
Learning Failure-free PRISM Programs

Waleed Alsanie

A thesis submitted for the degree of

Doctor of Philosophy

The University of York
Department of Computer Science

United Kingdom

September 2012

To my sons Abdulaziz and Nawaf, to whom I did not give enough whilst I

was working on this thesis, this thesis is dedicated to you.

Abstract

First-order logic can be used to represent relations amongst objects. Prob-

abilistic graphical models encode uncertainty over propositional data. Fol-

lowing the demand of combining the advantages of both representations,

probabilistic logic programs provide the ability to encode uncertainty over

relational data. PRISM is a probabilistic logic programming formalism

based on the distribution semantics. PRISM allows learning the parame-

ters when the programs are known.

This thesis proposes algorithms to learn failure-free PRISM programs. It

combines ideas from both areas of inductive logic programming and learn-

ing Bayesian networks. The learned PRISM programs generalise dynamic

Bayesian networks by defining a halting distribution over the sampling

process. Each dynamic Bayesian network models either an infinite se-

quential generative process or a sequential generative process of a fixed

length. In both cases, only a fixed length of sequences can be sampled. On

the other hand, the PRISM programs considered in this thesis represent

self-terminating functions from which sequences of different lengths can

be obtained. The effectiveness of the proposed algorithms on learning five

programs is shown.

Contents

List of Tables vii

List of Figures x

List of Algorithms xi

1 Motivation and Thesis Overview 14

1.1 Probabilistic Logic Programs . 14

1.2 Learning Generative PLPs . 16

1.3 Statistical Inference . 17

1.3.1 The Maximum Likelihood Approach 17

1.3.2 The Bayesian Approach . 19

1.4 Motivation . 21

1.5 Thesis Overview . 22

2 Logic Programming, Bayesian Networks and PRISM 24

2.1 Logic Programming . 24

2.1.1 Syntax . 24

2.1.2 Semantics . 25

2.2 Bayesian Network . 26

2.2.1 Dynamic Bayesian Network 29

2.3 The PRISM Formalism . 31

2.3.1 Distribution Semantics . 31

2.3.2 Probabilistic Modelling . 32

2.3.3 The Four PRISM Conditions 34

2.3.4 Failure and Failure-free PRISM Programs 35

2.4 PRISM and the Generalisation of DBNs 36

2.5 Learning with PRISM . 40

2.5.1 Parameter Estimation . 40

iv

CONTENTS v

2.5.2 Structure Learning . 41

3 Inductive Logic Programming 42

3.1 Inductive Logic Programming . 42

3.2 Learning Approaches . 48

3.2.1 Top-Down Approach . 48

3.2.2 Bottom-Up Approach . 50

3.2.3 Random Search . 51

3.2.4 Theory Revision . 51

3.2.5 Predicate Invention . 52

3.3 Learning Recursive Clauses . 52

3.3.1 MERLIN 2.0 . 54

4 Learning Bayesian Networks 60

4.1 Introduction . 60

4.2 Scoring Bayesian Networks . 61

4.2.1 Scoring BN with Fully Observed Variables 62

4.2.2 Scoring BN with Hidden Variables 64

4.3 Search . 65

4.3.1 Local Search . 66

4.3.2 K3 . 66

4.3.3 Structural-EM . 67

4.3.4 Cutting Planes . 68

4.4 Learning DBNs . 70

5 Learning Recursive PRISM Programs with Fully Observed Out-

comes 72

5.1 Introduction . 72

5.2 Learning . 77

5.2.1 Bottom Clause . 78

5.2.2 Searching for Outcome Dependencies 81

5.2.3 Recursive Definition . 87

5.2.4 Inter-Iteration Dependencies 89

5.3 Experiments . 90

CONTENTS vi

6 Learning Recursive PRISM Programs with Hidden Outcomes 101

6.1 Introduction . 101

6.2 Simulated Annealing . 105

6.3 Learning . 107

6.4 Experiments . 110

7 Summary, Conclusion and Recommendations for Further Work 121

7.1 Summary and Conclusion . 121

7.2 Recommendations for Further Work 124

Appendix A Violating the Exclusiveness Condition in PRISM 126

A.1 The Path Problem . 126

A.2 Transformation Procedure . 127

Bibliography 135

List of Tables

5.1 The result of the experiments on learning the small language program

with fully observed outcomes. 93

5.2 The result of the experiments on learning the Asia program with fully

observed outcomes. 94

5.3 The result of the experiments on learning the cervical cancer diagnosis

program with fully observed outcomes. 95

5.4 The result of the experiments on learning the maintenance decision

making program with fully observed outcomes. 96

5.5 The result of the experiments on learning the alarm program with fully

observed outcomes. 97

6.1 The result of the experiments on learning the small language program

with hidden outcomes. 112

6.2 The result of the experiments on learning the Asia program with hid-

den outcomes. 113

6.3 The result of the experiments on learning the cervical cancer diagnosis

program with hidden outcomes. 114

6.4 The result of the experiments on learning the maintenance decision

making program with hidden outcomes. 115

6.5 The result of the experiments on learning the alarm program with

hidden outcomes. 116

vii

List of Figures

2.1 An example of Bayesian Network . 27

2.2 An example of a dynamic Bayesian network. 29

2.3 An example of an HMM. 31

2.4 The dice PRISM program . 33

2.5 Examples of three queries on the program in Figure 2.4 by three in-

stances of built-in PRISM predicates. The first is the sampling query,

the second is the probability computation query and the third is the

explanations query. 34

2.6 The dice PRISM program with failure. 36

2.7 A PRISM program generalising the distribution defined by the HMM

in Figure 2.3. 40

3.1 The DFA induced by MERLIN 2.0 form the SLD-resolutions of some

examples, e.g. [a, a, a, b, b], [a, a, b, b, b, b], [b, b], . . . from an initial the-

ory. ci is clause number i in the theory. 56

4.1 An example of deleting, reversing and adding an edge in a local search

strategy. 65

4.2 K3 search strategy searching for a parent set for Xn. It starts from the

empty parent set and then find that adding X2 as a parent of Xn has

the highest score amongst the scores obtained by adding any of the

other variables. It then finds that adding Xn−1 to X2 in the parent set

has the highest score amongst the score obtained by adding any of the

remaining variables. 66

5.1 On the left are observations of the target predicate sentence/1 whose

definition needs to be learned according to the BK and the bias on the

right. 74

viii

LIST OF FIGURES ix

5.2 Two PRISM programs from which the observations in Figure 5.1 could

have been generated. 75

5.3 Two DBNs representing the dependencies modelled in the programs

in Figure 5.2. The tables on the right show that each unground term

(here object()) in a probabilistic atom corresponds to a CPT, and

each particular grounding of this term (a PRISM switch) corresponds

to a row in the CPT. 76

5.4 The result of applying the trimming function on the observation in

Figure 5.1. 82

5.5 The Lists of the terms representing the switches that were used to

generate the observations in Figure 5.1. 88

5.6 The Pattern of recursion in a DFA. 88

5.7 The values in the observations in Figure 5.1 generated by the first and

second iterations of the sought program S. 89

5.8 The ratios of the BIC scores of the learned programs to the original

programs. Each point represents an average of 5 ratios of BIC scores

of programs learned from 5 different and independent samples to the

BIC scores of the original programs from which these samples were

generated. The bars represent the standard deviations. 98

5.9 The maintenance decision making DBN. 99

5.10 The BK and the bias used to learn the maintenance decision making

PRISM programs. 99

5.11 Two PRISM programs representing the original maintenance decision

making program from which 1000 observations were sampled, and the

program which was learned from these observations and the BK and

bias given in Figure 5.10. 100

6.1 Allowing a move downhill to alleviate getting trapped in a local maxi-

mum. If the search moves downhill from state S(n) to state S(n + 1),

another area of the objective function can be explored by moving to

S(n + 2). 103

6.2 On the left is a BK with a bias stating that there are no hidden out-

comes in the body of the target predicate definition and there is one

hidden outcome in the body of the recursive predicate definition. The

bias in the BK on the right states that there is one hidden outcome in

the bodies of the target and recursive predicate definitions. 105

LIST OF FIGURES x

6.3 Observations generated by a PRISM program which needs to be learned

according to BK 2 in Figure 6.2. 108

6.4 The ratios of the BIC scores of the learned programs with hidden out-

comes to the original programs. Each point represents an average of

5 ratios of BIC scores of programs learned from 5 different and in-

dependent samples to the BIC scores of the original programs from

which these samples were generated. The bars represent the standard

deviations. 117

6.5 The maintenance decision making DBN with hidden outcomes. 118

6.6 The BK and biases used to learn the maintenance decision making

PRISM programs with hidden outcomes. 119

6.7 The original maintenance decision making program with hidden out-

comes from which 1000 observations were sampled, and the program

which was learned from these observations and the BK given in Fig-

ure 6.6. 120

A.1 The path problem. 127

A.2 A ProbLog program which defines a distribution over possible paths

between two points in a graph. 127

A.3 The success probabilities of the two queries path(a,c) and path(a,e)

in ProbLog. 128

A.4 The PRISM version of the ProbLog program shown in Figure A.2. . . 129

A.5 The incorrect values computed by the queries prob(path(a,c)) and

prob(path(a,e)) in PRISM. 130

A.6 The output of the transformation procedure applied to the PRISM

program shown in Figure A.4. 133

A.7 Probabilities computed from the program transformed from the one in

Figure A.4. The probabilities are computed correctly. 134

List of Algorithms

1 Best-first model merging . 59

2 Structural-EM . 67

3 Build a bottom clause using rlgg . 78

4 Build a bottom clause . 80

5 Greedy generalisation . 83

6 Random search . 85

7 Cutting planes for selecting PRISM probabilistic atoms 87

8 Learning PRISM programs with fully observed outcomes 91

9 Simulated annealing . 106

xi

Acknowledgements

I thank and praise Allah (God) the Almighty for giving me the courage

and the ability to seek knowledge and complete this thesis.

I would like to express my gratitude to my supervisor James Cussens for

his guidance and support throughout this research. James introduced me

to the area of probabilistic logic programming. He shared his knowledge

and expertise in inductive logic programming and probabilistic graphical

models which stimulated the ideas given in this thesis. However, any

shortcomings in this thesis remain my own. I would like to thank Dimitar

Kazakov for providing me with comments and suggestions throughout the

milestones of this research.

Thanks go to the PRISM team for answering several questions related

to PRISM. Special thanks go to Taisuke Sato for giving detailed answers

to different questions and detailed explanations of some scoring functions

provided by PRISM.

I would like to acknowledge the funding received from King Abdulaziz

City for Science and Technology (KACST) throughout the course of this

thesis.

Thanks must go to Hassan Mathkour and Ameur Touir for pushing my

interest of pursuing a PhD study forward.

My parents Abdullah Alsanie and Sarah Albati have alway been with me

with their prayers and encouragements throughout this research. Words

are not enough to express my gratitude to them.

Last but not least, I would like to express my gratitude to my wife Nouf

Alruwaishid. She has always been standing shoulder to shoulder with

me throughout this long journey. This thesis is a result of her love and

support.

Declaration

I hereby declare that the work presented in this thesis is my own unless

otherwise stated. This thesis has not been submitted for any degree other

than the Doctor of Philosophy at the University of York. Some parts of

this thesis were presented at the following events:

• Waleed Alsanie and James Cussens. Learning a generative failure-

free PRISM clause. In The 21st International Conference on Induc-

tive Logic Programming (ILP 2011), 2011.

• Waleed Alsanie and James Cussens. Learning Recursive PRISM Pro-

grams with Observed Outcomes. In ICML’12 workshop on Statistical

Relational Learning, 2012.

Chapter 1

Motivation and Thesis Overview

This chapter shows the significance of probabilistic logic programs to the areas of

knowledge representation and reasoning. It highlights how probabilistic logic pro-

grams overcome the limitations of the propositional representation and reasoning

with a deterministic knowledge base. It also shows how other modelling languages,

mainly probabilistic graphical models and logic programs (LP), are generalised by

such representations. These discussions are given in Section 1.1. Learning proba-

bilistic logic programs and the difference between learning discriminative models and

generative models are highlighted in Section 1.2. In Section 1.3, we go through sta-

tistical inference and discuss two approaches, the maximum likelihood approach and

the Bayesian approach. We give the motivation of this thesis in Section 1.4. Finally,

an overview of the thesis is given in Section 1.5.

1.1 Probabilistic Logic Programs

Logic has been used in artificial intelligence (AI) since McCarthy (1959) proposed

it as a language of encoding common sense. This proposition is motivated by the

notion that logic is a symbolic representation which can simulate verbal human com-

mon sense, and deduction can be used to reach conclusions which describe actions to

be taken. Though this proposition has been of high importance to the area of AI,

some challenges started to arise. McCarthy (1977) shed light on the problems fac-

ing AI. He pointed out that one of them is the monotonicity of deduction inference

which can be problematic if the application is used in an incremental way. This issue

had been a problem in knowledge representation and reasoning. McCarthy (1980)

then proposed the use of non-monotonic reasoning to overcome this problem. He

stated that human reasoning is generally non-monotonic. McCarthy indicated that

probability theory, which had been proposed to solve this problem, cannot be taken

14

CHAPTER 1. MOTIVATION AND THESIS OVERVIEW 15

as a general solution because some of the problems exhibiting common sense are

not probabilistic. However, Pearl (1988) showed that probabilistic graphical models

(PGMs) are feasible alternatives and can be used to solve many problems which

require reasoning under uncertainty. PGMs have been considered a revolution in

AI (Darwiche, 2009) as they remedy many limitations imposed by the determinism

of logic. However, to simplify the application of PGMs, the assumption that in-

stances generated by such models are independent and identically distributed (i.i.d.)

has become a convention. This assumption does not always apply and areas with

data having complex relational structure such as computational biology (King et al.,

2004; Fredouille et al., 2007), natural language processing (Mooney, 1996; Cussens

et al., 1997; Cussens and Džeroski, 2000), navigation (Moyle, 2003) and knowledge

discovery in databases (Mooney et al., 2002; Wrobel, 2001) require these relations

to be captured. When the significance of combining relational representation and

probabilistic reasoning became apparent, different models began to emerge to imple-

ment this combination. Probabilistic relational models (PRM) are meant to define

probability distributions over the attributes in an entity relationship diagram (ERD)

modelling a database schema (Friedman et al., 1999). Heckerman et al. (2004) gen-

eralised PRM to a compact representation and called it directed acyclic probabilistic

entity-relationship (DAPER). First-order logic (FOL) is a known language for rela-

tional representation (Džeroski, 2007). A main advantage of FOL over other relational

models is the ability to define relations recursively. This allows defining relations be-

tween two entities in the domain where there is a variable number (possibly many)

of intermediate entities between them. It also allows expressing observations with

different lengths which share a unique and repetitive internal structure. An example

of the latter is a regular language expressed with Kleene star applied to some of its

symbols.

The expressiveness of FOL as a relational representation became appealing and

attempts have been made to combine FOL with probabilistic models (Nilsson, 1986;

Poole, 1993; Ng and Subrahmanian, 1992). Different probabilistic logic formalisms

have since been developed. For instance, independent choice logic (ICL) (Poole, 1997)

and Bayesian logic programs (BLP) (Kersting and De Raedt, 2007) were stimulated by

the notion of generalising Bayesian network (BN) (a directed acyclic graphical model)

to first-order representation. Markov logic network (MLN) (Domingos and Richard-

son, 2007) also aims at lifting Markov network (an undirected graphical model) to a

first-order level. ProbLog (Gutmann et al., 2008) was motivated by problems in mod-

elling probabilistic relational databases. Stochastic logic programs (SLP) (Muggleton,

CHAPTER 1. MOTIVATION AND THESIS OVERVIEW 16

2000) and PRISM (Sato and Kameya, 1997) aim at generalising both probabilistic

grammars and logic programs. Programs of such formalisms are referred to as prob-

abilistic logic programs (PLPs).

PRISM has been under development since Sato (1995) formalised the distribution

semantics on which PRISM is based. The PRISM system consists of an inference

engine, a sampling engine to generate observations from a target predicate and differ-

ent learning tools. We introduce the distribution semantics, probabilistic modelling

in PRISM and some of the learning tools provided by PRISM in Chapter 2.

1.2 Learning Generative PLPs

A common scenario in which inductive inference is needed is as follows: we are faced

with some observations and possibly some knowledge about the domain where they

come from, and we are left with finding a hypothesis that explains these observations.

Extensive work in machine learning has been conducted on the task of inducing a gen-

eral hypothesis from such observations. These observations either represent specific

examples of general concepts in the domain, such examples are referred to as positive

examples, or they are cases which do not belong to the sought concepts, and thus are

referred to as negative examples. Negative examples are used to prevent reaching an

over-generalising hypothesis. This is because in the search for a hypothesis, simple

and general hypotheses are conventionally preferred as they cope well with unforeseen

instances. The aim of induction is to find regularities between the examples which

belong to the same class or the same category. These regularities are used to extract

features that can be relied on to categorise or classify future data. These features, say

x, are assumed to exist in the data, and thus the task of the induction is to estimate

p(y|x) where y is the class or the category. Such models are known as discriminative

models. Inducing hypotheses in FOL has been a subject of extensive research as it

allows learning discriminative models in relational domains. This area of research is

referred to as inductive logic programming (ILP) (Muggleton, 1991).

In many applications, observations represent phenomena of some unknown model.

Normally these observations could have been generated by this model. Quite com-

monly, this generation is non-deterministic and obeys some probability distribution.

In order to learn the model from these observations, this probability distribution

needs to be estimated. This is a well known problem in statistical inference. Models

which define a joint probability distribution p(y,x) from which instances can be gener-

CHAPTER 1. MOTIVATION AND THESIS OVERVIEW 17

ated (sampled) are referred to as generative models. Bayesian network and stochastic

context-free grammar (SCFG) are two typical examples of generative models.

PLPs define probability distributions over relational data encoded as logic pro-

grams. Probabilistic inductive logic programming (PILP) refers to the area of learning

such programs. PRISM allows encoding generative models over relational data (Sato,

2009). Therefore, learning PRISM programs generalises learning generative PGMs.

1.3 Statistical Inference

Given some observations, statistical inference, also known as statistical learning, con-

cerns inferring probability distributions from which the data could have been gener-

ated (Wasserman, 2003). PGMs define probability distributions with a qualitative

part, representing conditional independence assumptions between the random vari-

ables in the model, and a quantitative part, from which probabilistic inference can be

performed with respect to the given independence assumptions (Cowell et al., 2007).

Therefore, the qualitative part is referred to as the structure of the model and the

quantitative part is referred to as the parameters of the model. The task of learning

the parameters when the structure is known is referred to as parameter estimation.

When the structure is unknown, we are left with the problem of structure learning.

We highlight two different learning approaches, the maximum likelihood (ML) ap-

proach and the Bayesian approach. The two approaches will be discussed in the

context of multinomial distribution as we only consider discrete PGMs in this thesis.

1.3.1 The Maximum Likelihood Approach

The maximum likelihood estimate (MLE) θ̂ of θ is the estimate which maximises the

likelihood function defined as follows

L(θ) = P (D|θ) (1.1)

where D is the data representing the observations. Let X be a discrete variable which

can take one of k exhaustive and mutually exclusive values {x1, . . . xk}, according to

the distribution θ = {θ1, . . . , θk} respectively. Let D represent random observations

of n1, . . . , nk outcomes of X where ni is the number of the outcome xi in D. Then

the likelihood is given as follows

CHAPTER 1. MOTIVATION AND THESIS OVERVIEW 18

P (n1, . . . , nk|θ1, . . . , θk) ∝
k
∏

i=1

θni

i (1.2)

It is often more convenient to deal with the log-likelihood which, in this case, can be

obtained from (1.2) as follows

logP (n1, . . . , nk|θ1, . . . , θk) ∝
k

∑

i=1

ni log θi (1.3)

Maximising the log-likelihood in (1.3) leads to the MLE of θ which is (Bishop, 2006)

θ̂i =
ni

n
(1.4)

As shown above, MLE is an observation driven estimator. For a small set of

observations, MLE can lead to overfitting. For example, the probability of a value xi

which does not show in the drawn observations will be estimated as zero. This is an

extreme estimation and is typically undesirable. There are some smoothing techniques

which have been designed to deal with such situation (Chen and Goodman, 1996).

For instance, additive smoothing is used to avoid assigning zero probability to unseen

values. It adds an extra term α to ni and then normalises the quantity. α can be set

to any positive value. The additive smoothing is defined as follows

θ̂i =
ni + α

n + αk
(1.5)

where k is the number of values that the random variable X can take. The formula

above has also some interpretation in the Bayesian approach to estimation which will

be discussed in Section 1.3.2.

CHAPTER 1. MOTIVATION AND THESIS OVERVIEW 19

1.3.1.1 Missing Values and EM

When there are missing data, the sufficient statistics required to compute the MLE

cannot be obtained exactly. The Expectation maximisation (EM) algorithm was pro-

posed to compute the MLE in the presence of missing data (Dempster et al., 1977).

It computes the expectation of the likelihood function with respect to the probability

of the missing values given the observed ones under the current setting of the pa-

rameters. This expectation is then maximised. Let Z represents the missing values,

X represents the observed ones and θ
(t) is the current setting of the parameters, the

expectation step computes the following quantity

Q(θ|θ(t)) = E
Z|X,θ

(t)[logL(θ)]

Then the algorithm attempts to find a setting of the parameters θ(t+1) which maximise

the above quantity as follows

θ
(t+1) = arg max

θ
Q(θ|θ(t))

The algorithm iterates with the two steps above until θ reaches a stationary

point. The algorithm starts by initialising θ
(t) to some initial values. The final

estimated values depend on this initial point. Therefore, the algorithm may reach

a local maximum. An approach to overcome this problem is to start the algorithm

from different starting points.

1.3.2 The Bayesian Approach

The Bayesian approach to estimation has a philosophical background related to the

subjective interpretation of probability rather than the classic objective interpreta-

tion. This subjective interpretation states that the probability of an event is the

degree of belief one has on the occurrence of this event. This is different from the

classical frequentist interpretation of probability which defines it as the limit of the

relative frequency of the event in a sequence of experiments (Koch, 2007). With this

interpretation, one can have a prior belief on a certain event, and this belief is then

updated according to some new observations. This is reflected in the Bayes theorem

as follows

CHAPTER 1. MOTIVATION AND THESIS OVERVIEW 20

P (θ|D) =
P (D|θ) P (θ)

P (D)
(1.6)

where P (θ) is the prior, P (D|θ) is the likelihood and P (D) is a normalising factor

which is fixed for a particular set of observations. It can be noticed that the Bayesian

approach treats θ as a random variable having a probability distribution. This is

different from MLE where it is considered as an unknown fixed quantity. Bayesian

estimation can be substantially affected by the choice of prior. If the prior carries

significant information which influences the estimation of the posterior, this prior is

called an informative prior ; otherwise, it is a noninformative prior. So the prior

provides a way of injecting background knowledge to the estimator, and thus it is

sometimes referred to as the bias. It is not always the case that one has an idea of

what the prior should be. The choice of prior is, in many cases, made based upon a

mathematical convenience. Therefore, it is common that a prior which has the same

functional form as the likelihood function is chosen so that the posterior belongs to the

same family. Such prior is called a conjugate prior. For a multinomial distribution,

the conjugate prior is the Dirichlet distribution defined as follows

Dir(α1, . . . , αk) =
1

B(α1, . . . , αk)

k
∏

i=1

θαi−1
i (1.7)

where αi is a hyperparameter or a pseudocount and the normalising constant is the

multinomial Beta function which is defined in term of the gamma function Γ(αi) (DLMF)

as follows

B(α1, . . . , αk) =
Γ(α1) . . .Γ(αk)

Γ(α1 + . . . + αk)
(1.8)

The posterior distribution of θ is then defined as in (1.9) where (n1, . . . , nk) is the

sufficient statistics

P (θ|D) = Dir(n1 + α1, . . . , nk + αk) =
1

B(n1 + α1, . . . , nk + αk)

k
∏

i=1

θni+αi−1
i (1.9)

CHAPTER 1. MOTIVATION AND THESIS OVERVIEW 21

As show above, the posterior distribution of θ is also a Dirichlet distribution but with

the parameters n1 + α1, . . . , nk + αk.

The mean of the Dirichlet distribution Dir(α1, . . . , αk) is defined as follows

EDir(α1,...,αk)[θi] =
αi

∑k

j=1 αj

∀i : 1 ≤ i ≤ k (1.10)

Thus, the mean of the posterior distribution in (1.9) is defined as follows

EDir(n1+α1,...,nk+αk)[θi] =
ni + αi

n +
∑k

j=1 αj

(1.11)

It can be noticed that the additive smoothing in (1.5) is the mean of a Dirichlet dis-

tribution with the parameters n1+α1, . . . , nk +αk. Therefore, the additive smoothing

uses the hyperparameters α1, . . . , αk to smooth the MLE in (1.4).

1.4 Motivation

PRISM supports estimating the parameters of given programs. Sato et al. (2008) also

showed a way to determine the length of a profile-hidden Markov model (Durbin et al.,

1998) encoded as a PRISM program (we define hidden Markov models in Chapter 2).

To our knowledge, no work has been conducted to learn a complete PRISM program.

Muggleton (2000) proposed a method of learning stochastic logic programs. The pro-

posed method learns the programs using ILP and then fits the parameters. Kersting

and De Raedt (2007) showed how to learn Bayesian logic programs by using an ILP

learning setting known as learning from interpretations (The ILP learning settings

will be defined in Chapter 3). Learning from interpretations requires providing the

learning algorithm with a large amount of data (the interpretations of the observa-

tions).

This thesis investigates learning a class of generative PRISM programs known as

failure-free. The aim is to learn recursive PRISM programs which can be used to

model stochastic processes. These programs generalise dynamic Bayesian networks

by defining a halting distribution over the generative process. Dynamic Bayesian

CHAPTER 1. MOTIVATION AND THESIS OVERVIEW 22

networks model infinite or fixed length stochastic processes. Sampling an infinite

process can only be done by specifying the length of sequences that the process

generates. In both cases, only observations of a fixed length of sequences can be

obtained. On the other hand, the recursive PRISM programs considered in this thesis

are self-terminating upon some halting conditions. Thus, they generate observations

of different lengths of sequences.

The direction taken by this thesis is to combine ideas from both areas of ILP

and learning BNs to learn PRISM programs. It builds upon an ILP setting known

as learning from entailment. Learning from entailment has been the most common

learning setting in ILP (Kersting, 2006). Probabilistic relations in PLP can be used

to encode conditional dependencies. Therefore, statistical inference will be used to

induce these relations.

The learning problem is cast as an optimisation problem. This thesis follows

a search and score approach in which a PRISM program with the highest possible

score is searched for. The scoring metric that is adopted is the Bayesian information

criterion (BIC). Different models will be represented as PRISM programs. Data of

different sizes will be generated from these models. The learning algorithms will be

run to learn PRISM programs from these samples and some background knowledge

(BK). The scores of the learned programs are compared with the scores of the original

programs (programs from which the data have been generated). The effectiveness of

the learning algorithms to approximate a program is measured by the ratio of the

score of the learned program to the score of the original one as follows

scoreBIC(SL)

scoreBIC(SO)

where SL is the learned program and SO is the original one. The closer this ratio is

to 1, the better the approximation is.

1.5 Thesis Overview

This thesis is organised as follows

Chapter 2 provides the necessary background. It introduces the syntax and seman-

tics of logic programming. It also discusses modelling probability distributions

with BNs. It then introduces the PRISM formalism. First, the distribution

CHAPTER 1. MOTIVATION AND THESIS OVERVIEW 23

semantics which PRISM is built upon is explained. Then probabilistic mod-

elling with PRISM is described. PRISM is based upon four conditions which

need to be met in order to perform inference correctly. These conditions are

highlighted. Finally, the chapter discusses some utilities embedded in PRISM.

Chapter 3 surveys the area of ILP. The learning settings used in ILP are defined;

however, the chapter concentrates on the setting of learning from entailment.

The learning approaches in ILP are explained. Finally, learning recursive logic

programs is discussed. The chapter introduces the ILP system MERLIN 2.0

which is adapted in this thesis to develop one of the PRISM learning algorithms.

Chapter 4 surveys the area of learning BNs. It concentrates on the search and score

approach. It first highlights different scoring metrics in both cases where the

data is fully observed and where there are some hidden variables. Four search

algorithms are discussed. The chapter concludes with a survey on learning

dynamic Bayesian networks.

Chapter 5 proposes an algorithm to learn recursive PRISM programs when all out-

comes of the relations are observed. The chapter shows experiments conducted

with the developed algorithm on learning five programs.

Chapter 6 proposes an algorithm for learning recursive PRISM programs with some

hidden outcomes. The five programs in Chapter 5 are modified so that relations

with hidden outcomes are added to them. The chapter shows experiments on

learning these programs with the developed algorithm.

Chapter 7 provides a conclusion and points out directions for further work.

Chapter 2

Logic Programming, Bayesian

Networks and PRISM

This chapter introduces the necessary background upon which this thesis builds.

Section 2.1 introduces logic programming in terms of both syntax and semantics.

Section 2.2 introduces Bayesian networks and dynamic Bayesian networks. The

PRISM formalism, the distribution semantics and a class of PRISM programs known

as failure-free are introduced in Section 2.3. In Section 2.4, we show how failure-

free PRISM programs generalise Bayesian networks and dynamic Bayesian networks.

At the end of this chapter, Section 2.5 explains some learning utilities provided by

PRISM.

2.1 Logic Programming

This section introduces the syntax and semantics of logic programs. The syntax

of Prolog, which PRISM is based on, is adopted. Only SLD-resolution inference is

considered as it is the inference procedure underlying Prolog.

2.1.1 Syntax

The alphabet of a logic program consists of constants, variables, functors, predicate

symbols and logical connectives (Nilsson and Ma luszyński, 1995). Constants are either

numerics or alphanumerics starting with lowercase letters. Variables are alphanumer-

ics starting with capital letters. All variables are assumed to be universally quantified.

Functors are alphanumerics starting with lowercase letters and are associated with

arities. A functor f with arity n is denoted by f/n. Predicate symbols are alphanu-

merics starting with lowercase letters and are also associated with arities. Similarly

24

CHAPTER 2. LOGIC PROGRAMMING, BAYESIAN NETWORKS AND PRISM 25

a predicate symbol p with arity n is denoted by p/n. Logical connectives are con-

junction, disjunction, negation and implication. Conjunction is denoted by ∧ or ’,’

(comma). Disjunction is denoted by ∨ or ’;’ (semicolon). The negation of c is de-

noted by ¬c. Implication is denoted by ← where the right hand side of the symbol

is referred to as the condition and the left hand side is referred to as the conclusion.

Constants and variables are terms. If f/n is a functor and t1, . . . , tn are terms, then

f(t1, . . . , tn) is also a term, and it is referred to as a compound term. If p/n is a

predicate symbol and t1, . . . , tn are terms, then p(t1, . . . , tn) is an atomic formula, or

simply an atom. A literal is an atom or its negation. A clause is a disjunction of

literals. For example, h1 ∨ . . . ∨ hn ∨ ¬b1 ∨ . . . ∨ ¬bm is a clause. Clauses can also be

written as implications where atoms are the conclusions and negated atoms are the

conditions. For instance the previous clause can also be expressed as follows

h1; . . . ; hn ← b1, . . . , bm

where the h1; . . . ; hn part is also known as the head of the clause and the b1, . . . , bm

part is known as the body of the clause. A clausal theory is a set of clauses. When

there is at most one atom in the head of a clause, the clause is a Horn clause. If

there is exactly one atom in the head, it is a definite clause. A definite clause with an

empty body is referred to as a fact. A definite logic program is a set of only definite

clauses.

Clauses which contain no variables are called ground clauses ; consequently, facts

which do not contain variables are ground facts. The set of variables in a clause

or a term H are denoted by vars(H). A substitution θ = {V1/t1, . . . , Vn/tn} is an

assignment of terms t1, . . . , tn to the variables V1, . . . , Vn. When a substitution is

applied to a term or a clause H , this term or clause becomes instantiated with all the

variables replaced by the corresponding terms. This term or clause is then denoted

by Hθ.

2.1.2 Semantics

The semantics of a clausal logic is based upon model theory and proof theory. The

model theory concerned here will be restricted to the one based on Herbrand inter-

pretations. The proof theory will be restricted to the resolution principle proposed

CHAPTER 2. LOGIC PROGRAMMING, BAYESIAN NETWORKS AND PRISM 26

by Robinson (1965) on which the SLD-resolution is based (Kowalski and Kuehner,

1971; Kowalski, 1974).

In model theory, the Herbrand universe consists of all ground terms built by the

constants and the function symbols in the language, and the Herbrand base is the

set of all ground atoms that can be formed by the ground terms in the universe. A

Herbrand interpretation maps each ground term in the Herbrand universe to itself

and specifies the set of true ground atoms in the corresponding Herbrand base. A

Herbrand interpretation I is a model of a clause c if for all substitutions θ in which

body(c)θ is true, head(c)θ must also be true. A clause C entails a clause c, denoted

by C � c, if and only if all models of C are also models of c. An interpretation I is a

model of a clausal theory T if and only if it is a model of every clause in T . A clausal

theory T entails a clause c (T � c) if and only if T ∧¬c is unsatisfiable (does not have

any model). This is denoted by T ∧ ¬c � � where � is falsity (De Raedt, 2008). A

Herbrand model I of a theory T is referred to as a minimal model (also known as a

least model) if there is no I ′ ⊂ I which is also a model of T .

Proof theory concerns reasoning in logic. Given a theory T and a set of inference

rules, it considers deriving new clauses from the given theory using the given rules.

T ⊢ c denotes that the clause c is derivable from the theory T . Robinson (1965)

proposed an inference rule called resolution which, given the two ground clauses h1 ←

b11, b12 and h2 ← b21, h1, derives the new clause h2 ← b21, b11, b12 (called resolvent). In

order to apply this rule in FOL, an operation called unification is used. A unifier of

two terms t1 and t2 is a substitution θ which satisfies t1θ = t2θ. Robinson proposed the

resolution rule along with a unification operation called the most general unification

(mgu) to perform inference in FOL. The most general unifier U is a unifier in which

for any other unifier U ′ there exist a substitution θ that satisfies Uθ = U ′. To prove

a clause c from a theory T , SLD-resolution uses the resolution rule and the mgu to

derive falsity from T ∧¬c. When falsity is derivable, it is proved that T � c, otherwise

all derivations fail and T 2 c. The procedure of deriving falsity from T 2 c is known

as a refutation. Thus, proofs in an SLD-resolution are also referred to as refutations.

2.2 Bayesian Network

A Bayesian network is a probabilistic graphical model representing a probability

distribution. The BN structure is a directed acyclic graph (DAG). Each node in this

graph represents a random variable. Figure 2.1 shows an example of a BN with six

random variables. Given an edge in a BN, the node at the end of this edge is a child

CHAPTER 2. LOGIC PROGRAMMING, BAYESIAN NETWORKS AND PRISM 27

Figure 2.1: An example of Bayesian Network

of the node at the beginning of the edge which is a parent of this child. For example,

in Figure 2.1, C is a child of A and A is the parent of C. A child and its parents

constitute a family. The set of the parents of a child is known as the parent set of that

child. The parent set of node D in Figure 2.1 is {B,C}, and the family is denoted by

{B,C} → D. The undirected path going between two parents in a family through

their child is said to meet head-to-head at the child, and this child is referred to as a

head-to-head node. For example, the undirected path B−D−C meets head-to-head

at D which is a head-to-head node.

A conditional probability distribution (CPD) is associated with each node. It

defines the probabilities of the values taken by the random variable in this node given

the values taken by its parents. These probabilities are the parameters of the model.

The full joint probability distribution of the variables factorises into these CPDs. For

instance, the factorisation of the joint probability distribution of the variables in the

graph in Figure 2.1 is defined as follows

P (A,B,C,D,E, F) = P (A)P (B|A)P (C|A)P (D|C,B)P (E|D)P (F |D) (2.1)

Definition 1. An undirected path between a node N1 and another node N2 in a BN

is active given the set of nodes Z if and only if

• any head-to-head node in this path is in Z or one of its descendents is in Z and

CHAPTER 2. LOGIC PROGRAMMING, BAYESIAN NETWORKS AND PRISM 28

• no non-head-to-head node in this path is in Z.

The conditional independence assumption encoded by a BN can be obtained from

the DAG using the d-separation property (Pearl et al., 1989) (d stands for directional).

d-separation can be defined as follows (Koller et al., 2007)

Definition 2. Two sets of nodes X and Y are d-separated given the set of nodes Z,

denoted by X ⊥⊥ Y | Z, if and only if there is no active undirected path between some

nodes in X and some nodes in Y given the nodes in Z.

In Figure 2.1, D ⊥⊥ A | {C,B} because the two undirected paths A − C − D and

A−B−D are not active. This is because C and B are both non-head-to-head nodes

and they are all given. Also, C ⊥⊥ B | {A}; however, when D is added to the set of

given nodes, C 6⊥⊥ B | {A,D}. This is because D is a head-to-head node and it is

in the undirected path B −D − C. Likewise, C 6⊥⊥ B | {A, F} as F is a descendent

of the head-to-head node D which is in the undirected path B − D − C. For any

node, the set consisting of its parents, children and the other parents of its children

d-separates it from the other nodes in the graph. This set is referred to as the Markov

blanket of this node (Koller et al., 2007).

Several forms of probabilistic reasoning can be performed on BN. An obvious

query is computing the marginal probability which is defined as the probability of the

instantiation of a subset of the variables in the BN. For instance let X = E∪F be the

set of the variables in a BN where E and F are mutually exclusive, then the query

P (E) is a marginal probability query. Another query is the most probable explanation

(MPE) defined as follows

arg max
f

P (F = f ,E = e)

Let X = E ∪ F ∪W where E, F and W are mutually exclusive; the conditional

probability query is defined as P (E|F = f). Finally, the maximum a posteriori (MAP)

query is defined as follows

arg max
f

∑

W

P (F = f ,W|E = e)

CHAPTER 2. LOGIC PROGRAMMING, BAYESIAN NETWORKS AND PRISM 29

.

A
1

A
2B

1

C
1 D

1

B
2

C
2 D

2

Initial state

(time slice 0)
Time slice 1

Figure 2.2: An example of a dynamic Bayesian network.

2.2.1 Dynamic Bayesian Network

A dynamic Bayesian network (DBN) is a probabilistic model used to represent a

sequential process of data generation (Murphy, 2002). DBNs are useful to model the

effects of some events on the appearance of some other events later in the process.

We restrict the discussion on models which comply with the Markov property. A

sequential process has the Markov property if the current state of the process depends

only on the previous state. DBNs with the Markov property are useful to represent

temporal models where values generated at a particular time ti have effects on the

generation of some values at ti+1. Therefore, at each point of time ti, where i >

0, values are generated according to a joint probability distribution of the random

variables at t given the values generated at ti−1. The probability distribution of a

sequence of length l in a temporal process is then

P (X
(0)
1 , . . . , X

(0)
n , . . . , X

(l−1)
1 , . . . , X

(l−1)
n) =

P (X
(0)
1 , . . . , X(0)

n)
l−1
∏

t=1

P (X
(t)
1 , . . . , X(t)

n |X
(t−1)
1 , . . . , X(t−1)

n)
(2.2)

The state at time 0 is the initial state of the process. Each state in this temporal

process is referred to as a time-slice. Dependencies amongst variables in each time

slice are known as intra-slice dependencies. Dependencies amongst variables between

two consecutive time slices are known as inter-slice dependencies. Figure 2.2 shows

an example of a DBN. In this DBN, the edge from A1 to C1, the edge from A1 to D1

and the edge from B1 to D1 represent the intra-slice dependencies. The edge from

B1 to A2 and the edge from D1 to C2 represent the inter-slice dependencies.

CHAPTER 2. LOGIC PROGRAMMING, BAYESIAN NETWORKS AND PRISM 30

2.2.1.1 Hidden Markov Model

A hidden Markov model (HMM) is defined as follows (Rabiner and Juang, 1986)

Definition 3. A hidden Markov model is a sequential process consisting of the fol-

lowing elements:

• A set of hidden (unobserved) states q = {q1, . . . , qn}

• A transition probability distribution associated with each state defining the prob-

abilities of moving to other states. p(q(t+1)|q(t)) is the probability of moving from

a state q(t) at time t to another state q(t+1) at time t + 1. The probability of

moving to the next state depends only on the current state (the Markov prop-

erty).

• Emissions generated by the states. When a state is reached, it generates an

emission according to a probability distribution which depends only on this state.

This probability is called the emission probability. p(x(t)|q(t)) is the probability

that state q(t) emits x(t).

Let Q(0), . . . , Q(l) be random variables defined over the set q = {q1, . . . , qn}. At

each time t, where 0 ≤ t ≤ l, Q(t) takes a value depending on the value taken by Q(t−1)

and generates an emission. An HMM can then be represented as a DBN. Therefore,

the class of HMMs is a subclass of DBNs. A distribution is defined over a set s ⊆ q

of initial states. An HMM can either define a distribution over a set f ⊆ q of final

states or it can be infinite. An example of an HMM of three states and two emissions

is shown in Figure 2.3a. In this example, the state from which the process starts is

q1. The process finishes on state q3. The representation of this HMM as a DBN is

shown in Figure 2.3b.

Given an HMM model M and a sequence x(0), . . . , x(l−1) of emissions, the prob-

ability of observing this sequence can be computed by summing over all the states

which could have generated it. This is computed as follows

p(x(0), . . . , x(l−1)|M) =
∑

q

l−1
∏

t=0

p(x(t)|q(t))p(q(t+1)|q(t))

A common inference problem on HMMs is finding the most probable sequence of

states from which a list of emissions could have been generated. The Viterbi algorithm

CHAPTER 2. LOGIC PROGRAMMING, BAYESIAN NETWORKS AND PRISM 31

q 1
q q

2 3

a b

(a) An example of an HMM with three states
and two emissions. q1 is an initial state and
q3 is a final state.

Q

. .

Q

X X X

q
1

(1) (l-1)

(0) (1) (l-1)

q
3

(b) The HMM in (a) represented as a DBN.
The initial state is q1. q3 is a final state. X(t)

is a random variable representing an emission
which can take either a or b. Q(t) is a random
variable which takes one of the states q1, q2 or
q3.

Figure 2.3: An example of an HMM.

is used to find this sequence; therefore, this sequence is referred to as the Viterbi path.

It is defined as follows

arg max
q(0),...,q(l)

l−1
∏

t=0

p(x(t)|q(t))p(q(t+1)|q(t))

2.3 The PRISM Formalism

Programming in statistical modelling (PRISM) is a probabilistic logic programming

formalism. It defines a probability distribution over the space of truth values of

ground facts (Sato and Kameya, 1997). This section introduces the semantics upon

which PRISM is based and the syntax of the probabilistic facts.

2.3.1 Distribution Semantics

Given a logic program DB = F ∪ R where F is a set of ground facts and R is a

set of rules (definite clauses), a probability distribution PF is defined over all possible

assignments of truth values of the ground facts in F . If X1, X2, . . . , Xn are the ground

facts in F and ∀i : 1 ≤ i ≤ n, xi ∈ {0, 1} where 0 means false and 1 means true, the

joint probability distribution PF (X1 = x1, . . . , Xn = xn) is defined such that (2.3)

holds.

0 ≤ PF (X1 = x1, . . . , Xn = xn) ≤ 1
∑

x1,...,xn
PF (X1 = x1, . . . , Xn = xn) = 1

∑

xn+1
PF (X1 = x1, . . . , Xn+1 = xn+1) = PF (X1 = x1, . . . , Xn = xn)

(2.3)

CHAPTER 2. LOGIC PROGRAMMING, BAYESIAN NETWORKS AND PRISM 32

Because the ground facts in F are probabilistically true or false, they can be

thought as random variables taking the value 0 or 1. Sampling from PF will lead to

a set F ′ ⊆ F where the least Herbrand model of F ′ ∪ R represents a sample of true

ground atoms from the Herbrand base of DB. The probability of each ground atom

A is defined as follows

P (A) =
∑

F ′⊆F :F ′∪R�A

PF (F ′)

Thus PF can be extended to PDB which is known as the distribution semantics (Sato

and Kameya, 1997, 2008).

2.3.2 Probabilistic Modelling

The probabilistic facts in PRISM are modelled using the built-in predicate msw/2. The

mode of the atoms of this predicate is msw(−s,+v). The first argument is an input

argument and it is called a switch. Each switch is a family of i.i.d. random variables

{Si}i∈N, where i is a trial number. The second argument to the msw/2 predicate is

an output argument and it is a value to which a random variable from this family is

instantiated (Cussens, 2012). Therefore, msw(s, v) is represented internally in PRISM

as msw(s, i, v1) with i being the trial number. With another fact msw(s, v), which is

also represented as msw(s, j, v2) where i 6= j, two different random variables Si and

Sj which belong to the same switch (family) are represented. The discrete sample

space which an outcome of a switch is defined over is determined by the built-in

predicate values/2. The first argument to this predicate is either a switch or a

term representing a set of switches and the second argument is the sample space.

An instance of this predicate is referred to as a switch declaration. The distribution

θ = {θ1, . . . , θn} of an outcome of a switch defined over a sample space of size n

is set using the built-in predicate set sw/2. The first argument to set sw/2 is the

switch and the second argument is the distribution. Figure 2.4 shows a PRISM

program modelling three random movements that need to be taken according to the

sum of the numbers resulting from three rolling of two dice (die(a) and die(b)).

values(die(),[1,2,3,4,5,6]) is a declaration of a set of switches (each switch is

a ground term). set sw(die(a),[0.1,0.2,0.1,0.2,0.2,0.2]) is the distribution

CHAPTER 2. LOGIC PROGRAMMING, BAYESIAN NETWORKS AND PRISM 33

values(die(_),[1,2,3,4,5,6]).

move(S):-

move(0,S).

move(3,[]):-!.

move(N,[Z|T]):-

msw(die(a),X),

msw(die(b),Y),

Z is X + Y,

N1 is N + 1,

move(N1,T).

set_params:-

set_sw(die(a),[0.1,0.2,0.1,0.2,0.2,0.2]),

set_sw(die(b),[0.2,0.1,0.2,0.1,0.2,0.1]).

Figure 2.4: The dice PRISM program

defined over the outcomes of switch die(a) (the distribution of the outcomes of switch

die(b) is defined in the same way). By sampling six random variables as follows

{msw(die(a), 1, X1), msw(die(b), 1, Y1),
msw(die(a), 2, X2), msw(die(b), 2, Y2),
msw(die(a), 3, X3), msw(die(b), 3, Y3)}

we are actually sampling instances of the target predicate move/1. Sampling instances

of a target predicate can be performed using the built-in predicate get samples/3.

The first argument to this predicate is the number of samples, the second argument

is an atom of the target predicate and the third argument is a variable to which

the answer is instantiated. PRISM allows performing probabilistic inference through

some built-in predicates. The prob/1 predicate is used to compute the probability

of a goal. For instance, prob(move([3,5,2])), is the probability of sampling three

dice rolling and obtaining the three sums 3, 5 and 2. probf/1 is used to obtain the

explanations of a successful query. Each explanation is a conjunction of atoms in a

branch of the SLD-resolution used to derive the refutations of the goal. Figure 2.5

shows the result of the sampling query, the probability computation query and the

explanation query (in the answer of the explanation query, v denotes a disjunction

and & denotes a conjunction).

CHAPTER 2. LOGIC PROGRAMMING, BAYESIAN NETWORKS AND PRISM 34

| ?- get_samples(10,move(_),Gs).

Gs = [move([9,7,11]),move([5,8,9]),move([6,8,5]),move([9,12,6]),

move([9,12,11]),move([5,10,9]),move([7,6,11]),move([8,7,7]),

move([8,6,8]),move([7,8,9])]

yes

| ?- prob(move([3,5,2])).

Probability of move([3,5,2]) is: 0.000032000000000

yes

| ?- probf(move([3,5,2])).

move([3,5,2])

<=> move(0,[3,5,2])

move(0,[3,5,2])

<=> move(1,[5,2]) & msw(die(a),1) & msw(die(b),2)

v move(1,[5,2]) & msw(die(a),2) & msw(die(b),1)

move(1,[5,2])

<=> move(2,[2]) & msw(die(a),1) & msw(die(b),4)

v move(2,[2]) & msw(die(a),2) & msw(die(b),3)

v move(2,[2]) & msw(die(a),3) & msw(die(b),2)

v move(2,[2]) & msw(die(a),4) & msw(die(b),1)

move(2,[2])

<=> move(3,[]) & msw(die(a),1) & msw(die(b),1)

move(3,[])

Figure 2.5: Examples of three queries on the program in Figure 2.4 by three instances
of built-in PRISM predicates. The first is the sampling query, the second is the
probability computation query and the third is the explanations query.

2.3.3 The Four PRISM Conditions

In order to model any problem in PRISM, four conditions need to be met (Sato and

Kameya, 2001):

• The uniqueness condition: for any given sample F ′ from the ground facts F

in the logic program DB = F ∪R, only one ground atom of the target predicate

(goal) is true, others must be false. In the dice problem, if we sample three dice

rolls and obtained move([3,5,2]), for instance, other movements must be false.

• The exclusiveness condition: the explanations of any goal are mutually

exclusive. If E1 and E2 are explanations of a goal G, P (E1 ∧ E2) = 0, and

P (G) = p(E1) ∨ P (E2) = P (E1) + P (E2).

CHAPTER 2. LOGIC PROGRAMMING, BAYESIAN NETWORKS AND PRISM 35

• The finite support condition: as stated in the exclusiveness condition above

that the probability of any goal is the sum of the probabilities of its explana-

tions, the number of explanations of any goal needs to be finite in order for the

summation to be computable.

• The distribution condition: the probability of a random variable taking two

values simultaneously is 0. That is p(msw(s, i, v1) & msw(s, i, v2)) = 0 where

v1 6= v2 and i is the trial number. Finally, the probability of any explanation is

the product of the probabilities of the values that the random variables in this

explanation has been instantiated to.

The ProbLog (Probabilistic Prolog) formalism drops the exclusiveness condition

to tackle problems in graph and data mining (Gutmann et al., 2008). PRISM does

not check whether or not the exclusiveness condition is met. In Appendix A, we

propose a general procedure to model problems in PRISM where the exclusiveness

condition does not apply.

2.3.4 Failure and Failure-free PRISM Programs

Let DB = F ∪ R be a definite logic program, where F is a set of probabilistic

facts defining all possible instantiations of random variables, and R is a set of rules

some of which define a target predicate. Let F ′ ⊆ F be a set of probabilistic facts

representing a particular instantiation of the random variables such that R ∪ F ′ do

not entail any instance of the target predicate. Then, any derivation in an SLD-

resolution of an instance of the target predicate formed by F ′ will lead to failure.

Figure 2.6 shows an example of a PRISM program with failure. In this program, a

single movement will only take place when the two dice show the same numbers. In

this case, if we sample the probabilistic facts and obtain the set {msw(die(a),2),

msw(die(b),5)}, for instance, this set forms a derivation in an SLD-resolution which

leads to failure. Therefore, there are some choices of probabilistic facts representing

joint instantiations of the random variables which do not belong to the support set

of the probability distribution represented by the definition of the target predicate.

When any set of probabilistic facts representing a joint instantiation of the random

variables defined in the program, together with R, entail an instance of the target

predicate, there is no set of probabilistic facts which form a derivation that leads to

a failure. Such programs are known as failure-free.

CHAPTER 2. LOGIC PROGRAMMING, BAYESIAN NETWORKS AND PRISM 36

values(die(_), [1,2,3,4,5,6]).

move(X):-

msw(die(a), X),

msw(die(b), Y),

X = Y.

set_params:-

set_sw(die(a), [0.1,0.2,0.1,0.2,0.2,0.2]),

set_sw(die(b), [0.1,0.2,0.1,0.2,0.2,0.2]).

Figure 2.6: The dice PRISM program with failure.

Definition 4. Let DB = F ∪ R be a definite logic program, where F is a set of

probabilistic facts defining all possible instantiations of random variables, and R is

a set of rules some of which define a target predicate p/n. DB is failure-free if and

only if ∀F ′ ⊆ F : F ′ is a set of probabilistic facts defining a joint instantiation of the

random variables, R ∪ F ′ entail an instance of p/n.

The class of failure-free PRISM programs can represent many models. In DBNs,

all possible joint instantiations of the random variables belong to the target probabil-

ity mass function. Therefore, any DBN can be represented by a failure-free PRISM

program. Probabilistic productions of non-terminals in stochastic context-free gram-

mars (SCFGs) are not conditioned and do not depend on the contexts in which the

non-terminals appear. All joint choices of the probabilistic production rules belong

to the probability mass function represented by the grammar. Therefore, any SCFG

can be represented by a failure-free PRISM program. However, in stochastic context-

sensitive grammars (SCSG), probabilistic productions of non-terminals may depend

upon the contexts in which these non-terminals appear. Given non-terminals in a

particular context represented by a SCSG, some productions of these non-terminals

may not fit in this context, and thus, are not allowed by the grammar. Thus, some

joint choices of these productions represent failures and they are excluded from the

represented language. Therefore, not all SCSGs can be represented by failure-free

PRISM programs.

2.4 PRISM and the Generalisation of DBNs

A set of switches defined over the same sample space can be represented using an

unground term. The selection of a particular switch is then established by a substi-

CHAPTER 2. LOGIC PROGRAMMING, BAYESIAN NETWORKS AND PRISM 37

tution of the variables in that term. This provides a way of encoding dependencies

between the outcomes of the switches. For instance, given the two switches s1 and s2

whose outcomes are SW1 and SW2 respectively, the unground term s3(X,Y) represents

a set of switches amongst which, by the substitution θ = {X/SW1, Y/SW2}, one is

selected. Therefore, the outcome represented by the unground term s3(X,Y) depends

upon the outcomes of the two switches s1 and s2. This dependency is modelled as

follows

.

.

msw(s 1,SW 1),

msw(s 2,SW 2),

msw(s 3(SW 1,SW 2),SW 3),

.

.

Given the above discussion, a BN can be encoded as a PRISM program. Sato

and Kameya (2001) showed that the following PRISM program represents the same

distribution represented by a BN

F = {msw(parentsi(ui), xi)}ni=1

R = {bn(X1, . . . , Xn) : −
∧n

i=1msw(parentsi(Ui), Xi)}

where Ui is the parent set of Xi. Ui = ∅ when Xi is a root node. ui is a particular

instantiation of the parent set Ui and xi is a particular instantiation of their child

Xi.

Let the rule ({bn(X
(0)
1 , . . . , X

(0)
n) ←

∧n

i=1msw(parentsi(Ui), Xi)}) represent the

dependencies between the variables X
(0)
1 , . . . , X

(0)
n in the distribution given in (2.2).

This rule represents the factor P (X
(0)
1 , . . . , X

(0)
n) in this distribution. The product of

the factors corresponding to the states from 1 to ∞ can then be represented by the

following recursive rule

rec def(X
(t−1)
1 , . . . , X

(t−1)
n , [X

(t)
1 , . . . , X

(t)
n |Tail]) : −

∧n

i=1msw(parentsi(U
(t)
i), X

(t)
i),

rec def(X
(t)
1 , . . . , X

(t)
n , Tail).

CHAPTER 2. LOGIC PROGRAMMING, BAYESIAN NETWORKS AND PRISM 38

where X
(t−1)
1 , . . . , X

(t−1)
n are input arguments, X

(t)
1 , . . . , X

(t)
n are the output arguments

of the current instance of the recursion, Tail is the output of the subsequent instances

of the recursion and U
(t)
i is the parent set of X(t). Each instance of the recursion repre-

sents a factor P (X
(t)
1 , . . . , X

(t)
n |X

(t−1)
1 , . . . , X

(t−1)
n) in the product in (2.2). Therefore,

the following PRISM program represents the same distribution represented by a DBN

with an infinite sequence.

F = {msw(parentsi(u
(0)
i), x

(0)
i), . . .}ni=1

R = {(infinite DBN([X
(0)
1 , . . . , X

(0)
n , X

(1)
1 , . . . , X

(1)
n |Tail]) : −

∧n

i=1msw(parentsi(U
(0)
i), X

(0)
i),

rec def(X
(0)
1 , . . . , X

(0)
n , [X

(1)
1 , . . . , X

(1)
n |Tail])

),

(rec def(X
(t−1)
1 , . . . , X

(t−1)
n , [X

(t)
1 , . . . , X

(t)
n |Tail]) : −

∧n

i=1msw(parentsi(U
(t)
i), X

(t)
i),

rec def(X
(t)
1 , . . . , X

(t)
n , Tail)

)
}

Let a set of random variables {X(t)
i }

∞
t=0 for some 0 ≤ i ≤ n be designated to generate

a value x
(t)
halt which halts the process. Define a predicate stop/m such that, at the

end of each time-slice t, this predicate definition halts the process when the value

x
(t)
halt has been generated, otherwise, it continues the process. The resulting PRISM

program becomes (for clarity, we denote X
(t)
i , the random variable at time-slice t

which generates the halting value, by X
(t)
halt)

CHAPTER 2. LOGIC PROGRAMMING, BAYESIAN NETWORKS AND PRISM 39

F = {msw(parentsi(u
(0)
i), x

(0)
i), . . .}ni=1

R = {(generalised DBN([X
(0)
1 , . . . , X

(0)
n |Tail]) : −

∧n

i=1msw(parentsi(U
(0)
i), X

(0)
i),

stop(X
(0)
halt, X

(0)
1 , . . . , X

(0)
n , Tail)

),

(rec def(X
(t−1)
1 , . . . , X

(t−1)
n , [X

(t)
1 , . . . , X

(t)
n |Tail]) : −

∧n

i=1msw(parentsi(U
(t)
i), X

(t)
i),

stop(X
(t)
halt, X

(t)
1 , . . . , X

(t)
n , Tail)

),

(stop(x
(t)
halt, X

(t)
1 , . . . , X

(t)
n , [])),

(stop(X
(t)
halt 6= x

(t)
halt, X

(t)
1 , . . . , X

(t)
n , Tail) : − rec def(X

(t)
1 , . . . , X

(t)
n , Tail))

}

This program generalises a DBN by adding the additional modelling property of

representing the halting probability. It defines the following distribution

P ({X(l)
1 , . . . , X

(l)
n }∞l=0) =

P (X
(0)
1 , . . . , X(0)

n)
∏

∀1≤t≤∞:

∄1≤i≤n, X
(t−1)
i

=x
(t−1)
halt

P (X
(t)
1 , . . . , X(t)

n |X
(t−1)
1 , . . . , X(t−1)

n)

The class of the above PRISM programs is the focus of this thesis.

In Figure 2.7, we show a PRISM program which generalises the HMM model in

Figure 2.3 by defining a halting distribution based upon the outcome of the halt()

set of switches. When sampling from this program, if the outcome of halt() is

’yes’ the process stops, otherwise it continues to generate another symbol (a or

b). Inter-slice dependencies in DBNs are represented in PRISM programs by input

arguments to the recursive predicate (variables Next in Figure 2.7). In the PRISM

context, we will refer to these dependencies as inter-iteration dependencies. Likewise,

intra-slice dependencies will be referred to as intra-iteration dependencies.

CHAPTER 2. LOGIC PROGRAMMING, BAYESIAN NETWORKS AND PRISM 40

values(init,[q1,q2,q3]).

values(out(_),[a,b]).

values(tr(_),[q1,q2,q3]).

values(halt(_),[yes,no]).

hmm(L):-

msw(init,S),

hmm(S,L).

hmm(S,[Ob|Y]) :-

msw(out(S),Ob),

msw(tr(S),Next),

msw(halt(Next),Decision),

stop(Decision,Next,Y).

stop(yes,_,[]).

stop(no,Next,Y):-

hmm(Next,Y).

Figure 2.7: A PRISM program generalising the distribution defined by the HMM in
Figure 2.3.

2.5 Learning with PRISM

2.5.1 Parameter Estimation

Given a PRISM program DB and some observations D, PRISM allows estimating the

parameters using both the MLE approach and the Bayesian approach. Parameters

can be estimated in both cases when observations are fully observed and when there

are some missing or hidden values. In MLE, PRISM uses an adapted version of the EM

algorithm called graphical EM (gEM). gEM works on the SLD-resolution (explanation

graph) of the observations. It uses dynamic programming to reuse the values in the

iterations of the algorithm. This increases the efficiency of the gEM over a näıve

application of the EM algorithm. However, in case of programs with failures, the

derivations which lead to failures need to be excluded from the mass function and the

probability of refutations need to be normalised. PRISM adopts the failure-adjusted

maximisation (FAM) algorithm proposed by Cussens (2001). FAM is an instance of

the EM algorithm meant to estimate the parameters of stochastic logic programs with

failures. In the Bayesian approach, a MAP estimation of the parameters is supported.

Given the Dirichlet prior shown in (1.7), where the hyperparameters are set by the

user, and some observations D = d1, . . . , dn, the MAP estimation finds the following

quantity (P (θ|D) is defined as in (1.9))

CHAPTER 2. LOGIC PROGRAMMING, BAYESIAN NETWORKS AND PRISM 41

arg max
θ

P (θ|D)

2.5.2 Structure Learning

Though PRISM does not provide any structure learning algorithm, it does support

three scoring functions to score candidate programs against observations. These scor-

ing functions are the BIC score, the variational free energy score and the Cheeseman-

Stutz score. They all provide different approximations of the log marginal likelihood

which is defined as follows (S is the structure)

logP (D|S) = log

∫

θ

P (θ|S)P (D|S, θ) dθ (2.4)

We discuss the BIC score and the variational free energy score in Chapter 4.

Chapter 3

Inductive Logic Programming

This chapter surveys different techniques used to learn logic programs from examples.

The first section highlights the different settings of ILP. It provides an overview of

the main principles that are used in the area. Section 3.2 discusses the main learning

approaches used in ILP. Finally, Section 3.3 goes through one of the most challenging

problems in ILP which is learning recursive clauses. It also explains MERLIN 2.0, a

system which will be adapted in Chapter 5 to learn recursive PRISM programs.

3.1 Inductive Logic Programming

Inductive logic programming emerged out of the research in concept learning (Flach

and Lavrač, 2002). In concept learning, the problem is to learn from specific exam-

ples of the concept a general definition to which these examples belong. This general

definition can then be used to determine, with a high degree of accuracy, whether or

not any further unseen example belongs to this concept. If an example e belongs to

the concept H , then e is covered by H , otherwise H does not cover e. In relational

data, concepts need to be defined in such a way that these relations are captured. As

FOL is a relational representation, ILP concerns learning concept definitions in FOL.

The learning is either performed from positive examples (those which belong to the

concept) and negative examples (those which do not belong to the concept) or from

only positive examples. In learning from both positive and negative examples, the

problem is defined as follows (Muggleton, 1991; Flach and Lavrač, 2002; Lavrač and

Džeroski, 1994)

42

CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING 43

Given:

• A set of examples E = E+ ∪ E− consisting of predicates called foreground

predicates where E+ is a set of positive examples and E− is a set of negative

examples.

• Background knowledge (BK) B consisting of predicates called background pred-

icates.

• A declarative bias L specifying a form of clauses that can be built using the

predicates in B and E.

Find (acceptance condition): a hypothesis H whose clauses are in the form

L such that ∀e+ ∈ E+ : covers(H ∧ B, e+) = true (complete) and ∀e− ∈ E− :

covers(H ∧ B, e−) = false (consistent).

Flach and Lavrač (2002) divide the tasks in ILP into two streams, descriptive ILP

and predictive ILP. In the former, the hypotheses considered are first-order clauses

which describe some correlations between objects in the domain. A typical example

of this task is relational data mining and the induction of association rules. We omit

the discussion of descriptive ILP and concentrate on the latter. In predictive ILP,

more restrictions are imposed on the considered hypotheses. Commonly E and B

are restricted to Horn clauses and the considered hypotheses are restricted to definite

clauses.

Different ILP settings have been proposed based upon the definition of cover-

age (De Raedt, 1997). These are (a) learning from entailment (Muggleton, 1991),

(b) learning from interpretations (De Raedt and Van Laer, 1995; De Raedt and De-

haspe, 1997b) and (c) learning from satisfiability (De Raedt and Dehaspe, 1997a).

The following are definitions of coverage in these settings

Definition 5. Let H be a hypothesis, B be background knowledge and e be an example.

In learning from entailment, covers(H ∧B, e) = true if and only if H ∧B |= e.

Definition 6. Let H be a hypothesis, B be background knowledge and e be an example.

In learning from interpretations, covers(H ∧ B, e) = true if and only if I = B ∪ {e}

is an interpretation of H.

Definition 7. Let H be a hypothesis, B be background knowledge and e be an example.

In learning from satisfiability, covers(H ∧B, e) = true if and only if H ∧B ∧ e 6|= �.

CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING 44

In predictive ILP, learning from entailment has been the most common learning

setting (Kersting, 2006). Therefore, we assume this setting in this thesis whenever

ILP is discussed. Typically, in learning from entailment, examples are restricted to

ground atoms. Thus, this form of examples will also be maintained throughout.

Under the closed world assumption (CWA), in which literals that are not entailed

by the theory under consideration are believed to be false, a theory which consists

of the positive examples and none of the negative examples satisfies the acceptance

condition in the above definition. However, this theory overfits the examples and

does not scale to unseen instances. Therefore, it is typically the case that given

two hypotheses satisfying the acceptance condition, the more general hypothesis is

preferred over the less general one. The generality of two hypotheses can be defined

as follows (Muggleton, 1991; De Raedt, 2008)

Definition 8. A hypothesis H1 is more general than, or a generalisation of, a hy-

pothesis H2, denoted as H1 � H2, if and only if H1 |= H2. H2 is also said to be a

specialisation of H1. H1 is strictly more general than H2, denoted as H1 ≺ H2, if and

only if H1 � H2 and H2 � H1.

Definition 9. A minimal generalisation H ′ of H is a generalisation of H such that

H ′ ≺ H, and there does not exist a generalisation H ′′ of H such that H ′′ ≺ H and

H ′ ≺ H ′′.

Definition 10. A maximal specialisation H ′ of H is a specialisation of H such that

H ≺ H ′, and there does not exist a specialisation H ′′ of H such that H ≺ H ′′ and

H ′′ ≺ H ′.

Searching the space of hypotheses is then performed based upon the coverage of

the current hypothesis by either specialising it or generalising it. There can be a

combinatorial explosion of the number of hypotheses that generalise or specialise any

given one. Therefore, Muggleton and De Raedt (1994) defined two restricted forms

of specialisation and generalisation operators as follows

Definition 11. Let H be a hypothesis, a generalisation operator maps the clauses in

H onto a set of minimal generalisation of H.

Definition 12. Let H be a hypothesis, a specialisation operator maps the clauses in

H onto a set of maximal specialisation of H.

CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING 45

θ-subsumption is a form of deduction in FOL proposed by Plotkin (1970) which is

employed as an operational framework for specialising and generalising hypotheses.

Let c1 and c2 be two clauses represented as the two sets of the literals they contain,

then θ-subsumption is defined as follows (Muggleton and De Raedt, 1994)

Definition 13. A clause c1 θ-subsumes a clause c2 if and only if there exists a sub-

stitution θ such that c1θ ⊆ c2. In such a case, c1 is a generalisation of c2.

Though Muggleton and De Raedt restricted the search operators, they also pointed

out some properties of θ-subsumption which still cause problematic issues to perform

search and need to be resolved. The first problem is that, starting from a clause c1,

there exist an infinite descending chain of clauses c1 ≺ c2 ≺ . . . ≺ c∞ ≺ c′2 where ci is

a clause with i number of literals and c′2 is a lower bound. Following is an example

given by Muggleton and De Raedt (1994) (h(X,X)← p(X,X) is the lower bound of

the chain)

h(X1, X2)
h(X1, X2)← p(X1, X2)
h(X1, X2)← p(X1, X2), p(X2, X3)
h(X1, X2)← p(X1, X2), p(X2, X3), p(X3, X4)
. . .
h(X,X)← p(X,X)

With this chain, a specialisation function may not halt. The problem of generalising

from the lower bound is even worse as the minimal generalisation of the lower bound

is the clause c∞ which is undefined in practice. The second problem is that there are

several clauses which are equivalent under θ-subsumption. For instance, the clause

h(X1, X2) ← p(X1, X2) and the clause h(X1, X2) ← p(X1, X2), p(X1, X3) θ-subsume

one another. From the properties of θ-subsumption, these two clauses are also logi-

cally equivalent (Muggleton and De Raedt, 1994), and thus one of them is enough to

generate. The declarative bias which defines the form of the hypothesis sought can

be used to solve the former problem. The latter problem is alleviated by working

only with reduced clauses (Plotkin, 1970). The reduced clause c′ of another clause c

is the clause with the minimal subset of literals in c such that c′ is logically equiva-

lent to c (Muggleton and De Raedt, 1994). Reduced clauses form a θ-subsumption

lattice with a lower bound (the most specific clause) and an upper bound (the most

general clause). Two specialisation operators under θ-subsumption are then defined:

(a) applying a substitution θ to a clause and (b) adding a literal to a clause. Though

CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING 46

a generalisation of single clause under θ-subsumption may not exist due to unde-

finedness (as in the case above of generalising the lower bound), generalisation under

θ-subsumption does exist for any two clauses. It is called the least general generalisa-

tion (lgg) (Plotkin, 1970). The lgg of the two terms f(t1, . . . , tn) and f(x1, . . . , xn) is

the term f(lgg(t1, x1), . . . , lgg(tn, xn)). The lgg of the two terms f/n and g/m where

f 6= g or n 6= m is a variable V which represents these two terms throughout. The lgg

of two atoms p(t1, . . . , tn) and p(x1, . . . , xn) is the atom p(lgg(t1, x1), . . . , lgg(tn, xn)).

The lgg of two atoms having different predicate symbols, different numbers of arity

or different signs is undefined. The lgg of two clauses c1 and c2 whose sets of literals

are c1 = {li}
n
i=1 and c2 = {l′j}

m
j=1 is the clause c3 = {lgg(li, l

′
j)|1 ≤ i ≤ n, 1 ≤ j ≤ m}.

Buntine (1988) showed a weakness of generalising two clauses with lgg. He stated

that only these clauses are considered in the generalisation and background knowledge

is not utilised. Buntine highlighted the problem of generalising the following two

clauses

cuddly pet(X)← small(X), f luffy(X), dog(X)
cuddly pet(X)← fluffy(X), cat(X)

(3.1)

Given the following background knowledge,

pet(X)← cat(X)
pet(X)← dog(X)
small(X)← cat(X)
tame(X)← pet(X)

A salient generalisation would be

cuddly pet(X)← small(X), f luffy(X), pet(X)

However, not considering the background knowledge and generalising by the lgg of

the two clauses in (3.1) will lead to the following over-generalising clause

cuddly pet(X)← fluffy(X)

CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING 47

Relative least general generalisation (rlgg) proposed by (Plotkin, 1970) concerns gen-

eralising two clauses c1 and c2 relative to a theory T under θ-subsumption. Buntine

(1988) proposed a special case of rlgg where the two clauses are definite clauses and

called it generalised subsumption. Muggleton and Feng (1990) further specialise rlgg

to the case where c1 and c2 are ground atoms. In this case, they defined the rlgg of

c1 and c2 relative to a background theory T as the clause c3 which is the minimal

generalisation clause in the θ-subsumption lattice for which T ∧c3 ⊢ c1∧c2. Muggleton

and Feng derived a method for constructing the rlgg accordingly. The method builds

the two clauses c1 ← a11, . . . , a1n and c2 ← a21, . . . , a2n where ai1, . . . , ain, 1 ≤ i ≤ 2

are models of T . The rlgg is then the lgg of these two clauses.

In learning from only positive examples, some criterion needs to be defined to

restrict the generalisation of hypotheses. Typically, a scoring function is developed

to measure each candidate hypothesis in term of coverage and complexity. If the

scoring function is extremely biased towards coverage, the hypothesis might overfit

the examples and does not generalise well. However, a simple hypothesis might over-

generalise and instances which do not belong to the target concept might also be

covered. Therefore, a trade-off between complexity and coverage is conventionally

sought in developing scoring functions. We define the problem of learning from only

positive examples as follows

Given:

• A set of examples E consisting of predicates called foreground predicates.

• Background knowledge (BK) B consisting of predicates called background pred-

icates.

• A declarative bias L specifying a form of clauses that can be built using the

predicates in B and E.

Find: a hypothesis H whose clauses are in the form L such that ∀e ∈ E : B∪H |= e

and

arg max
H

score(H,E)

Muggleton (1997) used the posterior distribution P (H|E) for scoring in the ILP

system Progol4.2. To derive the formula of P (H|E), a prior distribution over hy-

potheses PH(H) is considered which decreases monotonically with H ’s complexity.

CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING 48

Complexity was measured by the number of atoms in H . By defining a prior distri-

bution over examples PE(E), the likelihood is then defined as P (E|H) =
∏m

i=1
PE(ei)
PE(H)

,

where PE(H) =
∑

∀e:covers(H,e) PE(e). The posterior was then derived to take the

following form (Cm is a fixed constant)

logP (H|E) = m log
1

PE(H)
+ logPH(H) + logCm

The trade-off between complexity and generality in the above score can be noticed in

the first two terms. As PE(H) (the generality factor) increases, the term m log 1
PE(H)

decreases. In such a case, the complexity decreases (general hypotheses are normally

simple) leading to an increase in PH(H) which in turn increases the second term. The

opposite scenario applies when PE(H) decreases. When the number of examples m

increases, more weight is put on the generality term as data carries more information.

Boström (1998) uses the same idea of maximising the posterior distribution in the

ILP system MERLIN 2.0. However, Boström used a different setting of prior and

thus a different form of posterior was derived. We explain MERLIN 2.0 in details in

Section 3.3.1.

3.2 Learning Approaches

In this section, we highlight different learning approaches used in ILP. The first three

sections discuss different ways of searching the search space. Section 3.2.4 discusses

an ILP approach in which an initial (incomplete or inconsistent) theory is given to

the learning algorithm, and the task is to revise this theory with the light of new

examples. Finally, we discuss the problem when the foreground and background

predicates are not sufficient to represent the target theory and need to be extended

by inventing new predicates.

3.2.1 Top-Down Approach

The top-down approach is incremental with respect to the positive examples. It starts

handling a positive example by searching within the θ-subsumption lattice from the

most general clause. It specialises this clause with respect to the negative examples,

or a scoring function when learning from only positive examples. Specialisation stops

when no further negative examples are covered or no improvement in the scoring

CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING 49

function is achieved. Positive examples which are covered by the induced clause are

then deleted and the process is repeated with the first uncovered positive example to

induce a further clause. The process stops when all positive examples are covered. The

search space is restricted by the declarative bias from which a sub-lattice is defined

such that the most general clause (the empty clause) and the most specific clause ⊥,

also called the bottom clause, are fixed. The ILP system Progol (Muggleton, 1995)

and its variant Aleph1 use the approach of mode declarations to inject the declarative

bias. A mode declaration is either of the form modeh(n,atom), defining the mode

of the head of the clauses in the hypothesis, or modeb(n,atom), defining the mode

of the atoms in the body of the clauses in the hypothesis. atom is a ground atom

whose terms are either normal or place-marker. A normal term is either a constant

or a functor with some other terms. A place-marker is either of the form #type, in

which case the term is defined as a ground term in the atom, +type, in which case the

term is an input variable to the atom, or -type, in which case the term is an output

variable in the atom. type is the type of the terms passed to the atom. The following

is an example of a mode declaration for learning categorisation rules for animals2

modeh(1, class(+animal,−class)). modeb(1, has gills(+animal)).
modeb(1, has covering(+animal,#covering)). modeb(1, haslegs(+animal,#nat)).
modeb(1, homeothermic(+animal)). modeb(1, has eggs(+animal)).
modeb(1, not(has gills(+animal))). modeb(1, nhas gills(+animal)).
modeb(∗, habitat(+animal,#habitat)). modeb(1, has milk(+animal)).

class/2 is defined as the head of the clauses in the sought hypothesis. The arguments

to class/2 are an input of type animal and an output of type class. The atoms in

modeb are those which are allowed to be included in the body of any clause. Types

are then defined as follows

animal(dog). animal(dolphin). . . .
class(mammal). class(fish). . . .
. . .

Muggleton (1995) stated that given a mode declaration M , a definite clause c is in

the form specified by the declarative bias L defined by the mode declaration M if and

only if:

1http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/aleph.html
2The example is supplied with Aleph.

CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING 50

• The head of c is the atom of modeh in M with every #type replaced by a ground

term of the type type, and every -type and +type replaced by variables.

• Every atom in the body of c is an atom of some modeb in M with every #type

replaced by a ground term of the type type, and every -type and +type replaced

by variables.

• Every variable corresponding to the place-marker +type in any atom bi in the

body of c is either in the head of c corresponding to +type or in some other

atom bj corresponding to -type where 1 ≤ j < i.

The variables in the bottom clause constructed using the mode declaration M consti-

tute a chain such that each variable in any atom in the body is bound to the variables

in the head by some depth. Muggleton defined the depth of variable V as follows

Definition 14.

depth(V) =

{

0 if V is in the head
(maxU∈SV

depth(U)) + 1 otherwise

where SV is the set of variables in the body atoms containing V .

The algorithm of building the bottom clause given in Muggleton (1995) adds

atoms to the body by maintaining a specific depth of the variables in these atoms.

For any atom to be added to the body, an assumption is made that it has some input

variables (the atom is defined in mode declaration with at least one +type place-

marker). Given this assumption and the last condition above of clauses satisfying the

mode declaration, the head of any clause needs to be defined to have some input in

order for the algorithm building the bottom clause to add some atoms in the body.

Each atom is then part of a chain of input-output variables within the designated

depth. This assumption is convenient for learning discriminative models in which

some input values (predictors) are fed to the model, and this model returns some

output values (predicted) accordingly.

3.2.2 Bottom-Up Approach

The bottom-up approach goes in the opposite direction of the top-down approach.

It starts with the most specific clause which covers one example and generalises it

as long as no negative example is covered. Golem is an early ILP system which uses

a bottom-up approach (Muggleton and Feng, 1990). Golem works with extensional

background knowledge. Therefore, if intensional background knowledge is given, it

CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING 51

is replaced with its ground model. Then the rlgg of the first two positive examples

is computed with respect to the background knowledge. To compute the rlgg, two

clauses whose heads are the examples and whose bodies are the ground literals in the

background knowledge are built, and then the lgg of these two clauses is computed.

This may lead to a clause with many literals in its body, some of which are redundant.

A literal l is redundant in a clause C given the background knowledge B if C ∧ B ⊢

(C − {l}) (Muggleton and Feng, 1990). These redundant literals are removed from

the clause. The resulting clause can be generalised by removing some body literals.

The depth of the variables can be used to prioritise literals to be removed. Negative

examples, in the case of learning from both positive and negative example, or a scoring

function, in the case of learning from only positive examples, can be used to restrain

the search from over-generalising the clause. Positive examples which are covered

by the resulting clause are then removed and the process is repeated to handle the

remaining examples. Flach (1994) provides a Prolog implementation of this learning

algorithm.

3.2.3 Random Search

Though top-down and bottom-up approaches have been used successfully in many

domains, they are both greedy approaches which suffer the problem of being trapped

in a local maximum. In greedy approaches, a consistent clause is returned once it has

been found in a branch of the θ-subsumption lattice (sub-lattice). However, another

consistent and more general clause might have been found could other branches have

been explored. More general clauses will lead to a more general final hypothesis. The

other problem with the greedy approaches is that searching the lattice in sequence

may lead to testing many clauses before a consistent one is found. This process could

be slow in large domains. To overcome these problems, variants of random search

have been proposed. Srinivasan (2000) studied the applicability of random search

algorithms in ILP. Muggleton and Tamaddoni-Nezhad (2008) proposed a genetic al-

gorithm for searching the lattice under the system Progol4.6. Serrurier and Prade

(2008) used simulated annealing search to induced more than one clause in a single

step.

3.2.4 Theory Revision

Theory revision is an approach where an initial domain theory is given, and this

theory is then updated according to some new observations. A main direction in which

CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING 52

theory revision can be applied is when one develops a theory which is complete and

consistent with regards to some (possibly not enough) examples, but this theory might

be incomplete or inconsistent when new examples emerge. It is therefore necessary to

revise this theory according to the new examples. Adé et al. (1994) developed RUTH,

a system in which an initial theory which satisfies current integrity constraints is given.

When new integrity constraints emerge such that the initial theory no longer satisfies

them, this theory is revised accordingly. Another area where theory revision can be

applied is when the search space is very large. A possible direction to take is to start

with an initial theory which is either incomplete (over-specialised) or inconsistent

(over-generalised). This theory is then either specialised or generalised according to

the examples. This technique reduces the search space as the initial theory, though

not accepted, provides useful information to the learning algorithm on the final theory.

This makes the learning algorithm start from the point of the initial theory and moves

to the areas around it instead of starting from a point which is far from any acceptable

hypothesis.

3.2.5 Predicate Invention

In certain cases the learning algorithm does not find a complete and consistent hy-

pothesis that can be represented by the foreground and background predicates. It

is thus convenient to design a learning algorithm which may go beyond these predi-

cates and introduce new predicates which can be used in the final hypothesis. This

process of introducing new predicates is called predicate invention. Introducing new

predicates will extend the search space significantly and put more challenges to the

learning algorithm. It is therefore convenient to limit the extended search space by

limiting the predicates that can be introduced.

3.3 Learning Recursive Clauses

Learning recursive clauses is one of the challenging problems in ILP. Though the

approaches discussed in Section 3.2 based on clause by clause learning are used to

learn recursive clauses, they suffer from different problems which make them difficult

to use in general. One of the main problems is that the examples have to come

in a certain order to learn a proper recursive clause. For example, in learning the

definition of the predicate member/2, when the examples come in the following order

CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING 53

member(a, [b, a, c, d]).
member(a, [e, f, g, a, c]).
member(a, [a, e, d]).
. . .

and a clause by clause learning is used, the following hypothesis might be induced

member(X, [Y,X|Z]).
member(X, [Y,E|Z]) : −member(X, [E|Z]).
member(X, [X|Z]).

It is obvious that this hypothesis can be reduced to the following one

member(X, [X|Z]).
member(X, [Y |Z]) : −member(X,Z).

The reason that the first clause was learned unnecessarily is that, at the point of

learning it, no other clause was learned to which a recursive clause can be added to

cover the first example. Changing the order of the examples to the following

member(a, [a, e, d]).
member(a, [b, a, c, d]).
member(a, [e, f, g, a, c]).
. . .

leads to the base clause being learned from the first example, and when the second

example is handled, a recursive clause can be learned which together with the base

clause cover it. Therefore, the desired hypothesis can be learned clause by clause

having set the examples in the right order. However, in practice, examples can come

in an arbitrary order and one cannot know what the right order is. In this case, we

need an approach in which the recursive definition (all the clauses involved) can be

learned from the same set of examples. Aha et al. (1994) proposed CRUSTACEAN,

an ILP system which learns recursive definitions. CRUSTACEAN induces the base

clause first from the examples. It then uses the same set of examples to learn a

recursive clause which together with the base clause constitute a theory that covers the

examples. The recursive clauses that can be learned by CRUSTACEAN are limited

CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING 54

to two literals (one literal and the recursive call). Cohen (1993) developed FORCE2

which learns one base clause and one tail recursive clause given that there is a function

which can decide whether an example belongs to the base clause or to the recursive

clause. The system TIM learns the same class of recursive definitions that are learned

by FORCE2 but does not need the decision function (Idestam-Almquist, 1996). To

induce a recursive clause, TIM analyses some regularities as well as the chains of

input-output arguments in the atoms of the bottom clause. MRI is a system which

adapts the idea used in TIM of analysing the regularities and learns multiple recursive

clauses (Furusawa et al., 1997). MERLIN 2.0 is a theory revision system which learns

a theory with recursive clauses from only positive examples by specialising an overly

generalised theory. The advantage of MERLIN 2.0 is that it does not construct

bottom clauses, and thus does not depend on an input-output chains of arguments.

This motivates adapting MERLIN 2.0 to learn generative models where arguments

can all be output to represent the joint distribution.

3.3.1 MERLIN 2.0

MERLIN 2.0 learns a recursive logic program by constructing a deterministic finite

state automaton (DFA) of the SLD-resolutions of the positive examples from an overly

generalised theory (Boström, 1998). A DFA is defined as follows

Definition 15. A deterministic finite state automaton is a 5-tuple (Σ,Q, q0,F, δ),

where

• Σ is a finite alphabet.

• Q is a finite, non-empty, set of states.

• q0 ∈ Q is an initial state.

• F ⊆ Q is a set of final states.

• δ : Q× Σ→ Q is a transition function

A nondeterministic finite state automaton (NFA) has the state transition function

defined as δ : Q×Σ→ 2Q, where 2Q is the power set of Q. A finite-state automaton

(FSA) can either be a DFA or an NFA.

MERLIN 2.0 specialises the overly generalised theory by inventing predicates and

maximising the posterior distribution. It adapts the best-first model merging algo-

rithm of learning the structures of hidden Markov models developed by Stolcke and

CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING 55

Omohundro (1994). The best-first model merging algorithm is used to learn an HMM

whose emissions are the clauses in the initial theory used to generate the positive ex-

amples. MERLIN 2.0 converts the HMM to a deterministic HMM, where no two

transitions from any state qi lead to two states which emit the same symbol. The

deterministic HMM is then converted to an FSA. Because the resulting FSA comes

from a deterministic HMM, it is thus a DFA.

When the DFA of the SLD-resolutions of the examples is constructed, MERLIN 2.0

represents a set of possible sequences of clauses in the initial theory which can be used

in the SLD-resolutions of the examples as a context-free grammar (CFG) (Hopcroft

et al., 2000). It then finds the intersection of the CFG and the induced DFA. This

intersection is represented as a CFG. Finally, the CFG representing the intersection is

converted to a logic program. Boström shows an example of learning a logic program

which accepts strings represented by the regular grammar a ∗ b+ (any string which

starts with any number of a’s, possibly none, followed by at least one b) given the

following over-generalising theory

(c1) p([]).
(c2) p([a|X]) : −p(X).
(c3) p([b|X]) : −p(X).

The above theory clearly accepts a wider range of strings that do not belong to the

target language, e.g. [a], [a, b, a], [], Given some examples of the target language,

e.g. [a, a, a, b, b], [a, a, b, b, b, b], [b, b], . . ., MERLIN 2.0 induces the DFA in Figure 3.1

from the SLD-resolutions of the examples from the initial theory. The induction of this

DFA is performed by: (a) learning an HMM which represents the generation of these

examples from the initial theory, (b) converting this HMM to a deterministic HMM

and finally (c) converting the deterministic HMM to an FSA. A CFG representing

a set of sequences of the clauses in the initial theory that can be used in the SLD-

resolutions of the examples is then built as follows (in this case, the CFG is also a

regular grammar)

P/1→ c1
P/1→ c2 P/1
P/1→ c3 P/1

CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING 56

Figure 3.1: The DFA induced by MERLIN 2.0 form the SLD-resolutions of some
examples, e.g. [a, a, a, b, b], [a, a, b, b, b, b], [b, b], . . . from an initial theory. ci is clause
number i in the theory.

The intersection of this grammar and the induced DFA is then constructed. The

following final program is then produced from this intersection

p([a|X]) : −p(X).
p([b|X]) : −p 1(X).
p 1([]).
p 1([b|X]) : −p 1(X).

Note that MERLIN 2.0 had to invent the predicate p 1/1 in order to represent the

target theory.

In subsequent sections, we first explain the best-first model merging algorithm

and then explain how MERLIN 2.0 uses it to induce the DFA.

3.3.1.1 Best-first Model Merging

Best-first model merging is an HMM learning algorithm that searches for an HMM

structure S with the highest posterior probability P (S|D). We show here the deriva-

tion of the posterior probability that the algorithm maximises and then show the

learning algorithm which uses a hill-climbing search.

The posterior probability is averaged with respect to the posterior distribution of

the parameters θ computed with the Viterbi approximation in which only the most

likely path is considered. First, a Dirichlet distribution given in (1.7) is defined as a

prior for the parameters as follows

P (θ) =
1

B(α1, . . . , αn)

n
∏

i=1

θαi−1
i (3.2)

The normalising constant in (3.2) is the multinomial Beta function given in (1.8). The

likelihood for a sample of observed i.i.d. emissions where (c1, . . . , cn) is the sufficient

statistics (the counts of each emission in this sample) is

CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING 57

P (c1, . . . , cn|θ) =

n
∏

i=1

θcii (3.3)

From (3.2) and (3.3) the posterior distribution of the parameters becomes

P (θ) =
1

B(c1 + α1, . . . , cn + αn)

n
∏

i=1

θci+αi−1
i (3.4)

The integral of the product of the prior (3.2) and the likelihood (3.3) can be expressed

in a closed form

∫

θ

P (θ)P (c1, . . . , cn|θ) dθ =
1

B(α1, . . . , αn)

∫

θ

n
∏

i=1

θci+αi−1
i dθ

=
B(c1 + α1, . . . , cn + αn)

B(α1, . . . , αn)

(3.5)

On the other hand, the description length is used as a prior of the HMM structure.

If structure S has a code length ℓ(S), then a prior distribution can be

P (S) ∝ eℓ(S) (3.6)

If there are |Q| possible transitions from a state q, then each one can be encoded

using log(|Q| + 1) bits (a special end marker is added to disallow the encoding of

missing transitions explicitly). So the total description length for all transitions from

a state q is n
(q)
t log(|Q|+ 1). Similarly, the description length for all emissions from q

is n
(q)
e log(|Σ|+ 1). The prior distribution over the HMM structures is then

P (S(q)) ∝ (|Q|+ 1)−n
(q)
t (|Σ|+ 1)−n

(q)
e (3.7)

The likelihood of a structure S defined as

CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING 58

P (D|S) =

∫

θ

P (θ|S)P (D|S, θ) dθ (3.8)

cannot be expressed in a closed form because the term P (D|S, θ) is a sum over all

possible paths. By considering only the Viterbi path of each output and using the

formula in (3.5), the posterior distribution of the structure defined as

P (S|D) ∝ P (S)P (D|S) (3.9)

which is the desired score to maximise can be written as follows (Boström, 1998)

P (S|D) ∝
∏

q∈Q

(|Q|+ 1)−n
(q)
t (|Σ|+ 1)−n

(q)
e F (tq1, . . . , tqnt(q)

)F (eq1, . . . , eqne(q)
) (3.10)

By setting α = 1
n
, F (t1, . . . , tn) is defined as follows

B(t1 + 1
n
, . . . , tn + 1

n
)

B(1
n
, . . . , 1

n
)

(3.11)

The best-first model merging algorithm is shown in Algorithm 1 (Stolcke and

Omohundro, 1994).

3.3.1.2 Learning Deterministic HMMs

Boström pointed out that when a new sample is incorporated in the best-first model

merging algorithm, a new sub-structure is created and the merging process takes

place. However, the sample could be accepted (or large part of it) by the current

structure without the need to create sub-structures. The creation of sub-structures

will lead to non-determinism in the final induced structure. To make the structure

deterministic, Boström suggested aligning any new sample with the current structure

and introducing new states and transitions only for the suffix of the sample for which

there is no path in the current structure. He also suggested merging two states which

have transitions to two different states emitting the same symbol. These steps were

implemented in MERLIN 2.0.

CHAPTER 3. INDUCTIVE LOGIC PROGRAMMING 59

Algorithm 1 Best-first model merging

1: S0 = the empty structure, i = 0
2: for j = 1 to k do

3: Incorporate a new sample dj into the structure Si

4: loop

5: Compute a set of candidate merges K of the states of the current structure
Si

6: For each candidate k ∈ K build the structure k(Si) and compute its posterior
P (k(Si)|D)

7: Set Si+1 = k∗(Si) where k∗(Si) is the structure with the merge that maximises
the posterior

8: if P (Si+1|D) < P (Si|D) then

9: break
10: else

11: i = i + 1
12: end if

13: end loop

14: end for

15: return Si

3.3.1.3 From an HMM to an FSA

To convert an HMM to an FSA, all the states and the transitions between the states

in the HMM are mapped into the FSA as they are. Boström (1998) states that, for

each state, either the transition leading to the state or the transition going from the

state in the FSA is labelled with the emission of the corresponding state in the HMM.

In MERLIN 2.0, Boström takes the approach of labelling the transitions leading to a

state in the FSA with the emission of the corresponding state in the HMM. Therefore,

the transition function of the FSA is defined such that, for each state q(t) in the HMM

with an emission x(t), δ(q(t−1), x(t)) = q(t). All states from which there is a transition

to a final state in the HMM become final states in the FSA.

Chapter 4

Learning Bayesian Networks

Two different approaches have been followed in learning BNs. The first is the con-

straints based approach and the second is the search and score approach. In the

constraint based approach, d-separation constraints are given to the learning algo-

rithm and the task is to learn a BN that satisfies these constraints (Jensen and

Nielsen, 2007). The search and score approach is an optimisation problem where the

tasks is to find a BN that maximises a given scoring function. This chapter discusses

the latter. Section 4.1 introduces the search and score problem and highlights its

hardness. Section 4.2 goes through different scoring functions for BNs with all the

variables observed as well as for BNs with some hidden variables. Section 4.3 explains

four search strategies. Finally, Section 4.4 discusses learning DBNs.

4.1 Introduction

The task of learning the structure of a BN using a search and score approach can be

cast as follows: given some observations D which are assumed to be generated by some

BN whose structure is S, the task is to learn a BN structure S ′ which approximates

S by optimising some scoring function f(S,D). The space of all possible BNs of n

random variables grows more than exponentially in n (Jensen and Nielsen, 2007). For

any number of nodes n ≥ 1, the number of all possible DAGs that can be constructed

with these n nodes is (Robinson, 1973)

f(n) =

n
∑

i=1

(−1)i+1 n!

(n− i)!i!
2i(n−i)f(n− i) (4.1)

60

CHAPTER 4. LEARNING BAYESIAN NETWORKS 61

with f(0) = 1. Chickering (1996) showed that finding a BN with the optimal BDe

score is NP-hard even if the size of the parent set for each variable is restricted

(we discuss the BDe score in Section 4.2.1). Chickering et al. (2004) showed that the

problem is NP-hard with any consistent scoring function. Chickering et al. define

consistent scoring functions as those which, given a large dataset, favour the one

that represents the distribution reflected by this dataset, and given two structures

representing this distribution, they favour the one with the smallest number of in-

dependent parameters. Therefore, as normally the case in solving hard problems,

heuristic search strategies have been used. However, exact search strategies have also

been used to solve problems with limited parent set sizes and limited number of ran-

dom variables (Koivisto and Sood, 2004; Silander and Myllymäki, 2006; Cowell, 2009;

Cussens, 2011). In Section 4.2 we go through different scoring functions in both cases

where the data is complete and where there are some hidden variables. In Section 4.3

we highlight three heuristic search strategies developed in the literature as well as

one exact search strategy developed by Cussens (2011) which will be used later in

Chapter 5. Finally, we conclude by going through the literature of learning dynamic

Bayesian networks.

4.2 Scoring Bayesian Networks

Given a BN structure S parameterised by θ, the likelihood P (D|S, θ) increases as

the complexity (number of independent parameters) of S increases. This can be

explained as follows: given two structures S1 and S2 whose sets of edges are E1

and E2 respectively where E1 ⊆ E2, for each settings of the parameters θ1 for S1

there exist some settings of the parameters θ2 for S2 in which S2 encodes the same

distribution encoded by S1. This is because when the complexity of a model increases,

it gives more freedom to set the parameters to fit the observations, thus maximising

a point estimate (e.g. the likelihood). Therefore, the marginal likelihood defined as

P (D|S) = Eθ|S
[P (D|S, θ)] =

∫

θ

P (θ|S)P (D|S, θ) dθ (4.2)

has widely been used in the literature because it computes the expectation of the

likelihood with respect to all settings of the parameters. This expectation penalises

complex models. However, the integral in (4.2) cannot always be expressed in closed

form and needs to be approximated. In the following two sections, we discuss scoring

CHAPTER 4. LEARNING BAYESIAN NETWORKS 62

BNs with the log marginal likelihood score expressed in (2.4) which is the logarithmic

form of (4.2). Section 4.2.1 discusses scoring BNs with the log marginal likelihood

score when the outcomes of all variables are observed. Section 4.2.2 treats the case

when there are some hidden variables.

4.2.1 Scoring BN with Fully Observed Variables

Heckerman et al. (1995) reported that when the data is fully observed, the log

marginal likelihood can be computed in closed form subject to the following two

assumptions: (a) the parameters are independent and (b) Dirichlet prior is cho-

sen. Heckerman et al. derived the Bayesian Dirichlet equivalent (BDe) score in which

the score of the BN is decomposable into the sum of the family scores. The score of

family i is defined as follows

Scorei(S) =

qi
∏

j=1

Γ(αij)

Γ(nij + αij)

ri
∏

k=1

Γ(nijk + αijk)

Γ(αijk)
(4.3)

where qi is the number of joint instantiation of the parents in the family and ri is

the number of values that the child can take. nijk is the number of times the child

takes the kth value when the parents are in their jth instantiation and αijk is the

corresponding Dirichlet prior. nij =
∑ri

k=1 nijk and αij =
∑ri

k=1 αijk. When each αijk

is set to α
riqi

for some choice of α, we have the BDeu score (u stands for uniform).

Therefore the final score of a BN with n families is defined as follows

logP (D|S) =

n
∑

i=1

log Scorei(S) (4.4)

There has also been some approximations to the log marginal likelihood (Chicker-

ing and Heckerman, 1996; Maxwell Chickering and Heckerman, 1997). Laplace, also

called Gaussian, approximation is based on the idea that the posterior P (θ|D,S) ∝

P (D|θ, S)P (θ|S) is asymptotically (with a very large sample) Gaussian. So let

g(θ) ≡ log(P (D|θ, S)P (θ|S)) (4.5)

CHAPTER 4. LEARNING BAYESIAN NETWORKS 63

and let θ̃ be the maximum a posteriori (MAP) of θ

θ̃ = arg max
θ

{P (θ|D,S)} = arg max
θ

{g(θ)} (4.6)

by expanding g(θ) (which is approximated as Gaussian) with respect to θ̃ we get

g(θ) ≈ g(θ̃) +−
1

2
(θ − θ̃)tA(θ − θ̃) (4.7)

where A is the negative Hessian of g(θ) computed at θ̃. Substituting (4.7) into the

integral
∫

P (θ|S)P (D|S, θ) dθ and taking the log results in the following approxima-

tion

logP (D|S) ≈ logP (D|S, θ̃) + logP (θ̃|S) +
dim

2
log(2π)−

1

2
log |A| (4.8)

where dim is the number of independent parameters.

Another approximation, which is according to Heckerman et al. (1995) more effi-

cient than the Laplace approximation, is the Bayesian information criterion (BIC)

(Schwarz, 1978)

logP (D|S) ≈ logP (D|S, θ̂)−
dim

2
logN (4.9)

where θ̂ is the maximum likelihood value of θ and N is the sample size.

Draper (1995) adds the term dim
2

log(2π) in (4.8) to (4.9) to obtain the following

approximation

logP (D|S) ≈ logP (D|S, θ̂)−
dim

2
logN +

dim

2
log(2π) (4.10)

CHAPTER 4. LEARNING BAYESIAN NETWORKS 64

4.2.2 Scoring BN with Hidden Variables

In scoring BNs with hidden variables, the approximations (4.8), (4.9) and (4.10)

can be used with the EM algorithm (Section 1.3.1.1) to find an estimate θ̂ of the

parameters.

The variational Bayesian (VB) approach has also been used to score models with

hidden variables (Attias, 1999, 2000; Ghahramani and Beal, 2000). Let X be the

observed variables, Z be the hidden variables and θ be the parameters. As the log

marginal likelihood

logP (X|S) = log

∫ ∫

P (X,Z, θ|S) dZ dθ

is intractable, another distribution Q(Z, θ|X, S) is introduced and the log marginal

likelihood can then be written as follows

logP (X|S) = log

∫ ∫

Q(Z, θ|X, S)
P (X,Z, θ|S)

Q(Z, θ|X, S)
dZ dθ

≥

∫ ∫

Q(Z, θ|X, S) log
P (X,Z, θ|S)

Q(Z, θ|X, S)
dZ dθ = F

(4.11)

The last inequality is due to Jensen’s inequality. It is a lower bound to the log

marginal likelihood and known as the variational free energy (VFE). Note that set-

ting Q(Z, θ|X, S) = P (Z, θ|X, S) in (4.11) puts the lower bound into its maximum

and it will be equal to the log marginal likelihood. However, computing P (Z, θ|X, S)

requires computing its normalising factor which is the log marginal likelihood it-

self. Therefore, the problem is simplified by assuming the following factorisation

Q(Z, θ|X, S) ≈ Q(Z|X, S) Q(θ|X, S). By substituting into (4.11), we obtain the

following form of VFE

logP (X|S) ≥

∫

Q(Z|X, S) Q(θ|X, S) log
P (X,Z, θ|S)

Q(Z, θ|X, S)
dZ dθ = F (4.12)

The log marginal likelihood is then approximated by maximising the VFE. Variational

Bayes-EM (VB-EM) is an iterative algorithm which maximises the VFE with respect

CHAPTER 4. LEARNING BAYESIAN NETWORKS 65

Figure 4.1: An example of deleting, reversing and adding an edge in a local search
strategy.

to the free distributions Q(Z|X, S) and Q(θ|X, S) (Beal and Ghahramani, 2003;

Kurihara and Sato, 2004, 2006; Sato et al., 2008).

4.3 Search

In searching for a structure that maximises a given score, three operations are used

to move in the search space. These are: (a) deleting an edge, (b) adding an edge or

(c) reversing an edge. Any move can be accepted subject to the condition that the

resulting structure is a valid BN (DAG). We highlight four search strategies here. The

first is a simple local search which is a plain hill-climbing. The second is K3 which

is a hill-climbing search that works on a total ordering of the random variables. The

third is the structural-EM which is aimed at learning BNs with hidden variables. The

final strategy is an exact search, referred to as the cutting planes algorithm, based on

integer programming. The cutting planes algorithm guarantees finding the optimal

structure when the family scores are given.

CHAPTER 4. LEARNING BAYESIAN NETWORKS 66

Figure 4.2: K3 search strategy searching for a parent set for Xn. It starts from the
empty parent set and then find that adding X2 as a parent of Xn has the highest
score amongst the scores obtained by adding any of the other variables. It then finds
that adding Xn−1 to X2 in the parent set has the highest score amongst the score
obtained by adding any of the remaining variables.

4.3.1 Local Search

In local search, the search can start from any initial randomly selected structure. At

each point, an edge is either added, deleted or reversed (Figure 4.1). The search takes

the move that most increases the score. It stops when it does not find a local move

which increases the score. It is obvious that this strategy may become trapped in a

local maximum. However, the advantage of this strategy is that when it is used with

a decomposable score, only the new families that emerge as the result of the change

need to be scored. The scores of the rest of the families are preserved in the final

score of the full structure in (4.4). For example, in Figure 4.1, by deleting the edge

E(Xn+3, Xn+2), only the emerged family {Xn} → Xn+2 needs to be scored. The score

of the new structure can be computed by using the previously computed scores of

all other families and replacing the score of the family {Xn, Xn+3} → Xn+2 with the

score of the new family {Xn} → Xn+2. The same scenario happens when adding or

reversing an edge.

4.3.2 K3

Though K3 (Bouckaert, 1993) is a complete framework of search and score approach

where the score is a minimum description length (MDL), we will discuss only the

search strategy here. Due to the massive search space, K3 reduces it by assum-

ing a total order amongst the random variables. Given a total order X0 ≺ . . . ≺

Xn ≺ . . . ≺ Xn+m, a random variable Xn is allowed to have as parents a set

S ′ = {X0, . . . , Xn−1} ⊆ S. The search starts with each random variable having

CHAPTER 4. LEARNING BAYESIAN NETWORKS 67

Algorithm 2 Structural-EM

1: t = 0
2: random(S0

X,Z)

3: θ
0 = initialise parameters(S0

X,Z)
4: repeat

5: θ
t+1
EM = EM(St

X,Z, θ
t, D)

6: From St
X,Z, move to St+1

X,Z such that:

St+1
X,Z = arg max

SX,Z

score(SX,Z, θ
t+1
EM , D)

7: θ
t+1 = arg max

θ

P (D|St+1
X,Z, θ)

8: t = t + 1
9: until convergence
10: return St

X,Z

the empty set as its parent set. It adds variables one by one to the parent set of this

variable from the set of variables preceding it in the total order until the score no

longer improves. For instance, for variable Xn, it starts by first scoring the family

∅ → Xn. It then adds the variable Xi ∈ S ′ with the highest score as a parent of Xn.

This results in the family {Xi} → Xn. The next step is to find a variable in S ′ \ {Xi}

which when added to Xi results in a parent set of Xn with the highest score amongst

the parent sets that are obtained by adding any other variable in S ′\{Xi} to Xi. The

process continues adding variables until no further improvement is achieved. It then

moves to another random variable and starts the same process until all variables are

covered. This process is depicted in Figure 4.2 for finding one family.

4.3.3 Structural-EM

The structural-EM algorithm is aimed at learning BNs with hidden variables or miss-

ing values (Friedman, 1997, 1998). Given a BN with X representing the observed

variables and Z representing the hidden variables, the algorithm works by, initially,

selecting a random structure S0
X,Z and then estimates its parameters θ

0 using the

EM algorithm (Section 1.3.1.1). Then the estimated parameters are used to generate

a complete data from which an expected sufficient statistics can be obtained. This

sufficient statistics is then used for scoring candidate structures that will be moved

to in the next step. This process is repeated until convergence (no considerable im-

provement is achieved). When BIC is used as a scoring function, the expected BIC

score is defined as follows

CHAPTER 4. LEARNING BAYESIAN NETWORKS 68

scoreBIC(SX,Z, θ
′, D) = E

Z|X,θ
′[logP (D|SX,Z, θ)]−

dim

2
logN

where θ
′ represents the parameters estimated by the EM algorithm given a previous

structure St
Z,X. Friedman (1997) showed that when the BIC score is used, the algo-

rithm monotonically improves the score at each iteration. The algorithm is shown in

Algorithm 2.

4.3.4 Cutting Planes

This section highlights the algorithm developed by Cussens (2011) in which the prob-

lems of learning BNs is cast as an integer programming (IP) problem. Integer pro-

gramming problems are sub-classes of linear programming (LP) problems. Linear pro-

gramming is briefly defined as maximising or minimising a linear objective function

given some linear constraints (Vanderbei, 2007). For example, given x = 〈x1, . . . , xn〉,

c = 〈c1, . . . , cn〉, b = 〈b1, . . . , bm〉 and A = 〈a1, . . . , am〉 where aj = 〈aj1, . . . , ajn〉 and

1 ≤ j ≤ m, the following defines a linear programming problem

maximise

n
∑

i=1

xici, subject to:

∀1 ≤ j ≤ m :

n
∑

i=1

ajixi ≥ bj

(4.13)

When an additional constraint is employed that some or all of the variables in the

LP problem are integers, then we have an IP problem. It is sometimes hard to solve

the IP problem itself, so the problem is simplified by transforming it into an LP

problem by dropping off the integrality constraints. This transformation is called

the linear programming relaxation (LP-relaxation). As the transformed problem has

fewer constraints, its solution provides an upper bound to the solution of the IP

problem (Vanderbei, 2007). The solution to the IP problem can then be found based

upon this upper bound.

Let c(X,Pa) represents the score of the family Pa→ X , Cussens (2011) defined

an integer variable I(Pa→ X) ∈ {0, 1} as follows

CHAPTER 4. LEARNING BAYESIAN NETWORKS 69

I(Pa→ X) =

1 if and only if Pa is the parent set of the
variable X in an optimal BN

0 otherwise

Let PX be the set of all possible parent sets of a variable X and X be the set of all

the variables in the BN, Cussens then defined the BN learning problem as follows

arg max
I(Pa→X)

∑

X∈X

∑

Pa∈PX

c(X,Pa)I(Pa→ X) subject to:

the graph represented by the families I(Pa→ X) = 1 is a DAG.

(4.14)

The constraint above needs to be encoded as a set of linear constraints. But first,

the solver needs to choose only one parent set from all possible parent sets for any

variable X . This is also imposed as a linear constraint and called the convexity

constraint which is defined as follows

∀X :
∑

Pa∈PX

I(Pa→ X) = 1

Cussens adopts the linear constraints proposed by Jaakkola et al. (2010) to rule out

the integer solutions which do not represent DAGs. These constraints are based upon

the observation that in any subset C of nodes in the DAG, there is at least one node

which has no parents in C. The linear constraints representing this observation are

called the cluster-based constraints. Cussens referred to them as the 1-cluster-based

constraints1. These constraints are defined as follows

∀C ⊆ X :
∑

X∈C

∑

Pa:Pa∩C=∅

I(Pa→ X) ≥ 1

1Cussens proposed a generalisation of the constraints proposed by Jaakkola et al. and called it
k-cluster-based constraints. As the cluster-based constraints are special cases of the k-cluster-based
constraints when k = 1, Cussens referred to the cluster-based constraints as the 1-cluster-based
constraints.

CHAPTER 4. LEARNING BAYESIAN NETWORKS 70

Because there are too many cluster-based constraints to be included in an IP

problem, the IP problem is first constructed by (4.14) and the convexity constraints.

The solution to the LP problem obtained by the LP-relaxation of this IP problem

corresponds to finding the best family scores. However, in most cases these families

constitute a graph which contains cycles. The solutions to the LP problem repre-

sent vertices of a convex polytope. The algorithm then starts ruling out cycles by

introducing cluster-based constraints. When a cluster-based constraint is introduced,

a new LP problem is constructed. These cluster-based constraints represent planes

which cut off the invalid (as they do not represent DAGs) solutions to the original

LP problem from the polytope, hence the name cutting planes. When a solution af-

ter adding a cutting plane represents a DAG, the algorithm returns this DAG as an

optimal BN, otherwise the algorithm introduces another cutting plane. If no further

cutting planes can be added, the algorithm selects a non-integer variable in the final

solution and branches on it by creating two sub-problems, one with this variable being

1 and the other with the variable being 0. It then solves these two sub-problems in

the same way as the original one. It returns the BN with the optimal score amongst

the ones found in these two sub-problems.

4.4 Learning DBNs

One of the main tasks in which DBNs have been applied is representing gene regula-

tory networks modelling temporal microarray data (Murphy and Mian, 1999). This

has motivated learning these networks in the form of DBNs from gene expression

data (Segal et al., 2003; Cantone et al., 2009; Vinh et al., 2011). However, DBNs can

also be applied to solve a wide range of problems in different domains. Therefore, an

obvious research direction has also been taken to learn general purpose DBNs. The

Bayes net toolbox (BNT)2 facilitates learning general purpose DBNs with fully ob-

served outcomes and with no intra-slice dependencies. DBmcmc3 is aimed at learning

the same class of DBNs as those learned by BNT using Markov chain Monte Carlo

(MCMC). Friedman et al. (1998) proposed a method to learn DBNs with hidden vari-

ables using the structural-EM algorithm. Robinson and Hartemink (2010) proposed

learning DBNs where dependencies change over time and call this class of DBNs non-

stationary DBNs. Learning HMMs, which are special instances of DBNs, has also

been considered due to the significance and early use of HMMs in natural language

2https://code.google.com/p/bnt/
3http://www.bioss.ac.uk/~dirk/software/DBmcmc/

CHAPTER 4. LEARNING BAYESIAN NETWORKS 71

processing (Manning and Schüetze, 1999), bioinformatics (Durbin et al., 1998) and

speech recognition (Rabiner, 1989). We highlighted the best-first model merging al-

gorithm of learning HMMs in Section 3.3.1.1. Au and Cheung (2004) proposed the

same idea of the best-first model merging algorithm to learn HMMs by merging states

starting from very specific structures. However, the decision to merge two states dif-

fers from that in the best-first model merging in the sense that it is based on the

KL-divergence between the two structures before and after the merge. Au and Che-

ung applied this technique to solve problems in information extraction. Seymore et al.

(1999) also discussed learning HMMs for information extraction. Won et al. (2007)

used genetic algorithms to learn HMMs for the task of predicting protein secondary

structures. However, the algorithms proposed for learning HMMs were developed with

respect to the specific topology imposed by any HMM (Section 2.2.1.1). For instance,

in the best-first model merging, the operation to move in the search space is merging

states. This is because in the topology of any HMM, each hidden variable has parents

of only hidden variables. Therefore, the algorithm was tailored to process sequences

of hidden variables. However, this is not the case in a DBN which is not an HMM

where the parents of hidden variables are not necessarily hidden variables. Therefore,

developing algorithms to learn any DBN faces the challenge of dealing with a wider

class of topologies (we assume only stationary DBNs). The general DBN learning

algorithms discussed above considered only inter-slice dependencies where the aim is

to model the relationships between random variables over time.

Chapter 5

Learning Recursive PRISM

Programs with Fully Observed

Outcomes

This chapter presents an algorithm to learn recursive PRISM programs with all the

outcomes of the probabilistic atoms observed. These programs generalise DBNs by

defining a halting distribution over the generative process. The algorithm learns the

dependencies between the different iterations as well as the dependencies amongst

the outcomes within each iteration. Section 5.1 introduces the problem and provides

a formalisation of the learning task. Section 5.2 describes the steps that the learning

algorithm goes through. Experiments conducted on learning five programs are given

in Section 5.3.

5.1 Introduction

It was shown in Section 2.4 how failure-free recursive PRISM programs can generalise

DBNs by defining a halting distribution over the generative process. In this chapter,

we present an algorithm to learn this class of PRISM programs.

By defining a halting distribution, the model allows sampling observations with

different lengths of sequences. The sampling process is self-terminating based upon

some halting condition. This is an additional modelling property over those in DBNs

where each DBN is either an infinite generative process or a generative process of a

fixed length. The importance of modelling a self-terminating process is that it repre-

sents a halting function in which, based upon its termination, subsequent functions

can take over. This is useful in modelling machines. For instance, in a stochastic

context-free grammar (SCFG), an observation of the modelled language is generated

72

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 73

by a sequence of terminal and non-terminal symbols. Each non-terminal symbol

represents a halting function. Though in this thesis only programs of a single tail

recursive definition are addressed, it provides a building block in which further work

can be carried out to learn a model of multiple tail recursive definitions, e.g. a SCFG.

The algorithm presented in this chapter learns both inter-iteration and intra-iteration

dependencies.

Kersting and De Raedt (2007) adopt learning from interpretations to learn Bayesian

logic programs. The setting that will be adopted here is learning from entailment.

Ideas from both areas of ILP and learning BNs are built upon. The learning algo-

rithm is given: (a) observations D of a target predicate, (b) BK consisting of PRISM

switch declarations and (c) a declarative bias specifying a term representing some

switches which generate a value that halts the generative process. It aims at learning

a PRISM program S that maximises the log marginal likelihood logP (D|S). PRISM

does not support computing the exact log marginal likelihood. However, as men-

tioned in Section 2.5.2, PRISM supports three approximations to the log marginal

likelihood. Amongst these approximations is the BIC score defined in (4.9) which is

adopted here as the objective score to maximise. Formally, the learning problem is

defined as follows

Given:

• A set D of observations in FOL.

• Background knowledge B in FOL consisting of

– A set F of k functions where each function represents a set of switches.

– A set of ground terms G representing the values that the switches may

generate.

– Sets l1, . . . , lk such that ∀i : 1 ≤ i ≤ k, li ⊆ G and
⋂k

i=1 li = ∅.

– A set SD of atoms values(fi, li) where fi ∈ F and 1 ≤ i ≤ k declaring

the switches.

– A set of probabilistic atoms msw(f, v) where f ∈ F and ∃li : v ∈ li such

that values(f, li) ∈ SD.

• A declarative bias HT specifying the function f representing the set of switches

that halt the generative process. Let these switches generate a value t to halt

the process, then the bias is given as follows:

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 74

Observations: BK:

sentence([’Hello!’,

person1,studies,playing,’,’,

person1,studies,playing,’,’,

person3,goes,playing,’.’]).

sentence([’Hello!’,

person3,likes,playing,’.’]).

sentence([’Welcome!’,

person3,goes,walking,’.’]).

sentence([’Hello!’,

person1,likes,playing,’,’,

person2,goes,walking,’,’,

person3,studies,playing,’,’,

person3,studies,playing,’.’]).

.

.

.

values(start,[’Hello!’,’Welcome!’]).

values(subject,[person1,person2,

person3]).

values(verb,[likes,goes,studies]).

values(object(_),[playing,walking,

shopping]).

values(punc(_),[’,’,’.’]).

% The bias specifying the halt (HT)

stop:-

msw(punc(_),’.’).

Figure 5.1: On the left are observations of the target predicate sentence/1 whose
definition needs to be learned according to the BK and the bias on the right.

stop:- msw(f,t).

where f ∈ F and ∃li : t ∈ li such that values(f, li) ∈ SD.

Find: a PRISM program S represented by the predicates in D∪B∪{rec def/n,stop/m}

modelling a generative process which halts as specified by HT such that ∀d ∈ D :

B ∪ S |= d and

S = arg max
S′

logP (D|S ′, θ̂)−
dim

2
logN

The definition above states that the sets of switch outcomes defined by the switch

declarations are mutually exclusive. Note that the learning algorithm goes beyond

the predicates in the observations and the background knowledge. It invents the

new predicates rec def/n and stop/m where m > 0. Figure 5.1 shows examples

of some observations of the target predicate sentence/1 whose definition needs to

be learned given the shown BK and bias. Each switch declaration in the BK im-

plicitly encodes a set of probabilistic atoms. For instance, the switch declaration

values(start,[’Hello!’,’Welcome!’]) implicitly encodes the set

{msw(start,’Hello!’), msw(start,’Welcome!’)}

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 75

Program 1: Program 2:

values(start,[’Hello!’,’Welcome!’]).

values(subject,[person1,person2,

person3]).

values(verb,[likes,goes,studies]).

values(object(_),[playing,walking,

shopping]).

values(punc(_),[’,’,’.’]).

sentence([B,Person,VB,Do,Pun|Tail]):-

msw(start,B),

rec_def([Person,VB,Do,Pun|Tail]).

rec_def([Person,VB,Do,Pun|Tail]):-

msw(subject,Person),

msw(verb,VB),

msw(object(Person),Do),

msw(punc(VB),Pun),

stop(Pun,Tail).

stop(’.’,[]):-!.

stop(_,Tail):-

rec_def(Tail).

values(start,[’Hello!’,’Welcome!’]).

values(subject,[person1,person2,

person3]).

values(verb,[likes,goes,studies]).

values(object(_),[playing,walking,

shopping]).

values(punc(_),[’,’,’.’]).

sentence([B,Person,VB,Do,Pun|Tail]):-

msw(start,B),

rec_def(B,[Person,VB,Do,Pun|Tail]).

rec_def(B,[Person,VB,Do,Pun|Tail]):-

msw(subject,Person),

msw(verb,VB),

msw(object(B),Do),

msw(punc(VB),Pun),

stop(Pun,Do,Tail).

stop(’.’,_,[]):-!.

stop(_,Par,Tail):-

rec_def(Par,Tail).

Figure 5.2: Two PRISM programs from which the observations in Figure 5.1 could
have been generated.

.

The clause stop:- msw(punc(),’.’) is the declarative bias. It states that when

the switches represented by the term punc() generate the value ’.’, the generative

process must halt.

Figure 5.2 shows two programs from which the observations in Figure 5.1 could

have been generated. Note that the difference between the two programs is in the

dependencies between outcomes. As an unground term represents a set of switches,

grounding a term in a probabilistic atom by the outcomes of some preceding atoms

amounts to selecting a switch amongst this set. Therefore, in Program 1, the se-

lection of a switch amongst the set represented by the term object/1 depends

upon the outcome of the switch subject/0. Thus, the probabilistic outcome Do

depends on the probabilistic outcome Person. However, in Program 2, the selec-

tion of a switch amongst the set object/1 in the first iteration depends upon the

outcome of the switch start/0. The selection of a switch amongst this set in sub-

sequent iterations depends upon the outcome of the switch selected amongst the

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 76

Figure 5.3: Two DBNs representing the dependencies modelled in the programs in
Figure 5.2. The tables on the right show that each unground term (here object())
in a probabilistic atom corresponds to a CPT, and each particular grounding of this
term (a PRISM switch) corresponds to a row in the CPT.

set object/1 in the previous iteration. Therefore, in Program 2, there is an inter-

iteration dependency which does not exist in Program 1. Figure 5.3 depicts two

DBNs representing the two programs without the halting conditions. As shown in

the figure, the set of switches represented by the unground term object/1 corre-

sponds to a conditional probability table (CPT). Each switch of this set achieved by

grounding the term corresponds to a row in the CPT. The substitution of the vari-

ables in the term corresponds to the evidence in the conditional probability of the

outcome associated with this term given these variables. For instance, in Program

1, the dependency {msw(subject,Person), msw(object(Person),Do)} represents

the conditional probability distribution P (Do|Person), and the substitution θ =

{Person/person1} is an instantiation of the evidence to result in P (Do|Person =

person1). In Program 2, it can be noticed that the inter-iteration dependency corre-

sponds to an argument to the recursive predicate which is used to ground the term

object/1 in the next iteration.

Given the above discussion, the learning algorithm needs to induce the following

• The dependencies between the outcomes of the probabilistic atoms.

• The atoms that occur once in the generative process (atom msw(start,B) in

the programs in Figure 5.2), we will refer to these atoms as the initial atoms and

their outcomes as the initial outcomes, and the atoms involved in the iteration,

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 77

we will refer to these atoms as the iteration atoms and their outcomes as the

iteration outcomes. Initial atoms need to be separated from the iteration atoms.

A predicate rec def/m needs to be invented whose definition consists of the

iteration atoms.

• The inter-iteration dependencies (if any).

• The definition of the halting condition by inventing a predicate stop/m where

m > 0.

Section 5.2 addresses the points above and Section 5.3 shows some experiments

conducted with the developed learning algorithm.

5.2 Learning

The algorithm needs to learn the dependencies between the outcomes of the proba-

bilistic atoms. These are the dependencies amongst the initial outcomes, the depen-

dencies between the initial outcomes and the first iteration outcomes and the depen-

dencies amongst the iteration outcomes. For instance, in Program 2 in Figure 5.2,

the first case does not apply as there is only one initial outcome which is B. However,

there is a dependency between the initial outcome B and the iteration outcome Do

and there is a dependency between the iteration outcomes VB and Pun. Learning the

dependencies amongst the iteration outcomes is a dilemma of whether to learn them

from the statistics obtained from a single iteration (e.g. the first iteration) or to learn

them from the statistics obtained from all the iterations. Learning from the statistics

obtained from a single iteration amounts to taking a snap shot of the observations at

a particular time and learn the dependencies from only this instance. This snap shot

carries less information than the information that can be obtained from the statistics

in all the iterations. However, learning from all the iterations can be significantly

more computationally demanding. A single observation might have been generated

by a large number of iterations which is more than the elements of the list obtained

by taking a snap shot of a single iteration in all the observations. Therefore, we go

with the former choice and learn these dependencies from only the statistics obtained

from the first iteration. Learning from the first iteration guarantees that the set of

elements obtained from the snap shot is greater than or equal to the set of elements

obtained from a snap shot of any other iteration. This is due to the fact that in some

observations the generative process might have generated the outcomes of the first

iteration and halted.

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 78

Algorithm 3 Build a bottom clause using rlgg

1: D = {d1, d2, . . . , dn} % n observations
2: Gmsw = the set of all ground probabilistic atoms in BK
3: C1 = (d1 ← Gmsw)
4: C2 = (d2 ← Gmsw)
5: BC ′ = lgg(C1, C2)
6: BC = reduced(BC ′)
7: Expl = all observations in D explained by BC
8: D′ = D \ Expl
9: while D′ 6= ∅ do
10: Select any d′ ∈ D′

11: C = (d′ ← Gmsw)
12: BC ′ = lgg(BC,C)
13: BC = reduced(BC ′)
14: Expl = all observations in D′ explained by BC
15: D′ = D′ \ Expl
16: end while

17: return BC

The initial outcomes and the first iteration outcomes need to be identified. The

algorithm then builds a bottom clause which consists of all possible dependencies

amongst these outcomes. From the body of the bottom clause, a set of atoms encoding

outcome dependencies is built with the aim that this set contributes to maximising

the BIC score. When this step is finished, this set needs to be split into two sets to

separate the initial atoms from the iteration atoms. When this split is performed, the

algorithm needs to decide the iteration outcomes that need to be passed as arguments

to the next iteration (learning the inter-iteration dependencies). Finally, it forms

the definition of the halting condition accordingly. These steps will be explained in

detail in the following sections. Section 5.2.1 discusses building the bottom clause.

Section 5.2.2 discusses three search strategies for finding dependencies amongst the

outcomes. Section 5.2.3 explains how the initial atoms are split from the iteration

atoms. Finally, Section 5.2.4 explains how the algorithm designates the arguments

that will be passed to the next iteration and the construction of the halting condition.

5.2.1 Bottom Clause

The head h of the bottom clause BC = (h ← B) is an atom of the target predicate

whose arguments are the output of the generative process. The variables vars(h) in

h are the initial outcomes, the first iteration outcomes and a variable representing

the output of subsequent iterations. The body B of the bottom clause is the set

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 79

of probabilistic atoms which encode all possible dependencies amongst the outcomes.

Algorithm 3 builds bottom clauses using the rlgg. It first grounds all the probabilistic

atoms in BK. For instance given the BK in Figure 5.1 whose probabilistic atoms are

msw(start,’Hello!’). msw(start,’Welcome!’).

msw(subject,person1). msw(subject,person2). msw(subject,person3).

msw(verb,likes). msw(verb,goes). msw(verb,studies).

msw(object(_),playing). msw(object(_),walking). msw(object(_),shopping).

msw(punc(_),’,’). msw(punc(_),’.’).

all possible groundings of the terms object() and punc() by the outcomes of all

other switches defined by the switch declarations are considered. i.e.

msw(object(’Hello!’),playing). ... msw(object(’.’),shopping).

msw(punc(’Hello!’),’,’). ... msw(punc(shopping),’.’).

Note that a term is not grounded by the outcomes of the switches it represents.

e.g. msw(object(walking),playing) is not considered. This is because in the final

PRISM program, each term representing a set of switches is assumed to exist once

in the program. Therefore, a term can only be grounded by the outcomes of the

switches represented by the other terms. The algorithm then builds two clauses C1

and C2 whose heads are the first and second observations d1 and d2 and whose bodies

are these ground atoms. It computes the lgg of these two clauses which results in

a clause with possibly both redundant atoms and atoms with hidden (unobserved)

variables. Hidden variables are those whose values do not appear in the observations.

Thus those variables are not shown in the head of the resulting clause. Both kind

of atoms are deleted and a reduced clause is obtained. All observations which are

explained by the reduced clause are deleted. If there are some observations which

are not explained, one of these observations is selected and a clause is built in the

same way as C1 and C2. Then the lgg of this clause and the reduced clause resulting

from the previous step is computed and the resulting clause is reduced. Similarly, all

observations explained by this clause are then deleted. The process continues until

all observations are explained.

The problem of this algorithm is that it constructs, possibly many, atoms with

hidden variables which the algorithm eliminates at each step. This motivated de-

signing Algorithm 4 for bottom clause construction in which no atoms with hidden

variables are generated. This algorithm works by first computing the lgg of all the

observations to construct the head of the clause. It then constructs a set of all the

variables in this head that represent the outcomes of probabilistic atoms. This set

consists of all the variables in the head except one which represents the output of the

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 80

Algorithm 4 Build a bottom clause

1: D = {d1, d2, . . . , dn} % n observations
2: h = d1
3: for i = 2 to n do

4: h = lgg(h, di)
5: end for

6: V ar = outcomes of msw atoms(h)
7: B = ∅
8: for all values(t, O) in BK do

9: functor(t, f, k) % f is the functor and k is the arity
10: for all V ′ ∈ V ar do

11: if the set of values instantiated to V ′ in D is a subset of O then

12: V = V ′

13: break
14: end if

15: end for

16: V ar′ = V ar \ {V }
17: C = combinations(k, V ar′) % C is a set of combinations
18: for all C ′ ∈ C do

19: tnew = construct term(f, C ′)
20: B = B ∪ {msw(tnew, V)}
21: end for

22: end for

23: return BC = (h← B)

subsequent iterations. For instance, in Figure 5.2, the variable Tail represents the

output of the subsequent iterations and will not be included, so the constructed set

is {B,Person,VB,Do,Pun}. This set of variables, call it V ar, is used to construct the

atoms in the body of the bottom clause. For each term representing a set of switches,

the arity k of this term is obtained. If V is the variable in V ar that represents the

outcomes of this set of switches, then by letting V ar′ = V ar\{V }, the sets C1, . . . , Cm

of the k-combinations of V ar′ where m =

(

|V ar′|

k

)

are used to construct m terms

whose sets of arguments are C1, . . . , Cm. Probabilistic atoms are then constructed

for each of these terms with V as the outcomes of these atoms. For example, for

the term object/1 in the BK in Figure 5.1, the variable Do is excluded from the

set {B,Person,VB,Do,Pun} as it represents the outcome of the set of switches rep-

resented by object/1. The 1-combinations of the set of the remaining elements are

{B}, {Person}, {VB} and {Pun}. The algorithm then constructs the following atoms

accordingly

{msw(object(B),Do), msw(object(Person),Do),

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 81

msw(object(VB),Do), msw(object(Pun),Do)}

It is obvious from the atoms above that their outcomes are unified. Therefore,

the bottom clause built from the observations and BK in Figure 5.1 is a clause with

failure. In general, any bottom clause generated by Algorithm 3 or Algorithm 4 from

a BK which contains parameterised terms in the switch declarations is a clause with

failure.

5.2.2 Searching for Outcome Dependencies

When the bottom clause is built, the learning algorithm searches for a set of atoms in

the body of the bottom clause that encodes the three types of dependencies discussed

at the beginning of Section 5.2. The search aims at finding the set of atoms which

may contribute to maximising the final BIC score. Three search strategies will be

discussed. The first is a greedy generalisation of a clause whose body is the same as the

body of the bottom clause. The second, is a random search based upon an ordering

of the atoms in the body of the bottom clause. These two strategies do not guarantee

finding the optimal dependencies with respect to the log marginal likelihood. This

has motivated adopting the cutting planes search, explained in Section 4.3.4, which

finds the dependencies with the optimal log marginal likelihood. The cutting planes

search will thus be used in the final learning algorithm.

As learning the outcome dependencies is based upon the initial outcomes and the

first iteration outcomes, the values generated by all other iterations in each obser-

vation are not required at this step. The first two strategies are based upon scoring

PRISM clauses after each move in the search space. As these clauses define genera-

tive processes of only the initial and first iteration outcomes, they need to be scored

against only the values of these outcomes. Therefore, a new set of observations D′

needs to be built in which the output of all the iterations apart from the first one

is trimmed from the original set of observations D. Let this be performed by the

following function

D′ = trim obs from second to end(D)

Figure 5.4 shows the result of applying this function on the observations in Figure 5.1.

The variable representing the trimmed values needs not be included in the head of

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 82

sentence([’Hello!’,person1,studies,playing,’,’]).

sentence([’Hello!’,person3,likes,playing,’.’]).

sentence([’Welcome!’,person3,goes,walking,’.’]).

sentence([’Hello!’,person1,likes,playing,’,’]).

.

.

.

Figure 5.4: The result of applying the trimming function on the observation in Fig-
ure 5.1.

these clauses. This is performed by deleting this variable from the head of the bottom

clause using the following function

h′ = delete var of subsequent iter(h)

The result of applying this function on the head of the programs in Figure 5.2 is

sentence([B,Person,VB,Do,Pun]).

5.2.2.1 Greedy Generalisation

The greedy generalisation search takes the bottom clause BC = (h← B) and the set

of observations D and applies the two functions

D′ = trim obs from second to end(D)
h′ = delete var of subsequent iter(h)

It then starts with the clause BC ′ = (h′ ← B) as an initial state in the search

space and moves in the space by choosing the best candidate generalisation. The

candidate generalisations of a clause are clauses whose head is the same as the head

of the generalised clause and whose bodies are the set of atoms in the body of the

generalised clause with one atom deleted. The search starts from the clause BC ′

by deleting the first atom in its body and then scores it. It ends up with a clause

C1 whose score is Score1. It then goes back to BC ′ and deletes the second atom

in its body and scores it. This results in a clause C2 whose score is Score2. If

Score1 > Score2 then C2 is removed and C1 is preserved, otherwise the opposite is

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 83

Algorithm 5 Greedy generalisation

1: D = {d1, d2, . . . , dn} % n observations
2: BC = (h← B) % the bottom clause
3: D′ = trim obs from second to end(D)
4: h′ = delete var of subsequent iter(h)
5: C = (h′ ← B)
6: R = scoreBIC(C,D′)
7: while C is a clause with failure do

8: for all b ∈ B do

9: B′ = B \ {b}
10: C ′ = (h′ ← B′)
11: R′ = scoreBIC(C ′, D′)
12: if R′ ≥ R then

13: C = C ′

14: R = R′

15: end if

16: end for

17: B = body of(C)
18: end while

19: return B

applied. It then continues by deleting the third atom in the body of BC ′ to generate

C3 and compares its score Score3 with the score of the clause preserved in the previous

step. The process continues until all the atoms in the body of BC ′ are processed. The

result of this step is a clause generalising BC ′ by one atom dropped off. The search

continues by generalising clauses until it reaches a failure-free clause whose body is

then returned. This process is shown in Algorithm 5. Given n atoms in the body of

the bottom clause, BIC score is run n times to delete one atom from this clause. It is

then run n− 1 times to delete an atom from the clause resulting from the first step.

Therefore, the number of times BIC score is run is n + n − 1 + n− 2 + . . . + n −m

where n−m is the number of atoms in the final failure-free clause. Thus BIC score is

run ≈ n ∗ (n+ 1)/2 times. As BIC runs the EM algorithm, the cost of the BIC score

includes the cost of the EM algorithm. The cost of the gEM (the PRISM instance of

EM) grows linearly with the nodes in the explanation graph of any observation (Sato

and Kameya, 2001). The explanation graph of any observation of a predicate grows

with the number of atoms in the body of the predicate definition. The time for scoring

clauses in this strategy decreases as the number of atoms in the body is reduced at

each step. In some problems, the bottom clause may contain a large number of atoms

(e.g. > 1000 atoms) in its body. In such cases, this strategy can be problematic and

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 84

the search may take considerable time in scoring the bottom clause and subsequent

clauses until it reaches a significantly reduced clause. This would affect the overall

performance. It is also obvious that this strategy may become trapped in a local

maximum.

5.2.2.2 Random Search

This search strategy avoids the problem of the greedy generalisation search in which

clauses with large number of atoms in their bodies are scored. It scores only possible

failure-free clauses. The search generates failure-free clauses randomly and returns the

body of the one with the maximum score. As shown in Algorithm 6, it first generates

D′ and BC ′ in the same way as the greedy generalisation does. It then clusters the

atoms in the body of BC ′ based upon the arity of the terms representing the switches.

It builds a total order C0 ≺ . . . ≺ Ck of these clusters where ∀i : 0 ≤ i ≤ k, Ci is

a cluster of atoms in which the arity of the terms in this cluster is i. For instance,

given the following clause

sentence([B,Person,VB,Do,Pun]):-

msw(start,B),

msw(subject,Person),

msw(verb,VB),

msw(object(B),Do), msw(object(Person),Do),

msw(object(VB),Do), msw(object(Pun),Do),

msw(punc(B),Pun), msw(punc(Person),Pun),

msw(punc(VB),Pun), msw(punc(Do),Pun).

The following two clusters are built

C0 = {msw(start,B), msw(subject,Person), msw(verb,VB)}

C1 = {msw(object(B),Do), msw(object(Person),Do),

msw(object(VB),Do), msw(object(Pun),Do),

msw(punc(B),Pun), msw(punc(Person),Pun),

msw(punc(VB),Pun), msw(punc(Do),Pun)}

Let B be initialised to the empty set. The cluster order is then traversed starting

from C0. All the atoms in C0 are added to B. For each other cluster Ci, it deletes

all atoms whose terms are not grounded by a subset of the outcomes of the atoms

in B or whose outcomes are generated by some atoms in B. When these atoms are

deleted, a set C ′
i is generated. It then selects an atom randomly from C ′

i and adds it

to B. These two steps are repeated until the set C ′
i = ∅ is generated. It then moves

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 85

Algorithm 6 Random search

1: D = {d1, d2, . . . , dn} % n observations
2: BC = (h← B) % the bottom clause
3: D′ = trim obs from second to end(D)
4: h′ = delete var of subsequent iter(h)
5: Score = −∞
6: {C}≺k

0
= cluster the atoms in B based upon the arity of the terms in these atoms

that represent the switches and return these cluster
7: B = C0

8: {C}≺ = {C}≺k
0
\ {C0}

9: m = number of clauses to generate
10: for j = 1 to m do

11: while {C}≺ 6= ∅ do
12: Ci = the first element in {C}≺
13: loop

14: O = the set of outcomes generate by the atoms in B
15: C ′

i = Ci \ {msw(t, v) ∈ Ci| ∄θ ⊆ O : vars(tθ) = ∅}
16: C ′′

i = C ′
i \ {msw(t1, v) ∈ C ′

i| ∃msw(t2, v) ∈ B}
17: if C ′′

i = ∅ then
18: break
19: else

20: b = random atom(C ′′
i)

21: B = B ∪ {b}
22: end if

23: end loop

24: {C}≺ = {C}≺ \ {Ci}
25: end while

26: Clause′ = (h′ ← B)
27: Score′ = scoreBIC(Clause′, D′)
28: if Score′ ≥ Score then

29: Clause = Clause′

30: Score = Score′

31: end if

32: j = j + 1
33: end for

34: return B = body of(Clause)

to the next cluster in the order and processes it in the same way. For instance, from

the above two clusters, the atoms in C0 are added to the empty set B as follows

B = {msw(start,B), msw(subject,Person), msw(verb,VB)}

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 86

All atoms which are not grounded by a subset of {B,Person,VB} or whose outcomes

are members of this set are deleted from C1 to generate C ′
1 as follows

C ′
1 = {msw(object(B),Do), msw(object(Person),Do),

msw(object(VB),Do), msw(punc(B),Pun),

msw(punc(Person),Pun), msw(punc(VB),Pun)}

Assume that the atom msw(object(Person),Do) was randomly selected from C ′
1,

then

B = {msw(start,B), msw(subject,Person),

msw(verb,VB), msw(object(Person),Do)}

The cluster C1 is processed again with the new B. By deleting the atoms which are

not grounded by {B,Person,VB,Do} and those whose outcomes are members of this

set, the following set is then obtained

C ′
1 = {msw(punc(B),Pun), msw(punc(Person),Pun),

msw(punc(VB),Pun),msw(punc(Do),Pun)}

Assuming that msw(punc(Person),Pun) was randomly selected, B then becomes

B = {msw(start,B), msw(subject,Person),

msw(verb,VB), msw(object(Person),Do),msw(punc(Person),Pun)}

Generating C ′
1 from C1 according to {B,Person,VB,Do,Pun} then leads to C ′

1 = ∅.

B is then given as a candidate body. The clause that is randomly generated then

becomes

sentence([B,Person,VB,Do,Pun]):-

msw(start,B),

msw(subject,Person),

msw(verb,VB),

msw(object(Person),Do),

msw(punc(Person),Pun).

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 87

Algorithm 7 Cutting planes for selecting PRISM probabilistic atoms

1: D = {d1, d2, . . . , dn} % n observations
2: BC = (h← B) % the bottom clause
3: D′ = trim obs from second to end(D)
4: all atoms scores = ∅
5: for all b ∈ B do

6: atom score = family score(b,D′) % use equation (4.3) and return {b, Score}
7: all atoms scores = all atoms scores ∪ {atom score}
8: end for

9: final atoms with scores = bn cutting planes(all atoms scores)
10: return atoms = atoms only(final atoms with scores) % drop off scores

When all clusters are visited, the randomly generated clause (h′ ← B) is obtained.

Each generated clause is scored. The search generates a designated number of clauses

and returns the body of the one with the maximum score.

5.2.2.3 Cutting Planes

The aim of using the cutting planes algorithm is to contribute to maximising the

final BIC score by selecting the set of atoms from the body of the bottom clause

which encodes the outcome dependencies that has the optimal log marginal likelihood

score. This is achieved by finding the atoms with the optimal BDeu score based upon

the statistics obtained from the values generated by the initial outcomes and the

first iteration outcomes. Each atom in the body of the bottom clause represents

a candidate family. For instance, msw(object(Person),Do) represents the family

{Person} → Do and msw(start,B) represents the root node ∅ → B. As the BDeu

score is decomposable, each atom is scored individually using (4.3). The score of each

atom msw(t,X) is then represented in the cutting planes formalisation in (4.14) by

c(X,Pa) where Pa = vars(t). Following Cussens (2011), the SCIP (solving constraint

integer programs) (Achterberg, 2007) framework is used to solve this IP problem. The

pseudocode of this strategy is given in Algorithm 7.

5.2.3 Recursive Definition

When the atoms encoding the outcome dependencies are selected, they need to be

split into two sets. The first set includes the initial atoms whose outcomes are used

once in the generative process. The other set includes the iteration atoms which

are used repetitively in the generative process. A predicate rec def/n needs to be

invented and defined by the iteration atoms.

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 88

[start/0,

subject/0,verb/0,object/1,punc/1,subject/0,verb/0,object/1,punc/1

subject/0,verb/0,object/1,punc/1]

[start/0,subject/0,verb/0,object/1,punc/1]

[start/0,subject/0,verb/0,object/1,punc/1]

[start/0,

subject/0,verb/0,object/1,punc/1,subject/0,verb/0,object/1,punc/1

subject/0,verb/0,object/1,punc/1,subject/0,verb/0,object/1,punc/1]

.

.

.

Figure 5.5: The Lists of the terms representing the switches that were used to generate
the observations in Figure 5.1.

For each observation di, let Stri be a list of the terms representing the switches

that has generated the values in di. Let Strings = {Str1, . . . , Strn} be the set of

the lists created from all observations. Figure 5.5 shows the set Strings created from

the observations in Figure 5.1. MERLIN 2.0 explained in Section 3.3.1 can then be

used to construct a DFA from Strings. Recursion is then identified from the DFA

using the pattern in Figure 5.6. Atoms whose terms are involved in the pattern are

included in the set of iteration atoms. These represent the definition of the rec def/n

predicate. The output argument of this predicate (-) is the list containing the out-

comes of the atoms defining it and a variable representing subsequent iterations. The

input arguments to this predicate (+) are the outcomes of the initial atoms which

some atoms in its body (iteration atoms) depend upon. For instance, in Program

1 in Figure 5.2, there is no input to rec def/1 as none of the atoms in its body

depend on the outcome of the initial atom msw(start,B). However, in Program 2,

msw(object(B),Do) depends on the outcome of msw(start,B), thus B needs to be

passed as an input argument to rec def/2.

Figure 5.6: The Pattern of recursion in a DFA.

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 89

sentence([person1,studies,playing,’,’,person1,studies,playing,’,’]).

sentence([person1,likes,playing,’,’,person2,goes,walking,’,’]).

.

.

.

Figure 5.7: The values in the observations in Figure 5.1 generated by the first and
second iterations of the sought program S.

5.2.4 Inter-Iteration Dependencies

The number of inter-iteration dependencies is the number of input arguments to the

recursive predicate. This number has already been determined when the iteration

atoms were identified. Let this number be k. The task is to designate the k out-

comes of the iteration atoms that the atoms in the next iteration depend upon. The

order of these outcomes needs also to be determined. For instance, if X and Y are

two input arguments to rec def(A,B,[H|Tail]), the two calls rec def(X,Y,Z) and

rec def(Y,X,Z) are different. Therefore, given k-permutations of the outcomes of

the iteration atoms, the problem of learning the iteration-dependencies amounts to

finding a particular permutation.

These dependencies are learned based upon the statistics obtained from the values

generated by the first and second iterations. A new set of observations is constructed

whose elements are observations of these values. Let this be performed by the follow-

ing function

D′ = trim obs from initial and from third to end(D)

The set D′ obtained from applying this function on the set of observations in Fig-

ure 5.1 is shown in Figure 5.7. Two instances of the body of the recursive predicate

definition are created. Let these two instances be B1 and B2 respectively. B1 rep-

resents the atoms generating the values of the first iteration and B2 represents the

atoms generating the values in the second iteration. Let the set of outcomes generated

by B1 be V ar. Let the set of iteration atoms that depend upon the input arguments

of the recursive predicate in B2 be D2. The score of each permutation is the sum

of the scores of the atoms in the set D2 with respect to this permutation. The task

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 90

is then to find the permutation with the maximum score. Let C≺1, . . . , C≺e be the

k-permutations of the set V ar where e = |V ar|!
(|V ar|−k)!

. For each atom dj ∈ D2, a set

of the indices In≺j of the input arguments that this atoms depends upon is created.

The indices are the positions in the list of input arguments to the recursive predicate.

They are ordered according to the appearance of these arguments in the term. For

instance, given the following definition of a recursive predicate

rec_def(A,B,C,[X,Y,Z|Tail]):-

.

.

msw(t(C,F,A),Y),

.

.

the set In≺ for the atom msw(t(C,F,A),Y) is In = {3, 1}. 3 is the position of the

variable C in the list of input arguments for rec def(A,B,C,[X,Y,Z|Tail]) and 1 is

the position of A. The score of each atom dj ∈ D2 with respect to the permutation C≺i

is then the score of the family represented by the atom when the input arguments in

the term representing the switch are replaced by the variables in C≺i according to the

indices in In≺j . The atoms in D2 are then scored with respect to each permutation.

The permutation with the maximum score is then returned as the inter-iteration

dependencies.

Halting the process is determined by a value generated by the atom specified by the

bias. The outcome of this atom needs to be checked to see if it has been instantiated

to this value (the atom msw(punc(),’.’) in the BK in Figure 5.1, and the outcome

of this atom in the programs in Figure 5.2 is Pun). Therefore, this outcome is passed

from rec def/n to stop/m which halts the process if this unification has occurred;

otherwise, stop/m calls rec def/n back to continue the process. Thus, if the outcome

is already in the designated permutation then m = n, otherwise the outcome is added

to the permutation and m = n + 1.

5.3 Experiments

To evaluate the learning algorithm shown in Algorithm 8, five problems were mod-

elled as PRISM programs. The first is a small language model where each sentence

consists of a subject, a verb, an object and a punctuation mark. Therefore, this

model has 4 outcomes in each iteration. The second is an adaptation of the Asia BN

given in Cowell et al. (2007) which has 8 nodes. The BN was extended to a DBN

by repeating the distribution in each slice and then the DBN was generalised to a

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 91

Algorithm 8 Learning PRISM programs with fully observed outcomes

1: D = {d1, d2, . . . , dn} % n observations
2: BK = background knowledge
3: (h← B′) = the bottom clause built using Algorithm 4.
4: B = the set of atoms selected from B′ representing the outcome dependencies

returned by Algorithm 7.
5: {TargetPred, RecPred} = split the clause (h← B) into a target predicate defi-

nition and a recursive predicate definition as explained in Section 5.2.3.
6: {RecDef, STOP} = find inter-iteration dependencies as explained in Sec-

tion 5.2.4 and return the new body of the definition of the recursive predicate
RecPred found in the previous step as well as the definition of the halting con-
dition STOP .

7: S = {TargetPred, RecDef, STOP}≺
8: return S

recursive PRISM program by defining a halting distribution. Thus, each iteration has

8 outcomes. The small language program and the Asia program were modelled such

that there are no inter-iteration dependencies. The third program is an adaptation

of a dynamic Bayesian network used in a cervical cancer diagnosis model (Agnieszka

et al., 2009). It has 4 outcomes in each iteration and 3 inter-iteration dependencies.

The fourth is an adaptation of a dynamic Bayesian network for maintenance decision

making (McNaught and Zagorecki, 2009). It has 5 outcomes in each iteration and

3 inter-iteration dependencies. These two DBN models were adapted so that an it-

eration depends only on the previous one (the Markov property) and a distribution

over halting the generative process was added. The last program is an adaptation of

a subset of the alarm BN in the Bayesian network repository1. 10 nodes from the

network in the repository were modelled such that two are initial outcomes and 8 are

iteration outcomes with 2 inter-iteration dependencies.

Five sets of observations with each of the sizes 500, 1000, 1500 and 2000 where

sampled from the programs. The algorithm was run to learn PRISM programs from

each set of observations with the corresponding BK and bias. For each sample size,

the ratios of the five programs learned to the original program from which these sets

where generated were computed, and the average ratio were obtained. The results

of the scores and the time taken by the learning algorithm in each run for the four

programs is shown in the tables 5.1, 5.2, 5.3, 5.4 and 5.5. The learning time could

almost certainly be reduced with more effort on code optimisation. Figure 5.8 shows

the average ratio of the BIC scores of the learned programs to the original ones for each

1http://www.cs.huji.ac.il/labs/compbio/Repository/

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 92

sample size for the four programs. It can be noticed that the learned small language

programs for the four set sizes have, on average, the same scores as the original one.

The learned Asia programs for the set sizes of 500 and 1000 observations scored, on

average, less than the original one. The scores of the learned programs for the set

sizes of 1500 and 2000 observations attained the same scores as the original program.

The cervical cancer diagnosis learned programs scored, on average, less than the

original program for the four set sizes. However, the curve shows that the scores of

the learned programs converge to the scores of the original program with the increase

of the size of observations. The programs learned for maintenance decision making

scored, on average, higher than the original program in the four set sizes. The scores

also converge to the scores of the original program as the size of the observations

increases. The alarm learned programs scored slightly lower, on average, than the

original one for the two set sizes of 500 and 1000 and attained the same scores as the

original one in the two sets of 1500 and 2000. The graphs in Figure 5.8 indicate that,

in the limit of the size of observations, the scores of the learned programs, converge

to the scores of the original.

Figure 5.11 shows the original maintenance decision making program from which

1000 observations were sampled and a program learned by Algorithm 8 from these

observations and the BK and bias in Figure 5.10. The generalised maintenance de-

cision making DBN is shown in Figure 5.9. It can be noticed that, in the learned

program, the dependencies amongst the initial outcomes are the same as the ones in

the original program. The arguments passed from the body of the target predicate

definition to the recursive predicate which represent the dependencies between the

initial outcomes and the first iteration outcomes are also the same as the ones in the

original program. The dependencies amongst the iteration outcomes are the same in

both programs. However, the two programs differ in the inter-iteration dependencies.

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 93

Program Sample size Sample Program Score Ratio Learning Time Scoring Time

Small Language

500

1
Learned −5176.4

1 3 sec
< 1 sec

Original −5176.4 < 1 sec

2
Learned −4863.8

1 2 sec
< 1 sec

Original −4863.8 < 1 sec

3
Learned −5077.5

1 2 sec
< 1 sec

Original −5077.5 < 1 sec

4
Learned −5061.2

1 4 sec
< 1 sec

Original −5061.2 < 1 sec

5
Learned −5114.7

1 2 sec
< 1 sec

Original −5114.7 < 1 sec
Average ratio 1

Standard deviation 0

1000

1
Learned −9707.5

1 3 sec
< 1 sec

Original −9707.5 < 1 sec

2
Learned −9954.7

1 4 sec
< 1 sec

Original −9954.7 < 1 sec

3
Learned −9545.0

1 3 sec
< 1 sec

Original −9545.0 < 1 sec

4
Learned −9719.5

1 3 sec
< 1 sec

Original −9719.5 < 1 sec

5
Learned −9374.0

1 3 sec
< 1 sec

Original −9374.0 < 1 sec
Average ratio 1

Standard deviation 0

1500

1
Learned −14735.0

1 5 sec
< 1 sec

Original −14735.0 < 1 sec

2
Learned −14368.2

1 5 sec
< 1 sec

Original −14368.2 < 1 sec

3
Learned −14537.4

1 5 sec
< 1 sec

Original −14537.4 < 1 sec

4
Learned −14014.0

1 5 sec
< 1 sec

Original −5524.2 < 1 sec

5
Learned −5549.2

1 5 sec
< 1 sec

Original −14513.7 < 1 sec
Average ratio 1

Standard deviation 0

2000

1
Learned −19526.3

1 7 sec
< 1 sec

Original −19526.3 < 1 sec

2
Learned −20040.8

1 7 sec
< 1 sec

Original −20040.8 < 1 sec

3
Learned −19778.1

1 7 sec
< 1 sec

Original −19778.1 < 1 sec

4
Learned −19608.9

1 7 sec
< 1 sec

Original −19608.9 < 1 sec

5
Learned −19263.7

1 6 sec
< 1 sec

Original −19263.7 < 1 sec
Average ratio 1

Standard deviation 0

Table 5.1: The result of the experiments on learning the small language program with
fully observed outcomes.

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 94

Program Sample size Sample Program Score Ratio Learning Time Scoring Time

Asia

500

1
Learned −8677.5

1 23 sec
< 1 sec

Original −8677.5 < 1 sec

2
Learned −9560.9

1.0003 30 sec
< 1 sec

Original −9557.3 < 1 sec

3
Learned −9237.4

1.0002 6 sec
< 1 sec

Original −9234.8 < 1 sec

4
Learned −9176.6

1.0002 7 sec
< 1 sec

Original −9174.6 < 1 sec

5
Learned −8731.6

1.0012 5 sec
< 1 sec

Original −8720.9 < 1 sec
Average ratio 1.00041

Standard deviation 0.00042

1000

1
Learned −17896.9

1.0017 27 sec
< 1 sec

Original −17864.9 < 1 sec

2
Learned −19082.5

1 12 sec
< 1 sec

Original −19082.5 < 1 sec

3
Learned −18871.5

1 24 sec
< 1 sec

Original −18871.5 < 1 sec

4
Learned −19104.2

1 12 sec
< 1 sec

Original −19104.2 < 1 sec

5
Learned −18811.0

1 10 sec
< 1 sec

Original −18811.0 < 1 sec
Average ratio 1.0003

Standard deviation 0.000715

1500

1
Learned −25842.2

1 49 sec
1 sec

Original −25842.2 1 sec

2
Learned −24825.2

1 15 sec
1 sec

Original −24825.2 1 sec

3
Learned −24908.9

1 14 sec
1 sec

Original −24908.9 1 sec

4
Learned −25427.2

1 15 sec
1 sec

Original −25427.2 1 sec

5
Learned −25003.2

1 24 sec
1 sec

Original −25003.2 1 sec
Average ratio 1

Standard deviation 0

2000

1
Learned −33724.7

1 56 sec
1 sec

Original −33724.7 1 sec

2
Learned −39716.2

1 39 sec
1 sec

Original −39716.2 1 sec

3
Learned −38677.0

1 40 sec
1 sec

Original −38677.0 1 sec

4
Learned −40237.2

1 42 sec
1 sec

Original −40237.2 1 sec

5
Learned −39737.2

1 49 sec
1 sec

Original −39737.2 1 sec
Average ratio 1

Standard deviation 0

Table 5.2: The result of the experiments on learning the Asia program with fully
observed outcomes.

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 95

Program Sample size Sample Program Score Ratio Learning Time Scoring Time

Cervical

500

1
Learned −34455.1

1.236 33 sec
1 sec

Original −27870.7 1 sec

2
Learned −35634.8

1.264 9 sec
1 sec

Original −28179.8 1 sec

3
Learned −34760.7

1.221 58 sec
1 sec

Original −28448.5 1 sec

4
Learned −35766.6

1.284 8 sec
1 sec

Original −27837.6 1 sec

5
Learned −35393.1

1.279 36 sec
1 sec

Original −27655.5 1 sec
Average ratio 1.257

Standard deviation 0.0245

1000

1
Learned −60541.7

1.195 1 min & 24 sec
1 sec

Original −50627.0 1 sec

2
Learned −64392.9

1.247 16 sec
1 sec

Original −51611.0 1 sec

3
Learned −61654.0

1.240 1 min & 9 sec
1 sec

Original −49720.4 1 sec

4
Learned −49927.3

1 39 sec
1 sec

Original −49927.3 1 sec

5
Learned −52010.7

1 22 sec
1 sec

Original −52010.7 1 sec
Average ratio 1.136

Standard deviation 0.113

1500

1
Learned −72276.2

1 1 min & 48 sec
1 sec

Original −72276.2 1 sec

2
Learned −90342.9

1.240 28 sec
1 sec

Original −72856.2 1 sec

3
Learned −89019.4

1.213 48 sec
1 sec

Original −73359.1 1 sec

4
Learned −74438.5

1 35 sec
1 sec

Original −74438.5 1 sec

5
Learned −88348.9

1.223 28 sec
1 sec

Original −72191.6 1 sec
Average ratio 1.135

Standard deviation 0.110

2000

1
Learned −93055.0

1 2 min & 8 sec
2 sec

Original −93055.0 2 sec

2
Learned −114488.6

1.183 38 sec
2 sec

Original −96742.4 2 sec

3
Learned −93387.6

1 47 sec
2 sec

Original −93387.6 2 sec

4
Learned −96181.1

1 48 sec
2 sec

Original −96181.1 2 sec

5
Learned −95927.4

1 1 min & 14 sec
2 sec

Original −95927.4 2 sec
Average ratio 1.036

Standard deviation 0.073

Table 5.3: The result of the experiments on learning the cervical cancer diagnosis
program with fully observed outcomes.

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 96

Program Sample size Sample Program Score Ratio Learning Time Scoring Time

Maintenance

500

1
Learned −12672.0

0.972 23 sec
< 1 sec

Original −13029.5 < 1 sec

2
Learned −11964.8

1.014 22 sec
< 1 sec

Original −11789.7 < 1 sec

3
Learned −11348.6

0.967 22 sec
< 1 sec

Original −11725.7 < 1 sec

4
Learned −12153.1

0.969 21 sec
< 1 sec

Original −12530.8 < 1 sec

5
Learned −11317.9

0.963 22 sec
< 1 sec

Original −11752.5 < 1 sec
Average ratio 0.977

Standard deviation 0.0188

1000

1
Learned −23189.6

0.978 42 sec
< 1 sec

Original −23688.5 < 1 sec

2
Learned −23133.6

0.978 41 sec
< 1 sec

Original −23653.9 < 1 sec

3
Learned −22818.3

0.977 41 sec
< 1 sec

Original −23332.5 < 1 sec

4
Learned −23446.8

0.984 41 sec
< 1 sec

Original −23827.9 < 1 sec

5
Learned −22719.6

0.977 42 sec
< 1 sec

Original −23233.4 < 1 sec
Average ratio 0.979

Standard deviation 0.0023

1500

1
Learned −33911.4

0.983 1 min & 2 sec
< 1 sec

Original −34463.5 < 1 sec

2
Learned −33759.1

0.983 1 min & 1 sec
< 1 sec

Original −34318.1 < 1 sec

3
Learned −34317.6

0.983 1 min & 1 sec
< 1 sec

Original −34885.9 < 1 sec

4
Learned −33462.5

0.983 1 min
< 1 sec

Original −34035.3 < 1 sec

5
Learned −34232.7

0.983 1 min & 2 sec
< 1 sec

Original −34792.1 < 1 sec
Average ratio 0.983

Standard deviation 0

2000

1
Learned −44624.2

0.986 1 min & 22 sec
< 1 sec

Original −45215.6 < 1 sec

2
Learned −45022.1

0.987 1 min & 23 sec
< 1 sec

Original −45605.0 < 1 sec

3
Learned −45008.2

0.987 1 min & 21 sec
< 1 sec

Original −45565.7 < 1 sec

4
Learned −44694.0

0.986 1 min & 23 sec
< 1 sec

Original −45289.0 < 1 sec

5
Learned −45052.7

0.987 1 min & 22 sec
< 1 sec

Original −45609.6 < 1 sec
Average ratio 0.987

Standard deviation 0

Table 5.4: The result of the experiments on learning the maintenance decision making
program with fully observed outcomes.

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 97

Program Sample size Sample Program Score Ratio Learning Time Scoring Time

Alarm

500

1
Learned −21730.7

1.006 28 sec
< 1 sec

Original −21587.6 < 1 sec

2
Learned −16539.7

1.002 25 sec
< 1 sec

Original −16502.9 < 1 sec

3
Learned −17510.3

1.015 26 sec
< 1 sec

Original −17248.2 < 1 sec

4
Learned −17028.4

1 26 sec
< 1 sec

Original −17028.4 < 1 sec

5
Learned −17261.6

1.003 26 sec
< 1 sec

Original −17194.4 < 1 sec
Average ratio 1.005

Standard deviation 0.005

1000

1
Learned −45001.7

1.006 51 sec
< 1 sec

Original −44709.6 < 1 sec

2
Learned −38450.9

1 47 sec
< 1 sec

Original −38450.9 < 1 sec

3
Learned −37659.8

1 46 sec
< 1 sec

Original −37659.8 < 1 sec

4
Learned −37790.0

1 47 sec
< 1 sec

Original −37790.0 < 1 sec

5
Learned −38760.8

1 47 sec
< 1 sec

Original −38760.8 < 1 sec
Average ratio 1.001

Standard deviation 0.002

1500

1
Learned −63610.8

1 47 sec
< 1 sec

Original −63610.8 < 1 sec

2
Learned −67526.5

1 47 sec
< 1 sec

Original −67526.5 < 1 sec

3
Learned −67434.8

1 47 sec
< 1 sec

Original −67434.8 < 1 sec

4
Learned −66961.3

1 47 sec
< 1 sec

Original −66961.3 < 1 sec

5
Learned −66149.8

1 47 sec
< 1 sec

Original −66149.8 < 1 sec
Average ratio 1

Standard deviation 0

2000

1
Learned −85376.9

1 1 min & 26 sec
1 sec

Original −85376.9 1 sec

2
Learned −73925.0

1 1 min & 30 sec
1 sec

Original −73925.0 1 sec

3
Learned −73136.0

1 1 min & 31 sec
1 sec

Original −73136.0 1 sec

4
Learned −72085.3

1 1 min & 27 sec
1 sec

Original −72085.3 1 sec

5
Learned −73415.3

1 1 min & 28 sec
1 sec

Original −73415.3 1 sec
Average ratio 1

Standard deviation 0

Table 5.5: The result of the experiments on learning the alarm program with fully
observed outcomes.

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 98

 0.999

 0.9995

 1

 1.0005

 1.001

 1.0015

 1.002

 1.0025

 1.003

 500 1000 1500 2000 2500

T
he

 a
ve

ra
ge

 r
at

io
 o

f B
IC

 s
co

re
s

The size of the set of observations

Small language

Small language

(a) The small language program.

 0.994

 0.996

 0.998

 1

 1.002

 1.004

 1.006

 500 1000 1500 2000 2500

T
he

 a
ve

ra
ge

 r
at

io
 o

f B
IC

 s
co

re
s

The size of the set of observations

Asia

Asia

(b) The Asia program.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 500 1000 1500 2000 2500

T
he

 a
ve

ra
ge

 r
at

io
 o

f B
IC

 s
co

re
s

The size of the set of observations

Cervical

Cervical

(c) The cervical cancer diagnosis program.

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 500 1000 1500 2000 2500

T
he

 a
ve

ra
ge

 r
at

io
 o

f B
IC

 s
co

re
s

The size of the set of observations

Maintenance

Maintenance

(d) The maintenance decision making pro-
gram.

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 500 1000 1500 2000 2500

T
he

 a
ve

ra
ge

 r
at

io
 o

f B
IC

 s
co

re
s

The size of the set of observations

Alarm

Alarm

(e) The alarm program.

Figure 5.8: The ratios of the BIC scores of the learned programs to the original
programs. Each point represents an average of 5 ratios of BIC scores of programs
learned from 5 different and independent samples to the BIC scores of the original
programs from which these samples were generated. The bars represent the standard
deviations.

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 99

Figure 5.9: The maintenance decision making DBN.

values(load,[normal,abnormal]).

values(true_condition(_),[good,wear_1,wear_2,wear_3,failure_mode1,failure_mode2]).

values(cm1(_),[low1,medium1,high1]).

values(cm2(_),[low2,medium2,high2]).

values(maintenance(_,_),[none,reset,replace]).

values(load_t(_),[t_normal,t_abnormal,t_halt]).

values(true_condition_t(_,_,_),[t_good,t_wear_1,t_wear_2,t_wear_3,t_failure_mode1,

t_failure_mode2]).

values(cm1_t(_),[t_low1,t_medium1,t_high1]).

values(cm2_t(_),[t_low2,t_medium2,t_high2]).

values(maintenance_t(_,_),[t_none,t_reset,t_replace]).

% The bias specifying the halt (HT)

stop:- msw(load_t(_),t_halt).

Figure 5.10: The BK and the bias used to learn the maintenance decision making
PRISM programs.

CHAPTER 5. LEARNING RECURSIVE PRISM PROGRAMS WITH FULLY OBSERVED OUTCOMES 100

Original: Learned:

% To generate the initial outcomes

values(load,[normal,abnormal]).

values(true_condition(_),

[good,wear_1,wear_2,wear_3,

failure_mode1,failure_mode2]).

values(cm1(_),[low1,medium1,high1]).

values(cm2(_),[low2,medium2,high2]).

values(maintenance(_,_),

[none,reset,replace]).

% To generate the iteration outcomes

values(load_t(_),

[t_normal,t_abnormal,t_halt]).

values(true_condition_t(_,_,_),

[t_good,t_wear_1,t_wear_2,

t_wear_3,t_failure_mode1,

t_failure_mode2]).

values(cm1_t(_),

[t_low1,t_medium1,t_high1]).

values(cm2_t(_),

[t_low2,t_medium2,t_high2]).

values(maintenance_t(_,_),

[t_none,t_reset,t_replace]).

decision([L,TC,CM1,CM2,MAINT|Tail]):-

msw(load,L),

msw(true_condition(L),TC),

msw(cm1(TC),CM1),

msw(cm2(TC),CM2),

msw(maintenance(CM1,CM2),

MAINT),

decision1(L,TC,MAINT,Tail).

decision1(L,TC,MAINT,

[L_t,TC_t,CM1_t,CM2_t,

MAINT_t|Tail]):-

msw(load_t(L),L_t),

msw(true_condition_t(L_t,TC,MAINT),

TC_t),

msw(cm1_t(TC_t),CM1_t),

msw(cm2_t(TC_t),CM2_t),

msw(maintenance_t(CM1_t,CM2_t),

MAINT_t),

stop(L_t,TC_t,MAINT_t,Tail).

stop(t_halt,_,_,[]):- !.

stop(L_t,TC_t,MAINT_t,Tail):-

decision1(L_t,TC_t,MAINT_t,Tail).

values(load,[normal,abnormal]).

values(true_condition(_),

[good,wear_1,wear_2,wear_3,

failure_mode1,failure_mode2]).

values(cm1(_),[low1,medium1,high1]).

values(cm2(_),[low2,medium2,high2]).

values(maintenance(_,_),

[none,reset,replace]).

values(load_t(_),

[t_normal,t_abnormal,t_halt]).

values(true_condition_t(_,_,_),

[t_good,t_wear_1,t_wear_2,

t_wear_3,t_failure_mode1,

t_failure_mode2]).

values(cm1_t(_),

[t_low1,t_medium1,t_high1]).

values(cm2_t(_),

[t_low2,t_medium2,t_high2]).

values(maintenance_t(_,_),

[t_none,t_reset,t_replace]).

decision([A,B,C,D,E,F,G,H,I,J|K]):-

msw(load,A),

msw(true_condition(A),B),

msw(cm1(B),C),

msw(cm2(B),D),

msw(maintenance(C,D),E),

rec_def(A,B,E,[F,G,H,I,J|K]).

rec_def(A,B,E,[F,G,H,I,J|K]):-

msw(load_t(A),F),

msw(true_condition_t(B,E,F),G),

msw(cm1_t(G),H),

msw(cm2_t(G),I),

msw(maintenance_t(H,I),J),

stop(I,F,H,K).

stop(A,t_halt,B,[]):-

!.

stop(I,F,H,K):-

rec_def(I,F,H,K).

Figure 5.11: Two PRISM programs representing the original maintenance decision
making program from which 1000 observations were sampled, and the program which
was learned from these observations and the BK and bias given in Figure 5.10.

Chapter 6

Learning Recursive PRISM

Programs with Hidden Outcomes

Algorithm 8 given in Chapter 5 is no longer useful in the presence of hidden outcomes.

This is because the log marginal likelihood no longer decomposes into the sum of the

family scores. Thus, algorithms which rely on decomposable scores such as the cut-

ting planes cannot be used. Another problem resulting from having hidden outcomes

is that splitting the initial outcomes from the iteration outcomes using the approach

in Section 5.2.3 will not consider the atoms generating the hidden outcomes. This

chapter presents a learning algorithm which alleviates the former problem by using

a metaheuristics search and the latter problem by injecting more declarative bias.

Section 6.1 discusses the problems arising from having hidden outcomes and intro-

duces the learning problem. Section 6.2 introduces the simulated annealing search,

the metaheuristics method that will be adopted. Section 6.3 explains the learning

algorithm. Finally, Section 6.4 shows the experiments conducted to learn five pro-

grams.

6.1 Introduction

In Algorithm 8, the probabilistic atoms in a PRISM program are chosen so that

they encode outcome dependencies with the optimal log marginal likelihood. This

is achieved with the cutting planes search which finds the optimal score of the set

of atoms encoding the dependencies given the scores of each individual atom in the

bottom clause. This step thus requires the score to be decomposable. However, as

discussed in Section 4.2.1, one of the three conditions necessary for the log marginal

likelihood to be decomposable is that the data is fully observed. When there are

some hidden outcomes, the decomposition of the log marginal likelihood into the

101

CHAPTER 6. LEARNING RECURSIVE PRISM PROGRAMS WITH HIDDEN OUTCOMES 102

scores in (4.3) no longer holds. A solution to this problem is to alter Algorithm 8

so that it uses the greedy generalisation or the random search for finding the out-

come dependencies instead of the cutting planes. However, it has been shown in

Chapter 5 that greedy generalisation is problematic when there is a large number

of atoms in the bottom clause. Random search is completely stochastic and does

not have any guidance. An alternative direction is to apply a search strategy over

complete recursive PRISM programs. This differs from Algorithm 8 which divides

the learning into two search tasks, the first is searching for a PRISM clause which

encodes outcome dependencies and the second is searching for arguments to pass as

inter-iteration dependencies. The motivation behind performing a single search step

is that the advantage of the division in Algorithm 8 which allows searching for out-

come dependencies with the optimal log marginal likelihood score using family scores

no longer applies. Applying any other search which does not guarantee finding the

optimal set of atoms encoding the dependencies and then applying another search for

finding inter-iteration dependencies has no salient advantage over combining these

two steps into a single search task. By combining these two steps, the search starts

from a random complete recursive PRISM program and moves in the search space by

altering the program according to the BIC score. An obvious choice for this task is the

structural-EM algorithm given in Algorithm 2. However, in this thesis the interac-

tion with the PRISM system is at the modelling level. At this level, the intermediate

values of the parameters when running the gEM cannot be accessed. Moreover, the

parameters cannot be initialised to specific values1 (Sato et al., 2010). In order to

control these settings, interacting with PRISM at the system level is required; how-

ever, this is beyond the scope of this thesis. Metaheuristics methods allow searching

a very large search space by exploring different areas in the space (Dréo et al., 2006).

Simulating annealing is a metaheuristics search which avoids the local maximum re-

sulting from hill-climbing. It allows moving downhill with a certain probability at

each step of the search. Figure 6.1 shows a scenario of avoiding a local maximum by

moving downhill from state S(n) to state S(n + 1) and then to state S(n + 2). This

chapter employs simulated annealing search in learning recursive PRISM programs

with hidden outcomes.

The approach of building the definition of the recursive predicate explained in

Section 5.2.3 is based upon the values in the observations that the atoms generate.

Based upon these values, the initial atoms are split from the iteration atoms and

the recursive predicate definition is formed. When hidden outcomes are present in

1The work in this thesis is based on PRISM version 2.0.

CHAPTER 6. LEARNING RECURSIVE PRISM PROGRAMS WITH HIDDEN OUTCOMES 103

S
co

re

State

S(n)

S(n+1)
S(n+2)

Figure 6.1: Allowing a move downhill to alleviate getting trapped in a local maximum.
If the search moves downhill from state S(n) to state S(n + 1), another area of the
objective function can be explored by moving to S(n + 2).

the programs, their values do not exist in the observations and the approach cannot

determine whether the atoms which generate these outcomes are initial atoms or it-

eration atoms. To overcome this problem, the algorithm assumes that a declarative

bias is provided in the form of a theory. This theory defines the hidden outcomes that

may be generated in the body of the target predicate definition (initial hidden out-

comes) and the hidden outcomes that may be generated in the body of the recursive

predicate definition (iteration hidden outcomes).

The learning problem is defined as follows

Given:

• A set D of observations in FOL.

• Background knowledge B in FOL consisting of

– A set F of k functions where each function represents a set of switches.

– A set of ground terms G representing the values that the switches may

generate.

– Sets l1, . . . , lk such that ∀i : 1 ≤ i ≤ k, li ⊆ G and
⋂k

i=1 li = ∅.

– A set SD of atoms values(fi, li) where fi ∈ F and 1 ≤ i ≤ k declaring

the switches.

CHAPTER 6. LEARNING RECURSIVE PRISM PROGRAMS WITH HIDDEN OUTCOMES 104

– A set of probabilistic atoms msw(f, v) where f ∈ F and ∃li : v ∈ li such

that values(f, li) ∈ SD.

• A declarative bias HT specifying the function f representing the set of switches

that halt the generative process. Let these switches generate a value t to halt

the process, then the bias is given as follows:

stop:- msw(f,t).

where f ∈ F and ∃li : t ∈ li such that values(f, li) ∈ SD.

• A declarative bias HID specifying the initial hidden outcomes and the iteration

hidden outcomes as follows:

– A clause c1 such that head(c1) is an atom of any user defined predicate 6=

rec def/0 and body(c1) = {
∧j

i=1 msw(fi,), rec def} where 1 ≤ j ≤ k,

fi ∈ F such that fi is a function representing switches that may generate

initial hidden outcomes.

– A clause c2 such that head(c2) = rec def and body(c2) = {
∧j

i=1 msw(fi,),

rec def} where 1 ≤ j ≤ k, fi ∈ F such that fi is a function representing

switches that may generate iteration hidden outcomes.

Find: a PRISM program S represented by the predicates in D∪B∪{rec def/n,stop/m}

modelling a generative process which halts as specified by HT and may generate hid-

den outcomes as specified by HID such that ∀d ∈ D : B ∪ S |= d and

S = arg max
S′

logP (D|S ′, θ̂)−
dim

2
logN

In Figure 6.2, the biases HT and HID in BK 1 state that halting the pro-

cess is based upon the hidden outcome of msw(cont(),) in the body of the re-

cursive predicate definition such that the process stops when this outcome is uni-

fied with halt. BK 2 changes the outcome space of the term start to the set

{begin,new paragraph,new sentence} and makes this outcome hidden. This out-

come is specified by the bias HID to be in the body of the target predicate definition

(initial hidden outcome). The bias defines the hidden outcomes in the body of the

recursive predicate definition in the same way defined in BK 1.

The rest of this chapter is organised as follows: Section 6.2 introduces the sim-

ulated annealing search, Section 6.3 explains the learning algorithm and Section 6.4

shows experiments conducted to learn five programs.

CHAPTER 6. LEARNING RECURSIVE PRISM PROGRAMS WITH HIDDEN OUTCOMES 105

BK 1: BK 2:

values(start,[’Hello!’,’Welcome!’]).

values(noun(_),[person1,person2,

person3]).

values(verb,[likes,goes,studies]).

values(adj(_),[playing,walking,

shopping]).

values(punc(_),[comma,full_stop]).

% Hidden

values(cont(_),[halt,continue]).

% The bias specifying the halt (HT)

stop:- msw(cont(_),halt).

% The bias specifying hidden outcomes

% (HID)

% No initial hidden outcome

sentence:-

rec_def.

% The iteration hidden outcome

rec_def:-

msw(cont(_),_),

rec_def.

values(noun(_),[person1,person2,

person3]).

values(verb,[likes,goes,studies]).

values(adj(_),[playing,walking,

shopping]).

values(punc(_),[comma,full_stop]).

% Hidden

values(start,[begin,new_paragraph,

new_sentence]).

values(cont(_),[halt,continue]).

% The bias of the halting condition

stop:- msw(cont(_),halt).

% The bias specifying hidden outcomes

% (HID)

% The initial hidden outcome

sentence:-

msw(start,_),

rec_def.

% The iteration hidden outcome

rec_def:-

msw(cont(_),_),

rec_def.

Figure 6.2: On the left is a BK with a bias stating that there are no hidden outcomes
in the body of the target predicate definition and there is one hidden outcome in the
body of the recursive predicate definition. The bias in the BK on the right states
that there is one hidden outcome in the bodies of the target and recursive predicate
definitions.

6.2 Simulated Annealing

The simulated annealing (SA) algorithm simulates a process in physics applied to solid

materials to increase the size of crystals in them. This is achieved by bringing the

system to a state of a lower energy than the state it was. In this process, a material is

heated above its melting temperature and brought to a state of high energy. Then, it

is gradually cooled down with control. Cooling the material slowly allows the energy

to decrease gradually and more states of energy are visited. This leads to a state

with lower energy than the energy of the material before it has been heated. On the

other hand, cooling the material quickly reduces the states that are visited during the

CHAPTER 6. LEARNING RECURSIVE PRISM PROGRAMS WITH HIDDEN OUTCOMES 106

Algorithm 9 Simulated annealing

1: CurrentState = initial state
2: Scorecurrent = Score(CurrentState)
3: Scorebest = Scorecurrent
4: BestState = CurrentState
5: T = initial high temperature
6: while T is not low enough do

7: T = cool according to schedule(T)
8: NewState = pick random neighbour(CurrentState)
9: Scorenew = Score(NewState)
10: ∆Score = Scorenew − Scorecurrent
11: if ∆Score > 0 then

12: CurrentState = NewState
13: Scorecurrent = Scorenew
14: else

15: P = exp(
∆Score

T)
16: CurrentState = move to NewState with probability P . If the move has

taken place apply Scorecurrent = Scorenew
17: end if

18: if Scorecurrent > Scorebest then
19: Scorebest = Scorecurrent
20: BestState = CurrentState
21: end if

22: end while

23: return BestState

cooling process and makes the system reach a local minimum energy. This process is

known in physics as annealing (Dréo et al., 2006).

Kirkpatrick et al. (1983) simulated the annealing process to solve problems in

optimisation. The aim is to avoid local minima/maxima by exploring more areas in

the search space. In applying the algorithm to finding a state with a high score, the

energy of a state corresponds to its score. The algorithm starts from an initial state

which can be chosen randomly. It then randomly chooses a neighbouring state and

computes its score. If the score of the new state is higher than the current one, the

algorithm moves to it. If the score is lower, the algorithm moves to the new state

with probability P = exp(
∆Score

T) where

∆Score = Score(NewState)− Score(CurrentState)

CHAPTER 6. LEARNING RECURSIVE PRISM PROGRAMS WITH HIDDEN OUTCOMES 107

and T is the current temperature. It can be noticed that the probability of moving

to a state with a lower score depends on both the difference in the scores and the

temperature. The higher the temperature, the greater the probability of moving to

states with lower scores. Thus, the higher temperature, the higher the chance of

moving downhill and exploring other areas in the search space. The temperature

is reduced iteratively according to some schedule. When the temperature becomes

low, the search behaves more like hill-climbing as the probability of moving downhill

becomes very low. The state with the best score visited during the search is then

returned2. SA is shown in Algorithm 9.

6.3 Learning

The learning starts from a randomly selected recursive PRISM program. This pro-

gram is built by, first, computing the lgg of all the observations to obtain the head

of the target predicate definition which includes the observed outcomes. A clause is

then formed whose head is the result of the lgg and whose body consists of all the

atoms generating the outcomes in the head and all the atoms defined to generate the

hidden outcomes by the bias HID. For instance, From BK 2 in Figure 6.2 and the

observations in Figure 6.3, the following clause is built

sentence([Person,VB,Do,Pun]):-

msw(subject,Person),

msw(start,H1),

msw(verb,VB),

msw(object(_),Do),

msw(punc(_),Pun),

msw(cont(_),H2).

Note that the clause does not encode any outcome dependencies. Thus, this clause

is not a valid PRISM clause as atoms with parameterised terms are not grounded

when sampling from this clause. Before selecting a random setting of the outcome

dependencies, the atoms in the body need to be split into the initial atoms and the

iteration atoms. Applying this step before choosing a random setting of the outcome

dependencies is needed because initial atoms must depend on initial outcomes. The

splitting is performed using the approach in Section 5.2.3. Random settings of the

outcome dependencies and the inter-iteration dependencies are then chosen and an

initial program is built accordingly.

2Some references design the algorithm so that it returns the state at which the search terminates.
The rationale behind this is to exactly simulate the annealing process. But as the aim is optimisation,
returning the state with best score amongst all the visited states is more appropriate.

CHAPTER 6. LEARNING RECURSIVE PRISM PROGRAMS WITH HIDDEN OUTCOMES 108

sentence([person1,studies,playing,’,’,

person1,studies,playing,’,’,

person3,goes,playing,’.’,

person2,goes,shopping,’,’,]).

sentence([’Hello!’,

person3,likes,playing,’.’]).

sentence([person3,goes,walking,’,’]).

sentence([person1,likes,playing,’,’,

person2,goes,walking,’.’,

person3,studies,shopping,’,’,

person3,studies,playing,’.’]).

.

.

.

Figure 6.3: Observations generated by a PRISM program which needs to be learned
according to BK 2 in Figure 6.2.

SA takes the randomly built program as an initial state to start with. SA was

configured to start with the initial temperature 1000000. The cooling schedule is

configured according to the approach given by Kirkpatrick et al. (1983) in which the

temperature at step n is defined as follows

Tn = α Tn−1

We follow Kirkpatrick et al. with the setting α = 0.95.

We define five move operations which the SA algorithm applies to move to a

neighbour in the search space. These operations are defined such that each move

changes a dependency either between two outcomes in the same iteration or between

two outcomes in two consecutive iterations. These operations are the following

Change a dependency in the body of the target predicate definition: when

this move operation is performed, an atom in the body of the target predicate

definition which has a parameterised term t is selected randomly. One of the

variables A ∈ vars(t) in this term is replaced by an initial outcome A′ 6∈ vars(t)

such that when the operation is performed vars(t) = vars(t) \ {A} ∪ {A′}. For

example, consider the following definition of the target predicate

CHAPTER 6. LEARNING RECURSIVE PRISM PROGRAMS WITH HIDDEN OUTCOMES 109

target_pred([A,B,C,D|Tail]):-

msw(t1,A),

msw(t2,B),

msw(t3(B),H1),

rec_def(H1,[C,D|Tail]).

By applying this operation, the argument B to the term t3/1 is changed with

A and the atom becomes msw(t3(A),H1).

Change a dependency in the body of the recursive predicate definition: this

move operation changes a dependency in the body of the recursive predicate def-

inition rec def/n in the same way as the previous operation does in the body

of the target predicate definition.

Replace an argument to the recursive predicate: this operation replaces one

of the initial outcomes passed from the body of the target predicate definition

to the recursive predicate with another initial outcome. Given the definition of

the target predicate shown in the first operation, a result which can be obtained

is to replace H1 with either A or B. If A is randomly selected, the result then

becomes

target_pred([A,B,C,D|Tail]):-

msw(t1,A),

msw(t2,B),

msw(t3(B),H1),

rec_def(A,[C,D|Tail]).

Replace an argument to the stop/m predicate: this operation behaves like the

previous one. However, it works on the body of the definition of the recursive

predicate rec def/n instead of the body of the target predicate definition. It

replaces an argument to the predicate stop/m with another iteration outcome

which is not in the current list of input arguments to stop/m. However, the

outcome which determines halting the generative process is excluded from the

list of arguments that can be replaced.

Add an argument to the recursive predicate: this operation adds an input ar-

gument to the recursive predicate which is not in the current list of input. The

argument that is added is selected randomly from those which are not in the

current list. For instance applying this operation to the definition of the tar-

get predicate given in the first operation by randomly selecting B leads to the

following new definition

CHAPTER 6. LEARNING RECURSIVE PRISM PROGRAMS WITH HIDDEN OUTCOMES 110

target_pred([A,B,C,D|Tail]):-

msw(t1,A),

msw(t2,B),

msw(t3(B),H1),

rec_def(H1,B,[C,D|Tail]).

Note that this operation is applied to all the clauses in the program. Increasing

the arity of the recursive predicate rec def/n requires changing the arity of the

stop/m predicate. Therefore, an iteration outcome which does not belong to

the input arguments to the stop/m predicate is randomly selected and added

to the list.

Some of these operations are not applicable on certain states. For example, if the

search reaches a state where the definition of the target predicate is the following

target_pred([A,B,C,D|Tail]):-

msw(t1,A),

msw(t2,B),

msw(t3(B),H1),

rec_def(H1,B,A,[C,D|Tail]).

the operation of adding an argument to the recursive predicate is not applicable as

there are no further outcomes to add. In this case, this move operation is neglected

and another operation is randomly chosen.

When the SA algorithm terminates and returns a program, this program might

have some hidden outcomes which no other atoms depend upon. These hidden out-

comes have no salient role in the program. Therefore, a final step is to eliminate these

hidden outcomes from the program returned by the SA algorithm.

6.4 Experiments

The five programs in Section 5.3 were modified as follows: in the small language pro-

gram, two hidden outcomes were added such that one is an initial outcome and the

other is an iteration outcome. In the Asia program, two iteration hidden outcomes

were added to the program. In the cervical cancer diagnosis and the maintenance

decision making programs one initial hidden outcome and one iteration hidden out-

come were added in both. Finally, in the alarm program one initial hidden outcome

and two iteration hidden outcomes were added. After adding the hidden outcomes

to the five programs, the outcome dependencies and the inter-iteration dependencies

were changed.

CHAPTER 6. LEARNING RECURSIVE PRISM PROGRAMS WITH HIDDEN OUTCOMES 111

Five sets of observations with each of the sizes 500, 1000, 1500 and 2000 were

sampled from these programs. The algorithm was then run on these sets of observa-

tions each with its corresponding BK and biases. The scores of the learned programs

and the original programs, the ratios of the learned programs to the original ones, the

average ratios for each of the set sizes, the learning times and the scoring times are

given in the tables 6.1, 6.2, 6.3, 6.4 and 6.5 for the four programs. It can be noticed

that the learning time is considerably longer than the learning time of the algorithm

designed to learn from fully observed outcomes. This is because, in this algorithm,

the search uses BIC to score each candidate program (each state it moves to in the

search). Therefore, most of the learning time is spent with the gEM used by the BIC

score. For instance, in scoring some candidate cervical cancer diagnosis programs to

which SA has moved in learning from 2000 observations, gEM took more than three

minutes. It can also be noticed that there is a large difference in the learning times

of programs from sets of observations with the same size. This is because different

runs of the search move to different neighbourhoods. Some neighbourhoods contain

programs which take more time to score than programs in other neighbourhoods.

Figure 6.4 shows the average ratios of the five BIC scores of the learned programs to

the corresponding original programs for the four set sizes for each program. Apart

from the cervical cancer diagnosis program, the graphs show that the scores of the

learned programs from the four sets of observations, on average, are very close to

the scores of the original ones. For the cervical cancer diagnosis program, the scores

for the four set sizes, on average, are higher than the scores of the original program.

This is different from the behaviour of the curve of the learned programs from fully

observed outcomes where the scores of the learned programs are less than the scores

of the original one. This is because, after the addition of the hidden outcomes, the

number of parameters increased; thus, a large number of observations is needed to

better approximate the dependencies between the outcomes. This is noticed in the

curve where the scores of the learned programs approach the scores of the original

one as the number of observations increases.

Figure 6.5 shows a DBN modelling the maintenance decision making with hid-

den variables. Figure 6.7 shows the original maintenance decision making program

which generalises the DBN in Figure 6.5, and a program learned from a set of 1000

observations and the BK and biases in Figure 6.6.

CHAPTER 6. LEARNING RECURSIVE PRISM PROGRAMS WITH HIDDEN OUTCOMES 112

Program Sample size Sample Program Score Ratio Learning Time Scoring Time

Small Language

500

1
Learned −5524.18

0.995 52 sec
< 1 sec

Original −5549.2 < 1 sec

2
Learned −5356.73

0.995 40 sec
< 1 sec

Original −5382.84 < 1 sec

3
Learned −5203.02

0.995 38 sec
< 1 sec

Original −5227.94 < 1 sec

4
Learned −5657.52

0.995 38 sec
< 1 sec

Original −5684.13 < 1 sec

5
Learned −5545.21

0.995 40 sec
< 1 sec

Original −5570.4 < 1 sec
Average ratio 0.995

Standard deviation 0

1000

1
Learned −10618.4

0.997 1 min & 35 sec
< 1 sec

Original −10651.4 < 1 sec

2
Learned −10722.1

0.997 1 min & 7 sec
< 1 sec

Original −10751.2 < 1 sec

3
Learned −10845.6

0.997 1 min & 2 sec
< 1 sec

Original −10873.4 < 1 sec

4
Learned −9965.89

0.997 1 min & 15 sec
< 1 sec

Original −9994.4 < 1 sec

5
Learned −11417.9

0.997 59 sec
< 1 sec

Original −11446.7 < 1 sec
Average ratio 0.997

Standard deviation 0

1500

1
Learned −15862.6

0.998 2 min & 30 sec
< 1 sec

Original −15892.2 < 1 sec

2
Learned −15561.3

0.998 1 min & 45 sec
< 1 sec

Original −15591.8 < 1 sec

3
Learned −15976.2

0.998 1 min & 42 sec
< 1 sec

Original −16006.4 < 1 sec

4
Learned −16512.4

0.998 1 min & 27 sec
< 1 sec

Original −16542.3 < 1 sec

5
Learned −16150.2

0.998 1 min & 45 sec
< 1 sec

Original −16180.4 < 1 sec
Average ratio 0.998

Standard deviation 0

2000

1
Learned −21415.7

0.998 4 min & 41 sec
< 1 sec

Original −21448.1 < 1 sec

2
Learned −21790.6

0.998 2 min & 41 sec
< 1 sec

Original −21822.8 < 1 sec

3
Learned −20684.1

0.998 3 min & 32 sec
< 1 sec

Original −20715.1 < 1 sec

4
Learned −21496.9

0.998 3 min & 52 sec
< 1 sec

Original −21527.8 < 1 sec

5
Learned −21212.3

0.998 3 min & 20 sec
< 1 sec

Original −21244.5 < 1 sec
Average ratio 0.998

Standard deviation 0

Table 6.1: The result of the experiments on learning the small language program with
hidden outcomes.

CHAPTER 6. LEARNING RECURSIVE PRISM PROGRAMS WITH HIDDEN OUTCOMES 113

Program Sample size Sample Program Score Ratio Learning Time Scoring Time

Asia

500

1
Learned −2986.6

0.996 43 sec
< 1 sec

Original −2997.2 < 1 sec

2
Learned −3438.74

1.005 35 sec
< 1 sec

Original −3418.81 < 1 sec

3
Learned −3390.2

1.002 35 sec
< 1 sec

Original −3380.35 < 1 sec

4
Learned −3473.11

1.003 36 sec
< 1 sec

Original −3460.09 < 1 sec

5
Learned −3563.33

1.001 30 sec
< 1 sec

Original −3557.13 < 1 sec
Average ratio 1.002

Standard deviation 0.003

1000

1
Learned −5944.21

1.001 1 min & 8 sec
< 1 sec

Original −5934.5 < 1 sec

2
Learned −6470.16

1.006 1 min & 7 sec
< 1 sec

Original −6426.6 < 1 sec

3
Learned −6521.41

1.007 55 sec
< 1 sec

Original −6475.36 < 1 sec

4
Learned −6538.74

0.980 1 min & 8 sec
< 1 sec

Original −6667.21 < 1 sec

5
Learned −6512.47

1 56 sec
< 1 sec

Original −6507.44 < 1 sec
Average ratio 0.999

Standard deviation 0.009

1500

1
Learned −8759.48

1.004 1 min & 15 sec
< 1 sec

Original −8718.95 < 1 sec

2
Learned −9744.95

1.002 1 min & 14 sec
< 1 sec

Original −9723.34 < 1 sec

3
Learned −9859.62

1.001 1 min & 38 sec
< 1 sec

Original −9843.84 < 1 sec

4
Learned −9450.13

1 1 min & 8 sec
< 1 sec

Original −9445.44 < 1 sec

5
Learned −9554.81

1.007 1 min & 2 sec
< 1 sec

Original −9484.6 < 1 sec
Average ratio 1.003

Standard deviation 0.002

2000

1
Learned −11818.8

0.999 2 min & 8 sec
< 1 sec

Original −11820.5 < 1 sec

2
Learned −13460.5

1.002 1 min & 15 sec
< 1 sec

Original −13424.6 < 1 sec

3
Learned −13942.8

1.004 1 min & 28 sec
< 1 sec

Original −13877.9 < 1 sec

4
Learned −13738.0

1 1 min & 10 sec
< 1 sec

Original −13737.2 < 1 sec

5
Learned −13735.2

1.003 1 min & 36 sec
< 1 sec

Original −13691.0 < 1 sec
Average ratio 1.002

Standard deviation 0.001

Table 6.2: The result of the experiments on learning the Asia program with hidden
outcomes.

CHAPTER 6. LEARNING RECURSIVE PRISM PROGRAMS WITH HIDDEN OUTCOMES 114

Program Sample size Sample Program Score Ratio Learning Time Scoring Time

Cervical

500

1
Learned −18367.8

0.623 140 min & 34 sec
20 sec

Original 29481.6 33 sec

2
Learned −17097.9

0.574 8 min & 55 sec
1 sec

Original −29736.9 38 sec

3
Learned −17226.1

0.586 61 min & 36 sec
14 sec

Original −29367.9 35 sec

4
Learned −18837.8

0.637 111 min & 41 sec
15 sec

Original −29545.7 50 sec

5
Learned −18289.9

0.611 159 min & 49 sec
20 sec

Original −29903.7 38 sec
Average ratio 0.606

Standard deviation 0.023

1000

1
Learned −29447.6

0.730 256 min & 48 sec
30 sec

Original −40311.8 1 min & 26 sec

2
Learned −28876.2

0.709 305 min & 14 sec
44 sec

Original −40682.9 1 min & 59

3
Learned −28719.8

0.719 156 min & 42 sec
15 sec

Original −39889.4 1 min & 39

4
Learned −28373.1

0.692 240 min & 46 sec
1 min & 6 sec

Original −40957.8 1 min & 36

5
Learned −29538.7

0.735 407 min & 44 sec
56 sec

Original −40160.3 1 min & 27
Average ratio 0.717

Standard deviation 0.015

1500

1
Learned −39597.3

0.792 456 min & 5 sec
57 sec

Original −49986.8 2 min & 50 sec

2
Learned −42355.8

0.840 294 min & 2 sec
17 sec

Original −50373.0 3 min & 51 sec

3
Learned −38192.4

0.763 252 min & 20 sec
19 sec

Original −50046.2 1 min & 53 sec

4
Learned −39484.1

0.783 232 min & 29 sec
21 sec

Original −50396.1 6 min & 41 sec

5
Learned −40170.2

0.783 690 min & 30 sec
1 min & 8 sec

Original −51298.6 2 min & 53 sec
Average ratio 0.792

Standard deviation 0.025

2000

1
Learned −49565.1

0.836 1199 min & 27 sec
1 min & 20 sec

Original −59270.0 6 min & 16 sec

2
Learned −45278.1

0.760 927 min & 20 sec
1 min & 59

Original −59566.3 4 min & 29 sec

3
Learned −52459.2

0.875 1749 min & 55 sec
1 min & 24

Original −59943.3 6 min & 24 sec

4
Learned −53083.2

0.891 1682 min & 11 sec
17 sec

Original −59542.9 5 min & 47

5
Learned −47922.5

0.797 1980 min & 12 sec
2 min & 18

Original −60111.6 7 min & 27
Average ratio 0.832

Standard deviation 0.048

Table 6.3: The result of the experiments on learning the cervical cancer diagnosis
program with hidden outcomes.

CHAPTER 6. LEARNING RECURSIVE PRISM PROGRAMS WITH HIDDEN OUTCOMES 115

Program Sample size Sample Program Score Ratio Learning Time Scoring Time

Maintenance

500

1
Learned −11093.5

0.967 2 min & 49 sec
< 1 sec

Original −11471.6 < 1 sec

2
Learned −11113.2

0.980 1 min & 43 sec
< 1 sec

Original −11332.8 < 1 sec

3
Learned −11623.0

1.002 1 min & 51 sec
< 1 sec

Original −11595.9 < 1 sec

4
Learned −10828.4

0.923 1 min & 46 sec
< 1 sec

Original −11724.7 < 1 sec

5
Learned −10302.8

0.946 1 min & 12 sec
< 1 sec

Original −10882.2 < 1 sec
Average ratio 0.964

Standard deviation 0.027

1000

1
Learned −21177.8

1.005 6 min & 44 sec
< 1 sec

Original −21059.7 1 sec

2
Learned −21840.0

1.018 24 min & 21 sec
< 1 sec

Original −21446.3 1 sec

3
Learned −21047.3

0.987 10 min & 18 sec
< 1 sec

Original −21312.5 1 sec

4
Learned −21866.3

1.014 5 min & 12 sec
< 1 sec

Original −21559.0 1 sec

5
Learned −20876.3

0.979 5 min & 31 sec
< 1 sec

Original −21302.5 1 sec
Average ratio 1.001

Standard deviation 0.014

1500

1
Learned −30136.5

0.996 13 min & 43 sec
1 sec

Original −30237.6 3 sec

2
Learned −30382.8

1.008 10 min & 6 sec
2 sec

Original −30130.3 3 sec

3
Learned −31140.5

1.031 10 min
2 sec

Original −30175.1 3 sec

4
Learned −30297.3

0.999 8 min & 13 sec
2 sec

Original −30320.7 3 sec

5
Learned −30992.7

1.030 14 min & 4 sec
2 sec

Original −30061.8 3 sec
Average ratio 1.013

Standard deviation 0.015

2000

1
Learned −42208.7

1.027 27 min & 43 sec
16 sec

Original −41070.7 1 sec

2
Learned −42654.8

1.043 29 min & 12 sec
10 sec

Original −40875.7 1 sec

3
Learned −41543.0

1.018 24 min & 39 sec
6 sec

Original −40778.9 1 sec

4
Learned −39295.6

0.993 17 min & 20 sec
2 sec

Original −39563.7 1 sec

5
Learned −40951.7

1.002 28 min & 11 sec
5 sec

Original −40849.1 1 sec
Average ratio 1.017

Standard deviation 0.017

Table 6.4: The result of the experiments on learning the maintenance decision making
program with hidden outcomes.

CHAPTER 6. LEARNING RECURSIVE PRISM PROGRAMS WITH HIDDEN OUTCOMES 116

Program Sample size Sample Program Score Ratio Learning Time Scoring Time

Alarm

500

1
Learned −10288.8

1.031 6 min & 52 sec
< 1

Original −9977.9 < 1

2
Learned −10935.8

1.008 4 min & 26 sec
< 1

Original −10845.5 < 1

3
Learned −10992.1

1.016 2 min & 49 sec
< 1

Original −10809.6 < 1

4
Learned −11316.9

1.008 5 min & 43 sec
< 1

Original −11226.1 < 1

5
Learned −10750.5

1.010 2 min & 44 sec
< 1

Original −10643.8 < 1
Average ratio 1.014

Standard deviation 0.008

1000

1
Learned −20923.7

1.031 19 min & 12 sec
< 1 sec

Original −20277.5 1 sec

2
Learned −20505.3

1.013 22 min & 51 sec
16 sec

Original −20230.6 3 sec

3
Learned −20168.7

1.012 8 min & 30 sec
< 1 sec

Original −19927.4 1 sec

4
Learned −19891.5

1.006 5 min & 46 sec
< 1 sec

Original −19759.8 1 sec

5
Learned −20373.4

1.029 11 min & 20 sec
< 1 sec

Original −19783.3 1 sec
Average ratio 1.018

Standard deviation 0.010

1500

1
Learned −30851.0

1.009 52 min & 22 sec
16 sec

Original −30547.1 3 sec

2
Learned −27951.0

1.008 30 min & 8 sec
1 sec

Original −27714.5 4 sec

3
Learned −26918.4

0.999 14 min & 23 sec
6 sec

Original −26926.5 1 sec

4
Learned −27641.3

1.017 14 min & 31 sec
< 1 sec

Original −27166.8 3 sec

5
Learned −28812.0

1.026 31 min & 57 sec
26 sec

Original −28079.4 1 sec
Average ratio 1.012

Standard deviation 0.008

2000

1
Learned −41564.2

1.035 81 min & 11 sec
46 sec

Original −40158.3 3 sec

2
Learned −37269.7

1.002 37 min & 4 sec
11 sec

Original −37178.6 3 sec

3
Learned −37222.6

1.016 88 min & 37 sec
14 sec

Original −36610.5 6 sec

4
Learned −37737.0

0.997 19 min & 45 sec
< 1 sec

Original −37846.6 3 sec

5
Learned −37433.0

1.013 33 min & 36 sec
7 sec

Original −36945.4 8 sec
Average ratio 1.012

Standard deviation 0.013

Table 6.5: The result of the experiments on learning the alarm program with hidden
outcomes.

CHAPTER 6. LEARNING RECURSIVE PRISM PROGRAMS WITH HIDDEN OUTCOMES 117

 0.98

 0.99

 1

 1.01

 1.02

 1.03

 1.04

 500 1000 1500 2000 2500

T
he

 a
ve

ra
ge

 r
at

io
 o

f B
IC

 s
co

re
s

The size of the set of observations

Small language

Small language

(a) The small language program.

 0.96

 0.98

 1

 1.02

 1.04

 500 1000 1500 2000 2500

T
he

 a
ve

ra
ge

 r
at

io
 o

f B
IC

 s
co

re
s

The size of the set of observations

Asia

Asia

(b) The Asia program.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 500 1000 1500 2000 2500

T
he

 a
ve

ra
ge

 r
at

io
 o

f B
IC

 s
co

re
s

The size of the set of observations

Cervical

Cervical

(c) The cervical cancer diagnosis program.

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 500 1000 1500 2000 2500

T
he

 a
ve

ra
ge

 r
at

io
 o

f B
IC

 s
co

re
s

The size of the set of observations

Maintenance

Maintenance

(d) The maintenance decision making pro-
gram.

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 500 1000 1500 2000 2500

T
he

 a
ve

ra
ge

 r
at

io
 o

f B
IC

 s
co

re
s

The size of the set of observations

Alarm

Alarm

(e) The alarm program.

Figure 6.4: The ratios of the BIC scores of the learned programs with hidden outcomes
to the original programs. Each point represents an average of 5 ratios of BIC scores
of programs learned from 5 different and independent samples to the BIC scores of
the original programs from which these samples were generated. The bars represent
the standard deviations.

CHAPTER 6. LEARNING RECURSIVE PRISM PROGRAMS WITH HIDDEN OUTCOMES 118

Figure 6.5: The maintenance decision making DBN with hidden outcomes.

CHAPTER 6. LEARNING RECURSIVE PRISM PROGRAMS WITH HIDDEN OUTCOMES 119

values(load,[normal,abnormal]).

values(true_condition(_),[good,wear_1,wear_2,wear_3,failure_mode1,failure_mode2]).

values(cm1(_),[low1,medium1,high1]).

values(cm2(_),[low2,medium2,high2]).

values(maintenance(_,_),[none,reset,replace]).

values(hidden(_),[hidden1,hidden2,hidden3]).

values(load_t(_),[t_normal,t_abnormal,t_halt]).

values(true_condition_t(_,_,_),[t_good,t_wear_1,t_wear_2,t_wear_3,t_failure_mode1,

t_failure_mode2]).

values(cm1_t(_),[t_low1,t_medium1,t_high1]).

values(cm2_t(_),[t_low2,t_medium2,t_high2]).

values(maintenance_t(_,_),[t_none,t_reset,t_replace]).

% The outcomes are hidden

values(hidden1(_,_),[hidden_t1,hidden_t2]).

% The bias specifying the halt (HT)

stop:- msw(load_t(_),t_halt).

% The bias specifying hidden outcomes

% (HID)

% The initial hidden outcome

decision:-

msw(hidden(_),H1),

rec_def.

% The iteration hidden outcome

rec_def:-

msw(hidden1(_,_),H2),

rec_def.

Figure 6.6: The BK and biases used to learn the maintenance decision making PRISM
programs with hidden outcomes.

CHAPTER 6. LEARNING RECURSIVE PRISM PROGRAMS WITH HIDDEN OUTCOMES 120

Original: Learned:

values(load,[normal,abnormal]).

values(true_condition(_),

[good,wear_1,wear_2,wear_3,

failure_mode1,failure_mode2]).

values(cm1(_),[low1,medium1,high1]).

values(cm2(_),[low2,medium2,high2]).

values(maintenance(_,_),

[none,reset,replace]).

values(hidden(_),[hidden1,hidden2,

hidden3]).

values(load_t(_),

[t_normal,t_abnormal,t_halt]).

values(true_condition_t(_,_,_),

[t_good,t_wear_1,t_wear_2,

t_wear_3,t_failure_mode1,

t_failure_mode2]).

values(cm1_t(_),

[t_low1,t_medium1,t_high1]).

values(cm2_t(_),

[t_low2,t_medium2,t_high2]).

values(maintenance_t(_,_),

[t_none,t_reset,t_replace]).

values(hidden1(_,_),[hidden_t1,

hidden_t2]).

decision([L,TC,CM1,CM2,MAINT|Tail]):-

msw(load,L),

msw(true_condition(L),TC),

msw(cm1(TC),CM1),

msw(hidden(CM1),H1),

msw(cm2(TC),CM2),

msw(maintenance(CM1,CM2),MAINT),

decision1(H1,TC,MAINT,Tail).

decision1(L,TC,MAINT,[L_t,TC_t,CM1_t,

CM2_t,MAINT_t|Tail]):-

msw(load_t(L),L_t),

msw(true_condition_t(L_t,TC,MAINT),

TC_t),

msw(hidden1(L_t,TC),H2),

msw(cm1_t(H2),CM1_t),

msw(cm2_t(TC_t),CM2_t),

msw(maintenance_t(CM1_t,CM2_t),

MAINT_t),

stop(L_t,TC_t,MAINT_t,Tail).

stop(t_halt,_,_,[]):- !.

stop(L_t,TC_t,MAINT_t,Tail):-

decision1(L_t,TC_t,MAINT_t,Tail).

values(load,[normal,abnormal]).

values(true_condition(_),

[good,wear_1,wear_2,wear_3,

failure_mode1,failure_mode2]).

values(cm1(_),[low1,medium1,high1]).

values(cm2(_),[low2,medium2,high2]).

values(maintenance(_,_),

[none,reset,replace]).

values(hidden(_),[hidden1,hidden2,

hidden3]).

values(load_t(_),

[t_normal,t_abnormal,t_halt]).

values(true_condition_t(_,_,_),

[t_good,t_wear_1,t_wear_2,

t_wear_3,t_failure_mode1,

t_failure_mode2]).

values(cm1_t(_),

[t_low1,t_medium1,t_high1]).

values(cm2_t(_),

[t_low2,t_medium2,t_high2]).

values(maintenance_t(_,_),

[t_none,t_reset,t_replace]).

values(hidden1(_,_),[hidden_t1,

hidden_t2]).

decision([A,B,C,D,E,F,G,H,I,J|K]):-

msw(load,A),

msw(hidden(A),L),

msw(true_condition(L),B),

msw(cm1(B),C),

msw(cm2(L),D),

msw(maintenance(C,D),E),

rec_def(C,L,B,A,D,E,[F,G,H,I,J|K]).

rec_def(C,L,B,A,D,E,[F,G,H,I,J|K]):-

msw(load_t(E),F),

msw(hidden1(F,A),M),

msw(true_condition_t(D,C,A),G),

msw(cm1_t(B),H),

msw(cm2_t(G),I),

msw(maintenance_t(I,L),J),

stop(F,I,G,M,J,H,K).

stop(t_halt,C,A,E,D,B,[]):-

!.

stop(A,D,B,G,E,C,F):-

rec_def(A,D,B,G,E,C,F).

Figure 6.7: The original maintenance decision making program with hidden outcomes
from which 1000 observations were sampled, and the program which was learned from
these observations and the BK given in Figure 6.6.

Chapter 7

Summary, Conclusion and

Recommendations for Further

Work

This chapter summarises the content of this thesis and highlights the main contri-

butions. It also points out to different directions that can be followed to extend the

main contributions.

7.1 Summary and Conclusion

This thesis proposed algorithms to learn recursive PRISM programs. The algorithms

combine ideas from inductive logic programming and statistical inference for learning

Bayesian networks. The programs learned generalise dynamic Bayesian networks by

defining a halting distribution. By defining a halting distribution, these programs

represent self-terminating functions. They provide generative processes from which a

sequence of values can be sampled until a halting condition defined by some distri-

bution is met. Meanwhile, dynamic Bayesian networks can be sampled by only de-

termining a fixed length of sequences. Modelling self-terminating functions is useful.

For example, machines such as stochastic context-free grammars use self-terminating

functions to generate some symbols and halt.

The thesis started by providing the necessary background. It provided the syntax

and semantics of logic programming. Bayesian network and dynamic Bayesian net-

work were then explained. Hidden Markov models, an important subclass of dynamic

Bayesian networks, were also described. The PRISM formalism was then introduced.

First, the distribution semantics underlying the formalism was introduced. We then

showed how probabilistic modelling with PRISM is performed. PRISM relies on four

121

CHAPTER 7. SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FURTHER WORK 122

conditions which need to be satisfied in modelling. These conditions were listed. We

then explained the difference between failure and failure-free PRISM programs. We

showed how recursive failure-free PRISM programs generalise dynamic Bayesian net-

works. The chapter closes by going through some learning utilities in the PRISM

system. These utilities make it possible to learn the parameters of given programs

and score candidate programs with different scoring metrics.

A review on the area of inductive logic programming was given. Learning from pos-

itive and negative examples and learning from only positive examples were discussed.

We defined the three learning settings, learning from entailment, learning from inter-

pretations and learning from satisfiability. The review concentrated on the setting

of learning from entailment. The design of the search operations was discussed. We

highlighted a number of learning approaches: top-down learning, bottom-up learn-

ing, random search, theory revision and predicate invention. Finally, we reviewed the

work on learning recursive clauses. We described the system MERLIN 2.0 which uses

theory revision to learn recursive logic programs. MERLIN 2.0 builds a deterministic

finite state automaton of the clauses in the initial, overly generalised, theory used in

the SLD-resolutions of the examples. It then generates the final program from this

automaton.

The ’search and score’ approach of learning Bayesian networks was reviewed.

Scoring Bayesian networks was discussed in the case where the variables are fully

observed and in the case where there are some hidden variables. We explained the

decomposition of the log marginal likelihood score in the case where the variables

are fully observed. Different approximations of the log marginal likelihood score

were discussed. Amongst these approximations is the Bayesian information criterion

(BIC). Four search strategies were highlighted. These are local search, K3 search,

structural-EM search and the cutting planes method. The cutting planes method

finds the Bayesian network with the optimal decomposed score given the scores of

the families. Finally, a review of the work on learning dynamic Bayesian network was

provided.

The thesis then provides the main contributions as follows

Learning recursive PRISM programs with fully observed outcomes: we pro-

posed an algorithm to learn recursive PRISM programs when all the outcomes

of the probabilistic atoms are observed. The algorithm is given background

knowledge consisting of switch declarations and a bias defining the atom re-

sponsible for controlling the halt of the generative process. It then searches for

CHAPTER 7. SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FURTHER WORK 123

a PRISM program with the highest possible BIC score. The algorithm builds a

bottom clause consisting of all possible dependencies amongst the probabilistic

atoms. It then uses the cutting planes algorithm to find the set of atoms with

the optimal log marginal likelihood. It splits these atoms into initial atoms

and iteration atoms to define a recursive predicate. The idea used in MERLIN

2.0 of building a deterministic finite state automaton is adapted such that the

automaton is built by the terms representing the switches that have generated

the values in the observations. The recursive predicate definition is then learned

based upon this automaton. Dependencies between the different iterations are

learned based upon the statistics of the first and second iterations. The learn-

ing algorithm invents a predicate stop/m which defines how the process halts.

Learning the definition of stop/m is based upon the given bias. To test the

learning algorithm, five programs were built from which five samples of each

of the sizes 500, 1000, 1500 and 2000 were generated. The learning algorithm

was run on these samples and the corresponding background knowledge and

bias, and the average of the ratios of the learned programs to the original ones

was reported for each sample size. The results show that the scores of the

learned programs, on average, approach the scores of the original programs as

the number of observations increases.

Learning recursive PRISM programs with hidden outcomes: we proposed an

algorithm to learn recursive PRISM programs when some of the outcomes are

hidden. Search algorithms based on decomposable scores are not useful in this

case. Splitting the atoms belonging to the body of the target predicate defini-

tion from those belonging to the body of the recursive predicate definition is

based upon the values in the observations. This splitting approach cannot han-

dle hidden outcomes. The non-decomposability problem was solved by applying

the simulated annealing search over complete PRISM programs. The splitting

problem was solved by providing a declarative bias specifying the atoms gener-

ating the hidden outcomes that may exist in the body of the target predicate

definition and the atoms generating the hidden outcomes that may exist in the

body of the recursive predicate definition. To test the learning algorithm, atoms

generating hidden outcomes were added to the five programs used in the exper-

iments of learning programs with fully observed outcomes. In the same way,

from each program, five samples of each of the sizes 500, 1000, 1500 and 2000

were generated. The learning algorithm was then given the background knowl-

edge of each program along with the biases and these samples to learn from.

CHAPTER 7. SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FURTHER WORK 124

The results show that the scores of four learned programs with the different

sample sizes, on average, are close to the scores of the corresponding original

programs. For one program, the scores of the learned programs for the four

sample sizes were, on average, higher than the scores of the original program.

However, the scores of the learned programs approach the scores of the original

program as the size of the sample increases.

7.2 Recommendations for Further Work

Further directions that can be followed to build upon this work are as follows

Using more background knowledge: Algorithm 8 learns programs with fully ob-

served outcomes by building bottom clauses. In large problems, the bottom

clauses can be massive and require extensive computational resources. By pro-

viding more background knowledge and more declarative bias, the bottom clause

can be considerably reduced and larger problems can be learned more efficiently.

The proposed algorithm for learning programs with hidden outcomes does not

build bottom clauses. However, when learning large programs, the search space

of complete PRISM programs can become huge so that the number of iterations

in the simulated annealing algorithm cover just a small proportion of it. Inject-

ing more background knowledge and declarative bias is needed in learning large

problems in both cases.

Learning PRISM programs with failure: PRISM programs with failure encode

very complex probability distributions. Learning PRISM programs with fail-

ure requires considering more atoms than those considered by the proposed

algorithms. Atoms which need to be considered are those which generate out-

comes that unify with the outcomes generated by other atoms. Moreover, non-

probabilistic atoms need also to be considered. By considering these atoms, the

sought program is not bound as it may include an infinite number of atoms.

Therefore, learning PRISM programs with failure can be carried out in con-

junction with using more background knowledge and declarative bias.

Learning general recursive PRISM programs: the proposed algorithms learn

tail recursive PRISM programs. A further direction can be taken to learn

unrestricted recursive PRISM programs. Our preliminary notion for this task

is in the light of the simulated annealing search. In simulated annealing, move

CHAPTER 7. SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FURTHER WORK 125

operations can be added to those explained in Section 6.3 which add recursive

calls in different positions in the body. However, further investigation needs to

be carried out.

Appendix A

Violating the Exclusiveness

Condition in PRISM

Problems modelled in PRISM need to comply with the conditions given in Sec-

tion 2.3.3. ProbLog drops the exclusiveness condition by representing the expla-

nations of any goal as a binary decision diagram (BDD) (De Raedt et al., 2009;

Akers, 1978). This makes ProbLog an ideal choice in modelling problems where the

exclusiveness condition is not met. However, another choice to model these problems

is to use PRISM with more steps in the modelling part. In this appendix, we define

these steps and show a general procedure of transforming a PRISM program which

violates the exclusiveness condition, and thus the correct value of the success proba-

bility cannot be computed, to a PRISM program from which the correct value of the

success probability can be obtained. We first introduce a motivating example, the

path problem, which is studied in the literature of ProbLog.

A.1 The Path Problem

In the path problem provided by De Raedt et al. (2009), which is shown in Figure A.1,

the target predicate that we want to query is path/2. As shown in the graph, events

of moving from one point to two different points are not mutually exclusive. For

instance, p(edge(a, b)) + p(edge(a, c)) > 1. This leads to the explanations of any

goal to be non-mutually exclusive as well. Figure A.2 shows the ProbLog program

which defines the distribution over the possible paths between any two points in the

graph (De Raedt et al., 2009). Figure A.3 shows the success probabilities of the two

queries path(a,c) and path(a,e). Figure A.4 shows the PRISM declarative version

of this program. Querying the PRISM version about the success probabilities of the

two queries path(a,c) and path(a,e) will lead to computing incorrect values. For

126

CHAPTER A. VIOLATING THE EXCLUSIVENESS CONDITION IN PRISM 127

Figure A.1: The path problem.

0.8:: edge(a, c). 0.7:: edge(a, b).

0.8:: edge(c, e). 0.6:: edge(b, c).

0.9:: edge(c, d). 0.5:: edge(e, d).

path(X,Y):-

edge(X,Y).

path(X,Y):-

edge(X,Z),

path(Z,Y).

Figure A.2: A ProbLog program which defines a distribution over possible paths
between two points in a graph.

instance, PRISM will answer the query prob(path(a,c)) with 1.22 which is not a

probability value. This is because the two explanations edge(a, c) and edge(a, b) ∧

edge(b, c) are not mutually exclusive. Figure A.5 shows the output of PRISM for the

probability computation queries of the two targets path(a,c) and path(a,e). In the

next section we explain a transformation procedure which takes a PRISM declarative

version of a ProbLog program defining a distribution over non-mutually exclusive

events and transforms it to another PRISM program which defines the distribution

properly with some procedural predicates.

A.2 Transformation Procedure

Let X be the set of all random variables in a PRISM program. Let X ⊆ X represent

a set of random variables in a particular explanation of a successful goal and x be a

the values that X is instantiated to in this explanation. Let X′ = X \X, then the

probability of this explanation is the marginal shown in (A.1).

P (X = x) =
∑

x′

P (X = x,X′ = x′) (A.1)

CHAPTER A. VIOLATING THE EXCLUSIVENESS CONDITION IN PRISM 128

?- problog_exact(path(a,c),Prob,S).

2 proofs

50 ms BDD processing

Prob = 0.884,

S = ok ?

yes

?- problog_exact(path(a,e),Prob,S).

2 proofs

17 ms BDD processing

Prob = 0.7072,

S = ok ?

yes

Figure A.3: The success probabilities of the two queries path(a,c) and path(a,e)

in ProbLog.

Given a PRISM program which contains non-mutually exclusive explanations, the

value of the above marginal is computed for each explanation and the sum of these

marginals is given as the success probability of the query1. To show that this is

not the right value, let X1, . . . ,Xn ⊆ X be the sets of random variables in all the

explanations of a certain query and let X′
1 = X \X1, . . . ,X

′
n = X \Xn. The value

of the success probability that will be given by PRISM will be equivalent to the value

computed in (A.2). It can be noticed that the probability of some joint instantiations

are considered more than once leading to an improper answer to the prob/1 query.

∑

x′
1

P (X1 = x1,X
′
1 = x′

1)+
∑

x′
2

P (X2 = x2,X
′
2 = x′

2) + . . .

+
∑

x′
n

P (Xn = xn,X
′
n = x′

n)
(A.2)

First, let E1 = {X1,1 = x1,1, X1,2 = x1,2, . . . , X1,k = x1,k}, . . . , En = {Xn,1 =

xn,1, Xn,2 = xn,2, . . . , Xn,m = xn,m} be n explanations for a certain query. If we

construct a union of the random variables in these explanations and consider all

possible joint instantiations of them, each joint instantiation of the random variables

1PRISM does not compute marginals in the way represented in (A.1), it rather uses more efficient
computational methods. A detailed discussion of the probability computation in PRISM can be
found in Sato and Kameya (2001) and Kameya et al. (2004).

CHAPTER A. VIOLATING THE EXCLUSIVENESS CONDITION IN PRISM 129

values(edge(_,_),[t,f]).

edge(a,b). edge(b,c).

edge(a,c). edge(c,e).

edge(c,d). edge(e,d).

set_params:-

set_sw(edge(a,b), [0.7,0.3]), set_sw(edge(b,c), [0.6,0.4]),

set_sw(edge(a,c), [0.8,0.2]), set_sw(edge(c,e), [0.8,0.2]),

set_sw(edge(c,d), [0.9,0.1]), set_sw(edge(e,d), [0.5,0.5]).

path(X,Y):-

edge(X,Y), msw(edge(X,Y), t).

path(X,Y):-

edge(X,Z), msw(edge(X,Z), t), path(Z,Y).

Figure A.4: The PRISM version of the ProbLog program shown in Figure A.2.

will be considered once, and the double-counting will be resolved. However, some

joint instantiations might not represent any explanation; therefore, we will consider

only those joint instantiations of which at least one explanation Ei is a subset. In this

case, PRISM will compute the correct probability of the success query whose value

is equivalent to the value computed by (A.3).

P (goal) =
∑

∀x1,1,...,xn,m:∃E⊆{x1,1,...,xn,m}

P (X1,1 = x1,1, . . . , Xn,m = xn,m) (A.3)

We end up with the following transformation procedure:

i Define a predicate findAllExplanations/n1 such that it finds all explanations

for any goal.

ii Define a predicate constructUnion/n2 such that it constructs the union of the

random variables in the explanations found by findAllExplanations/n1 .

iii Define a predicate JointInstantiations/n3 such that it finds all possible joint

instantiations of the random variables in the set produced by constructUnion/n2 .

Each joint instantiation must represent at least one explanation.

CHAPTER A. VIOLATING THE EXCLUSIVENESS CONDITION IN PRISM 130

| ?- prob(path(a,c)).

Probability of path(a,c) is: 1.220000000000000

yes

| ?- prob(path(a,e)).

Probability of path(a,e) is: 0.976000000000000

yes

Figure A.5: The incorrect values computed by the queries prob(path(a,c)) and
prob(path(a,e)) in PRISM.

iv Define a predicate findProb/n4 such that it finds the sum of the probabilities of

the joint instantiations found by JointInstantiations/n3 . This gives the value

represented by equation (A.3).

v Define a predicate trans target/n5 using the predicates above in their respected

order. It replaces the original target predicate to find the correct probability.

Figure A.6 shows the output of the transformation procedure applied to the

PRISM program shown in Figure A.4. Figure A.7 shows the success probabilities of

two queries trans path(a,c) and trans path(a,e) obtained from the transformed

program. These probabilities are the same values computed from the ProbLog pro-

gram in Figure A.3.

The probability of the success query is computed in the transformed program

in the way given in (A.3) exactly. It can be noticed that this is inefficient. The

number of joint instantiations of the random variables in the explanations of the

success query grows exponentially in the number of the random variables. The sum

of the joint instantiations is a sum of products and can be computed more efficiently

than the way given in (A.3). The variable elimination algorithm (Zhang and Poole,

1994) utilises the factorisation of the joint distribution and reuses the sum of the

products of the factors. The variable elimination algorithm can thus be added to

the transformed program to improve its efficiency. Another way of computing the

probability of the success query more efficiently is to follow the approach of ProbLog

and represent the explanations found in the first step of the procedure above in a

BDD. The probabilities can then be computed from this BDD. However, we keep the

CHAPTER A. VIOLATING THE EXCLUSIVENESS CONDITION IN PRISM 131

transformation procedure as shown above, and we leave the problem of modifying it

to improve the efficiency of the transformed program open.

CHAPTER A. VIOLATING THE EXCLUSIVENESS CONDITION IN PRISM 132

in_graph(edge(a, b)). in_graph(edge(b, c)).

in_graph(edge(a, c)). in_graph(edge(c, e)).

in_graph(edge(c, d)). in_graph(edge(e, d)).

set_params:-

set_sw(edge(a, b), [0.7, 0.3]),

set_sw(edge(b, c), [0.6, 0.4]),

set_sw(edge(a, c), [0.8, 0.2]),

set_sw(edge(c, e), [0.8, 0.2]),

set_sw(edge(c, d), [0.9, 0.1]),

set_sw(edge(e, d), [0.5, 0.5]).

trans_path(X,Y):-

findAllExplanations(X,Y,[],All),

constructUnion(All,Union), get_values(Union,Vals),

jointInstant(Union,Vals,All,[],[],Joint), findProb(Joint), !.

findAllExplanations(X,Y, PartialExps, AllExps):-

path(X,Y,PartialExps,[],Exp),

findAllExplanations(X,Y,[Exp|PartialExps],AllExps).

findAllExplanations(_,_, AllExps, AllExps).

path(X,Y, KnownExps, PartialExp, Exp):-

edge(X,Y), Exp=[msw(edge(X,Y),t)|PartialExp],

\+ isExplanation(Exp,KnownExps).

path(X,Y,KnownExps,PartialExp,Exp):-

edge(X,Z), Temp=[msw(edge(X,Z),t)|PartialExp],

path(Z,Y,KnownExps,Temp,Exp).

constructUnion([H], H).

constructUnion([H, H1|Tail],U):-

union(H, H1,Temp),

constructUnion([Temp|Tail],U).

obtain_values([],[]).

obtain_values([msw(Head,_)|Tail],Values):-

obtain_values(Tail,Temp),

get_values1(Head,V), % Built-in in PRISM to get the

Values = [V|Temp]. % outcomes of the switch

CHAPTER A. VIOLATING THE EXCLUSIVENESS CONDITION IN PRISM 133

jointIns([],_,Exps,Expl,PartialAll,[Expl|PartialAll]):-

isExplanation(Expl,Exps), !.

jointIns([],_,_,_,PartialAll,PartialAll).

jointIns([_|_],[[]|_],_,_,PartialAll,PartialAll).

jointIns([msw(S, V)|Rest],[[Value|OtherV]|Tail],Exps,PExp,PAll,All):-

TempExpl = [msw(S, Value)| PExp],

jointIns(Rest,Tail,Exps,TempExpl,PAll,TempAll),

jointIns([msw(S,V)|Rest],[OtherV|Tail],Exps,PExp,TempAll,All).

findProb([Model]):-

explanationProb(Model),!.

findProb([Model|Rest]):-

explanationProb(Model); findProb(Rest).

explanationProb([]).

explanationProb([msw(S,V)|Tail]):-

msw(S,V),

explanationProb(Tail).

isExplanation(World,[Path]):-

subset(Path,World),!.

isExplanation(World,[Path1,Path2|Rest]):-

(subset(Path1,World),!); isExplanation(World,[Path2|Rest]).

Figure A.6: The output of the transformation procedure applied to the PRISM pro-
gram shown in Figure A.4.

CHAPTER A. VIOLATING THE EXCLUSIVENESS CONDITION IN PRISM 134

| ?- prob(trans_path(a,c)).

Probability of trans_path(a,c) is: 0.884000000000000

yes

| ?- prob(trans_path(a,e)).

Probability of trans_path(a,e) is: 0.707200000000000

Figure A.7: Probabilities computed from the program transformed from the one in
Figure A.4. The probabilities are computed correctly.

Bibliography

Tobias Achterberg. Constraint Integer Programming. PhD thesis, TU Berlin, 2007.

Hilde Adé, Bart Malfait, and Luc De Raedt. RUTH: an ILP theory revision system

Methodologies for Intelligent Systems. Methodologies for Intelligent Systems, 869:

336–345, 1994.

Agnieszka, Marek J. Druzdzel, and R. Marshall Austin. Application of dynamic

Bayesian networks to cervical cancer screening. In Proceedings on XI International

Conference on Artificial Intelligence: (Al-24’2009), pages 5–14, Siedlce, Poland,

2009. Publishing House of the University of Podlasie.

David W. Aha, Stephane Lapointe, Charles X. Ling, and Stan Matwin. Learning

Recursive Relations with Randomly Selected Small Training Sets. In William W.

Cohen and Haym Hirsh, editors, Proceedings of the Eleventh International Confer-

ence of Machine Learning, pages 12–18. Morgan Kaufmann, 1994.

Sheldon B. Akers. Binary Decision Diagrams. IEEE Transactions on Computers, 27

(6):509–516, 1978.

Hagai Attias. Inferring Parameters and Structure of Latent Variable Models by Varia-

tional Bayes. In Proceedings of the Proceedings of the Fifteenth Conference Annual

Conference on Uncertainty in Artificial Intelligence (UAI-99), pages 21–30, San

Francisco, CA, 1999. Morgan Kaufmann.

Hagai Attias. A Variational Bayesian Framework for Graphical Models. In Advances

in Neural Information Processing Systems, volume 12, pages 209–215. MIT Press,

2000.

Kwok-Chung Au and Kwok-Wai Cheung. Learning Hidden Markov Model Topology

Based on KL Divergence for Information Extraction. In Advances in Knowledge

Discovery and Data Mining: 8th Pacific-Asia Conference, Lecture Notes in Com-

puter Science, pages 590–594. Springer, 2004.

135

BIBLIOGRAPHY 136

Matthew J. Beal and Zoubin Ghahramani. The variational Bayesian EM algorithm

for incomplete data: with application to scoring graphical model structures. In

Bayesian Statistics, volume 7, pages 453–464. Oxford University Press, 2003.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer, New York, 2006.

Henrik Boström. Predicate invention and learning from positive examples only. In

Claire Nédellec and Céline Rouveirol, editors, Proceedings of the 10th European

Conference on Machine Learning (ECML-98), volume 1398 of Lecture Notes in

Computer Science, chapter 29, pages 226–237. Springer-Verlag, Berlin/Heidelberg,

1998.

Remco R. Bouckaert. Probabilistic network construction using the minimum descrip-

tion length principle. In Michael Clarke, Rudolf Kruse, and Seraf́ın Moral, editors,

Symbolic and Quantitative Approaches to Reasoning and Uncertainty, volume 747

of Lecture Notes in Computer Science, chapter 6, pages 41–48. Springer Berlin,

Berlin/Heidelberg, 1993.

Wray Buntine. Generalized subsumption and its applications to induction and re-

dundancy. Artificial Intelligence, 36(2):149–176, September 1988.

Irene Cantone, Lucia Marucci, Francesco Iorio, Maria A. Ricci, Vincenzo Belcas-

tro, Mukesh Bansal, Stefania Santini, Mario di Bernardo, Diego di Bernardo, and

Maria P. Cosma. A Yeast Synthetic Network for In Vivo Assessment of Reverse-

Engineering and Modeling Approaches. Cell, 137(1):172–181, April 2009.

Stanley F. Chen and Joshua Goodman. An empirical study of smoothing techniques

for language modeling. In Proceedings of the 34th annual meeting on Association

for Computational Linguistics, pages 310–318, Stroudsburg, PA, USA, 1996. Asso-

ciation for Computational Linguistics.

David M. Chickering. Learning Bayesian Networks is NP-Complete. In Learning from

Data: Artificial Intelligence and Statistics V. Springer-Verlag, 1996.

David M. Chickering and David Heckerman. Efficient Approximations for the

Marginal Likelihood of Incomplete Data Given a Bayesian Network. In Proceedings

of the Twelfth Conference Annual Conference on Uncertainty in Artificial Intelli-

gence (UAI-96), pages 158–168, San Francisco, CA, 1996. Morgan Kaufmann.

BIBLIOGRAPHY 137

David M. Chickering, David Heckerman, and Christopher Meek. Large-Sample Learn-

ing of Bayesian Networks is NP-Hard. Journal of Machine Learning Research, 5:

1287–1330, December 2004.

William W. Cohen. Pac-Learning a Restricted Class of Recursive Logic Programs.

In Proceedings of the Eleventh National Conference on Artificial Intelligence, pages

86–92. Morgan Kaufman, 1993.

Robert G. Cowell. Efficient maximum likelihood pedigree reconstruction. Theoretical

Population Biology, 76(4):285–291, December 2009.

Robert G. Cowell, A. Philip Dawid, Steffen L. Lauritzen, and David J. Spiegelhal-

ter. Probabilistic Networks and Expert Systems: Exact Computational Methods

for Bayesian Networks (Information Science and Statistics). Springer, New York,

2007.

James Cussens. Parameter Estimation in Stochastic Logic Programs. Machine Learn-

ing, 44(3):245–271, September 2001.

James Cussens. Bayesian network learning with cutting planes. In Proceedings of

the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI-11),

pages 153–160, Corvallis, Oregon, 2011. AUAI Press.

James Cussens. Online Bayesian inference for the parameters of PRISM programs.

Machine Learning, pages 1–19, July 2012.

James Cussens and Sašo Džeroski, editors. Learning language in logic. Springer-

Verlag, New York, USA, 2000.

James Cussens, David Page, Stephen Muggleton, and Ashwin Srinivasan. Using

Inductive Logic Programming for Natural Language Processing. In W. Daelemans,

A. Van den Bosch, and A. Weijters, editors, Workshop Notes of the ECML / MLnet

Workshop on Empirical Learning of Natural Language Processing Tasks, pages 25–

34, April 1997.

Adnan Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge Uni-

versity Press, 1 edition, April 2009.

Luc De Raedt. Logical settings for concept-learning. Artificial Intelligence, 95:187–

201, August 1997.

BIBLIOGRAPHY 138

Luc De Raedt. Logical and Relational Learning. Springer, 1 edition, October 2008.

Luc De Raedt and Luc Dehaspe. Learning from satisfiability. In Proceedings of

the Ninth Dutch Conference on Artificial Intelligence (NAIC’97), pages 303–312,

November 1997a.

Luc De Raedt and Luc Dehaspe. Clausal Discovery. Machine Learning, 26(2-3):

99–146, March 1997b.

Luc De Raedt and Wim Van Laer. Inductive Constraint Logic. In Proceedings of

the 6th International Workshop on Algorithmic Learning Theory, Lecture Notes in

Computer Science, pages 80–94, London, UK, UK, 1995. Springer-Verlag.

Luc De Raedt, Angelika Kimmig, Bernd Gutmann, Kristian Kersting, Vitor San-

tos Costa, and Hannu Toivonen. Probabilistic inductive querying using ProbLog.

Technical Report CW 552, Department of Computer Science, Katholieke Univer-

siteit Leuven, Belgium, June 2009.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood from

incomplete data via the EM algorithm. Journal of the Royal Statistical Society.

Series B (Methodological), 39(1):1–38, 1977.

DLMF. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/,

Release 1.0.5 of 2012-10-01. Online companion to (Olver et al., 2010).

Pedro Domingos and Matthew Richardson. Markov Logic: A Unifying Framework for

Statistical Relationl Learning. In Lise Getoor and Ben Taskar, editors, Introduction

to Statistical Relational Learning, pages 339–371. The MIT press, 2007.

David Draper. Assessment and Propagation of Model Uncertainty. Journal of the

Royal Statistical Society, 57(1):45–97, 1995.

Johann Dréo, Patrick Siarry, Alain Pétrowski, and Eric Taillard. Metaheuristics for

Hard Optimization. Springer-Verlag, Berlin, 2006.

Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. Biological

Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge

University Press, April 1998.

Sašo Džeroski. Inductive Logic Programming in a Nutshell. In Lise Getoor and Ben

Taskar, editors, Introduction to Statistical Relational Learning, pages 57–92. The

MIT press, 2007.

BIBLIOGRAPHY 139

Peter Flach. Simply Logical: Intelligent Reasoning by Example. Wiley, 1 edition,

January 1994.

Peter Flach and Nada Lavrač. Learning in Clausal Logic: A Perspective on Inductive

Logic Programming. In Antonis C. Kakas and Fariba Sadri, editors, Computational

Logic: Logic Programming and Beyond (Essays in Honour of Robert A. Kowalski),

volume LNAI 2407, pages 437–471. Springer-Verlag, June 2002.

Daniel C. Fredouille, Christopher H. Bryant, Channa K. Jayawickre, Steven Jupe,

and Simon Topp. An ILP Refinement Operator for Biological Grammar Learning.

In Stephen Muggleton, Ramon Otero, and Alireza T. Nezhad, editors, Inductive

Logic Programming, pages 214–228. Springer-Verlag, Berlin, 2007.

Nir Friedman. Learning Belief Networks in the Presence of Missing Values and Hidden

Variables. In Proceedings of the Fourteenth International Conference on Machine

Learning (ICML), pages 125–133. Morgan Kaufmann, 1997.

Nir Friedman. The Bayesian Structural EM Algorithm. In Proceedings of the Four-

teenth Conference on Uncertainty in Artificial Intelligence, UAI’98, pages 129–138,

San Francisco, CA, USA, 1998. Morgan Kaufmann.

Nir Friedman, Kevin Murphy, and Stuart Russell. Learning the Structure of Dynamic

Probabilistic Networks. In Fourteenth Conference on Uncertainty in Artificial In-

telligence (UAI), pages 139–147. Morgan Kaufmann, 1998.

Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. Learning Probabilistic

Relational Models. In International Joint Conference on Artificial Intelligence.

Springer-Verlag, 1999.

Mitsue Furusawa, Nobuhiro Inuzuka, Hirohisa Seki, and Hidenori Itoh. Bottom-Up

Induction of Logic Programs With More Than One Recursive Clause. In Proceedings

of the IJCAI-97 Workshop on Frontiers of ILP, 1997.

Zoubin Ghahramani and Matthew J. Beal. Variational Inference for Bayesian Mix-

tures of Factor Analysers. In Advances in Neural Information Processing Systems,

volume 12, pages 449–455. MIT Press, 2000.

Bernd Gutmann, Angelika Kimmig, Kristian Kersting, and Luc De Raedt. Parameter

Learning in Probabilistic Databases: A Least Squares Approach. In Proceedings

of the European Conference on Machine Learning and Knowledge Discovery in

Databases, Lecture Notes in Computer Science, pages 473–488. Springer, 2008.

BIBLIOGRAPHY 140

David Heckerman, Dan Geiger, and David M. Chickering. Learning Bayesian net-

works: The combination of knowledge and statistical data. Machine Learning, 20

(3):197–243, September 1995.

David Heckerman, Christopher Meek, and Daphne Koller. Probabilistic Models for

Relational Data. Technical Report MSR-TR-2004-30, Microsoft Research, March

2004.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata

Theory, Languages, and Computation. Addison Wesley, 2 edition, November 2000.

Peter Idestam-Almquist. Efficient Induction of Recursive Definitions by Structural

Analysis of Saturations. In Luc De Raedt, editor, Advances in Inductive Logic

Programming, pages 192–205. IOS Press, 1996.

Tommi Jaakkola, David Sontag, Amir Globerson, and Marina Meila. Learning

Bayesian network structure using lp relaxations. Journal of Machine Learning

Research - Proceedings Track, 9:358–365, 2010.

Finn V. Jensen and Thomas D. Nielsen. Bayesian Networks and Decision Graphs.

Information Science and Statistics. Springer Verlag, 2nd edition, June 2007.

Yoshitaka Kameya, Taisuke Sato, and Neng-Fa Zhou. Yet More Efficient EM Learning

for Parameterized Logic Programs by Inter-Goal Sharing. In Proceedings of the 16th

Eureopean Conference on Artificial Intelligence, pages 490–494, 2004.

Kristian Kersting. An Inductive Logic Programming Approach to Statistical Relational

Learning, volume 148 of Frontiers in Artificial Intelligence and Applications. IOS

Press, October 2006.

Kristian Kersting and Luc De Raedt. Bayesian Logic Programming: Theory and

Tool. In Lise Getoor and Ben Taskar, editors, Introduction to Statistical Relational

Learning, pages 291–321. The MIT press, 2007.

Ross D. King, Kenneth E. Whelan, Ffion M. Jones, Philip G. K. Reiser, Christo-

pher H. Bryant, Stephen H. Muggleton, Douglas B. Kell, and Stephen G. Oliver.

Functional genomic hypothesis generation and experimentation by a robot scientist.

Nature, 427(6971):247–252, January 2004.

Scott Kirkpatrick, C. Daniel Gelatt, and Mario P. Vecchi. Optimization by Simulated

Annealing. Science, 220(4598):671–680, May 1983.

BIBLIOGRAPHY 141

Karl-Rudolf Koch. Introduction to Bayesian Statistics. Springer, 2nd, updated and

enlarged ed. edition, September 2007.

Mikko Koivisto and Kismat Sood. Exact Bayesian Structure Discovery in Bayesian

Networks. Journal of Machine Learning Research, 5:549–573, December 2004.

Daphne Koller, Nir Friedman, Lise Getoor, and Ben Taskar. Graphical Models in

a Nutshell. In Lise Getoor and Ben Taskar, editors, Introduction to Statistical

Relational Learning, pages 13–55. The MIT press, 2007.

Robert Kowalski. Predicate Logic as Programming Language. In Proceedings of the

IFIP Congress, pages 569–574. North Holland Publishing Company, 1974.

Robert Kowalski and Donald Kuehner. Linear Resolution with Selection Function.

Artificial Intelligence, 2(3-4):227–260, December 1971.

Kenichi Kurihara and Taisuke Sato. An application of the variational Bayesian ap-

proach to probabilistic context-free grammars. In International Joint Conference

on Natural Language Processing Workshop Beyond Shallow Analyses, 2004.

Kenichi Kurihara and Taisuke Sato. Variational Bayesian Grammar Induction for

Natural Language. In Yasubumi Sakakibara, Satoshi Kobayashi, Kengo Sato, Tet-

suro Nishino, and Etsuji Tomita, editors, Proceedings of the 8th International Col-

loquium on Grammatical Inference, volume 4201, chapter 8, pages 84–96. Springer,

Berlin, Heidelberg, 2006.

Nada Lavrač and Sašo Džeroski. Inductive Logic Programming: Techniques and Ap-

plications. Ellis Horwood, New York, 1994.

Christopher D. Manning and Hinrich Schüetze. Foundations of Statistical Natural

Language Processing. The MIT Press, 1 edition, June 1999.

David Maxwell Chickering and David Heckerman. Efficient Approximations for the

MarginalLikelihood of Bayesian Networks with Hidden Variables. Mach. Learn.,

29(2-3):181–212, November 1997.

John McCarthy. Programs with Common Sense. In Teddington Conference on the

Mechanization of Thought Processes, December 1959.

John McCarthy. Epistemological Problems of Artificial Intelligence. In Proceedings

of the Fifth International Joint Conference on Artificial Intelligence, 1977.

BIBLIOGRAPHY 142

John McCarthy. Circumscription -A form of non-monotonic reasoning. Artificial

Intelligence, 13(1-2):27–39, April 1980.

K.R. McNaught and A. Zagorecki. Using dynamic Bayesian networks for prognostic

modelling to inform maintenance decision making. In IEEE International Confer-

ence on Industrial Engineering and Engineering Management (IEEM 2009), pages

1155 –1159, dec. 2009. doi: 10.1109/IEEM.2009.5372973.

Raymond J. Mooney. Inductive Logic Programming for Natural Language Processing.

In Stephen Muggleton, editor, Inductive Logic Programming: Selected papers from

the Sixth International Workshop, pages 3–22. Springer Verlag, Berlin, 1996.

Raymond J. Mooney, Prem Melville, Lappoon R. Tang, Jude Shavlik, Inês de Cas-

tro Dutra, David Page, and V́ıtor S. Costa. Relational Data Mining with Inductive

Logic Programming for Link Discovery. In Proceedings of the National Science

Foundation Workshop on Next Generation Data Mining, Baltimore, MD, Novem-

ber 2002.

Steve Moyle. Using theory completion to learn a robot navigation control program. In

Proceedings of the 12th international conference on Inductive Logic Programming,

pages 182–197, Berlin, 2003. Springer-Verlag.

Stephen Muggleton. Inductive logic programming. New Generation Computing, 8:

295–318, February 1991.

Stephen Muggleton. Inverse Entailment and Progol. New Generation Computing,

Special issue on Inductive Logic Programming, 13(3-4):245–286, 1995.

Stephen Muggleton. Learning from positive data. In Stephen Muggleton, editor,

Inductive Logic Programming, volume 1314, chapter 21, pages 358–376. Springer,

Berlin, Heidelberg, 1997.

Stephen Muggleton. Learning stochastic logic programs. In Lise Getoor and David

Jensen, editors, Proceedings of the AAAI 2000, workshop on Learning Statistical

Models from Relational Data, 2000.

Stephen Muggleton and Luc De Raedt. Inductive Logic Programming: Theory and

Methods. Journal of Logic Programming, 19(20):629–679, 1994.

BIBLIOGRAPHY 143

Stephen Muggleton and Cao Feng. Efficient induction of logic programs. In Pro-

ceedings of the First Conference on Algorithmic Learning Theory, pages 368–381,

1990.

Stephen Muggleton and Alireza Tamaddoni-Nezhad. QG/GA: a stochastic search for

Progol. Machine Learning, 70(2):121–133, March 2008.

Kevin Murphy. Dynamic Bayesian Networks: Representation, Inference and Learn-

ing. PhD thesis, UC Berkeley, Computer Science Division, July 2002.

Kevin Murphy and Saira Mian. Modelling Gene Expression Data using Dynamic

Bayesian Networks. Technical report, Computer Science Division, University of

California, Berkeley, CA, 1999.

Raymond Ng and V. S. Subrahmanian. Probabilistic Logic Programming. Informa-

tion and Computation, 101:150–201, December 1992.

Nils J. Nilsson. Probabilistic logic. Artificial Intelligence, 28:71–88, February 1986.

Ulf Nilsson and Jan Ma luszyński. Logic, Programming and Prolog. John Wiley &

Sons Inc, 2 sub edition, 1995.

F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, editors. NIST

Handbook of Mathematical Functions. Cambridge University Press, New York, NY,

2010. Print companion to (DLMF).

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, 1 edition, September 1988.

Judea Pearl, Dan Geiger, and Tom Verma. Conditional independence and its repre-

sentations. Kybernetika, 25(7):33–44, 1989.

Gordon D. Plotkin. A note on inductive generalization. In Machine Intelligence,

volume 5, pages 153–163. Edinburgh University Press, 1970.

David Poole. Probabilistic Horn abduction and Bayesian networks. Artificial Intelli-

gence, 64:81–129, 1993.

David Poole. The independent choice logic for modelling multiple agents under un-

certainty. Artificial Intelligence, 94(1-2, Special issue on economic principles of

multi-agent systems):7–56, July 1997.

BIBLIOGRAPHY 144

Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications

in speech recognition. In Proceedings of the IEEE, volume 77, pages 257–286, 1989.

Lawrence R. Rabiner and Biing-Hwang Juang. An introduction to hidden Markov

models. IEEE ASSP Magazine, 3(1):4–16, 1986.

John A. Robinson. A machine-oriented logic based on the resolution principle. Journal

of the Association for Computing Machinery, 12:23–41, 1965.

Joshua W. Robinson and Alexander J. Hartemink. Learning Non-Stationary Dy-

namic Bayesian Networks. Journal of Machine Learning Research, 11:3647–3680,

December 2010.

R. W. Robinson. Counting labeled acyclic digraphs. In F. Harary, editor, New

Directions in Graph Theory. New York: Academic Press, 1973.

Taisuke Sato. A Statistical Learning Method for Logic Programs with Distribution

Semantics. In Proceedings of the 12th International Conference on Logic Program-

ming (ICLP’95), pages 715–729. MIT Press, 1995.

Taisuke Sato. Generative Modeling by PRISM. In Patricia Hill and David Warren,

editors, Logic Programming, volume 5649 of Lecture Notes in Computer Science,

chapter 4, pages 24–35. Springer, Berlin, Heidelberg, 2009.

Taisuke Sato and Yoshitaka Kameya. PRISM: A language for symbolic-statistical

modeling. In Proceedings of the 15th International Joint Conference on Artificial

Intelligence, pages 1330–1339, 1997.

Taisuke Sato and Yoshitaka Kameya. Parameter Learning of Logic Programs for

Symbolic-Statistical Modeling. Journal of Artificial Intelligence Research (JAIR),

15:391–454, 2001.

Taisuke Sato and Yoshitaka Kameya. New advances in logic-based probabilistic

modeling by PRISM. In Luc De Raedt, Paolo Frasconi, Kristian Kersting, and

Stephen H. Muggleton, editors, Probabilistic Inductive Logic Programming, volume

4911 of Lecture Notes in Computer Science. Springer, New York, 2008.

Taisuke Sato, Yoshitaka Kameya, and Kenichi Kurihara. Variational Bayes via propo-

sitionalized probability computation in PRISM. Annals of Mathematics and Arti-

ficial Intelligence, 54(1-3):135–158, 2008.

BIBLIOGRAPHY 145

Taisuke Sato, Neng-Fa Zhou, Yoshitaka Kameya, and Yusuke Izumi. PRISM User’s

Manual (Version 2.0), 2010.

Gideon Schwarz. Estimating the Dimension of a Model. The Annals of Statistics, 6

(2):461–464, 1978.

Eran Segal, Michael Shapira, Aviv Regev, Dana Pe’er, David Botstein, Daphne

Koller, and Nir Friedman. Module networks: identifying regulatory modules and

their condition-specific regulators from gene expression data. Nature Genetics, 34

(2):166–176, May 2003.

Mathieu Serrurier and Henri Prade. Improving inductive logic programming by using

simulated annealing. Information Sciences, 178(6):1423–1441, March 2008.

Kristie Seymore, Andrew McCallum, and Ronald Rosenfeld. Learning Hidden Markov

Model Structure for Information Extraction. In AAAI 99 Workshop on Machine

Learning for Information Extraction, pages 37–42, 1999.

Tomi Silander and Petri Myllymäki. A simple approach for finding the globally

optimal Bayesian network structure. In Proceedings of the 22nd Annual Conference

on Uncertainty in Artificial Intelligence. AUAI Press, 2006.

Ashwin Srinivasan. A study of two probabilistic methods for searching large spaces

with ILP. Technical Report PRG-TR-16-00, Oxford University Computing Labo-

ratory, 2000.

Andreas Stolcke and Stephen Omohundro. Best-first model merging for hidden

Markov model induction. Technical Report TR-94-003, International Computer

Science Institute, Berkeley, CA, January 1994.

Robert J. Vanderbei. Linear Programming: Foundations and Extensions. Interna-

tional Series in Operations Research & Management Science. Springer, 3rd edition,

November 2007.

Nguyen X. Vinh, Madhu Chetty, Ross Coppel, and Pramod P. Wangikar. GlobalMIT:

learning globally optimal dynamic Bayesian network with the mutual information

test criterion. Bioinformatics, 27(19):2765–2766, August 2011.

Larry Wasserman. All of Statistics: A Concise Course in Statistical Inference.

Springer Texts in Statistics. Springer, December 2003.

BIBLIOGRAPHY 146

Kyoung J. Won, Thomas Hamelryck, Adam P. Bennett, and Anders Krogh. An

evolutionary method for learning HMM structure: prediction of protein secondary

structure. BMC Bioinformatics, 8(1):357+, September 2007.

Stefan Wrobel. Inductive Logic Programming for Knowledge Discovery in Databases.

In Sašo Džeroski and Nada Lavrač, editors, Relational Data Mining. Springer,

Berlin, 2001.

Nevin Zhang and David Poole. A simple approach to Bayesian network computations.

In Proceedings of the Tenth Canadian Conference on Artificial Intelligence, 1994.

