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Abstract

The quest to develop and implement techniques that enable the achieve-
ment of highly accurate measurements in the estimation of paramet-
ers constitutes a crucial component of the field of quantum metrology.
Using quantum properties to enhance parameter estimation, the in-
terferometry process requires the development of entangled quantum
states and single-shot measurements to extract information about
an unknown parameter. Despite its perceived effectiveness, imple-
menting this scheme in a larger number of states is quite challenging.
According to recent research, quantum jump metrology offers an al-
ternative method for acquiring information. Using quantum feed-
back and continuous observation of an open quantum system, this
method generates phase-dependent temporal correlations without the
need for entanglement as a resource. This study investigates relative
phase measurements in an optical network with two cavities and laser-
pulse quantum feedback. The methodology proposed in the study is
capable of surpassing the standard quantum limit without requiring
complex quantum states. Furthermore, the discovery that quantum
systems can generate not only local but also temporal non-classical
correlations has been the subject of extensive research, along with the
search for the most effective quantum devices that exploit these correl-
ations. By analysing the parametrization of the two-cavity metrology
scheme, it is possible to observe the analogy between the quantum
jump metrology scheme and the formalism of the hidden quantum
Markov models. As first steps towards investigating the quantum
jump metrology scheme in the hidden quantum Markov formalism,
we begin by characterising the main properties of a one-qubit hid-
den quantum Markov model. Comparing this machine to its classical
counterpart with a single bit, a so-called hidden Markov model, we
find that hidden quantum Markov model is capable of generating com-
plex stochastic sequences and time correlations more than a single bit
hidden Markov model.
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Chapter 1

Introduction

The hypothesis of light quantization as a consequence of the photoelectric
effect in accordance with Planck’s postulate has revolutionised our understand-
ing of the nature of light, which was previously believed to have only one form,
electromagnetic waves. Although, the realisation of the concept of light quant-
ization was postulated a long time before the establishment of quantum the-
ory by Schrödinger and Heisenberg, the experimental verification of controversial
quantum theories, such as entanglement, has remained purely theoretical and has
been the subject of debate only through ‘thought experiments’ for a long time.
As a result of the difficulty of experimentally validating quantum hypotheses,
there has been a great interest in thought experiments. Thought experiments,
also known as ‘Gedankenexperiment’, are hypothetical experiments designed to
think deeply about a fundamental phenomenon in physics in order to investigate
the properties of the phenomenon and the consequences of the thought experi-
ment. The significance of thought experiments lies in their potential to establish
numerous theoretical principles and hypotheses, despite the challenges of testing
them in laboratories. These difficult-to-perform investigations aid in the compre-
hension of the most counter-intuitive quantum laws, such as entanglement and
non-locality. In particular, they assist in the investigation of the relationship
between the macroscopic classical physics world and the microscopic quantum
physics world. Understanding the quantum laws and the thin boundary between
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1.1 Quantum parameter estimation

the quantum and classical worlds is crucial for the efficient application of these
laws in quantum information, computation, and quantum technologies. Neverthe-
less, the development of laser devices and photon detectors has made it possible
to test quantum hypotheses experimentally, thus overcoming the difficulties in
validating the outcomes of thought experiments [1, 2]. In parallel to the develop-
ment of quantum technologies, a new discipline utilising the quantum properties
of systems in quantum computation and quantum metrology has emerged. As
a result, an extensive amount of research has been conducted to enhance our
comprehension of quantum theories and their practical implementations.

1.1 Quantum parameter estimation

Quantum metrology is one of the promising fields that exploits the quantum
properties of systems in quantum technology. The objective of quantum metro-
logy is to enhance the accuracy of measurement processes of parameter estima-
tion. The methods of parameter estimation and phase measurement enhancement
have been thoroughly studied recently [2]. Quantum estimation theory is neces-
sary for testing physics principles that may be difficult to infer directly through
measurements of observables or the practical difficulty of performing the experi-
ment physically. It also looks for optimisation of parameter estimation methods,
maximisation of Fisher information, and minimization of uncertainty in para-
meter estimation [3]. The pursuit of developing and implementing methods that
facilitate the achievement of accurate measurements in parameter estimation is
an essential aspect of the field of quantum metrology. Furthermore, the improved
computational capacity of optical interferometry networks in quantum metrology
has been exhibited by researchers using boson sampling, as suggested by Aaron-
son and Arkhipov [4]. In addition, it is essential to note that precise and reliable
measurements are of the utmost significance in a variety of fields and disciplines.
These measurements provide a fundamental basis for a wide range of applications,
ranging from the comprehensive investigation of biological samples [5, 6] to the
identification and examination of gravitational waves [7]. Moreover, in the field
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of science, there is a widespread recognition of the established techniques for pro-
ficiently carrying out such measurements. This recognition is substantiated by a
range of scholarly publications, such as the works of Demokowitcz-Dobrzanski et
al [8], Yang and Zhang [9], Loughridge [10], Ataman [11], and Blanco [12], among
others, that have aided in the evolution and enhancement of these methodologies
throughout the years. The utilisation of high-intensity sources is commonly con-
sidered the most convenient method for improving measurement accuracy. The
main resource employed in quantum metrology experiments is usually the num-
ber of photons transmitted through the experimental apparatus or the number
of detected time measurement outcomes. The standard quantum limit (SQL)
represents the highest level of accuracy that can be attained with conventional
metrology methods. Any attempt to exceed this boundary using conventional
metrology is considered unachievable. Nevertheless, although it was widely be-
lieved that quantum enhancement can be only achieved though utilising entangled
photons, recent research suggest that breaking the SQL is achievable by following
quantum jump approach in quantum metrolgoy [13, 14].

1.2 Open quantum system

In quantum parameter estimation, the use of open quantum systems instead
of closed systems has been shown to be a promising approach for measurement
enhancement [13, 15–17]. In a closed quantum system that is isolated from its
surroundings, the system’s energy is always conserved. The wavefunction form-
alism is frequently utilised in characterising the dynamics of a closed quantum
system, while the density matrix formalism is often applicable to mixed states.
For a closed quantum system, the system’s description and evolution are achieved
through unitary evolution. The wavefunction formalism has been developed in
a manner that ensures the preservation of the norm of the wavefunction. The
Schrödinger equation predicts that [18]

d

dt
|ψ(t)⟩ = − i

ℏ
H(t) |ψ(t)⟩ , (1.1)
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where H(t) is the time-dependent Hamiltonian. The solution of the Schrödinger
equation in the case of a closed quantum system where the Hamiltonian is time
independent reads

|ψ(t+ ∆t)⟩ = U(t+ ∆t, t) |ψ(t)⟩ , (1.2)

where U(t + ∆t, t) = exp[−iH(∆t)] is a unitary time evolution operator. For
a time dependent Hamiltonian H(t) such that [H(t), H(t′)] = 0, the unitary
operator is the integration of the Hamiltonian as a function of time; thus, the
unitary operator U(t+ ∆t, t) reads as

U(t+ ∆t, t) = exp
t+∆t∫
t

(−iH(n)) dn . (1.3)

As mentioned earlier, the closed quantum system does not have to be in a
pure state. For a mixed state quantum system, we resort to the density matrix
formalism, that is given by

ρ(t+ ∆t) =
∑

k

wkU(t+ ∆t, t) |ψk(t)⟩ ⟨ψk(t)|U †(t+ ∆t, t) , (1.4)

where wk is the probability of being in state |ψk(t)⟩. Thus, the density matrix is
also defined as ρ(t+ ∆t) = U(t+ ∆t, t)ρ(t)U †(t+ ∆t, t). If the quantum system
is evolved in small time steps ∆t, the unitary operator can be approximated to
the first order as

U(t+ ∆t, t) ≈ 1 − i

ℏ
H(t)∆t . (1.5)

Utilising the approximate definition of the unitary operator, the time evolution
of the density matrix reads

ρ(t+ ∆t) = ρ(t) − i

ℏ
[H(t), ρ(t)]∆t . (1.6)

Rearranging Eq. (1.6) gives the differential equation

d

dt
ρ(t) = − i

ℏ
[H(t), ρ(t)] . (1.7)
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The differential equation in terms of the density matrix is known as the Von
Neumann equation. Using the notion of statistical mechanics, the differential
equation of the density matrix in Eq. (1.7), the Liouville equation, is given by

d

dt
ρ(t) = Lρ(t) . (1.8)

where L is the Liouville superoperator. The action of the Liouville operator on
the density matrix is defined as Lρ = − i

ℏ [H(t), ρ]. If the Hamiltonian H is time
independent, then the density matrix using the Liouville equation is ρ(t+ ∆t) =
exp(−iL(∆t))ρ(t).

The closed quantum system approach is not applicable in cases where the
quantum system is affected by the surrounding environment. The exchange of
energy between the system and the environment is inevitable. In this case, an
open quantum system formalism is necessary to establish a mathematical model
that includes the dynamics of the quantum system and the surrounding environ-
ment, which can have infinite degrees of freedom. The open quantum system can
be analysed as a system that interacts with its environment and in which energy
is dissipated from the system to the environment. System-environment coupling
generates correlations between the system and the environment. In addition, this
analysis incorporates noise and corresponds to a more realistic physical system.
Thus, the total density matrix of the quantum system S in a Hilbert space HS

and the environment E in a Hilbert space HE can be defined as ρSE [18].
If we are interested in the evolution of the principal system ρS, then it can be

defined by evaluating the reduced density matrix of the total system as

ρS = TrE(ρSE) . (1.9)

If Ô is an operator acting on the Hilbert space of the quantum system HS, then
the expectation value of any observable Ô acting on the Hilbert space HS where
the density matrix of the quantum system ρS is only known,〈

Ô
〉

= TrS[ÔTrE(ρSE)] = TrS(ÔρS) . (1.10)

The evolution of the density matrix of the Schrödinger equation is defined in
a similar way as in the case of a closed quantum system, with some differences
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in the definition of the Liouville superoperator defined in Eq. (1.6) and it reads

d

dt
ρS(t) = LρS(t) . (1.11)

The Liouville superoperator is defined in terms of a set of operators known as the
Lindblad operators Lk. The action of the Liouville superoperator on the reduced
density matrix ρS

LρS = − i

ℏ
[H(t), ρS(t)] +

∑
k

Γk(LkρsL
†
k − 1

2[L†
kLk, ρS]+) . (1.12)

where Γk represents the correlation function between the system and the envir-
onment, 1

2 [L†
kLk, ρS]+ is the anti-commutator of the two terms L†

kLk and ρS. It
is readily apparent that the key difference between a closed system and an open
quantum system lies in the addition of the Lindblad operators. In the context of
open quantum systems, the additional terms are incorporated to account for the
energy dissipation that occurs between the quantum system and its surrounding
environment.

1.3 Open quantum system as hidden quantum
Markov model

Modelling stochastic processes has recently seen the development of a number
of quantum algorithms that demonstrate the potential advantages of quantum-
based measurements over classical measurements. The standard approach for
modelling stochastic processes with hidden states, in which an observable vari-
able depends on the state of the system, is commonly referred to as hidden Markov
models (HMM). In such a model, the future state of the system depends solely
on its current state; consequently, information regarding the system’s prior states
is lost. On the other hand, the quantum version of the hidden Markov model,
also known as hidden quantum Markov model (HQMM), that was first intro-
duced by Monras et al.[19] represents a more general quantum counterpart to a
previous proposal of evolosing qunatum systems using Von Nuemann projective
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measurement [20]. The advantage of the quantum based Markov models was fur-
ther demonstrated by research publications such as those authored by Cholewa
et al. [21], Srinivasan et al.[22] and Markov et al.[23]. The utilisation of HQMM
requires a reduced number of states for the purpose of modelling a stochastic
process, in contrast to classical models for the same stochastic process. The
HQMM has been utilised to model the open quantum system, as demonstrated
by the findings presented in recent research Ref. [13, 24]. The operators that
trigger transitions in HQMMs are formulated based on trace preserving Kraus
operators. Consequently, an open quantum system that is subjected to quantum
feedback will undergo an evolution through Kraus operators that follow paramet-
risation conditions of HQMMs. As a result, the suggested open quantum system
model might find use in quantum stochastic process simulations or quantum com-
putations.

1.4 Motivation and aim

An alternative method to classical parameter estimation method, quantum
jump metrology approach, has been proposed for parameter estimation enhance-
ment. Research has demonstrated that the utilisation of quantum feedback has
the capability to measure phase shifts between two light pathways with a level of
precision that surpasses the SQL. Unlike other quantum metrology approaches,
quantum jump metrology does not require the use of entanglement as a resource.
Rather than relying on entanglement, this approach employs non-classical tem-
poral correlations, which are frequently more readily accessible. In this context
the quantum jump metrology approach refers to the utilisation of quantum feed-
back loops in quantum metrology. This involves the continuous monitoring of
an open quantum system over a duration of time, while conducting a sequence
of consecutive measurements on the system. The previously mentioned meth-
odology exhibits the potential for achieving an accuracy level that surpasses the
standard quantum limit (SQL). By employing this methodology, it is feasible
to achieve an enhancement in accuracy for phase shift measurements between
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light pathways that surpass the SQL, without necessitating entanglement [13, 14].
The employed optical network comprises of an optical cavity situated within a
quantum feedback loop. This network is used to perform measurements on the
phase differences between the two light pathways. The measurements are based
on the non-linear dynamics of the individual quantum trajectories of the cavity’s
state. The primary resource utilised in quantum jump metrology is time, which
is comparatively more accessible than entanglement. The utilisation of quantum
jump metrology is, therefore, well suited for expanding to complex networks, in
comparison to alternative quantum metrology approaches. Furthermore, the im-
plementation of quantum jump metrology schemes solely requires linear optics,
which are easily accessible and can be expanded to more complex networks.

In this thesis, we lay the foundation for enhancing a previous single-parameter
quantum jump metrology scheme and generalising it to the simultaneous measure-
ment of phase shift difference between light pathways with a precision exceeding
the SQL [13]. The proposed network is more complex as it comprises of two op-
tical cavities within an instantaneous feedback loop. A sequential measurement
approach is employed on the system using generalised measurement operators.
This introduces complex non-linear dynamics in the system, as previously ex-
plored in studies by Monras et al.[19] and Clark et al. [24] on hidden variables.
Upon closer examination of the open quantum system formalism of optical net-
works from a stochastic processes modelling perspective, it becomes evident that
the open quantum system model, which undergoes a time evolution governed by
Kraus operators, can be classified as a HQMM, as previously discussed in the
literature[19, 24]. The investigation of formalism for open quantum systems as
HQMM is conducted in light of the temporal correlations present in the quantum
jump metrology approach for phase shift measurements. Furthermore, we conduct
a comparative analysis of the performance of a basic HQMM in demonstrating
correlations among measurements to the performance of the classical counter-
parts, specifically, the Markov model (MM) and the HMM.
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1.5 Outline

This thesis consists of seven chapters. In Chapter 2 we review the meth-
ods of parameter estimation using optical experimental setups. We focus on the
measurement of phase shift difference between two light pathways in a classical
Mach–Zehnder interferometer. We present a comprehensive discussion of classical
parameter estimation methods, with a specific emphasis on the Mach–Zehnder
interferometer as an example of a tool that is capable of attaining the utmost
scaling accuracy achievable within classical frameworks that is known to operate
at the SQL. Subsequently, we examine the utilisation of quantum properties of
systems to achieve an improvement in parameter estimation beyond the SQL.
We present a comprehensive analysis of quantum-based methodologies that have
the potential to exceed the SQL. Our focus is on the practical implementation of
these techniques. More concretely, we present the notion of a quantum metro-
logy approach that employs the quantum jump method within an open quantum
system to produce temporal correlations among successive measurements on an
optical network. In addition, we discuss the evaluation of the maximum accur-
acy attainable in parameter estimation methodologies through the estimation of
the Cramér-Rao bound. We conclude this chapter by discussing the temporal
correlations that exist in quantum and classical systems.

In Chapter 3 we shall introduce the modelling of open quantum systems
consisting of a principal quantum system and the environment. We study the
quantum mapping in open quantum systems using density matrix representation
and the generalised measurements for retrieving information from the evolving
open quantum system. We focus on the operator-sum representation and quantum
mapping using Kraus operators. Then we study the dynamical evolution of an
open quantum system using master equations of Lindbladian form. The master
equation formalism established earlier can be challenging to solve analytically,
therefore we resort to the numerical analysis using a quantum trajectory theory.
The primary benefit of using this approach lies in its ability to model the dynam-
ics of individual trajectories of the quantum systems. As a result, it is possible to
investigate both the system’s individual trajectory and the ensemble behaviour
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of a vast number of trajectories.
In Chapter 4, we present a theoretical framework for studying the dynamics of

a single cavity network as an open quantum system inside a feedback loop. Using
a coherent state for the state of the cavity, the description of the system’s master
equation yields extremely non-linear equations that cannot be solved analytically.
For an ensemble of individual trajectories, we investigate the dynamical behaviour
of the optical cavity and the photon statistics of the system. Consequently, we
discuss the parameter estimation accuracy of the single cavity network in phase
shift difference measurement.

In Chapter 5, we introduce our proposed optical network which consists of
two cavities network inside an instantaneous feedback loop. The optical network
here is treated as an open quantum system and we follow the quantum jump
approach to analyse the dynamics of the system. By studying a simulation of
the evolution of the optical network that results in a large ensemble of individual
trajectories of the system we are able to assess the performance of the network
in estimating the phase shift difference for sets of different parameters.

In Chapter 6, we introduce the mathematical modelling of stochastic processes
in the context of hidden models. We provide an in-depth examination of the
Markov model, hidden Markov model, and a quantum version model based on
Markov chains known as the hidden quantum Markov model. We assess the
models in terms of the existence of correlations between observing successive
measurements by revisiting the basic definitions and parametrisation of the three
models to evaluate the probability of observing certain sequences. Finally, in
Chapter 7, we provide a conclusion to this thesis by examining the outcomes of
prior simulations.
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Chapter 2

Parameter Estimation

Classically, there are two primary methods for enhancing parameter estima-
tion: either by increasing the number of probing systems or repeatedly conduct-
ing the experiment. This approach fails in many cases in which repeating the
experiment for a large number of times is not possible or due limited resources.
Moreover, the highest accuracy attainable by classical methods is limited by the
SQL. The employment of quantum properties of physical systems revealed that
there is an advantage achieved in enhancing parameter estimation beyond the
SQL and reaching the Heisenberg limit (HL) using fewer resources and quantum
entanglement [16, 25–27]. However, since the implementation of quantum entan-
glement at a large scale is not experimentally and readily feasible, other methods
to surpass the SQL are investigated. In particular, we focus on the quantum jump
metrology as an alternative approach in which the temporal correlations formed
as a result of sequential measurements on an optical network system using coher-
ent states subjected to instantaneous quantum feedback as an input. Moreover,
this scheme exhibits measurement enhancements beyond the SQL with relativity
accessible linear optics elements.

In this chapter, we discuss the classical parameter estimation methods with
a particular focus on the Mach–Zehnder interferometer as an example of an ap-
paratus capable of achieving the highest scaling accuracy possible within clas-
sical frameworks. Then, we introduce the concept of quantum parameter estim-
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ation, in which we discuss methods used to achieve measurement enhancement
in parameter estimation through utilising the quantum properties of systems.
We primarily focus on employing quantum jump metrology approach for para-
meter enhancement. Furthermore, we discuss the quantification of the accuracy
of the parameter estimation scheme utilising the concept of Fisher information
and Cramér–Rao bound. Finally we conclude this chapter by introducing the
concept of quantum correlation through entanglement and addressing the clas-
sical correlations that exist in stochastic processes.

2.1 Classical parameter estimation

The classical approach to estimating an unknown parameter φ can be achieved
through the utilisation of N independent probes in a measurement process, as
illustrated in Fig. 2.1. In the present case, the scaling of the uncertainty of
the estimator, denoted by ∆φ̂, with the number of probes, denoted by N , is
constrained by the SQL, which tells us that [11, 28]

(∆φ̂)2 ∝ 1
N

(2.1)

where N here is the resource. The development of alternative metrology tech-
niques has been essential to surpassing the SQL. As previously noted, the im-
provement of measurements can be achieved through two classical methods: in-
creasing the number of resources N employed in the experiment or conducting
the experiment multiple times to reduce the measurement’s uncertainty. The
classical scheme of standard metrology is shown in Fig. 2.1. The accuracy of the
measurements can be inferred from the number of systems that have been put
into operation. Nonetheless, the feasibility of such an approach may be limited
in certain cases, for example when the object under investigation is fragile or
exhibits a limited lifespan [5]. In instances such as these, accurate assessments
are made only through multiple repartitions of the measurements. This is due to
the fact that the measurements rely on optical interferometry and do not employ
the properties of quantum physics.
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Figure 2.1: Classical/uncorrelated scheme consisting of independent and uncor-
related systems in which each probe is first encoded with the parameter to be
determined and then measured. In such a case, the accuracy of measurement is
limited by the standard quantum limit.

To investigate the phase estimation performance of a classical interferometer,
we conduct a thorough analysis of the classical scheme for parameter estimation
enhancement. The ultimate goal of analysing a classical interferometer is to use
it as a benchmark for evaluating complex measurement schemes later. The meas-
urement of the phase difference between two light pathways can be approached
through a classical method that involves the implementation of an interferometer
equipped with two phase shifters one on each arm. This approach is widely used
in the field and has proven to be effective in parameter estimation. Here, we
examine the Mach–Zehnder interferometer scheme shown in Fig. 2.2. The in-
puts are carefully arranged such that a coherent state is directed towards only
one input, denoted as |α⟩, while the other input is the vacuum state |0⟩. The
objective is to examine various components and their functions to gain a better
understanding of the experimental procedure and obtain an in-depth examination
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of the experimental configuration illustrated in Fig. 2.2. Conducting a thorough
examination of the experimental setup, we aim to enhance our understanding of
the underlying principles and mechanisms at play in the observed phenomenon.

Employing a quantum mechanical framework to investigate the Mach–Zehnder
interferometer, we utilise the creation and annihilation operators to provide a
quantum mechanical representation of a lossless beam splitter. It is noteworthy
that when a coherent state is present in one input and a vacuum is present in the
other, the input port containing the vacuum is characterised by a quantized field
in the vacuum mode. Moreover, in case of coherent state, the classical analysis of
the scheme would yield identical outcomes as the quantum mechanical treatment.

Using the quantum mechanical framework, the annihilation field operators
between the input ports (a0, a1) and the output ports (a2, a3, a4, a5) of the above
interferometer are given by [28],

a2 = 1√
2

(a0 + ia1) ,

a3 = 1√
2

(a1 + ia0) ,

a4 = 1√
2

(eiφ1a2 + ieiφ2a3) ,

a5 = 1√
2

(eiφ2a3 + ieiφ1a2) . (2.2)

Here, for a 50:50 beam splitters, the reflected beam gains a factor of i upon
reflection and the mirrors add a factor of eiπ/2 that can be ignored.

Re-writing the output annihilation operators a4 and a5 in terms of the input
annihilation operators a0 and a1 we obtain the following equations,

a4 = iei(φ1+φ2)/2[− sin
(
φ2 − φ1

2

)
a0 + cos

(
φ2 − φ1

2

)
a1] ,

a5 = iei(φ1+φ2)/2[cos
(
φ2 − φ1

2

)
a0 + sin

(
φ2 − φ1

2

)
a1] . (2.3)

For comparing the Mach–Zehnder interferometer to a more complex model
that will be discussed later, we chose a coherent state and the vacuum state as
the interferometer’s inputs. Assuming a coherent state is incident on one input
and vacuum on the other, |ψin⟩ = |α, 0⟩ describes the initial quantum state. After
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Figure 2.2: Mach–Zehnder interferometer experiment with a coherent state in
one input port and a vacuum state in the other input port sent through a 50:50
beam splitter, BS1, and then passing through phase shifters, φ1 and φ1, at each
light pathway. The two modes travel through another 50:50 beam splitter, BS2,
before being measured at one of the two detectors, d1 and d2.

passing through the beam splitters and phase shifters, the final state at the output
port reads

|ψout⟩ = S |ψin⟩ (2.4)

where S = SBS1SPhaseSBS2 , SBS1 = SBS1 = 1√
2

1 i

i 1

 is the beam splitter

transformation matrix and SPhase =
eiφ1 0

0 eiφ2

.

In particular, after passing the beam splitter and the phase shifters, the initial
state |ψin⟩ transforms to a tensor product of coherent states as follows

|ψout⟩ → iei(φ1+φ2)/2
∣∣∣∣−α sin

(
φ2 − φ1

2

)
, α cos

(
φ2 − φ1

2

)〉
. (2.5)
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We present next a thorough analysis of the accuracy of the phase shift meas-
urement of this interferometer scheme. Here, we can easily see that the probability
of detecting a photon at the first detector d1 and second detectors d2, respectively,

P1 =| α |2 sin2(φ2 − φ1

2 ),

P2 =| α |2 cos2(φ2 − φ1

2 ). (2.6)

These probabilities represent the oscillatory nature of photon detection at
the detectors, which is dependent on the phase shift difference φ2 − φ1. To
gain a better understanding of the accuracy of the measurement of the phase
difference between the two light paths of this interferometer scheme, we must
also estimate the measurement uncertainty. To accomplish this, we can employ
the error propagation formula [29]

∆φ̂ = ∆O
| ∂⟨O⟩

∂φ
|
. (2.7)

where ∆O =
√

⟨O2⟩ − ⟨O⟩2. To estimate the uncertainty of the phase measure-
ment in such a scheme, we can consider the number operator N as an observable
O. Using the second d2 output port (i.e. a4), the number operator in which we
are interested here is N4 = a†

4a4. Hence the uncertainty in phase measurement,
assuming a coherent state input, is given by Eq.(2.1) as,

∆φ̂ = ∆N4

| ∂⟨N4⟩
∂φ

|
(2.8)

where, ∆N4 =
√

⟨N2
4 ⟩ − ⟨N4⟩2. Refer to the appendix A for detailed derivation

of ⟨N2
4 ⟩ and ⟨N4⟩.

Therefore, one can see that the expectation values of ⟨N2
4 ⟩ and ⟨N4⟩ are given by

[11],

⟨N4⟩ =| α |2 cos2(φ2 − φ1

2 ). (2.9)

〈
N2

4

〉
=| α |4 cos4(φ2 − φ1

2 )+ | α |2 cos2(φ2 − φ1

2 ). (2.10)
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Figure 2.3: Uncertainty in phase measurement ∆φ̂ as function of phase difference
(φ2 − φ1) for a coherent state input in one port and vacuum in the other port.
For a single input coherent state |α|2 = 50, the uncertainty clearly reaches a
minimum limit that is proportional to 1/

√
N = 1/

√
50.

Using Eq. (2.8) and the expressions of the expectation values shown in Eq. (2.9)
and Eq. (2.10), the phase measurement uncertainty ∆φ reads,

∆φ̂ = 1
| α sin

(
φ2−φ1

2

)
|
. (2.11)

The average number of photons N is defined in terms of the input coherent state
as N = |α|2; therefore, Eq. (2.11) becomes,

∆φ̂ = 1√
N | sin

(
φ2−φ1

2

)
|
. (2.12)

As seen from Eq. (2.12), the accuracy in the measurement scales as ∆φ̂ ∼
1/

√
N which is essentially the SQL. A graph of the uncertainty ∆φ̂ as a function

of the phase shift (φ2 − φ1) is shown in Fig. 2.3. The uncertainty ∆φ̂ in the
phase measurement diverges rapidly when (φ2 −φ1) = k2π, where k ∈ Z, while it
reaches a minimum value at (φ2 − φ1) = π. One can see that the uncertainty in

18



2.2 Quantum parameter estimation

the phase shift measurement becomes smaller when the number of photons sent
through the setup increases. However, as we had predicted, the uncertainty will
always be bound to a certain limit that scales as the SQL.

2.2 Quantum parameter estimation

It has recently been recognised that quantum metrology, in particular, can
be used to investigate the properties of quantum physics [25, 30, 31]. The util-
isation of quantum properties of systems can potentially enhance the precision
of measurements without increasing the size of probes [32–34]. Further research
has been carried out on the topic of metrology, with a particular emphasis on
the quantum behaviour of systems as a method of achieving measurement en-
hancement. Interferometric devices are frequently employed in the measurement
of physical quantities, with light serving as the source of measurement. The
current research explores the field of quantum metrology and its potential for
surpassing the SQL through the utilisation of entanglement. Through extens-
ive research, it has been discovered that the implementation of entanglement in
quantum metrology can lead to enhanced measurements beyond the SQL. The
quantum metrology scheme is displayed in Fig. 2.4. In the case of correlated
probes, this scaling can be enhanced. In the case of probes exhibiting maximal
correlation, it is possible to achieve the HL, which is proportional to the number
of probes. The experimental protocol requires the preservation of entanglement
among different systems throughout the duration of the experiment. The new
limit is known as HL and it scales as [30]

(∆φ̂)2 ∝ 1
N2 . (2.13)

This means that for large N , some unknown parameter φ can be estimated with
much higher precision. Determining how to obtain and utilise such correlated
probes has thus been an active area of research. However, although entanglement
is possible to realise experimentally, it is quite challenging to extend entanglement
schemes to include a large number of systems [35].
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Figure 2.4: A quantum mechanical scheme to achieve an enhancement in es-
timating an unknown parameter φ utilising entangled states give rise to higher
measurement accuracy reaching the Heisenberg limit.

As illustrated in Fig. 2.4, one solution is to evolve entangled quantum states in
a φ-dependent fashion followed by a collective measurement of their state [36–44].
However, a typical problem with this approach is that it is difficult to implement.
For example, it has been shown that so-called N00N states, which are highly-
entangled N -particle states, are optimal for quantum interferometry experiments
[39, 43–48]. However, reliably obtaining a reasonably large N in the laboratory
to realise the previously-described enhancement remains extremely challenging
[49, 50]. Using entanglement is not the only way of enhancing measurement
precision [35, 51–55]. For example, in Ref. [35], it has been shown that another
way of overcoming the SQL in Eq. (2.1) is by using non-linear or interacting
systems. Using this approach, the uncertainty ∆φ̂ can scale such that

(∆φ̂)2 ∝ 1
Nk

. (2.14)

where k is the order of the non-linearity of the interaction. Once again though,
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2.3 Quantum jump metrology parameter estimation

non-linearities are often hard to implement experimentally, particularly when
processing information with light.

At this point, it is useful to note the generality of the form of the N ‘probes’
in Eqs. (2.1), (2.13) and (2.14). Typically, these can be imagined as individual
particles, or some dimensionality of the system. However, the value N can also be
interpreted as the query complexity of the system, i.e. the number of incompress-
ible steps [13, 56]. Hence, while in a single-shot setup, the number of particles
is clearly the relevant resource N , for a continuously monitored system, N may
instead be counted as the number of times the system is ‘probed’, i.e. it is related
to the temporal resolution of detection.

2.3 Quantum jump metrology parameter estim-
ation

In this thesis, we adopt an alternative approach and use quantum jump met-
rology [13, 14] to improve the precision of estimation. Quantum jump metrology
does not require the preparation of highly entangled quantum states or the pres-
ence of non-linear optical elements; therefore, it is relatively easy to implement.
Its basic idea is to deduce information about an unknown parameter φ by mon-
itoring the (quantum jump based) output statistics of an open quantum system.
To ensure that the dynamics of the individual quantum trajectories of the system
depend on φ, we use quantum feedback [57], that is triggered by certain measure-
ment outcomes, as illustrated in Fig. 2.5. Using the dynamics of open quantum
systems, particular in continuously monitored systems, to infer information about
an unknown parameter has recently received a lot of attention in the literature
[15, 58–60]. The use of quantum feedback has found a variety of applications
not only in quantum metrology [13, 14], but also in quantum error correction
and noise reduction [61], quantum state stabilisation [62], entanglement control
[63] and in implementing the HQMM [24]. Moreover, it has recently been shown
that quantum feedback can lead to ergodicity breaking in quantum optical sys-
tems [64]. This can again be achieved even when using only coherent states and
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Figure 2.5: Quantum jump metrology scheme to achieve an enhancement in es-
timating an unknown parameter φ, where the quantum system is evolved in time
inside an instantaneous feedback loop. Sequential measurements on the system
allows for an enhancement of the estimation performance beyond the SQL due
to the existence of temporal correlations.

feedback in the form of displacements of the field, thus only requiring relatively
simple technology for implementation. The quantum jump metrology approach is
considered a quantum approach since it involves the detection of single photons.

Intuitively, we can see how quantum feedback can lead to time correlations
in the bath statistics of an open quantum system. Consider a quantum optical
system that emits a photon at a time t1. Then, as the system is perturbed
by the feedback, the emission probability for another photon is altered. Thus,
the emission at time t2 is correlated with the emission at t1. If this feedback
depends on an unknown parameter, these correlations can be used to gain in-
formation for its estimation. Hence, it is not surprising that quantum feedback
is a powerful tool for quantum technology tasks. The quantum jump metrology
approach has offered an alternative method to achieve enhancement in phase shift
measurements of light pathways to obtain high accuracy beyond the SQL. The
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enhancement in the parameter estimation has been demonstrated using an optical
cavity inside a quantum feedback loop to perform measurements on the phase dif-
ference between two light pathways [13, 14]. The accuracy of the measurements
in this model that based on the non-linear dynamics of quantum trajectories was
found to beat the SQL. This scheme is thought to have a promising application in
quantum metrology since it only requires more accessible linear optics, which are
readily available. Moreover, the scheme may be extended to more sophisticated
networks. The motivation behind using a quantum jump approach is the fact
that both standard metrology and standard quantum metrology have their limit-
ations when implemented experimentally or by extending the schemes to complex
networks. On the other hand, the crucial factor that is a key element of quantum
jump metrology is that it does not rely on entanglement.

2.4 Parameter estimation and Cramér-Rao bound

The determination of the lower bound of the precision in the estimation of a
parameter φ is an essential component of parameter estimation. This lower bound
can be evaluated by Cramér-Rao inequality [65, 66]. The Cramér-Rao bound tells
us that the minimum uncertainty achievable by an estimator is bounded by the
Fisher information as

(∆φ̂)2 ≥ 1
F (φ) . (2.15)

Here, ∆φ̂ is the uncertainty in estimating the unknown parameter φ and F (φ) is
the Fisher information.

In the parameter estimation, the amount of information that can be gained
from a certain measurement is quantified by the Fisher information. Let x be a
string of data of length N with elements xi ∈ Z+, while Pφ(x) is the probability
for this string to occur given a certain φ. The Fisher information F (Pφ) for such
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data is defined as

F (Pφ) ≡
∑

x
Pφ(x) [∂φ ln (Pφ(x))]2

=
∑

x

[∂φPφ(x)]2

Pφ(x) , (2.16)

where we sum over all possible combinations of output data x. Since φ is the
unknown parameter to be probed, the probability distribution Pφ(x) must be a
function of this variable. If the N data points are uncorrelated, each contributes
an independent amount of information such that (∆φ̂)2 scales like Eq. (2.1).
However if the data possesses correlations, then the information contribution
from each value may be beyond linear with respect to the number of data points.
In particular, the correlations that may exist in quantum systems can lead to
more precise measurements when compared with a classical system with the same
number of particles [30, 31]. This can lead to scaling of the form of the HL in
Eq. (2.13).

2.5 Quantum correlations and classical correla-
tions

Quantum entanglement is a property of composite quantum systems that
exhibit non-classical/quantum correlations between measurements of entangled
systems even when they are spatially distant from each other. These correlations
have been proven to be unreproducible classically, as Bell’s inequality violation ex-
periment has already demonstrated. Therefore, we can consider the phenomenon
of entanglement as a quantum property of entangled systems, which produces
non-classical correlations that cannot be described by classical formalism. En-
tanglement, that is considered the ‘essence of quantum physics’ as defined by
Erwin Schrödinger [67], is currently receiving increasing interest in the field of
quantum information. Since the identification of the implications of entangle-
ment in composite quantum systems has been recognised, significant focus has
been directed towards exploring the potential implementation of this resource in
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quantum technology applications [67]. One of the recent methods to utilise entan-
glement in technology is through the generation of time-bin entangled photons,
which is found to be a promising method in quantum communication applica-
tions [68, 69]. In addition, quantum entanglement experiments have been used
to emphasise the inadequacy of alternative classical theories as a replacement for
quantum theory. For example, theories that became known as hidden variable
models would have to be non-local [1, 70–72].

Furthermore, extensive research has been conducted to quantify quantum en-
tanglement, resulting in the proposal of various measures [73, 74]. Although
quantifying entanglement is quite challenging, it can be argued that a measure
of entanglement should satisfy the following conditions: the entanglement meas-
ure must be zero in the case of separable states; in addition, it should result in
maximum value in the case of maximally entangled states; and the entanglement
measure cannot increase under the local operation and classical communication
(LOCC). In general, several approaches, such as the entanglement witnesses, the
relative entropy, and the entanglement discord [75], can be used to measure the
degree of entanglement. Entanglement is known to produce quantum correla-
tions between measurements that do not generally exist in classical formalism.
In general, unlike entangled systems, classically correlated systems are locally
accessible, and the action of performing measurement on one part of the system
does not affect the total state of the system. One of the methods to identify
the distinction between classical and quantum correlations can be identified by
determining the quantum discord of the system since the discord vanishes to zero
in the case of classical systems [76].

Nevertheless, the presence of correlations between measurements may be util-
ised for quantum measurement enhancement. Quantum entanglement is one of
the methods to introduce enhancement in measurement; however, other methods
exist that exhibit correlations between measurements without entanglement, lead-
ing to measurement enhancement in parameter estimation [77–79]. As mentioned
earlier, the open quantum systems can be regarded as an example of HQMMs.
This kind of stochastic models has been known to show correlations between meas-
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urements [19, 24]. Classically, the correlations between measurements represent
an important aspect in the study of stochastic processes modelling. Stochastic
process have well been understood as mathematical tools that employ probab-
ilistic modelling in order to analyse random processes. Despite the extensive
research on stochastic processes, the modelling of these processes remains a chal-
lenging task due to the complex nature of the system’s evolution. One of the
most well-known stochastic process modelling techniques is MMs. The MM is a
stochastic model used for modelling random processes. It is widely recognised
as an essential stochastic process modelling tool [80]. Due to the widespread
use of stochastic processes, MMs play a crucial role in numerous fields, including
machine learning, distribution sampling, and modelling DNA sequencing [81–83].

A more sophisticated model used to resemble more realistic stochastic pro-
cesses is the HMMs. In this model, the system’s state is not directly observed;
however, it is rather deduced from a series of outcomes that arise from successive
measurements performed on the system [84–87]. The HMM is recognised for its
ability to solve three main problems in machine learning. The first is the max-
imum likelihood problem, which is modelled using the forward algorithm [85, 88];
the second is the decoding problem, which is addressed by the backward algorithm
formulated by Vitberi [85, 89]; and lastly, the learning problem, which is modelled
using the forward–backward algorithm developed by Baum and Welch [85, 90].
HMMs are utilised in numerous fields, including speech recognition [86, 91], fin-
ance [92] and genetics [93]. In the field of classical physics, HMMs have been
employed in a variety of areas, including simulating stochastic thermodynam-
ics [94] and tracking gravitational waves [95]. Moreover, the implementation of
HMMs in quantum physics has been extensively investigated for the purpose of
simulating stochastic processes. One such application involves the simulation of
electron tunnelling in quantum dots through the use of HMMs [96]. Furthermore,
these models can be implemented to study the quantum jumps in optical cavities
[97]. However, as the complexity of the system increases, the HMMs encounter
challenges in simulating stochastic processes. In addition, the presence of tem-
poral correlations in consecutive measurements of the system cannot be sustained
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for a longer period of time in most cases as the information about the previous
state of the system is lost.

2.6 Summary

This chapter provided a comprehensive analysis of techniques for parameter
estimation and phase measurement enhancement. As previously discussed, the
standard approach for improving parameter estimation involves two primary
methods: increasing the number of probing systems or conducting multiple re-
petitions of the experiment. This approach fails in many cases in which it is not
feasible to conduct the experiment repeatedly on a large scale or due to resource
constraints. Furthermore, classical methods are limited by the SQL, which im-
poses an upper limit on the maximum achievable accuracy. The utilisation of
quantum properties of physical systems has demonstrated a notable benefit in
enhancing parameter estimation beyond the SQL, ultimately attaining the HL
while employing fewer resources through the application of quantum entangle-
ment. Nevertheless, due to the complexity of implementing quantum entangle-
ment on a large scale experimentally, alternative approaches are being explored
to overcome the SQL.

Our study centered on quantum jump metrology approach that serves as a
feasible alternative method that does not require entanglement. We focused on
the quantum jump metrology with quantum feedback in which the temporal
correlations formed as a result of sequential measurements on an optical network
system using coherent states as an input that are subjected to instantaneous
quantum feedback. We noted that such a scheme would exhibit measurement
enhancements beyond the SQL with relativity accessible linear optics elements.
Furthermore, the evaluation of the Cramér-Rao bound of the scheme is found
to be a suitable measure of the maximum accuracy achievable by the proposed
optical network. We concluded this chapter by discussing the correlations that
exist between measurement in entangled systems. In addition, we focus on the
correlations that exist in systems that do not relay on entanglement, i.e. quantum
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jump metrology approach, which may be more accessible scheme than entangled
system.
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Chapter 3

Open quantum systems

The classical approach of viewing physical systems as isolated from their sur-
roundings is inadequate for describing the irreversible evolution of quantum sys-
tems in the real world. In reality, any quantum system cannot be truly isolated
from the environment. The leakage of information from quantum systems to the
environment is unavoidable, and as a result, correlations eventually form between
the system and the environment. Therefore, it is essential to employ a special-
ised approach that considers the influence of the surrounding environment on
quantum systems and the dissipation of information into the environment. Since
the wavefunction formalism is used to describe only pure states, we transition
to the density matrix formalism, which is able to describe both pure and mixed
states.

In this chapter, we will look at quantum mapping in open quantum systems
in Section 3.1, in which we will start by reviewing the density matrix formal-
ism for describing an open quantum system consisting of a principal quantum
system and the environment. In addition, we thoroughly discuss the analysis of
quantum mapping in terms of operator-sum representation, also known as Kraus
representation. We introduce the master equation for evolving open quantum
systems in Section 3.2, which incorporates all necessary approximations such as
the Markov approximation and the coarse-grained time evolution needed to ac-
count for the environment’s effect on the principal quantum system. Then, using
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the Kraus operator representation, we arrive at the master equation form of an
open quantum system. Finally, in Section 3.3, we discuss the concept of quantum
trajectory theory and introduce a numerical tool for solving the master equation
of an open quantum systems.

3.1 Quantum mapping in open quantum systesm

The quantum mapping of open quantum systems involves evolving the density
matrix of the composite principal system and environment over time. As men-
tioned earlier, for closed quantum systems, the dynamics of the system are often
described by a unitary time-evolution operator that can be written in terms of
either wavefunctions or density matrices. However, once we move from closed
quantum systems to open quantum systems, the dynamics formalism must be
adjusted to comply with the properties of open quantum systems and the non-
unitary evolution. In that sense, open quantum systems are often described by
a density matrix to allow for monitoring the principal system part of the com-
posite principal system and environment over time. In the case of open quantum
systems, three equivalent approaches to quantum operations exist for quantum
mapping: the physically motivated axioms approach, the system coupled to the
environment approach, and the operator-sum representation [98]. In this sec-
tion, we focus on the quantum mapping of quantum systems by operator- sum
representation.

3.1.1 Density matrix

The formalism of the density matrix for mixed states is characterised by the
summation of the projectors into the pure state |ψi⟩ of the system, weighted by
their respective probabilities pi as [99]

ρ =
∑

pi |ψi⟩ ⟨ψi|. (3.1)

Here, the density matrix ρ must be a positive Hermitian matrix with positive
eigenvalues where ∑i pi = 1.
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Figure 3.1: A Bloch sphere representation of a mixed state density matrix in
which any vector is represented in the Bloch sphere using the density matrix
elements. The z axis is the axis with states |0⟩ and |1⟩, the y axis is the axis with
states |−i⟩ and |i⟩ and the x axis is the axis with states |−⟩ and |+⟩. Here, P
represent a mixed state vector that lies inside the Bloch sphere.

Considering a two-level system such as a qubit with states |0⟩ and |1⟩, the
density matrix of this system is given by [99],

ρ =
ρ00 ρ01

ρ10 ρ11

 . (3.2)

The diagonal elements ρ00 and ρ11 of the matrix are the probability of the qubit
to exist in states |0⟩ and |1⟩, respectively. Moreover, the off diagonal elements
ρ01 and ρ10 represent superposition of states |0⟩ and |1⟩. The superposition terms
are known as coherence. The mixed state density matrix can be identified by
evaluating a trace of the square of the density matrix. In the case of a mixed
state density matrix, Tr(ρ2) ̸= Tr(ρ).

To conserve the normalization of the density matrix, the probabilities of
finding the qubit in ground and excited states satisfy the following condition:
ρ00 + ρ11 = 1. The density matrix ρ can be defined in Bloch representation, as
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shown in Fig. 3.1, as

ρ = 1
2(1 + P.σ) (3.3)

where σ is a vector defined in terms of the three Pauli matrices σx, σy and σz.
The vector P (u, v, w) is the qubit’s polarisation that is a three-dimensional vector
defined in terms of the density matrix elements as

u = ρ01 + ρ10 ,

v = i(ρ01 − ρ10) ,

w = (ρ00 − ρ11) . (3.4)

As indicated previously, the density matrix is essential for describing open
quantum system evolution. If we consider a principal quantum system S inter-
acting with the environment E, the total density matrix of the open quantum
system of composite S + E is ρSE. If we are concerned only with monitoring
the evolution density matrix of the principal system S, it can be obtained by
performing a partial trace over the environment.

ρS = TrE(ρSE) . (3.5)

In an open quantum system, for a system consisting of a principal system and
the environment ρSE, the expectation value of a certain observable ÔS of the
principal system S is given by

⟨ÔS⟩ = TrS(ÔSρS) . (3.6)

Here, the relation Tr(ρS) = Tr(ρ2
S) does not generally hold since the density

matrix represents a mixed state. On this basis, the state of the principal system
density matrix reads

ρS =
∑

i

pS
i

∣∣∣ψS
i

〉 〈
ψS

i

∣∣∣ , (3.7)

where the non-negative pS
i must sum to 1, ∑i p

S
i = 1.
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In the field of quantum operations, the process of retrieving information from
a quantum system requires an understanding of two key factors: first, the prob-
ability of observing a specific outcome, and second, the state of the system sub-
sequent to the measurement of the observed outcome. These considerations are
crucially significant in the context of quantum measurement. Since the open
quantum systems employed involve monitoring the evolution of a subsystem (i.e.
the principal system) of the total system consisting of the principal system and the
environment, it is necessary to introduce the generalized measurements known as
non-projective positive operator value measures (POVMs) to monitor the evolu-
tion of the principal system after performing measurement on the total composite
system. The POVMs fulfil the following criteria: the operators are Hermitian,
positive, and form a complete set that sums up to identity [98].

If the composite system of the principal system S and the environment E
is too large to evaluate or the information about the surrounding environment
is not fully known. Then we may use the description of an ancillary system
to simulate the evolution of the composite system of the principal system and
the environment using unitary operators. As an example, for a short time scale
∆t, assuming that the correlations between the environment the and the system
are eliminated initially, at t = 0, the density matrix of the environment can be
assumed to be ρE = |0⟩ ⟨0|. Again, to determine the evolution of the density
matrix of the system, we perform a partial trace over the environment. By
imposing the above conditions, the evolution of the density matrix in which the
outcomes of the measurements are unknown is given by [98]

E(ρS) =
∑

k

⟨k|USE(ρS ⊗ |0⟩ ⟨0|)U †
SE |k⟩ . (3.8)

The term ⟨k|USE |0⟩ forms a positive operators set {Kk}, where Kk = ⟨k|USE |0⟩.
Therefore, the evolution in Eq.(3.8) can be written in terms of the operators {Kk}
as

E(ρS) =
∑

k

Kk(ρS)K†
k . (3.9)

Here, the operators Kk satisfies the completeness relation ∑k KkK
†
k = I.
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3.1.2 Operator-sum representation/ Kraus representation

As mentioned in the previous section, the quantum mapping of a composite
system of the principal system S and environment E can be quite cumbersome.
Instead of looking at the total degrees of freedom of the environment, we can
instead use an ancillary system that is allowed to interact with the principal
system. In other words, the ancillary system can be used to describe the effect
of the environment on the system. The introduction of the ancillary system
simplifies the quantum mapping of the total system [99].

Theorem 1 Kraus representation theorem: Any operator ρ → S(ρ) of dimension
d2

S that is Linear, completely positive, Hermitian and trace preserving can be
written in term of finite set of Kraus operators as [100]

S(ρ) =
d2

s∑
i=1

KiρK
†
i ,

d2
s∑

i=1
KiK

†
i = I . (3.10)

The advantage of using operator-sum representation (in the form of Kraus
operators) is that it allows one to monitor the evolution of the basic system
without continuously monitoring the dynamical evolution of the surroundings.
This formalism serves to simplify the analysis of an open quantum system, while
retaining relevant information regarding the principal system.

The physical interpretation of operator-sum measurements can be deduced by
taking a closer look at Eq. (3.8). As indicated previously, for a principal system ρS

interacting with an environment represented by pure basis states |k⟩ and assuming
the density matrix of the environment initially is given by ρE = |0⟩ ⟨0|, the
normalised density matrix of the system after measurement of outcome i is [98]

ρSi
=

∑
i KiρSK

†
i

Tr(∑i KiρSK
†
i )
. (3.11)

where Ki = ⟨i|USE |0⟩. Here, the term in the denominator can be thought to be
the probability of getting outcome i after evolving the system with the corres-
ponding Kraus operator Ki. In other words, the quantum operator Ki evolves the
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density matrix of the principal system ρS as in Eq. (3.11), where the probability
that this evolution occurs is Tr(∑i KiρSK

†
i ).

While it is true that the Kraus operator is not a unique expression for a given
quantum system, it offers a significant advantage in quantum mapping using a
finite set of operators scales as the square of the system dimension, regardless
of the dimension of the environment. This can be achieved by recognising that
the Hilbert space required to represent the system–environment is d2

S, where dS

denotes the Hilbert space of the system. Furthermore, this approach guarantees
that the mapping is completely positive.

3.1.3 Quantum mapping using Kraus representation

The quantum mapping of open quantum systems, as discussed earlier, can be
performed by Kraus operators. The use of unitary operators is not restrictive,
thus, in addition to that, one can also perform projective measurements Pn after
evolving the system using the unitary operator U . If the total system ρ = ρS ⊗ρE

undergoing a unitary evolution given by

ρ′ = PnUSE(ρS ⊗ ρE)U †
SEPn . (3.12)

where U is the unitary transformation describing the system–environment inter-
action, while Pn are the projectors on the total density matrix ρ. The state of
the total system after measurements is [98]

ρ′ = PnUSE(ρS ⊗ ρE)U †
SEPn

Tr(PnUSE(ρS ⊗ ρE)U †
SEPn)

. (3.13)

Here, the denominator is the probability of getting outcome n.
The evolution of the principal system only is defined as a partial trace over

the environment, thus, the state of the principal system reads [98]

ρ′
S = TrE(PnUSE(ρS ⊗ ρE)U †

SEPn)
Tr(PnUSE(ρS ⊗ ρE)U †

SEPn)
. (3.14)

If the state of the environment is given by ρE = ∑
j bj |j⟩ ⟨j|, and taking the

orthonormal basis of the environment to be |k⟩, then the mapping of the principal
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system density matrix E(ρS) reads [98]

En(ρS) =
∑
jk

⟨k|PnUSE(ρS ⊗ bj |j⟩ ⟨j|)U †
SEPn |k⟩) . (3.15)

Looking at the equation closely, we can see that Kjk =
√
bi ⟨k|PnUSE |j⟩. Hence

En(ρS) can be equivalently expressed as

En(ρS) =
∑
jk

KjkρSK
†
jk . (3.16)

By employing this particular treatment, it becomes possible to establish a Kraus
operator for a given open quantum system that undergoes a system–environment
unitary interaction as well as performing a generalised measurement on the com-
posite system-environment after the unitary interaction .

3.2 Master equation for open quantum systems

When addressing the dynamical evolution of an open quantum system, the
most effective method is to use the Hamiltonian to describe the system’s evolution
over time. The process of evolution is subsequently described by the Schrödinger
differential equation. For a quantum system with specific modes coupled to the
environment, the equation governing the time-dependent evolution of the density
operator is commonly referred to as the master equation. This section will outline
the derivation of the master equation for an open quantum system. We will begin
by establishing the necessary conditions that must be satisfied for the derivation
of the master equation in Lindblad form, and then proceed to derive the master
equation using the Kraus operator representation. The presented derivation of
the Lindbald master equation is based on the quantum information approach
[99, 100].

3.2.1 Markov approximation and coarse-grained time evol-
ution

The dynamics of a composite quantum system and its surrounding environ-
ment can be described by employing first-order differential equations, commonly
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referred to as master equations. These equations provide a method for model-
ling the time evolution of the system, taking into consideration the interactions
between the system and its environment. This approach allows for a comprehens-
ive understanding of the system’s behaviour over time. If the principal quantum
system S and the environment E demonstrate Markovian evolution, it is possible
to adequately describe the system using the master equation in differential form.
This is because the state of the system at time t+∆t, denoted as ρ(t+∆t), is solely
dependent on the state at time t, denoted as ρ(t). Thus, the master equation in
the differential form is sufficient to capture the dynamics of the system.

Nevertheless, the evolution of the principal system and its surrounding en-
vironment is a highly complex process, primarily due to the vast space of en-
vironmental degrees of freedom. As a result, it becomes necessary to adopt an
incremental evolution approach, commonly referred to as the coarse-grained time
evolution. It is essential to ensure that the incremental time is not only smaller
than the characteristic evolution time of the principal system but also significantly
greater than the correlation time of the environment [99]. Therefore, fluctuations
in the environment can be neglected. Moreover, the Markov approximation holds
significant importance as it assumes that the principal system and the environ-
ment are not initially entangled during the time interval of the coarse-grained
evolution.

Hence by employing the Kraus representation of quantum mapping for a re-
duced density matrix describing the evolution of the principal system ρS only is
given by

E(ρS) = (ρS(t+ ∆t)) =
∑

i

Ki(∆t)ρS(t)Ki(∆t)† (3.17)

where Ki(∆t) are the Kraus operators. In the following section, we explicitly
derive the master equation in Lindblad form using the Kraus representation of
the principal system.
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3.2.2 Master equation for open quantum systems in Lind-
bladian form

The analysis of the evolution of an open quantum system, which comprises
a principal system coupled to an environment with infinite degrees of freedom,
is a complex task. One possible approach is to compute the reduced trace of
the density matrix for the open system consisting of the principal system and
its environment. This enables us to effectively disregard the influence of the
environment. Such a formalism can be described using the master equation with
the super Liouvillian operator L [18, 101, 102]. This form of the master equation
is known as the Lindbladian master equation. The Lindbladian master equation
reads [99, 103]

ρ̇ = Lρ . (3.18)

The construction of the Liouvillian operator L can be achieved by coupling the
principal system to the environment, and applying the Born approximation, in
which the system is weakly coupled to one degree of freedom of the environment.
In other words, the environment’s properties can be considered to be time inde-
pendent. Moreover, the system is hugely affected by environment modes, while
the environment is not generally affected by changes introduced by the principal
system. In addition, the Markov approximation is employed which states that the
environment is able to return to a steady state faster than the principal system.
In other words, the environment has no memory of past interactions. Finally,
a partial trace over the environment gives the evolution of the principal system
only.

Nevertheless, here we follow the derivation of the master equation using the
Kraus representation of the density matrix. The operator-sum representation al-
lows for describing the evolution of the principal system ρS as function of time in
the most general method. This approach is considered to be based on quantum
information fundamental concepts. Taking into consideration the Markov ap-
proximation and the coarse grained evolution approach, the differential form of
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the density matrix of the principal system can be expressed as follows [99]

dρS(t)
dt

= E(ρS(t)) − ρS(t)
∆t (3.19)

where ∆t is the infinitesimal time interval chosen for evolving the system that
satisfies the coarse-grained evolution approach. Here we assume that the principal
system and the environment are not entangled at t = 0. Hence, it is probable that
they are not entangled at time ∆t. The environment typically has a preferable
state, such as the vacuum state of the free radiation field, and returns to it on
the coarse-grained time scale given by ∆t. Up to the first order in ∆t, the action
of the quantum map E on the density matrix of the principal system is expressed
as

E(ρS(t)) = ρS(t+ ∆t) = ρS(t) +O(∆t) . (3.20)

Moreover, we can assume that one of the Kraus operators governing the evolution
to be near identity and it can be expressed as

K0 = I − iB∆t . (3.21)

Here, B is the operator that is independent of ∆t. This operator B can be used
to define two a Hermitian operators as

H = ℏ
B +B†

2 J = i
B −B†

2 , (3.22)

where B = H/ℏ− iJ . Therefore, using Eq. (3.17) and the definition operators of
B in terms of H and J , one can see that by approximating the Kraus operator
K0 to the first order,

K0(∆t)ρSK
†
0(∆t) = ρS − i∆t

ℏ
[H, ρS] − ∆t(JρS + ρSJ) . (3.23)

The rest of the Kraus operators Ki are given by

Ki =
√

∆tLi . (3.24)

in first order of ∆t. Here the Li operators are independent of ∆t. Moreover,
following the completeness relation of the Kraus operators given in Eq. (3.10),
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we can see that the completeness relation gives
∑
i=0

Ki(∆t)†Ki(∆t) = K†
0K0 +

∑
i>0

K†
iKi

= I − 2J∆t+
∑
i>0

∆tL†
iLi = I (3.25)

where J = 1
2
∑

i>0 L
†
iLi. Here, the density matrix of the system in Kraus operator

representation is given by

ρS(t+ ∆t) = K0(∆t)ρSK
†
0(∆t) +

∑
i

Ki(∆t)ρSK
†
i (∆t) . (3.26)

These approximations lead to the final differential master equation

dρS(t)
dt

= − i

ℏ
[H, ρS] +

∑
i>0

(LiρSL
†
i − 1

2L
†
iLiρS − 1

2ρSL
†
iLi) . (3.27)

The term Li is considered to be a Lindblad operator or quantum jump operator.
The first term in Eq. (3.27) represents the unitary evolution while the second term
represents the quantum jumps of the system, and the term 1

2L
†
iLiρS − 1

2ρSL
†
iLi is

needed to keep the normalisation in the event when no jump is observed. After
careful examination of the derivation of the master equation in the Lindblad
form using the operator-sum representation, the analogy between the evolution
of a system using Kraus operators and the master equation of Lindbald form
can be identified. In other words , we may consider a principal system coupled
to the environment, where the environment is monitored continuously. At each
time step, we project onto the basis of the environment; hence, the monitored
environment experiences a quantum jump with a probability of order of O(∆t)
and no jump with a probability of order 1 −O(∆t), as indicate by Eq. (3.21) and
Eq. (3.24) [100].

3.3 Quantum trajectory theory

Analytical solutions are not always possible for the master equation in the
Lindblad form, since the master equation involves the exchange of information
between the system and the environment. The complex nature of stochastic
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processes and the challenges associated with solving the master equation ana-
lytically require an alternative approach to study the evolution of the system.
One such method involves unravelling the master equation of the Lindbladian
form, which refers to modelling the dynamics of individual trajectories over an
extended period. Hence, a need exist for the adoption of a numerical approach
to solve the master equation [99, 103, 104]. More specifically , quantum jump
method, also known as quantum trajectory theory, can be utilised in the un-
ravelling of the master equation [105, 106]. In this approach, the wavefunction
of the system is evolved using a non-Hermitian Hamiltonian. The key difference
between the utilisation of the master equation with density matrix formalism and
the quantum trajectory theory lies in the fact that the latter employs wavefunc-
tions instead of the density matrix to derive the photon statistics of the principal
system [106–116]. The main advantage of employing this methodology lies in its
ability to simulate the dynamics of individual trajectory of the quantum systems.
Therefore, it is possible to examine both the individual trajectory of the sys-
tem and the ensemble behaviour of a large number of trajectories. Furthermore,
this approach allows for simplifying the quantum description of the whole open
quantum system. This is achieved by reducing the size of the Hilbert state of the
environment from d2 in the density matrix representation of master equations to
d through the use of the wavefunction formalism.

To illustrate the key difference between the individual trajectory and the
ensemble average of trajectories of a quantum system, we study the spontaneous
emission of a driven atom, that is one of the examples in which quantum trajectory
theory can be employed. The atom experiences emission accompanied by a decay
to the ground state and re-excitation to the excited level repeatedly. It has been
observed experimentally that an atom exhibits these quantum jumps as a form of
light and dark patterns [117, 118]. Taking the quantum jump method approach
to simulate the dynamics of the atom, Fig. 3.2 shows the difference between a
single trajectory of the probability of finding the atom in an excited state as a
function of time for an average of 500 trajectories. Although both figures appear
to oscillate with time, the behaviour of the single trajectories clearly differs from
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the behaviour of the ensemble average of trajectories, as the latter experience
a decay in amplitude as time progresses. Moreover, we note that the single
trajectory shows instances where the probability decay to zero abruptly. These
are the quantum jumps that the atom experiences while emitting a photon that
is detected as a click in the photon detector. This figure has been created using
a MATLAB code available in Ref. [119] 1.

Figure 3.2: Quantum trajectory of a driven two-level atom. (a) A single trajectory
of the probability of the atom being in the excited state as a function of time.
(b) The average of 500 trajectories of the probability of finding the atom in an
excited state as function of time. Here, the decay rate is Γ = 2π × 106, the
Rabi frequency is Ω = 5Γ, the detuning is ∆ = 0.5Γ and the evolution time for
simulation is δt = 0.5 × 10−9.1

To establish the mathematical framework of quantum trajectory theory, we
may look at an example of a relaxing two-level atom coupled to a cavity field [103]

1 The Matlab simulation of two-level atom code
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Initial State ۧ|𝜓0

Evolve State

ۧ𝑑|𝜓(𝑡) = −
𝑖
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Generate Random Number 

𝑍𝑛 ∈ [0,1]
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Figure 3.3: A flow chart showing the quantum trajectory theory method approach
for evolving the wavefunction as function of time. At each time step, the evolution
of state of the system |ψ(t)⟩ is determined by comparing the probability of the
system to undergo a jump Pjump to randomly generated number Zn. In case
Pjump is larger than Zn, the system experiences a jump by emitting a photon;
otherwise, the system decays exponentially with no photon emission. Here C is
defined to be an annihilation operator [103].

in which we examine its dynamics. Following the quantum trajectory theory, the
evolution of a quantum system is shown in Fig. 3.3. Suppose the system starts at
initial state |ψ(t)⟩, then the evolution of the state using the Schrödinger equation
is defined as

d

dt
|ψ(t)⟩ = − i

ℏ
Heff |ψ(t)⟩ . (3.28)

Here, the non-Hermitian Hamiltonian Heff = HS − iℏΓσ+σ−/2, where Γ is the
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spontaneous decay rate , HS = ℏωσz/2 and σ+/σ− are the atomic raising/lower-
ing operators, respectively.

To simulate the evolution of a relaxing two-level atom, at each time step tn,
the probability that the atom will experience a quantum jump Pjump, i.e. emit a
photon. Thus, the probability density that the atom will experience a quantum
jump is [103]

Pjump(tn) = Γ ⟨ψ(tn)|σ+σ− |ψ(tn)⟩ . (3.29)

After calculating the probability of photon detection Pjump, a random number
is generated Zn, then the random number Zn is compared to the probability of
detecting a photon. If the random number is larger than or equal to Zn ≥ Pjump,
then the atom is thought to experience a spontaneous emission decaying to the
ground state. The evolution of the wavefunction in this event reads

|ψ(tn+1)⟩ = σ− |ψ(tn)⟩√
⟨ψ(tn)|σ+σ− |ψ(tn)⟩

. (3.30)

We note here that the non-Hermitian Hamiltonian leads to non-unitary evolution.
Hence, re-normalization of the wavefunction is required at each time step. In the
case that Zn ≤ Pjump, the atom experiences a continuous decay with no photon
emission, and the evolution of the wavefunction is

|ψ(tn+1)⟩ = e− i
ℏHeff dt |ψ(tn)⟩

⟨ψ(tn)| e
i
ℏ (H†

eff
−Heff )dt |ψ(tn)⟩

. (3.31)

The quantum jump method is an efficient tool for simulating the behaviour
of an open quantum system in the presence of the environment. The system’s
wavefunction is used instead of the density matrix, and it evolves based on a
randomly generated number that determines which event would occur. These
events are determined by the calculated probability, that subsequently determines
whether a jump has occurred or not. By averaging over multiple trajectories, we
can obtain a reasonable approximation of the system’s evolution over time.
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3.4 Summary

In this chapter, we presented the study of open quantum systems undergo-
ing an evolution in which the system is allowed to interact with the surrounding
environment. We started by discussing the density matrix formalism of open
quantum systems. Then, we discussed the quantum mapping of open quantum
systems, where the state of the system is commonly represented by the density
matrix rather than the wavefunction. The evolution of open quantum systems in
this framework is commonly described through the use of Kraus operators. This
approach accounts for the non-unitary evolutions. The use of Kraus operators
provides a significant advantage in simulating the evolution of open quantum
systems and the master equation of open quantum systems. Nonetheless, the
analytical solution of the master equation is often difficult; thus, a numerical
method is required to analyse the evolution of the system. The presented numer-
ical analysis of the master equation is based on the quantum trajectory theory.
Using the quantum trajectory theory approach, instead of attempting to solve
the entire differential equation at once, this method uses the average of multiple
trajectories to approximate the dynamics of the system as function of time. The
numerical solution enables the simulation of the evolution of a quantum system
by assuming that the system’s state changes randomly in response to certain con-
ditions. This framework is essential in the field of quantum optics, which studies
the quantum-level behaviour of light and matter, providing a realistic treatment
of the evolution of quantum systems in the presence of environment interaction.
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Chapter 4

An open quantum system
description of one-cavity
networks

Quantum jump metrology has emerged as a promising technique for enhancing
the precision of phase shift measurements in light pathways beyond the SQL. In
this approach, an optical cavity inside a quantum feedback loop, that was treated
as an open quantum system, is utilised to deduce information about the phase
shift difference between two light pathways [13]. In this model, the phase shift
measurement accuracy was found to exceed the SQL. The absence of entangle-
ment in the methodology is a crucial element in their quantum jump metrology
scheme. Moreover, the quantum jump approach is motivated by the limitations
of standard metrology and standard quantum metrology in terms of experimental
implementation or extending the schemes to more complex networks. The scheme
exhibits potential for quantum metrology by using readily available linear optics
and scaling it to complex networks is possible.

In this chapter, we introduce a theoretical framework for analysing the dy-
namics of a single cavity network as an open quantum system. To establish the
theoretical groundwork for the subsequent proposed scheme, we begin by examin-
ing the fundamental characteristics of coherent states, which are being employed
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as a resource in the single cavity network. Next, we will proceed to discuss the
effect of the instantaneous quantum feedback loop on the optical network. Sub-
sequently, we proceed with defining the evolution of the optical network through
the use of the quantum jump metrology approach and quantum trajectory the-
ory. We thoroughly examine the system dynamics in two scenarios: one in which
photon detection is absent, and another in which photon detection is present.
Subsequently, we employ the quantum jump methodology to examine the impact
of quantum feedback on both the master equation and the dynamics of the sys-
tem. Additionally, we explore the behaviour of the trajectories of the network
under varying initial states of the cavity and quantum feedback pulse strength.
Finally, we discuss the evaluation of the scaling of the network in a phase shift
measurement using the one-cavity optical network.

4.1 One-cavity network

In the context of an optical cavity that is subject to external laser driving
and quantum feedback, all interactions have been designed such that the quant-
ized electromagnetic field confined within the optical cavity is maintained in a
coherent state at all times. In the following, we present the theoretical frame-
work characterising the dynamics of the stated coherent states in the absence of
photon emission and in the event of photon emission. Moreover, we shall con-
duct a comprehensive analysis of the mentioned scheme, with the aim of utilising
it subsequently for the purpose of benchmarking more complex measurement
schemes. The one-cavity optical network that is prepared in a coherent state is
placed inside a quantum feedback loop, as shown in Fig. 4.1. The optical network
consists of a single cavity, a phase shifter and a photon detector. In the first stage,
the optical cavity is prepared in a coherent state by applying a laser pulse that
is affected by presence of the phase shifter in front of the cavity. In the second
stage, the phase shifter is removed and the optical cavity is excited by a laser
source that is triggered instantaneously upon the detection of a photon at the
detector. The presence of the phase shifter in the first stage has an impact on the
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LASER 𝜑

cavity detector

(a)

LASER

cavity detector
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Figure 4.1: A schematic view of a single optical cavity inside an instantaneous
quantum feedback loop. Here, the optical cavity is driven using a laser source,
and the photons leaking from the cavity are detected by a photon detector. (a)
In the first stage, the state of the cavity is prepared in a coherent state |γ⟩ by
applying a laser where the state of the cavity is affected by the phase shift φ in
front of the cavity. (b) In the second stage, an instantaneous feedback laser pulse
is applied when a photon leaks from the cavity and is detected by the detector.

coherent state of the cavity. The determination of the relative phase between the
initial state of the cavity and the state of the displaced cavity field subsequent to
the application of the feedback laser pulse can be determined through the photon
statistics observed at the detector.
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4.1.1 Coherent state

In the quantum optical network inside a quantum feedback loop, the cavity
is prepared in a coherent state. Coherent states are specific quantum states that
have properties similar to classical states. Therefore, they are often thought to be
semi-classical states since they are easier to prepare compared to other quantum
states [103]. The key difference that distinguishes coherent states from other
quantum states is the time evolution of the system state that is set to interact
with the surrounding environment. For instance, let us consider a lossy cavity
prepared in a coherent state, in which the photon emission is monitored via a
photon detector. In the case of a photon detection, there is no change in the cavity
state undergoing photon emission since the coherent state |γ⟩ is an eignestate of
the annihilation and creation operators c/c† as shown in Fig. 4.2. Furthermore,
supposing the coherent state evolves under the non-Hermitian operator Heff ,
then the coherent state decay to vacuum |0⟩ after a long time if no photon is
detected as

∣∣∣eiℏHeff ∆tγ
〉
, as illustrated in Fig. 4.3. This peculiar behaviour of the

coherent states is a consequence of the Poissonian statistics nature of the coherent
states.

To better understand the unintuitive behaviour of coherent states, let us ex-
amine the probability of two events occurring: first, the probability of having
n photons in the field knowing that a photons have been detected. The second
probability is the probability of detecting a photons knowing that n photons are
present in the field. Let us look at the conditional probability that the field has n
photons when a photon a has been detected, p(n|a) at time t+ ∆t. Using Baye’s
law, it is possible to determine the conditional probability p(n|a) by knowing the
probability of detecting a photons when the field has exactly n photons p(a|n). If
the number of photons present at a certain time t is known, then the probability
to detect a photons is p(a|n) = κn∆t. Here, κ is the decay rate, n is the total
number of photons at time t. Thus, the conditional probability p(n|a) reads [99]

p(n|a) = p(n)p(a|n)
p(a) . (4.1)

where Eq. (4.1) is deduced from the relation p(n, a) = p(a|n)p(n) = p(n|a)pa.
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𝐷(𝛾)

𝑅𝑒 𝛾

𝐼𝑚 𝛾

Figure 4.2: The action of the displacement operator D(γ) on the coherent state
|γ⟩ is represented by the red arrow from the origin to the position |γ|. Here,
D(γ) = |γ0 + γ⟩, since γ0 = 0, then D(γ) = |γ⟩.

Thus, the conditional probability that the field has n photons when a photons
has been detected, p(n|a) is given by

p(n|a) = e−n̄(n̄)n−1

(n− 1)! = p(n− 1) . (4.2)

Here, a priori probability of detecting photon in time interval ∆t is pa = κn̄∆t
and the probability that the field has n photons at time t where the mean value
of photons n̄ is given by a priori Poissonian distribution [99],

p(n) = e−n̄n̄n

n! . (4.3)

Hence, by examining Eq. (4.2), we can deduce that since detecting a single photon
shifts the prior photon distribution number before the detection by n̄ + 1, and
the conditional probability that the field has n photons when a photons has been
detected, p(n|a) reduces the number of photons in the field by unit quanta. These
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𝑅𝑒 𝛾

𝐼𝑚 𝛾

𝛾

Figure 4.3: The evolution of the coherent state in case of no photon emission,
the coherent state decays in time, and that is represented by the spiral motion
towards the origin. Here the evolution is governed by |γ⟩ →

∣∣∣γe−κ∆t/2
〉

two events cancel one another out, keeping the coherent state unchanged in the
case of photon detection.

Furthermore, looking at the one-cavity network, in the absence of photon
detection, the state of the cavity field evolves according to the non-Hermitian
Hamiltonian H = 1 − iℏκc†c/2, where c/c† denotes the annihilation and creation
operators respectively, where the no photon detection shifts the priori probability
towards a smaller photon distribution number.

Taking these properties into consideration, the coherent state resembles a
competent candidate to be used in quantum jump metrology since the state is not
affected by quantum jumps, and the evolved state can be obtained by calculating
the coarse grained time sequential evolution while maintaining the state of the
system in a purely coherent state.

In the following, c denotes the annihilation operator for a single photon inside
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an optical cavity. Since photons are bosons, c and c† obey the commutator relation

[c, c†] = 1 . (4.4)

The coherent states |γ⟩, where γ is a complex number, are the eigenstates of c
with eigenvalue γ,

c |γ⟩ = γ |γ⟩ . (4.5)

Thus, the expectation value ⟨n⟩ of the photon number of the operator n = a†a

equals

⟨n⟩ = ⟨γ| c†c |γ⟩ = |γ|2 . (4.6)

Expanding the coherent state in terms of the Fock state basis as [120]

|γ⟩ = exp
(

−1
2 |γ|2

) ∞∑
n=0

γn

√
n!

|n⟩ . (4.7)

Here, |n⟩ is the state with exactly n photons inside the resonator. When prepared
in a coherent state |γ⟩, the mean number of photons inside the cavity equals |γ|2.

4.1.2 Instantaneous quantum feedback

The scheme of the one-cavity network has been incorporated within an in-
stantaneous quantum feedback loop. In addition to the phase shifter before the
cavity, the feedback loop acts as an additional factor that makes photon statistics
dependent on the photons detected by the detector. In other words, it enhances
the correlations between the measurements of the photons and the state of the
cavity. For a single optical cavity inside a quantum feedback loop, as seen in
Fig. 4.1, we assume in the following that the emission of a photon might trigger
an instantaneous feedback pulse, i.e. a very strong, short, resonant laser pulse.
Moving to the interaction picture allows for microscopic treatment of the evol-
ution of the open quantum system. If the feedback is triggered faster than the
evolution time duration of the density matrix of the system, then we define an
instantaneous feedback laser beam. In the interaction picture with respect to the
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free Hamiltonian H0 = ℏω0 c
†c, where ω0 denotes the cavity frequency, the laser

Hamiltonian equals

HI = ℏΩ
2 (c+ c†) (4.8)

where Ω denotes the laser Rabi frequency and results in the time evolution oper-
ator

UI(t, 0) = exp
[
− i

2Ω(c+ c†)t
]
. (4.9)

A closer look at this equation shows that UI(t, 0) coincides with the displacement
operator

Dc(γ0) = eγ0c†−γ∗
0 c , (4.10)

with γ0 = −(i/2)Ωt. If the feedback pulse is much shorter than the mean time
between photon emissions, spontaneous emission can be neglected while the feed-
back pulse is applied, and we can describe its effect by simply applying the unitary
operator UI(t, 0) = Dc(γ0) to the state of the optical resonator.

Next, we study the effect of this operator on a coherent state |γ⟩, since the
states we are primarily considering in our scheme are coherent states. To do so, we
first analyse the effect of the displacement operator Dc(γ0) on the vacuum state
|0⟩ [120]. Using the Baker–Campbell–Hausdorff (BCH) theorem, which implies

eA+B = eA eB e−1/2[A,B] , (4.11)

one can show that Dc(γ0) |0⟩ equals

Dc(γ0) |0⟩ = eγ0c† e−γ∗
0 c e−1/2|γ0|2 |0⟩ . (4.12)

Taking into account that (c†)n |0⟩ =
√
n! |n⟩, this equation can be used to show

that

Dc(γ0) |0⟩ = exp
(

−1
2 |γ0|2

) ∞∑
n=0

γn
0
n! (c†)n |0⟩ = |γ0⟩ . (4.13)

Hence, displacing the vacuum state |0⟩ by Dc(γ0) transfers the vacuum state into
the coherent state |γ0⟩.
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Using Eq. (4.11) again, we can show that the action of consecutive displace-
ment operators is

Dc(γ0)Dc(γ) = Dc(γ0 + γ) ei Im(γγ∗
0 ) . (4.14)

Applying the displacement operator Dc(γ0) to the coherent state |γ⟩ therefore
yields the coherent state

Dc(γ0) |γ⟩ = Dc(γ0)Dc(γ) |0⟩

= ei Im(γγ∗
0 ) |γ + γ0⟩ . (4.15)

In the following calculations, we can ignore the overall phase factor ei Im(γγ∗
0 ) since

the cavity remains always in a coherent state. It always corresponds to a global
phase with no physical consequences. In other words, applying the displacement
operator Dc(γ0) changes the coherent state |γ⟩ effectively into the coherent state
|γ + γ0⟩.

4.1.3 The quantum jump approach

Considering the cavity as an open quantum system that couples to the sur-
rounding radiation field, it can be described by the quantum jump approach
[106]. In the following, we use this approach to model all the different types of
dynamics of an optical cavity inside a quantum feedback loop. Since the cavity
field remains in a coherent state, we only consider the specific dynamics of these
states.

4.1.3.1 No photon evolution

In the absence of photon emission, the coherent state of the cavity progress-
ively decays towards the vacuum state, because the absence of photon detection
indicates that there are fewer photons in the cavity than were initially anticip-
ated. The quantum jump method shows that the electromagnetic field within the
cavity field evolves in the interaction picture with respect to its free Hamiltonian
H0 = ℏωcav c

†c. The conditional non-Hermitian Hamiltonian of the evolution of
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4.1 One-cavity network

the coherent cavity reads

Hcond = − i
2ℏκc

†c . (4.16)

Here, ℏωcav denotes the energy of a single cavity photon, and κ denotes its spon-
taneous decay rate. In the Fock basis, Hcond can be written as

Hcond = − i
2ℏκ

∞∑
n=0

n |n⟩ ⟨n| . (4.17)

Hence, its unitary time evolution operator reads

Ucond(t+ ∆t, t) =
∞∑

n=0
exp

(
−1

2κn∆t
)

|n⟩ ⟨n| . (4.18)

Here, ℏ is set to be 1. Moreover, in the quantum jump approach probability for
no photon detection in a short time interval (t, t+ ∆t) equals

P0(∆t) = ∥Ucond(t+ ∆t, t) |ψ(t)⟩∥2 , (4.19)

where |ψ(t)⟩ denotes the (normalised) state vector of the cavity field at time t.
Since Hcond is a non-Hermitian Hamiltonian, its time evolution operator does not
preserve the norm of a state vector, and the right hand side of Eq. (4.19) is in
general smaller than one. In fact, Hcond has been constructed such that the right
hand side equals P0(∆t).

Now let us have a closer look at what this implies for an initial coherent state
|γ(t)⟩. Under the condition of no photon emission, the normalised coherent state
of the cavity, up to some normalisation constant, at time t+ ∆t equals

|γ(t+ ∆t)⟩ = Ucond(t+ ∆t, t) |γ(t)⟩ . (4.20)

Using the definition of the operator Ucond = e− i
ℏHcond∆t, where the conditional non-

Hermitian Hamiltonian Hcond is defined in Eq. (4.17), then the coherent state in
Eq. (4.20) reads

|γ(t+ ∆t)⟩ = exp
(

− i

ℏ
− i

2ℏκ
∞∑

n=0
n |n⟩ ⟨n| ∆t

)
exp

(
−1

2 |γ|2
) ∞∑

n=0

γm

√
m!

|m⟩ .

(4.21)
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Rearranging Eq. (4.21), we arrive to the following expression,

|γ(t+ ∆t)⟩ = exp
(

− | γ |2

2

) ∞∑
n=0

exp
(

−1
2κ∆tm

)
γm

√
m!

|m⟩

= exp
(

− | γ |2

2

) ∞∑
n=0

(e− 1
2 κ∆tγ)m

√
m!

|m⟩ . (4.22)

Using the above equations, we find that

|γ(t+ ∆t)⟩ = exp
(

− | γ |2

2 (1 − e−κ∆t)
) ∣∣∣e− 1

2 κt γ(t)
〉

(4.23)

under the condition of no photon emission. Moreover, we find that the probability
for no photon emission in (t, t+ ∆t) is given by

P0(∆t) = exp
(
−|γ(t)|2(1 − e−κ∆t

)
(4.24)

which is always between zero and one.

4.1.3.2 Photon emission

In case of the spontaneous leakage of a photon through the cavity mirrors, an
energy quanta is lost from the resonator field. Its normalised state immediately
after an emission at time t when prepared in a state |ψ(t)⟩ is given by [121]

|ψ(t+ ∆t)⟩ = c |ψ(t)⟩ /∥c |ψ(t)⟩ ∥ , (4.25)

where ∆t denotes a short time interval. When a feedback loop is used and the
detection of a photon triggers the application of a short strong laser pulse, the
state of the cavity evolves instead such that

|ψ(t+ ∆t)⟩ = Dc(γ0)c |ψ(t)⟩ /∥c |ψ(t)⟩ ∥ , (4.26)

where γ0 characterises the strength of the laser driving. Moreover, the quantum
jump approach [121] tells us that the probability density I(t) for an emission in
(t, t+ ∆t) equals

I(t) = κ ∥c |ψ(t)⟩ ∥2 . (4.27)
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4.1 One-cavity network

Here, κ denotes the spontaneous decay rate of the cavity. The above equations
apply, as long as ∆t is much smaller than 1/κ, so that the feedback laser is
considered instantaneous.

In this network scheme, we are especially interested in a system that remains
always in a coherent state. Since coherent states are the eigenstates of the an-
nihilation operator c, Eq. (4.25) shows that the state of the cavity will remain
unchanged in case of an emission. Moreover, Eq. (4.26) simplifies to

|γ(t+ ∆t)⟩ = |γ(t) + γ0⟩ (4.28)

and the probability density I(t) in Eq. (4.27) becomes

I(t) = κ |γ(t)|2 , (4.29)

if the state of the cavity equals |γ(t)⟩ at time t.

4.1.4 Master equations

If we are only interested in the dynamics of ensemble averages and ignore
the individual trajectories of every possible realisation of the experiment, it is
easier to describe the resonator by its density matrix ρI in the interaction picture.
Suppose that the cavity field is subjected to instantaneous feedback pulses with a
displacement operator Dc(β). Then, the density matrix in the interaction picture
ρI(t+ ∆t) a short time ∆t after the system was prepared in ρI(t), equals [14, 121]

ρI(t+ ∆t) = P0(∆t) ρ0
I (t+ ∆t) + P1(∆t) ρ1

I (t+ ∆t) . (4.30)

In the above equation, the first term represents the evolution of the cavity state
in the absence of photon emission, and the second term takes into account the
cavity evolution under photon emission. The density matrix can be written in
terms of the quantum optical master equation as,

ρI(t+ ∆t) = Ucond(t+ ∆t, t)ρI(t)U †
cond(t+ ∆t, t)

+κcρI(t)c†(1 − η)∆t+ ηκD(β)cρI(t)c†D†(β) . (4.31)
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Here, η is the efficiency to detect photon leakage out of the cavity in the case of
a photon detection with finite efficiency with decay rate κ. For small ∆t,

ρ̇I(t) = ρI(t+ ∆t) − ρI(t)
∆t . (4.32)

Hence, the master equation describing the evolution of the system with the in-
stantaneous feedback laser is given by

ρ̇I = − i
ℏ
[
HcondρI(t) − ρI(t)H†

cond

]
+(1 − η)κcρI(t)c† + ηκD(β)cρI(t)c†D†(β) . (4.33)

Substituting the conditional Hamiltonian Hcond in Eq. (4.16) into Eq. (4.33), and
setting ℏ to be unity, yields

ρ̇I = κ
[
(1 − η)cρIc

† + ηD(β)cρIc
†D†(β) − 1

2c
†cρI − 1

2ρIc
†c
]
, (4.34)

which is a master equation of Lindblad form.

4.2 Possible trajectories

The complex dynamics of the cavity state may be illustrated through an
investigation of the system state trajectories of the state of the cavity as a function
of time for various feedback pulse strengths while maintaining the same initial
cavity state. Fig. 4.4(a)–(c) shows a simulation of the trajectories that exhibit
quantum jumps. Upon observation of the trajectories for various values, it is
evident that the trajectories exhibit a significant dependence on the feedback
pulse strength. Moreover, in the case of a low feedback pulse, the majority of
trajectories ultimately undergo exponential decay over time, resulting in a limited
number of photon emissions, as shown in Fig. 4.4(a). However, increasing the
feedback pulse results in the emergence of novel trajectory paths. In Fig. 4.4(b), it
is observed that the state of cavity dynamics becomes increasingly complex. It can
be stated that certain trajectories demonstrate exponential decay, whereas others
appear to experience exponential growth and periods of emission and periods of
no-emission. Nevertheless, it is observed that in Fig. 4.4(c), a significant number
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4.2 Possible trajectories

of trajectories exhibit exponential evolution, which is indicative of a strongly
driven optical cavity due to the presence of many strong feedback pulses.

(a) (b)

(c)

Figure 4.4: The possible trajectories generated by driving a single optical cavity
inside a quantum feedback loop in a y-log axis for a fixed initial cavity state and
varying laser pulse strength. Here is the plot of the cavity state γ(t) as a function
of time for feedback strength equal (a) β = 0.3 (b) β = 1 and (c) β = 3. Here, the
initial state of the cavity is γ0 = 1, phase shift φ = 2π, time step ∆t = 10−4κ−1.

Furthermore, Fig. 4.5 shows the effect of varying the initial state of the cavity,
while maintaining a constant feedback laser intensity. In Fig. 4.5 (a), the majority
of trajectories decay exponentially to vacuum because the initial state of the
cavity is low compared to the feedback laser; consequently, the probability that
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the cavity field becomes excited is low. In Fig. 4.5(b), the trajectories exhibit two
distinct dynamics: some decay to vacuum while the others diverge exponentially,
while occasionally emitting some photons. This is because the initial cavity state
is comparable to the feedback laser strength. In Fig. 4.5(c), the majority of
trajectories diverge exponentially, indicating that the cavity is highly excited
due to the presence of a significant number of photons despite the low feedback
strength.

The trajectories of the state of the cavity as a function of time illustrated in
Fig. 4.4 and Fig. 4.5 indicate the complexity of the dynamical evolution of the
cavity under the influence of the quantum feedback pulses.

4.3 Parameter estimation performance

To estimate the phase shift measurements for a single cavity network, the
second order correlation function g(2)(t2, t1) over a time interval T , is found to be
the best network phase-dependent signal. The signal g(2)(t2, t1) was calculated
numerically by averaging over large number of trajectories. Here, the second
order correlation function reads [64]

g(2)(t2, t1) = I(t2|t1)
I(t1) , (4.35)

where I(t2|t1) is the probability of detecting a photon at t2 conditioned on the
detection of a photon at t1.

More concretely, the scaling of the previously mentioned optical network was
evaluated using the second-order correlation function g(2)(T, 0) between the initial
time t = 0 and total time T averaging over a large number of trajectories as the
phase dependant signal [64]. Therefore, the scaling was evaluated using error
propagation as follows

∆(φ̂) = ∆O
| ∂O

∂φ
|
, (4.36)

where the variance and the visibility of the signal were determined numerically,
using simulations of the optical cavity by quantum jump method.
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(a) (b)

(c)

Figure 4.5: The possible trajectories generated by driven a single optical cavity
inside a quantum feedback loop in a y-log axis for a fixed laser pulse strength and
varying initial cavity state. Here is the plot of the cavity state γ(t) as a function
of time: (a) γ0 = 0.3 (b) γ = 1 and (c) γ = 2.6. Here the initial state of the
cavity is β = 0.5, phase shift φ = 2π, time step ∆t = 10−4κ−1.

A numerical simulation of the optical network revealed that the accuracy of
the phase shift measurement as a function of total time T shows a scaling beyond
the SQL, more specifically at phase shift φ = π, the scaling of the network is
given by [14]

∆(φ̂) ∝ T−0.71 . (4.37)
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Furthermore, an examination of the Fisher information of such a measurement
scheme revealed that the quantum jump metrology method produces temporal
correlations between sequential measurements. These correlations allow for a scal-
ing beyond the SQL. Thus, the presence of temporal correlations in this optical
network scheme results in a measurement enhancement for parameter estimation.
These correlations is believed to be the result of the non-ergodicity of the optical
system as a result of the quantum feedback loop [13, 14, 64].

4.4 Summary

In this chapter, we presented the theoretical framework of the one-cavity op-
tical network inside an instantaneous quantum feedback loop for phase shift meas-
urements. We reviewed the fundamental properties of coherent states, focusing
on the Poissonian photon statistics of the photon number distribution of coher-
ent states within a lossy optical cavity. The effect of quantum feedback on the
coherent cavity field was then discussed. Then, we presented the quantum jump
approach for simulating the dynamics of the optical network and established an
overall mathematical description of the system for the two distinct events of
photon detection and the case of no photon detection. Moreover, we included a
discussion of the quantum jump method to analyse the evolution of the cavity
state during the two mentioned events. In addition, we presented the individual
trajectories of the cavity state as a function of time for varying feedback laser
intensities and initial cavity states. We observed a significant quantum feed-
back effect on photon detection, which, in turn, impacted the cavity state. The
three distinct dynamics resulting from various selections of the initial cavity state
and the feedback pulse intensity revealed the significance of selecting the simula-
tion parameters with care to achieve enhancement in phase shift measurements.
Finally, we reviewed the assessment of the one-cavity scheme in terms of per-
formance and maximum attained accuracy compared to the SQL. The one-cavity
network was found to beat the SQL for the selected measurement signal.
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Novel Results
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Chapter 5

A two-mode cavity network with
quantum feedback

The quantum optics scheme that we are proposing here is founded on the
principles of quantum jump metrology and is further enhanced by the imple-
mentation of a quantum feedback loop. This innovative approach holds great
promise for advancing the field of quantum information processing since it has
the capability of achieving parameter estimation enhancement without relying
on entanglement. By utilising the unique properties of quantum mechanics, our
scheme offers a novel way of achieving high-precision measurements. Through
continuously monitoring an open quantum system and conducting a sequence
of measurements, we anticipate surpassing the SQL, as shown in Fig. 2.5. The
proposed scheme, as presented in Fig. 5.1, is the optical cavity network that
utilises quantum jump metrology for measurement enhancement. Temporal cor-
relations are employed as a valuable resource in this quantum optical scheme in
which a series of repeated measurements are performed to continuously monitor
the dynamic evolution of the system to generate and reveal these correlations.
This approach appears to be able to reach an accuracy that exceeds the SQL
without requiring entangled photons. In Fig. 2.5, we show the proposed scheme
of quantum jump metrology. Such a scheme uses time as a resource, in which
multiple sequential measurements are done to monitor the evolving system.
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Using the quantum jump formalism, we measure the difference φ between two
phases φ1 and φ2, corresponding to two different pathways through a linear optics
setup. The proposed scheme involves the use of two cavities inside a quantum
feedback loop, and the measurement of the phase shift difference between two
light paths is performed, achieving quantum scaling better than SQL by taking
advantage of the temporal correlations in an open quantum system with sequen-
tial measurements. In the proposed scheme, the state of the system depends
on the phase difference, and the generalised measurement should also depend
on the phase difference. The outcomes obtained are non-Markovian and highly
correlated, which allow for a potential practical use of the scheme. Nevertheless,
the scheme that we propose here relies only on coherent states, yet it is capable
of producing correlated photon statistics and thus surpassing the standard scal-
ing due to the presence of quantum feedback. Hence, as well as demonstrating
a simple scheme with enhanced sensing capabilities, our proposal also demon-
strates the power of using quantum feedback to induce quantum effects, even
in ‘classical-like’ states, such as coherent states. The observed outcomes exhibit
significant quantum correlations, which could potentially facilitate their practical
implementation in quantum technologies.

This chapter provides an overview of the principal theoretical methods used
to model the experimental configuration described in Section 5.1. The system
maintains a coherent state when analysing the cavities that are solely driven by
laser pulses, resulting in displacements of the cavity field. In the subsequent ana-
lysis, we will investigate the dynamical behaviour of the coherent states, both
in the case of no photon emission and photon emission. In addition, we provide
quantum optical master equations that can be used to predict ensemble expect-
ation values. In Section 5.2, the general dynamics of the two-cavity network are
extensively discussed by analysing the influence of the variable parameters on the
evolution of the optical cavities, using the quantum jump method. Then, in Sec-
tion 5.3, we highlight the fundamental measurement protocol for the parameter
estimation of the phase shift. Following that, we address the performance of
the two-cavity network by evaluating the parameter estimation of the phase shift
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measurement accuracy and the Fisher information scaling of the scheme. This
chapter concludes in Section 5.4 with a comprehensive analysis of the simulation
of the two-cavity network with variable parameters, highlighting the best set of
variables that enables us to exceed the SQL effectively.

Feedback 

LASER

Feedback 

LASER

𝜑1

𝜑2

𝑏1

𝑏2

𝑐2

𝑐1

𝑎1

𝑎2

BS BS

Detector

Detector

Cavity

Cavity

Figure 5.1: Two optical cavities are monitored through a linear optical network
with photon detectors. Upon the detection of a photon, quantum feedback
is triggered and applied to the cavities, also through a linear optics network.
Throughout this section, we assume the feedback acts instantaneously after a
photon detection. In this diagram and our subsequent analysis of the system,
we consider the specific case of the dynamics presented in Section 5, in which
feedback is triggered only in mode b2 from a photon detection in detector 1 and
only in mode b1 from a photon detection in detector 2. The aim of the scheme is
to estimate the uncertainty in the phase difference φ = φ1 − φ2 from the photon
statistics in the detectors.

5.1 Theoretical modelling

In this section, we review the main tools for the theoretical modelling of the
experimental setup shown in Fig. 5.1. As we simply consider cavities subject only
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to laser driving, in the form of pulses resulting in displacements of the cavity field,
the system remains in a coherent state. In the following, we take a closer look at
the dynamics of these coherent states: under the condition of no photon emission
and in the case of an emission. In addition, we introduce quantum optical master
equations that can be used for the prediction of ensemble expectation values.

5.1.1 Multi-mode coherent states and transformation
matrices

As mentioned above, in this section, we consider a network of two leaky optical
cavities that are always kept in a coherent state. In Fock state representation, the
coherent state |γi⟩ of cavity i can be solely parametrised by a complex number γi

such that

|γi⟩ = exp
(

−|γi|2

2

) ∞∑
ni=0

γni
i√
ni

|ni⟩ . (5.1)

Here, |ni⟩ is the Fock state with exactly ni photons in cavity i. If ci is the
annihilation operator for a single photon in cavity i, with ci |ni⟩ = √

ni |ni − 1⟩,
then for coherent states, one can show that ci |γi⟩ = γi |γi⟩. Using this notation,
as we shall see below, the state |ψ(t)⟩ of both cavities at time t is always of the
form

|ψ(t)⟩ =
⊗

i=1,2
|γi(t)⟩ , (5.2)

and its dynamics can be modelled simply by tracking two complex numbers γi(t).
Hence, we can also express the state of the two cavities as

γ(t) =
 γ1(t)
γ2(t)

 . (5.3)

In the following, we adopt a vector and matrix notation for convenience when
considering photon counting and quantum feedback processes.

The experimental setup in Fig. 5.1 contains phase shifters and beamsplitters.
Hence, quantum feedback pulses do not perturb the cavities directly. Similarly,
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photons arriving at a detector do not come directly from a single cavity. To take
this into account more easily, we denote the annihilation operator of the field
mode seen by detector i in the following by ai and the annihilation operator of
the field mode affected by laser i by bi. With respect to these alternative modes,
the state |ψ(t)⟩ of the cavities is given by the complex vectors

α(t) =
 α1(t)
α2(t)

 , β(t) =
 β1(t)
β2(t)

 (5.4)

with the complex numbers αi(t) and βi(t), such that ai|αi(t)⟩ = αi(t) |αi(t)⟩ and
bi|βi(t)⟩ = βi(t) |βi(t)⟩. To switch from one representation of the cavity network
in Fig. 5.1 to another, we define transformation matrices Myx with y1

y2

 = Myx

 x1

x2

 , (5.5)

where xi, yi = αi(t), βi(t) and γi(t) for the coefficients of the vectors, and where
x, y = a, b, c for the subscripts of the transition matrices Myx. Below we have a
closer look at these matrices that describe the effect of the beamsplitters and the
phase shifters shown in Fig. 5.1. If we define the transformation matrices as

SBS = 1√
2

1 i
i 1

 , Sφ1 =
1 0

0 eiφ1

 , Sφ2 =
eiφ2 0

0 1

 , (5.6)

where SBS is the beam splitter transformation matrix, Sφ1 , and Sφ2 are the phase
shifter transformation matrices. Then, the transition matrices Mcb, Mac and Mab

take the form

Mcb = Sφ1SBS = 1√
2

 1 i
i eiφ1 eiφ1

 ,

Mac = SBSSφ2 = 1√
2

 eiφ2 i
i eiφ2 1

 ,

Mab = MacMcb = 1
2

−eiφ1 + eiφ2 i (eiφ1 + eiφ2)
i (eiφ1 + eiφ2) eiφ1 − eiφ2

 . (5.7)

These defined matrices may now be utilised to simulate the system dynamics
on various bases. Thus, the introduction of these transition matrices allows for
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detailed monitoring of the evolution of the state of the cavities fields, the control
of the feedback laser pulses and the photon statistics registered by the detectors.

5.1.2 The effect of quantum feedback

Suppose an instantaneous, strong laser pulse is applied directly to cavity i.
Then the effect of this operation on the coherent state |γi(t)⟩ of mode i in the c
basis can be described by a displacement operator of the form

D
(c)
i (β) = exp

(
β c†

i − β∗ ci

)
, (5.8)

where β is a complex number that describes the strength and phase of the feed-
back pulse and can assume any value. Taking this into account, one can show
that the result is a change such that

γi(t) → γi(t) + β . (5.9)

However, in the experimental setup in Fig. 5.1, quantum feedback does not trigger
a laser pulse that disturbs the cavities directly. Instead, because of the presence
of a beamsplitter, each laser pulse usually affects the field in both cavities.

For simplicity, we take the feedback strengths of the laser pulses as constant
in time, although it could be made time-dependent for further generality. This
allows us to model the effect of the feedback by four complex numbers β(d)

i , which
characterise the quantum feedback strength generated by laser i upon detection of
a photon in detector d with d = 1, 2. For convenience, we arrange these numbers
into two vectors

β(d) =
 β

(d)
1

β
(d)
2

 . (5.10)

Given that the feedback is triggered by the detection of a photon in detector d, we
observe the following effect of quantum feedback on the state γ(t) of the cavities

γ(t) → γ(t) +Mcb β
(d) . (5.11)
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Alternatively, in the bases of the detector modes, the state of the cavities changes
such that

α(t) → α(t) +Mab β
(d) . (5.12)

These equations provide a comprehensive description of the quantum feedback
required to numerically generate all possible trajectories of the cavity network
shown in Fig. 5.1. The only variable that remains to be specified is the probability
that a photon emitted will trigger a feedback pulse. In the following, for the sake
of simplification, we will assume the detector efficiency η is ideal and ignore its
possible dependence on time and the number of photons arriving at the detector.
This assumption is well-justified if both detectors, like the majority of detectors,
have a finite dark count rate [122, 123]. When this occurs, the first photon
detected triggers the detector and prevents it from registering subsequent photons
for a period of time. Here, we assumed that no additional photons would be
detected until the end of the relevant time interval.

5.1.3 Master equations and quantum jump approach

Next, we study the effect of the possible leakage of photons through the cavity
mirrors on the state of the resonator fields. Because of the presence of spontan-
eous photon emission, the calculation of expectation values for ensemble averages
requires the introduction of a density matrix ρ. In what follows, we work in
the detector basis ad and define all subsequent evolutions and probabilities in
terms of this, as it is most convenient for the numerical implementations that
follow, although these quantities could in principle be calculated in any basis.
For example, in the absence of quantum feedback, ρ evolves such that

ρ̇ =
∑

d=1,2
κd ad ρ a

†
d − 1

2κd

[
a†

dad, ρ
]

+
, (5.13)

where κd denotes the spontaneous decay rate of a single photon in the ad mode,
and [a†

dad, ρ]+ denotes the anti-commutator. We are assuming an ideal detector
with efficiency η = 1 and the effect of the feedback represented by the dis-
placement operator. In the presence of quantum feedback, this master equation
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changes into

ρ̇ =
∑

d=1,2
κd D

(a)
2 (β(d)

2 )D(a)
1 (β(d)

1 )ad ρ a
†
dD

(a)†
1 (β(d)

1 )D(a)†
2 (β(d)

2 )

−1
2κd

[
a†

dad, ρ
]

+
. (5.14)

This equation takes into account that quantum feedback can be interpreted as a
modification of the system-bath coupling, thereby resulting in a transformation
of the Lindblad operators. The reason for this change of operators is that the
emission of a photon is immediately followed by the application of the feedback
pulse(s) [13, 14, 64]. In obtaining this equation, we have made the standard
quantum optical approximations of Markovianity and a rotating wave approxim-
ation, while assuming classical driving fields for the laser pulses. In the following,
we take a closer look at the unravelling of the above ensemble dynamics into indi-
vidual quantum trajectories. These can be studied analytically relatively easily,
especially if the cavities are initially prepared in a pair coherent state.

5.1.3.1 The no-photon time evolution

We first consider how the system evolves under the condition that there is no
photon emission. To obtain the conditional no-photon evolution, we write the
master equation in Eq. (5.14) as

ρ̇ = − i
ℏ
(
Hcondρ− ρH†

cond

)
+
∑

d=1,2
κd D

(a)
2 (β(d)

2 )D(a)
1 (β(d)

1 )ad ρ a
†
dD

(a)†
1 (β(d)

1 )D(a)†
2 (β(d)

2 ) (5.15)

with the conditional Hamiltonian Hcond provided by

Hcond = − i
2ℏ

∑
d=1,2

κd a
†
dad . (5.16)

While the last terms in Eq. (5.15) describe dynamics of the subensembles of
systems with a photon detection in the output port d, the first two terms de-
scribe the subensemble without an emission. In other words, the non-Hermitian
Hamiltonian Hcond is the generator for time evolution of the experimental setup
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in Fig. 5.1, conditioned on no photon emission. The corresponding time evolution
operator

Ucond(t, t0) = exp
(

− i
ℏ
Hcond(t− t0)

)
(5.17)

reduces the norm of state vectors and can be used to calculate the probability
P00(t, t0) for no photon detection in both detectors in a time interval [t0, t]. This
probability equals

P00(∆t) = ∥Ucond(t, t0)|ψ(t0)⟩∥2 . (5.18)

for a given initial state |ψ(t0)⟩ and ∆t = t− t0. For example, given an initial pair
coherent state |ψ(t0)⟩ = |α1⟩ |α2⟩ with respect to the modes a1 and a2 seen by
the detector, one can show that

Ucond(t, t0) |α1⟩ |α2⟩ = exp
(

−|α1|2

2
(
1 − e−κ1∆t

))

× exp
(

−|α2|2

2
(
1 − e−κ2∆t

))
×
∣∣∣α1e− 1

2 κ1∆t
〉 ∣∣∣α2e− 1

2 κ2∆t
〉
. (5.19)

Hence, using the notation introduced in Section 5.1.1, we can summarise the
effect of the no-photon time evolution of the field inside the cavities as α(t) =
M00(t)α(t0) with

M00(∆t) =
e− 1

2 κ1∆t 0
0 e− 1

2 κ2∆t

 . (5.20)

The probability of such an evolution occurring is

P00(∆t) = exp
[
−|α1(t0)|2

(
1 − e−κ1∆t

)]
× exp

[
−|α2(t0)|2

(
1 − e−κ2∆t

)]
(5.21)

due to Eq. (5.18).
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5.1.3.2 Photon emission probabilities

Next, we calculate the probabilities of photon emission in a time interval of
length ∆t. Taking a closer look at the two factors in Eq. (5.21), we see that the
probability for an individual detector mode i not to detect a photon equals

P
(i)
0 (∆t) = exp

[
−|αi(t0)|2

(
1 − e−κi∆t

)]
. (5.22)

Moreover, we know that the probability to find at least one photon in detector i
is given by 1 − P

(i)
0 (∆t). Thus, the probability of no photon in detector 1 and at

least one photon in detector 2 equals

P01(∆t) = exp
[
−|α1(t0)|2

(
1 − e−κ1∆t

)]
×
(
1 − exp

[
−|α2(t0)|2

(
1 − e−κ2∆t

)])
.

(5.23)

Analogously,

P10(∆t) =
(
1 − exp

[
−|α1(t0)|2

(
1 − e−κ1∆t

)])
× exp

[
−|α2(t0)|2

(
1 − e−κ2∆t

)]
(5.24)

is the probability of at least one photon in detector 1 and no photon in detector
2. To cover all possibilities (i.e. to have probabilities that sum to unity), we also
consider in the following the probability

P11(∆t) =
(
1 − exp

[
−|α1(t0)|2

(
1 − e−κ1∆t

)])
×
(
1 − exp

[
−|α2(t0)|2

(
1 − e−κ2∆t

)])
(5.25)

for the case in which at least one photon has been emitted into both detector
modes.

For relatively short time intervals ∆t, the presence of two photons in one
detector becomes negligible, and the probabilities P01(∆t), P10(∆t) and P11(∆t)
become the probabilities of having exactly one photon in mode 2, exactly one
photon in mode 1 and exactly one photon in each mode, respectively to a good
approximation, so long as ∆t ≪ κ|αi|2. In fact, the probability P11(∆t) would
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5.2 General dynamics and temporal correlations

also be negligible by the same argument, as its first non-zero term when expanded
is O(∆t2), compared to O(∆t) for single photon emissions, but we nevertheless
persist in keeping this term to maintain probabilities summing to exactly one,
and to prevent the accumulation of numerical errors. In this case, the corres-
ponding changes of the state vector α(0) of the cavity fields can be described
by transformation operators Mij(∆t), such that α(t) = Mij(∆t)α(0). To a very
good approximation, the Mij(∆t) are given by

M01(∆t)α(0) = M00(∆t)
(
α(0) + β(2)

)
,

M10(∆t)α(0) = M00(∆t)
(
α(0) + β(1)

)
,

M11(∆t)α(0) = M00(∆t)
(
α(0) + β(1) + β(2)

)
, (5.26)

with M00(∆t) given in Eq. (5.20). Specifically, we assume that the cavity field
freely decays in the time interval of size ∆t but is first displaced by the feedback.
Therefore, as long as ∆t is sufficiently small, according to the same assumption
of ∆t ≪ κ|αi|2, the exact moment of the feedback pulse does not significantly
change the evolution of the system. For the simulations, the transition matrices,
as defined in Eq. (5.7), may be needed in case that transition between bases is
required We now have a complete toolbox for modelling quantum trajectories
through piecewise evolution of the system, as suggested by standard quantum
jump methods [124–126].

5.2 General dynamics and temporal correlations

In this section, we study the behaviour of the experimental setup in Fig. 5.1
in more detail to better understand how it can be used to estimate the phase
φ = φ1 −φ2. We then consider the fundamental limits of the estimation accuracy
that we can expect for the proposed cavity network based on the photon statistics.

5.2.1 Dynamics and quantum trajectories

In the proceeding discussions, we analyse the behaviour and the sensing cap-
abilities of the cavity network shown in Fig. 5.1 for a specific example of quantum
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feedback, which can be described by

β(1) =
 0
β

(1)
2

 , β(2) =
 β

(2)
1

0

 . (5.27)

As pointed out in the previous section, we treat the quantum feedback as
approximately instantaneous. For simplicity, we also consider the case of perfect
photon detection and assume that all photons are counted and trigger feedback
pulses. Losses could be incorporated but do not largely affect the overall beha-
viour of the cavity network and are therefore neglected here [13]. As we shall see
below, the performance of the measurement scheme that we propose here does
not depend strongly on the exact number of emitted photons. It is, therefore, also
widely independent of the detector efficiency η, as longs as η differs sufficiently
from zero, which allows us to only study the case η = 1 for simplicity.

Figure 5.2: Illustration of the dynamics of the state first cavity α1(t) in the
detector mode basis. Here we present 500 individual trajectories for initial para-
meters γ1(0) = γ2(0) = 1, quantum feedback as described by Eq. (5.27) with
β

(1)
2 = 1 and β

(2)
1 = 2, κ1 = κ2 = κ, ∆t = 10−3κ−1 and φ = 0. We show the

population |α1(t)|2 of detector 1. The difference in the cavity behaviour is clear,
as some trajectories diverge, while others decay towards the vacuum, as signified
by the different line shades.
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Although the experimental setup that we analyse here always remains in a
coherent state, its dynamics are nevertheless non-trivial. While optical cavities
with continuous laser driving smoothly evolve into a steady state, the same does
not always apply in the presence of quantum feedback. For example, when the
feedback is in the form of strong laser pulses, the free decay of the cavity field
is perturbed by ‘kicks’ to the dynamics. These kicks occur more often when
there are more photons inside the resonator and hence, result in a divergence of
the average photon number. This highly non-linear behaviour prevents us from
obtaining a straightforward closed analytic solution to the master equation and
its statistical moments, despite the cavities always being in a coherent state.

However, instead of studying the ensemble behaviour, considering the indi-
vidual quantum trajectories of the system in Fig. 5.2 for cavity 1 reveals more
subtle behaviour. In particular, in Fig. 5.2 we see the creation of two types of
dynamics. In one case, we see a divergence of cavity photon numbers, with each
feedback pulse making the state even more likely to emit another photon and thus
diverging further due to subsequent feedback pulses. However, we also see traject-
ories that do not follow this evolution and decay towards the vacuum state, with
only a small number of photon emissions. Generally, after a reasonable amount
of time has passed, trajectories do not swap trajectory classes and clearly belong
to one of two subensembles, which leads to effective ergodicity breaking [64].

Let us emphasise here that this behaviour emerges as a result of manipulat-
ing quantum trajectories and, as such, is not reproducible classically. By way
of illustration consider a classical analogue to the experimental setup shown in
Fig. 5.1. For example, an optical cavity could have the output intensity mon-
itored. Then, based upon the measured intensity, feedback could be applied.
However, this would lead to a well-defined evolution of the dynamics that would
not vary over multiple trajectories. As such, the above described generation
of individual stochastic trajectories is a true quantum feature. Measurements
depending on this quantum feature will be capable of showing non-classical cor-
relations [19, 24]. It is this property that we exploit in this work to develop a
quantum jump metrology scheme [13, 14]. To see how this quantum enhancement
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manifests, we now more precisely consider the limits of estimation precision.
In the previous section, we formalised the process of a two-cavity network

inside an instantaneous feedback loop. We now present the numerical simulation
results of such a stochastic process. At first, we discuss the special case of the two-
cavity network, then we can focus on the optical input parameters for optimum
phase shift measurement and finally, we generalise the simulation scheme to test
with more general parameters.

5.2.1.1 Special case φ1 = φ2

In this section, we present the optimal input signal for the optical network for
achieving enhanced uncertainty measurement of the phase shift difference φ =
φ1 − φ2. Initially, we examine a special scenario where φ1 and φ2 are both equal
to π/2. We anticipate that the two cavities will be uncoupled. In other words,
the input signal is exclusively emitted from a singular output port. In terms of
photon statistics of the detectors, an initial cavity field is denoted as γ

i
(0). As

Fig. 5.3 demonstrates, the signal output from the second detector is zero, and it
remains unchanged over time, whereas the signal from the first detector exhibits
a rapid increase. This observation suggests that the two cavities have become
decoupled. The proposed optical network scheme encompasses multiple variable
parameters.

To optimise the accuracy of the obtained outcomes, it is essential to select
the variable parameters carefully. Here, we examine the intensity of the feedback
pulse denoted by β(2)

1 and β
(1)
2 when paired with the initial cavity field γ

i
(0). To

examine these parameters, we will revisit the particular scenario where φ1 = φ2.
Figure 5.4 illustrates the utilisation of two different sets of intensity feedback laser
for the input laser beams, namely β

(2)
1 = β

(1)
2 and β

(2)
1 = 2β(1)

2 . By examining
various input parameters, we present the outcomes obtained from utilising diverse
feedback laser beams. The plot shown in Fig. 5.4 illustrates that when feedback
pulses strengths β(2)

1 = 2β(1)
2 and the initial state of cavities γ1(0) = γ2(0) = 1

are employed, it is evident from the observation that the feedback laser pulse set
β

(2)
1 = 2β(1)

2 exhibits a slightly faster rate of divergence in the photon statistics
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for the first detector in comparison to the scenario where the feedback pulses
strengths are β(2)

1 = β
(1)
2 . Therefore, we can anticipate that the sensing perform-

ance of the optical network will become attainable slightly faster in the case where
β

(2)
1 = 2β(1)

2 , than the case where β(2)
1 = β

(1)
2 . However, no significant change is

observed for the signal detected by the second detector.

Figure 5.3: The average number of photons detected at detector 1 (red) and
detector 2 (blue) as a function of time for feedback laser pulses β(2)

1 = 2 and
β

(1)
2 = 1 with γ1(0) = γ2(0) = 1 , κ1 = κ2 = κ, ∆t = 10−3κ−1, φ1 = π/2,
φ2 = π/2 and φ = φ1 −φ2 = 0. We show here 500 trajectories for a total time of
5 s. We note that while the photon counts in the first detector 1 increase rapidly,
no photons are detected at detector 2.

5.2.1.2 General case φ1 ̸= φ2

Considering the general case where φ1 ̸= φ2 with γ1(0) = γ2(0) = 1 and
β

(2)
1 = 2β(1)

2 , Fig. 5.5 reveals that the only time the second detector 2 will not
detect any particles is when φ1 = φ2. Otherwise, once the phase shift difference
is larger than zero, both detectors will detect photons simultaneously at different
rates. In addition, detailed analysis about the behaviour of the estimator as a
function of phase shift differences will be discussed in Section 5.3.2.
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(a) (b)

Figure 5.4: The average number of photons detected at (a) detector 1 and (b)
detector 2 as a function of time for feedback laser pulse β(2)

1 = 1, β(1)
2 = 1 (red)

and β
(2)
1 = 2, β(1)

2 = 1(blue). We present here the simulation of 500 trajectories
with a total time of 5 s for γ1(0) = γ2(0) = 1 , κ1 = κ2 = κ, ∆t = 10−3κ−1 and
φ = 0.

(a) (b)

Figure 5.5: The average number of photons detected at detector 1 and detector
2 as a function of time for different phase differences (φ1 − φ2) for φ = 0 (blue),
φ = π/6+π/10 (green) and φ = π/2+π/10 (red). We show here 500 trajectories
for a total time of 5 s with γ1(0) = γ2(0) = 1, κ1 = κ2 = κ, ∆t = 10−3κ−1,
φ1 = π/2 and φ2 = π/2.
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5.3 Basic quantum jump metrology

5.3 Basic quantum jump metrology

In this section, we present the fundamental protocol for phase shift estimation
using the proposed two-cavity network subjected to an instantaneous quantum
feedback loop. The simulation results of the dynamics of the two-cavity network
are discussed, based on the mathematical framework established in earlier sec-
tions. We evaluate the performance and precision of parameter estimation by
calculating the ensemble mean for multiple trajectories of the network dynamics
evolved by the quantum jump method. Furthermore, the error propagation for-
mula is used to quantify the scaling of the parameter estimation methodology.
We examine the Fisher information associated with the photon statistics of the
two optical cavity networks to further assess the presence of temporal correlation
between the sequential measurements.

We focus on how quantum jumps may induce strong temporal correlations
into the dynamics of the quantum trajectories of a single quantum system. These
correlations can then be used to realise measurements with outcomes that mani-
fest themselves in the properties of the trajectories rather than through ensemble
averages. To see that such measurements are capable of enhanced performance,
as pointed out previously in Refs. [13, 14], consider Eq. (5.15), which describes
the time evolution of our system. Defining the Lindblad operators,

Ld =√
κd D

(a)
2 (β(d)

2 )D(a)
1 (β(d)

1 )ad (5.28)

for ease of writing, we can then write the master equation as

ρ̇ =
∑

d=1,2

(
LdρL

†
d − 1

2
[
L†

dLd, ρ
]

+

)
. (5.29)

To see these correlations, consider the Kraus decomposition of the dynamics, with
Kraus operators

K0 =Ucond(∆t, 0) ≈ I −
∑

d=1,2

(1
2L

†
dLd

)
∆t

K1 ≈
√

∆t L1

K2 ≈
√

∆t L2 . (5.30)
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The coarse-grained time evolution of the system can thus be modelled by applying
Kraus operator Kx after each observation x = {0, 1, 2} at every time step ∆t.
The probability of observing a specific sequence of measurement outcomes is then

p(x1, . . . , xN) = Tr
[(

N∏
i=1

KxN+1−i

)
ρ

(
N∏

i=1
K†

xi

)]
. (5.31)

Next, note that the Kraus operators do not commute due to the effect of the
feedback. Thus, the events and measurements are not independent from one
another. This can be seen more clearly by comparing the probabilities

p(xN |xN−1) =
Tr
[
KNKN−1T

N−2
1 (ρ)K†

N−1K
†
N

]
Tr
[
KN−1T

N−2
1 (ρ)K†

N−1

]
(5.32)

and

p(xN |xN−1xN−2) =
Tr
[
KNKN−1KN−2T

N−3
1 (ρ)K†

N−2K
†
N−1K

†
N

]
Tr
[
KN−1KN−2T

N−3
1 (ρ)K†

N−2K
†
N−1

] .

(5.33)

Here, p(xN |xN−1) is the probability of measuring xN after xN−1 in the previous
time step, and p(xN |xN−1xN−2) is the probability of measuring XN after xN−1

and xN−2, while the superoperator Tj
i describes a Markovian evolution from time-

step i to j. In general, Eqs. (5.32) and (5.33) differ, meaning the measurement
statistics do not form a Markov chain and thus possess non-trivial correlations
[13, 14]. If the Kraus operators are dependent on the unknown parameter, these
correlations may lead to a Fisher information growing faster than linearly, and
thus, potentially resulting in an enhanced sensing precision. As we shall see
below, in the case of the cavity network with quantum feedback that we consider
here, this is indeed the case.

5.3.1 A simple measurement scheme for estimating phase
difference

In this section, we finally discuss how the phase difference φ = φ1−φ2 between
two pathways of the network, as shown in Fig. 5.1, can be measured. We propose
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a simple experimental scheme and analyse its performance by calculating the un-
certainty ∆φ̂, based on an ensemble of simulated quantum trajectories. Through-
out this analysis, we assume perfect photon detection; although, as mentioned
already earlier, losses are not expected to significantly harm the performance of
the scheme [14].

5.3.2 The basic protocol

As Fig. 5.2 demonstrates, in the presence of quantum feedback, the cavity
network in Fig. 5.1 generates two classes of trajectory. One class of trajectories
prepares both cavities rapidly in their respective vacuum states, while the other
class quickly results in huge photon number populations in both resonators. Our
simulations show that the relative size of the subensemble associated with each
class has a relatively strong dependence on the phase difference φ that we want to
estimate. The probability that the total number of photons being emitted within
a certain time interval of length t is above a certain threshold therefore acts as
a reliable measurement signal for the type of trajectory being observed. The
threshold is introduced since we can notice that the signal becomes saturated
quickly as the signal diverges exponentially after some time T . Rather than
relying on the average of the total number detected, we introduce a threshold to
the signal to prevent it from diverging exponentially.

As we shall see below, it is important to choose the experimental parameters
and the photon number threshold carefully in order to ensure that useful inform-
ation is revealed. For example, if the threshold number of photons is too low, it
will not faithfully distinguish between the trajectory classes. Moreover, attention
needs to be paid to the strength of the feedback and the choice of the initial state.
Finding a balance between these parameters is essential when determining the
phase difference φ as precisely as possible.

An analytic calculation of the expected measurement signal is not straight-
forward due to the non-linear dynamics of the cavity network and its lack of a
stationary state [64]. Hence, to determine the uncertainty of the above-introduced
estimator of φ for the chosen measurement signal, we numerically simulate and
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sample a large number of trajectories over a coarse-grained timescale. This then
allows us to estimate the probability of the system emitting a number of photons
surpassing the threshold we set, to estimate φ as a function of the time t. Here,
we are especially interested in the uncertainty ∆φ̂(t) of this signal.

In the following, we consider a specific, carefully chosen set of parameters to
demonstrate the possible quantum advantage of our measurement scheme. As
with the threshold value, it is important to choose feedback parameters that are
both not too small and not too big. For example, for very weak feedback, we are
unlikely to deduce information about φ over reasonable timescales. Moreover,
for very strong feedback, the dynamics of the cavity network become dominated
by the feedback; almost all trajectories diverge and the measurement outcomes
are essentially independent of the unknown phase that we want to identify. Fi-
nally, in order to avoid starting in the vacuum state and for the practicality of
implementation, we start each trajectory with the same initial state to prepare
a non-trivial initial state. Following some experimentation with different sets of
variables, a set of parameters is selected eventually to execute the simulations
below of the parameter estimation of the phase shift difference of the two-cavity
network.

With all of these factors in mind, Figs. 5.6–5.8, show two different meas-
urement signals, i.e. the probability (PN>Nthreshold

)di
of detecting more than N =

Nthreshold photons within a time interval (0, t) at the first detector 1 and the second
detector 2, respectively, for three different values of total time t and three values
of thresholds Nthreshold. As expected, this probability increases as t increases.
Moreover, it depends on the phase shift difference φ. Considering Figs. 5.6–5.8,
we see that the optimal phase to conduct an estimation at is around φ = 0 due
to the sharpness of the gradient of the measurement signal at this point. This
corresponds to a crucial point in the dynamics. When φ = 0, only one detector
mode is ever occupied. However, moving away from this point, the other detector
mode begins to be occupied too. Thus, taking advantage of this distinction in the
signal allows for the best measurement. Due to numerical instabilities, evaluating
(PN>Nthreshold

)di
exactly at this point is, however, difficult. Therefore, we take our
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Figure 5.6: The probability (PN>3)di
with i = 1 (red-solid) and i = 2 (blue-

dot-dashed), respectively, of surpassing the threshold number of N = 3 photon
emissions within a certain time interval (0, t) as a function of the phase shift
difference φ. Here, (a) t = 0.7κ−1, (b) t = 1.5κ−1 and (c) t = 5κ−1. We average
over 104 trajectories with ∆t = 10−3κ−1, γ1(0) = γ2(0) = 1 and apply quantum
feedback as described in Eq. (5.27) with φ1 = π/2, φ2 = π/2 + π/10, β(2)

1 = 2
and β

(1)
2 = 1.

data at a nearby value of φ = π/10 where the gradient is still high for reasonable
amounts of time.

5.3.3 Fisher information for the photon statistics of an
optical cavity network

Before further analysing the performance of the proposed quantum optical
sensor, we now calculate the Fisher information of the photon statistics, using
the methods outlined in Section 2.4. This way, we obtain a bound on the op-
timum precision that our measurement scheme can achieve. The probability of
a certain trajectory with a given number of time steps can be calculated using
Eq. (5.31). To do so, it has to be taken into account that every individual time
step has one of four different possible event types, quantified by the probabilit-
ies Pij introduced in Section 5.1: no-photon, photon only in detector 1, photon
only in detector 2 or photons in both detectors. A drawback of this, however, is
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Figure 5.7: The probability (PN>5)di
with i = 1 (red-solid) and i = 2 (blue-

dot-dashed), respectively, of surpassing the threshold number of N = 5 photon
emissions within a certain time interval (0, t) as a function of the phase shift
difference φ. Here, (a) t = 0.7κ−1, (b) t = 1.5κ−1 and (c) t = 5κ−1. We average
over 104 trajectories with ∆t = 10−3κ−1, γ1(0) = γ2(0) = 1 and apply quantum
feedback as described in Eq. (5.27) with φ1 = π/2, φ2 = π/2 + π/10, β(2)

1 = 2
and β

(1)
2 = 1.

that an exact calculation of the Fisher information for a trajectory of length N

requires summing over 4N possible trajectories. Hence, this approach becomes
computationally very challenging for large N . Nevertheless, for small N , we find
scaling beyond linear of the form

F (N) ∝ O(N2) −O(N) , (5.34)

as can be inferred from the behaviour of the Fisher information curve in in Fig. 5.9.
The limitation of only having exact results for the Fisher information for a

small number of time steps means we do not have a strict bound for the system
for larger times. Instead, we extrapolate the scaling shown for short times as in
Fig. 5.9. Nevertheless, we expect that this approach provides an upper bound on
the Fisher information, as it is likely that at large times the scaling will reduce
rather than increase due to a breakdown in correlations between faraway time
steps. This observation suggests that the estimated bound can nevertheless be
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Figure 5.8: The probability (PN>7)di
with i = 1 (red-solid) and i = 2 (blue-

dot-dashed), respectively, of surpassing the threshold number of N = 7 photon
emissions within a certain time interval (0, t) as a function of the phase shift
difference φ. Here, (a) t = 0.7κ−1, (b) t = 1.5κ−1 and (c) t = 5κ−1. We average
over 104 trajectories with ∆t = 10−3κ−1, γ1(0) = γ2(0) = 1 and apply quantum
feedback as described in Eq. (5.27) with φ1 = π/2, φ2 = π/2 + π/10, β(2)

1 = 2
and β

(1)
2 = 1.

useful when compared to the uncertainty of our proposed measurement scheme.
We note that general methods of obtaining more accurate estimations of the
Fisher information in Eq. (5.34) would require being able to obtain solutions to
the master equation of the cavity network and to determine the stationary state
of its dynamics [127], neither of which are present within our system.

5.4 Sensing performance

In this section, we provide a thorough investigation of the scaling phenomenon
in the phase shift measurement estimation technique. Since the dynamics of the
system are highly non-linear, the scaling of the phase shift measurement of the
two-cavity network is estimated numerically. We consider the relative number of
trajectories with multiple successive emissions which generate an above-threshold
photon count in a given time interval as a measurement observable. We determine
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Figure 5.9: The Fisher information of the two-cavity network for φ = π/10,
where φ1 = π/2 and φ2 = π/2, as a function of time. The Fisher information is
obtained exactly for N = 12 time steps ∆t = 10−3κ−1, and the subsequent fit is
extended for all time.

the estimation uncertainty ∆φ̂ in the following with the help of the standard error
propagation formula

(∆φ̂)2 =

(
∆Ô

)2

∣∣∣∣∂⟨Ô⟩
∂φ

∣∣∣∣2
, (5.35)

where Ô denotes the relevant observable. The variance in the numerator of this
equation is obtained by sampling over 10 subensembles with 104 trajectories in
each subensemble, while the visibility in the denominator is obtained numerically.
Utilising this technique, we can study how the error in estimating the phase dif-
ference behaves for the sensing protocol that we propose here. Here, we consider
a specific set of parameters to demonstrate the utility of our system for estim-
ating a phase in an optical cavity network. It is important to choose feedback
parameters that are both not too small, such that the induced effects are observ-
able over reasonable timescales, and also not too large, such that the dynamics
are completely dominated by the feedback and thus, almost independent of the
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initial conditions and, crucially, the unknown phase of the system. Similarly, the
photon emission threshold of our signal should also be appropriately sized such
that good results can be obtained on relatively short timescales but not so short
that distinguishability between different phases is small.

5.4.1 Variable threshold

The uncertainty of the phase shift measurements ∆φ̂ for the selected meas-
urement signal is evaluated numerically using Eq. (5.35) for a set of chosen para-
meters. As mentioned earlier, the uncertainty in the phase shift difference meas-
urement ∆φ̂, for the phase shifts φ1 = π/2 and φ2 = π/2 + π/10, is evaluated
numerically by sampling over 10 subensemables each of 104 trajectories. The nu-
merator of Eq. (5.35) is evaluated by looking at the variance of 10 subensembles,
while the denominator that is known as the visibility or sensitivity of the signal
is calculated numerically by evaluating the gradient in the signal as a function of
the phase shift difference. More specifically we look at the change in signal ∂φ
at φ1 = π/2 and φ2 = (π/2 + π/10) ± π/10. Fig. 5.10 (a) shows the uncertainty
∆φ̂ for detector 1 mode with different threshold photon numbers Nthreshold = 3,
Nthreshold = 5 and Nthreshold = 7. In detector 1 mode, we see that for the chosen
threshold photon numbers, the exact value of the threshold only has a small effect
on the obtained results; even with a small number of emissions, the total number
of photons in the system is likely to diverge. We also plot the extrapolated bound
obtained from the Fisher information for comparison. We see that at early times,
we get close to the estimated measurement uncertainty ∆φ̂ for detector 1 which
then plateaus at later times. An analogous pattern of behaviour can be observed
in Fig. 5.10 (b), which shows the uncertainty associated with the measurement of
phase shift when using the photon statistics obtained from detector 2. Further-
more, it is worth noting that during the initial stages, we observe slight variations
in the scaling behaviour across different threshold values. However, as time pro-
gresses, the scaling curves begins to overlap for extended periods of time, even
across different threshold values. For both detectors and all three thresholds, we
are able to get close to the projected bound, thus suggesting that the proposed
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bound is feasible and our estimation strategy is effective. For the specific values
chosen here, the initial performance of detector 2 is worse, but ∆φ̂ of detector
2 steadily decreases and eventually beats that of detector 1, before plateauing
much later. Furthermore, the simulations error analysis is carried out by eval-
uating the variance of the uncertainty in phase shift estimation across multiple
subensembles produced by the simulation. As displayed in Fig. 5.10, the error in
the stochastic simulation, which is represented as a shaded area surrounding the
curves, starts off large before decreasing through time. This behaviour is quite
expected, as the fluctuations in the signal are fairly strong at the beginning, but
they progressively decrease as the effect of the quantum feedback on the system
becomes more prominent.

(a) (b)

Figure 5.10: The uncertainty in the phase shift measurement for phase differences
φ = π/10, where φ1 = π/2 and φ2 = π/2, as a function of time for (a) detectors
1 and (b) detector 2 and for three different thresholds, N = 3 (blue-solid), N = 5
(red-solid) and N = 7 (green-solid). The blue dashed line shows the extrapolated
value of the reciprocal of the Fisher information, providing an estimated lower
bound on the potential sensitivity of the data, and the magenta solid line shows
the scaling of the SQL .
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5.4.2 Variable phase

Next, we have a closer look at the performance of the proposed sensing scheme
for different values of φ. Figure. 5.11 (a) shows ∆φ̂ for detector 1 as a function
of time. As expected, we find that the sensor performs best when φ is close
to 0. This result is confirmed when looking at the bounds for different values
of φ, which also suggests that the distinguishability of the photon statistics is
sharpest around φ = 0, although the differences for the different phases are
relatively small. A similar behaviour is observed in Fig. 5.11 (b), where we see
that at φ = π/10, the scaling performs better for detector 2 for a relativity
longer time. For completeness, we note that we have already seen in Figs. 5.6–
5.8, that the gradient of the signal is generally the sharpest at this point. The
sharp gradient of the estimator indicates the high sensitivity of the signal to the
change in the phase shift difference. We find that the sensor performance can
approach the projected bound for large parts of the evolution when evaluating
at φ = π/10 with a threshold of N = 3, as seen in Fig. 5.11, for the parameters
chosen here. This is a promising result, as it justifies the projection of the bound
by following the same trend, even if the exact values do not match. It is also
likely that the signal we use as an estimator here is not optimal, and as such,
we would not expect it to fully saturate the bound. Moreover, the parameter
choices are not necessarily optimised, meaning other regimes may yield stronger
results. As mentioned earlier, the error in the simulations is displayed as a shaded
surrounding the curves. Similar to the Fig. 5.10, the error is large at the start of
the stimulations but declines rapidly at time increases. Nevertheless, the scaling
of our signal is promising and therefore a strong result for demonstrating the
quantum enhancement of the quantum jump metrology scheme that we analyse
here.
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(a) (b)

(c)

Figure 5.11: The uncertainty in the phase shift measurement for phase differences
φ = π/10, where φ1 = π/2 and φ2 = π/2, for (a) detectors 1 and (b) detector
2 as a function of time. Here, the threshold number is fixed to N = 3, and we
consider φ = π/10 (blue-solid), φ = π/10 + π/2 (red-solid) and φ = π/10 + 3π/4
(green-solid), with all other parameters and generation data as before. Now, we
also have different bounds for the different phase estimations (shown as dashed
lines for the respective line colours). In (c) we show the exact Fisher information
for each phase, with the extrapolation of it shown in the bounds in (a) and (b) as
the dashed lines. We again shown the SQL scaling for illustrative purposes with
the magenta line.
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5.5 Summary

In the previous section, a comprehensive examination was conducted on the
two-cavity network inside an instantaneous feedback loop. In the theoretical
modelling of the optical network, we have taken into account the utilisation of
two optical cavities that are in a coherent state. To enable photon detection,
the cavities are permitted to leak in one direction. In addition, when a photon
is detected at either of the two detectors, it triggers a laser pulse. The optical
cavities are subject to the influence of the feedback driving laser, which causes
a displacement in the state of the cavity. The examination of the evolution of
the cavity field is represented by the master equation of Lindblad form. Further-
more, the process of evolution is defined by the event of photon emission and the
absence of photon detection at the detectors. Since, solving the master equation
analytically poses a significant challenge, therefore, a numerical approach has
been chosen. The fundamental principles of the optical network were established
within the framework of quantum jump meteorology.

A preliminary examination was conducted on the photon statistics behaviour
of the optical network to identify the most suitable parameters for assessing the
network’s scaling in parameter estimation for phase shift measurement. The de-
termination of the optical network scaling was based on a selected observable.
Specifically, the probability of detecting a certain threshold number of photons
was selected as an observable and the accuracy of the phase shift measurements
as a function of time was estimated using the error propagation formula. The
network’s performance was evaluated through the assessment of the Fisher in-
formation and the introduction of error bars in the plotted signal. In general, the
overall dynamics of the two-cavity network have been simulated utilising various
input parameters that determine the evolution of the system. The simulations
have demonstrated non-linear dynamics that exhibit a significant dependence on
the phase shift difference between the two arms of the optical network. The scal-
ing of the phase shift measurement was found to exceed the SQL, demonstrating
quantum enhancements of the quantum jump metrology scheme as a result of the
presence of the temporal correlations.
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Chapter 6

Quantum advantage without
entanglement

The development of mathematical frameworks designed to study the time evol-
ution of quantum systems has been studied extensively. In general, the interaction
between the surrounding environment and the quantum systems is unavoidable.
Therefore, the development of tools to simulate open quantum systems has been
a focal point due to their importance in understanding many physical phenom-
ena [128]. Nevertheless, modelling the evolution of quantum systems is known to
be quite a challenging task. While it is theoretically feasible to model quantum
systems with classical models, the latter rapidly became exceedingly complex.
As an illustration, it is essential that the classical models violate fundamental
principles of physics, such as locality. However, instead of examining entangled
composite quantum systems to demonstrate the need for quantum physics, we
may investigate whether we can model a single quantum system equally well with
a classical stochastic model. In general, classical stochastic models can be used
to model how a quantum system evolves unitarily while no measurements are
performed, or even when a single measurement is performed at the end of the dy-
namics. However, quantum systems that experience sequential measurements can
produce highly correlated measurement outcomes [129]. In general, these meas-
urement outcomes cannot be produced by complex classical machines. Instead
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of examining entanglement (i.e. nonclassical local correlations), we identify the
following non-classical correlations in time. These have also been referred to as
entanglement in time [130–133]. Recently, it has been understood that quantum
systems can generate not only local but also temporal non-classical correlations,
and the search for the best quantum machines that exploit these correlations is
currently underway.

Furthermore, recent studies have demonstrated that the temporal correla-
tions exhibited by quantum systems surpass those of classical systems [134]. The
quantum description of finite state generator machines has been thoroughly in-
vestigated in many articles. They show the advantage of adopting the quantum
approach for simulating stochastic processes [20]. In addition, utilising the quantum
properties also aid in reducing the complexity of the mathematical models needed
to simulate a certain stochastic process [135–137]. Quantum advantages of quantum
devices extend to the reduction of the complexity and memory needed to simulate
stochastic processes [135, 138, 139].

Consequently, the existence of such robust correlations motivated research-
ers to investigate a quantum version of the HMM. The HQMM appears to be
able to model stochastic processes with fewer resources while maintaining longer
temporal correlations [19, 22, 24]. In such a model, the system is allowed to
interact with the environment, and a projective measurement is performed on
the combined system. This kind of system is considered to be an analogue to
an open quantum system where the composite state of the principle system and
the environment is a mixed state and has to be represented by a density matrix
[24]. Other mathematical versions of the quantum description of the HMM have
appeared in literature, introducing a new method of simulating quantum systems
[21, 22, 140, 141]

Furthermore, the open quantum system used in the quantum jump metrology
scheme can be understood to be an example of a HQMM [24]. Hence, to gain a
better understanding of the quantum advantage experienced in the quantum jump
metrology scheme of two-cavity optical network scheme presented in Section 5, we
investigate the temporal correlations that exists in HQMMs. Therefore, in this
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6.1 Hidden quantum Markov models and their classical counterparts

chapter, we fully characterise and review the main properties of such a quantum
machine, namely a one-qubit HQMM. In this chapter, we systematically examines
quantum correlations in HQMMs and compares them to classical models such as
HMMs and MMs.

This chapter contains four sections. In Section 6.1, we present an overview of
the definitions and characterisation of the MM, HMM and HQMM. In Section 6.2,
we give a full parametrisation of the MM, HMM and HQMM. After presenting
all the necessary theoretical characterisation of the three models, we show a
numerical comparison of the complexity of the models in Section 6.3. Finally, we
summarise our findings in Section 6.4.

6.1 Hidden quantum Markov models and their
classical counterparts

The MMs which are also known as Markov models, are memoryless generators
of stochastic processes. One way of simulating more complex stochastic processes
is to replace these machines with HMMs with an internal memory. Alternatively,
more complex stochastic sequences can be generated without adding memory by
taking advantage of quantum physics. The resulting quantum machines, which
are generalisations of earlier, less powerful quantum processors [20], have been
named HQMMs [19]. In this section, we examine the definitions of all three
machines. As already mentioned above, here, we are only interested in machines
with two possible outputs, A and B.

6.1.1 Markov models

First, we examine the definition of discrete-time MMs. These evolve on a
coarse-grained time scale and their dynamics are dominated by the generation of
random output signals and random transitions from one state i to another state
j in a fixed time interval ∆t [80]. The output signals and the dynamics of MMs
depend solely on the current state of the machine, which is known as the Markov
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1 2

t1|1

t2|1

t1|2

t2|2

Figure 6.1: A schematic view of a Markov model with two states 1 and 2. Here
tj|i denotes the probability of the machine to transition from state i into state
j. During each transition, an output symbol is created. All red arrows are
accompanied by the generation of an output A, while the blue arrows correspond
to transitions that generate an output B. In this way, the obtained output symbol
is a clear indication of the state of the machine. Therefore, state of the machine
is not hidden.

property. Therefore, state of the machine is not hidden. Discrete MMs are fully
characterised by 3-tuples (S,T,p(0)), where S describes the available state space,
T specifies all possible transition probabilities between the states of the machine,
and p(0) presents the initial state populations [142].

Since we only consider stochastic machines with two possible outputs A and
B, in every time step, our MMs switch randomly into one of only two possible
states. In the following, we denote them by 1 and 2 and S = {1, 2}. As illustrated
in Fig. 6.1, preparing the machine in 1 or in 2 generates an output A or B,
respectively. Suppose S(n) = i is the state of an individual machine after n time
steps. Then

S(n+ 1) = j , (6.1)

with transition probability tj|i.
However, if all measurement outcomes are ignored, or if ensemble averages

for a large number of MMs are considered, the states S(n) of individual MMs
are generally unknown. In this case, we describe the state of a machine by a
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two-dimensional vector p(n) of the form

p(n) =
 p1(n)
p2(n)

 , (6.2)

where pi(n) is the probability of finding the machine after n time steps in state
i. The probabilities p1(n) and p2(n) are both positive and always add up to one,

p1(n) + p2(n) = 1 . (6.3)

The state vector p(n) can be used to calculate the probability of finding the MM
in the n+1 th measurement in one of its two states. As mentioned already above,
p(0) is the initial state of the MM.

Notice also that the dynamics of the state vectors p(n) can be described by a
single transition matrix T ∈ T. More concretely, it is defined such that

p(n+ 1) = T p(n) . (6.4)

The operator T contains all the probabilities tj|i that govern the dynamics of the
MM while generating a stochastic sequence of A’s and B’s. For example, for the
two-state Markov chain in Fig. 6.1, we have

T =
 t1|1 t1|2

t2|1 t2|2

 . (6.5)

However, as we will show in Section 6.3, the relative simplicity of MMs has the
drawback of resulting in relatively weak measurement correlations.

6.1.2 Hidden Markov models

As illustrated in Fig. 6.2, like MMs, HMMs are generators of stochastic pro-
cesses that obey the Markov property and whose output symbols only depend
on the current state of the machine. However, like their name suggests, HMMs
have a hidden state space, and their outputs are no longer an indication of their
current state. The internal states of these machines remain hidden. Hence HMMs
are characterised not by 3-tuples but by 5-tuples (S,T,O,B,p(0)). As in the case
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1 2
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Figure 6.2: A schematic view of a hidden Markov model with two states 1 and 2.
Here t(m)

j|i denotes the probability of the machine to transition from state i into
state j while generating an output m. During each transition, an output symbol
is created. All red arrows are accompanied by the generation of an output m = A,
while the blue arrows correspond to transitions that generate an output m = B.

of MMs, S determines the states space of the machine, T represents the transition
probabilities and p(0) describes the initial state populations. Moreover, O spe-
cifies the possible measurement outcomes, and B contains the probabilities for
generating these outcomes [87].

Next, we notice that there are two different types of HMMs known as Moore
and Mealy [143]. In the first type, the generated stochastic output depends only
on the current state of the machine. In the latter type, it depends on the current
state and on the observed output symbol, as illustrated in Fig. 6.2. We focus
on Mealy HMMs, which contain Moore HMMs as a subset. In general, we are
interested in comparing quantum machines to the most general possible classical
stochastic generators.

As mentioned already in the previous subsection, here, we are especially inter-
ested in machines with only two possible outputs, namely A and B. However, in
the case of HMMs, this does not restrict the number of internal states N . In the
following, we denote the hidden states of the HMM by i, with i varying from 1 to
N . Suppose t(m)

j|i is the probability for a HMM prepared in state i to transition
into j while generating output m. In this case, given S(n) = i, we again find that
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S(n+ 1) = j, as in Eq. (6.1). The probability of obtaining this state now equals
the sum of the probabilities of generating an A and a B,

tj|i = t
(A)
j|i + t

(B)
j|i . (6.6)

Furthermore, for an external observer with access only to the outputs of the
machine but no access to its hidden states, the state of the machine can only be
estimated. If we introduce two sub-transition matr ices Tm where m = A,B such
that

Tm =



t
(m)
1|1 t

(m)
1|2 . . . t

(m)
1|N

t
(m)
2|1 t

(m)
2|2 . . . t

(m)
2|N

... ... ...
t
(m)
N |1 t

(m)
N |2 . . . t

(m)
N |N

 , (6.7)

then the state of the HMM conditional on obtaining the output m can again
be described by a vector p(n) with coordinates pi(n). These now denote the
probability of finding the HMM after n time steps in a certain state i, if the state
of the machine were to be observed. Using the above notation and for a given
state vector p(n), the state p(n+ 1) of the HMM conditional on output m equals

p(n+ 1) = Tm p(n)/Prn(m) . (6.8)

Here, Prn(m) denotes the probability of obtaining the output m in step n. The
state vectors p(n) are now real vectors of dimension N , with coordinates pi(n),
which must add up to one.

In addition, we can calculate the probability of a HMM being in a certain
state i after n steps, even when all its measurement outputs are ignored. As in
the previous subsection, the dynamics of the state vectors of the HMM can be
described by a transition matrix T in this case,

T = TA + TB , (6.9)

which is the sum of the two subtransition matrices TA and TB and

p(n+ 1) = T p(n) , (6.10)
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in analogy to Eq. (6.1). The matrix elements of the total transition matrix T are
the tj|i in Eq. (6.6). If η = (1, 1, . . . , 1) is a row vector with all N coordinates
equal to 1, then the probability Prn+1(m) of getting output m after n + 1 steps
equals

Prn+1(m) = η Tm p(n) . (6.11)

For a Moore HMM, the transition probabilities t(m)
j|i are the product of a function

that depends only on i and j and a function that depends only on m. In general,
no such restrictions apply.

6.1.3 Hidden quantum Markov models

To obtain a quantum version of HMMs, all we need to do is to replace its
hidden state S(n) by quantum state |ψ(n)⟩. The possible transitions between
the internal states of the system are again specified by linear stochastic process
transition matrices [19]. For Markov processes, these transition matrices are
the same for every time step and do not depend on the history of the quantum
version of HMMs. As a result, the output of the machine and the transition
that occurs depend only on the current internal state of the HQMM. Hence,
the internal quantum states |ψ(n)⟩ evolve by experiencing generalised quantum
operators, so-called Kraus operators Km, as shown in Fig. 6.3. These operators
are routinely used, for example, to describe general quantum measurements in
quantum information processing [98, 144–146].

Here, we are especially interested in one-qubit HQMMs with a two-dimensional
internal state space where this machine has one-qubit memory. This means that
the hidden state of the machine after n time steps is a two-dimensional quantum
state |ψ(n)⟩ of the general form

|ψ(n)⟩ = α(n)|1⟩ + β(n)|2⟩ , (6.12)

where |1⟩ and |2⟩ are two orthogonal quantum states that the machine can assume,
and α(n) and β(n) are complex coefficients with

|α(n)|2 + |β(n)|2 = 1 . (6.13)
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Figure 6.3: Hidden quantum Markov model evolution in a Bloch sphere repres-
entation. The evolution of the wavefunction |ψ(n)⟩ is represented by the three-
dimensional vector in the Bloch sphere. The evolution of the wavefunction |ψ(n)⟩
is governed by the Kraus operators Km that evolve the state |ψ(n)⟩ to |ψ(n+ 1)⟩
at each time step while generating an output m.

Hence, a HQMM not only has two internal states but also stores its information in
a continuum of state vectors, which are characterised by the complex coefficients
α(n) and β(n). Within each time step, the state of the HQMM changes such that

|ψ(n+ 1)⟩ = Km|ψ(n)⟩
∥Km|ψ(n)⟩∥ , (6.14)

given the output m of the respective measurement. The probability of obtaining
this outcome for the given initial state |ψ(n)⟩ now equals

Prn+1(m) = ∥Km |ψ(n)⟩∥2 . (6.15)

which is different from the probability Prn+1(m) in Eq. (6.11). Given that the
internal state space is two-dimensional, only two different measurement outcomes,
m = A,B can be obtained. The probabilities for these two outcomes add up to
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one when

K†
AKA +K†

BKB = I , (6.16)

where I denotes the identity operator.
Again, when the measurement outputs are ignored, we cannot know the states

|ψ(n)⟩ of individual HQMMs after n time steps, even when their initial state
|ψ(0)⟩ is known. In this case, we describe the quantum states of the machine by
density matrices ρ(n), which replace the probability vectors p(n) that we used in
the previous two subsections. The density matrices ρ(n) allow us to predict the
dynamics of expectation values, like the probability of finding the HQMM at a
certain time step in a certain internal state. Instead of Eq. (6.1), the dynamics
of the density matrix of a HQMM is given by

ρ(n+ 1) = K(ρ(n)) , (6.17)

with the superoperator K defined such that

K(ρ(n)) =
∑

m=A,B

Kmρ(n)K†
m . (6.18)

In other words, the Kraus operators KA and KB replace the transition matrices
TA and TB which we introduced in the previous subsection. For example, the
probability Prn+1(m) of generating an output m in step n+ 1 now equals

Prn+1(m) = Tr
(
Kmρ(n)K†

m

)
, (6.19)

where the trace, Tr, denotes the sum of all the diagonal matrix elements.

6.2 Parametrisation, stationary states and dif-
ferent observable properties

In this section, we parametrise the machines that we introduced in the pre-
vious section and highlight the constraints that must be satisfied by each model.
In addition, we determine stationary state distributions whenever possible and
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calculate the probabilities for certain output sequences. For simplicity, we assume
in the following that all three machines are ergodic due to their finite size and,
therefore, possess a stationary state. Therefore, calculated sequence probabilit-
ies apply to the outputs of large ensembles of machines, which have all already
reached their stationary states.

6.2.1 Markov models

1 2 1 1States

B A A

𝑛 = 1𝑛 = 0 𝑛 = 2 𝑛 = 3

Steps

Outcomes

𝑡2|1 𝑡1|2 𝑡1|1

Figure 6.4: A Markov model that has two states 1 and 2, and the transition
between states over time is governed by the transition probability matrix T . The
orange arrows show the evolution of the Markov model with time, while the blue
and red arrows show the generated outputs, A and B, at each time step n.

From probability theory, we know that the matrix elements of the transition
matrix T in Eq. (6.5) are all between zero and one. In addition, they must obey
the condition

t1|i + t2|i = 1 , (6.20)

for i = 1, 2 to ensure that the machine always transitions into one of its two
available states, A and B. For a two states MM, the transition matrix T has four
matrix elements and there are two constraints, we can parametrise one-bit MMs
using only two independent parameters, p and q. More concretely, we write T in
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the following as

T =
 p 1 − q

1 − p q

 , (6.21)

with parameters p, q ∈ (0, 1). Here, t1|1 = p, t2|2 = q, t2|1 = 1 − p and t1|2 = 1 − q.
In the next section, we will choose p and q randomly to generate a large set of all
possible random machines and study the properties of their output sequences.

The possible output sequences of each machine depend, for example, on their
respective initial state p(0). However, if the machine is ergodic and its outputs
are ignored for a certain initial minimum amount of time, it soon assumed that
the machine has reached a stationary state pss = (p1, p2)T with

T pss = pss . (6.22)

Using Eq. (6.21) and taking into account that p1 and p2 must add up to one, one
can show that [147]

p1 = 1 − q

2 − p− q
, p2 = 1 − p

2 − p− q
. (6.23)

These probabilities give the likelihood to find a certain machine in states 1 and
2, respectively. Hence, they also equal the probabilities to obtain the outputs
A and B at any time n, respectively, if the previous outputs of the machine are
unknown and cannot be taken into account. A schematic diagram representing
the dynamics of state evolution in the MM is shown in Fig. 6.4.

Suppose the machine has initially been prepared in its stationary state pss.
Then the probability P (i1i2 . . . im) of obtaining the output sequence i1i2 . . . im of
length m simply equals

P (i1i2 . . . im) = tim|im−1 . . . ti3|i2ti2|i1 pi1 , (6.24)

with pi1 given in Eq. (6.23). For example, the probability of creating a sequence
of length m + 2 that starts and ends with the output symbol A and otherwise
only contains B’s equals

Pm(AB . . . BA) = (1 − p)(1 − q)2

2 − p− q
qm−1 . (6.25)
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Furthermore, we can evaluate the probability of a sequence of length m + 2 to
start and to end with the output symbol A as

Pm(A ∗ . . . ∗ A) = 1 − q

2 − p− q
(1, 0)Tm−1

 1
0

 . (6.26)

Probabilities like the ones above may be utilised to assess the complexity of the
machine. For example, the probability Pm(A∗ . . .∗A) can tell us how long correl-
ations persist in the output sequences of a machine. For large m, the probability
Pm(A ∗ . . . ∗ A) tends to p1, and any knowledge about having been prepared in
state 1 exactly m+ 1 steps earlier is lost.

6.2.2 Hidden Markov models

1 2 1 1Hidden

States

𝑛 = 1𝑛 = 0 𝑛 = 2 𝑛 = 3

Steps

Observed

Outcomes B A A

𝑡2|1
(𝐵)

𝑡1|2
(𝐴)

𝑡1|1
(𝐴)

Figure 6.5: A hidden Markov model that has two states 1 and 2, and the transition
between states over time is governed by the transition probability matrix Tm

evolution over time. The diagram shows one possible route for evolving the
hidden Markov model with time. The orange arrows show the evolution of the
hidden Markov model with time, while the blue and red arrows show the generated
outputs, A and B, at each time step n.

As we have seen in Section 6.1.2, the description of Mealy HMMs [143] with
two outputs and N internal states requires two transition matrices Tm with N2

matrix elements t(m)
j|i . A schematic diagram representing the dynamics of state

evolution in the HMM is shown in Fig. 6.5.
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To identify the number of independent parameters needed to numerically sim-
ulate all possible HMMs, we first notice that the matrix elements t(m)

j|i and the
elements tj|i in Eq. (6.6) are all between zero and one. To further ensure that the
machine always transitions into a new state, while producing an output, we also
require that

N∑
j=1

tj|i = 1 , (6.27)

with the matrix elements tj|i defined as in Eq. (6.6). Hence, the transition matrix
T in Eq. (6.9) is anN×N matrix withN(N−1) free parameters. Once this matrix
is fixed, the sub-transition matrix TA can assume N2 positive free parameters, but
these are bounded from above by the matrix elements of T . Hence, in total, the
characterisation of a Mealy HMM requires (2N − 1)N independent parameters.

The stationary state is again the distribution vector pss, which is an eigen-
vector of the transition matrix T such that Tpss = pss, as stated in Eq. (6.22). In
cases of ergodicity, the state vector pss can be found, for example, numerically by
applying T repeatedly to an initial state until the state of the machine remains
the same. For simplicity, we assume in the following, that our HMMs always have
only one stationary state.

Since the transitions of a HMM are governed by two sub-transitions matrices,
namely TA and TB, the probability P (i1i2 . . . im) for generating the output se-
quence i1i2 . . . im now reads

P (i1i2 . . . im) = η Tim . . . Ti2Ti1 pss , (6.28)

where η = (1, 1, . . . , 1) is now a row vector of dimension N . More concretely, the
probability Pm(AB . . . BA) in Eq. (6.25) becomes

Pm(AB . . . BA) = η TAT
m
B TA pss . (6.29)

If we ignore the m output symbols between the first and the last A, this probab-
ility changes into

Pm(A ∗ . . . ∗ A) = η TAT
mTA pss . (6.30)
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properties

All three probabilities differ significantly from the probabilities in Eqs. (6.24)–
(6.26). As we shall see in the next section, HMMs can produce slightly more
correlated output sequences because of their hidden memory.

6.2.3 Hidden quantum Markov models

ۧ|𝜓(0)Hidden

States

𝑛 = 1𝑛 = 0 𝑛 = 2 𝑛 = 3

Steps

Observed

Outcomes A B B

𝐾𝐴 𝐾𝐵 𝐾𝐵ۧ|𝜓(1) ۧ|𝜓(2) ۧ|𝜓(3)

Figure 6.6: A hidden quantum Markov model evolution over time. Here the
transition between states over time is governed by the transition probability mat-
rix Km. The orange arrows show the evolution of the hidden quantum Markov
model state |ψ(n)⟩ with time, while the blue and red arrows show the generated
outputs, A and B, at each time step n.

Next, we examine how to parametrise HQMMs. Their generalised measure-
ments can be realised by allowing the qubit, which encodes the hidden state of
the machine, to interact with an ancillary quantum system (i.e. an environment),
followed by projective measurements on a coarse-grained time scale ∆t. In every
time step, some hidden information can leak into the environment. Markovianity
requires that the ancilla (i.e. the environment), be reset to the same initial state
after each measurement. In this way, the dynamics of the HQMM depend only
on the current state of its qubit. In Fig. 6.6, we illustrate the stochastic dynamics
of the qubit and the random measurement outcomes that might be produced in
a single run of such a machine.

107
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properties

6.2.3.1 Parametrisation of Kraus operators

To parametrise the Kraus operators KA and KB of one-qubit HQMMs, we
write them in the following as

Km =
k(m)

00 k
(m)
01

k
(m)
10 k

(m)
11

 . (6.31)

The eight complex matrix elements of KA and KB can be represented by 16 real
parameters. However, as pointed out in Eq. (6.16), these operators must obey a
matrix equation, which implies that∑

m=A,B

|k(m)
00 |2 + |k(m)

10 |2 = 1 ,
∑

m=A,B

|k(m)
01 |2 + |k(m)

11 |2 = 1 ,
∑

m=A,B

k
(m)
00 k

(m)∗
01 + k

(m)
10 k

(m)∗
11 = 0 ,

∑
m=A,B

k
(m)∗
00 k

(m)
01 + k

(m)∗
10 k

(m)
11 = 0 . (6.32)

These four equations impose four (real) constraints on the above-mentioned 16
real parameters, thereby reducing the total number of free (real) parameters
needed to fully characterise one-qubit HQMMS to 12. This means, HQMMs
can be characterised by fewer parameters than HMMs with the same number of
outputs, A and B, in case the HMM has more than two internal states.

6.2.3.2 Stationary states

If a track record of all measurement outcomes is kept, a HQMM that has
initially been prepared in a pure state |ψ(0)⟩, can always be described by a pure
state |ψ(n)⟩. However, as mentioned already in the previous section, if this is not
the case and measurement outcomes are ignored, the HQMM must be described
by a density matrix ρ(n) instead. How this density matrix evolves from one time
step to the next is shown in Eq. (6.17). Its stationary state is, therefore, the
density matrix ρss with

K(ρss) = ρss (6.33)
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with the superoperator K defined in Eq. (6.18). Since the HQMM is a two-level
system, its stationary state density matrix ρss can be written as

ρss =
ρ00 ρ01

ρ10 ρ11

 , (6.34)

with two real matrix elements, ρ00 and ρ11, and two complex matrix elements,
ρ01 and ρ10, and with

ρ00 + ρ01 = 1 ,

ρ01 = ρ∗
10 . (6.35)

In principle, using Eqs. (6.31)–(6.35), it is now possible to calculate the stationary
state density matrix ρss of HQMMs analytically, but the resulting equations do
not provide much insight, since they still contain 12 free parameters.

6.2.3.3 Sequence probabilities

As before, we now have a closer look at sequence probabilities. For example,
the probability P (i1i2 . . . im) in Eqs. (6.24) and (6.28) now equals

P (i1i2 . . . im) = Tr
(
Kim . . . Ki2Ki1 ρss K

†
i1K

†
i2 . . . K

†
im

)
, (6.36)

with the Kraus operators Km given in Eq. (6.31). Moreover, the probabilities
Pm(AB . . . BA) and Pm(A ∗ . . . ∗ A) are now given by

Pm(AB . . . BA) = Tr
(
KAK

m
B KA ρss K

†
AK

m †
B K†

A

)
, (6.37)

Pm(A ∗ . . . ∗ A) = Tr
(
KA Km

(
KAρssK

†
A

)
K†

A

)
, (6.38)

with the superopertor K given in Eq. 6.18.

6.3 A comparison of the complexity of MMs,
HMMs and HQMMs

In this section, we use the parametrisation of MMs, HMMs, and HQMMs
with two output symbols, which we introduced in the previous section, to study
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the sequence probabilities that these machines can generate. As we shall see be-
low, there is not much difference between the complexity of MMs and HMMs.
Moreover, we find that increasing the number of internal states does not sig-
nificantly change the correlation range of output symbols in case of HMM. The
possible correlations between output symbols seem to disappear relatively quickly,
after only a few time steps.

6.3.1 Markov model

The analysis of Markov chains is considered relatively straightforward due to
the availability of information regarding both the states and the transition matrix.
However, Markov chain-based systems exhibit a lack of long-term correlations
between measurements. As a measure of the correlations between measurements,
we examine the autocorrelation function of a MM. As an example, for evaluating
the autocorrelation function, we consider an ergodic MM that has two states. We
assume that the transition matrix T that governs the transitions between states
is defined as,

T =
 p 1 − p

1 − p p

 . (6.39)

where p = 0.4. The autocorrelation function exhibit a decay pattern over time,
as shown in Fig. 6.7, which occurs rapidly as the duration between measure-
ments increases. The rapid decline suggests that there are no or limited correl-
ations between measurements. This outcome is not surprising, as MMs have a
Markov property that indicates the dependence of the future state on the current
state only. Therefore, long-term correlations between states are lost as the time
between states increases. Here, stationary states are assessed by computing the
probability distribution iteratively and evaluating the results. As illustrated in
Fig. 6.8, the probability of detecting the system in a particular state experiences
some fluctuations until it reaches a stationary state. For the transition matrix
used for examining the behaviour of the probability distribution of the MM for a
long time, we consider an ergodic MM that has three states. Let the initial state
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of the MM is given by

p(0) =


1
0
0

 . (6.40)

Moreover, the transition matrix T of the model is chosen to be

T =


0.2 0.8 0.3
0.7 0 0
0.1 0.2 0

 . (6.41)

Figure 6.7: The plot of the autocorrelation function of a Markov model as a
function of time lag. Here, we see the rapid decline in the autocorrelation func-
tion with the increase in the time lag as the correlations between measurements
decrease significantly after few time steps.
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Figure 6.8: The probability of finding being in a state pi(n) as a function of
time steps n. Here, the probability of being in the first state is p1(n) (red), the
probability of being in the second state is p2(n) (blue), and the probability of
being in the third state is p3(n) (green)

6.3.2 Simulating HMMs with more than two internal states

Before going into the details of the comparison between the three models
mentioned previously, we discuss the effect of increasing the number of states in
HMM on the complexity of the dynamics of the model, while keeping the number
of outcomes the same as previously discussed: A and B only. Note here that we
can not study the effect of increasing the number of states in the MM since that
is technically impossible as the number of states is directly proportional to the
number of outputs. To study the effect of increasing the number of internal states
in HMMs, we produce a scatter plot of the probability of observing a sequence of
outcomes, more specifically P (BAAAB) as a function of P (B) for two internal
states machine S = 2, three internal states machine S = 3 and four internal states
machines S = 4. Here, each plot was generated using 105 random machines that
satisfy the parametrisations and conditions imposed on HMMs. As shown in
Fig. 6.9, the differences between the three plots are almost negligible, which may
be attributed to the fact that we only restricted the machines to have only two
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Figure 6.9: The probability P (BAAAB) as function of P (B) for a Hidden Markov
model with two internal states S = 2 (a), three internal states S = 3 (b) and four
internal states S = 4 (c). The three sub figures were generated by evaluating the
probability of observing the sequence P (BAAAB) for 105 random machines for
each plot.

outcomes, therefore, we may argue that in this case (i.e. two output with two
internal states model) the model with two internal states already represents the
optimum number of states to simulate such a model. Expanding the HMM to
include more than two internal states does not yield significant improvements
to the complexity of the dynamics of the model, as the space occupied by the
random machines for each model generated in Fig. 6.9 (a) is almost the same
for Fig. 6.9 (b) and Fig. 6.9 (c). Furthermore, as the number of internal states
increases, the complexity of the simulations also increases. Therefore, it is crucial
to carefully select the number of states, taking into consideration the potential
benefits gained by increasing the number of states and the rise in simulation
complexity as a result of increasing the number of states. Therefore, within the
framework proposed here it is concluded that there is no significant benefit in
increasing the number of internal states of HMMs beyond two states. For details
about the calculation of the stationary states of the HMM with three and four
internal states refer to appendix C.

113



6.3 A comparison of the complexity of MMs, HMMs and HQMMs

6.3.3 An example of a HQMM

As we have seen in Section 6.2, a complete parametrisation of 1-qubit HQMMs
requires 12 real parameters. However, to show that HQMMs are more complex
than HMMs, we only need to present one example of a machine that cannot be
modelled classically by linear HMMs and MMs. Keeping this in mind, we only
consider the following HQMMs with Kraus operators KA and KB which can be
written as

KA =
cosφ −a sinφ

sinφ a cosφ

 , KB =
0

√
1 − a2 sinϑ

0
√

1 − a2 cosϑ

 .

(6.42)

Here a, φ and ϑ are three real parameters with

a ∈ (0, 1) , φ ∈ (0, 2π) , ϑ ∈ (0, 2π) . (6.43)

It is relatively straightforward to check that the above operators are indeed valid
Kraus operators.

The stationary state of the 1-qubit HQMM is calculated for the Kraus operat-
ors of Eq. (6.42) using Eq. (6.31) and Eq. (6.32). The expression of the stationary
density matrix ρss is been calculated numerically using solve function in MAT-
LAB. Due to the complexity of the expression, refer to the appendix D for details
about the calculation of the stationary density matrix ρss.

6.3.4 A comparison of the performance of the machines

This section outlines a comparative analysis of three models, namely the MM,
the HMM and the HQMM. The assessment of correlations in sequential measure-
ments within each model involves the computation of the probability of observing
particular sequences using various random machines of each model. The probabil-
ity of obtaining a certain sequence, for each of the three models, was calculated for
a large number of randomly generated machines that satisfy the parametrisation
conditions of each model.
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In order to compare between the MM, HMM and HQMM, we consider the
probability of observing the sequence BAAAB. To calculate the probability of
observing the sequence P (BAAAB), we start by defining the transition matrices
and the stationary states of each of the three models. In the MM and HMM, we
consider 1-bit machines with two states and two possible outcomes A and B. For
the HQMM, we consider a 1-quibt machine with two possible outcomes A and B.

We start the simulation by defining the transition matrix T for the MM, the
transition matrix T and the sub-transition matrices TA and TB for HMM and
the sub-transition matrices KA and KB for the HQMM. All of these transition
matrices are defined so that they fulfil the constraints imposed on each model.
After that, we determine the stationary state of each model and subsequently
evaluate the probability of observing the sequence P (BAAAB). Then, the prob-
ability of observing P (BAAAB) is recalculated for a total of 105 randomly gen-
erated machines, where at each iteration we generate new transition matrices for
each model as previously stated. Finally, we create a scatter plot of the prob-
ability of observing the sequence P (BAAAB) for each model as a function of
P (B).

In Fig. 6.10 the selected sequence for simulation isBAAAB, where P (BAAAB)
representing the probability of observing the outcome B subsequent to three con-
secutive occurrences of AAA, given that the initial outcome is B. As Fig. 6.10
illustrates, the HQMM (Fig. 6.10-[c-red]) exhibits better performance due to its
ability to occupy a larger state space compared to its classical counterparts,
namely the MM (Fig. 6.10-[a-green]) and the HMM (Fig. 6.10-[b-blue]). Fur-
thermore, it can be observed that the HMM exhibits greater correlations in com-
parison to the basic MM. In other words, this sequence provides an insight into
the correlation between two B outcomes that are spaced apart by multiple ob-
servations of A. Therefore, we may argue that the probability of getting this
particular sequence is higher in the case of the HQMM than its classical counter-
parts, namely MM and HMM.

To assess the ability of each model to produce correlated sequences with
high probability, we analyse the probability of observing a sequence denoted as
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Figure 6.10: The probability of observing a sequence P (BAAAB) as a function
of P (B) for MM (a-green), HMM (b-blue) and HQMM (c-red). A comparison
between the three models shows higher probability to observe this sequence using
the HQMM over its classical counterparts, HMM and MM. For each model, the
simulation was iterated for 105 randomly generated machines.

P (ABA, T n, ABA) as a function of P (B). This probability is defined as the prob-
ability of observing the sequence ABA followed by another sequence ABA while
ignoring some outcomes, for n steps, in between the observation of the two se-
quences. To examine this probability, we graph P (ABA, T n, ABA) as a function
of P (B). Here, Fig. 6.11 illustrates the capability of three models, namely the
MM, the HMM, and the HQMM, to display correlation in observing the sequence
P (ABA, T n, ABA). The probability of obtaining the sequence using the MM is
presented in Fig. 6.11 (a)–(c) (green). It shows a slight decline in the probab-
ility of observing the correlated sequences as we increase the number of ignored
steps n. Furthermore, it should be noted that the dimensional space spanned
by the MM is considerably smaller in comparison to that of the HMM and the
HQMM. Additionally, the HMM, shown in Fig. 6.11(a)–(c) (blue), shows a higher
probability of observing the correlated sequences than the MM when the number
of ignored steps increases. Nonetheless, the HQMM, shown in Fig. 6.11 (a)–(c)
(red), demonstrates better performance in comparison to the HMM and MM. In
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brief, one might argue that the considered example of 1-quibt HQMM, which is
a subset of HQMMs, has the potential to demonstrate correlated sequences with
higher probability than the classical counterparts.

Another example that illustrates the correlations among measurements is
shown in Fig. 6.12. Here, we plot the probability of observing the sequences
P (ABAB, T n, ABAB) as a function of P (B) while ignoring certain number out-
comes in between the observation. Similar to Fig. 6.11, Fig. 6.12 shows the
same behaviour where in the HQMM the probability of observing this sequence
is slightly higher even when the measurements are ignored in between observa-
tions. Additionally, it should be noted that the alteration of the chosen sequence
results in a variation of the space covered by each model, as well as the decline
in the probability of observing a certain sequence.

To visually represent the long-term correlations among the three models, we
examine the probability of observing the two outcomes of value B separated
by some ignored measurements in between. In other words, we evaluate the
probability P (B, T n, B) for the three models. To investigate the effect of the ig-
nored measurements, we calculate the Euclidean distance between the probability
P (B, T n, B) and the curve of (P (B))2 for each time step n. Based on the fact
that after many time steps, the probability of the sequence P (B ∗ ∗ ∗ B) scales
with (P (B))2 in the absence of correlations between intermediate measurements.
Thus, the Euclidean distance is evaluated between the probability P (B, T n, B)
and the curve (P (B))2 at each time step n can be thought to be a measure of
the spread around the curve (P (B))2. Notably, as shown in Fig. 6.13, the MM
demonstrates a decline in the Euclidean distance faster than the HMM and the
HQMM. Furthermore, the correlations present in the HMM demonstrate a relat-
ively gradual decay, whereas the HQMM exhibits a slower decay than the HMM
and the MM. Thus, we may infer that in HQMM, it is likely to observe correlated
outcomes even when some measurements are being ignored between observations
of the two outcomes.

The quantum advantage, in terms of the existence of temporal correlations
and the high probability of observing correlated sequences, demonstrated by the
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simulations of the HQMMs over the HMMs and MMs, can be related to the
measurement enhancement shown earlier in the open quantum system of the
two-cavity network. As it was mentioned earlier, the operator sum representa-
tion formalism, in the form of Kraus operators, can be viewed as a method for
simulating the evolution of the density matrix as a function of time by employing
quantum information principles. This formalism demonstrated that the use of
Kraus operators can represent a general formalism for evolving the system under
the conditions of the Markov approximation and coarse-grained time evolution.
These Kraus operators evolve the system over an infinitesimal time interval ∆t.
Since the chosen evolution time step is larger than the environment’s evolution
time, the environment can be assumed to be in its preferred state after every time
step. This ‘stroboscopic’ evolution of the system is similar to the type of evol-
ution observed in the HQMM consisting of a principal system and an ancillary
system. At each time step, the system evolves according to the Kraus operators
based on the evolution path chosen under the Markovian evolution assumption
and coarse-grained time evolution. After each evolution, the ancillary system,
which represents the environment, is reset to its preferred state. Hence, we may
anticipate that an open quantum system that evolves according to the Kraus
operators is an example of a HQMM. Consequently, we can also anticipate that
the two-cavity network within an instantaneous feedback loop may be considered
an example of an HQMM.
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(a)

(b)

(c)

Figure 6.11: The probability of observing P (ABA, T n, ABA) as function of
P (B) for the MM (green), the HMM (blue), and HQMM (red) while ignoring
some outcomes between observations of the two sequences of ABA. Here, n is
the number of ignored steps; (a) is for n = 1, (b) is for n = 50, and (c) is for
n = 100 for the HMM and HQMM. For the MM the number of ignored steps
(a) is for n = 2, (b) is for n = 51, and (c) is for n = 101. For each model, the
simulation was iterated for 106 randomly generated machines.
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(a)

(b)

(c)

Figure 6.12: The probability of observing P (ABAB, T n, ABAB) as a function
of P (B) for the MM (green), HMM (blue) and HQMM (red) while ignoring some
outcomes between the observations of the two sequences of ABAB. Here, n is
the number of ignored steps the ignored steps are (a) n = 6, (b) n = 52 and (c)
n = 102. The simulations where iterated for 106 for each model.
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Figure 6.13: The Euclidean distance
√
P (B, T n, B) − (P (B))2 as function of ig-

nored steps n calculated for (a) the Markov model (green), (b) the hidden Markov
model (blue), and (c) the hidden quantum Markov model(red). For each model,
the simulation was iterated for 4 × 104 randomly generated machines.
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6.4 Summary

In the this chapter, a theoretical overview of MMs, HMMs, and HQMMs was
discussed thoroughly. Our study involved the analysis of the constraints imposed
on the transition matrix for each model and an exploration of the sub-transition
matrices that arise in the HMMs and HQMMs. Furthermore, a comprehensive
discussion was conducted on the parametrisation of each model, and the station-
ary distribution was determined for the evaluation of the particular probability se-
quences to be used later on for a performance comparison between the three mod-
els. Subsequently, we engaged in a discussion regarding the ability of each model
to display temporal correlations between consecutive measurements. It has been
observed that the correlations between measurements within MMs exhibit a rapid
decay as the number of the time steps between measurements increases. The phe-
nomenon of decay was also observed in the plot of the autocorrelation function of
the MM, where the autocorrelation function as a function of time lag exhibited an
exponential decay. The present study investigated the impact of increasing the in-
ternal states while maintaining a constant number of output outcomes. Our find-
ings suggest that there is no significant advantage associated with increasing the
internal states for the chosen sequence. Additionally, the probability of observing
the sequence P (BAAAB) was evaluated for the three models. The HMM demon-
strated a slightly higher probability of observing the tested sequences compared
to the MM, however, the one-qubit HQMM demonstrated a higher probability of
observing the sequence than both the HMM and the MM. Furthermore, the abil-
ity to observe sequences, namely P (ABA, T n, ABA), P (ABAB, T n, ABAB), and
P (B, T n, B), while ignoring measurements in between observations was tested for
all three models. The HQMM showed a higher probability of getting the sequences
and a higher probability of observing correlations between the sequences.
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Chapter 7

Conclusion

Quantum jump metrology implemented in a scheme within a quantum feed-
back loop has demonstrated the potential to achieve measurement accuracy limits
exceeding the SQL without requiring complex linear optics or entangled photons.
We started by introducing a comprehensive analysis of the traditional method for
quantifying the phase shift difference in an interferometer for benchmarking pur-
poses. In addition, to gain a deeper understanding of the theoretical framework of
our proposed scheme, a comprehensive overview of the behaviour of the one cav-
ity network in a quantum feedback loop was presented. Afterwards, we proposed
an expanded scheme for two-cavity network and two phase shifters within a feed-
back pulse loop that is more practical and efficient than the one-cavity network.
Using pair coherent state and transformation matrices, the system dynamics of
a two-cavity network were described, and measurements were analysed using the
developed Kraus operators.

The optical network of two cavities scheme employing quantum jump metro-
logy demonstrated the potential to achieve measurement accuracy with a scaling
that exceeds the SQL, given the optimal input parameters, without the need for
complex quantum properties such as entanglement. As in previous research, the
presence of quantum jumps as photon emissions is continuously monitored. The
subsequent driving of the cavities induces nonlinearities in the system dynamics,
thereby causing correlations in the photon statistics observed by the detectors.
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In the experimental configuration we examined, the cavities are always in a co-
herent state. Although photon emission does not alter the state of the cavities,
it provides information regarding the state of the resonators. Similarly, the ab-
sence of photon observation reveals information. The dependence of the quantum
feedback induced dynamics on the parameter that we wish to measure leads to ef-
fective ergodicity breaking in the dynamics of the system, resulting in two distinct
classes of trajectory [64]. The scaling could be achieved by preparing the cavities
in an initial state that is more complex than a coherent state. However, the use
of coherent states simplifies experimentation, allowing the proposed scheme to be
operated more easily and for extended durations.

A limitation of this scheme is that the outcomes can solely be obtained through
numerical means, and the computation of Fisher information is only calculated
for short durations. As a result of the close correspondence between the projected
boundary and the anticipated uncertainty derived from our measurement signal,
we believe that our fitting of the Fisher information is reasonable. An alternative
measurement protocol for obtaining information about the phase would consist of
utilising all data gathered during the continuous monitoring of the cavity network
and employing a Bayesian inference procedure. In an open system where photon
statistics are observed, this is likely the most intuitive method for measuring an
unknown parameter. This could be supplemented further by a strong quantum
measurement of the cavity state at the end of the observation, which would sup-
plement the information obtained from monitoring photon statistics. However,
for the purposes of this study we only regard the Fisher information as a proof of
concept for the existence of a quantum enhancement. Due to this property, cavity
networks are likely to receive increased interest for quantum sensing applications
and may play a crucial role in the development of quantum machine learning
devices. A long-term aim of the work that we present here is to design novel
schemes for quantum computational networks based on optical interferometers.

Furthermore, the optical cavity network has been shown to represent an ex-
ample of HQMMs. We introduced a mathematical framework for the HQMMs
and discussed the classical Markov chain-based models, namely the MMs and
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HMMs. The purpose of introducing the HQMMs was to better understand the
source of quantum advantage gained in the quantum jump metrology scheme.
Thus, we started by providing a systematic review of the definitions of the three
models, focusing on the parametrisation of the models and the conditions im-
posed on the transition matrices and the stationary states. For simplicity, we
considered modelling a system with two possible outputs A and B. The analysis
of the correlations between sequential measurements of the MM showed a lack of
long-term correlations. This result was more clearly identified in the evaluation
of the autocorrelation function, where the correlation decayed exponentially after
some time steps. Furthermore, we examined the effect of increasing the internal
states while keeping the same number of two outputs in the case of HMMs. We
observed that increasing the number of internal states, in this particular case,
does not enhance the complexity of the dynamics of the HMMs. The same test
cannot be performed for the MM since increasing the states without increasing
the number of outputs is impossible. Therefore, we can predict that going to
infinitely many internal states, while keeping two outcomes, in the case of the
HMM may not be advantageous in this particular case. Moreover, it is known
that increasing the number of internal states in the HMM may lead to the prob-
lem of overfitting; therefore, a sufficient number of internal states must be chosen
carefully. Furthermore, as a measure of the complexity of the dynamics of the
three models, we examined the probability of observing specific sequences for
a large number of randomly generated machines for each of the three models.
Using the established mathematical framework, we evaluated these probabilities
accordingly. The results of the simulations revealed that the three models vary
in their capability to generate a certain sequence. Clearly, the HQMM showed
a higher probability of generating the chosen sequences than the HMM and the
MM, which demonstrates the complex dynamics of the model. Moreover, the
HMM gave slightly better results than the MM. A further investigation revealed
that the HQMM is also performing well in producing highly correlated sequences
observed at sequential time steps, even as the time steps between observations
increase. In general, the performance of the models is affected by the choice of
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the sequence to be observed, since some sequences can be engineered in classical
models to give higher probabilities.

A further extension of this research would be assessing the effect of increas-
ing the number of qubits in the HQMM on the temporal correlations. This is
a cumbersome task since the complexity of the system increases rapidly, and a
thorough analysis must be done to parametrises such a model. Furthermore, since
the quantum jump metrology scheme of the two-cavity network inside a quantum
feedback loop, which is considered an open quantum system, represents an ex-
ample of HQMMs, a natural extension of this project is to study the temporal
correlations and the quantum advantage that can be gained by investigating the
HQMM with a coherent state.
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Appendix A

Expectation values of the number
operators ⟨N⟩ and

〈
N2〉

Using the annihilation operators of the output ports a4 and a5 shown in
Eq. (2.3) The expectation value of the photon number in Mach-Zehnder interfer-
ometer is defined as follows, the expectation value of ⟨N⟩ [11]

⟨N⟩ = sin2(∆φ
2 )

〈
a†

0a0
〉

+ cos2(∆φ
2 )

〈
a†

1a1
〉

− sin(∆φ)
2

〈
a†

0a1
〉

−sin(∆φ)
2

〈
a†

1a0
〉
. (A.1)

Moreover, the expectation value of the square of the photon number is ⟨N2⟩ [11]
〈
N2
〉

= sin4(∆φ
2 )2

〈
a†

0a
†
0a0a0

〉
+ cos4(∆φ

2 )2
〈
a†

1a
†
1a1a1

〉
+ sin2(∆φ)

〈
a†

0a0a
†
1a1
〉

+ sin2(∆φ
2 )

〈
a†

0a0
〉

+ cos2(∆φ
2 )

〈
a†

1a1
〉

+ sin2 ∆φ
4

〈
a2

0(a†
1)2
〉

+ sin2 ∆φ
4

〈
(a†

0)2a2
1

〉
− sin2(∆φ

2 ) sin ∆φ
〈
a†

0a
2
0a

†
1

〉
− sin2(∆φ

2 ) sin ∆φ
〈
(a†

0)2a0a
†
1

〉
− cos2(∆φ

2 ) sin ∆φ
〈
a0(a†

1)2a1
〉

− cos2(∆φ
2 ) sin ∆φ

〈
a†

0a
†
1a

2
1

〉
− sin ∆φ

2
〈
a0a

†
1

〉
− sin ∆φ

2
〈
a†

0a1
〉
. (A.2)
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Appendix B

Transformation between the
system environment
representation to operator-sum
representation

A formal description of Stinespring dilation theorem states that any contrac-
tion operator which is completely positive trace preserving map can be thought
of as the result of a unitary evolution on a larger dilated system.
Stinestring Dilation: For any completely positive trace preserving map among
states in a finite Hilbert space HA. Let us define the mapping E:S(H) → S(H),
where S(H) is a bounded operator in the Hilbert space. Then there exist a unit-
ary operator U and a Hilbert space of the ancilla B on the space H ⊗ B such
that,

E(ρ) = TrEU(ρ⊗ |0⟩ ⟨0|)U † . (B.1)

Here ρ ∈ S(H) and the ancillary system has a dimension d(B) ≤ d2(H).
As a result of the Stinespring theorem, that any non-unitary operator-sum

representation, such as Kraus operator, of quantum channel can be written as a
unitary operator by extending the system to incorporate the effect of the envir-
onment on the system. In other words, we introduce an extra ancillary system
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with some basis |i⟩E interacting with the principle system ρS and taking a partial
trace on the ancillary system, there for the mapping of the principal system reads
as follows

E(ρS) =
∑

i

KiρSEK
†
i . (B.2)

The Kraus operators is defined as Ki = ⟨i|E U |0⟩E. Here U is a unitary oper-
ator that can be constructed such that the first block column of U is the Kraus
operators defined as

U =



K1 ... ...

K2 ... ...

K3 ... ...

... ... ...

... ... ...

Kn ... ...


. (B.3)

The rest of the unitary operator U must be constructed such that the it preserves
the unitary relation UU † = U †U = I.
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Appendix C

Three and four states of hidden
Markov model

For the purpose of examining the effect of increasing the number of internal
state in hidden Markov model while keeping the the same number of outcomes,
i.e. two outcomes A and B. In this section we present the parametrisation of
hidden Markov model with three internal states and four internal states.

C.1 Three-states HMM

For a hidden Markov model with three internal states with two outcomes A
and B the transition matrix is given by,

T =


t1 t2 t3

t4 t5 t6

t7 t8 t9

 . (C.1)

where the elements of the transition matrix T must satisfy t1 + t4 + t7 = 1,
t2 + t5 + t8 = 1 and t3 + t6 + t9 = 1. The sub-transition matrices TA and TB that
gives the transition of states while emitting a specific outcome A and B are given
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C.1 Three-states HMM

by,

TA =


t00 t01 t02

t03 t04 t05

t06 t07 t08

 . (C.2)

TB =


t10 t11 t12

t13 t14 t15

t16 t17 t18

 . (C.3)

where the elements of TB must satisfy the conditions

0 ≤ t10 ≤ t1

0 ≤ t11 ≤ t2

0 ≤ t12 ≤ t3

0 ≤ t13 ≤ t4

0 ≤ t14 ≤ t5

0 ≤ t15 ≤ t6

0 ≤ t16 ≤ t7

0 ≤ t17 ≤ t8

0 ≤ t18 ≤ t9 (C.4)

Here, TA = T − TB.
The stationary state pss = (p1, p2, p3) of the HMM with three internal states is
given by

p3 =
−
(
(t1 − 1)x2 − (t4x1)

)
(y1x2 − y2x1) . (C.5)

p2 =
−
(
(t1 − 1) + p3y1

)
x1

. (C.6)

p1 = 1 − p2 − p3 . (C.7)
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C.2 Four-states HMM

Here x1, x2, y1, y2 defined as

x1 = t2 − t1 − 1 . (C.8)

x2 = t5 − t4 − 1 . (C.9)

y1 = t3 − t1 − 1 . (C.10)

y2 = t6 − t4 . (C.11)

C.2 Four-states HMM

For a hidden Markov model with four internal state and two outcomes A and
B, the transition matrix is given by,

T =


t1 t2 t3 t4

t5 t6 t7 t8

t9 t10 t11 t12

t13 t14 t15 t16

 . (C.12)

where the elemnts of the transition matrix T must satisfy t1 + t5 + t9 + t13 = 1,
t2 + t6 + t10 + t14 = 1, t3 + t7 + t11 + t15 = 1 and t4 + t8 + t12 + t16 = 1. The
sub-transition matrices TA and TB are given by,

TA =


t00 t01 t02 t03

t04 t05 t06 t07

t08 t09 t010 t011

t012 t013 t014 t015

 . (C.13)

TB =


t10 t11 t12 t13

t14 t15 t16 t17

t18 t19 t110 t111

t112 t113 t114 t115

 . (C.14)
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C.2 Four-states HMM

where the elements of TB must satisfy the conditions

0 ≤ t10 ≤ t1

0 ≤ t11 ≤ t2

0 ≤ t12 ≤ t3

0 ≤ t13 ≤ t4

0 ≤ t14 ≤ t5

0 ≤ t15 ≤ t6

0 ≤ t16 ≤ t7

0 ≤ t17 ≤ t8

0 ≤ t18 ≤ t9

0 ≤ t19 ≤ t10

0 ≤ t110 ≤ t11

0 ≤ t111 ≤ t12

0 ≤ t112 ≤ t13

0 ≤ t113 ≤ t14

0 ≤ t114 ≤ t15

0 ≤ t115 ≤ t16 (C.15)

Here, TA = T − TB.

The stationary state for four states HMM is given by pss = (p1, p2, p3, p4)

p4 =
−
(
(x1y2) − (x2y1)

)
(
(y2z1) − (y1z − 2)

) ,
p3 = −(x1 + p4z1)

y1
,

p2 =
−
(
t1 − 1 + p3(t3 − t1 − 1)

)
+
(
p4(t4 − t1 − 1)

)
t2 − t1 − 1 ,

p1 = 1 − p2 − p3 − p4 . (C.16)
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C.2 Four-states HMM

where x1, x2, y1, y2, z1 and z2 are defined as

x1 = (t1 − 1)(t6 − 1 − t5) − (t5)(t2 − t1 − 1) . (C.17)

x2 = t5(t10 − t9) − t9(t6 − t5 − 1) . (C.18)

y1 = (t3 − t1 − 1)(t6 − t5 − 1) − (t7 − t5)(t2 − t1 − 1) . (C.19)

y2 = (t7 − t5)(t10 − t9) − (t11 − t9 − 1)(t6 − t5 − 1) . (C.20)

z1 = (t4 − t1 − 1)(t6 − t5 − 1) − (t2 − t1 − 1)(t8 − t5) . (C.21)

z2 = (t8 − t5)(t10 − t9) − (t6 − t5 − 1)(t12 − t9) . (C.22)
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Appendix D

Stationary states of hidden
quantum Markov model

The stationary state density matrix ρss of the HQMM for Kraus operators
in Eq. (6.42) was evaluated numerically using solve function in MATLAB. The
stationary density matrix reads

ρss =
ρ00 ρ01

ρ10 ρ11

 . (D.1)

where ρ00, ρ01,ρ10 and ρ11 are given by

ρ00 = (a+ cos(2ϑ) − a cos(2φ+ 2ϑ) + a2 cos(2φ+ 2ϑ) − a2)/C

+ (a cos(2φ) − a cos(2ϑ) − 1)/C ,

ρ01 = ((a− 1)(sin(2φ) + sin(2ϑ) − sin(2φ+ 2ϑ))/C ,

ρ10 = ((a− 1)(sin(2φ) + sin(2ϑ) − sin(2φ+ 2ϑ))/C ,

ρ11 = (cos(2φ) − 1)/C . (D.2)

where C is defined as

C = (a+ cos(2φ) + cos(2ϑ) − a cos(2φ+ 2ϑ) + a2 cos(2φ+ 2ϑ)

− a2 + a cos(2φ) − a cos(2ϑ) − 2) . (D.3)
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[27] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, and P. Treutlein,
“Quantum metrology with nonclassical states of atomic ensembles,” Re-
views of Modern Physics, vol. 90, no. 3, p. 035005, 2018.

[28] C. Gerry, P. Knight, and P. L. Knight, Introductory quantum optics. Cam-
bridge university press, 2005.

[29] J. P. Dowling and K. P. Seshadreesan, “Quantum optical technologies for
metrology, sensing, and imaging,” Journal of Lightwave Technology, vol. 33,
no. 12, pp. 2359–2370, 2014.

[30] V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measure-
ments: beating the standard quantum limit,” Science, vol. 306, no. 5700,
pp. 1330–1336, 2004.

[31] V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Physical
review letters, vol. 96, no. 1, p. 010401, 2006.

[32] L. Pezze, A. Smerzi, G. Khoury, J. F. Hodelin, and D. Bouwmeester, “Phase
detection at the quantum limit with multi-photon mach-zehnder interfero-
metry,” Physical Review Letters, vol. 99, no. 22, p. 223602, 2007.

[33] M. Zwierz and H. M. Wiseman, “Precision bounds for noisy nonlinear
quantum metrology,” Physical Review A, vol. 89, no. 2, p. 022107, 2014.

[34] B. C. Sanders and G. J. Milburn, “Optimal quantum measurements for
phase estimation,” Physical Review Letters, vol. 75, no. 16, pp. 2944–2947,
1995.

[35] S. Boixo, A. Datta, S. T. Flammia, A. Shaji, E. Bagan, and C. M. Caves,
“Quantum-limited metrology with product states,” Physical Review A,
vol. 77, no. 1, p. 012317, 2008.

139



REFERENCES

[36] M. Holland and K. Burnett, “Interferometric detection of optical phase
shifts at the heisenberg limit,” Physical review letters, vol. 71, no. 9, p. 1355,
1993.

[37] C. M. Caves, “Quantum-mechanical noise in an interferometer,” Physical
Review D, vol. 23, no. 8, p. 1693, 1981.

[38] R. S. Bondurant and J. H. Shapiro, “Squeezed states in phase-sensing in-
terferometers,” Physical Review D, vol. 30, no. 12, p. 2548, 1984.

[39] J. P. Dowling, “Quantum optical metrology–the lowdown on high-n00n
states,” Contemporary physics, vol. 49, no. 2, pp. 125–143, 2008.

[40] D. W. Berry and H. M. Wiseman, “Optimal states and almost optimal ad-
aptive measurements for quantum interferometry,” Physical review letters,
vol. 85, no. 24, p. 5098, 2000.

[41] M. D. Vidrighin, G. Donati, M. G. Genoni, X.-M. Jin, W. S. Kolthammer,
M. Kim, A. Datta, M. Barbieri, and I. A. Walmsley, “Joint estimation of
phase and phase diffusion for quantum metrology,” Nature communications,
vol. 5, no. 1, pp. 1–7, 2014.

[42] G.-Y. Xiang, B. L. Higgins, D. Berry, H. M. Wiseman, and G. Pryde,
“Entanglement-enhanced measurement of a completely unknown optical
phase,” Nature Photonics, vol. 5, no. 1, pp. 43–47, 2011.

[43] I. Afek, O. Ambar, and Y. Silberberg, “High-noon states by mixing
quantum and classical light,” Science, vol. 328, no. 5980, pp. 879–881, 2010.

[44] T. Nagata, R. Okamoto, J. L. O’brien, K. Sasaki, and S. Takeuchi, “Beating
the standard quantum limit with four-entangled photons,” Science, vol. 316,
no. 5825, pp. 726–729, 2007.

[45] H. Lee, P. Kok, and J. P. Dowling, “A quantum rosetta stone for inter-
ferometry,” Journal of Modern Optics, vol. 49, no. 14-15, pp. 2325–2338,
2002.

140



REFERENCES

[46] M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving
phase measurements with a multiphoton entangled state,” Nature, vol. 429,
no. 6988, pp. 161–164, 2004.

[47] G. J. Pryde and A. G. White, “Creation of maximally entangled photon-
number states using optical fiber multiports,” Physical Review A, vol. 68,
no. 5, p. 052315, 2003.

[48] Y. Israel, I. Afek, S. Rosen, O. Ambar, and Y. Silberberg, “Experimental
tomography of noon states with large photon numbers,” Physical Review
A, vol. 85, no. 2, p. 022115, 2012.

[49] G. Gilbert, M. Hamrick, and Y. S. Weinstein, “Practical quantum interfer-
ometry using photonic noon states,” in Quantum Information and Compu-
tation V, vol. 6573, pp. 173–181, SPIE, 2007.

[50] N. Thomas-Peter, B. J. Smith, A. Datta, L. Zhang, U. Dorner, and I. A.
Walmsley, “Real-world quantum sensors: evaluating resources for precision
measurement,” Physical review letters, vol. 107, no. 11, p. 113603, 2011.

[51] S. Boixo, A. Datta, M. J. Davis, S. T. Flammia, A. Shaji, and C. M. Caves,
“Quantum metrology: dynamics versus entanglement,” Physical review let-
ters, vol. 101, no. 4, p. 040403, 2008.

[52] M. Napolitano, M. Koschorreck, B. Dubost, N. Behbood, R. Sewell, and
M. W. Mitchell, “Interaction-based quantum metrology showing scaling
beyond the heisenberg limit,” Nature, vol. 471, no. 7339, pp. 486–489, 2011.

[53] A. Datta and A. Shaji, “Quantum metrology without quantum entangle-
ment,” Modern Physics Letters B, vol. 26, no. 18, p. 1230010, 2012.

[54] B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J.
Pryde, “Entanglement-free heisenberg-limited phase estimation,” Nature,
vol. 450, no. 7168, pp. 393–396, 2007.

141



REFERENCES

[55] D. Braun, G. Adesso, F. Benatti, R. Floreanini, U. Marzolino, M. W.
Mitchell, and S. Pirandola, “Quantum-enhanced measurements without en-
tanglement,” Reviews of Modern Physics, vol. 90, no. 3, p. 035006, 2018.
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