised methods to learn 2D and 3D poses?

1.1 Motivation

Human and animal pose estimation has been widely studied from many perspectives since the

initial days of computer vision. Early methods commonly utilised hand-crafted features [17,

18, 19, 20] and pictorial structures [21, 22, 23, 24] to represent the body. Afterwards, deep

learning methods from object recognition [25] and image classification [26] were adopted to

estimate poses. In addition, several datasets containing 2D pose annotations surged in the

human domain [27, 28, 29], encouraging progress on supervised 2D human pose estimation [15,

30, 31, 32, 33, 14].

Similarly, supervised deep learning methods are predominant in 2D animal pose estimation,

most based on human pose estimation methods. Many labelled datasets [34, 35, 36, 37, 38,

39, 40] and tools [2, 41, 42, 43] to estimate the poses of various animals, such as dogs, mice,

and monkeys, are publicly available. Regardless, animal datasets are still behind compared to

the enormous amount of labelled data available for humans. Two of the main reason for the

discrepancy between domains are the number of different animal species and the difficulty of

acquiring 2D and 3D pose data from animals in their typical environment [44]. Considering

the lack of annotated data in the animal domain, deep learning methods explore learning from
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different resources, such as artificially generated data (synthetic data). Synthetic data is a low-

cost alternative to quickly generate data with its respective ground truth annotations. That

is probably why most work that estimates poses for animals with synthetic data still follows

supervised paradigms [45, 46]. However, it typically requires performing domain adaptation as

a post-processing step to adjust models to actual data.

In the context of 3D human pose estimation, many datasets exist [47, 48, 49, 50, 51, 52,

53], including 2D and 3D pose annotations. Unfortunately, a considerable portion of human

data needed for critical applications remains unlabelled, representing a challenge for training

supervised deep learning methods. While obtaining 2D pose annotations in the image plane

is relatively straightforward, annotating 3D pose is more complex and requires consideration

during dataset design and acquisition. Therefore, the challenge is not generating annotations

but developing better deep-learning methods to learn poses without them. Progress has been

made towards this, mainly focusing on weakly supervised methods that use cues such as 2D

poses [54, 55, 56], multi-view images [57, 58], volumetric models [59], video segments [60], and

3D kinematic constraints [61].

Our work aims to learn animal and human poses with as few assumptions as possible, as

annotated data may not always be available. Ideally, 2D and 3D poses should be learned solely

from raw images within a fully unsupervised setting. However, to what extent are deep learning

methods capable of achieving this? In this thesis, we seek to develop self-supervised methods

that learn to estimate human and animal poses, relying on minimal assumptions about the

availability of labelled pose data to supervise the training.

Each chapter tackles the problem from a slightly different context and has particular motivations

and objectives. However, in the end, it all contributes towards the primary goal of the thesis.

The work presented in this thesis could be summarised within the two following perspectives:

1. 2D and 3D animal pose estimation with artificially generated data. Recent

progress on self-supervised methods for 2D human pose estimation [62, 4] demonstrates

how to learn 2D poses via unpaired priors of annotated data. Given the relaxed require-

ments regarding data, these methods open up the opportunity to apply them to different

structures. Although they do not depend on paired data for training, they still need 2D

pose annotations for a considerable portion of the data (at least 50%). Assuming that we

are using a new and relevant dataset that has been collected for a different analysis out of
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computer vision, and therefore it lacks annotations of any type. How can we get 2D pose

annotation without manually annotating that portion of the data that we need to train

the model?

Synthetic data could be a suitable answer to this question, including publicly available

CAD models of animals such as mice [63] and horses [45]. Furthermore, we can build upon

existing ideas for estimating 3D human poses [54, 16, 64, 65] and producing 3D animal

poses. Unlike most approaches that use synthetic images and annotations for supervised

training, we reduce even more assumptions and only utilise part of the synthetic data (i.e.

only 2D synthetic poses and no images are required) within self-supervised frameworks.

2. 3D human pose estimation from unlabelled images and 2D prior. Most of

the progress on 3D human pose estimation has been possible thanks to new datasets

introducing a higher degree of variation on the poses they contain. The existence of

labelled pose data directly benefits supervised methods for pose estimation. However,

self-supervised approaches also gained popularity with the premise that removing the

dependency on paired pose annotations for training will help to generalise and exploit the

vast amount of unlabelled data available.

Self-supervised methods are still far from learning solely from 2D images, but much

progress has been made towards this objective. The dependency on paired pose anno-

tations has been gradually replaced by multi-view images, volumetric models, and 3D

kinematic constraints. We explore learning 3D human poses from unlabelled images rely-

ing solely on an unrelated small set of 2D poses (not annotations of the training images).

Inspired by a method that generates 2D poses from unlabelled images [62], we extend it

to estimate 3D poses by adding some elements from existing methods for human 3D pose

estimation, such as geometric consistency [54] and normalising flows [55].

1.2 Thesis outline and key contributions

In this thesis, we aim to develop self-supervised methods that learn to estimate poses for humans

and other animals under minimal assumptions about the availability of paired pose annotations

for training. We heavily rely on unlabelled images and experiment to reduce the need for

annotations by adopting small empirical priors generated from freely available synthetic models.
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The thesis consists of five chapters; next, we provide a brief introduction to each of these.

In Chapter 2, we review relevant literature related to the problem of human and animal pose

estimation. We focus on self-supervised and weakly-supervised methods for 2D animal and

3D human pose estimation. Additionally, the chapter includes a summary of classical and

supervised approaches for estimating 2D and 3D poses.

In Chapter 3, we describe a self-supervised method for estimating mice poses in 2D (i.e., in

the image plane). Our approach relies on unlabelled images and a prior on 2D poses generated

from synthetic data for training. Overall, the main contributions of this chapter are:

• We adapt a self-supervised pose estimator from the human domain to the mouse domain.

• We generate an empirical prior for 2D pose automatically using a synthetic 3D mouse

model, thereby avoiding manual annotation of images.

• We demonstrate promising performance in experiments with a new mouse video dataset by

comparing pose predictions with ground truth. In addition, we compare pose predictions

to those of a widely used state-of-the-art tool based on supervised training.

• We provide a low-dimensional representation of mouse videos in the form of 2D poses

from which gait measurements can be made as required for biomedical studies.

In Chapter 4, we introduce a new self-supervised approach for predicting 3D human pose relying

on minimal assumptions about the availability of labelled data. Our method simultaneously

learns 2D and 3D pose representations in a largely unsupervised fashion, requiring only an

empirical prior on unpaired 2D pose. We demonstrate its effectiveness on three of the most

popular benchmarks for human pose estimation. We also show our method’s adaptability to

other articulated structures using a synthetic dataset of human hands. Overall, our method has

the following advantages:

• It does not assume any 3D annotations.

• It generalises well to new datasets for human pose estimation, only requiring fine-tuning

some components.

• It holds the potential for quickly adapting to 3D pose prediction for other articulated

structures (e.g. animals and jointed inanimate objects).
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In Chapter 5, we present a self-supervised method that learn to estimate 3D poses for horses.

The method only requires unlabelled images depicting horses and a minor prior on 2D pose. We

generate the 2D poses from synthetic data to reduce the requirements further. Our formulation

represents a step beyond methods for animal pose estimation by having the following benefits:

• It is a straightforward method with few requirements about data availability for training.

• Compared with the enormous datasets used for training human pose estimation methods,

our horse data only represents a tiny portion (around 2%).

• Moreover, the small prior of 2D poses used is only one-third of the available images for

training.

Finally, in Chapter 6, we wrap up the work presented in this thesis. This chapter summarises

the main conclusions and offers a critical review of the limitations of the methods developed

throughout the thesis. Additionally, we address some of the remaining challenges and provide

insights for future research that can enhance the proposed methods.

1.3 Relevant publications

The work conducted on this thesis is part of the following peer-reviewed publications:

• Chapter 3: Sosa, J., Perry, S., Alty, J., & Hogg, D. (2023, September). Of Mice and

Pose: 2D Mouse Pose Estimation from Unlabelled Data and Synthetic Prior. In Interna-

tional Conference on Computer Vision Systems (pp. 125-136). Cham: Springer Nature

Switzerland.

• Chapter 3: Sosa, J., Perry, S., Alty, J., & Hogg, D. (2022). Of Mice and Pose: 2D Mouse

Pose Estimation from Unlabelled Video Frames using Synthetic Data. In CV4Animals:

Computer Vision for Animal Behavior Tracking and Modeling. (Poster)

• Chapter 4: Sosa, J., & Hogg, D. (2023). Self-supervised 3D Human Pose Estimation

from a Single Image. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR) Workshops.

• Chapter 5: Sosa, J., & Hogg, D. (2023). A Horse with no Labels: Self-Supervised

Horse Pose Estimation from Unlabelled Images and Synthetic Prior. In Proceedings of

the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops.
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Some parts of this thesis have also been presented at different meetings:

• Chapter 4: Sosa, J., & Hogg, D. (2022). 3D Human Body Pose Estimation From a

Single Image. The British Machine Vision Association (BMVA) Symposium, 2022.
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Related work

Pose estimation has been extensively studied since the early days of computer vision [66, 24].

Given an input image depicting an object (e.g. human, mouse, or dog), pose estimation aims

to infer the spatial location of different body keypoints or joint positions in 2D or 3D. Locating

human or animal body keypoints on images is challenging because of various factors, for exam-

ple, occlusions, illumination conditions, clothing, and no visible landmarks of the precise joint

location in the image.

The importance of pose estimation resides in its multiple applications, whether it involves

humans or other animals. For example, human pose estimation has been successfully applied to

action recognition [6, 7], video surveillance [67, 68], sports analysis [8, 9, 10], sign language [69,

70, 71], animation [11, 12], human tracking [72], assisted living [73, 74, 75], human-computer

interaction [76], human-robot interaction [77], gaming [13], and virtual reality [78].

Estimating the poses of different non-human structures, like animals, has also gained increas-

ing attention because of research applications in many disciplines, including biology, zoology,

ecology, biomechanics, and neuroscience [79, 80, 81, 82, 83, 84, 85, 86, 87]. The variability of

animal species and the need for species-specific labelled datasets makes animal pose estimation

particularly challenging. Compared with the human domain, animal pose estimation is still

relatively underexplored. Nevertheless, much effort has gone into developing and adapting deep

learning models to estimate animal pose by leveraging similarities between many animal species.

8



Chapter 2. Related work

POSE
ESTIMATION

2D POSE
ESTIMATION

DEEP LEARNING
BASED

NON
DEEP LEARNING

BASED

SINGLE
OBJECT

MULTI
OBJECT

TOP
DOWN

BOTTOM
UP

SELF

SUPERVISED

FULLY
SUPERVISED

3D POSE
ESTIMATION

Figure 2.1: Proposed taxonomy to summarise the approaches for 2D pose estimation. We
highlight the categories more related to our work.

Several surveys on pose estimation [88, 89, 90, 91, 44], particularly those related to human

pose estimation, suggest different ways of breaking down and categorising the extensive do-

main of pose estimation. For example, a pose estimation model could be classified depending

on its purpose, i.e. if it estimates 2D or 3D pose. Likewise, it is possible to categorise these

given the number of subjects appearing in the input (single-object or multi-object pose es-

timation). Another perspective is to group the pose estimation methods depending on their

adopted paradigm. Commonly this involves two groups, the approaches based on deep learn-

ing techniques and the ones that estimate pose via classical computer vision algorithms, e.g.

hand crafted features or pictorial structures. Within deep learning-based methods, there are

different subcategories based on their training methodology or the level of supervision needed,

as illustrated by Figure 2.1.

The problem of pose estimation is closely related to body modelling. A body model repre-

sentation can help to illustrate the overall structure of the 2D or 3D poses that a particular

approach is expected to deliver. Most methods commonly adopt a kinematic structure as a

low-dimensional representation of human and animal bodies. This structure typically involves

joint locations and their connections (limbs). As shown in Figure 2.2, other approaches consider

a more sophisticated representation to capture finer body shape information, employing planar

or volumetric body models.
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Kinematic Planar Volumetric

Figure 2.2: Different body models commonly adopted by 2D and 3D pose estimation approaches
for humans and animals.

Since not all the existing works for pose estimation are closely related to the goal of this thesis,

in this section, we will only focus on reviewing deep learning-based approaches that estimate

2D and 3D poses directly from images containing a single object, whether it is a human or

an animal. We specifically focus on weakly-supervised methods for single 2D and 3D animal

pose estimation using artificially generated data and image-based weakly supervised methods

for single 3D human pose estimation. For convenience, we summarise all the related work on 2D

pose estimation in section 2.1 and on 3D pose estimation in section 2.2. Each section reviews

supervised and weakly-supervised deep learning approaches regardless of their input domain.

However, note that the emphasis is mainly on the weakly-supervised methods and artificially

generated data. Fully supervised settings will only be discussed in minor detail to provide more

context.

2.1 2D pose estimation

2.1.1 Classical approaches

In the past, before the rise of deep learning approaches, 2D pose estimation methods [22, 23, 92,

93, 24] were commonly based on pictorial structures [21]. The core idea of these methods was

to represent an object using a tree structure to express its composing parts and their spatial

relationships. Although the pictorial structure framework was straightforward and popular for

pose estimation, it has some limitations, such as the high number of parameters of the model
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and the consequent difficulty in efficient matching [22]. Therefore, other early approaches

surged, incorporating different hand-crafted features and visual cues, such as edges, silhouettes,

part-templates, and Histograms of Oriented Gradients (HOG) [17, 18, 19, 20, 94, 95, 96, 97].

2.1.2 Deep learning approaches

In recent years, deep learning has gained significant popularity for its effectiveness in solving

complex computer vision problems, including object detection [25] and image classification [26].

Consequently, other computer vision tasks, such as human pose estimation, have also adopted

deep learning techniques. In this domain, deep learning has significantly reduced the need for

manually designed body structures and labour-intensive feature engineering.

Early deep learning methods for human pose estimation [15, 30, 31, 98] solve the problem

by mapping the input image to body joint coordinates, i.e. they directly produce the (x, y)

positions in the image plane for a given body part. Most of these approaches adopted popular

architectures for image classification and object detection as a backbone, for example, AlexNet

[26], GoogleNet [99], and ResNet [100]. Since direct regression of body joint coordinates does not

provide enough robustness for estimating pose, the following methods adopt a detection-based

formulation, i.e. those methods define the body parts as targets for detection and typically

represent them as image patches or heat maps [32, 33, 14]. In particular, a heat map represents

the joint location as a probability distribution, providing more dense pixel information, which

enhances the method’s robustness.

New network architectures for pose estimation, such as Convolutional Pose Machines (CPM)

[101], HRNet [102], and Stacked Hourglass networks [14], were inspired by detection-based

approaches. The design of the Stacked Hourglass network, in particular, has gained popularity

and has been widely used as a backbone for several other pose estimation methods [103, 104,

105]. The core idea of the Stacked Hourglass Network comes from fully convolutional networks

[106] and other approaches that process features at different scales [32]. The hourglass design

permits to consolidate information across scales of the image, which allows to better capture

the relationships between the body parts.

In the context of 2D animal pose estimation, early deep learning methods that have proven

to work for the human domain were adapted to estimate pose from different animal species,

like farm animals [107, 108, 109, 110], dogs [36], mice [2], and monkeys [111, 112, 113]. The
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foundations of some of the most popular deep learning based tools for animal pose estimation,

such as DeepLabCut [2], LEAP [41], DeepPoseKit [42], and OptiFlex [43] are built on methods

initially designed to estimate human pose [114, 115, 116, 14, 117]. A common attribute of these

approaches is their requirement for full supervision, meaning that they need ground truth 2D

pose data for training. While 2D pose data is widely available, and 2D pose estimators are very

mature, some datasets, especially in the animal domain, still lack annotations. This premise

became the central challenge for subsequent pose estimation methods and raised the interest in

learning accurate 2D poses without having access to actual pose annotations data for training.

2.1.3 Learning 2D poses from artificially generated data

New computer vision techniques, such as Generative Adversarial Networks (GANs) [118], allow

for improved training procedures for pose estimation methods. Incorporating priors on unpaired

[119, 4, 65] or synthetic data [120] can make these approaches even more powerful and less

reliant on fully labelled datasets. For instance, Jakab et al. [62] proposes a method that

effectively learns to estimate 2D poses without requiring paired 2D pose annotations. It relies

on CycleGAN-based training [121] and a generated image-based representation of the pose that

serves as an intermediate representation for self-supervised training. Similarly, Schmidtke et

al. [4] adopts a CycleGAN-based training but incorporates shape templates as an intermediate

representation instead of an image.

Another relevant addition to the pose estimation methods is the use of synthetic data either as

an intermediate representation or as a mechanism for domain adaptation. This easily generated

data permits adjusting methods trained with 2D pose annotations and images from Computer-

Aided Design (CAD) models to actual examples, as shown in [45, 46]. Overall, the use of

synthetic data hugely benefits pose estimation. The advancements in artificial object mod-

elling encourage the development of new techniques and the adaptation of existing approaches

to different skeletal structures. Furthermore, synthetic data reduces the dependency on fully

annotated datasets, allowing the exploitation of abundant unlabelled data, particularly in the

animal domain.
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2.2 3D pose estimation

2.2.1 Overview

It is relatively straightforward for humans to get a sense of the objects’ overall 3D pose and

shape solely from 2D observations. When looking at a picture, we can immediately recognise

and understand subtle relationships between the objects and easily translate that into 3D space.

It has also been studied how this 3D perception of 2D objects from photographs (pictorial space

[122]) matches the 3D space where we exist and move [123]. Since computers intrinsically lack

that understanding of space, predicting the locations in 3D from 2D observations is more chal-

lenging than learning them directly in the 2D plane. This is especially true for pose estimation

problems, where it is harder for machines to learn the ambiguous locations of 3D body joints

than the 2D poses on the image plane.

The study of estimating 3D pose has been ongoing in computer vision for a long time, just

like 2D pose estimation. Before deep learning, most methods for inferring 3D pose were based

on image features, such as edges, silhouettes [124, 125, 126, 127], and joint positions [128].

Since then, much work has been carried out, promoting the field’s growth. However, three key

factors have considerably impacted the development of 3D pose estimation for both humans

and animals:

1. The adoption of deep learning to solve most of the computer vision tasks.

2. The surge in the creation of new datasets with 3D annotations.

3. The development and use of synthetically generated volumetric models of human and

animal bodies.

In summarising the vast number of 3D pose estimation approaches, we rely on established

taxonomies from the literature [91, 129, 130]. Note that the goal is not to propose a new

taxonomy but rather to provide readers with a packed visual resource to get the overall idea

behind the more related approaches to the work of this thesis. The classification for 3D pose

estimation illustrated in Figure 2.3 is similar to that of 2D poses shown in Figure 2.1, with

methods organised according to their paradigm: deep learning based or classical approaches.

Additionally, there are methods for single-subject and multi-subject. Within the single-object

methods, we can distinguish three groups of approaches given their input: learning 3D poses
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directly from images, learning 3D poses from already available 2D poses (lifting 2D poses), and

methods that rely on volumetric models like SMPL [131] for 3D pose estimation. Furthermore,

these methods may also present different levels of supervision during training, such as fully

supervised and self-supervised.
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Figure 2.3: Proposed taxonomy to summarise the approaches for 3D pose estimation. We
highlight the categories more related to our work.

The rest of this section summarises the available human and animal datasets used for 3D pose

estimation. Furthermore, according to our primary purpose, we review self-supervised and other

weakly-supervised methods that estimate 3D poses from 2D poses, and even more related to

this work, the ones that estimate 3D poses directly from images. In addition, we briefly mention

methods that rely on volumetric models.

2.2.2 Publicly available datasets for 3D pose estimation

In the particular context of datasets used for estimating 3D poses, many of them are con-

centrated on the human domain. Examples of such datasets include Human3.6M [47], CMU

Panoptic [48], MPI-INF-3DHP [49], SURREAL [50], 3DPW [51], HumanEva [52], and AMASS

[53]. These datasets contain millions of images, each with corresponding 3D pose annotations.

Not surprisingly, while analysing the availability of public datasets for 3D animal pose estima-

tion, we notice a considerable discrepancy with respect to the human data available. According

to Table 2.1, most animal datasets only contain some annotations on the image plane, such

as 2D pose labels, segmentation masks, and bounding boxes, directly benefiting supervised 2D
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pose estimation methods. This lack of 3D pose annotations for fully supervising 3D pose esti-

mation methods has motivated the development of diverse training procedures using cues other

than 3D pose labels. At the same time, the scarcity of annotated animal datasets for testing

deep learning methods might be why most of the progress is within the human domain, where

there are plenty of annotations to evaluate performance properly.

Year Animal type Dataset 2D Pose 3D Pose/Mesh

2023 Primates OpenMonkeyChallenge [34] ✓
2021 Mice Rat7M [132] ✓ ✓
2021 Horses Horse-10 Dataset [35] ✓
2021 Cheetahs AcinoSet [133] ✓ ✓
2020 Dogs StanfordExtra [36] ✓
2019 Grevy’s zebra Synthetic Grevy’s Zebra Dataset [37] ✓
2019 Diverse species Animal Pose [38] ✓
2018 Diverse species BADJA[39] ✓
2017 Diverse species TigDog Dataset [134] ✓
2011 Dogs Stanford Dogs[40] ✓
2004 Horses Weizmann dataset[135]

Table 2.1: Publicly available animal datasets. List of some freely available datasets for estimat-
ing 2D and 3D animal poses. While most datasets include 2D pose annotations, 3D pose labels
are scarce.

2.2.3 Learning 3D poses from 2D poses

Direct supervision

Based on the availability of many 3D pose datasets (in particular human datasets), most ap-

proaches for lifting 2D poses to 3D rely heavily on the assumption that 3D and 2D pose anno-

tations are available to supervise training. Broadly, given a 2D pose as input, these methods

learn to lift it to 3D space, i.e. for each body joint location (x, y) in the image plane, the

depth z should be estimated. One of the first deep learning approaches that successfully lifted

2D poses to 3D is the work of Martinez [16]. They achieve state-of-the-art results on 3D pose

estimation by using a simple network design of fully connected layers and residual blocks. Other

methods incorporate different intermediate representations for the 2D poses, e.g., 2D heat-maps

[136, 137], volumetric heat-maps (HEMlets) [138], and knowledge of the body configuration in

the form of grammars [139]. Approaches relying on kinematic constraints [140, 141], Graph

Convolutional Networks (GCN) [142], ranking networks [143], and grid convolutions [144] also

have been successfully applied to lifting 2D poses to 3D.
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Weaker supervision

Although supervised approaches are predominant, progress has also been made on methods

relying on lower levels of supervision. Interestingly, several of these approaches [54, 56, 55] still

incorporate ideas from supervised learning within their processes. For instance, Drover et al.

[145] propose a weakly supervised approach to lifting 2D poses to 3D based on the work of

Martinez et al. [16]. However, [145] reduces supervision by incorporating a GAN loss to assess

the realism of the 2D projection of the estimated 3D pose. Later, Chen et al. [54] further develop

this work by adding a symmetrical pipeline that involves a series of consecutive transformations

(lifting, rotation, and projection) of the estimated 3D pose. This cycle of transformations helps

to self-supervise the training while removing the dependency on any 3D correspondences. More

recently, Wandt [55] incorporated two fundamental elements to the model in [54] that increase

the performance of the 3D lifting process: normalising flows and a learned elevation angle for

the 3D rotations. Previous methods have successfully use normalising flow to estimate 3D prior

distributions given 3D human poses [146]. However, the method in [55] is the first to perform

this task from 2D data.

A vast amount of data is available for pose estimation methods, but much of it lacks the neces-

sary ground truth pose annotations for fully supervised training. While the assumption of not

having 2D pose annotations might seem unlikely, it is a reality for many datasets, particularly

in the animal domain. Nevertheless, weakly supervised methods have made progress using this

unlabelled data (at least lacking 3D annotations), and they have demonstrated that it is possible

to learn to estimate 3D poses from existing 2D poses by taking advantage of cues like rotations

[54, 145, 56], normalising flows [55, 146], multi-view [147], and kinematic constraints. However,

what will happen if we do not assume the availability of paired 2D poses? Is it still possible to

learn 3D poses? What are the minimum assumptions to make this possible?

2.2.4 Learning 3D poses directly from images

Direct supervision

Instead of estimating 3D pose from an input 2D pose, other methods directly estimate them

from images. Most of these methods assume the availability of ground truth 3D poses for super-

vision. For instance, the work of [148] incorporates ideas from supervised 2D pose estimation

techniques. Specifically, they extend the well-known stacked hourglass network architecture
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[14] to learn a volumetric pose. Other methods rely on end-to-end frameworks combining body

joints localisation and regression, like [149], which employs a multi-task strategy to train a de-

tection network jointly with a regression network to predict 3D poses from images. Similarly,

[150] adopts a multi-task CNN to combine visual features and probability maps. Additional

approaches tackle the 3D estimation problem from a different perspective. For example, [98]

replaces the traditional body joint regression with a structure-aware regression, i.e. exploiting

the connectivity between body joints (bones).

Weaker supervision

Because of the massive amount of unlabelled data publicly available, methods for 3D pose

estimation from images should be able to learn with the minimum premises, ideally, just from

raw 2D images. In the context of weakly-supervised pose estimation methods that learn from

images, much progress has been made towards learning only with few assumptions. However,

many approaches still incorporate specific priors for the 2D and 3D joint configuration or even

add a small portion of actual 3D data to guide the training. For instance, [151] shows a

unified multi-stage CNN architecture to estimate 2D and 3D joint locations from single images.

This approach relies on a probabilistic 3D model of the human pose responsible for lifting

the 2D representations. Kundu et al. [59] propose a self-supervised architecture to learn 3D

poses from unlabelled images. They incorporate three assumptions: human pose articulation

constraints, a part-based 2D human puppet model, and unpaired 3D poses. Other approaches

explore learning without direct supervision by producing synthetic multi-views of the same

skeleton [152], accessing multi-view images or videos [153, 154], relying solely on 3D kinematic

constraints [61], or incorporating motion information [155].

2.2.5 Learning 3D poses with artificially generated data

Synthetic data is a cost-effective method to generate large amounts of data to train pose es-

timation models. Much work has been done in this area, mainly towards developing realistic

artificial models of humans and animals. The key idea is to utilise those models to render images

with their respective pose annotations, thereby minimising the need for manual labelling. In the

human domain, many body models have been proposed [156, 157, 131]. Given its compatibility

with existing rendering engines, the parametric shape model SMPL [131] has become widely

adopted for 3D pose estimation and human shape reconstruction [158, 159, 160, 161, 162, 163].
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In the animal domain, it is impractical to create parametric shape models for every existing

animal, principally because of the variability between species and the limited cooperativeness

of animals to be scanned. Nonetheless, some efforts have been made to produce body models

for a few animal species. For example, Zuffi et al. [164], inspired by the success of SMPL

models, propose the Skinned Multi-Animal Linear Model (SMAL). Instead of scanning living

animals to learn the model, they use scans from toy figurines of different animal species, focusing

on four-legged mammals that share skeletal similarities. Like SMPL, SMAL has also been

incorporated into several methods for shape reconstruction and pose estimation [36, 37, 165,

39]. Unfortunately, besides the parametric shape model, these methods often require other

types of annotations, such as manually extracting silhouettes and 2D poses.

Like SMAL, CAD models of animals are also helpful in generating data for training pose and

shape estimation approaches. For instance, Mu et al. [45] uses CAD models to create synthetic

images and their respective annotations to train a supervised pose estimation method focusing

on four-legged mammals. Then, they perform unsupervised domain adaptation using small sets

of actual data to reduce the domain gap. Regarding CAD models for smaller animals, Bolaños

et al. [63] proposes a 3D model for mice, which can generate animations of different mouse

behaviours. As mice are commonly used in medical studies [166, 167, 168], the synthetic data

generated with this mouse model could be beneficial.

2.3 Summary

The abundance of unlabelled data available on the internet has encouraged the development

of new deep learning-based pose estimation methods that require less supervision. Ideally,

unsupervised and self-supervised approaches for estimating the poses of humans and other

animals should learn solely on unlabelled data. However, this remains a distant reality. As

reviewed in previous sections, several self-supervised pose estimation approaches incorporate

various mechanisms, such as image generation processes, geometric constraints, and synthetic

priors, to minimise the reliance on pose annotations during training. Nevertheless, it is still

insufficient to eliminate the need for such annotations entirely.

Our work aims to develop and explore self-supervised deep-learning methods for estimating

the poses of humans and other animals. Our approaches build upon the fact that annotated

data may not always be available. Therefore we seek to exploit unlabelled images and priors of
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existing and easily accessible data, such as data generated from synthetic models. By minimising

the assumptions about the availability of labelled pose data to supervise training, we increase

the flexibility of our methods and make them applicable to different structures without requiring

too much adaptation effort.
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Learning to predict 2D animal pose

from unlabelled images and a

synthetic prior

Numerous fields, such as ecology, biology, and neuroscience, use animal recordings to track and

measure animal behaviour. Over time, a significant volume of such data has been produced, but

most computer vision techniques cannot explore it due to the lack of annotations. To address

this, we propose an approach for learning to estimate 2D mouse body pose, relying solely on

unlabelled images and a synthetically generated empirical pose prior. Our proposal is based on

a recent method for estimating 2D human pose from single images utilising a GAN architecture

and a set of unpaired typical 2D poses (configurations of 2D image-based joint positions) in

training. We adapt this method to the limb structure of the mouse and generate the empirical

prior of 2D poses from a synthetic 3D mouse model, thereby avoiding manual annotation. In

experiments on a new mouse video dataset, we evaluate the performance of the approach by

comparing pose predictions to a manually obtained ground truth. We also compare predictions

with those from a supervised state-of-the-art method for animal pose estimation. The latter

evaluation indicates promising results despite the lack of paired training data. Furthermore, we

demonstrate that our approach holds the potential to be easily adapted to a different animal

body structure.
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3.1 Overview

The investigation of neurodegenerative human diseases, such as Alzheimer’s disease [169, 170],

Parkinson’s disease [171], and Amyotrophic Lateral Sclerosis (ALS) [172], typically requires the

use of animal models. ALS, in particular, represents a slowly progressive neurological disorder

that significantly impacts motor function. The identification of alterations in motor abilities

during the early stages of the disease is critical for identifying effective therapeutic targets [173].

Mice represent the preferred and most extensively used animal models for such studies, given

their genomic similarity with humans and the accumulated knowledge on manipulating their

DNA [174]. Prior research in the field has highlighted the value of gait analysis in mice as an

effective means to identify subtle changes in the motor system related to ALS [175, 176]. Thus,

the development of tools to observe, describe, and measure mouse gait has become indispensable

due to the tight relationship between mice and ongoing research on this neurodegenerative

human disease [86].

Some years ago, prior to the adoption of computer vision techniques, making the measurements

needed for gait analysis meant considerable manual labour [177, 178]. For example, if someone

wanted to measure the position of the mouse’s limbs, it implies recording the animal, looking

at each video frame, and manually identifying each required body part. Then, it is evident

that manual inspections on large videos can be time-consuming and lead to observation errors.

Early computational approaches attempt to minimise human intervention in analysing animal

recordings. Some tools involve placing physical markers on the animal’s body or require painting

the body parts to track [179, 180]. Apparent limitations of these techniques are that the physical

markers can interfere with the animal’s behaviour, and the information that can be extracted

is inherently limited by the positioning of the markers or the painted areas. Other approaches

require costly and sophisticated equipment like infrared systems and high-speed videography to

obtain data, resulting in expensive experiments and difficulties in deployment and replication

[181, 182, 183].

Newer computer vision tools for tracking animals’ body parts1,2 become less dependent on

physical markers. Unfortunately, these tools still needed considerable human intervention for

pre-processing and post-processing video data. Supervised deep learning approaches have re-

1https://mousespecifics.com/digigait/
2https://www.noldus.com/catwalk-xt
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cently become state-of-the-art for pose estimation and tracking of humans and animals [2, 41,

42]. Most of these techniques’ performance depends on the amount and variability of annotated

data for training, which is hard to obtain for some animal species. Thus, there remains an

urgent need to develop methods for tracking animal pose that require minimal human effort in

training for a new animal domain and operational use. This can be achieved by reducing the

need for manual pose annotation of images.

In this chapter, we tackle the challenging task of learning to predict 2D mouse poses in un-

labelled images. Different from previous deep learning approaches that generally rely on fully

supervised frameworks, we adopt a self-supervised 2D pose estimator from the human domain.

This method utilises a modified cyclic-GAN architecture to learn 2D human poses. During

training, it assumes the availability of unlabelled images and an unpaired prior of 2D pose an-

notations, obtained from the same dataset. Our proposal relaxes much more the assumptions

about data by building the empirical prior from synthetic 2D poses generated from a 3D model

of a generic mouse. Evidently, incorporating synthetic data provides more flexibility to train

the model with unlabelled datasets, which is common for many animal recordings outside of

computer vision.

3.2 Background

3.2.1 Deep learning methods for animal pose estimation

Analogous to the definition of human pose estimation [184], animal pose estimation refers to

the task of estimating the geometrical configuration of body parts of an animal. This problem

has gained increasing attention because of research applications in many different disciplines,

including biology, zoology, ecology, biomechanics [83] and neuroscience [86]. Compared with

human pose estimation, it is still somewhat under-explored, mainly because of the variability of

animal species and the need for species-specific labelled datasets. Nevertheless, a lot of effort has

gone into developing and adapting deep learning models to estimate 2D and 3D animal pose,

exploiting similarities between species. For example, monkeys [113, 112, 111] share similar

skeletal structures with humans. Large quadrupeds, such as farm animals [107, 108, 110, 109]

and dogs [36, 185, 186] also present similarities between their skeletal forms.

Automatic 2D pose estimation has also been applied successfully on smaller animal species such
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as mice. As with larger animals, deep learning methods for pose estimation have been based

mostly on supervised approaches developed for the human domain. Their performance is there-

fore limited by the availability and correctness of annotated data. For example, DeepLabCut

(DLC) [2] adapts a pretrained ResNet with deconvolutional layers [114] to estimate the 2D pose

of small animals under laboratory conditions, such as mice and flies. LEAP [41] uses an earlier

model from the human pose estimation domain [32] to solve the same task. DeepPoseKit [42]

employs a similar method as [41] to estimate 2D animal pose. Specifically, it uses a network

architecture that improves the processing speed based on fully convolutional densenets [115,

116] and stacked hourglass modules [14]. More recently, OptiFlex [43] exploits the temporal

information in video data by incorporating flowing convnets [117] into their network architec-

ture. They report similar performance to previous methods [2, 41, 42] on estimating the pose

of small animals, e.g. mice, fruit flies, and zebrafish.

Perhaps the most popular of these approaches is DeepLabCut. Many subsequent methods adopt

it to estimate not only mouse pose, but also pose for a wide variety of other animal species [187,

188, 189, 190, 191, 192, 193]. A common feature of DeepLabCut, DeepPoseKit, LEAP, and

OptiFlex is their reliance on manual annotation of pose in multiple video frames for training.

Even though they normally provide a graphical user interface (GUI) for doing the annotation,

the process is still time consuming, error prone, and requires specialised knowledge to infer pose

correctly. Futhermore, the number of frames to annotate for good generalisation is hard to

predict and therefore ultimately determined empirically. In contrast, through adapting a recent

self-supervised approach from the human domain, we completely remove the need for manual

annotation, making training and testing more straightforward.

3.2.2 Animal pose estimation with synthetic data

One alternative to avoid manual annotation for training deep learning methods for animal pose

estimation is the use of synthetic data. Using an artificial animal model allows producing

many synthetic images and their corresponding annotations with less time and effort than

manually annotating actual data [63]. In this context, Mu et al. [45] proposes a semi-supervised

pose-estimation framework trained in a supervised fashion using synthetically rendered images

and ground truth pose annotations from 3D CAD (Computer-aided design) models. Then,

they perform self-supervised domain adaption with a small portion of actual data to minimise

the domain gap. They successfully estimate 2D poses for large animals with similar skeletal
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structures, such as tigers, horses, and dogs. Some other works relying on synthetic data also

focus on the domain adaptation process after learning the animal pose with synthetic data

under supervised paradigms [46, 194].

We adopt a related approach using an existing 3D geometric mouse model [63], except that we

do not use rendered images and require only synthetic 2D poses as a prior, i.e. we are not using

synthetic images as in supervised settings. Furthermore, we use this prior on 2D poses within

a GAN framework that allows our whole model to learn poses not necessarily appearing in the

prior, eliminating the need for domain adaptation as in [45, 46, 194].

Synthetic data also plays a significant role in learning more complex forms of 3D animal pose.

For instance, Zuffi et al. [164], inspired by the success of human shape models like SMPL [131],

create toy figurines of various animals to generate data for learning statistical shape models

(SMAL). Later, [165] propose SMALR, which is an extension of the previous SMAL model.

It introduces a regularisation for the deformation of the animal shape to make it appear more

detailed and realistic. Subsequent work [36, 195, 37] has adapted the SMAL model to particular

animal species like dogs and zebras.

In contrast to learning to fit 3D shape models from 3D scans, other approaches explore the

possibility of learning 3D animal models from less complex representations, like multi-view 2D

images, or user-clicked 2D images [196, 197, 198]. However, the final shape representation of

those models is less realistic and detailed than those produced using SMAL or SMALR. These

methods have produced 3D shape models for various animal species, typically focused on large

quadrupeds like tigers, dogs, and zebras. Unfortunately, creating sophisticated models for all

animal species is still impractical.

Figure 3.1: Example of the 3D mouse model. This model can simulate semi-random behavioural
patterns based on accurate mice analysis. Bolaños et al. [63] release a couple of other models
showing mice in different simulated environments. We use the one shown in the pictures because
it is the most similar to the conditions of our dataset.

Bolaños et al. [63] has taken inspiration from previous synthetic models of large animals to
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develop a similar model for mice. An illustrative example of the mouse model is in Figure 3.1.

This 3D CAD model simulates semi-random behavioural patterns from real mice and incorpo-

rates the 3D structure of bones and joints. The model has successfully created training data

for a well-known supervised 2D and 3D mouse pose estimation approaches [2, 199]. Neverthe-

less, there is still an unexplored opportunity to utilise the same model to generate data for

training pose estimation models with lower levels of supervision. In particular, by adapting

self-supervised methods from the human domain to learning mouse pose. We demonstrate this

by relying on a recent self-supervised method that learns to estimate 2D human poses solely

from unlabelled images and a prior on unpaired 2D poses. We follow the same idea, but instead

of taking the unpaired pose annotations from the dataset to build the prior, we generate it

using the 3D mouse model. Rather than relying on synthetic images and pose annotations like

in previous works [45, 46, 194, 63], we discard the synthetic images and only use synthetic 2D

poses. This means that our model is trained using actual unlabelled images and a smaller set

of artificially generated 2D poses.

3.3 Method

Our method produces a mapping from full body images to the 2D pose of a mouse, as shown

in Figure 3.2. The pose is represented as an articulated tree structure of 2D line segments

corresponding to the parts of the body, such as the snout, tail, hind limbs, and forelimbs. The

method extends the self-supervised approach of Jakab et al. [62], which estimates human 2D

pose. This 2D pose estimator learns from unlabelled images and uses a set of unpaired 2D poses

as an empirical prior, removing any dependence on paired annotated data. However, it does

require a set of 2D pose annotations for a subset of images from the dataset, albeit the pairing

is discarded. We adapt this approach by changing the topology of pose descriptions to a mouse

model. We also generate an empirical prior for 2D mouse pose by projecting from an existing

3D mouse model, which removes the need for manual pose annotation altogether.

The pose estimator emulates a conditional auto-encoder that is trained to reconstruct a picture

depicting a mouse. The synthesis of the reconstructed image is conditioned on an auxiliary

mouse image showing a fixed pose. Additionally, the auto-encoder has a bottleneck that encodes

the 2D pose as a set of joint positions, allowing it to learn the 2D poses and accomplish the

reconstruction task simultaneously. Once trained, the final pose predictor is the encoding part
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Synthetic images Extracted 2D poses Synthetic skeleton images

Mouse 3D model

Pose bottleneck

Prior of synthetic 2D poses

Synthetic prior

Pose bottleneck

Predicted skeleton image 2D pose Rendered skeleton image

Input image

Auxiliary image

Reconstructed image

Figure 3.2: 2D mice pose estimator. We use a self-supervised 2D pose estimator from the human
domain [62], which we adapt to work with mice. It uses a cyclic GAN architecture to learn
from unlabelled images and a small set of typical 2D poses (i.e., 2D joint positions of a stick
figure). Unlike the original implementation, we build the pose prior using synthetic data from
a 3D model of a generic mouse [63]. This gives the model more flexibility to be implemented
with datasets where ground truth is unavailable.
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from the conditional auto-encoder, which maps from an input image to a 2D pose. The decoding

stage, i.e. the mapping from the 2D pose to the reconstructed image, is just used during training.

In this scenario, the encoding part consists of two steps. Initially, a Convolutional Neural

Network (CNN) Φ maps from the input image x to a skeleton image s. Then, a second CNN

Ω transforms the skeleton image s to a 2D pose v. The decoding stage also involves two parts.

First, a differentiable function κ maps the 2D pose v to another skeleton image s′. Then, a CNN

Ψ maps from the skeleton image s′ to the reconstructed image x′. Since s′ does not contain

enough appearance information for the reconstruction process, during the last mapping, Ψ also

takes an image y as an additional input to compensate for the missing appearance information

in s′.

Furthermore, introducing a dual representation of the 2D pose [62] (i.e. as a set of joints position

coordinates v and as skeleton images s and s′) helps to create a bottleneck that separates

the geometry and appearance from the input. At the same time, it forces the auto-encoder

to learn something helpful by preventing the encoder network Φ from copying the image x

without learning anything. A differentiable function κ [62] allows for switching between pose

representations. Its purpose is to take the x and y coordinates for the joint positions in v and

produce an image by drawing lines between connected joints. Formally it is given by

κ(v)e = exp

(
−γ min

(i,j)∈C,r∈[0,1]
||e− rvi − (1− r)vj ||2

)
(3.1)

where C is a set of connected joint pairs (i, j), e an image pixel location, r is the value for the

pixel location, and v a set of (x, y) 2D coordinates of body joint positions.

We train the model with a dataset of images depicting mice in different poses and a prior of

synthetic 2D poses generated from the 3D mouse model [63]. We transform the 2D poses of the

prior to skeleton images using κ (Equation 3.1). We use a similar loss function as in [62], which

contains three terms. The first penalises the difference between the generated image x′ and the

input x via a perceptual loss. The second term is a regression loss to evaluate the mapping from

the skeleton image s to the 2D joint positions in v. The third term is an adversarial loss to assess

the authenticity of the skeleton images generated in the encoder. Note that the actual samples

for training the discriminator are the synthetic skeleton images from our empirical prior. The

following sections provide more details on the model’s components, the empirical prior, loss
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function, and training.

The model is an auto-encoder mapping from the input image x to output image x′ in which the

2D pose v emerges as an intermediate representation. The overall formulation is as follows

x′ = Ψ(κ(v) ◦ Ω(s) ◦ Φ(x), y) (3.2)

For training the networks in Equation 3.2, a perceptual loss [200] compares each input image x

with the reconstructed image x′:

Lperc =
1

N

N∑
i=1

∥Γ(x′i)− Γ(xi)∥22 (3.3)

where Γ is a pre-trained VGG network [201] with the classification stage removed to utilise the

final feature encoding.

Additionally, a CNN serves as the discriminator network D, which outputs a probability that

an input skeleton image comes from the prior distribution of M skeleton images. Thus, D

measures the extent to which a skeleton image s looks like an authentic skeleton image from

the synthetic prior distribution. Note that contrary to [62], our prior {uj}Mj=1 is synthesised by

projecting from a 3D mouse model, which means we do not need a portion of annotated data

from the training dataset. We obtain the skeleton images {ŝj}Mj=1 via κ, i.e. {ŝj = κ(uj)}Mj=1,

and then we compare this distribution pdata(ŝ) with the distribution pdata(s) from the predicted

skeleton images {si = Φ(xi)}Ni=1 by means of the adversarial loss [202]:

LD =
1

M

M∑
j=1

D(ŝj)
2 +

1

N

N∑
i=1

(1−D(si))
2 (3.4)

Finally, we derive a loss from the duality of Ω and κ, which combines two terms as follows:

LΩ = ∥Ω(ŝ)− u∥2 + λ∥κ(Ω(s))− s∥2 (3.5)

The first term uses unpaired 2D poses from the prior, while the second one utilises the pose

on the predicted skeleton image s. The last term ensures that the network learns poses that

appear on the training images but not necessarily on the prior. The balancing coefficient λ is
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1 - Snout

2 - Vertebral column base ( VCB )

3 - Vertebral column end ( VCE )
4 - Tail base ( TB )

5 - Tail middle ( TM )

6 - Tail end ( TE )

13 - Right Knee ( RK )

14 - Right hind paw tip ( RHP )

15 - Right hind paw top ( RHP )
16 - Left knee ( LK )

17 - Left hind paw tip ( LHP )

18 - Left hind paw top ( LHP )

7 - Right elbow ( RE )

8 - Right fore paw tip ( RFP )

9 - Right fore paw top ( RFP )
10 - Left elbow ( LE )

11 - Left fore paw tip ( LFP )

12 - Left fore paw top ( LFP )

Figure 3.3: 2D joint positions obtained by projecting from the 3D model of the mouse. The 2D
pose representation of the mouse involves 18 joints positions as indicated in the figure.

set to 0.1 in our experiments.

3.3.1 2D synthetic prior

Since we do not have pose annotations for our data, we synthetically build the 2D prior needed

for training the pose estimator. This generates an unpaired set of 2D poses to be converted

to skeleton images and used with unlabelled images during training. For building the 2D pose

prior, we adopt a synthetic 3D model of a mouse [63]. This animated mouse model simulates

synthetic behavioural data using animation and semi-random joint movements. We keep the

original joint-constrained movements of the freely moving mouse model. However, we change

the size of the mouse model and the camera viewpoint to match the synthetic scene to our

experimental videos. We also introduce a linear path in the synthetic scene to simulate the

treadmill in which the mice run in our experimental setup. We animate and render the scenes

with the synthetic model and extract the 2D coordinates of 18 joints on the mouse’s body, as

detailed in Figure 3.3. We use Blender3 to animate the mouse model and extract the 2D poses.

See Appendix A for more details about the mouse model.

3https://www.blender.org/
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Finally, we use those joint positions to create their respective skeleton image, as shown in

Figure 3.2. We remove poses with joints outside the boundaries of the image. To introduce

more variability into the poses of our prior, we extend it by randomly rotating the positions

representing the tip and top of the fore paws of the synthetic poses. Our prior consists of 15,408

different 2D poses transformed into skeleton images. Figure 3.4 displays some randomly selected

2D poses from the prior.

Figure 3.4: Random examples from the prior. We provide a visualisation of some items from
the synthetic prior of 2D poses.

3.3.2 Training procedure

Following [62], we use a perceptual loss Lperc (Equation 3.3), an adversarial loss LD (Equa-

tion 3.4), and a regression loss (Equation 3.5) in training the convolutional networks Φ, Ω, and

Ψ. Note that κ is not a learnable function and λ represents a balance coefficient set to 10. The

overall loss L is given by:

L = λLD + LΩ + Lperc (3.6)

We train the pose estimator using images from the videos on the dataset featuring mice running

30



Chapter 3. Learning to predict 2D animal pose 3.4. Experiments

at different speeds: 10cm/s, 20cm/s, and 30cm/s. Additionally, we include images from video

segments that show the transition between speeds, where mice are not running but moving

freely on the treadmill. During training, we also utilise the samples from the synthetic pose

prior.

Unlike [62], who uses a pretrained Ω, we train all the neural networks Φ, D, Ω, and Ψ from

scratch by optimising the loss function in Equation 3.6. In particular, each batch is formed by

randomly sampling images x and y from the dataset and a random sample u from the synthetic

2D poses, which is then transformed into the skeleton image ŝ. The input images x and y were

resized to 128× 128 pixels. We set the batch size to 32 and use the Adam optimiser [203] with

a learning rate of 2× 10−4, β1 = 0.5, and β2 = 0.999.

2D poseInput image Skeleton image

Trained networks

Figure 3.5: Networks used during inference for 2D mouse pose estimation. During the testing
stage, we only require the trained networks (Φ, and Ω) responsible for mapping the image s to
the final 2D pose v. The remaining networks and other artifacts within the approach are only
necessary while training the model (see Figure 3.2 for reference).

During testing, we only rely on the trained networks Φ and Ω, to map from an input image to

a 2D pose. Specifically, we resize the image x and put it through Φ(x) to obtain the skeleton

image s. Then s is processed by Ω(s) to get the ultimate 2D pose v. Figure 3.5 illustrates the

part of the model used for inference.

3.4 Experiments

3.4.1 Dataset

Our dataset contains images/frames taken from recordings of rodent models with Amyotrophic

Lateral Sclerosis. These models have different genotypes, including Sod1WTxSarm1WT ,

Sod1TgxSarm1WT , Sod1WTxSarm1TG, and Sod1TgxSarm1WT , and are at the ages of four

and sixteen weeks, showing different stages of the disease’s progression. Overall, a minimum

of 8 mice were used for each experiment, including only male mice, due to the gender-specific
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variations in ALS disease development [204]. Mice for all the experimental genotypes were

housed under the same standard conditions with free access to food and water. In addition, the

animals were constantly monitored for changes in their overall health condition, with focus on

evaluating the ALS disease progression [205]. All the mice appearing in the recordings were bred

and maintained at the University of Tasmania under the guidelines outlined in the Australian

Code for the Care and Use of Animals for Scientific Purposes [206]. More detailed descriptions

of procedures and types of animals appearing on the dataset could be found in [207].

The recordings were made using the DigiGaitTM apparatus, which consists of a transparent

treadmill and a camera placed underneath, as illustrated in section A of Figure 3.6. Mice at

both 4 and 16 weeks of age were first acclimatised in the apparatus and then encouraged to run

on the treadmill at 10cm/s, 20cm/s and 30cm/s for a minimum of 10 seconds. The camera

captures the mice on video as they move on the treadmill. Mice were gently encouraged to

run by taps to their rear by the experimenter if needed. At the end of the trial, the mice were

returned to their home cage. Section B of Figure 3.6 shows some images taken from one of the

videos depicting different mouse poses.

We built the dataset with images from 40 videos recorded by DigiGait. Each video comprises

around 13, 120 images/frames, depicting a single mouse running on the transparent treadmill at

three different speeds. On average, the videos are about 80 seconds long, meaning that the mice

ran for a minimum of 20 seconds at each pace, with 10 seconds of transition time between them

without running. Each image has an original dimension of 658× 190 pixels, and the frequency

is 164 frames per second. We use images from half of the available videos to get the training

set, and reserve the other half for evaluation purposes.

3.4.2 Results

Once trained, our model produces a 2D representation of the mouse pose composed of 18 joint

positions for a given unlabelled image. We estimate a 2D pose for each image on the videos

from the test set. Figure 3.7 and Figure 3.8 shows some of those predicted 2D poses.

Since our dataset does not contain annotations for the joint positions, we manually annotated

2D poses for 100 images randomly selected from one of the videos. These annotations provide

ground truth for quantitatively measuring the model’s prediction performance. Note that the

images used for annotation were not included while training the model. We compare pose
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B)

A)

Camera

Transparent treadmill

Mouse

Figure 3.6: (A) Real and schematic example of DigiGaitTM apparatus, image taken from
https://stoeltingco.com/Neuroscience/DigiGait-Imaging-System~9916. (B) Represen-
tative images from one of the videos, depicting different mouse poses. The original recordings
will be made available upon reasonable request.

predictions with ground-truth on this test set using the Mean Per Joint Position Error (MPJPE)

[208], which measures the mean Euclidean distance in pixels between the predicted positions

for each of the 18 joints composing the mouse pose and their respective ground truth positions.

Given an image x, a 2D skeleton v̄, and a pose estimator f , the MPJPE is formally defined by

MPJPE(x, v̄) =
1

L

L∑
i=1

∥∥∥m(x)
f,v̄(i)−m

(x)
gt,v̄(i)

∥∥∥
2

(3.7)

where L is the number of joints in v̄, and m
(x)
f,v̄(i) is a function that returns the coordinates of

the i− th joint of a skeleton v̄, predicted by the pose estimator f , for a given image x. Similarly,

m
(x)
gt,v̄(i) represents the coordinates of the i− th joint of the ground truth skeleton v̄ at x.

Table 3.1 shows the average scores across images for each of the 18 joint positions. Note that the

model was not trained using the ground-truth annotations; it learns solely from the synthetic

pose prior and the unlabelled images from our videos. Furthermore, there are no processes for

domain adaptation involved.
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Figure 3.7: Estimated poses for consecutive images. We provide a video to visualise the pre-
dicted 2D poses for each image composing the video sequence. The figure acts as a link for
accessing the video.

Joints Snout VCB VCE TB TM TE RE RFP− RFP+ Avg.
LE LFP− LFP+ RK RHP− RHP+ LK LHP− LHP+

RI + SP 13.4 8.0 5.6 15.2 17.8 31.8 14.7 15.8 14.8
12.7 10.5 14.2 7.6 21.1 11.5 14.9 11.7 11.9 14.1

Table 3.1: Quantitative evaluation of predicted 2D mouse poses. We evaluate the predicted 2D
poses using the MPJPE metric with corresponding ground truth. RI + SP indicates the use
of the method trained with Real Images and Synthetic Prior.

3.4.3 Semi-randomly generated prior

In an attempt to reduce the dependency on a pre-existing 3D CAD model, we experiment

by generating a semi-random prior using the synthetic 2D poses. We build the new prior by

randomly rotating each joint of the body extremities (fore paws, back limbs, snout, and tail)

in the synthetic 2D poses while preserving the positions of the points for the mouse’s spine.

Subsequently, we train our model using this prior and actual images and then test it on unseen

images.

If the joint rotations are not properly constrained (too random), it may result in producing

unrealistic poses for the prior, as depicted in part A of Figure 3.9. Therefore, this may lead the

model to produce inaccurate predictions, as shown in part B of Figure 3.9. However, designing

the rotations more carefully (such as sampling from actual distributions of limb positions) would

likely make it possible to create a more realistic prior of 2D poses without heavily relying on

the 3D mouse model.
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Figure 3.8: Estimated 2D poses using our method. Randomly selected images from test videos
with their corresponding estimated 2D pose. Purple points represent the estimated positions
for the joints.

3.4.4 Synthetic domain

In addition to the main experiment, we train and evaluate the model with a combination of

images and prior from the same domain, which is closer to the original implementation. Because

of the lack of pose annotations to build the prior from actual images from our dataset, we use

synthetic images and synthetic 2D poses. Note that the pairing of images and poses is discarded,

i.e. the pose annotations to construct the prior were obtained from images not utilised during

training. We train the model with different sequences of images synthetically generated from

the 3D mouse model and test it using a different set of synthetic images. We use the 2D ground

truth annotations for 18 joint positions extracted from the mouse model and compare them

with our model’s predicted poses. We report the MPJPE for each joint position in Table 3.2,

while qualitative results are shown in Figure 3.10.

Joints Snout VCB VCE TB TM TE RE RFP− RFP+ Avg.
LE LFP− LFP+ RK RHP− RHP+ LK LHP− LHP+

SI + SP 5.9 4.0 3.0 3.7 4.3 6.2 5.9 6.6 7.1
5.9 6.9 7.0 4.1 5.2 6.0 4.0 5.1 5.0 5.3

Table 3.2: Quantitative evaluation of predicted 2D synthetic mouse poses. We evaluate the
predicted 2D poses using the MPJPE metric with corresponding ground truth.SI + SP denotes
use of the method trained with Synthetic Images and Synthetic Prior.
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B)A)

Figure 3.9: Randomly generated prior. We experiment by randomly rotating some joints based
on the existing poses on the 2D synthetic prior. Part A of the figure shows examples of 2D
poses after being randomly rotated. However, most of the resulting poses do not represent
plausible mouse poses. Part B illustrates some predictions made with the model trained with
this semi-random prior.

3.4.5 DeepLabCut comparison

Without access to a more extensive set of annotated data, evaluating all our predictions for the

images on the test videos against their respective ground truth poses is impossible. Nonetheless,

we also report a quantitative comparison with the predictions from a state-of-the-art supervised

method for animal pose estimation, DeepLabCut [2]. The purpose of this comparison is to

demonstrate that our self-supervised approach can work similarly to this supervised method,

removing the requirement to annotate 2D poses for training.

In order to build the training set for DeepLabCut, we select and label a subset of 100 consecutive

images from a video. We manually identify the 18 joint positions on each image, as illustrated in

Figure 3.3. Then we use these images and their labelled 2D poses to train a DeepLabCut model

in a supervised fashion. We follow the official implementation4 using a ResNet-50 as a backbone

and 95% of the labelled images for training and the rest for validation. With the trained DLC

model, we predict the pose for unseen images from the test videos. In Figure 3.11, we can see

a visual comparison of the poses estimated by DeepLabCut (represented by pink lines) versus

those estimated by our method (represented by green lines). Additionally, we quantitatively

compare the predictions for each joint and have summarised the results in Figure 3.12.

To generate the results shown in Figure 3.12, we utilise continuous images from a few seconds

of a test video. We then estimate the 2D pose for each image using our trained method and

4https://github.com/DeepLabCut/DeepLabCut
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Figure 3.10: Predicted 2D poses using the model trained on synthetic images and synthetic
prior. Images rendered from synthetic mouse model showing their respective predicted (purple
dots) and ground truth 2D poses (green dots). Zoom-in the figure for a better visualisation.

DeepLabCut. The estimated positions of body joints are represented as pairs of coordinates

(x, y) on the image frame, and we plot them over time accordingly. On each graph, we indicated

our estimated positions for a given joint with solid lines, and dotted lines denote those estimated

by DeepLabCut. In the inset legend, we use the label ‘DLC’ after the joint name to identify the

predicted joint positions by DeepLabCut, while the predictions of our method simply appear

indicated by the name of the joint. For specific joints like the snout, vertebral column (VCB,

VCE), and tail (TB, TM, and TE), we only show the predicted x positions, which helps to

better visualise the patterns in the accompanying graphs (graphs g and h). We are especially

interested in estimating accurate positions for the joints representing the fore and hind paws

since these joint positions are more useful for future gait measurements. Thus, we include the

visualisation of both x and y predicted positions in separate graphs (a, b, c, and d) for those

joints.

In particular, graphs a and b show the estimated x and y positions for the right fore paw (RFP)

and left fore paw (LFP) in every image during one second of the video. The positions of these

paws are given by identifying the middle point between the corresponding tips and tops of the

fore paws, i.e., RFP = (RFP−+RFP+)/2 and LFP = (LFP−+LFP+)/2. A similar approach

is taken for the right hind paw (RHP) and left hind paw (LHP) appearing on graphs c and d.

Graph e groups the estimated x positions for the four paws, RFP, LFP, RHP, and LHP, while
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Figure 3.11: Visual comparison of predicted poses by DeepLabCut and our method. Green lines
represent our predicted poses, while pink lines denote poses estimated by DeepLabCut.

graph g presents their estimated y positions. Both graphs consider an extended time window

of the video (three seconds) to illustrate some abrupt changes in the pattern.

We provide the estimated positions of body joints other than the paws. For instance, graph g

shows the consecutive predicted x positions for three body parts during two seconds. The top

two lines correspond to the snout, the middle pair represents the vertebral column base (VCB),

and the bottom two lines represent the vertebral column end (VCE). Since predictions by both

methods are close, we can observe a consistent pattern for these joint positions.

Similarly, graph h illustrates the predicted x positions for different body joints. For this case,

we include three joint positions corresponding to three points in the mouse’s tail: tail base

(TB), tail middle (TM), and tail end (TE). The differences between our predictions and those

obtained with DLC are more pronounced, particularly for the tail middle and tail end joints.

Our method produces smooth lines for the predicted x positions, while DeepLabCut’s are noisy.

To make a more detailed comparison, we focus on the predictions for the tail end (TE) and

display them on graph i for three seconds of video. During manual annotation, this joint may

be repeatedly located at the left border of the image frame, which is usually accurate but

occasionally incorrect.

Finally, we assess some predictions of DLC quantitatively. We use the same ground truth pose

annotations as those utilised for evaluating the self-supervised method (Table 3.1). Table 3.3

shows the MPJPE of DLC predictions with respect to the corresponding pose annotations.

As expected, the overall MPJPE is more satisfactory for DeepLabCut. This may be partly
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Figure 3.12: Comparison of our predicted joint positions against the ones predicted by DeepLab-
Cut (DLC). a) Predictions for right fore paw (RFP) and left fore paw (LFP). b) Predictions
for right fore paw (RFP) and left fore paw (LFP). c) Predictions for right hind paw (RHP)
and left hind paw (LHP). d) Predictions for right fore paw (RHP) and left fore paw (LHP). e)
Predictions for RFP, LFP, RHP, and LHP. f) Predictions for RFP, LFP, RHP, and LHP. g)
Predictions for snout, vertebral column base (VC base), and vertebral column end (VC end).
h) Predictions for tail base, tail middle, and tail end. i) Predictions for tail end.
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Joints Snout VCB VCE TB TM TE RE RFP− RFP+ Avg.
LE LFP− LFP+ RK RHP− RHP+ LK LHP− LHP+

DLC 4.7 16.3 18.2 4.0 7.2 20.2 7.8 5.4 5.1
6.5 5.7 9.8 5.6 5.3 6.1 7.2 9.0 8.3 8.5

Table 3.3: Quantitative evaluation of predicted 2D mouse poses using a supervised method for
animal pose estimation: DLC.

explained by using supervision in training DLC, albeit on a limited dataset. Additionally, the

consistency with which joint positions were manually located during the production of ground

truth for training and testing images may have contributed to these results. However, DLC’s

performance is lower for the base and end of the vertebral column, possibly due to challenges

in consistently locating these joints during annotation.

3.5 Exploratory work for gait analysis

Utilising the predicted 2D poses generated by our model, we calculate some metrics that could

be useful for performing gait analysis. Having the consecutive 2D poses corresponding to all

the images in a given video, we focus on measuring the distances between the front and rear

paws on the animal’s left and right sides. We plot these distances against time and present

the results in Figure 3.13, Figure 3.14, and Figure 3.15. Note that each second of the video

corresponds to 164 images.
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Figure 3.13: Distances between left front paw and left rear paw. We measure the distances
between the left front and rear paws of each image in a video sequence. We then plot these
distances for approximately 80 seconds of video.

Throughout the gait cycle, the maximum distance between each pair of paws occurs when the

paws are at their farthest separation. Since each video depicts the mouse running at three

different speeds, we can clearly distinguish each case in the plots. For example, Figure 3.13
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Figure 3.14: Distances between right front paw and right rear paw. We measure the distances
between the right front and rear paws of each image in a video sequence. We then plot these
distances for approximately 80 seconds of video.
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Figure 3.15: Distances between left front paw and left rear paw for 10 seconds. We provide a
zoom-in into results from Figure 3.13, providing a more precise visualisation of the gait pattern
during 10 seconds of video.

shows a consistent pattern between 5 and 20 seconds when the mouse runs at 10cm/s. The plot

changes after that, indicating when the mouse walks freely on the treadmill but is not running.

From seconds 30 to 55, the mouse starts running again, but this time at 20cm/s, which is shown

as more frequent peaks in the plot. Finally, the mouse stops running again for a few seconds

before running at approximately 30cm/s from seconds 65 to 75.

As an alternative approach for extracting helpful features for gait analysis, we experiment with

an existing open-source method for pose clustering called B-SOiD [209]. This approach adopts

ideas from unsupervised techniques to identify clusters of actions and kinematic measurements

from pose data, reducing user bias and the need for manual calculations. In this case, we use

B-SOiD to cluster the predicted poses by our model for a given video. It first applies t-SNE [210]

for dimensionality reduction and a Gaussian Mixture Model (GMM) Expectation Maximization

to group the t-SNE clusters. Then it calculates seven features for each cluster, including four

distance features: relative snout to forepaws placement, relative snout to hind paws placement,
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Figure 3.16: Unsupervised 2D pose clustering and features. Existing methods for unsupervised
clustering, such as B-SOiD [209], permit the condensing of 2D pose data into functional clusters
for activity recognition. It also produces a set of features for gait analysis. We show results using
the estimated 2D poses for one video for generating two and three clusters and the corresponding
seven features (F1, . . . , F7) for each.

inter forepaw distance, and body length (F1, F2, F3, F4); and three time-varying speed/angle

features: body angle, snout displacement, and tail-base displacement (F5, F6, F7). The plots in

Figure 3.16 display the clusters using two and three classes (identified with different colours).

The following figures indicate the corresponding features (F1, . . . , F7) calculated for each cluster.

Since there are no annotations for actions in the videos, we hypothesise that in the case of

having two clusters, one could correspond to the poses related to the mouse in movement when

it is running. In contrast, the other group could be related to the positions when the mouse is

walking. A more comprehensive analysis and potential uses for these features are left for future

work.
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3.6 Adaptation to other animal structures

We conduct further experiments to demonstrate our method’s flexibility in estimating animal

pose. In particular, we use images depicting a different animal to train and test the approach,

as shown in Figure 3.17. Note that this method is the same as the one described in Figure 3.2;

the only differences are the input images and the synthetic prior.
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Figure 3.17: Self-supervised 2D pose estimator. The approach uses unlabelled images depicting
horses and a synthetically generated prior of 2D horse poses during training. The networks are
the same as those used on the main method for estimating mouse poses.

3.6.1 Data

Training

We build a dataset of images depicting full-body horses to train the model. We start by selecting

the horse subset from the most recent version of the TigDog dataset [134]. We utilise images

extracted from all the video sequences in the dataset, only discarding some pictures showing

incomplete horses.
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In addition, we automatically gather images from a manually defined collection of YouTube

videos that will likely show horses for most of their frames. This enhances the training set and

increases the diversity in terms of horse breeds and poses. The automatic process for collecting

images consists of three main steps: Firstly, we download the videos from YouTube and split

them into individual images/frames. Secondly, each image from the videos is processed using

a pre-trained model [211], which identifies the horse in the frame and produces a segmentation

mask. This step ensures collecting only frames containing a horse and discarding the rest.

Third, we resize the frames that show horses to a predefined size of 128 × 128 and save them

along with their respective segmentation masks.
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Figure 3.18: Number of images extracted from each of the YouTube videos. Most of the videos
provide a similar number of images to the dataset, with a few exceptions (pink line indicates the
average). We focus on collecting images from short videos to provide more variability within
the data.

On average, we automatically collect 47k images depicting full-body horses from 60 videos.

Figure 3.18 illustrates the distribution of video frames. Subsequent chapters provide more

insights regarding the YouTube videos used to create the dataset and the collection process.

Synthetic pose prior

Similarly to the mouse case, we use a publicly available dataset of 2D poses generated from a

3D CAD model of a horse [45] as the 2D pose prior that the method needs during training.

Unlike the mouse experiments, using the already generated synthetic 2D poses for the horses

removed the need to manipulate the horse model manually. Figure 3.19 displays a few random

examples from the synthetic prior of 2D horse poses.
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Figure 3.19: Randomly selected examples from synthetic pose prior. We use the synthetic 2D
pose data from [45] to build the needed prior of synthetic 2D poses for training our approach.
As demonstrated by the examples, it accurately represents the variability of horse poses.

Testing

Since the 2D pose annotations from the TigDog dataset are inconsistent, i.e. the number of

labelled parts for each horse is different; and the collected video frames are not labelled. We

then use images from the Weizmann dataset [135] to test the trained model. Due to the lack of

pose annotations for this data, we manually labelled 2D poses consisting of 15 joint positions

(three for each front and rear limb; one for the chin, and two for the eyes) for all the images

on the Weizmann dataset showing full body horses (around 300 images). We utilise these pose

annotations as ground truth to quantitatively evaluate the estimated 2D poses with our method.

The Weizmann dataset is diverse regarding the breed of horses, as illustrated by Figure 3.20.

However, most horses are oriented to the same side; specifically, all horses face the left-hand

side. We flip some of the images and pose annotations to increase the variability in orientation.

Additionally, we reserve images from one of the collected videos to evaluate horses in different

conditions.

3.6.2 Results

Using the trained model, we produce 2D poses for all the images in the test set. Each predicted

pose comprises 20 joint positions. However, when comparing against ground truth, we only

keep 15 joint positions. These include three positions for each front and rear limb, two for the
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Figure 3.20: Randomly selected examples from the Weizmann dataset. In order to test our
model with a different distribution of images, we use the Weizmann dataset, which contains
various horse breeds that differ in appearance and pose.

eyes and one for the chin, as shown in Figure 3.21.

Figure 3.21: Annotated 2D poses on different images to quantitatively evaluate the model
performance. We annotate 2D poses on the images from the Weizmann dataset. Each pose
comprises 15 joint positions, indicated with green dots in the pictures.

To quantitatively evaluate the predicted poses by our model, we follow previous works for

horse pose estimation and utilise the Percentage of Correct Keypoints (PCK@0.05) metric.

This measures the alignment of the predicted 2D horse poses with their respective ground

truth. In this context, the predicted keypoint is considered correct if it falls within the distance

threshold (0.05). We report the results of such evaluation in Figure 3.22, which includes average

PCK@0.05 scores for certain joint groups. For a more comprehensive comparison with similar

methods, please refer to Chapter 5. Furthermore, Figure 3.23 shows some predicted poses for

images from the Weizmann dataset and one of the YouTube videos (framed with green) excluded

during training.
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Figure 3.22: Quantitative evaluation for the estimated 2D horse poses. Each predicted horse
pose was compared to its respective ground truth. The table displays the average PCK@0.05
for each group of joint positions, following standards from previous works.

We provide a more comprehensive evaluation of our model by testing it with images of wild

zebras from [164]. As zebras and horses share similar skeletal structures, we anticipate that

our model will generate reasonable 2D poses, despite not being explicitly trained with images

of zebras. In Figure 3.24, we show some visualisations of the predictions made by the model

trained with horse pictures (and horse synthetic prior) but tested on images of zebras.

3.7 Conclusion and discussion

Supervised methods learn from annotated poses on the training data, which makes them depen-

dent on the quality of those annotations. While some joint positions are obvious to annotate,

others represent a challenge and sometimes require domain specialists to locate them. Contrary

to the supervised methods, our approach is not dependent on the quality of the annotations

since it learns from skeleton images generated from synthetic poses. Regardless, our method

produces similar 2D poses to the ones estimated with DeepLabCut (as illustrated in Figure 3.11)

and is not too far off the quantitative performance of DeepLabCut in terms of MPJPE against

ground-truth annotations.

According to the plots in Figure 3.12, despite some visible differences between our method and

DeepLabCut for specific body parts, most graphs show smooth lines for our predictions. This

trend is observable in the last graph (i), which shows a noisy dotted blue line for the DeepLab-

Cut predictions for the tail end (TE) joint, while the predictions of our method (blue line)

follow a consistent trend. When comparing both methods against ground truth annotations,
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Figure 3.23: Visualisation of the predicted 2D poses for images fromWeizmann dataset. Framed
with green: predicted 2D poses for images from a YouTube video (excluded during training).

Figure 3.24: Visualisation of results using images depicting zebras [164]. Each picture in the
figure represents the estimated 2D poses utilising the model trained with purely horse data;
only the test data changed.

as expected, the overall performance of DeepLabCut is superior. This is probably due partly

to the consistency of manual annotation of ground-truth joint locations used in training and

testing DeepLabCut. On the other hand, our method has an emergent set of joint locations,

which are then compared with the manual ground truth. There could be a systematic bias for

each joint that, once corrected by adding joint-dependent offsets, would improve performance
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further.

Our experiment training the method with synthetic images and a synthetic pose prior shows

that by matching the pose prior and the image domains, the model makes accurate predictions

in that domain. That experiment also shows better results than the supervised method. This

may happen due to the scarce variability of the synthetic images used to train the model.

Therefore the synthetic prior of 2D poses could better match their distribution of poses. In

the same way, building the pose prior with unpaired annotated poses from the actual data may

increase performance when training with real images. However, the latter setting does not align

with the aim of this chapter.

In conclusion, we have successfully adapted a self-supervised 2D human pose estimation method

to a different animal domain, replacing an empirical prior associated with actual images with a

synthetic prior. We demonstrated that the approach produces promising results in relation to a

state-of-the-art supervised approach in the mouse domain. Our method estimates consistent 2D

locations for most body joints relying only on a few assumptions, such as unlabelled images and

a small prior of synthetic 2D poses. Furthermore, the experiments with different data revealed

that the method is flexible enough to work with other anatomical structures, like horses and

zebras. Most significantly, our approach eliminates the need to annotate images for training,

making it faster and simpler to implement with the abundant unlabelled datasets from the

animal domain.

A direction of future work would be to experiment with more challenging scenarios involving

more complex mouse behaviours. This could provide additional motivation to add temporal

constraints to the method. An important motivation for our work has been to explore an

approach that can be rapidly deployed to other animal domains without requiring extensive

annotation of images. While we currently rely on a mouse model to generate the synthetic

pose prior, a few manually annotated images may suffice in practice (i.e., a smaller prior with

actual poses). Furthermore, a shared pose prior between species could be effective and is

worth investigating. Finally, extending the work related to gait analysis could be beneficial in

identifying and classifying patterns related to the development of ALS disease.
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Chapter 4

Learning to predict 3D human pose

from unlabelled images

We present a new method for predicting 3D human body pose from unlabelled images. The

method is self-supervised and therefore has the potential for application across different domains

without the need for annotated images for training. We train the prediction network using a

dataset of images depicting people in a range of typical poses, along with a prior of unpaired

2D poses. Our method builds upon earlier approaches in utilising a bottleneck, involving an

intermediate skeleton image and a 2D pose representation. It also critically rewards geometric

consistency after randomly rotating the target 3D pose about a vertical axis, projecting to a

2D pose, lifting back into 3D and applying the inverse rotation. Unlike the current state of the

art for self-supervised 3D pose prediction from images, we do not require any prior information

on acceptable 3D poses, such as articulation constraints and empirical 3D pose priors. We

train and test the network on images from benchmark datasets for human pose estimation, like

Human3.6M, MPI-INF-3DHP, and LSP. On Human3.6M, we outperform state-of-the-art self-

supervised methods that estimate 3D pose from single images, while using the MPI-INF-3DHP

dataset, we obtain similar performance to the state-of-the-art. Qualitative results on a dataset

of human hands show the potential for rapidly learning to predict 3D poses for structures other

than the human body without the burden of collecting annotations for the training data.
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4.1 Overview

Estimating 3D pose for articulated objects is a long-standing problem. Its foundations arise

from the early days of computer vision with model-based approaches representing the human

body as an articulated structure of parts [212, 24]. Interest in estimating 3D human pose grew

within the computer vision community, partly because of the many real-world applications,

for example, pedestrian detection [213], human-computer interaction [13], video surveillance

[214], and sports analysis [215]. Initial work on estimating 3D pose addressed this problem by

extracting hand-crafted features, such as segmentation masks [216]. Other early approaches,

like exemplar-based methods, use extensive datasets of 3D poses (commonly constructed from

motion data) to search for the optimal 3D pose given its 2D representation [217, 218, 219].

Deep learning methods for pose estimation have rapidly gained popularity in recent literature

because of the performance improvement compared to traditional methods. These approaches

also eliminate the need for manual feature extraction, resulting in faster implementation and

deployment. The initial deep learning techniques for 2D and 3D pose estimation commonly

describe this problem as a regression of the body joint positions [15, 16]. This means that

the model must learn to map the coordinates for each joint position in an image based on the

actual positions provided. Subsequent works [33, 14] improve the robustness of pose estimation

methods by introducing heat-map representations for the coordinates of body joints. However,

most of these pioneering approaches rely on supervised learning, implying that these require

access to large annotated datasets for training, which is particularly difficult to obtain in the

3D domain.

Getting 3D joint positions is more challenging than annotating 2D joint positions on images.

It is a time-consuming and error-prone process that often requires specialised equipment for

data acquisition, e.g. depth sensors, multiple cameras, and wearable devices. Consequently,

there is growing interest in transitioning from fully supervised deep learning methods and de-

veloping approaches for 3D pose estimation that better exploit the availability of unlabelled

data to learn accurate 3D representations. Furthermore, minimising the assumptions of data

availability for training deep learning models contributes to making them more flexible in terms

of implementation with different datasets.

In this chapter, we describe a method that overcomes the problem of collecting 3D annotations
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Image Skeleton image 2D pose 3D pose

Lifting

Figure 4.1: Summary of the proposed method for estimating 3D human poses. Our approach
simultaneously learns to estimate 2D poses from single unlabelled images and lift them to
3D. The depicted image-to-pose mapping is embedded within a larger network for end-to-end
training.

for training 3D pose estimation methods. We design a self-supervised approach for estimating

3D human pose that works under minimal data availability assumptions. In particular, it

learns 3D human poses from unlabelled images and a prior on unpaired 2D poses, relying on

some intermediate representations as illustrated in Figure 4.1. Our primary hypothesis is that

leveraging the learning to such minimal requirements as unlabelled data and 2D unrelated pose

annotations would make the method flexible enough to be rapidly implemented with data from

different domains. This is especially relevant for animal datasets, which often lack sufficient

annotations for both 2D and 3D domains. Note that this chapter focuses on discussing the

foundations of the proposed method. For further understanding of the approach’s flexibility

and supporting evidence of its application to the animal domain, please refer to the last chapter

of the thesis.

The proposed approach involves training a 2D pose predictor and a 3D lifting model to gen-

erate 3D joint positions from unlabelled images. This is done through an end-to-end learning

framework. Our method draws inspiration from the recent state-of-the-art approaches in esti-

mating 2D and 3D poses, including the use of skeleton images as an intermediate representation

[119], the incorporation of image-to-image translation networks for learning the intermediate

2D pose representation [220, 119], and a lifting process into 3D that exploits 3D geometric self-

consistency for training [54]. In addition, we use normalising flow (NF) to provide a prior on

the 2D pose and estimate the elevation angle, which helps in performing rotations for geometric

self-consistency [55].

In summary, our method simultaneously learns 2D and 3D pose representations in a largely

52



Chapter 4. Learning to predict 3D human pose 4.2. Background

unsupervised fashion, requiring only an empirical prior on unpaired 2D poses. We demonstrate

its effectiveness on Human3.6M [208], MPI-INF-3DHP [221], and Leeds Sports Pose (LSP) [29]

datasets, three of the most popular benchmarks for human pose estimation. We also show our

method’s adaptability to other articulated structures using a synthetic dataset of human hands

[222]. In experiments, our approach outperforms some state-of-the-art self-supervised methods

that estimate 3D pose from images but require more supervision in training.

4.2 Background

The literature review chapter of this thesis states that deep learning methods for 3D human

pose estimation are usually classified based on their input. Some take in 2D poses and lift them

to 3D, while others learn the 3D poses from images. Our proposed method in this chapter falls

under the second group since it inputs images. However, at the same time, it incorporates ideas

from the lifting approaches, making it closely related to those methods too. More specifically,

our method for estimating 3D human poses is influenced by previous works that focused on

estimating 2D poses, such as the work of Jakab et al. [62]. Although this approach was not

intended to work with 3D poses, it is still exciting because it does not require annotations

for input images, which aligns with the purpose of our approach. Therefore, we adopt some

parts of their architecture to learn a mapping from the input image to an intermediate 2D pose

representation, which is then lifted to 3D. For the lifting part, we take some ideas from the work

of Chen [54], such as the notion of geometric self-consistency. To further improve the accuracy

of our approach, we draw inspiration from more recent literature [55], e.g. the incorporation

of normalising flows. Different from related works, our approach learns both the mapping to

2D poses and the lifting to 3D in an end-to-end manner. More importantly, we do not assume

access to 3D annotations or paired 2D data to supervise training.

Prior to introducing the complete architecture and components of the model, we will review the

foundations of some of the core ideas that make our approach work. These include geometric

self-consistency and an overview of image translation networks. We will also discuss some

additions that enhance the model performance, such as normalising flow.
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4.2.1 Geometric self-consistency

Input 2D pose

Possible 3D predictions

Lifting model

Acurrately predicted
3D pose

Badly predicted
3D pose

Random rotations

Random rotations

2D projections
Likely to match real distribution

of 2D poses

2D projections
Unlikely to match real distribution

of 2D poses

Figure 4.2: Geometry cues for pose estimation. A single 2D pose can have multiple 3D repre-
sentations, but not all are plausible. When randomly rotated such 3D pose predictions, only
accurately predicted 3D poses will likely project to plausible 2D poses.

As illustrated by Figure 4.2, given a 2D pose, there are infinite 3D poses whose 2D projections

match the position of 2D landmarks in that view. However, an implausible 3D skeleton is

unlikely to appear realistic from a different randomly chosen viewpoint. Conversely, when 3D

poses are correctly estimated and then randomly projected onto a 2D plane, the resulting 2D

poses are more likely to reflect the distribution of actual 2D poses regardless of the viewing

direction.

The work of Drover [145] is one of the first methods to build upon the previous assumption by

exploiting geometry cues, such as rotations and projections, to constrain a weakly supervised

deep learning model. Their model evaluates the 2D projections of rotated 3D poses using a

GAN loss, allowing it to learn realistic-looking 3D poses guided by the realism of their pro-

jections. Later, Chen [54] extends Drover’s idea [145] by introducing the notion of geometric

self-consistency. This involves taking the predicted 3D pose, randomly rotating it and project-

ing it to 2D. However, unlike [145], these steps are repeated, i.e. the 2D projection is the input
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for the same prediction model, and then the resulting 3D pose is inversely rotated and projected

to 2D again, as shown in Figure 4.3.

Input 2D pose

Lifting model

Predicted 3D pose

Random rotation

Rotated 3D pose

Projection

Lifting model

Predicted 3D pose

Inverse rotation

3D pose

2D pose

Projection

2D projection

Figure 4.3: Geometric self-consistency for pose estimation. The work of Chen [54] exploits the
geometric consistency for lifting a given 2D pose to 3D. After randomly rotating an accurately
predicted 3D pose and projecting it to 2D, this projection will likely produce another accurate
3D pose when using the same lifting model. Comparing related pose representations from this
cycle produces a strong loss term to constrain the lifting model to learn plausible 3D poses.

This cycle of geometric transformations of the pose creates a strong signal for self-supervising

the learning by comparing analogous representations from the forward and backward parts

of the process. This will drive the model to learn accurate 3D poses since the reasonable

2D projections from randomly rotated plausible 3D predicted poses will also produce realistic

3D skeletons. The loss terms will reward realistic-looking pose representations and penalise

inaccurately estimated 3D poses.

4.2.2 Image-to-image translation

Image-to-image translation involves taking an input image from a particular domain and trans-

lating it into a corresponding output image from a different domain [220]. For instance, we

can translate from aerial photos to maps, night scenes to daytime scenes, sketches to actual

photographs or, more related to our method, from images to skeletons [119, 65] (Figure 4.4).

The fundamental aspect of image-to-image translation heavily relies on generative adversarial
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Aerial to Map Sketch to Picture

Day to Nigth Image to Skeleton

Input

Input Input

InputOutput

Output Output

Output

Figure 4.4: Image-to-image translation problems. Many computer vision problems can be
addressed by transforming an image into another image (image-to-image translation). For
example, it could be possible to map from aerial images to maps, from sketches to actual
pictures, from daylight scenes to nightlight photographs, and more specifically to this chapter,
from image to skeleton image. Some examples taken from [220].

networks (GANs). In particular, a type of GAN called conditional GANs is preferred as it

allows for learning a conditional generative model for the data. In this scenario, the condition

is based on producing an output image using an input from a distinct domain [220]. In other

words, when training conditional GANs for image-to-image translation, a generator G learns

to fool the discriminator D by producing realistic-looking versions of the input x. At the same

time D learns to classify the predicted image G(x) as real or fake. The big difference of this

approach with normal GANs (or unconditional) is that both generator G and discriminator D

observe the images involved in the mapping.

The setting from the original idea, as shown in Figure 4.5, requires access to paired data to learn

the mapping/translation. However, further implementations show that learning this mapping

is still possible when discarding the pairing [223, 224, 121]. In practice, the generator G is

typically implemented as a modified version of an encoder-decoder network [225], adding skip

connections and following the general shape of a U-Net [226]. While the discriminator D is

often defined as a convolutional PatchGAN [220, 227]. Refer to [220, 223, 121] for a more
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comprehensive review of the architectural choices.

Generator

Discriminator

fake

Discriminator

real

Figure 4.5: Conditional image-to-image mapping. The discriminatorD learns to classify (image,
skeleton) tuples as fake or real, while the generator G tries to fool the discriminator. Unlike
standard GANs, the discriminator looks at both the image x and the skeleton y.

4.2.3 Normalising flows

Normalising flows (NF) are a group of generative models for learning distributions where den-

sity evaluation and sampling can be efficient and accurate. A normalising flow transforms a

simple distribution (like a normal distribution) into a more complex one using a sequence of

differentiable and invertible mappings [228].

According to [229], the idea of a flow-based model is to express a D-dimensional real vector x

as a transformation T of a real vector u sampled from pu(u), i.e.:

x = T (u) where u ∼ pu(u) (4.1)

In this context, pu(u) represents the base distribution of the flow-based model. To make the

model work, the transformation T must be invertible, and T and T−1 must be differentiable,

requiring u to be D-dimensional [230] too. Given these conditions, the density of x can be

calculated by a change of variables:

px(x) = pu(u)|det JT (u)|−1 where u = T−1(x) (4.2)

Similarly, we can also express px(x) with respect to the Jacobian of T−1:
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px(x) = pu(T
−1(x))| det JT−1(x)| (4.3)

Finally, the Jacobian JT (u) can be obtained by creating the D×D matrix consisting of all the

partial derivatives of T . Usually, T or T−1 is implemented as a neural network while assuming

pu(u) as a normal distribution.

NF has various applications for different tasks, including image generation [231], noise modelling

[232], and improvement of reinforcement learning [233]. Flow-based methods have also been

explored in pose estimation problems, mainly to learn prior distributions of 3D human poses

[234, 235]. Further approaches, such as [146], incorporate images to condition the posterior

distribution of the 3D poses. More recently, the method in [55] uses normalising flow to infer

the probability of a reconstructed 3D pose solely from a prior distribution of 2D poses, therefore

removing the need for 3D training data as in previous works. The method incorporates a flow-

based model within an existing technique for lifting 2D poses to 3D [54], resulting in more

accurate 3D predictions.

4.3 Method

4.3.1 Method overview

Our proposed model for estimating 3D human pose consists of a pipeline of three networks - Φ,

Ω, and Λ - mapping from full body images to 3D pose. This can be seen in the blue dotted box

in the upper-left part of Figure 4.6. In particular, Φ is implemented as a CNN based on image-

to-image translation networks, translating from an input image x to an intermediate skeleton

image s. Ω is another CNN mapping from s to a 2D pose representation y. Finally, Λ is a fully

connected network that lifts the 2D pose y to the required 3D pose v. The 3D pose is depicted

through an articulated structure of 3D line segments corresponding to the human body’s parts,

e.g., the head, torso, upper arm, and foot.

To train the three networks, we combine them into a more extensive network (as shown in

Figure 4.6) and optimise it end-to-end. This network includes a loop of transformations for the

3D pose, where the degree of geometric consistency between these transformations contributes to

a loss function and provides self-supervision of the training. The training starts with unlabelled

images depicting people in different poses from benchmark datasets. We also assume we have a
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Figure 4.6: Self-supervised architecture for estimating the 3D pose of a person. Our method
aims to map an image of a person to its 3D pose. It consists of an image-to-pose mapping
(upper left dotted blue box) given by an image-to-image translation and a lifting process. The
self-supervision comes from incorporating these networks within a bigger structure, exploiting
the notion of geometric self-consistency (rotations and projections). It also uses a conditional
GAN that evaluates the image-skeleton mapping. Additionally, an NF improves the geometric
transformations, producing more plausible 3D representations.

(normally unrelated) dataset of typical 2D poses to be converted into skeleton images utilising

a differentiable function, κ. Furthermore, our model relies on a conditional GAN framework,

where the discriminator D evaluates the realism of the generated skeleton images s via the

generator Φ(x) with those created by κ. In the following sections, we provide more details

about the components of our model.

4.3.2 Image to 3D pose mapping

The image-to-pose mapping is the composition of the networks Φ, Ω, and Λ to map an image

x depicting a person to its 3D pose representation v. The first part of the mapping is a CNN

Φ, which maps from the image x to a skeleton image s = Φ(x), showing the person as a

stick figure. We implement the Φ network as an image-to-image translation network, similar

to the architecture of [220, 119]. Along with other components that we discuss later, this

formulation can learn how to map images from one domain to another, i.e., from actual pictures

depicting people to their skeleton image representation. Contrary to the standard design of
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encoder-decoder networks for image-to-image translation tasks, Φ uses skip connections, and it

is fully convolutional (without the bottleneck of having fully connected layers), allowing better

alignment of the individual’s geometry on the input x to its skeleton image representation s,

which is beneficial for the further pose estimation task.

In the next part of the image-to-pose mapping, the network Ω maps the output skeleton image

s from Φ(x) to a 2D pose representation y = Ω(Φ(x)). In other words, Ω learns to extract 2D

joint positions (xi, yi) from the skeleton image. The implementation of this network follows the

one proposed in [119, 224]. During the final stage of the mapping, a fully connected neural

network, Λ, lifts the given 2D pose y to the required pose v in 3D (See Appendix B for more

details). In particular, Λ(y) estimates the depth zi = di+∆ as the offset di to a constant depth

∆ for each pair of (xi, yi) joint positions in the input y. Then, the 3D location of joint vi in the

3D pose v is given by

vi = (xizi, yizi, zi) (4.4)

where zi is forced to be larger than one, to neutralise ambiguity from negative depths. In line

with previous works [54, 56, 55], ∆ is fixed to 10.

The lifting network Λ is based on the work of [16, 54] and extended following [55]. In this

context, the extended version of the network estimates the depth zi for each joint position in

the input and predicts a value for the elevation angle α. This angle is useful when performing

the rotations of the 3D pose v within the loop for geometric consistency. Specifically, we use α

to fix the elevation angle of the vertical axis to the ground plane about which the rotation is

performed.

4.3.3 Pose prior and discriminator

We encourage the generator network Φ(x) to produce realistic-looking skeleton images with the

help of a prior of 2D poses {uj}Mj=1. To assist the image-to-image translation process, the 2D

poses from the prior are rendered to skeleton images using the differentiable function κ proposed

in [119]. It’s important to note that these 2D poses are not annotations of the training images.

Let C be a set of connected joint pairs (i, j), e an image pixel location, and u a set of x and y

coordinates of body joint positions. The skeleton image rendering function is given by:
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κ(u)e = exp

(
−γ min

(i,j)∈C,r∈[0,1]
||e− rui − (1− r)uj ||2

)
(4.5)

Informally κ defines a distance field from the line segments linking joints and applies an expo-

nential fall-off to create the image. Note that this is the same as the rendering function defined

in Chapter 3.

As per Jakab’s approach [62], we utilise a discriminator network D to encourage the generator

Φ(x) to produce plausible skeleton representations. More specifically, the task of D is determine

whether a skeleton image s = Φ(x) looks like an authentic skeleton image such as those in the

prior z = κ(u). Formally, the objective is to learn D(s) ∈ [0, 1] to match between the reference

distribution p(z) given by the unpaired skeleton images in the prior {zj = κ(uj)}Mj=1 and the

distribution q(s) given by the predicted skeleton image samples {si = Φ(xi)}Ni=1. A difference

adversarial loss compares the unpaired samples z and the predictions s:

LD =
1

M

M∑
j=1

D(zj)
2 +

1

N

N∑
i=1

((1−D(si))
2 (4.6)

4.3.4 Random rotations and projections

Another essential component of our model is the lifting process which helps to accurately learn a

3D pose v from the estimated 2D pose y. Since our self-supervised approach does not incorporate

any 3D data for supervision, we simulate a second virtual view of the 3D pose v by randomly

rotating it v̂ = R ∗ v. Previous work [54] builds the rotation matrix R by uniformly sampling

azimuth and elevation angles from a fixed distribution, usually from [−π, π] and [−π/9, π/9]

respectively. However, [55] demonstrates that learning the distribution of the elevation angles

leads to better results. Therefore, we follow their approach and utilise the network Λ to estimate

the elevation angle (along with the depth predictions). We then use the distribution of predicted

elevation angles to build the needed rotation matrix R for performing the rotation.

In line with [55], we predict the dataset’s normal distribution of elevation angles Re by calcu-

lating a batch’s mean µe and standard deviation σe from the estimate values by Λ(y). We then

sample from the normal distribution N (µe, σe) to rotate the pose v in the elevation direction

Re. The rotation around the azimuth axis Ra is simply chosen from a uniform distribution

[−π, π]. Finally, the complete rotation matrix R is given by:
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R = RT
e RaRe (4.7)

After rotating the 3D pose, we project v̂ through a perspective projection. Then, the same

lifting network Λ(ŷ) produces another 3D pose v̂′ which is then rotated back to the original

view. The final 3D pose v′ is projected to 2D using the same perspective projection. This

loop of transformations of the 3D pose helps to self-supervise the training. In this scenario,

based on the notion of geometric self-consistency (see subsection 4.2.1), we assume that if the

lifting network Λ accurately estimates the depth for the 2D input y, then the 3D poses v̂ and

v̂′ should be similar. The same principle applies to y and the final 2D projection y′. This gives

the following two components of the loss function:

L3d = ||v̂′ − v̂||2 (4.8)

L2d = ||y′ − y||2 (4.9)

Under the same argument, it can be assumed that 3D poses v and v′ are comparable. In this

case, instead of comparing the representations involved directly, we adopt [56, 55] to measure

the change in the difference (or deformation) in 3D pose between two samples j and k from a

batch at corresponding stages in the network. The resulting loss term is expressed as:

Ldef = ||(v′(j) − v′
(k)

)− (v(j) − v(k))||2 (4.10)

Similar to Wandt [55], we do not assume samples j and k are from the same sequence; these

may come from different sequences and subjects.

4.3.5 Normalising flow

The notion behind normalising flow (NF) is to transform a simple distribution (e.g. a normal

distribution) into a complex one so that the density of a sample under this complex distribution

can be easily computed. NF has been successfully used for 3D pose estimation tasks, as discussed

in subsection 4.2.3. However, Wandt [55] introduces the idea of utilising NF for learning a 3D
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prior distribution solely from 2D data. We follow this approach and incorporate NF within our

method to enhance its overall performance. It helps to learn the distribution of elevation angles

for the rotation based on a prior distribution over 2D poses. Therefore, it also contributes

towards the lifting process and the geometric self-consistency.

Let Z ∈ RN be a normal distribution and g an invertible function g(z) = ȳ with ȳ ∈ RN as a

projection of the 2D human pose vector ŷ in a PCA subspace. By a change of variables, the

probability density function for ȳ is given by

pY (ȳ) = pZ(f(ȳ))

∣∣∣∣det(δf

δȳ

)∣∣∣∣ (4.11)

where f is the inverse of g and δf
δȳ is the Jacobian of f . Following the normalising flow imple-

mentation in [55] (see Appendix B for more details), we represent f as a neural network [236]

and optimise with the negative log likelihood loss:

LNF = − log(pY (ȳ)) (4.12)

4.3.6 Additional losses

We use the same loss function as in [62] to learn the mapping between the skeleton image

and the 2D pose y = Ω(s). However, we do not pre-train Ω and instead learn it from scratch

simultaneously with all other networks. The loss term LΩ for learning Ω is then given by:

LΩ = ||(Ω(κ(u))− u)||2 + λ||(κ(y)− s)||2 (4.13)

where u represents a 2D pose from the unpaired prior, s is the predicted skeleton image, and

λ is a balancing coefficient set to 0.1. The function κ is the skeleton image renderer defined in

Equation 4.5. This loss term takes advantage of the duality of representing the pose as either a

skeleton image or a set of 2D positions. Specifically, the second term of Equation 4.13 enables

the learning of poses that appear in the training images but may not be part of the prior.

Based on the proven effectiveness of incorporating relative bone lengths into pose estimation

methods [55, 237, 238], we add this to impose a soft constraint when estimating the 3D pose.

Following the formulation in [55], we calculate the relative bone lengths bn for the n-th bone
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divided by the mean of all bones of a given pose v. We use a pre-calculated relative bone length

b̄n as the mean of a Gaussian prior. Then, the negative log-likelihood of the bone lengths defines

a loss function Lbl,

Lbl = − log(

N∏
n=1

N (bn|b̄n, σb)) (4.14)

where N is the number of bones defined by the connectivity between joints. Note that this is a

soft constraint that accommodates variation in the relative bone lengths between individuals.

It does not establish any predetermined lengths for bones.

4.4 Experiments

4.4.1 Datasets

Human3.6M: Human3.6M [47] is a widely used large-scale pose dataset consisting of videos

of eleven subjects (six male and five female) doing fifteen activities against a static background,

as illustrated in Figure 4.7. These activities intend to capture a wide variety of poses, for

example, when the people are walking, waiting, smoking, taking photos, eating, posing, giving

directions, and sitting. The dataset contains 3.6 million images depicting the human body and

corresponding 2D and 3D body pose annotations.

Two protocols have been established to train and evaluate pose estimation methods with this

dataset - protocol I and protocol II [47]. In line with the standard protocol II on Human3.6M,

we use images from videos of subjects S1, S5, S6, S7, and S8 for training; and testing with

images from subjects S9 and S11. Unfortunately, some subjects had to be excluded due to data

privacy issues. We pre-processed the video data to obtain the images by cropping the human

body on each frame and removing the background, using the bounding boxes and segmentation

masks provided in the dataset.

MPI-INF-3DHP: MPI-INF-3DHP [49] is another popular dataset in the human pose estima-

tion literature. Like the Human3.6M dataset, it includes videos featuring people doing certain

activities and corresponding 3D and 2D pose annotations. However, MPI-INF-3DHP incorpo-

rates recordings captured in three different settings, as shown in Figure 4.8: studio with green

screen, studio without green screen, and outdoors.
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Directions Discussion Eating Sitting Down Greeting

Waiting Smoking Posing Taking Photo Purchasing

Walking Dog Phoning Sitting Walking Walking Together

Figure 4.7: Human3.6M dataset. Representative frames for each activity on Human3.6M. Image
reproduced from http://vision.imar.ro/human3.6m/description.php

S
tu

di
o 

se
tti

ng
O

ut
do

or
 s

et
tin

g

Figure 4.8: MPI-INF-3DHP dataset. Representative frames from test split of MPI-INF-3DHP
dataset. While the Human3.6M dataset features only studio images, the MPI-INF-3DHP
dataset includes both indoor and outdoor settings.
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The dataset comprises eight subjects with two video sequences for each, doing different activ-

ities, e.g. walking, sitting, exercising, and reaching. We use the same pre-processing as with

Human3.6M videos. After that, we train the model using the extracted images from the videos

in the train split and evaluate its performance with the provided test set.

Leeds Sports Pose Dataset (LSP): The Leeds Sports Pose dataset [29] is a widely utilised

collection of images for human 2D pose estimation tasks. It is small compared with more recent

data utilised for human pose estimation, such as Human3.6M or MPI-INF-3DHP datasets. It

comprises only 2,000 images depicting humans in various sports, including athletics, badminton,

baseball, gymnastics, parkour, soccer, tennis, and volleyball. Despite its size, the dataset offers

a diverse range of non-standard human poses and appearances, as demonstrated in Figure 4.9.

Note that the LSP dataset does not include any 3D annotations; only 2D pose annotations are

provided, specifying the position of 14 joints in each image.

Figure 4.9: Examples of images from the LSP dataset. Although LSP is smaller compared to
recent datasets for human pose estimation, it contains mostly non-standard human poses, as
observed in the pictures.

HandDB: HandDB [222] is a dataset of images depicting human hands under different scenar-

ios. Since most images show both hands or other body parts that could be counterproductive

when training the model, we then decide to utilise only a portion of the subset created from

synthetic data. This subset exhibits more homogenous backgrounds and hand sizes. It also in-

cludes 2D annotations for 21 key points, distributed as follows: four for each of the five fingers

and one for the wrist. To train and test our model, we select two image sequences - synth2 and

synth3 - out of the four available in this subset and split them 80/20, respectively. Figure 4.10

66



Chapter 4. Learning to predict 3D human pose 4.4. Experiments

shows some random examples from two sequences of the synthetic subset of HandDB dataset.
sy
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Figure 4.10: Examples from the synthetic set of HandDB dataset. We only utilise synth2 and
synth3 sets from the available synthetic data from the HandDB dataset. As can be noticed
from the pictures, this data is consistent in terms of camera perspective.

4.4.2 Evaluation metrics

Following previous methods [16, 54, 145, 152, 153], we use the standard protocol II to quanti-

tatively evaluate our trained model using the test set from the Human3.6M dataset [47]. This

protocol relies on the Procrustes method [239] to perform a rigid alignment between the pre-

dicted 3D pose and the 3D ground truth. Then, it calculates the Mean Per Joint Position Error

(MPJPE), which takes the average Euclidean distance between the ground-truth joint positions

and the corresponding estimated positions across all 17 joints [47]. For simplicity, we refer to

this metric as P-MPJPE, where P stands for the Procrustes method. Assuming that we have a

pose predictor f that estimates a 3D pose v given an image x and a skeleton V̄ obtained after

Procrustes alignment of v with the ground truth skeleton V ′, then the P-MPJPE is defined as

follows

P-MPJPE =
1

j

j∑
i=1

∥mV̄ (i)−mV ′(i)∥2 (4.15)

where j is the number of joints in V̄ , and mV̄ (i) is a function that returns the coordinates of

the i-th joint of V̄ . Similarly, mV ′(i) get the coordinates of the i-th joint of the ground truth

skeleton V ′ in x.

For a quantitative evaluation of the model performance with the MPI-INF-3DHP dataset, we
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use the Percentage of Correct Keypoints (PCK) metric. This metric measures the percentage

of estimated joint positions within a fixed distance from their ground truth. Formally, PCK is

given by

PCK =

N∑
i=1

δ(di <= T )

N
(4.16)

where di represents the Euclidean distance between the predicted and ground-truth skeletons

for the i-th joint position, T is a fixed threshold set to 150mm, N is the number of joints

in the skeleton, and δ(∗) is equal to 1 when the given condition is true, and 0 otherwise.

Additionally, we report the corresponding area under the curve (AUC) calculated for a range

of PCK thresholds.

4.4.3 Training procedure

We train the networks Φ,Ω, D, and Λ from scratch. Only the normalising flow NF is indepen-

dently pre-trained, as indicated in [55]. The complete loss function for training our model has

seven components expressed as LD (Equation 4.6), LΩ (Equation 4.13), L2d (Equation 4.9),

L3d (Equation 4.8), Ldef (Equation 4.10), LNF (Equation 4.12), and Lbl (Equation 4.14). For

convenience in ablation studies, we group three of these loss terms and represent them as Lbase

Lbase = L2d + L3d + Ldef (4.17)

Thus, the final composite loss function is defined as:

L = λ1LD + LΩ + Lbase + LNF + λ2Lbl (4.18)

Where λ1 and λ2 are balancing coefficients set to 10. We experiment with other different hyper-

parameters to further balance the components of the loss function presented in Equation 4.18.

However, none of the combinations seemed to improve results.

We train our model by optimising the loss function from Equation 4.18. The batch size is set

to 96, with each batch consisting of images and random samples from the prior of unpaired 2D

poses (which are then transformed into skeleton images). We utilise the Adam optimiser [203]
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with a learning rate of 2 × 10−4, and β1 = 0.5, β2 = 0.999. The model we use for reporting

results through this chapter was trained for around 40 hours using one GPU from an NVIDIA

DGX-MAX-Q server. When making predictions, we only keep the pipeline composed of the

trained Φ, Ω, and Λ networks illustrated in Figure 4.11. Additional details on the network

architectures involved in our approach can be found in Appendix B.

Trained networks

2D poseInput image Skeleton image 3D pose

Figure 4.11: Networks used during inference for 3D human pose estimation. During the testing
stage, we only require the trained networks responsible for the image-to-pose mapping (Φ,Ω,
and Λ). The remaining networks (see Figure 4.6 for reference) are only necessary while training
the model.

4.4.4 Results

Using our trained model with the Human3.6M dataset, we predict 3D poses consisting of 17

joint positions for all images from subjects S9 and S11 (∼ 584k images). Then, we compute the

average P-MPJPE across the activities in the test set. Table 4.1 compares our method with

the state-of-the-art 3D pose estimation methods in terms of average P-MPJPE. We include

supervised [219, 153], semi-supervised [58, 152, 57], and self-supervised [61, 59] approaches that

estimate the 3D pose from images. These methods are more related to our work; however,

all of these take different assumptions about data availability, especially 3D annotations. To

the best of our knowledge, our method is the only one that relies on a lightweight premise,

such as unpaired 2D poses, to estimate 3D poses straight from unlabelled images. For a more

comprehensive comparison, we also consider supervised [16] and unsupervised [240, 54, 145, 56,

55] methods that estimate 3D pose directly from 2D poses. Note that given the nature of the

inputs for those methods (an actual 2D pose is less ambiguous than an image), these exhibit

better performance than the previous group (pose from images). Despite the minimum data

assumptions for training our method, its performance exceeds that of previous methods that

rely on 3D supervision [219], multi-view images [58, 152] or priors on 3D data [59].
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Data Assumptions Method P-MPJPE(↓)
3D pose from 2D poses

Full 3D Martinez et al. [16] 52.1

Full 2D Chen et al. [54] 68.0
Full 2D Drover et al. [145] 64.6
Full 2D Yu et al. [56] 52.3
Full 2D Wandt et al. [55] 36.7

3D pose from images

Full 3D Chen et al. [219] 114.2
Full 3D Mitra et al. [153] 72.5

Multi view + Parcial 3D Rhodin et al. [58] 128.6
Multi View + Parcial 3D Rhodin et al. [152] 98.2
Multi view + Full 2D Wandt et al. [57] 53.0

Unpaired 3D Kundu et al. [59] 99.2
Kinenatic 3D Kundu et al. [61] 89.4

Unpaired 2D Ours 96.7

Table 4.1: Comparison of average P-MPJPE (in mm’s) for all activities in test set (S9 and S11)
of Human3.6M dataset. We include two groups of methods: the ones that estimate 3D poses
from 2D poses and those that estimate 3D poses directly from images. The methods in the
second group are more related to our work. Since the assumptions about data for training are
important for a fair comparison of our approach, the first column of the table indicates the data
requirements of each method.

In addition, in Figure 4.12, we provide comparative per-activity quantitative results on Hu-

man3.6M. We show the P-MPJPE for each activity on the Human3.6M test set (subjects 9

and 11). As can be seen, the performance is compared with two state-of-the-art approaches for

which per-activity data is available [219, 61]. Note that by only assuming unlabelled images

and unpaired 2D poses for training, we achieve superior performance than [219]. Our method

also outperforms [61], which incorporates 3D kinematic constraints, in 20% of the activities.

It is not common practice in the pose estimation literature to report quantitative results in terms

of PCK with data from Human3.6M. However, we assess the 3D predictions with this metric

to provide a more comprehensive evaluation. According to the result shown in Figure 4.13,

most of the activities in the Human3.6M dataset’s test set achieved high PCK scores, typically

exceeding 80.0. This suggests that the estimated poses are accurate. In other words, a 3D pose

with a PCK score of 80.0 implies that 80% of the joints have been accurately estimated.

We aim to demonstrate that the model is effective not just with one dataset but can also adapt to

different conditions. Thus, we train and test our approach using data from the MPI-INF-3DHP

dataset, also widely used in 3D pose estimation research. We create three different scenarios

for performing training and evaluation with this data:
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Figure 4.12: Distribution of P-MPJPE scores for each activity on the test set of Human3.6M
dataset. We include only related works that provide per-activity scores.
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Figure 4.13: PCK scores for each activity in Human3.6M test set. Although PCK is not a
standard metric in the literature to compare results with the Human3.6M dataset, we conduct
an additional evaluation to provide more insights about the quantitative results of our method.
PCK scores range from 0 to 100, with higher scores indicating better performance.

• Scenario #1: We train and test the model as usual, i.e., using the train and test set from

MPI-INF-3DHP.

• Scenario #2: We keep the trained model with Human3.6M and evaluate it with the test

set from MPI-INF-3DHP.

• Scenario #3: We combine the images in the training set of both datasets - Huma3.6M

and MPI-INF-3DHP - and test with images from the MPI-INF-3DHP test set.

Regarding the unpaired prior needed for training, for all the scenarios except the second one, the

unpaired prior of 2D poses is sourced from MPI-INF-3DHP. In the second case, it comes from

Human3.6M. We keep the same pre-trained NF for all scenarios with data from Human3.6M.

Table 4.2 compares the different evaluation conditions with the state-of-the-art (that reports
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results on the MPI-INF-3DHP dataset) in terms of average PCK and AUC scores.

Data Assumptions Method PCK(↑) AUC(↑)
Unpaired 3D Kundu et al. [59] 83.2 58.7
Kinematic 3D Kundu et al. [61] 79.2 43.4

Unpaired 2D Ours (Scenario #1) 69.6 32.8
Unpaired 2D Ours (Scenario #2) 58.7 24.3
Unpaired 2D Ours (Scenario #3) 75.3 40.0

Table 4.2: Evaluation results on MPI-INF-3DHP dataset for the different training scenarios.
First column shows the main assumption from each method. Ours (Scenario #1) represents
the model trained with images from MPI-INF-3DHP. Ours (Scenario #2) indicates the model
trained with Human3.6M and tested with MPI-INF-3DHP. Ours (Scenario #3) indicates that
the MPI-INF-3DHP train set has been extended with images from Human3.6M.

The expectation is that the model performs better when the training images and the prior

comes from similar distributions, i.e., from the same dataset as in Scenario #1. However,

surprisingly our model performs best when combining images from Human3.6M and MPI-INF-

3DHP datasets (Scenario #3). This suggests that increasing the number of training examples

positively influences the overall performance, although the prior remains unchanged. This

notion could be helpful when translating the model to other domains. For instance, in the

animal domain, abundant unlabeled images are accessible, but gathering an extensive prior of

2D pose annotations may not be feasible.

Another important observation is that the model can perform decently even with data from a

different dataset, such as in Scenario #2. Although we did not perform any fine-tuning on MPI-

INF-3DHP for that particular case, our trained model with Human3.6M produces acceptable

results for PCK and AUC metrics.
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4.4.5 Qualitative evaluation

Figure 4.14: Qualitative results on images from Human3.6M dataset. Each figure contains the
input image and its corresponding estimated 3D pose by our model. An extended version of
qualitative results for this dataset is included in Appendix B.

We also evaluate qualitatively using the trained model with the test sets from Human3.6M and

MPI-INF-3DHP datasets, respectively. Figure 4.14 and Figure 4.15 display predicted 3D poses

aligned with their corresponding input images from both datasets. We choose the samples that

best represent the range of data, such as various activities in Human3.6M or different recording

settings in MPI-INF-3DHP.

Figure 4.15: Qualitative results on images from MPI-INF-3DHP dataset. Each figure contains
the input image and its corresponding estimated 3D pose by our model. An extended version
of qualitative results for this dataset is included in Appendix B.

In addition, we show a set of different visualisations of our 3D pose predictions in Figure 4.16.
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Figure 4.16: Ground truth and predictions from MPI-INF-3DHP and Human3.6M datasets.
The first and fifth columns depict the input images, while the second and sixth columns show
the corresponding estimated 3D poses (red) and their respective ground truth (green). The rest
of the columns illustrate novel views of the 3D pose predictions.

This includes a visual comparison between the predicted 3D pose and its respective ground

truth for a given image and novel views of the prediction. In Figure 4.16, columns two and five

show that our model accurately predicts the 3D pose, even for challenging scenarios like sitting

or outdoor environments. For more extensive visualisations, please refer to Appendix B.

4.4.6 Generalisation to unseen data

Since the Human3.6M and MPI-INF-3DHP datasets contain people depicting a similar range

of poses, we use more challenging data to further demonstrate our approach’s generalisation

capabilities. In particular, we utilise data from the Leeds Sports Pose Dataset (LSP), which

exhibits non-standard poses of people performing different sports under real-world scenarios.

LSP is relatively small compared to the Human3.6M and MPI-INF-3DHP datasets, containing

just 2,000 pictures.

While LSP lacks 3D pose annotations, we only provide visual representations of the estimated

3D poses. However, as the data from LSP has been annotated with 2D poses, we evaluate

our intermediate 2D pose predictions against this ground truth and calculate the Percentage of

Correct Points (PCK). This metric is similar to the one described in Equation 4.16, but we use

a different threshold δ and consider 2D distances in this scenario. Note that we set the new δ
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following the original implementation in [241].

To evaluate our model with the Leeds Sports Pose dataset, we randomly split this data into two

parts. We utilise 1,000 images from LSP to test one version of our model purely trained with

data from Human3.6M. Although not being trained with any related data to LSP, our method

still estimates plausible 2D and 3D poses, as demonstrated in Figure 4.17. The figure shows the

input images in the first and fifth columns, with the second and sixth columns displaying the

2D predictions (coloured in black) and ground truth (coloured in grey). Finally, the remaining

columns exhibit the predicted 3D poses and corresponding novel views.

Figure 4.17: 3D and 2D pose Predictions from Leeds Sports Pose Dataset. The first and fifth
columns depict the input images, while the second and sixth columns show the corresponding
estimated 2D poses (black) and their respective ground truth (grey). The rest of the columns
illustrate the predicted 3D poses and some novel views. More visualisations are provide in
Appendix B.

Furthermore, we perform a quantitative evaluation of the predicted 2D poses and show some

of the best results regarding PCK scores in Figure 4.18. The figure displays the input images,

their corresponding predicted 2D pose (coloured in black), and ground truth (coloured in grey).

The overall PCK score for the 1,000 estimated 2D poses is around 42%. This result is quite sat-

isfactory, especially considering that the model has not been trained with that data distribution

and, most notably when the test data comes from non-standard scenarios.

Additionally, we conduct an extra experiment where we fine-tune our model trained with Hu-
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Figure 4.18: Estimated 2D poses with data from Leeds Sports Pose Dataset. Input images and
their corresponding estimated 2D poses (coloured in black) and ground truth (coloured in grey).

man3.6M with the remaining 1,000 images from the LSP dataset. As expected, this data

increases the performance (+6%) compared with the evaluation without fine-tuning the model.

We include a comparison of the results from both evaluations in Figure 4.19. The green line

represents the first evaluation, i.e. using the model solely trained with Human3.6M. The purple

line corresponds to the version where the model has been fine-tuned with part of the data from

the LSP dataset.
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Figure 4.19: Comparison of PCK scores for the estimated 2D poses with LSP data. The green
line represents the results obtained with the model trained with Human3.6M data. The purple
line corresponds to the results with the fine-tuned version of the model. Fine-tuning the model
with data from the LSP dataset increases the overall performance by 6% compared with the
non-fine-tuned version (42%).
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Evidently, training the model with close data distributions as the test set will yield better

results, at least on the estimated 2D poses. Figure 4.19 illustrates that fine-tuning the model

reduces the number of items with low PCK scores and increases the number of samples with

high PCK scores. Finally, Figure 4.20 depicts some visual examples of the comparison. The

first and fifth columns show the input images, while the second and sixth display the estimated

2D poses with the fine-tuned (purple) and non-finetuned (green) models and the corresponding

ground truth (grey). We also include the PCK score for each of the estimated 2D poses. The

subsequent columns exhibit the 3D pose predictions of each version of the model. Like the

colours used for the 2D poses, green represents the results with the non-finetuned model, and

purple corresponds to the results with the fine-tuned model. Note that in this case, we use a

different set of colours for visualising the poses to differentiate both experiments easily.

PCK: 28.5 / 85.7

PCK : 78.5 / 85.7

PCK : 7.14 / 92.8

PCK : 35.71 / 85.7

PCK : 92.8 / 100.0PCK : 85.7 / 85.7

Figure 4.20: Comparison of estimated 2D and 3D poses with LSP data. The first and fifth
columns depict the input images, while the second and sixth display the estimated 2D poses
with the fine-tuned and non-fine-tuned models (coloured in purple and green respectively), along
with the corresponding ground truth coloured in grey. The 2D predictions also include their
PCK scores. The subsequent columns exhibit the 3D pose predictions of each version of the
model; depicted in green the results with the non-finetuned model, and coloured purple the
results with the fine-tuned model.
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4.4.7 Application to different structures
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Figure 4.21: Model used for estimating 3D hand poses. We adapted our model to predict 3D
hand poses. As can be noticed, the model is similar to the one used for estimating 3D human
poses. Evidently, only the training images and poses in the prior are different.

Compared with previous works for 3D pose estimation that assume 3D annotations for train-

ing, our model has lower data requirements. It only needs unpaired 2D poses apart from the

unlabelled images. This makes the approach flexible enough to work with structures different

from the human body. We demonstrate our method’s adaptability by training and testing it

using data depicting human hands [222]. For building the train and test sets, we select images

showing hands under similar conditions from synth2 and synth3 sequences. We further augment

the training set offline by making two rotated versions of each image (45◦ and 90◦). We use half

of the 2D annotations provided with the dataset to build the prior of 2D hand poses, while the

other half corresponds to images used for training. Figure 4.21 displays the components of the

model. As can be noticed, all the elements are the same as those used to estimate 3D human

poses, except for the NF component, which we remove to reduce the formulation’s complexity

even more. Furthermore, we reduce the amount of data for training; in this scenario, we use

only around 5k unlabelled images and a similar number of 2D poses for the prior, representing

a tiny portion when compared against the size of training sets for previous experiments.

Utilising the trained model, we estimate 3D hand poses consisting of 21 key points that rep-

resent hand joint positions. However, since the synthetic subset of HandDB does not contain

3D annotations, we report only qualitative results in Figure 4.22. This figure shows the input
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Figure 4.22: Qualitative results on HandDB dataset. First column shows the input image
overlay with the 2D ground truth annotations from the dataset. Next columns display novel
views of the 3D hand predictions.

images in the first and sixth columns. The second and seventh columns display the correspond-

ing predicted 3D poses, while the remaining columns display novel views of the predicted 3D

poses. Although we drastically reduce the data to train our method for this experiment, the

visualisations show that the model can still accurately predict 3D structures that closely match

the position of the hands in the input images.

4.4.8 Ablation study

We evaluate the effectiveness of the loss function design expressed in Equation 4.18 by pro-

gressively removing its components. We conduct the ablation studies using data from the

Human3.6M dataset to train and test the model and identical hyperparameters. Since our loss

function contains multiple terms, executing experiments to assess all the possible combinations

is impractical. Therefore, we strategically perform three main experiments:

• Experiment #1 (E1): Initially, we train and evaluate the model without considering the

losses related to the geometric self-consistency cycle, i.e., only involving the losses LD

and LΩ. As anticipated, even when the 2D predictions are mostly accurate, the overall

performance decreases since there is nothing else to regulate the 3D predictions, and these

are more susceptible to being deformed or flat.

• Experiment #2 (E2): For the second experiment, we keep the LD, LΩ, and Lbase losses

and exclude LNF and Lbl. In this scenario, the 3D representations are regulated by the

loss term Lbase, which ensures consistency. Therefore, the model improves its performance

w.r.t. the first experiment and estimates more realistic and consistent 3D poses.
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• Experiment #3 (E3): Finally, we assess the model’s performance when incorporating the

loss term for the NF LNF to the loss used in Experiment #2. This change increases the

performance with respect to the previous formulation. In both cases, the model produces

accurate poses for most input images. However, when analysing the visualisations of the

predictions, the ones trained with the NF loss term present better alignment between the

upper body joints and the ground truth.
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Figure 4.23: Ablation studies scores. The coloured lines in the figure display the average P-
MPJPE per activity for various versions of our method (E1, E2, and E3). The inset legend
shows the average scores for each experiment. Note that the red line represents results obtained
with the version of our model that maintains all its original components.

According to the final loss formulation in Equation 4.18 and the ablation studies, adding the

combination of the loss terms for the normalising flow LNF and relative bone length Lbl has

proven to be beneficial, increasing the performance of the model by 20.8% compared to the loss

function that does not contain those terms. We denote the three previous experiments, as E1,

E2, and E3 respectively, and present their corresponding quantitative evaluation in terms of

P-MPJPE in Figure 4.23. Note that the evaluation follows the same protocol and metrics as

those in subsection 4.4.2.

We perform an additional experiment to determine how the size of the prior of 2D poses affects

the overall performance of our approach. We train another version of our model using half of

the data initially used to build the prior 2D poses (from the Human3.6M dataset). Note that

the number of training images remains the same as in the main experiment, only the size of the

prior changes. We then test the model according to the protocol described earlier and compute
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Figure 4.24: Experiments with different sizes for the prior of 2D poses. The figure displays
coloured lines representing the average P-MPJPE per activity for different prior sizes. The blue
line indicates results obtained using half of the original prior for training, whereas the red line
represents the results using the complete prior. The inset legend displays the average scores for
each case.

P-MPJPE. We show the results in Figure 4.24 per activity from both model versions: the one

trained with the complete prior and the other with half of it. The results from Figure 4.24 show

that reducing the prior size to half reduces performance for all activities, as expected. However,

the average score is still decent, indicating that the model can estimate reasonable 3D poses

even with a significantly reduced prior.

4.4.9 Failure cases

We have examined some instances where our model did not perform as expected. Specifically, we

analysed the results of testing the model with Human3.6M data and focused on the predictions

with the highest P-MPJPE scores. Not surprisingly, most failure cases on the Human3.6M

dataset appear for activities such as Sitting and Sitting Down. We assume this occurs because

of the self-occlusions and perspective ambiguity in these activities. However, according to the

examples shown in Figure 4.25, the model can still produce plausible 3D poses for most cases,

even if they do not exactly match their respective 3D ground truth. The high P-MPJPE comes

from mismatches between the joints representing the body’s extremities, e.g. hands and feet.

In addition, we include a visual analysis of some inaccurately predicted 3D poses using LSP

data. Given the lack of 3D ground truth for this dataset, we focus on the 3D poses derived from

inaccurately predicted 2D poses. Specifically, we select the 3D poses from the 2D predictions

81



4.4. Experiments Chapter 4. Learning to predict 3D human pose

Figure 4.25: Failure cases on Human3.6M. 3D predictions with a P-MPJPE greater than 200mm.
The first column shows the input images. The second column displays the predicted 3D pose
(coloured in red) aligned with its respective ground truth (coloured in green). Following columns
show different views of the predicted 3D pose.

with the lowest PCK scores, estimated with the model without fine-tuning. To provide a more

comprehensive visualisation, we have also included results from the fine-tuned version of the

model. Figure 4.26 presents the visualisation of those incorrectly predicted 2D and 3D poses.

The first and sixth columns depict the input image, while the second and seventh illustrate the

predicted 2D poses with each model version alongside the corresponding ground truth depicted

in grey. The remaining columns show the estimated 3D poses. The green colour represents

the predictions with the non-fine-tuned version of the model, while purple corresponds to those

estimated with the fine-tuned version. To avoid confusion, we use the same colours as in the

previous visualisation of this data.

Figure 4.26: Failure cases with data from LSP dataset. The first and sixth columns show the
input images. The second and seventh columns display the respective 2D predicted poses from
each version of our model: fine-tuned (purple) and non-fine-tuned (green). This visualisation
also includes the ground truth 2D pose depicted in grey. Subsequent columns illustrate the
predicted 3D poses from both versions of the model (fine-tuned with purple and non-fine-tuned
coloured with green)—Zoom in the figure to better appreciate the visualisations.

As shown in Figure 4.26, the model original model (non-fine-tuned and trained with Human3.6M

82



Chapter 4. Learning to predict 3D human pose 4.5. Conclusions

data) fails to produce an accurate 3D pose in the first image from the second row. However, its

fine-tuned version produces a 3D pose representation that better aligns with the subject in the

input. Unfortunately, both versions of the model fail to estimate plausible 3D poses for all other

cases. The model struggles mostly with images depicting subjects performing unconventional

poses in sports such as parkour or gymnastics. Moreover, the current distribution of 2D poses

in the prior utilised for training the models may need more diversity to comprehensively capture

these challenging poses.

4.5 Conclusions

In summary, our proposal represents a practical approach to estimating 3D poses directly from

images. The fundamental benefit of our method is that it learns without the need for 3D

annotations during training. Additionally, it reduces the number of 2D annotations required

by leveraging the learning of the 3D poses to an unpaired prior of 2D poses. Such low data

availability requirements permit adapting this approach to scenarios where collecting 2D and

3D annotations for training deep learning models is more demanding.

According to the reported quantitative results in Table 4.1 and Figure B.6, our method out-

performs self-supervised state-of-the-art approaches that estimate 3D poses from images and

assume unpaired 3D data for supervision [59]. It also performs better than some methods that

rely on 3D supervision [219] or multi-view images [58, 152]. Moreover, its performance is simi-

lar to methods that assume 3D kinematic constraints like [61]. Specifically, we achieve superior

performance than [61] in 20% of the activities in Human3.6M and comparable scores for the

remaining activities.

Experiments using the MPI-INF-3DHP dataset demonstrate our method’s cross-dataset gener-

alisation (Table 4.2). Although we perform different data combinations for training and testing

the model, it achieves comparable results to the state-of-the-art in each scenario. Further-

more, the augmentation of the training set with images from Human3.6M and MPI-INF-3DHP

benefits the model’s performance. Note that collecting unlabelled data to extend the training

set is relatively straightforward since the images do not require annotations. Similarly, when

testing our model with images from the LSP dataset, it performs decently in terms of 2D pose

estimation despite not being trained with samples from that data distribution (trained with Hu-

man3.6M data). The 3D predictions from this experiment also show plausible poses. Further
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experiments fine-tuning the model solely with images from LSP data demonstrate an increase

in performance, as expected.

We demonstrate how to estimate 3D human pose with a training architecture requiring only

an unpaired prior of 2D poses. We qualitatively demonstrate that our approach holds the

potential for rapidly learning about the pose of articulated structures other than the human

body without the need to collect ground-truth pose data, e.g. human hands (Figure 4.22).

Overall, the qualitative and quantitative results suggest that our method is comparable to other

self-supervised state-of-the-art approaches that estimate 3D pose from images. Furthermore,

it performs better than some methods that rely on multi-view images or 3D pose annotations

for supervision. Prior work has demonstrated the value of using temporal information from

image sequences and domain adaptation networks. Incorporating these into our approach would

be a promising direction for future work. Finally, we propose applying the method to other

articulated structures (e.g., mice, dogs, horses, and other animals), exploiting the relatively

light requirement for self-supervision in the form of an unpaired prior of 2D poses.
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Chapter 5

Learning to predict 3D animal pose

from unlabelled images and

synthetic data

Obtaining labelled data to train deep learning methods for estimating animal pose is challenging.

Recently, synthetic data has been widely used for pose estimation tasks, but most methods still

rely on supervised learning paradigms utilising synthetic images and labels. Can training be

fully unsupervised? Is a tiny synthetic dataset sufficient? What are the minimum assumptions

that we could make for estimating animal pose? Our proposal addresses these questions through

a simple yet effective self-supervised method that only assumes the availability of unlabelled

images and a small set of synthetic 2D poses. We completely remove the need for any 3D

or 2D pose annotations (or complex 3D animal models), and surprisingly our approach can

still learn accurate 3D and 2D poses simultaneously. We train our method with unlabelled

images of horses mainly collected from YouTube videos and a prior consisting of 2D synthetic

poses. The latter is three times smaller than the number of images needed for training. We

test our method on a challenging set of horse images and evaluate the predicted 3D and 2D

poses. We demonstrate that it is possible to learn accurate animal poses even with as few

assumptions as unlabelled images and a small set of 2D poses generated from synthetic data.

Given the minimum requirements and the abundance of unlabelled data, our method could be

easily deployed to different animals.
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5.1 Overview

One of the main bottlenecks in developing and deploying supervised deep learning models for

pose estimation is obtaining the annotations required for their training. This is particularly

challenging in the animal domain, where annotated datasets are scarce compared to the avail-

able human data. Synthetic data has proven to be an attractive solution to overcome this

problem, especially by relying on readily available 3D animal models to generate large amounts

of annotated data. At the same time, synthetic data eliminates the need for laborious and

time-consuming manual annotation, making the models more flexible for multiple applications

in different scenarios.

We further extend the method described in Chapter 4, which initially learns 3D human poses

from unlabelled images and a prior on 2D pose [65]. Our implementation in this chapter trans-

lates that method to the animal domain, demonstrating that it applies to different body struc-

tures. Another essential addition to the new approach is the origin of the 2D poses composing

the prior. Unlike the original implementation, which uses a set of unpaired 2D poses from the

training datasets, we further reduce the assumptions by using 2D poses from an existing CAD

model of a horse [45]. Our model is unique in its simplicity compared with previous approaches

for animal pose estimation with synthetic data. It does not require annotated training data. It

uses only unlabelled images and a small set of synthetically generated 2D poses, meaning no

synthetic images, pre-trained models, or complicated 3D models are required.

We build a dataset of images depicting horses by collecting data from various YouTube videos

and use it to augment an existing horse dataset [134]. Altogether this provides a more realistic

scenario for the training and evaluation of our approach. Additionally, we assemble the prior

of 2D poses needed for training our model with synthetically generated data from [45]. By

evaluating our model’s 2D and 3D predictions, we demonstrate that it produces accurate pose

representations of the horses without using any annotations for the input images. Due to the

minimal requirements for training our model, it has the potential to be applied to a variety of

body structures from other animal species.

86



Chapter 5. Learning to predict 3D animal pose 5.2. Related work

5.2 Related work

5.2.1 Animal pose estimation

Supervised deep learning methods for human pose estimation have been widely explored and

perform well under different conditions [14, 15, 16]. However, in animal pose estimation, getting

the labels needed for supervision is difficult in most cases. In particular, labelling key points

is more expensive and time-consuming than producing other annotations, e.g. bounding boxes.

On top of this, it would be infeasible to generate labelled data for the entire diversity of animal

species in the world. Since the 3D pose annotations are even more challenging to acquire than

the 2D ones, many works on animal pose estimation have been focused only on estimating 2D

pose [108, 2, 41, 110]. Not surprisingly, the backbones for most of these approaches are network

architectures initially designed for the human domain, including stacked hourglass networks

[14], ResNet [100], and OpenPose [242].

Although the problem of 3D animal pose estimation is more constrained and challenging, rel-

evant work has also been carried out [111, 243, 244]. In this context, methods commonly rely

on lower supervision levels to overcome the scarcity of labelled training data. For instance, the

self-supervised approach of [245] estimates 3D pose for monkeys and dogs relying on multi-view

supervision and a tiny portion of pose annotations. Dai et al. [246] propose a similar method,

but instead of multi-view images, they assume the availability of actual 2D poses for each input

image and lift these to 3D through self-supervision based on geometric consistency [54]. Similar

to [246], our method also estimates 3D pose using self-supervision with the same geometric

consistency constraint. However, we learn the 2D and 3D poses directly from images in an

end-to-end manner. Most importantly, we do not require any annotations for the inputs.

5.2.2 Animal pose estimation with synthetic data

Synthetic data has been gaining attention as a cost-effective alternative for generating data

with ground-truth annotations with minimum effort. Multiple works on human [131, 247, 50]

and animal pose estimation [63, 45, 46, 242, 39, 36, 195, 165, 37, 120] have recently adopted

synthetic data to overcome the scarcity of keypoint labels.

Focusing on the animal domain, many pose estimation methods that rely on synthetic data fol-

low a supervised approach. This means these approaches utilised synthetically generated images
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and their corresponding pose annotations for training. However, there is often a gap between

synthetic and real data, so these approaches typically perform domain adaptation with samples

from actual data. For example, the method in [45] learns to estimate 2D pose for animals using

images and labels generated from CAD models. It also incorporates a consistency-constrained

semi-supervised method to adapt the predictions to real data. Similarly, [46] concentrates on

domain adaptation by generating pseudo-labels from the synthetic domain and then updating

these to match the actual data. Unlike these approaches, our formulation helps to reduce the

complexity and requirements for training even more. It is as simple as using unlabelled real

images and a set of synthetically generated 2D poses, i.e. there is no need to generate pictures

from the synthetic data. Furthermore, we include a couple of loss terms that help to adapt the

synthetic poses to the actual data without additional processes to perform domain adaption.

More related to our work, [120] relies on a self-supervised method that assumes synthetic 2D

poses and real images for estimating 2D mouse pose. However, we advance [120] by incorporating

a cycle of geometry transformations, allowing our model to further estimate 3D poses.

Synthetic data also plays an essential role in several works that learn richer structures, such as

animal shapes, mainly for different quadrupeds like dogs [36, 195, 39], tigers, lions, horses [165],

and zebras [37]. However, the success of these approaches is constrained by having access to

sophisticated and expensive animal models, which is not required in our approach.

5.3 Method

The method is essentially that from [65], described in Chapter 4, but with a few modifications

to adapt it to the animal domain. Rather than relying on unpaired annotations of the training

dataset, we utilise a prior of 2D poses from synthetic data. Furthermore, we remove the compo-

nents for learning elevation angles to simplify the implementation. We reproduce the approach

here in order to give the full method with the aforementioned modifications.

The main component of the approach is an image to 3D pose mapping, indicated with a dotted

box in Figure 5.1. The first part of this mapping employs a CNN Φ to map the input image x to

an intermediate skeleton image s. Then, another CNN Ω maps s to a 2D pose representation y.

In the final stage, y is mapped to the 3D pose v by means of a fully connected network Λ. For

training this set of networks, we incorporate it within a larger structure which allows for self

88



Chapter 5. Learning to predict 3D animal pose 5.3. Method

Rotation

Inverse
rotation

Projection

Projection

Im
ag

e 
to

 p
os

e 
m

ap
pi

ng

Prior of 2D poses from
synthetic data

Figure 5.1: Method for predicting 2D and 3D horse poses. The approach adopted jointly learns
to estimate 2D and 3D poses from unlabelled images depicting horses. Most importantly, it
only requires a prior of synthetic 2D poses for self-supervision. The image-to-pose mapping is
embedded within a more extensive network that permits end-to-end training.

supervision. In particular, we rely in a loop of transformations of the 3D pose v. We also use

a discriminator D together with the prior on synthetic 2D poses, to ensure that the generated

skeletons Φ(x) = s are realistic.

5.3.1 Main mapping

The image to pose mapping consists of three networks Φ, Ω, and Λ that allows the input image

x to be mapped to its 3D pose representation v. This mapping also produces two intermediate

representations of the input, a skeleton image s, and a 2D pose y. Specifically, Φ learns to align

the input image with its respective skeleton image representation, i.e. s = Φ(x). Then, Ω learns

to extract keypoints from s, obtaining a 2D pose as output y = Ω(Φ(x)). Finally, Λ acts as a

lifter of the 2D pose y to get the 3D pose v. For each pair of joint positions (xi, yi) in y, the

network estimates a depth zi = d+∆, where ∆ is a constant depth.

Overall, we use the same network structure as in [65] with exception of Λ. Since we are not

trying to learn elevation angles for the geometry transformations like [65, 64], we opt for a

simpler structure as in [54, 16].
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5.3.2 Self-supervision

As illustrated by Figure 5.1, we include the main mapping within a large network structure

that allows to self-supervise the training. This structure uses a discriminator network D, which

relies on a prior of synthetic 2D poses to help the mapping produce skeleton images that are as

realistic as possible. Furthermore, it incorporates a loop of random rotations and projections

of the 3D pose v to ensure geometric consistency for the 3D predictions.

Synthetic pose prior

To create the prior of 2D poses, we use a publicly available dataset of synthetic 2D poses

generated from a CAD model of a horse [45]. The prior is needed during training to ensure

the estimated skeleton image looks as realistic as possible. Note that generating the prior from

synthetic data and not from annotations of the dataset like [65] provides more flexibility to the

method to be trained with completely unlabelled datasets, which are abundant in the animal

domain. Our synthetic prior contains around 10k different 2D poses, representing approximately

one-third of the available images for training. This prior is the same as the one used for some

experiments in Chapter 3.

The purpose of having a prior of 2D poses is to use these as a reference distribution for the

discriminator network D. Since our implementation of D works directly with images, we must

first render the synthetic 2D poses to skeleton images. This is done by using the rendering

function κ defined in Equation 4.5 from Chapter 4 (originally from [119]), which given a set of

2D joint positions p and their connections, can generate a skeleton image w = κ(p). Then, the

goal of D is to evaluate whether or not the predicted skeleton images by the generator {si =

Φ(xi)}Mi=1, looks like an authentic skeleton image w such as those in the prior {wj = κ(pj)}Nj=1.

Following [65, 119] we use an adversarial loss to compare w and s:

LD =
1

N

N∑
j=1

D(wj)
2 +

1

M

M∑
i=1

((1−D(si))
2 (5.1)

Geometric consistency

We rely on the idea of geometric consistency from [54] to facilitate the learning of the lifting

network Λ and, therefore, the whole mapping. Essentially this involves a series of rotations and

projections of the 3D pose v. First, v is randomly rotated to v̂ using a rotation matrix, which
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is constructed by sampling azimuth and elevation angles from a fixed uniform distribution [54].

Then, v̂ is projected to a 2D pose ŷ. Given the projection of the rotated 3D pose v̂, the same

lifting network Λ estimates its 3D representation v̂′. Lastly, the inverse rotation is applied to

the 3D pose v̂′ to obtain v′, and v′ is projected to 2D to get the 2D pose y′.

After the loop of projections and rotations we expect the poses on the forward and backward

parts to be as similar as possible. For example, the 3D poses v and v′ should be similar, and

the same with v̂ and v̂′. This also applies to the 2D poses y and y′. Therefore, we can derive

the following loss terms:

L2D = ||y′ − y||2 (5.2)

L3D = ||(v′(j) − v′(k))− (v(j) − v(k))||2 (5.3)

Lr3D = ||v̂′ − v̂||2 (5.4)

Note that for Equation 5.3 we follow [64, 65] and instead of comparing the v and v′ with a L2

loss we measure the degree of deformation between 3D poses using two samples j and k in a

batch. For simplicity, we refer to the sum of these three losses as LGC given by

LGC = L2D + L3D + Lr3D (5.5)

For more insights about the notion of geometric consistency see subsection 4.2.1 from Chapter 4.

5.3.3 Training and additional losses

Following [119] we include an extra loss term LΩ that exploit the dual representation of the

poses, i.e., as set of coordinates for joint positions and as skeleton image. This loss is designed

to contribute in learning the mapping from the skeleton image s to the 2D pose y, namely

y = Ω(s).

91



5.3. Method Chapter 5. Learning to predict 3D animal pose

LΩ = ||(Ω(κ(p))− p)||2 + λ||κ(y)− s||2 (5.6)

where λ represents a balancing coefficient, and p is a 2D pose from the synthetic prior. The

second term in Equation 5.6 helps to learn poses that potentially exist in the training images,

but are not necessarily part of the prior. In other words, this formulation helps to adapt the

synthetic poses in the prior to the actual data.

We train all the networks from scratch using a loss function L consisting of three components

from Equation 5.1, Equation 5.5, and Equation 5.6:

L = λLD + LGC + LΩ (5.7)

where λ = 10 represents a balancing coefficient. The batch size is set to 96, with each batch

consisting of images and random samples from the prior of unpaired 2D poses (which are then

transformed into skeleton images). We utilise the Adam optimiser [203] with a learning rate of

2× 10−4, and β1 = 0.5, β2 = 0.999. At inference time, we only keep the elements from the main

mapping as illustrated in Figure 5.2, i.e. the loop of rotations and projections, and D are only

needed during training.

2D poseInput image Skeleton image 3D pose

Trained networks

Figure 5.2: Networks used during inference for 3D horse pose estimation. During the testing
stage, we only require the trained networks (Φ,Ω, and Λ) responsible for the image-to-pose
mapping. The remaining networks (from the main diagram in Figure 5.1) are only necessary
while training the model.

To keep our model in its simplest working version we remove the normalising flow (NF) block.

Therefore the elevation angles is now sample from an uniform distribution and not learned by

Λ. Apart from that all the other networks and transformations are the same that the ones

described in Chapter 4.
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5.4 Experiments

5.4.1 Data

We use the same dataset and synthetic prior described in section 3.6 from Chapter 3. Note that

this dataset is relatively small compared to what is required for training human pose estimation

models — our horse dataset is only 1.3% of the size of the Human3.6M dataset [47] and 3.6%

of the size of the MPI-INF-3DHP dataset [49]. Unfortunately, we are not able to release the

collected images due to copyright restrictions associated with the YouTube videos. Instead, we

provide the YouTube video IDs from which the images were collected in Table 5.1 to promote

the reproducibility of our data and method. In addition, Figure 5.3 provides visualisations of

some images from the dataset. Regarding the data used for testing our trained model, it mostly

comes from the Weizmann horse dataset [135].

Figure 5.3: Example of images collected from YouTube videos. As can be observed from the
images, the collected dataset is diverse in terms of horse appearance and poses. Note that each
triplet of images belongs to the same video sequence.

5.4.2 Evaluation and metrics

Since there is a lack of available horse datasets with 3D pose annotations for a quantitative

performance evaluation, we only provide a visual evaluation of the 3D predictions. While

obtaining ground-truth 2D poses is more feasible than 3D poses, we evaluate the emergent 2D
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Youtube video IDs

AoLg6aDqwUI xbEDf9Aozuk Socb6o6VKGE GexrWONgj7g 74p-Lgcb1OE
t4zdTn02PWQ wwzYvu 174I rBdEKXVvLVY gDIPyrrufOA 5gq7no2ZQCM
zZDzFA70fvQ WjudHSeY8nU r59eFzDoKyE g0HiQN6V83I 4wuf4TTWB U
ytAkggYAA1s VQOLhgazzZo pwj7cLuEj Q FG7 -StFaXM 3vSLOGyQanM
YSLsr9bJj6s vqIv0USOop0 pW8zAPzayao E35RWcryQx0 3IgU1k2wxtc
YrHe uvcKFY VkwF8T5czu8 poNKPf7JQ7s Cr9Cuz4yBic 2Mv6b36LXqA
YQeiYQxjW4I VG7Q6rzbfrE oXqY0khS1mY cctjggMwKDg 14VvHu0pusY
ynQjbYH-dDo UWE2IadD6hQ nusSGkcVWFg bKK8KS28eKU 0thBJWe2BSA
Ym2dV2E1g4Y uIXa9u1YWBo N9Bur7JGl5U AMeXRFo4axQ pcJnrCc-Lw
YADgTfBYGB4 TnRfBjd3E38 KYRqoNXQxGQ aJhrHCidwZw 4k3MNxjtM0
xzj149ACvSQ t8dNtmClGmk hj8 SjStNmg a vSLBTHoQQ 8aO9HrWzj7Y
xUAdF9hBzI SQgrdNpzJh4 gPZf1MRfUQg 9Ej2iVe1Vec 8WPzgJfKbcw

Table 5.1: YouTube video IDs. Each item in the table corresponds to one video from which
images have been collected. Appendix C provides more details about the process for collecting
and processing the video data.

pose predictions y quantitatively and qualitatively. Note that although the goal of the model

is predicting 3D poses, the emergent 2D pose representations are also worth evaluating. We

assume that if the 2D poses are reasonable, it is very likely that the 3D poses will also be

accurate.

In line with previous works for 2D animal pose estimation, we use the Percentage of Correct

Keypoints (PCK@0.05) to quantitatively evaluate our 2D predictions. Our predicted poses are

composed of 20 joint positions. However, we use only 15 in order to compare with the ground

truth 2D poses from the Weizmann dataset.

5.4.3 Results on 3D predictions

We train our model using images from the YouTube videos, the horse subset of [134], and the

synthetic prior from [45]. For evaluation purposes, we utilise images from the Weizmann dataset

[135]. Given an unlabelled image from this data, we use the trained model to predict the 2D

and 3D poses of the horse appearing in the input. The Weizmann dataset contains no ground

truth 3D pose data so we provide only a qualitative evaluation of the 3D poses estimated by
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our trained model.

Figure 5.4: 3D poses estimated by our method. The initial column exhibits a set of images, each
with their estimated (red) and ground truth (green) 2D poses. The second column provides the
corresponding estimated 3D pose for each image. The remaining columns display various novel
views of the predicted 3D poses.
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We visualise some 3D predictions in Figure 5.4. The first column of the figure represent the

input images, while subsequent visualisations correspond to the predicted 3D pose and its novel

views. Furthermore, each input image shows its corresponding ground truth and estimated 2D

poses, coloured green and red, respectively.

Additionally, we evaluate the generalisation capability of our model by testing it on a dataset

of zebras [37]. Without ever seeing a zebra during training, the trained model with horse data

still managed to estimate plausible 3D poses for zebras. This may be due to the anatomical

similarities between the two species, despite some slight differences, such as zebras having wider

chests and shorter legs. Overall, our model demonstrates a reasonable degree of robustness in

making predictions from both domains. Figure 5.5 displays some of the 3D pose predictions for

images depicting zebras.

Figure 5.5: 3D pose predictions for images depicting zebras. The input image is shown in the
first column, while the second column displays the estimated 3D pose. The remaining columns
show novel views of the 3D prediction. The model was trained only with horse data.

5.4.4 Results on 2D predictions

Apart from predicting 3D poses, we also evaluate the intermediate 2D poses estimated by the

trained model for all images in the test set. Each pose prediction consists of 20 joint positions.
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Figure 5.6: Predicted 2D poses. We visualise the intermediate 2D pose predictions from the
trained model. For each input image, we superimposed the corresponding predictions repre-
sented with red lines and the ground truth depicted with green lines.

However, when comparing against ground truth, we only keep 15 joint positions to match the

annotations. Figure 5.6 shows some predicted 2D poses by our model compared with their

respective ground truth. Each image appearing in this figure contains the estimated 2D pose

coloured with red and its corresponding ground truth 2D pose annotation, coloured with green.

In addition, we reproduce the method from Chapter 3 that originally estimates 2D poses for

mice. We train it with the same assumptions as our method, i.e. our same horse dataset and

synthetic 2D poses. We use the Weizmann dataset to evaluate and compare their predictions

with the ones obtained with our 3D method. As illustrated by Figure 5.7, our model for 3D

poses can produce more accurate 2D pose representations than the 2D pose estimator from

Chapter 3. This demonstrates that incorporating the geometric consistency cycle for lifting 2D

poses to 3D can effectively substitute the image reconstruction process required by the 2D pose

estimator from Chapter 3. Simultaneously, this addition reduces the training load, eliminating

the need for a second image as input without negatively impacting the method’s performance.

We use the PCK@0.05 metric to quantitatively compare the predicted 2D poses against their

respective ground truth. The outcomes from the evaluation are shown in Table 5.2, which also

includes results for approaches that work under similar conditions. Following previous works, we

report the average scores for the standard groups of joints. Table 5.2 includes various methods

that have been evaluated using different horse datasets. However, the purpose of comparing
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Figure 5.7: Visual comparison of predicted 2D poses. We visually assess our 2D predictions
against the ones estimated with the model from Chapter 3. Note that both models were trained
under the same conditions, i.e. the same images, prior, and hyper-parameters. For each triplet
of images, the green poses represent the ground truth; the orange poses are for predictions made
with the 2D pose estimator from Chapter 3 and the red poses represent the 2D predictions with
our model for 3D poses.

these methods is to demonstrate that our approach remains competitive despite its minimal

data requirements during training. It is worth noting that all other methods on the table utilise

some form of supervised learning during training, such as domain adaptation. Only method

[120] shares the same approach, with no direct supervision involved.

Furthermore, we experiment by training our method on synthetically generated images of zebras

[37] and utilising the same synthetic 2D horse poses as prior. We then test the trained model

with the same dataset of real zebras [37] as in previous experiments (model trained with horse

images and synthetic 2D poses as prior). Despite the differences between the two domains, the

model trained with purely synthetic data, i.e. with synthetic images of zebras and synthetic

2D poses of horses, produces similar 2D poses as the model trained with actual horse images

and synthetic 2D horse poses. Figure 5.8 displays a visual comparison of 2D pose predictions

from both configurations. Precisely, images in block A depict 2D pose predictions by the model
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Method Evaluation Data Eyes Chin Shoulders Knees Hooves Mean

Syn - Mu et al. [45] TigDog dataset 46.08 53.86 20.46 24.20 17.45 25.33
Sosa [120] Weizmann dataset 45.67 44.67 33.00 37.67 26.67 37.54
CycleGAN [121] TigDog dataset 70.73 84.46 56.97 49.91 35.95 51.86

Ours Weizmann dataset 49.3 58.3 34.2 44.7 31.2 43.50

Table 5.2: Horse 2D pose estimation accuracy. We calculate the accuracy of our predicted 2D
poses using the PCK@0.05 metric. For each image in the Weizmann dataset, the predicted 2D
pose is compared against its respective ground truth. We also list some works that estimate
2D poses using synthetic data. Following the standard used in previous works, we average the
scores for some groups of joints.

A) B)

Figure 5.8: Predicted 2D poses for zebras. Block A shows 2D poses predicted by the model
trained with images of horses and the prior of synthetic 2D poses. Block B displays 2D predic-
tions using synthetic images of zebras and the same prior of synthetic 2D poses from horses.

trained with images of horses and the prior on synthetic 2D poses. In contrast, images in block

B show the 2D predictions using the model trained with synthetic images of zebras and the

same prior on synthetic prior.

5.4.5 Failed cases

Following the assumption that the quality of the emergent 2D pose estimations influences the

accuracy of the final 3D pose predictions, we then select some inaccurately estimated 2D poses,

i.e. with the lowest PCK@0.05 score, and inspect their corresponding 3D pose estimated by the

model. We expect such 3D poses derived from inaccurate 2D predictions also to be inaccurate.

Surprisingly, even for some non-accurate 2D predictions, our model can still recover a convincing

3D horse pose. It may not completely align with the horse’s pose in the input image, but the

overall 3D pose makes sense and keeps a horse-like structure. Figure 5.9 illustrates this scenario,

where the first and fourth columns show the input images with their estimated 2D pose (coloured
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Figure 5.9: Failed cases. We select the 2D poses with lower accuracy (PCK@0.05) to asses their
respective 3D predictions. The first and fifth columns of the figure display the input images,
along with their respective 2D predictions (in red) and ground truth (in green). The second
and sixth columns show the predicted 3D poses, while the remaining columns illustrate novel
views of the 3D predictions.

in red) and ground truth (coloured in green), and the rest display novel views of the estimated

3D poses.

5.5 Conclusion

We have successfully adapted a method originally designed to estimate 3D human poses to

the animal domain. We further reduce its requirements by generating the needed prior from

synthetic data. We demonstrate that with only unlabelled images and a small set of synthetic

2D poses, it is possible to learn actual 2D and 3D representations. By reducing the data

requirements for training to a minimum, our proposal is more flexible to be applied to many

unlabelled datasets without collecting annotations typically required for supervised training.

Our approach outperforms similar methods that include more complex processes, such as image

reconstruction [120, 119, 121], in the task of 2D pose estimation. We achieve this by relying

solely on a cycle of geometric transformations of the pose, reducing computational costs during

model training. Furthermore, the qualitative and quantitative evaluations show that our model

can learn animal 2D and 3D poses without needing a large amount of data for training, unlike

models that perform pose estimation with human data. However, extending the dataset and

the diversity of the poses in the prior could enhance the overall performance.
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From our results, there is clearly room for further improvement; we suggest exploring three

ideas in the future:

• Integration of temporal information.

• Fine-tuning with small amounts of actual data to bridge the gap between the synthetic

and real domains.

• Utilising image features to learn texture and shapes, not just poses.

Additionally, we plan to develop resources that allow to quantitatively evaluate the 3D pose

predictions from our model. Finally, we propose utilising inpainting techniques with stable

diffusion models to automatically generate datasets of different animal species from an existing

one. This would simplify the process of deploying our approach and eliminate the need for

image collection.
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Chapter 6

Conclusions

In this thesis, we develop different self-supervised deep-learning approaches for estimating pose.

Overall, we explore learning 2D and 3D poses and extend our methods to work with human and

non-human body structures. Our primary focus is reducing the data requirements for training

deep learning models, which is crucial for scenarios where annotated data is scarce, such as in

the animal domain.

This final chapter aims to summarise the research presented through the chapters of this thesis,

highlighting their main contributions. Furthermore, it addresses our work’s limitations and

provides insights about future work. The latter includes improvements for previous approaches,

new ideas to extend our research, and scenarios where our methods could be helpful.

6.1 Summary

• Chapter 2 summarises and describes the existing literature around pose estimation. We

particularly focus on reviewing deep learning self-supervised approaches to estimate both

2D and 3D poses for human and non-human structures.

• Through Chapter 3, we explore the use of unlabelled images and a synthetically gener-

ated prior of 2D poses for estimating mouse 2D poses. Our results contribute towards

exploration of a new dataset of genetically modified mice, without requiring to produce

annotations for this data. Additionally, we experiment with different body structures and

successfully adapt the method to estimate 2D poses of horses.
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• In Chapter 4, we shift to the human pose estimation domain by proposing a new self-

supervised method to estimate 3D human pose. Again we rely solely on unlabelled data

from well-know benchmarks and a prior of unpaired 2D poses. We compare our results

against related state-of-the-art and outperform some methods with heavy requirements of

data for training.

• Finally, in Chapter 5, we take inspiration from our previous approaches and extended

the self-supervised method from Chapter 4 to the animal domain. Most importantly, we

demonstrate that it can still learn if we create the prior of 2D poses from synthetic data

(same as Chapter 3), eliminating the need to use unpaired annotations from the dataset.

Given the reduced requirements in terms of data, the method is more flexible to be applied

to multiple body structures. In addition, we collect a dataset of images for training our

method from YouTube videos to provide a more real-world data scenario.

• Additionally we include an appendix for Chapter 3, Chapter 4, and Chapter 5 respectively.

Each appendix (Appendix A, Appendix B, Appendix C) contains extra details for some

experiments or implementations mentioned in the chapters, for example, network details,

links to code, and extra visualisation of results.

6.2 Limitations and considerations

Learning to predict 2D animal pose from unlabelled images and synthetic prior

It can be challenging to obtain annotations for datasets not initially intended for computer vision

tasks, especially when dealing with datasets created for clinical purposes. A major challenge

we faced while implementing our model was the nonexistence of pose annotations to test our

approach. Although we annotate a small set of poses to produce qualitative and quantitative

performance comparisons, the ultimate aim is to build a more robust annotated set mainly for

more extensive testing purposes. Creating such a robust test set will involve hiring experts to

produce the pose annotations and compare the discrepancies between measurements made by

different individuals.

While testing our approach with the mice data, we use a dataset that lacks diversity regard-

ing the animals’ body structures and poses. This means that the recordings depict animals

performing similar activities under comparable conditions. Although we demonstrate that the
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method works well with a different body structure (horse data), introducing more variability

within the mice dataset, such as images from different perspectives and different breeds of mice,

will potentially harm the model’s performance without proper adjustments. Neutralising this

effect might imply extending the synthetic prior to better represent the distribution of poses in

the training data.

Our approach does not rely on manual annotations for input images, but it assumes the avail-

ability of a CAD model to extract synthetic poses for building the prior. Although there are

numerous freely accessible CAD models of animals on the internet, there may be some animals

for which no model exists, which could restrict our implementation. Nevertheless, generating

synthetic animal models offers greater flexibility than creating dataset-specific annotations, as

these models can be adapted and reused for various scenarios, whereas annotations cannot.

One last consideration regarding the proposal in this chapter is the requirements of the model in

terms of memory to fit the training batches. Since we need two images as input, the batch size

is then dependent on the size of these images. Therefore, training with high-resolution images

may slow down the training process. However, using high-resolution images may also result in

better geometry representations (skeleton images), which could benefit the overall performance.

Learning to predict 3D human pose from unlabelled images

Our approach for this chapter does not rely on 3D pose annotations or paired 2D ground-truth

data. However, it does need an unpaired set of 2D pose annotations to build the needed prior

for training. While in specific scenarios, like working with human data, obtaining this data

does not represent a challenge, in other cases is difficult to access even small sets of 2D pose

annotations. This limitation could restrict the use of our methods in other scenarios.

Regarding the components of our model, the intermediate representation of the pose as a skele-

ton image introduces more complexity to the model as it prevents the process from being a

straightforward mapping between the input image and its 3D pose as illustrated by Figure 6.1.

Thus, we have experimented with some alternatives to remove it from our implementation, but

none have succeeded. This is likely because mapping from an image to its 3D pose is highly

ambiguous and requires introducing support from 3D ground truth annotations while learning

it, which will compromise the claims of our self-supervised method. The intermediate mapping,

i.e., from image to skeleton image and then to 2D pose, seems significant for our process. Us-

104



Chapter 6. Conclusions 6.2. Limitations and considerations

ing robust image-to-image translation networks and conditional GANs allows the approach to

ensure that the learned pose structures, such as 2D, skeleton image, and the ultimate 3D pose,

are as realistic as possible.
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Figure 6.1: Removing intermediate representations. We plan to remove the intermediate skele-
ton image s and 2D pose representation y to reduce the image-to-pose mapping further. How-
ever, designing M efficiently is highly ambiguous since we are not considering any 3D data for
training.

When comparing the model in this chapter with the one from Chapter 3, it could be observed

that we have eliminated the requirement for the conditional image during training. Instead of

relying on a reconstruction stage as in the 2D mice pose estimator, we substitute it with a set

of geometric transformations of the pose that lifts the 2D predictions to 3D in an end-to-end

manner. This modification makes our model more efficient during training since it only needs

one image as input, allowing for larger batches.

Learning to predict animal 3D poses from unlabelled images and synthetic data

In this chapter, we have addressed some concerns from our previous models, particularly the

dependency on unpaired 2D pose annotations from the dataset to construct the prior of 2D

poses as in Chapter 4. However, like the approach from Chapter 3, we rely on an existing

synthetic model of a specific animal, but we do not directly manipulate the CAD model in

this case. Instead, we use the existing pose annotations generated with this model [45]. Since

this set contains highly diverse horse poses, our model produces plausible results using these

annotations as a prior. Nevertheless, having access to the actual CAD model and animating it

differently could produce a richer set of poses for the prior, which will better match the pose

distribution from the actual data.
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6.3 Future Work

Learning to predict 2D animal pose from unlabelled images and synthetic prior

The content in Chapter 3 is part of a larger project that seeks to calculate gait parameters from

videos depicting genetically modified mice without the need for significant human intervention.

One of the primary objectives of this project is based on the assumption that producing mea-

surements for these parameters may help to categorise animals with varying degrees of ALS

disease and assess its impact on locomotion.

Since calculating gait parameters involves using the positions of particular body parts of the

animals, having the estimated 2D poses with our method provides a suitable low-dimensional

representation to make these measurements, as show in Figure 6.2. We have conducted ex-

ploratory research using this approach, but further refinement and validation with an extensive

test set are required. Alternatively, using existing methods for assessing gait and inputting the

2D pose estimated with our method for a given video segment could also be interesting.

Self-supervised 2D
pose estimator

Consecutive images from video
Predicted 2D poses

Gait analysis

Spatial gait parameters

Figure 6.2: Gait analysis. Our model produces 2D pose data that can be valuable features
for gait analysis. We can easily calculate spatial measurements from the predicted 2D poses.
Alternatively, we can use the 2D pose representations for a given video as input to recent
unsupervised clustering methods, like B-SOiD [209], to identify features without any user bias.

Future work for this research direction includes closer collaboration with our partners at the

University of Tasmania to create a larger dataset of mice recordings. We aim to incorporate

more challenging scenarios and poses. We will then use this data to run our model and generate

pose annotations. If required, the annotations will be reviewed and corrected by experts. Our

plans also involve making the model available to the public. This will provide a tool for people

working with similar animal recordings to perform more comprehensive analyses with minimal
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effort and, most importantly, without investing in expensive commercial equipment.

Learning to predict 3D human pose from unlabelled images

Previous work has demonstrated the advantages of incorporating temporal information into

pose estimation methods. Including this feature would be a valuable addition to future versions

of our model for estimating 3D human poses. We can exploit the assumption that it is possible

to learn pose by modelling differences between consecutive video frames. Quantifying these

differences could provide a robust consistency measure that can be incorporated within a loss

function, potentially leading the model to better accuracy.

Self-supervised 3D Pose
Estimator

LSTM

Figure 6.3: Integrating temporal information. Exploiting the temporal information from multi-
ple consecutive images (x0, . . . , xn) from a video sequence could improve the model performance.
It is also possible to incorporate a network that can handle temporal data, such as LTSM, and
train it with the model to predict the following pose representation v̄n for a given sequence
(v0, . . . , vn−1). This pose and the model’s prediction vn can then be compared using a loss
term.

As illustrated in Figure 6.3, we could input a set of n consecutive images from a video sequence

and introduce a new component of the loss function that simply measures the differences between

their corresponding predicted 3D poses (v0, . . . , vn). Alternatively, we could rely on network

architectures that handle sequential data, such as LSTM (Long short-term memory), to predict
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a future 3D pose v̄ based on a previous sequence of 3D predictions. Then, comparing the

estimated pose from the LSTM with the corresponding estimation by the model could provide

a useful loss term. However, this design would constrain the inputs to belong to the same video

sequence, making it impossible to train the model with isolated images. Furthermore, building

each batch item with a sequence of images will reduce the number of batches for training,

potentially increasing the use of computational resources.
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Figure 6.4: Skeletons to images. Potential approaches for exploiting the intermediate skeleton
representations. pix2pix examples obtained from https://affinelayer.com/pixsrv/. Exam-
ples with human images are just for illustrative purposes. Only the skeleton images correspond
to real examples produced by our model. Animation done with https://sketch.metademolab.

com/canvas.

It would also be advantageous to experiment with building the prior of 2D poses from synthetic

data, as in Chapter 5. This would eliminate the requirements for unpaired pose annotations

from the current dataset. Besides, adding a combination of synthetic and actual data might
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benefit the model’s performance.

Another potential future development for our research within 3D human poses would be in-

cluding SMPL models [131] within our framework. Instead of constraining the model to learn

3D joint positions, it would learn the parameters of the SMPL model. This would enhance the

flexibility of our approach, making it applicable to a broader range of scenarios where more com-

plex body shapes are required. Given the popularity of SMPL models, it would be a valuable

addition to our framework.

Finally, it is possible to use the intermediate skeleton image representations to create a dataset

that could benefit works that depend on sketches [220, 248, 249, 250, 251]. For example,

we could rely on methods like pix2pix [220] to generate realistic-looking images of animals

and objects from sketches, as demonstrated in Figure 6.4. By utilising techniques like this,

we can create new images of people with different appearances based on the skeleton images

from our approach. This can enhance the dataset and provide a broader range of scenarios

for training models. Additionally, Smith [252] has recently released a method for animating

drawings (https://sketch.metademolab.com/canvas), which could also be helpful for using

our skeleton images. We provide an example of the animation produced with this technique,

accessible by clicking on Figure 6.4.

Learning to predict 3D animal pose from unlabelled images and synthetic data

One potential approach to quickly get data for training our model with different animals without

directly collecting images is to rely on recent techniques based on stable diffusion models, such

as inpainting. Figure 6.5 demonstrates how we can transform the images in our dataset to show

a different animal through the use of powerful vision models. For instance, we can segment the

horse in our images and replace it with a zebra, cow, or any other animal using SAM (Segment

Anything Model) and a stable diffusion model. Alternatively, if we have the segmentation mask

for the object of interest, we can use stable diffusion and a text prompt to replace it with another

object. Additionally, other stable diffusion-based techniques generate multiple variations of a

given image or skeleton representations, as depicted in the image variations section of Figure 6.5,

which increases the variability of data. In the case of the skeleton representations of the horses,

it is also possible to use pix2pix [220] or some other similar models to produce realistic-looking

images from them.
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Figure 6.5: Potential directions of future work by incorporating stable diffusion based tools to
easily generate new data. Inpainting examples were generated using the online demo from:
https://replicate.com/andreasjansson/stable-diffusion-inpainting. Image varia-
tions for images and skeleton made by using: https://huggingface.co/spaces/lambdalabs/
stable-diffusion-image-variations and https://imagevariations.com/ respectively.
Text to image generated by DALL-E https://openai.com/dall-e-2, using the text prompt:
“realistic full body photo of a ... horse running in the ...”. Sketch to image examples made for
illustrative purposes only.

When it comes to generating images from text, easily accessible methods such as DALL-E [253]

can provide a quick solution for creating test or training data for our model. By providing

a text description of desired objects and their traits, these techniques can produce multiple

images, as demonstrated in the text-to-image section of Figure 6.5. With the appropriate tools,

generating new images and substituting animals in our dataset can be a simple process. This

would provide more flexibility in implementing our model with various animals, eliminating the

need for gathering data from each one individually.

Lastly, extending the model’s capabilities to recognise animal shapes might be interesting rather

than solely 3D joint positions.
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Appendix A

Chapter 3

Overview

This supplemental material provides extended descriptions of the work done in the correspond-

ing chapter of this thesis. In section A.1, we include more details about the data acquisition

process and some insight related to previous data analyses. section A.2 provides more infor-

mation related to the 3D mouse model used for obtaining the synthetic 2D poses. Finally,

section A.3 includes implementation details. To ensure the reproducibility of our approach, we

have added links to the publicly available models utilised. Our code will be made accessible

shortly after the publication of this thesis.

Note that most of the figures in these sections are of high quality. If something is not completely

visible on the current figure size, simply zoom in for better visualisation. Some visualisations

also serve as links to videos or other visual resources. This information is indicated in the

captions of the respective figures.

Project website: https://josesosajs.github.io/micepose/

Paper (ICVS 2023): https://tinyurl.com/y3thhbay

Presentation (ICVS 2023): https://tinyurl.com/mryj5rvb

Pre-print: https://arxiv.org/abs/2307.13361

Poster (CVPR-W 2022): https://tinyurl.com/48enkhu8
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A.1 Data acquisition and previous analysis

We use a commercial tool called DigiGait (https://mousespecifics.com/digigait/) to ac-

quire recordings for training our models. DigiGait includes a treadmill and camera to record

animals while running or walking. Figure A.1 works as a link to one of the videos from our

dataset. The complete recordings will be made available under reasonable request.

Figure A.1: Example of recordings. The dataset includes recordings that have a similar struc-
ture. Most show a mouse running at three different speeds for about 20 seconds each, with
10-second intervals in between. During these intervals, the mouse is simply walking on the
treadmill. Note that the figure acts as a link for accessing the video.

DigiGait provides both equipment and software for data acquisition and analysis. However,

we do not have access to the software as we are not involved in the data acquisition stage.

The DigiGait software potentially relies on some elementary computer vision/image processing

techniques to identify the regions of the mouse’s paws in each frame and measure their areas

at different times. From this process, the software generates a set of 16 gait parameters and

plots illustrating the areas of the paws, as presented in Figure A.2. As the software is not

open-source, we lack specific technical details on how it works.

The gait parameters that DigiGait produces are as follows: stride left, stride right, step width

front, step width back, step length right, step length left, step length front, step length back,

stride width left, stride width right, stride left, stride right, step length right, step length left,

step length front, and step length back. Figure A.3 shows an example of the values for each

parameter averaged for a set of video sequences A, B, C, D, and E.

DigiGait involves much manual work to revise the estimated positions of the paws and can only

manage short video sequences. To address this, we began exploring the use of deep learning
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Figure A.2: DigiGait’s output example. The DigiGait software generates plots showing the
paws’ areas over time. However, it is unclear which processes the Digigait software uses for the
videos. We hypothesise that it employs basic image processing techniques.
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Figure A.3: Example of gait parameter values for different videos. In addition to producing the
plots, DigiGait estimates values for a set of metrics helpful for gait analysis. The inset legend
denotes these metrics.

and advanced computer vision techniques to replicate the functions of DigiGait. By doing so,

we aim to decrease the need for human involvement in estimating gait parameters.

We experiment with a simple pipeline illustrated in Figure A.4, relying on existing methods for

image segmentation (OSVOS) [254] and bounding box detection (Region Proposal Network)

[25]. This permits estimating segmentation masks and bounding boxes for the mouse’s paws in

each video frame. However, we later discarded this approach since it limits the body structure to

only four joint positions and required manually producing some segmentation masks to fine-tune

the image segmentation model.

Using that primitive approach, we estimate the paw areas for every image in a given video
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OSVOS RPN

Matching

Figure A.4: Preliminary computer vision approach for estimating paw areas. We rely on deep
learning approaches, such as OSVOS and Region Proposal Network, to detect paws in each frame
of a given video and estimate the corresponding segmentation masks and bounding boxes.

sequence. In Figure A.5, we show some of the plots, including the areas of each paw for

consecutive images corresponding to three seconds of video. We use videos showing the mice

running at three speeds, 10cm/s, 20cm/s and 30cm/s. Note that each second of the video

involves the predictions for 164 images/frames. The first two plots in each row correspond to

the left and right front paws, respectively, while the third and last plots correspond to the left

and right back paws. The red crosses on each plot correspond to the peaks, indicating when

that specific paw is probably in full contact with the treadmill.

Furthermore, in Figure A.6 we provide links to videos illustrating the results of tracking all four

paws using the previous method. Note that Figure A.6 acts as a link to the folder containing

the videos. Additionally, links for individual videos are provided in the figure’s caption.

A.2 Synthetic mouse model

To manipulate the 3D mouse model, we utilise Blender, which is a free, open-source 3D computer

graphics software for creating animations. Blender can be downloaded directly from its website:

https://www.blender.org/download/. In the work done throughout the chapter, we rely on
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10cm/s

20cm/s

30cm/s

Figure A.5: Estimated paw areas over time. The plots show the estimated paw areas using the
approach depicted in Figure A.4. Each paw is plotted for three seconds, corresponding to 492
images, at three different speeds. The first and second columns depict the areas for the front
paws, while the remaining columns are for the rear paws. On the plots, the maximum area is
marked with a red cross, indicating when the paw is in complete contact with the treadmill.

A) B)

C) D)

Figure A.6: Different video visualisations for the paw tracking. The figure acts a link for
the shared folder containing the videos. A) https://tinyurl.com/paw-tracking-seg, B)
https://tinyurl.com/paw-tracking-pose, C) https://tinyurl.com/paw-tracking-bb,
D) https://tinyurl.com/paw-tracking-angle.

the existing models from [63]. These models are freely available, and could be downloaded from

this website: https://osf.io/h3ec5/. In particular, we use the model showing the mouse

freely moving in an open field: SyntheticData DemoScene Openfield.blend. We introduce some

changes to make the mouse follow a similar moving trajectory as in the videos from our dataset,

i.e. to simulate the mouse running on the transparent treadmill. Figure A.7 displays examples
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of rendered images from the mouse model.

Figure A.7: Visualisations of mouse 3D model. The figure visualises different layers from the
3D mouse model used to generate the animations and, consequently, the prior of 2D poses. The
examples are just for illustrative purposes.

Figure A.8: Visualisation of an animation using the 3D mouse model. The video shows a
sequence of rendered images using the 3D mouse model. Note that for the main experiments,
we did not use any images from this model; just the 2D poses were needed. The figure acts as
a link for accessing the video.

Technically, the 3D mouse model consists of multiple objects, each representing a different joint

of the mouse’s body, such as the snout, tail, and limbs. Blender allows for Python integration,

making it easy to extract the positions of such objects in the 3D model for every frame in a given

animation. Our primary focus is obtaining the joint positions for each image in the animated

sequences to create a prior. The Python script used to extract the joint positions in Blender can

be found at the following link: https://github.com/ubcbraincircuits/mCBF/blob/master/

mCBF-2d-3d_marker-extraction.py. For illustrative purposes Figure A.8 shows an animation

created with the 3D mouse model. Note that we usually disregard the images from the animated

sequences and only use the extracted joint positions.
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A.3 Implementation details

The structures of networks Φ, Ω, and D are the same as described in Table B.2, Table B.3, and

Table B.5 from Appendix B respectively. The network Ψ was implemented in line with [119].
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Chapter 4

Overview

In the following sections we provide comparative per-activity quantitative results on Human3.6M

(section B.1); and additional qualitative results for Human3.6M [47] (section B.2), MPI-INF-

3DHP[49] (section B.3), and HandDB[222] (section B.4) datasets. Moreover, section B.5 in-

cludes visualisations of some intermediate representations during and after training the model.

Finally, section B.6 provides more details about the implementation and structure of the net-

works. Our code will be made accessible shortly after the publication of this thesis.

Note that most of the figures in these sections are of high quality. If something is not completely

visible on the current figure size, simply zoom in for better visualisation. Some visualisations

also serve as links to videos or other visual resources. This information is indicated in the

captions of the respective figures.

Project website: https://josesosajs.github.io/imagepose/

Poster (CVPR 2023): https://tinyurl.com/5xwukfby

Paper: https://tinyurl.com/mr3hcush

Supplemental material: https://tinyurl.com/2j33ub85

Pre-print: https://arxiv.org/pdf/2304.02349.pdf

Poster (BMVA Meeting 2022): https://tinyurl.com/cp9z2bss
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B.1 Quantitative results on Human3.6M and MPI-INF-3DHP

datasets

Method Assumptions Dir. Disc. Eat Greet Phon. Photo Pose Purch. Sit SitD. Smoke Wait Walk WalkD WalkT Avg.(↓)
Chen [219] Full-3D 89.8 97.6 89.9 107.9 107.3 139.2 93.6 136.1 133.1 240.1 106.6 106.2 87.0 114.0 90.6 114.2

Kundu [61] 3D Kin. 80.2 81.3 86.0 86.7 94.1 83.4 87.5 84.2 101.2 110.9 86.0 87.8 86.9 94.3 90.9 89.4

Ours Unp. 2D 84.4 77.8 89.0 99.2 100.6 101.8 77.2 86.5 112.2 144.4 97.3 80.4 93.6 103.3 102.5 96.7

Table B.1: Extended quantitative results on the Human3.6M dataset. The P-MPJPE for each
activity on the Human3.6M test set (subjects 9 and 11). The performance is compared with
two state-of-the-art approaches for which per-activity data is available. Note that by only using
unpaired 2D poses, we outperform methods that rely on paired 3D annotations [219]. We
perform similarly; and even better for some activities (in bold) than methods relying on 3D
kinematic constraints [61].

Subjects from MPI-INF-3DHP dataset
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Figure B.1: Distribution of PCK scores per subject in MPI-INF-3DHP dataset. Similar to
Human3.6M, the test set of MPI-INF-3DHP dataset consists of subjects identified as (TS1, . . . ,
TS6). Apart from the avcerage PCK score provied on the chapter, we breakdown the score to
show the individual PCK for each subject in the test set. The lowest score occurs for subject
on outdoor settings.
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B.2 Qualitative results on Human3.6M

Figure B.2: 3D pose predictions on images corresponding to subject 9 (S9) from Human3.6M
dataset. The first and fifth columns show the input image, and the following columns (second
and sixth) display the actual 3D pose from the dataset (coloured in green) aligned with the 3D
pose predicted by our model (coloured in red). The remaining columns show novel views of the
predicted 3D pose.
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Qualitative results on Human3.6M (continue)

Figure B.3: 3D pose predictions on images corresponding to subject 11 (S11) from Human3.6M
dataset. The first and fifth columns show the input image, and the following columns (second
and sixth) display the actual 3D pose from the dataset (coloured in green) aligned with the 3D
pose predicted by our model (coloured in red). The remaining columns show novel views of the
predicted 3D pose.

146



Chapter B. Chapter 4 B.3. Qualitative results on MPI-INF-3DHP

B.3 Qualitative results on MPI-INF-3DHP

Figure B.4: 3D pose predictions on images corresponding to subjects 1 and 2 from MPI-INF-
3DHP dataset. The first and fifth columns show the input image, and the following columns
(second and sixth) display the actual 3D pose from the dataset (coloured in green) aligned with
the 3D pose predicted by our model (coloured in red). The remaining columns show novel views
of the predicted 3D pose.
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Qualitative results on MPI-INF-3DHP (continue)

Figure B.5: 3D pose predictions on images corresponding to subjects 3,4,5, and 6 from MPI-
INF-3DHP dataset. The first and fifth columns show the input image, and the following columns
(second and sixth) display the actual 3D pose from the dataset (coloured in green) aligned with
the 3D pose predicted by our model (coloured in red). The remaining columns show novel views
of the predicted 3D pose.
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B.4 Qualitative results on HandDB

Figure B.6: 3D hand pose predictions on synthetic hand images from HandDB dataset. The first
and sixth columns show the input image with its corresponding 2D ground-truth superimposed.
The remaining columns show novel views of the predicted 3D hand pose.
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B.5 Intermediate representations

Throughout various stages of training our approach, we generate visual representations of the

intermediate representations. In particular, we focus on the skeleton images. As can be observed

in Figure B.7, the predicted skeleton image improves as the training progresses. It starts showing

some blurred and mostly disconnected lines in early iterations. The final iterations display a

more aligned skeleton representation of the person’s pose depicted on the input. We also show a

skeleton image representation of the 2D projection corresponding to the rotated 3D prediction.

The final columns illustrate the samples from the unpaired prior of 2D poses.
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2D projection of
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Figure B.7: Intermediate representations during training. We plot the intermediate skeleton
image representations from our approach at different stages during training. As can be noticed,
the predicted skeleton image is improving with training, showing a more aligned skeleton with
the person’s pose in the input image. For reference, we also plot the rendered sample from
the unpaired prior of 2D poses in the last columns. Due to an issue with the visualisation tool
(https://wandb.ai/site), the input image is show on black and white.

We generate and plot the intermediate pose representations as skeleton images using the trained

model. Figure B.8 shows the input image with its corresponding skeleton image generated by

the trained model. As can be seen, the skeleton mostly aligns with the pose of the person
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depicted on the input, which is one of the goals during the training of the model.

Input Predicted skeleton Input Predicted skeleton Input Predicted skeleton Input Predicted skeleton

Figure B.8: Skeleton images generated with the trained model. The figure shows the input image
depicting the subject and its respective skeleton image generated with our trained model.
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B.6 Implementation details

Training details: We train the networks Φ,Ω,Λ and D, from scratch according to the loss

function (Equation 12) from the main paper. We use the Adam optimiser [203] with learning

rate of 2× 10−4, and β1 = 0.5, β2 = 0.999. Each batch is formed by sampling from the images

and randomly sampling from the prior of unpaired 2D poses (which is then transformed to a

skeleton image). The batch size is 96. Our model was trained for around 40 hours using one

GPU from a NVIDIA DGX-MAX-Q server. The NF is pre-trained in line with [64] as shown

on the next section.

Convolution layer Upsampling Linear layer Residual connections

Figure B.9: Pictorial representation of the networks that integrate our model. Blue rectangles
represent convolutional layers, and the orange ones the linear layers. Note that to keep the dia-
grams as simple as possible, we omit some components, such as the size of layers, normalisation
layers, and activation functions; we include these elements in Table B.2, Table B.3, Table B.4,
and Table B.5 of the next section.

Model components: This section shows the details of the networks used in our model. We

include a pictorial representation of all the networks shown in Figure 2 from the main paper.

The upper part of Figure B.9 displays the networks needed for the mapping from image x to

3D pose v. The lower part shows the discriminator D needed during training to evaluate the
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skeleton images. In particular, Φ and Ω are based on [224, 119], the discriminator D on [121,

119], and the lifting network Λ on [16, 64].

Following [119], with respect to the discriminator D, we use three identical convolutional archi-

tectures, inputting different scales of the image: the original image and its downsized versions

by 1
2 and 1

4 , respectively. We take the mean of the patchwise outputs from the three network,

as indicated in Figure B.9. The normalising flow network is shown in the following subsection

since it requires a more detailed explanation.

Normalising flow

Following [64], we use the network in [236] to represent 4.11. This network consists of consecutive

affine coupling blocks like the one shown in Figure B.10. Each coupling block applies a random

permutation of the input. In our case, the input ȳ is the image in the PCA subspace of the 2D

pose ŷ. After the permutation, it splits the vector into two parts, m1 and m2. The first part

m1, is used to predict a scale s and a translation t to deform m2. In the end, w1 (or m1 since

it remains unchanged) is concatenated with the deformed m2 represented as w2.

Split
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Linear Layer ReLU

Affine Coupling Block

+

concat

Figure B.10: Affine coupling block. Multiple consecutive coupling blocks integrates the normal-
ising flow. Diagram adapted from the supplemental material of [64].

During the forward pass the scale s and translation t are calculated as a function of m1, and

then used to deform m2 as follow

w2 = exp(s(m1))m2 + t(m1) & w1 = m1 (B.1)

Similarly, the backward part is defined by
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m1 = w1 & m2 = (w2 − t(w1)) exp(−s(w1)) (B.2)

The determinant of the Jacobian is given by

det

(
∂f

∂ȳ

)
= exp

∑
j

s(m1)j

 . (B.3)

Since the Jacobian of f does not need to calculate the Jacobian of the scale s and translation t

functions, these could be complex.

Networks structure

Layer Output Shape Activation function Normalisation type

Conv2d 32× 128× 128 ReLU Batch
Conv2d 32× 128× 128 ReLU Batch
Conv2d 64× 64× 64 ReLU Batch
Conv2d 64× 64× 64 ReLU Batch
Conv2d 128× 32× 32 ReLU Batch
Conv2d 128× 32× 32 ReLU Batch
Conv2d 256× 16× 16 ReLU Batch
Conv2d 256× 16× 16 ReLU Batch
Conv2d 256× 16× 16 - -
Conv2d 256× 16× 16 ReLU Batch
Conv2d 256× 16× 16 ReLU Batch
Upsampling 128× 32× 32 - -
Conv2d 128× 32× 32 ReLU Batch
Conv2d 128× 32× 32 ReLU Batch
Upsampling 64× 64× 64 - -
Conv2d 64× 64× 64 ReLU Batch
Conv2d 64× 64× 64 ReLU Batch
Upsampling 32× 128× 128 - -
Conv2d 32× 128× 128 ReLU Batch
Conv2d 1× 128× 128 - -

Final output shape: 1× 128× 128

Table B.2: Structure of network Φ.
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Layer Output Shape Number of parameters Activation function Normalisation type

Conv2d 32× 128× 128 1,600 ReLU Inst.
Conv2d 32× 128× 128 9,248 ReLU Inst.
Conv2d 64× 64× 64 18,496 ReLU Inst.
Conv2d 64× 64× 64 36,928 ReLU Inst.
Conv2d 128× 32× 32 73,856 ReLU Inst.
Conv2d 128× 32× 32 147,584 ReLU Inst.
Conv2d 256× 16× 16 295,168 ReLU Inst.
Conv2d 256× 16× 16 590,080 ReLU Inst.
Conv2d 17× 16× 16 4,369 None None

Final output shape: 17× 16× 16
Total params: 1,177,329

Table B.3: Structure of network Ω.

Layer Output Shape Number of Parameters Activation function Normalisation type

Linear 1× 1024 35,840 LReLU None
Linear 1× 1024 1,049,600 LReLU None
Linear 1× 1024 1,049,600 LReLU None
Linear 1× 1024 1,049,600 LReLU None
Linear 1× 1024 1,049,600 LReLU None
Linear 1× 1024 1,049,600 LReLU None
Linear 1× 1024 1,049,600 LReLU None

Linear 1× 17 17,425 LReLU None

Linear 1× 1024 1,049,600 LReLU None
Linear 1× 1024 1,049,600 yReLU None
Linear 1× 1024 1,049,600 LReLU None
Linear 1× 1024 1,049,600 LReLU None
Linear 1× 1 1,025 LReLU None

Final output shape: [[1× 17], [1× 1]]
Total params: 10,550,290

Table B.4: Structure of network Λ.
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Layer Ouput Shape Number of Parameters Activation function Normalisation type

Conv2d 64× 64× 64 1,088 LReLU None
Conv2d 128× 32× 32 131,200 LReLU Inst.
Conv2d 256× 16× 16 524,544 LReLU Inst.
Conv2d 512× 15× 15 2,097,664 LReLU Inst.

Conv2d 1× 14× 14 8,193 None None

Conv2d 64× 32× 32 1,088 LReLU None
Conv2d 128× 16× 16 131,200 LReLU Inst.
Conv2d 256× 8× 8 524,544 LReLU Inst.
Conv2d 512× 7× 7 2,097,664 LReLU Inst.

Conv2d 1× 6× 6 8,193 None None

Conv2d 64× 16× 16 1,088 LReLU None
Conv2d 128× 8× 8 131,200 LReLU Inst.
Conv2d 256× 4× 4 524,544 LReLU Inst.
Conv2d 512× 3× 3 2,097,664 LReLU Inst.

Conv2d 1× 2× 2 8,193 None None

Final output shape: [[1× 14× 14], [1× 6× 6], [1× 2× 2]]
Total params: 8,288,067

Table B.5: Structure of network D.
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Overview

This supplemental material provides extended descriptions of the work done in the correspond-

ing chapter of this thesis. In section C.1, we include more details about the process and resources

utilised to collect the data utilised for our experiments. In section C.2 we include visualisations

of intermediate representations during and after training the model. Finally, section C.3 includes

implementation details.

Note that most of the figures in these sections are of high quality. If something is not completely

visible on the current figure size, simply zoom in for better visualisation. Some visualisations

also serve as links to videos or other visual resources. This information is indicated in the

captions of the respective figures.

Our code will be made accessible shortly after the publication of this thesis (WIP): https:

//github.com/josesosajs/auto-data-collection.git

Paper (Proceedings): Available soon ...

Pre-print: https://arxiv.org/pdf/2308.03411.pdf

Poster (ICCV 2023): https://tinyurl.com/mpwev5r6

157

https://github.com/josesosajs/auto-data-collection.git
https://github.com/josesosajs/auto-data-collection.git
https://arxiv.org/pdf/2308.03411.pdf
https://tinyurl.com/mpwev5r6


C.1. Dataset details Chapter C. Chapter 5

C.1 Dataset details

We utilise a portion of the TigDog dataset [134] to construct our training set. This data is

publicly available and can be accessed from here: https://calvin-vision.net/datasets/

tigdog/. Note that only the latest version of the dataset contains horse data.

As mentioned in the chapter, we extend the horse data by collecting images from YouTube

videos. We manually select a group of public short videos depicting whole-body horses doing

different activities (see Table 5.1). We design a pipeline to collect the data automatically

illustrate in Figure C.1. It inputs the YouTube video ID and produces images depicting horses

and their corresponding segmentation masks. To identify the horses in the videos, we use

Detectron2 https://ai.meta.com/tools/detectron2/. Documentation can be accessed here:

https://detectron2.readthedocs.io/en/latest/modules/data.html.

YouTube
video id

Extracted images

Corresponding
segmentation masks

Detectron2

Object id
to segment

Input Outputs

Figure C.1: Diagram summarising the data collection process. Our approach for collecting horse
images from videos involves using Detectron2, a pre-trained tool for object segmentation. This
helps to identify the images from the videos containing horses and produce the corresponding
segmentation masks. Segmenting other animals/objects is possible by changing the object id
parameter on the Detectron2 implementation.

We provide our code for implementing the automatic pipeline for collecting the horse images

here: https://github.com/josesosajs/auto-data-collection. Due to the need for a GPU
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to run Detectron2, we release the Google Colab notebook, allowing for faster and straightforward

code use. Connect the notebook with Google Drive for a more uncomplicated experience.

C.2 Intermediate representations

Throughout various stages of training our approach, we generate visual representations of the

intermediate representations, as with the human pose estimator. In particular, we focus on the

skeleton images. As can be observed in Figure C.2, the predicted skeleton image improves as

the training progresses. It starts showing some blurred and mostly disconnected lines in early

iterations. The final iterations display a more aligned skeleton representation of the horse’s

pose depicted on the input. We also show a skeleton image representation of the 2D projection

corresponding to the rotated 3D prediction. The final columns illustrate the samples from the

prior of synthetic 2D poses.

Iteration

Predicted
skeleton image

2D projection of
rotated 3D poseInput image

100

300

400

149600

149000

148900

148600

148200

1000

Random sample
from syn prior Iteration

Predicted
skeleton image

2D projection of
rotated 3D poseInput image

Random sample
from syn prior

5700

Figure C.2: Intermediate representations during training. We plot the intermediate skeleton
image representations from our approach at different stages during training. As can be noticed,
the predicted skeleton image is improving with training, showing a more aligned skeleton with
the horse’s pose in the input image. For reference, we also plot the rendered sample from the
prior of synthetic 2D poses in the last columns. Due to an issue with the visualisation tool
(https://wandb.ai/site), the input image is show on black and white.

We generate and plot the intermediate pose representations as skeleton images using the trained

model. Figure C.3 shows the input image with its corresponding skeleton image generated by

the trained model. As can be seen, the skeleton mostly aligns with the pose of the horse depicted

on the input, which is one of the goals during the training of the model.
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Input Predicted skeleton Input Predicted skeleton Input Predicted skeleton

Figure C.3: Skeleton images generated with the trained model. The figure shows the input
image depicting the horse and zebras, and its respective skeleton image generated with our
trained model.

C.3 Implementation details

The structures of networks Φ, Ω, and D are the same as described in Table B.2, Table B.3,

and Table B.5 from Appendix B respectively. The network Λ is a bit different, its structure is

illustrate on Table C.1.

Layer Output Shape Number of Parameters Activation function Normalisation type

Linear 1× 1024 35,840 LReLU None
Linear 1× 1024 1,049,600 LReLU None
Linear 1× 1024 1,049,600 LReLU None
Linear 1× 1024 1,049,600 LReLU None
Linear 1× 1024 1,049,600 LReLU None
Linear 1× 1024 1,049,600 LReLU None
Linear 1× 1024 1,049,600 LReLU None

Linear 1× 17 17,425 LReLU None

Final output shape: [1× 17], Total params: 6,350,865

Table C.1: Structure of network Λ for horse pose estimation.
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