
Illuminating the Dark Sector

Searching for new interactions between dark matter and dark
energy

A thesis submitted to The University of Sheffield for the degree of
Doctor of Philosophy

Elsa Maria Campos Teixeira

School of Mathematics and Statistics
Supported by Fundação para a Ciência e a Tecnologia

Supervised by Professor Carsten van de Bruck

November 2023





i

Tudo no mundo começou com um sim. Uma molécula
disse sim a outra molécula e nasceu a vida. Mas antes da pré-história

havia a pré-história da pré-história e havia o nunca e havia o sim.
Sempre houve. Não sei o quê, mas sei que o Universo jamais começou.

— Clarice Lispector A Hora da Estrela

All the world began with a yes. One molecule
said yes to another molecule and life was born. But before prehistory

there was the prehistory of prehistory and there was the never and there was the yes.
It was ever so. I don’t know why, but I do know that the Universe never began.

— Clarice Lispector in The Hour of the Star





Preface

This dissertation is presented to the School of Mathematics and Statistics of the University
of Sheffield for the degree of Doctor of Philosophy. This project has been supervised by Prof.
Carsten van de Bruck, and the contents report on the results of the research work conducted over
the course of the four years of my PhD, supported by the Fundação para a Ciência e a Tecnologia
(FCT) through the grant SFRH/BD/143231/2019. The Chapters in Part II are based partially
on ongoing work and on articles published in refereed journals, as the result of collaborations
with Carsten van de Bruck, Noemi Frusciante, Bruno J. Barros, Vasco M.C. Ferreira, Richard
Daniel, Gaspard Poulot and Cameron Thomas. I list the published work below:

1. Elsa M. Teixeira, Richard Daniel, Noemi Frusciante, and Carsten van de Bruck
“Forecasts on interacting dark energy with standard sirens” ,
Phys.Rev.D 108 (2023) 8, 084070, arXiv:2309.06544 [astro-ph].

2. Carsten van de Bruck, Gaspard Poulot, and Elsa M. Teixeira,
“Scalar field dark matter and dark energy: a hybrid model for the dark

sector” ,
JCAP 07 (2023), 019, arXiv:2211.13653 [hep-th].

3. Elsa M. Teixeira, Bruno J. Barros, Vasco M. C. Ferreira, and Noemi Frusciante,
“Dissecting kinetically coupled quintessence: phenomenology and observa-

tional tests” ,
JCAP 11 (2022), 059, arXiv:2207.13682 [gr-qc].

4. Carsten van de Bruck, and Elsa M. Teixeira,
“Dark D–Brane Cosmology: from background evolution to cosmological

perturbations” ,
Phys.Rev.D 101 (2020) 8, 083506, arXiv:2007.15414 [gr-qc]

This thesis is structured as follows:

• Chapter 1 provides an introduction to the main concepts relevant for modern cosmology,
including the theory of general relativity and the underlying cosmological principles.

• Chapter 2 is an account of the fundamentals of the standard model of cosmology - the
ΛCDM model - including its formulation, assumptions, background and perturbed equa-
tions, and a brief history of the Universe.

• Chapter 3 consists of a review of the concepts in observational cosmology that are relevant
for the work included in the thesis. It covers the main observables and probes pf the dark
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sector, followed by an account of the parameters of the ΛCDM model, and a comment on
the current crisis it faces.

• Chapter 4 provides a summary of the statistical methods necessary for the numerical analy-
sis and the assessment of the support for the alternative models considered. It also includes
a short introduction to the numerical tools and data sets for that purpose.

• Chapter 5 introduces the motivation and formulation of models beyond the standard ΛCDM
model, with particular focus on models with a coupling in the dark sector.

• Chapter 6 reports on the ongoing work with Cameron Thomas and Carsten van de Bruck.
Cameron Thomas is the author of part of the numerical work conducted for Section 6.2.

• Chapter 7 draws from published work in the Journal of Cosmology and Astroparticle
Physics (JCAP) [1] in collaboration with Bruno J. Barros, Vasco M. C. Ferreira and Noemi
Frusciante. Bruno J. Barros is credited with the original formulation of the model.

• Chapter 8 is an account on collaborative work with Richard Daniel, Noemi Frusciante, and
Carsten van de Bruck, which has been published in Physical Review D and is available at
[2]. Richard Daniel is the author of the simulated standard siren catalogue on which we
report in Appendix B.

• Chapter 9 is based partially on published work in Physical Review D [3] in collaboration
with Carsten van de Bruck and on ongoing work for the data analysis.

• Chapter 10 reports on work published in the Journal of Cosmology and Astroparticle
Physics (JCAP) [4] in collaboration with Gaspard Poulot and Carsten van de Bruck.
Gaspard Poulot is credited with part of the theoretical background work and the fluid
approximation.

• Chapter 11 concludes with a summary of the work presented in this dissertation, with an
outlook on coupled and interacting quintessence models, including some general thoughts
on the relevance of the research outlined in this manuscript and thoughts on the future of
the field.
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Abstract

Os factos são sonoros mas entre os factos há um sussurro.
É esse sussurro que me impressiona.

— Clarice Lispector A Hora da Estrela

The facts are sonorous but between the facts there’s a whispering. It’s the whispering that astounds me. —
Clarice Lispector in The Hour of the Star

The current standard model of cosmology - the ΛCDM model - is appropriately named after
its controversial foreign ingredients: a cosmological constant (Λ) that accounts for the recent
accelerated expansion of the Universe and cold dark matter needed to explain the formation and
dynamics of large scale structures. Together, these form the dark sector, whose nature remains a
mystery. After 25 years of withstanding confirmation and support for the ΛCDM model, enough
to bypass some of its unclear theoretical issues, this paradigm is facing its biggest crisis yet. The
rapid advent of technology has brought cosmology to an unprecedented observational era, with
increased technical precision and the emergence of independent measures, including probes of
phenomena that were thought impossible to detect or even exist, such as the gravitational ripples
that propagate in the spacetime. However, such precision has unveiled cracks in the porcelain
of ΛCDM, with pieces that seem glued together and difficult to reconcile. Particularly worrying
is the apparent lack of compatibility between measurements of the Universe’s present expansion
rate based on local measurements and those based on phenomena that occurred far in the early
Universe and that can only be translated into present quantities through physical propagation
under a cosmological model. In this dissertation, we delve into extensions to the standard
model that consider alternatives to the mysterious nature of the dark sector and any possible
new interactions therein. We analyse these alternative models, hoping to identify measurable
observational signatures of extra degrees of freedom in the dark sector. For this purpose, we
focus on Markov Chain Monte Carlo sampling techniques by exploiting recent observational
data and their combination to constrain and assess the validity of the model’s parameter space.
The extended frameworks investigated are only found to be marginally or not at all favoured
over the ΛCDM model, ultimately falling short of resolving the tensions present in the latter.
We conclude with a forecast on the constraining power of upcoming gravitational wave detectors
as standard sirens, independently and combined with current background data. By generating
simulated standard siren event catalogues following the specifications predicted by the proposed
missions, we discuss how an emerging avenue for independent data may be decisive in constraining
alternative theories of gravity and shed light on the nature of the dark sector.
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Units

Unless stated otherwise, in this dissertation I will always adopt natural units in which the speed
of light, Planck’s constant and Boltzmann’s constant are unity, c = ℏ = kB = 1. This translates
into an equivalence of units for energy, mass and momentum as an inverse unit of length and
time:

[Energy] = [Mass] = [Temperature] = [Length]−1 = [Time]−1 . (0.0.1)

Throughout this manuscript we denote derivatives with respect to physical time t by an upper
dot and derivatives with respect to conformal time τ by a prime,

t = cosmic time =⇒ dX

dt
≡ Ẋ , (0.0.2)

τ = conformal time =⇒ dX

dτ
≡ X ′ . (0.0.3)

Spatial 3-vectors are denoted an upper arrow, such as x⃗, and four-dimensional spacetime vectors
are denoted in terms of their components as x = (xµ). We adopt the convention for the signature
of the metric as (−,+,+,+).
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Foundations of Gravity and Cosmology





1 Introduction

Como começar pelo início, se as coisas acontecem antes de acontecer?
Se antes da pré-pré-história já havia os monstros apocalípticos?
Se esta história não existe, passará a existir. Pensar é um ato.

Sentir é um fato. Os dois juntos – sou eu que escrevo o que estou escrevendo.
— Clarice Lispector A Hora da Estrela

How do you start at the beginning, if things happen before they happen? If before the pre-prehistory there
were already the apocalyptic monsters? If this story doesn’t exist now, it will. Thinking is an act. Feeling is a
fact. Put the two together — I am the one writing what I am writing. — Clarice Lispector in The Hour of
the Star

1.1 Introduction to Cosmology

Cosmology is a unique field of scientific inquiry that seeks to understand the nature and origins
of the Universe. On what might be the only personal note in this dissertation, I like to think that
cosmology parallels the work of archaeologists piecing together the fragments of ancient civilisa-
tions. Both disciplines aspire to reconstruct a larger, coherent picture from fragmented pieces
- whether it be artefacts buried in the earth or distant sources of light reaching our telescopes
from the vast deepness of the Universe. Each cosmic signal we analyse is a relic from a long-past
event, a fossil of light, offering clues about the history and structure of the ultimate civilisation
- our Universe. This presents an epistemological challenge unique to cosmology: working to
understand an entire, singular Universe based on isolated data points, inherently confined by
the limits of causality and our observational reach. The task has an almost philosophical un-
dertone; it grapples with questions about the very nature of evidence and existence, especially
given that we have only one Universe to study. This singularity not only imposes a limit on our
understanding but also introduces an inherent bias into any laws or theories we might derive.
Thus, cosmology exists at an intersection of science and philosophy, endeavouring to build a nar-
rative of the Universe that is both empirical and conceptually profound. It confronts us with the
stark reality that our efforts to understand the cosmic journey are both an ambitious scientific
undertaking and a quest that treads on deeply abstract grounds.
Metaphysics aside, as an established scientific field, cosmology aspires to comprehend and artic-
ulate the fundamental characteristics and evolution of the Universe. It devises meticulous and
often speculative narratives for the composition of the Universe, delving further into the journey
of those constituents as they mature into complex structures such as galaxies. It also exam-
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ines the dynamics and interplay of those structures within an ever-changing landscape. These
overarching frameworks are referred to as cosmological models. Unlike the word model might
suggest, contemporary cosmological models consist mainly of abstract mathematical concepts,
often devoid of physical intuition or tangible form.
While commonly referred to as the birth of the Universe, the Big Bang might be more aptly
portrayed as its conception. The period preceding the creation of the first atoms, culminating
in the unimpeded propagation of light, was a vastly unfamiliar environment, an obscure cosmic
fog of elementary particles and their extremely energetic interactions. When the Universe was
approximately 380 000 years old, it grew more familiar. It gradually unfolded into the config-
uration we recognise today, seemingly set on a perpetual path of expansion, according to the
prevailing cosmological model.
At its core, Cosmology stands as a field deeply rooted in ancient human contemplation. It
is impossible to disentangle from the quest to understand our place in the world, its origins,
and ontological meaning. The foundations of modern cosmology were established in 1917 with
Albert Einstein’s seminal article on his theory of General Relativity (GR), titled Cosmological
Considerations in the General Theory of Gravity [5]. Building upon Einstein’s work, cosmological
models were further developed by Dutch mathematician Willem de Sitter [6–8], German physicist
Karl Schwarzschild [9, 10], and Russian mathematician Alexander Friedmann [11, 12]. These
studies demonstrated that general relativity could accommodate the concept of an expanding
Universe, a theoretical hypothesis that came to be confirmed by the realisation that galaxies stood
as rulers to trace astronomical distances in space and which were, in fact, receding from our own
Milky Way in all directions. In 1929, Edwin Hubble’s landmark discovery, now known as the
Hubble law, revealed a linear relation between the recessional speed of a galaxy and its distance,
culminating in the hypothesis that the Universe is expanding. This idea was not unexpected and
had been largely predicted from a theoretical perspective. Indeed, it was qualitatively reinforced
by redshift measurements and notoriously explored during the 1920s.
As it stands at the moment of writing this dissertation, the standard cosmological model - referred
to as the ΛCDM model based on its novel components - is constructed upon six foundational
principles, summarised in the following equation and which will be discussed below:

ΛCDM Model = GR + FLRW + Standard Matter + Initial Conditions + CDM + Λ .

The GR, FLRW, and Standard Matter triad represent well-established and tested hypotheses
based on local empirical evidence. On the other hand, although highly supported by cosmological
and astrophysical observations, the last three components infuse new physics into the picture
and still lack more concrete and direct confirmation. In unison, these six hypotheses orchestrate
a comprehensive paradigm for understanding the Universe on large scales, as listed below:

1. GR: The theory of gravity is essential for understanding cosmological phenomena, as gravity
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dominates the Universe on large scales and is at the heart of cosmic evolution.

2. Friedman-Lemaître-Robertson-Walker (FLRW) metric: GR admits only a few analytical
solutions as a metric theory regulated by non-linear partial differential equations. There-
fore, deriving physical implications requires a simple mathematical description from the
metric, with the FLRW metric being a natural choice assuming maximal spatial symmetry.

3. Standard Matter (from the standard model of particle physics): the directly detected
forms of matter in the Universe - baryons (protons, neutrons, including the less massive
electrons), photons, and neutrinos - whose dynamics and interactions are based on robust
physical principles - must be included in the cosmological model to recount the expansion
history of the Universe successfully.

4. Initial Conditions (from inflation): an early period of rapid cosmic expansion, inflation is
invoked to resolve causality problems and account for the observed spatial curvature of the
Universe. Remarkably, it also provides a mechanism to explain the Universe’s initial con-
ditions, including generating perturbations around the background metric and supporting
the choice of the homogeneous and isotropic metric ansatz.

5. Cold Dark Matter (CDM): a form of pressureless matter that does not interact with light,
needed to accurately describe the dynamics and process of formation of large-scale struc-
tures, such as galaxies and galaxy clusters. The simplest resolution is to introduce a new,
weakly interacting particle species.

6. Cosmological Constant (Λ): an additional degree of freedom that accounts for the observed
accelerated expansion of the Universe, which in the simplest scenario is a cosmological
constant, i.e., some energy density contribution that remains constant over the expansion.

For completeness of the work, we first provide a general overview of the relevant concepts of
cosmology, focusing mainly on the Universe’s expansion history and leading towards the physics
of the late Universe. The main goal is to introduce and contextualise the original work presented
in Part II of this manuscript. In that sense, Part I will consist of well-established topics in the
field. Nevertheless, the organisation of the discussion and the storytelling should be original,
connecting the ideas and guiding the reader through the relevant concepts. We will start by
presenting a brief overview of the dynamics of general relativity. This lays out the basis for
the introduction of cosmology, focusing mainly on the large-scale structure of spacetime and the
dynamics of the expansion history. To understand the full scope of the changes introduced in
each model, a complete account of the physically relevant epochs of the Universe is needed. The
seeds for the evolution of structures lie in the primordial perturbations produced during an initial
period of inflation. These are imprinted in the Cosmic Microwave Background (CMB) radiation
and are a fundamental cosmological probe.
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1.2 A Comment on Observational Cosmology

The methods of scientific pursuit must be adapted to the limitations of the field, particularly
in the realms of physical cosmology and extragalactic astronomy, where empirical assessment is
limited to distant observations without direct interaction or manipulation of the objects of study.
Moreover, in the vast expanse of the cosmos, we cannot replicate experiments or observations.
Instead, we must rely on searching for the clues and evidence left behind in fossils from the
ancient past. Some of these relics are found nearby, such as extragalactic hints on the Earth
or the Moon, in our Solar System or even in stars within our galaxy. Even though these local
remnants give important insight, they are just pieces of a large jigsaw puzzle. Nevertheless, here,
the laws of physics and the principles of general relativity play in our favour: our vision can
reach far beyond, as the light from distant objects carries information from earlier epochs of the
Universe, based on the fact that observed objects at increasing distances effectively corresponds
to looking back in time, witnessing the earlier stages of cosmic evolution. Our view of the cosmos
is shaped by our past light cone, representing the collection of all the light that has reached us
throughout history. While the light cone of human existence encompasses an incredibly thin
slice of the Universe’s history, the information travels towards us from all directions and epochs,
spanning a vast range of time and space. Collecting the remnant pieces of cosmic history and
drawing them together is just like adding the pieces of the jigsaw puzzle, except that there may
be infinite pieces, some inaccessible or lost forever in the vastness of the cosmos, others waiting
to be found (and most likely there are no corner pieces to start with!).

The debates and discussions surrounding cosmological issues can be met with an intensity and
fervour not matched by the weight of evidence. One reason is that the observational evidence
needed to settle these questions often appears to be beyond our grasp or even an impossibility.
Furthermore, the study of such fundamental questions is deeply entangled with an overarch-
ing interest in understanding the nature of our own existence and the world we inhabit. It is
inevitable to ponder the Universe’s origins and potential fate, and it is hard not to develop a
philosophical preference for certain scientific outcomes or perspectives.

The era of precision measurements has drastically changed the scientific method. Big collabo-
rative teams have developed to address the need to deal with unprecedentedly large amounts of
data, with the natural gap between theory and observations being transposed with numerical
simulations. This shift has led to heightened scrutiny of research endeavours and the need for
inquiries to be more rigorously justified or supported.

The standard model of cosmology today has reached the status of an empirical science; that is,
it is based on and tested according to what can be observed or measured. However, scientific
advancements are often made on a theoretically intuitive basis since, while being well-tested and
investigated, a cosmological theory is always incomplete and subject to unpredictability. The
currently accepted Λ-Cold-Dark-Matter (ΛCDM) model relies on the extrapolation of a cosmo-
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logical history from imprints left in the observables that resemble those predicted by the model.
The theory is then a useful though incomplete approximate picture of the history of the cosmos,
with remaining cracks and hypotheses on the borderline of established physics. Nevertheless,
the abundance and diversity of empirical tests that the standard model has undergone main-
tain outstanding confidence that any alternative theory that attempts to glue those cracks will
portray a Universe that behaves much like ΛCDM. For this reason, the first natural step in
that direction is to consider small deviations or extensions to the minimal ΛCDM model while
remaining conscious that this may not be enough and the answer may require a new paradigm
disconnected from the ΛCDM assumptions.

1.3 General Relativity

In this section, we provide a summary of general relativity, with no intention of exhaustively
introducing or reviewing its full extent. For this purpose, we refer to e.g. [13, 14].
Albert Einstein’s theory of General Relativity, formulated in 1915 [15], presents an exceptional
framework where gravitational interactions are related to the geometry of spacetime [16–18].
The central element is the spacetime metric1 degree of freedom g, which determines physical
distances as

ds2 = gµν dx
µ dxν , (1.3.1)

and is treated as a fully dynamic variable.
The time coordinate interval between two events, ∆t, is not the same as perceived by different
observers, motivating the introduction of the more convenient invariant proper-time interval, ∆τ .
Considering the events A and B which are separated by a time-like interval (ds2 < 0), the curve
which connects the two is denoted by γ and parameterised by λ, such that e.g. γ(λA) = A and
γ(λB) = B. The proper-time interval ∆τ between A and B is then given by

∆τ ≡
∫
γ

√
−ds2 =

∫ λB

λA

dλ

√
−gµν

dxµ

dλ

dxν

dλ
. (1.3.2)

Massive free-falling particles moving in a curved spacetime follow a geodesic trajectory, Xα(τ), de-
fined as the time-like trajectory that extremises the proper-time interval ∆τ in Equation (1.3.2).
The geodesic trajectory is the one that minimises the action

S = m

∫
dτ, (1.3.3)

where m is the rest-frame mass of such particles. The trajectory of these particles follows the

1Throughout this manuscript, we adopt Einstein’s summation convention where repeated indices are summed
over. The metric signature is (−,+,+,+) and we use natural units with c = ℏ = kB = 1. Greek indices range
from 0 to 3, while Latin indices denote spacetime components only, 1 to 3.
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geodesic equation:
d2Xα

dτ2
+ Γα

µν

dXµ

dτ

dXν

dτ
= 0 , (1.3.4)

where
Γα
µν ≡ 1

2
gαλ [∂µgλν + ∂νgλµ − ∂λgµν ] , (1.3.5)

is the torsion-free (Γα
µν = Γα

νµ) connection (or Christoffel symbols) that gives a metric-compatible
covariant derivative ∇µ(·)

∇µY
λ...
ν... = ∂µY

λ...
ν... + Γλ

µαY
α...
ν... − Γα

µνY
λ...
α... + ...− ...

Equation (1.3.5)−−−−−−−−−−→ ∇αgµν = 0 , (1.3.6)

where Y λ...
ν... is some arbitrary-rank tensor.

Einstein’s gravitational theory establishes a connection between the dynamics of the metric and
matter through the curvature of spacetime, with the latter embodied by the Riemann tensor :

Rα
βµν ≡ ∂µΓ

α
νβ − ∂νΓ

α
µβ + Γσ

βνΓ
α
µσ − Γσ

βµΓ
α
νσ . (1.3.7)

An action for the metric is required to endow this formulation with dynamics. Remarkably, the
simplest nontrivial action that can be constructed out of a scalar from gµν leads to second-order
equations in the effective field theory and reads:

S = Sgrav + Smat , (1.3.8)

where
Sgrav =

∫
d4x

√
−g R

16πG
, (1.3.9)

is the Einstein-Hilbert (EH) action. The action Smat encodes the matter sector, and g is the
determinant of the metric. The main player in the EH action is the Ricci (or curvature) scalar,
defined in terms of the trace of the Ricci tensor :

R ≡ Rµ
µ = Rµνg

µν with Rµν ≡ Rα
µαν . (1.3.10)

By employing the principle of least action, the variation of the action in Equation (1.3.8) with
respect to the metric yields the Einstein field equations:

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν , (1.3.11)

where G is Newton’s gravitational constant, 8πG = κ2 = M−2
Pl , and MPl (κ) is the (reduced)

Planck mass. The left-hand side (LHS) is enclosed in the Einstein tensor Gµν . The source term
on the right-hand side (RHS), the energy-momentum tensor, is obtained from the variation of the
matter action with respect to the metric and is covariantly conserved on account of the Bianchi
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identities:

∇µG
µν = 0

Equation (1.3.11)−−−−−−−−−−→ ∇µT
µν = 0 with Tµν ≡ 2

√
−g δSmat

δgµν
. (1.3.12)

By definition, Tµν is always symmetric. The ν = 0 component of ∇µT
µν represents energy

conservation, while the three remaining space-like components correspond to momentum con-
servation. The Einstein equations epitomise the foundation of general relativity: matter and
geometry are cut from the same fundamental cloth, with the geometry of spacetime prescribing
the dynamics of matter. At the same time, massive bodies set the curvature of spacetime itself.

The seemingly compact set of Einstein’s field equations, in Equation (1.3.11), govern the evolution
of the Universe and all gravitating bodies, with the concrete realisation depending on its matter
content and the spacetime metric based on physical considerations.

To derive the dynamics of the Universe from GR, we can start with the example of Einstein’s
original proposal, based upon two main assumptions, reflecting the impossibility of filling up an
infinite space with matter, which must itself be finite in nature [19]:

• The Universe is finite;

• The Universe is static.

The first assumption aims to ensure a metric completely described by the stress-energy tensor.
The second one is more subtle but reasonable in the scientific context in which Einstein first
proposed a cosmological solution to his equations in 1917 [5]. By extrapolating the assumption
of a spatially closed Universe to the very largest scales, a uniform distribution of matter can only
be achieved if the curvature of space is constant. This is in line with Einstein’s intention, which
appears to have been to depict a cosmological model wherein a finite density of matter shaped
the structure of the world. During that period, only stars with minor peculiar velocities had
been detected, and it was not until 1922 that nebulae were acknowledged as independent stellar
systems beyond our galaxy [12, 20, 21], supporting the existence of a reference frame in which
matter is at rest [22]. However, the two postulates above are not compatible with the Einstein
field equations, given in Equation (1.3.11), according to which a finite density of matter collapses
on itself due to the gravitational attraction, invalidating the static Universe assumption. Einstein
resolved this issue by simply introducing a constant term, Λ, in his equations to counterbalance
the gravitational pull of matter, consistent with the principles of General Relativity and with
the Bianchi identities ∇µTµν = 0, leading to a new set of field equations [23]:

Gµν = 8πGTµν + Λgµν . (1.3.13)

With this relation, the Λ term stands as a negative effect against gravity, so both effects compen-
sate. In the context of Einstein’s static Universe, and with the solution proposed by Friedmann-
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Lemaître-Robertson Walker (which we assume for now but will be discussed in detail in Sec-
tion 1.6), these equations imply

8πGρ =
1

a2R2
E

= 3Λ , (1.3.14)

where ρ stands for the total mass density of the Universe, and the parameter RE is its curvature
radius1, for a closed spherical geometry. Hence, the cosmological constant Λ plays the role of
some repulsive force counteracting the gravitational collapse of the Universe. It could be included
in the theory as a fundamental constant that determines the density of matter and the radius of
cosmic space. However, the solution for a steady Universe is unstable because a change in the
value of Λ in Equation (1.3.14) (or equivalently a local rearrangement of the mean mass density)
would cause the Universe to either expand or collapse, like a ball that is carefully balanced on
the top of a mountain, thus invalidating the static assumption. Remarkably, in 1922, Friedmann
proposed a new cosmological model that abolished the static hypothesis and replaced Einstein’s
assumptions with [12]:

• The Universe is homogeneous;

• The Universe is isotropic;

• The Universe is expanding.

It was only in 1929 that evidence for the expansion of the Universe came to light with Hubble’s
discovery of the recession of galaxies. This led to the cosmological constant being cast aside,
only to be revived at the end of the millennium. Einstein himself was determined to dismiss the
cosmological constant, as the goal for its introduction had been to represent a finite density of
matter in the Universe. When Friedmann showed that this could be achieved, either with or
without the Λ-term - provided that the cosmic distance scale was time-dependent, which was
further substantiated by Hubble’s empirical confirmation that cosmic distances indeed change
with time - Einstein found himself able to reject the term. He maintained that this constant
undermined the theoretical elegance and logical simplicity of his original formulation. In his own
words [24]:
The introduction of such a constant implies considerable renunciation of the logical simplicity
of theory, a renunciation which appeared to me unavoidable only so long as one had no reason
to doubt the essentially static nature of space. After Hubble’s discovery of the "expansion" of
the stellar system and since Friedmann’s discovery that the unsupplemented equations involve the
possibility of the existence of an average (positive) density of matter in an expanding Universe,
the introduction of such a constant appears to me, from the theoretical standpoint, at present
unjustified.

1The radius of curvature of space in Einstein’s static Universe is also referred to as Einstein’s radius. In the
context of the FLRW solution (see Section 1.6), the definition of RE emerges from setting both the first and second-
time derivatives of the scale factor, ȧ and ä, to zero in the Friedmann equations, arriving at aRE = 1/

√
4πGρ,

where G is Newton’s gravitational constant and ρ represents the spatial density of this Universe.



1 Introduction 11

Perhaps one of the most vocal critics of Einstein’s rejection of the cosmological constant was
Arthur Eddington. He fundamentally disagreed with Einstein’s view, especially regarding the
interpretation of cosmic expansion, seeing it as a logical consequence of the physical theory
[25]. Eddington maintained that the general relativistic field equations expressed that length
measurements should be made relative to a finite constant radius of curvature. As he famously
wrote [20],

From this point of view it is inevitable that the constant Λ cannot be zero; so that empty space
has a finite radius of curvature relative to familiar standards. An electron could never decide how
large it ought to be unless there existed some length independent of itself for it to compare itself
with.

This disagreement between Einstein and Eddington was not rooted in scientific differences but
rather philosophical ones, as both relied on the same empirical evidence to support their views.
Einstein believed that the time-varying spatial scale introduced by the expansion in Hubble’s law
rendered the Λ-term superfluous and that his theory would reduce to a simpler statement without
it. On the other hand, Eddington advocated that not only did the cosmological constant simplify
the theory’s formulation, but this reformed version also aligned with the observed expansion,
confirming the need for a significant cosmic repulsion on large scales.

Eddington’s view was exalted by the Nobel Prize-winning observation of the acceleration of the
cosmic expansion in 1998 [26, 27] (which will be discussed in Chapter 2), which validated the
cosmological constant through its predictive power. Indeed, in retrospect, the evidence gathered
since Einstein first proposed Λ seems more aligned with Eddington’s interpretation, who believed
that the natural gravitational repulsion embodied by Λ could set the stage for the understanding
of the Universe’s evolution, referring to the cosmic expansion as Einstein’s almost inadvertent
prediction [25].

1.4 Homogeneity and Isotropy

Modern cosmology emerged from Albert Einstein’s investigation of how his theory of general
relativity could be employed to understand the large-scale nature of the Universe. Einstein
believed that a philosophically reasonable Universe should have the same properties everywhere
and in all directions (therefore justifying the proposal for a uniform distribution of matter at
the boundary), with only minor inhomogeneities, such as the agglomerates of matter that make
up planets or stars [5]. This opposed the standard scientific approach of examining structures
separately and at specific hierarchical levels based on a progressive narrative, such as the study of
molecules, atoms in molecules, nuclei in atoms and so on [28]. The same premise can be applied
on larger scales: the study of the nature of planets around stars is followed by stars in galaxies,
galaxies in clusters, and so the story proceeds.

Einstein’s vision was that the hierarchical structure of the Universe culminates in a new ideal for
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modern science: large-scale homogeneity. According to this argument, the Universe is assumed
to be homogeneous and isotropic on large scales, meaning it is the same on average regardless of
the observer’s position or orientation. Einstein’s large-scale homogeneity opened the possibility
of considering and testing a theory that describes the Universe as a whole rather than focusing
on theories for specific levels of structure. The power of this hypothesis is that observations from
our position in the Universe can be taken to represent what the Universe looks like from any
other place. Nevertheless, just like any hypothesis, it requires empirical evidence. The concept of
large-scale homogeneity grew from philosophical reasoning, intuition, collaboration, and perhaps
even some wishful thinking. It was not initially rooted in empirical evidence but in the pursuit
of a unified, coherent framework to describe the Universe.
In more precise terms, the cosmological principle is the backbone of the standard cosmological
model. It states that on large scales (greater than ∼ 100Mpc), the Universe is isotropic (ro-
tational invariance) and homogeneous (translational invariance). This assumption implies no
privileged positions or directions in the Universe, limiting the vast array of possible cosmolog-
ical models. Isotropy1 has been supported on intermediate and large scales through various
observations [30], discussed in Chapter 3, including:

• The distribution of galaxy clusters and super-clusters;

• Observations of large scale structure and of the interstellar medium in radio and X-ray
wavelengths;

• The uniformity of the CMB radiation temperature, with ∆T/T ∼ 10−5, indicating a
strongly isotropic Universe at the time of radiation emission (approximately 300 thousand
years after the Big Bang).

The cosmological principle is also a modern formalisation of the old Copernican principle, in
the sense that not only do we not hold a particular position in the Solar System, but also the
position of the Milky Way in the Universe should not be statistically distinguishable from the
spatial distribution of other galaxies. While the Universe contains inhomogeneous structures like
galaxies and galaxy clusters on smaller scales, at early times, it looked roughly the same at every
point and in all directions. This is best illustrated through Figure 1.1, where the impressively
detailed map of the temperature distribution of the CMB as measured by the Planck satellite
is shown. The CMB is the monument marking the largest (and hence most ancient) scales that
can be directly observed, depicting remarkable homogeneity.
We have just seen the picture of a homogeneous, isotropic and expanding Universe on large
scales. However, which scales can be classified as sufficiently large? A standard distance unit in
Cosmology is the Megaparsec, 1Mpc = 3.2615× 106 light-years = 3.0856× 1024 cm. This is the
typical distance between nearby galaxies, e.g. the distance between Andromeda and the Milky

1A general theorem of geometry ensures that isotropy around every point implies homogeneity [29].
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Way is around 0.7Mpc. Determining the exact scale for which the distribution of galaxies can
be considered to be homogeneous is not a trivial endeavour. Even though large-scale structure
observations [31] show that the galaxy density inhomogeneities are still of the per cent order
on scales of ∼ 150Mpc, the geometry of the Universe hints that these deviations must be small
already on the Mpc scale. The geometry can be tested through gravitational lensing, the peculiar
motion of galaxies and, more importantly, the CMB [32].

Ultimately, the cosmological principle ensures that the laws of physics governing the Universe at
large scales are identical for all observers, making it comprehensible to us.

Figure 1.1: The sky map of temperature anisotropies in the Cosmic Microwave Background as
measured by the Planck Collaboration (taken from the Planck Legacy Archive) [33].

Combined with the Einstein equations and a specified energy-matter distribution, the Cosmo-
logical Principle provides a framework for understanding how the Universe evolves. However,
this simplistic view of the homogeneous model has inherent limitations. Specifically, it cannot
account for the formation and filament-like distribution of galaxies and galaxy clusters, such as
depicted in Figure 1.2, nor for general variations in the matter distribution (a perfectly homo-
geneous and isotropic Universe would not even allow for our existence to discuss it in the first
place!). Likewise, the distribution of these inhomogeneities and the variations in the temperature
and polarisation of the CMB photons are intimately connected. One can employ an approach
based on linear perturbation theory to address these limitations. If one first solves for the evolu-
tion of the background quantities (i.e. non-perturbative), that information can be incorporated
into the equations that govern the changes in these small-scale variations. The details of this

https://wiki.cosmos.esa.int/planck-legacy-archive/index.php/CMB_maps
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Figure 1.2: A map of galaxies and quasars in the observable Universe found by the Sloan
Digital Sky Survey (SDSS) from 2000 to 2020 [31]. This particular wedge of the full survey
covers around 10 degrees. It encompasses about 200 000 galaxies and quasars reaching from
our observable position (not special according to the cosmological principle) up to a look-back
time of 12 billion years and cosmological redshift 5, with redness indicating increasing redshift
and distance. Almost every dot in the nearby lower part of the illustration represents a galaxy,
and the upper part represents a distant quasar. The cosmic web structure is clearly illustrated,
with the gravitational attraction between the nearby galaxies leading to a local Universe more
condensed and filamentary than the distant Universe. The edge is the CMB temperature map as
measured by the Planck Collaboration [33]. Visualisation created at John Hopkins University:
https://mapoftheUniverse.net.

method and how it connects with observations will be the focus of Chapters 2 and 3.

Nevertheless, this perturbative approach is not without its limitations. During the period when
matter dominates, structure formation starts taking place, invalidating the assumption of small
density perturbations. Over this regime non-linear perturbation theory must be employed, a
topic which falls outside the scope of this dissertation. Nevertheless, the linear analysis of matter
fluctuations and CMB anisotropies remains valuable. Its strength resides exactly in the fact that
various methodologies can be complementary and mutually reinforcing.

https://mapoftheUniverse.net
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1.5 The Hubble-Lemaître Law: Cosmic Expansion

It was Edward Arthur Milne who recognised the power of homogeneity in formulating a cosmo-
logical scenario and named it Einstein’s cosmological principle [34]. He showed that independent
of general relativity, this principle explains the relation between the recession velocity v of a
galaxy and its distance r, known as Hubble’s law :

v = H0r . (1.5.1)

The proportionality constant, H0, is known as Hubble’s constant, and the subscript is meant to
indicate that it is a measure of the present rate of expansion of the Universe. In an evolving
Universe, the expansion rate is a function of time, H(t). This proposal was based on the observa-
tion that light from distant galaxies is shifted towards longer wavelengths (redshifted), indicating
their recession from us. A simple way to picture this in Euclidean geometry is to imagine two
galaxies at arbitrary points and write their velocities as the vector relation v⃗ = H0r⃗. Then an
observer on galaxy a sees galaxy b moving away at velocity

v⃗b − v⃗a = H0(r⃗b − r⃗a) . (1.5.2)

This demonstrates that regardless of their position, all observers witness a consistent pattern of
galaxies receding from one another, as expected in a homogeneous Universe. For nonrelativistic
recession velocities, the cosmological redshift is defined as the ratio z = v/c, akin to a Doppler
shift, where c is the speed of light.

This redshift-distance relation has recently been coined with a new name, the Hubble-Lemaître
law, in acknowledgement of Lemaître’s theoretical prediction of the expanding Universe. How-
ever, the recognition could be extended to the significant contribution of other players. Vesto
Melvin Slipher’s redshift measurements1 [35] and Henrietta Leavitt’s discovery of the Cepheid
period-luminosity relation from variable stars in the Magellanic Clouds [36] were indispensable to
the production of Hubble’s famous redshift-distance plot [37], while Milton Humason’s redshift
measurements [37, 38] and Milne’s cosmological considerations[34] in the 1930s were instrumental
in providing compelling and precise evidence for the nature of this result.

1.6 The Friedmann-Lemaître-Robertson-Walker Metric

To extract cosmological implications from general relativity, we need to specify the components
of the spacetime metric in Equation (1.3.1). There are no general analytical solutions to the

1In fact Slipher measured the shift of spectral lines of galaxies, from which it was possible to infer their
velocities using the Doppler shift. This led him to the groundbreaking conclusion that the nebulae being measured
had to be outside of the Milky Way.
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Einstein field equations, Equation (1.3.11), but, amongst others, Einstein realised that a co-
herent physical description of the Universe could only be achieved under specific assumptions.
The fundamental underlying assumption is that the Universe is expanding and encapsulates the
cosmological principle. That is to say that the metric needs to be such that it describes a time-
varying Universe which is, at each time, spatially homogeneous and isotropic. Assembling all
the geometric and symmetry arguments, the most generic expanding spacetime for a homoge-
neous and isotropic Universe with matter uniformly distributed as a perfect fluid is given by the
Friedmann-Lemaître-Robertson-Walker (FLRW) metric [11, 12, 21, 39–43] and has the following
form:

ds2 = −dt2 + a2(t)γij dx
i dxj = −dt2 + a2(t) dl2 , (1.6.1)

where γij are the spatial components of the metric. The spatial part of the line element, dl2,
can be expressed in traditional Cartesian coordinates or, more informatively, in spherical polar
coordinates (x1, x2, x3) = (r, θ, φ) as

dl2 =
dr2

1−Kr2/R2
0

+ r2 dθ2 + r2 sin2(θ) dφ2 , (1.6.2)

in which case
γ11 =

(
1−Kr2/R2

0

)−1
, γ22 = r2 , γ33 = r2 sin2(θ) . (1.6.3)

The scale factor a(t) describes the time evolution of the expansion scale of the Universe. It is
dimensionless and typically normalised at present as a(t0) = 1. r represents the radial comoving
coordinate, while θ and φ are the comoving angular coordinates. The whole term in Equa-
tion (1.6.2) corresponds to the line element of a maximally symmetric 3D space with a constant
curvature parameter K and curvature scale R0. The derivation of the FLRW solution can be
found in [44, 45]. Under the assumption of homogeneity and isotropy, the intrinsic curvature
must be constant, and its character is encoded in K:

• Flat space (K = 0): the simplest case corresponding to a three-dimensional Euclidean
space. In such a space, parallel lines never intersect.

• Positively curved space (K = +1): known as spherical space as it can be thought of as a
three-sphere embedded in a four-dimensional Euclidean space. This is the space in which
all parallel lines will eventually meet.

• Negatively curved space (K = −1): called the hyperbolic space as it can be represented
by a hyperboloid embedded in a four-dimensional Lorentzian space. In this space, parallel
lines will always diverge.

It is readily apparent that the time and space coordinates are not scaled in the same way in the
FLRW metric, Equation (1.6.1), since the scale factor a(t) only multiplies the spatial sector. For
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that purpose, the cosmic time t may be replaced by the conformal time τ , which is particularly
useful for the study of the propagation of photons (like in the CMB), which is defined as

dτ ≡ dt

a(t)
. (1.6.4)

Moreover, without assuming a particular curvature parameter, it is convenient to redefine the
radial component as dχ ≡ dr/

√
1−Kr2/R2

0 and the metric on the unitary two-sphere,

dΩ2 = dθ2 + sin2(θ) dφ2 , (1.6.5)

such that the FLRW metric in Equation (1.6.1) becomes

ds2 = a2(τ)
[
−d2τ +

(
dχ2 + S2

k(χ) dΩ
2
)]
, (1.6.6)

where a(τ) is now the conformal scale factor and

Sk(χ) ≡ R0


χ/R0 K = 0 ,

sin(χ/R0) K = +1 ,

sinh(χ/R0) K = −1 ,

(1.6.7)

expresses the difference between r and χ for non-flat geometries. In general we will adopt the
conventions in which r is normalised to R0, which vanishes from the equations. Finally, it is
worth noting that the FLRW metric encapsulates all the degrees of freedom of the spacetime
through a scaling function of time, a(τ), and the constant K.

1.7 Spacetime Geometry

Having introduced the FLRW metric, we can now compute the Einstein tensor by evaluating the
left-hand side of Equation (1.3.11).

1.7.1 Connections

Substituting gµν = diag(−1, a2γij) from Equation (1.6.1) into the definition in Equation (1.6.1),
it is straightforward to compute the Christoffel symbols. All the components with two time
indices vanish, that is, Γµ

00 = Γ0
0ν = 0. The non-vanishing components are:

Γ0
ij = aȧγij , Γi

0j =
ȧ

a
δij , Γi

jk =
1

2
γil (∂jγkl + ∂kγjl − ∂lγjk) . (1.7.1)

according to Equation (1.3.5) and the Christoffel symbols are symmetric under the exchange of
the lower indices. In spherical polar coordinates, under the normalisation R0 = 1 over r and
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remembering that H = ȧ/a, this becomes

Γ0
ij = a2Hγij , Γi

0j = Hδij , Γ1
11 =

Kr

1−Kr2
, Γ1

22 = −r(1−Kr2) , (1.7.2)

Γ1
33 = −r(1−Kr2) sin2 θ , Γ2

12 =
1

r
, Γ2

33 = − sin θ cos θ , Γ3
13 =

1

r
, Γ3

23 = cot θ .

1.7.2 Ricci Tensor

The time-space components vanish according to the isotropy of the spacetime: R0i = Ri0 = 0.
The non-zero components are:

R00 = −3
ä

a
= −3

(
H2 + Ḣ

)
, (1.7.3)

Rij = a2

[
ä

a
+ 2

(
ȧ

a

)2

+ 2
K

a2

]
γij = a2

[
3H2 + Ḣ + 2

K

a2

]
γij . (1.7.4)

1.7.3 Ricci Scalar

The Ricci scalar is computed from the components of the Ricci tensor:

R = 6

[
ä

a
+

(
ȧ

a

)2

+
K

a2

]
= 6

[
Ḣ + 2H2

]
. (1.7.5)

1.7.4 Einstein Tensor

The non-zero components of the Einstein tensor, Equation (1.3.11), in the form Gµ
ν ≡ gµλGνλ

are:

G0
0 = −3

[(
ȧ

a

)2

+
K

a2

]
= −3

[
H2 +

K

a2

]
, (1.7.6)

Gi
j = −

[
2
ä

a
+

(
ȧ

a

)2

+
K

a2

]
δij = −

[
2Ḣ + 3H2 +

K

a2

]
δij , (1.7.7)

where again isotropy ensures that the mixed components vanish.

1.8 The Hot Big Bang Model

We close with a note on the remarkable observational evidence for what exactly is meant by
the Big Bang mentioned at the beginning of this chapter. The advent of General Relativity
(GR) sparked a paradigm shift, revolutionising our understanding of the Universe’s evolution.
Georges Lemaître was the first to propose that Einstein’s equations yielded a solution describing
an expanding Universe that could be followed back in time to a single point [46], since ρ → ∞
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as a→ 0. Subsequently, Edwin Hubble’s experimental discovery of the Universe’s expansion [37]
culminated in the development of the successful Hot Big Bang (HBB) model for the observable
Universe (for a more detailed description and historical context about the HBB model, we refer
the reader to the review in Ref. [47]).
The standard HBB model has provided a theoretical basis for explaining various experimental
observations [29], namely:

1. Predicting the existence and the shape of the spectrum of the cosmic microwave back-
ground;

2. Explaining the mechanism behind the primordial abundances of light elements through
nucleosynthesis;

3. Describing the expansion of the Universe and providing a framework to understand the
gravitational collapse of matter, leading to the formation of galaxies and other large-scale
structures observed today.

The Hubble parameter H(t) = ȧ/a plays a crucial role as a physical observable, describing the
expansion rate of an FLRW Universe and setting its characteristic time and distance scales.
The Hubble time tH = H−1 and the Hubble radius dH = cH−1 (in units where c = 1 we have
dH = tH) define the time and length scales of the FLRW spacetime, respectively, and are strictly
local quantities (i.e. they are defined by the instantaneous expansion rate at a given time t).





2 The Standard ΛCDM Model: Successes and
Controversies

E – e não esquecer que a estrutura do átomo não é vista mas sabe-se dela.
Sei de muita coisa que não vi. E vós também. Não se pode dar

uma prova da existência do que é mais verdadeiro, o jeito é acreditar.
— Clarice Lispector A Hora da Estrela

And — and don’t forget that the structure of the atom cannot be seen but is nonetheless known. I know about
lots of things I’ve never seen. And so do you. You can’t show proof of the truest thing of all, all you can do is
believe. — Clarice Lispector in The Hour of the Star

In this chapter, we build upon the gravitational framework introduced in Chapter 1 to introduce
the current standard model of cosmology, the ΛCDM model, by setting forth its underlying
theoretical assumptions and predictions. Assuming the Friedmann-Lemaître-Robertson-Walker
background metric as the starting point, we will explore the equations governing the Universe’s
expansion history in Section 2.1. Moreover, we examine the linear perturbations produced in
the early Universe in Section 2.2, which serve as the initial inhomogeneities that are the seeds
of structure formation. Bringing everything together, we summarise the most relevant epochs in
the Universe’s evolution and the physics involved at the relevant scales in Sections 2.3 and 2.4.
We conclude by contemplating the need for the cosmological constant, the simplest form of dark
energy, while also discussing the conceptual challenges that arise from its inclusion in Section 2.5.

2.1 Fundamentals of the Background Cosmology

In the framework of the Hot Big Bang model for the early Universe, tracing back the evolution
until the beginning of time leads to a problematic point known as a singularity, a fundamental
limitation of standard general relativity. However, it is widely expected that there exists a
more comprehensive theory that resolves this singularity issue, with the concept of cosmological
inflation being a prominent avenue of investigation. While inflation is a significant topic, this
chapter primarily focuses on the subsequent cosmic evolution following inflation and the events
in the very early Universe, deliberately setting aside the open question of what preceded (or
more precisely, what was) the Big Bang (BB).

21
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2.1.1 Observable Universe

Let us start by clarifying what is meant by the observable Universe. According to GR, the speed
of light c (and therefore the speed of any detectable signal carrying information) is finite. It
follows that not every spacetime region is within our reach. Adopting the Big Bang scenario
further implies the existence of an intrinsic limit set by the age of the Universe on the maximum
distance from which a point in space could have received information. This limit is known as
the particle horizon (defined as the time integral of 1/a(t)), and its size keeps evolving. This
means that whenever we make considerations about the Universe, these are based on the portion
of the Universe that is causally connected to us and which lies within our particle horizon.
Anything beyond this region is inaccessible and, more importantly, will not directly impact
our observations. Nevertheless, two different spacetime regions can be accessible and causally
connected to some observer while remaining disconnected from each other. All it takes is for these
two regions to be contained inside the observer’s particle horizon while their individual particle
horizons do not overlap. It is intuitively understandable that any causally connected regions
can exhibit homogeneity (without an extremely high level of fine-tuning) if they have had the
chance to interact and reach some thermal equilibrium. On the other hand, if both regions are
not causally connected, then local interactions cannot justify the observed homogeneity, which
must only be related to some initial homogeneity of the Universe itself.

Our observed Universe demonstrates a remarkable level of uniformity on scales larger than an-
ticipated, given its age and the problems posed above. This challenge is known as the horizon
problem [48] and was first formalised in the 1960s. One possible resolution would be to consider
that the Universe is significantly older. However, this would imply substantial deviations from
what is estimated by observations by several orders of magnitude [45]. Consequently, under the
current cosmological model, this uniformity is better explained by the inherent particularities of
its initial conditions - in a brief moment at the beginning of the Universe which cosmologists
believe happened and refer to as inflation, and which will be further discussed in Section 2.3.

2.1.2 Invisible Universe

One of the most revolutionary proposals of the standard model was the assertion that the majority
of matter and energy in the Universe is in some form invisible to our detectors (non-luminous),
meaning that it can only be observed through gravitational interactions or other unknown indirect
signals. More precisely, the standard matter we can see and interact with amounts to around 5%

of the total share. The remaining 95% are in the form of the mysterious dark sector, split into
two components with rather distinct nature and purpose: dark matter (DM) and dark energy
(DE).

The term dark matter was coined by Fritz Zwicky in 1933 when he observed that galaxies in the
Coma cluster moved faster than anticipated in order to remain bounded together [49] given the
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measure of visible mass within them. This implied that either the clusters were flying apart, or
they had to be held together by the gravitational attraction of mass outside the luminous parts
of the cluster, or otherwise, something had to be wrong with our understanding of physics. To
explain the stability of the cluster, he proposed the existence of an additional form of invisible
matter. Later in the 1970s, Vera Rubin and colleagues measured the rotation speed of gas in the
outer regions of galaxies [50], also reporting exceptionally high speeds, with nearly flat rotation
curves. These and subsequent observations, based on X-rays, radio emission, Big Bang Nucle-
osynthesis (BBN) or the developing studies on Large Scale Structure (LSS), could be explained
by hypothesising halos of some excess non-luminous matter surrounding the galaxies and in clus-
ters of galaxies, further supporting the need for this weakly interacting matter. Nevertheless,
the most robust indirect evidence for dark matter so far comes from the gravitational lensing of
the CMB. As the CMB photons travel across the Universe, they are gravitationally deflected by
the nearby large-scale structure, creating a pattern of distortions in the hot and cold spots of
the CMB. This phenomenon has been mapped in great detail by the Planck satellite [51], which
confirmed that its magnitude relates directly to the total amount of matter in the Universe.
Observations of the abundance of light elements suggest that ordinary baryonic matter exists
in relatively less abundance. The exact amount of dark matter is also necessary to explain the
measured rate of gravitational clustering since the density fluctuations generated in the early
Universe rely on dark matter to grow at such a rapid and efficient pace [52, 53].

In the 1980s, even after the proposal of DM, cosmology was still at a turning point. The
extrapolated age for a Universe populated only by matter appeared to be shorter than the ages
of the oldest stars within it. Moreover, observations of the large-scale structure were incompatible
with the predictions from inflationary cosmology of a quasi-flat Universe, suggesting that only
30% of the critical density (the total energy-density contribution in the Universe to ensure spatial
flatness) could be accounted for by the total matter density. As discussed in Section 1.3, it was
once suggested that Einstein’s cosmological constant, introduced to create a static Universe
solution, or some other form of dark energy (a term that appears to have first been coined by
Huterer and Turner [54]), might provide a solution to these issues. However, lacking empirical
support, this idea remained a theoretical hypothesis. Later came the simultaneous proposal by
Ratra and Peebles [55] and Wetterich [56] in 1988, positing that the cosmological constant may
have been gradually approaching its natural value - zero - over an extended period.

However, this question was ultimately settled by the unanticipated discovery of the accelerating
character of the Universe by two separate teams: the Supernova Cosmology Project [27], and
the High-z Supernova Search Team [26], by studying standard distant supernova events and
measuring the distances and recession speeds of galaxies, analogous to Hubble’s analysis using
local sources. These studies revealed that the expansion rate was decelerating in the early stages
when the Universe was dominated by matter and transitioned to an accelerating phase quite
recently (in cosmological terms). It turns out that the simplest way to account for the accelerated
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expansion within the framework of Einstein’s theory of gravity is if the Universe has just entered
a phase dominated by Einstein’s cosmological constant Λ; more precisely, a source with an energy
density that does not dilute with the expansion and which exerts a negative pressure symmetric
to its energy density. Remarkably, the cosmological constant hypothesis accommodates the
oldest stars in the estimated age of the Universe and fulfils the critical density as required in the
inflation paradigm, with detailed studies of the CMB anisotropies map placing the dark energy
fractional density to the missing 70% of the total energy in the present-day Universe [32].

The addition of these two dark sector components is the genesis of the standard model of
cosmology, the Lambda-Cold-Dark-Matter (ΛCDM) model. However, and as will be one of
the main focuses of this dissertation, despite addressing the problems above and fitting the data
with outstanding accuracy, the ΛCDM model now faces a new crisis. On the fundamental side,
the cosmological constant cannot be reconciled with predictions for the vacuum energy from
quantum field theory, with several orders of magnitude of difference between the predicted and
observed values. On the other hand, the increase in independent precision probes has brought
to light observational incompatibilities between model-dependent measurements from the early
Universe and studies within the local Universe. The origin of these inconsistencies remain one
of the most significant unresolved problems in cosmology and fundamental physics [57].

2.1.3 Expanding Universe

The Hubble expansion rate is one of the protagonists of modern cosmology and is defined as:

H ≡ ȧ

a
, (2.1.1)

with the fact that it provides information about the Universe’s expansion rate now made explicit.
Generally, H is a function of time, and its value measured at present, denoted as H0, is referred
to as the Hubble constant or parameter. As was the case for defining the conformal time,
Equation (1.6.4), it is crucial to differentiate between the comoving distance r - which is fixed to
the expansion and thus oblivious to its effect - and the physical distance rphys, which increases
proportionally to the expansion. An observer studying an object at a fixed comoving distance r
will measure a physical distance to it that depends on time. Therefore, the physical velocity of
a point must also account for the added contribution of the expansion and is given by:

rphys ≡ a(t)r
d/ dt−−−→ vphys ≡

drphys

dt
= aṙ + rȧ ≡ vpec +Hrphys . (2.1.2)

The first term, vpec, is the peculiar velocity, that is, the velocity of the object relative to the
coordinate grid. The second term, Hrphys, is the Hubble flow resulting from the expansion of
the coordinate grid itself. For galaxies moving in the Hubble flow, sufficiently distant for their
peculiar velocities to be insignificant in comparison to the velocity arising from the expansion,
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Equation (2.1.2) simplifies to:
vphys ≃ Hrphys , (2.1.3)

which we have encountered before as the Hubble-Lemaître law, valid for local distances (in
comparison to H), in which case H ≈ H0. In other words, the recession of galaxies away from
us happens at speeds proportional to their physical distance and can be solely attributed to the
expansion of the Universe. The proportionality constant measures the present rate of expansion,
H0. Edwin Hubble’s reported observation of his homonym law in 1929 [37] by plotting v against
r leading to an estimated H0 = 500 km/s/Mpc, was the onset of evidence of the Universe’s
expansion and provided strong support for the hot Big Bang model. During the past century,
the endeavour of measuring and independently confirming the value of the Hubble constant
progressed. At the moment, H0 is typically inferred from Cosmic Microwave Background (CMB)
measurements assuming a specific cosmological model or estimated directly in the local Universe,
such as the luminosity patterns of Type Ia supernovae, in a model-independent fashion.

As is the case for theH0 estimates, most observational probes in cosmology rely on detecting light
emitted by astrophysical and cosmological sources. In an expanding Universe, the momentum
of particles that transverse it, as perceived by comoving observers, decays with the expansion at
the rate 1/a, resulting in an intrinsic effect in the light we observe. If the light is emitted with a
specific wavelength λ, that wavelength will be stretched by the expansion proportionally to the
scale factor a. Consequently, a photon emitted at time t is detected on Earth at time t0 with a
wavelength given by:

λ(t0) =
a(t0)

a(t)
λ(t) . (2.1.4)

In an expanding Universe, the scale factor increases with time, meaning that a(t0) > a(t),
implying that the wavelength at detection is larger than the wavelength at emission. This leads
to the introduction of the redshift parameter1, defined as the fractional change in the wavelength
of a photon emitted at time t and detected today on Earth:

z ≡ λ(t0)− λ(t)

λ(t)
, (2.1.5)

and which quantifies how much the wavelength has been stretched. Employing Equation (2.1.4),
we find 1+ z = a(t0)/a(t), which together with the conventional normalisation a(t0) = 1, yields:

1 + z ≡ 1

a(t)
. (2.1.6)

Given its direct relation with the time-dependent scale factor, the redshift parameter z is fre-
quently preferred for the time-keeping of specific events during the history of the Universe.

1We had previously defined the redshift as z = v/c. This is valid as long as the recessional velocity of an
object is much smaller than c and λ0 ≈ (1 + v/c)λ from the Doppler effect.
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The Hubble parameter is often expressed in terms of the dimensionless quantity h:

H0 = 100h km/s/Mpc = 2.1332h× 10−42 GeV , (2.1.7)

and can be used to define the average cosmological density in the Universe, also called the critical
density :

ρcrit,0 ≡
3H2

0

8πG
= 1.88h2 × 10−29 g cm3 . (2.1.8)

Lastly, the Hubble rate defines a Hubble time

tH ≡ 1

H0
= 9.78× 109 h−1 years , (2.1.9)

which is a crude measure of the age of the Universe, and the present Hubble radius

DH ≡ c

H0
= 2998h−1 Mpc , (2.1.10)

a fair approximation to the largest scales that can currently be observed. The following two
sections will address other observationally meaningful parametrisations of time and distance.

2.1.4 Time Parametrisations

Before moving on to the details of the standard model, it is essential to summarise the various
clocks that refer to the notion of time in different epochs and contexts depending on the physical
system under consideration. The relation between the time t (and equivalently τ) and the
redshift z (and equivalently a) encoded in Equation (2.1.6) is especially relevant when dealing
with relativistic components due to the direct redshift-dependent correspondence between energy
at emission and detection, encoding a valuable measure of energy loss over time which would not
be evident for the proper time. Thus, t, τ , a, and z are all relevant and distinctively informative
definitions of time.

However, in the very early Universe, when particle physics processes play a crucial role, the
concept of temperature T constitutes a trigger for different events. For photons with energy
E, there is a direct correspondence between temperature and redshift since 1 + z ∝ E ∝ T

(normalised to the temperature of the Universe today: T0 = 2.7255K ≃ 2.348× 10−4 eV).

Finally, and as will be extensively discussed in the following sections, the tiny energy fluctuations
in the early-Universe evolve according to a wave-like behaviour and can be decomposed into their
Fourier modes k, related to their wavelength λ as k = 2πa/λ. Assuming the separate Universe
approximation, i.e. that each mode evolves independently, k becomes a proxy for the scales of a
given event. At early times, when the Universe was smaller, only modes with small wavelengths
contributed significantly to the evolution, as those with much larger wavelengths were minimally
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affected by processes occurring at small scales. The Fourier modes convey an idea of the size of
the Universe, which, in turn, is related to the time elapsed since the beginning of its expansion.

Therefore, all these quantities will be used interchangeably throughout the text depending on
the context and the cosmological epoch.

2.1.5 Cosmological Distances

In the same way, as for the time parametrisations considered above, different rulers can be used
to measure distances, depending on which quantity is being used as a proxy of distance. Much
of the evidence for dark energy comes from measurements of cosmological distances. In order
to understand how present observations relate to other processes happening in the Universe, it
is essential to understand photon propagation. Since photons have no mass, they traverse null
geodesics:

ds2 = −dt2 + a2(t) dχ2 = 0 ⇔ dχ2 = a−2(t) dt2 , (2.1.11)

with the radial component χ as the direction of the photons’ propagation. The last expression
can be integrated to find the line-of-sight comoving distance dc travelled by the photon in some
time interval [ti, tf ]:

dc(t) = χ(t) =

∫ ti

tf

cdt

a(t)

dt=da/(aH)=− dza/H−−−−−−−−−−−−−−→ dc(z) =

∫ zf

zi

cdz

H(z)
. (2.1.12)

Another important observable in cosmology is the absolute luminosity of astrophysical objects
L, defined in terms of the observed flux F , over a sphere of radius χ in an expanding spacetime.
This sphere has an area

4πa2(t0)d
2
M where dM ≡ Sk(χ) , (2.1.13)

and is called the metric or transverse comoving distance, with Sk(χ) as defined in Equation (1.6.6),
which reflects the fact that in a curved spacetime dM ̸= χ. dc in Equation (2.1.12) is often used
when referring to the spatially flat geometry, in which case both quantities are equivalent. The
luminosity distance is then expressed in terms of F as,

d2L =
L

4πF

expanding space−−−−−−−−−−→ dL(z) = (1 + z)dM (z) , (2.1.14)

where the multiplicative redshift factor accounts for the energy loss experienced by the photons
and the reduction in their number due to cosmic expansion since

Li

Lf
=

∆Ei

∆Ef

∆tf
∆ti

= (1 + z)2 . (2.1.15)

This will be important in Chapter 3 where we will discuss how distance measurements can be
used to infer the value of cosmological parameters such as H0.
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For objects of some physical size ∆x that are observed to subtend an angle in the sky ∆θ

(perpendicular to the line of sight and ∆θ ≪ 1 in radians for cosmological distances), it is more
convenient to define the angular diameter distance:

dA =
∆x

∆θ
and ∆x = a(t)Sk(χ)∆θ

expanding space−−−−−−−−−−→ dA(z) = dM (z)/(1 + z) , (2.1.16)

where we have used geometrical considerations assuming ∆θ ≪ 1, and the dividing redshift
factor is now included to reflect the Universe’s expansion since the light was emitted until it is
observed in the sky. In summary, we have defined three different distance observables which are
related as:

dM (z) = (1 + z)dA(z), and dL(z) = (1 + z)2dA(z) . (2.1.17)

The last expression is the distance-duality or Etherington relation [58], which holds for general
metrics under photon number conservation.

2.1.6 Friedmann Equations

Assuming perfect fluids coupled to Einstein’s field equations, Equation (1.3.11), we can gather
all the ingredients and derive the Friedmann equations that describe the evolution of an FLRW
Universe: (

ȧ

a

)2

= H2 =
8πG

3
ρ− K

a2
, (2.1.18)

ä

a
= Ḣ +H2 = −4πG

3
(ρ+ 3p) , (2.1.19)

where ρ and p are the generic contributions of all the fluids in the Universe, remembering that
the constant K represents the spatial curvature of the Universe. It is worth remarking that
Equation (2.1.19) is also known as the Raychaudhuri equation and is a curvature-independent
measure of the expansion, as it does not depend directly on K.

2.1.7 Cosmic Ingredients

The cosmological principle dictates that the background energy-momentum tensor resembles that
of a perfect fluid [45], expressed as

Tµν = (ρ+ p)uµuν + pgµν , (2.1.20)

where ρ and p represent the energy density and pressure in the rest frame of the fluid, respectively,
and uµ is the four-velocity relative to a comoving observer, under the constraint uµuµ = −1,
which we take to be

uµ = (a, 0⃗) and uµ = (a−1, 0⃗) , (2.1.21)
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for all cosmological components. The Bianchi identities, Equation (1.3.12), imply conservation
of energy from the time component, leading to the conservation or continuity equation:

∇µTµν = 0
ν=0−−→ ρ̇+ 3H(ρ+ p) = 0 . (2.1.22)

The second Friedmann equation, introduced in Equation (2.1.19), is equivalent to taking the first
Friedmann equation, Equation (2.1.18), together with the continuity equation, Equation (2.1.22).

Assuming a Universe dominated by a single species with an equation of state p = wρ with
constant w (which will no longer hold, for instance, for dynamical dark energy), Equation (2.1.22)
can be integrated to obtain

a ∝ (t− ti)
2

3(1+w) and ρ ∝ a−3(1+w) , (2.1.23)

where the subscript denotes the initial time. This result embodies how different cosmological
fluids are diluted by cosmic expansion, which we list below for the three ingredients that play
essential roles in the evolution of the Universe. It also shows how spatial curvature contributes
to the first Friedmann equation, Equation (2.1.18), as a fluid with ρ ∝ a−2.

The critical energy density for a flat spatial geometry (K = 0), defined in Equation (2.1.8) at
present, can be expressed as a time-evolving function as

ρcrit =
3H2

8πG
with ρcrit,0 ≈ 5× 10−6 GeV cm−3 , (2.1.24)

where the label 0 denotes present time, which we often omit when discussing the current matter
distributions, and it is implied from the context. This can be used to express the relative energy
density of the fluid components f in a dimensionless manner:

Ωf =
ρf
ρcrit

for f = m, r,Λ, ... , (2.1.25)

where the subscripts (m, r) denote the collective matter and radiation components, whose evolu-
tion will be detailed below, and Λ gives the contribution from the cosmological constant. Defining
ΩK ≡ −K/(aH0)

2 (in which case ΩK < 0 actually corresponds to K > 0 and vice versa), the
Friedmann equation, Equation (2.1.18), can be rewritten as the Friedmann constraint for the
curvature density. This can be expressed according to the measured relative energy densities at
present time:

Ω0 ≡ Ω0
m +Ω0

r +Ω0
Λ

a(t0)≡1−−−−−→ Ω0
K = 1− Ω0 . (2.1.26)

If the Universe’s expansion is decelerating (i.e., ä < 0), then the absolute value of the curvature
term |ΩK | will continue to rise. This is except in the particular case where the Universe has been
precisely flat (K = 0) from its early stages. According to the Planck 2018 data [32], this quantity
is contrained to be Ω0

K = −0.044+0.018
−0.015 at present at 68% Confidence Level (CL). For |ΩK | to



30 2.1. Fundamentals of the Background Cosmology

decrease during the Universe’s evolution, a phase of cosmic acceleration (ä > 0) is necessary,
or otherwise, the Universe must have emerged from an initial state extremely close to flat. To
account for the current observed level of the Universe’s flatness, a phase of cosmic inflation is
needed before the radiation-dominated era, during which the scale factor must have increased
by a factor greater than e60 [47].

Next, according to Equation (2.1.23), we list the Universe’s constituents by their properties,
deriving the corresponding evolution for the approximated single-component case. The evolution
of each comic fluid with redshift is depicted in Figure 2.1.
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Figure 2.1: Evolution of the energy densities ρ of radiation r (grey dotted line), baryons b
(green dashed line), cold dark matter cdm (red filled line), and the cosmological constant Λ
(blue dot-dashed line), as a function of redshift z in the ΛCDM model.
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Matter

The broad heading matter refers to fluids with negligible pressure compared to the energy density
(non-relativistic particles), such that p≪ ρ ⇒ w ≈ 0, resulting in the dilution rate

a ∝ (t− ti)
2/3 and ρm ∝ a−3 ∝ t−2 H=ȧ/a−−−−→ H =

2

3t
. (2.1.27)

One way to interpret this result is to imagine that the volume of a given region of three-
dimensional space increases as V ∝ a3. In contrast, the number of particles (and therefore
the energy in that region) remains constant. The relevant non-relativistic matter components
for the Universe’s evolution are:

• Baryons: refers to ordinary matter, including the less massive electrons (fermions), thor-
oughly comprehended by physicists as an integral part of the standard model of particle
physics.

• Dark Matter: approximately five times more abundant than baryons, the exact character-
istics of dark matter remain a mystery, as was discussed in Section 2.1.2. In the standard
model, it is cold dark matter (CDM). Other potential candidates include Weakly Interact-
ing Massive Particles (WIMPs), which have yet to be detected.

Radiation

Radiation is a gas composed of relativistic particles characterised by p = ρ/3 ⇒ w = 1/3

according to statistical mechanics. As derived from Equation (2.1.23), this results in

a ∝ (t− ti)
1/2 and ρr ∝ a−4 ∝ t−2 H=ȧ/a−−−−→ H =

1

2t
. (2.1.28)

The energy redshift of relativistic particles, expressed as E ∝ a−1, adds to the dilution due to
the expansion.
The non-relativistic components are

• Photons: relativistic massless particles. Photons were the dominant contribution during
nucleosynthesis (formation of the first atoms) and are now detected as the cosmic microwave
background.

• Light particles: In the early Universe, all the particles in the standard model had a radiation
character due to the high kinetic energy relative to their mass. They behaved like matter
once the temperature dropped enough for their masses to play a role.

• Neutrinos: contributed to the early Universe radiation domination, and only recently have
their small masses become relevant and started to act like matter.

At present, both photons and neutrinos only exist in minimal quantities.
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Dark Energy

In order to have cosmic acceleration, The Friedmann equations require ä > 0 in Equation (2.1.19),
which implies p < −ρ

3 , or equivalently, w < −1
3 . When w = −1 and p = −ρ, the relation in

Equation (2.1.23) only holds if ρ is a constant. This is the case for the cosmological constant,
which (in a flat Universe) implies that H is also constant, in which case the scale factor evolves
exponentially:

a ∝ eHΛt and ρΛ =
Λ

4πG
∝ a0

H=ȧ/a−−−−→ H =

√
8πG

3
ρΛ . (2.1.29)

The cosmological constant cannot be responsible for inflation in the early Universe, as that would
mean the accelerated expansion would never cease, contrary to the current cosmic acceleration,
which may continue indefinitely.
The cosmological constant proposal can be generalised under the broader category of dark energy,
referring to any fluid either with a constant wDE ≈ −1, or a time-varying equation of state
parameter, wDE(t), in which case Equation (2.1.23) no longer holds.
Bringing all the ingredients together for the ΛCDM model, the first Friedmann equation, Equa-
tion (2.1.18), can be decomposed into

E2(z) =
H2

H2
0

= Ω0
ra

−4 +Ω0
ma

−3 +Ω0
Ka

−2 +Ω0
Λ , (2.1.30)

where E(z) is the normalised Hubble rate.

2.2 Linear Cosmological Perturbations

Up to this point, our treatment of the Universe assumed perfect homogeneity. However, to com-
prehend the Universe’s large-scale structure, it becomes necessary to introduce inhomogeneities
and study their evolution. As long as these perturbations remain relatively small, we can analyse
them using linear perturbation theory.
In practice, the quantities that can be determined observationally for a given model are not
typically the exact values of the perturbation variables, subject to quantum fluctuations, but
rather realisations of expectation values. However, this methodology has an inherent problem
since we cannot precisely measure expectation values. The usual statistical considerations fail
because we only have access to one Universe, one sample of the stochastic process that generates
these fluctuations. Therefore, when attempting to determine the mean square fluctuation on a
given scale λ, the best approach is to average over multiple disjoint patches of size λ and take this
spatial averaging as an ensemble averaging based on an ergodic hypothesis analogue. If the scale
λ is much smaller than the Hubble horizon 1/H (our observational limit), then we can compute
averages over many independent volumes, and this approximation works well. However, as we
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approach scales of the order of the horizon, λ ≈ O(1/H0), the statistical approximation breaks
down due to cosmic variance.

The perturbations are included in the Einstein equations by taking slight deviations - denoted by
δ - to the background quantities - denoted by an upper bar - in the metric (the Einstein tensor)
and the matter distribution (the energy-momentum tensor):

gµν(t, x⃗) = ḡµν + δgµν(t, x⃗) , (2.2.1)

Tµν(t, x⃗) = T̄µν + δTµν(t, x⃗) . (2.2.2)

We can then expand the Einstein and conservation equations to linear order in the perturbations.
For simplicity, we will focus on flat spacetimes only. The same derivation, including the terms
dependent on the curvature scalar, can be found e.g. in [29, 47, 59].

For the study of the dynamics of the linear perturbations, it is convenient to define each relevant
quantity in terms of its Fourier transform, where k = 2π/λ are the Fourier modes. Taking any
perturbed quantity f(τ, x⃗), the Fourier transform is

f(τ, k⃗) =

∫
e−ik⃗·x⃗f(x⃗) dx⃗3 , (2.2.3)

while the inverse reads
f(τ, x⃗) =

1

(2π)3/2

∫
e−ik⃗·x⃗f(k⃗) dk⃗3 , (2.2.4)

where f(k⃗) are the Fourier components of f(τ, x⃗) and cosmic time has been replaced by the
conformal time τ , related by dt = a dτ and ˙(·) 7→ (·)′/a. This implies the mapping ∇2 → −k2

when the spatial derivatives are applied to the relevant quantities.

The general perturbed metric containing only scalar perturbations1 is subject to a non-unique
choice of coordinates or gauge choice. Hence, different choices of coordinates can introduce
significant changes to the values of perturbed variables. Some non-physical perturbations may
arise associated with that choice, the so-called gauge modes, which can be eliminated with more
convenient coordinates. Equivalently, a physical perturbation can be dropped, for instance, in
comoving coordinates, but these will never truly vanish; they will instead be incorporated into
additional perturbations in the metric. Therefore, a more physical approach to perturbation
theory is one which remains invariant under changes in coordinates, allowing for a more robust
and reliable study of the true perturbed cosmological degrees of freedom in cosmology. This can
be achieved via the so-called Bardeen variables [60], which encode the true spacetime perturba-

1In general, one can perform a scalar-vector-tensor decomposition of the metric perturbations, such that the
Einstein equations for scalars, vectors and tensors are independent at linear order and can be treated separately.
We will only deal with scalar fluctuations and the corresponding density perturbations, so vectors and tensors
may be disregarded at linear order. Vector perturbations are not produced by standard inflation but would, in any
case, decay quickly over the expansion. Tensor perturbations are an important test of inflation but not significant
for the scales considered in this work.
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tions that cannot be erased by a gauge transformation. More details on gauge invariance and
transformations can be found, for example, in [61–64]. It is often convenient to fix the gauge
depending on the scenario in question, at the cost of carefully keeping track of all the perturba-
tions in the metric and the matter (there are no free lunches!). For the cosmological scenarios
this dissertation considers, we will focus on two common gauge choices, primarily for consistency
and cross-checking reasons: the conformal Newtonian and synchronous gauges.

2.2.1 Newtonian Gauge

For this dissertation, we will only be interested in cosmological scenarios well-described by the
FLRW background metric ḡµν , as defined in Equation (1.6.6). In the context of dealing with the
Einstein and Friedmann equations, the scalar metric perturbations are most simply expressed in
the Newtonian or longitudinal gauge:

ds2 = a2(τ)
[
−(1 + 2Ψ) d2τ + (1− 2Φ)δij dx

i dxj
]
. (2.2.5)

The metric perturbations Φ and Ψ are also called the Bardeen potentials [60], as they are gauge
invariant and hence of physical interest. The Newtonian gauge is usually preferred for studying
structure formation exactly because of its closest resemblance to the Newtonian analysis, with
Φ playing the role of the gravitational potential.

Metric Perturbations

This lays out the metric of the spacetime as

gµν = a2

−(1 + 2Ψ) 0

0 (1− 2Φ)δij

 , (2.2.6)

from which we can compute the evolution equations for the metric perturbations encoded in
the perturbed Einstein equations. Namely, starting from the perturbed line element, Equa-
tion (2.2.5), we can compute the inverse metric and, through the definition of the connections,
further calculate the perturbations of more complex objects, such as the Ricci tensor, δRµν , and
the Ricci scalar, δR. These are needed to write the linear order Einstein equations in terms of
the perturbed Einstein tensor δGµν :

δGµν = δRµν −
1

2
(δRgµν +Rδgµν) = 8πGδTµν . (2.2.7)

For the sake of completion, in what follows, we list the main results for the perturbed quantities
relevant to the Einstein equations, considering only the linear terms. Further details and a
thorough derivation can be found e.g. in Refs. [45, 63, 65].
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Inverse Metric

gµν = a−2

−1 + 2Ψ 0

0 (1 + 2Φ)δij

 , (2.2.8)

Connections

δΓ0
00 = Ψ′ , δΓ0

i0 = ∂iΨ , δΓ0
ij = −

[
Φ′ + 2H(Φ + Ψ)

]
δij , (2.2.9)

δΓi
00 = ∂iΨ , δΓi

j0 = −Φ′δij , δΓi
jk = −2δi(j∂k)Φ+ δjk∂

iΦ . (2.2.10)

Ricci Tensor and Ricci Scalar

The perturbed Ricci tensor is calculated from the connections as:

δRµν = ∂αδΓ
α
µν − ∂νδΓ

α
µα + δΓα

µνΓ
β
αβ + Γα

µνδΓ
β
αβ − δΓα

µβΓ
β
αν − Γα

µβδΓ
β
αν . (2.2.11)

The Ricci Scalar follows from contractions of the Ricci tensor and the metric, yielding:

δR = δgµαRαµ + gµαδRαµ . (2.2.12)

Einstein Tensor

We now have all the ingredients to write explicitly the different components of the perturbed
Einstein tensor in Equation (2.2.7):

δGµν = δRµν −
1

2
δgµνR− 1

2
gµνδR , (2.2.13)

or, equivalently, with one of the indices raised to facilitate the comparison with the matter sector:

δGµ
ν = δgµαGαν + gµαδGαν . (2.2.14)

Writing the perturbed terms explicitly, and according to the perturbed metric in Equation (2.2.5),
we arrive at the different components of the perturbed Einstein tensor:

δG0
0 = 2a−2

[
3H(HΨ+Φ′)−∇2Φ

]
, (2.2.15)

δG0
i = −2a−2∂i

(
Φ′ +HΨ

)
, (2.2.16)

δGi
j = 2a−2

[
(H2 + 2H′)Ψ +HΨ′ +Φ′′ + 2HΦ′] δij + a−2

[
∇2(Ψ− Φ)δij + ∂i∂j(Φ−Ψ)

]
.

(2.2.17)
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Matter Perturbations

For the purpose of this study, we assume that the background perfect fluids remain perfect fluids
when perturbed, in which case there is no anisotropic stress. Matter perturbations, that is,
perturbations to the energy-momentum tensor of each species, can first be defined in terms of a
perfect fluid:

T 0
0 = −δρ , (2.2.18)

T 0
i = (1 + w)ρ̄vi , (2.2.19)

T i
j = δpδij , (2.2.20)

where vi is the so-called scalar bulk velocity, the matter peculiar velocity with respect to the
expansion, vi = dxi

dτ . The different terms in the energy-momentum tensor from each species f
need to be added together to make up the perturbation of the total contribution Tµν =

∑
f T

f
µν :

δρ =
∑
f

δρf , δp =
∑
f

δρf . (2.2.21)

The density and velocity perturbations are often expressed in terms of the dimensionless density
contrast and the velocity divergence

δ ≡ δρ/ρ̄ , (2.2.22)

θ ≡ ∂iv
i . (2.2.23)

Once δ becomes of the order of unity, linear perturbation theory no longer applies.

The perturbed four-velocity takes the form

uµ ≡ ūµ + δuµ = a−1(1−Ψ, vi) , uµ ≡ ūµ + δuµ = a(−(1 + Ψ), vi) . (2.2.24)

This leads to the perturbed energy-momentum tensor of a perfect fluid:

δTµ
ν = ρ

[
δ(1 + c2s)ū

µūν + (1 + w)(δuµūν + ūµδuν) + δc2sδ
µ
ν

]
. (2.2.25)

This equation introduces the sound velocity, c2s ≡ δp/δρ. For the barotropic fluids, p is only a
function of ρ, even after being perturbed, implying

c2s ≡
δp

δρ
=

dp

dρ
=
ṗ

ρ̇
, (2.2.26)

where the last step only holds for the FLRW metric and represents the adiabatic sound speed,
discarding any other possible internal degrees of freedom of the fluid.
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Einstein Equations

Bringing together the expressions for the perturbed Einstein and energy-momentum tensors gives
rise to the perturbed Einstein equations.

The time-time component is

δG0
0 = −2a−2

[
∇2Φ− 3H(Φ′ +HΨ)

]
, (2.2.27)

from which it follows that

∇2Φ− 3H(Φ′ +HΨ) = 4πGa2δρ
F.T.−−→ k2Φ+ 3H

(
Φ′ +HΦ

)
= −4πGa2δρ , (2.2.28)

in Fourier space. The second derivative of the potential hints at the fact that this is a relativistic
generalisation of the Poisson equation. Inside the Hubble radius (k ≫ H), the second term of
the left-hand side becomes negligible, and Equation (2.2.28) reduces to the Poisson equation in
the Newtonian limit: ∇2Φ ≈ 4πGa2δρ. Only on scales comparable to the Hubble radius do the
GR corrections start to play an important role.

For the trace-free part of the spatial components, we get the following:

∇2 (Φ−Ψ) = 0
F.T.−−→ k2 (Φ−Ψ) = 0 , (2.2.29)

and the approximation Φ ≈ Ψ holds under the assumption of vanishing anisotropic stress con-
sidered for the scope of this work, such that:

∂i(2Φ
′ +HΨ) = 4a2πG(ρ̄+ p̄)vi

F.T.−−→ k2
(
Φ′ +HΨ

)
= 4πGa2(ρ̄+ p̄)θ , (2.2.30)

where (ρ̄+ p̄)θ ≡
∑

f ρf (1 + wf ) θf .

Finally, the trace of the space-space Einstein equation translates into the following evolution
equation for the metric potential

Φ′′ +
1

3
∇2(Ψ− Φ) +H(Ψ′ + 2Φ′) + Ψ

(
H2 + 2H′) = 4πGa2δp , (2.2.31)

and δp ≡
∑

f ρfδfc
2
s,f is the total pressure perturbation. Assuming the approximation Ψ ≈ Φ,

Equation (2.2.29) becomes:

Equation (2.2.31) F.T.−−→ Φ′′ + 3HΦ′ +Φ
(
H2 + 2H′) = 4πGa2δp . (2.2.32)

This gives a closed equation for the evolution of Φ in terms of δp, and the relation between δρ and
Φ is encoded in the Poisson-like equation, Equation (2.2.28). Combined with the conservation
equations we derive next, this leads to a closed system of linearised equations.
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Altogether, the general linearly perturbed Einstein equations in Fourier space are

k2Φ+ 3H
(
Φ′ +HΨ

)
= −4πGa2ρ , (2.2.33)

k2
(
Φ′ +HΨ

)
= 4πGa2ρ (1 + w) θ , (2.2.34)

Φ′′ + 2HΦ′ +HΨ′ +
(
H2 + 2H′)Ψ = 4πGa2δρc2s , (2.2.35)

Φ ≈ Φ , (2.2.36)

relating the metric perturbation Φ to the perturbed matter content. For simplicity, we have
omitted the sums over each fluid f , running over the matter species for a generic equation of
state, wf = p̄f/ρ̄f , and sound speed, c2s,f = δpf/δρf .

Conservation Equations

Additionally, the perturbed evolution equations for each component are derived from the corre-
sponding conservation relations for the energy-momentum tensor:

∇µT
µ
ν = ∂µT

µ
ν + Γµ

µσT
σ
ν − Γσ

µνT
µ
σ = 0 . (2.2.37)

From the expression above, employing the definitions for matter perturbations from Section 2.2.1
and the Christoffel symbols in the Newtonian gauge, Equations (2.2.9) and (2.2.10), we can derive
the following general perturbed conservation equations, before particularising for each fluid.

• Perturbed continuity equation: Taking the ν = 0 component of Equation (2.2.37) we find:

δρ′f = −3H(δρf + δpf )− (ρ̄f + p̄f )(θf − 3Φ′) , (2.2.38)

for the evolution of the density perturbation of the fluid f . The different effects can be
identified on the right-hand side of the equation: firstly, we have the dilution with the
background expansion; secondly, the contributions from the local fluid flow; and lastly, a
purely relativistic effect due to perturbations to the local expansion rate itself, encoded in
Φ. Employing the definition of the density contrast, δ ≡ δρ/ρ̄, and transforming to Fourier
space:

δ′f + 3H
(
c2s,f − wf

)
δf = (1 + wf )

(
3Φ′ − θf

)
, (2.2.39)

recalling that c2s,f = δpf/δρf and wf = p̄f/ρ̄f .

• Euler equation: If, on the other hand, we take the spatial components ν = i, we obtain:

vfi
′
= −

(
H+

p̄′f
ρ̄f + p̄f

)
vfi − 1

ρ̄f + p̄f
∂iδpf − ∂iΨ . (2.2.40)

On the right-hand side, we have a correction to the momentum components from the
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velocity flow and contributions from pressure and gravity, respectively. Once again, using
the relation θ = ∂iv

i and taking the derivative of Equation (2.2.40), leads to an equivalent
equation for the velocity divergence in Fourier space:

θ′f +

[
H (1− 3wf ) +

w′
f

1 + wf

]
θf = k2

[
c2s,f

1 + wf
δf +Ψ

]
. (2.2.41)

The conservation equations depend on the individual characteristics of the fluid f whose evolution
we wish to track. We remark below the special cases of matter and radiation at sub-horizon scales
(k ≫ H), for which the equations greatly simplify:

• Matter: Taking pm = 0 the continuity and Euler equations reduce to:

δ′m = −θm + 3Φ′ , (2.2.42)

θ′m = −Hθm + k2Ψ . (2.2.43)

Combining derivatives of these two equations, it is possible to write a single clustering
evolution equation for the matter perturbations:

δ′′m +Hδ′m = −k2Ψ+ 3
(
Φ′′ +HΦ′) . (2.2.44)

The second term on the left-hand side accounts for the expansion and, for this reason, is
often called the Hubble friction. The −k2Ψ accounts for the scale-dependent time-varying
gravitational potential that the matter particles feel.

• Radiation: For pr = ρr/3 and no viscosity, the continuity and Euler equations become:

δ′r = −4

3
θr + 4Φ′ , (2.2.45)

θ′r = k2
δr
4

+ k2Ψ . (2.2.46)

Likewise, we can compute the second-order evolution equation for δr:

δ′′r + k2
δr
3

= −k2 4
3
Ψ + 4Φ′′ . (2.2.47)

A crucial difference from the relativistic matter case is that the radiation perturbations
are not subject to the Hubble friction but, instead, feel an induced pressure contribution
from the second term on the left-hand side. The interplay between the effects in both these
equations, Equations (2.2.44) and (2.2.47), is the genesis of the acoustic oscillation in the
primordial plasma, which will be discussed in more detail in Chapter 3.

Since the equations are linear, the decomposition in Fourier modes ensures that each plane wave
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follows the same equations but with a different comoving wavenumber k. During the phase of
linear evolution, the physical scale λp = 2π

k a of the perturbation expands along with the cosmic
expansion. However, this linear treatment becomes inadequate if the perturbation enters the
non-linear regime. At that point, the perturbation decouples from the Hubble expansion and
starts to collapse gravitationally.

Lastly, it should be noted that this treatment of the conservation equations supposes no additional
couplings between the individual fluids. For example, suppose interactions of dark matter with
other components are allowed. In that case, its density perturbations will evolve according to a
modified version of Equation (2.2.44), including particular terms to account for such non-standard
interactions, e.g. for interacting dark energy models which we will introduce in Chapter 5.
The gravitational interaction of the different fluids is implicitly accounted for by the terms
proportional to the expansion H and the metric potentials Φ and Ψ.

2.2.2 A Few Words on the Synchronous Gauge

The synchronous gauge is a historically significant gauge, first introduced by Lifshitz during
his groundbreaking work on cosmological perturbation theory [66]. It played a vital role in the
development of early CMB codes, as will be introduced in Section 4.2. However, a drawback of
the synchronous gauge is the emergence of spurious gauge degrees of freedom, which were at the
origin of considerable confusion in the initial stages of cosmological perturbation theory. This
was one of the driving forces behind Bardeen’s development of a gauge-invariant approach [60].

In the previous section, we worked on the Newtonian gauge to simplify the analysis. However,
the synchronous gauge is also useful to study the evolution of perturbations. The transformation
between both gauges can be achieved trivially [64], so it also serves as a cross-check of results.
Therefore, for completeness, in this section, we provide the analogous perturbation equations in
the synchronous gauge, in which the line element is written as

ds2 = a2 (τ)
[
−dτ2 + (δij + hij) dxidxj

]
, (2.2.48)

where hij represents the metric perturbation. In what follows, we will adopt Ma & Bertschinger’s
[64] notation. However, we use h for the scalar metric perturbation instead of the original h to
avoid confusion with other quantities. Once more, the metric perturbation can be decomposed
into scalar, vector and tensor modes:

hij = hδij + h∥
ij + h⊥

ij + hT
ij . (2.2.49)

The parallel and perpendicular components, h∥
ij and h⊥

ij , can still be expressed in terms of a
scalar η and a divergence-free vector A⃗,
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h∥
ij =

(
∂i∂j −

1

2
δij∇2

)
η , (2.2.50)

h⊥
ij = ∂iAj + ∂jAi . (2.2.51)

Therefore, the scalar mode of the metric perturbations is fully characterised by h and η, while
the vector and tensor modes Ai and hT

ij can be discarded for the purpose of this study. In what
follows, we write down the relevant equations in Fourier space in terms of the Fourier transforms
h(k, τ) and η(k, τ).

Analogously to the treatment for the Newtonian gauge, we derive the perturbed Einstein equa-
tions:

k2η − 1

2
Hh ′ = −4πGa2

∑
δρf , (2.2.52)

k2η′ = 4πGa2
∑

ρf (1 + wf ) θf , (2.2.53)

h ′′ + 2Hh ′ − 2k2η = −24πGa2
∑

δpf , (2.2.54)

h ′′ + 6η′′ + 2H
(
h ′ + 6η′

)
− 2k2η = 0 . (2.2.55)

The perturbed continuity and Euler equations for the uncoupled baryonic and radiation fluids
are derived directly from the perturbation of the conservation relations ∇µT

µ
ν = 0 and are given

by

δ′f + 3H
(
c2s,f − wf

)
δf = − (1 + wf )

(
h ′

2
+ θf

)
, (2.2.56)

θ′f +

[
H (1− 3wf ) +

w′
f

1 + wf

]
θf = k2

c2s,f
1 + wf

δf . (2.2.57)

The advantages of using the synchronous gauge become evident from when f = cdm. In this case,
because for cold dark matter w = p = 0, Equation (2.2.57), implies that the fluid velocity remains
zero as long as it has a vanishing initial condition (θcdm(τi) = 0), removing the gauge freedom
without loss of generality. Nevertheless, this remarkable simplification is lost by introducing a
coupling between cold dark matter and the other matter components (we will focus on the dark
energy case), and the fluid velocity becomes non-vanishing in general.

2.3 Inflation

The first cosmologically relevant epoch in the expansion history of the Universe is the initial
inflation period, which came to a halt at around a = 10−28 (or equivalently about 10−32 seconds).
The mechanism of inflation was first proposed by Guth in 1980 [48] as an explanation for the
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absence of magnetic monopoles and further developed by Linde [67] and Albrecht and Steinhardt
[68]. In short, it is a phase in the very early Universe in which the comoving Hubble radius (aH)−1

decreased dramatically through accelerated expansion, which drives Ω0 in Equation (2.1.26) to
unity, ensuring spatial flatness, which is preserved up to the present.
Although there are some theoretical gaps and a lack of experimental proof for this inflation
mechanism, it is currently accepted in the community as it addresses several fundamental issues.
Namely, it provides a simple and effective solution to the horizon problem concerning the origin
of the observed homogeneity and isotropy of the Universe, enabling a full causal connection of
photons in the early Universe that leads to the thermal equilibrium needed to explain the CMB
measurements. Remarkably, this setting also predicts the quantum fluctuations needed to seed
the small inhomogeneities that grow into the cosmic structure distribution that we observe at
present.
Essentially, inflation addresses the origin of the isotropy in the distribution of photons at large
angular distances. Indeed, we observe that all the photons emitted from the last scattering
surface, i.e. when photons began to freely traverse the Universe without interacting with other
matter, possess the same temperature up to minor variations. If inflation had not occurred and
the Universe had expanded gravitationally from an epoch dominated by radiation, then most of
these photons would have been separated by distances greater than their comoving horizon at
the time of their last scattering, meaning that prior to their detection, they could never have
been in causal contact and thereby still exhibit the same temperature today.
The problems presented above (further discussed in Appendix A) are related to causality and,
therefore, can be effectively addressed by postulating a period of extremely fast inflation before
the hot Big Bang to generate the homogeneity state of the Universe and the correlation of the
CMB fluctuations.
The reason why this inflation solves the causality problems is that, keeping in mind the impor-
tance of the Hubble radius during the standard Big Bang period, this would be equivalent to
considering an initial phase of the early Universe during which the comoving Hubble radius is
decreasing:

d

dt
(aH)−1 < 0 ⇔ ä > 0 , (2.3.1)

given that H ≡ ȧ/a and the notion of an accelerated expanding period becomes evident in
the last expression. The Hubble radius (a present particle communication limit) becomes much
smaller than the particle horizon (an absolute causality and particle communication limit), then
this means that even though particles (or patches of the sky) are disconnected today, they could
still have been in causal contact early on. Of course, this is simply an intuitive picture of how
inflation can address the causality problems, and detailed calculations of how this is achieved for
particular frameworks can be found in [45].
A possible approach to realise inflation lies in the introduction of one or more scalar fields known
as the inflaton(s) φ, which dominate at the earliest stages and possess a property denoted as
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wφ < −1/3, thereby triggering a phase of accelerated expansion in the early Universe. The entire
model’s degrees of freedom are determined by the shape of its potential V (φ). As the field moves
along its potential, it releases significant kinetic energy. This energy may lead to the generation
of Standard Model (SM) particles through couplings with the inflaton, akin to Yukawa couplings,
potentially giving rise to all the particles found in the standard model, a process referred to as
reheating. For inflation to occur and persist for an adequate duration, the inflaton field must
exhibit slow-roll behaviour. To achieve this, its potential energy must dominate over kinetic
energy (φ̇3 ≪ V ), and the acceleration must be slow, expressed as as φ̈≪ 3Hφ̇ during inflation.
These conditions ensure that the energy density of the Universe remains nearly constant with
ρφ ≃ V during inflation, resulting in exponential growth of the scale factor, similar to the Λ-
dominated case. However, the balance between kinetic and potential energy must eventually
change, causing inflation to cease and reheating to commence. When treating the inflaton as
a quantum field, it becomes possible to predict the perturbations generated by its quantum
fluctuations. These primordial quantum fluctuations, stretched to macroscopic scales by the
Universe’s expansion, constitute the initial seeds for the formation of large-scale structures.
Employing a perturbative approach, we can anticipate the evolution of deviations δφ of the field
from homogeneity. These deviations evolve as a harmonic oscillator with a time-varying mass,
enabling a quantum treatment resembling that of a quantum oscillator. For a more detailed
introduction to slow-roll inflation see Appendix A.
The remarkable consistency with observations and the support for its role in the early Universe
has granted inflation a place as an ingredient in the standard cosmological model, even without
consensus on a particular inflationary model.
In summary, the physical predictions of inflation include:

• Negligible Curvature: Inflation requires that the spatial curvature of the Universe be
extremely close to zero. Observations of the CMB, combined with lensing effects and
Baryon Acoustic Oscillations (BAO) measurements, put tight bounds on the curvature,
Ωk = 0.0007± 0.0019 [32], in agreement with the inflationary predictions.

• Adiabatic, Gaussian, and Nearly Scale Invariant Initial Perturbations: while the specific
details may vary depending on the inflationary model, observations of the CMB provide
strong constraints on departures from these assumptions [69].

In Appendix A a more detailed account of the problems addressed by inflation is provided, along
with the illustrative example of a scalar field model of slow-roll inflation.

2.4 A Brief History of the Universe in Four Epochs

Bringing together the information in the previous sections, we can reconstruct the historical
epochs of the Universe by tracing its expansion backwards in time [70]. Since the Universe is
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expanding, the scale factor would approach zero at earlier times. Under such circumstances, the
Universe would have been in a drastically different physical state, significantly hotter, with its
baryonic matter ionised and photons unable to propagate freely in this primordial plasma due
to the extreme density of the environment.
Beginning with this early time, the Universe has undergone various epochs as part of its cooling
and expansion process, in a hierarchy of gradually occuring phase transitions. We will also
explore the subsequent era marked by structure formation and followed by the more recent phase
of accelerated expansion. Nevertheless, all the processes described are continuous, meaning there
is no absolute division between each epoch. A concise overview of the evolution of each cosmic
fluid during these periods, as described in Section 2.1.7, is illustrated in Figure 2.1, for the ΛCDM
model.

2.4.1 Early Universe: The Hot Big Bang Epoch

Indeed, according to the Hot Big Bang model, the early Universe was a much denser and high-
temperature environment filled with elementary particles. As we venture back in time, we en-
counter periods beyond the reach of particle physics and reproduction with our present-day
particle colliders. Rather than relying on these tools, we can look for the Universe’s thermal evo-
lution relics, providing an unparalleled laboratory for particle physics. Assuming conservation of
entropy from thermodynamic, and as discussed briefly in Section 2.1.4, the events in this epoch
can also be pinpointed according to the cooling down temperatures:

T (t) = T0
a0
a(t)

. (2.4.1)

A more detailed overview can be found in [65].

• The Planck Epoch (t ∼ 10−43 s or T ∼ 1019 GeV): At the earliest conceivable moment after
the Big Bang, the nature of the Universe was profoundly different, dominated by extreme
energy conditions (EPl ∼ 1019 GeV is the Planck energy). The Universe was hot, dense and
governed by quantum gravity effects. The fundamental forces of electromagnetism, gravi-
tation, weak nuclear interaction, and strong nuclear interaction are thought to have been
unified, although a complete theory remains elusive. Conventional Big Bang cosmology
predicts a gravitational singularity prior to this time, reflecting our inherent ignorance on
the "origins" of the Universe. General relativity is assumed to break down at such scales
due to the quantum effects, requiring a coherent theory of quantum gravity [71–73] or at
least some quantum compatible classical treatment.

• The Grand Unification Epoch (10−43 s ≲ t ≲ 10−36 s or 1019 GeV ≳ T ≳ 1015 GeV): The
gravitational force separated from the other three fundamental forces. The Universe was
still too hot and dense for particles as we know them to exist. This is the era where
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Grand Unified Theories (GUTs) aim to explain unfamiliar physics. The transition to the
inflationary epoch is predicted to generate a vast number of magnetic monopoles [74], which
are conspicuously absent in current observations. This discrepancy was one of the problems
addressed and resolved by the introduction of the theory of cosmic inflation [48, 67].

• Inflationary Epoch (10−36 s ≲ t ≲ 10−32 s or 1015 GeV ≳ T ≳ 1013 GeV): Described in
Section 2.3 and in Appendix A, during this brief moment the Universe underwent rapid
exponential expansion, smoothing itself out. This explains the observed large-scale unifor-
mity of the CMB radiation. Cosmologists generally believe that inflation happened and
could be explained through a scalar field slowly rolling down a potential, called the infla-
ton. Inflation led to a vast thinning of the elementary particles, which were regenerated
through the symmetry breaking as the inflaton field dropped to the minimum of its poten-
tial energy, refilling the Universe with a hot and dense plasma of elementary particles in a
process called reheating.

• The Electroweak Epoch (10−32 s ≲ t ≲ 10−12 s or 1013 GeV ≳ T ≳ 103 GeV): The Uni-
verse cooled to approximately 1015 GeV and the strong nuclear force separated from the
electroweak force, leading to distinct electromagnetic and weak nuclear forces. The Higgs
field also gave particles mass in this period [75]. Around this period, a process known as
baryogenesis occurred (T ∼ 1012GeV), accounting for the observed predominance of matter
over anti-matter in the present-day Universe.

• Quark Epoch (10−12 s ≲ t ≲ 10−6 s or 103 GeV ≳ T ≳ 1GeV): The Universe was still
too hot for quarks to combine into protons and neutrons. It was filled with a quark-gluon
plasma, a hot soup of quarks and gluons.

2.4.2 Radiation Dominated Epoch

The Radiation Dominated Epoch (RDE) is the period extending from 10−10 s ≲ t ≲ 50 kyrs
and encompasses significant sub-phases, each characterised by cooling temperatures, ultimately
reaching an energy level of approximately 102 GeV. The RDE is when light elements form. Since
radiation decays faster with the expansion than non-relativistic matter, this epoch will eventually
cease and give way to a matter-dominated regime. The radiation-dominated epoch is depicted
in grey in Figure 2.1.

• Electroweak Symmetry Breaking (t ≲ 10−6 s or 1GeV ≳ T ): For temperature around
100GeV the forces have solidified into their current forms, and particles acquire masses
through the Higgs mechanism.

• Neutrino Decoupling and Hadron Epoch (10−6 s ≲ t ≲ 1 s or 1GeV ≳ T ≳ 1MeV): The
temperature dropped enough for quarks to bound to create hadron and anti-hadron pairs
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which annihilate as the Universe cools, leaving a residue of protons and neutrons. Dark
matter is expected to decouple from the primordial plasma by the end of the hadron epoch
(t ∼ 10−5 s or T ∼ 200MeV for WIMPs), while neutrinos start to decouple around this
time (t ∼ 0.2 s or T ∼ 1MeV).

• Lepton Epoch (1 s < t < 200 s or 1MeV ≳ T ≳ 0.1MeV): the temperatures are still high
enough for positron-electron pairs to form. For T ≈ me ∼ 0.5MeV, the photons are no
longer energetic enough to keep this equilibrium and the annihilation process results in
energy transfer to the thermal bath.

• BBN Epoch (200 s ≲ t ≲ 300 s or 0.1MeV ≳ T ≳ 0.05MeV): nuclear fusion starts and
protons and neutrons combine into atomic nuclei. Free neutrons start fusing with protons
at T ≈ 0.1MeV. Around three minutes after the Big Bang, the light elements were formed,
starting with deuterium, which rapidly transformed into 4He. As the Universe’s tempera-
ture and density quickly decrease to the point where nuclear fusion is no longer possible,
we enter the Matter Dominated Epoch (MDE). All the neutrons have been incorporated
into helium nuclei, leaving a mass ratio of roughly three times more hydrogen than 4He,
with only trace quantities of other nuclei.

• Photon Epoch (300 s ≲ t ≲ teq or 0.05MeV ≳ T ≳ 1 eV): For the rest of the radiation
epoch, the Universe consisted of a dense hot plasma filled with nuclei, electrons, and
photons. This epoch extends through the initial stages of the MDE when t > teq.

Matter-Radiation Equality

At some point, the matter density dominates over radiation, which dilutes faster. In particular,
the RDE ended when the densities equalled:

ρm
ρr

=
ρm,0

ρr,0

a4

a3
=
ρm,0

ρr,0
(1 + zeq)

−1 = 1 , (2.4.2)

and thus, the redshift at the equivalence between matter and radiation was zeq ∼ 3400 or
teq ∼ 50 000 years (for fiducial values as measured by Planck [32]). This is represented by the
line dividing the grey and red sectors in Figure 2.1.

2.4.3 Matter Dominated Epoch

At the beginning of the MDE, the Universe was still dominated by photons. Although neutral
atoms had not formed yet, the Universe was becoming increasingly transparent. The MDE is
depicted in red in Figure 2.1.
Shortly after equality, the Universe’s temperature dropped to approximately 1 eV, equalling the
binding energy of the hydrogen atom. For the first time since the Big Bang, the Universe started
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emancipation from the dense primordial plasma of photons, electrons, and protons. Nevertheless,
it remained virtually opaque to electromagnetic radiation since photons could travel only short
distances before colliding with a charged particle through Compton scattering. In this epoch it
becomes relevant to also keep track of time in terms of the redshift, which for matter domination,
evolves approximately as:

z − z0 ≈ (t− t0)
−2/3 . (2.4.3)

• Recombination and Decoupling Epoch (18 kyrs ≲ t ≲ 380 kyrs or 6000 ≳ z ≳ 1100):
As the Universe continued to expand and cool down, the formation of neutral hydrogen
became energetically favoured and ionised hydrogen and helium atoms captured the free
electrons. Shortly after this transitional phase, Compton scattering became inefficient, and
photons decoupled from matter, leading to the Cosmic Microwave Background Radiation
we can detect today. This event defines the last scattering surface. Until this point,
photons and baryons had been tightly coupled, oscillating in acoustic waves generated by
the compression/rarefaction cycle due to the balance between the baryons’ gravitational
attraction and the photons’ radiation pressure. Once the two species decouple, the baryons
are effectively released from the drag of the photons. This decoupling marks the end of
the drag epoch and allowed photons to travel unimpeded through the Universe without
interacting with matter, marking the earliest epoch observable today - the last scattering
surface. On the other hand, the baryons are frozen in the acoustic wave pattern at a
scale determined by the size of the horizon at the drag epoch. It should be emphasised
that photon decoupling and recombination are distinct events, albeit closely related. The
photons present at the time of decoupling have since freely streamed through the Universe
and are the same ones that we observe today in the CMB radiation, albeit significantly
cooled by the expansion. By the time this period ended, the Universe’s composition had
shifted to a dark fog containing roughly 75% of hydrogen and 25% of helium, with only
small amounts of lithium.

• Dark Ages (380 kyrs < t < 150Myrs or 1100 ≳ z ≳ 60): With no stars, the Universe was
in a dark state, as photons were not effectively being produced yet and hence there was no
visible light. Matter consisted of a gas of atoms that kept being dragged into denser regions
by the pull of gravity alone, but the first stars had not yet ignited. Slowly, the gravitational
attraction pulled matter together, and overdensities started growing into clumps as dark
matter started to dominate the total energy density of the Universe.

• Cosmic Dawn (150Myrs < t < 200Myrs or 60 ≳ z ≳ 20): As matter started to clump

subjected to gravity’s rule, the Jeans length λJ =
√

πc2s
10Gρ0

, which determines the smallest
structures that can form, began to decrease and the density perturbations started to grow
in amplitude. Cold dark matter became the dominating component, setting the stage for
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gravitational collapse to amplify the slight inhomogeneities left by cosmic inflation. This
process made dense areas denser and sparse regions more rarefied. Once the overdensities
overcome the Jeans mass dictated by the Jeans length, they begin to spontaneously collapse
and the first stars form

• Star Formation and Reionisation (200Myrs < t < 1Gyrs or 20 ≳ z ≳ 6): The process
of formation of the first starts heated the surrounding medium, once again ionising the
hydrogen in the majority of the Universe. This moment is known as reionisation and
happened approximately one billion years after the Big Bang, marking the last phase
transition in the Universe and the end of the dark ages since the star-light across much
of the electromagnetic spectrum was finally able to travel unimpeded through the cosmos,
eventually revealing the Universe as we see it today.

• Large Scale Structure Formation Epoch (1Gyrs < t < 5Gyrs or 6 ≳ z ≳ 1): Subsequently,
stars start assembling into galaxies, galaxy clusters, super-clusters and all the large-scale
structures. The process of structure formation is dictated by non-linear gravitational ef-
fects, which thread the galactic cosmic web, leaving behind large empty regions called
cosmic voids. This epoch extends to the present day, even after dark energy took over the
evolution at the dark energy-matter equality.

Dark Energy-Matter Equality

Likewise, we can estimate the redshift value at which the transition from a MDE, decelerating
expansion during which large-scale structures form, to a new regime of accelerating expansion
occurs. Neglecting radiation and for K = 0 we have that ä = 0 when

ρm
2ρΛ

=
ρm,0

2ρΛ,0

1

a3
=

Ωm,0

2ΩΛ,0
(1 + zacc)

3 = 1 , (2.4.4)

which corresponds to a redshift zacc ∼ 0.7, assuming fiducial Planck values for ΛCDM. This
equality epoch is depicted as the line dividing the red and blue regions in Figure 2.1.

2.4.4 Dark Energy Dominated Epoch

In the ΛCDM model, due to the cosmological constant’s premise of non-dilution with the ex-
pansion, Λ will eventually take over the Universe’s evolution from matter, whose density decays
with a−3, giving rise to the current Dark Energy Dominated Epoch (DEDE). The Universe will
keep expanding faster and faster, leading to a potential Big Freeze, where stars burn out and the
Universe becomes dark and cold.

• Late Universe (t ≳ 5Gyrs or z ≲ 1): The Sun forms in the Milky Ways and the Solar
System emerges in an orchestrated dance around t ∼ 9Gyrs. Around the 10Gyrs mark,
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the primordial forms of life on Earth emerge, while our modern human ancestors came to
be only about 20 0000 years ago.

• Present time (t ∼ 13.8Gyrs and z = 0): After billions of years of cosmic evolution, the
Universe is as we observe it today, filled with galaxies, stars, and a variety of complex
structures. We start studying the vastness of the cosmos, which now spans a radius of 46.5
billion light-years ∼ 14 Gpc ∼ 1026 m, larger than the naive guess from the age of the
Universe since the light is carried along with the expansion of the Universe.

2.5 The Theoretical Problems with Λ

Throughout its twenty-year lifespan, the ΛCDM model described above has successfully with-
stood numerous tests under its inherent simplicity. Based on our current understanding of
fundamental physics, this framework provides a detailed account of most of the Universe’s ex-
pansion history with only 6 free parameters to be fixed by the observational data. More intricate
models rarely manage to achieve statistical preference from the data, as any extra model param-
eters must provide a sufficiently better fit to the data to justify their inclusion (see Section 4.1).
However, the cosmological constant hypothesis still faces longstanding challenges, from motiva-
tion in quantum field theory to its role in an expanding cosmology. Moreover, more recently,
the observational tensions in the parameters of ΛCDM, discussed in detail in Section 3.6, have
granted extended models an extra layer of encouragement and support.

For the moment, and for what concerns the core of the standard model, we will discuss the most
prominent challenges: the cosmological constant and the cosmic coincidence problems.

2.5.1 The Cosmological Constant Fine Tuning Problem

In order to realise the cosmic acceleration today, according to Equation (2.1.29), we require that
the cosmological constant Λ is of the order of the square of the present Hubble parameter H0,
whose value was estimated in Equation (2.1.7). This corresponds to the following approximate
value for the energy density (with MPl ≈ 1019 GeV):

ρΛ ≈ 10−47 GeV4 ≈ 10−123 M4
Pl . (2.5.1)

This is incompatible with the vacuum energy scales predicted for Quantum Field Theory (QFT),
as we will illustrate next. This issue was identified long before the discovery of the late-time
acceleration or the cosmological constant proposal. At that time, the prevailing belief was that
the cosmological constant was precisely zero, and much effort was devoted to explaining why
this should be the case. The vanishing of a constant in physics often hints at some underlying
symmetry.
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Initially referred to as the vacuum catastrophe [76], the issue lies in the QFT predictions of an
inexplicably large value for the vacuum energy, arising from the sum of the zero-point energies of
each degree of freedom in all quantum fields within the Universe, up to a particular cut-off scale.
Such a large value should manifest itself via significant gravitational effects which have never
been observed. Observational constraints on the upper limit of this vacuum energy completely
contradict the QFT result, with differences reported up to an outrageous level of 120 orders of
magnitude [77]. For example, the vacuum energy estimated for the extreme cut-off scales of
the order of MPl or of the scales predicted in particle physics (such as ≈ 0.1GeV for quantum
chromodynamics (QCD)), the vacuum energy density can be estimated in limit values as:

ρMPl
vac ≈ 1074 GeV4 and ρQCD

vac ≈ 10−3 GeV4 . (2.5.2)

This shows how, even while selecting a different cut-off scale for the cumulative zero-point energy
may somewhat alleviate this problem, reducing the discrepancy to around forty or sixty orders
of magnitude [78], such a solution remains highly insufficient. The observed value for Λ is much
smaller than all particle physics scales, endowing this problem with a fundamental character.
The ultimate resolution of the cosmological constant problem remains uncertain, and whether
it will emerge from QFT or cosmological arguments is unclear. The former could reflect our
incomplete understanding of how to estimate the zero-point energy of quantum fields in curved
spacetimes, while the latter could introduce some bare cosmological constant to cancel out the
contributions from all fields except the observed cosmological constant. Another alternative is to
stick to the pattern of explaining physical mysteries by postulating a scalar field (like the Higgs
field [75] or the inflaton [79]). In this context, a potential approach, as we will further dissect, is
to discard the cosmological constant altogether and promote it to a scalar field (or some similar
effect from modified gravity) to account for the late-time acceleration [80, 81].

2.5.2 The Cosmic Coincidence Problem

The coincidence problem embodies the improbable fact that the observed values of the dark
matter and dark energy densities are of the same order of magnitude today, given that these
species evolve at entirely different rates throughout the history of the Universe, as discussed
in Section 2.4. This issue is generally less consensual than the cosmological constant problem
[82], often attributed to more philosophical or metaphysical considerations, out of the scope of
cosmological physical theories [83]. This debate reflects the lack of consensus in the community
over the relevance of anthropic arguments [84]. In essence, the anthropic principle suggests that
the values of physical quantities in the current state of the Universe are what they are because
such conditions are necessary for the existence of observers in our condition, and it is not up to
us, inevitable inhabitants of the Universe, to decide on the statistical likelihood of the present
design of the Universe [83]. This doctrine can be endorsed with the idea that such statistics
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implied by the terms coincidence or likelihood do not make sense, to begin with, since cosmic
variance implies that we have only one realisation of the Universe at our disposal [85].
However, the anthropic principle does not easily align with the cosmological principle, on whose
pillars observational cosmology stands, and which implies that we do not occupy any preferential
position in the Universe. Therefore, if we accept this incompatibility, the coincidence problem
can serve as additional motivation to dismiss the cosmological constant and devise alternative
dark energy models. In particular, dynamical dark energy models, where the energy density
of dark energy varies over time or there is some interaction in the dark sector, stand out due
to their ability to explain the seemingly coincidental similarities between the matter and dark
energy densities simply through their natural dynamical character. Further discussion on this
type of models will be the focus of Chapter 5.
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Estou me interessando terrivelmente por fatos: fatos são pedras duras.
Não há como fugir. Fatos são palavras ditas pelo mundo.

— Clarice Lispector A Hora da Estrela

I’m becoming terribly interested in facts: facts are hard rocks. You can’t escape. Facts are words spoken by
the world. — Clarice Lispector in The Hour of the Star

Cosmology differs fundamentally from most branches of physics by being an observational science
rather than an experimental one. Given that the early Universe events played out without an
audience (as much as we are aware!), and the dawn and subsequent evolution of the Universe
cannot be replicated (we have only one sample!), our understanding is primarily based on mea-
suring the spatial correlations between cosmological structures at late times. The fundamental
endeavour of modern cosmology is no longer to map the night sky into constellations that track
the seasons but rather to formulate a coherent narrative for the history of the Universe that pro-
vides motivated explanations and is compatible with these observed correlations. In this sense,
cosmology is a wide-ranged effort to reconcile various observational data with predictions from
theoretical models based on coherent physical principles.

The study of high-redshift Type Ia supernovae (SNe) provided the first compelling evidence for
the late-time accelerated expansion of the Universe [26, 27]. These supernovae, which serve as
standardisable candles based on the fixed luminosity at which they occur, appeared fainter than
expected in a spatially flat, matter-dominated Universe. Subsequent observations from other
probes further supported this picture, with the additional assumptions that make up the ΛCDM
model described in Chapter 2.

After the success of previous seminal probes and ground-based experiments [86], the Planck
satellite has given the most precise measurement of the anisotropies in the Cosmic Microwave
Background (CMB) [33]. This is one of the most valuable and comprehensive sources of cosmo-
logical information from the initial perturbations that led to the formation of cosmic structures
via gravitational collapse. The CMB has also been instrumental in constraining cosmological
parameters within the standard cosmological model and its extensions. Simultaneously, galaxy
surveys such as the Sloan Digital Sky Survey [87] have extensively mapped the distribution of
the Large Scale Structure across the Universe, identifying the distinct pattern known as the
Baryon Acoustic Oscillation (BAO) scales within the matter correlation function. By leveraging
these findings, a standard ruler is established, whose length can be quantified across various
cosmological epochs, enabling scientists to monitor and trace the expansion of the Universe.

53
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The precision and compatibility level between these observations have put the standard cosmo-
logical model under increasingly rigorous scrutiny. Verifying the standard model’s hypotheses
through independent means solidifies its validity, and observational support can be established
from multiple sources. Upcoming missions like the space-based interferometer LISA [88] and the
Euclid satellite mission [89] will offer highly detailed maps of the cosmic microwave background
and large-scale structures. These missions promise even finer measurements of the BAO scales
across different cosmological epochs. At the same time, additional insight will be extracted from
phenomena such as supernovae, both weak and strong gravitational lensing, galaxy clustering,
and gravitational wave events, among others. These advancements will enrich our understand-
ing of the large-scale homogeneity and any deviations therein, providing extended tests for the
validity of general relativity.

This chapter is structured as follows. In Section 3.1 we introduce the matter correlation function,
needed to define the matter power spectrum in Section 3.2. These two introductory sections are
based on the Chapter 3 of [90]. Section 3.3 provides a description of the main properties of the
cosmic microwave background and how to relate its features to the cosmological framework. In
Section 3.4 we report on other relevant probes of the physics of the Universe, in particular for dark
energy signatures. Section 3.5 provides a complete account of the impact of the six-parameters
of the ΛCDM model on the matter power spectrum and the CMB spectrum of temperature
anisotropies. Finally, in Section 3.6 we list the cosmological tensions and anomalies that have
brought the standard model to a crisis and which motivate the exploration of alternative models.

3.1 The Matter Correlation Function

As elaborated in Chapter 2, the Universe’s large-scale structure is not randomly distributed.
Instead, cosmic objects are arranged into a tangled cosmic web with galaxies anchored along
dense filaments and clustering at their intersections, surrounded by vast empty regions known
as cosmic voids. The mapping of these structures encodes information about the initial state
of the hot Big Bang when the small overdensities that grew into clusters are thought to have
formed and the subsequent governing physical processes. Different cosmological models predict
different patterns of structure formation, allowing us to infer the best-fitting values for specific
cosmological parameters from the statistical characteristics of the Universe’s large-scale structure.

We rely on indispensable statistics tools to assess the validity of any theoretical model and its
connection to the real world. Because we have only one realisation of the observable Universe,
spanning a wide range of physical scales, the statistical properties of the distribution of events
in the sky are as vital to cosmologists as flour to a baker. Statistics methods in cosmology are
generally categorised into two main branches: descriptive statistics, which aims to cast the data
into a compact and physically understandable way, and estimation or inferential statistics, deals
with the problem of extracting information about the model and its parameters. This chapter
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will focus on the former and how observational insight can be derived from the background and
perturbation theory introduced in Chapter 2. The latter will be deferred to Chapter 4.

The initial step is to consider a random particle distribution, which may correspond to various
astrophysical objects such as galaxies or quasars. For N points contained within a volume V ,
the primary statistical descriptor is the average numerical density ρ0 = N/V . However, this is
insufficient to distinguish between, for example, N points clustered in one location and N points
uniformly scattered throughout the volume V . If, instead, we consider an infinitesimal volume
dV randomly selected within V , then the term ρ0 dV represents the mean number of particles
in this infinitesimal volume. If dNab = ⟨nanb⟩ is the average number of pairs in the infinitesimal
volumes dVa and dVb, separated by a distance rab, the next significant statistical descriptor is
the two-point correlation function ξ(rab), defined as:

dNab = ⟨nanb⟩ = ρ20 dVa dVb [1 + ξ(rab)] , with rab > 0 . (3.1.1)

In our preceding discussion, the implicit assumption is that rab > 0, meaning the two infinitesimal
volumes do not overlap. In this context, the notion of average, denoted by ⟨·⟩, conveys the volume
or sample average1 and considers pairs at different points within a single realisation, separated by
the same distance rab. If the points are sufficiently far apart to be uncorrelated, the results would
be similar to taking an average over many realisations of the distribution. Despite the limitation
of being confined to observations from a single Universe, the correlation function remains a
practical and meaningful descriptor. For a completely random distribution of N particles, dNab

should be independent of specific locations, leading to a vanishing correlation function ξ. In
contrast, a non-vanishing ξ indicates spatial correlation among the particles. The correlation
function can then be expressed as a spatial average of the product of density contrasts at two
distinct points:

ξ(rab) =
dNab

ρ20 dVa dVb
− 1 = ⟨δ(ra)δ(rb)⟩ with δ(ra) = na/(ρ0 dVa)− 1 , (3.1.2)

where we used the fact that ⟨δ(ra)⟩ = ⟨δ(rb)⟩ = 0. For a sample average, ξ can be computed
over all possible positions as:

ξ(r⃗) =
1

V

∫
δ(y⃗)δ(y⃗ + r⃗) dVy . (3.1.3)

1Although we have previously introduced this notation as the average over random initial conditions (like the
ones generated from inflation), the large-scale cosmic structure we observe in practice is essentially one realisation
of this random process. To reconcile this with theoretical models, we rely on the principle of ergodicity, according
to which, as volume approaches infinity, ensemble averages converge to spatial averages. In this context, several
different patches of the Universe with various sizes can be considered separate realisations of the same random
process. Thus, averaging measurements over a large volume mimics averaging over various realisations of the
Universe. However, our observations are inherently limited to a finite volume, introducing what is known as
sample variance. In the case of the CMB, where this finite volume is the single whole observable Universe, this
limitation is appropriately called cosmic variance.
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In practical terms, calculating the correlation function is often simplified by selecting a volume
dVa such that ρ0 dVa = 1 is the average particle at a distance r from a test particle. In that case,
the count of particle pairs reduces to the number of particles contained within the volume dVb:

dNb = ρ0 dVb[1 + ξ(rb)] . (3.1.4)

Thus, the correlation function is typically computed as:

ξ(r) =
dN(r)

ρ0 dV
− 1 =

⟨ρc⟩
ρ0

− 1 , (3.1.5)

yielding the average number of particles at a distance r from any given particle, normalised by the
expected number in a uniformly distributed system. This is sometimes termed the conditional
density contrast. Moreover, considering a bounded volume with N = ρ0V particles, imposes an
integral constraint on ξ(r):∫

ξ(r) dV =
1

ρ0

∫
dN

dV
dV − V =

N

ρ0
− V = 0 . (3.1.6)

A positive correlation ξ(r) signals more particles than expected in a uniform distribution. In such
instances, the distribution is termed as positively clustered. Generally, one is more concerned with
the dependency on the magnitude r, leading to the selection of a shell of distance r surrounding
each particle.

As introduced in Chapter 2, the decomposition in Fourier modes of perturbation variables is
useful for practical purposes because these modes evolve independently at the linear level. Given
that the average of a perturbation variable is, by definition, zero, the next statistically meaning
quantity is the average of the pairs. When expressed in Fourier space, (k = 2π/λ) these yield
the power spectrum:

Pδ(k) = V |δk|2 , (3.1.7)

where δk are the Fourier coefficients corresponding to the density contrast, and V is the power
spectrum’s normalisation factor. In cases where the quadratic form involves two distinct vari-
ables, such as |δkθk|, P (k) is said to be a cross-correlation power spectrum.

The power spectrum is the most widely used measure for describing clustering in linear and
mildly non-linear regimes and is one of the most important observables in the field. It serves as
the Fourier-space counterpart of the correlation function, expressed as:

P (k⃗) =
1

V

∫
ξ(r⃗)e−ik⃗·r⃗dV and ξ(r⃗) =

V

(2π)3

∫
P (k⃗)eik⃗·r⃗dk . (3.1.8)

The Fourier volume factors of 1/V and V in P (k⃗) and ξ(r⃗), respectively, are conventionally
added to the Fourier transformation to guarantee that both functions have the same dimensions.
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When assuming spatial isotropy, that is, when the correlation function depends solely on the
magnitude r = |r⃗|, the spectrum likewise depends only on k = |⃗k|.
In the following sections, we will see in more detail how the power spectrum decomposition can
be used to study density fluctuations in the matter distributions.

3.2 The Matter Power Spectrum

As mentioned in Section 2.3, the theory of inflation is currently the leading explanation for
the first generating moments of the Universe through a rapidly expanding phase in its early
stages. During this period, the initial anisotropies are believed to have been generated through
the quantum fluctuations of a scalar field called the inflaton. This exponential expansion is
essential as it amplifies the density perturbations responsible for the observed anisotropies in
the CMB and the formation of large-scale structures such as galaxies and galaxy clusters in the
Universe. Therefore, it is helpful to focus on what is happening at different scales to study the
patterns in this matter distribution resulting from inflation. This is achieved exactly through the
power spectrum decomposition of the density perturbations. The density contrast δ(k), which
characterises the deviation of the density of a Fourier scale k from the background density, is the
Fourier counterpart of Equation (2.2.22).
The large-scale structure in the Universe is not distributed randomly but has interesting corre-
lations between spatially separated points. By definition, the mean value of the density pertur-
bations is zero, ⟨δ⟩ = 0. Therefore, the first non-trivial statistical measure of the density field
(at a fixed time) is exactly the two-point correlation function introduced in Section 3.1.
Treating these density contrasts as variations arising from primordial quantum fluctuations,
we can now formally write the power spectrum P (k) in k-space originating from the matter
distribution seeds as follows:

⟨δ(k⃗)δ∗(k⃗′)⟩ = 2π2

k3
P (k)δ3(k⃗ − k⃗′) , (3.2.1)

now following the convention of defining the power spectrum with the normalisation factor
2π2/k3, rendering P (k) dimensionless. The modes are uncorrelated via the Dirac delta func-
tion δ3(·). When considering scalar perturbations, we can derive the matter power spectrum for
both the pre-and post-radiation-matter equality epochs, approximately resulting in [45]:

P (k) ∝

kns , k < keq ,

kns−4, k > keq ,
(3.2.2)

where ns is the spectral index of the power spectrum produced during inflation and keq =

aeqH(aeq) is the scale parametrising the distinction between large and small scales, corresponding
to the mode that entered the Hubble radius exactly at the radiation–matter equality. On large
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scales, P (k) grows for increasing k, while it is a decreasing function of k on small scales. This
implies a peak in the power spectrum, directly related to the scale keq, which is sensitive to the
background and perturbed expansion history. The shape of the power spectrum changes with
parameter variations is depicted for the six ΛCDM parameters in Figure 3.7. Furthermore, there
is a subtle oscillatory signature in the tail of the spectrum at small scales (large k), which results
from the baryonic acoustic oscillations (BAO) imprinted by cosmic evolution.

The comparison between the theoretical power spectrum of dark matter and the observed power
spectrum of the galaxy distribution poses a significant challenge. Assessing how these two spectra
should be related is not trivial, an issue commonly referred to as biasing. It is commonly assumed
that both spectra differ only by a constant factor, based on the premise that, on sufficiently large
scales, both have their evolution dominated by the gravitational effects. This hypothesis is not
necessarily universally valid as it can vary depending on the details of galaxy formation and
evolution, and is assessed ultimately through N-body simulations and observations [91].

This chapter introduces the observational probes relevant to this dissertation, categorises them
and discusses the cosmological information they offer. In particular, we focus on characteristic
signatures and effects that can be decisive in distinguishing between different models, consider-
ing the underlying assumptions and the potential for model-independent analysis. While this
discussion provides a tailored overview, more comprehensive information is available in recent
reviews such as [92] and the sources cited within each subsection.

3.3 The Cosmic Microwave Background

More than any other cosmological probe, observations of the Cosmic Microwave Background
(CMB) spectrum, mapping both intensity and polarisation, have converted cosmology into a
precision science, providing a comprehensive understanding of the Universe’s geometry, evolution
and composition. Measurements of the temperature anisotropies over the last three decades have
played a crucial role in establishing the standard cosmological model, as described in Chapter 2.
These observations have confirmed the existence of primordial fluctuations, which are the seeds
of structure formation consistent with the inflationary period. The power of the CMB as a
cosmological probe lies in the fact that it captures these fluctuations at an early stage when
they were still small and aptly described using linear perturbation theory, unlike the complex
and non-linear structure formation process. The evolution of small fluctuations in the primordial
plasma can be understood from fundamental physics enclosed in well-defined equations, allowing
for precise theoretical predictions of the expected temperature anisotropies’ distribution in the
CMB.

As discussed in Section 2.4, the pivotal moment in which light started to propagate freely and
the Universe became transparent to light occurred at redshift z ≈ 1090, when the Universe
was around 380000 years old and the effective temperature of the free streaming photons was
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∼ 3000K, is termed photon decoupling. Since then, the expansion of the Universe has redshifted
and diluted these photons, according to the relation T ∝ (1 + z) discussed in Section 2.1.4.
They are detected today as the CMB radiation, with a characteristic average temperature of
T0 ≈ 2.725K. These photons carry imprints of their cosmic journey across the expansion history,
from the early Universe until today, including the influence of gravitational wells near massive
clusters. This information is encoded at different scales as deviations to this average temperature
distribution. Because these spatial fluctuations break the isotropy of the CMB, they are referred
to as the CMB anisotropies. Being one of the most robust and complete cosmological probes,
numerous experiments have been conducted to measure the temperature variations in the CMB
radiation. Additionally, the anisotropies can be modelled for different theories rigorously and
systematically using modern Einstein-Boltzmann codes, which will be the focus of Section 4.2.
These solve the Boltzmann equation, which expresses how the distribution function of some
particle species evolves, assuming Gaussian random fields.

Figure 1.1 presents the map of the CMB anisotropies as measured by the Planck collaboration.
This is a captivating image of the so-called last scattering surface of the Universe, with the colour
scale encoding variations in the temperature of the CMB photons, which, in turn, correspond
to density fluctuations at the time of photon decoupling. The study of the CMB temperature
fluctuations distribution follows precise statistical techniques to find the correlations between
hot and cold spots as a function of their angular separation. This results in an angular power
spectrum decomposed in multipoles ℓ, as depicted in Figure 3.1. The figure also includes the
theoretical prediction of the CMB spectrum in the ΛCDM model when fitted to the observed
data. The striking agreement between the theoretical prediction and the observed data highlights
the remarkable success of the standard cosmological model. For a more detailed overview of the
physics of the CMB, we refer the reader to Ref. [86, 93].

3.3.1 The TT-Spectrum: Measuring the Anisotropies

As observers, we are limited to a realisation of the CMB map at a fixed point in space and time
(x⃗ = x⃗0 and τ = τ0), leading to the evolution equation for the temperature:

TCMB(x⃗, p⃗, τ) = TCMB,0(τ) [1 + Θ(x⃗, p⃗, τ)] , (3.3.1)

with TCMB ∝ (1 + z) and p⃗ is the direction of propagation of the photons. Next, we will
discuss how to compare the observed temperature distribution function against the theoretical
predictions.

Being a sky map, the distribution of CMB anisotropies is better expressed in the projection of
the photon direction in the celestial sphere, i.e. in polar coordinates (θ, ϕ). Since our fields are
assumed to be statistically homogeneous, the averages over an ensemble will be independent of
the position. Together with the assumption of isotropy of the initial conditions of the fluctua-
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Figure 3.1: Figure of the power spectrum of the CMB anisotropies (temperature). The mea-
sured spectrum DTT

ℓ = ℓ(ℓ + 1)CTT
ℓ /(2π) has been scaled to make the smaller scale features

visible. The large-scale data (ℓ > 30) is binned up by multipole intervals. The blue curve is the
ΛCDM prediction for the Planck 2018 bestfit values, produced with the CLASS code [94, 95]. The
black markers represent the Planck data [32] and corresponding error bars. The data is collected
from the Planck legacy archive http://pla.esac.esa.int/pla/.

tions, this implies that the distribution of the temperature anisotropies will be the same for all
directions. To compare the theoretical predictions for the temperature anisotropies with CMB
observations, the temperature perturbation, Θobs = ∆T/T , is expanded in terms of spherical har-
monic functions, Yℓm, which form an orthonormal basis for the points on a sphere, particularly
suited for describing the pixel patches of the sky map:

Θobs(θ, ϕ) ≡ ∆T

T
(θ, ϕ) =

∞∑
ℓ=1

+ℓ∑
m=−ℓ

aTℓmYℓm(θ, ϕ) , (3.3.2)

where ℓ and m are conjugate to a unit vector in real space, representing the direction of prop-
agation of the incoming photons. In particular, the relation θ = π/ℓ in radians holds, meaning
that larger scales correspond to lower multipoles. The corresponding coefficients aℓm encode
the dependence on the direction of observation and hence are essential for parametrising the
shape and overall distribution of the anisotropies in the CMB map in Figure 1.1. The monopole

http://pla.esac.esa.int/pla/
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temperature is a00 and is typically omitted from the spectra along with the dipole terms 1. Be-
ing statistically independent, the average value of the single harmonic coefficients vanishes, i.e.
⟨aℓm⟩ = 0. For the two-point correlator, similarly to the Fourier decomposition of random fields
in space, the off-diagonal correlators of the expansion coefficients aℓm of the expansion vanish,
ensuring orthogonality. The intrinsic variance of the coefficients is defined as:

⟨aℓma∗ℓ′m′⟩ = δℓℓ′δmm′Cobs
ℓ . (3.3.3)

The temperature-temperature (TT) spectrum is conventionally scaled in terms of the multipoles,
resulting in

DTT
ℓ =

ℓ(ℓ+ 1)

2π
CTT
ℓ , (3.3.4)

such as the example depicted in Figure 3.1. It is also possible to compute the three-point non-
Gaussian correlations, a piece of information directly encoded by the primordial non-Gaussianity
induced by some models of inflation, which CMB experiments have constrained [96, 97] but goes
beyond the scope of this work.
This method is so robustly studied according to fundamental physics that most of the statis-
tical features had been predicted long before they were effectively observed. In particular, the
TT-spectrum has been accurately mapped up to ℓ ∼ 4000 and it is largely believed that most
of the available cosmological information has already been derived from it. In fact, CMB obser-
vations encode potential access to six different power spectra: temperature-temperature (TT),
E-mode-E-mode polarisation (EE) and B-mode-B-mode polarisation (BB) autocorrelations and
temperature-E-mode (TE), temperature-B-mode (TB), E-mode-B-mode (EB) cross-correlations.
The BB spectra have much lower power compared to TT, and are still quite suppressed in com-
parison to the EE polarisation case (around 2 orders of magnitude below). So, for simplicity
reasons, the work reported in Part II of this dissertation only considers CMB data from TT,
EE, and TE spectra. Nevertheless, the B-mode spectra carry unique information, and their
detection and imprints are an independent research line [98]. This is because while scalar pertur-
bations can only generate E-mode polarisations, primordial B-modes would unequivocally imply
the existence of tensor perturbations, most likely generated during inflation. Even though the
observational prospect for primordial B-modes still faces technical limitations due to secondary
B-mode signals, there is a lot of potential for sensitivity improvements and their detection would
significantly enrich our understanding of the early Universe.
This work will focus on scalar perturbations only, uncorrelated with the vector and tensor modes.

1The monopole term essentially represents a uniform temperature across the sky. It encoded the average
temperature of the CMB, but it does not provide any information about fluctuations or anisotropies. The dipole
anisotropy is primarily due to our motion with respect to the CMB rest frame. It has been extensively mapped
but is not particularly interesting for cosmological purposes. The dipole does not contain information about the
early Universe but about the present motion. On this basis, it is usually discarded to unveil intrinsic anisotropies
of cosmological interest.
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The vector perturbations decay, meaning their contribution is negligible (assuming that the ini-
tial conditions were set very early, as is the case in inflation), and the tensor perturbations are
constant on super-horizon scales, subject to damped oscillations after entering the horizon, be-
coming suppressed compared to scalar perturbations. In a broader context, scalar perturbations
can be compared to sound waves propagating in the primordial plasma, leading to areas of com-
pression and rarefaction. These variations produce the pattern of peaks and troughs in the CMB
power spectrum, as seen in Figure 3.1, where the spectrum has been rescaled by ℓ(ℓ + 1)/(2π).
Hence, the specific positions of these peaks depend non-trivially on the composition and evolu-
tion of the Universe and represent a valuable probe for testing signatures of alternative models
to ΛCDM.

3.3.2 Modelling the Anisotropies

The line of sight integration method provides an informative, straightforward way to study the
physical effects behind the CMB anisotropies [99]. For a spatially flat Universe and adopting the
conformal Newtonian gauge Equation (2.2.5), the linear temperature anisotropy Θ ≡ δT/T due
to the Fourier mode k and projected on the multipole ℓ today can be written as [86]

Θ
(s)
ℓ (k, τ0) =

∫ τ0

0
dτS

(s)
T (k, τ)jℓ(k(τ0 − τ)) . (3.3.5)

The integrand in Equation (3.3.5) is a convolution between the ℓ-th spherical Bessel function,
denoted by jℓ, which gives the projection from Fourier to harmonic space. The S(s)

T terms in the
integrand are the scalar sources:

S
(s)
T (k, τ) ≡ g (Θ0 +Ψ) +

(
gk−2θb

)′
+ e−τop

(
Φ′ +Ψ′) + polarisation terms . (3.3.6)

The term
τop(τ) =

∫ τ0

τ
neσTadτ

′ , (3.3.7)

represents the optical depth (not to be confused with conformal time), determined by the free
electron fraction ne and the Thompson scattering cross section σT . An optically thin (thick)
medium is characterised by τop ≪ 1 (τop ≫ 1), with τop = 1 defining the optical transition. Fur-
thermore, g ≡ −τ ′ope

−τop corresponds to the visibility function, which quantifies the probability
distribution that a photon last scatters at a given redshift1. In addition to the gravitational po-
tentials Φ and Ψ, the source terms include the temperature monopole, the baryon velocity θb and
subdominant polarisation modes, all dynamical functions of τ and k. The line-of-sight approach
dramatically simplifies the computation while isolating the different contributions to the total
anisotropy. The terms in the first and second brackets in Equation (3.3.6) are proportional to

1For simplicity, we omit the terms from the polarisation spectrum from different sources since the class of
models considered does not typically affect the CMB polarisation, unless there is some specific coupling to photons.
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the visibility function, which peaks around the recombination epoch and are known as primary
anisotropies since their effect is mainly imprinted at z ∼ 1090 when the photons decouple. In
more detail, the contributions are the following:

• Primary Monopole Θ0 (density perturbations): anisotropy proportional to the local photon
energy density fluctuation at the last scattering surface. Overdensities within the early
primordial plasma are anticipated to exhibit higher temperatures, whereas underdensities
are expected to be colder. These variations in over- and under-densities inherited from
the inflationary phase, will undergo an evolutionary process governed by the perturbation
equations described in Section 2.2. This evolution contimues until the epoch of decoupling,
ultimately leaving a distinctive imprint in the CMB.

• Sachs-Wolfe (SW) Effect Ψ (gravitational perturbations): redshift of the photons as they
climbed up the initial potential wells when emitted. Regions linked to overdensities are
correspondingly linked to more robust gravitational fields. Photons traversing within these
perturbed gravitational fields will undergo a gravitational redshift, as elucidated by Sachs
and Wolfe in [100]. Unlike adiabatic perturbations, this effect is anticipated to generate
cooler over-densities and warmer under-densities.

• Doppler Shift (velocity perturbations): effects induced by the baryon velocity θb and θ′b.

The third bracket terms are proportional to e−τop , which is active since the last scattering. This
gives rise to secondary anisotropies:

• Integrated Sachs-Wolfe (ISW) Effect Φ′+Ψ′: accounts for how the photons travelling from
the last scattering surface are affected by the potential wells they encounter. Comparable
to the SW effect, the ISW occurs on a larger scale when photons traverse through the vast
structures in the Universe. This results in an overall shift in the photon’s frequency, arising
from the cumulative influence of the mass encountered along its path. If the potential
wells were static, the blueshift gained when entering would be compensated by the redshift
necessary to escape. Nevertheless, if the potentials evolve in time, there is a net contribution
to the temperature anisotropy.

The polarisation terms can be classified as tertiary contributions and discarded for simplicity.
Gravitational lensing of the CMB provides an additional secondary contribution to the tem-
perature fluctuation in Equation (3.3.6). However, lensing effects require bending the photon
trajectories due to inhomogeneities, which are already linear effects. Hence, they constitute a
higher order correction to Equation (3.3.6).

The contribution of each effect to the temperature power spectrum defined by Equation (3.3.5)
is depicted in Figure 3.2.
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Figure 3.2: The individual main contributions to the CMB temperature power spectrum
as detailed in Section 3.3.2, namely the total lensed and unlensed spectra, the Sachs-Wolfe,
Integrated Sachs Wolfe, Doppler effect and the contributions from polarisation. This plot was
generated through the Boltzmann code CLASS [101, 102] and has no multipole scaling compared
to Figure 3.1.

The measured value Cobs
ℓ in Equation (3.3.3) can be directly compared to the the theoretical

angular power spectrum C
(s)
ℓ , in terms of the temperature field Θ

(s)
ℓ (k), as the multipole ℓ cross-

correlation function in Fourier space k:

C
(s)
ℓ =

2

π

∫ ∞

0
dkk2

∣∣∣Θ(s)
ℓ (k)

∣∣∣2 , (3.3.8)

with

Θl ≡
1

2(−i)ℓ

∫ 1

−1
dµPℓ(µ)Θ(µ) , (3.3.9)

in terms of the Legendre polynomials Pℓ(µ), where µ = k̂ · p̂ gives the direction between the
direction in which the photon is propagating p̂ and its wavenumber k̂.

3.3.3 Scale Dependence of the CMB

Scalar perturbations can be envisioned as sound waves echoing through the primordial plasma.
These waves correspond to regions of rarefaction and compression, resulting in the pattern of
peaks and valleys in the CMB power spectrum, which are the dominant contribution at small
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scales, ℓ ≳ 100. The exact location of these peaks depends on the Universe’s composition and
evolution, which are an important probe of dark energy. Initial perturbations within the baryon-
photon fluid can only travel a finite distance until recombination1. The extent of this propagation
distance experienced by an acoustic wave depends on its speed of sound:

cs =
1√
3

(
1− 3ρb

4ργ

)−1/2

, (3.3.10)

for the oscillations imprinted in the CMB anisotropies with frequency ωk(τ) = krs(τ), where rs
is this limit distance, known as the sound horizon,

rs(zdec) =

∫ (1+zdec)
−1

0

cs(a)

a2H(a)
da . (3.3.11)

The redshift at decoupling zdec can be deduced by intricate formulae [103] or by taking the
entire background history through fitting numerical codes, which is particularly important for
non-standard scenarios with changes to the early Universe dynamics.
As detailed in [90], an approximate relation for the comoving wavelength of the acoustic peaks
is λc = 2π/k = 2rs/n, where n are integer numbers. The first peak is found at an angular scale
of θ = 1 degree which corresponds to ℓ = 180 (according to θ = π/ℓ). It is helpful to define a
characteristic angular location for these peaks’ positions in terms of observable quantities:

θA =
rs(zdec)

dcA(zdec)
. (3.3.12)

This acoustic scale is a quasi-universal observable, as it can easily be defined across any sta-
tistically isotropic or spherically symmetric cosmology. dcA is the comoving angular diameter
distance, defined from Equation (2.1.14) as

dcA(z) = (1 + z)dA(z) . (3.3.13)

The multipole associated with the angle θA, is expressed as

ℓA =
π

θA
=
πdcA(zdec)

rs(zdec)
. (3.3.14)

Furthermore, the comoving angular diameter distance can be parametrised by

dcA(zdec) =
c

H0

R√
Ωm,0

, (3.3.15)

1To be more precise, during recombination, most electrons combined with the atomic nuclei formed during
Big Bang nucleosynthesis. However, photons kept being scattered by the remaining free electrons. This phase
should not be confused with the drag epoch, where photons fully decoupled from the remaining electrons and
could finally free stream throughout the Universe, a process which occurred about z = 80 later.
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where R stands for the CMB shift parameter related to the sound horizon and given by

R = H0

√
Ωm,0

∫ zrec

0

dz

H(z)
, (3.3.16)

implying ℓA ∝ R, which can be bounded by CMB measurements, which also correspond to
estimates of the sound horizon rs(zdec). The CMB shift parameter depends directly on the
Universe’s expansion history from recombination to the current epoch, defining the acoustic
peaks’ position. This can be appreciated in Figure 3.1 depicting a comparison between the
theoretical prediction of the CMB temperature power spectrum for ΛCDM against the 2018
observations from Planck. The predictions of peak locations and magnitudes in a Universe with
dark energy, fully defined by a cosmological constant, align closely with the observed data.
The TT spectrum’s highest amplitudes are attributed to two main components: the ℓ = 0

component, representing the monopole (the mean value of the blackbody signal), and the ℓ = 1

component, corresponding to the dipole as discussed in Section 3.3.2. Moving beyond these
components, the predicted and observed higher modes (ℓ ≥ 2) are displayed in Figure 3.1,
exhibiting a characteristic oscillatory pattern. Further insight into the shape of the spectrum
is provided in Figure 3.2, which decomposes the contributions from the sources of anisotropies
introduced in Section 3.3.2. The behaviour of this spectrum at different scales can be summarised
as follows:

• For ℓ < 100, the Sachs-Wolf plateau emerges. These angular scales exceed the size of the
causal horizon at the time of the last scattering surface. Consequently, regions separated by
such scales had limited interaction and co-evolution since the end of inflation. The Sachs-
Wolf plateau quantifies the primordial perturbations, primarily arising from mechanisms
outlined in Section 3.3.2, particularly the Sachs-Wolf effect. These perturbations exhibit a
distinct scale-invariant behaviour, manifesting as a flat DTT

ℓ = ℓ(ℓ+1)CTT
ℓ /(2π), consistent

with inflationary predictions.

• In the range of 100 ≤ ℓ ≤ 1000, we enter the realm of the acoustic peaks. Scales smaller than
the horizon at the last scattering surface capture causal interactions within the primordial
plasma prior to decoupling. The intricate wavelike structure in this region results from
the oscillations of the coupled photon/baryon fluid within the gravitational field, primarily
influenced by the massive and non-interacting dark matter. Here, gravitational forces
compete with fluid motion driven by photon radiation pressure. The acoustic peaks are
characterised by a prominent peak around ℓ ≃ 200, followed by two smaller peaks. These
visible perturbations in the plasma resemble sound waves, justifying the term acoustic.

• For ℓ ≤ 1000, we encounter the damping tail. In this region, the spectrum exhibits rapid
oscillations with a progressively diminishing amplitude. This behaviour arises due to the
thickness of the last scattering surface, averaging over multiple small-scale behaviours that
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tend to cancel each other out. This averaging process gradually erases structures at scales
smaller than the thickness of the last scattering surface.

3.3.4 CMB Lensing

In the context of general relativity, massive objects serve as gravitational lenses that bend the
paths of photons. The large-scale structure between the last scattering surface and the observer
gravitationally lenses both the temperature and polarisation anisotropies of the CMB. These
imprints can be reconstructed as a map of the lensing potential, whose gradient determines the
lensing deflections. For example, in propagating through a large, over-dense clump of matter in
the line of sight, angular structures in the CMB get magnified, appearing more extensive in the
sky. Essentially, by looking at how the typical size of hot and cold spots in the CMB temperature
map vary across the sky, we can reconstruct the lensing deflections and, hence, the integrated
distribution of dark matter. This lensing map provides a new cosmological observable, similar
to maps of cosmic shear estimated from the shapes of galaxies1. Its power spectrum, as depicted
in Figure 3.3, provides access to cosmological parameters from the CMB alone that affect the
late-time expansion and geometry of the Universe and the growth of structure - parameters that
have only degenerate effects in the primary CMB anisotropies.
This lensing effect offers a unique window into the Universe’s structure, including its dark matter
distribution. It affects various cosmological observables, such as blurring the acoustic peaks in
the CMB and altering polarisation modes.
Strong lensing phenomena, often involving quasars lensed by single galaxies, offer direct ways
to study cosmological parameters like the rate of the Universe’s expansion. On the other hand,
weak gravitational lensing, usually featuring distant galaxies lensed by closer galaxy clusters,
offers insights into the growth and density of cosmic structures. Both strong and weak lensing
serve as powerful tools for cosmological study, each providing complementary data that can help
resolve current tensions in our understanding of parameters like the matter density and structure
growth, as we will discuss in more depth in Section 3.6.2.

3.4 Other Cosmological Probes

Despite the fact that the CMB provides a powerful and robust measure of the cosmological pa-
rameters of the ΛCDM model, these can be reinforced and independently confirmed by combining
multiple surveys, ideally probing the Universe at different temporal and spatial scales. In fact,
this is what allows for the breaking degeneracies in the model parameters inferred from the CMB,
as will be discussed in Section 3.5. Below we detail the various observational probes relevant for
the context of this dissertation which correspond mostly to probes of dark energy. Nevertheless,

1Cosmic shear is induced by weak lensing as a consequence of the overall mass distribution, including non-
luminous matter. Compared to galaxy counting, the advantage is that it is not affected by bias uncertainty.
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Figure 3.3: The power spectrum of the CMB gravitational lensing Dϕϕ
ℓ =

107 [ℓ(ℓ+ 1)]2Cϕϕ
ℓ /(2π) factor. The blue curve is the ΛCDM prediction for the

Planck 2018 bestfit values, produced with the CLASS code [94, 95]. The black
markers represent, as an example, data from the Planck collaboration [51], PO-
LARBEAR 2019 [104], SPTpol 2019 [105], SPT/Planck 2017 [106] and ACTpol 2016
[107], and corresponding error bars. The data is part of a compilation from
https://lambda.gsfc.nasa.gov/education/lambda_graphics/more/lensing_power_source.html.

a multitude of other emerging independent cosmological probes could be added to this picture,
such as the 21 cm and Lymann-α lines, quasars, cosmic chronometers, measurements of redshift
drift, surface brightness fluctuations, to name only a few. A complete review can be found in
[92].

3.4.1 Standard Candles: Cepheid Variables and Type IA Supernovae

As we have briefly mentioned in the context of the seminal measurements of the accelerated
expansion of the Universe [26, 27], an alternative method of estimating the expansion rate draws
on the knowledge associated with two particular astrophysical objects: a distance calibrator and
some objected with well-known standard luminosity. The most conventional pair corresponds to
Cepheid variables as calibrators for Type Ia supernovae1.

1The explosion of supernovae results in an intense burst of radiation, making them exceedingly luminous
events. These supernovae can be categorised based on the presence of chemical element absorption lines in their
spectra. Specifically, if the spectrum of a supernova displays a hydrogen absorption line, it is labelled as a Type

https://lambda.gsfc.nasa.gov/education/lambda_graphics/more/lensing_power_source.html
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Cepheid variables are a vastly studied type of pulsating stars characterised by a well-established
correlation between their luminosity and the period of their pulses. We can infer their intrin-
sic luminosity from the observed pulsation period by categorising Cepheids as Population I or
Population II stars. By measuring the differences in the magnitude (a measure of a luminous
object’s brightness, related to the photon flux), it is possible to establish a connection with the
luminosity distance, defined in Equation (2.1.14).

More precisely, defining the distance modulus, µ = m−M , simply as the difference between the
apparent m (measure of an object’s brightness when observed from the Earth) and absolute M
magnitudes, we find the key relation

µ

5
+ 1 = log

(
c(1 + z)

H0

∫ z

0

dz′

E(z′)

)
, (3.4.1)

where the expansion rate E(z) is defined as H2(z) = H2
0E

2(z), scaled by the Hubble constant H0

in km s−1 Mpc−1, and assuming a flat geometry (ΩK = 0 and dM (z) = dc(z)). Since the corrected
peak magnitude M is the same for all the supernovae (M ≈ −19 for type Ia), the luminosity
distance can be directly obtained from m. This methodology allows us to establish a connection
between the apparent magnitudes of Cepheid variables and supernovae and the Hubble constant.
The redshift associated with the supernova can be determined independently by analysing the
wavelength of the light emitted and the shifts in its characteristic spectral absorption lines. With
a significant sample size of supernova observations, one can establish the relationship between
the observed luminosity and redshift. Large catalogues like Pantheon (1048 supernovae [109])
and its recent update Pantheon+ (1550 supernovae [110]) compare these observations against
calibrated distance-redshift measurements from the wavelength of the observed light based on
the spatially flat ΛCDM model. From this comparison, key cosmological parameters such as
Ωm and ΩΛ can be inferred, leaving only one free parameter: the Hubble constant. The SH0ES
collaboration estimates H0 employing Cepheid measurements as calibrators analysed using the
Hubble Space Telescope (HST) and the Gaia mission [111]. Planned surveys such as the Rubin
Legacy Survey of Space and Time (Rubin LSST) are expected to provide catalogues of various
transient calibrators, increasing the number of known Supernova (SN) Ia by a factor of ∼ 10

[112].

However, the measured values of the Hubble constant obtained according to this method keep
showing increasing tension with estimations derived from the cosmic microwave background
angular distance as the data accumulates and the results become more precise. This tension

II supernova. In the absence of such a line, it is called Type I. Further sub-classifications exist within Type I
supernovae: Type Ia contains an absorption line of singly ionised silicon, Type Ib features a helium line, and Type
Ic lacks silicon and helium absorption lines. The explosion characteristic of Type Ia supernovae is triggered when
a white dwarf in a binary system crosses the Chandrasekhar mass limit [108] due to the accretion of gas from
its companion star. One remarkable feature of Type Ia supernovae is the near-constancy of their peak absolute
luminosity. Consequently, these supernovae serve as a form of standardisable candles, enabling the observational
measurement of luminosity distance by assessing their apparent brightness.
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has been highlighted in the latest paper from the Pantheon+ catalogue analysis by the SH0ES
collaboration [111]. Section 3.6 will investigate this issue more thoroughly.
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Figure 3.4: The distance modulus µ(z) as a function of redshift z for the Pantheon dataset
(black dots), along with the expected µ(z) predicted values according to the ΛCDM model (blue
curve). The error bars show the uncertainties in the 1048 data points used to construct the
Pantheon dataset [109].

3.4.2 Standard Rulers: Baryonic Acoustic Oscillations

Before the recombination epoch, photons and baryons were tightly coupled, meaning that the
sound waves that resulted in the temperature anisotropies in the CMB also left signatures in the
baryon perturbations. The drag epoch refers to the era when photons were liberated from the
baryons’ drag due to Compton scattering. The oscillations produced by the acoustic waves in the
CMB, as they interact with baryonic matter, also leave discernible signatures within the matter
power spectrum, as it plays an instrumental role in determining the distribution of galaxies. The
associated large-scale redshift-space correlation function displays a peak at the Baryon Acoustic
Oscillations (BAO) scale at the sound horizon size rs. The BAO peak was initially observed at
∼ 100h−1 Mpc from a spectroscopic sample of luminous red galaxies from the Sloan Digital Sky
Survey (SDSS) [113]. The precise location of this peak provided further evidence supporting
the existence of a dominant dark energy component in the late Universe. The sound horizon at
z = zdrag, which marks the baryons’ release from the Compron drag of photons, can be defined
as:
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rs(τdrag) =

∫ τdrag

0
cs(τ) dτ

dτ=da/(a2H(a))−−−−−−−−−−→ rs(zdrag) =

∫ (1+zdrag)
−1

0

cs(a)

a2H(a)
da , (3.4.2)

where cs(τ) denotes the sound speed of the photon–baryon plasma, given by:

c2s =
δpγ

δργ + δρb
, (3.4.3)

with the subscripts (γ, b) denoting photon and baryon quantities, respectively, and τ is the
conformal time.

The power spectrum in redshift space, decomposed into wavenumbers parallel and perpendicular
to the line of sight, provides the observed redshift and angular distributions of galaxies within
redshift space. From this power spectrum, the following quantities can be obtained [90], in
analogy to Equation (3.3.12) for the acoustic peak in the CMB:

θs =
rs(zdrag)

(1 + z)dA(z)
, (3.4.4)

δzs =
rs(zdrag)H(z)

c
, (3.4.5)

with dA(z) as previously defined in Equation (2.1.17). The angle θs corresponds to observations
perpendicular to the line of sight, and δzs corresponds to observations made along the line of
sight.

Although current BAO data is still not sufficiently abundant to provide independent measure-
ments of these two distance estimators, a combined distance scale ratio can be obtained from
the spherically averaged power spectrum [90]:

[
θ2sδzs

]1/3 ≡ rs(zdrag)[
(1 + z)2 d2A(z)c/H(z)

]1/3 , (3.4.6)

or the related effective distance [113]:

dV (z) ≡
[
(1 + z)2d2A(z)

cz

H(z)

]1/3
. (3.4.7)

Thus, predictions for the distance scale dV (z) can be compared to observational data. These
observations indeed reveal an amplified number of galaxies separated by a distance of roughly
150Mpc or simply 100h−1 Mpc, which, in turn, provides a method for calculating the expansion
rate H0 or its dimensionless counterpart h (H0 = 100h km s−1 Mpc−1).

This probe focuses on the BAO peak in galaxy clustering, which differs from the acoustic os-
cillations observed in the CMB, as it primarily reflects the impact of low-redshift phenomena.
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The data collected from the Sloan Digital Sky Survey (SDSS) [114–118], amongst other sources,
was instrumental in measuring this BAO peak. A recent collection of BAO measurements is
depicted in Figure 3.5, along with the corresponding distance and expansion rate theoretical
ΛCDM curves. It is an important probe for breaking degeneracies in the CMB data. The large
scale structures of the Universe can also be retrieved from the reciprocal weak lensing effect,
which measures the response of photons to a gravitational potential, thereby mapping the mass
distribution in the Universe through its effect on deflecting the light of background galaxies. For
this purpose, large photometric and spectroscopic surveys are under development, including the
18th data release (DR18) from the fifth generation of the SDSS survey (SDSS-V) [119] and the
Dark Energy Spectroscopic Instrument (DESI) [120]. During the process of writing this thesis
(July 2023), ESA’s Euclid satellite was launched. This cosmological survey mission was designed
to map the extragalactic sky, exploring the expansion history and the formation of structures,
with the main aim of providing new insight on the nature and properties of dark energy and
dark matter on universal scales [89]. I am an active member of the consortium since 2022, as
part of modified gravity and dark energy theory working groups.

3.4.3 Standard Sirens: Gravitational Wave Detection

In the context of GR, and assuming propagation in a vacuum, gravitational waves follow the
wave equation

h′′P (τ, k) + 2Hh′P (τ, k) + k2hP (τ, k) = 0 , (3.4.8)

in which hP (τ, k) are the Fourier modes of the gravitational wave amplitude, and the index P =

+, × runs over the two possible polarisation states of the Gravitational Wave (GW) [121, 122].

The groundbreaking detection of GWs sourced by the merger of two black holes was first achieved
in 2015 by the LIGO-Virgo collaboration [123]. This provided compelling evidence for the ex-
istence of gravitational waves, as remarkably predicted by GR. However, it can be argued that
an equally noteworthy event for cosmology occurred two years later with the observation of a
signal pointing to a binary neutron star merger along with a counterpart detection in the electro-
magnetic spectrum [124, 125]. This immediately allowed the establishment of notably stringent
constraints on the speed of the tensor modes, thereby ruling out theories of modified gravity that
predict a speed of GWs different from the speed of light [88].

Namely, these signals can serve as standard sirens, which means they provide a method of
constructing a Hubble diagram and derive estimations of the value of H0, independent of the
traditional distance ladder method [121]. This complementary approach is possible because the
amplitude of gravitational waves is practically inversely proportional to the luminosity distance
dL(z) to the source event from which it originates [126]. The electromagnetic counterpart signal
provides redshift measurements, meaning that H0 can be estimated using the relation between
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Figure 3.5: BAO distance and expansion rate data, derived from the SDSS collaboration’s
final results that span eight different redshift intervals, improved over two decades [31]. The
data includes isotropic BAO measurements denoted by DV (z)/rs, where DV (z) is the spher-
ically averaged volume distance and rs is the sound horizon at baryon drag, both defined in
Equations (3.4.2) and (3.4.7). It also comprises anisotropic BAO measurements, expressed
as DM (z)/rs and DH(z)/rs, where DM (z) is the comoving angular diameter distance and
DH(z) = c/H(z) is the Hubble distance, both elaborated in Equations (2.1.10) and (2.1.17).
These measurements are detailed in Table III of [31] (see references therein). The compilation
of data to produce this plot was provided by William Giarè.

the comoving distance and the luminosity distance in Equation (2.1.14).

Standard sirens cannot yet compete with other methods of estimating H0, with the current
constrained value subjected to significant errors: H0 = 70.0+12.0

−8.0 km/s/Mpc [127]. However, the
prospects for future observations are promising, as next-generation surveys can yield dozens or
even hundreds of additional measurements of H0 using standard sirens.

Presently, we have second-generation (2G) ground-based operational detectors, which include
Virgo [128], LIGO [129], and the Kamioka Gravitational Wave Detector (KAGRA) [130], which
will be joined by the Indian Initiative in Gravitational-wave Observations (IndIGO) [131], planed
for around 2030. The investment in maintaining and developing more detectors augments the
potential of GW astronomy, increasing the number of detected events (covering a larger cosmic
volume) and enhancing sky localisation (better triangulation to the source), which, in turn, fa-
cilitates counterpart searches. However, their third-generation (3G) successors aim for increased
sensitivity, precision, and a broader frequency range. The Einstein Telescope (ET) warrants par-
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ticular attention, as it is predicted to boost the present sensitivity tenfold [132]. Moreover, ET
is projected to widen the redshift horizon, for instance, z ∼ 5 for binary black holes (BBHs) in
contrast to the z ∼ 0.5 threshold of 2G instruments [133]. Forecasts suggest that the number of
traceable multi-messenger events might touch the count of tens of thousands of standard sirens
[134]. While ground-based detectors might span a frequency spectrum of 1 ≲ f ≲ 103 Hz [135],
forthcoming space-based 3G detectors, with particular focus on the Laser Interferometer Space
Antenna (LISA) [136], could reach peak sensitivities close to 10−3 Hz and identify GW events
beyond z = 20. Other 3G GW detectors have been planned, such as the DECi-hertz Interferom-
eter Gravitational Wave Observatory (DECIGO) [137]. In Chapter 8, we will explore a related
application of standard sirens centred on ET and LISA for comparison and joint analysis of
ground and space-based experiments. More precisely, we will forecast their constraining power
for different models in direct comparison with current data from standard candles and rulers.

3.4.4 Redshift Space Distortions

As we have seen in the previous sections, the measurements of distances to galaxies rely on
measuring their redshift. If the Universe were perfectly homogeneous, there would be a straight-
forward mapping from the radial distance (real space) to the redshift space [138]. However, we
have just seen that the Universe is not homogeneous1. The growth of inhomogeneous structures
leads to peculiar velocities in galaxies moving in clusters that add to the expansion redshift and
manifest through distortions in the mapping to redshift space. These distortions result in an
apparent enhancement of large-scale clustering in the radial direction compared to the trans-
verse direction, and the redshift distribution of galaxies appears disfigured. These redshift space
distortions (RSD) are a probe for the linear growth of structures and have been extensively
reviewed in the literature, e.g. in [139, 140].
The linear growth rate f(z, k) of structures is a differential measure of the evolution of the matter
fluctuations:

f(z, k) =
dlnδm(z, k)

dln a
=

1

H
δ′m(z, k)

δm(z, k)
, (3.4.9)

where the subscript m stands for the collective matter component (baryons+CDM) [141]. As the
name indicates, f(z, k) is a measure of the rate at which the matter perturbations grow, highly
correlated with the anisotropic clustering observed in redshift space distortions. Therefore, RSDs
serve as a probe for the combined quantity fσ8, which is the product of the growth rate and the
root mean square mass fluctuation amplitude for spheres of size 8h−1 Mpc, and which can be
used as a normalisation factor in the matter power spectrum at that scale [31]. More precisely,
σ8 is defined as

σ28 =

∫ ∞

0
W 2(kR)

P (k)

k
dk , (3.4.10)

1We have assumed that there is a homogeneous distribution on cosmological scales, which is a different
statement.



3 Cosmological Observational Tests 75

where W is a top hat filter function in Fourier space k

W (kR) = 3

[
sin(kR)

(kR)3
− cos(kR)

(kR)2

]
. (3.4.11)

Here, P (k) denotes the matter power spectrum as defined in Equation (3.2.1), and R represents
the σ8 scale radius 8h−1 Mpc [47]. The combination fσ8 becomes then

fσ8(z, kσ8) =
σ8(0, kσ8)

H
δ′m(z, kσ8)

δm(0, kσ8)
, (3.4.12)

with kσ8 = 0.125h Mpc−1, and σ8 is defined as

σ8(z, kσ8) = σ8(0, kσ8)
δm(z, kσ8)

δm(0, kσ8)
. (3.4.13)

For observational and degeneracy-breaking purposes, a related parameter is defined as S8 =

σ8
√

Ωm/3. S8 is conventionally employed to express the tension in measurements of σ8 for weak
lensing and CMB probes, and their correlation with measurements of Ωm, and will be the focus
of Section 3.6.

3.5 The Cosmological Parameters of the ΛCDM Model

The anisotropies of the CMB are dependent on the values of various parameters. The stan-
dard approach typically relies on six free and independent parameters chosen to avoid degen-
eracies and to improve the convergence of the model fit to the data. These parameters are
{ωb, ωc, h, τreio, As, ns}, which play a significant role in describing the primordial power spectrum
of fluctuations, the reionisation epoch, the expansion rate, and the constituents of the Universe.
In this section, we delve into the specifications of these parameters, exploring the implications of
their individual variation on the power spectrum of the CMB for the ΛCDM model by keeping
the remaining parameters fixed to Planck 2018 fiducial values [32], given in Table 3.1. The cor-
responding CMB temperature power spectrum change for variation of the six ΛCDM parameters
is shown in Figure 3.6 and detailed below.

3.5.1 Baryon and Cold Dark Matter Densities: ωb and ωc

Having fundamentally different properties, each present matter density influences the anisotropies’
imprint in distinct ways.
The baryon density, denoted as ωb = Ωbh

2, alters the drag experienced by baryons within the
tightly coupled baryon-photon fluid. Increasing the baryon abundance increases the drag, re-
ducing the sound speed of the acoustic oscillations described in Section 3.4.2, as depicted in
the upper left panel of Figure 3.6. Consequently, larger overdensities will be generated by the



76 3.5. The Cosmological Parameters of the ΛCDM Model

Parameters of ΛCDM from Planck

Parameter Estimated value

Baryon density ωb 0.02236± 0.00015

CDM density ωc 0.1202± 0.0014

Dimensionless Hubble constant h 0.6727± 0.0060

Optical depth τreio 0.0544+0.0070
−0.0081

Scalar tilt ns 0.9649± 0.0044

Scalar amplitude ln
(
1010As

)
3.045± 0.016

Matter density Ωm 0.3166± 0.0084

Λ density ΩΛ 0.6834± 0.0084

Proxy angular scale of the sound horizon 100θMC 1.04090± 0.00031

Normalisation of matter power spectrum σ8 0.8120± 0.0073

σ8(Ωm/0.3)
1/2 S8 0.834± 0.016

Angular scale of the sound horizon 100θ∗ 1.04109± 0.00030

Sound horizon at recombination r∗ [Mpc] 144.39± 0.30

Damping scale kD [Mpc−1] 0.14090± 0.00032

Reionisation redshift zreio 7.68± 0.79

Helium mass fraction Y BBN
P 0.246716+0.000062

−0.000055

Age of the Universe t0 [Gyr] 13.800± 0.024

Table 3.1: Estimates of the ΛCDM model cosmological parameters (upper section). The re-
maining parameters are either compatible with zero or can be derived (lower section) from the
standard six parameters above [32]. The results are obtained from the combination of all the
Planck spectra. The bounds on the parameters correspond to 1σ errors (68% CL).

cold dark matter potential wells, enhancing the odd-numbered peaks of the acoustic oscillations
relative to the even-numbered ones associated with compression due to the gravitational poten-
tial. Moreover, while more sensitive to the total matter density ωb +ωc, baryons induce changes
in the sound speed, which impact the size of the sound horizon, shifting all the peaks towards
larger multipoles. While also influencing the free electron fraction Xe

1, higher values of ωb are
associated with an increase in the thickness of the last scattering surface, leading to a minor sup-
pression of the diffusion damping at small multipoles (related to time variations in the optical
depth, τ̇reio).

1Xe = ne/nH represents the redshift dependence of the ionization/free electron fraction.
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Figure 3.6: Figure with CMB temperature power spectrum variations from variations δp of the
standard ΛCDM cosmological parameters p. The ΛCDM fiducial case is depicted as a dashed
line for reference. Variations in ωb and ωc implicitly hold h fixed, while variations in h hold the
cold dark matter and baryon densities fixed. Figure produced using CLASS and inspired by [142].

In the upper left panel of Figure 3.7, we also identify an overall suppression (enhancement) of the
matter power spectrum for higher (lower) values of the baryon density. Higher baryon densities
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Figure 3.7: Figure with variations in the matter power spectrum from variations δp of the
standard ΛCDM cosmological parameters p. The ΛCDM fiducial case is depicted as a dashed
line for reference. Variations in ωb and ωc implicitly hold h fixed, while variations in h hold the
cold dark matter and baryon densities fixed. Figure produced using CLASS.
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can amplify the large-scale BAO features in the matter power spectrum. Because baryons are
more affected by pressure effects from structure formation or radiation compared to dark matter,
it does not cluster as efficiently on small scales and higher values of ωb induce a suppression of
the amplitude of the spectrum. Finally, a higher baryon density effectively increases the Jeans
length (below which they do not collapse to form structure) and thus further suppresses structure
formation on small scales.

Even though dark matter does not interact electromagnetically, it is responsible for the gravita-
tional wells in which baryons and photons oscillate. This is illustrated in the upper right panel
of Figure 3.6, by an enhancement of the BAO features at large multipoles with the increase of
ωc = Ωch

2. CDM has an opposite effect on variations of τreio compared to baryons. An increase
in ωc shifts the epoch of matter-radiation equality to larger redshifts. Since the cold dark mat-
ter’s influence surpasses the photon-baryon fluid contribution to the gravitational potential after
equality, this implies that the radiation pressure plays a less pivotal role after equality (τ > τeq).
Being the motor of the baryon acoustic oscillations, the attenuation of the radiation’s influence
weakens the CMB anisotropies, particularly in the first peak, as the relative abundance of dark
matter is increased [93], a phenomenon known as radiation driving. Dark matter is the primary
driver of structure formation, with the variations in dark matter density becoming imprinted on
the CMB through the ISW effect at low multipoles.

This is also reflected in the matter power spectrum depicted in the upper right panel of Figure 3.7,
as a higher density of CDM will lead to more structure on all scales, effectively increasing its
amplitude. Consequently, a higher ωc is associated to larger values of σ8. Higher CDM density
results in faster structure growth, leading to more power on smaller scales and the peak of the
matter power spectrum is shifted to smaller scales

3.5.2 The Hubble Constant: H0

The Universe’s expansion rate can be directly extrapolated from the peaks of the CMB TT-
spectrum. The angular scale of the first peak, denoted as θrec, sets the horizon size at the time
of recombination and is parametrised as

θ∗ =
s∗
rs,∗

≈ τrec
τ0

, (3.5.1)

where s∗ is the sound horizon at recombination, approximately given by

s∗ =

∫ τrec

0
cs(τ) dτ ≈ τrec√

3
. (3.5.2)

The following peaks are located at an angular scale following the same pattern, that is, θ∗,n ≈ nθ∗,
placing the higher harmonics in the decomposition. A higher value of H0 (and equivalently
h) makes the angular diameter distance smaller, which means that the same physical scale
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corresponds to a larger angle on the sky. This shifts the acoustic peaks to larger angular scales
(i.e., smaller multipoles), as illustrated in the central left panel of Figure 3.6. The value of H0

indirectly affects early-Universe physics through its relation to other cosmological parameters.
The ISW effect, relevant at large angular scales (low ℓ), is sensitive to the rate of expansion
related to the critical density of the Universe, which in turn determines the redshift at which
matter and radiation densities become equal, with higher values of H0 leading to an enhancement
of the low-ℓ tail of the spectrum.

Analogously, in the central left panel of Figure 3.7, we identify an enhancement of the amplitude
of the matter power spectrum for higher values of h, associated with a slight shift of the peak
towards lower k-modes. There are different effects at play, but, more importantly, a faster
expansion can suppress the growth of structure, leading to less clustering on large scales. At the
same time, it also changes the maximum size of the cosmic structures by modifying the Hubble
horizon, shifting the turnover peak to larger scales.

3.5.3 Reionisation Optical Depth: τreio

Parameters like the optical depth to reionisation τreio capture the degree and timing of reioni-
sation. A larger optical depth damps the CMB anisotropies on all scales because some fraction
of the CMB photons have last scattered with free electrons not at the last scattering surface
but more recently. This overall damping is a multiplicative effect across all multipoles ℓ and is
depicted in the central right panel of Figure 3.6. More precisely, increasing the optical depth
leads to an overall suppression of the CMB power spectrum. This effect is highly degenerate
with the one generated by the scalar power spectrum parameter As, as will be discussed next.
This degeneracy is only broken by considering measurements of CMB polarisation [32].

In the central right panel of Figure 3.7, we see that τreio has a negligible impact on the matter
power spectrum for the scales considered. This is because the matter power spectrum reflects
the distribution of matter at later times, long after reionisation has ceased. By this time, most
of the imprints of this epoch have been washed out or are secondary to other physical processes.

3.5.4 Amplitude and Tilt of the Primordial Power Spectrum: As and ns

The matter power spectrum, introduced in Section 3.2, is sourced by the primordial (scalar)
power spectrum, which in turn is characterised by the parameters As and ns, defined at a pivot
scale of k∗ = 0.05Mpc−1 for Planck observations. These determine the strength and the scale
dependence of the initial density perturbations, respectively. A higher amplitude (As) means
more pronounced density fluctuations in the matter distribution, leading to stronger clustering
of matter and thus a more peaked matter power spectrum, as depicted in the lower left panel of
Figure 3.6. The amplitude is directly related to σ8 and directly scales the entire matter power
spectrum, as shown in the lower left panel of Figure 3.7.
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The parameter ns accounts for the tilt of the power spectrum: for ns > 1, there is more power
on smaller scales; for ns < 1, there is more power on larger scales, as depicted in the lower right
panel of Figure 3.6. Changing the tilt alters the relative height of the peaks and the angular
scales at which they appear. Since the tilt ns determines directly how the clustering power is
distributed across different length scales, in the lower right panel of Figure 3.7, we see that larger
values of ns lead to more power on smaller scales, making the matter distribution more clumpy
at small scales, greatly suppressing the power on larger scales.

3.5.5 Derived Parameters

In addition to the standard six parameters mentioned above, other parameters embody more
complex changes to the physics of the CMB anisotropies. These can be parameters of the
standard model, which are usually kept fixed - such as the number of relativistic degrees of
freedom Neff, the fraction of primordial helium YH or the mass of massive neutrinos mν - or
parameters that account for the introduction of new physical degrees of freedom in alternative
cosmological models. The effect of some examples of both classes of modifications in the CMB
anisotropies will be the focus of Part II. The estimated constraints on some of the relevant
cosmological and derived parameters of ΛCDM for the Planck 2018 analysis are reported in
Table 3.1.

3.6 Cosmological Puzzles and Observational Tensions

Albeit initially yielding great consistency confirmation in favour of ΛCDM, the recent advent of
observational precision and techniques has revealed unexpected irreconcilable predictions from
different probes, bringing to light a significant crisis for the standard model of cosmology [57,
77, 143–145]. These tensions arise from discrepancies between observations of the early and late
stages of the Universe, such as those of the model-dependent CMB data analysis [33, 146, 147]
and varied distance-ladder surveys [148–152], respectively. Although some of these inconsistencies
could be attributed to data errors and systematics, the statistical significance of roughly a 5σ

tension suggests flaws in the standard model itself, with many extensions being proposed in the
literature to ease this problem. Exploring alternative models may reveal new insights into the
enigmatic nature of the dark sector, the physics of the early Universe, or even the fundamental
assumptions of ΛCDM [153].

The level of concordance or discordance quantifies the tension TP (if any) on a parameter P
between the data sets i and j. Considering the tension in the estimate of a single parameter with
a posterior distribution that is approximately Gaussian, the difference between the mean values
in the posterior Pi and Pj divided by the respective quadrature sum of the standard deviation
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of the respective data sets, σPi and σPj , represents a robust tension metric:

TP ≡ Pi − Pj√
σ2Pi

+ σ2Pj

. (3.6.1)

But if we want to assess a tension in two or more parameters it can become inadequate, as not
all of the information can be captured with one-dimensional projections. There is no unique and
widely accepted metric for quantifying the tensions and for simplicity reasons we will always use
the metric defined in Equation (3.6.1) as a first approximation. Nevertheless we refer to [154] for
a more detailed account of this problem, including alternative metrics and illustrative examples.

3.6.1 The Hubble Tension

In broader terms, the Hubble tension often refers to the ≈ 5.0σ disagreement between the value of
the Hubble constant predicted by thePlanck collaboration [32],HPlanck

0 = (67.27± 0.60) km/s/Mpc
(red squared data point in the whisker plot of Figure 3.8) at 68% confidence level (CL), and the
latest constraint from the Supernovae H0 for the Equation of State of Dark Energy (SH0ES)
collaboration R22 [111], HR22

0 = (73.04±1.04) km/s/Mpc at 68% CL (blue crossed data point in
the whisker plot of Figure 3.8), based on the supernovae calibrated by Cepheids. A CMB analysis
by the Atacama Cosmology Telescope (ACT), combining data from the WMAP satellite, finds
a value consistent with and independent from Planck : HACT+WMAP

0 = (67.26± 1.1) km/s/Mpc
[146]. Nevertheless, it is crucial to recognise that there are multiple sets of measurements and
estimates for H0. These can be divided into two categories that are in agreement within their
groups, reflecting the persistence of the H0 tension: (i) indirect model-dependent estimates at
early times (such as CMB and Baryon Acoustic Oscillation experiments) that assume a ΛCDM
cosmology, and (ii) direct late-time model-independent measurements (such as distance ladder
and strong lensing). That is why the tension is said to arise between the CMB data and the
direct local measurements. This is depicted in the whisker plot of Figure 3.8 for a collection of
recent H0 estimates, showing the consistent trend between early and late time probes.

3.6.2 The S8 Tension

Recent observations of the large-scale structure in the Universe have allowed us to place con-
straints on the clustering strength of matter. However, these constraints also differ from those
reported by probes of the early Universe. More precisely, there exists a tension in the matter
clustering power between the primary anisotropies of the CMB, as measured by the Planck satel-
lite, and lower redshift probes such as weak gravitational lensing and galaxy clustering. [156–174]
at the level of 2−3σ. This tension is typically quantified in terms of the parameter S8, defined as
S8 ≡ σ8

√
Ωm/0.3, which regulates the magnitude of weak lensing measurements [175, 176]. The

S8 parameter is closely related to fσ8(z = 0) measured by redshift space distortions (see Sec-
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Figure 3.8: Various recent estimates of H0 from different probes, as detailed in Section 3.6.1.
The red and blue vertical bars illustrate the 68% CL regions for the values measured by the
Planck [32] and SH0ES [111] collaborations. The dashed line separates measurements from
probes based on the early and late Universe. The colours group the type of estimates: red for
CMB with Planck, dark red for CMB without Planck, blue for SNIa-Cepheid, navy for SNIa-
TRGB, sea green for SNIa-Miras, dark green for Masers, green for Tully Fisher, charcoal for
surface brightness fluctuation, yellow for SNII, and orange for GW related measurements. Plot
adapted from https://github.com/lucavisinelli/H0TensionRealm and based on [57, 155].

tion 3.4.4) and lensing probes, with f = [Ωm(z)]
0.55 being a good proxy for the growth rate in GR,

based simply on the matter density parameter Ωm at a given redshift z. In particular, lower red-
shift probes tend to favour a lower value of S8 compared to the high redshift CMB estimates (red
in the whisker plot of Figure 3.9). As an example, the latest cosmic shear analysis of KiDS (KiDS-
1000) and DES (DES-Y3) set SKiDS-1000

8 = 0.759+0.024
−0.021 [157] and SDES-Y3

8 = 0.759+0.025
−0.023 [160, 161]

(blue crossed data point in the whisker plot of Figure 3.9), respectively, consistent with the 2−3σ

tension with the fiducial Planck analysis, which gives SPlanck
8 = 0.834 ± 0.016. The addition of

https://github.com/lucavisinelli/H0TensionRealm
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secondary anisotropies from CMB lensing narrows the constraint to SPlanck+lens
8 = 0.832± 0.013

(red squared data point in the whisker plot of Figure 3.9). The agreement with high and other
low redshift measurements is recovered from the CMB lensing data alone. On the other hand,
a combination of the high-ℓ data from ACT and the low-ℓ measurements of WMAP [146] is
compatible with the Planck results SACT+WMAP

8 = 0.840±0.030, even though the error bars are
more accommodating.
It is important to note that unlike locally measured quantities such as the Hubble constant,
S8 relies on a specific cosmological model for its interpretation. In the cases reported in Fig-
ure 3.9, the underlying model is always the standard flat ΛCDM model, which, despite providing
a reasonable fit to the different data sets, yields a lower rate of structure formation compared
to what observations seem to suggest. Therefore, to arrive at a fair and accurate comparison of
S8 values, it becomes imperative to reassess the analysis of weak lensing data while assuming a
cosmological model beyond ΛCDM (as will be the focus of Part II), before quantifying any ten-
sion. This holds particularly true for cosmological models that exhibit variations in the growth
of structure compared to the standard scenario. While not necessarily a trivial task, by conduct-
ing this reanalysis under different cosmological frameworks, we can gain a more comprehensive
understanding of how S8 is affected and whether the observed tension persists across various
models. This approach promotes a more refined assessment of the discrepancies in S8 values,
disentangling the contributions of different cosmological parameters to the overall tension.

3.6.3 Lensing Excess

There is a potential indication of a systematic error in the Planck data, known as the Alens

anomaly. The parameter Alens was introduced in Ref. [177] as a rescaling factor for the effects of
gravitational lensing on the CMB angular power spectra. The term anomaly is employed since
it is an unphysical parameter computed through smoothing the peaks in the CMB damping tail.
When Alens = 0, there is no lensing effect, while Alens = 1 corresponds to the value expected in
general relativity. In Ref. [32], an analysis of ΛCDM+Alens finds Alens = 1.180 ± 0.065 at 68%

CL. In fact, the Planck CMB power spectra show a preference for Alens > 1 at more than 95%

CL for both the standard Plik [178] and the alternative CamSpec [179, 180] likelihoods, resulting
in a significant improvement of the statistical fit. When BAO data is included, the evidence
for Alens > 1 strengthens to more than and approximately 99% CL for Plik and for CamSpec,
respectively.
Remarkably, the inclusion of the Alens parameter in the analysis introduces a slight alleviation of
the cosmological tensions; namely, it reduces the Hubble tension from 5σ to 3.9σ and mitigates
the S8 tension with weak lensing experiments to less than 2σ, but is still insufficient to resolve the
cosmic tensions fully. If Alens is attributed to systematic errors in the Planck data analysis, it is
still valuable to understand how such systematics affect the constraints on H0, S8, and ultimately
the cosmological tensions. Nevertheless, it should be noted that ground-based CMB experiments
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Figure 3.9: Various recent estimates of S8 from different probes, as detailed in Section 3.6.2.
The red and blue vertical bars illustrate the 68% CL regions for the values measured by the Planck
[32] and DES-Y3 [160, 161] collaborations. The dashed line separates measurements from probes
based on the early and late Universe. The colours group the type of estimates: red for CMB with
Planck, dark red for CMB without Planck, blue for cosmic shear, navy for galaxy weak lensing, sea
green for CMB weak lensing, green for peculiar velocities, charcoal for RSD, and orange for cluster
abundance measurements. Plot adapted from https://github.com/lucavisinelli/H0TensionRealm
and based on [57, 155].

such as ACT and SPT, which are unaffected by the lensing excess, still find disagreement in the
values of H0 and S8.

The evidence for Alens > 1 can also be interpreted as evidence for missing physics in the the-
oretical frameworks. It may require considering a closed Universe, which poses challenges to
several observational measurements and to the simplest inflationary models [181–183], or hint at
alternative cosmological theories that modify GR [32, 184, 185]. If the Alens anomaly is otherwise
associated with some subtle and unobserved systematic error persistent through all releases of

https://github.com/lucavisinelli/H0TensionRealm
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the Planck data [32, 186–188] then its impact on the cosmological tensions needs to be com-
prehended. Recent measurements from ACT, SPT-3G, and the combination of Planck TT and
SPTPol data all exhibit consistency with the standard lensing effect predicted in the ΛCDM
model, e.g. AACT

lens = 1.01 ± 0.11 [146]. This suggests that the lensing anomaly is unique to the
Planck data at small scales and not present in other CMB experiments.

3.6.4 Hints for a Closed Universe from Planck Data

The enhanced lensing amplitude signal (Alens anomaly) observed in the CMB power spectrum [32,
177], as indicated by various data releases from the Planck collaboration, defies the standard
ΛCDM model paradigm. One of the explanations that have been put forward is the possibility of
having a closed Universe1, which is favoured over the flat scenario at 3.4σ level [32, 181, 182]. This
preference for a closed Universe is ascribed to the strong degeneracy between the Alens parameter
and the spatial curvature parameter ΩK . Moreover, a closed Universe could potentially address
the tension between the low and high multipoles of the angular CMB power spectrum [181, 189,
190]. Nevertheless, both effects could be manifestations of hidden systematics in the Planck data
or even just statistical fluctuations.
However, while Planck 2018 [32] reports ΩK = −0.044+0.018

−0.015, implying evidence for a closed
Universe at about 3.4σ, this evidence is reduced by replacing the baseline Plik likelihood [178]
with the alternative CamSpec [179, 180]. That being said, the estimated value ΩK = −0.035+0.018

−0.013

still shows evidence above the 99% CL. Other studies have also shown that taking a closed
Universe in the context of ΛCDM leads to an increase in the dark matter abundance, which in
turn exacerbates both the Hubble and S8 tensions, leading to a drastically small prediction of
H0 ∼ 55km/s/Mpc [32, 181, 182] from Planck.
However, alternative data combinations have been explored in the literature, leading to varying
degrees of preference (or lack thereof) for a closed Universe. For example, the recent results from
the ground-based experiment ACT, in an analysis including data from the WMAP experiment,
are fully compatible with a flat Universe, ΩACT

K = −0.001+0.014
−0.010 [146]. Bringing together the ACT

data with a fraction of the Planck data recovers some slight preference for the closed Universe
scenario [146]. On the other hand, the combination of Planck and BAO [114, 117, 118, 191],
Planck and CMB lensing [51] or Planck and Pantheon data [109], favour a flat Universe in all
cases. However, the robustness of this analysis is questionable since the combined data sets are
in disagreement at more than 3σ when the curvature is left to vary [181, 182, 192].
Moreover, while the spatial curvature prediction appears to be unaffected by local measurements
of the Hubble constant (H0) from the Cepheid distance ladder [193], its variation exacerbates
both the H0 and S8 tensions [181]. Therefore, adding the curvature degree of freedom to the
standard model cannot effectively account for the observed tensions and anomalies. Surveys such

1Or something that mimics the same signal and is being expressed through the variation of the spatial
curvature parameter.
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as the recently launched Euclid [89] have the potential to provide tighter constraints on ΩK -
optimistically of the order of ∼ 10−3 at 95% CL - and help break parameter degeneracies [194, 195]
and solve the anomalies in the Planck data [196].





4 Methodology

Vivemos exclusivamente no presente pois sempre e eternamente é o dia de hoje
e o dia de amanhã será um hoje, a eternidade é o estado das coisas neste momento.

— Clarice Lispector A Hora da Estrela

We live exclusively in the present because it is always eternally today and tomorrow will be a today, eternity
is the state of things at this very moment. — Clarice Lispector in The Hour of the Star

This section outlines the relevant statistical methods and tools used in cosmology for analysing
observational data, focusing on estimating model parameters. Any particular model can only
make statistical predictions about the Universe’s properties, meaning that we need to optimise
the amount of information that can be extracted from the available data to evaluate the validity
and predictions of these models effectively. For a more detailed overview of statistical methods
in cosmology, we refer to [197–199].

In Section 4.1 we provide a brief summary of the theory and methodology for statistical analysis
and inference of parameters, including tests to assess the goodness of fit of a particular model to
the data and its evidence compared with the standard ΛCDM case. In Section 4.2 we present
a brief review of the Einstein-Boltzmann codes in cosmology and their connection with MCMC
codes for model sampling. We close with a detailed account of the data sets considered for the
parameter estimates in this work.

4.1 Statistical Methods and Bayesian Inference

Cosmology is a unique science that fosters a strong synergy between theoretical model develop-
ment, numerical analysis, and the planning and treatment of observational data. As new theories
are put forth daily, data analysis in cosmology has become essential to test and possibly falsify
their statistical support. This is part of the quest to find a framework that can handle vast
amounts of data and address existing incompatibilities while navigating complexities such as
theoretical biases, model independence, overfitting due to excessive parameters, and parameter
space degeneracies. Ultimately, developing and improving current statistical methods linking
precision data with accurate theoretical predictions is paramount. Due to its nature, analysis
problems are inherently inverse problems, i.e. from collected data, we aim to deduce something
about the underlying physical processes that generated the data. For instance, we may use
Planck CMB data to fit the ΛCDM model and then infer e.g. the relative amount of dark matter
or baryons from these observations.

89
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Hence, we may categorise the data analysis process into three classes:

1. Bayesian inference is the tool used to transform observations into constraints on theoretical
models, which should balance complexity for data explanation and simplicity for concrete
prediction.

2. Parameter estimation aims to constrain the values of the model’s parameters and their
uncertainties, considering errors from experimental and inherent statistical uncertainty
from physical process randomness. A prominent example is the limited predictability of
the CMB pattern due to quantum processes during inflation, which can nonetheless still
be statistically modelled and taken into account along with measurement uncertainties.

3. Model selection involves selecting among multiple models proposed to explain the obser-
vational data, each representing different physical processes and offering a unique set of
parameters to be varied for data fitting.

4.1.1 Bayesian Inference

Bayesian inference is the dish of the day in the statistical analysis methods menu. Other subjects
have traditionally favoured the frequentist approach, which relies on the repeatability of the
experiment. The essence of Bayesian analysis lies in assigning probabilities to all variables,
handling them based on a set of rules that embody Bayes’ theorem. This theory aims to keep
updating our understanding as new data comes to light. This means that while all subsequent
steps follow some algorithm, a significant aspect of this approach is the need to quantify our base
knowledge before gathering new data. This is called the prior probability, which can be subject
to different views among researchers.
The posterior probability, the probability that the model’s varied parameter will adopt specific
values after the data is collected, is represented as p(θ|d). Here, θ represents the model’s unknown
parameter, while d represents the observed data. Using this formulation, one can determine the
expected values of the parameters and their associated uncertainties.
Usually, it is easier to calculate the reverse probability, p(d|θ). For example, we consider a
Gaussian model with mean µ and variance σ2. This model includes two parameters, θ = (µ, σ),
and the probability of a single variable d in relation to these parameters is described by

p(d|θ) = 1√
2πσ

exp

[
−(d− µ)2

2σ2

]
, (4.1.1)

which is not what we were initially looking for. Nonetheless, we can connect this with p(θ, d) by
applying the Bayes’ Theorem:

p (θ|d) = p (d|θ) p (θ)
p (d)

, (4.1.2)



4 Methodology 91

which expresses the confidence degree in the values of θ according to the information given
by the data d, or in other words, the probability that the parameters θ in the theory can be
explained by the data d. Here, p(θ|d) is the posterior probability of the parameters, while p(d|θ) is
referred to as the likelihood, also symbolised by L(d; θ). The prior probability, p(θ), expresses our
knowledge about the parameters before performing the experiment. This knowledge can come
from previous experiments or theoretical understanding. In cases where no previous information
exists, the prior is usually assumed to be a constant, also known as a flat prior.

The evidence, represented as p(d), is used to normalise the probabilities:

p(d) =

∫
p(d|θ)p(θ) dθ . (4.1.3)

For estimating parameters, the evidence does not depend on the relative probabilities of the
parameters; hence, it is often overlooked. Nevertheless, it is worth noting that the evidence
plays a significant part in model selection, relating what we learn about θ after seeing the data
(the posterior) to what we knew about θ before accessing the data (the likelihood and the prior).
Therefore, in some way, it measures how much we have learned or how much our knowledge has
been updated from the prior to the posterior. This is especially relevant when multiple theoretical
models are being evaluated, and there is a need to distinguish between them, regardless of their
respective parameters (this will be the focus of Section 4.1.3).

Assuming flat priors greatly simplifies the computation of the posterior:

p(θ|d) ∝ L(d; θ) . (4.1.4)

Even though we might possess the complete probability distribution for the parameters p(θ),
often it suffices to use the peak of the distribution as the parameter estimate. This method is
known as a maximum likelihood estimate. However, if the priors are not flat, the posterior peak
may not coincide with the maximum likelihood estimate.

We are generally interested in calculating the expectation value of a parameter, or a set of derived
parameters, f(θ), from the posterior distribution, also called the mean value of f(θ):

⟨f(θ)⟩ =
∫
f(θ)p(θ|d) dθ . (4.1.5)

When dealing with multi-parameter models, θ = θ1, ..., θi, ..., θn (for n > 1 parameters), it may
be necessary to extract from the multivariate posterior distribution the posterior of a subset
of parameters. This reduction of the posterior probability to a lower-dimensional subspace is
accomplished via a process called marginalisation:

f(θi) =

∫
...

∫
p(θi|d) dθ1...dθi−1 dθi+1... dθn , (4.1.6)
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where θi represents one of the elements of the n-dimensional subspace of parameters θ. This is
especially important when there are multiple nuisance parameters related to the experiment and
the method itself, which are not informative for the cosmological analysis.

The set of parameters most favoured by the data can be determined by finding the parameters
that maximise the posterior probability p(θ|d):

f(θ) |m= |maxθ p(θ|d)| . (4.1.7)

This is usually referred to as the best-fit, although strictly speaking, the term is used for the
parameter values that maximise the likelihood and it applies strictly to f(θ) |m in cases of
uniform priors. Alternatively, the mean parameter values can be estimated by computing the
posterior mean, also known as the marginalised mean.

Lastly, the confidence level for the derived parameters can also be computed as follows:

f(θi) =

∫
R(r)

p(θi|d) dθn = r . (4.1.8)

In this equation, r is a fraction associated with the likelihood that the parameters will fall
within a given parameter area R. The fractions often analysed are r = 0.683, 0.954, 0.997, which
correspond respectively to the 1σ, 2σ and 3σ confidence levels.

4.1.2 Parameter Estimation

The integral in Equation (4.1.8) can be computed numerically, limited to the maximum precision
permitted by the computing system in use. For cases where the number of parameters, also known
as dimensions, n, exceeds one, the most straightforward approach is to discretise the problem
and sum over a uniformly distributed grid in the parameter space. This grid must have a large
enough volume to cover all the regions in which f(θ)p(θ|d) is non-zero, with some particular width
and resolution in each direction, depending on the smoothness of f(θ) and p(θ|d). Nevertheless,
when dealing with a parameter space of high dimensionality, evaluating the likelihood on a grid
quickly becomes computationally expensive as the number of grid points exponentially increases
with the dimension. Fortunately, there are more efficient ways to sample the likelihood surface,
such as focusing on areas with a high likelihood. A popular approach in cosmology is the use of
Markov Chain Monte Carlo (MCMC) methods [199, 200].

Monte Carlo methods use random sampling, guided by some proposed distribution and accep-
tance criteria until the desired result is reached. In this case, we will obtain a chain of posterior
samples with an expected number density proportional to the posterior. A notable subclass is the
MCMC methods, which are characterised by their sequential nature, where each step depends
solely on the one before. This sequence is known as a Markov chain. Each step corresponds to
a specific value of the parameters for which the likelihood is evaluated.
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The elements of the Markov chain are structured to represent random samples from the pos-
terior parameter distribution, meaning that each chain element shows the probability of its
corresponding parameter values being correct. A straightforward method that accomplishes this
is the Metropolis-Hastings algorithm [201, 202], described in Algorithm 4.1

Algorithm 4.1 Metropolis-Hastings Algorithm

Step 1. Take a starting point in the parameter space randomly selected from the prior density.

Step 2. Propose a random candidate iteration based on some probability distribution for the
length and direction of the jump, as long as it fulfils the detailed balance condition, which
states that going back to the starting point is as likely as the iteration away from it. This can
be accomplished using a symmetric proposal function, for example, a multivariate Gaussian
about the current point. Calculate the likelihood at the new point and, consequently, the
posterior by multiplying by the prior.

Step 3. If the probability at the iteration candidate is higher, accept the jump. If it is lower,
accept the jump with a probability determined by the ratio of the posterior probabilities
at the new and old points. If the jump is not accepted, remain at the same point, adding
a duplicate to the chain.

Step 4. Repeat the procedure from Step 2 until the probability distribution is accurately
mapped. This can be checked by comparing chains starting from different points and
using convergence statistics tests.

The possibility of moving to a point with a lower probability ensures that the algorithm thor-
oughly explores the shape of the posterior near its maximum and does not get stranded in a local
maximum. The algorithm generally begins in a region with low likelihood and migrates toward
regions with high likelihood. The initial phase, known as the burn-in, depends on the starting
point and must be eliminated during the chain’s analysis. Once near the peak, most potential
jumps are in areas of lower probability, and the chain roams around the peak, mapping its shape.
The proposal function should be adjusted according to the scale of variation of the likelihood
near its maximum. A Gaussian function is commonly chosen, and its axes should ideally align
with the principal directions of the posterior to quickly navigate along parameter degeneracies.
Thus, a short initial run is often performed to map out the posterior distribution roughly, and
this mapping is used to optimise the proposal function for the actual computation. It can be
shown that the chain should sample the target distribution fairly once it has reached a stationary
distribution, i.e. once there are no significant differences between consecutive steps.

In practice, many chains are generated, starting from arbitrarily chosen positions in the parameter
space, which should be sufficiently separated from each other. This will generate a random
walk, following an algorithm that assigns higher jumping probabilities to iterations in which
the parameters contribute considerably to the distribution. On the other hand, it also implies
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that this algorithm is quite inefficient if the distribution is multi-modal, in which case other
sampling methods may be necessary. An alternative is the Nested Sampling algorithm [203].
This approach simplifies the problem by not sampling from the entire likelihood distribution but
rather by just sampling within progressively more significant regions. Instead of constructing
chains based on a random point from which we sample, we uniformly sample within some hard
bound on the likelihood. As we sample these live points, they are used to define a yet-to-be-
determined contour of potential likelihood regions. We aim to generate a sample within this
region, repeat the process based on the new sample, and continue this contraction cycle. The
essence of the method is that instead of generating a single chain that we sample across the entire
distribution, we aim to segment the distribution into numerous discrete levels or chunks. We
address a simplified problem within each segment that does not sample from the full likelihood
distribution but only within this unspecified region using a certain prior transform function.
The idea is that once the chains converge, the values deduced from each chain, like the sample
mean and variance, should align. More specifically, this method compares the variance (whether
on a single parameter or all of them) inside a chain with the variance across multiple chains.
This requires running multiple chains, looking at the variance of the parameter away from its
mean within each chain, and comparing it to the variance in the mean of that parameter across
chains. Exactly how the Gelman-Rubin diagnosis handles these variances is complex. However,
the important question for convergence is whether, as the chains get longer, these two variances
asymptotically reach stable values and whether those two values agree. This is measured as the
"r − 1 value" (r is expected to be 1 for full convergence of the chains), and a usual criterion is
to assume the MCMC has converged if max(r − 1) ≈ 10−2 across all the sampled parameters.
We will impose this condition for all the analyses in this dissertation.

4.1.3 Model Selection Methods

Many of the questions that we wish to answer in cosmology go beyond parameter inference and
fall into the model comparison realm. Examples of questions we will be asking in this dissertation
are:

• Does the Universe have a non-vanishing spatial curvature?

• Is dark energy dynamic?

• Is there evidence for a coupling in the dark sector?

It is important to highlight the fundamental difference between model fitting and selection. The
model fitting process relies on assuming that a particular model is the true model and extracting
the constraints that provide the best possible fit to the available data. On the other hand, in
model selection, we are interested in assessing the level of compatibility of each model with the
data. In exceptionally simple cases, we can select between models by comparing the maximum
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likelihood value, but this is not generally valid. A model with more degrees of freedom will
always give an equal or larger maximum likelihood, irrespective of the data: model complexity
is increased, then the maximum likelihood value will generally increase, often at the cost of
over-fitting the data. This means an accurate model selection method should account for and
penalise for the over-fitting present in models with increased complexity. The key difference is
in comparing posteriors instead of likelihoods.

Model Fit to Data

If the distribution functions are Gaussian, assuming flat priors, then maximising the likelihood of
a given model is essentially equivalent to the least square method of minimising the χ2 (best fit
of parameters), which according to Equation (4.1.1) corresponds to the exponent of the Gaussian
distribution

L(d|θ) ∝ exp(−χ2/2) , (4.1.9)

which is proportional to the peak in the posteriors for the flat-prior case. For non-Gaussian
distributions (e.g. a Poisson distribution), minimising the χ2 does not necessarily maximise the
likelihood that the fitted parameters reflect the data. In those cases the minimum χ2 might still
yield a good first approximation but the best-fitting parameters will generally be found through
the maximum likelihood estimation ∇θL(d|θ) = 0 instead [204].
For a simpler analysis, we can consider information criteria for approximate model comparison,
keeping in mind that these make use of considerably strong assumptions about the posterior
distribution:

• Akaike Information Criterion: AIC ≡ χ2
eff + 2k;

• Bayesian Information Criterion: BIC ≡ χ2
eff + k ln(n);

• Deviance Information Criterion: DIC ≡ χ2
eff + 2

[
χ̄2
eff − χ2

eff

]
;

where k is the number of fitted parameters, n is the number of data points, the terms

χ2
eff = χ2

min ≡ −2 ln(Lmax) , (4.1.10)

give the χ2 of the best-fit, and the upper bar denotes quantities computed at the average of the
posterior distribution.
In this case, the best model, the one that provides the best fit to the data, must minimise
the AIC/BIC/DIC. However, each criterion penalises models differently, with the AIC being
the simplest measure, only accounting for the extra parameters. The BIC includes a stronger
penalty for models with a larger number of free parameters k when the number of data points n
is sufficiently large and gives a better approximation to the full Bayesian evidence in the large
n limit. On the other hand, the DIC also considers whether information about the parameters
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is gained by evaluating the difference according to the average of the posterior distributions.
Because of all these subtleties, it is always preferable to calculate the full Bayesian evidence
(next section), although this may be non-trivial for more complex cases, in which the information
criteria already provide some useful insight.

Model Comparison

A unique combination of variable parameters and a prior distribution for these parameters dis-
tinguishes each model in our study. A crucial aspect of Bayesian analysis is that it differentiates
between a model where a quantity is fixed to a specific value and a more flexible model in which
that parameter is allowed to vary, even if occasionally assuming that particular value. To ex-
emplify this, we shall consider two competing models, labelled as M and N , with N being a
simpler model containing fewer parameters (nN < nM ). In addition, we assume that model N is
nested within model M , meaning the nN parameters of model N are also present in M , which
has a total of p = nM − nN additional parameters. In model N , these additional parameters
are set to reference values. We use d to denote the data vector, and θM and θN to denote the
parameter vectors (of lengths nM and nN respectively). Bayes’ theorem determines the posterior
probability of each model:

p(M |d) = p(d|M)p(M)

p(d)
, (4.1.11)

where p(M) represents the prior information on the model M and a similar equation applies
for model N . The term p(d|M) is the evidence which we have already encountered in Equa-
tion (4.1.3), where the |M bit was discarded since we were focusing on one model only. Ac-
cordingly, it can be written in terms of its marginalisation over the parameter space, leading
to:

p(d|M) =

∫
dθMp(d|θM ;M)p(θM |M) , (4.1.12)

which is a multi-dimensional integration. The ratio of the posterior probabilities for the two
models can be written as:

p(N |d)
p(M |d)

=
p(N)

p(M)

∫
dθNp(d|θN ;N)p(θN |N)∫
dθMp(d|θM ;M)p(θM |M)

. (4.1.13)

If we do not have any preference towards either model, i.e., p(N) = p(M), this ratio simplifies
to the ratio of the evidence, which is referred to as the Bayes Factor [205],

BN ;M =

∫
dθNp(d|θN ;N)p(θN |N)∫
dθMp(d|θM ;M)p(θM |M)

. (4.1.14)

The more complex model M inevitably yields a higher likelihood than the simpler nested model
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N . However, the evidence tends to favour the simpler model if the fit is nearly as good due to the
smaller prior volume. If we assume uniform, and therefore separable, priors for each parameter,
we can express the volume as p(θM |M) = (∆θM1 ...∆θ

M
nM

)−1 and

BN ;M =

∫
dθNp(d|θN ;N)∫
dθMp(d|θM ;M)

(∆θM1 ...∆θ
M
nM

)

(∆θN1 ...∆θ
N
nN

)
. (4.1.15)

We must integrate the likelihood across the parameter space to derive the evidence. While this
is a standard mathematical problem, its complexity is ascribed to the most likely case that the
integrand is extremely sharply peaked, and we cannot predict where this peak will occur in the
parameter space. Moreover, the multi-dimensional parameter space makes individual likelihood
evaluations computationally expensive. Bayesian model selection techniques rely on efficient
algorithms capable of handling this type of integral. It is useful to establish a reference scale to
evaluate differences in the evidence. The Jeffreys scale [206] is a standard criterion that measures
the strength of evidence favouring a model. A revised version proposed by Kass and Raftery
[198, 207] is presented in the following table:

| lnBN ;M | Fractional Odds Model’s Probability Evidence

< 1.0 < 3 : 1 < 0.750 Inconclusive

1.0 to 2.5 < 12 : 1 0.923 Weak to Moderate

2.5 to 5.0 < 150 : 1 0.993 Moderate to Strong

> 5.0 > 150 : 1 > 0.993 Very strong or decisive

Table 4.1: Jeffreys scale to evaluate the strength of the evidence of a model N over another
model M, in terms of the absolute value of lnBN ;M , with a positive (negative) value indicating
support for model N (M).

In summary, the Bayes factor strikes a balance between fit quality and additional model com-
plexity. It rewards highly predictive models whilst penalising models with unnecessary extra
parameters. This principle is often referred to as Occam’s razor.

4.2 Einstein-Boltzmann Codes

In Section 2.2, we have introduced the equations governing the evolution of gravity and the
matter fields for the inhomogeneous Universe, namely the evolution of the fluctuations produced
in the early Universe and that grow over time into the large-scale structures pattern we observe.
However, the dynamics of this system of matter perturbations have a quite intricate character,
requiring specialised numerical tools to analyse their evolution.
Various numerical codes, or Boltzmann solvers, have been developed to facilitate this complex
task, starting with COSMICS [208], followed by CMBFAST [99], CMBEASY [209], and more recently,
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CAMB [210, 211] and CLASS [95, 101]. These codes are engineered to solve the Boltzmann and fluid
equations of motion for every type of matter in the Universe. The work presented in Part II of this
dissertation relies on a modified version of CLASS, which includes an implementation of general
coupled dark energy. While both CLASS and CAMB aim to accomplish the same results, their
implementations differ in several ways. CLASS is the more recent of the two, launched publicly in
2011, compared to CAMB, which has been public since 2000. Its design is more modular than
CAMB ’s original Fortran 90 version, making it easier to modify. Furthermore, CLASS is written in
C, which some users might find more approachable than Fortran. Nevertheless, both codes now
include a user-friendly Python wrapper, and the choice between the two boils down to individual
preference.

CLASS1 (Cosmic Linear Anisotropy Solving System) was originally developed on request of the
Planck science team as a tool independent from CAMB to check for possible bias in parameter
estimation introduced by the code. Ultimately, the CLASS-CAMB comparison has led to progress in
the accuracy of both codes, with the agreement established at 0.01% level for CMB observables,
using highest-precision settings in both codes. CLASS calculates various cosmological observables
such as CMB anisotropy power spectra, matter power spectra, and the primordial power spec-
trum. It is especially tailored for solving Einstein-Boltzmann equations - the equations describing
cosmological perturbations’ evolution — and can simulate the evolution across numerous cos-
mological scenarios and particle types. The software features a modular architecture. It starts
by reading and initialising user-specified input parameters, followed by a one-time calculation
of all vital background quantities, thereby avoiding redundant computations. These quantities
are stored for future use. Next, the code calculates thermodynamic aspects of the Universe,
including free electron fraction and matter temperature evolution, which are solely dependent
on the background evolution. Subsequent modules calculate the primordial power spectrum and
evolve perturbation equations to compute the power spectra requested by the user. If neces-
sary, non-linear scales can be modelled using different approaches. All output data are saved in
designated files. We refer to lecture notes available at [212] for more in-depth information.

The CLASS code has been adapted for interacting dark energy for the purpose of this dissertation,
including all the models considered in Part II. This involved several changes to existing modules,
optimised for ΛCDM. Therefore, considerable adjustments had to be made to the input, back-
ground, thermodynamics and perturbation modules. Although still a private patch, the version
modified from scratch during this PhD accommodates any coupling in the dark sector, including
the more general disformal case (discussed in Chapters 8 and 9), and also different types of scalar
fields for both dark energy, as introduced in Section 5.2, and is flexible enough to allow for the
future incorporation of similar effects, like universal coupling to the whole matter sector.

CLASS can be directly interfaced with the sampler MontePython2 [213, 214], a widely used tool for

1https://github.com/lesgourg/class_public
2https://github.com/brinckmann/montepython_public

https://github.com/lesgourg/class_public
https://github.com/brinckmann/montepython_public
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MCMC analysis in cosmology based on Python. It enables sampling various model parameter
spaces, essentially analysing any cosmological data. Theoretically, observables are calculated
through CLASS via the Python wrapper. MontePython supports different sampling algorithms,
such as the Metropolis-Hastings and Nested Sampling, and various convergence tests, including
the Gelman-Rubin diagnosis [215]. This and other statistical measures can be calculated with the
aid of the Python GetDist1 [216] package that takes in the chains generated by MontePython.
In order to determine the goodness-of-fit for a particular model, we will report the difference
between the value of the minimum χ2 test in a model M with respect to the ΛCDM model,
∆χ2

min = χ2
min,M − χ2

min,ΛCDM, in the tables of parameter constraints. Additionally, we report
on the Bayesian evidence model comparison analysis, for which we used the public MCEvidence2

code [217].

4.3 Baseline Data Sets

The baseline data set used throughout this dissertation consists of particular combinations of
existing data:

1. The Planck 2018 temperature and polarisation (TT TE EE) likelihood, which includes low
multipole data (ℓ < 30) [32, 33, 178]. We refer to this as Planck 2018 or Pl18.

2. The Planck 2018 lensing likelihood, constructed from measurements of the lensing potential
power spectrum [51]. We refer to this as Planck lensing or Pl18len.

3. Baryon Acoustic Oscillations measurements, collected from the 6dFGS [118], SDSS MGS
[117], and BOSS DR12 [114] surveys. We denote this simply as BAO.

4. Type Ia Supernovae (SNIa) distance moduli measurements, taken from the Pantheon sam-
ple [109]. We term this data set as Pantheon or SN.

For the Planck data, we consider both the high-multipole likelihood (including multipoles 30 ≲

ℓ ≲ 2500 for the TT spectrum and 30 ≲ ℓ ≲ 2000 for TE and EE spectra) and the low-E
polarisation likelihood (covering the multipole range 2 ≤ ℓ ≤ 30 for the EE spectrum). We
can derive constraints on the cosmological and model-specific parameters by analysing Planck
temperature anisotropies and polarisation measurements.
We also test the differences in the constraining power in adding the Planck lensing measurement,
as introduced in Section 3.3.4, the most significant detection of CMB lensing to date [51], which
helps improve constraints on cosmological parameters, with a particular focus on parameters
that affect late-time expansion and the background geometry.

1https://github.com/cmbant/getdist
2https://github.com/yabebalFantaye/MCEvidence

https://github.com/cmbant/getdist
https://github.com/yabebalFantaye/MCEvidence
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While Planck lensing measurements partially break the geometric degeneracy in the H0 and Ωm

parameters, incorporating BAO measurements from galaxy surveys proves to be a much more
effective way to shatter this degeneracy in the geometrical sector, in particular in the relative
abundance of matter. The BAO measurements, being relatively simple geometric measurements
unaffected by non-linear physics, offer a robust geometrical test of cosmology due to the large
scale of its acoustic peak. We use the standard combination of measurements of DV /rd from the
6dF survey at an effective redshift z = 0.106, the SDSS Main Galaxy Sample at z = 0.15, and
the final BOSS DR12 data with separate constraints on H(z)rd and DM/rd in three correlated
redshift bins at z = {0.38, 0.51, 0.61}.



5 Beyond the Standard Model: Coupled Dark
Sector

Mas o vazio tem o valor e a semelhança do pleno. Um meio de obter é não procurar,
um meio de ter é o de não pedir e somente acreditar

que o silêncio que eu creio em mim é resposta a meu – a meu mistério.
— Clarice Lispector A Hora da Estrela

But the emptiness has the value and the appearance of plenty. One way of getting is not looking, one way
of having is not asking and only believing that the silence I believe to be inside me is the answer to my — to my
mystery. — Clarice Lispector in The Hour of the Star

In this chapter, we introduce the formulation of alternative theories of gravity, with a particular
focus to models where dark matter and dark energy experience some non-standard interaction,
as alluded to in Section 5.1. We present some examples of different dark energy models and their
cosmological consequences in Section 5.2, in which a dynamically evolving scalar field replaces
the cosmological constant. Section 5.3 reports on models where there is a universal coupling
of dark energy to the entire matter sector through conformal and disformal transformations of
the metric tensor. We close with Section 5.4 with an introduction to models of non-universally
coupled dark matter and dark energy, which will be the central focus of the work reported in
Part II.

5.1 Beyond ΛCDM

As presented in Chapter 2, the resurrection of the need for a cosmological constant was prompted
by the use of the type Ia SNe distance-redshift relation to estimate the value of the Hubble
constant, unveiling a Universe expanding at an accelerating rate [26, 27]. This observation was
further cemented by simultaneous CMB anisotropy measurements, which independently found
a preference for ΛCDM cosmology with a low mass content [218]. Nevertheless, as was also
discussed in Sections 2.5 and 3.6, the concordance model is plagued by theoretical inconsistencies
and, arguably more grievous, observational tensions. In an attempt to address these issues, a
wide range of alternatives to the cosmological constant have been put forward in the literature
[153], typically replacing the cosmological constant with another mechanism for accelerating the
Universe. While providing a more elucidatory theoretical framework or vaster phenomenology,
these approaches come at the cost of introducing modifications to one or more of the assumptions
underlying the standard model, as briefly described in Chapter 3. While these proposals can take
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several forms1, the results reported in Part II all rely on some extension to the dark sector in the
standard ΛCDM action based on GR with a matter sector, and which we write again explicitly
to make the modifications clear later in the chapter:

SΛCDM =

∫
d4x

√
−g

[
M2

pl

2

(
R(gµν)− 2Λ

)
+ LM(gµν , ψM)

]
. (5.1.1)

The first term is the Einstein-Hilbert action, as defined in Equation (1.3.9), including the cos-
mological constant Λ, and LM collectively denotes the matter Lagrangian for the fields ψM,
incorporating the standard model matter and dark matter.
The models studied in Part II rely on the extensions to the action in Equation (5.1.1) listed
below, and how such extensions are motivated will be the focus of the referenced upcoming
sections:

1. Introducing a scalar field dark energy component ϕ that replaces the cosmological constant
Λ, and can have various natures, as introduced in Section 5.2 - Chapters 6 to 10;

2. Considering a non-universal coupling in the dark sector only, as motivated in the context of
conformal and disformal transformations for universal couplings in Section 5.3 - Chapters 6
and 7;

3. Providing a joint scalar field origin for the dark sector through a joint geometrical or
fluid description for dark matter with a scalar field origin (with the dynamics as detailed
in Section 5.2), that is approximated by a coupling in the dark sector as described in
Section 5.4 - Chapters 9 and 10.

The points listed above are encapsulated in the following extended effective action for an inter-
acting dark sector

SIDS =

∫
d4x

√
−g

[
M2

pl

2
R(gµν) + Lϕ(gµν , ϕ,∇µϕ) + LSM(gµν , ψSM) + LDM(gµν , ϕ,∇µϕ, ψDM)

]
,

(5.1.2)
where ϕ is the dark energy scalar field, ψSM/DM denote the uncoupled standard model fields
and the coupled dark matter sector (which in Chapter 10 is approximated from a scalar field
description), respectively. Effective field theories of this kind have the advantage of being easy to
implement while preserving the general covariance of the theory. We formulate toy models based
on some simplistic solutions to cosmological puzzles, aiming to reproduce the effective behaviour
of a more fundamental (but also more complicated) underlying dynamics. Ultimately, these
stand for cosmologists as lighthouses do to sailors, signalling any effects beyond the standard

1Extensions to GR are conventionally categorised into three classes: i) added dimensions to the spacetime; ii)
higher-order derivatives of the curvature or other related invariants; iii) introduction of extra fields.
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model. As will become clear, the advantage of modifying only the dark sector is twofold: first,
the theory can still be formulated at the Lagrangian level and relying only on the addition of one
scalar degree of freedom; second, interactions are only allowed in the dark sector [219], whose
nature is still not well understood, and is mostly probed cosmologically through the characteristic
gravitational signatures left in the large scale structure and the CMB. This means that the local
precision tests of general relativity can be evaded [125, 220–223], since the fifth-force mediated by
ϕ will only influence the component that is not heavily restricted by the SM of particle physics.
Moreover, the interaction would also influence the dynamics of dark energy, possibly contributing
to explain some of the theoretical issues that plague the dark sector, as discussed in Section 2.5.

5.2 Scalar Field Dark Energy

Originally, the basic premise behind extensions to GR was the idea that the value of Λ is measured
to be so small because it has been progressively converging to its natural vanishing state, i.e.
Λ → 0, over an extended period through the cosmic history. This evolution provides a tentative
resolution of the theoretical problems discussed in Section 2.5. The earliest expression of this
thought can be traced back to Dolgov [224], who proposed a variation of the theory of Brans and
Dicke [225], in which both Λ and the strength of the gravitational interaction are evolving to
zero. In that context, Reuter and Wetterich [56, 226] explored possible formulations yielding field
equations where a dynamical Λ gradually vanishes. Around the same time, Peebles and Ratra
[227] showed how the energy density can be driven towards zero by a scalar field self-interacting
potential, mimicking an asymptotically decreasing Λ, under the assumption that the quantum
vacuum energy density vanishes. The name quintessence was introduced by Caldwell, Davé,
and Steinhardt [228–230] to refer to this dynamically changing effective cosmological constant.
Inaugural considerations on the cosmological implications of this concept were further elaborated
in [55] by Ratra and Peebles.

A natural fundamental candidate for a dynamically changing entity in modern physics is a scalar
field. Relevant examples are the recently detected Higgs field [75], responsible for the mechanism
of providing mass to the particles of the standard model of particle physics, or the inflaton,
considered to be the scalar field that drives inflation [231]. Both these scalar fields play a
critical role in models of fundamental physics. The inflaton, in particular, gives rise to dynamics
similar to dark energy since both have to be responsible for accelerated cosmic expansion periods.
Additionally, there is a precedent of solving problems related to missing energy by hypothesising
a new particle or field, as was the case with neutrinos and dark matter, with the latter still
awaiting direct detection. Scalar field-based theories had been explored in the literature long
before the discovery of the accelerated expansion, as viable alternatives to GR. Inspired by Weyl
and Dirac’s studies leading to a slowly varying gravitational constant [232–236], in 1959 Jordan
showed that by describing gravitational couplings through a scalar field, the extra degree of
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freedom behaves like a matter field obeying conservation relations [237]. These considerations
developed into a complete gravitational theory in 1961, developed by Brans and Dicke (BD)
[225], in which the gravitational interaction is ascribed to the metric with the addition of one
scalar degree of freedom, which came to be known also as the Jordan-Fierz-Brans-Dicke theory of
gravity - in recognition of Fierz’s and Jordan’s seminal works on the physical understanding and
formulation of this framework [237, 238] - and is widely considered to be the inaugural alternative
to GR [239].

Under these considerations, the quintessence model has been generalised to include a dynamical
scalar field playing the dark energy role, varying slowly along some potential V (ϕ). According to
Equation (2.1.26), this evolving scalar field accounts for the missing energy needed to maintain
the Universe’s geometrical flatness. While bearing similarities to the slow-roll inflation period
in the early Universe [47], the late-time acceleration mechanism differs in that non-relativistic
matter (dark matter and baryons) cannot be ignored for a complete understanding of the dy-
namics of dark energy. In principle, this evolving scalar field could interact with other species
directly through a fifth-force, allowing for a DE component that naturally self-adjusts to repro-
duce the inferred present energy density of Λ. For instance, this mechanism can be realised
with attractor-like DE solutions, which reproduce the present energy densities for a vast range
of initial conditions.

An alternative approach is to consider parameterisations that can be compared against observa-
tions, disregarding the fundamental or physical origin of such extensions, hoping to understand
the direction hinted at by the data. A famous example, analysed and constrained by the Planck
collaboration [32] as well, is the wCDM model, consisting of a constant equation of state for
the dark energy fluid, that deviates from w = −1, as assumed in the ΛCDM model. The value
of w is estimated from observational data and consistency relation checks. Alternatively, the
parameterisation can be generalised according to some redshift-dependent evolution w(z), which
provides insight into dark energy but is limited to handpicking a particular subset of functions
that determine the phenomenology of the theory [240]. The opposite side of the coin is recon-
structing the free function(s) in w(z) without prior restrictions or considerations [241]. While
parameterisations are helpful to capture physical features in a somewhat model-independent man-
ner, self-consistent and predictive frameworks are needed to comprehend and test the model’s
assumptions across different regimes.

The remainder of this section focuses on prominent scalar field candidates for dark energy com-
monly considered in the literature and whose characteristic nature leads to distinct features in the
cosmological evolution that could help alleviate the standard model’s cosmological tensions and
anomalies. Other possibilities have been proposed but will not be discussed in detail here, and
the interested reader is referred to reviews on alternative theories of gravity such as [90, 153, 242].
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5.2.1 Quintessence Field

In the framework of the FLRW cosmological background introduced in Section 2.1, a cosmolog-
ical constant term represents a source with a constant equation of state parameter, wΛ = −1.
A similar behaviour at late times can be reproduced by a dynamically evolving scalar field,
minimally coupled to gravity, of which the simplest example is the canonical scalar field ϕ as
a QFT generalisation of the non-relativistic particle. This scalar dark energy source has been
appropriately named quintessence in a bow to Aristotle’s fifth natural element. The crucial as-
pect of this framework is that the equation of state parameter is no longer constant and evolves
according to ϕ and ϕ̇, naturally addressing the conceptual issues of the cosmological constant
discussed in Section 2.5, such as the incompatibility between the small value required for the
cosmological constant to match the observations and the vacuum energy predictions from QFT.
In fact, in a homogeneous Universe accurately described by GR, the second Friedmann equa-
tion, Equation (2.1.19), implies that cosmic acceleration can be achieved so long as the total
energy-momentum tensor components meet p < −ρ/3. From this, a new cosmic fluid can drive
the acceleration at the cost of violating the strong energy condition [56, 227]. The quintessence
scalar field is a traditional example of such scenarios, and can be incorporated directly in the
gravitational action alongside all the matter sources (in Sm), with a standard kinetic term and
a self-interacting potential V (ϕ) yielding

S =

∫
d4x

√
−g
[
M2

Pl
2
R− 1

2
(∇ϕ)2 − V (ϕ)

]
+ Sm , (5.2.1)

where ϕ is the quintessence field which has dimensions of mass and, once more, the first term
is simply the Einstein-Hilbert action with M2

Pl = 1/(8πG), assuming Λ = 0. The term (∇ϕ)2 =

gµν∂µϕ∂νϕ encodes the dependence on the kinetic evolution of the field.

The contribution of the scalar field to the total energy-momentum tensor is given by the variation
of the action in Equation (5.2.1) according to the metric and reads

T ϕ
µν = ∂µϕ∂νϕ− gµν

[
1

2
gαβ∂αϕ∂βϕ+ V (ϕ)

]
. (5.2.2)

In the context of the flat FLRW background metric, Equation (1.6.6), the dynamical evolution
of the scalar field is extracted through variation of the action in Equation (5.2.1) with respect
to ϕ itself and results in the Klein-Gordon equation in an expanding Universe:

□ϕ− dV

dϕ
= 0

FLRW−−−−→ ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 . (5.2.3)

The energy density and pressure of the scalar field are computed from Equation (5.2.2):

ρϕ = −T 0
0 =

1

2
ϕ̇2 + V (ϕ) , and pϕ = T i

i =
1

2
ϕ̇2 − V (ϕ) . (5.2.4)
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Therefore, in the case of a single-component Universe ruled by this scalar field, the Friedmann
equations track its evolution as follows:

3M2
PlH

2 =
1

2
ϕ̇2 + V (ϕ) , and 3M2

Pl
ä

a
= −ϕ̇2 + V (ϕ) . (5.2.5)

As we can see from Equation (5.2.5), the field yields a positive accelerating contribution for ä > 0

as long as ϕ̇2 < V (ϕ); therefore, in order to explain the accelerated phase without invoking a
cosmological constant, the scalar field dynamics must be designed in such a way to fulfil this
condition. More precisely, the equation of state parameter is given by:

wϕ =
pϕ
ρϕ

=
ϕ̇2 − 2V (ϕ)

ϕ̇2 + 2V (ϕ)
. (5.2.6)

It can be readily appreciated that there are two limits to this equation: if the potential is
sufficiently flat at late times such that ϕ̇2 ≪ V (ϕ), then wϕ ≃ −1, leading to a slow-roll phase of
cosmological constant-like accelerated expansion; if otherwise the field dynamics is dominated by
its kinetic energy, that is ϕ̇2 ≫ V (ϕ), then wϕ ≃ 1. The former is what makes a canonical scalar
field the simplest dynamical candidate for dark energy with different models distinguished by the
form of their potential V (ϕ), which determines how ϕ portrays the expansion of the Universe.

Nevertheless, quintessence fields have little impact on the growth of cosmological perturbations
and are therefore challenging to probe with large-scale structure observations, producing only
minor modification on the large-scale CMB through the change in the expansion history (see
Section 3.3). In addition, the potential can be chosen to satisfy practically any expansion history
(with w ≥ −1), making the general case very unpredictable without further requirements on V .

A sub-class of quintessence models is the tracker models. These theories exhibit a particular
evolution of the energy density ρϕ as it tracks the dominant component of the Universe. In this
way, the coincidence problem is mitigated as the other components determine the evolution of
ρϕ. A potential that produces such an evolution, traditionally named the Ratra-Peebles potential
[55, 80], is

V (ϕ) =
V0
ϕα

, (5.2.7)

where α > 0 is a constant power left as a free parameter [243–246]. In this scenario, ρϕ will
mimic the energy density of the dominant background component ρB in such a way that the
equation of state parameter becomes

wϕ =
αwB − 2

α+ 2
. (5.2.8)

Imposing the acceleration condition ä > 0 from Equation (2.1.19) to Equations (5.2.6) and (5.2.8)
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implies [80]

ϕ̇2 <
2

3
V (ϕ) , and α <

2

2wB + 1
. (5.2.9)

Accordingly, if the dominant contribution comes from matter, wB = wm = 0, accelerated expan-
sion is achieved simply through the condition α < 2. Without further modifications, tracking
solutions lead to an overall enhancement of the Hubble rate at all times, indirectly reducing
the clustering rate of ordinary matter and possibly leading to a significant early dark energy
contribution in the early Universe [247].

Another standard class of quintessence potentials is the exponential case [248–250], which leads
to a power-law expansion and takes the form:

V (ϕ) = V0 exp

(
−λ ϕ

MPl

)
, (5.2.10)

where V0 is still the scale of the potential, and the constant λ gives the steepness of the expo-
nential. In this simple case, the field evolves as ϕ ∝ ln t and accelerated expansion is achieved
depending on the value of λ, namely λ2 < 2 is required. Arguably more important is the fact that
the exponential potential admits cosmological scaling solutions [248, 251], in which the field’s
energy density (ρϕ) scales proportionally to the background fluid’s energy density ρB [252–257],
that is

ρϕ
ρB

= r , (5.2.11)

where r is a nonzero positive constant, and the field can mimic the background even if it is
sub-dominant over the radiation and matter-dominating eras. In this case, as long as the scaling
solution is the attractor, then for any generic initial conditions, the field will sooner or later enter
the scaling regime, thereby introducing a strategy to address the fine-tuning problem of dark
energy. It is worth mentioning that scaling solutions live on the border between acceleration
and deceleration. We also note that the system needs to exit from the scaling regime defined
in Equation (5.2.11) to bring about an epoch of accelerated expansion. For this purpose, the
field’s energy density must catch up to that of the fluid, provided that the potential is shallow
relative to the one corresponding to the scaling solutions. For instance, it has been shown that
the following type of double exponential potential can account for this transition [251]:

V (ϕ) = V0

[
exp

(
−λ ϕ

MPl

)
+ exp

(
−µ ϕ

MPl

)]
, (5.2.12)

where λ and µ are positive constants. The requirement is that the λ-exponential term provides
the scaling during the radiation- and matter-dominated eras before the µ-exponential term takes
over. The scalar field is then driven out of the scaling regime and towards a solution in which
it dominates. An important advantage of the double exponential potential is that the scaling
regime occurs for a wide range of initial conditions, followed by an accelerated expansion phase
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once the potential becomes shallow, evading the general fine-tuning of initial conditions of the
scalar field in most quintessence models. For a cosmological analysis of quintessence with other
potentials see, for example, [249, 251, 255, 258–268].
Quintessence models will be the main focus of Chapter 6. Beyond the technical details, it is
essential to highlight the resemblance between the action of the quintessence model and that of a
general scalar-tensor theory. The boundary between these two theories is somewhat blurred, and
it has been shown that quintessence models can be recast into a Scalar-Tensor theory analogous
to the Jordan-Brans-Dicke formulation by applying a Weyl rescaling of the metric [153, 269].

5.2.2 K-Essence Models

A further extension of quintessence is the k-essence model [270–272], in which a canonical field
does not drive the accelerated expansion via a slowly varying potential, but by non-standard
modifications to the kinetic energy of the scalar field instead, i.e.

S =

∫
d4x

√
−g
[
M2

Pl
2
R+ LK(ϕ,X)

]
+ Sm . (5.2.13)

where the Lagrangian density LK encapsulates the most general scalar field action, which is a
function of both ϕ and its kinetic energy X = −1

2(∇ϕ)
2, and of which quintessence is a particular

case. While k-essence fields have a significantly increased number of phenomenological features
when compared with their quintessence ancestors, the trade-off is the fact that the action in
Equation (5.2.13) is not guaranteed to be free of pathological or unstable behaviour, such as
ghost degrees of freedom or superluminal propagation [273]. K-essence models are motivated by
low-energy effective string theory where an L-like term of the form in Equation (5.2.13) appears
for the dilaton field [274]. The possibility of achieving an accelerated expanding period from the
action in Equation (5.2.13) was suggested in the context of inflation [274], with the extension to
the late-time dark energy scenario first proposed in [270], with later generalisations establishing
the concept of k-essence.
The scalar field action LK is made more tractable by assuming that it is separable in ϕ and
X, and in particular, the simple case of the ghost condensate model is often assumed, in which
LK(ϕ,X) = f(ϕ)(X2/M4 −X), where M is a mass scale and f(ϕ) is an arbitrary non-singular
function of ϕ. In these models, the effects of the quintessence potential are reproduced by the
non-standard kinetic term, which leads to the equation of state

wϕ =
1−X/M4

1− 3X/M4
, (5.2.14)

where in order to have an accelerated expansion phase, that is, wϕ < −1/3, we must require
X < 2M4/3. The expression above also clearly illustrates the underlying assumption of k-
essence: if X does not vary in time, and there is no kinetic dynamics, then wϕ remains a constant.
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In particular, for this simple k-essence scenario, the cosmological constant case corresponds to
X =M4/2. This analysis has been extended in multiple works, and it can be shown to address
the coincidence problem of dark energy [271, 272]. In Chapter 7, we will explore a generalised
k-essence scalar field scenario derived from the framework proposed in [275].

5.3 Universal Couplings to the Matter Sector

In the context of GR, gravity is interpreted as a fundamental geometrical property of spacetime
originating from the matter sources included therein. This notion aligns with Mach’s equivalence
principle, which states that inertia is a product of the interaction between bodies [276, 277]. In
the proposal of Brans and Dicke [225], this principle was incorporated in the form of a varying
gravitational coupling according to the dynamical character of the mass distribution itself. This
formalism relied on the introduction of a scalar field such that Newton’s gravitational constant
G is actually the local value of the gravitational coupling and the weak equivalence principle -
stating that in a gravitational field, all point masses follow geodesics of the same metric - still
holds [13, 225, 242]. Brans and Dicke chose a matter-scalar coupling acting universally on all
types of matter, according to the same gravitational metric. This ensured that matter is perceived
as free-falling in this gravitational metric, in agreement with the weak equivalence principle.
Interestingly, while this scalar field was intentionally detached from the matter Lagrangian to
maintain the universality of free-fall, it inevitably couples with matter in the field equations,
which depend directly on the trace of the energy-momentum tensor of matter. Theories of gravity
of this nature build upon the solid groundwork of GR plus a scalar field which is introduced in
a non-trivial way through what’s called as non-minimal universal coupling.
Two particularly relevant descriptions with an intuitive physical interpretation arise:

• The Jordan frame in which the scalar field only features explicitly in the gravitational
sector (given by the the Einstein-Hilbert action in Equation (1.3.9)) and the matter fields
are said to be minimally coupled to ϕ, while there is a non-minimal coupling between the
scalar field and the curvature term. This means that the individual energy-momentum
tensors of each source are still covariantly conserved and test particles follow the geodesics
of the spacetime metric.

• The Einstein frame which denotes the opposite case, where the scalar field is only ex-
plicitly included in the matter sector, which becomes non-minimally coupled, while the
gravitational sector is now minimally coupled, meaning that the EH action remains unal-
tered. Likewise, the set of field equations resemble the Einstein equations in GR, ensuring
second-order field equations, with the caveat of losing covariant conservation of the energy-
momentum tensor of the matter fields:

∇µTM
µν = Qν and ∇µT ϕ

µν = −Qν . (5.3.1)
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The Qν term encodes the non-minimal coupling between matter and the scalar field. The
scalar degree of freedom is transformed into a matter source contribution, an imprint of its
gravitational role in the Jordan frame. This comes with the trade-off that the matter fields
no longer follow geodesics of the gravitational metric gµν , but rather of some transformed
metric including the effect of the coupling:

gµν 7→ g̃µν = C(ϕ)gµν , (5.3.2)

where C(ϕ) is called the conformal function.

Conformal transformations such as the one defined in Equation (5.3.2) are a conventional and
seemingly powerful tool, first exploited in the prototype Brans-Dicke (BD) model in 1961 [225],
which also clearly illustrated the physical meaning of such a metric transformation. The advan-
tage is that if the theory has been shown to be invariant under these transformations, then the
action can be recast between different frames (much like a change of reference frame) in which
its physical meaning may be clearer or its field equations less involved1 such as the BD theory
and its generalisation into the broader class of scalar-tensor theories of modified gravity [278].
It should, however, be emphasised that the definition of these two frames is only valid when
a universal transformation is considered, that is, when the scalar field couples non-minimally
to the whole matter sector, and the equivalence principle still holds. While in the past there
was significant debate and division in the community on whether these two frames represent
physically equivalent theories, the general consensus at the moment of writing this thesis, is that
conformally related theories are indeed distinct representations of the same physical scenario,
especially at the classical level [278, 279].
Without introducing additional scalar degrees of freedom, this formulation can be extended by
allowing the conformal factor to depend on the derivatives of the scalar field as well, through its
kinetic term X ≡ −(1/2) gµν∇µϕ∇νϕ. This transformation is more general than the traditional
conformal case, introducing a dependence of the metric in the conformal factor, and a related
example will be the focus of Chapter 7.
A further extension was proposed by Bekenstein in 1992 [280] while investigating general cou-
plings of matter to the gravitational metric in the context of Finsler geometry [281]. This was
accomplished through the introduction of distinct geometries for each sector, restricted to be
related through the so-called disformal transformation of the metric. Disformal transformations
have gained particular relevance in cosmology since it was shown that Horndeski theories2 remain

1The conformal function/factor C(ϕ) must be a smooth non-vanishing function of the spacetime coordinates.
By applying a conformal transformation, a mapping of the cosmological description is enforced, implying a
modification of the structure of the spacetime. In contrast, the coordinate separations dxµ are fixed to the
spacetime itself and remain unaltered. Nevertheless, the distance between two spacetime points accompanies the
structural change, meaning that a conformal transformation applies an isotropic scaling of the length and norm
of time-like and space-like intervals and vectors alike.

2The Horndeski Lagrangian is a direct generalisation of the Brans-Dicke theory, based on the premise of having
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structurally invariant under the particular class of disformal transformations which depend only
on ϕ [284]:

gµν 7−→ g̃µν = C(ϕ) gµν +D(ϕ)∂µϕ∂νϕ , (5.3.3)

where C(ϕ) and D(ϕ) are the conformal and disformal factors, and the conformal transformation
is recovered by setting D = 0, while the minimally coupled case requires C = 1. It has been
shown that theories in which C and D depend on X [285–287] may be plagued by Ostrogradski’s
instabilities1 [288–290].
Just on a qualitative basis, by exiting the conformal realm, the metric transformation can no
longer be interpreted as a simple field redefinition. Disformal transformations do not represent
a change in coordinates but a local change in the geometry instead, encoding a stretching (or a
compression) of the metric specified according to the gradient of the scalar field, resulting in a
distortion of both angles and lengths. There is a translation along the direction of variation of
the field, implying that the new metric will also depend directly on the changing properties of
the field through spacetime.

5.4 Non-Universal Couplings and Interactions in the Dark Sector

Finally, one may ask whether this dark energy source encodes any non-minimal interaction, that
is, besides the standard gravitational coupling, to the other sources in the Universe. The idea of
an interactive dark energy scalar field ϕ, coupled to a matter component, and its subsequent cos-
mological implications, were first examined in [291–294]. Szydlowski introduced a similar concept
of interaction between dark matter and dark energy [295], followed by a method of examination
that was formulated later in [296]. There’s a wealth of studies exploring the dynamical impli-
cations of interactions between dark energy and matter [297–308]. Delving into the particular
scenarios where dark energy is portrayed by a canonical scalar field, we come across the cou-
pled quintessence models, as direct generalisations of the models presented in Section 5.2. These
were initially presented and studied in [309, 309, 310], based on Luca Amendola’s non-minimally
coupled theories [311]. Various distinct models have been considered, each characterised by the
universality and form of the coupling [219, 312–334].
Furthermore, instead of imposing the coupling directly by an ad-hoc field-dependence in the DM
Lagrangian, the ideas of conformal/disformal invariance discussed in Section 5.3 can be recovered,

the most general scalar-tensor extension to GR yielding second-order equations of motion both for the metric and
the scalar field in four-dimensional spacetime. This solution was put forward by Horndeski in the 1970s [282] but
remained practically unnoticed for many years and was only brought to light recently in the context of Galileon
theory [283]. The disformal transformation represents a symmetry of the Horndeski action, just as the conformal
transformations are with respect to the Brans-Dicke action.

1Ostrogradski’s theorem states that the Hamiltonian of any non-degenerate Lagrangian, depending on more
than first-order time derivatives, is unbounded from below, leading to instability issues that result in an unphysical
theory with arbitrarily high negative energy. This no-go theorem limits the space of possible scalar-tensor theories
like Horndeski’s. Whenever there are time derivatives of the fields of order higher than one in the Lagrangian,
the theory becomes unstable and unphysical.
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e.g. assuming that the coupling between the scalar field and the SM species is suppressed or
hidden by means of a screening mechanism [221, 335–342]. In these mechanisms the coupling
between the scalar field and matter weakens and limits the gravitational influence of the scalar
field itself in dense, small-scale areas like the Earth and the solar system, where GR has been
rigorously tested. Yet, on larger scales, like those generally associated with dark energy, the
scalar field’s gravitational effects may re-surge, in a context where the theory is less constrained.
This subject is still an active research area, but is out of the scope of this thesis.
Considering an FLRW Universe, Equation (1.6.6), the continuity equations, Equation (2.1.22),
for the scalar field and the coupled matter fluid include a symmetric extra term Q accounting for
the interaction and preserving the covariant conservation of energy, corresponding to the ν = 0

component of Equation (5.3.1), and take the form:

ρ̇DM + 3HρDM(1 + wDM) = −Q, and ρ̇ϕ + 3Hρϕ(1 + wϕ) = Q, (5.4.1)

The sign of Q in Equation (5.4.1), which is (in principle) a function of the cosmological variables,
establishes the direction of the flow of energy transfer, and can itself be a dynamical quantity.



Part II
Research Results





6 Coupled Quintessence in Flat and Curved Ge-
ometries

Cada coisa é uma palavra. E quando não se a tem, inventa-se-a.
— Clarice Lispector A Hora da Estrela

Each thing is a word and when there is no word it is invented. — Clarice Lispector in The Hour of the
Star

As discussed in Part I of this dissertation, the quest to comprehend the recent accelerated expan-
sion of the Universe is among the most pressing open questions in the cosmological community
and perhaps in the scientific endeavour. According to their inherently attractive gravitational
nature, the matter fields accounted for in the standard model of particle physics cannot be the
driving force behind this acceleration. When considering general relativity at the largest observ-
able scales, this behaviour becomes important and must be accommodated by the theory, such
as some form of cosmic fluid that exhibits a strongly negative pressure-to-energy density ratio —
often termed dark energy — capable of balancing out the gravitational pull of ordinary matter
and powering the acceleration, fitting into the observational evidence.

Over the course of Chapters 1 and 2, we have introduced a positive cosmological constant as
the most straightforward form of dark energy, a cornerstone of the well-accepted ΛCDM model.
Interestingly, this constant has only recently begun to dominate the Universe’s energy content.
Indeed, Chapter 5 built up the idea of more dynamic varieties of dark energy supported by current
data. For example, Section 5.2.1 introduced quintessence models, where a scalar field drives the
Universe’s accelerated expansion. In these scenarios, the field’s potential energy, rather than its
kinetic energy, becomes the dominant factor over time, effectively mimicking the cosmological
constant value.

Additionally, most studies often assume that dark energy and dark matter - classed together as
the dark sector - have independent origins and do not share any exotic interactions. However,
given the enigmatic nature of these species, there is no fundamental justification for dismissing
potential effective couplings between the two. For example, while solar system tests [222] and
experimental data severely limit any interaction between dark energy and ordinary matter, such
constraints do not necessarily apply to dark matter. This subject was the focus of Sections 5.3
and 5.4 and has been thoroughly explored in the literature [90, 309, 309, 334, 343–355].

This chapter will explore various types of coupled quintessence models and their predictive power.
Namely, their potential to address evidence for a closed Universe found in the CMB data.
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The Planck satellite’s observations of the cosmic microwave background temperature fluctua-
tions and polarisation angular power spectra [33, 178] largely support the concordance ΛCDM
cosmological model [32]. However, as thoroughly discussed in Section 3.6, with the remarkable
rise in the precision of cosmological probes in the last decade, certain anomalies require further
scrutiny. Namely, the Planck data leads to the prediction of a lensing amplitude above the
normalised value, Alens = 1, at about 2.8 standard deviations [183, 356]. In minimal extensions,
this so-called lensing excess implies more cold dark matter, favouring a closed Universe. This is
supported by both the baseline Plik likelihood and the alternative CamSpec likelihood, with the
latter even supported at a 99% confidence level. These findings question the flatness assump-
tion in the conventional ΛCDM cosmological model and have sparked significant debates. This
hypothesis also accounts for other large-scale data irregularities, such as the reduced amplitude
in quadrupole and octupole modes [357]. As a result, evidence pointing to a closed Universe has
escalated to a compelling 3.4 standard deviations [181, 182], surpassing the anomaly reported
for the lensing amplitude, sparking significant debate.

This finding is rather surprising given that other astrophysical measurements, like BAOs [116,
118, 118], are found to conflict with the notion of a closed Universe when combined with the
Planck likelihood [181]. Moreover, the now well-established and extensively investigated discrep-
ancy between the Hubble constant as determined by the SH0ES project using Cepheid stars as
calibrators for estimating Type Ia supernovae luminosity distances [111] (H0 = 73± 1km/s/Mpc)
and the Planck satellite’s CMB-based estimate including lensing measurements [32] (H0 =

67.4±0.5 km/s/Mpc) have risen above the distressful 5-sigma threshold (see also [358], where the
divergence reaches 5.3σ), essentially diminishing the chance of this disagreement being attributed
to a statistical anomaly.

Lastly, it is worth mentioning the tension in the parameter S8 ≡ σ8
√

Ωm/0.3 between Planck and
weak lensing measurements like KiDS-1000 [164] or DES-Y3 [161]. Again, these discrepancies
dwell at a 2 − 3σ level under a ΛCDM assumption. Hence, there is strong support for the
need for more precise measurements beyond those from Planck for gaining clearer insights into
these cosmological tensions and anomalies that allow for independently testing the fundamental
assumptions behind the curtains of the modern cosmological stage.

We will introduce the coupled quintessence model for a general coupling in Section 6.1 along
with the methodology followed in this work. We include a summary of the equations governing
its evolution at the background and linear perturbative levels for general spatial curvature and
discuss the repercussions of this dark sector coupling on the CMB’s TT spectrum.. In Section 6.2
we present an update on the constraints for the flat models differing in the choice of the coupling
and the potential functions. In Section 6.3, we will shift our focus to the changes introduced by
dropping the flatness assumption and taking the curvature of the Universe to be a cosmological
parameter that can be constrained and compared with other data sets in order to shed light on
the cosmological tensions. Finally, we comment on the evidence for a closed Universe in coupled
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quintessence models and summarise the main conclusions and discuss the results in Section 6.4.

6.1 Models and Methodology

6.1.1 Background Cosmology

Consistent with the framework outlined in Chapter 5, the interaction within the dark sector
in these models is achieved through a conformal non-universal coupling. As introduced in Sec-
tion 5.1, this setting is embodied by the following action

S =

∫
d4x

[√
−g
(
M2

Pl

2
R− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

)
+
√
−gLSM(g,Ψi) +

√
−g̃LDM(g̃, χ)

]
.

Here, R is the Ricci scalar, in terms of the metric degree of freedom gµν , with g being its deter-
minant. We recall that MPl = (8πG)−1/2 is the Planck mass and G is Newton’s gravitational
constant. The quintessence scalar field enters the action as a canonical kinetic term plus a self-
interacting potential V (ϕ). The SM Lagrangian LSM consists of both radiation (relativistic) and
baryonic (non-relativistic) components, encapsulated by the fields Ψi, which follow geodesics
defined by the gravitational metric gµν . Lastly, the dark matter Lagrangian LDM yields the
description of the dark matter field χ, which is coupled to dark energy via a ϕ-dependent metric
transformation. This results in the dark matter following geodesics dictated by this modified,
dark-energy-dependent metric g̃µν , related to the gravitational metric gµν via a conformal trans-
formation:

g̃µν = C(ϕ)gµν , (6.1.1)

where C(ϕ) is the conformal function. We will see that, in practical terms, this is equivalent to an
interaction with dark matter, expressed as a modified effective Newton’s constant, a dynamical
function of the local scalar field value, appropriately known as conformal coupling.

We start by recalling the general Friedmann-Lemaître-Robertson-Walker line element with cur-
vature signature K:

ds2 = a2(τ)

[
−dτ2 +

dr2

1−Kr2
+ r2

(
dθ2 + sin2(θ) dφ2

)]
, (6.1.2)

in terms of the conformal time τ and where a(τ) is the scale factor for the expansion of the
Universe and a prime will denote derivatives with respect to τ throughout this chapter. The
constant K is the curvature parameter, whose encodes the spacetime geometry: K = 0 is the
standard flat case, as assumed in the standard six-parameter ΛCDM model constrained by the
Planck Collaboration, while K = +1 and K = −1 correspond to the positively (closed geometry)
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and negatively (open geometry) curved cases. This is expressed in Cartesian coordinates as:

ds2 ≡ gµνdx
µdxν = a(τ)2

[
−dτ2 + γij dx

i dxj
]
, (6.1.3)

γij = δij

[
1 +

1

4
K
(
x2 + y2 + z2

)]−2

. (6.1.4)

The Friedmann equations accounting for curvature, DE, DM and a radiation (r) and baryonic
(b) sectors is:

H2 =
1

3M2
Pl

a2 (ρr + ρb + ρDM + ρϕ)−K , (6.1.5)

H′ +H2 = − 1

6M2
Pl

a2 (2ρr + ρb + ρDM + ρϕ + 3pϕ) . (6.1.6)

The Friedmann closure relation now must account for the extra contribution of curvature, en-
coded in the term ΩK ≡ −K/H2

0 :

Ω0 =
ρi

3M2
PlH2

Equation (6.1.5)−−−−−−−−−−→ Ωr +Ωb +ΩDM +Ωϕ +ΩK = 1 . (6.1.7)

Owing to the energy exchange, the DM conservation equation now reads

ρ′DM + 3HρDM = βρDMϕ
′/MPl , (6.1.8)

where ρDM is the energy density of DM. The coupling β is related to the conformal coupling
function C(ϕ) via

β =
MPl

2

d lnC

dϕ
. (6.1.9)

The energy density of dark matter particles no longer follows the scaling behaviour of a pres-
sureless fluid. Instead, it scales as ρDM ∝

√
C(ϕ)/a3. It’s worth noting that, when interpreted

directly from the action, the mass of DM particles is field-dependent (assuming conservation of
the number of particles) and scales as m(ϕ) ∝

√
C(ϕ). The evolution of the dark energy scalar

field is also influenced by this coupling, leading to a modified form of the Klein-Gordon equation,
first introduced in Equation (5.2.3):

ϕ′′ + 2Hϕ′ + a2V,ϕ = −a2βρDM/MPl . (6.1.10)

6.1.2 Cosmological Perturbations

We consider scalar perturbations in the conformal Newtonian gauge (introduced in Section 2.2.1)

ds2 = a2(τ)
[
− (1 + 2Ψ) dτ2 + (1− 2Φ) γijδijdx

idxj
]
, (6.1.11)
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with γij as defined in Equation (6.1.4).
According to Section 2.2.1, we can write the perturbed continuity and Euler equations for the
DM component:

δ′DM = −
(
θDM − 3Φ′)− βδϕ′ , (6.1.12)

θ′DM +HθDM = k2Ψ+ βϕ′θDM − β

M2
Pl
δϕ . (6.1.13)

These equations describe the clustering of matter that leads to the process of structure formation.
The perturbed KG equation reads

δϕ′′ + 2Hδϕ′ +
(
k2+a2V,ϕϕ

)
δϕ = (6.1.14)(

Ψ′ + 3Φ′)ϕ′ − 2a2V,ϕΨ− a2βδDMρDM − 2a2βρDMΨ . (6.1.15)

Additionally, in the subhorizon limit (k ≫ H), the equation for the DM density contrast must
account for the gravitational effects introduced by the coupling and becomes:

δ′′DM +Heffδ
′
DM − 3

2
H2Geff

G
ΩDMδDM ≃ 3

2
H2 (Ωbδb +Ωrδr) , (6.1.16)

where Heff = H+ βϕ′ is the effective Hubble parameter.
Due to the coupling in the dark sector, a long-range attractive fifth-force between DM particles
is introduced, mediated by the scalar field ϕ. As a result, DM particles interact according to an
enhanced effective gravitational constant, expressed as:

Geff = G
(
1 + 2β2

)
. (6.1.17)

6.1.3 Models

This study explores three specific toy models characterised by their distinct conformal coupling
and scalar field potential functions, C(ϕ) and V (ϕ).
The first model, referred to as M1, employs an exponential form for both the conformal coupling
function and the potential [348], more precisely:

C(ϕ) = e2αϕ/MPl , and V (ϕ) = V 4
0 e

−λϕ/MPl , (6.1.18)

where the conformal coupling parameter α and the slope of the scalar field potential λ > 0

are dimensionless constants, and V0 is a constant mass scale of the potential. The coupling
between dark energy and dark matter in this model is simply a constant, β = α, resulting in a
constant fifth-force experienced by DM particles, expressed through Geff/G = 1+2α2, according
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to Equation (6.1.17). Such an interaction is at the heart of the original coupled quintessence
model, thoroughly explored in the literature for various scalar field potentials. Conventionally,
studies focus on the general case where β can take either positive or negative values. However,
in this work, we choose to consider both regimes separately, distinguishing between instances
where α > 0, and the model is labelled as M1+, and where α < 0, and it is termed M1−.

The second model we consider, denoted M2, is characterised by the same exponential conformal
coupling function as in M1, but adopts an inverse power-law form for the potential:

C(ϕ) = e2αϕ/MPl , and V (ϕ) = V 4
0

(
ϕ

MPl

)−µ

. (6.1.19)

In this case, the conformal coupling constant α and the power of the potential µ > 0 are also
dimensionless constants, and the scale of the potential V0 is still a constant with dimensions
of mass. We have already encountered this type of potential in Section 5.2.1 in the context of
quintessence scalar fields. It has the attractive feature of admitting tracker solutions, which can
help alleviate the cosmic coincidence problem. Analogously, when α > 0, this model is referred
to as M2+, and M2− when α < 0.

Lastly, we examine a less conventional scenario, which we designate as M3. In contrast to the
constant coupling present in M1 and M2, M3 exemplifies the case of a field-dependent dynamical
coupling parameter β. Indeed, a quintessence model with a dynamical coupling remains an
intriguing and relatively uncharted avenue for research. A subset of conformal couplings offering
this time-varying fifth-force involves those with minimum points of the effective potential given by
the combined effects of C and V . The dark sector interaction vanishes when the field sits at this
minimum, denoted as ϕ∗. On the other hand, if the field shifts away from the minimum - possibly
at later stages, influenced by the scalar field potential — a fifth-force emerges, coinciding with
the onset of dark energy domination. In this work, we investigate such a scenario, accomplished
through the same exponential potential as in model M1 and a quadratic exponential conformal
function:

C(ϕ) = eγ(ϕ−ϕ∗)2/M2
Pl , and V (ϕ) = V 4

0 e
−λϕ/MPl . (6.1.20)

Here, γ and λ are dimensionless constants and ϕ∗ is a constant with dimensions of mass. The
conformal coupling function C(ϕ) reaches its minimum at ϕ∗ when γ > 0, and the model is
termed M3+, or its maximum when γ < 0, termed M3−. As we will see, this difference will be
crucial to understand and differentiate between the two cases. This setting gives the varying
dark sector coupling β = γ(ϕ−ϕ∗), implying that the fifth-force in the dark sector only switches
on when the field is displaced from the minimum/maximum ϕ∗, set to ϕ∗ = 2MPl without loss
of generality.

Numerically, the mass scale V0 for each model is determined through a shooting algorithm to
avoid degeneracies in the parameter space. The initial scalar field value, ϕini = ϕ(aini) with
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aini = 10−14, is generally allowed to vary. However, in M1 and M2, it is known not to affect
the evolution equations (which we check for M2), and, as we will discuss in further detail,
it leads to unphysical results for M3+, since the model wants to sit at the minimum of the
potential, originating an ill-defined behaviour in the sampling method. Consequently, M1 and
M2 introduce two additional parameters {α, λ} and {α, µ} (even though we also look at sampling
ϕini), respectively, while M3 introduces three extra parameters {γ, λ, ϕini}. In Table 6.1, we
summarise the differences in the three models.
Furthermore, we are interested in considering extensions to all the models with the addition of
one extra degree of freedom of GR that is conventionally fixed in ΛCDM and extensions to it: the
curvature background geometry, parametrised by the curvature density parameter ΩK ≡ 1−Ω0,
as defined in Equation (2.1.26). This implies relaxing the assumption of a flat Universe supported
by most inflationary models [359], such that negative (positive) values stand for a spatially closed
(open) Universe. Nevertheless, while the vast majority of inflationary models naturally predict
spatial flatness (i.e. ΩK = 0), inflation in a curved Universe has been extensively explored in
the literature (see, e.g., Refs. [48, 360–370]). Regardless of the evidence reported for a closed
Universe in ΛCDM for the Planck data [181], for the sake of completeness, we will sample for
both positive and negative values of ΩK , following the procedure considered, for instance, in
Ref. [371] for interacting dark energy models with different phenomenological couplings.

V (ϕ)

C(ϕ)
e2αϕ/MPl eγ(ϕ−ϕ∗)2/M2

Pl

V 4
0 e

−λϕ/MPl M1 M3

V 4
0 (ϕ/MPl)

−µ M2 —

Table 6.1: Summary of the models considered in this work, distinguished by the conformal
factor C(ϕ) and the potential V (ϕ).

6.1.4 Methodology and Observational Data

To explore the extent and viability of the background and linear perturbation predictions of
the scenarios presented in Section 6.1.3, we follow the strategy and numerical tools outlined
in Chapter 4. We employ the baseline data sets listed in Section 4.3, which, for clarity, we
enumerate once more:

• Pl18: the Cosmic Microwave Background TTTEEE+lowE likelihood from the most recent
Planck 2018 data release [32] in all the data set combinations considered in this study.
Specifically, this includes the data on the CMB temperature (TT) and polarisation (EE)
anisotropies and their cross-correlations (TE) at both small (highlTTTEEE) and large
angular scales (lowlTT+lowEE).
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• BAO: a compilation of baryon acoustic oscillations distance and expansion rate measure-
ments from BOSS DR12 [116], the SDSS Main Galaxy Sample [117], and 6dFGS [118],
aligning with the data used by the Planck 2018 Collaboration [32] in their analysis.

• SN: the distance moduli measurements from Type Ia Supernovae gathered by the Pantheon
team [109]. This compilation offers 1048 data points for luminosity distance in the redshift
range z ∈ [0.01, 2.3], from which information on the late time expansion rate can be derived.

We analyse the incremental effects of adding the CMB-independent BAO and SN astrophysical
data alongside the Planck likelihood and the complete combination of these data sets. Our ulti-
mate goal is to perform a Bayesian Monte Carlo Markov Chain analysis to establish observational
constraints on the theories considered and compare their evidence against the ΛCDM model, as
summarised in Table 6.3-Table 6.15. We recall that a larger Bayes factor BM,ΛCDM indicates more
substantial evidence of the model M relative to ΛCDM. This numerical factor can be translated
into a qualitative assessment of the level of statistical support for each extended model against
ΛCDM through the use of Jeffreys scale [207], as per the criteria listed in Table 4.1. Moreover, if
lnBM,ΛCDM < 0, there is no evidence of support for that model over ΛCDM for a given data set,
while the opposite holds if lnBM,ΛCDM > 0. We report the Bayes factor lnBM,ΛCDM and the
∆χ2

eff , defined in Equations (4.1.10) and (4.1.15) to assess the support and goodness of fit in each
table of constraints of the corresponding models (including ΛCDM). Given the increased number
of free parameters we choose to run the MCMC chains with convergence criterion based on the
Gelman-Rubin statistics of |r − 1| ≲ 0.02, as introduced in Chapter 4. We present the results
for each model, concluding by comparing the different scenarios and assessing their viability in
light of our analysis.

We vary the conventional six ΛCDM parameters (see Section 3.5 for more details): the reduced
baryon ωb = Ωbh

2 and dark matter ωcdm = Ωcdmh
2 energy densities, the ratio between the

sound horizon and the angular diameter distance at decoupling θs, the reionisation optical depth
τreio, the scalar spectral index ns, and the scalar amplitude of the primordial power spectrum
As, where h is the reduced Hubble constant defined by H0 = 100h km s−1Mpc−1. Additionally
we also sample for the respective parameters of each coupled quintessence model: {α, λ} for
M1, {α, µ, ϕini} for M2, and {γ, λ, ϕini} for M3. From these primary parameters, we can derive
and report constraints on other relevant derived quantities such as the current mass fluctuation
amplitude for spheres of size 8h−1 Mpc, σ8, the total matter density at present time, Ωm, the S8
parameter defined as S8 ≡ σ8

√
Ωm/0.3, and the Hubble expansion constant, H0. In Section 6.2

we will focus on the standard six-parameter ΛCDM and the corresponding coupled quintessence
extensions. These results will then be compared to the case where the flatness assumption is
relaxed and ΩK is let to vary, as reported in Section 6.3. The range of the flat priors for the
sampled cosmological and model parameters is listed in Table 6.2.
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Model Parameter Prior

All

Ωbh
2 [0.005, 0.1]

Ωcdmh
2 [0.001, 0.99]

100θs [0.5, 10]

τreio [0.01, 0.8]

ns [0.7, 1.3]

log
(
1010As

)
[1.7, 5.0]

All with ΩK = 0 and ΩK ̸= 0 ΩK [−0.3, 0.3]

M1+,M1−, M3+ and M3− λ [0, 10]

M2+ and M2− µ [0, 10]

M1+,M1−, M2+ and M2− α [0, 2] and [−2, 0]

M3+ and M3− γ [0, 2] and [−2, 0]

M3+ and M3− ϕini [0, 4]

Table 6.2: Flat priors on the cosmological and model parameters sampled in this work, as
discussed in Section 6.1.4.

6.2 Update on Flat Coupled Quintessence

This section systematically reviews and interprets the findings based on the approach described
in Section 6.1.4 for the flat ΩK = 0 case. More precisely, we allocate individual subsections
for each model examined in this study. Each subsection offers a summary table detailing the
cosmological parameters at a 68% confidence level (CL), a graphical representation illustrating
the 68% and 95% CL marginalised probability contours, and one-dimensional marginalised pos-
terior distributions. The primary purpose of this analysis is to provide an update on coupled
quintessence models and to set the stage for the comparison with the extended models in which
the curvature parameter is free to vary and not fixed to the flat case ΩK = 0.

The results of our data analysis are listed in Table 6.3-Table 6.8 where we report the parameter
constraints for the ΛCDM, M1+ and M1−, M2+ and M2−, and M3− models according to the
Pl18, Pl18 + BAO, Pl18 + SN, and Pl18 + BAO + SN data set combinations for each model.
In Figures 6.1, 6.3 and 6.5, we show the 1D marginalised posterior distributions for the mode-
specific parameters in each case, with the left and right panels corresponding to the positive and
negative coupling parameter cases, respectively. In Figures 6.2, 6.4 and 6.6, we display the 2D
marginalised posterior distributions for the conformal coupling parameter in each model (the
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absolute value) where once again the positive and negative coupling cases are displayed in the
left and right panels, respectively. We present the numerical predictions for the ΛCDM model
in our methodology in Table 6.3 for comparison purposes and provide the main conclusions in
bullet points in each section.

Parameter Pl18 Pl18 + BAO Pl18 + SN Pl18 + BAO + SN

Ωbh
2 0.02237± 0.00015 0.02242± 0.00013 0.02239± 0.00014 0.02243± 0.00013

Ωcdmh
2 0.1202± 0.0014 0.1193± 0.0010 0.1199± 0.0013 0.11923± 0.00097

100θs 1.04188± 0.00029 1.04197± 0.00028 1.04192± 0.00029 1.04196± 0.00028

τreio 0.0547+0.0071
−0.0080 0.0557+0.0072

−0.0081 0.0551± 0.0079 0.0560± 0.0079

ns 0.9654± 0.0044 0.9673± 0.0038 0.9660± 0.0042 0.9676± 0.0037

ln
(
1010As

)
3.046± 0.016 3.046± 0.016 3.046± 0.016 3.047± 0.017

σ8 0.8118± 0.0075 0.8094± 0.0072 0.8109± 0.0075 0.8093± 0.0073

Ωm 0.3160± 0.0084 0.3107± 0.0060 0.3141± 0.0079 0.3101± 0.0058

S8 0.833± 0.016 0.824± 0.013 0.830± 0.016 0.823± 0.013

H0 67.33± 0.60 67.70± 0.44 67.47± 0.57 67.75± 0.43

Table 6.3: Observational constraints at 68% confidence level on the sampled and derived cos-
mological parameters for different data set combinations under the flat ΛCDM model.

6.2.1 M1 Flat: Exponential Conformal Factor and Exponential Potential

0.00 0.04 0.08 0.12 0 1 2 3

Model 1 +

Pl18
Pl18+BAO

Pl18+SN
Pl18+BAO+SN

0.00 0.03 0.06 0.09
| |
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Pl18
Pl18+BAO

Pl18+SN
Pl18+BAO+SN

Figure 6.1: 1D marginalised posterior distributions of the coupling parameter, α, and slope of
the potential, λ, in the M1+ model (upper panel) and M1− model (lower panel) using the Pl18
(red), Pl18+BAO (blue), Pl18+SN, (green) and Pl18+BAO+SN (yellow) data set combinations.
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Parameter Pl18 Pl18 + BAO Pl18 + SN Pl18 + BAO + SN

Ωbh
2 0.02235± 0.00015 0.02239± 0.00015 0.02236± 0.00015 0.02238± 0.00014

Ωcdmh
2 0.1193+0.0026

−0.0015 0.1190± 0.0011 0.1182+0.0022
−0.0015 0.1188± 0.0010

100θs 1.04185± 0.00030 1.04190± 0.00029 1.04187± 0.00030 1.04190± 0.00029

τreio 0.0548+0.0071
−0.0081 0.0551+0.0073

−0.0083 0.0553± 0.0080 0.0555± 0.0080

ns 0.9662± 0.0047 0.9670± 0.0040 0.9667± 0.0042 0.9667± 0.0040

ln
(
1010As

)
3.047+0.015

−0.016 3.046± 0.017 3.047± 0.016 3.047± 0.017

λ < 1.26 0.81+0.41
−0.60 < 0.510 < 0.477

α < 0.0464 0.035± 0.018 0.038+0.017
−0.030 0.029± 0.016

σ8 0.801+0.036
−0.024 0.807+0.018

−0.016 0.826+0.011
−0.022 0.818+0.011

−0.015

Ωm 0.333+0.022
−0.045 0.3190+0.0098

−0.018 0.301+0.018
−0.011 0.3068+0.0084

−0.0074

S8 0.839± 0.022 0.831+0.014
−0.016 0.826± 0.015 0.827± 0.013

H0 65.8+3.8
−2.3 66.8+1.8

−0.94 68.59+0.88
−1.6 68.02+0.62

−0.74

∆χ2
min +0.80 +0.12 +0.88 +0.54

lnBM1+,ΛCDM −5.51 −5.31 −6.60 −6.40

Table 6.4: Observational constraints at 68% confidence level on the sampled and derived cos-
mological parameters for different data set combinations under the flat M1+ model, studied in
Section 6.2.1.

• Coupling: In Tables 6.4 and 6.5, we observe that while Pl18 data on its own accommodates
a vanishing coupling constant α in the 68% CL region for the M1 models, incorporating
additional individual background data sets, BAO or SN in this case, yields higher support
for the dark sector interaction in both M1+ and M1− models (i.e. |α| > 0 in the 1σ

region), associated with larger mean values in general. The exception is in the M1− model
when adding SN data (Pl18+SN in Table 6.5), which results in tighter bounds. For the
M1+ model, we report bounded constraints for α at 1σ with all combinations involving
additional background data. For M1−, we find similar bounds for |α| with Pl18+BAO
and Pl18+BAO+SN. Figure 6.1 illustrates this trend through the marginalised posterior
distributions, where additional datasets result in a non-zero peak for |α|, with BAO being
the decisive driver of the peak away from zero, possibly by setting tighter constraints
on Ωm. More precisely, with the Pl18 data set alone the following upper bounds are
found at 68% CL: α < 0.0464 for the M1+ model and |α| < 0.0322 for M1−. For the full
Pl18+BAO+SN data set combination we report at 1σ: α = 0.029±0.016 for the M1+ model
and |α| = 0.030 ± 0.016 for M1−. In Figure 6.2, we depict the 2D marginalised posterior
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Parameter Pl18 Pl18 + BAO Pl18 + SN Pl18 + BAO + SN

Ωbh
2 0.02235± 0.00015 0.02239± 0.00015 0.02237± 0.00015 0.02239± 0.00015

Ωcdmh
2 0.1185+0.0027

−0.0015 0.1178+0.0018
−0.0012 0.1179+0.0026

−0.0015 0.1179+0.0016
−0.0011

100θs 1.04187± 0.00030 1.04191± 0.00029 1.04189± 0.00030 1.04190± 0.00028

τreio 0.0550± 0.0080 0.0554± 0.0081 0.0547+0.0071
−0.0080 0.0554± 0.0077

ns 0.9656± 0.0044 0.9671± 0.0039 0.9666± 0.0043 0.9670± 0.0040

ln
(
1010As

)
3.047± 0.016 3.047± 0.017 3.046± 0.016 3.047± 0.016

λ < 0.829 < 0.659 < 0.364 < 0.408

α > −0.0322 −0.028+0.022
−0.013 > −0.0409 −0.030± 0.016

σ8 0.808± 0.023 0.811± 0.015 0.820+0.010
−0.018 0.817+0.011

−0.015

Ωm 0.321+0.021
−0.024 0.3110+0.0094

−0.011 0.304+0.016
−0.010 0.3052+0.0087

−0.0079

S8 0.834± 0.018 0.825± 0.013 0.825± 0.016 0.824± 0.013

H0 66.5+2.2
−1.8 67.3+1.1

−0.80 68.14+0.77
−1.3 67.98± 0.69

∆χ2
min +0.34 +0.18 +1.14 +0.24

lnBM1−,ΛCDM −6.03 −6.03 −6.97 −6.77

Table 6.5: Observational constraints at 68% confidence level on the sampled and derived cos-
mological parameters for different data set combinations under the flat M1− model, studied in
Section 6.2.1.

contours for α against relevant cosmological and model parameters: {H0, σ8,Ωm, λ}. For
both the M1+ and M1− models, positive correlations are evident in the {|α|, H0} and
{|α|, σ8} planes, while a negative correlation is observed in the {|α|,Ωm} plane. The scalar
field parameters |α| and λ are positively correlated for positive and negative coupling cases,
except in the Pl18-only case in M1−, where it is unclear whether any correlation exists.

• Potential: In Tables 6.4 and 6.5, we also report on the slope of the potential λ, which
is consistently constrained only from above in the M1 models, except when using the
Pl18+BAO dataset for the M1+ model, in which case we find a bounded 1σ constrained
region. Incorporation of background datasets brings λ closer to zero, with higher values
of λ allowed in the M1+ model in general. This effect is depicted in Figure 6.1 and seems
mostly influenced by the SN data. For Pl18 we report λ < 1.26 and λ < 0.829 at 68%

CL for M1+ and M1−, respectively, while the full Pl18+BAO+SN data set combination
restricts λ to < 0.477 for M1+ and < 0.408 for M1−.

• H0 Tension: The positive correlation between |α| and H0 aids in mitigating the H0 tension
of ∼ 4.8σ in ΛCDM when considering Pl18 data alone. The tension is apparently attenuated
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Figure 6.2: 2D marginalised posterior distributions of parameters in the M1+ model (upper
panel) and M1− model (lower panel) using the Pl18 (red), Pl18+BAO (blue), Pl18+SN, (green)
and Pl18+BAO+SN (yellow) data set combinations. We plot the 2D marginalised posterior
distributions of the conformal coupling parameter, α, against the slope of the potential, λ,
the Hubble constant in units km s−1 Mpc−1, H0, the present-day mass fluctuation amplitude
in spheres of radius 8h−1Mpc, σ8, and the total matter density parameter, Ωm. The shaded
contours indicate the 1σ and 2σ confidence limits.

to ∼ 2.5σ in M1+ and to ∼ 2.9σ in the M1− model. It is worth noting that the mean
values of H0 in the M1 models, as reported in the second columns of Tables 6.4 and 6.5 for
Pl18, are smaller than in the ΛCDM model. The tension alleviation is attributed to the
broader error bars for H0, a direct consequence of the added number of parameters that
prevent H0 from being as precisely constrained as in the ΛCDM case.

• S8 Tension: While |α| exhibits a positive correlation with the parameter σ8, the mean values
of σ8 reported for the M1 models turn out to be smaller than their ΛCDM counterpart for
Pl18 data. Nonetheless, the 68% CL region is broader in the M1 models. A suppressed
σ8 is offset by an enhanced Ωm when considering the Pl18 data, balancing the constraints
derived for the S8 parameter. For M1+ the 1σ region for S8 value is found at 0.839±0.022

and at 0.834± 0.018 for M1−. These values do not deviate far from the ΛCDM prediction
of 0.833± 0.016.

• Model Evidence: To conclude, the logarithm of the Bayes factor, lnBM1,ΛCDM is the
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decisive criteria for any potential support in the extended models. We find a negative
value for all the data combinations, suggesting no statistical evidence for the M1 coupled
quintessence models over ΛCDM. M1+ has a marginally less negative Bayes factor than
M1−, indicating a slight but unimportant preference for positive values of α over negative
ones. The ∆χ2

min is positive in all the cases considered, suggesting a worse fit to the data,
which adds to the preference over a smaller parameter space in ΛCDM.

6.2.2 M2 Flat: Exponential Conformal Factor and Inverse Power-law Poten-
tial

• Coupling: As evident from Table 6.6, for the M2+ model, a non-zero coupling at 68% CL is
detected when BAO and BAO+SN data set combinations are added to the Pl18 data, more
precisely α = 0.025+0.012

−0.020 and α = 0.026+0.014
−0.019, respectively. For the M2+ model, reported

in Table 6.7, α is bounded at 68% CL with the addition of the BAO and BAO+SN data set
combinations as well, namely α = −0.025+0.021

−0.011 and α = −0.027±0.015, respectively. While
the uncoupled case α = 0 is contained in the 1σ region when Pl18 data is considered by itself
and for the Pl18+SN case, the introduction of BAO and BAO+SN is again responsible for
excluding a zero coupling at 1σ. Close inspection of Figure 6.3 shows how the inclusion of
the BAO data originates a non-null peak for |α|. This trend is maintained in both M2+ and
M2− when SN data is included. The magnitude of the coupling parameter is comparable
in both cases. Figure 6.4 shows 2D marginalised posterior distributions of the conformal
coupling parameter α against {H0, σ8,Ωm, µ}, just as we did for the M1 models,. Both M2

models exhibit a positive correlation in the {|α|, H0} and {|α|, σ8} planes, while showing
a negative correlation in the {|α|,Ωm} plane instead. Unlike the M1 models, the coupling
and potential parameters are not seemingly correlated.

• Potential: The power of the inverse power potential, µ, is only bounded from above with
68% CL in M2 models across any data set combinations. As shown in Table 6.7, adding
background data sets scarcely tightens the constraint on µ in the M2 models. Pl18 data
alone limits µ to be larger than 0.459, while the full Pl18+BAO+SN data set sets this
lower limit at 0.463, both at 1σ. A parallel constraint of µ < 0.502 and µ < 0.451 at 1σ

is observed for the M2+ model with Pl18 and Pl18+BAO+SN. In Figure 6.3, the similar
behaviour of µ distributions between the two M2 models is noticeable. The values of |α|
and µ fall within similar ranges in both models when considering the full Pl18+BAO+SN
data set.

• H0 Tension: TheH0 tension is alleviated to some extent by the positive correlation between
|α| and H0, similar to the M1 models. Using Pl18 data, the M2+ and M2− models lessen
the tension from approximately 4.8σ to ∼ 4.0σ and 2.8σ, respectively, which is a less
significant reduction compared to the M1 models. Notably, contrary to the M1 models,
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the mean H0 value in the M2− model is higher, yet with smaller error bars, making it less
effective in reducing the tension, according to Equation (3.6.1).

• S8 Tension: In contrast to M1, higher average values for the σ8 parameter are obtained in
the M2 models compared to ΛCDM for all data set combinations. We also report consis-
tently lower mean values of Ωm. The increase in σ8 and the decrease in Ωm approximately
balance out again, resulting in an S8 value of 0.828± 0.018 at 1σ for the M2+ model, and
0.827 ± 0.018 for M2−, both not significantly different from the ΛCDM value assuming
Pl18 data.

• Model Evidence: Tables 6.6 and 6.7 reveal that the logarithm of the Bayes factor, lnBM2,ΛCDM,
is negative for all the data sets, suggesting a lack of evidence supporting the M2 models
over the ΛCDM model. As was the case for the M1 models, there is an overall trend of pos-
itive values of ∆χ2

min (except for Pl18 in M2+ and Pl18+SN and Pl18+BAO+SN in M2−)
which is less pronounced and, consistently, the fit to the data is not sufficiently improved to
justify the addition of extra parameters. Nevertheless, it should be noted that the results
reported in Tables 6.6 and 6.7 include the sampling of ϕini, which could in principle be
fixed without loss of generality, decreasing the prior volume.
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Figure 6.3: 1D marginalised posterior distributions of the coupling parameter, α, and slope of
the potential, µ, in the M2+ model (upper panel) and M2− model (lower panel) using the Pl18
(red), Pl18+BAO (blue), Pl18+SN, (green) and Pl18+BAO+SN (yellow) data set combinations.

6.2.3 M3 Flat: Coupling with Minimum/Maximum and Exponential Poten-
tial

• Initial Conditions: The M3 model differs more significantly from M1 and M2 due to the
non-trivial form of the coupling, which is no longer a constant but depends directly on the
value of the scalar field. For this reason, we chose to leave the initial condition for the
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Parameter Pl18 Pl18 + BAO Pl18 + SN Pl18 + BAO + SN

Ωbh
2 0.02236± 0.00015 0.02238± 0.00014 0.02237± 0.00015 0.02238± 0.00015

Ωcdmh
2 0.1185+0.0028

−0.0016 0.1190± 0.0011 0.1185+0.0021
−0.0014 0.1188± 0.0011

100θs 1.04186± 0.00030 1.04190± 0.00029 1.04189± 0.00029 1.04191± 0.00029

τreio 0.0546± 0.0079 0.0550+0.0073
−0.0082 0.0546± 0.0082 0.0554± 0.0079

ns 0.9660± 0.0045 0.9663± 0.0038 0.9664± 0.0041 0.9666± 0.0039

ln
(
1010As

)
3.046± 0.016 3.047+0.015

−0.017 3.046± 0.017 3.047± 0.016

µ < 0.502 < 0.500 < 0.450 < 0.451

α < 0.0396 0.025+0.012
−0.020 < 0.0387 0.026+0.014

−0.019

σ8 0.823+0.014
−0.021 0.818+0.010

−0.014 0.8232+0.0086
−0.018 0.8195+0.0091

−0.014

Ωm 0.305+0.020
−0.013 0.3068± 0.0083 0.303+0.016

−0.0093 0.3051+0.0079
−0.0070

S8 0.828± 0.018 0.827± 0.013 0.826± 0.015 0.826± 0.013

H0 68.3+1.0
−1.7 68.05± 0.70 68.44+0.67

−1.4 68.19+0.52
−0.67

∆χ2
min −0.68 0.12 0.66 0.52

lnBM2+,ΛCDM −6.55 −6.63 −6.45 −6.71

Table 6.6: Observational constraints at 68% confidence level on the sampled and derived cos-
mological parameters for different data set combinations under the flat M2+ model, studied in
Section 6.2.2.

scalar field ϕini as a free parameter. This field dependence originates a minimum and a
maximum of the effective potential at ϕ∗ for M3+ and M3−, respectively. For the sampling
process, this means that the scalar field will prefer to sit at the minimum of the potential
in M3+, leading to an unphysical highly peaked posterior distribution for ϕini which spoils
the results, namely through an unreasonably large steep peak for the coupling posterior of
γ. For this reason, we have opted for presenting the results only for M3− with varying ϕini,
listed in Table 6.8. This means that we only consider the case in which the potential has a
maximum and the scalar field does not get stuck into a minimum.The features introduced
by the varying initial conditions can be better appreciated by comparing both models. In
Figure 6.5, we see a clear peak close to the maximum, which is not symmetric, with values
ϕini < ϕ∗ = 2MPl being favoured. This motivates setting ϕini = 1MPl for M3+ in furter
studies.

• Coupling: In Table 6.8, we verify that all the data combinations can accommodate a vanish-
ing coupling constant γ in the 68% CL region for the M3− model, with only upper bounds
for |γ| being reported. Figure 6.3 illustrates this trend through the marginalised posterior
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Parameter Pl18 Pl18 + BAO Pl18 + SN Pl18 + BAO + SN

Ωbh
2 0.02237± 0.00015 0.02238± 0.00014 0.02236± 0.00015 0.02238± 0.00014

Ωcdmh
2 0.1183+0.0030

−0.0014 0.1188± 0.0012 0.1185+0.0021
−0.0013 0.1186+0.0012

−0.0011

100θs 1.04187± 0.00030 1.04191± 0.00028 1.04187± 0.00029 1.04191± 0.00028

τreio 0.0550+0.0072
−0.0084 0.0553± 0.0081 0.0551± 0.0076 0.0547± 0.0074

ns 0.9663± 0.0045 0.9663± 0.0040 0.9662± 0.0041 0.9661± 0.0038

ln
(
1010As

)
3.047± 0.016 3.047± 0.016 3.047± 0.016 3.046± 0.015

µ < 0.459 < 0.484 < 0.458 < 0.463

α > −0.0385 −0.025+0.021
−0.011 > −0.0379 −0.027± 0.015

σ8 0.8240+0.0083
−0.021 0.8185+0.0096

−0.013 0.8229+0.0092
−0.018 0.8194+0.0092

−0.015

Ωm 0.303+0.022
−0.010 0.3063± 0.0084 0.304+0.016

−0.0086 0.3045+0.0085
−0.0073

S8 0.827± 0.018 0.827± 0.013 0.827± 0.016 0.825± 0.013

H0 68.42+0.72
−1.8 68.05± 0.71 68.32+0.62

−1.3 68.21+0.58
−0.71

∆χ2
min +1.14 +0.06 −0.32 −2.12

lnBM2−,ΛCDM −6.61 −6.51 −9.88 −3.57

Table 6.7: Observational constraints at 68% confidence level on the sampled and derived cos-
mological parameters for different data set combinations under the flat M2− model, studied in
Section 6.2.2.

distributions, where there is only a small hint of BAO data driving the peak away from zero.
More precisely, with the Pl18 data set alone, the following upper bound is found at 68%

CL: |γ| < 0.0683 for the M3− model. For the full Pl18+BAO+SN data set combination, we
report at 1σ: |γ| < 0.0549. In Figure 6.6, we depict the 2D marginalised posterior contours
for |γ| against relevant cosmological and model parameters: {H0, σ8,Ωm, λ}. Due to the
added number of parameters, there is less evidence of correlations, with arguably slightly
positive correlations in the {|γ|, H0}, {|γ|, σ8} and (less robust) in the {|γ|, λ} plane, and
slightly negative in the {|γ|,Ωm} plane.

• Potential: In Table 6.8, we also report on the slope of the potential λ, which, just as in
the M1 models, is consistently constrained only from above. Incorporation of background
datasets yields tighter constraints on λ compared to Pl18. This effect is depicted in Fig-
ure 6.5, where there seems to be a minute shift of the peak away from zero with the addition
of BAO data. For Pl18, we report λ < 0.925 at 68% CL, while the full Pl18+BAO+SN
data set combination is more restrictive, namely λ < 0.406.

• H0 Tension: The H0 tension is alleviated to some extent by the enlarged error bars in M3−,
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Figure 6.4: 2D marginalised posterior distributions of parameters in the M2+ model (upper
panel) and M2− model (lower panel) using the Pl18 (red), Pl18+BAO (blue), Pl18+SN, (green)
and Pl18+BAO+SN (yellow) data set combinations. We plot the 2D marginalised posterior
distributions of the conformal coupling parameter, α, against the power of the potential, µ,
the Hubble constant in units km s−1 Mpc−1, H0, the present-day mass fluctuation amplitude
in spheres of radius 8h−1Mpc, σ8, and the total matter density parameter, Ωm. The shaded
contours indicate the 1σ and 2σ confidence limits.

as no significant correlation seems to exist between |γ| and H0, while a positive relation
had been identified in the M1 and M2 models. Using Pl18 data, the M3− model lessens
the tension from ∼ 4.8σ to ∼ 3.2σ which is a less significant reduction compared to the
M1 and M2 models since the mean value of H0 is also consistently smaller, making it less
effective in reducing the tension.

• S8 Tension: In analogy to the M1 models, slightly smaller values of σ8 are reported for
M3− compared to ΛCDM for all data set combinations, compensated by consistently lower
mean values of Ωm. Again, the interplay between σ8 and Ωm approximately balances out,
resulting in a S8 value of 0.839+0.018

−0.021 at 1σ for the M3−, not significantly different from the
ΛCDM value assuming Pl18 data.

• Model Evidence: Table 6.7 reveals that the logarithm of Bayes factor, lnBM3,ΛCDM, is once
again negative for all the data sets, implying a lack of evidence supporting the M3− model
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over ΛCDM. There is a minute overall trend of positive values of ∆χ2
min, with the exception

being the Pl18+SN, which when compared with the Bayesian evidence, is not sufficient to
justify the addition of extra parameters.

Parameter Pl18 Pl18 + BAO Pl18 + SN Pl18 + BAO + SN

Ωbh
2 0.02235± 0.00015 0.02239± 0.00015 0.02239± 0.00014 0.02242± 0.00014

Ωcdmh
2 0.1192+0.0023

−0.0015 0.1187+0.0015
−0.0011 0.1187+0.0019

−0.0013 0.1183+0.0016
−0.00099

100θs 1.04184± 0.00030 1.04193± 0.00029 1.04191± 0.00029 1.04191± 0.00031

τreio 0.0552± 0.0079 0.0555± 0.0079 0.0552± 0.0078 0.0545± 0.0074

ns 0.9657± 0.0044 0.9666± 0.0042 0.9663± 0.0042 0.9673± 0.0039

ln
(
1010As

)
3.047± 0.017 3.047± 0.016 3.046± 0.016 3.045± 0.016

λ < 0.925 < 0.797 < 0.369 < 0.406

γ > −0.0683 > −0.0645 > −0.0459 > −0.0549

ϕini 1.64+0.61
−0.87 1.69+0.67

−0.74 1.81± 0.87 1.92± 0.84

σ8 0.805+0.029
−0.019 0.810± 0.017 0.8164+0.0092

−0.014 0.8143+0.0098
−0.014

Ωm 0.328+0.012
−0.032 0.315+0.011

−0.016 0.308+0.013
−0.0086 0.3067+0.0092

−0.0062

S8 0.839+0.018
−0.021 0.830+0.014

−0.017 0.827± 0.015 0.823+0.014
−0.013

H0 66.1+2.8
−1.0 67.1+1.5

−0.79 67.89+0.66
−1.0 67.91+0.54

−0.73

∆χ2
min +1.84 +0.5 −0.2 +0.32

lnBM3−,ΛCDM −6.34 −5.94 −7.29 −7.27

Table 6.8: Observational constraints at 68% confidence level on the sampled and derived cos-
mological parameters for different data set combinations under the flat M3− model, studied in
Section 6.2.3.

6.3 Coupled Quintessence in Non-Flat Geometries

While large-scale observations have historically suggested that our Universe is nearly homoge-
neous, isotropic, and spatially flat, recent data has called this into question. Studies on the CMB
temperature and polarisation spectra, particularly from the Planck 2018 collaboration, hint at a
closed geometric structure for the Universe. Thus, observations implying a minimal prediction
for the spatial curvature of the Universe cannot be taken as irrefutable evidence for spatial flat-
ness. In this section, we aim to thoroughly assess the validity of coupled quintessence models by
treating the Universe’s curvature as a variable parameter and how it influences the cosmological
tensions, compared with the flat case studied in Section 6.3.
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Figure 6.5: 1D marginalised posterior distributions of the coupling parameter, γ, and slope of
the potential, λ, in the M3− model using the Pl18 (red), Pl18+BAO (blue), Pl18+SN, (green)
and Pl18+BAO+SN (yellow) data set combinations.
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Figure 6.6: 2D marginalised posterior distributions of parameters in the M3− model using
the Pl18 (red), Pl18+BAO (blue), Pl18+SN, (green) and Pl18+BAO+SN (yellow) data set
combinations. We plot the 2D marginalised posterior distributions of the conformal coupling
parameter, γ, against the slope of the potential, λ, the Hubble constant in units km s−1 Mpc−1,
H0, the present-day mass fluctuation amplitude in spheres of radius 8h−1Mpc, σ8, and the total
matter density parameter, Ωm. The shaded contours indicate the 1σ and 2σ confidence limits.

In the following sections, we analyse the different extensions of the curved ΛCDM model. We
make use of the same data set combinations as in the flat cases for all the extensions. In the
Tables 6.9 to 6.15 we provide the bounds at 68% CL (1σ) and comment on the corresponding
95% (2σ) and 99% (3σ) CL in the text when relevant for the discussion.

6.3.1 ΛCDM + ΩK

Table 6.9 presents the constraints on the ΛCDM+ΩK scenario for various datasets. The second
column of Table 6.9 shows the constraints using CMB data alone, and we remark a strong
evidence for a closed Universe at over 99% confidence level: ΩK = −0.052+0.041

−0.053. The Hubble
constant is significantly lower in this case (H0 = 52.8+3.2

−4.1 km/s/Mpc at 68% CL), thereby greatly
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exacerbating the Hubble tension. Additionally, due to a strong correlation among H0, ΩK , and
Ωm, the matter density Ωm takes extremely large values, also increasing the estimate of S8 in
this scenario.

When BAO data are combined with CMB data, as shown in the third column of Table 6.9, ΩK

aligns with a spatially flat Universe, and the Hubble constant rises to the standard flat ΛCDM
Planck value. However, this concordance comes from a dataset combination that is in disagree-
ment at over 3σ [181, 182, 192], calling into question the reliability of the Pl18+BAO results.
The last two columns of Table 6.9 report on the outcomes for Pl18+SN and Pl18+BAO+SN
which are fairly similar, except for a slightly lower mean value of H0 in the Pl18+SN case
(H0 = 65.7+1.9

−3.3 km/s/Mpc at 68% CL), but with larger error bars. In both instances, spatial
flatness is consistent with the data.

Parameter Pl18 Pl18 + BAO Pl18 + SN Pl18 + BAO + SN

ωb 0.02261± 0.00017 0.02239± 0.00015 0.02246± 0.00016 0.02240± 0.00015

ωcdm 0.1180± 0.0015 0.1199± 0.0014 0.1192± 0.0015 0.1197± 0.0014

100θs 1.04206± 0.00031 1.04193± 0.00030 1.04196± 0.00031 1.04194± 0.00030

τreio 0.0484± 0.0082 0.0556± 0.0078 0.0556± 0.0078 0.0550± 0.0079

ns 0.9714± 0.0049 0.9662± 0.0045 0.9678± 0.0048 0.9664± 0.0045

ln
(
1010As

)
3.028± 0.017 3.047± 0.016 3.046± 0.016 3.046± 0.016

ΩK −0.052+0.020
−0.017 0.0009± 0.0020 −0.0051+0.0057

−0.0078 0.0010± 0.0019

σ8 0.769± 0.016 0.8118± 0.0082 0.8060+0.0094
−0.011 0.8110± 0.0082

Ωm 0.514+0.065
−0.073 0.3099± 0.0067 0.332+0.030

−0.021 0.3086± 0.0065

S8 1.003+0.054
−0.047 0.825± 0.013 0.846+0.035

−0.022 0.822± 0.013

H0 52.8+3.2
−4.1 67.92± 0.69 65.7+1.9

−3.3 68.03± 0.67

Table 6.9: Observational constraints at 68% confidence level on the sampled and derived cos-
mological parameters for different data set combinations under the curved ΛCDM + ΩK model,
studied in Section 6.3.1.

6.3.2 M1 + ΩK: Exponential Conformal Factor and Exponential Potential

The first extension of the non-flat ΛCDM framework that we explore incorporates Model M1

as introduced in Section 6.1.3, split into the positive and negative coupling parameters variants:
M1+ + ΩK and M1− + ΩK . The derived parameter constraints are presented in Tables 6.10
and 6.11 and Figures 6.7 and 6.8 display the 1D and 2D marginalised posterior probability
distributions, respectively.
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In summary, when only relying on the Planck satellite’s CMB temperature and polarisation data
(Pl18), a preference for a curved cosmological space emerges at over 99%CL, constraining the
curvature parameter to ΩK = −0.059+0.039

−0.039 and ΩK = −0.059+0.045
−0.062 at 95%CL and 99%CL for

M1++ΩK and ΩK = −0.069+0.041
−0.044 and ΩK = −0.069+0.053

−0.051 at 95%CL and 99%CL for M1−+ΩK .
This strong preference for a closed Universe vanishes when combining the Planck data with BAO,
favouring spatial flatness within one standard deviation. Concerning the current expansion rate
H0, as depicted in Figure 6.8, the mild positive correlation with the coupling parameter results in
even lower preferred H0 values, yielding H0 = 50.9±5.2 km/s/Mpc and H0 = 48.5+4.5

−5.8 km/s/Mpc
for M1++ΩK and M1−+ΩK at 68%CL, which sharply contrasts with the late-time independent
measurements of H0, diverging at approximately 4.2σ and 4.7σ.
When adding the background data sets, the statistical tension persists. For instance, the H0

value inferred from the Pl18 and BAO combination (third column in Tables 6.10 and 6.11) is
66.5+2.0

−1.5 km/s/Mpc and 67.5+1.2
−1.0 km/s/Mpc at 68%CL for M1++ΩK and M1−+ΩK , closely re-

sembling the flat ΛCDM result. Also, the matter density parameter Ωm negatively correlates with
H0, amplifying the tension in the S8 parameter. Compared to Pl18-only and Pl18+BAO+SN
datasets, this tension reaches roughly 3− 4σ. Interestingly, the Pl18+SN case is consistent with
a closed Universe at more than 95% CL.
Regarding the coupling parameter, the Pl18 data alone offers an upper limit of α < 0.100

and |α| < 0.0934 at 95%CL for M1+ + ΩK and M1− + ΩK , which becomes less stringent,
α = 0.068+0.052

−0.060 and |α| < 0.110 at 95%CL for M1+ + ΩK and M1− + ΩK when BAO and SN
data are also included. This is in contrast to the flat case, where the upper limit is |α| < 0.0547

and |α| < 0.0560 for Pl18+BAO+SN at 95%CL for M1+ and M1−. Thus, assuming spatial
flatness imposes more restrictive constraints on the traditional coupled quintessence model.
For comparison purposes, we list below a more detailed account of each effect.

• Coupling: Adding the varying curvature parameter to the M1 + ΩK models, results in
a non-vanishing prediction for α at 1σ for all the data sets except Pl18 in M1+ + ΩK

and for Pl18+SN and Pl18+BAO+SN in M1− + ΩK , as can be confirmed in Tables 6.10
and 6.11. For instance, for the full combination we report α = 0.068+0.033

−0.028 and α =

−0.058±0.32 for M1++ΩK and M1−+ΩK , respectively. On the other hand, for the Pl18
data alone the conditions are relaxed to upper bounds: α < 0.0515 and |α| < 0.0537 for
M1+ +ΩK and M1− +ΩK , respectively. Hence, the magnitude of the coupling parameter
is comparable in both cases. As was the case in the flat scenario, the background data
brings the peak in the |α| marginalised posterior distribution away from zero, as depicted
in Figure 6.7, with SN having the most defining impact, especially in the M1− +ΩK case,
heavily suppressing the zero-peaked tail introduced by BAO, which pushes the maximum
back for Pl18+BAO+SN. In Figure 6.8 we find the 2D marginalised posterior distributions
of α against {H0, σ8,Ωm, λ,ΩK}. Both M1 + ΩK models exhibit a positive correlation in
the {|α|, λ} (except for the uncorrelated Pl18 case) and {|α|, σ8} planes. There is also a
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reduced positive correlation for {|α|, H0} with Pl18 only in M1++ΩK . On the other hand,
there is a minor negative correlation for {|α|,ΩK} in both cases excluding the Pl18-only
case. This is possibly associated with the larger error bars in Ωm, which is constrained
towards more conservative values when the background data is added and does not appear
to be correlated with α. Therefore, a more negative value of ΩK must be compensated by
an increased coupling, sourcing the DE component. The remaining combinations seem to
not be correlated.

• Potential: The slope of the exponential potential λ is only bounded from above with 68%

CL in the Pl18 and Pl18+SN combinations in M1++ΩK and across all cases in M1−+ΩK .
As reported in Tables 6.10 and 6.11, the background data tightens the constraint on λ in
both models, in particular, due to the constraining power of BAO data on Ωm, directly
influenced and positively correlated with λ. Pl18 data alone limits λ to be smaller than
2.21 and 2.49, while the full Pl18+BAO+SN set brings this upper limit down to 0.54 (with
zero not included at 1σ) and 0.435, for M1+ + ΩK and M1− + ΩK , respectively, both
at 1σ. In Figure 6.7, we confirm the constraining power of BAO over λ, responsible for
suppressing the left-hand side tail of the distribution, with SN pushing the peak towards
zero. The values of |α| and λ fall within similar ranges for all the data set combinations in
both models, with broader error bars for Pl18+SN.

• H0 Tension: The H0 tension is mildly alleviated by the positive correlation between |α|
and H0, similar to the flat M1 case. Using Pl18 data, the M1++ΩK and M1−+ΩK models
lessen the tension from approximately 5.3σ to ∼ 4.2σ and 4.7σ, respectively, which is still
almost double the corresponding values for ΩK = 0. As happened in the flat case, the
mean H0 value in the M1+ΩK models is lower than in ΛCDM+ΩK , yet with larger error
bars, resulting in an apparent alleviation of the tension due to the larger posterior space.
Adding background data (mostly the effect of BAO) brings the H0 value closer to the more
reasonable values reported in the flat cases. This is consistent with these data sets’ power
in bringing ΩK close to zero. Nevertheless, it should be noted that this represents yet
another tension between the CMB and background data sets, which give predictions that
are incompatible at 99% CL.

• S8 Tension: Even though the prediction of a closed Universe when considering Pl18 alone
helps bring the value of σ8 down, the S8 tension remains due to the large values predicted
for Ωm in both the ΛCDM + ΩK and M1 + ΩK models. By introducing the background
data, both σ8 and Ωm are restored to values compatible with the flat case. For Pl18 this
results in an S8 value of 1.014+0.055

−0.043 at 1σ for the M1+ + ΩK model, and 1.026+0.052
−0.037 for

M1− +ΩK , both not significantly different from the ΛCDM +ΩK value S8 = 1.003+0.054
−0.047.

• Curvature: In line with what happens in the ΛCDM + ΩK case, there is a prediction
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for a closed Universe at more than 99% CL for the M1 + ΩK models with Pl18 and
Pl18+SN. In particular, at 68% CL we find ΩK = −0.059+0.023

−0.018 for M1+ + ΩK and ΩK =

−0.069+0.024
−0.022 for M1− +ΩK , in contrast with ΩK = −0.052+0.020

−0.017 for ΛCDM +ΩK . These
values are themselves in tension with the Pl18+BAO+SN counterparts, which report ΩK =

−0.0068+0.0071
−0.0047 for M1++ΩK and ΩK = −0.0048+0.0069

−0.0042 for M1−+ΩK . This is in contrast
with ΩK = 0.0010±0.0019 for ΛCDM+ΩK , all consistent with ΩK = 0 but with the mean
value for ΛCDM actually depicting an open Universe. This shows the incompatibility of
predictions between the different data sets in tension at ∼ 2.9σ for ΛCDM + ΩK , ∼ 2.5σ

for M1+ +ΩK and ∼ 2.7σ level for M1− +ΩK , already admitting that the data sets have
been combined. This shows how care should be taken when deriving conclusions from their
combination.

• Model Evidence: The lower sections of Tables 6.10 and 6.11 report on the ∆χ2
min value

for the goodness of fit comparison and the logarithm of the Bayes factor, lnBM1,ΛCDM for
the curved cases. We see that both model comparison criteria are significantly negative
(except for ∆χ2

min > 0 for M1− + ΩK with Pl18+BAO+SN), yielding no support for the
M1 + ΩK models over ΛCDM +ΩK , but hinting at a better fit to the data.
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Figure 6.7: 1D marginalised posterior distributions of the coupling parameter, α, and slope of
the potential, λ, in the M1+ + ΩK model (upper panel) and M1− + ΩK model (lower panel)
using the Pl18 (red), Pl18+BAO (blue), Pl18+SN, (green) and Pl18+BAO+SN (yellow) data
set combinations.

6.3.3 M2 + ΩK: Exponential Conformal Factor and Inverse Power-law Po-
tential

In Tables 6.12 and 6.13, we compile the parameter constraints for the M2 + ΩK models, and
Figures 6.9 and 6.10 illustrate the corresponding marginalised 1D and 2D posterior distributions.
Observing the Pl18 data in isolation, evidence for a closed Universe manifests at more than
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Parameter Pl18 Pl18 + BAO Pl18 + SN Pl18 + BAO + SN

ωb 0.02261± 0.00017 0.02241± 0.00016 0.02255± 0.00016 0.02241± 0.00016

ωcdm 0.1163+0.0041
−0.0019 0.1137+0.0062

−0.0040 0.1060+0.0049
−0.0056 0.1141+0.0051

−0.0034

100θs 1.04205± 0.00030 1.04191± 0.00030 1.04197± 0.00030 1.04191± 0.00030

τreio 0.0488± 0.0084 0.0553± 0.0079 0.0521± 0.0083 0.0550± 0.0078

ns 0.9729± 0.0051 0.9718+0.0059
−0.0067 0.9774± 0.0057 0.9704+0.0053

−0.0059

ln
(
1010As

)
3.029± 0.017 3.047± 0.016 3.038± 0.017 3.046± 0.016

ΩK −0.059+0.023
−0.018 −0.0083+0.0094

−0.0066 −0.030± 0.012 −0.0068+0.0071
−0.0047

λ < 2.21 1.05+0.64
−0.37 < 0.549 0.54+0.28

−0.39

α < 0.0515 0.078+0.046
−0.031 0.104+0.026

−0.016 0.068+0.033
−0.028

σ8 0.754+0.061
−0.049 0.845+0.034

−0.048 0.893± 0.037 0.852+0.025
−0.038

Ωm 0.559+0.079
−0.15 0.310± 0.021 0.322± 0.023 0.296+0.014

−0.011

S8 1.014+0.055
−0.043 0.856+0.021

−0.033 0.923± 0.039 0.845+0.017
−0.023

H0 50.9± 5.2 66.5+2.0
−1.5 63.5+2.2

−2.6 68.10± 0.79

∆χ2
min −1.60 −3.68 −7.66 −1.36

lnBM1+,ΛCDM −4.32 −4.2 −4.04 −5.89

Table 6.10: Observational constraints at 68% confidence level on the sampled and derived
cosmological parameters for different data set combinations under the curved M1+ + ΩK model,
studied in Section 6.3.2.

99%CL, namely ΩK = −0.061+0.048
−0.053 and ΩK = −0.062+0.047

−0.054 for M2+ + ΩK and M2− + ΩK ,
respectively. The coupling parameter is bounded to similar values across both models and all
data sets; namely, we report α < 0.0563 and |α| < 0.0566 at 68%CL for Pl18 data alone, looser
than in the corresponding flat scenario. The H0 tension in the CMB data is maintained at the
same level as for ΛCDM+ΩK and M1+ΩK , displaying mean values of H0 = 51.6+4.2

−2.8 km/s/Mpc
and H0 = 51.9+3.7

−4.7 km/s/Mpc at 68%CL. Compared with the flat case, we conclude that this
worsening of the tension is attributed to the curvature effects.
Incorporating BAO data into the analysis considerably shifts the constraints due to their con-
flicting implications in a curved Universe, drawing this model closer to the spatially flat case.
Nevertheless, the combination of Pl18+SN yields intriguing outcomes. We detect a closed Uni-
verse at above 95%CL (ΩK = −0.030 ± 0.023 and ΩK = −0.031 ± 0.026) with a coupled dark
sector (α = 0.099+0.047

−0.061 and |α| = 0.098+0.046
−0.054 at 95%CL). The Hubble constant is suppressed in

relation to the Pl18+BAO case, leading to an enlarged Ωm due to its correlation with H0.
Lastly, considering the Pl18+BAO+SN combination (see the last column of Tables 6.12 and 6.13),
the BAO data’s tension with Planck results reinforces spatial flatness. Meanwhile, α becomes
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Parameter Pl18 Pl18 + BAO Pl18 + SN Pl18 + BAO + SN

ωb 0.02261± 0.00017 0.02239± 0.00016 0.02252± 0.00017 0.02239± 0.00015

ωcdm 0.1130+0.0060
−0.0028 0.1148+0.0062

−0.0030 0.1045+0.0063
−0.0073 0.1134+0.0068

−0.0038

100θs 1.04204± 0.00030 1.04191± 0.00030 1.04197± 0.00029 1.04190± 0.00030

τreio 0.0485+0.0084
−0.0074 0.0556± 0.0081 0.0526± 0.0081 0.0552± 0.0077

ns 0.9730± 0.0049 0.9686+0.0049
−0.0057 0.9768± 0.0063 0.9696± 0.0053

ln
(
1010As

)
3.029± 0.017 3.047± 0.017 3.039± 0.017 3.047± 0.016

ΩK −0.069+0.024
−0.022 −0.0028+0.0067

−0.0036 −0.028+0.012
−0.014 −0.0048+0.0069

−0.0042

λ < 2.49 < 0.653 < 0.305 < 0.435

α > −0.0537 > −0.0627 −0.100+0.018
−0.032 −0.058± 0.032

σ8 0.736+0.058
−0.051 0.829+0.022

−0.041 0.887± 0.041 0.843+0.022
−0.039

Ωm 0.60+0.10
−0.15 0.303+0.020

−0.014 0.315± 0.023 0.294+0.018
−0.011

S8 1.026+0.052
−0.037 0.831+0.014

−0.018 0.909+0.045
−0.035 0.834+0.015

−0.018

H0 48.5+4.5
−5.8 67.5+1.2

−1.0 63.7+2.2
−2.7 68.11± 0.76

∆χ2
min −2.46 −1.60 −6.38 1.66

lnBM1−,ΛCDM −4.24 −5.61 −4.31 −6.77

Table 6.11: Observational constraints at 68% confidence level on the sampled and derived
cosmological parameters for different data set combinations under the curved M1− + ΩK model,
studied in Section 6.3.2.

more constrained and aligns with an uncoupled and a cosmological constant scenario (α = 0 and
µ = 0) at 95%CL. It is noteworthy that H0 sees a mild enhancement compared to the Pl18 flat
and curved ΛCDM predictions, yet the tension with distance ladder measurements persists at
4− 5σ.
Below we list the results in more detail, with a focus on comparing the effects of the introduction
of spatial curvature.

• Coupling: In contrast with the flat case, a non-vanishing prediction for α at 68% can be
derived for all data set combinations except Pl18 in both M2 +ΩK models, as reported in
Tables 6.12 and 6.13. For instance, for the full combination we report α = 0.049+0.026

−0.035 and
α = −0.050+0.040

−0.023 for M2+ +ΩK and M2− +ΩK , respectively. On the other hand, for the
Pl18 data alone, these constraints are once again relaxed to upper bounds: α < 0.0563 and
|α| < 0.0566 for M2++ΩK and M2−+ΩK , respectively. Hence, the magnitude of the cou-
pling parameter is comparable in both cases, in agreement with the symmetry found in the
constant coupling case for change of signs in the pair {α, ϕ̇}, according to Equation (6.1.8).
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Figure 6.8: 2D marginalised posterior distributions of parameters in the M1+ + ΩK model (up-
per panel) and M1− +ΩK model (lower panel) using the Pl18 (red), Pl18+BAO (blue), Pl18+SN,
(green) and Pl18+BAO+SN (yellow) data set combinations. We plot the 2D marginalised pos-
terior distributions of the conformal coupling parameter, α, against the slope of the potential,
λ, the Hubble constant in units km s−1 Mpc−1, H0, the present-day mass fluctuation amplitude
in spheres of radius 8h−1Mpc, σ8, and the total matter density parameter, Ωm. The shaded
contours indicate the 1σ and 2σ confidence limits.

In Figure 6.9, we find a similar pattern to the flat case, with the background data driving
the peak in the |α| marginalised posterior distribution away from zero. SN data has the
greatest impact in suppressing the low-α tail of the distribution for Pl18+SN, which is
restored with the introduction of BAO into the combination. In Figure 6.10 we show the
2D marginalised posterior distributions of α against {H0, σ8,Ωm, µ,ΩK}. Both M2 + ΩK

models exhibit a positive correlation in the {|α|, σ8}. For Pl18 there is also a slight positive
correlation for {|α|, H0} and negative for {|α|,Ωm}, and both vanish once background data
sets are included. On the other hand, there is a negative correlation for {|α|,ΩK} for all
cases excluding Pl18 alone. This is once again associated with the larger error bars in Ωm,
which is constrained towards more conservative values when the background data is added
and does not appear to be correlated with α. Therefore, a more negative value of ΩK must
be compensated by an increased coupling, sourcing the DE component. The remaining
combinations seem to be negligibly correlated. We find the scalar field parameters {|α|, µ}
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to be generally uncorrelated. We highlight the consistent results between the positive and
negative coupling parameter cases due to the model’s symmetry and show a clear preference
for the trend set by the data on the parameters.

• Potential: The power of the inverse potential µ is only bounded from above with 68% CL
for all the data combinations in both M2 + ΩK models. These are reported in Tables 6.12
and 6.13, with the background data consistently shortening the 1σ parameter region and,
consequently, the upper bound. Indeed, this is illustrated in Figure 6.9, with the back-
ground data leading to the collapse of the high-µ tail of the distribution that is present in
both cases for Pl18, bringing the peak close to zero. Pl18 data alone limits µ to be smaller
than 2.17 and 1.74, while the full Pl18+BAO+SN sets brings this upper limit down to
0.499 for M2+ + ΩK and 0.484 for M2− + ΩK , respectively at 1σ. The symmetry of the
model ensures that the values of |α| and µ fall within similar ranges in both models for the
same data set combinations.

• H0 Tension: TheH0 tension is alleviated to some extent by the positive correlation between
|α| and H0, similar to the M1 + ΩK models. In the Pl18-only case, the M2+ + ΩK and
M2− +ΩK models negligibly reduce the tension in ΛCDM+ΩK from approximately 5.3σ

to ∼ 4.6σ and 4.9σ, respectively, which is still considerably aggravated with respect to
the corresponding values for M2 with ΩK = 0. Analogously to the M1 + ΩK case, the
mean H0 value in the M2+ΩK models is lower than in ΛCDM+ΩK , yet with larger error
bars. Once more, adding background data (dominated by the effect of BAO) brings the
H0 value closer to the ones reported in the flat cases, consistent with the constraints set
on ΩK close to zero. Nevertheless, it stresses once more the incompatibility of the CMB
and background data sets when ΩK is added as a free parameter.

• S8 Tension: We see that considering the inverse power law potential does not change the
predictions significantly compared with the exponential case M1 + ΩK . The evidence for
a close Universe when considering Pl18 alone drives the value of σ8 down. However, the
S8 parameter remains too high when compared with the one reported by studies of weak
lensing predictions, as a consequence of the large values predicted for Ωm in both the
ΛCDM+ΩK and M2+ΩK models. By introducing the background data, both σ8 and Ωm

are restored to values compatible with the flat case. For Pl18 this results in an S8 value
of 1.021+0.057

−0.040 at 1σ for the M2+ + ΩK model, and 1.019+0.056
−0.038 for M2− + ΩK , both not

significantly different from the ΛCDM +ΩK value S8 = 1.003+0.054
−0.047.

• Curvature: We report evidence for a curved Universe at more than 99% CL for the M2+ΩK

models with CMB data and with the addition of SN. In particular, at 68% CL we find
ΩK = −0.061± 0.020 for M2+ +ΩK and ΩK = −0.062± 0.019 for M2− +ΩK , in contrast
with ΩK = −0.052+0.020

−0.017 for ΛCDM + ΩK , with similar sizes for the CL regions. These
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values are consistently in tension with the Pl18+BAO+SN counterparts, which report
ΩK = −0.0037+0.0058

−0.0033 for M2+ + ΩK and ΩK = −0.0038+0.0059
−0.0034 for M2− + ΩK , also in

contrast with ΩK = 0.0010± 0.0019 for ΛCDM+ΩK , all including ΩK = 0 in the 68% CL
region. This corroborates the incompatibility between the data sets of different nature in
tension at ∼ 2.9σ for ΛCDM+ΩK , ∼ 2.8σ for M2++ΩK and ∼ 3.0σ level for M2−+ΩK ,
already after the data sets have been combined.

• Model Evidence: The lower sections of Tables 6.12 and 6.13 report on the ∆χ2
min value for

the goodness of fit comparison and the logarithm of the Bayes factor, lnBM2,ΛCDM. We
see that both model comparison criteria are significantly negative (except for the negligible
∆χ2

min > 0 for the M2 + ΩK models with Pl18+BAO+SN), yielding no support for the
M2 + ΩK models over ΛCDM +ΩK but revealing a better fit to the data.

Parameter Pl18 Pl18 + BAO Pl18 + SN Pl18 + BAO + SN

ωb 0.02264± 0.00017 0.02240± 0.00015 0.02255± 0.00016 0.02240± 0.00016

ωcdm 0.1150+0.0045
−0.0025 0.1146+0.0061

−0.0034 0.1057+0.0056
−0.0064 0.1159+0.0047

−0.0026

100θs 1.04208± 0.00030 1.04191± 0.00030 1.04198± 0.00030 1.04191± 0.00030

τreio 0.0478+0.0086
−0.0076 0.0553± 0.0078 0.0523± 0.0083 0.0550± 0.0078

ns 0.9739± 0.0051 0.9697+0.0052
−0.0060 0.9770± 0.0059 0.9685+0.0048

−0.0054

ln
(
1010As

)
3.026± 0.018 3.047± 0.016 3.038± 0.017 3.046± 0.016

ΩK −0.061± 0.020 −0.0054+0.0076
−0.0044 −0.030± 0.012 −0.0037+0.0058

−0.0033

µ < 2.17 < 0.626 < 0.525 < 0.499

α < 0.0563 0.059+0.031
−0.045 0.098+0.030

−0.018 0.049+0.026
−0.035

σ8 0.774+0.041
−0.036 0.846+0.023

−0.043 0.887± 0.040 0.838+0.017
−0.032

Ωm 0.533+0.078
−0.12 0.297+0.018

−0.014 0.323± 0.022 0.298+0.014
−0.0085

S8 1.021+0.057
−0.040 0.841+0.015

−0.024 0.919± 0.039 0.835+0.015
−0.019

H0 51.6+4.2
−4.8 68.1+1.3

−0.85 63.3+2.1
−2.3 68.29± 0.75

∆χ2
min −2.04 −3.12 −5.62 0.04

lnBM2+,ΛCDM −5.14 −5.36 −4.26 −6.33

Table 6.12: Observational constraints at 68% confidence level on the sampled and derived
cosmological parameters for different data set combinations under the curved M2+ + ΩK model,
studied in Section 6.3.3.
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Parameter Pl18 Pl18 + BAO Pl18 + SN Pl18 + BAO + SN

ωb 0.02265± 0.00017 0.02240± 0.00015 0.02254± 0.00017 0.02239± 0.00015

ωcdm 0.1137+0.0052
−0.0025 0.1146+0.0062

−0.0031 0.1052+0.0058
−0.0072 0.1152+0.0054

−0.0027

100θs 1.04208± 0.00031 1.04191± 0.00030 1.04199± 0.00030 1.04191± 0.00030

τreio 0.0478± 0.0085 0.0549± 0.0079 0.0522± 0.0082 0.0553± 0.0081

ns 0.9741± 0.0050 0.9691+0.0048
−0.0059 0.9771± 0.0062 0.9688± 0.0050

ln
(
1010As

)
3.027± 0.018 3.046± 0.016 3.038± 0.017 3.047+0.015

−0.017

ΩK −0.062± 0.019 −0.0045+0.0069
−0.0037 −0.031± 0.013 −0.0038+0.0059

−0.0034

µ < 1.74 < 0.450 < 0.496 < 0.484

α > −0.0566 −0.053+0.046
−0.022 −0.099+0.017

−0.032 −0.050+0.040
−0.023

σ8 0.781+0.033
−0.040 0.844+0.022

−0.042 0.887± 0.041 0.839+0.019
−0.033

Ωm 0.520± 0.090 0.295+0.019
−0.011 0.323+0.021

−0.024 0.297+0.015
−0.0094

S8 1.019+0.056
−0.038 0.836+0.015

−0.019 0.920± 0.041 0.834+0.014
−0.017

H0 51.9+3.7
−4.7 68.35± 0.94 63.1± 2.3 68.25± 0.76

∆χ2
min −1.06 −0.94 −6.30 0.28

lnBM2−,ΛCDM −4.84 −5.56 −3.51 −6.72

Table 6.13: Observational constraints at 68% confidence level on the sampled and derived
cosmological parameters for different data set combinations under the curved M2− + ΩK model,
studied in Section 6.3.3.
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Figure 6.9: 1D marginalised posterior distributions of the coupling parameter, α, and slope of
the potential, µ, in the M2+ + ΩK model (upper panel) and M2− + ΩK model (lower panel)
using the Pl18 (red), Pl18+BAO (blue), Pl18+SN, (green) and Pl18+BAO+SN (yellow) data
set combinations.
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Figure 6.10: 2D marginalised posterior distributions of parameters in the M2+ +ΩK model (up-
per panel) and M2− +ΩK model (lower panel) using the Pl18 (red), Pl18+BAO (blue), Pl18+SN,
(green) and Pl18+BAO+SN (yellow) data set combinations. We plot the 2D marginalised pos-
terior distributions of the conformal coupling parameter, α, against the power of the potential,
µ, the Hubble constant in units km s−1 Mpc−1, H0, the present-day mass fluctuation amplitude
in spheres of radius 8h−1Mpc, σ8, and the total matter density parameter, Ωm. The shaded
contours indicate the 1σ and 2σ confidence limits.

6.3.4 M3 + ΩK: Coupling with Minimum/Maximum and Exponential Po-
tential

In Tables 6.14 and 6.15, we summarise the observational limits on both free and derived model
parameters for the M3+ΩK models. Figures 6.11 and 6.12 display the 1D and 2D marginalised
distributions for selected relevant parameters.

We find that when considering only the Pl18 data, there is a preference for a closed Universe
at over 99% CL. Namely, we find ΩK = −0.067+0.052

−0.051 and ΩK = −0.066+0.051
−0.057 at 99% CL. The

mean H0 value in this scenario is lower than in the ΛCDM case (H0 = 49.0+4.2
−5.7 km/s/Mpc and

H0 = 49.0+4.8
−6.0 km/s/Mpc at 68% CL), but the larger error bars ensure a similar value for the H0

tension of approximately 4− 5σ. The coupling and potential parameters are compatible with an
uncoupled and cosmological constant-like scenario at 68% CL).

When incorporating BAO data, the potential for a flat Universe is recovered at 68% CL. With
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the addition of SN data, we once more reaffirm the non-zero curvature at over 68% CL for
M3+ + ΩK (ΩK = −0.033+0.028

−0.027) and 95% CL for M3− + ΩK (ΩK = −0.033+0.028
−0.027), with only a

non-vanishing prediction for λ being recovered with Pl18+BAO at 68% CL (λ = 0.47± 0.28 for
M3+ +ΩK and λ = 1.23± 0.63 for M3− +ΩK). The coupling parameter γ is more constrained
in the M3−+ΩK case, with only non-zero values predicted at 1σ for Pl18+SN. For the full joint
analysis using Pl18+BAO+SN, the data break most of the degeneracies and slightly improve the
agreement for H0 (H0 = 68.00±0.73 and H0 = 68.00±0.74 km/s/Mpc at 68% CL). Both γ and
λ are consistent with non-dynamic behaviour at 95% CL.

• Initial Conditions: Just as in the flat case, the field dependence in the coupling introduces
a minimum and a maximum of the effective coupling at ϕ∗ = 2MPl for M3+ + ΩK and
M3− + ΩK , respectively. In the flat case, we came across an unphysical highly peaked
posterior distribution for ϕini, which wants to sit at the minimum of the potential in M3+.
When the curvature is allowed to vary, this feature becomes less sharp, with the larger
error bars and freedom introduced in the model implying a posterior distribution for ϕini

that is still peaked around ϕ∗ but much less stringently. We see in Figure 6.11 that there
is a seemingly symmetric distribution around the peak in the ϕini posterior distribution for
M3+ + ΩK . At the same time, the same peaked pattern but skewed to the right (mainly
by the effect of SN) is recovered in M3− +ΩK just as in the flat case.

• Coupling: The non-trivial expression for the coupling in the M3 models makes this scenario
more distinguishable from M1 and M2. In all the cases considered the uncoupled scenario
|γ| = 0 is accommodated by the 68% CL region at 1σ, with the exception of the Pl18+SN
combination in the model with a maximum, M3− + ΩK , for which γ = −0.077+0.035

0.023 , as
reported in Tables 6.14 and 6.15. For just the Pl18 dataset, the constraints are upper limits,
γ < 0.357 and |γ| < 0.0741, for the respective models. The coupling parameter’s size is
quite different in both cases, consistently more constrained towards zero for M3−+ΩK . This
feature is depicted in Figure 6.11, in which there is a similar peak for the γ marginalised
posterior distribution across all the data sets for M3+ +ΩK , with only the Pl18+SN peak
being considerably deviated from zero. In contrast, the background data pushes the peak
in the |γ| posterior away from zero in M3− + ΩK , with SN most effectively narrowing
the lower-γ tail for Pl18+SN, consistent with the bounded 68% CL region derived in
this case only. Adding BAO data preserves the peak in the distribution but reverses the
narrowing of the left-hand side tail. Figure 6.12 reveals the 2D marginalised distributions
of γ against{H0, σ8,Ωm, λ,ΩK}. No significant correlations are identified for M3+ + ΩK

due to the very peaked distribution around the minimum of the coupling and |ΩK | ≪ 1

for the background data, apart from a small positive correlation in {|γ|, σ8} for Pl18. For
M3− +ΩK we identify an overall positive correlation in the {|γ|, σ8} plane and in {|γ|, λ}
for the background data. A negative correlation is identified in {|γ|,ΩK} and {|γ|, H0}
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when the background data is included, more pronounced for Pl18+SN in both cases.

• Potential: In both M3+ΩK models, the steepness of the potential, λ, is only upper-bounded
at 68% CL for all datasets, except for the Pl18+BAO combination, for which we find
λ = 0.47±0.28 and λ = 1.23±0.63 for M3++ΩK and M3−+ΩK , as outlined in Tables 6.14
and 6.15. The tighter bounds are set by SN data, as corroborated in Figure 6.11. We see
that the integration of background data in M3+ + ΩK brings the marginalised posterior
towards smaller values, with a minor non-zero peak for Pl18+BAO, while in M3− + ΩK

larger deviations are allowed for the more pronounced peak in Pl18+BAO. Once again,
the inclusion of background data shrinks the high-λ tail present for the Pl18 dataset.
When considering only Pl18, the upper limits for λ are 2.52 and 2.60. In comparison, the
full Pl18+BAO+SN sets reduce the limits down to 0.445 and 0.604, for M3+ + ΩK and
M3− +ΩK , respectively, at 1σ.

• H0 Tension: A minor mitigation of the H0 tension occurs even though no clear correlation
between |γ| and H0 has been identified. Even if the mean values reported for H0 in the
M3+ΩK models are lower than the ΛCDM+ΩK case, the increased size of the CL regions
has a minor influence on the tension, which decreases from around 5.3σ to approximately
4.8σ and 4.4σ in M3+ + ΩK and M3− + ΩK , respectively. Consistently with what was
found for the M1 + ΩK and M2 + ΩK cases, the addition of background data restores the
value of H0 to the order reported in the flat cases, coinciding with ΩK vanishing in the 1σ

region, and reflecting the incompatibility of the different data sets.

• S8 Tension: Even though the prediction for a closed Universe for the Pl18-only data set
brings the value of σ8 significantly down, compared with both the flat case and the ΛCDM+

ΩK cases, this is accompanied by an increase in the mean value of Ωm, and the S8 parameter
actually becomes larger. For Pl18 this results in an S8 value of 1.041+0.058

−0.043 at 1σ for the
M3+ + ΩK model, and 1.027+0.056

−0.038 for M3− + ΩK , the highest values of all the models
considered, with a similar size for the CL region.

• Curvature: We report firm evidence for a closed Universe at more than 99% CL for the
M3+ΩK models with CMB data and a less pronounced but still present support with the
addition of SN. In particular, at 68% CL we find ΩK = −0.067± 0.021 for M3+ +ΩK and
ΩK = −0.066+0.024

−0.021 for M3− + ΩK , in contrast with ΩK = −0.052+0.020
−0.017 for ΛCDM + ΩK ,

with similar sized CL regions. On the contrary, no significant prediction for curvature
is present for the Pl18+BAO+SN counterparts, which yield ΩK = −0.0020+0.0047

−0.0027 for
M3++ΩK and ΩK = −0.0035+0.0066

−0.0032 for M3−+ΩK , in contrast with ΩK = 0.0010±0.0019

for ΛCDM+ΩK , all accommodating ΩK = 0 in the 68% CL region. Data set inconsistencies
are further confirmed, showing tensions at approximately the 3σ level, more precisely of
∼ 2.9σ for ΛCDM + ΩK , ∼ 3.0σ for M3+ + ΩK and ∼ 2.7σ for M3− + ΩK , already after
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the data sets have been combined.

• Model Evidence: The Bayes factor lnBM3,ΛCDM points to no support for the M3 + ΩK

models over the ΛCDM + ΩK model. Nevertheless, the considerably negative values of
∆χ2

min indicate a better fit to the data in all cases.

Parameter Pl18 Pl18 + BAO Pl18 + SN Pl18 + BAO + SN

ωb 0.02264± 0.00017 0.02240± 0.00015 0.02249± 0.00017 0.02241± 0.00015

ωcdm 0.1186+0.0022
−0.0036 0.1187+0.0030

−0.0018 0.1151+0.0047
−0.0030 0.1177+0.0032

−0.0018

100θs 1.04203± 0.00032 1.04186± 0.00031 1.04191± 0.00031 1.04189± 0.00030

τreio 0.0478+0.0087
−0.0074 0.0556± 0.0077 0.0547± 0.0079 0.0556± 0.0078

ns 0.9741+0.0050
−0.0056 0.9691+0.0049

−0.0059 0.9741+0.0061
−0.0074 0.9698+0.0049

−0.0062

ln
(
1010As

)
3.027+0.018

−0.016 3.048± 0.016 3.045± 0.016 3.048± 0.016

ΩK −0.067± 0.021 −0.00099+0.0042
−0.0023 −0.0138+0.011

−0.0082 −0.0020+0.0047
−0.0027

λ < 2.52 0.47± 0.28 < 0.348 < 0.445

γ < 0.357 < 0.384 < 0.215 < 0.229

ϕi 1.90+0.61
−0.49 1.96+0.66

−0.59 2.15+1.4
−0.90 2.03± 0.84

σ8 0.738+0.060
−0.039 0.824+0.015

−0.027 0.841+0.024
−0.036 0.830+0.015

−0.027

Ωm 0.610+0.096
−0.16 0.310+0.011

−0.0096 0.329± 0.022 0.304+0.010
−0.0078

S8 1.041+0.058
−0.043 0.837+0.014

−0.020 0.880± 0.036 0.836+0.014
−0.021

H0 49.0+4.2
−5.7 67.64± 0.89 64.9± 2.3 68.00± 0.73

∆χ2
min −2.96 −1.76 −5.08 −0.56

lnBM3+,ΛCDM −2.79 −3.67 −5.42 −6.39

Table 6.14: Observational constraints at 68% confidence level on the sampled and derived
cosmological parameters for different data set combinations under the curved M3+ + ΩK model,
studied in Section 6.3.4.

6.4 Summary and Discussion

6.4.1 H0 Tension

The whisker plot in Figure 6.13 summarises the constraints derived on the Hubble constant H0

at 68% CL for the Pl18-only (left) and full Pl18+BAO+SN (right) for the various cosmological
models considered in this chapter, showing the particular trends for how H0 varies across the
flat (top) and curved (bottom) cases. The first thing we can appreciate, discussed throughout
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Parameter Pl18 Pl18 + BAO Pl18 + SN Pl18 + BAO + SN

ωb 0.02262± 0.00017 0.02243± 0.00017 0.02254± 0.00016 0.02240± 0.00015

ωcdm 0.1152+0.0050
−0.0019 0.1118+0.0090

−0.0054 0.1022± 0.0083 0.1157+0.0054
−0.0025

100θs 1.04206± 0.00030 1.04194± 0.00030 1.04200± 0.00031 1.04192± 0.00029

τreio 0.0483± 0.0082 0.0554± 0.0078 0.0517± 0.0081 0.0547+0.0069
−0.0078

ns 0.9722± 0.0048 0.9698+0.0050
−0.0059 0.9747± 0.0054 0.9679± 0.0048

ln
(
1010As

)
3.028± 0.017 3.046± 0.016 3.036± 0.017 3.045± 0.016

ΩK −0.066+0.024
−0.021 −0.0104+0.013

−0.0080 −0.032+0.013
−0.015 −0.0035+0.0066

−0.0032

λ < 2.60 1.23± 0.63 < 0.494 < 0.604

γ > −0.0741 > −0.128 −0.077+0.035
−0.023 > −0.0757

ϕi 1.86± 0.76 1.46+0.55
−0.50 1.37+0.24

−1.1 1.66+0.70
−0.97

σ8 0.738± 0.059 0.868+0.042
−0.079 0.909± 0.053 0.838+0.017

−0.041

Ωm 0.60+0.10
−0.16 0.311± 0.020 0.316± 0.023 0.300+0.015

−0.0079

S8 1.027+0.056
−0.038 0.882+0.028

−0.070 0.931+0.050
−0.041 0.838+0.012

−0.027

H0 49.0+4.8
−6.0 65.9+2.5

−1.7 63.1+2.3
−2.6 68.00± 0.74

∆χ2
min −1.28 −8.24 −10.5 −0.98

lnBM3−,ΛCDM −4.32 −5.28 −6.98 −6.76

Table 6.15: Observational constraints at 68% confidence level on the sampled and derived
cosmological parameters for different data set combinations under the curved M3− + ΩK model,
studied in Section 6.3.4.
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Figure 6.11: 1D marginalised posterior distributions of the coupling parameter, γ, and slope
of the potential, λ, in the M3+ + ΩK model (upper panel) and M3− + ΩK model (lower panel)
using the Pl18 (red), Pl18+BAO (blue), Pl18+SN, (green) and Pl18+BAO+SN (yellow) data
set combinations.
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Figure 6.12: 2D marginalised posterior distributions of parameters in the M3+ +ΩK model (up-
per panel) and M3− +ΩK model (lower panel) using the Pl18 (red), Pl18+BAO (blue), Pl18+SN,
(green) and Pl18+BAO+SN (yellow) data set combinations. We plot the 2D marginalised pos-
terior distributions of the conformal coupling parameter, γ, against the slope of the potential,
λ, the Hubble constant in units km s−1 Mpc−1, H0, the present-day mass fluctuation amplitude
in spheres of radius 8h−1Mpc, σ8, and the total matter density parameter, Ωm. The shaded
contours indicate the 1σ and 2σ confidence limits.

the text, is the inherent degeneracy between H0 and the curvature parameter, with a clear trend
separating the flat and curved cases. In particular, a closed Universe drives the value of H0

towards smaller values compared with the ΛCDM Pl18 case (red point and vertical bar) and,
consequently, leads to an increase in the tension between the mean values and the R22 estimate
(blue cross and vertical bar), which is superficially softened by the larger error bars.

For all the extensions to the ΛCDM + ΩK model (green square and vertical bar), we reported
an indication for a closed Universe at a confidence level exceeding 99% when only Pl18 data
is considered. The positive correlation between H0 and ΩK implies that, as ΩK deviates from
zero towards negative values, H0 consequently decreases, exacerbating the tension with R22 as
depicted in Figure 6.13. This tension intensifies exclusively due to the Pl18-only evidence for a
closed Universe. In the case of Pl18+BAO and Pl18+BAO+SN combinations, the H0 estimates
align closely with Planck’s (flat) ΛCDM results as ΩK approaches zero, and the mean value of
H0 is marginally higher, thus superficially easing the R22 tension. For Pl18+SN, a prediction
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for a closed Universe at more than 68% for model M3+ + ΩK and 95% for all the others bring
the estimated H0 values towards systematically lower values, and we do not observe any effective
alleviation of the H0 tension in any of these six extended scenarios.

The Pl18-only analysis also yields values of H0 consistent at 1σ for all the flat and curved cases
separately between themselves. There is an overall trend of models M2 yielding larger mean
values of H0, balanced by a reduction in the size of the 1σ regions, thereby not introducing
significant benefits in addressing the tension. The larger tension reduction is present in the M1

flat models, predominantly due to the enlarged error bars.

Adding the background data to the Pl18 analysis brings the H0 estimate in the curved models
in agreement with the flat case at 1σ, in line with the tension in BAO data for a closed Universe.

Finally, it is noteworthy that coupled quintessence models introduce new physics in comparison
to ΛCDM, mostly at low-redshifts, once DE starts to dominate. This feature prevents these
models from resolving the H0 tension once BAO and SN data are considered, as evidenced by
Refs. [372–374], unless other new exotic DE physics is considered [375, 376].
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Figure 6.13: Whisker plot with the 68% CL constraints on the Hubble parameter H0 obtained
for the cosmological models explored in this study for the Pl18 CMB data (left) and the combi-
nation Pl18 + BAO + SN (right), as detailed in Section 4.3. Circle and squared markers denote
the flat and curved models. The red and green vertical bars illustrate to reference ΛCDM flat
(ΩK = 0) and curved ΛCDM + ΩK values, respectively. The blue bar corresponds to the Kilo-
Degree Survey (KiDS-1000) value [157], very close to one reported by the Dark Energy Survey
(DES-Y3) [160], as well, both in tension with the prediction for the six-parameter flat ΛCDM
from the Planck collaboration 2018 data release [32], as explained in a Section 3.6.1.
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6.4.2 S8 Tension

In Figure 6.14, the constraints on the S8 parameter from the extended cosmological models are
depicted at 68% CL for Pl18-only (left) and Pl18+BAO+SN (right). For reference, we also show
the similar estimated S8 values from Kilo-Degree Survey (KIDS-1000) [164] and the Dark Energy
Survey (DES) Year 3 (DES-Y3) [161] (in blue), and the Planck [32] ΛCDM flat (red) and curved
(green) cases with Pl18 data, all under the assumption of a baseline ΛCDM framework.

Figure 6.14 reveals two key observations. Firstly, for data involving just CMB, the S8 values in
all extended models deviate significantly from those of KIDS-1000, DES-Y3, and Planck when a
standard ΛCDM model is assumed. For the curved scenarios, the estimated values of S8 escalate
sharply, largely due to the firm prediction of a closed Universe at more than 99% CL. The
only models that seem to move toward lower predictions of S8 are the M2 flat models, even if
marginally. Nevertheless, according to the discussion in Section 3.6, it should still be emphasised
that any conclusions regarding the S8 tension require a new analysis of the weak lensing data
for the cosmological model in question.

Secondly, estimations of S8 using the background data sets closely resemble the prediction for
the concordance ΛCDM with Planck. This might suggest that the S8 tension is significantly
enhanced in the extended coupled quintessence models that point toward a closed Universe. As
was the case for the H0 parameter, the apparent ease of the tension may occur in the curved
models simply due to enlarged error bars and not through a more compatible mean value.

6.4.3 Matter Density

For the matter density parameter Ωm in Figure 6.15 we compiled once more the finding of the
cosmological models considered and for the Pl18 (left) and Pl18+BAO+SN (right) combinations
of datasets. We depict both the flat cases (top) and the curved ones (bottom), for which a trend
is readily identified.

For the Pl18-only case, we see that the addition of spatial curvature brings Ωm toward consider-
ably large values. Even though all the models predict values consistent within their categories,
we see that the curved coupled quintessence models have enlarged error bars compared with
ΛCDM which, in some cases, allows to accommodate for more reasonable values. Once more,
the addition of the background data brings the constraints closer to the flat prediction, in striking
disagreement with the Pl18-case. The error bars for the curved coupled quintessence models ate
considerably larger in comparison with both flat and curved ΛCDM. This gives more flexibility in
predicting lower values of Ωm which could yield a better fit to the data, at the cost of increasing
the disagreement with the Pl18-only cases.
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Figure 6.14: Whisker plot with the 68% CL constraints on the parameter S8 ≡ σ8
√
Ωm/0.3

derived for the cosmological models explored in this study for the Pl18 CMB data (left) and the
combination Pl18 + BAO + SN (right), as detailed in Section 4.3. Circle and squared markers
denote the flat and curved models. The red and green vertical bars illustrate the reference
ΛCDM flat (ΩK = 0) and curved ΛCDM + ΩK values, respectively. The blue bar corresponds
to the model-independent R22 value, reported in Ref. [111], in tension with the prediction for
the six-parameter flat ΛCDM from the Planck collaboration 2018 data release [32], as explained
in Section 3.6.2.

6.4.4 Curvature

The findings related to the curvature density parameter, ΩK , are compiled in Figure 6.16 for the
cosmological models considered and for the Pl18 (left) and Pl18+BAO+SN (right) combinations
of datasets. We depict the flat cases (top) as dots in the plot for scale and comparison with the
curved ones (bottom).

In the baseline ΛCDM model using Planck data, the indication for a closed Universe is evident,
illustrated by the green bar, and persists across all the non-flat extended models examined in
this work. However, this tendency varies in statistical significance due to the large error bars
associated with expanding the parameter space or adopting alternative parametrisations for
the potential and the coupling, even though this effect is not dramatic. This decrease in the
constraining power is mainly attributed to the strong geometrical degeneracy between different
parameters, most notably between the coupling parameter and the curvature density parameter
ΩK , as seen by the lack of correlation in Figures 6.8, 6.10 and 6.12.

Breaking such degeneracies changes the predictions drastically, as it is evident for recovering
the flatness condition in the full Pl18+BAO+SN combination. Introducing BAO large-scale
structure data always wipes out the evidence for a closed Universe. Regardless of the coupled
quintessence model under consideration, constraints on ΩK tend to hover around zero, indicating
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Figure 6.15: Whisker plot with the 68% CL constraints on the matter density parameter Ωm

obtained for the cosmological models explored in this study for the Pl18 CMB data (left) and the
combination Pl18 + BAO + SN (right), as detailed in Section 4.3. Circle and squared markers
denote the flat and curved models. The red and green vertical bars illustrate the reference ΛCDM
flat (ΩK = 0) and curved ΛCDM + ΩK values, respectively.

spatial flatness within one standard deviation or slightly more. However, it is important to note
that BAOs are generally in tension with Planck when curvature is a free parameter, making this
data combination less robust. On the other hand, for Pl18 combined with the distance moduli
data from Pantheon (Pl18+SN), there is a systematic preference for a spatially closed geometry
for coupled quintessence models.

6.4.5 Discussion

In this study, we explored whether the recently identified anomalies in CMB experiments, which
are independent of Planck data, hold up when contrasted with other non-CMB observations,
particularly when we extend the parameter space. In other words, when we shift to more com-
prehensive cosmological models allowing for additional variable parameters, does the evidence
for a flat Universe with a cosmological constant and no interactions in the dark sector endure?
To make the analysis more robust we have considered the full Planck likelihood, with standard
and nuisance parameters. Resolving these issues, as argued for in Section 3.6, is essential to
give physical meaning to the origin of the cosmological discrepancies and formulate coherent
alternative frameworks.
We find consistent discrepancies in the coupled quintessence models when compared to the
concordance case which, while generally yielding a better fit to the data due to the increase
parameter space, an analysis based on comparing the Bayesian evidence shows that the addition
of the degrees of freedom is not justified. This leads us to conclude that the tensions in the data
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Figure 6.16: Whisker plot with the 68% CL constraints on the curvature parameter ΩK ob-
tained for the cosmological models explored in this study for the Pl18 CMB data (left) and the
combination Pl18 + BAO + SN (right), as detailed in Section 4.3. Circle and squared markers
denote the flat and curved models. The red and green vertical bars illustrate to the reference
ΛCDM flat (ΩK = 0) and curved ΛCDM + ΩK cases, respectively, illustrating the evidence for
a closed Universe in the Planck data, as explained in Section 3.6.4.

seem to genuinely favour the diverging patterns.
Given this, if we choose to maintain faith in the ΛCDM model, we must believe and prove
that overlooked systematics could be skewing the data. Statistical fluctuations might explain
the discrepancies related with the self-consistency between data collected based on the early-
Universe (mostly CMB) and the distance ladder methods in the late Universe. Indeed, within
the ΛCDM model, the CMB experiments are largely in agreement about the expansion rate,
leaving the conflict with local measurements unresolved. The second scenario involves taking the
data at face value, suggesting that solutions to current tensions could lie beyond the standard
ΛCDM model. Given our limited understanding of the nature of the dark sector, this option
deserves serious consideration. Yet, no combination of extra parameters entirely harmonises
the conflicting data, hinting that a more radical overhaul of cosmological paradigms may be
required. While our analysis doesn’t offer definitive answers about these tensions and anomalies,
it highlights unresolved discrepancies in the standard model that remain present even for more
accommodating models like coupled quintessence. The forthcoming generation of high-precision
CMB and large-scale structure measurements might provide more conclusive constraints and
insights on the origins of the cosmic tensions.
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Dava-se melhor com um irreal cotidiano, vivia em câmara leeeenta, lebre puuuuulando no aaaar
sobre os ooooouteiros, o vago era o seu mundo terrestre, o vago era o de dentro da natureza.

— Clarice Lispector A Hora da Estrela

She could deal better with her daily unreality, living in sloooow motion, hare leeeeaping through the aaaair over
hiiiill and daaaale, vagueness was her earthly world, vagueness was the insides of nature. — Clarice Lispector
in The Hour of the Star

In this chapter, we study a particular extension in which dark energy is portrayed by a canonical
scalar field, coupled to dark matter through an interaction term in the action, as proposed in
Ref. [275], and which we review in Section 7.1. In Sections 7.2 and 7.3, we perform a thorough
numerical analysis of the dynamics of the model under consideration, both at the background and
linear perturbative levels. The constraints for the cosmological and model-specific parameters
according to different data sets are reported in Section 7.4 from which we find that although the
cosmic tensions persist in the best-fit realisation of the model, there is a non-zero prediction for
deviations from the standard model encoded by the coupling parameter. Computation of the
Bayesian evidence indicates no significant preference for the Kinetic model. We conclude with a
discussion of the results in Section 7.5. This work has been published in JCAP and can be found
in Ref. [1].

7.1 Theoretical Motivation

We begin by considering a phenomenological theory where dark energy is a dynamical quintessence
field, denoted as ϕ, minimally coupled to gravity. The DE source portrays a non-universal cou-
pling to the dark matter component as expressed in the following action [275]:

S =

∫
d4x

√
−g
[
M2

Pl
2
R+X − V (ϕ) + f(X)L̃c(ζ, gµν) + LSM(ψi, gµν)

]
. (7.1.1)

Here, g represents the determinant of the metric tensor gµν , R is the curvature scalar, and
M2

Pl = (8πG)−1 corresponds to the Planck mass in units where c = 1, withG being the Newtonian
constant. The second and third terms in the action represent the Lagrangian of the scalar field,
where X = −gµν∂µϕ∂νϕ/2 is the kinetic term of ϕ, and V (ϕ) is the self-interacting potential of
the scalar field. The standard model is further extended by the introduction of a purely kinetic
function f(X) that multiplies the Lagrangian of cold dark matter [275], leading to a coupling
between ϕ and the dark matter fields ζ.
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Variation of the action in Equation (7.1.1) with respect to the metric gµν yields the following
field equations

M2
PlGµν = T (ϕ)

µν + T (c)
µν + T (b)

µν + T (r)
µν , (7.1.2)

with Gµν being the Einstein tensor and T
(i)
µν the energy-momentum tensor for the ith species,

defined as:

T (i)
µν = − 2√

−g
δ (

√
−gLi)

δgµν
, (7.1.3)

where i = ϕ, c, b, r and c denotes the cold dark matter, b the baryons, and r the radiation. Let
us note that, for the previous definition to be valid for all the fluids present in theory, we define
an effective dark matter Lagrangian as follows [275, 377, 378],

Lc ≡ f(X)L̃c , (7.1.4)

incorporating the effect of the coupling.

The theory’s matter components can be modelled as perfect fluids, with energy density ρi,
pressure pi, and Equation of State (EoS) parameter wi = pi/ρi. Therefore, the energy-momentum
tensor of each ith species becomes fully defined in terms of the fluid variables:

T (i)
µν = ρi

[
(1 + wi)u

(i)
µ u(i)ν + wigµν

]
, (7.1.5)

with u
(i)
µ being the 4-velocity vector associated with the ith species, under the individual con-

straint gµνu(i)µ u
(i)
ν = −1. Regarding the EoS parameter, we have wr = 1/3 for radiation and

wb = wc = 0 for baryons and cold dark matter, respectively. Given these considerations, the
dark matter Lagrangian takes the particular form [377, 379],

Lc = −ρc . (7.1.6)

The scalar field admits a perfect fluid description as well [380], provided that

u(ϕ)µ = − ∂µϕ√
2X

, (7.1.7)

and X > 0, where the energy density and pressure associated with the quintessence field are
given by:

ρϕ = X + V , (7.1.8)

pϕ = X − V . (7.1.9)
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and the scalar field EoS parameter is wϕ = pϕ/ρϕ.
The equation of motion for the quintessence field, or simply the Klein-Gordon equation, is
obtained through variation of the action in Equation (7.1.1) with respect to ϕ and reads:

□ϕ− V,ϕ = −Q , (7.1.10)

with V,ϕ = dV
dϕ . The term on the right-hand side of Equation (7.1.10) includes the interaction

in the dark sector in terms of f(X) [275], and may be expressed generally in terms of f and its
derivatives

Q = −Lc

{
f,X
f

[
□ϕ+ ∂µϕ

(
∇µLc

Lc
+
f,X
f
∂αϕ∇µ∂

αϕ

)]
−
f,XX

f
∂µϕ∂αϕ (∇µ∂

αϕ)

}
.

(7.1.11)
where f,X ≡ df

dX and f,XX ≡ d2f
dX2 . The uncoupled case (Q = 0) is naturally recovered when f

is a constant function. Let us note that Equation (7.1.10) could likewise be found through the
contracted Bianchi identities, yielding the following conservation relations,

∇µT
(c)µ

ν = −∇µT
(ϕ)µ

ν = Q∇νϕ . (7.1.12)

These equations illustrate clearly the energy transfer between the scalar field and DM when f

is not a constant, meaning that the dark components are not individually conserved. However,
since radiation and baryons remain non-interacting, i.e.,

∇µT
(r)µ

ν = ∇µT
(b)µ

ν = 0 , (7.1.13)

then, consistently, the overall energy-momentum tensor of the theory is conserved, rendering the
total action covariant.
In particular, we focus on the most straightforward power-law kinetic interaction, as motivated
in Ref. [275], described by the function:

f(X) =
(
M−4

Pl X
)α

=⇒ Q = −ρc
α

X

(
□ϕ+

∂µϕ∂νϕ∇µ∂
νϕ

X
+ ∂µϕ

∂µρc
ρc

)
, (7.1.14)

where α is a dimensionless constant governing the strength of the coupling Q in the dark sector,
and ρc represents the energy density of the cold dark matter. We assume a simple exponential
potential for the field:

V (ϕ) = V0 exp

(
− λϕ

MPl

)
, (7.1.15)

where V0 represents the energy scale of the potential, and λ characterises its steepness. These
choices for the coupling function and potential are motivated by the desire to have a scaling
regime [275] at early times, followed by an accelerated expansion driven by the scalar field. The
exponential potential drives the system out of the scaling solution and towards the late-time
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attractor, as described in Section 5.2.1.
It should be noted that the action described by Equation (7.1.1) is mathematically equivalent
to a scalar-tensor theory in the Einstein frame with a conformal coupling in the DM action
Sc [g̃µν(X), ζ]. The coupling arises via the conformal function C(X) = f2(X) in the metric
transformation g̃µν = C(X)gµν , with a fundamentally different physical interpretation.

7.2 Background Dynamics

We assume cosmological dynamics in a flat Friedmann-Lemaître-Robertson-Walker (FLRW)
background, expressed by the scale factor of the Universe a(τ) in conformal time τ , as defined
in Equation (1.6.6). The equations governing the background evolution are obtained through
variation of the action according to the metric and the scalar degree of freedom, namely the
modified Friedmann equation and conservation relations:

3M2
PlH2 = a2(ρc + ρb + ρr + ρϕ) , (7.2.1)

ϕ′′ + 2Hϕ′ + a2V,ϕ = a2Q , (7.2.2)

ρ′c + 3Hρc = −Qϕ′ , (7.2.3)

ρ′b + 3Hρb = 0 , (7.2.4)

ρ′r + 4Hρr = 0 , (7.2.5)

respectively, and with ′ ≡ d/dτ and H = a′

a is the conformal Hubble rate. The coupling Q given
in Equation (7.1.14) becomes:

Q = 2αρc
3Hϕ′ + a2V,ϕ

2αa2ρc + (1 + 2α)ϕ′2
. (7.2.6)

We can further define the energy density and pressure of the ϕ field at the background level
through Equations (7.1.8) and (7.1.9), as

ρϕ =
ϕ′2

2a2
+ V, (7.2.7)

pϕ =
ϕ′2

2a2
− V. (7.2.8)

respectively. Therefore Equation (7.2.2) can be written as:

ρ′ϕ + 3H(1 + wϕ)ρϕ = Qϕ′. (7.2.9)

Equations (7.2.3) and (7.2.9) imply that when Qϕ′ > 0, energy is transferred from the cold dark
matter source to the scalar field, and vice versa when Qϕ′ < 0.
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At the classical level, the energy exchange in the dark sector may be interpreted as a mass varia-
tion for dark matter particles since mc = a3ρc, assuming conservation of the number of particles,
i.e. Nc = Nc(τ0), with τ0 being the present conformal time. Integration of Equation (7.2.3)
yields an expression for the total energy density of coupled dark matter,

ρc = ρc(τ0)a
−3 exp

(
2α

∫ τ

τ0

Q
ϕ′

ρc
dτ

)
, (7.2.10)

that can be expressed equivalently in terms of the mass of the dark matter particles:

mc(τ) = mc(τ0) exp

(
2α

∫ τ

τ0

Q
ϕ′

ρc
dτ

)
. (7.2.11)

Finally, let us note that the modified Friedmann equation, Equation (7.2.1), can be cast to the
form of the well-known Friedmann constraint:

1 = Ωϕ +Ωm +Ωr, (7.2.12)

where we have defined a collective matter density ρm = ρc + ρb, and the fractional density
parameter of the i-th species Ωi =

ρia
2

3M2
PlH2 . Equation (7.2.12) can be rewritten in the form of a

constraint on the present scalar field fractional density, Ω0
ϕ = 1−Ω0

m −Ω0
r , where “0” stands for

quantities evaluated at present, Ω0
i =

ρ0i
3M2

PlH
2
0
, and H0 is the Hubble parameter. For numerical

purposes, V0, implicitly entering the definition of Ω0
ϕ, is used to perform a shooting method

that yields the fiducial value of Ω0
ϕ fulfilling the constraint relation in Equation (7.2.12), while

simultaneously avoiding degeneracies. As such, V0 will no longer be considered a free parameter
of the model, leaving {λ, α} as the model free parameters. The viable parameter space has been
studied in Ref. [1] according to dynamical and stability conditions, along with motivation for the
particular initial conditions for the scalar field used in the simulations. We conduct numerical
simulations using a modified version of the Einstein-Boltzmann solver CLASS [95, 101, 102] to
study the predictions of the model over the expansion history for different {λ, α} combinations,
using standard Planck 2018 [32] reference values for the cosmological parameters.

In the left panel of Figure 7.1, we present the evolution of the relative energy densities Ωi =

ρia
2/(3M2

PlH2) for each species with respect to redshift (1 + z). As expected, the introduction
of the coupling leads to the emergence of an early scaling regime during the radiation-dominated
epoch, where the energy density of the scalar field is proportional to that of dark matter, ap-
proximately following the relation ρc/ρϕ = 1/α, as shown in the upper right panel of Figure 7.1.
Eventually, the field exits this scaling regime and transitions towards the future attractor solu-
tion, causing its energy density to continuously dilute as ρϕ ∝ a−λ2 . For the values considered,
the coupling strength Qϕ′/ρc remains positive at all redshifts, implying energy transfer from the
dark matter fluid to the scalar field. It should be noted that by fixing the present-day values of
fluid densities, the energy density of cold dark matter is relatively higher at earlier times due to
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its contribution in supplying energy to the scalar field at later times. This effect becomes more
pronounced for larger values of α. As the DM energy density decreases over time, the additional
energy transferred to the scalar field compensates for this effect compared to the uncoupled case.
This behaviour is illustrated in the left panel of Figure 7.1. Consequently, we also see in the
figure that the matter-radiation equality occurs at earlier times as the value of α increases. Fur-
thermore, the ϕ field starts acquiring energy at a rate proportional to its energy density, and the
equality between matter and dark energy occurs earlier. In the lower right panel of Figure 7.1,
we depict deviations in the Hubble rate for the Kinetic model and the uncoupled case (α = 0)
compared to ΛCDM. We remark that no significant variations in H are observed during the
radiation-dominated epoch, as interactions between the dark and radiation sectors are excluded.
However, as the matter contribution becomes significant, around z ≈ 106, the Kinetic models
exhibit an increased value of H, which becomes more pronounced for higher values of α.
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Figure 7.1: Left panel : Evolution of the relative energy densities Ωi with redshift, 1 + z, of
the scalar field (green), dark matter (red), baryons (yellow) and radiation (grey) for ΛCDM
(solid lines), α = 0.01 (dashed lines) and α = 0.03 (dotted lines). Upper right panel : Ratio of
the energy densities of cold dark matter and dark energy for ΛCDM (solid black), the uncoupled
case α = 0 (red dashed), α = 0.01 (yellow dashed-dotted) and α = 0.03 (green dotted). Lower
right panel : Fractional deviation of the conformal Hubble expansion rate for the same examples.

7.3 Evolution of Linear Perturbations

We describe the perturbed FLRW metric in the Newtonian gauge according to the standard
line element, as defined in Equation (2.2.5). The linearised Einstein equations describe the
evolution of perturbations for different scales in terms of independent Fourier modes and extra
contributions from the dark sector coupling.
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In particular, from Equations (7.1.8) and (7.1.9), we derive the perturbations for the energy
density and pressure of the scalar field:

δρϕ =
ϕ′

a2
δϕ′ − ϕ′2

a2
Ψ+ V,ϕδϕ , (7.3.1)

δpϕ =
ϕ′

a2
δϕ′ − ϕ′2

a2
Ψ− V,ϕδϕ . (7.3.2)

The perturbations of the energy-momentum tensor, Equation (7.1.5), for each species and at
first order, reads

δT (i)µ
ν = (δρi + δpi)u

(i)µu(i)ν + δpiδ
µ
ν + (ρi + pi)

(
δu(i)µu(i)ν + u(i)µδu(i)ν

)
, (7.3.3)

where δu(i)µ is the perturbation on the four-velocity vector of the ith species, i.e. u(i)µ =

a(−1, v(i)j), with vj being the peculiar velocity. As introduced in Section 2.2.1, the perturbed
Einstein equations assuming no shear are expressed as

k2Φ+ 3H
(
Φ′ +HΨ

)
= −4πGa2

∑
i

δρi , (7.3.4)

k2
(
Φ′ +HΨ

)
= 4πGa2

∑
i

ρi(1 + wi)θi , (7.3.5)

Φ′′ +H
(
Ψ′ + 2Φ′)+Ψ

(
H2 + 2H′)+ k2

3
(Φ−Ψ) = 4πGa2

∑
i

δpi , (7.3.6)

Φ = Ψ . (7.3.7)

The first equation, corresponding to the time-time component, provides the constraint on the
energy density. Equation (7.3.5), which is derived from the time-space components of the per-
turbed Einstein equations, specifies the momentum constraint. Here, we adopt the definition of
the velocity divergence as θi = ∇ · v(i). The trace of the spatial components results in Equa-
tion (7.3.6), and finally, Equation (7.3.7) relates to the propagation of shear in the absence of
anisotropic stress. This is expected because of the absence of a non-minimal coupling in the
action in Equation (7.1.1). The governing equations for the evolution of perturbations in each
fluid can be obtained via the conservation relations, specifically Equations (7.1.12) and (7.1.13),
at the first order of perturbation. For species that do not interact, namely baryons and radiation,
these equations are as follows:
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δ′i + 3H
(
δpi
δρi

− wi

)
δi + (1 + wi)

(
θi − 3Φ′) = 0 , (7.3.8)

θ′i +

[
H(1− 3wi) +

w′
i

1 + wi

]
θi − k2

(
Ψ+

δpi
δρi

δi
1 + wi

)
= 0 . (7.3.9)

For the coupled DM, these become

δ′c + θc − 3Φ′ =
Q

ρc

(
ϕ′δc − δϕ′

)
− ϕ′

ρc
δQ , (7.3.10)

θ′c +Hθc − k2Ψ =
Q

ρc

(
ϕ′θc − k2δϕ

)
, (7.3.11)

describing the evolution of the density contrast, denoted as δi = δρi/ρi and the velocity diver-
gence θi = ∇ · v(i). The perturbed coupling term is defined as

δQ =
2αρc

2αa2ρc + (1 + 2α)ϕ′2
{
−3Φ′ϕ′ − ϕ′θc +

[
3Hϕ′ + a2(V,ϕ −Q)

]
δc +

(
2k2 + a2V,ϕϕ

)
δϕ

−
[
3Hϕ′ + 2a2(V,ϕ −Q)

] δϕ′
ϕ′

+ 2a2Ψ(Q− V,ϕ)

}
, (7.3.12)

and we remark the explicit dependence of δQ on the velocity potential θc, which is unusual
compared to other coupled dark energy models [3, 344]. Finally, the linearisation of the Klein-
Gordon equation gives:

δϕ′′ + 2Hδϕ′ +
(
a2V,ϕϕ + k2

)
δϕ−

(
Ψ′ + 3Φ′)ϕ′ + 2a2ΨV,ϕ = a2δQ+ 2a2QΨ . (7.3.13)

Including the coupling leaves an imprint on important cosmological observables that can be
probed against different data, particularly the matter power spectrum and the temperature-
temperature (TT) and lensing angular power spectra of the cosmic microwave background
(CMB). Again, assuming standard Planck 2018 values for the shape of the scalar primordial
power spectrum [32] as well, it is possible to single out the model-specific signatures by taking
different sets of {λ, α} relevant for the scales under consideration.
In the left panel of Figure 7.2, we present the linear matter power spectrum at present up to the
scale kmax = 0.1h Mpc−1 along with the fractional differences for the Kinetic model in contrast
with ΛCDM. We identify an overall suppression at intermediate scales (10−3h Mpc−1 ≲ k ≲

3×10−2h Mpc−1), followed by an enhancement at smaller scales. This effect is primarily related
to the global deviation of the turnover in the matter power spectrum to higher k values due to
the shift of the radiation-matter equality era to earlier times, as identified in the study of the
background evolution. The positive exchange of energy from cold dark matter to dark energy at
late times inevitably suppresses the growth of matter perturbations at intermediate scales and
an enhancement at smaller scales. The highest deviations are observed for larger values of α.
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Consequently, the amplitude of the matter power spectrum at present and a scale of 8 h−1Mpc,
denoted by σ8, is expected to be larger for the Kinetic model.

The inclusion of the coupling is also reflected in the evolution of the gravitational potentials,
parametrised in terms of the lensing potential ϕlens = (Ψ+Φ)/2 for particular scales, as depicted
in the right panel of Figure 7.2. We identify an overall suppression in ϕlens which in turn leads
to a suppression of the lensing power spectrum as well, as demonstrated in the right panel of
Figure 7.3, with this effect becoming more pronounced for larger values of α. On the other
hand, the time variation of ϕlens is directly related to the integrated Sachs-Wolfe effect (ISW),
imprinted in the shape of the temperature-temperature (TT) power spectrum as a contribution
to the radiation transfer function, and is illustrated in the left panel of Figure 7.3 as a function of
the angular multipole ℓ. This effect comprises two contributions: an early-time term occurring
during the transition from the radiation- to matter-dominated epochs, shifted to earlier times
in the Kinetic model, and a late-time term associated with the dynamics of the dark energy
component. We observe an apparent overall enhancement compared to the reference case for
ℓ ≲ 300, with milder differences around the plateau at ℓ < 10 and the most significant deviations
around ℓ ∼ 50. Furthermore, there is an apparent increase in the amplitude of the first peak
accompanied by a broadening of its shape and slight variations between the peaks and troughs at
higher multipoles. The validity of these combined deviations can be assessed with cosmological
data from background observations and the large-scale structure.
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Figure 7.2: Left panel : The matter power spectrum as function of k, for the uncoupled case
(dashed red line), α = 0.001 (yellow dot-dashed line), α = 0.002 (green dotted line) and ΛCDM
(black solid line), along with the percentage deviations from the ΛCDM case (lower panel).
Right panel : Evolution of the sum of the gravitational potentials as a function of the redshift at
k = 0.01 Mpc−1 for the same examples.
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Figure 7.3: Left panel : TT power spectrum of anisotropies as a function of the angular scale
ℓ, for the uncoupled case (dashed red line), α = 0.001 (yellow dot-dashed line), α = 0.002 (green
dotted line) and ΛCDM (black solid line) for reference, along with percentage deviations with
respect to ΛCDM (lower panel). Right panel : Lensing angular power spectra for the same
examples and relative difference between the predictions for each model and for ΛCDM.

7.4 Observational Constraints

7.4.1 Data Sets

The baseline data set considered is the CMB Planck 2018 (Pl18) [32] henceforth to which we
add BAO data from the Sloan Digital Sky Survey (SDSS) DR7 Main Galaxy Sample [117], SDSS
DR12 consensus release [116] and the 6dF Galaxy Survey [118], in combination with distance
moduli measurements of type Ia Supernova (SN) data from Pantheon [109](Pl18+BAO+SN). Fi-
nally, we included CMB lensing potential data from Planck 2018 [51, 178] (Pl18len+BAO+SN).
Further details are provided in Section 4.3. We use a set of free sampling parameters consisting
of the baseline ΛCDM cosmological parameters (Ωbh

2,Ωch
2, zreio, θs, As, ns) as detailled in Sec-

tion 3.5, as well as the two free parameters associated with the Kinetic model (α, λ). We consider
flat priors for all the parameters and provide the specific range of values in Table 7.1. Our analy-
sis also yields derived constraints on H0 and S8 = σ8

√
Ωm/0.3. The latter is also known to be in

tension with cosmic shear measurements [57, 145, 164] for the standard model, with CMB data
favouring higher values. Finally, to produce the Monte Carlo Markov Chain (MCMC) samples,
we follow our modification of the Einstein Boltzmann solver CLASS [95, 101, 102] interfaced with
the MontePython sampler [213, 214], following the Metropolis-Hastings algorithm. Subsequently,
we analyse the MCMC chains and produce the results reported in Ref. [1], with the aid of the
GetDist Python package [216].
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Parameter Prior

Ωbh
2 [0.005, 0.1]

Ωch
2 [0.001, 0.99]

100θs [0.5, 10]

τreio [0.01, 0.8]

ns [0.7, 1.3]

log
(
1010As

)
[1.7, 5.0]

λ [0, 2]

α [0, 1]

Table 7.1: Flat priors on the cosmological and model parameters sampled in this work.

7.4.2 Results

In Tables 7.2 and 7.3, we present the constraints on the sampled parameters for the Kinetic and
ΛCDM models, respectively. These results are illustrated in Figure 7.4 where the corresponding
2D marginalised contour plots for all the considered combinations of data sets are displayed. Al-
though the constraints on the cosmological parameters of the Kinetic model are compatible with
those of the ΛCDM case within the uncertainties, the latter yields higher and lower mean values
for H0 and Ωm, respectively, across all the three data combinations considered. This tendency
is consistent with the dominating effects of the coupling in the TT power spectrum as depicted
in Figure 7.3, following the analysis provided in Section 3.5. Furthermore, Figure 7.4 depicts
contour plots for the constraints in the H0 −Ωm and S8 −Ωm planes. The Kinetic model under
the Pl18 data predicts H0 = 64.0+3.3

−1.8, with a lower mean value (67.31) than in ΛCDM, thereby
apparently worsening the tension with late-time distance-ladder measurements, as detailed in
Section 3.6. However, this discrepancy is attenuated by larger error bars (0.61 in ΛCDM), lead-
ing to an artificial reduction of the H0 tension from ∼ 4.8σ to ∼ 3.3σ. The compatibility with
ΛCDM is restored when considering other data sets, indicating tensions between the BAO and
SN data within this framework, just as was found in Chapter 6. A similar situation in a Galileon
model [381] suggests a potential bias towards ΛCDM-like models in the BAO data [382]. With
only the Pl18 data, we find S8 = 0.921+0.044

−0.034 at a 68% confidence level (CL) in the Kinetic model,
with a higher mean value than in the corresponding ΛCDM case, but also accompanied by larger
error bars, with the same tendency persisting across all the data set combinations. Even though
a lower value is expected for mitigating the discordance with cosmic shear measurements in the
standard model (S8 = 0.833±0.016), a full reanalysis of the weak lensing data under the Kinetic
model would be needed to evaluate the tension.
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The results for the specific parameters of the Kinetic model can be appreciated in the 2D contour
plots of Figure 7.5, where we see that the coupling parameter α is consistently constrained to be of
the order 10−4, regardless of the data set combination. When considering only the Planck data, a
higher mean value of α is preferred, primarily to accommodate the TT likelihood better. However,
incorporating BAO and SN data slightly reduces the mean value of α. Furthermore, adding CMB
lensing data shifts the peak of the posterior distribution for α to an even lower central value.
This behaviour can be traced to the reported lensing excess by the Planck collaboration [32, 383].
In the Kinetic model, the lensing power spectrum is always suppressed compared to the ΛCDM
scenario, with higher values of α corresponding to lower amplitudes. Consequently, a lower mean
value of α is favoured to match the CMB lensing data better. Including BAO and SN data leads
to narrower constraints on Ωm, resulting in tighter constraints on other parameters such as H0,
S8, and λ.

Parameter Pl18 Pl18 + BAO + SN Pl18len + BAO + SN

Ωbh
2 0.02236± 0.00015 0.02242± 0.00013 0.02243± 0.00013

Ωcdmh
2 0.1202± 0.0014 0.11937± 0.00091 0.11935± 0.00092

100θs 1.04188± 0.00030 1.04195± 0.00028 1.04196± 0.00029

τreio 0.0542± 0.0078 0.0554+0.0071
−0.0079 0.0573± 0.0074

ns 0.9652± 0.0044 0.9672± 0.0036 0.9672± 0.0037

ln
(
1010As

)
3.046± 0.016 3.046± 0.016 3.050± 0.015

σ8 0.8115± 0.0075 0.8093± 0.0071 0.8110± 0.0061

Ωm 0.3149± 0.0085 0.3095± 0.0054 0.3093± 0.0055

S8 0.831± 0.016 0.822± 0.012 0.824± 0.011

H0 67.31± 0.61 67.68± 0.40 67.71± 0.42

Table 7.2: 68% CL bounds on the cosmological parameters for the ΛCDM model for the three
different combinations of data sets: Planck 2018, Planck 2018 combined with BAO and SN, and
their full combination with CMB lensing.

7.4.3 Model Selection Analysis

Lastly, we aim to evaluate whether the Kinetic model is favoured over the ΛCDM case, using dif-
ferent statistical indicators for comparison purposes. First, we consider the effective χ2-statistics,
corresponding to the maximum likelihood, denoted as χ2

eff, which allows us to determine how well
the Kinetic model fits the data when compared to ΛCDM. This is accomplished by calculating
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Figure 7.4: 68% and 95% CL 2D contours derived for the parameter combinations H0-Ωm (left
panels) and S8-Ωm (right panels) in the Kinetic model (upper panels) and ΛCDM model (lower
panels) for the Planck 2018 data (green), the Planck 2018, BAO and SN combination (yellow),
and their combination with CMB lensing (red).

∆χ2
eff = χ2

eff,Kinetic − χ2
eff,ΛCDM, where a negative value indicates support for the Kinetic model,

while a positive value suggests otherwise. On the other hand, to statistically compare the level
of support for one model against the other, we calculate the Bayes factor of the Kinetic model
relative to ΛCDM, as introduced in Equation (4.1.3). The greater the evidence for the Kinetic
model relative to ΛCDM, the larger the Bayes factor ratio lnBK,ΛCDM will be. The numerical
Bayes factor may be translated into a qualitative statement about the strength of evidence for
an extended model against ΛCDM through the Jeffreys scale in Table 4.1.

In the last two rows of Table 7.3, we present the values for both the ∆χ2
eff and the lnBK,ΛCDM,

along with the corresponding individual values. From the analysis, we find that when considering
only the Pl18 data, the Kinetic model shows a slightly better fit to the data compared to the
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Figure 7.5: 68% and 95% CL contours obtained in the Kinetic model for the Planck 2018 data
(green), the Planck 2018, BAO and SN combination (yellow), and their combination with CMB
lensing (red).

Parameter Pl18 Pl18 + BAO + SN Pl18len + BAO + SN

Ωbh
2 0.02226± 0.00016 0.02234± 0.00015 0.02236± 0.00014

Ωcdmh
2 0.1195± 0.0015 0.1186± 0.0011 0.11911± 0.00098

100θs 1.04196± 0.00030 1.04203± 0.00028 1.04200± 0.00029

τreio 0.0534± 0.0079 0.0555± 0.0079 0.0573± 0.0074

ns 0.9667± 0.0047 0.9688± 0.0040 0.9675± 0.0038

ln
(
1010As

)
3.039± 0.017 3.041± 0.017 3.052± 0.015

λ 1.11± 0.48 0.45+0.18
−0.21 0.43+0.18

−0.20

104α 1.88± 0.95 1.57+0.79
−1.00 1.14+0.55

−0.92

σ8 0.858± 0.042 0.884+0.042
−0.038 0.869+0.033

−0.043

Ωm 0.347+0.019
−0.037 0.3102± 0.0065 0.3128± 0.0061

S8 0.921+0.044
−0.034 0.899+0.043

−0.039 0.887+0.036
−0.045

H0 64.0+3.3
−1.8 67.41+0.59

−0.50 67.26+0.55
−0.47

∆χ2
eff −0.9 0.7 1.0

lnBK,ΛCDM −4.2 −5.4 −6.8

Table 7.3: 68% CL bounds on the cosmological and model parameters for the Kinetic model
for the three different combinations of data sets: Planck, Planck combined with BAO and SN,
and their full combination with CMB lensing.

ΛCDM model, with a decrease in the chi-squared value of ∆χ2 = −0.9. However, this preference
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disappears when other data sets are included. This is mainly due to the BAO and SN data affect-
ing the fit to the temperature-temperature (TT) likelihood, which worsens after incorporating
the CMB lensing data. The Kinetic model predicts a suppressed lensing amplitude, whereas the
CMB lensing data indicates an excess of power. However, any support for the Kinetic model be-
comes insignificant when considering the Bayesian evidence, for which we report negative values
across all the data sets. This is directly related to the increased complexity of the Kinetic model,
including two additional parameters resulting in either reduced or no improvement in the data
fitting. Therefore, we can conclude that this analysis does not affirm statistical evidence for the
Kinetic model.

7.5 Discussion

This study investigated a Kinetic model consisting of a coupled quintessence theory with a power-
law kinetic interaction. We explored its impact on the evolution of the background and linear
perturbations in the Universe. We analysed the relevant cosmological observables and derived
constraints on the model parameters using various data sets, namely CMB, CMB lensing, BAO,
and SN data.

We first performed a numerical study of the model’s predictions to assess the valid parameter
space with physical interest. We used a modified version of the publicly available Einstein-
Boltzmann code CLASS. At the background level, we found that a non-zero value of α allows
for a scaling regime during the radiation-dominated epoch, where the ratio of the densities of
cold dark matter and the scalar field approximately scale with α. We identified that only energy
transfer from DM to DE can be realised in such scenarios. Additionally, the radiation-matter
equality is shifted towards earlier times, with direct consequences on the matter power spectrum,
namely a suppression of small-scale power and an enhancement of large-scale growth compared
to the ΛCDM model. Consequently, we observed an overall suppression of the lensing potential
and modifications in the ISW effect, which alter the shape of the temperature power spectrum
of anisotropies at large angular scales.

Using an MCMC method for cosmological parameter extraction, we applied the theoretical in-
sight gained in the numerical study to constrain the model. We found that even though there
is an apparent reduction of the H0 tension with the Planck data only, this is due to the worse
constraining power (larger error bars), and not an actual higher mean value of H0. Regardless
of the combination of data sets, the parameter α was consistently constrained to be of the order
of 10−4. We also reported constraints on the other parameter of the Kinetic model, λ, with
the most robust bounds obtained when combining BAO and SN data. This is primarily caused
by the solid constraining power of BAO data on Ωm, which indirectly affects the bounds on λ.
Finally, we presented a model selection study using the effective χ2

eff and the Bayesian evidence,
with the latter indicating a statistical preference for ΛCDM over the Kinetic toy-model related
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to the increased dimension of the parameter space. In conclusion, we highlight the importance
of considering the Kinetic model and other variations for future investigations, especially with
the availability of new probes from upcoming surveys. Further studies using high-precision data
will help resolve tensions and establish a definitive preference for one model, possibly hinting at
more complicated shapes for the kinetic function.



8 Forecasts on Coupled Quintessence with Stan-
dard Sirens

Esse não-saber pode parecer ruim mas não é tanto porque ela sabia muita coisa
assim como ninguém ensina cachorro a abanar o rabo e nem a pessoa a sentir fome;
nasce-se e fica-se logo sabendo. Assim como ninguém lhe ensinaria um dia a morrer:

na certa morreria um dia como se antes tivesse estudado de cor a representação
do papel de estrela. Pois na hora da morte a pessoa se torna brilhante estrela de cinema,

é o instante de glória de cada um e é quando como no canto coral se ouvem agudos sibilantes.
— Clarice Lispector A Hora da Estrela

That not-knowing might seem awful but it’s not that bad because she knew lots of things in the way nobody
teaches a dog to wag his tail or a person to feel hungry; you’re born and you just know. Just as nobody one day
would teach her how to die: yet she’d surely die one day as if she’d learned the starring role by heart. For at the
hour of death a person becomes a shining movie star, it’s everyone’s moment of glory and it’s when as in choral
chanting you hear the whooshing shrieks. — Clarice Lispector in The Hour of the Star

In the past few years, we have witnessed the rise of gravitational wave (GW) astronomy as a new
independent probe of gravitational effects [126]. An accurate redshift-luminosity relation can be
constructed when GW events are combined with an electromagnetic (EM) counterpart multi-
messenger signal. In 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO)
and Virgo collaborations made the first direct detection of a gravitational wave signal from
the inspiral, merger, and ringdown of a binary black hole system (GW150914) [123]. This
inaugural measurement marked only the beginning, with the Virgo-LIGO catalogue of events
growing ever since. Two years later, one of these events (GW170817) opened up a new door
for multi-messenger astronomy by being matched with an electromagnetic counterpart for a
binary neutron star merger event (GRB170817A), detected by the International Gamma-ray
Astrophysics Laboratory (INTEGRAL)-Fermi collaboration [124, 125]. Akin to BAO and SN
data, conventionally used as standard rulers and candles, gravitational wave events were now
established as standard sirens [121]. This single combined detection had a strong impact on the
allowed modifications to the gravitational interaction by ruling out many proposals [384–388]
with many other models further constrained [88, 389–392]. The significance of these observations
for cosmology is twofold. First, GW150914 confirmed the existence of gravitational waves, as
predicted by GR. Second, GW170817 established that the tensor degrees of freedom seemingly
propagate at the speed of light [125], imposing severe constraints on modified gravity theories.
Furthermore, the latter is why GW events are standard sirens for independent measurement
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of the Hubble parameter H0 [393]. Although this method does not yet rival the traditional
distance ladder measurements [394], it shows how future gravitational wave telescopes could be
instrumental in addressing the present cosmological tensions.

In this chapter, we wish to investigate the constraining power of combined distance-redshift mea-
surements based on geometric, electromagnetic and gravitational sources on the classes of coupled
quintessence models discussed throughout this thesis. These forecasts are conducted by simulat-
ing mock catalogues of gravitational wave standard sirens (SS) from next-generation detectors,
namely the Einstein Telescope (ET) and the Laser Interferometer Space Antenna (LISA), along
with current data from Type Ia supernovae (SN), and baryon acoustic oscillations (BAO). This
study aims to provide insight into the ability of upcoming SS missions to constrain extended
theories of gravity while simultaneously offering supplementary constraints on H0, potentially
shedding light on the cosmic tensions. We analyse four distinct models, each characterised by
particular coupling functions between dark matter and dark energy, arising from a non-universal
metric transformation, as discussed in Section 5.4. More specifically, these are a conformally
coupled quintessence model, featuring a constant coupling stemming from a conformal function,
which is an exponential function of the scalar field (as explored in Chapter 6); a kinetic model,
with the conformal function as a power law of the kinetic term of the scalar field (as investi-
gated in Chapter 7); a purely disformally coupled quintessence field, with a constant disformal
function; and a mixed disformally coupled quintessence, extending the previous model with an
exponential conformal coupling.

This chapter is organised as follows. We start by giving a brief introduction to the physics of
standard sirens in Section 8.1. The supplementary details on the simulation of the standard siren
events developed for this study are provided in Appendix B. Section 8.2 provides an overview
of the methodology used as well as a brief account of the data set combinations considered. We
outline the criteria for particular catalogue choices, and discuss the sampling method employed
for the forecasts. In Section 8.3 we introduce each of the four models under study and present
the results of our analysis, emphasising their significant implications. Lastly, in Section 8.4, we
summarise our results and outline our concluding thoughts and future prospects.

This work has been published in Physical Review D and is available in [2].

8.1 Standard Sirens

Current GW detectors, (advanced) Virgo [128], (advanced) LIGO [129] and the Kamioka Grav-
itational Wave Detector (KAGRA) [130], are second generation (2G) ground-based detectors,
with another one under planning (2030), the Indian Initiative in Gravitational-wave Observa-
tions (IndIGO) [131]. The increasing number of detectors will boost the capabilities of GW
astronomy both in the number of confirmed events (a larger volume of the Universe is covered)
and sky localisation (a better triangulation of the source), which will also aid in the search for
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a counterpart. However, 2G detectors are limited in their sensitivity and future ground-based
detectors are designed to become more sensitive, precise and capable of probing a larger range
of frequencies. Special emphasis should be given to the Einstein Telescope (ET), a proposed
ground-based triangular interferometer designated as a third-generation gravitational wave de-
tector, which is expected to improve the current sensitivity by a factor of 10 [132]. ET will also
extend the redshift range, e.g. z ∼ 5 for binary black-holes (BBHs) compared to z ∼ 0.5 for
2G detectors [133]. The number of detectable multi-messenger events is expected to reach tens
of thousands of standard sirens [134]. Contemporary terrestrial detectors, such as LIGO and
Virgo, grapple with limitations at low frequencies due to seismic and thermal noise. In contrast,
the ET will likely alleviate these through underground positioning and cryogenic cooling of its
interferometer mirrors. These enhancements will empower the ET and other third-generation de-
tectors to make incredibly sensitive gravitational wave measurements, propelling standard siren
detections into precision cosmology’s forefront [395].

While these ground-based detectors will cover a frequency band in the range 1 ≲ f ≲ 103 Hz [135],
the upcoming space-based 3G detectors, such as the Laser Interferometer Space Antenna (LISA)
[136] will have a peak sensitivity near 10−3 Hz and will be able to detect GW events beyond
z = 20, probing a wide range of targets. There are many proposals of 3G GW observatories, such
as DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) [137]. However, we
have opted to focus our analysis on ET and LISA covering ground and space-based experiments.

8.2 Methodology and Data Sets

Given the main objective of this study, we create simulated data that forecasts the potential
future observations of standard siren events. Specifically, we focus on those that could be detected
by ET and LISA. Below, we provide a concise overview of the samples we have generated along
with the methodology and the data combinations used. The detailed account of the simulations
of the mock data is found in Appendix B.

To assess the fit of the mock data to the coupled quintessence models explored in this study, we use
the Markov Chain Monte Carlo (MCMC) technique, as described in Section 4.1. We generate the
samples through our private modified branch of the Einstein-Boltzmann code CLASS, interfaced
with the MontePython sampler [213, 214]. Moreover, we opt for the Nested Sampling algorithm
implemented in MultiNest1 [203, 396, 397] and PyMultiNest2 [398], instead of the conventional
Metropolis-Hastings algorithm. This choice is due to the latter’s limitations in dealing with
complex degeneracies between parameters and handling multi-modal distributions, as discussed
in Section 8.3. For this reason, we recommend caution when employing more straightforward
methods like Metropolis-Hastings and emphasise the importance of considering multiple sampling

1https://github.com/farhanferoz/MultiNest
2https://github.com/JohannesBuchner/PyMultiNest

https://github.com/farhanferoz/MultiNest
https://github.com/JohannesBuchner/PyMultiNest
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strategies. Additionally, this underscores the value of relying on various types of observations,
which can break the degeneracy. The MCMC chains are then analysed and processed using the
GetDist1 Python package [216].
We integrate a new likelihood module into MontePython to assess the constraints imposed by the
upcoming SS surveys. The luminosity distances for gravitational waves at each sampled point
in the parameter space, dSS(z), are computed from CLASS according to Equation (2.1.14). More
precisely, we constructed a likelihood function for our simulated dataset of SS events based on
an effective Gaussian distribution:

lnLSS = −1

2

n∑
i=1

[
d

(obs)
SS (zi)− dSS(zi)

σdL,i

]2
, (8.2.1)

where d(obs)
SS (z) is the observed luminosity distance, which in this case corresponds to the simu-

lated data, with total error σdL as described in Appendix B, for n observed events.
In summary, we investigate the potential of constraining coupled quintessence models with up-
coming standard siren data probed by ET and LISA, either as a substitute for current background
data or in conjunction with them. This allows for a direct assessment of the origin of the improve-
ment in the constraints on {Ωm, H0} and the model-specific parameters affecting the background
evolution. In particular, we include BAO data from the Sloan Digital Sky Survey (SDSS) DR7
Main Galaxy Sample [117], SDSS DR12 consensus release [116] and the 6dF Galaxy Survey
[118], in combination with distance moduli measurements of 1048 SN data from Pantheon [109].
This combined data set is referred to throughout this chapter as SN+BAO. Despite our focus
on extended theories of gravity, we adopt flat ΛCDM fiducial values for the parameters specified
in Section 3.5, intentionally overlooking any gravity modifications, accounted for by the model
parameters, for which we consider as fiducial value their ΛCDM limit. The models discussed in
Section 8.3 reduce to ΛCDM in the following limits: λ = 0 and β = 0 for Section 8.3.1; λ = 0

and α = 0 for Section 8.3.2; λ = 0 and D0 = 0 for Section 8.3.3; λ = 0, β = 0 and D0 = 0 for
Section 8.3.4. We adopt flat priors for all the parameters, as detailed in Table 8.1.

8.3 Forecasts Results

Following the methodology and data sets elaborated in Section 8.2, we explore the predicted
power of standard sirens probed by LISA and ET on constraining the cosmological parameters
{Ωm, H0} and the model-specific conformal and disformal coupling parameters and the steepness
of the self-interacting potential. Specifically, we discuss four distinct coupled quintessence models:
a canonical coupled quintessence model in Section 8.3.1, as introduced in Section 6.2.1; a model
with a kinetic coupling in Section 8.3.2, previously explored in Chapter 7; a constant disformal
model in Section 8.3.3 and a hybrid conformal-disformal model in Section 8.3.4, both particular

1https://github.com/cmbant/getdist

https://github.com/cmbant/getdist
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Model Parameter Prior

All

Ωbh
2 [0.018, 0.03]

Ωch
2 [0.1, 0.2]

h [0.6, 0.8]

λ [0, 2]

Sections 8.3.1 and 8.3.4 β [0, 2]

Section 8.3.2 α [0, 0.001]

Sections 8.3.3 and 8.3.4 D0/meV−1 [0, 2]

Table 8.1: Flat priors on the cosmological and model parameters sampled in Section 8.3.

cases of the disformally coupled quintessence model [347, 399]. We provide a brief account of the
theoretical framework of each scenario before presenting the forecast results, derived according
to the theoretical and numerical specifications discussed in Section 8.2 and in Appendix B.
Each subsection also contains the derived 1D and 2D marginalised posterior distributions and
contours for {H0,Ωm} and any of the particular model-dependent parameters of the model in
question, as specified in Table 8.1. These plots comprise both ET and LISA data, individually
and combined, and feature an overlay of SN+BAO data and standalone SN+BAO results for
reference. We provide a summary of the results in a table with the corresponding 1σ values,
denoted in the text as {σp}, where p is the corresponding model parameters. Additionally, we
define F (i,j)

p = {σ(j)p /σ
(i)
p }, where i and j represent distinct data sets, to denote the effective

change in the parameter p.

8.3.1 Conformal Coupling

The first scenario we explore is the conformal coupling model introduced in Section 6.2.1. We
recall that this model is characterised by the following conformal and potential functions C(ϕ)
and V (ϕ):

C(ϕ) = e
2βϕ
MPl , V (ϕ) = V0e

− λϕ
MPl , (8.3.1)

with C(ϕ) laying out the coupling in the dark sector according to Equation (5.3.2). The param-
eters β and λ are dimensionless constants, while V0 is a constant with dimensions of (mass)4

representing the energy scale of the potential1.
In these models, the mass of the dark matter particles becomes dependent on ϕ, as the DE field
mediates a long-range force between DM particles. This translates into an effective gravitational

1To avert degeneracies and for numerical robustness, V0 is not a free parameter but rather serves as a shooting
parameter to satisfy the flatness condition for Ω0

ϕ.
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Conformal Coupled Quintessence

Data sets Ωm σΩm H0 σH0 β σβ λ σλ

SN+BAO 0.3019+0.0088
−0.0059 0.0074 73.2+4.7

−3.5 4.1 0.085+0.055
−0.043 0.049 0.42+0.20

−0.36 0.28

ET 0.307+0.011
−0.0050 0.0080 67.49+0.39

−0.34 0.37 0.115+0.060
−0.079 0.070 0.50+0.26

−0.38 0.32

ET+SN+BAO 0.3046+0.0099
−0.0051 0.0075 67.37± 0.36 0.36 0.063+0.033

−0.045 0.039 0.49+0.26
−0.35 0.31

LISA 0.3039+0.0093
−0.0049 0.0071 67.50+0.50

−0.44 0.47 0.167+0.085
−0.11 0.098 0.33+0.15

−0.32 0.24

LISA+SN+BAO 0.3028+0.0065
−0.0036 0.0051 67.52± 0.37 0.37 0.048+0.025

−0.037 0.031 0.33+0.15
−0.29 0.22

ET+LISA 0.3079+0.0061
−0.0034 0.0048 67.56± 0.26 0.26 0.178+0.099

−0.081 0.090 0.30+0.13
−0.27 0.24

ET+LISA+SN+BAO 0.3044+0.0063
−0.0032 0.0048 67.45± 0.28 0.28 0.052+0.028

−0.038 0.033 0.35+0.17
−0.30 0.24

Table 8.2: Marginalised constraints on cosmological and model parameters for the Conformal
Coupled Quintessence model at 68% CL.

coupling expressed asGeff = G(1+2β2) [292, 400, 401]. For this analysis, we are mainly concerned
with the slope of the potential λ and the coupling constant β as free parameters. Constraints on
this model have been previously reported in Ref. [344] using only background data (H(z), BAO,
and supernova Union 2.1), leading to upper limits β < 0.193 and λ < 1.27. Further stringent
limits, β < 0.0298 and λ < 0.6 at 1σ, have been derived in Ref. [346] using Planck, BAO, and
SN data, also in agreement with Ref. [348] .

Based on the results illustrated in Figures 8.1 to 8.3 and summarised in Table 8.2, we dis-
cuss the parameter constraints from gravitational wave (GW) observations in comparison to
SN+BAO data sets for the parameters {Ωm, H0, β, λ}. Specifically, with ET standard sirens,
the set of parameters is constrained at 1σ with accuracy {0.0080, 0.37, 0.0070, 0.32} for ET
and {0.0075, 0.36, 0.039, 0.31} for ET+SN+BAO. This results in a change in error quantified
by F (ET,ET+SN+BAO)

Ωm,H0,β,λ
= {0.94, 0.97, 0.56, 0.97}. Thus, adding the background data, compared

to ET alone, increases accuracy in all parameters shown by the reduction in σ. A similar
trend is present for the LISA data set, with 1σ regions of {0.0071, 0.47, 0.098, 0.24}, while for
LISA+SN+BAO, they become {0.0051, 0.37, 0.031, 0.22}. This leads to an overall error reduction
given by F (LISA,LISA+SN+BAO)

Ωm,H0,β,λ
= {0.72, 0.79, 0.32, 0.92}.

For the standalone SN+BAO data set, the accuracy is {0.0074, 4.1, 0.049, 0.28}. When compared
to the data sets, including SS data, ET+SN+BAO and LISA+SN+BAO, a reduction in σ is
observed for all the parameters except for σΩm , which nominally increases in the ET+SN+BAO
case.

When evaluating the error performance of ET and LISA in comparison to SN+BAO, we report
only minor variations in the constraining capability for Ωm. Specifically, ET shows a slight
degradation, while LISA demonstrates marginal improvement. A parallel trend occurs for the
parameter λ, where ET’s performance is nominally worse, whereas LISA’s is better than with the
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background data. Of particular note is the substantial reduction in σH0 when comparing ET and
LISA against SN+BAO. This results in an error reduction by factors of F (SN+BAO,ET)

H0
= 0.090

and F (SN+BAO,LISA)
H0

= 0.11. Such forecasts suggest that GWs will be instrumental in addressing
the Hubble tension. Conversely, the parameter β experiences an increase in error, quantified by
F

(SN+BAO,ET)
β = 1.4 and F (SN+BAO,LISA)

β = 2.0. However, this degradation is alleviated when

ET and LISA are combined with the background data, improving to F (ET,ET+SN+BAO)
β = 0.56

and F (LISA,LISA+SN+BAO)
β = 0.32.

The results shown in Figure 8.3 show that ET and LISA offer comparable constraining power
over the cosmological parameters. A noteworthy feature observed is ET’s superior constraining
ability for H0, ascribed to its abundance of low-redshift data points as depicted in Figure B.1.
By bringing the GW data from both LISA and ET together, which implies more data points also
covering a broader redshift spectrum, we predict an improved constraining ability on {H0,Ωm}
relative to SN+BAO. Specifically, F (SN+BAO,ET+LISA)

Ωm,H0
= {0.65, 0.063}. For the model-specific

parameters β and λ, the constraints are modified to F (SN+BAO,ET+LISA)
β,λ = {1.8, 0.86}. By com-

bining ET+LISA with SN+BAO, only negligible changes in the constraining power for Ωm, H0, λ

arise. Only β shows a significant tightening in its constraint, reducing the 1σ error by nearly
one-third.
In the context of our analysis, we find improvements in the 1σ upper limits of the model pa-
rameters when compared to the existing background constraints stated earlier for the following
cases: β < 0.14 and λ < 0.62 (SN+BAO); β < 0.175 and λ < 0.76 (ET); β < 0.096 and λ < 0.75

(ET+SN+BAO); λ < 0.48 (both LISA and LISA+SN+BAO) and β < 0.073 (LISA+SN+BAO);
λ < 0.43 (ET+LISA); λ < 0.52 and β < 0.08 (ET+LISA+SN+BAO).

8.3.2 Kinetic Conformal Coupling

In a more intricate example of a coupled quintessence model, we turn our attention to a conformal
function that depends on the kinetic term of the scalar field ϕ, expressed as X = −∂µϕ∂µϕ

2 . This
is called the kinetically coupled model, proposed in [275] (more details in the references cited
therein). Our discussion will focus on the specific instance of a power law form for C(X), as
explored in Chapter 7, based on Ref. [1]. Although originating from a Lagrangian formulation
LDM →

(
X

MPl
4

)α
LDM, the model at the background level is equivalent to a kinetic-dependent

conformal transformation ḡµν = C(X)gµν , where:

C(X) =

(
X

MPl
4

)2α

, and V (ϕ) = V0e
− λϕ

MPl . (8.3.2)

Here, α is a dimensionless constant, and the assumption of a simple exponential potential remains
in line with the previous case, implying similar considerations for λ and V0.
In summary, an investigation based on the Planck likelihood and SN+BAO background data, as
outlined in Ref. [1], reveals the substantial influence of BAO data in constraining Ωm, intrinsically
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Figure 8.1: 68% and 95% CL 2D contours and 1D marginalised posterior distributions for the
parameters {H0,Ωm, λ, β} in the conformal coupled quintessence model with the ET mock data
(green filled line), SN+BAO data (yellow dotted line) and their combination (red dashed line).
The dotted lines depict the fiducial values for the mock data {Ωm, H0} = {0.3144, 67.32}.

correlated to the steepness of the potential λ. The coupling constant α is constrained to the order
10−4. The results derived for the cosmological parameters were compatible with those of ΛCDM
within the error margins. Additionally, we highlight a direct correlation between H0 and Ωm.
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Figure 8.2: 68% and 95% CL 2D contours and 1D marginalised posterior distributions for
the parameters {H0,Ωm, λ, β} in the conformal coupled quintessence model with LISA mock
data (green filled line), SN+BAO data (yellow dotted line) and their combination (red dashed
line). The scale is the same as in Figure 8.1 for comparison purposes, with the SN+BAO
contours standing as the reference. The dotted lines depict the fiducial values for the mock data
{Ωm, H0} = {0.3144, 67.32}.

Initially ascribed to the behaviour of linear perturbations when α is non-zero, this correlation
persists even for the standard siren background data sets.
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Figure 8.3: 68% and 95% CL 2D contours and 1D marginalised posterior distributions for
the parameters {H0,Ωm, λ, β} in the conformal coupled quintessence model with ET mock data
(green filled line), LISA mock data (yellow dotted line) and their combination (red dashed line).
The dotted lines depict the fiducial values for the mock data {Ωm, H0} = {0.3144, 67.32}.

From the findings presented in Figures 8.4 to 8.6, and summarised in Table 8.3, we investi-
gate constraints on the parameters {Ωm, H0, λ, 10

4α} using to the same data sets as in the
Section 8.3.1. Comparison of the errors obtained from the ET standard sirens catalogue to
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Kinetic Coupled Quintessence

Data sets Ωm σΩm H0 σH0 104α σ104α λ σλ

SN+BAO 0.3016+0.0075
−0.0057 0.0066 70.4± 3.1 3.1 5.1± 2.9 2.9 0.34+0.16

−0.29 0.23

ET 0.3067+0.0093
−0.0046 0.0070 67.45± 0.36 0.36 4.8± 2.9 2.9 0.41+0.20

−0.31 0.26

ET+SN+BAO 0.3062+0.0074
−0.0043 0.0059 67.36± 0.33 0.33 5.0± 2.9 2.9 0.37+0.19

−0.28 0.24

LISA 0.2997+0.0079
−0.0041 0.0060 67.30± 0.39 0.39 4.9± 2.9 2.9 0.34+0.16

−0.30 0.23

LISA+SN+BAO 0.3024+0.0058
−0.0035 0.0047 67.47± 0.36 0.36 5.0± 2.9 2.9 0.29+0.13

−0.26 0.20

ET+LISA 0.3040+0.0058
−0.0031 0.0045 67.42± 0.26 0.26 5.1± 2.9 2.9 0.31+0.15

−0.26 0.21

ET+LISA+SN+BAO 0.3040+0.0058
−0.0031 0.0045 67.42± 0.27 0.27 4.9± 2.9 2.9 0.29+0.14

−0.25 0.20

Table 8.3: Marginalised constraints on cosmological and model parameters for the Kinetic
Model at 68% CL.

the SN+BAO data reveals that, with the exception of the H0 parameter, ET’s 1σ bounds
are comparable in magnitude. The constraint in H0 improves by a factor of ten, quanti-
fied by F (SN+BAO,ET)

Ωm,H0,β,λ
= {1.1, 0.12, 1.0, 1.1}. Combining the SS and background data sets

(ET+SN+BAO), the 1σ constraints tighten for all parameters when set against ET alone, ex-
pressed by F (ET, ET+SN+BAO)

Ωm,H0,α,λ
= {0.84, 0.92, 1.0, 0.92}.

For the LISA SS scenario, it becomes apparent that every cosmological and model parameter is
either better or equally constrained when using LISA alone, compared to SN+BAO data, with
F (SN+BAO,LISA)
Ωm,H0,α,λ

= {0.91, 0.13, 1.0, 1.0}. Pairing LISA with SN+BAO improves upon constraints
compared to SN+BAO alone, and LISA+SN+BAO even surpasses LISA alone in constraint
power, particularly for Ωm, demonstrated by F (LISA,LISA+SN+BAO)

Ωm,H0,α,λ
= {0.78, 0.92, 1.0, 0.87}.

Regarding both ET and LISA, H0 accuracy improves by an order of magnitude (0.36 for ET and
0.39 for LISA) relative to SN+BAO (3.1), corroborating the findings of Section 8.3.1. It is worth
noting that the errors in the model-specific parameters remain predominantly unaltered across
all data sets and combinations, with only minor changes reported for λ within the 1σ region,
while α remains effectively unaltered.

In comparing the constraining power of ET and LISA against their combination, ET+LISA, we
highlight that the latter yields better results for the cosmological parameters relative to any of the
data sets analysed. For model parameters, negligible variations in accuracy are observed between
individual and combined ET and LISA data sets. However, compared to SN+BAO, ET+LISA
exhibits better accuracy with F (SN+BAO,ET+LISA)

Ωm,H0,α,λ
= {0.68, 0.084, 1.0, 0.91}. Incorporating all

data sets, ET+LISA+SN+BAO, results in a negligible change in parameter constraints when
compared against ET+LISA.

Finally, when assessing the constraints derived for the Kinetic model in Ref. [1] against CMB
Planck 2018, Planck CMB lensing, BAO, and SN, we observe that the α parameter is constrained
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more tightly by CMB and its combinations by an order of magnitude, relative to our data sets
that rely solely on background evolution. Specifically, σ104α values are reduced in Ref. [1] to
0.95 (Pl18), 0.84 (Pl18+SN+BAO), and 0.7 (Pl18len+SN+BAO) as opposed to 2.9 in our cases.
Future ET and LISA data will provide constraints on λ comparable to Planck CMB (σλ = 0.48

with Pl18 and σλ = 0.2 with Pl18+SN+BAO and Pl18len+SN+BAO). Moreover, this analysis
suggests that standard siren data will offer superior H0 constraints by an order of magnitude
compared to Pl18 (σH0 = 2.5). CMB lensing enhances this constraint by an order of magnitude,
achieving σH0 = 0.6, comparable to ET and LISA, even though standard sirens yield better
relative errors with σH0 < 0.4 for all considered combinations.

8.3.3 Disformal Coupling

In what follows, we focus on a model featuring only a disformal coupling, given by

C = 1 , D = D4
0 and V (ϕ) = V0e

−λϕ/MPl . (8.3.3)

In this scenario, the conformal contribution vanishes, leaving D ≡ D4
0 as a constant with units

of (mass)−4 as per Equation (5.3.3). The functional form of V (ϕ) is maintained relative to the
previous scenarios. Prior studies on this model’s constraints have been performed in [344] and
[346]. In particular, constraints derived solely from background data (including H(z), BAO, and
Supernova Union2.1 data) report D0 > 0.07 meV−1 and λ < 1.56 at 95% confidence level [344].
When incorporating CMB data with lensing effects, along with BAO, SN, cosmic chronometers,
cluster abundances, and H0 priors, stringent upper limits for D0 and λ are set at D0 < 0.2500

meV−1 and λ < 0.6720 at 68% CL [346].

Constant Disformal Coupled Quintessence

Data sets Ωm σΩm H0 σH0 D0/meV−1 σD0 λ σλ

SN+BAO 0.315± 0.017 0.017 70.5± 3.1 3.1 1.20+0.65
−0.38 0.52 0.87+0.59

−0.76 0.68

ET 0.290+0.011
−0.013 0.012 67.58+0.36

−0.27 0.32 1.06± 0.51 0.51 1.06± 0.58 0.58

ET+SN+BAO 0.298+0.011
−0.014 0.013 67.45± 0.31 0.31 1.15+0.66

−0.44 0.55 0.92± 0.58 0.58

LISA 0.320± 0.012 0.012 67.43± 0.33 0.33 1.22+0.64
−0.38 0.51 0.87± 0.58 0.58

LISA+SN+BAO 0.317± 0.012 0.012 67.52± 0.34 0.34 1.24+0.64
−0.36 0.50 0.86+0.65

−0.77 0.71

ET+LISA 0.3094+0.0087
−0.0099 0.0093 67.49± 0.22 0.22 1.23+0.63

−0.36 0.50 0.88± 0.58 0.58

ET+LISA+SN+BAO 0.3100+0.0092
−0.0100 0.0096 67.47± 0.25 0.25 1.24+0.63

−0.36 0.50 0.88+0.68
−0.77 0.73

Table 8.4: Marginalised constraints on cosmological and model parameters for the Constant
Disformal Coupled Quintessence Model at 68% CL

In Figures 8.7 to 8.9, and in Table 8.4, we summarise the results for the same data sets as
previously discussed in Sections 8.3.1 and 8.3.2. For the ET catalogue alone, improved accuracy
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Figure 8.4: 68% and 95% CL 2D contours and 1D posterior distributions for the parameters
{H0,Ωm, λ, 10

4α} in the kinetic conformal coupled quintessence model with ET (green filled
line), SN+BAO (yellow dotted line) data and their combination (red dashed line). The dotted
lines depict the fiducial values for the mock data {Ωm, H0} = {0.3144, 67.32}.

is observed across all cosmological and model parameters {Ωm, H0, D0, λ}, relative to SN+BAO,
namely F (SN+BAO,ET)

Ωm,H0,D0,λ
= {0.71, 0.10, 0.98, 0.85}. The joint ET+SN+BAO data set performs

better than SN+BAO, although only modest changes in parameter accuracy are seen relative to
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Figure 8.5: 68% and 95% CL 2D contours and 1D posterior distributions for the parame-
ters {H0,Ωm, λ, 10

4α} in the kinetic conformal coupled quintessence model with LISA mock
data (green filled line), SN+BAO (yellow dotted line) data and their combination (red dashed
line). The scale is the same as in Figure 8.4 for comparison purposes, with the SN+BAO con-
tours standing as the reference. The dotted lines depict the fiducial values for the mock data
{Ωm, H0} = {0.3144, 67.32}.

ET alone, according to F (ET,ET+SN+BAO)
Ωm,H0,D0,λ

= {1.1, 0.97, 1.1, 1.0}.
For the LISA standard sirens, we find an analogous trend in parameter accuracy compared to the
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Figure 8.6: 68% and 95% CL 2D contours and 1D marginalised posterior distributions for the
parameters {H0,Ωm, λ, 10

4α} in the kinetic conformal coupled quintessence model with ET mock
data (green filled line), LISA mock data (yellow dotted line) and their combination (red dashed
line). The dotted lines depict the fiducial values for the mock data {Ωm, H0} = {0.3144, 67.32}.

background data, F (SN+BAO,LISA)
Ωm,H0,D0,λ

= {0.71, 0.11, 0.98, 0.85}. This extends to the LISA+SN+BAO

combination, encapsulated by F (LISA,LISA+SN+BAO)
Ωm,H0,D0,λ

= {1.0, 1.0, 0.98, 1.22}. The variation in pa-
rameter accuracy is minimal compared to LISA alone, except for λ, which displays a larger 1σ
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region with σλ = 0.71.

Regardless of the data combination used, the parameters {Ωm, D0, λ} are constrained at the same
level, with λ showing only a minor improvement in both ET and LISA scenarios (σλ = 0.58 as
opposed to σλ = 0.7 for SN+BAO). The accuracy in the H0 parameter improves by one order
of magnitude for ET and LISA compared to SN+BAO.

The model parameters for ET and LISA exhibit no significant variations, leading to con-
sistent constraints for ET+LISA. Nonetheless, there is an increased accuracy for the cos-
mological parameters. Following the observed trend for both ET and LISA against
SN+BAO, the combined ET+LISA data set improves constraints further, according to
F (SN+BAO,ET+LISA)
Ωm,H0,D0,λ

= {0.55, 0.071, 0.96, 0.85}. There is negligible change in accuracy when
combining all data sets (ET+LISA+SN+BAO), except for λ, which sees a decrease in accuracy
as F (ET+LISA,ET+LISA+SN+BAO)

Ωm,H0,D0,λ
= {1.0, 1.1, 1.0, 1.3}.

Contrasted with the results reported in Ref. [344], we highlight the ability of the SS data to
impose constraints at the 68% CL, and not only at 95% CL, for all the model parameters.
Particularly, the error in H0 significantly reduces from σH0 ≈ 2.2 to σH0 ≈ 0.3 with standard
sirens. When compared with results in Ref. [346] for CMB, CMB lensing and additional data,
we find lower and upper bounds for both λ and D0 at 68% CL, contrasting with prior works that
reported only upper bounds in particular with more accommodating upper bounds, considering
that this analysis includes only background data. Consequently, the error in H0 is brought to
the same order of magnitude with σH0 ≈ 0.9, though still about three times larger than the one
reported in this analysis.

8.3.4 Mixed Conformal-Disformal Coupling

Lastly, we explore a mixed coupling, incorporating both conformal and disformal components.
Specifically, the model is defined by

C(ϕ) = e2βϕ/MPl , D(ϕ) = D4
0 and V (ϕ) = V0e

−λϕ/MPl . (8.3.4)

Similar to the disformal-only scenario in Section 8.3.3, constraints for this model have been
presented in Refs. [344] and [346]. For the same background data, Ref. [344] reported constraints
of D0 > 0.102, β < 0.453, and λ < 1.59 at the 95% confidence level. In contrast, the work
in [346], which incorporates CMB data, yields β ≲ 0.17 and λ ≲ 0.35 at 1σ, with the exact
constraints varying depending on the specific data sets employed. The disformal coupling D0 is
not always well constrained for this case, with lower limits of D0 ≳ 0.35 found in particular data
set combinations.

In Figures 8.10 to 8.12, and Table Table 8.5, the estimated values of the parameters
{Ωm, H0, β,D0, λ} are presented using the same data sets as in Sections 8.3.1 to 8.3.3. Consider-
ing the ET catalogue alone, we note an improvement in accuracy in the cosmological parameters
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Figure 8.7: 68% and 95% CL 2D contours and 1D posterior distributions for the parameters
{H0,Ωm, λ,D0} in the constant disformal coupled quintessence model with ET (green filled line),
SN+BAO (yellow dotted line) data and their combination (red dashed line). The dotted lines
depict the fiducial values for the mock data {Ωm, H0} = {0.3144, 67.32}.

Ωm andH0 when compared to the SN+BAO data set; specifically, F (SN+BAO,ET)
Ωm,H0

= {0.61, 0.088}.
Similar accuracy levels are maintained upon combining the ET, SN, and BAO data sets, with
a marginal enhancement relative to the ET-only case. As for the model-specific parame-
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Figure 8.8: 68% and 95% CL 2D contours and 1D posterior distributions for the parameters
{H0,Ωm, λ,D0} in the constant disformal coupled quintessence model with LISA (green filled
line), SN+BAO (yellow dotted line) data and their combination (red dashed line). The scale
is the same as in Figure 8.7 for comparison purposes, with the SN+BAO contours standing
as the reference. The dotted lines depict the fiducial values for the mock data {Ωm, H0} =
{0.3144, 67.32}.

ters {β,D0, λ}, the constraining ability of ET is nearly identical to that of SN+BAO, with
F (SN+BAO,ET)
β,D0,λ

= {1.0, 0.92, 1.0}. Nevertheless, it is worth mentioning that the combined data
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Figure 8.9: 68% and 95% CL 2D contours and 1D marginalised posterior distributions for the
parameters {H0,Ωm, λ,D0} in the constant disformal coupled quintessence model with ET mock
data (green filled line), LISA mock data (yellow dotted line) and their combination (red dashed
line). The dotted lines depict the fiducial values for the mock data {Ωm, H0} = {0.3144, 67.32}.

set yields an increase in the β-error, with σβ = 0.71.

When considering LISA’s standard sirens, there is an improved accuracy for the cosmologi-
cal parameters, akin to the ET results, with F (SN+BAO,LISA)

Ωm,H0
= {0.72, 0.088}. However, an
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Mixed Conformal-Disformal Coupled Quintessence

Data sets Ωm σΩm H0 σH0 β σβ D0 σD0 λ σλ

SN+BAO 0.308+0.021
−0.015 0.018 71.2± 3.3 3.30 1.01± 0.57 0.57 1.23+0.59

−0.43 0.51 0.98± 0.57 0.57

ET 0.286+0.010
−0.012 0.011 67.65± 0.29 0.29 0.85± 0.58 0.58 1.27+0.58

−0.35 0.47 1.03± 0.58 0.58

ET+SN+BAO 0.294+0.011
−0.013 0.012 67.50± 0.30 0.30 0.92+0.66

−0.76 0.71 1.32+0.53
−0.35 0.44 0.97± 0.58 0.58

LISA 0.310+0.017
−0.0087 0.013 67.55+0.27

−0.31 0.29 0.97± 0.56 0.56 1.15+0.63
−0.44 0.54 1.01± 0.56 0.56

LISA+SN+BAO 0.310+0.016
−0.010 0.013 67.59± 0.33 0.33 1.01± 0.58 0.58 1.25+0.53

−0.43 0.48 0.98± 0.57 0.57

ET+LISA 0.302+0.0120
−0.0058 0.0089 67.54± 0.20 0.20 0.92± 0.55 0.55 1.09+0.76

−0.42 0.59 1.05+0.71
−0.56 0.64

ET+LISA+SN+BAO 0.304+0.0120
−0.0089 0.011 67.53± 0.24 0.24 0.98± 0.57 0.57 1.27+0.53

−0.41 0.47 0.97± 0.57 0.57

Table 8.5: Marginalised constraints on cosmological and model parameters for the Mixed
Conformal-Disformal Coupled Quintessence Model at 68% CL.

observable accuracy drop for H0 is evident when combining LISA with other data sets, as
given by F (LISA, LISA+SN+BAO)

H0
= {1.1}. Regarding model parameters {β,D0, λ}, LISA, in

contrast to ET, shows heightened accuracy over SN+BAO, except for D0, represented by
F (SN+BAO,LISA)
β,D0,λ

= {0.98, 1.1, 0.98}. The composite data sets maintain a comparable level of

accuracy to the LISA-only case, indicated by F (LISA,LISA+SN+BAO)
β,D0,λ

= {1.0, 0.89, 1.0}.
Similarly to what was discussed in Sections 8.3.1 and 8.3.3, the combined GW data sets,
ET+LISA yield a marked improvement in the accuracy of Ωm and H0, when compared
to SN+BAO alone, with F (SN+BAO, ET+LISA)

Ωm,H0
= {0.49, 0.061}. The model-specific param-

eters exhibit only minor changes, with both D0 and λ being somewhat less constrained,
F (SN+BAO, ET+LISA)
β,D0,λ

= {0.96, 1.2, 1.1}. When all data sets are considered, the cosmological
parameters Ωm and H0 display enhanced constraints compared to SN+BAO, while the model pa-
rameters remain largely unchanged, F (SN+BAO, ET+LISA+SN+BAO)

Ωm,H0,β,D0,λ
= {0.58, 0.073, 1.0, 0.92, 1.0}.

Regardless of the data set combinations, the constraints on {Ωm, β,D0, λ} closely resemble those
derived from SN+BAO. Furthermore, the accuracy in constraining H0 is improved by an order
of magnitude for ET and LISA relative to SN+BAO.
Much like the comparison in Section 8.3.3, the main improvement predicted in our analysis in
comparison to Ref. [344] is the possibility of constraining all the model parameters at 68% CL.
The upper bounds on λ for standard sirens at 1σ are consistent with the 2σ limits stated for
earlier studies. Moreover, the precision of H0 significantly improves from σH0 ≈ 2.1 for the
background data to σH0 ≈ 0.3 in all the cases including SS data. Compared to Ref. [346], which
takes into account CMB, CMB lensing and additional data and which either does not provide
constraints for D0 or only finds a lower limit for λ and β, the inclusion of standard sirens in
our analysis yields solid constraints for all three model-parameters at 68% CL. This represents
a great achievement that could be improved by combining the background data with the CMB
observations. Furthermore, including CMB data brings the error in H0 to the same order of
magnitude, σH0 ≈ 0.6, although still approximately two times larger than the values reported in
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Figure 8.10: 68% and 95% CL 2D contours and 1D posterior distributions for the parameters
{H0,Ωm, λ, β,D0} in the mixed conformal-disformal coupled quintessence model with ET (green
filled line), SN+BAO (yellow dotted line) data and their combination (red dashed line). The
dotted lines depict the fiducial values for the mock data {Ωm, H0} = {0.3144, 67.32}.

this analysis.
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Figure 8.11: 68% and 95% CL 2D contours and 1D posterior distributions for the parame-
ters {H0,Ωm, λ, β,D0} in the mixed conformal-disformal coupled quintessence model with LISA
(green filled line), SN+BAO (yellow dotted line) data and their combination (red dashed line).
The scale is the same as in Figure 8.10 for comparison purposes, with the SN+BAO con-
tours standing as the reference. The dotted lines depict the fiducial values for the mock data
{Ωm, H0} = {0.3144, 67.32}.

8.4 Discussion

In this work, we have investigated the potential of upcoming gravitational wave detectors, specif-
ically ET and LISA, to improve constraints on conformal and disformal couplings between dark
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Figure 8.12: 68% and 95% CL 2D contours and 1D marginalised posterior distributions for the
parameters {H0,Ωm, λ, β,D0} in the mixed conformal-disformal coupled quintessence model with
ET mock data (green filled line), LISA mock data (yellow dotted line) and their combination
(red dashed line). The dotted lines depict the fiducial values for the mock data {Ωm, H0} =
{0.3144, 67.32}.

energy and dark matter. Four theoretical frameworks were considered: a conformal coupled
quintessence, a kinetic model, a constant disformal coupled quintessence, and a mixed conformal-
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disformal model. We also included a self-interacting exponential potential for each case and
looked for constraints in its slope parameter λ.
We have simulated mock catalogues of standard siren events in accordance with the ET and
LISA specifications, which were subsequently used to conduct an MCMC analysis. In particular,
we compared the predictions for the individual SS data and also in combination with the current
background SN and BAO data. Keeping in mind the assumptions that go into simulating data
and performing forecasts, we summarise the main results for each model below:

• Conformal Coupled Quintessence: Both LISA+SN+BAO and ET+SN+BAO combina-
tions improve the constraints on λ and the conformal coupling parameter β. Moreover,
integrating ET+LISA with SN+BAO reduces the error in β by one-third.

• Kinetic Model: The ET and LISA catalogues independently, when taken independently,
fall short of improving the constraints on λ and on the conformal exponential parameter
α. Combining LISA with SN+BAO yields a marginal improvement for λ and the matter
density Ωm.

• Constant Disformal Coupled Quintessence: All combined data sets effectively constrain
the disformal parameter D0 at the 1σ level and the same order of magnitude, with a small
improvement for LISA+SN+BAO. ET, LISA and their combination perform better than
SN+BAO in constraining λ. The combination of ET+LISA with SN+BAO allows for the
error in Ωm to be reduced.

• Mixed Conformal-Disformal Coupled Quintessence: ET and LISA, when analysed sepa-
rately, do not significantly enhance the precision of the model parameters. Only a marginal
reduction in the 1σ uncertainty of D0 is noted for the full combination scenarios. The pa-
rameter Ωm experiences a slight decrease in the associated error when combining ET and
LISA.

Independent of the model considered, we find that the accuracy of the H0 parameter is con-
sistently enhanced by an order of magnitude at 1σ, relative to the SN+BAO data set. This
holds promise for providing further insight into addressing the H0 tension and contributes to the
overall improvement in model parameter estimates when the full combinations are considered,
as we have just reviewed. Ultimately, our results show that upcoming third-generation gravita-
tional wave detectors stand to enrich our understanding of dark energy-dark matter interactions
substantially and may provide insights into the H0 tension.
It should be noted that the forecast results presented in Section 8.3 reveal a considerable devi-
ation in the constraints derived for the cosmological parameters in the extended models, from
the expected ΛCDM fiducial values used to simulate the SS data. Even if the mean values found
for H0 and Ωm differ from the ones used in the simulated cosmology, these are still expected
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to be recovered within the corresponding errors. Several factors might contribute to this bias
observed in the forecasts. One plausible explanation is the presence of parameter degeneracies,
where the variations in one parameter could compensate for changes in another, leading to devi-
ations from the fiducial ΛCDM values. Additionally, the combination of real BAO and SN data
with simulated GW data introduces complexities, especially when the fiducial cosmology for the
GW simulations does not align exactly with the best-fit SN+BAO cosmology. Furthermore,
the implicit dependence of the GW simulations on the cosmological parameters can introduce
uncertainties that influence the forecasted values. In addition to the observed bias in the fore-
casted values away from the fiducial ΛCDM values, another noteworthy aspect of the results
is the occurrence of certain parameters reaching their prior bounds. For instance, Figure 8.12
demonstrates that the confidence regions for parameters such as λ and β touch on the specified
low boundaries of the prior at zero. While the particular symmetries of the mixed conformal-
disformal model should guarantee that the same dynamics, and therefore the same predictions,
are expected for symmetric values of these parameters, this phenomenon further supports po-
tential degeneracies or limitations in the parameter estimation process. This observation also
underscores the importance of carefully selecting and defining prior distributions for parameters
in cosmological analyses to ensure that the parameter space is adequately explored, and that
results are not unduly influenced by the prior assumptions. Understanding and addressing these
potential sources of bias is crucial for refining the accuracy and reliability of future cosmological
predictions and parameter estimations.





9 Dark D-Brane Cosmology

Céu é para baixo ou para cima? Pensava a nordestina. Deitada, não sabia.
— Clarice Lispector A Hora da Estrela

Is the sky above or below? Wondered the northeastern girl. Lying there, she didn’t know.
— Clarice Lispector in The Hour of the Star

Though the ΛCDM model continues to be considered the most plausible account of cosmological
phenomena, the physical nature of the dark sector remains unfamiliar. Cold dark matter is
generally posited as a particle, predicted by many extensions to the standard model, but has
not been directly observed. Moreover, the magnitude of the cosmological constant remains
incompatible with traditional quantum field theories, as detailed in Section 2.5 [77, 144, 402].
These theoretical considerations motivate the investigation of alternate paradigms, such as the
quintessence field introduced in Section 5.2.1 and which was the main focus of Chapter 6. A
scalar field can emulate cosmological constant-like behaviour and explain the apparent high
coincidence in the present value of Λ in a more effortless dynamical way [55, 56, 81, 227, 228].
Though relatively few studies consider a unified origin for both dark matter and dark energy
[403–406], various coupled dark sector models have been proposed in the literature, which is also
the main focus of this dissertation (literally in the title!) [80, 90, 291, 292, 309, 313].

In this chapter, we will build on the theoretical framework presented in Appendix C, in which dark
matter and dark energy, despite being distinct entities, share a higher-dimensional geometrical
origin, as proposed in [407]. In particular, the dark matter sector arises from the matter on a
D-brane moving in a higher-dimensional spacetime. In this framework, dark energy parametrises
the brane’s position, whose higher-dimensional dynamics are encoded in the low-energy effective
action’s kinetic and potential energy terms. This scenario hinges on the concept of hidden sector
branes in string theory, which experience no interaction with the D-branes accountable for the
visible sector (the standard model of particle physics). This means that the setup imposes that
dark matter can only interact gravitationally with standard model fields [70, 408], with gravity
being the fundamental interaction propagating in the higher-dimensional bulk. Ultimately, in this
framework, while still separate components, dark energy and dark matter emerge as geometrical
properties of the D-brane, becoming inevitably coupled. Moreover, because the dark energy
parametrises the dynamics of the Dark D-brane, the kinetic term in action adopts a non-canonical
Dirac-Born-Infeld (DBI) form, commonly considered in cosmology (see Appendix C), particularly
concerning inflationary [409–413] and dark energy models [414–426]. In this chapter, we focus
on such a framework in which dark matter and dark energy are inherently coupled and, more
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precisely, due to differing metrics in the D-branes laying out the geodesics for particles of the
standard model and dark matter [220–223]. This non-universal coupling of the scalar field to
matter evades conflicts with Solar System tests and the stringent constraints on the speed of
gravitational waves [125]. The relation between these two metrics is actually a realisation of the
disformal transformation [280] introduced in Section 5.3, which we recall is generally described
as

ḡµν = C(ϕ)gµν +D(ϕ)∂µϕ∂νϕ . (9.0.1)

The conformal and disformal factors, C(ϕ) and D(ϕ), are related and encapsulate information
about the curvature of the extra dimensions.

Disformal relations have been previously investigated in the context of brane-world cosmol-
ogy [70, 427–430] and have found various applications in a range of cosmological studies [431–
438]. They have also been instrumental in the formulation of inflationary settings [439, 440], and
disformal quintessence [441, 442]. Various models of disformally coupled dark energy have beem
explored [284, 287, 345, 355, 399, 437, 443–448], whose results can be contrasted with the work
derived here.

In this chapter, we report on an extension to the work presented in Ref. [407], where the model was
first formulated, along with an account of the background evolution through a dynamical systems
analysis. We not only present a precise numerical exploration by evolving the equations in an
Einstein-Boltzmann code but also derive and study the linearly perturbed equations, allowing
for a direct comparison between this dark D-brane scenario and other theories of dark energy
with disformal couplings [346, 347, 355, 399, 446]. Armed with this study we can derive and
better understand constraints for the relevant cosmological parameters against current data sets.

This chapter is structured as follows. Section 9.1 provides a thorough exposition of the theoretical
underpinnings and general equations of motion. Section 9.2 focuses on cosmological evolution
within a flat FLRW spacetime. Section 9.3 is devoted to discussing cosmological perturbations,
where we present the governing equations in the Newtonian gauge and append the equations
in synchronous gauge. We also evaluate the growth of the gravitational constant in this dark
D-brane cosmological setting and provide predictions for CMB temperature fluctuations and
matter power spectra. In Section 9.4, we present the main cosmological observable features of
the model through a numerical study. In Section 9.5, we list the cosmological data constraints
on the parameters of the model according to a Bayesian data analysis. Finally, we conclude in
Section 9.6.

This chapter is based on work published in Physical Review D [3] and ongoing work.



9 Dark D-Brane Cosmology 201

9.1 The Model

In the framework explored in this chapter, the dark sector emerges from a hidden D3-brane,
moving in a higher-dimensional spacetime. This sector includes two distinct degrees of freedom:
the matter fields that populate the brane and the brane’s radial position 1. The cold dark matter
is identified with the particles living on the so-called dark D-brane, which does not intersect with
the D-brane(s) from which the standard model fields emerge, explaining why the dark D-brane
is said to be effectively hidden. Consequently, any interactions between dark matter and the
standard model fields are purely gravitational in the low-energy regime. Dark energy is ascribed
to the scalar degree of freedom that parametrises the brane’s position in the extra dimensions,
naturally inducing the interaction in the dark sector. The geometry of this higher-dimensional
spacetime is encoded in the warp factor, a function of the radial coordinate. For practical
purposes, we will focus on AdS5× S5 warped regions.

The theoretical structure behind the Dark D-Brane (DDB) was proposed in [407], constructed
from a warped flux compactification of Type IIB String Theory. The corresponding low-energy
4D effective action takes the form (keeping with the convention in which c = ℏ = 1 and the
metric signature is (−+++)):

S =
1

2κ2

∫
d4x

√
−gR+

∫
d4x

√
−g
[
h−1(ϕ)

(
1−

√
1 + h(ϕ)∂µϕ∂µϕ

)
− V (ϕ)

]
+
∑
i

∫
d4x

√
−gLSM (gµν , ψi, ∂µψi) +

∑
j

∫
d4x

√
−ḡLc (ḡµν , χj , ∂µχj) . (9.1.1)

The first term is the conventional Einstein-Hilbert action, where κ2 = M−2
Pl = 8πG represents

the reduced Planck mass, G stands for Newton’s gravitational constant, g is the determinant
of the metric tensor gµν , and R is the Ricci scalar. The metric gµν prescribes geodesics for the
standard model fields. The second term is the Dirac-Born-Infeld action [410, 411] for a D3-brane,
in which the scalar ϕ parametrises a canonical normalisation of the radial position r of the D3-
brane in terms of the tension of the brane T3: ϕ ≡

√
T3r. The warp factor is also a function

of ϕ, namely h(ϕ) ≡ T−1
3 h(r), holding the geometrical information of the warped throat region

in the compactified space. The term V (ϕ) is a potential function. The last two terms denote
the actions for the standard model fields, ψi, and the dark D3-brane, where the matter fields χj

reside. In the latter, these fields follow geodesics determined by the induced metric on the brane
ḡµν , connected to gµν through a disformal transformation as given by Equation (9.0.1). For this
study, we assume that the matter fields within the hidden D-brane are Disformal Dark Matter
(DDM), inherently coupled to the scalar field ϕ.

1We restrict our investigation to a single species living on the hidden brane, presumed to be pressureless and
thus serving as a suitable cold dark matter candidate.



202 9.1. The Model

Before moving on to the cosmological implications of the described setting, we remark on the
assumptions underlying the low-energy effective action [407]. The dark D-brane was implicitly
assumed to be a probe brane, meaning that its presence does not induce back-reaction effects on
the background geometry. This implies that any extra degrees of freedom that might emerge due
to the propagation of the brane in the higher-dimensional space are neglected in this treatment.
We will study the evolution of cosmological perturbations to the background cosmology within
this model, which are minute and only treated in linear perturbation theory. In addition, the
brane never enters a highly relativistic state, rendering any resulting back-reaction on the bulk
geometry inconsequential. Hence, for this investigation, the action given in Equation (9.1.1) offers
a satisfactory description of disformally coupled dark matter in this model. It is worth noting,
however, that when studying the spectrum of non-linear cosmological perturbation, corrections
to the action in Equation (9.1.1) may become indispensable due to emergent degrees of freedom.

In the following discussions, we will address the particular scenario emerging from this framework
in which the conformal and disformal functions are not independent and depend on the warp
factor h(ϕ). Nevertheless, for completeness, we present the general equations for C(ϕ) and D(ϕ).
This will elaborate on how the metrics embody the phenomenological interactions between the
DBI scalar field and the disformal dark matter, recalling that standard model particles remain
decoupled from the dark sector.

From the action in Equation (9.1.1), the Einstein equations must be derived as

Gµν ≡ Rµν −
1

2
gµνR = κ2

(
T ϕ
µν + T c

µν + TS
µν

)
, (9.1.2)

where each component of the energy-momentum tensor is defined accordingly as

T ϕ
µν = − 2√

−g
δ (

√
−gLϕ)

δgµν
, T c

µν = − 2√
−g

δ (
√
−ḡLc)

δgµν
, TS

µν = − 2√
−g

δ (
√
−gLS)

δgµν
. (9.1.3)

Due to the coupling in the dark sector, the energy-momentum tensors for both the scalar field
and dark matter are not individually conserved. Nevertheless, to preserve general covariance,
the total energy-momentum tensor must still be conserved, as dictated by the Bianchi identities,
expressed as

∇µ

(
Tµν
ϕ + Tµν

c

)
= 0, ∇µT

µν
S = 0 . (9.1.4)

The equation of motion for the scalar field, derived from variation of the action in Equa-
tion (9.1.1), is generally given by

∇µ (γ∂
µϕ)−V,ϕ+

h,ϕ
h2

γ

2

(
γ−1 − 1

)2
= ∇µ

[
D

C
Tµα
c ∂αϕ

]
− 1

2

[
C,ϕ

C
Tc +

D,ϕ

C
Tµν
c ∂µϕ∂νϕ

]
, (9.1.5)
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where the subscript ϕ indicates differentiation with respect to the scalar field, Tc ≡ gµνT
µν
c is

the trace of the dark matter energy-momentum tensor, and

γ =
1√

1 + h(ϕ)∂µϕ∂µϕ
, (9.1.6)

is a Lorentz factor for the brane’s motion, quantifying its relativistic character, which is always
real. When γ → 1, the canonical kinetic term is restored, and the scalar field ϕ resembles the
quintessence field dynamics. On the other hand, the framework enters a purely relativistic regime
in the limit γ → ∞.

Until now, the equations were derived for general conformal and disformal functions. We will
now converge to the scenario where the disformal metric in Equation (9.0.1) is the induced metric
on a probe D3-brane moving in a warped higher-dimensional space-time. In this context, the
functions C and D in the transformation have been shown to be expressed in terms of the warp
factor of the brane h(ϕ) [407]:

C(ϕ) = [T3h(ϕ)]
−1/2 , D(ϕ) = [h(ϕ)/T3]

1/2 . (9.1.7)

In this case, Equation (9.1.5) reduces to

∇µ (γ∂
µϕ)−V,ϕ+

h,ϕ
2h2

γ
(
γ−1 − 1

)2
= ∇µ [h(ϕ)T

µν
c ∂νϕ]−

Tµν
c

4

[
−
h,ϕ
h
gµν + h,ϕ∂µϕ∂νϕ

]
. (9.1.8)

Under the assumption of a homogeneous and isotropic Universe, all the matter species in the
theory can be accurately modelled as perfect fluids. For cold dark matter, this implies an energy-
momentum tensor expressed as

T c
µν = ρcu

c
µu

c
ν , (9.1.9)

where ucµ is the four-velocity of the fluid for a comoving observer and ρc is the energy density.

From Equation (9.1.3), defining the energy-momentum tensor for the scalar field, and from the
DBI action in Equation (9.1.1), we find

T ϕ
µν =

(
1− γ−1

h
− V

)
gµν + γ∂µϕ∂νϕ . (9.1.10)

For the dark energy fluid, the perfect fluid form implies

uϕµ =
∂µϕ√

−∂νϕ∂νϕ
, (9.1.11)

for the scalar field’s four-velocity, and
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ρϕ =
γ − 1

h
+ V , and pϕ =

1− γ−1

h
− V , (9.1.12)

for the energy density and pressure, respectively. Additionally, the EoS parameter for the scalar
field is defined as

wϕ =
pϕ
ρϕ

=
(γ − 1) /hγ − V

(γ − 1) /h+ V
. (9.1.13)

The conservation relations given in Equation (9.1.4) can be manipulated to yield an explicit
expression for the coupling Q between the dark sector fluids:

∇µT
µν
ϕ = Q∂νϕ , (9.1.14)

with

Q = ∇α

[
h(ϕ)Tαβ

c ∂βϕ
]
−
h,ϕ
4h
Tαβ
c [−gαβ + h∂αϕ∂βϕ] . (9.1.15)

The interaction term Q accounts for the energy exchange between the dark energy and dark
matter sectors and is central to the discussions in this work.

9.2 Background FLRW Cosmology

To study the cosmological implications of the DDB model we consider a spatially flat Friedmann-
Lemaître-Robertson-Walker (FLRW) background, as defined in Equation (1.6.1).
The scalar field ϕ is considered to be homogeneous, simply written as ϕ = ϕ(τ). In the dark
D-brane disformal frame, in which the dark matter geodesics are defined, the line element is
related to Equation (1.6.1) as

ds̄2 = Ca2(τ)
(
−Z2 dτ2 + dx2 + dy2 + dz2

)
, (9.2.1)

where Z represents the disformal scalar, related to the Jacobian of the metric transformation.
In particular, with C and D given by Equation (9.1.7), the disformal scalar is found to be

Z ≡
√

1− 2X
D

C
=

√
1− h(ϕ)

ϕ′2

a2
=

1

γ
, (9.2.2)

where X is the standard kinetic term for the scalar field, defined as X = −1
2g

µν∂µϕ∂νϕ = ϕ′2

2a2
.

The implications of Equation (9.2.1) are that while the conformal factor influences the entire line
element and thus dilutes dark matter, the disformal factor impacts the time component only,
altering the light cones of dark matter particles.
With Tµν

c as provided in Equation (9.1.9), the coupling term in Equation (9.1.15) can be recast
as
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Q =
ρc

2Ca2

[
ϕ′2D,ϕ + a2C,ϕ − 2ϕ′2

DC,ϕ

C
+ 2D(ϕ′′ +Hϕ′ + ρ′c

ρc
ϕ′)

]
. (9.2.3)

For the particular definitions of the conformal and disformal functions for the dark D-brane in
Equation (9.1.7), Equation (9.2.3) reduces to

Q = hρca
−2

[
3

4

ϕ′2h,ϕ
h

−
a2h,ϕ
4h2

+ ϕ′
(
2H+

ρ′c
ρc

)
+ ϕ′′

]
. (9.2.4)

The equation of motion for the scalar field, given by Equation (9.1.5), in conjunction with
Equation (9.2.3), results in

ϕ′′ −H
(
1− 3γ−2

)
ϕ′ +

a2h,ϕ
2h2

(
1− 3γ−2 + 2γ−3

)
+ a2γ−3 (V,ϕ +Q) = 0 , (9.2.5)

where Q is as specified in Equation (9.2.4). Given that the brane’s warp factor h(ϕ) is always
non-negative, it is always warranted that γ ≥ 1. The nonrelativistic regime is achieved when
a−2hϕ′2 ≪ 1 and γ → 1. In this non-trivial regime, which depends on ϕ (through h) and ϕ′, the
DBI Lagrangian in Equation (9.1.1) simplifies to the standard quintessence case.

It should also be emphasised that while the DBI action in Equation (9.1.1) can be thought
of as a specific instance of the k-essence action presented in Section 5.2.2 [270, 272], the DBI
scalar field’s pressure can only become negative for a non-vanishing potential V (ϕ). In the limit
V (ϕ) → 0, from Equation (9.1.13), we note that wϕ → 1/γ, which is invariably non-negative.
On the other hand, in the slow-roll limit where the kinetic term’s influence is negligible, the
scalar field mimics a cosmological constant, with wϕ ≈ −1. Thus, the coupled DBI model is
a comprehensive framework that embodies various models previously explored, such as coupled
quintessence (see Chapter 6) [346, 355, 399] and coupled tachyonic dark energy [316, 449]. This
is reflected in the form of the equation governing the motion of the DBI scalar field in Equa-
tion (9.2.5), which is considerably more complex than its canonical counterpart, to which it
reduces to in the appropriate limit.

From the Einstein field equations, the Friedmann equations can be derived, describing the evo-
lution of each i-th fluid component as

H2 =
κ2a2

3

∑
i

ρi =
κ2a2

3
(ρr + ρb + ρc + ρϕ) , (9.2.6)

and

H′ +H2 = −κ
2a2

6

∑
i

(ρi + 3pi) = −κ
2a2

6
(ρr + 4pr + ρb + ρc + ρϕ + 3pϕ) , (9.2.7)

where we include the standard model’s matter sectors of the Universe: baryons and radiation, de-
noted by subscripts b and r. As they are non-interacting, their evolution follows the conventional
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conservation laws

ρ′r + 4Hρr = 0 , and ρ′b + 3Hρb = 0 , (9.2.8)

where pb = 0 and pr = 1
3ρr for each respective fluid. Instead, from Equations (9.1.4) and (9.1.14),

the continuity equations for the interacting disformally coupled fluids are

ρ′ϕ + 3Hρϕ (1 + wϕ) = −Qϕ′ , (9.2.9)

with wϕ as in Equation (9.1.13), and

ρ′c + 3Hρc = Qϕ′ . (9.2.10)

In the non-relativistic regime, γ → 1+ hϕ′2

2a2
, and the EoS parameter for quintessence is recovered

once more. Nevertheless, what distinguishes this setting is precisely the impact and signatures
of the non-canonical relativistic behaviour. Using Equations (9.2.4) and (9.2.5), the expression
for Q can be rewritten to include only first-order derivatives of the scalar field

Q = −

[
h
(
V,ϕ + 3a−2Hγϕ′

)
+

h,ϕ

h

(
1− 3

4γ
)

γ + hρc

]
ρc . (9.2.11)

The sign of Q in Equations (9.2.9) and (9.2.10) indicates the direction of energy transfer in the
dark sector. The coupling yields distinct interpretations for each fluid. For the DBI scalar field,
the coupling can be combined with the self-interacting potential to create an effective scalar
field potential, Veff(ϕ, ϕ

′). The coupling can also be viewed as a local change in the geometry,
encoded in ḡ, which governs the geodesics along which dark matter propagates. To facilitate the
comparison with the canonical case, we introduce an effective coupling β, defined as

β = − Q

κρc
, (9.2.12)

such that, when ϕ′ < 0, positive values of β correspond to dark energy granting energy to dark
matter and, conversely, when β is negative, the dark energy field is being sourced by dark matter.

To compare with cosmological constraints assuming a non-interacting dark sector, we introduce
an effective dark energy EoS parameter wϕ,eff [450]. This can be thought of as a map from
the coupled model to an uncoupled one at the background level, where the dark matter does
not interact with dark energy, but all the coupling effects are transported into an effective dark
energy fluid,

ρϕ,eff = ρϕ + ρc − ρc,0a
−3 , (9.2.13)

where a subscript 0 indicates present values.
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The Friedmann equation can be reformulated according to Equation (9.2.13) as

H2 =
κ2a2

3

(
ρr,0a

−4 + ρb,0a
−3 + ρc,0a

−3 + ρϕ,eff
)
, (9.2.14)

where ρr,0, ρb,0, and ρc,0 represent present-day energy densities for radiation, baryons, and dark
matter, respectively. Taking the derivative of Equation (9.2.13), we obtain

ρ′ϕ,eff + 3Hρϕ,eff(1 + wϕ,eff) = 0 , (9.2.15)

consistent with a standard, uncoupled model. Comparison with Equations (9.2.9) and (9.2.10)
yields

wϕ,eff =
pϕ
ρϕ,eff

, (9.2.16)

with pϕ as defined in Equation (9.1.12). This formulation allows for a straightforward comparison
between the background cosmological evolution of the disformally coupled dark sector in this
model and empirical observations.

9.2.1 Qualitative Dynamics and Initial Conditions

In the present study, we focus on an AdS5 throat model for the warp factor, endowed with a
quadratic scalar field potential, expressed as

h(ϕ) =
h0
ϕ4
, and V (ϕ) =

V0ϕ
2

κ2
, (9.2.17)

where h0, V0 > 0 are dimensionless parameters in this definition. Four parameters govern the
cosmological evolution in this model: the scales of the warp factor and the potential, namely h0
and V0, and the initial conditions for the scalar field and its rate of change, denoted by ϕi and
ϕ′i. As discussed in [407], the geometrical scales can be encapsulated in a single, dimensionless
parameter

Γ0 ≡
V0

h̃0
, with h̃0 =

1

h0
. (9.2.18)

This combined parameter plays a crucial role in determining the dynamics near fixed-point
solutions of the dynamical system of equations and has a significant impact on the ultimate
fate of the Universe. The disformally coupled framework under consideration here has the same
number of parameters as its standard DBI uncoupled counterpart [416, 417, 421]. This implies
that the conformal and disformal effects are intertwined, and the uncoupled scenario cannot be
recovered from the limit values of these parameters.
A dynamical system analysis of the background cosmological evolution for different values of the
parameters has been conducted in Ref. [407] (see [451] for a review on dynamical systems applied
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to cosmology). This methodology allows us to qualitatively understand the Universe’s evolution
through the fixed point solutions1, without the need for the full numerical evolution. As elabo-
rated in Chapter 5, a particularly compelling aspect of introducing couplings into the dark sector
is the potential emergence of scaling fixed point solutions. In such solutions, both components
dilute at an identical rate, resulting in a consistent ratio of their fractional energy densities. This
offers a more intuitive explanation for the observed distribution of energy in the Universe. The
authors of Ref. [407] reported that when Γ0 > 1, interesting particular cosmological solutions
appear, including a saddle point with a scaling behaviour, Equation (5.2.11), between dark en-
ergy and dark matter. In this regime, dark matter could be driving the cosmic expansion, and
the observed acceleration of the expansion could be initiated during the matter-dominated era,
fuelled by the non-minimal coupling. Regardless of the initial conditions, owing to the repelling
nature of the saddle point, the DDM starts diluting away, and the system eventually transitions
to a standard accelerating solution dominated by the evolution of the DBI scalar field.
The initial conditions for ϕ and ϕ′ play an instrumental role in determining the onset and duration
of the scaling and attractor regimes, respectively, more relativistic scenarios corresponding to a
longer transition. However, if this scaling is happening at present, then the effects of ϕ′i are not
currently observable. In contrast, ϕi significantly influences the background and perturbation
evolution. The system remains in a frozen latent state with γ ≈ 1 and wϕ ≈ −1 during matter
and radiation-dominated periods. Taking larger values of Γ0, both the scaling and dark energy
dominated solutions converge to a de Sitter-like state, with dynamics dominated by the potential,
which leads to wϕ → −1, making the Universe increasingly similar to a ΛCDM cosmology near
the fixed points, even though this may no longer hold at the level of the perturbations. For this
study, we limit our attention to scenarios where ϕi > 0 and ϕ′i < 0 to maintain consistency with
the extra-dimensional interpretation of the field ϕ as the radius as the brane moves down the
throat, and to reproduce cosmologies that allow for the scaling regime.
In the following sections, we will present a numerical examination of the cosmological implica-
tions of this model, focusing on scenarios that yield a slowly evolving cosmological constant-like
behaviour in the early Universe [452]. Since disformal dark matter can contribute to the ac-
celerated expansion, we expect unique signatures compared to standard ΛCDM and coupled
quintessence models.

9.3 Linear Perturbations

In this section, we explore the dynamics of cosmological perturbations. Based on the background
analysis, we anticipate that the dark D-brane model will exhibit a non-trivial and rich linear-level
phenomenology, which we will connect with predictions according to existing observational data

1Each realisation of the model maps to a specific trajectory in the phase space, encapsulating the Universe’s
evolutionary dynamics. The fixed points serve as the asymptotic scenarios of this evolution, illustrating distinct
epochs in the cosmological history of the Universe.
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in Section 9.5.2. We show particular predictions for both the temperature anisotropy spectrum
of the CMB and the matter power spectrum. The equations presented in this chapter are tailored
for the Newtonian gauge and are specific to the model under discussion. Nevertheless, for a more
comprehensive perspective, we provide the equations for the synchronous gauge, along with those
for generic conformal and disformal functions, C(ϕ) and D(ϕ).

9.3.1 Conformal Newtonian Gauge

We first focus on scalar perturbations in the conformal Newtonian gauge, as described in Sec-
tion 2.2.1, where the perturbed line element takes the form

ds2 = a2(τ)
[
− (1 + 2Ψ) dτ2 + (1− 2Φ) δij dx

i dxj
]
, (9.3.1)

where Ψ(τ, xi) and Φ(τ, xi) are the scalar metric perturbations. From Equations (9.1.2)
and (9.3.1), the components of the perturbed Einstein equations are readily obtained and equated
as

δGµ
ν = κ2δTµ

ν , (9.3.2)

where δGµ
ν and δTµ

ν are the perturbed Einstein and energy-momentum tensors, respectively.
For each fluid, the distinct components of δTµ

ν,f are given by

δT 0
0,f = −δρf , (9.3.3)

δT 0
i,f = (ρf + pf ) ∂ivf , (9.3.4)

δT i
0,f = − (ρf + pf ) ∂

ivf , (9.3.5)

δT i
j,f = δpfδ

i
j +Πi

j,f , (9.3.6)

where f is an index running over each fluid. Consistently, δρf , δpf , vf , and Πi
j,f denote the

perturbed energy density, pressure perturbation, peculiar velocity potential, and anisotropic
stress tensor for the fluid f , respectively. Given a specific matter source, the perturbed energy-
momentum tensor is defined correspondingly. For the model in focus, the Fourier space repre-
sentations of the perturbed Einstein equations are as follows:
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k2Φ+ 3H
(
Φ′ +HΨ

)
= −4πGa2

∑
f

δρf , (9.3.7)

k2
(
Φ′ +HΨ

)
= 4πGa2

∑
f

ρf (1 + wf ) θf , (9.3.8)

Φ′′ +H
(
Ψ′ + 2Φ′)+Ψ

(
H2 + 2H′)+ k2

3
(Φ−Ψ) = 4πGa2

∑
f

δpf , (9.3.9)

k2 (Φ−Ψ) = 12πGa2
∑
f

ρf (1 + wf )σf . (9.3.10)

These equations establish a relationship between the scalar potentials Φ and Ψ and the perturba-
tions in the matter fluids. Fourier expansion has been applied to the metric potentials, effectively
replacing spatial derivatives with Fourier modes characterised by the wave number k. Addition-
ally, the velocity potential has been implicitly defined as θf = ∇i∇ivf . For direct comparison
purposed with the canonical case we introduce the anisotropic stress perturbation given by σf ,
according to [347]. As a first approximation, we focus on the scenario where σf vanishes for all
fluids. According to the fourth Einstein perturbation equation, Equation (9.3.10), this leads to
Ψ = Φ. Moving forward, we replace the perturbed energy density δρf with the density contrast
δf =

δρf
ρf

. We further assume that each fluid features an adiabatic speed of sound c2s,f =
δpf
δρf

.

The perturbed conservation equations derive from the zero-divergence condition on the energy-
momentum tensor, ∇νT

µν
f = 0, which must now be distinguished for uncoupled and coupled

scenarios:

∇µδT
µ
ν,u + δΓµ

µβT
β
ν,u − δΓβ

µνT
µ
β,u = 0 , (9.3.11)

∇µδT
µ
ν,c + δΓµ

µβT
β
ν,c − δΓβ

µνT
µ
β,c = −Q∂νϕ , (9.3.12)

where f = {u, c} was introduced to specify uncoupled and coupled fluids relative to the scalar
field. The perturbations of the Christoffel symbols are denoted by δΓµ

νβ . From Equations (9.3.3)
to (9.3.6), we can rewrite Equations (9.3.11) and (9.3.12) for the evolution of the density contrast
δf and the velocity potential θf for each fluid. Specifically, the baryonic and radiation fluids
remain uncoupled from the scalar field and are described by the following conservation equations:

δ′u + 3H(c2s,u − wu)δu = (1 + wu)(3Φ
′ − θu) , (9.3.13)

θ′u +H(1− 3wu)θu +
w′
u

1 + wu
θu = k2

[
c2s,u

1 + wu
δu +Ψ

]
− k2σu , (9.3.14)
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where u = {b, r} and wu = pu/ρu is the EoS parameter. The first equation represents the
perturbed continuity equation, and the second one is the Euler equation, which emerges from
the temporal and spatial components of the energy conservation equation, respectively.

For the disformal dark matter component, which is the only species coupled to the scalar field in
this setting, the continuity and Euler equations transform as follows, considering wc = cs,c = 0:

δ′c = −(θc − 3Φ′)− Q

ρc
ϕ′δc +

Q

ρc
δϕ′ +

δQ

ρc
ϕ′ , (9.3.15)

θ′c +Hθc = k2Ψ− Qϕ′

ρc
θc + k2

Q

ρc
δϕ . (9.3.16)

The perturbation of the DBI scalar field evolves according to the perturbed Klein-Gordon equa-
tion:

δϕ′′ +

[
3h,ϕ
h

(
1− γ−1

)
ϕ′ −H

(
7− 9γ−2

)
− 3h (V,ϕ +Q) γ−1ϕ′

]
δϕ′ +

[
−
3h,ϕ
h

H
(
1− γ−2

)
ϕ′

+a2V,ϕϕγ
−3 +

h,ϕϕ
2h2

a2
(
1− 3γ−2 + 2γ−3

)
− 3

2

h,ϕ
h
a2 (V,ϕ +Q)

(
γ−1 − γ−3

)
(9.3.17)

+
h2,ϕ
2h3

a2
(
1− 3γ−1 + 3γ−2 − γ−3

)]
δϕ+

[
6H
(
1− γ−2

)
ϕ′ −

h,ϕ
h2
a2
(
2− 3γ−1 + γ−3

)
+a2 (V,ϕ +Q)

(
3γ−1 − γ−3

)]
Ψ− ϕ′Ψ′ − 3γ−2ϕ′Φ′ − γ−2∂i∂iδϕ+ a2γ−3δQ = 0 .

We will present the perturbed terms stemming from the introduction of the coupling in this
setting, directly dependent on the warp factor h(ϕ). Nevertheless, we derive first the general
expression of the perturbed disformal coupling δQ for general conformal and disformal functions
in the Newtonian gauge for completeness and as it may be relevant for extensions to this setting
scenarios.

δQ =
a−2ρc

C − D
h (1− γ−2) +Dρcγ−3

(
Q1δc +Q2Φ

′ +Q3Ψ+Q4δϕ
′ +Q5δϕ

)
, (9.3.18)

with
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Q1 =
1

2
a2C,ϕ

(
1− 3

δpc
δρc

)
− 3DHδpc

δρc
ϕ′ −

DC,ϕ

C
ϕ′2 +

D,ϕ

2
ϕ′2 (9.3.19)

− a2
D

2

h,ϕ
h2

(
1− 3

2
γ−2

)
+ a2D

Q

hρc
γ−2 ,

Q2 =3D
(
γ−2 + w

)
ϕ′ , (9.3.20)

Q3 =3DH
(
1 + γ−2 + 2w

)
ϕ′ − a2

D,ϕ

h

(
1− γ−2

)
+

3

4
a2D

h,ϕ
h2
(
1− γ−2

)
+ 2a2

D

h

C,ϕ

C

(
1− γ−2

)
+ a2

D

h

Q

ρc

(
1− γ−2

)
,

Q4 =3DH
(
2− 3γ−2 − wc

)
− 2

DC,ϕ

C
ϕ′ +D,ϕϕ

′ − 3D
h,ϕ
h

(
1− γ−1

)
ϕ′ (9.3.21)

+ 3DHγ−1 (V,ϕ +Q)ϕ′ + 2D
Q

ρc
ϕ′ ,

Q5 =− k2D
(
γ−2 + wc

)
+ 3H

(
DC,ϕ

C
−D,ϕ

)
wcϕ

′ − a2

2

C2
,ϕ

C
(1− 3wc) + 2

DC,ϕ

C
ϕ′2

− 3

2

C,ϕD,ϕ

C
ϕ′2 − 3

2
D
h,ϕ
h

H
(
1− γ−2

)
ϕ′ +

a2

2

DC,ϕ

C

h,ϕ
h2

(
1− 3

2
γ−2

)
(9.3.22)

− a2

2
D,ϕ

h,ϕ
h2

(
1− 3

2
γ−2

)
+
a2

2
D
h2,ϕ
h3

(
5

4
− 21

4
γ−2 + 4γ−3

)
+

1

2
a2C,ϕϕ (1− 3wc)

−
DC,ϕϕ

C
ϕ′2 +

D,ϕϕ

2
ϕ′2 − a2

2
D
h,ϕϕ
h2

(
1− 3γ−2 + 2γ−3

)
− a2Dγ−3V,ϕϕ

+
Q

hρc

[
a2D,ϕ − a2

DC,ϕ

C
− 3

2
Dh,ϕϕ

′2
]
,

for general conformal and disformal functions, C(ϕ) and D(ϕ), respectively.

Finally, the perturbation of the coupling Q as introduced in Equation (9.2.11) for the dark
D-brane model we are investigating, reduces to:

δQ =
a−2ρc

γ−2 + hρcγ−3

(
Q1δc +Q2Φ

′ +Q3Ψ+Q4δϕ
′ +Q5δϕ

)
, (9.3.23)

with the following perturbed coefficients:
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Q1 =a
2Q

ρc
γ−2 + 3h

δpc
δρc

(
a2
h,ϕ
4h2

−Hϕ′
)
, (9.3.24)

Q2 =3h
(
γ−2 + w

)
ϕ′ , (9.3.25)

Q3 =3hH
(
1 + γ−2 + 2w

)
ϕ′ − a2

3

4

h,ϕ
h

(
1− γ−2

)
+ a2

Q

ρc

(
1− γ−2

)
, (9.3.26)

Q4 =3hH
(
2− 3γ−2 − w

)
+ 3h2 (V,ϕ +Q) γ−1ϕ′ + 2h

Q

ρc
ϕ′ − 3

2
h,ϕ
(
1− 2γ−1

)
ϕ′ , (9.3.27)

Q5 =− k2h
(
γ−2 + w

)
+ a2

h2,ϕ
2h2

(
3

4
− 15

4
γ−2 + 4γ−3 − 3

2
w

)
+ a2

3

4

h,ϕϕ
h

(
γ−2 − 4

3
γ−3 + w

)
− 3

2
h,ϕH

(
1− γ−2 + 2w

)
ϕ′ − a2hV,ϕϕγ

−3 − a2
h,ϕ
2h

Q

ρc

(
1− 3γ−2

)
. (9.3.28)

Our analysis confirms that in the limit hϕ′2 ≪ a2 and γ → 1, we retrieve the disformal
quintessence scenario as previously investigated in [347, 399]. Additionally, the form of δQ
illustrates that disformal couplings introduce a direct dependence on the Fourier scale k, namely
through the first term of Q5 in Equation (9.3.28). This scale-dependence is a characteristic
trait of disformal couplings [347, 399, 446], and we will show how it reflects in the growth and
distribution of perturbations through the matter power spectrum.

For the DBI scalar field, and focusing on adiabatic perturbations, the sound speed c2s,ϕ is defined
according to

c2s,ϕ ≡
(
∂p

∂X

)(
∂ρ

∂X

)−1

=
1

γ2
≤ 1 . (9.3.29)

This quantity is always positive, ensuring the stability of the perturbations. The fact that the
DBI scalar field can accommodate for c2s,ϕ ̸= 1 is correlated with its unique features, imprinted
in the cosmic microwave background temperature fluctuations and the matter power spectrum -
two key observables we will explore in the numerical study.

9.3.2 Synchronous Gauge

In this study, we have considered the equations in the synchronous gauge, as introduced in
Section 2.2.2 for the purpose of cross-checking the equations and the cosmological predictions.
Therefore, to offer a comprehensive view, this section presents the perturbation equations in
the synchronous gauge, covering general conformal C(ϕ) and disformal D(ϕ) coupling functions,
before particularising to the scenario examined in this work, where both C(ϕ) and D(ϕ) are tied
to the warp factor h(ϕ).

In a parallel manner to the derivation for the Newtonian gauge, we compute the perturbed
Einstein equations:
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k2η − 1

2
Hh ′ = −4πGa2

∑
δρf , (9.3.30)

k2η′ = 4πGa2
∑

ρf (1 + wf ) θf , (9.3.31)

h ′′ + 2Hh ′ − 2k2η = −24πGa2
∑

δpf , (9.3.32)

h ′′ + 6η′′ + 2H
(
h ′ + 6η′

)
− 2k2η = −24πGa2

∑
ρf (1 + wf )σf , (9.3.33)

with θf , σf and vif as previously defined.

The perturbed continuity and Euler equations for the uncoupled baryonic and radiation fluids
become

δ′u + 3H
(
c2s,u − wu

)
δu = − (1 + wu)

(
h ′

2
+ θu

)
, (9.3.34)

θ′u +

[
H (1− 3wu) +

w′
u

1 + wu

]
θu = k2

c2s,u
1 + wu

δu − k2σu , (9.3.35)

with u = {b, r}. For DDM, the coupled shear-free versions of these equations are:

δ′c + 3H
(
c2s,c − wc

)
δc = − (1 + wc)

(
h ′

2
+ θc

)
− Q

ρc
δcϕ

′ +
Q

ρc
δϕ′ +

δQ

ρc
ϕ′ , (9.3.36)

θ′c +

[
H (1− 3wc) +

w′
c

1 + wc

]
θc = k2

c2s,c
1 + wc

δc −
Q

ρc
ϕ′θc + k2

Q

ρc (1 + wc)
δϕ . (9.3.37)

The perturbed Klein-Gordon equation in the synchronous gauge reads

δϕ′′ +
h ′

2
γ−2ϕ′ +

[
2H+

3

4

h,ϕ
h
ϕ′ + 3

Q

ρc
ϕ′
]
δϕ′ +

[
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3

2

h,ϕ
h
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(
1− γ−2

)
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−a
2

2

h2,ϕ
h3

(
5

4
+ 4γ−3 − 21

4
γ−2

)
+
a2

2

h,ϕϕ
h2

(
1 + 2γ−3 − 3γ−2

)
+ a2V,ϕϕγ

−3

]
δϕ+ a2γ−3δQ = 0 ,

(9.3.38)

with the general perturbation of the coupling function Q expressed as

δQ =
a−2ρc

C − D
h (1− γ−2) +Dγ−3ρc

(
Q1δc +Q2h ′ +Q3δϕ

′ +Q4δϕ
)
, (9.3.39)

with
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)
− 3DHδpc

δρc
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D,ϕ

2
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2
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,

+ a2D
Q
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Q2 =− D

2
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′ , (9.3.41)
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ϕ′ , (9.3.42)
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,

for general C(ϕ) and D(ϕ). If we now particularise to C(ϕ) = (T3h(ϕ))
−1/2 and D(ϕ) =

(h(ϕ)/T3)
1/2, these become

δQ =
a−2ρc

γ−2 + hρcγ−3

(
Q1δc +Q2h ′ +Q3δϕ

′ +Q4δϕ
)
, (9.3.44)

with
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δρc
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h,ϕ
4h2

−Hϕ′
)
, (9.3.45)
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2
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. (9.3.48)

We will now proceed to investigate the phenomenology of these intricate equations.
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9.4 Numerical Study

9.4.1 Implementation and Background Results

Model Mϕi/Γ0
Γ0 ϕi (Mpl) γ wϕ Geff/G σ8

M3/1.5 1.5 3 1.01 -0.63 0.58 1.40

M3/5 5 3 1.01 -0.70 0.46 1.24

M3/10 10 3 1.02 -0.73 0.40 1.16

M1.5/1.5 1.5 1.5 1.65 -0.66 0.30 0.79

M1.5/5 5 1.5 1.49 -0.76 0.41 0.77

M1.5/10 10 1.5 1.42 -0.82 0.73 0.77

Table 9.1: Summary of parameter choices for the illustrative models examined in this study. All
models use an initial scalar field velocity of ϕ′i = −10−25 Mpl/Mpc and all unspecified parameters
are fixed to fiducial ΛCDM Planck cosmological parameters [32], as detailed in Table 3.1. The
models are illustrative and may not be cosmologically viable. Key present-day quantities are
indicated with a superscript 0. The Lorentz factor γ quantifies current deviations from standard
quintessence. The DBI EoS parameter wϕ measures deviations from cosmological constant-like
behaviour. The effective gravitational constant G0

eff/G and the predicted clustering amplitude
σ8 values are also included, with σ8 ≈ 0.85 for the reference ΛCDM simulation.

We have conducted the numerical analysis using a modified version of the Boltzmann code CLASS
[95, 101] tailored to have dark energy portrayed by a DBI scalar field and a coupling to the dark
matter component, as described in Section 4.2. From this modified patch, we can thoroughly
investigate the cosmological implications of the theoretical model and infer the range of physically
viable parameters. Moreover, the code is adapted to handle both the background and linear
perturbations associated with a DBI scalar field. For the simulations, we employed Planck 2018
cosmological parameters [32] assuming a spatially flat ΛCDM cosmological background, listed in
Table 3.1.
The scale of the potential V0, defined in Equation (9.2.17), is treated as a shooting parame-
ter, which is adjusted for each instance of the code to match the Friedmann constraint, Equa-
tion (2.1.26), under the assumption that the system is currently near the scaling regime. This
choice is motivated by the argument in Ref. [407] that the true dynamics of the system is fully
specified by the degenerate combination Γ0 = h0V0.
Our study focuses on understanding different regimes of the model, differentiated by their initial
conditions and Γ0 values. The sets of parameters used for illustrative purposes are listed in
Table 9.1, along with some present-day quantities that show the impact of varying the model
parameters. Two categories of coupled models are considered, each marked by a distinct initial
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Figure 9.1: Background evolution of the effective coupling function β, defined in Equa-
tion (9.2.12), plotted as functions of the redshift z. The left and right panels correspond to
Models M3/1.5-M3/10 and M1.5/1.5-M1.5/10 in Table 9.1, respectively. We clearly identify two
regimes of the theory: one in which the effective coupling is always negative throughout the cos-
mic evolution, depicted on the left panel, and another one for which the coupling may start out
as being negative but eventually starts to increase towards positive values at present, pictured
on the right panel.

scalar field value and thus different characteristics of the effective coupling, as illustrated in
Figure 9.1. The first class, embodied by models M3/1.5-M3/10 in the upper section of Table 9.1,
assumes ϕi = 3Mpl and features a consistently negative effective coupling, with an earlier onset
and larger absolute magnitude of the effective coupling for smaller Γ0 values. Conversely, the
second class, exemplified by models M1.5/1.5-M1.5/10 in the lower section of Table 9.1, with
ϕi = 1.5MPl, maintains a positive coupling at present, even though it can start by being negative,
as is the case in model M1.5/1.5. The coupling value increases for higher Γ0 values in this latter
category.

Our findings suggest a non-trivial relationship between Γ0 and ϕi. Owing to the warp factor’s
inverse dependence on the scalar field value (h(ϕ) ∝ ϕ−4), higher ϕi values correlate with larger h0
values (and correspondingly lower V0) to reproduce the fiducial cosmology at present maintaining
the same Γ0.

We turn our attention to the redshift evolution of relevant background quantities in the six
illustrative cosmological models: the effective coupling β, as defined in Equation (9.2.12); the
fractional energy densities Ωi for each fluid i, defined as Ωi ≡ κ2ρi/3H

2; the Hubble rate H,
according to Equation (9.2.14), and the DBI and effective DE equations of state, articulated
in Equations (9.1.13) and (9.2.16). These quantities are illustrated in Figures 9.1 and 9.2. We
emphasise that they encapsulate the Universe’s background evolution and also hold implications
for the linear growth rate of structures, deeply entangled with the background evolution.
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Figure 9.2: Background evolution of the fractional energy densities Ωi = k2ρi/3H
2, for each

labelled i-th fluid (top), of the energy density of ϕ relative to Λ and the Hubble expansion rate
H (middle), defined in Equation (9.2.14), and the DBI effective equation of state parameters, as
defined in Equation (9.2.16) (bottom), as functions of the redshift, z. In the middle panel, we
also present the deviations of the Hubble expansion rate in each model, ∆H, when compared
to the concordance model. The left and right panels correspond to Models M3/1.5-M3/10 and
M1.5/1.5-M1.5/10 in Table 9.1, respectively.
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The left panels of Figures 9.1 and 9.2 depict the models M3/1.5-M3/10 from Table 9.1, with
consistently negative effective coupling, corresponding to a transfer of energy from DM to DE.
Nevertheless, as the system nears the scaling solution, characterised by 1/γ → 0, we anticipate
β turning positive. Conversely, the right panels depict models M1.5/1.5-M1.5/10, where β remains
positive at late times, and energy is being transferred from dark energy to dark matter. Notably,
model M1.5/1.5 exhibits a unique behaviour for β, which starts by being negative, where it peaks
at z ≈ 0.1 (β ≈ −0.17) before rising to become positive at z = 0 (β ≈ 0.5). Such behaviour hints
at scenarios where the dark sector coupling, albeit minimal today, could have been substantial in
the past. Our simulations indicate that for larger ϕi values (left panel), the coupling is activated
sooner for the same value of Γ0. On the other hand, keeping ϕi fixed, for negative (positive)
β, higher Γ0 values prompt later (earlier) onsets of β, culminating in lower (higher) absolute
magnitudes for the coupling today. This also aligns with cosmologies nearing (or deviating
from) a ΛCDM-like background evolution during the matter-dominated epochs, underlining the
distinction between the two regimes. Nevertheless, based on the dynamical systems study, we
foresee that for models M3/1.5-M3/10, the coupling will eventually become positive, irrespective
of the initial conditions, featuring a characteristic turning point akin to the one observed in
M1.5/1.5.

The top panels of Figure 9.2 illustrate the time evolution of fractional energy densities. The
cosmological epochs occur in the sequence previously discussed: a radiation-dominant phase
gives way to a DDM-dominant phase, culminating in dark energy becoming relevant in the
current epoch as the system gravitates towards the scaling solution. We observe that the fact
that the present cosmology has been fixed for all the simulations results in an artificial shift
of the matter-radiation equality epoch. At later stages, we identify deviations from ΛCDM in
the fractional energy densities, with higher (lower) dark matter abundance in the presence of
negative (positive) couplings, reflecting the energy flow between the dark fluids. Concerning Ωϕ,
we note how the curves corresponding to the highest value of Γ0 (filled thicker lines) approximate
ΩΛ in either regime most closely, as is also illustrated in the upper-middle panels of Figure 9.2.

The current value of the Hubble rate is fixed at the Planck fiducial value. Nonetheless, different
profiles for H(z) emerge across the examined models, an effect that is entangled with the differ-
ences in the evolution of the fractional energy densities of the uncoupled species, namely baryons
and radiation. The variations to the evolution of H(z) are depicted in the lower-middle panels
of Figure 9.2, where generally enhanced (suppressed) expansion rates for most of the evolution
are associated with negative (positive) effective couplings, increasingly closer to the ΛCDM ref-
erence case for larger (smaller) Γ0 values. Notably, at redshifts z ≲ 0.5, we observe ∆H(z) > 0

for all models, hinting at higher Hubble rates than ΛCDM benchmarks. At higher redshifts,
for the models with positive β, H(z) drops below the concordance model, whereas for negative
β, it is the higher Γ0 values that bring the evolution closer to the ΛCDM curve. Variations in
the evolution of H(z), coupled with modifications in the effective gravitational interaction, give
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rise to distinct imprints in the linear growth of cosmic structures, as illustrated in Figures 3.6
and 3.7.

Overall, while the outcomes align with expectations from dynamical studies and qualitative
considerations, we anticipate unique signatures at the linear cosmological perturbation level, on
which we will focus next.

9.4.2 The Growth of perturbations and the Effective Gravitational Constant

In this section, we step aside for a moment to examine the evolution of the density contrast
for DDM in the sub-horizon regime, where k ≫ H. We adopt the quasistatic framework where
the temporal variations of the gravitational potential arise mainly from the matter and field
fluctuations. Consequently, terms involving time derivatives, such as Φ′ in the Einstein equations
or δϕ′′ and δϕ′ in the Klein–Gordon equation, are considered negligible relative to other terms.
As a result, Equations (9.3.15) and (9.3.16) become

δ′c ≈ −θc −
Q

ρc
ϕ′δc +

δQ

ρc
ϕ′ , (9.4.1)

θ′c ≈ −Hθc + k2Ψ− Qϕ′

ρc
+ k2

Q

ρc
δϕ . (9.4.2)

We arrive at an approximate form for the Poisson-like equation governing the gravitational field
from the perturbed Einstein equations. Here, we neglect baryons and radiation, which represent
minor contributions at the current epoch. It follows that:

k2Ψ ≈ −4πGρcδc . (9.4.3)

Finally, the perturbed Klein–Gordon equation can be expressed as

AΨ+
(
k2γ−2 + a2m2

eff
)
δϕ+ a2γ−3δQ ≈ 0 , (9.4.4)

where A was defined as

A =

[
6H
(
1− γ−2

)
ϕ′ −

h,ϕ
h2
a2
(
2− 3γ−1 + γ−3

)
+ a2 (V,ϕ +Q)

(
3γ−1 − γ−3

)]
, (9.4.5)

and the effective mass meff is given by
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a2m2
eff =−

3h,ϕ
h

H
(
1− γ−2

)
ϕ′ +

h,ϕϕ
2h2

a2
(
1− 3γ−2 + 2γ−3

)
− 3

2

h,ϕ
h
a2 (V,ϕ +Q)

(
γ−1 − γ−3

)
+a2V,ϕϕγ

−3 +
h2,ϕ
2h3

a2
(
1− 3γ−1 + 3γ−2 − γ−3

)
. (9.4.6)

In applying these approximations to the expression for the coupling perturbation, Equa-
tion (9.3.23), we obtain

δQ ≈ a−2ρc
γ−2 + hρcγ−3

(Q1δc +Q5δϕ) . (9.4.7)

Considering the coefficient Q5, as described by Equation (9.3.28), we find that the k2-term is the
dominant component. By adopting the same analytical approach as for deriving Equation (9.4.7),
in the sub-horizon limit, we obtain the simplified relation

δQ ≃ Qδc , (9.4.8)

a result that has been confirmed through numerical analysis and also holds in other alternative
theories featuring conformal and disformal couplings [347, 399, 446].
Taking the time-derivative of Equation (9.4.1) and employing Equations (9.4.2) to (9.4.4), we
arrive at the following approximation to the evolution of δc:

δ′′c +Heffδ
′
c ≈ 4πGeffρcδc , (9.4.9)

where we have introduced the effective Hubble parameter as

Heff = H+
Qϕ′

ρc
, (9.4.10)

and the effective gravitational constant, given by

Geff = G

(
1 + 2β2

1

γ(1 + a2m2
eff/k

2γ2)
−A

Qγ2

ρck2

)
. (9.4.11)

In the limits k2 ≫ a2m2
eff/γ

2 and k2 ≫ AQγ2/ρc, Geff simplifies to

Geff ≈ G(1 + 2β2/γ) , (9.4.12)

where β is as defined in Equation (9.2.12). Geff represents the effective gravitational interac-
tion between two dark matter particles, accounting for both standard gravitational and scalar
field-mediated long-range forces. Our findings agree with Ref. [453] for scalar-tensor gravity mod-
els with a conformal coupling, generalised here to include a disformal coupling and a distinct
functional form for β.
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Figure 9.3: Evolution of the effective gravitational constant, defined in Equation (9.4.12),
as function of the redshift z. The left and right panels correspond to Models M3/1.5-M3/10

and M1.5/1.5-M1.5/10 in Table 9.1, respectively, and the line styles used are the same as in the
background evolution, depicted in Figures 9.1 and 9.2.

The evolution of Geff/G for the models summarised in Table 9.1 is illustrated in Figure 9.3. We
observe that deviations of Geff from G arise at lower redshifts, while it converges to G in the early
Universe. This is consistent with the background study for β, showing that smaller initial values
of ϕi result in higher present values of Geff . Interestingly, because the onset of the coupling is
also delayed in these cases, we expect that this should be reflected as smaller variations in both
CMB anisotropies and the matter power spectrum as compared to ΛCDM. However, there should
be a balance between both effects. This observation aligns with the findings in Ref. [346] for
disformally coupled quintessence models. Nevertheless, the earlier activation of the deviations of
Geff from G presents a potential challenge to the model’s consistency with observational data.
However, we have also intentionally depicted a scenario where Geff initially rises (corresponding
to a period of negative β) but ultimately declines (the Γ0 = 1.5 case in the right panel of
Figure 9.3), only to rise again at later times (as β becomes positive). This suggests the existence
of parameter combinations for which Geff ≈ G today, yet the structure formation is distinctly
impacted by the scalar-field mediated forces at intermediate redshifts. The varying dynamics
for Geff across different models will inevitably result in diverse outcomes for the matter density
fluctuations, which we will attempt to capture in the following section.

9.4.3 Cosmological Observables

The CMB anisotropy power spectrum and the matter power spectrum within the Dark D-brane
framework can also be computed from the modified version of the CLASS code [95, 101]. The
results for the cases outlined in Table 9.1, alongside the fiducial ΛCDM case for reference, are
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illustrated in Figure 9.4. Here, the CMB temperature anisotropies are shown in the top panels,
the lensing CMB power spectrum in the middle panels, and the matter power spectra for DDM
and baryons at z = 0 are depicted in the bottom panels. We assumed standard adiabatic initial
conditions, specifying an amplitude As = 2.215 × 10−9 and a pivot scale kpivot = 0.05Mpc−1.
In contrast, the initial perturbations for the scalar field are set to zero, δϕi = δϕ′i = 0, without
loss of generality. Mirroring the background cosmology, the evolution of the linearly perturbed
quantities also exhibits a significant sensitivity to changes to the model parameters. This is
corroborated in Figure 9.4, where different values of Γ0, with ϕi held constant, lead to distinct
shapes in the power spectra. On the other hand, in the left and right panels of Figure 9.4 we
also show solutions with the same Γ0 values: one with ϕi = 3MPl (models M3/1.5-M3/10 in the
left panel) and another with ϕi = 1.7MPl (models M1.5/1.5-M1.5/10 in the right panel), both
characterised by the same line styles for direct comparison. As anticipated, varying the initial
condition for the scalar field yields distinct imprints on the linear perturbations, contrary to
what was found in Ref. [407] from a dynamical background study.

By contrasting the left and right panels of Figure 9.4, we observe that the sign of the effective
coupling, β, which is directly related to the value of both Γ0 and ϕi, markedly influences the
evolution of the perturbations. In the context of the CMB temperature power spectrum, for
β < 0 (upper-left panel), there is a marked enhancement for low multipoles ℓ and suppression
for medium and high ℓ values, compared to the ΛCDM prediction. On the other hand, for β > 0

(upper-right panel), there is a mild enhancement at intermediate and large multipoles. Moreover,
higher (lower) values of Γ0 lead to fewer deviations from the ΛCDM framework when β < 0

(β > 0). It is worth noting that although the present-day effective coupling (as demonstrated in
Figure 9.1) in models M3/1.5-M3/10 in the left panel is of the same order of that in models M1.5/1.5-
M1.5/10 in the right panel, the deviations from ΛCDM are considerably more pronounced. This
discrepancy is ascribed to the onset of the coupling at higher redshifts, resulting in an earlier
departure from the standard model.

The predicted signatures for the CMB temperature anisotropies across the models can be ex-
plained on two fronts. Firstly, the background cosmology differs, as elaborated in Section 9.2.
Specifically, the ratio Ωb/Ωc at the time of recombination is generally not kept constant, and
its high-redshift evolution depends on the chosen parameters. This ratio is the primary driver
of the shifts in multipole and changes in amplitude of the peaks and valleys in the spectrum
(see the discussion is Section 3.5); we can see that there is a tendency for the peaks to become
narrower (wider) for models M3/1.5-M3/10 with β < 0 (M1.5/1.5-M1.5/10 with β > 0) relative to the
ΛCDM scenario. This introduces a degeneracy between the effective gravitational coupling and
the Hubble parameter, as the latter has the greatest impact on the magnitude and position of
the first peak. This non-trivial degeneracy is why we observe an overall enhancement of the low-ℓ
tail of the spectrum in both cases considered, which depends on the balance between the effects.
Secondly, the time evolution of Geff, intimately linked to the coupling β and the γ-factor, impacts
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Figure 9.4: The top and middle panels show the CMB temperature and lensing angular power
spectra, CTT

ℓ and Cϕϕ
ℓ , plotted as a function of the angle scale ℓ. The bottom panels depict

the matter power spectra Pk for different Fourier scales (wavenumbers) k. For each observable,
we also provide the ΛCDM predictions (black) and the relative deviation of each model from
the standard model. The left and right panels correspond to Models M3/1.5-M3/10 and M1.5/1.5-
M1.5/10 in Table 9.1, respectively, and the line types used are the same as in Figures 9.1 and 9.2
for the background evolution.
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the DDM fluid’s perturbation growth. In models M3/1.5-M3/10, Geff may start departing from
zero as early as redshift z ≈ 1.1 for the given Γ0 values, while for models M1.5/1.5-M1.5/10, Geff

only starts growing at around a redshift of z ≈ 0.3 or later. The late-time surge in the effective
coupling affects the late-time Integrated Sachs–Wolfe (ISW) effect, as described in Section 3.3.
This effect alters the distance to the last scattering surface, suppressing (enhancing) the sound
horizon at the baryon-drag epoch (see Section 3.5), shifting the peaks and troughs to the left
(right) for β < 0 in the left panel (β > 0 in the right panel). This shift is more pronounced for
the cases with the largest deviations from ΛCDM in the background.

In the middle panels of Figure 9.4, we depict the lensing power spectrum, directly related to the
evolution of the lensing potential ϕlen = Φ + Ψ, depicted in the top panels of Figure 9.5, along
with the corresponding time derivatives in the lower panel, at an intermediate scale of k = 0.01

Mpc−1. The most pronounced deviations from ΛCDM manifest from around z ≲ 103 during the
matter-dominated epoch when changes in the disformal dark matter evolution become important.
From this point on, there is an overall enhancement of ϕlen for the cases with β < 0 (left panel)
and a suppression for β > 0 (right panel), with the largest departures identified for the lower and
higher values of Γ0 in each case, consistent with the considerations for the temperature power
spectrum. The changes to the lensing potential arise from the energy flow in the dark sector and
reflect directly in the lensing power spectrum Cϕϕ

ℓ , depicted in the middle panels of Figure 9.4,
through their role in the line-of-sight integration presented in Section 3.3. We observe a similar
but opposite trend compared with CTT

ℓ for Cϕϕ
ℓ , with an overall enhancement (suppression) of

the spectrum at intermediate and high multipoles for β < 0 in the left panel (β > 0 in the right
panel). The most significant deviations appear once again in the models with the earlier onset of
the coupling, corresponding to the lowest (highest) values of Γ0 for β < 0 (β > 0). This overall
trend could help address the lensing excess reported in the Planck temperature data of CMB
anisotropies [32, 356], as discussed in Section 3.6.3.

The evolution of the lensing potential is also imprinted in the CMB temperature spectrum of
anisotropies in the upper panels of Figure 9.4. The largest contribution to the modifications
comes from the integrated Sachs Wolfe (ISW) effect, which depends directly on ϕ̇len (see Sec-
tion 3.3), depicted in the lower panels of Figure 9.5. The contributions to the ISW effect can be
separated into early and late-time components. In the early case, the ISW effect amplifies (re-
duces) the time derivatives of the gravitational potentials for β < 0 (β > 0), directly associated
with an earlier (later) matter-radiation equality. Conversely, late-time ISW effects are primarily
dictated by changes in the CMB lensing large-scale structure due to the modified dynamics of
the dark sector. This culminates in a late-time attenuation of Φ′ + Ψ′, as demonstrated in the
lower panels of Figure 9.5.

The predictions for the matter power spectrum P (k), depicted in the bottom panels of Fig-
ure 9.4 for for Fourier scales 10−3hMpc−1 < k < 10−1hMpc−1, are influenced by several factors.
Besides the differing background evolution, the interplay between the effective gravitational cou-
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pling Geff, as defined in Equation (9.4.12), and the effective Hubble expansion rate, defined in
Equation (9.4.10), play a crucial role in shaping the dark matter density contrast, as elaborated
in the previous section. We observe that for models M3/1.5-M1.5/1.5 (M1.5/5 and M1.5/10), on large
scales k ≲ kpeak, the dynamical contributions of the dark sector lead to a suppression (enhance-
ment) in structure growth compared to the ΛCDM model. On smaller scales, k ≳ kpeak, the
opposite effect is observed, except for model M1.5/1.5 which still experiences a slight suppression
due to the unique balance and sign change in the evolution of β. In agreement with the CMB
power spectrum discussion, the deviations from the standard model are more accentuated in
models M3/1.5-M3/10, owing to the earlier redshift onset of the coupling.

Furthermore, at least for particular periods in the evolution, the perturbation in the coupling, δQ,
is scale dependence via the coefficient Q5, as presented in Equation (9.3.28), consistent with the
change in the overall trend of suppression/enhancement before and after the peak of the spectra.
With the chosen normalisation of the power spectrum, for the models with β < 0 (β > 0), the
amplitude of the primordial perturbations must be greater (lower) to match the current structure
count. This is in line with the feature of these models exhibiting slightly enlarged dark energy
density fractions at late times, compared to the ΛCDM predictions (red curves in the upper-left
panel of Figure 9.2), and explains why the peak of the spectrum is shifted to the right (left).
Deviations from ΛCDM surpass 100% in the models depicted in the left panels of Figure 9.4,
peaking at k ≈ 10−1hMpc−1, a point where the linear approximation is expected to break down,
and non-linear effects take over.

The ISW effect is correlated with the growth, with the behaviour at larger scales (smaller k)
contributing to the enhancement/suppression trend in the low-ℓ tail of the CMB anisotropy
spectrum depicted in the top panels of Figure 9.4. Another potential contributor to the ISW
effect could be a phase of early dark energy. However, unlike other dark energy models with
disformal couplings, such as in Ref. [446], we do not witness any relevant early dark energy
signatures in the Dark D-brane framework, given the form of the potential adopted here.

We remark that, from Table 9.1, the toy models M3/1.5-M3/10 with β < 0 (M1.5/1.5-M1.5/10 with
β > 0) predict values for σ8 that are higher (lower) than the ΛCDM counterpart, σΛCDM

8 ≈ 0.85.

The DDM scenario shares certain traits with other disformal models discussed in the literature
[346, 347, 399, 446]. Specifically, the effective gravitational coupling between dark matter parti-
cles is not constant. In the Dark D-brane setting, the coupling is negligible in the early Universe,
suppressed by the denominator in Equation (9.2.12). This aspect further motivates research
exploring violations of the equivalence principle in the dark sector at later cosmological times.
In the following section, we will focus on the impact of this time-evolving coupling on structure
formation by testing the DDB model against existing cosmological data.
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Figure 9.5: Evolution of the sum of the gravitational potentials, Φ + Ψ, (top panels) and the
corresponding derivative with respect to conformal time, Φ′ + Ψ′ (lower panels) for k = 0.01
Mpc−1, plotted as a function of the redshift z. The left and right panels correspond to Models
M3/1.5-M3/10 and M1.5/1.5-M1.5/10 in Table 9.1, respectively, and the line styles used are the same
as in Figures 9.1 and 9.2 for the background evolution.
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9.5 Observational Constraints

9.5.1 Methodology and Data

After reviewing the main predictions of the Dark D-Brane Model (DDB) at the background and
linear perturbative level, we wish to study the constraints on the model’s parameters imposed
by incremental combinations of the data sets defined below. For this purpose, we rely once more
on the MontePython code [213, 214], an MCMC sampler of the cosmological parameter space
based on our modification of the CLASS code, employing the Metropolis-Hastings algorithm with
a Gelman-Rubin [215] convergence criterion of R − 1 < 10−2 for all the chains, as described in
Chapter 4. From this method we derive the corresponding posterior distribution for the sampled
parameters. In the following section, we discuss the main results of this analysis.
The baseline data set for this study is as described in Section 4.3. More precisely, we consider
the full TTTEEE+lowE CMB likelihood from the Planck 2018 data release,composed of data
on the CMB temperature (TT) and polarisation (EE) anisotropies, including their joint cross-
correlations (TE), at both low and high multipoles. More precisely, this corresponds to the
high-ℓ Plik likelihood for TT in the range 30 ≤ ℓ ≤ 2508 and TE and EE for 30 ≤ ℓ ≤ 1996,
combined with the low-ℓ (2 ≤ ℓ ≤ 29) TT and EE likelihoods based on the Commander algorithm
and the SimAll likelihood. This data set is abbreviated as Pl18 throughout the text. We also
investigate the effect of including the CMB lensing likelihood [51]. We also study the combination
of Planck with other background data sets. In this case, we include baryon acoustic oscillations
(BAO) distance and expansion rate measurements from the 6dF Galaxy Survey [118], the Sloan
Digital Sky Survey (SDSS) DR7 Main Galaxy Sample [117] and SDSS DR12 [116], as employed
by the Planck collaboration as well. Finally, we include Pantheon’s 1048 supernova (SN) data
sample [109]. The combination of this background data is referred to throughout this chapter as
BAO+SN.
For each data set combination, we sample the standard cosmological parameters, namely the
reduced dark matter and baryon energy densities, Ωch

2 and Ωbh
2; the ratio between the sound

horizon and the angular diameter distance at decoupling, θs; the amplitude and power of the
scalar primordial power spectrum As (expressed as ln

(
1010As

)
) and ns; and the reionisation

redshift, zreio. In addition to these, we also consider the scalar field parameters h̃0 = 1/h0, as
defined in Equation (9.2.18), and the scalar field’s initial condition ϕi. We employ flat priors
on the sampled parameters, including the nuisance parameters associated with each likelihood.
The velocity of the scalar field is considered to be fixed and set to ϕ′i = −10−25(MplMpc−1)

as its influence on the dynamics was found to be negligible for this study. As briefly referred,
the potential scale V0 is used as a derived shooting parameter to account for degeneracies in
the parameter space and ensure the Friedmann flatness condition. It can be constrained as a
derived parameter and combined with h̃0 to express the results regarding the physical parameter
Γ0. The priors for the sampled parameters are listed in Table 9.2 and the results of the study
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are summarised in Tables 9.3 and 9.4 for the ΛCDM reference case and for the Dark D-Brane
model.
The sampled MCMC chains obtained from MontePython are analysed using the GetDist Python
package [216]. The statistical significance compared to the concordance model is inferred through
the Bayes factor lnBij in Equation (4.1.3), an estimator of the Bayesian Evidence, computed
from the publicly-available MCEvidence code [217]. A negative value indicates preference over
the concordance model, with the opposite holding for positive values and the level of support is
assessed by the Jeffreys scale criteria presented in Table 4.1.

Parameter Prior

Ωbh
2 [0.005, 0.1]

Ωch
2 [0.001, 0.99]

100θs [0.5, 10]

zreio [0., 20.]

ns [0.7, 1.3]

log
(
1010As

)
[1.7, 5.0]

h̃0 [10−20, 5]

ϕi [0, 20]

Table 9.2: Flat priors on the cosmological and model parameters sampled in this work.

9.5.2 Results

In Tables 9.3 and 9.4, we report the statistical study results for the sampled cosmological and
model parameters for the various data combinations considered for the Dark D-Brane and ΛCDM
models at 68% confidence level. This allows for a direct comparison of the results, even if the
fact that the Dark D-Brane model does not possess a well-defined uncoupled and ΛCDM limits
on the parameters makes this comparison non-trivial. As we have seen in the numerical analysis
of the toy models, the case Γ0 → ∞ seems to represent a ΛCDM limit at the background level,
explaining the apparent preference for high values of Γ0 seen in Table 9.4. The results are also
represented in Figure 9.6 as a 2D rectangular plot for marginalised distributions in the dark
D-brane model and as the 1D marginalised distribution curves, including a comparison with
ΛCDM for the cosmological parameters.
In the first column of Tables 9.3 and 9.4, we present the constraints obtained considering Planck
data only. We find a non-zero and bounded prediction at 1σ for Γ0, roughly quantifying the
deviation from the canonical case, even if this is a broader constraint compared to the combination
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with other data sets. On the other hand, the fact that we obtained non-vanishing constraints
for ϕi at 68% CL even with Planck data alone highlights its importance as a cosmological
parameter with impact over the dynamics, especially at the perturbative level. We verify that
these considerations are maintained at 95% and 99% CLs, driven exactly by the model’s unique
features which cannot be trivially related to ΛCDM.

We also look at the effect of adding the BAO+SN background data, followed by the lensing CMB
data on top of the baseline Planck. We see that the inclusion of the CMB lensing data does not
significantly impact the results, apart from a considerable reduction in the constraining power
on ϕi, which is related with a slight better convergence for the remaining parameters, illustrated
by the yellow contours in Figure 9.6. On the other hand, the addition of the SN and BAO
data significantly improves the constraints on Ωm, leading to tighter constraints for the other
background parameters as well, namely {H0,Γ0, ϕi}, and bringing Γ0 to considerably higher
values, closer to the ΛCDM-like limit. The latter effect is also connected to the enhancement
in the lensing power spectrum for higher values of Γ0, which better accommodates the CMB
lensing data under the lensing excess reported by Planck. The addition of the background data
sets also brings the value of H0 considerably closer to the ΛCDM prediction. This discussion
should be taken with a grain of salt as is a well-known effect, reported in other models as well
[57, 183, 381, 454–457], possibly related to a bias in the BAO data towards ΛCDM, which could
require some corrections to be properly compared with other models. More importantly, with
the inclusion of all the data sets, there is still evidence for a non-vanishing coupling (bounded
Γ0 and ϕi) at more than 1σ without considerably worsening the tensions with the low-redshift
data, present in the Planck only case.

In the upper panel of Figure 9.6 we see the 2D marginalised correlations between Γ0 and the
parameters {H0, S8,Ωm, ϕi}. We find a distinct positive correlation between the coupling pa-
rameter Γ0 and H0 and a negative correlation between Γ0 and Ωm. In particular, we see that the
contours are more accommodating in the Pl18-only case. The introduction of the background
data, namely the BAO data, greatly constrains Ωm towards lower values, which results in larger
values for Γ0 and H0 as well. We see that the addition of the lensing data contributes to an
improvement on the constraints, especially in the value of ϕi. In the lower panel of Figure 9.6 we
depict the 1D marginalised posterior distributions for {H0, S8,Ωm,Γ0, ϕi} for the DDB model,
including the reference ΛCDM curves for {H0, S8,Ωm} as dashed lines. We see that the param-
eters are consistently constrained in ΛCDM, with H0 taking higher values, while Ωm and S8 are
constrained towards lower values. Although this seems to push the results in the opposite direc-
tion than what is necessary to address the cosmic tension in H0 and S8 in the standard model,
we point to the enlarged error bars in the curves for those parameters, and emphasise once more
that the weak lensing data should be consistently reanalysed in the context of the DDB model in
order to quantify any tension in S8. The H0 tension of ∼ 4.8σ in ΛCDM when considering Pl18
data alone is maintained at ∼ 4.9σ in the DDB model. While this could still hint at the need for
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new physics, e.g. a Dark D-Brane formulation in a less simplified setting, we conclude that this
particular framework alone does not lead to a significant ease of the tensions between early- and
late-time probes. The comparison in the constraints for the Dark D-Brane and ΛCDM cases is
given in Figure 9.7 for the 2D marginalised contours for the parameters directly involved in the
tensions reported above.

We find that ϕi is constrained to be of the order of unity, with similar and consistent results for all
the data combinations at 68% CL, considering that we have shown that its value greatly impacts
the dynamics, even possibly altering the direction of energy flow in the dark sector interaction.
For this range of values, the numerical study points at higher values of Γ0, leading to a greater
transfer of energy from DE to DM (β > 0), associated with an overall enhancement of the CMB
temperature-temperature angular power spectrum, as discussed over the previous sections and
depicted in the right-upper panel of Figure 9.4. This is consistent with the positive correlation
between Γ0 and H0, illustrated in the upper panel of Figure 9.6. It is worth noting that the
contour plots show a clear saturation point for Γ0 ≳ 20, corresponding to the case in which the
cosmological realisations become too close to ΛCDM and the effect of Γ0 becomes degenerate,
with increasing values just approaching more closely the ΛCDM predictions. Nevertheless, we see
that the constraints on ϕi are relatively tight and not significantly correlated with Γ0, showing
how well the data can constrain ϕi in that range of values independently of Γ0. Indeed, in the
previous sections we have confirmed how the two DBI parameters are not degenerate, given that
they play considerably different roles in the cosmological evolution and in shaping the observables.

In the last two rows of Table 9.4 we present the results for the effective ∆χ2 and for the Bayesian
evidence model comparison criteria, according to Section 4.1.3. We see that the Bayesian evidence
is considerably negative for all the data combinations, implying no support for the Dark D-
brane model over ΛCDM. On the other hand, the non-negligible values of ∆χ2

min indicate an
improvement in the fit. However, this arises as a result of having introduced more parameters,
making the model naturally more accommodating, with the Bayesian evidence confirming that
the increased parameter space is not justified. Even if we were tempted to say that this might
point to an arguable evidence for the Dark D-Brane model over ΛCDM, from an objective point of
view, we have shown that, as for most interacting dark energy models with couplings proportional
to the density of DM, this model does not address the cosmological tensions.

9.6 Discussion

In this Chapter, we have explored the dynamics and phenomenology of the dark D-brane model.
As presented in previous works, it is well known that the Dark D-Brane model alleviates some
of the theoretical problems associated with ΛCDM by introducing a theoretical motivation and
geometrical interpretation for the dark sector. This study analysed a simple toy model to realise
the DDB model in AdS5×S5 warped regions corresponding to a quadratic potential and an inverse
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Parameter P18 P18 + BAO + SN P18len + BAO + SN

ωb 0.02236± 0.00015 0.02243± 0.00014 0.02245± 0.00014

ωc 0.1202± 0.0014 0.11921± 0.00098 0.11923± 0.00094

100θs 1.04188± 0.00030 1.04197± 0.00028 1.04196± 0.00029

τreio 0.0542± 0.0080 0.0558± 0.0078 0.0565± 0.0074

ns 0.9652± 0.0043 0.9676± 0.0038 0.9677± 0.0037

ln 1010As 3.045± 0.016 3.046± 0.016 3.048± 0.015

σ8 0.8115± 0.0076 0.8091± 0.0072 0.8105± 0.0061

S8 0.833± 0.016 0.822± 0.012 0.824± 0.011

Ωm 0.3163± 0.0085 0.3100± 0.0059 0.3100± 0.0057

H0 67.31± 0.61 67.76± 0.44 67.77± 0.43

Table 9.3: Observational constraints at a 68% confidence level on the independent and derived
cosmological parameters using different data set combinations for the ΛCDM model.
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Figure 9.6: 2D marginalised 68% and 95% CL contours (top panel) and 1D marginalised curves
(lower panel) obtained in the Dark D-Brane model under consideration for the Planck 2018 data
(red), the Planck 2018, BAO and SN combination (green), and their combination with CMB
lensing (yellow). The dashed lines correspond to the ΛCDM reference case.
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Parameter P18 P18 + BAO + SN P18len + BAO + SN

ωb 0.02241± 0.00015 0.02251± 0.00014 0.02253± 0.00014

ωc 0.142+0.012
−0.0086 0.1327+0.0053

−0.0041 0.1333+0.0030
−0.0043

100θs 1.04191± 0.00029 1.04204± 0.00028 1.04205± 0.00029

τreio 0.0533± 0.0080 0.0553± 0.0080 0.0531± 0.0081

ns 0.9662± 0.0045 0.9699± 0.0038 0.9704± 0.0038

ln 1010As 3.043± 0.017 3.043± 0.016 3.038± 0.015

h̃0 0.146+0.075
−0.14 0.038+0.015

−0.029 0.036+0.012
−0.022

ϕi 1.14+0.16
−0.45 1.24+0.18

−0.56 1.11+0.13
−0.28

σ8 0.98+0.11
−0.20 1.14+0.19

−0.27 1.12+0.14
−0.20

S8 1.12+0.16
−0.24 1.22+0.23

−0.28 1.20+0.16
−0.21

Ωm 0.392+0.039
−0.035 0.347± 0.016 0.3467+0.0096

−0.013

H0 64.9± 1.3 67.08+0.55
−0.50 67.20± 0.57

Γ0 8.9+2.5
−7.3 22± 8 23+7

−8

∆χ2
min −5.42 −4.24 −2.48

lnBi,ΛCDM −5.72 −8.25 −7.40

Table 9.4: Observational constraints at a 68% confidence level on the independent and derived
cosmological parameters using different data set combinations for the Dark D-Brane model.
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Figure 9.7: 68% and 95% CL 2D contours derived for the parameter combinations H0-Ωm

(left panels) and S8-Ωm (right panels) in the Dark D-Brane model (upper panels) and ΛCDM
model (lower panels) for the Planck 2018 data (red), the Planck 2018, BAO and SN combination
(green), and their combination with CMB lensing (yellow).

quartic warp factor.

We performed a numerical study of the background and linearly perturbed equations. We found
that the model has a non-trivial complex behaviour, with initial scalar field conditions signifi-
cantly influencing the late-time cosmological evolution. Specifically, we categorised two distinct
regimes based on the behaviour of the effective coupling at varying redshifts. These regimes yield
different cosmological outcomes, highlighting the model’s richness.

At the background level, we showed that the Universe evolves toward a scaling fixed point, where
the fractional energy densities of DE and DM maintain a constant ratio. For higher values of
the parameter Γ0, the evolution closely resembles that of the ΛCDM model. We emphasised
that the initial condition of the field ϕi plays a significant role, notably affecting the direction of
energy exchange between dark energy and dark matter. The coupling is consistently negligible
at earlier times and its onset redshift is determined by the DBI parameters Γ0 and ϕi. By fixing
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Γ0 we gather that, by taking initial conditions for the field that lead to higher present values of
β, the coupling starts to grow much earlier, during the matter dominated epoch, leaving distinct
signatures at the level of the perturbations. Therefore, we conclude that the difference in the
direction of the energy exchange between the dark fluids introduces distinct features at the level
of the background, potentially shifting the matter-radiation equality and the time of transition
from matter to dark energy dominated epochs.

On the perturbation front, we derived equations for both the Newtonian and synchronous gauges,
uncovering diverse implications for the CMB and matter power spectrum. Particularly, we noted
deviations from the ΛCDM model that are consistent with the coupling behaviour. Moreover, the
numerical results in this work imply that the Dark D-brane model has the potential to produce
unique observational features, especially in the CMB spectra.

In our numerical study, we consistently considered the scalar field’s initial value close to the
Planck mass. Within the framework of higher-dimensional theories, this corresponds to the
D-brane being positioned far from the tip of the AdS throat. On the other hand, the study in
Ref. [407] examined an alternative limit where ϕ is much smaller than the Planck mass and the D-
brane is close to the tip of the AdS throat. In this setting, to account for the present-day vacuum
energy, the scalar field mass, mϕ, is subject only to a lower bound—making it fundamentally
different from conventional quintessence theories where a small mass is often assumed. We found
that numerically simulating this case is non-trivial, primarily due to the reduced initial value
needed for the scalar field and the need to consider high values of Γ0. Future detailed studies on
this specific scenario would be interesting, although we anticipate that the overarching physics
presented in our current work should remain relevant in such contexts.

To test the model against observational data we have performed an MCMC analysis. We list
below some of the main findings of the study:

• Cosmic Tensions: The Dark D-Brane model gives a lower mean value of H0 across all data
sets, compared to ΛCDM. While having slightly enlarged error bars it does not address the
tension between different H0 measurements. The model accommodates for larger values of
Ωm, consequently leading to higher S8 values, associated with an increased 1σ region.

• Constraints on Model Parameters: The mean value of Γ0 is always constrained at 68% CL
and predicted to be greater than one, while ϕi is on the order of 1MPl for all data combi-
nations. There seems to be no correlation or degeneracy between the two DBI parameters,
owing to their fundamentally different impact over the cosmological evolution as shown in
the numerical study.

• Data Dependence: Inclusion of BAO and SN data results in tighter constraints on Ωm, and
consequently on H0, S8, and ϕi. These datasets also impact the degeneracies associated
with H0 and S8 but do not clearly resolve the existing tensions. A slightly higher central
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value of Γ0 is favoured with the lensing data, possibly accommodating for the lensing excess
in the Planck data.

• Statistical Evidence: ∆χ2
eff and lnBi,ΛCDM statistical tests were used to assess model

preference. While the Bayesian evidence is significantly negative to show preference for
ΛCDM, we find that the ∆χ2

eff also takes considerable negative values across all the data set
combinations, indicating a better fit to the data in the Dark D-Brane model. Nevertheless,
when the two metrics are considered together, we conclude that the better fit to the data
is not sufficient to justify the added complexity of the Dark D-Brane model.

In summary, while the Dark D-Brane model introduces intriguing dynamics and constraints,
it does not conclusively resolve existing tensions in cosmological parameters. Future data and
analyses are crucial for a more definitive understanding of these issues. Nevertheless, it is still
a very rich phenomenological framework, which could be extended or considered at different
regimes.
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Quando eu era pequeno pensava que de um momento para outro eu cairia para fora do mundo.
Por que as nuvens não caem, já que tudo cai? É que a gravidade é menor que a força do ar que

as levanta. Inteligente, não é? Sim, mas caem um dia em chuva. É a minha vingança.
— Clarice Lispector A Hora da Estrela

When I was a little boy I thought that from one minute to the next I could fall off the face of the earth. Why
don’t clouds fall, since everything else does? Because gravity is less than the strength of the air that keeps them
up there. Clever, right? Yes, but one day they fall as rain. That is my revenge. — Clarice Lispector in The
Hour of the Star

The mysterious components that dominate the present Universe constitute the dark sector of
cosmology. Unveiling their intrinsic properties and origins is a key problem in the field. Numerous
phenomenological dark matter candidates have been put forth, inspired by extensions to the
standard model of particle physics. These range from weakly interacting massive particles to
lighter scalar fields (e.g., [458–467]). Dark energy, however, is often treated as a separate matter
from DM. In this study, we propose that both DE and DM originate from two coupled scalar
fields governed by a common potential energy V (see also [468–475]). We focus on the potential
energy model commonly employed in hybrid inflation [476] which introduces a mass hierarchy
between DE and DM, and which will be detailed further in this chapter. Here, the heavier
field is identified as DM, and its mass is determined by the DE field expectation value, which
aligns with the flat direction of the potential. This framework strongly restricts the rate at
which the DE field can vary, accommodating a constant-like behaviour but implying that the
observed accelerated cosmic expansion is only temporary. Ultimately, both fields will settle at
the minimum of the potential, and other players, such as spatial curvature, will determine the
Universe’s future evolution.

This chapter is structured as follows: the model is introduced in Section 10.1, with the theoretical
implications of its particular parameters detailed in Section 10.1.1. A fluid approximation for the
DM field is developed in Section 10.2, followed by an account of the influence of the scalar-field
parameters in the cosmic evolution and its implications for CMB anisotropies and large-scale
structures in Section 10.2.2. Finally, we discuss the results in Section 10.3 and present our
conclusions in Section 10.4.

This work has been published in JCAP and can be found in Ref. [4].
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10.1 The Hybrid Model

In this section, we motivate and introduce the scalar field scenario proposed and studied in this
work. Due to its well-studied dynamics, the framework we consider here is an extension of the
hybrid inflation model [476], populated by two scalar fields and with the conventional matter
fields of the standard model. The action that describes this setting is

S =

∫
d4x

√
−g
[
1

2
M2

PlR− 1

2
(∇ϕ)2 − 1

2
(∇χ)2 − V (ϕ, χ)

]
+ SSM . (10.1.1)

The field ϕ is identified as the DE field, while the field χ is the DM field, and the dynamics of
the standard model fields are encapsulated in SSM. The potential term V (ϕ, χ) comprises the
effective interaction in the dark sector and is akin to the potential in the hybrid inflation model,
as is illustrated in Figure 10.1, expressed as

V (ϕ, χ) =
λ

4
(M2 − χ2)2 +

g2

2
ϕ2χ2 +

µ2

2
ϕ2 = V0 −

λM2χ2

2
+
λχ4

4
+
g2ϕ2χ2

2
+
µ2ϕ2

2
, (10.1.2)

where M and µ are mass scales, g and λ are dimensionless coupling constants, and V0 ≡ λM4/4

sets the potential scale. For ϕ and χ to be suitable candidates for DE and DM, the parameters
must be carefully selected, and this question will be elaborated on in the next section. The
potential has a global minimum at χ = ±M and ϕ = 0, where the potential energy vanishes (see
Figure 10.1). It should be noted that another model that diverges from ours has been proposed
in [477], with the reverse role for DM and DE, leading to different phenomenology, dynamics,
and valid parameter choices.
The effective masses m2

χ and m2
ϕ for the DM and DE fields, χ and ϕ, respectively, are given by

the second derivatives of the potential as

m2
χ ≡ ∂2V

∂χ2
= g2ϕ2 − λM2 + 3λχ2 , (10.1.3)

and

m2
ϕ ≡ ∂2V

∂ϕ2
= g2χ2 + µ2 , (10.1.4)

accordingly.
We focus on a spatially flat cosmological model with the background given by the Friedmann–
Lemaître–Robertson–Walker (FLRW) metric. The line element in Cartesian coordinates is

ds2 = −dt2 + a2(t)δij dx
i dxj , (10.1.5)

where a(t) denotes the scale factor and, as in previous chapters, H = ȧ/a represents the cosmic
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Figure 10.1: Illustrative example of the potential in the hybrid inflation model proposed in
[476], following Equation (10.1.2) with m = 0.2, M = 1.4, λ = 0.5 and g = 0.8.

expansion rate, and over-dots indicate derivatives of cosmic time t. The field equations of motion
for each scalar field are

ϕ̈+ 3Hϕ̇ = −(g2χ2 + µ2)ϕ , and χ̈+ 3Hχ̇ = −λχ3 + (λM2 − g2ϕ2)χ . (10.1.6)

The Friedmann equations take the form

H2 =
ρ

3M2
Pl
, and Ḣ = − 1

2M2
Pl
(ρ+ p) , (10.1.7)

where ρ and p denote the total energy density and pressure, encompassing contributions from
both scalar fields, baryons, and radiation:

ρ =
1

2
ϕ̇2 +

1

2
χ̇2 + V (ϕ, χ) + ρb + ρr , and p =

1

2
ϕ̇2 +

1

2
χ̇2 − V (ϕ, χ) + pr . (10.1.8)

For practical purposes, we decompose the energy densities of each scalar field with different
contributions from the hybrid potential:
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ρχ =
1

2
χ̇2 − λM2χ2

2
+
λχ4

4
+
g2ϕ2χ2

2
, (10.1.9)

ρϕ =
1

2
ϕ̇2 + V0 +

µ2ϕ2

2
. (10.1.10)

It should be noted that this decomposition is purely a matter of choice and does not impact
the inherent physics of the model, provided the sum of both components matches the complete
energy density of the scalar fields. The configuration in Equation (10.1.9) groups all oscillating
terms (i.e. terms involving χ) to achieve an effective pressureless behaviour required for structure
formation in the matter domination era, as will become clear further on. While ϕ is expected to
act like a cosmological constant in the late Universe, its early evolution may differ significantly
due to interactions with the χ-field.
In this framework, if ϕ deviates significantly from the origin, χ will experience oscillations around
zero. A sudden shift in the potential shape occurs as the effective dark matter mass, specified in
Equation (10.1.3), transitions from a positive to a negative value. According to Equation (10.1.3),
and assuming χ oscillates around 0, this transition occurs when ϕ crosses a critical threshold,
given by

|ϕc| ≈
√
λM

g
. (10.1.11)

When ϕ > ϕc, χ acts as dark matter, and ϕ is a dynamic dark energy component that slowly
rolls down its potential. The dynamics of ϕ are primarily dictated by the dominant constant
scale in the potential, V0, and its interaction with χ. However, as ϕ nears the critical value ϕc, χ
drops abruptly and starts oscillating around χ = ±M . Simultaneously, V (ϕ, χ) collapses to zero,
signalling a rapid decay of dark energy and suggesting that the era of dark energy domination
comes to a halt and, therefore, is just a transient phenomenon in this model.

10.1.1 Conditions on Model Parameters

Before moving on to the model dynamics, we must examine the conditions imposed by the
model considerations discussed above. For that purpose, we must derive constraints for the free
parameters g, M , and λ such that the assumptions remain valid. For the ϕ-field to act as DE,
two conditions must be met: the field must evolve slowly, and its potential energy has to be of
the order of the current DE density ρDE,0. This translates into the requirement

V0 =
1

4
λM4 ≈ 10−47GeV4 . (10.1.12)

Any contribution from the µ2-term in Equation (10.1.2) should not exceed this value as it modifies
the DE density. Hence, the mass parameter M is of the order 10−3 eV, as expected in standard
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DE models.

Conversely, for χ to mimic the dark matter behaviour, the field must oscillate in a quadratic
potential from the early Universe onward [478]. First, to avoid any damping effects in Equa-
tion (10.1.6) that smooth out the oscillations, it is required that mχ ≈ gϕ≫ H. Second, for the
quadratic term to dominate over the quartic term in Equation (10.1.2), the following condition
must be fulfilled

g2ϕ2 − λM2 ≫ 1

2
λχ2 . (10.1.13)

The DE ϕ-field is only changing very slowly throughout the cosmological evolution, and its
present-day value is large (ϕ0 ≳ 10 M2

Pl), implying that the mass of χ must also be large unless
g is remarkably small, according to mχ = gϕ.

At some time in the early Universe, ti, the Hubble rate will become of the same order as mχ

(H ≈ mχ), triggering rapid oscillations in the χ-field as the expansion rate drops below its mass.
To estimate the temperature of this transition, we assume a radiation-dominated epoch after
inflation, such that [29]

H2 =
1

3M2
Pl

π2

30
g∗(T )T

4 , (10.1.14)

where g∗(T ) is the effective number of relativistic degrees of freedom at temperature T (of the
order of several hundred in theories beyond the standard model). Therefore, an estimate for the
oscillation temperature is

T ≈ 1015
( g

10−7

)1/2( ϕi
10M2

Pl

)1/2 ( g∗
100

)−1/4
GeV . (10.1.15)

This essentially confirms the assumption that the field will start to oscillate very early in the
radiation-dominated epoch, almost immediately after a period of inflation in this framework.
From here, we solve for the evolution of the χ-field Equation (10.2.1) to estimate its initial
amplitude χi in the early Universe. Considering that ρDM,0 ≈ g2ϕ20χ

2
0 ≈ 4 × 10−47GeV4 and

χ(t) = χi(ai/a)
3/2 = χi(T/Ti)

3/2, we find

χi

GeV
≈ 1.4× 106

( g

10−7

)−1/4
(

ϕ0
10M2

Pl

)−1/4 ( g∗
100

)−3/8
. (10.1.16)

This is the required initial amplitude for χ after inflation if it is to be responsible for the observed
amount of dark matter (emphasising again that we assume that the field χ is responsible for all
DM).

As currently framed, the ϕ-field remains light during inflation. The only requirement is a large
field excursion, ϕ ≳ 10MPl, ensuring that the mass of the χ-field remains substantial in the
radiation-dominated epoch, and the coupling between χ and ϕ remains sufficiently small. Being
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light during inflation, ϕ is susceptible to quantum fluctuations of magnitude Hinf/2π, where Hinf

is the inflationary expansion rate. Given that ϕ represents an (almost) flat direction and remains
subdominant through the radiation and matter-dominated phases, these quantum fluctuations
will not generate large isocurvature perturbations in the DE sector.
However, the situation concerning the χ-field is less straightforward. If gϕ < Hinf during inflation,
in which case χ is light, then the quantum fluctuations of χ are also of order Hinf/2π, potentially
resulting in substantial isocurvature modes. The amplitude of these modes is given by [479]

AI =
(H2

inf/M
2
Pl)

π2(χ2
inf/M

2
Pl)

, (10.1.17)

where χinf is the field value during inflation, expected to be around 106 GeV for g ≈ 10−7.
Two scenarios are considered as a mechanism to circumvent the isocurvature constraint (just
like in the extensively studied axion-like fields [464]). First, the χ-field could be heavy during
inflation (gϕ > Hinf), which would suppress the isocurvature modes. The challenge here lies
in setting an adequate field amplitude at the end of inflation for χ to behave like DM. Second,
χ could exhibit non-standard dynamics during inflation, either through gravitational coupling
as proposed in Ref. [480] or by direct coupling to the inflaton field. For the remainder of the
chapter, we focus on the post-inflation era, assuming that the isocurvature perturbations can be
restrained.
For the ensuing numerical investigation, initial conditions are chosen at zi = 1014 such that
ϕi ≫ ϕc, or equivalently, gϕi ≫

√
λM as dictated by Equation (10.1.11). Given that mχ ≫ H,

the following constraint emerges

gϕi ≫ H , (10.1.18)

where the subscript i denotes quantities evaluated at zi in the numerical simulations. Moreover,
the ϕ-field must evolve slowly, requiring m2

ϕ ≪ H2. Assuming that µ is small compared to gχ,
we obtain from Equation (10.1.4)

g2χ2 ≪ H2 . (10.1.19)

In the matter-dominated epoch, the χ-field takes the leading role. As discussed in further detail,
the relative energy density of dark matter will eventually start decreasing as the Universe keeps
expanding. This dilution sets the stage for the ϕ-field, which was slowly evolving until it may
finally become the director of the cosmic evolution, driven by its potential energy. Initially, the
condition

1

2
µ2ϕ2 + V0 ≪

1

2
g2ϕ2χ2 , (10.1.20)

must be met to ensure a matter-dominated phase. This condition implies an energy density of
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χ evolving as

ρχ =
1

2
χ̇2 +

1

2
m2

χχ
2 ≃ m2

χχ
2 , (10.1.21)

where we have implicitly assumed mχ ≃ gϕ and that the χ-field, exhibiting rapid oscillations,
is essentially pressureless when averaged over multiple oscillation periods. Given how slowly ϕ

evolves, the effective DM mass is also virtually constant. Solving Equation (10.1.21) for χ2 and
replacing into Equation (10.1.19), we obtain

g2
ρχ
m2

χ

≪ H2 . (10.1.22)

During the matter-dominated epoch, with χ as the primary contributor, the Friedmann equation
simplifies to

H2 ≃ ρχ
3M2

Pl

. (10.1.23)

Consequently, from Equation (10.1.22), we derive

1 ≪ 1

3

(
ϕ

MPl

)2

, (10.1.24)

with mχ ≃ gϕ. To satisfy this inequality, ϕ must be trans-Planckian, that is to say, that
ϕ ≫ MPl. Ultimately, to meet the constraints in Equation (10.1.24), ϕ must at least take on
values comparable to the Planck mass. Once more, unless g is remarkably small, this implies
a substantially large DM mass, contrasting sharply with models with ultralight and light scalar
field DM candidates [463, 481, 482]. On a more practical note, we remark that this is potentially
consistent with the WIMPzilla framework as examined in [462, 483].
One additional criterion for the viability of χ as a dark matter candidate is its stability over
cosmological time scales. Phenomenologically, even though a decay of χ into ϕ is kinematically
allowed, it is effectively negligible due to the disparity in their mass scales. The decay rate for
χχ→ ϕϕ is quantified by [484]

Γ(χχ→ ϕϕ) =
g4⟨χ2⟩
8πmχ

, (10.1.25)

where ⟨·⟩ denotes an average over one oscillation period. The decay rate, Γ, needs to be sub-
dominant to the Hubble parameter, H, i.e., Γ < H. As elaborated in the next section, the
decay rate Γ scales as a−3 throughout the expansion history, owing to its direct dependence on
the χ-field coupled to the slow variation of ϕ. In contrast, H scales as a−3/2 and a−2 during
matter- and radiation-dominated epochs, respectively. The overall result is that Γ decreases
more abruptly than H as the Universe expands, thereby ensuring the DM field’s stability for
reasonable values of g < 1.
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Finally, we address possible quantum corrections to the potential that might invalidate the
considerations above. Generally, quantum corrections to the tree-level potential are expected
at the order of M2

Pl, with MPl serving as the natural cut-off scale. Nonetheless, in the context
of supersymmetric models, the corrections are logarithmic in nature, ln(ϕ/MPl) [485]. These
logarithmic corrections can be suppressed if the coupling constants are relatively small, which is
a natural assumption for the model under investigation. Consequently, the hybrid model shares
the same challenges as other models of a similar kind.

10.2 Fluid Approximation

To mitigate the computational difficulties associated with the oscillations of the χ-field, we seek
reasonable approximations that facilitate the study of its cosmological behaviour. Specifically, we
reformulate the problem as an interacting quintessence model by adopting a fluid representation
for the DM field χ. A key feature of this setup is that the mass of χ evolves in parallel with the
slow rolling of the DE field. Previous investigations into scalar fields oscillating in a quadratic
potential have established that the dynamics can be approximated by an oscillating envelope with
amplitude A(t) ∝ a−3/2 [478]. Employing the WKB approximation and using the constraints
derived previously (gϕ≫ H and ϕ̇/ϕ≪ 1), we obtain a solution given by

χ(t) = χi

(
ϕi
ϕ

)1/2 (ai
a

)3/2
sin (gϕ (t− ti)) . (10.2.1)

Here, χi is the initial amplitude of χ. Due to the slow variation of ϕ, the term ϕi/ϕ remains nearly
constant, implying that χ behaves like a pressureless fluid with ρχ ∝ χ2 ∝ a−3. Using Equa-
tion (10.1.21) to replace ρχ, the oscillation-averaged energy density of DM can be approximated
to

⟨ρχ⟩ ≈ ρχ,i

(
ϕ

ϕi

)(ai
a

)3
, (10.2.2)

where ρχ,i = 1
2g

2ϕ2iχ
2
i represents the initial energy density of χ.

We will henceforth neglect the bracket notation for simplification, as the quantities under consid-
eration are always oscillation-averaged. The averaged density in Equation (10.2.2) shows a linear
dependence on ϕ. This leads us to the following continuity equation for the oscillation-averaged
interacting fluid:

ρ̇χ + 3Hρχ =
ϕ̇

ϕ
ρχ . (10.2.3)

Accordingly, the equation of motion for the DE field is reformulated as

ϕ̈+ 3Hϕ̇ = − 1

ϕ
ρχ . (10.2.4)
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This equation is fully in line with the usual DE continuity equation, assuming a perfect fluid
approximation for the field, given by ρϕ ≈ ϕ̇2

2 + V0:

ρ̇ϕ + 3H(ρϕ + Pϕ) = − ϕ̇
ϕ
ρχ , (10.2.5)

ensuring the conservation of the total energy density for both ϕ and χ, as required by the
general covariance of Einstein’s equations. In line with the approximation in Equations (10.2.2)
and (10.2.4) simplifies to

1

a3
d

dt

(
a3ϕ̇
)
= −ρχ,i

ϕi

(ai
a

)3
, (10.2.6)

which can be integrated and solved for ϕ̇:

ϕ̇ =
(ai
a

)3(
Ki −

ρχ,i
ϕi

t

)
, (10.2.7)

where Ki ≡ ϕ̇i +
ρχ,i

ϕi
ti is an integration constant and ϕ̇i denotes the initial velocity of the

field, when a = ai. Provided that the relation between a and t is known, ϕ’s behaviour is
completely determined. As demonstrated earlier, the fluid approximation is valid immediately
after inflation, given that the χ-field starts oscillating around zero as soon as this era comes to
a halt, and radiation becomes the dominant cosmic component at t = ti. Therefore, by solving
Equation (10.2.7) in the radiation-dominated epoch, during which a(t) ∝ t1/2, we obtain

ϕ(t) = ϕi + Ci −Ai

(
t

ti

)1/2

−Bi

(
t

ti

)−1/2

, (10.2.8)

with Ci ≡ 2
(
ρχ,i

ϕi
t2i +Kiti

)
, Ai ≡ 2

ρχ,i

ϕi
t2i , and Bi ≡ 2Kiti as integration constants. During this

epoch, ρϕ’s scaling behaviour is dictated by

ρϕ ∝ ϕ̇2 ∝ a−1 . (10.2.9)

Equation (10.2.8) fully describes the time variation of the field up to the matter-radiation equality
at teq. Upon entering the matter-dominated era, a(t) ∝ t2/3, resulting in the following solution
to Equation (10.2.7):

ϕ(t) = ϕeq + Ceq −Aeq ln

(
t

teq

)
−Beq

(
t

teq

)−1

, (10.2.10)

where Ceq ≡ teqKeq, Aeq ≡ t2eq
ρχ,eq

ϕeq
, and Beq ≡ teqKeq are constants that depend on the initial

conditions specified at the point of matter-radiation equivalence, labelled by the subscript "eq".
The constant Keq is conceptually analogous to Ki from Equation (10.2.7), with each term being
evaluated at teq instead of ti. Given the slow-rolling nature of the field, it is fair to consider
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˙ϕeq ≪ teqρχ,eq/ϕeq, thus leading to Beq ≈ teqAeq.

We note that Equation (10.2.10) suggests that ϕ̇ ∝ a−3/2 since t ∝ a3/2 in the matter-dominated
period. Furthermore, given that the coupling to dark matter is the main dynamical influence in
the field dynamics and ϕ̇2 ≫ V0, we derive

ρϕ ∝ ϕ̇2 ∝ a−3 . (10.2.11)

In this regime, the dark energy component scales analogously to ordinary and cold dark matter.
This property is not typical among interacting dark energy models with a constant potential.
We have confirmed that this is, in fact, the only specific formulation that yields this unique
behaviour, which is pivotal for tackling the cosmic coincidence problem in ΛCDM described in
Section 2.5, that concerns the remarkable similarity between the value of the energy densities of
dark energy and cold dark matter at present times [345, 449, 451, 486]. In the next section, we
will present numerical simulations that illustrate the dynamics within this regime.

The form of the interaction term on the right-hand side of Equation (10.2.3) suggests that ϕ
should remain significantly large through the expansion history up until the present. This aligns
with the considerations made in Section 10.1.1 and is an indispensable condition to avoid drastic
deviations from the ΛCDM paradigm. Though it may appear contradictory, the framework
is sustained by the assumption that ϕ is slowly rolling, according to ϕ̇

ϕH ≪ 1, a condition
that has been verified numerically, and which corroborates that ϕ > MPl in agreement with
Equation (10.1.24).

10.2.1 Background Dynamics

Mathematically speaking, the fluid approximation used in our analysis mimics a fifth force me-
diated by the dark energy scalar field. As reviewed through the course of Chapter 5, this arises
in theories with a non-universal conformal rescaling of the metric g̃µν , which in this case would
dictate the geodesics of the dark matter particles, and is expressed as:

g̃µν = C(ϕ)gµν , (10.2.12)

where gµν is the gravitational metric, i.e., the one according to which the Einstein-Hilbert retains
its form. For this approximation to hold in our setting, conformal factor C(ϕ) must be given by:

C(ϕ) =
ϕ2

M2
Pl

for |ϕ| > |ϕc| . (10.2.13)

The transformation remains invertible as long |ϕ| > |ϕc|. It should be noted that the fluid
approximation will cease to be valid long before ϕ could reach zero. Further, C(ϕ) > 0 ensures
that the Lorentzian nature of the metric is preserved, evading any instabilities related to metric
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singularities. Hence, from the considerations above, the functional form of the coupling term in
the fluid approximation is reinstated as:

Q = −
Cϕ

2C
ρχ = −ρχ

ϕ
. (10.2.14)

Under this approximation, both components of the dark sector are considered perfect fluids,
allowing us to recast the relevant equations for laying out the dynamics. For numerical purposes,
we use conformal time, which we recall is defined as dτ = dt

a , with derivatives denoted by a
prime and the Hubble rate scaled as H = aH. The conservation equations for the DM and DE
fluids are given by

ρ′χ + 3Hρχ = −Qϕ′ = ϕ′

ϕ
ρχ , (10.2.15)

and,

ρ′ϕ + 3H (ρϕ + pϕ) = Qϕ′ = −ϕ
′

ϕ
ρχ . (10.2.16)

The interaction in the dark sector means that the right-hand side of these equations is no longer
zero but composed of symmetric terms. The direction of the energy flow depends solely on the
sign of ϕ′

ϕ : when the ratio is positive, DE feeds the DM component, whereas a negative ratio
indicates energy transfer from ϕ to the DM fluid. Independent of the initial conditions, ϕ and
ϕ′ always have opposite signs, implying a unidirectional energy transfer from the χ-fluid to the
ϕ-field. The same physics is encapsulated in the modified Klein-Gordon equation:

ϕ′′ + 2Hϕ′ = −a
2

ϕ
ρχ = a2Q , (10.2.17)

which can be numerically integrated to obtain specific realisations of the evolution under a given
set of cosmological parameters. For that purpose, the only free parameters specific to the model
are the initial conditions for the DE field, ϕi = ϕ(τi) and ϕ′i = ϕ′(τi), along with the scale of the
hybrid potential, V0. It should be emphasised that the remaining parameters in the potential,
given in Equation (10.1.2), are irrelevant to the numerical solutions, so long as they meet the
constraints outlined in Section 10.1.1. We set µ = 0 for simplicity as it does not affect current
dynamics. As for all the cases studied in this thesis, V0 is determined using a shooting method
for a fiducial value of the present DE relative energy density Ω0

ϕ =
ρ0ϕ

3M2
PlH

2
0
. Furthermore, as ϕ′i

does not influence the dynamics due to the rapid stabilisation of the scalar field at the minimum
of its potential in the radiation-dominated epoch, we set ϕ′i = 0 without loss of generality. This
narrows our study to the effects of varying the single free model parameter, the initial condition
ϕi. We exclusively consider scenarios where ϕi > 0, based on the symmetry of the potential over
the dynamics.
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10.2.2 Cosmological Perturbations

We map the cosmological perturbations into an interacting dark energy framework by expanding
upon the background evolution. The aim is to identify the changes in the gravitational inter-
actions compared to the standard ΛCDM model and to evaluate the observational signatures
left by the background fluid approximations. To this end, we consider once more the conformal
Newtonian gauge for perturbations, as outlined in Section 2.2.1, for which we present the metric
once again

ds2 = a2(τ)
[
−(1 + 2Ψ) dτ2 + (1− 2Φ)δij dx

i dxj
]
, (10.2.18)

where Ψ(τ, x⃗) and Φ(τ, x⃗) are the Bardeen potentials and, accordingly, δ designates perturbed
quantities and the correspondence ∇2 → −k2 holds in Fourier space. For the scalar field system,
there is no anisotropic stress. The perturbed variables δϕ and δρχ evolve according to

δϕ′′ + 2Hδϕ′ + k2δϕ = (Ψ′ + 3Φ′)ϕ′ + 2a2QΨ+ a2δQ , (10.2.19)

and
δ′χ = −(θχ − 3Φ′) +

Q

ρχ
ϕ′δχ − Q

ρχ
δϕ′ − θ′

ρχ
δQ , (10.2.20)

where δχ = δρχ/ρχ is the density contrast and δQ is defined as

δQ =
ρχδϕ− ϕδρχ

ϕ2
. (10.2.21)

In Equation (10.2.20), both the equation of state wχ = pχ/ρχ and the sound speed c2s = δpχ/δρχ

are set to zero. The background dynamics support the former assumption, while the latter follows
naturally from the equation for the sound speed of an oscillating scalar field [463],

c2s =
k2/(4m2

χa
2)

1 + k2/(4m2
χa

2)
. (10.2.22)

While this assumption holds for an uncoupled scalar field, it still captures the relevant physics, as
the coupling is restricted to be very small. Since we have demanded mχ to be considerably large
for the background approximations to hold, and given that we are considering scales k ≪ 2mχa,
Equation (10.2.22) implies c2s ≈ 0 which we nevertheless verified numerically.

The impact of the coupling on the density matter perturbations can be primarily assessed by
looking at the sub-horizon regime k ≫ H under the quasi-static approximation when the matter
and field perturbations are the main drivers of the linear evolution. In practical terms, this
consists of neglecting the time derivatives of the perturbations and metric potentials, greatly
simplifying the equation of motion for δχ in Equation (10.2.20) [3, 399],

δ′′χ +Heffδ
′
χ ≃ 4πGeffρχδχ , (10.2.23)
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where the subdominant contribution of baryons has been neglected, and the effective Hubble
term is defined as

Heff = H
(
1 +

Q

ρχ

ϕ′

H

)
, (10.2.24)

consisting of an additional friction contribution that accounts for the changes in the coupled
background evolution. On the other hand, the effective gravitational constant in the small-scale
limit (large k) becomes important as it is expressed as

Geff ≃ G
(
1 + 2β2

)
, with β ≡ MPl

Q

ρχ
, (10.2.25)

as expected, considering the general results for scalar-tensor gravity models under a conformal
transformation [347, 401, 453].

10.3 Observables and Phenomenology

In this section, we investigate the evolution of the hybrid model for different realisations of
the coupling in the dark sector and its impact on cosmological observables, compared with
the standard ΛCDM model. As anticipated, the general features of the model are consistent
with canonical coupled quintessence frameworks featuring stable, effective interactions [292, 309],
just as the ones considered in Chapter 6 (see also [32, 184, 334, 344, 346, 348, 349, 355, 487–
490] for recent works). Nevertheless, this is not to say that there will not be any distinct
signatures arising from the scalar field’s slow-roll evolution and the ϕ-dependent coupling. For
illustration purposes, we explore four scenarios, parameterised by different initial field values,
namely ϕi/MPl = {8, 10, 15, 20}, recalling that ϕi sets the initial scalar field dynamics as well as
the strength of the coupling in the dark sector, meaning that its effect over the dynamics can
be non-trivial. We set the initial condition for the field velocity at ϕ′i = 0, as we demonstrate
later that it has a negligible effect on the evolution. The cosmological parameters are kept at the
Planck 2018 fiducial values for a ΛCDM cosmology [32]: H0 = 67.56 km/s/Mpc, Ωbh

2 = 0.022,
and Ωch

2 = 0.12, where h = H0/100. The scale of the potential is fully fixed via the Friedmann
constraint for a flat cosmology. The same applies to the analysis of the perturbations. We assume
Gaussian adiabatic initial conditions and a scalar power spectrum characterised by an amplitude
of curvature fluctuation of As = 2.215×10−9 at a pivot scale of kpiv = 0.05Mpc−1, and a spectral
index ns = 0.962. Without loss of generality, we also consider vanishing initial conditions for
the perturbations in the scalar field and its corresponding velocity, i.e., δϕi = δϕ′i = 0. The
background and cosmological perturbations are calculated using a version of the open-source
CLASS code1 [95, 101, 102] modified for this purpose.

1https://github.com/lesgourg/class_public

https://github.com/lesgourg/class_public
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Figure 10.2: Left panel: Redshift evolution of the relative energy densities Ωi of the dark
matter fluid χ (yellow), baryons (green), radiation (sea blue) and the scalar field ϕ (red) for
the ΛCDM model (thin solid lines), ϕi = 8 MPl (dashed/dotted-dashed lines) and ϕi = 10 MPl
(thick solid lines). Right panel: Ratio of the dark energy density (top panel) and fractional
deviations in the Hubble rate (bottom panel) in the hybrid coupled model with respect to the
standard model as a function of redshift 1 + z, for ϕi = {8, 10, 15, 20} MPl (solid red, dashed
yellow, dotted-dashed green and dotted sea blue lines).

10.3.1 Background Evolution

In the fluid approximation, where the potential V (ϕ, χ) remains constant, the field’s dynamics
would be indistinguishable from a cosmological constant in the absence of the coupling (which
would also imply ϕ′ ≡ 0 or ϕ→ ∞). The coupling with the dark matter fluid is the primary driver
of the energy density of dark energy at early times, as depicted in the left panel of Figure 10.3.
Once this coupling becomes significant after the radiation-dominated era and when DM starts
playing a dominant role, ϕ begins to slowly evolve until its energy density mimics that of DM,
the component to which it couples. During this period of the evolution, the scalar field acts as an
effective pressureless fluid, and this scaling phase ceases once the kinetic and potential energies
become comparable and ϕ′2 ≲ a2V0.
The end of the scaling phase is directly influenced by the initial conditions set for ϕi and ρχ (see
Equation (10.2.7)). Higher ϕi values lead to late-time behaviour that resembles ΛCDM more
closely, implying an earlier exit from the scaling regime, as seen in the right panel of Figure 10.2
and the left panel of Figure 10.3. In contrast, ϕ′ quickly adjusts as the scalar field is driven
towards the minimum of the effective potential, irrespective of its initial value, implying that
ϕ′i regulates the onset of the scaling phase., which starts earlier for the largest initial velocities.
This effect is negligible as it occurs early in the radiation-dominated phase when the scalar field’s
contribution is insignificant. Similar behaviour has been reported in [491], driven by a significant
acceleration of the scalar field instead. When the ϕ-field exits the matter-scaling regime, it
settles at a cosmological constant-like attractor solution, where it will remain diluting with the
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Figure 10.3: Left panel: Evolution of the energy densities ρ of the dark matter fluid χ (yellow),
baryons (green), radiation (sea blue) and the scalar field ϕ (filled red) for ϕi = 8 MPl. To
appreciate the differences, we also include ρϕ for the ϕi = 15 MPl case (dotted-dashed red line)
and ρΛ for the standard model (thin black solid line) for completeness. Right panel: Percentage
deviations of the effective gravitational constant, as defined in Equation (10.2.25), with respect
to the standard G (thin black solid line) for ϕi = {8, 10, 15, 20} MPl (solid red, dashed yellow,
dotted-dashed green and dotted sea blue lines).

expansion until the fluid approximation breaks down.

The coupling also manifests as an amplification of ρϕ, particularly in scenarios with stronger
coupling (smaller ϕi), which naturally induces an earlier matter-DE equality. This shift is an
artificial result of fixing the present cosmology. As DM loses energy to DE, it must be more
abundant early on, leading to higher initial amplitudes for the DM energy density to maintain
equilibrium and match the present value. On the other hand, this effect goes in hand with a
more significant contribution from the coupling to the scalar field dynamics, as evident from
Equation (10.2.17). This also reflects as an earlier matter-radiation equality with decreasing ϕi
values, as depicted in the left panel of Figure 10.2.

In the lower right panel of Figure 10.2, we show the relative deviations in the Hubble rate H(z)

when comparing the hybrid coupled model with the standard ΛCDM model. Even though H0

is fixed at the current value for both models, H(z) is enhanced by up to 9% during the matter-
dominated phase for the model with the smallest ϕi while remaining negligible during radiation
domination. This is correlated with an enhancement of ρϕ and ρχ and will be instrumental for
understanding the scale-dependent growth of matter perturbations, which we will discuss in the
following section.
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Figure 10.4: Left panel: Evolution of the cosmological observable fσ8 (defined in Equa-
tion (10.3.3)) with redshift 1 + z for the hybrid coupled model with ϕi = {8, 10, 15, 20} MPl
(solid red, dashed yellow, dotted-dashed green and dotted sea blue lines) and for the ΛCDM case
(thin black solid line). The RSD data points and corresponding error bars (solid grey) correspond
to the compilation presented in [492]. Right panel: The matter power spectrum as a function
of Fourier scales k (top panel) and corresponding percentage deviations (bottom panel), for the
hybrid coupled model with ϕi = {8, 10, 15, 20} MPl (solid red, dashed yellow and dotted-dashed
green lines) with respect to the ΛCDM case (thin black solid line).

10.3.2 Cosmological Perturbations

The linear growth rate f(a) of the total matter perturbation - comprising both baryonic and
dark matter and denoted as δm - quantifies this phenomenon as

f(z, k) =
1

H
δ′m(z, k)

δm(z, k)
, (10.3.1)

with
δm(z, k) =

Ωbδb +ΩDMδDM

Ωb +ΩDM
. (10.3.2)

The changes to the evolution of f(z), compared to the ΛCDM model, correlate with the modifi-
cations to the onset of the matter-dominant era, at which point the dark sector coupling becomes
substantial. The combined quantity fσ8 is directly connected to observations, as was introduced
in Section 3.4.4, defined as

fσ8(z, kσ8) =
σ8(0, kσ8)

H
δ′m(z, kσ8)

δm(0, kσ8)
, (10.3.3)

where σ8 is the root mean square mass fluctuation amplitude for spheres of size 8h−1 Mpc (or
equivalently for scales kσ8 = 0.125h Mpc−1), generally used to set the amplitude of the matter
power spectrum at present σ08 ≡ σ8(0, kσ8).
In Figure 10.4 (left panel), we display the redshift evolution of fσ8 for the examined models,
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as defined in Equation (10.3.3). We identify an overall enhancement in the linear growth of
matter perturbations. The most notable deviations from ΛCDM occur in the model with the
minimal ϕi as a direct consequence of changes to the expansion history. The numerical analysis
reveals that σ08 increases across all models to match the same amplitude As, with higher values
ϕi progressively approaching the ΛCDM prediction. We also incorporate RSD observational
data1 from the compilation in Ref. [492] which encompasses measurements reported by multiple
surveys. The plots suggest an enhanced linear growth in the hybrid model, parametrised by a
larger fσ8, and associated with the higher σ8 values as well when assuming the same spectrum
of initial primordial perturbation amplitudes As. We conclude that, in these specific conditions,
the models appear not to resolve the S8 tension [57, 145], although a more rigorous investigation
is needed to affirm this conclusion, as the data interpretation is based on ΛCDM assumptions.

In Figure 10.4 (right panel), we depict the power spectrum of matter density fluctuation P (k)

and the corresponding relative variations for Fourier scales 10−3hMpc−1 < k < 10−1hMpc−1.
We report a mild suppression for larger scales (low k) and a significant amplification for in-
termediate to small scales (high k). Deviations reach up to 81% for the smallest value of ϕi at
10−1hMpc−1, a point where the linear approximation is expected to no longer hold, as non-linear
effects become dominant. This trend for large k was expected on the basis of the fifth force,
which is more significant for lower values of ϕi, having a considerable influence on the growth
of perturbations according to Equation (10.2.25). We expect that this should play an important
role when comparing the model with existing observational data.

The slight suppression for larger scales (smaller k values) is ascribed to the changes in the
background cosmic expansion, specifically through the friction term in Equation (10.2.24), which
inhibits the growth of matter density perturbations. This effect overcomes the fifth-force only at
the largest scales, peaking at 4% for the models considered, and is essentially negligible for the
models with larger ϕi, for which Geff ≈ G, as displayed in Figure 10.3 (right panel). Furthermore,
we note the shift in the turnover of the power spectrum towards smaller scales, in comparison
with the ΛCDM case, due to the change in the radiation-matter equality epoch towards larger
redshifts.

In the left panel of Figure 10.5, we illustrate the evolution of the gravitational potentials Φ and Ψ

(top) at an intermediate scale of k = 0.01 Mpc−1, along with the corresponding percentage differ-
ences relative to ΛCDM. The most evident deviations occur at z ≲ 103, in the matter-dominated
epoch, where alterations in the DM evolution become significant, and the energy density of the
scalar field is scaling with the matter. The most important variations are consistently associated
with the smallest ϕi values. The modifications to the lensing gravitational potential ϕlen = Φ+Ψ

are mainly ascribed to the energy transfer from DM to the DE sector. This potential is the rel-
evant term in the line-of-sight integration for the lensing power spectrum Cϕϕ

ℓ , as presented in
Section 3.3, and is depicted in the left panel of Figure 10.6. We identify an overall enhancement

1CosmoBolognaLib

https://gitlab.com/federicomarulli/CosmoBolognaLib/tree/master/External/Data/
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Figure 10.5: Redshift evolution of the sum of the gravitational potentials, Φ + Ψ, (top left
panel) and the corresponding derivative with respect to conformal time, Φ′+Ψ′ (top right panel)
for the hybrid coupled model with ϕi = {8, 10, 15} MPl (solid red, dashed yellow and dotted-
dashed green lines) and for the ΛCDM case (thin black solid line), including the percentage
deviations from the standard model (bottom panels).
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Figure 10.6: Lensing (top left panel) and TT (top right panel) power spectra as a function of
the angular scale ℓ for the hybrid coupled model with ϕi = {8, 10, 15, 20} MPl (solid red, dashed
yellow, dotted-dashed green and dotted sea blue lines) and for the ΛCDM case (thin black solid
line), along with the fractional deviations from the standard model (bottom panels).
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of Cϕϕ
ℓ across all angular scales, with the most substantial deviations from ΛCDM occurring

for the lowest ϕi case. This could potentially explain the lensing excess observed in the Planck
temperature data of CMB anisotropies [32, 356], which was the focus of Section 3.6.3. Likewise,
this enhancement aligns with the amplified effective gravitational interaction for DM particles.
We note that the matter density contrast δm follows a broadly consistent trend across most of
the Fourier scales depicted, mirroring the increased effective gravitational constant, as presented
in Figure 10.3.

The same effects can also be dug out of CMB anisotropies’ temperature-temperature (TT) power
spectrum, presented in the right panel of Figure 10.6. The most evident modifications arise from
the integrated-Sachs-Wolfe (ISW) effect, proportional to ϕ̇len (see Section 3.3), depicted in the
right panel of Figure 10.5. This effect can be dissected into the early and late-time contributions
to the ISW. The early ISW effect amplifies the time derivatives of the potentials due to an
earlier transition from radiation- to matter-dominated eras. Most importantly, the late-time ISW
effects stem from changes to the CMB lensing by large structures, owing to modified dynamics
in the dark sector. This leads to a late-time suppression of Φ′ + Ψ′, as shown in the right
panel of Figure 10.5. The most apparent changes in the TT power spectrum are a decrease
in amplitude and a narrowing of the peaks and troughs, tied to a reduction in the ρb/ρDM

ratio during recombination (see Section 3.5) [350, 488]. This induces a degeneracy between the
effective coupling and the Hubble parameter, as the latter mainly affects the first peak’s location
and magnitude. Likewise, the shift in the acoustic peaks to higher multipoles is also linked to
changes in the cosmic expansion history, which modify the distance to the last scattering surface
and thus reduce the sound horizon at the baryon-drag epoch (see Section 3.5). The more this
shift is pronounced, the more significant the deviations from ΛCDM at the background level.
From both panels of Figure 10.6, we observe that an enhanced Hubble rate drives the CMB
spectra towards smaller angular scales (higher multipoles). Lastly, the lensing power spectrum
amplification correlates with an increased ISW tail at large angular scales, although this is
typically a secondary effect.

10.4 Discussion

In this study, we have introduced a hybrid model for the dark sector, in which DM and DE are
ascribed to two interacting scalar fields. We started from a formulation based on an interacting
potential frequently encountered in hybrid inflation, which we transported to the DM-DE system.
We performed a thorough examination of the cosmology implications of such a setting. With
the onset of a rapid oscillatory behaviour deep within the radiation-dominated epoch, the heavy
scalar field essentially acts as pressureless DM. We have shown that, under appropriate approx-
imations, the scalar fields can be treated approximately as a DM fluid coupled to a gradually
evolving DE field through this oscillatory pattern.
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In conclusion, we list the key predictions of the model proposed in this chapter:

• The DE field is required to have a sizeable present value (ϕ > MPl) for the fluid description
to hold. Consequently, the coupling in the dark sector is currently highly suppressed,
and DM is considerably massive, akin to the WIMPZilla framework. The energy scales
in the interacting potential are markedly below the Planck scale; for instance, the scale
M is approximately on the eV scale, as it depends on the coupling constant λ. The
requirement for super-Planckian excursions of the field, reminiscent of inflationary models,
poses challenges for model building in theories beyond the standard model. Nonetheless,
it is noteworthy that the current model combines two seemingly disconnected mass scales:
the minute mass scale M and the large field excursions for the DE field ϕ.

• Another exciting feature of the model is the transient nature of the dark energy-dominated
epoch. The DM field is predicted to become light and cease to behave as a pressureless
fluid. Both fields will ultimately settle at the actual minimum of the potential (ϕ = 0 and
χ = ±M). The fate of the Universe will then hinge on its spatial curvature. Should it
be closed, the expansion will cease, and the Universe will collapse, paving the way for a
potential bounce far in the future.

As demonstrated, if the coupling is large enough, unique imprints are expected on the
temperature-temperature power spectrum of CMB anisotropies and the growth of structures
encoded in the matter power spectrum. Both existing and forthcoming observational datasets
can test such characteristic signatures. Drawing upon diverse independent data sets and probing
the remaining relevant cosmological variables, an in-depth analysis is ongoing work.



11 Conclusions

Meu Deus, só agora me lembrei que a gente morre. Mas, mas eu também?!
Não esquecer que por enquanto é tempo de morangos. Sim...

— Clarice Lispector A Hora da Estrela

My God, I just remembered that we die. But — but me too?! Don’t forget that for now it’s strawberry season.
Yes... — Clarice Lispector in The Hour of the Star

This project aimed to enhance our understanding of the properties of dark matter and dark
energy in the context of cosmology, focusing specifically on the possibility of an interaction in
the dark sector and its observational signatures. We have touched on the remarkable richness
of independent probes, with particular emphasis on measurements of the physics of the cosmic
microwave background anisotropies, invaluable archaeological sites of buried knowledge. We have
delved deeply into the enigmatic realms of coupled quintessence and interacting dark energy,
much like cosmic archaeologists excavating layers of ancient expansion history, piecing together
shards of pottery from various cosmological data in an attempt to understand the intricate
nature of the dark sector. Nevertheless, it is fascinating to think that the more we uncover, the
more we realise the scope of what remains hidden. With each model we explore, independent of
the results, we enrich our understanding of the relics and artefacts that reveal something while
hinting at larger structures yet undiscovered, constantly suggesting new avenues of research.
We report on the main conclusions from each investigation included in this dissertation, which,
while just a tiny overdensity contribution to the literature, may contribute to the gravitational
clustering of the ceaseless quest to unravel the mysteries of our cosmic habitat.

• In Chapter 6, we have analysed the standard coupled quintessence model by assuming a
flat cosmology and letting the spatial curvature vary as a free parameter. We found no
significant improvement regarding the evidence for a closed Universe in the Planck data
assuming ΛCDM. Nevertheless, we were able to show that the disagreement between CMB
data and other geometrical probes is maintained in other scenarios.

• In Chapter 7, we have studied a coupled quintessence model in which the interaction
depends on the kinetic energy of the scalar field. We showed the particular observational
signatures of such a framework. We found no statistically significant evidence for either of
the models, which could be a hint that forthcoming data might be able to address these
differences.

• In Chapter 8, we assessed the potential of constraining coupled quintessence models with

257



258

next-generation gravitational wave detectors. We showed that standard sirens are a promis-
ing alternative to supernova catalogues and baryon acoustic oscillation observations. We
found that the accuracy in the H0 parameter is consistently enhanced by an order of
magnitude at 1σ, which is promising for providing further insight into addressing the H0

tension.

• In Chapter 9, we performed a thorough study of models motivated by string theory in which
the dark sector has a fundamental geometrical higher-dimensional origin. Even though this
is a more intricate scenario and a preliminary analysis does not seem to suggest evidence for
the particular framework considered, this analysis motivates further studies with functions
that might be more appropriate for a cosmological description.

• In Chapter 10, we introduced a hybrid model for the dark sector, in which DM and DE are
ascribed to two interacting scalar fields. We have shown how the DM scalar field dynamics
can be approximated to a fluid description that holds similarities with coupled quintessence
models. We found exciting novel predictions for the nature of this DM source and a unique
transient nature for the dark energy-dominated epoch. The numerical analysis of the
observables shows promising cosmological signatures without introducing extra parameters,
and comparing this setup against data is ongoing work.



A Scalar Field Inflation

Inflation refers to an epoch of accelerated expansion in the early Universe, needed in order to
address the problems listed below:

• The horizon problem: the observed homogeneity implies extraordinary smoothness of the
early Universe even if most of the Universe does not appear to have been in causal contact
in the hot Big Bang paradigm. In comoving coordinates, the size of a causally connected
region of space is defined according to the maximum distance that light can travel and still
be detected today. This threshold defines the particle horizon:

dh(τ) = τ − τi =

∫ t

ti

dt

a(t)
=

∫ a

ai

da

aȧ
=

∫ ln a

ln ai

(aH)−1 d ln a , (A.0.1)

with τ standing for the comoving time, which corresponds to the comoving particle horizon
under the convention that τi = 0 since ai ≡ 0 corresponds to the Big Bang singularity.
The last equality of Equation (A.0.1) shows how causality relates to the comoving Hubble
radius

dH = H−1 = (aH)−1 . (A.0.2)

The ∆τ between the BB singularity and the last-scattering surface is much smaller than
the present conformal age of the Universe, implying that most of the CMB is composed
of non-causally connected patches. This can be shown with simple examples, such as in
Ref. [45]. Then the question of how can the CMB be homogeneous at scales much larger
than the particle horizon at the time when the CMB photons were released remains.

• The flatness problem: the fact that the spatial curvature of the Universe is so small implies
a fine-tuning of the initial conditions. Relying on current constraints for the time-evolving
curvature parameter of the Universe, |Ωk,0| < 0.005 [32], it is possible to extrapolate bounds
on the same parameter evaluated at the time-scales of the early Universe, resulting in even
tighter constraints such as |Ωk,BBN| < 10−16 [45]. This implies that the curvature scale at
that epoch must have been larger than the Hubble radius by many orders of magnitude.
As we have seen above, during the standard hot Big Bang, the particle horizon is well
approximated by the Hubble radius, suggesting again a large fine-tuning degree over many
causally disconnected patches of space.

• The problem of superhorizon correlations: the Universe contains density fluctuations cor-
related over apparently acausal distances. For comoving coordinates, the wavelength of a
fluctuation λ remains fixed while the Hubble radius (aH)−1 keeps increasing due to the
expansion. This results in every fluctuation inside the Hubble radius today (subhorizon
regime) being outside the Hubble radius at sufficiently early times (superhorizon regime).
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Scales larger than the particle horizon (approximately the same as the Hubble radius at
early times) at recombination would not have been inside the horizon before the emission
of the CMB photons. However, the CMB fluctuations are not random, containing char-
acteristic correlations on scales much larger than this apparent horizon. This is akin to
a modern version of the horizon problem, corroborated by the CMB map of temperature
fluctuations - the CMB is not just homogeneous on apparently acausal scales, as stated
by the horizon problem. However, its fluctuations are also strongly correlated with such
scales.

To grasp the dynamics of inflation, we first define the slow-roll parameter ε:

d

dt

[
(aH)−1

]
= −1

a
(1− ε) with ε ≡ − Ḣ

H2
. (A.0.3)

Comparing this condition with Equation (2.3.1), it follows that ε < 1, or in other words, that
the fractional change in the Hubble parameter (Ḣ/H) per Hubble time (H−1) must be small.
The limit ε = 0 such that H = const. ⇒ a(t) = eHt corresponds to quasi-de Sitter expansion.
While this approximation is true for the cosmological constant, inducing accelerated expanding
behaviour at late times, it cannot hold for the inflationary epoch because any early period of
accelerated expansion must eventually end in a finite amount of time. Nevertheless, to address
the early Universe issues of the Hot Big Bang model, inflation must last for a sufficiently long
period, typically measured in the number of e-folds, denoted as N = ln a. This relies on ε

remaining small for a substantial number of Hubble times and is embodied by the second slow-
roll parameter :

η ≡ ε̇

Hε
. (A.0.4)

Analogously, inflation proceeds while |η| < 1 and the fractional change in ε per Hubble time is
small.
The simplest models of inflation incorporate the time-dependent dynamics of inflation into a
scalar field φ(t, x⃗) called the inflaton, with a respective potential energy density V (φ) and stan-
dard kinetic energy. In this way, it is possible to assess under which conditions the inflaton can
drive inflation. The Lagrangian for such a scalar field minimally coupled to gravity is given by:

Lφ =
1

2
gµν∂µφ∂νφ− V (φ) . (A.0.5)

The standard assumption in the inflationary paradigm is that, at the start of inflation, the
inflaton is displaced sufficiently far from the minimum of its potential, which is nearly flat, to
maintain the slow-roll conditions.
The equation of motion for a homogeneous configuration of the field φ(t) is

φ̈+ 3Hφ̇+
dV

dϕ
= 0 . (A.0.6)
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This is the familiar Klein-Gordon equation with an extra term, 3Hφ̇, called the Hubble friction,
which plays a crucial role during inflation and reflects the influence of the expansion. Assuming
that this scalar field dominates the Universe, we can infer how it impacts the expansion through
the Friedmann equations sourced by a perfect fluid with energy density and pressure:

ρφ =
1

2
φ̇2 + V (φ) , and pφ =

1

2
φ̇2 − V (φ) , (A.0.7)

leading to

H2 =
1

3M2
Pl

[
1

2
φ̇2 + V (φ)

]
, and

(
ä

a

)
=

1

3M2
Pl

[
V (φ)− φ̇2

]
, (A.0.8)

which in the limit φ̇→ 0 becomes

H2 ≈ 1

3M2
Pl
V (φ) ≈ const. , (A.0.9)

corresponding to the exponential expansion, a(t) ∝ eHt. If instead the field is slowly varying,
such that φ̇2/2 ≪ V (φ), the equation of motion can be approximated by

3Hφ̇ ∼ −V ′(φ) , (A.0.10)

and the first Friedmann equation reads

H2(t) ∼ V [φ(t)]

3M2
Pl

. (A.0.11)

taking the field evolution to be encapsulated by the Hubble friction such that the scale factor
evolves as a(t) ∝ e−N(t). This will be verified as long as the potential is sufficiently flat, V ′(φ) ≪
V (φ). It is possible to write the equation of state of the field in the slow roll-approximation as

p =

[
2

3
ε(φ)− 1

]
ρ , (A.0.12)

where now, substituting Equations (A.0.10) and (A.0.11) into the definition of the Hubble slow-
rolling parameters in Equations (A.0.3) and (A.0.4) yields the potential slow-rolling parameters

εV ≈ ε =
M2

Pl
2

(
V ′(φ)

V (φ)

)2

, and ηV ≈ 2ε− 1

2
η = M2

Pl
V ′′(φ)

V (φ)
. (A.0.13)

and the slow roll approximation remains valid as long as both parameters are small, i.e. εV ≪ 1

and |ηV | ≪ 1. The number of e-folds can be expressed as

N = ln
a(te)

a(ti)
= −

∫ a(te)

a(ti)
H dt ∼ M2

Pl

∫ φi

φe

V (φ)

V ′(φ)
dφ , (A.0.14)
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with the subscripts i and e labelling the beginning and end of inflation, respectively. As previously
mentioned, the minimum duration for inflation to resolve the HBB problems is around 60 e-folds.
However, inflation is typically so rapid that most models can accommodate this condition very
easily. In summary, during inflation, the rapid exponential expansion of the Universe ensures
flatness and homogeneity. As the potential becomes steeper, inflation eventually ends, and the
scalar field starts oscillating around its vacuum state at the minimum of the potential.
To transition to a radiation-dominated Universe after inflation, the inflaton field must decay
into standard model particles, a process commonly referred to as reheating [79]. The specifics of
this process depend on the particular inflationary model. To ensure that the Universe becomes
radiation-dominated and in thermal equilibrium during primordial nucleosynthesis, which occurs
at temperatures around the MeV scale, it is often assumed that the reheating temperature falls
within the range of 1TeV to 1016 GeV which sets the minimum bound of Nmin ∼ [45, 60] e-folds
of inflation [29, 79].



B Mock Data Set Simulation

This Appendix details the methodology followed to create the mock catalogue of standard sirens
used in Chapter 8.

The inspiral and merger events of compact objects - such as black holes and neutron stars
- generate gravitational waves (GW) that propagate through spacetime. Interferometers are
sensitive to the strain, h(t) produced by a GW event, which in the transverse-traceless gauge is
described as [122]

h(t) = F×(θ0, ϕ0, ψ)h×(t) + F+(θ0, ϕ0, ψ)h+(t) . (B.0.1)

The gravitational wave tensor perturbation hµν is decomposed into two independent propagating
modes, h×(t) and h+(t), which in general are functions of cosmic time t. The corresponding
antenna beam pattern functions F× and F+ depend on the angular location of the source relative
to the detector in polar coordinates, (θ0, ϕ0), and the polarisation angle, ψ. We adopt a random
sampling method in the range [0, 2π] for θ0 and [0, π] for both ϕ0 and ψ. The factors F×,+ are
defined as:

F
(1)
× =

√
3

2

[
1

2
(1 + cos2(θ)) cos(2ϕ) cos(2ψ) + cos(θ) sin(2ϕ) cos(2ψ)

]
, (B.0.2)

F
(1)
+ =

√
3

2

[
1

2
(1 + cos2(θ)) cos(2ϕ) cos(2ψ)− cos(θ) sin(2ϕ) cos(2ψ)

]
. (B.0.3)

The superscript indicates the specific interferometer under consideration. For instance, LISA
comprises only two interferometers, hence F (3) = 0. The detectors are spatially distributed in an
equilateral triangle formation, implying that the other two antenna pattern functions are located
with respect to F (1)

×,+ as

F
(2)
×,+(θ, ϕ, ψ) = F

(1)
×,+(θ, ϕ+

2π

3
, ψ) and F

(3)
×,+ = F

(1)
×,+(θ, ϕ+

4π

3
, ψ) . (B.0.4)

LISA, sensitive to lower frequencies, can observe GWs from long-lasting merger events. The rela-
tive positions of the interferometer and the event change over time, a fact that is accommodated
using the approach described in [493]. Since LISA can probe lower frequencies and equivalently
larger masses, it can detect GWs from long-lasting merger events. The relative positions of the
interferometer and the event change over time, a fact that is accommodated following the method
described in [493], assuming a timescale of the event of

t = tc − 5(8πf)−8/3M−5/3
c . (B.0.5)

Here, tc denotes the merger time, t indicates the time at which LISA detects the merger, f is the
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frequency of the GW, and Mc is the chirp mass. The location angles are updated accordingly:

θ = cos−1

[
1

2
cos(θ0)−

√
3

2
sin(θ0) cos

(
2πt

T
− ϕ0

)]
, (B.0.6)

ϕ =
2πt

T
− tan

[√
3 cos(θ0) + sin(θ0) cos

(
2πt
T − ϕ0

)
2 sin(θ0) cos

(
2πt
T − ϕ0

) ]
,

which, in turn, are used to update the beam pattern functions. Here, we have specified the
period, T , as the orbit around the Sun.

While the modelling degeneracies prevent the distinction between the individual masses of the
objects, GW detectors are sensitive to the chirp mass, a collective mass quantity related to the
frequency evolution of the signal emitted before the merger, during the inspiral phase of the
binary [494], defined as

Mc = (1 + z)

(
(m1m2)

3

m1 +m2

)1/5

, (B.0.7)

where (1 + z) is a conversion redshift factor from the physical to the observational chirp mass.

The Fourier transform of the strain h(t) based on the stationary phase approximation [495],
which neglects changes in the orbital frequency averaged over one period during the inspiral,
reads:

H = Af−7/6eiΨ(f) , (B.0.8)

where Ψ(f) is the phase of the waveform. Note that when replacing H into Equation (B.0.12),
the exponential term will vanish, and the Ψ(f) factor may be discarded in this analysis. A is
the Fourier amplitude of the waveform signal, given by

A =
M

5/6
c

dGW
L (z)

π−2/3

√
5

96
×
√
F 2
+ (1 + cos2(l))2 + 4F 2

× cos2(l) , (B.0.9)

where dGW
L (z) is the luminosity distance from the merger, and l is the inclination angle of the

orbital angular momentum with respect to the line of sight, which we have sampled randomly
between [0◦, 20◦], as that is the maximum detection inclination range. We can see from Equa-
tion (B.0.9) that measuring the amplitude of gravitational wave signals allows the derivation of
estimates of the luminosity distances of the associated mergers.

Designed for low-frequency detection, as low as fmin = 1×10−4 Hz, LISA is particularly promising
for probing extreme mass ratio inspirals (EMRI) and binary massive black hole (BMBH) mergers.
For the simulations of LISA, two quantities are responsible for determining the upper bound
frequency: the structure of LISA itself and the last stable orbit of the merging system. LISA
can detect frequencies up to fmax = c (2πL)−1, where L is the length of LISA’s interferometer
arm, taken to be 2.5Gm and c is the speed of light. Moreover, the total mass of an orbiting
system is inversely proportional to its measured frequency, implying that even though massive
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mergers give rise to large detection amplitudes, the frequency will fall below fmin. Therefore if
the last stable orbit frequency, fLSO = (63/22πMobs)

−1, with Mobs being the observed total mass,
is lower than fmin, such an event is ignored. Otherwise, if it lies between fmin and fmax, then
fLSO defines the new maximum frequency for that event.

B.0.1 Simulated cosmology

The simulation of the GW catalogue requires the following cosmological parameters: the redshift
at which the merger occurred, z, the value of the Hubble rate at that redshift, H(z), its comoving
and luminosity distance, dc(z) and dGW

L (z) respectively, as well as the cosmic time between the
merger and its observation, t. For this purpose, we use the public Einstein-Boltzmann code CLASS
code1 [95, 101, 102], which we have modified to accommodate a broad range of interacting dark
energy models. With this new patch, we generate a mock Universe adopting the flat ΛCDM
as the fiducial model, based on the best-fit cosmological parameters of the Planck 2018 data
release [32]. These include the current value of the Hubble parameter, H0 = 67.32 km/s/Mpc,
the baryon density parameter, Ωbh

2 = 0.022383 (with h = H0/100) and the density of cold
dark matter, Ωch

2 = 0.12011. Furthermore, we are also concerned with the derived quantity
Ωm = Ωb +Ωc, fixed to Ω0

m = 0.3144 for the fiducial Planck case.

Armed with the background cosmology, we simulate the merger events to establish the redshift-
luminosity relation. First, we construct a redshift distribution of events weighted by a probability
distribution. The characteristics of these events, such as the chirp mass, are simulated based on a
uniform distribution. Although each simulation run produces a unique data set, the overarching
conclusions remain unaltered, as the fiducial parameters constrain them. Once the mergers have
been modelled, we emulate the observational process, accounting for errors associated with each
event. Events are excluded if they yield a signal-to-noise ratio below a given threshold.

B.0.2 Distribution of simulated merger events

The Einstein Telescoped is engineered to explore a range of frequencies, f , akin to those of
LIGO, thereby probing merger events of nearby compact objects. These include binary neutron
stars (BNS) with mass ranges of [1, 2], [1, 2]M⊙, and black hole neutron star binaries (BHNS)
with [3, 10], [1, 2]M⊙, respectively, with the [·, ·] notation indicating the uniformly distributed
mass ranges considered. According to the advanced LIGO proposal, the ratio of BHNS to BNS
mergers is approximately 0.03 [496]. The probability distribution for the redshift of these events
follows:

P ∝ 4πd2c(z)R(z)

(1 + z)H(z)
, (B.0.10)

1https://github.com/lesgourg/class_public

https://github.com/lesgourg/class_public
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with the comoving distance and the Hubble rate at various redshifts sourced from CLASS. R(z)
represents the rate of binary mergers, which, at a linear approximation level, is [497]

R =


1 + 2z if z < 1 ,

3
4(5− z) if 1 ≤ z < 5 ,

0 otherwise .

(B.0.11)

In contrast, LISA focuses on lower frequencies than other proposed 3G detectors, making it more
sensitive to higher mass binary systems since f ∝M−1. Therefore, we consider simulations of de-
tected events from extreme mass ratio inspirals (EMRI) and binary massive black holes (BMBH)
in the ranges [1−30], [104−108]M⊙ [498] and [104−108], [104−108]M⊙ [499], respectively. The
number of detected BMBH to EMRI events is assumed to follow a 2 : 1 ratio according to the
mission’s proposal [500, 501].

Although, in principle, LISA will also be able to probe mergers of binary intermediate-mass black
holes (IMBH) and binary compact objects, we have excluded these from the simulations due to
the lack of definitive observational proof of IMBH. Furthermore, events from binary compact
objects are only expected to be observed at redshifts z ≈ 3 [502] irrelevant for our cosmological
aim since we are interested in the higher range of redshifts which LISA can reach.

Focusing solely on BMBH events, we base their redshift probability distributions on the histogram
outlined in the L6A2M5N2 mission specification [499], which explores three different mechanisms
for BMBH formation. Our study zeroes in on the light seed model, or the pop III model, which
suggests that BMBHs originate from the remnants of population III stars around a redshift
range of z = 15−20. In [499], two other scenarios for massive black hole creation were discussed,
namely delay and no-delay scenarios. These alternative routes involve the gravitational collapse
of gas at the centre of a galaxy in the same redshift range, z = 15− 20, resulting in a black hole
formed through a heavy seed mechanism. The critical difference between them is the timing -
with and without delay - of the black hole’s formation relative to the merger of its host galaxy.
More details about these scenarios are given in Refs. [503].

In our investigation, we provided mock data and obtained forecasts for both the delay and no
delay cases but found no significant improvement in constraining power from variations in these
models compared to the pop III case. Consequently, we restrict our focus to the pop III model,
as it proves sufficient to forecast the constraining power of LISA.

B.0.3 Simulation of measurements and errors

We follow the methodologies of [122, 493, 495, 497] to model the errors associated with the GW
standard siren catalogue. An event is considered genuinely detected only if its combined signal-
to-noise ratio (SNR), ρ, exceeds the particular threshold ρ > 8. The SNR is calculated taking
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into account the specifications of the interferometer in use:

ρ21,2,3 = 4

∫ fmax

fmin

df
|H(f)|2

Sh(f)
, (B.0.12)

where the numbers label the interferometer, the definition of H was provided in Equation (B.0.8)
and Sh is the noise power spectral density. This SNR weighting function reflects the unique
characteristics of the instruments in use. For ET, in particular, Sh is according to

S
(ET)
h = S0

(
xp1 + a1x

p2 + a2
1 +

∑6
n=1 bnx

n

1 +
∑4

m=1 cmx
m

)
, (B.0.13)

where, x = f/200 Hz−1, S0 = 1.449 × 10−52 Hz, p1 = −4.05, p2 = −0.69, a1 = 185.62, a2 =

232.56, bn = {31.18,−64.72, 52.24,−42.16, 10.17, 11.53}, cm = {13.58,−36.46, 18.56, 27.43}, as-
suming a lower cutoff at f = 1Hz.

On the other hand, for LISA, Sh relies on three noise components: the instrumental (or short)
noise, Sinst, the noise from low-level acceleration, Sacc, and the confusion background noise, Sconf

[503]:

S
(LISA)
h =

20

3

4Sacc + Sinst + Sconf

L2

[
1 +

(
fL

0.81c

)]
, (B.0.14)

where Sacc = 9× 10−30/(2πf)4(1 + 10−4/f), Sinst = 2.22× 10−23 and Sconf = 2.65× 10−23.

Therefore, combining Equation (B.0.8) with either Equation (B.0.13) or Equation (B.0.14) allows
us to determine the total SNR contribution for ET and LISA respectively, as expressed by

ρtot =
√
ρ21 + ρ22 + ρ23 . (B.0.15)

The instrumentally induced error in the luminosity distance is computed using the Fisher Matrix
approach,

σ
dGW,inst
L

≈
〈

∂H
∂dGW

L

,
∂H
∂dGW

L

〉− 1
2

, (B.0.16)

following [493]. This expression simplifies due to the proportionality H ∝ 1/dGW
L :

σ
dGW,inst
L

≈
2dGW

L

ρ
, (B.0.17)

where the factor of 2 accounts for the symmetry in the inclination angle, which ranges from
−20◦ to 20◦. There is a correlation between the gravitational wave luminosity distance and the
inclination of the source to the observer. For a single detector, dGW

L (z) and l are completely
degenerate with each other and the antenna patterns F×,+. However, this degeneracy can be
broken with multiple detectors and sensitivity to both polarisations. The maximum effect of
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this degeneracy on the signal-to-noise ratio is a factor of two, between the source being face-on
(inclination l = 0) and edge-on (l = π/2).
Gravitational lensing introduces another layer of error, represented by

σ
dGW,len
L

=
dGW
L

2
× 0.066

[
4(1− (1 + z)1/4)

]1.8
, (B.0.18)

and it is reduced by half to account for the event’s merger and ringdown.
Being space-based, LISA is also subject to a peculiar velocity-associated error of the GW sources
[504]:

σ
dGW,pec
L

= dGW
L

√
⟨v2⟩
c

[
1 +

c(1 + z)

HdGW
L

]
, (B.0.19)

with an estimate of the peculiar velocity of the host galaxy with respect to the Hubble flow of√
⟨v2⟩ = 500 km s−1.

The total error in luminosity distance combines all these individual errors in Equation (B.0.17)-
Equation (B.0.19):

σdGW
L

=
√

(σ
dGW,inst
L

)2 + (σ
dGW,len
L

)2 + (σ
dGW,pec
L

)2 . (B.0.20)

The simulation allows us to interpolate any number of events over a continuous redshift distri-
bution in the range 0 < z ≲ 5 for ET and 0 < z ≲ 10 for LISA. However, the number of mergers
detected by the ET will depend on factors such as operational costs and the complementary with
other experiments [122]. ET is anticipated to document over 104 mergers per year. However,
due to the scarcity of EM counterpart signals, the predicted number of detectable mergers with
an actual EM counterpart over 10 years is brought down to approximately 200 [505]. According
to [499], LISA is expected to detect around 56 events over a 10-year mission.
To account for uncertainties in the luminosity distance of each merger, we employ a Gaussian
distribution centred around the background cosmology, with a standard deviation determined by
the calculated errors, σdGW

L
. This introduces an artificial randomness factor around each merger,

leading to a higher deviation from ΛCDM for LISA than ET, essentially because LISA covers
a more extensive redshift range with corresponding larger errors, resulting in a broader data
spread. This is visually illustrated in Figure B.1.
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Figure B.1: Luminosity distance as a function of redshift for the mock data points from ET
(red) and LISA (blue). The data is generated from the fiducial model, ΛCDM, shown by the
black dotted line. The error bars represent the 1σ total errors in the luminosity distance.



C String Theory and the DBI Action

This Appendix provides a brief overview of string theory applied to cosmology and the main
concepts needed to understand the formulation of the Dark D-Brane Model studied in Chapter 9.
For more details on this and other cosmological applications of string theory, we refer the reader
to the review in [70].

Many cosmological models proposed in the literature have motivations based on string theory.
Instead of treating particles as point-like entities, string theory posits that the basic building
blocks of the Universe are one-dimensional strings that vibrate at different frequencies. These
vibrations give rise to various particle types and their properties, such as mass and charge. String
theory also suggests the existence of more than the conventional four dimensions of GR, poten-
tially providing a unified description of all four fundamental forces of physics in a single, coherent
picture. The process of starting from a higher-dimensional framework and then obtaining a 4-
dimensional effective theory is known as compactification and has been studied in great detail
[70]. The extra dimensions are typically compactified, i.e. mathematically folded up so small
that they are effectively invisible at the scales we can currently probe, which is why we do not
readily observe them. This has profound implications for cosmology, particle physics, and our
understanding of the fundamental nature of reality, although it is yet to be empirically verified.

These strings can be attached to branes, mathematical objects that generalise the notion of
physical membranes to n dimensions, which can propagate in space and time and can be char-
acterised by physical properties, such as tension and charge. D-branes are an important class of
branes that arise when one considers open (two-endpoints) strings whose endpoints must lie on
a D-brane (with the D standing for Dirichlet boundary conditions). Therefore, D-branes can be
regarded as surfaces (which could be 0-dimensional points, 1-dimensional strings, 2-dimensional
membranes, and so on) to which open strings can attach their endpoints. While strings are
1-dimensional objects, D-branes can exist in various dimensions and are essential in describing
non-gravitational forces like electromagnetism and nuclear forces in this context.

D-branes play a crucial role in various string theory dualities and phenomenology. A spacetime-
filling D-brane would be an object that fills all the dimensions of the spacetime in which it is
embedded. The throat refers to a region of this extra-dimensional space shaped like a funnel
or a tube. The term warped refers to the specific type of geometry that this throat can have,
often characterised by a metric tensor that varies along the length of the throat. In this setup,
the D-branes can move along the throat, often essential for various phenomena such as brane
inflation. Therefore, we will be concerned with D-branes that are dynamically embedded within
a region of that spacetime characterised by a warped geometry. Lastly, a D3-brane is a specific
type of D-brane that is a 3-dimensional hypersurface embedded in a higher-dimensional space-
time. They provide a setting for the famous Anti-de-Sitter/Conformal Field Theory (AdS/CFT)
correspondence [506], a form of the holographic principle. This duality allows physicists to relate
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a theory of gravity in a higher-dimensional bulk spacetime (described by the geometry around
the D3-brane) to a conformal field theory on the brane itself.

This leads to the idea of brane cosmological models, where the visible, four-dimensional Universe
is restricted to a D-brane (or a stack of branes) contained inside a compact higher-dimensional
spacetime, called the bulk or the hyperspace. The standard model particles and their interactions
live on the visible branes. There can also be hidden dark sector D-branes, from which the dark
sector stems, and which can only interact with the visible sector branes gravitationally, with
gravity being the force that propagates throughout the bulk. Interactions with the bulk, and
possibly with other branes, may leave observational imprints on our visible brane. Hidden sector
D-branes could be relevant for various theoretical constructions or even new forces and fields
that have not yet been observed. They can interact with the visible sector via gravitational
interactions or other weaker-than-Planckian couplings, making them candidates for explaining
phenomena not accounted for by the standard model of particle physics. For example, if dark
matter arises from the hidden sector, it would interact very weakly with the particles of the
visible sector, making it difficult to detect directly.

The Dirac-Born-Infeld (DBI) action is a type of action functional in theoretical physics that
describes D-branes’ dynamics, including their interactions with other fields. Initially, the Born-
Infeld action was formulated to address some of the infinities that arose in classical electrody-
namics and the context of string theory, and it has been adapted to describe the dynamics of
D-branes. The DBI action is non-linear and includes higher-order terms in the field strengths.
Unlike the standard actions in quantum field theory, which typically include quadratic terms in
the field or its derivatives, the DBI action has a square root of the determinant of the induced
metric on the brane, making it a non-canonical action. This results in a more complex set of
equations of motion that capture a more comprehensive range of phenomena, including some
that simpler models do not cover, encapsulated in the following action:

S =

∫
d4x

[
T (ϕ)

(
1−

√
1 +

(∇ϕ)2
T (ϕ)

)
− V (ϕ)

]
, (C.0.1)

where ϕ represents the D-brane’s position modulus and T (ϕ) and V (ϕ) are its tension and
potential, respectively. The functional form of T (ϕ) and V (ϕ) depend on the dimensionality of
the brane and determine the phenomenology of the scenario [507–509]. A phase of accelerated
expansion can be achieved by the non-canonical form of the kinetic terms, given constraints on
the speed of the moving D3-brane. However, constructing DBI inflation within a consistent string
compactification is challenging [510]. Nonetheless, this scenario serves as an essential example
of an inflationary mechanism relying on the symmetries of an ultraviolet theory, motivating
further investigations of its phenomenology and leading to the observational search for specific
cosmological signatures.

For D-branes moving in the internal compact space, the scalar field(s) associated with the open
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string representing, e.g. the radial position of a D-brane along a warped throat, couples disfor-
mally to matter living on such a brane [427]. Indeed, the induced metric on the brane takes
the form presented in Equation (5.3.3). Since a critical constraint on quintessence candidates is
always their interactions with standard model matter resulting in fifth forces, a natural place to
look for string theory quintessence candidates is from hidden sector D-branes, as they may be
coupled to visible sector D-branes with weaker-than-Planckian couplings. The simplest case is of
a D3-brane moving in a 5-dimensional AdS space, describing the mid-region of a warped throat,
T (ϕ) ∝ ϕ4.

This opens up a new avenue for exploring the dark Universe, providing a fresh perspective that
goes beyond the limitations of the standard cosmological model. These dark D-branes can give
rise to dark matter and dark energy candidates through their vibrations and interactions with
the visible sectors.

For the late-time acceleration, quintessence candidates need to have highly suppressed interac-
tions with standard matter (photons and baryons) to avoid any undetected fifth forces, highly
constrained by local measurements in the Solar System [221–223]. Further observational sup-
port for a non-universal or highly suppressed coupling to standard matter comes from the recent
constraints on the speed of gravitational waves inferred from observations of the optical coun-
terpart of a binary neutron star merger [125]. The cosmological viability of the DBI action in
the sense of allowing for quintessence attractor tracker solutions for the scalar field representing
the brane’s position has been the focus of Refs. [415, 417]. In this scenario, the dynamics of the
field are constrained by the causality of the gravity side of the AdS/CFT correspondence [511].
The DBI action effectively describes a probe D3-brane moving in the radial direction of the AdS5

spacetime, with a string-inspired phenomenological action given by

S =

∫
d4x

[
h(ϕ)−1

(
1−

√
1 + h(ϕ)∂µϕ∂µϕ

)
− V (ϕ)

]
. (C.0.2)

The DBI field ϕ has mass dimensions and stands as the dark energy component. The brane’s
warp factor h(ϕ) ≡ T (ϕ)−1 encodes the geometry of the higher-dimensional space, in terms of
the DBI field and V (ϕ) represents the potential term arising from possible interactions with the
bulk and other brane stacks.

This cosmological context allows for accelerated expansion even when the Lorentz-like factor

in the action in Equation (C.0.2), γ = 1/
√

1− h(ϕ)ϕ̇2, is much larger than unity, meaning
that h(ϕ)ϕ̇2 ≈ 1. The γ factor measures the relativistic motion of the D3-brane, and when
it approaches unity, the canonical kinetic term is recovered, and ϕ behaves like a standard
quintessence field. On the other hand, when γ → ∞, the purely relativistic limit is approached.
This factor acts as a speed limit, allowing the field to evolve relatively slowly, even in steep
potentials. The application of DBI theories to dark energy has been seminally discussed in
[415, 416].
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In Chapter 9, we study a DBI-essence scenario featuring a coupling to dark matter, which
naturally arises in a stacked D-brane system, where dark energy emerges from open strings
representing the radial position of a D-brane along a warped throat, and dark matter arises from
open strings representing matter on the same hidden sector brane. The resulting theory, referred
to as the Dark D-Brane Model, was constructed in [407], in which the action for the dark energy
scalar takes the form of Equation (C.0.2), while the action for the dark matter describes N
particles on the moving D3-brane at low energies. Further details are provided in Chapter 9, in
the particular case of an AdS warp factor, h(ϕ) ∝ ϕ−4, together with a mass term for the scalar
potential, V (ϕ) ∝ ϕ2.
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