
A Conceptual Framework for Simulating Feedback Loops in
Engineering Design

Francisco Tapia Lara

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

The University of Leeds

School of Mechanical Engineering

February 2023

- ii -

The candidate confirms that the work submitted is his/her own, except where

work which has formed part of jointly authored publications has been

included. The contribution of the candidate and the other authors to this

work has been explicitly indicated below. The candidate confirms that

appropriate credit has been given within the thesis where reference has

been made to the work of others. Further details of the jointly authored

publications and the contributions of the candidate and the other authors to

the work should be included below this statement.

The work in Chapter 3, sections 3.2.2 and 3.2.3 and Chapter 5 section 5.1.2

Discrete events and 5.3.1 validation of the discrete events model include

sections of the publication:

The thesis references the co-authored work in chapters, 4,5,6.

Simulation of Feedback Loops in Engineering Design. Proceedings of the

Design Society. August 2021 Volume 1: ICED21, 1, pp.2661-2670.

This copy has been supplied on the understanding that it is copyright

material and that no quotation from the thesis may be published without

proper acknowledgement.

Francisco Tapia was responsible for the development the discrete events

simulation model and results of the simulation and literature review. The co-

authors contributed with the addressing the adequate theoretical foundations

and providing feedback and comments for the writing of the abstract,

introduction, and conclusions.

This copy has been supplied on the understanding that is copyright material

and that no quotation from the thesis can be published without proper

acknowledgement.

The right of Francisco Tapia Lara to be identified as Author of this work has

been asserted by him in accordance with the Copyright, Designs and

Patents Act 1988.

© 2023The University of Leeds and Francisco Tapia Lara

- iii -

Acknowledgements

I want to express my sincere gratitude to my supervisors, Professor Alison

McKay, and Dr Mark Robinson, for their tireless support, encouragement,

and guidance throughout the PhD. None of my work would have been

possible without their kind supervision and teachings.

I would like to express my special thanks to my beloved wife, Maria de

Jesus, and my lovely and extraordinary daughters Ireri, Carolina, Belen, y

Sofia. My special gratitude to my sister Laura Teresa for providing a

sympathetic ear and advice. I must thank my father, who has been a

constant source of inspiration. He provided me with values that rank high in

morals and character. I give my deepest love to my mother, Teresa Lara.

Thanks to my brother-in-law Jaime Reyes, to the kids Jaimito, Erik and to my

niece Yara. Thanks for your love, encouragement and support throughout

my PhD study and life.

I’m grateful to Professor Richard Bibb and Dr Patrick Pradel from

Loughborough University in the U.K, to Professor Alberto Rossa from the

Universidad Panamericana and MSc. Alejandro Briseño from the

Universidad de Guadalajara, in Mexico.

Thanks to my fellow graduate students at the Institute of Design, Robotics

and Optimization (iDRO) at the University of Leeds and the friends I made

during this journey. A special thanks to Michelle Byrne for her support.

Finally, thanks the Mexican, National Council for Science and Technology

(CONACYT) for facilitating my scholarship.

- iv -

Abstract

Product development is a business process organisations use to introduce

technological advancements to their products and services. Within this

process, engineering design decisions define the architecture of the

designed product, which, in turn, governs the structure of the product

development process that ensures the quality of the delivered product.

Integrating product development and engineering design processes results

in a product development system characterised by networks of activities

related to each other by feedback loops. Design iteration and rework are two

kinds of feedback loop in product development systems. Design iteration is a

form of positive feedback loop that contributes to the quality of the designed

product. Rework, on the other hand, is a form of negative feedback loop that

increases project duration and cost. Understanding feedback loops in

product development is fundamental for effective design management and

so the delivery of products on time and within budget.

This research contributes a conceptual framework for (a) understanding and

(b) simulating the impact of feedback loops in engineering design. The

framework enables the integration of two kinds of a simulation model. The

first is a discrete event model that reflects the product architecture and its

influence on the product development process structure, including potential

rework feedback loops. The second is an agent-based model that reflects

the social facets of design activity and communication behaviours within

design teams, including design iteration. In this way, two kinds of feedback

loop are captured: rework in the discrete event model and design iteration in

the agent-based model. An engineering design case study was used to

validate the conceptual framework.

This thesis takes a socio-technical systems perspective on engineering

design. The conceptual framework includes relevant characteristics for

simulating feedback loops in engineering design. The product architecture,

which identifies individual parts that need to be designed and infers the

development process structure, can be used to derive a design process

workflow and so a discrete event model. In parallel, social interactions

(actions, states, and behaviours) between designers are used to inform an

agent-based simulation model of the design activities for each of the parts in

the product architecture. Finally, the framework defines interaction points

between the product development process and design activities which

inform interplays between the two kinds of simulation models.

- v -

Table of Contents

A Conceptual Framework for Simulating Feedback Loops in
Engineering Design ... i

Acknowledgements .. iii

Abstract ... iv

Table of Contents .. v

List of Figures .. viii

List of Tables .. xi

Chapter 1: Introduction ... 1

1.1 Product development systems .. 1

1.2 Feedback loops in product design and development systems. 3

1.3 Process models of product development .. 5

1.4 Product architecture. ... 6

1.5 Simulation modelling ... 7

1.6 Problem definition.. 9

1.7 Objectives ... 10

1.8 Thesis outline .. 11

Chapter 2: Literature review ... 12

2.1 Product development systems .. 13

2.2 Product development processes ... 15

2.3 Engineering design process .. 17

2.4 Process models of product development 17

2.5 Design iteration ... 20

2.5.1 Design iteration approaches ... 20

2.5.2. Micro, meso and macro iterations 27

2.5.3 Mental iteration and iteration of the design task 27

2.5.4 Modelling approaches to design iteration 28

2.6. Rework ... 29

2.6.1 Causes of rework ... 29

2.6.2 Mitigation of rework .. 31

2.7. Feedback loops .. 34

2.7.1 Vicious circles in organisations .. 35

2.8. Simulation models of product development process. 36

2.8.1 Computational models in engineering design 36

2.8.2 Simulation of iterative process ... 37

- vi -

2.8.3 Simulation of engineering design teamwork 37

2.8.4 Simulation of the rework ... 38

2.9 Multiparadigm simulation modelling .. 39

2.10 Conceptual models .. 40

2.11 Conclusions .. 46

Chapter 3: Research methodology .. 50

3.1 Action design research (ADR) ... 51

3.1.1 The four stages of ADR .. 51

3.2. ADR in this research .. 53

3.2.1 ADR Stage: Problem formulation 54

3.2.1.1: Conceptualise the research opportunity. 54

3.2.1.2 Formulate initial research questions. 54

3.2.1.3 Cast the problem as an instance of a class
problem. .. 55

3.2.1 Identify contributing theoretical bases prior to
technological advances. .. 56

3.2.2 ADR Stage: Building intervention and evaluation. 57

3.2.2.1 Discover the initial knowledge-creation target. 57

3.2.2.2 Execute building intervention-evaluation (BIE)
cycles. ... 58

3.2.2.3 Asses the need for additional cycle repeats. 59

3.2.3 ADR Stage reflection and learning 60

3.2.3.1 Reflect on the design and redesign during the
project. .. 60

3.2.4 ADR Stage: Formalisation of learning 60

3.2.4.1 Articulate outcomes as design principles. 60

3.2.4.2. Sub-task: Generalisation of design principles. 61

3.4.2.3 Sub-task: Formulation of design principles 64

3.3 Case study .. 65

Chapter 4: Conceptual framework development 72

4.1. Problem identification ... 73

4.1.1 What is the problem? ... 74

4.1.3 Whose problem are we addressing? 75

4.1.4 Other actors ... 76

4.2 System identification ... 76

4.3 System conceptualisation .. 78

4.4 Model formalisation ... 83

- vii -

4.5 Logical model .. 90

4.6 Summary. .. 93

5.1. Implementation ... 110

5.1.2 Identification of MS methods .. 113

5.1.4 Relationship definition. ... 115

5.2.1 Discrete events modelling .. 123

5.2.2 Agent-based ... 125

5.2.3 Hybrid Simulation, Discrete events+Agent-based 130

5.3 Validation .. 133

5.3.1 Validation of the Discrete Events Model 133

5.3.2 Validation of the Agent Based Model 134

5.3.3 Validation of the hybrid simulation. 136

Chapter 6: Conclusions .. 162

6.1 Research Contribution. .. 163

Objective No 1 ... 163

Objective No 2. .. 165

Objective No.3 ... 166

Objective No. 4, ... 167

Objective No.5, .. 168

6.2 Research Limitations. .. 169

6.3 Future Work. ... 170

List of References ... 172

- viii -

List of Figures

Figure 2.1.1.1 The NPD intra and extra-organisational context,
adapted from de Weerd-Nederhof (2001). 14

Figure 2.2.1.1 Generic new product development process based
on (Ulrich and Eppinger, 2012). ... 16

Figure 2.5.3.1 A cognitive activity model of conceptual design,
from Jin and Chusilp (2006). .. 28

Figure 2.6.2.1 Summary main approaches on the mitigation of
rework in the literature from table 2.6.2.1 34

Figure 3.2.1.1 Cross-gate's product development and architecture
design and three in-stage iteration feedback loops. 56

Figure 3.2.2.1 Abstraction level identification Djanatliev and
German (2013) ... 59

Figure 4.1.1 Chapter layout .. 72

Figure 4.3.1.1 Ontology classes and instances identification. 80

Figure 4.3.1.2 System conceptualisation using an ontological
approach, based on Otte et al. (2019). ... 82

Figure 4.4.1.1 Communication patterns between the actors in
model narrative. .. 90

Figure 4.5.1.1 Conceptual framework for simulating feedback
loops in engineering design... 92

Figure.4.6.1.3.1 Scrum sprint ontology. .. 101

Figure 4.6.1.5.1 Sprint process narrative, based on Mvulane,
(2020). ... 105

Figure.4.6.1.5.3 Conceptual framework adaptation for the
simulation of agile sprint processes. .. 107

Figure 5.1 Chapter layout. .. 109

Figure 5.1.1.1 UML activity diagram for the handlebar design
process narrative. ... 112

Figure 5.1.2.1 Identification of abstraction levels, simulation
approaches and methods adapted from Djanatliev and
German (2013). .. 114

Figure 5.2.1.1 Discrete events simulation model, implemented in
Anylogic 8 .. 125

Figure 5.2.2.2 UML State chart diagrams for the agent-based
conceptual model. ... 127

Table 5.2.2.1 Initial parameters for agent-based simulation. 128

Figure 5.2.2.3 Agent-based simulation diagram implemented in
Anylogic 8 .. 129

- ix -

Figure 5.3.1.1 Time plots showing results of the discrete events
simulations. ... 134

Figure 5.3.2.1 Time plots showing the results for agent-based
experiments. .. 135

Figure 5.3.3.1 a,1 average time per part designer 138

Figure 5.3.3.2 a,2 average number of events per run 138

Figure 5.3.3.3 a,3 average time per part designer 139

Figure 5.3.3.4 a,4 average number of events per run 139

Figure 5.3.3.5 a,5 average time per part designer 140

Figure 5.3.3.6 a,6 average number of events per run 140

Figure 3.5.5.8 b,2 average number of events per run. 141

Figure 3.5.5.7 b,1 average time per part designer 141

Figure 5.3.3.9 b,3 average time per part designer 142

Figure 5.3.3.10 b,4 average number of events per run 142

Figure 5.3.3.11 b,5 average time per part designer 143

Figure 5.3.3.12 b,6 average number of events per run 143

Figure 5.3.3.13 c,1 average time per part designer 144

Figure 5.3.3.14 c,2 average number of events per run. 144

Figure 5.3.3.15 c,3 average time per part designer 145

Figure 5.3.3.16 c,4 average number of events per run 145

Figure 5.3.3.17 c,5 average time per part designer 146

Figure 5.3.3.18 c6 average number of events per run 146

Figure 5.5.1 Simulation model diagram made in Anylogic 8. 153

Figure 5.5.2 Average time to complete a sprint (Scenario 1) 154

Figure 5.5.4 Average time to complete a sprint (Scenario 3) 155

Figure 5.5.3 Average time to complete a sprint (Scenario 2) 155

Figure 5.5.5 Average of accepted and not accepted designs
(Scenario 1).. 156

Figure 5.5.6 Average of accepted and not accepted designs
(Scenario 2).. 157

Figure 5.5.7 Average of accepted and not accepted designs
(Scenario 3).. 157

Figure 5.5.8 Average design jobs vs Sprints per run (Scenario 1) 158

Figure 5.5.9 Average Design jobs vs Sprints per run (Scenario 2) 159

Figure 5.5.10 Average Design jobs vs Sprints per run (Scenario 3) ... 160

Figure.4.6.1.3.1 Scrum sprint ontology……………………………………

Figure 4.6.1.5.1 Sprint process narrative, based on Mvulane, (2020)..105

- x -

Figure 5.5.1 Simulation model diagram made in Anylogic 8…………..153

Figure 5.5.2 Average time to complete a sprint (Scenario 1)………….154

Figure 5.5.3 Average time to complete a sprint (Scenario 2)………….155

Figure 5.5.4 Average time to complete a sprint (Scenario 3)………….155

Figure 5.5.5 Average of accepted and not accepted designs
(Scenario 1)……………………………………………………………….156

Figure 5.5.6 Average of accepted and not accepted designs
(Scenario 2)……………………………………………………………….157

Figure 5.5.7 Average of accepted and not accepted designs
(Scenario 3)……………………………………………………………….157

Figure 5.5.8 Average design jobs vs Sprints per run (Scenario 1)…...158

Figure 5.5.9 Average design jobs vs Sprints per run (Scenario2)……159

Figure 5.5.10 Average Design jobs vs Sprints per run (Scenario 3)…160

- xi -

List of Tables

Table 2.5.1.1 Design Iteration perspectives in literature based on
Wynn and Eckert, 2017. Figures at the bottom of the table
represent the percentage of studies that addressed each
theme. .. 22

Table 2.5.1.2 Quantity of publications in different perspectives
between the years of 1962 to 2020. ... 26

Table 2.6.2.1 Relevant frameworks developed for the mitigation of
rework based on Dullen et.al, (2019). .. 32

Table 2.11.1 Hybrid traditional and agile project management
approaches from Reiff and Schlegel (2022). 43

Table 3.1.1.1 Tasks in each stage, adapted from Cronholm and
Göbel (2022)... 53

Table 3.2.4.2.2 Types of value assessment relationships from
Mykoniatis and Angelopoulou (2020). ... 64

Table 4.4.1.1 Model narrative. .. 89

Table 4.6.1 Summary of the Scrum sprint events, roles and
artefacts based on Mvulane, 2020). ... 98

Table 4.6.1.4.1 Traditional product development process vs scrum
sprint method. ... 102

Table 4.6.1.5.1 Variables identification. ... 104

Table 5.1.4.1 Categories and types of relationships, based on
Mykoniatis and Angelopoulou (2020) .. 116

Table 5.2.1.1 Initial parameters for the discrete events model. 124

Table 5.2.2.1 Initial parameters for agent-based simulation. 128

Table 5.2.3.1 Summary of the interaction points identified. 132

Table 5.3.3.1 Validation experiment parameters. 137

Table 5.5.1 Summary of actors, relationships, interactions, and
states. ... 150

Table 5.5.2 Simulation initial parameters. Description of blocks
form Anylogic 8 ... 151

Table 5.5.3 Experiments design specification. 154

1

Chapter 1: Introduction

Product development processes codify the ways in which manufacturing

organisations deliver new products to markets in response to customer demands for

requisite quality and strategic priorities to release products as quickly and cost-

effectively as possible. These processes involve a series of stage gates where

decisions to proceed or not are made. Such decisions are important in managing

product development processes because they ultimately drive performance against

time and cost indicators (Tapia et al., 2021). On the other hand, engineering design

processes lie between the stage gates and, through the creativity and capability of

engineering design teams, significantly impact the quality of products delivered to

customers. A key challenge for design managers lies in balancing the dynamic

nature of product development processes resulting from positive and negative

feedback loops within them.

This research explored the potential value of advanced computer simulation in

understanding the impact of two types of feedback loop (design iteration and rework)

on the performance of product development systems. In the long term, this research

has the potential to inform a new generation of engineering management solutions.

1.1 Product development systems

Pessôa and Trabasso (2017) assert that product development systems are

organisational systems integrated by individuals and teams. They use resources and

technologies to perform activities and processes to transform inputs from market

opportunities and customer requirements into outputs in the form of technical

descriptions or material objects. In the same context de Weerd-Nederhof (1997)

explain that product development systems are characterised by intra and extra-

organisational contexts. The extra-organisational context includes entities influencing

the system without affecting its functions (e, g., other organisations, like competitors,

supply chain partners, or government entities such as regulatory authorities). On the

other hand, the intra-organizational context is integrated with other business

functions (such as marketing, sales, procurement, engineering, and manufacturing)

influencing the system's performance through its interactions.

Product development systems articulate a market opportunity and execute a product

development process (Pessôa and Trabasso, 2017). When receiving inputs from its

2

environment, a product development system generates outputs from technological

advancements, creative ideas, and products or process designs (de Weerd-

Nederhof, 1997). The execution of the product development process, including

activities to produce, sell, and deliver the developed product, is often planned

sequentially to form the workflow (Montagna and Cantamessa, 2017), where

engineering design teams carry out the development phases sequentially, separated

by stage-gates reviews (Shepherd and Ahmed, 2000). These stage gates include

predefined checkpoints (gates) containing deliverables for each functional area,

concluding the process when all the required information to support production,

sales, and delivery of the developed product has been created and communicated

(Ulrich and Eppinger, 2012).

Although the product development process is a chronological succession of tasks

and activities, in real life, the process entails a series of planned and unplanned

iterations that cause interruptions due to critical design issues and unplanned or

discrepant communications. From this perspective, the product development system

can be seen as a social network where engineering designers and stakeholders

interact to find a design solution (Montagna and Cantamessa, 2017). Uncertainty is a

relevant characteristic manifested in the lack of consistent information and multiple

conflicting interpretations (Pessôa and Trabasso, 2017).

Engineering design processes reside at the core of new product development

systems, materialising opportunities identified by marketing and translating user

needs, requirements, constraints, and specifications into a technically feasible and

usable solutions. They are technical processes through which innovations are

developed and embedded in products providing the structures for stages of product

development (Tapia et al., 2021). Engineering design processes are systematic and

intelligent processes where designers generate, evaluate, and specify concepts for

devices, systems, or processes (Dym et al., 2005) for the whole product and its

components. Engineering design processes are directed by the decisions made by

individuals in design teams (Wallace and Ahmed, 2003) where effective

management of communications, negotiation, and coordination mechanisms used by

actors influence the outcome and progress of the design work (Hoegl and Weinkauf,

2005; Maier, A.M. et al., 2007). Engineering design activities of acquisition and

provision of information are widely recognised. King (1994) asserts that, in

engineering design, most design activity consists of creating, transferring, or

disseminating information. For example, in one study engineering designers spend

24% of their working time in activities related to information behaviours (Marsh,

1997). Meho and Tibbo (2003) identified four stages of information seeking for

3

engineering designers: (1) searching for information and identifying relevant sources,

(2) accessing and acquiring information from those information sources, (3)

processing and analysing the obtained information, and (4) finalising the search

process.

This research used all four of these information-seeking stages to reflect team-based

process activities: Requesting, Answering, Receiving, and Evaluating information.

These process activities maps deh Meho and Tibbo (2003) stages, the searching for

information and identifying relevant sources, maps with requesting information;

Accessing and acquiring corresponds to answering and receiving information.

Processing and analysing information, maps with the evaluation of information stage.

1.2 Feedback loops in product design and development systems.

Feedback loops are an essential concept in social and organisational theory that

enhance understanding of relationships between a system’s past and current states

(Tsoukas and e Cunha, 2017). The literature related to feedback loop uses the term

to describe activities aimed to reduce a gap between a perceived and future state of

a system. A different trend in the literature suggests that in feedback loops, the

output of a process influences its input directly or indirectly at some point in time.

Feedback loops are associated with the evolution of a system over time when they

are related to control and stabilisation and with the improvement or with the decline

of a process or behaviour when they are associated with virtuous and vicious circles

(Masuch, 1985).

Edgeman et al. (2020) assert that within organisations, patterns or cycles of

behaviour identified as enterprise routines or habits that produce predictable poor to

negative results might be regarded as a vicious circle. A vicious circle is a self-

propagating complex chain of events with failures or negative consequences at one

stage that generate increasingly serious failures or negative effects at each

subsequent stage. On the other hand, behaviour patterns producing positive results

can be regarded as a virtuous cycle, a self-propagating complex chain of events with

positive consequences at one stage generating positive outcomes at each

subsequent stage (Edgeman et al., 2020).

During the development of the design activity, new information and constraints

emerge, and design requirements change. These changes lead designers to revisit

and re-evaluate previous design decisions (Wynn and Eckert, 2017) and adopt new

ones, generating new activities and information feedback cycles. These iterative

cycles are positive feedback loops that contribute to the quality of design within the

4

design stage, or negative feedback loops when the new information requires

modifications on previous activities considered already finished from an earlier

phase.

Design iteration is a critical feature in the design process that enables the

progressive generation of knowledge, concurrency, and integration of necessary

changes (Wynn, Eckert 2017). With the systematic exploration and understanding of

the design problem’s complexity (Le, H.N. et al., 2010), iterations are natural means

that help designers and engineers better understand the design problem and

solutions (Eckert et al., 2014). It contributes to the incremental completion of the

tasks with different information levels and improves quality, but eventually also adds

time to design activity and, hence, the development process. The term iteration can

refer to both broader loops, such as the successive model releases of a product, or

narrower loops, e.g., when mathematical techniques are used for engineering

optimisation processes (Safoutin and Smith, 1996).

In the literature, design iteration is defined as the repetition of an activity to generate

meaningful information to represent and refine a design solution towards a desired

final state. Designers adopt behavioural iteration by dividing a problem into pieces

and performing similar patterns of design activity on each part (Costa and Sobek,

2003). In contrast, Jin and Chusilp (2006) noted that the iteration of the design task

is the repetition of a task from a design team due to new information or because of

previous iterations and a mental iteration is characterised by the cognitive activities

of designers when performing the design tasks.

Engineering designers recognise iteration as an investigative tool that enables

advanced knowledge and a better understanding of the design problem and solution

(Dorst and Cross, 2001). They are essential learning cycles that allow continuous

knowledge gain, mitigating uncertainty and ambiguity (Meboldt et al., 2013). On the

other hand, from the managerial perspective, design iteration needs to be fitted into

different project planning strategies, such as parallel, sequential, or independent task

cycles, to develop planning models that incorporate the feature in the overall

development process. From the management point of view, iterations are expensive

exceptions, costly, and time-consuming. For instance, Meboldt et al. (2013) asserts

that in-stage iterations are iteration within a stage and is expected that there is no

impact previous stages. While cross-gate iterations are iteration affecting previous

stage decisions, influencing the project cost, time, and quality.

Rework is considered unnecessary work and delays caused by redoing a process or

activity not adequately implemented the first time (Love, P.E., 2002). Rework

5

iteration that occurs with the repetition of the activity at the same level of abstraction

in the same object is generally used to correct an error (Costa and Sobek, 2003).

Furthermore, the analysis of the literature suggests that rework is a result of the

information dynamics of the new product development process, caused by the

inadequacy of the information due to changes in requirements, poor decisions,

defective outputs, or changes in implementation that alters work previously done

(Smith, R., P. and Eppinger, 1997a). While design iteration is in-stage, decisions do

not affect other stages (Meboldt et al., 2013). Rework is a cross-gate iteration where

decisions affect decisions made in previous stages affecting project time and cost.

1.3 Process models of product development

Most of the research literature on engineering design has established that adequate

management of the design and development processes at individual, team, or

organisational levels is a key feature for developing acceptable designs and reducing

the problems related to their development (Wynn et al., 2019).

The organisational activities in engineering design and development processes

related to individual activities and their context (micro-level), including those

associated with the flow of tasks and design progression (meso-level), and those

related to project/programme and contextual considerations (at the macro-level),

require significant coordination to manage the complex dependency structures of the

product development processes (Wynn et al., 2019). To tackle this rising complexity,

a better understanding of the design and development processes, including tools,

and methods to support design management, is required. Modelling and simulation

allow the analysis and prediction of systems and processes behaviours that are too

costly, dangerous, or time-consuming to understand through actual conditions

(Eckert et al., 2019).

A model is a conceptual representation of an object, process, or system that can be

verified, analysed, and manipulated for a particular purpose. They do not exist in the

real world, and their construction provides understanding, control, and learning about

the system they represent (Smith, R., P. and Morrow, 1999).

Early process models of product development are mainly derived from traditional

project management methods. By listing the activities to perform and identifying

dependencies, planners identified the critical paths and duration and then explored

opportunities for duration time improvement (Browning et al., 2006). Such model

approaches were, for instance, the program evaluation review technique (PERT) and

critical path method (CPM), where the development process was viewed as a

6

network of discrete activities with stochastic duration and sequential relationships

(Pritsker, 1966; Ritchie, 1972). On a different note, from the complex system

perspective, product development is viewed as a system where the combined

attributes and interactions of people, products, and processes generate non-linear

behaviours (Chiva-Gomez, 2004; McCarthy et al., 2006).

Process models are means for understanding and interacting with products and

processes (Eckert and Stacey, 2010). They enable visibility and transparency to the

workforce, providing, in some cases, process-related best practices and a baseline

for process management. Process models of product development allow change

analysis and support the understanding of the modelled systems (Browning et al.,

2006). They provide insights at different levels depending on the application and

interpretation, emphasising other process elements. Process models can offer

different terminology and visual representations (Wynn and Clarkson, 2017) of the

complex interrelations of the complex product development processes.

Process models of product development can be identified into two categories:

descriptive models, which are those models used to record what happened in a

process; and prescriptive models, which are those that direct what should be done in

a particular type of product or process (Browning et al., 2006). In the literature, there

are also classifications for stage-based models, activity-based models, and design

processes, the latest identified as problem-oriented and solution-oriented models

(Wynn and Clarkson, 2005).

1.4 Product architecture.

The complexity of new products arises due to the uniqueness and complexity of the

components and subsystem interactions. New products are often developed by

autonomous design teams distributed within multiple firms and manufactured by

complex supply chains.

Product architecture is used to assign a product's functional elements to physical

building blocks to determine what they do and their interfaces (Ulrich and Eppinger,

2012). Product architecture decisions allow detailed design and testing to be

assigned to teams, individuals, and suppliers, allowing the development of different

product portions to be conducted simultaneously. The fundamental decisions made

when the system architecture is defined (Jankovic and Eckert, 2016) determine the

success of a new product in the market. At this stage, the completed design

requirements definition and functional and physical configurations are established to

define the product development tasks.

7

The mapping of the functional design elements to physical parts makes possible the

definition of the interfaces among the interacting components (Ulrich, 1995; Sharman

and Yassine, 2004), providing a description of system boundaries and the selection

of fundamental solution principles for the overall design.

Product development processes start with articulating a market opportunity and are

integrated into six stages: planning, concept development, system-level design,

detailed design, testing and refinement, and product ramp-up (Ulrich and Eppinger,

2012). There is an evaluation gate between each stage where the deliverables must

be passed to proceed to the next (Tapia et al., 2021). The actions and activities

within these processes are, in most cases, intellectual and organisational rather than

physical and include developing information and formulating specifications,

concepts, and design details. The product development process concludes when all

the required information to support production and sales has been created and

communicated (Ulrich and Eppinger, 2012).

The product architecture begins to emerge during the conceptual design stage

(Ulrich and Eppinger, 2012). The design process translates user requirements into a

structural description of the arrangement and systems of the components in the

product, incorporating the understanding and sometimes explicit description of the

functions and behaviours the product will carry out (Jankovic and Eckert, 2016). It is

important because it impacts the structure of the product development process and

so the design of each design unit needed to develop the resulting design.

1.5 Simulation modelling

Simulation modelling is used in this research process because it enables the

evaluation of products and systems before they exist, supporting decision-making

(Yin, C. and McKay, 2018). Simulation models aim to explain correlations between

process variables measured at one point in time but also include explicit

representations of processes that work in the social world. Simulation modelling

usually starts with a problem that needs to be solved or the need for a better

understanding of a situation, often addressing issues that frequently present a need

for more knowledge about real-world systems, their behaviour, or their response to a

particular intervention (Nikolic and Lukszo, 2013). Simulations also serve as a

laboratory for experiments, less complex, costly, or dangerous to perform than actual

life experiments (Nikolic and Ghorbani, 2011). The ultimate objective of a modelling

exercise is to gain insights into the system, but not necessarily to produce numbers.

Simulation models serve as a tool to improve understanding of the dynamics of the

8

whole system or subsystems by exploring possible states or finding states to be

approached or avoided through what-if scenarios (Nikolic and Lukszo, 2013).

Simulation model construction involves carefully established steps to produce a

reliable representation of the real world. Those steps may vary depending on the

modeller’s background, simulation paradigm, or methodological approach to the

problem. Simulation modelling designs must reflect real-world systems’ outcomes,

and simulation techniques develop experiments that allow the understanding of the

system’s performance under different operating conditions to evaluate management

strategies or decision-making processes (Nikolic and Lukszo, 2013).

Borshchev and Filippov, (2004) assets that simulation model construction

distinguishes between analytical or static models and dynamic or simulation models.

The analytical model’s outcome depends on the input, while dynamic modelling uses

a set of rules that define how the modelled system will change in the future

(Borshchev and Filippov, 2004). There are three standard simulation approaches to

representing the business process, Borshchev, (2013) Points that, system dynamics,

use a high abstraction level and thinks in terms of stocks, flows and feedback loops.

On the other hand, discrete events modelling is a process-oriented approach where

the system is represented as a sequence of operations performed over activities, In

the agent-based modelling, individual objects interact with other individual objects

and with the environment (Borshchev, 2013).

The considerations for the simulation of feedback loops in engineering design

processes include: (1) The design structures of the system. Identifying the design

product architecture (Maier, J.F. et al., 2014) and decomposing the system into its

components, distinguishing interfaces, and interactions. (2) The characteristics of

social interactions of product development teams (Montagna and Cantamessa,

2017) are influenced by information (Robinson, 2010) and communication patterns

during the design process. (3) The interrelationships between product development

and engineering design processes, where the development process is depicted as a

series of sequential and discrete events driven by a chronological progression of

tasks with a series of decision gates (Artmann, 2009), and the engineering design

process frameworks for the stages including the development of designs for the

whole product and its parts (Tapia et al., 2021). [4] Product development and

engineering design interactions determine the system’s ability to process design

requests. The design process governs the time to complete a design task, and

product development influences the ability to complete a product design.

9

1.6 Problem definition.

Pessoa and Trabasso, (2017) argue that a product development system is a

complex socio-technical system integrated into a multidimensional network of

interconnected processes where feedback loops traverse through its hierarchical

levels. The product development system is integrated with three relevant system

elements: people, process, and product.

When the product development system receives inputs, information, or goods

through its boundaries, it processes those inputs into outputs. It delivers them back

to the environment in the form of products or services (Pessôa and Trabasso, 2017).

Ulrich and Eppinger (2012)The product development processes performed within the

product development system are composed of intellectual and organisational

activities, developing information, formulating specifications, concepts, and design

details. These processes conclude when all the required information to support the

production and sale of the developed product has been created and communicated

(Ulrich and Eppinger, 2012).

Feedback loops in product development systems, which arise from highly

interconnected processes (Pessôa and Trabasso, 2017), result from engineering

design information processes and coordination and collaboration activities among

designers and design teams (Wynn and Maier, 2022). Feedback loops are small or

large recursive cycles that characterise relationships and iterations (Kline and

Rosenberg, 1986) between product development processes and participants,

caused by new information, emerging constraints, and changes in design

requirements during the design activity. These changes lead designers to revisit and

re-evaluate previous design decisions (Wynn and Eckert, 2017) and adopt new

ones, generating new activities and information feedback cycles. These iterative

cycles are positive feedback loops (virtuous circles) when information is adequate,

correct, and delivered on time, contributing to design quality within the design stage.

On the contrary, negative feedback loops (vicious circles) result from new

information or result from inadequate, inaccurate, or miss-coordinated information,

which makes modifications necessary to previous activities that have already been

completed in an earlier phase.

The study of new product development systems and processes as complex socio-

technical systems uses simulation tools to explore the possible outcomes of

interactions between the system elements (Perišić et al., 2016). These analyses

include technical aspects such as technology, infrastructure, processes, and social

features (Clegg et al., 2017). However, the approaches of simulating product

10

development processes and design teams often prioritise certain parts of the system.

For instance, simulation models that estimate technical performance tend to ignore

social processes, while models exploring social aspects may omit tasks, resources,

or project details. Ideally, a model that enables the study and measurement of both

intangible individual and team aspects, as well as tangible aspects, could provide a

more comprehensive view of the system's performance (Škec et al., 2017).

A realistic representation of the product development process must reflect the

organisational and process characteristics that mirror the product architecture, which

ultimately influences the process and organisational structure of the development

activity. A simulation model trying to create realistic simulations with a

comprehensive view of the engineering design process must consider the technical

aspects of the product development, such as the design structure of the product, the

linear logic of the product development process, along with the social aspects of

design teams' communication patterns and feedback loops. This research focuses

on identifying key elements that enable the construction of a simulation framework to

capture the engineering design processes, technical processes, and social aspects.

Thus, the research problem identified is the need for a comprehensive simulation

framework for feedback loops in engineering design that considers both technical

and social aspects of the product development process. The overarching goal of the

research is to identify critical elements that enable the construction of such a

framework, allowing for more realistic simulations and a better understanding of the

system’s performance.

1.7 Objectives

This research develops a conceptual framework for simulating feedback loops in

engineering design that takes into account both technical and social aspects of the

product development process. It identifies key elements that enable the construction

of a simulation framework that captures the engineering design processes, technical

processes, and social aspects of the product development process. In so doing, it

allows a realistic representation of the product development process, reflecting the

organisational and process characteristics that mirror the product architecture, which

ultimately influences the process and organisational structure of the development

activity.

To identify the key characteristics of product development systems that impact

system performance the following objectives were pursued.

11

1) To identify key technical and social aspects of product development

processes for the simulation of feedback loops in engineering design.

2) To identify critical characteristics of feedback loops that influence the

performance of product development processes.

3) To design and develop a conceptual framework for simulating feedback loops

in engineering design that incorporates the identified critical elements for the

implementation of more realistic simulations of product development

processes.

4) To implement an engineering design process case study for use in validating

the framework.

5) To consider how such simulation models might be used to inform the

management of product development systems.

1.8 Thesis outline

This thesis introduces a conceptual framework, which is then incorporated into a

simulation model which combines two different simulation approaches to simulate

feedback loops (rework and iteration) in engineering design.

Chapter 2 reports the literature review, which explored and assessed the literature

around the product development systems, including approaches to process models

of product development, product development systems as complex systems,

feedback loops, iteration and rework, and computational models in engineering

design. Chapter 3 introduces the overall research process used in developing the

conceptual framework using Sein et al.’s (2011) Action Research Method (ADR),

summarising the method’s main stages and task principles, and detailing how the

Action Design Research method was used to support the development of the

conceptual framework for the simulation of feedback loops in engineering design.

This chapter also includes details of the bicycle design case study in Section 3.3.

Chapter 4 describes the conceptual framework for simulating feedback loops in

engineering design, integrated with four stages: (1) The problem formulation stage,

establishing the problem to be addressed. (2) The system identification stage, which

consists of the inventory of the system. (3) The system conceptualisation stage,

where the identified concepts are formalised. (4) The model formalisation stage,

where the conceptual framework is deployed as a simulation model. Chapter 5

includes the simulation process implementation to evaluate the conceptual

framework, showing the simulation models' results separately and the hybrid

simulation results. Finally, Chapter 6 provides the conclusions, summarizes the

knowledge contribution, and makes recommendations for future work.

12

Chapter 2: Literature review

The overall purpose for research in new product development is to support business

organisations by improving the understanding of their processes. Theories, methods,

methodologies, strategies, and models are developed, discussed, and published

year by year in order to do so, in specialized journals including Management

Science, Research in Engineering Design, Design Studies, Journal of Mechanical

Design, and Engineering Management. Supporting this research dialogue, there are

regular publications where academics and practitioners decompose the new product

development process into its different elements and stages to understand and

improve systems, process and interactions, and its impact in whole organisations,

outcomes, and performance indicators.

The initial purpose of the literature review in this thesis was the identification of the

relevant characteristics of design iteration in the context of product development

processes. However, during the literature review, it became evident that design

iteration is a result of the information interactions between design engineers and

stakeholders, while searching for a design solution (Montagna and Cantamessa,

2017) at different hierarchical levels within a product development system (Pessôa

and Trabasso, 2017). Furthermore, design iterations are influenced by the

organisational and social characteristics of designers or design teams performing

engineering design activities within the development processes. Consequently, the

focus of this literature review chapter in this thesis is to examine the relevant

characteristics of positive and negative design iterations in the context of product

development systems. In turn, this enables the construction of a conceptual

framework for simulating of feedback loops in engineering design. To do so, the

following objectives were pursued in this chapter.

1) To identify key technical and social aspects of the product development

process required for simulations of feedback loops in engineering design.

The literature review chapter begins by analysing the literature on product

development systems, followed by the literature related to product development

processes, including literature relative to models of product development and

engineering design processes. It dedicates an extensive analysis to design iteration,

and also revises the literature related to rework, causes, and mitigation, and includes

literature related to feedback loops and vicious circles in organisations. The second

section of the literature review is focused on simulation models of product

development. It includes a review of the literature related to computational models of

engineering design, the simulation of iterative processes, and the simulation of

13

engineering teams. Finally, the section reviews aspects of the simulation of rework

cycles, modelling simulation, and conceptual models.

Section 2.1 addresses the new product development process system, followed by

Section 2.2 which reviews the new product development processes. Section 2.3

discusses the process models of product development, while Section 2.4 looks at the

research literature related to engineering design. Section 2.5 reviews the literature

pertaining onto design iteration. Section 2.6 reviews the literature about rework and

Section 2.7 reviews the literature pertinent to feedback loops. Section 2.8 presents

aspects of simulation models of product development, before Section 2.9 reviews

multiparadigm simulation modelling, and Section 2.10 finishes by reviewing

conceptual models.

2.1 Product development systems

The product development system, from the organisational and management

perspective, is considered a system of individuals and resources that: (a) use

technologies, (b) perform activities and processes; (c) transform inputs in the form of

perceived market opportunities into outputs in the form of products or services, to be

delivered to its environment; and (d) when those outputs are considered useful by

the environment, generate the revenue that enables the organisation to fulfil its

goals.

De Weerd-Netherhof (1997) asserts that ,the new product development system

receives inputs from its organisational context, produces a set of preliminary outputs

in the form of technological advancements, creative ideas, product or process or

designs, as well outputs in the form of technical, managerial or commercial decisions

that are delivered into the system which are then transformed into measures to

support the processes, technological advances, and the new outputs to the extra-

organisational context .The product development extra-organisational context

includes all the entities influencing the system without affecting its functions (e, g.,

other organisations, supply chain partners or government entities such as regulatory

authorities). Finally, the intra-organizational context integrates other business

functions (like marketing, sales, procurement, engineering, and manufacturing) that

influence the system's performance (de Weerd-Nederhof, 2001), (figure 2.1.1.1) .

The product development systems articulate a market opportunity and execute a

product development processes (Pessôa and Trabasso, 2017). The execution of the

product development process includes the activities of production, sales, and

delivery of the developed product.

14

Figure 2.1.1.1 The NPD intra and extra-organisational context, adapted from de
Weerd-Nederhof (2001).

For Rycroft and Kash, (1999) product development is a large, multidisciplinary,

distributed, and networked system that cannot be embraced by a single group or

organization. They assert that product development is an amalgam of the product,

people, processes, and their interdependencies in each domain. Complex product

development systems are multidimensional by nature, comprising product

architecture, communication patterns (Yassine, 2018; Yassine, 2019), iterations and

rework as key features that interact within the three domains of task quality, project

schedule, and design teams. The modern product development processes require

simultaneous and multiple group collaborations, producing and exchanging

knowledge and information from different perspectives that overlap and interoperate

simultaneously during the process to find an effective solution (Szejka et al., 2017).

Szejka (2017) analysed product development processes, suggesting the use of

multi-perspectives, wherein a domain perspective, different specialists produce and

share information to design and manufacture a product. Szejka et al. (2017) asserts

too that the product development perspective includes three main phases:

predevelopment, development, and post-development, and the subdivisions of the

phases depend on the enterprise process development method or product

15

characteristics. Each phase has its proper constrains and specific information that

impacts future or previous phases. In a phased process, the outcomes of a given

phase serve as the inputs for the next phase. Therefore, any impacts that arise in a

future phase are a direct result of the outcomes of the previous phase. On the other

hand, if there is a change in a current phase, it may also have an impact on a

previous phase that needs to be evaluated to asses any potential impacts (Szejka et

al., 2017).

2.2 Product development processes

At the core of the new products’ organizational context, the product development

processes are strategies companies use as a competitive advantage (Krishnan, V.

and Ulrich, 2001), delivering new products in response to market demands and

strategic priorities. The product development process starts articulating a market

opportunity and initialises the product development processes (Ulrich and Eppinger,

2012) The generic product development process is depicted as a sequential

approach driven for the chronological progression of the development tasks,

suggesting a series of stage-gates, where decisions to proceed or not drive the

projects (Artmann, 2009)

The process can be divided into a set of stages with predefined checkpoints (gates)

that contain deliverables for each functional area that must be approved to proceed

to the next (see figure 2.2.1.1)The traditional product development process model

prioritizes quality and key performance indicators like costs and time to market and it

is a highly cross-functional process (Artmann, 2009). The product development

process is integrated into six stages: (1) planning, (2) concept development, (3)

system-level design, (4) detailed design, (5) testing and refinement, and (6) product

ramp-up.

16

Figure 2.2.1.1 Generic new product development process based on (Ulrich and
Eppinger, 2012).

Artmann (2009) explain that the planning stage entails the investigation of the

potential market for a product, the exploration of possible architectures,

manufacturing methods, and financial studies. After the formal approval of the

project. During the concept development stage, alternative product concepts are

generated and evaluated, and different system architectures are considered and

defined for the overall system; in this stage the required tasks, budget, and

constraints are explored and refined (Ulrich and Eppinger, 2012). The system-level

design phase includes the system architecture's definition, which decomposes the

product into subsystems and components to assign the necessary teams to develop

each part.

Artman (2010) also asserts that the detail design stage is a highly parallel process

where the development teams work simultaneously but separately. In this phase, the

complete specification of the product, including geometry, materials, and tolerances

of each part, is made. The testing and refinement stage includes the production of

prototypes to determine if the product will work as designed. Finally, in the

production ramp-up, the product reaches manufacturability, and after cycles of

building, testing, and refinement iterations, the product arrives to the ramp-up stage

to finally be launched to the market (Artmann, 2009). The production is

manufactured using the intended production system, including training activities and

refining production processes.

The product development process concludes when all the required information to

support production and sales has been created and communicated (Ulrich and

Eppinger, 2012).

On a different note, planning in product development is interpreted as a sequence of

activities and workflows, that use a more or less sophisticated modelling approach

focusing on the balance of the trade-offs between resource allocation and

duration/cost of the process (Montagna and Cantamessa, 2017), neglecting the

organizational issues that affect the process behaviour.

The social network with actors interacting directly to find a design solution is

influenced by the social, behavioural and communication patterns of the participants

(Montagna and Cantamessa, 2017), which are affected themselves by cultural,

expertise and experience differences (Bucciarelli, 1988). Consequently, the outcome

and progress of the design work depends on the effective management of

communication and coordination mechanisms used by the actors, so product

17

development can be seen as social system set in a technical base (Whitworth,

2011).

2.3 Engineering design process

The engineering design processes provide the frameworks for the stages of product

development projects that include developing designs for the whole product and its

parts, include the technical processes through which innovations are developed and

embedded in products. The performance of those process is governed by the

creativity and capability of the engineering design teams that prioritise technical

quality to fulfil all design requirements, but also carry out activities in the context of

tight deadlines. (Tapia et al. 2021).

Through a systematic and intelligent process, engineering designers generate,

evaluate, and specify concepts for devices, systems, or processes, in form and

function to achieve clients’ objectives' or users' needs while satisfying a specified set

of constraints (Dym et al., 2005). Accordingly to Maier, A.M. and Störrle (2011) the

main characteristics of the engineering design process are its complexity, its iterative

nature, and the ill-defined of its problem formulation.

2.4 Process models of product development

Product development uses the process modelling perspective as means for

capturing and describing, patterns and behaviours, to support problem-solving,

decision-making, and as common platform for communication (Maier, A.M. and

Störrle, 2011) Process models are useful means of understanding and interacting

with both products and processes (Eckert and Stacey, 2010). Their construction

helps the team focus and provides visibility and transparency to the workforce,

indicates process-related best practices, and provides a baseline for process

management, allowing change analysis and supporting the understanding of

complex processes (Browning et al., 2006).

The most commonly used design process models in practice are based on flowchart

diagramming, typically including activities connected by information flows and logic

gates that determine the sequences in which tasks are attempted (Wynn and

Clarkson, 2017). Another popular approach to this kind of modelling is the Business

Process Modelling Notation (BPMN), and similarly Event-driven Process Chain

(EPC), which offer the advantage of easy-to-interpret diagrams and robust software

tools available for the creation of large-scale models (Wynn and Clarkson, 2021).

Amigo et al, (2013) performed a systematic literature review with the aim to provide a

18

state-of-the-art picture about process modelling methods and propose a detailed

classification based on their purposes. They found that there is not an agreement on

the definition on the term modelling method, as the terms normally used are

frameworks approach, techniques, languages, and views. They concluded that the

purposes of models of product development are from high abstraction levels showing

“flow of data information”, to less abstract levels that “define/show activities

sequence (Amigo et al., 2013). Wynn and Clarkson,(2007) performed a literature

review on the principal models in design and development, providing a taxonomy for

procedural and analytical models of product development and design. They also

identified categories for abstract models and models related to the management

research operations. Their taxonomy also categorized the utilization of models at a

micro-level, which are models that focus on individual process steps and their

immediate contexts; meso-level models, which are focused on end to end flows of

tasks as the design progressed; and macro-level models, that focus on project

structures, or design processes in context.

Models provide insights at different levels depending on their application and the

interpretation, and each emphasises different elements of the process, and offers

different terminology and visual representations (Wynn and Clarkson, 2017).

Browning et al., (2006) explains that process models are used to develop

understanding, or for planning by determining what needs to be done and when; to

prescribe a procedure to be followed, or to predict a possible a process behaviour.

Descriptive process models attempt to capture tacit knowledge about how work

should be, describe key features of the "as is" reality, and achieve their purpose

when they provide a valid understanding of the target system (Browning et al., 2006).

The prescriptive process models tell people what to do and how to do it, as a

standard process or procedure accompanied by a mandate to follow it strictly

(Browning et al., 2006). In prescriptive models, the relation between model and

target is deontic, by defining what should be done, the model precedes its target

(Eckert and Stacey, 2010).

Models are a central element of design methodologies, as they provide a consistent

terminology and can be identified, as stages, (or design phases), activities, and

strategies (Blessing, 1995). Gericke and Blessing (2011) identified, stages, design

activities, and strategies, as follows. A stage is subdivision of a design process in

relation to the state of the designed product, where every stage considers a time-

consuming activity. A design activity is a finer-grained division than a stage, a

subdivision of the design process associated with the individual problem-solving

process. Strategy is defined as the sequence in which design stages and activities

19

are planned or executed. Those strategies provide ways to execute the design

process, i.e., stepwise, cyclic, decomposing, iterative and abstracting /concretizing

(Gericke and Blessing, 2011).

In a literature review, Wynn and Clarkson (2005) identified design stages or design

activities, distinguishing between three dimensions for models of design processes.

Firstly, classified as (1) stage-based models, (2) activity-based models, then followed

by (3) design process models identified as problem-oriented, and solution-oriented.

Wynn and Clarkson, (2005) also describe models with abstract approaches,

including procedural approaches and analytical approaches.

On a different note, Chakrabarti and Blessing (2016b) provided an analysis of

models' design in their “Review of Theories and Models of Design”, categorising

models of design into those initiated before this century and those initiated during

this century. It is a chronological analysis of the design models in the engineering

design research field, providing an analysis of design theories and how they differ

from models of design. Chakrabarti and Blessing (2016a) reflect as well on how

theories and models have become more widely known, and how their construction

has become more rigorous, looking for validation using data and linked to practice.

Chakrabarti and Blessing (2016a) established that object models related to

designing, such as scale models, CAD models, and sketches are design models.

While models used to describe or prescribe how design and designing should be,

and how those relate to practice or education may be called models of design

(Chakrabarti and Blessing, 2016b). They stated as well, that a model could be a

subset of a theory, where the theory provides a higher level understanding than a

model does (Chakrabarti and Blessing, 2016b). Their anthology relates in most of

the cases descriptive models, many of the ones initiated before this century are

organized from the top-down perspective and around the product breakdown, in an

inherited style from manufacturing and construction industries (Kruchten, 2002).

While in some models initiated this century a top-down/bottom-up continuum across

the development cycle (Kruchten, 2002) is becoming more evident.

The review of the literature suggests that since design processes consider different

requirements and constraints within their context (Kohlberg et al. 2014), not all

models can be relevant to every situation. The assumption of a logical and

predictable order of activities in all design processes is wrong because there is not a

sequence of operations which guarantee success, and therefore the adaptation of

the process model according to the specifics of the problem is necessary (Gericke

20

and Blessing, 2011). The ability to manage this adaptation in one of most important

skills of designers (Lawson, 2006).

2.5 Design iteration

Design iteration is recognized for having a ubiquitous character in the design

process. By enabling the progressive generation of knowledge, concurrency, and

integration of necessary changes (Wynn, Eckert 2017) with the systematic

exploration and understanding of the design problem complexity (Le, H.N. et al.,

2010), iteration contributes to the incremental completion of the tasks with different

information levels and improving quality, but eventually adding time to design

activity. It is recognized for engineering designers, as an investigative tool that

enables advanced knowledge and a better understanding of the design problem and

solution (Dorst and Cross, 2001). On the other hand, from the managerial

perspective, design iteration needs to be fitted into different project planning

strategies, such as parallel, sequential, or independent task cycles, to develop

planning models that incorporate the feature in the overall development process.

An important trend in the engineering design research literature discusses design

iteration, assessing theories, descriptions, or taxonomies. A number of researchers

argue that design processes and large projects such as product development are

iterative in nature and the importance of managing iteration has been well

established (Wynn and Eckert, 2017).

2.5.1 Design iteration approaches

Design iteration has been analysed under several perspectives. In a recent literature

review, Wynn and Eckert (2017) defined categories as micro, macro, empirical,

demonstrated models, and a definition of an iterative stereotypes. For the analysis of

the approaches to iteration in the analysis of the literature, this thesis, suggest the

use of a taxonomy with six categories to support the understanding of the different

interpretations of the design iteration. The first category is defined for the qualitative

characteristics of design iteration, within this classification, design iteration is

perceived as having positive or negative effects, desirable or undesirable to the

design process or product (Wynn and Eckert, 2017). Ballard (2000) approach to

design process, from a lean design perspective, points out that negative iteration is

an important source of waste, and suggest the generation of value through positive

iterations, through organizational strategies to reduce iterations with management

design techniques.

21

Le, H. N. (2013) suggested that the positive effects of iteration include exploration of

concepts to find and correct flaws, enabling development under uncertainty and

change. Wynn and Eckert (2017) asserted that design iteration has both positive and

negative effects, but they likely depend on situation-specific factors. However, from a

strategic perspective, when the iteration is used during the design process, it is

expected that appropriate strategies and policies influence the process. Yassine et

al. (2003) suggested that a reduction of the pairwise coupling reduces the instability

caused by iterations leading to a more rapid completion.

On a different note, Bhuiyan et al. (2004) found that increments in functional

interactions decrease cross-phase iteration caused by preliminary information

reducing the overall effort and time, even when more iteration is required. On a

different note, an operational approach of iteration is when it is used or expected

during the overlapping of tasks in concurrent strategies. For example, in Eppinger et

al. (1994), the use of the concurrent iteration developing tightly coupled subsystems

through frequent information exchange.

The organizational aspects of the iteration considers iterations happening due to the

interactions between product, process and organisational levels (Le, H.N. et al.,

2012). For instance, Eckert et al. (2014) highlighted the uncertainty in decision

making related to technology, communication, and new design solutions, when

design teams, customers, and suppliers iterate to converge on an effective design

solution. On the other hand, Piccolo et al. (2019) attempts to connect design iteration

with a social perspective, arguing that social networks influence iterations. In their

study, they find that the number of iterations increase when the number and

influence of stakeholders exhibits a prominent role as facilitator or authority.

A product perspective of design iteration considers iterations directly influencing the

current state of design (Wynn and Eckert, 2017), within the problem and solution

space (Dorst and Cross, 2001), including the enhancement of characteristics and

attributes. The process approach identifies how design iteration influences the

design or development processes, for instance, when iterations are the result of

previous iterations (Jin and Chusilp, 2006), or designers proceed with similar

patterns of design activity (Costa and Sobek, 2003).

Wynn and Eckert (2017) distinguished between three broad categories for design

iteration stereotypes: (1) iterations toward progression, (2) iterations for corrections,

and (3) coordination. Progressive iterations provide a better design by contributing to

the problem solution, the refinement of specifications, and functionalities. In contrast,

corrective iterations often respond to an unplanned event; they are perceived as

22

undesirable when they cause rework or new work or can produce a cascade effect

when a solution to a problem causes other problems. On the other side, the

coordinative iteration helps to do the process effectively and efficiently.

Table 2.5.1.1 shows the literature approaches identified in the analysis. The first

column shows the author and publication year, followed by five columns with the

names of the different perspectives discussed above.

Table 2.5.1.1 Design Iteration perspectives in literature based on Wynn and
Eckert, 2017. Figures at the bottom of the table represent the percentage
of studies that addressed each theme.

Publication
Qualitativ

e

Strategi

c

Operationa

l

Organization

al

Produc

t

Proces

s

Asimov (1962)

Galbraith (1974)

Eastman (1980)

March (1984)

Clark et al. (1987)

Gero (1990)

Guindon (1990)

Hybs and Gero (1992)

Schon and Wiggins (1992)

Smith et al. (1992)

Smith and Eppinger (1993)

Clausing (1994)

Eppinger et al. (1994)

Bucciarelli (1994)

AitSahlia et al. (1995)

Eisenhardt and Tabrizi (1995)

Ha and Porteus (1995)

Krishnan et al. (1995)

23

Ward et al. (1995)

Kolodner and Wills (1996)

Maher and Poon (1996)

Safoutin and Smith (1996)

Cusumano (1997)

Cusumano and Selby (1997)

Iansiti and MacCormack (1997)

Krishnan et al. (1997a)

Krishnan et al. (1997b)

Smith and Eppinger (1997a)

Thomke (1997)

Braha and Maimon (1998)

Browning (1998)

Loch and Terwiesch (1998)

Smith and Leong (1998)

Smith and Tjandra (1998)

Thomke (1998)

Ahmadi and Wang (1999)

Atman et al. (1999)

Hoedemaker et al. (1999)

Love et al. (1999)

Sobek et al. (1999)

Terwiesch and Loch (1999)

Adams and Atman (2000)

Ballard (2000)

Isaksson et al. (2000)

Love and Li (2000)

Roemer et al. (2000)

24

Austin et al. (2001)

Dorst and Cross (2001)

Joglekar et al. (2001)

MacCormack et al. (2001)

Love (2002)

Terwiesch et al. (2002)

Ahmed et al. (2003)

Badke-Schaub and Gehrlicher
(2003)

Costa and Sobek (2003)

Loch et al. (2003)

Mihm et al. (2003)

Safoutin (2003)

Yassine et al. (2003)

Bhuiyan et al. (2004)

Eckert et al. (2004)

Love and Edwards (2004)

Cho and Eppinger (2005)

Fairley and Willshire (2005)

Huberman and Wilkinson (2005)

Boudouh et al. (2006)

Chusilp and Jin (2006)

Jin and Chusilp (2006)

Liker and Morgan (2006)

Taylor and Ford (2006)

Braha and Bar-Yam (2007)

Wynn and Eckert (2007)

Dyba and Dings0yr (2008)

25

Jun and Suh (2008)

Arundachawat et al. (2009)

Hatchuel and Weil (2009)

Hwang et al. (2009)

Jin and Benami (2010)

Love et al. (2010)

Moen and Norman (2010)

Le (2012)

Schlick et al. (2013)

Fernandes et al. (2014)

Haller et al (2014)

Kim et al. (2014)

Eckert et al. (2014)

Frillici et al. (2016)

Moore et al. (2016)

Wynn and Eckert (2017)

Yassine et al. (2018)

Browning (2018)

Picciolo (2019)

Hassanezhad et al. (2019)

Singht et al. (2019)

TOTAL 18% 14% 11% 10% 23% 24%

The results of the analysis of the approaches to design iteration in the literature led

to conclude that most of the research endeavours focused on the analysis of design

iterations regarding product and processes followed by the negative or positive

effects of the design iterations. The organisational aspects of design iteration are at

the time of performing of this analysis, the areas where more research is required.

26

Table 2.5.2.1 summarizes the publications by quantity, perspective, and year,

showing that design iteration has been recognized as an important feature of the

design process since the early works of Asimow (1962). However, it is only during

the last three decades that the analysis of the impacts of design iteration, from the

engineering design research community, took a higher relevance from 1997 to 2003

with many publications. These publications were mainly looking to develop

understanding about how iteration influences products and processes, followed by

enquiring about how the feature contribute or impact the process or product.

Table 2.5.1.2 Quantity of publications in different perspectives between the
years of 1962 to 2020.

This review found that Safoutin and Smith (1996), Costa and Sobek (2003), Wynn

and Eckert (2017), and Jin and Chusilp (2006) developed a more holistic view and

proposed frameworks considering not only aspects of design iteration, but also

identified design iteration through different abstraction levels, domains, and actors

during the design or product development process.

27

23

15
13

35 35

0

5

10

15

20

25

30

35

40

Qualitative Stategic Operational Organizational Product Process

Q
u

an
tit

y
o

f
p

ub
lic

a
tio

ns

Perspective

Publications per perspective between 1962-2020

27

2.5.2. Micro, meso and macro iterations

Safoutin and Smith (1996) asserted that the micro, meso, and macro are terms used

to refer to broader loops in scope, such as the successive model releases of a

product the marco level, or narrower than such mathematical techniques used for an

engineering optimisation process the micro level. They distinguished between three

main scales for design iteration: micro, meso, and macro. The micro-scale iteration is

related to a low level of design problems; it is an error-driven design process. The

meso-level iteration links distinct stages of the design process through a proposal,

testing, and modifications cycle. Finally, the macro scale iteration is a refinement of

the design with a product annual release.

Costa and Sobek (2003) defined a framework with three iteration types. First, the

rework iteration that occurs with the repetition of the activity at the same level of

abstraction, in the same object, generally to correct an error. Second, the design

iteration, which is an activity where the design evolves toward the desired final state.

This iteration repeats the activity to generate meaningful information that helps

designers define and refine a solution. Third, the behavioural iteration that proceeds

through the same activity, at the same abstraction level, with different scope This

means, for instance, that designers divide a problem into parts and perform a similar

pattern of design activity on each part.

2.5.3 Mental iteration and iteration of the design task

Jin and Chusilp (2006) proposed a framework to study mental iteration in different

design situations. The authors identified to types of design iterations, (1) the iteration

of the design task as the repetition of task often carried out by design teams, due to

new information arriving or because of a previous iteration, and (2) the mental

iteration, characterized by the repetition of the cognitive activities of a single designer

while he/she performs design tasks.

By using a IDEF0 diagram the authors modelled mental iteration loops depicting the

‘flows’ of design contents between cognitive design activities (Figure 2.5.3.1).

28

Figure 2.5.3.1 A cognitive activity model of conceptual design, from Jin and
Chusilp (2006).

Jin and Chulisp (2006) argue that mental iteration may be modelled as a sequence

of transitions between information processing activities and decision activities,

looping within and among a number of design-specific cognitive activities. Their

model compromises four key cognitive activities of the generation of the idea

process, analyse, generate (idea), compose (concept) and evaluate (concept). The

model allows the exploration of the relations between mental activities, identifying

roles of various content, in mental iteration with respect to different phases of

thinking in conceptual design (Chusilp and Jin, 2006).

2.5.4 Modelling approaches to design iteration

Several authors have developed algebraic and mathematical models of how iteration

is created and when tasks are overlapped, and to study the optimal timing of design

reviews in concurrent processes (Krishnan, Viswanathan et al., 1995); (Roemer et

al., 2000). The mathematical models consider management and time of testing, such

as the model of Ha and Porteus (1995) which studies the optimal timing of design

reviews in the presence of concurrency.

Another set of studies analyse the relationship between design freeze and iterations,

for example the models of Krishnan, V. et al. (1997), Keller et al. (2008), and Lee, J.

and Hong (2015). In addition, they study the complexity associated with the

interrelation of design tasks and design problems influencing design time. A number

of authors have developed models approaching the increments in complexity with

revisiting the design task (Braha and Maimon, 1998; 2013), the complexity

29

associated with the connectivity patterns of the tasks (Loch, C. et al., 2003), and the

complexity raised from the coupling density (Yassine et al., 2003).

Other models have attempted to resolve dense cycles of information dependency

and iteration (Smith, R., P. and Eppinger, 1997a; Loch, C. et al., 2003; Huberman

and Wilkinson, 2005), consider how the coordination of participants may influence

the iteration, during the overlapping of tasks (Loch, C.H. and Terwiesch, 1998), or

analyse the decomposition of the interdependent design work and information

sharing between teams (Yassine et al., 2003). Different models simulate how

communication overload influence the amount of iteration (Levitt et al., 1999), and

modelling series of iterations in a concurrent design tasks to select values for design

parameters (Mihm et al., 2003; Loch, C. et al., 2003).

A model serves as a tool to specify and organize the understanding of a system with

the purpose of explaining and communicating (Chakrabarti and Blessing, 2016b).

Although modelling iteration is a relevant for the understanding of the behaviour of

the design processes (Wynn, 2007) and simulation models in literature address

different perspectives, there is still a lack of research on how to represent the

iterative dynamics of the new product development processes in a relatively simple

representation that can be manipulated visualised and validated by discussion with

process participants (Wynn,2007).

2.6. Rework

Within product development, both strategy and early design decisions influence the

organisational structures needed to develop engineering designs and the social

networks formed by design teams. As designs develop, new information and

constraints emerge, and design requirements change, leading designers to revisit

and revaluate design decisions. During these processes, iterations contribute to the

quality of the design and progression (Wynn, Eckert 2017). However, iterations also

increase project duration and cost, and cause rework when these iterative cycles

propagate into different stages. Rework is recognized as the unnecessary effort and

delays arising from redoing a process or activity not adequately implemented the

first time (Love, P.E., 2002), due to initially imperfect information or changes in

requirements (Smith, R., P. and Eppinger, 1997a), consuming time (Arundarachawat

et al. 2009) and affecting project duration and cost.

2.6.1 Causes of rework

From the perspective of Engineering Design and product development, Costa and

Sobek (2003) define rework as the repeating of an activity at the same scope and

30

abstraction level, while Repenning (2001) refers to rework as the unplanned

allocation of resources to fix problems discovered late in the product development

cycle. Wynn and Eckert (2017) defined rework as redoing tasks in similar way

because the inputs and assumptions have changed, and Mitchell and Nault (2007)

recognised rework as a design change whose implementation alters work that was

previously done upstream and downstream. Kennedy et al. (2014) define rework as

the unnecessary work because a prior decision was assumed to be final and is

changed because it was found to be defective. For Taylor and Ford (2006a) rework

is the task that needs to be redone because a change. Cho and Eppinger (2001)

pointed out that feedback rework occurs because a downstream task fails to meet

established criteria, and feed-forward rework occurs on a downstream task because

new information arises from an upstream task. Dullen et al. (2019) assert that the

major influence of rework during the project execution are related to the task

dependency, process execution project complexity, information evolution, and

information completeness.

When new information is obtained due to overlapping tasks, rework might happen

because inputs change after rework on other tasks or because the outputs fail to

meet established criteria. In the information evolution, uncertainty refers to a

technical problem where the problem is understood but the value of its variables is

unknown, and ambiguity is used to refer a situation where neither the variables nor a

mechanism to solve the problem to increase knowledge is recognized (Schrader et

al., 1993).

Information stability is the likelihood that the preliminary information does not change

for the remainder of the process (Dullen et al., 2019). However, when ambiguous

problems are known, the causes of instability in information are the evolution of

information, as a result the evolution of the information brings stability and precision

(Terwiesch et al., 2002). Consequently, the extent of rework will be a function of the

information evolution and the downstream sensitivity (Dullen et al., 2019), which

refers to the extent to which changes in the upstream information create rework in

the downstream activity (Bogus et al., 2006). The faster the evolution of the

upstream activity, the less likely the upstream information substantially changes

(Bogus et al., 2006); hence, there are fewer changes influencing the downstream

activity and less rework in consequence.

In the interdependent tasks, the downstream activity is dependent on upstream

preliminary information, and the uncertainty and information instability generated

during the process using preliminary information causes a high risk of reworking

tasks, ultimately causing a vicious cycle of iterations that leads to the churn effect

31

(Dullen et al., 2019). The churn effect is described by Wynn and Eckert (2017) as the

ongoing corrective iterations in which solving problems creates more problems

without terminating quickly. Yassine et al. (2003) define design churn as the scenario

where the total number of problems being solved (or process being made) does not

reduce (increase) monolithically as the project evolves over time.

On a different note, the development of a complex system requires multiple

integrated engineering design teams to develop systems, sub-systems, and

components, the major number of teams working in a system, and the major risk of

misalignment in the product architecture and organizational structure (Sosa et al.,

2004). The misalignment leads to sub-optimal designs and interface issues

identified later in the life cycle that will need rework (Dullen et al., 2019).

The definition of rework varies depending on the perspective and context. Some

authors define rework as a repeating an activity at the same scope and level (Costa

and Sovek, 2003), while others refer to it as the unplanned allocation of resources to

fix late discovered problems (Repenning, 2001), or redoing tasks due changing

inputs and assumptions Mitchell and Nault (2007). The literature analysis led to

conclude that rework is the need to redo a task due a wrong, incomplete or new

information, in a later or earlier stage of a product development project, and the

occurrence of rework depends on the size or complexity of the product or product

development project. The analysis led to conclude as well that the literature does not

highlight the organisational implications on project development that impact rework.

2.6.2 Mitigation of rework

An important trend in engineering design research literature has developed through

different research approaches: strategies for the mitigation of rework. The table

2.6.2.1 present a summary of the relevant models and frameworks developed by

academics and practitioners. The first column is used to allocate the author’s last

names, in form of bibliographic reference. The second column is used to identify the

methodological approach, we use worlds as model or framework or other when is

appropriated. The following columns provide a brief description of the outcomes or

expected behaviour; we use a verb at beginning of the paragraph to identify the aim

of the work, for instance “optimize, determine, account, study” in most of the

descriptions.

32

Table 2.6.2.1 Relevant frameworks developed for the mitigation of rework
based on Dullen et.al, (2019).

33

Rework is a significant component in product development cycle time, representing

up to two thirds of the of the project effort according to Osborne (1993). While

Kennedy et al. (2014), assert that larger companies expend about 70 to 80 percent

of the development time reworking a design.

There are three major interests in the research literature about rework. In one third of

the total population of research articles reviewed, the research seeks to develop

understanding on how task and information dependencies, communication,

cooperation, and planning impact the outcomes and timing of the development

process, where rework is present. i, e,. (Loch, C.H. and Terwiesch, 1998),(Mitchell

and Nault, 2007), (Yassine et al., 1999), (Nelson et al., 2016), (Taylor and Ford,

2006b), (Ford and Sterman, 2003), (Smith, R., P. and Eppinger, 1997b), (Browning

and Eppinger, 2002). A second third seeks to determine what are the optimal

strategies, for overlapping tasks, testing activities, and concurrency, for instance,

(Krishnan, Viswanathan et al., 1997), (Chakravarty, 2001), (Roemer and Ahmadi,

2004), (Thomke, S. and Bell, 2001),(Smith, R., P. and Eppinger, 1997a) (Terwiesch

et al., 2002),(Yassine et al., 2008),(Wang, Z. and Yan, 2005), (Hoedemaker et al.,

1999). The final third are concerned with the causes and conditions leading to

rework or persistent reworks and what are the management efforts related, for

instance, (Yassine et al., 2003),(Repenning, 2001), (Braha and Bar-Yam, 2007). The

remaining works address, diverse strategies on how to use, optimize, or identify, or

reveal, or address situations within the project development. The following graph, in

figure 2.6.2.1 shows the main approaches from the reviewed literature.

34

Figure 2.6.2.1 Summary main approaches on the mitigation of rework in the
literature from table 2.6.2.1

The socio-technical perspective of this research considers technical, socio-aspects,

and systemic connections to understand how human and organisational factors

influence task performance and how technical systems are used (Clegg et al., 2017),

are useful to develop understanding on task and information dependencies,

communication, cooperation, and planning impact the outcomes and timing of the

development process, where rework is present.

2.7. Feedback loops

Tsoukas and e Cunha 2017, states that feedback (or causal) loops are an essential

concept in social and organisational theory and enhance understanding of the

relationships between the past and current state systems generally used in sciences

and mathematics, it is an approach to compare processes and their resulting

behaviour, an essential element to understand the relationships between the past

and current state of a system, that indicates the dependence of a future state of a

system upon an earlier state (Tsoukas and e Cunha, 2017). The term feedback loop

describes activities aimed to reduce a gap between a perceived and future state of a

system. However, it is also used to suggest that the outputs of a process will

influence its input directly or indirectly at some point in time. Feedback loops are also

associated with the evolution of a system over time when they are related to control

Adress
3%

Estimate
7%

Determine
27%

Evaluates
7%

Identify
3%Improve

7%

Optimze
3%

Reveal
3%

Study
10%

Understand
27%

Use
3%

Rework literature review main approaches

Adress

Estimate

Determine

Evaluates

Identify

Improve

35

and stabilisation and with the improvement or decline of a process or behaviour

when they are associated with virtuous and vicious circles (Wynn and Maier 2022)

Richardson and Pugh, (1981) defined a feedback (or causal) loop as a closed

sequence of causes and effects with closed paths of action and information.

Conversely a linear chain of causes and effects that does not close back on itself is

called an open loop (Richardson and Pugh, 1981). Monge (1990) analysed feedback

loops in organizational processes from a dynamic theory perspective and suggested

that feedback loops represent processes that occur over time, have a positive or

negative sign, and are characterised as stable or unstable. Strand and Söderström

(2002) assert that the bi-directional nature of the feedback loop between

management and the core business processes allows knowledge management to

develop by receiving inputs from business processes and functions to make them

more effective. Kline and Rosenberg (1986) defined feedback loops as small or large

recursive cycles characterising the relationships and iterations in an innovation

model, in particular, among research, invention, innovation, and production.

McCarthy et al. (2006), approaching new product development (NPD) as a complex

adaptive system, identified overlaps in the stage-gate model which are referred to as

feedback loops that facilitate the customisation of the NPD process behaviours and

also configuration from linear to chaotic with corresponding types of innovation

output that range from incremental to radical.

A causal loop that tends to reinforce or amplify a change is a positive, reinforcing, or

deviation-amplifying feedback loop, while a closed-loop that tends to counteract a

change is called a negative, deviation-counteracting feedback loop (Masuch 1985).

2.7.1 Vicious circles in organisations

Vicious and virtuous circles are prevalent in social systems, such as organisations,

where there are numerous heterogeneous and often conflicting causal loops. A

vicious circle is a deviation-amplifying loop that turns a challenging situation worse,

and a virtuous circle is a reverse deviation-amplifying loop that makes a good

situation better (Tsoukas and e Cunha, 2017). Edgeman et al. (2020) asserts that in

organizations various patterns or cycles of behaviour exist, that can be identified as

enterprise routines or habits that produce a range of negative to positive results.

Patterns of behaviour producing predictable poor to negative results might be

regarded as vicious circles. Edgeman et al. (2020) argues that a vicious circle is a

self-propagating complex chain of events with failures or negative consequences at

one stage that generate increasingly serious failures or negative consequences at

36

each subsequent stage. In contrast, patterns or behaviour that produce predictably

positive results can be regarded as virtuous circles, a self-propagating complex

chain of events with positive consequences at one stage generating positive

consequences at each subsequent stage (Edgeman et al., 2020).

2.8. Simulation models of product development process.

Simulation models are to Hardebolle and Boulanger (2009) models that can be

executable, when there is an algorithm able to compute a behaviour accordingly to

the semantics of the modelling language. Executable formalisms are modelling

languages which have a formal syntax and semantics, considered unambiguously

defined, even when they do not involve a mathematical definition. While a modelling

executable paradigm can be considered as a mindset for modelling or a set of

requirements that govern how a system is to be modelled.

An important contribution to the research is the improvement to the product

development processes by using a formalism approach to model new product

development processes that was made by Clarkson and Hamilton (2000), Cho and

Eppinger (2005), Wynn et al. (2010), Hassannezhad et al. (2019) and Wynn and

Clarkson (2021). In a different note, models using paradigm approaches were made

by Ford and Sterman (1997) and Rahmandad and Hu (2010).

2.8.1 Computational models in engineering design

Nikolic and Lukszo, 2013 stated that computational models are analogies of real-

world systems that inevitably involve some reduction of complexity and

approximation. Their purpose is to design or represent real-world or anticipated

systems such as a design concept, a facility design, or a process design. Their

design and adjustments must reflect the outcomes of real-world systems, and with

simulation techniques develop experiments that allow the understanding of the

systems' performance under different operating conditions, to evaluate management

strategies or decision-making processes, usually when prototyping or

experimentation is expensive or impossible to build (Nikolic and Lukszo, 2013).

Computational modelling construction distinguishes between analytical or static

models and dynamic or simulation models. The analytical model’s outcome depends

on the input, while dynamic modelling uses a set of rules that define how the

modelled system will change in the future. Simulation is the execution that takes the

model through (discrete or continuous) state changes over time (Borshchev and

37

Filippov, 2004). A general process of developing computational simulation models

entails a series of stages starting with a (1) research question that needs to be

answered, that leads (2) to establishing a definition of a target system to be

modelled, (3) the collection of some observations about that target that may lead to

establishing (4) the parameters and initial conditions. In the construction of the

simulation model assumptions are allowed, followed by a verification stage to debug

of the model and a stage for the validation to ensure that the behaviour of the model

corresponds to the behaviour of the target, and a stage for experimentation that will

provide with the answer to the what if? question.

Depending on the modellers’ approach and simulation strategy used, those stages

include activities. However, an important aspect of the construction of simulation

models is related to the simplification of the model among the target system intended

to be represented, while the definition of modelling establishes that a model is a

simplification of the target system, it is more about a process of abstraction, that

aims to reduce the space of the system by omitting details considered irrelevant

(Dams and Grumberg, 2018). The outcome of the abstraction process, including

aspects like problem definition, purpose, and objectives is known to be part of the

conceptual model.

2.8.2 Simulation of iterative process

A task-based approach considers design iterations as the revisiting of an already

completed task or the execution of similar tasks in different contexts. Task-based

models tend to be mechanistic and do not account for control mechanisms in the

process (Wynn, 2007). It is also recognized that Iteration is a social coordination

process where actors negotiate trade-offs. Here, iteration is modelled as a function

of continuous dialogue between the participants. Finally, in the information-based

modelling approach, the process information determines process behaviour; here the

process model aims to capture iterations feedback by releasing preliminary

information prior to its final task completion (Wynn et al., 2007).

2.8.3 Simulation of engineering design teamwork

Teamwork is not a result of the simple aggregation of individual talents. In

organizations, the knowledge, the flows, and the information processing of

individuals (actors) in product development teams impacts many aspects of the

organizational dynamics (i.e., beliefs and norms) but also the process of decision

making, learning, and innovation. A common practice in the new product

development organizations is the creation of multi-teams environment, where

38

individuals have multiple memberships and the team boundaries are often ill-defined

(Crowder et al., 2012).

Agent-based modelling is recognised as an efficient tool for modelling complex

socio-technical systems, which include organizations and human behaviour. The

agents in these systems represent human individuals and can represent some

human characteristics like motivation, memory, and learning. Agent-based models

are suitable for team profiling and examination of the effect of special features on

team performance (Perišić et al., 2016). Its characteristics allow the analysis and

prediction of team performance, taking into account task, human, and organizational

factors. Models in the literature that provide support in design problems or as

environments enabling cooperation are SHARE (Toye et al., 1994), PACT (Cutkosky

et al., 1993), Hao model (2006), Wang model(2009), and Madhusudan model

(2005).

A methodology with agents representing specialists in a team working in the same

activity is A-design developed by Campbell et al. (1999). To simulate design team

behaviour, NASA developed a simulator called Team X, and lastly McComb et al.

(2015) developed a modelling framework considering a theory-based characteristics

of teamwork in design. Another set of models that considers work distribution, and

possible problems in activity performance, is formed by VDT, (Jin and Levitt, 1996),

the NetWatch (Tsvetovat and Carley, 2004), the models of Zhang et al. (2009);

(2012), TEAKS of Martínez-Miranda et al. (2006), the model of Crowder et al. (2012),

the model of Dehkordi et al. (2012), and the model of Singh, V. et al. (2013).

2.8.4 Simulation of the rework

System dynamic studies in product development traditionally focused on the project

dynamics, including project evolution, with different complexity levels and capturing

different feedback effects. The models representing these trends are Cooper, K.G.

(1980), Abdel-Hamid and Madnick (1991), Taylor and Ford (2006b), and Lee, S. and

Peña‐Mora (2007). The rework cycle can be recognized by the need for rework due

a flawed project task. The cycle can repeat itself, extending the project duration far

beyond the project original duration. However, in the absence of this, the project

completion is a function of the number and scope of the tasks, the available

resources, and productivity. The rework cycles generate a path dependent

reinforcing loop, which considers defects, quality and testing, and the study of this is

central to understand the project delays and disruptions.

39

2.9 Multiparadigm simulation modelling

The multiparadigm modelling approach, has not been an exclusive concern of the

models and simulation domain. Process models have taken an increasing

importance for the development process in systems engineering. A significant

proliferation of dedicated modelling languages intended to capture specific

knowledge, adapted know-how, and contributions to the efficiency, productivity and

quality of the systems is now available (Hardebolle and Boulanger, 2009). The Multi-

Paradigm Modelling (MPM) method consolidates different modelling methods and

techniques, enabling engineers to model each aspect of the system explicitly at the

most appropriate abstraction level (Challenger et al., 2020).

In the modelling and simulation domain, a traditional modelling and simulation stand-

alone approach faces serious challenges to represent the overall multidimensional

nature of a system like product development process (Mykoniatis and Angelopoulou,

2020). The multi-paradigm simulation approach allows the generation of

interoperable simulations able to capture interactions, among elements of different

abstraction levels, to address a larger range of modelling questions with a reduced

amount of computational effort (Mykoniatis and Angelopoulou, 2020). The Djanatliev

and German (2013) frameworks for multi-paradigm simulation models suggests

three significant processes to structure the simulation scope: First, independent

levels of abstraction or views on the system. Second, the explanation of how

simulation models are linked to the abstraction levels and how the simulation

paradigm is used to model structures at the considered level. Finally, to identify the

connections that reflect the interactions between abstraction levels.

The literature related to simulation modelling identifies three modelling methods or

approaches available to represent the real-world systems in modelling and

simulation. System dynamics, where a high abstraction level in used, thinks in terms

of aggregates (stocks and flows) and feedback loops. Discrete events modelling is a

process-oriented approach, where the system is represented as a sequence of

operations performed over activities. The agent-based modelling approach, where

individual objects interact with each other and with the environment (Borshchev,

2013). Mykoniatis and Angelopoulou (2020) provide a framework integrating those

different simulation approaches in different domains such as socio-technical, cyber-

physical systems, business, and healthcare organizations, arguing that the

combination of different simulation methods require an alignment among the

problem, or system (“what”), the purpose (“why”), and the methodology (“how”), and

derived three main questions for its framework: (1) Why and when does a real-world

40

system require multi-paradigm modelling and simulation? (2) What are the

interaction points among the different simulation models used? (3) How do the

simulation models interact with each other to exchange information?

Nikolic and Lukszo, 2013, state that agent-based models are constructed from a

bottom-up perspective to discover possible emergent properties. These models do

not have a desired state or task to be achieved but instead describe entities and

allow observation of how they interact to explore possible system states. Agent-

based simulation modelling does not focus on specific system components or

subsystems but instead seeks to capture the behaviour of different actors in decision

making, whether competing, cooperating, or negotiating. The concept of agent-

based systems, which are composed of multiple interacting actors and physical

elements, can simulate how system behaviour emerges from the behaviour of actors

at the bottom level (Nikolic and Lukszo, 2013).

2.10 Conceptual models

In the literature related to simulation and modelling, it is still difficult to find a

unanimous definition of conceptual model (Fujimoto et al., 2017). Wilsdorf et al.

(2020) suggested that approaches regarding the content and specifications to

conceptual modelling have a narrow or wider scope and can be seen as a formal or

informal constructs. Specifically, a narrow view defines a conceptual model as an

abstract description, while a wider view refers to a loosely coupled construct

integrating different artefacts. Even broader, when integrating features of the model

context, the formal and informal aspects are related to specifying the conceptual

model and its parts, ranging from the informal using verbal narratives and sketches,

to the formal, by using conceptual modelling languages. Early conceptual model

definitions considered this as a vague and ambiguous informal representation of

modellers’ thoughts. However, later interpretations emphasize the use of formal

languages easy to transform into computerized models but limited to specific types

of problems.

Balci (2012) defines a conceptual model as a repository of high-level conceptual

constructs and knowledge specified in a variety of communication forms, intended to

assist in the design of any type of large-scale complex modelling and simulation

applications, keeping separated the conceptual constructs related with the model

itself and the artefacts referred to the context of the simulation, for instance problem

formulation, objectives, and requirements. On the contrary, Robinson (2008a; 2008b)

include in the conceptual model research questions and requirements and suggest

41

content should be explicit like model inputs and outputs, used data, scope, level of

detail assumptions and simplifications, including entities, activities, modelling

approaches, and justifications. In the definition approach, by Fujimoto et al. (2017),

the conceptual model is a collection of early-stage products, integrating and

providing information and requirements, and developing a more explicit conceptual

model, based in domain-specific languages and ontologies.

Nikolic and Ghorbani's (2011) methodological approach, for the development of

simulations of complex sociotechnical systems, identifies the need for a systematic

approach to conceptual model development as part of an ongoing process for

standardising modelling practice. Their first two stages, system analysis and model

design, include establishing the purpose of the models and identifying the problem

being simulated, key stakeholders, and the system to be conceptualised.

2.11 Agile Hybrid Methodologies

The agile methodology emerged in the software development industries during the

1990s and gained significant popularity after the release of the agile Manifesto (Beck

et al., 2001). Drawing inspiration from the value maximization and waste reduction

culture originally established in lean manufacturing, agile values include

collaboration, team empowerment, iterative and incremental development,

heightened customer engagement, and adaptability to change (de Borba et al.,

2019). The potential of agile methodologies to accelerate product development and

create products more likely to meet customer needs is widely reported. For example,

an empirical study by Serrador and Pinto (2015) highlighted that the utilization of

agile methods significantly impacted project success, particularly in terms of

efficiency and stakeholder satisfaction.

Reiff and Schlegel (2022) assert that hybrid project management, which combines

both traditional and agile project management techniques, capitalizes on the

strengths of each approach. However, the multitude of hybrid methodologies makes

it challenging to distinguish differences, similarities, advantages, or disadvantages

(Reiff and Schlegel, 2022). Furthermore, there is fragmented knowledge regarding

prerequisites and success factors for the successful implementation of hybrid project

management within organizations (Reiff and Schlegel, 2022).

Stelzmann (2012) proposed a classification scheme to define the context for agile,

considering feasibility (where rapid prototyping, testing, and implementing changes

are feasible, and the system is not compromised in terms of safety) and demand for

agile (where high market dynamism, innovation, and rate of change are necessary).

42

Because the history of many agile approaches occurs in small, highly collaborative

environments, they work very well within those spaces. However, agile methods

struggle when those environments face challenges (Ahmed, T. et al., 2014).

Several factors make agile methods difficult to apply in practice. Ahmed et al. (2014)

pointed out that agile methods are challenging to implement within larger teams,

particularly when the teams are geographically distributed and dealing with complex

systems. They also note that agile methods face difficulties in projects with audit,

regulatory, or safety-critical requirements, or expected higher quality requirements,

as well as in projects with strict contractual commitments involving complex user

environments or when the end user is not available. Agile methodologies also

struggle when subcontracted into a project being run in a non-agile way (Ahmed, T.

et al., 2014).

In addition, traditional project management approaches and agile project

management fundamentally differ in their structures and processes. For example,

the traditional approach involves determining project scope, time, and cost early in

the life cycle and carefully managing scope changes (Fernandes, G. et al., 2018). In

contrast, Bogdanova et al. (2020) assert that agile project management prioritizes

flexibility in the face of changes in the environment and scope of services, focusing

on functional requirements and employing short, sequential planning and execution

cycles for more autonomous project teams, client feedback, and flexibility in project

scope (Bogdanova et al., 2020).

While hybrid models offer a promising route for integrating agile methods into

physical product development, they are still in their nascent stages and lack

unanimous acceptance (de Borba et al., 2019). Thus methods have proven

successful in software development, their effectiveness in other disciplines is still

being determined (Kennedy & Umphress, 2011; Mosher, Kolozs, Colegrove, &

Wilder, 2018; Rigby, Sutherland, & Takeuchi, 2016). The consensus is that a pure

Agile approach, as implemented in software companies, does not seamlessly fit

physical products, requiring some degree of adaptation (Reiff and Schlegel, 2022).

2.11.1 Scrum

The most common agile method is called Scrum (Dingsøyr et al., 2012). Scrum

emphasizes incremental feature delivery and is designed to be flexible, allowing

customers to change their minds during development without disturbing the ongoing

effort (Sutherland & Schwaber, 2007). Unlike many agile methods, scrum has a

foundation in theory, specifically complex systems science (Sutherland & Schwaber,

43

2007; Szalvay, 2006). Existing agile systems engineering approaches heavily favour

scrum (Douglass, 2015; Dove & LaBarge, 2014; Kennedy & Umphress, 2011).

In scrum, iterations, incremental development, self-managed teams, and flexibility in

the face of changing requirements are common aspects (Ziółkowski and

Deręgowski, 2014). The term "iterative approach" of scrum refers to the division of

the project duration into iterations or sprints, where the overall project is divided into

several smaller projects (Vinekar et al., 2006). The team determines features for

development, works on them, and reviews them with the customer at the end of the

sprint. This close customer engagement allows for adjustments to the project's

course and scope throughout its duration (Ziółkowski and Deręgowski, 2014).

Sprints are short repeating blocks of time in which key parts of the project are

completed. Sprints are usually two to four weeks long (Sommer et al., 2015). Each

sprint is based on a sprint backlog, which describes a set of priority features (or

product increments) to be developed in the current sprint, selected because they are

high priority and can be completed within the specified timeframe of the sprint. The

sprint backlog outlines priority features for each sprint, and scrum's adaptability

enables responses to constantly change requirements, market conditions, and

project dynamics (Sommer et al., 2015). This flexibility allows adjustments without

renegotiating contracts, ensuring continuous alignment between project scope and

evolving needs (Reiff and Schlegel, 2022).

2.11.2 Hybrid Approaches

Reiff and Schlegel (2022) conducted a systematic literature review identifying two

different streams in hybrid project management. The first combines an agile

approach at the operational level and a traditional approach at the decision-making

level, attempting to combine the advantages of both management systems (Binder et

al., 2014). The second involves hybrid project management integrating an agile

approach into a traditional project management methodology (Reiff and Schlegel,

2022). The literature review also provided the identification of four different hybrid

methodologies that systematically combine traditional and agile project management

phases, summarized in the following table.

Table 2.11.1 Hybrid traditional and agile project management approaches from
Reiff and Schlegel (2022).

44

The Water-Scrum-Fall methodology combines the traditional Waterfall methodology

with agile Scrum. It is based on the idea that there must be a structural framework

for a project, which is provided by the established Waterfall project structure. Within

this traditional process approach, agile phases are integrated (West et al., 2011).

The Waterfall methodology is the best-known and simplest process model of

traditional project management, operating sequentially. Phases are completed one

by one, moving the product design to the end. In this methodology, each phase must

be completed before moving on to the next. It is also possible to return to a

previously completed phase if adjustments or corrections are required (West et al.,

2011).

In the Waterfall-Agile model, the project plan is scoped, and the first agile sprint is

planned before the project begins, requiring a complete project plan. However,

specific details of each sprint are not defined until the first sprint takes place and is

complete (Hassani et al., 2018). The stages of design and implementation are based

on agile methodologies. In each iteration, requirements are defined, and customer

feedback is observed. In this methodology, individual project phases are selected

and assigned before the project starts but can be exchanged during the project

development according to the specified amount of effort (Reiff and Schlegel, 2022).

Phases
Approach Initial phase Development phase Final phase

Waterfall Scrum Waterfall
Design Integration
Development Testing
Implementation

Waterfall Agile approach Agile apprach
Requirement analisys Design Testing
Planning Development

Implementation

V-model Scrum V-model
User requirements Design Testing
User requirements Implementation System testing
Planning Unit testing

Stage-Gate for admistrative
and strategic activities

Stage-Gate for admistrative
and strategic activities

Stage-Gate for admistrative
and strategic activities

Scrum for operative
activities

Scrum for operative
activities

Scrum for operative activities

Discovery Testing
Idea generation Development Validation
Scoping Implementation Launch

Hybird V-model

Water-Agile

Water-scrum-fall

Agile-Stage-Gate
(Scrum-stage-Gate)

45

Hayata and Han (2011) proposed the hybrid V model, where the idea is to conduct

the phases with a higher abstraction level according to the V-model, while the more

detailed phases are performed according to the Scrum method. The suitability of the

Scrum method is due to intensive communication within the development team,

supporting the implementation phase through joint iterative thinking (Hayata and

Han, 2011). In the hybrid V-model, the traditional approach is applied to the project

in the initial and final phases, where there is a greater need for planning. The agile

approach is then applied to the development, implementation, and testing phases

where the need for agility is greater (Hayata and Han, 2011)

The hybrid Agile-Stage-Gate methodology integrates agile sprints by breaking the

development process into stages composed of short increments driven by short-

term, minimal planning (Cooper, R.G., 2016). This adds flexibility and speed while

retaining the structure of the Stage-Gate model. The Stage-Gate model provides

focus, structure, and control, combining the benefits of the agile approach (Cooper,

R.G. and Sommer, 2018). Each stage is composed of a series of time-boxed sprints,

incorporating iterative development cycles.

The project team determines realistic goals for the sprint and then maps out an

action plan to accomplish those goals (Cooper, R.G., 2017). Each day of the sprint

begins with a daily scrum, or stand-up meeting, during which the team members

review what was accomplished the previous day, discuss the plan for the day, and

address any problems that have arisen. At each stage, the adoption of agile sprints

helps to increase responsiveness and adaptability while minimizing drawbacks (Zasa

et al., 2020). Its core element is a continually evolving product definition that

emerges through short-term, dynamic planning (Cooper, R.G. and Sommer, 2018)

Despite the advantages of the agile methodology, it has faced increasing criticism in

recent years. To expedite the development process, the agile approach focuses

more on the final product than on design and documentation (Edwards et al., 2019;

Alves et al., 2019), leading to the neglect of project documentation, as the

development of the solution can be time-consuming and project documentation is

often given lower priority (Czechowski, 2019).

Another disadvantage is the inaccuracy in time planning and budget scheduling,

attributed to the constant re-prioritization of tasks (Bogdanova et al., 2020). In an

organizational context, numerous barriers and challenges inhibit the realization of the

agile benefits (Durbin and Niederman, 2021; Nuottila et al., 2016). In large-scale

transformation projects, basic agile principles, such as team autonomy, are

challenging to maintain (Gustavsson et al., 2022).

46

2.12 Conclusions

The literature that describes the characteristics of product development systems is

scarce; the only two sources that describe the characteristics of product

development systems are the contributions of Pessôa and Trabasso (2017) and de

Weerd-Nederhof (1997). de Weerd-Nederhof, (1997) identified an intra and different

organisational context for the new product development (NPD) systems. The extra-

organisational context consists of the group of entities outside the boundary of the

new products development system influencing the system without affecting its

functions (e, g., other organisations, like competitors, supply chain partners or

government entities such as regulatory authorities). The intra-organizational context

is integrated with other business functions (such as marketing, sales, procurement,

engineering, and manufacturing), potentially affecting all or part of the NPD system.

De Weedr-Netherhof (1997) defines product development organisations as “A

purposeful system of people and resources which, using multiple technologies,

together perform certain ‘activities’ or ‘processes’ to transform inputs into outputs”.

They assert, “If the organisation’s outputs are considered useful by the environment,

the latter is prepared to pay for them, which enables the organisation to fulfil its

goals”.

On the other hand, Pessôa and Trabasso (2017) point out that the product

development system can be understood “as a network with multiple dimensional and

highly interconnected processes, where feedback loops cross these multiple

hierarchical levels”. And argue that the purpose of the product development system

is performing the product development processes. Product development processes

are people-based, complex, and non-linear processes (Pessôa and Trabasso, 2017)

that can be understood as “ information transformation processes, where the inputs

consist of partially new information, and the projects and activities outputs are

expected to deliver, a proven product/process design, a working prototype or a

written product introduction plan” (de Weerd-Nederhof, 1997).

Ulrich and Eppinger (2012) define the product development process as “a sequence

of steps and activities that an enterprise employs to conceive, design and

commercialise a product”. The traditional product development processes include six

stages, starting with a planning stage, then conceptual development, system-level

design, detail design, testing and refinement, and finalising the product ramp-up

stage. However, it is widely agreed that organisations do not follow or define a

47

precise and structured product development process (Ulrich and Eppinger, 2012), as

each organisation may define their own development process or will use a slightly

different version of another organisation.

Although design iteration is one of the most important characteristics of engineering

design processes (Maier, A.M. and Störrle, 2011), there is not a coherent body of

literature on the subject. A consensus model or terminology for describing design

iteration or iterative situations remains elusive (Wynn and Eckert, 2017). However,

from the engineering design practice perspective, Meboldt et al. (2013) differentiate

“two fundamental types of iteration (1) In-stage iterations (there are iterations within

a stage which do not impact on previous gate decisions); and (2) cross-gate

iterations (iterations which affect decisions from previous gates and have an impact

on investments and market launch)”.

The definition of rework varies depending on the perspective and context. Some

researchers define rework as repeating an activity at the same scope and level. In

contrast, others refer to it as the unplanned allocation of resources to fix late-

discovered problems or redoing tasks due to changing inputs and assumptions.

Design changes that affect previous upstream and downstream work and

unnecessary work due to defective decisions are also considered rework. Feedback

rework occurs when downstream tasks fail to meet criteria, while feed-forward

rework occurs when new information arises from upstream tasks.

The research community that investigated design iterations and rework have

developed management tools, strategies, models, and frameworks, to benefit from

design iterations and rework and to prevent or minimise their negative effects.

However, societal and technological changes continuously reshape organisations,

product requirements and constraints. New challenges arise from the more open,

complex, dynamic and networked organisations (McChrystal et al., 2015). The

design of complex products will not be exempt from design iterations, several tasks

will need to be repeated or outcomes updated or upgraded due to new information

arising from other tasks or organisational or social factors.

Wynn and Maier (2022) argue that feedback loops describe activities aimed to

reduce a gap between a perceived and future state of a system. It is also used to

suggest that the outputs of a process will influence its input directly or indirectly at

some point in time. Feedback loops are associated with the evolution of a system

over time when they are related to control and stabilisation and with the improvement

or decline of a process or behaviour when they are associated with virtuous and

vicious circles (Wynn and Maier 2022)

48

On a different note, the literature analysis regarding the simulation of engineering

design teams leads to the conclusion that most simulation models of engineering

teams activities tend to neglect social processes when they aim to estimate technical

performance. Also, models that focus on exploring social processes sometimes

ignore project details and task performance (Perišić et al., 2018). A model able to

study and measure both intangible, individual and team-level aspects and tangible

aspects like time and cost could provide a more comprehensive view of the team’s

performance (Škec et al., 2017)

The literature analysis concludes that the product development process is a

sequential set of development activities where engineering teams carry out design

work, separated by stage gates where go/no go decisions are made. Together, these

form the process workflow (Shepherd and Ahmed, 2000; Montagna and

Cantamessa, 2017).

Meboldt et al. (2013) suggest that two types of iteration are present during the stage-

gated development process: in-stage iterations, which do not impact decisions made

in previous stages, and cross-gate iterations, where decisions affect decisions made

in the last gates, so moving project time and cost (Meboldt et al., 2013). Design

iteration is an in-stage iteration which occurs within each development stage,

improving the design quality within a design stage. These iterative cycles led

designers to revisit and re-evaluate previous design decisions (Wynn and Eckert,

2017), resulting in new activities and feedback loops.

Rework is a form of cross-gate iteration, affecting performance decisions made in

previous stages. Rework results from information dynamics in new product

development processes and is caused by the inadequacy of information due to

changes in requirements, poor decisions, defective outputs or changes in

implementation that alter work previously done (Smith, R., P. and Eppinger, 1997a).

The engineering design processes within product development can be regarded as

complex information-processing activities consisting of creating, transferring, or

disseminating information (King, 1994) directed by the decisions made by individuals

in design teams (Wallace and Ahmed, 2003). Engineering designers and

stakeholders interact during design activity to find a design solution (Montagna and

Cantamessa, 2017). Communications, negotiation and coordination mechanisms

determine the outcome and progress of the design work (Hoegl and Weinkauf, 2005;

Maier, A.M. et al., 2007). The product architecture also influences technical

communications and interactions among design teams (Clarkson and Eckert, 2010)

49

50

Chapter 3: Research methodology

This chapter introduces the overall research process used in developing the

conceptual framework using Sein et al.’s (2011) Action Research Method (ADR).

Section 3.1 summarises the method’s main stages and task principles. Section 3.2

details how the Action Design Research method was used to develop the conceptual

framework. Section 3.3 introduces details used in the bicycle design case study. A

summary of the chapter and its relationship to the remainder is provided in Section

3.4.

This thesis has established that two kinds of feedback loops are relevant features of

product development processes. Rework, governed by the stage-gated processes, is

well-suited to discrete event simulation. Moreover, design iteration is driven by

individual designers and so is best modelled using agent-based simulation. The

integration of those simulation methods suggests that a multi-paradigm simulation

approach was needed. The proposed framework by Mykoniatis and Angelopoulou

(2020) for the development of simulations integrates agent-based, discrete event,

and systems dynamics simulation approaches, including phases of (1) conceptual

modelling, (2) simulation model development, (3) verification and validation, and (4)

results and documentation. It was used to provide a suitable structure for integrating

the two required simulation methods. It includes three relevant questions: (1) Why

and when does a real-world system require multi-paradigm modelling and

simulation? (2) What are the interaction points among the different simulation models

used? (3) How do the simulation models interact with each other to exchange

information?

The first question of Mykoniatis and Angeloupolou’s (2020) framework was

answered by identifying the key characteristics of design iteration and rework that

require a multi-paradigm approach. The conceptual models reported in Chapter 4

take account of, and begin to answer, the last two questions.

Within Mykoniatis and Angelopoulou's (2020) first stage (conceptual modelling),

Nikolic and Ghorbani's (2011) methodological approach for developing simulations of

complex socio-technical systems was used. Nikolic and Ghorbani’s (2011) stages

are typical in software engineering design methodologies but include several iterative

sub-steps specific to simulation modelling. Their first two stages, System Analysis

and Model Design, include establishing the purpose of the models and identifying the

problem being simulated, key stakeholders, and the system to be conceptualised.

Next, in the model design stage, agents and interactions between them are

51

identified. The first two stages map onto Mykoniatis and Angelopoulou's (2020)

Phase 1, and the final three stages map onto phases 2-4.

3.1 Action design research (ADR)

Action Design Research (ADR) is a method for generating prescriptive design
knowledge through building and evaluating ensemble IT artefacts in an
organisational setting (Sein et al., 2011). Ensemble artefacts are defined explicitly as
the material and organisational features that are socially recognised bundles of
hardware and software (Orlikowski and Iacono, 2001). This definition reflects a
“technology as structure” view of the ensembled artifact, where structures of the
organisational domain are inscribed into the artifact during its development and use
(Orlikowski and Iacono, 2001). In ADR, artifact development is an iterative process,
presenting a researcher-driven alpha version of the artifact, refined after successive
iterated versions. Practitioners' feedback contributes to results in one or more beta
versions of the artifact, in this study, the conceptual framework, where the value and
utility of the outcomes are assessed.(Petersson and Lundberg, 2016).

The ADR method includes four stages, (1) Problem formulation, (2) Building,
intervention, and evaluation, (3) Reflection and learning, and (4) Formalisation of
learning (Cronholm and Göbel, 2022). In ADR, each stage involves principles and
tasks (shown in figure 3.1.1.1), which are described in Section 3.1.1

3.1.1 The four stages of ADR

This section outlines the stages and principles for performing Action Design
Research based on Sein et al. (2011) and Lüftenegger (2020). Each stage is guided
by principles and implies the performing of tasks.

ADR Stage 1: Problem formulation. Two principles drive this stage: Practice-inspired

research and Theory ingrained artifact. The former emphasises viewing problems as

knowledge-creation opportunities. While the latter emphasises that theories inform

artifacts created and evaluated within ADR.

ADR Stage 2: Building, Intervention, and Evaluation (BIE). Activities in this stage

use the problem framing and theoretical premises adopted in stage one. These

stages provide a platform for generating the initial design of the IT artifact (Sein et

al., 2011). Three principles drive this stage: Principle 3, reciprocal shaping, states

that an ADR team formed by academics and practitioners engages in an iterative

artifact development process. Principle 4, mutually influential roles, stresses the

importance of mutual learning from the participants within the ADR process. Finally,

Principle 5, authentic and concurrent evaluation, emphasises that evaluation is not a

separate stage of the research process that follows building, and instead is related to

designing, shaping, and reshaping the ensembled artifact and intervening in

52

organisational work practices. However, their specific format may vary based on the

BIE form (Sein et al., 2011).

ADR Stage 3: Reflection and learning. In this stage, reflection on the development

process, from building a particular solution to a broader class of problems, is

conducted. The resulting artifact, also referred to as "the ensemble”, will reflect the

original design and the practitioner's perspectives within the organisational use. This

stage works in parallel with Stages 1 and 2.

ADR Stage 4: Formalisation of learning. In this stage, the formalisation of the

outcomes results in a tool for solving a class of problems. Principle 7, Generalised

outcomes drive this stage: The resulting ensemble is, by definition, a bundle of

properties in different domains. The ensemble represents a solution that addresses a

problem (Sein et al., 2011).

Figure 3.1.1.1 ADR Method, stages and principles from (Sein et al., 2011).

In ADR, Sein et al. (2011) suggest the tasks shown in Table 3.1.1.1 for each stage

described in the following sections.

53

Table 3.1.1.1 Tasks in each stage, adapted from Cronholm and Göbel (2022).

Stage 1. Problem formulation.

1) Identify and conceptualise the research opportunity.
2) Formulate initial research questions
3) Cast the problem as an instance of a class of problems
4) Identify contributing theoretical bases and prior technology advances
5) Secure long-term organisational commitment
6) Set up roles and responsibilities.

Stage 2. Building, Intervention and Evaluation.

1) Discover the initial knowledge-creation target
2) Select or customise the BIE form
3) Execute the BIE cycle(s)
4) Assess the need for additional cycles, repeat

Stage 3. Reflection and Learning.

1) Reflect on the design and redesign during the project
2) Evaluate adherence to principles
3) Analyse intervention results according to stated goals

Stage 4. Formalisation of learning.

1) Abstract the learning into concepts for a class field problem
2) Share outcomes and assessments with practitioners
3) Articulate outcomes in light of theories selected
4) Formalise results for dissemination

3.2. ADR in this research

The ADR method provides the necessary macro-structure (Cronholm and Göbel,

2022) for building and evaluating ensemble IT artifacts in an organisational setting

(Sein et al., 2011). At the same time, it allows the integration of methods that support

the micro-level for the construction of the socio-technical resources in the form of

models, methods, algorithms or digital tools and creates design knowledge (design

principles) (Cronholm and Göbel, 2022).

The current definition of ensemble IT artifacts, where structures of the organisational

domain are inscribed into the artifact during its development and use, matches the

socio-technical approach used in this research. Specifically, socio-technical analysis

54

considers technical, socio-aspects, and systemic connections to understand how

human and organisational factors influence task performance and how technical

systems are used (Clegg et al., 2017). Furthermore, the iterative nature of the ADR

methodology and successive design constructs shape the interpretation and

understanding of the organisational environment (Sein et al., 2011).

3.2.1 ADR Stage: Problem formulation

The input for this stage can come from practitioners, end users, researchers,

technologies, and reviews of previous research. It is often coupled with an empirical

investigation (Sein et al., 2011).

In the problem formulation stage, the research opportunity was detected through the

literature analysis identifying the main characterisations of feedback loops in the

context of the engineering design processes within the product development

systems. Sein et al. (2011) suggest that the research opportunity should be identified

at the intersection of technological and organisational domains.

3.2.1.1: Conceptualise the research opportunity.

A product development system can be seen as a multidimensional network of highly

interconnected processes with feedback loops crossing multiple hierarchical levels. It

can be understood as a complex socio-technical system with three relevant system

elements: people, process, and product. The conceptualisation of the research

opportunity consists of the understanding that realistic representations of the product

development process reflect organisational and process characteristics that mirror

the product architecture, which ultimately influences the process and organisational

structure of the development activity. The research opportunity detected suggests

the need for a conceptual framework for simulating feedback loops in engineering

design that allows the understanding of the system's performance through the

experimentation under different operating conditions and the evaluation of

management strategies or decision-making processes (Hughes et al., 2012). The

integration of two simulation methods supports the framework. It captures the social

and behavioural patterns of the actors, the effects on the progress of design work

and the process, the logical and chronological structure of the project and the

product architecture defining the system's boundaries, and the different technical

configurations.

3.2.1.2 Formulate initial research questions.

The reflection behind the identification of the research question comes from the

understanding that feedback loops are critical characteristics of engineering design

55

processes that increase complexity, time to market and cost. Feedback loops

positively impact the design outcomes (i.e., quality of final design) (Tapia et al.,

2021); however, loops resulting from rework have a positive impact on the final

design, but their detrimental impact on the project development outcomes may be

high.

In design processes, feedback loops within the stages, known as in-stage iterations,

are recognised as learning cycles essential to find the best solutions (Meboldt et al.,

2013). On the other hand, cross-gate iterations are feedback learning cycles too, but

when functional issues appear in the process, these feedback loops may have an

impact in other stages. From the socio-technical systems perspective, positive

feedback loops are virtuous circles that improve a situation. On the contrary,

negative feedback loops are vicious circles that worsen a challenging situation

(Tsoukas and e Cunha, 2017; Masuch, 1985).

The initial research questions were:

(1) How do iteration feedback loops influence the product development processes?

(2) To what extent do the process, the product, and the people interactions influence

product development?

(3) What are the main system characteristics representing those system elements?

3.2.1.3 Cast the problem as an instance of a class problem.

The identified class of problems emerged from an analysis of the design process that

involved identifying the main elements of the engineering design process where

iteration feedback loops emerge. The chronological structure (the process) combined

with the corresponding product architecture (the product), delineates specific in-

stage feedback loop iterations of individual designers and design teams (the people)

and cross-gate feedback loop iterations in rework that influence the product

development performance and outcomes.

Figure 3.2.1.1 depicts the coupling of the product development process with the

product architecture and the in-stage and cross-gate iterations. Review gates

separate the stages of the development process. The product structure is identified

as “product A” in the systems level stage and "PA" in the detailed stage, “product B”

in the systems level stage as well and "PB" in the detailed stage and “product C” in a

similar way in the systems level stage and "PC" in a detailed stage. In-stage

iterations between designers are green arrows in the detail design stage. Rework

cross-gate iteration between the detail design and testing and refinement stage is

identified with the yellow arrow.

56

Figure 3.2.1.1 Cross-gate's product development and architecture design and
three in-stage iteration feedback loops.

The chronological structure (the process) and the corresponding product architecture

(the product) delineate specific in-stage feedback loop iterations of individual

designers and design teams (the people) [Green arrows]. Cross-gate feedback loop

iterations in rework [Yellow arrows] influence the product development performance

and outcomes.

3.2.1 Identify contributing theoretical bases prior to technological advances.

The identified theoretical base considered that the social processes involving team-

working, complex problem-solving, creativity and information exchange characterise

product development processes as complex socio-technical systems (Robinson,

2016). Those socio-technical systems are developed to perform specific tasks,

including technical aspects such as technology, infrastructure, and processes; socio

aspects such as people, goals, and culture and systemic connections between them

(Clegg et al., 2017). Within the design process, designers communicate their ideas

by different means and documents. The uncertainty introduced during designers'

understanding and ideas evolution requires more exploration of alternatives, making

the process iterative (Piccolo et al., 2019).

The theoretical bases also consider the three representations of the iterative process

suggested by Wynn (2007): Task-based, information-based, and actor based. The

task-based approach depicts the engineering design process as tasks are attempted

and revisited until design completion. In this approach, iterations are viewed as

already finished tasks or the execution of similar tasks in different contexts. Task-

57

based approaches are information processing approaches that create and refine

information about the product. In contrast, information-based methods decompose

the task into multiple iterations enabling feedback by releasing preliminary

information before its completion (Wynn, 2007); in an information-based approach,

the information about the process determines the process behaviour. Actor-based

perspectives view the design process as social coordination of independent actors

negotiating trade-offs. Where design iterations result from a continuous dialogue

between them, this perspective allows the representation of multiple process

participants and their self-organised behaviours (Wynn, 2007).

A literature review was used to identify prior technological advances as similar digital

tools. The analysis identifies relevant technological advances that have an essential

impact on the design simulation of the engineering design process. However, a

relevant trend in studying simulations of engineering design teams has focused on

the actor-based perspective. It identifies tools for simulating and supporting

teamwork behaviours to improve team effectiveness, profiling or examining special

features on team performance and modelling collaborative product development

(Perišić et al., 2016). However, several models ignore social interactions like

communication patterns or other social characteristics (Perišić et al., 2016). This

research considered communication patterns as an essential component for the

simulation of the engineering design process.

3.2.2 ADR Stage: Building intervention and evaluation.

The second stage of ADR uses the problem framing and theoretical premises from

Stage 1. It provides a platform for generating the initial design of the IT artefact, in

this thesis, the conceptual framework, which was further shaped by organisational

use and subsequent design prototyping cycles (Sein et al., 2011).

3.2.2.1 Discover the initial knowledge-creation target.

The shaping of the artifact requires interaction between technological and contextual

dimensions, and the interaction is manifested in knowledge-creation targets (Sein et

al., 2011). This research takes the emerging computer simulation approach that

captures the complexity of socio-technical systems and provides a comprehensive

and holistic view. It uses simulation models that represent real-world or anticipated

systems, such as a design concept or a design process, which reflect the outcomes

of the real-world systems for experimentation and understanding of the system's

performance. The research aims to develop a conceptual framework for engineering

processes to support design management and the overall knowledge-creation target.

58

This study used the Djanatliev and German (2015) method to guide the

prototyping/development of domain-specific hybrid simulations. The framework

provides a macro-structure for implementing simulation models, suggesting three

significant processes to structure the simulation scope. First, independent levels of

abstraction or views on the system are identified. Second, the explanation of how

simulation models are linked to the abstraction levels and how the simulation

paradigm is used to model structures at the considered level is developed. Finally,

connections that reflect the interaction between abstraction levels are identified and

defined. The definitions of how paradigm-related elements are connected and inform

how the interaction between simulation paradigms is realised.

Identifying abstraction levels is possible by dividing the overall domain scope into

specific subclasses. Independent simulations can be implemented through a

hierarchical breakdown where macro, meso, and micro levels cover the actual

situations within the simulation context. Explaining how simulation models are linked

to the abstraction levels is essential to determine: the relevant continuous structures

if they are present, if processes must be traversed, or if the representation of

individual behaviours is necessary (Djanatliev & German, 2015). The stage-gates

model provides the chronological structure (the process), which, for the design of a

given product, is combined with a product architecture to form the development

process structure. A case study was used to exemplify the engineering design

process, identifying systems and subsystems of the designed product.

3.2.2.2 Execute building intervention-evaluation (BIE) cycles.

The outcome of this stage is the realised design artifact (Sein et al., 2011).

Furthermore, the BIE cycle involves the formulation of general design principles.

In the development of the system analysis, the product development processes

compromise the product architecture, the social and organisational patterns of the

actors, the logical structure of the process development, iteration feedback loops,

and rework. Djanatliev and German’s (2015) frameworks suggest using abstraction

levels for domain (i, e., macro, meso and micro) levels in identifying the system

elements. At the macro level, fewer details and high abstraction levels are required,

and a holistic view can be achieved; however, this perspective is not suitable for the

intended socio-technical resource of this work. On the other hand, at the meso-level,

models cover tactical-level interactions such as product development processes. The

product architecture is used to identify the parts and components of the product

being designed. Micro-level models cover operational-level interactions in fine detail.

Here, agent-based models represent the interaction between designers identifying

59

actions, states, and behaviours. Figure 3.2.2.1 shows the abstraction levels and the

corresponding simulation methods in the correspondent abstraction level suggested

by Djanatliev and German (2015).

Figure 3.2.2.1 Abstraction level identification Djanatliev and German (2013)

3.2.2.3 Asses the need for additional cycle repeats.

The ADR method visualises the research process as a mix of interrelated activities of

building the IT artifact, intervening in the organisation, and evaluating it concurrently

(Sein et al., 2011).

The previous evaluation simulation experiment identified the requirements for the

following research stage: the development of agent-based models that capture

iteration as micro-level feedback loops in the agent-based model. Iterations and

rework are triggered by the states and behaviours of the agents (designers) sharing

and processing information. Using the framework suggested by Djanatliev and

German (2015), the abstraction levels or views of the system this research

established that at a meso-level, the product development process and the product

architecture help identify the possible structure of the simulation model. The product

development process's linear logic matches the consecutive progression of tasks

that the discrete events model allows representing.

Micro-level models cover operational-level interactions in fine detail at this

abstraction level; agent-based models represent the social interactions between

identifying actors, behaviours, states, and relationships.

60

The conceptualisation of those activities entails differentiating between information

processing and communication activities. Communication and coordination

mechanisms of the actor influence information processes and are determinants for

the successful progression and conclusion of the design work and outcomes

(Montagna and Cantamessa, 2017; Hoegl and Weinkauf, 2005). Engineering

designers expend 40 to 66% of their working time processing, communicating and

disseminating information (Robinson, 2010). Information processing includes

seeking information, gathering information, processing information, and evaluating

information. At the same time, communication processes include asking questions

and answering questions.

3.2.3 ADR Stage reflection and learning

The reflection and learning stage moves conceptually from building a solution for a

particular instance to applying the learning to a broader class of problems (Sein et

al., 2011).

3.2.3.1 Reflect on the design and redesign during the project.

The cycles of design and redesign of the simulation models allowed the identification

of three critical stages of the design process to simulate the feedback loops in the

engineering design: the design activity, the information processing state, and the

communication state. The simulation of communication process should be simulated

as a group of constructs, not as a single block in the simulation. The iteration

feedback loops result from evaluating and reformulating the questions in the

simulation model. The rework cycles are determined for the simulation decision on

continuing with incomplete or missing information.

3.2.4 ADR Stage: Formalisation of learning

Researchers outline the accomplishments in the IT artifact and describe the

organisational outcomes to formalise the learning (Sein et al., 2011).

3.2.4.1 Articulate outcomes as design principles.

Articulation of design principles suggests that: the development of simulations of

complex product development socio-technical systems will involve the identification

of a general-purpose product development process framework providing a

chronological structure and the product architecture identifying parts being designed.

The actors living in the system, their relationships, behaviours, interactions, and

possible states will also be identified, as will the abstraction levels or views of the

system establishing boundaries and system elements. Additionally, connections or

interaction points between abstraction levels will also be identified. Such simulation

61

models could delineate specific iteration feedback loops of individual designers or

design teams or process development feedback loops as a form of rework.

3.2.4.2. Sub-task: Generalisation of design principles.

This research used the concept of analytical generalisation suggested by Cronholm

and Göbel (2022). That suggests that the analytical generalisation approach seeks

to expand theories beyond their current domain (Yin, R.K., 1994), involving a

reasoned judgement about the extent to which the findings from one study can be

used as a guide to what might occur in another situation (Kvale, 2012).

The development of the framework for the simulation of feedback loops in

engineering design uses the core structure suggested for constructing hybrid

simulation models of Mykoniatis and Angelopoulou’s (2020) conceptual model,

development process, verification and validation, and results and documentation.

However, due to the Mykoniatis and Angelopoulos framework approach focusing

heavily on the simulation's instrumentation details, this research introduces the

framework of Nikolic and Ghorbani (2011) to implement a conceptual model

supported by a socio-technical perspective. This framework suggests five principal

stages for the development of the simulation of complex socio-technical systems: (1)

system analysis, (2) model design, (3) detailed design, (4) software implementation,

and (5) model evaluation.

The system identification stage of Nikolic’s and Ghorbani’s (2011) framework was

implemented developing an inventory of the system components that identify

explicitly: (a) relevant concepts, (b) actors or objects, (c) relevant behaviours, (d)

interactions of flows (continuous or discrete), and (e) states or properties.

The actors are entities capable of decision-making; all others are considered objects.

The properties that describe and specify agents are states. Interactions are in-out

interplays between agents, and the behaviours are state changes due to

interactions. The concepts of actors, objects, behaviours, interactions, and states

emerge from the data collection and discussions. Only explicitly stated ideas can be

compared to the later implementation of the model or theoretical models in the

literature (Nikolic and Lukszo, 2013).

Agents are the basic units of the model, representing one or more actors in the
system. They are recognised by their boundaries, states, behaviours, and interaction
ability. Interactions are the ways through which agents affect each other. Interactions
may be short-term or long-lasting, immediate, or delayed. In this study, the criteria
for structuration of the inventory are presented in table 3.2.4.2.1.

62

Table 3.2.4.2.1 Criteria for the identification of system elements, based on

Nikolic and Lukszo (2013).

1. Given the inventory results, consider actors and objects with useful boundaries
(physical, organisational, and functional). Entities capable of independent decision-
making will be the agents, and all others are considered objects. Agents can contain
or interact with objects (such as companies owning facilities or a postman
processing a letter).

2. Within the entities defined above, identify properties that describe and specify
the agents. These are states.

3. Within the entities defined above, search for interactions with agents or objects
outside, both incoming and outgoing. These are interactions.

4. Within entities defined above, identify state changes caused by interactions or
other state changes and state changes that lead to interactions or other state
changes. These are behaviours.

5. Note which agents, interactions and behaviours are dynamic and which are static
and at what time frame.

6. If necessary, organise agents hierarchically by ordering them in a nested way, as a
box within a box (e.g., departments within a company).

After the inventory and structuration phase, the identified system components were

formalised, developing ontologies where concepts, including objects and other

entities that are assumed to integrate the system and the relationships between

them, are formally encoded (Gruber, 1993). Ontologies seek to minimise

misunderstandings and are meant to be computer-understandable but accessible to

human users (Nikolic and Ghorbani, 2011).

This thesis used two ontology approaches for the conceptualisation of the system.

First, the classes and instances identification approach were used, where a class is

a generalisation of several instances, and an instance is a single identifiable object

within the limits and scope of the model. Second, the ontology suite of the product

life cycle developed by Otte et al. (2019) was used to formalise material entities,

processes and information entities and their relationships.

The logical model formalisation of the conceptual framework for simulation of

feedback loops in engineering design proposed in this thesis is deployed and

complemented with activities suggested in Nikolic and Lukszo (2013) for the model

formalisation stage. This thesis introduces the model narrative with an analysis of the

63

possible variables for the simulation and is presented in a graphical representation.

The pseudo-code is also presented, including the identified system elements and

possible initial parameters for the implementation.

The following stage, in the framework of Mykoniatis and Angelopoloulou (2020),

requires the selection of the simulation method in the implementation process stage.

This thesis used the framework developed by Djanatliev and German (2013; 2015),

which suggests three steps for the definition of the simulation approaches for the

implementation of hybrid simulations: (1) identifying independent levels of

abstraction or views of the system, (2) linking the simulation paradigms to the

identified abstraction levels, and (3) describing how paradigm elements can be

connected, for which this research returned to Mykoniatis and Angelopoulos’ (2020)

framework identification and classification of the interaction points. The identification

of interaction points results from mapping the boundaries of the models that need

communication (Mykoniatis and Angelopoulou, 2020). The interaction points are

pairs of information exchange between the models that are correctly “captured by” or

“influenced by” each simulation modelling approach.

The Mykoniatis’ and Angelopoulou (2020) framework suggests two main information

exchange categories and their subcategories. First, the value assignment

relationships include mathematical formulations and the replacement of values

between equivalent variables. This category includes three subcategories: (1) direct

replacement value of variables for equivalent variables of information exchange; (2)

the interaction points that seize values of information exchange that need to be

aggregated (accumulated) or disaggregated from one model to equivalent values of

the other model; (3) causal relationships that are interaction points described

explicitly with mathematical relationships. On the other hand, impact statement

relationships cannot be expressed using values; these relationships are related to

abstract concepts and is presented in table 3.2.4.2.2.

64

Table 3.2.4.2.2 Types of value assessment relationships from Mykoniatis and
Angelopoulou (2020).

 Mykoniatis and Angelopoulou (2020) identified three subcategories for impact

statement relationships: (1) add/remove/inject/transfer agents or entities; (2) control

flow relationships, which correspond to “if,” “for,” and “while” statements and define

the flow of a particular logic; (3) trigger event relationships, timeouts, messages,

conditions, rates, and arrival triggers.

The framework’s design principles guide the development of the conceptual

framework. However, during the BIE cycles, the development of the conceptual

framework is guided by emerging design principles when identifying the structural

components of the conceptual framework.

3.4.2.3 Sub-task: Formulation of design principles

There are four relevant characteristics for constructing simulation models of

feedback loops in engineering design. First, the product architecture that identifies

parts of the product being designed and suggests the possible structure of the

design process. Second, the process workflow which considers the phase's

completion as discrete events. Third, the social interaction between designers which

allows identifying actions, states, and behaviours to characterise actors and agents.

Fourth, the definition of interactions between simulation methods which defines the

interplays between simulation models.

65

Using Nikolic and Lukszo’s (2013) criteria for identifying the system elements, the

system's conceptualisation activity identifies actors, relationships, behaviours, and

possible states. In the design case study, the actors are designers performing a

design.

3.3 Case study

The socio-technical systems approach to engineering design of this thesis suggests

that the product architecture, which identifies individual parts that need to be

designed and infers the development process structure, determines a scope for the

conceptual framework for the simulation of feedback loops in engineering design,

and must include the social interactions (actions, states, and behaviours) of

designers used to inform the design task and activities for each part.

Bicycles are machines with hierarchies of subcomponents and complex part

dependencies (Regenwetter et al., 2021) the division of a bicycle design solution into

subsystems allows a clear view of the components of the whole system its parts and

relationships (Boessenkool and Meijer, 2013). An analysis of the bicycle architecture

development resulted in the identification of three interacting systems that could be

used in the conceptual framework implementation used in the case study.

1) Systems behaviour. Identifies the system functions, which makes the system

behave in specific way.

2) Flow and control. Identifies the functional relationships and describing how the

functions are related.

3) Systems structure. The physical architecture of the system, providing a clear view

of the finished system/product and its components. (Boessenkool and Meijer, 2013)

as is shown in figure 3.3.1.2.

From the systems decomposition of the physical architecture of bicycle the

handlebar assembly structure, shown in figure 3.3.1.3, is selected to configure the

case study because identifies four required teams (or agents) to design individual

parts and its integration on the handlebar assembly subsystem, configuring the

product architecture required.

The hypothetical description of the design process for those four components, during

the systems level and detailed design stages, in a stage gates model processes

infers the development process, as is shown in figure 3.2.1.1, in section 3.2.1 of this

chapter, configuring the product development process required to structure

simulation models. The social interactions and information behaviours of designers

66

during the design processes are described in the narrative of the design process, as

communication and coordination activities and decision-making process over the

information.

Figure 3.3.1.1, Handlebar assembly and parts identification.

3.3.1 Bicycle design.

A significant trend in the literature is in the design of frames and frame elements,

supported by various frame designers and manufacturers, with an established

design philosophy that suggests that the intended purpose and rider's fit are the

prime objectives of all bicycle designs. The rider’s fit term is generally associated

with the application of anthropometric parameters. Figure 3.3.1.1 depicts the major

frame design parameters of a typical modern-day bicycle.

The principles of bicycle design have been explored since the earliest predecessors

to the modern bicycle. Nowadays, bicycle design optimisations are a well-researched

field where significant effort is dedicated to improving the aerodynamics and

structure of the bicycle, and exploring the sizing and fitting practices using the wide

availability of anthropometric data (Regenwetter et al., 2021).

 In the design of the bicycle, it is noticeable that power systems, including crank

arms, pedals, chain-rings, gear-change (derailleur), brake systems, steering and

handlebar system and wheels are considered necessary but not determinant

element of the design intent.

67

Figure 3.3.1.2 On the left side, the Cannondale bicycle and systems

identification diagram from Cannondale (2020); on the right side, the leading

bicycle dimensions for frame construction from Sulmall (2022).

The diagram in Figure 3.3.1.3 shows the hierarchical integration of the bicycle parts;

from there, the system decomposition of the handlebar assembly identifies the four

teams needed to design the subsystems: (1) the brake lever, (2) the gear change,

(3) the handlebar, and (4) the handlebar assembly as the target system of this study.

Figure 3.3.1.3 Structure diagram from the bicycle design architecture.

The description of the hypotetical process of the designing of the handlebar

assembly, is as follows: The (1) bicycle design development process starts when a

68

(2) design request is delivered simultaneously to the (3) brake lever, (4) gear

change, and (5) handlebar designers, and the (6) handlebar assembly integration

designer, who must wait for the three individual (7) part designs to perform their

process. Each (8) designer iterates the design for each (9) component and (10)

communicates with each other (11), asking and (12) answering questions. In some

cases, (13) feedback loops are (14) coordinated (i.e., (15) communicated effectively

and (16) on time, while in other cases, they are not (i.e., (17) not communicated, or

(18) communicated with a delay, or (19) incomplete information). So, the designers

must (20) decide to ask again or (21) carry on without the proper knowledge. Here,

(22) not coordinated iterations lead to (23) rework, and (24) not coordinated rework

might lead to further rework, in a (25) vicious circle.

The scope of the conceptual framework for simulating feedback loops in engineering

design considers both technical and social aspects of the product development

process. Aims for the identification of the key elements that enable the construction

of simulations that capture engineering design processes, technical processes, and

social aspects of the product development processes. To reflect the organisational

and development process characteristics that mirror the product architecture,

influencing the structure of the development activity.

The handlebar system design process, used in the case study, allowed the

identification of the relevant components of the socio-technical system: product,

processes, and social aspects of the development system. The division of a bicycle

design solution into subsystems allows a clear view of the components of the whole

system its parts and relationships (Boessenkool and Meijer, 2013). The hierarchical

bicycle structure allows the identification subcomponents and its complex part

dependencies (Regenwetter et al., 2021).

(1) The product architecture system elements identified are the handlebar part, the

brake lever part, the gear change part, and the handlebar assembly which at the

same time aid in the identification of necessary design teams for the development

process.

(2) The social aspects are the individual designers for each part and the assembly

designer. Those designers perform: The design tasks, consisting in the performance

of design processes and iterations. The design activities which are the

communication behaviours and information processes: Designers asking and

answering questions and sending, receiving, and evaluating information.

69

(3) The development processes identified are the systems level design and the

detailed design stages from the stage gate process model used in this study as is

shown in figure 3.2.1.1, in section 3.2.1 of this chapter.

The expected results of the analysis, consisting in the time to conclude the individual

and the assembly parts, including the number of iterations and rework resulting, from

the different configuration of parameters, are developed and presented in chapter 5,

section 5.3 Validation.

3.4 Summary

This chapter provided the overall framework and research design adopted. The ADR

method supports research projects by developing IT artifacts shaped by

organisational contexts. Its design domain involves technical and social elements

and their relationships (Dresch et al., 2015).

To summarise the chapter's content, this study answers the questions formulated in

the problem formulation section, sub-section 2:

The first question is: How do iteration feedback loops influence the product

development processes? This question was answered by establishing that, within

the design process, designers communicate their thoughts by different means and

documents. The exploration of alternatives during the design process, where

designers develop understanding and their ideas about the solution, evolves,

introduces uncertainty, and makes the process iterative (Piccolo et al., 2019).

Iteration feedback loops positively impact design outcomes, improving the final

design's quality or allowing the final solution's refinement (Tapia et al., 2021).

Usually, adequate, accurate, and delivered on time information will result in a

positive feedback loops iteration a virtuous circle forming in-stage cycles that lead to

find the best design solutions (Meboldt et al., 2013).

In contrast, feedback loops resulting from rework are in-stage iterations leading to

feedback-learning cycles positively affecting the final design (Tapia et al., 2021).

However, those negative feedback loops, or vicious circles result from new

information, or inadequate, inaccurate, or miss-coordinated information, makes

necessary modifications to previous activities, completed in an earlier phase.

The second question is: To what extent have the process, the product, and the

people interactions influenced product development? This question was answered

by establishing that: engineering designers expend 40 to 66% of their working time

processing, communicating, and disseminating information (Robinson, 2010).

70

Information processing includes seeking information, gathering information,

processing information, and evaluating information. At the same time,

communication processes include asking questions and answering questions. The

determinant factors for the successful progression and conclusion of the design work

and outcomes, are the communication and coordination mechanisms of the actors

involved in the product development process (Montagna and Cantamessa, 2017;

Hoegl and Weinkauf, 2005) performing the activities related to engineering design

processes.

The last question is: What are the main system characteristics representing those

system elements?

A feedback loop is a situation where two or more dynamic systems are interrelated,

influencing each other in a strongly coupled circular argument (Åström and Murray,

2021). In product development, feedback loops are small or large recursive cycles

that characterise relationships and iterations (Kline and Rosenberg, 1986) between

product development processes and participants, emerging during engineering

design information processes due to product development coordination and

collaboration activities of designers and design teams (Wynn and Maier, 2022).

Positive feedback loops that contribute to the quality of design within the design

stage or negative feedback loops when the new information requires modifications

on previous activities considered already finished from an earlier phase.

The product development process's main characteristic is its chronological structure,

combined with the corresponding product architecture, which is the identification of

the parts being designed, inferring the structure of the design process and the

workflow, and the social interaction between designers identifying actions, states,

and behaviours. Finally, the articulation of design principles suggests the following.

For the development of simulations of complex socio-technical systems, the

identification of a general-purpose (1) product development process framework

provides a chronological structure based on the (2) product architecture, which

includes identification of the parts being designed. The design principles' articulation

also includes identifying (3) actors operating in the system, its relationships,

behaviours, interactions, and possible states. Moreover, the abstraction levels or

views of the system are used to establish boundaries and system elements.

Furthermore, identifying connections or interaction points between the design

process and design activities informs the interplays between simulation models.

Such simulation models could delineate specific iteration feedback loops of individual

designers, or design teams, or process development feedback loops as a form of

rework.

71

The conceptualisation of the articulation of the design principles is represented in the

following grid diagram, where the vertical axis represents the abstraction levels or

views of the system. The horizontal axis shows the simulation methods: Agent-based

(ABS), Discrete events (DES), and System Dynamics (SD). This thesis has

established that the System dynamics approach is out of the scope of the study.

At the meso-level, the product architecture identifies individual parts to be designed,

infers the product development process, and derives a design process workflow,

determining the discrete event model. In parallel, the social interactions, actions,

states, and behaviours between agents (designers) specify the agent-based

simulation model of the design activities for each part of the product architecture.

72

Chapter 4: Conceptual framework development

Figure 4.1.1 Chapter layout

Conceptual modelling activity focuses on capturing a representation of human

perceptions of the natural world to produce a relational or logical representation of a

system to be used in an information system, representing the system in the form of

diagrams or models (Pastor, 2016).

The construction of the conceptual framework for the simulation of feedback loops in

engineering design is supported by the framework proposed by Nikolic and

Ghorbani (2011) and complemented by the framework by Nikolic and Lukszo (2013)

for the simulation of socio-technical systems. The implemented conceptual

framework for the simulation of the feedback loops in engineering design in this

thesis is integrated with four stages: The problem formulation stage. The system

identification stage. The system conceptualisation stage and the model formalisation

stage, where the conceptual model is deployed.

In the Nikolic and Ghorbani (2011) framework, the problem formulation requires

establishing the problem to be addressed, understanding the "problem" as a poorly

understood situation that appears to have a suboptimal performance or the

realisation of a lack of knowledge about a system, its behaviour, or its response to

interventions. Followed by system identification, which consists of identifying the

system's boundaries, and internal structure recognised in the problem identification.

System identification consists of an inventory of the system components, explicitly

identifying relevant concepts, actors and objects, appropriate behaviours,

interactions or flows, and states or properties (Nikolic and Ghorbani, 2011). In this

stage, the specified system elements must be structured, establishing which

concepts are agents, states, interactions, or behaviours; the structuration activity in

this thesis was performed using the criteria suggested by Nikolic and Lukszco (in

Section 3.2.4 “Criteria for identification of system elements” in Chapter 3).

73

The third stage corresponds to the system conceptualisation, which aims to

formalise the identified concepts. In this stage, the model of the world is made

explicit, formal, and simultaneously computer and human understandable. This stage

uses ontologies to formally “encode” the existing entities of the system to reduce

ambiguities and confusion about the system’s logic and concepts used.

The model formalisation stage includes analysis for identifying variables for the

simulation and developing the graphical representation of the conceptual framework

for the simulation of feedback loops in engineering design. This stage consists of a

pseudo-code prescribing the simulation constructs and possible parameters for the

implementation.

This chapter follows the logical structure of the conceptual modelling activity and is

developed as follows: Section 4.1, Problem identification, followed by 4.2, System

Identification. Section 4.3 presents the System conceptualisation, followed by section

4.4, Model formalisation deploying the conceptual framework for the simulation of

feedback loops in engineering design; the last section includes the summary of the

chapter.

4.1. Problem identification

This stage is expected to increase the understanding of how the system works and

give insight into how certain aspects influence the system’s behaviour (Nikolic and

Ghorbani, 2011).

This thesis has established that product development systems are organisational

systems characterised by transforming inputs from design requirements into outputs

in the form of products or services released to their environment (Pessôa and

Trabasso, 2017). Product development systems are integrated by intra and extra-

organisational contexts (de Weerd-Nederhof, 1997). The extra-organisational context

is integrated for all these entities that have no direct influence on the process but

may impose restrictions or challenges; they could be governmental regulations,

competitors, or suppliers. In the intra-organisational context, are allocated other

organisational functions, for instance, purchasing, manufacturing or distribution de

Weerd-Nederhof (1997). As well has been established that the product development

system’s primary function is to execute the product development processes(Pessôa

and Trabasso, 2017).

This study has also established in the conceptualisation of the research opportunity

(Section 3.2.1 of Chapter 3) that product development processes are considered

from an organisational perspective, a social network with multiple dimensional and

74

interconnected processes. Where engineering designers interact to find a design

solution (Whitworth, 2009; De Bruijn and Herder, 2009; Kratzer et al., 2010;

Leenders et al., 2003), these processes systematise the way the products are

delivered to the environment, considering customer demands and strategic priorities.

Product development processes involve a series of stage gates, where a decision to

proceed or not drives the project’s progression (Tapia et al., 2021).

4.1.1 What is the problem?

Socio-technical systems are developed to perform specific tasks. They include

technical aspects, such as technology, infrastructure, and processes; socio aspects,

such as people, goals and culture; and the systematic connections between these

(Clegg et al., 2017). The new product development processes within the design

domains involving team-working, complex problem-solving, creativity and information

exchange are representative examples of complex socio-technical systems

(Robinson, 2016). Within engineering design processes, feedback loops are

perceived to increase complexity, time to market and costs. However, positive

feedback loops iterations positively impact the design outcomes, for example, the

quality of the final design. On the contrary, negative feedback loops resulting from

rework may positively impact the final design, but their influence on project

performance is high (Tapia et al., 2021).

Engineering design processes are defined as a network of activities to produce a

design (O'Donovan et al., 2005) integrated into design tasks and activities. A design

task is recognised as a goal-directed action, and a design activity is not necessarily

so (O'Donovan et al., 2005). This thesis's design task encompasses analysis,

synthesis, and evaluation activities. Design activities include the communication

processes of designers or design teams, asking questions, answering, gathering,

processing, or evaluating information. The product development process starts

articulating a market opportunity and initialising the product development processes

(Ulrich and Eppinger, 2012), which is integrated into six stages: planning, concept

development, system-level design, detailed design, testing and refinement and

product ramp-up. There is an evaluation gate between each step where the

deliverables must be passed to proceed to the next stage (Tapia et al., 2021). The

actions and activities within these processes are, in most cases, intellectual and

organisational rather than physical and include developing information and

formulating specifications, concepts, and design details. The product development

process concludes when all the required information to support production and sales

has been created and communicated (Ulrich and Eppinger, 2012).

75

Engineering design processes are used to develop and embed product innovations

within the product development processes. Engineering design processes provide

the structure for development processes projects, including the design development

for the whole product development and its parts. Strategy and early design decisions

influence the organisational structures needed to develop engineering designs and

the social networks formed by design teams. During the design process, new

information and constraints emerge, and changes in design requirements lead

designers to revisit and re-evaluate design decisions, making the process iterative.

While in the multidimensional networks and highly interconnected processes that

characterise product development systems, feedback loops are small or large

recursive cycles defined by relationships and iterations (Kline and Rosenberg, 1986).

In engineering design, feedback loops iterations are considered to improve quality by

systematically exploring and understanding the complexity of design problems (Le,

H.N. et al., 2010). Feedback loop iterations result from social processes involving

many parties and interactions (Bucciarelli, 1994). The communication activities,

identified as the engineering designers' social and behavioural patterns, are

influenced by the engineering designers' different competencies, cultures, expertise,

and experience (Bucciarelli, 1988). The major challenge for the practical analysis of

product development processes lies in (1) enriching the comprehension of process

behaviour and (2) understanding the behaviour and characteristics of those

engineering designers’ communication patterns. The need for insight addressed for

this study is understanding how positive and negative feedback loops resulting from

human and organisational factors influence the design task performance within the

engineering design processes. Within the product development processes design

iterations, rework, and social interactions within and across design teams influence

the progression and quality of the design task in new product development (Tapia et

al., 2021). In a product development process, the stage-gate model provides a

chronological structure (the process) combined with the product architecture (the

product). Coordination and communications activities of the participants (designers

or design teams) are the cause of feedback loops iterations. Timely and effective

feedback loops lead to positive iterations. While late and not communicated,

feedback loops lead to negative iterations and rework, impacting the system’s

performance.

4.1.3 Whose problem are we addressing?

Design managers can use the exploration of interplays between the distinct kinds of

feedback loops. This can be used to inform decisions about resource allocation and

76

iteration utilisation to complete design tasks on time, allowing the balance between

positive feedback loops in the form of design iteration and negative feedback loops

in the form of avoidable rework.

4.1.4 Other actors

Other actors may include the engineering designers and project managers involved

in the planning and executing the product development process.

4.2 System identification

The decomposition of the socio-technical system seeks to identify the physical and

social entities of the system and the links between them (Nikolic and Lukszo, 2013).

The activities of this stage involve identifying the system's internal structure. Actors,

and their interactions over time, emergent patterns, system composition, and

boundaries. However, due to the complexity and extension of the complex product

development systems, only an interpretative and limited viewpoint can be achieved;

all information gathered will contain simplifications and assumptions (Nikolic and

Lukszo, 2013).

The system inventory of the product development process identified in this thesis

contains: (a)concepts, (b)actors or objects, (c)relevant behaviours, (d) interactions or

flows (continuous or discrete) and (e) states or properties are depicted in table

4.2.1.1. The use of the criteria for identifying the system elements in this thesis

included in Section 3.2.4. enabling the structuration of the inventory and allows to

establish that actors are the designers or design teams for components. Actors,

exhibit behaviours of asking questions, answering questions, asking again, or even

carrying on without proper information and performing a non-coordinated rework.

The design activities, design brief, design information, design iterations, and

feedback loops trigger interactions between actors.

Table 4.2.1.1 Inventory of concepts, actors, behaviours, interactions and

properties identified.

77

No. System elements
a)
concepts

b) actors or
objects

c) relevant
behaviours

d) interactions or flows
(continuous or discrete)

e) states or
proprieties

1 Market opportunity
2 Physical product
3 Services
4 Environment
5 Intra-organizational context
6 Extra-organizational context
7 Suppliers
8 Competitors
9 Governmental offices
10 Regulations
11 Marketing
12 Engineering
13 Manufacturing
14 Product development process
15 Engineering design process
16 Design Tasks
17 Design activities
18 Analysis
19 Synthesis
20 Evaluation
21 Communication
22 Design teams
23 Designers
24 Asking Questions
25 Answering Questions
26 Gathering Information
27 Processing Information
28 Evaluating information
29 Planning
30 Concept Development
31 System-level design
32 Detailed design
33 Testing refinement
34 Product ramp-up
35 Evaluation-gate
36 Developing Information
37 Formulating Specifications
38 Required Information
39 Support production and sales
40 Information created and communicated
41 Concepts
42 Design details
43 Production
44 Sales
45 System Architecture
46 Subsystems
47 Components
48 Development teams
49 Design Brief
50 design information
51 Designer iterates
52 Feedback loops
53 Coordinated
54 Communicated Effectively
55 On Time
56 Not communicated
57 Communicated with delay
58 Incomplete Information
59 Ask again
60 Carry on with incomplete information
61 Not Coordinated
62 Rework
63 Not Coordinated rework
64 Vicious circle

78

4.3 System conceptualisation

The previous stage has provided a general identification of the system elements of

the design process and a preliminary categorisation of the interactions, agents,

states, and behaviours regarded as an inventory of the system components.

However, after completing this stage, the identified concepts are expressed in a

natural language unsuitable for computers. The model of the world requires to be

explicit, formal, and able to be understood by computers and human beings. The

formalisation activity seeks to make the system description generalised beyond one

domain.

Ontologies can be used to help in the process of formalisation of concepts and

relationships without focusing on software implementations. This thesis used two

approaches to the implementation of ontologies. In the first approach, an instance is

a single identifiable object within the limits of the scope of the model, and a class can

be considered a generalisation of several instances. This approach is used to form

the basis of class structures, where the ‘is a” relation is coded as the subclass

relationship in the class description, and the ‘has a” provides information on the

properties of the class and possible values (Nikolic and Lukszo, 2013). The

formalised concepts in the model shown in figure 4.3.1.1 show the class structure for

the product development processes in this thesis, where the red frames are the class

elements, and the black frame denotes instances of the class.

On the other hand, there is the Otte et al. (2019) suite of modular ontologies of the

product life cycle and its successive phases. The modular ontology identified three

main stages: (1) Beginning of Life (BOL), (2) Middle of Life (MOL), and (3) End of

Life (EOL); (Shin et al., 2011). The BOL phase is integrated by planning, design, and

manufacturing. In the design stage, a design action implies identifying requirements,

defining concepts, and refining detailed designs, prototypes, and tests. The modular

ontology of the life cycle identified material entities, information entities and

processes; This ontology approach also captures the relationships with a two-place

instance-level relationship. The modular ontologies generate life cycle data by

involving artefacts and human agents. This thesis uses the terms defined by Otte et

al. (2019) to identify the relationships between the system elements prescribing:

 Material entities are agents, elements of the natural world, which have a

physical existence.

 Processes are related to planned or unplanned activities; the actions needed

to achieve a goal.

79

 Information entities are regarded as different forms of communication, related

or not to the processes or material entities (see figure 4.3.1.2).

The system elements identified in problem identification are categorised into the

material, process, and information entities presented in table 4.3.1.1.

Table 4.3.1.1: Ontology concepts categorization according to Otte et al,

(2019).

No. System elements Material Process Information

1 Product development
2 Design brief
3 Designer
4 Design Task
5 Analisis
6 Synthesis
7 Evaluation
8 Product architecture
9 Part

10 Design activity
11 Communication process
12 Ask (Ask for information)
13 Answering (providing info)
14 Ask again
15 Communicated effectively
16 Design Iteration
17 Feedback loops
18 Rework
19 Vicious circle
20 Not coordinated
21 Incomplete information
22

Carryon without proper
information

23 Not comunicated
24 Gathering information
25 Processing information
26 Evaluating information

80

Figure 4.3.1.1 Ontology classes and instances identification.

81

Moreover, the relationships between material entities, processes, and information

entities related to Otte et al. (2019) suite of modular ontologies of the product life

cycle are a set of instance-level relations that include:

-Participates in = a primitive relationship between a process and a continuant. *

-Agent in= a sub-relation of ‘participates in’ that obtains when the continuant

participates, and the continuant is casually active in the relevant process.

-Is input of= a sub-relation of "participates in" that is obtained when the continuant

participates in the process and when the presence of the continuant at the beginning

of the process is necessary for the start.

-Is output of= a sub-relation of participates in, obtained when the continuant

participates in the process, and its presence at the end of the process is necessary

for its completion.

The sub-relations of ‘is about, including ‘describes’, ‘represents’, ‘prescribes’, and

‘designates’, relate different information content entities, such as reports,

photographs, design specifications, names and the things they are about (Otte et al.,

2019).

*A continuant is a material entity that endures through time. Moreover, there are two

kinds of continuants; independent continuants, which are objects, their material parts

and boundaries, and dependent continuants; which are attributes of material entities,

including qualities, roles and functions (Arp et al., 2015).

Table 4.3.1.1 shows the system elements identified and their classification based on

the ontology of the product life cycle, identifying material elements, processes, and

information concepts. The ontology model developed, shown in Figure 4.3.1.1,

allowed the formalisation of the concepts to be used during the simulation model

construction in the implementation stage. The ontology developed using Ottes’

(2019) approach, shown in Figure 4.3.1.2, enables the formalisation of the

interactions between the system elements regarding processes, information and

material entities.

.

82

Figure 4.3.1.2 System conceptualisation using an ontological approach, based on Otte et al. (2019).

83

4.4 Model formalisation

During the previous stage, the identification of who and what is in the model has

been achieved. In the formalisation stage, who does what and when is established.

This stage aims to map the previously identified concepts into an artificial model with

an abstract representation, creating a model narrative as an account of a series of

events and facts, given in order and with an established connection between them.

This includes the analysis of two relevant frameworks for the simulations of

engineering teams to identify those variables useful in developing the narrative in the

simulations of engineering design teams. And the logical model implementation

consisted of a graphical representation of the conceptual framework for simulating

feedback loops in engineering design.

Crowder et al. (2012) identified and measured nine variables and three sub-tasks,

categorised into three sub-categories. Underpinning teamwork in an engineering

design context namely "mental models", "communication", “trust", "learning time",

"availability", “response rate”, “motivation”, “competency”, and “workflow”. Crowder et

al. (2012) explain that; teams share a mental model to the extent that the team

members share a common cognitive representation of the working environment and

that the transfer of information between team members using various media is

communication. Trust is defined as the "trust" between agents. Learning is the

variable name for the time teams require to assimilate an undertaking task.

Furthermore, Time Availability measures the percentage of time individual members

spend working toward team objectives. The possibility of a team member answering

a request for information is the response rate. The variable motivation refers to the

commitment of the individuals to the achievement of the team's goals, and

competency is the ability of the team to perform their work tasks. The workflow

variable is defined as the scheduling of the subtasks that make up the overall task of

the team, and the considered sub-tasks can be executed in parallel, in sequence or

overlapped.

Crowder et al. (2012) identified characteristics of the sub-tasks as well,

 The sub-task difficulty is an individual's required work to solve a problem.

 Sub-task quality is the overall quality of all outputs of the team.

 Sub-task working time is where higher scores indicate more time (poor

performance).

84

In a different order, Perišić et al. (2016) suggested six agent characteristics and four

project characteristics in their framework, starting with "experience", “availability",

“behaviours”, "motivation", and competencies. The four project characteristics are

competency level/Innovation level, activity type, and resources. Their framework also

identified the agent-based activities as “roles" and defined design agents and team

leader agents. Their model was able to determine if agents were able to perform

technical and non-technical skill activities, characterising competencies and

distinguishing between specific (knowledge and skills) and social aspects. Perisic's

framework also identified experience as a concept related to project efficiency, and

motivation, as a complementary aspect of experience related to the agent's

commitment to the project goals and behaviour as the strategy agents take when

faced with problem-solving. The Crowder et al. (2012) and Perišić et al. (2016)

frameworks recognise motivation, competency, and availability, whereas Crowder et

al. (2012) identify learning time, Perišić et al. (2016) acknowledge experience;

similarly, they recognise response rate, and behaviours The table 4.4.1.1 shows the

variables, characteristics of the agents identified their respective frameworks. The

three variables not included in Perisic's framework are shared mental models,

communication, and trust.

Table 4.4.1.1 Comparison of identified variables and agent characteristics from

Crowder et al. (2012) and Perisic et al (2016).

Modelling processes and environments that reflect different product development

projects and organisations should be possible considering project factors such as

activity dependency and iteration. These may drive workflow creation and influence

its structure. The teamwork process's complexity suggests the use of a wide range of

variables for constructing conceptual and simulation models. However, a limited

Variable
Variable
type

Team-
level
variable

Individual-
level
variable

Sub-task
variable Characteristics

Role
Shared mental models Process X
Communication Process X
Trust Process X X
Learning time Process X Experience
Availability Process X Avaliability
Response rate Process X Behaviors
Motivation Process X Motivation
Competency Process X Competencies
Workflow Process X
Sub-task difficulty Process X X Complexity level Innovation level
Sub-task Performance X X Activity type
Sub-task working time Performance X X Resources

Team working variables selected for Crowder,et.al. 2012.

Project customization

Agent characteristics from Perisic, et.al.,
2016.

85

number for inclusion based on theoretical and empirical criteria has yet to be

selected in this thesis.

As a result of the previous analysis in in the systems identification and systems

conceptualization, this research identified six variables and characteristics useful in

the development of the conceptual framework resulting from the conceptualisation

and ontology constructions are: (1) Product Architecture, (2) Designer, (3) Design

Task, (4) Design Activity including communication processes, (5) Feedback loops,

and(6) From the product development processes only system level and detailed

design are considered in this thesis the summarized identification of variables and

characteristics is presented in table 4.4.1.2.

Table 4.4.1.2. Variables and characteristics identification. (The product

development process included is based on Ulrich and Eppinger, 2012.

Team working is related to several desirable organisational outcomes, such as

efficiency and improved quality; teams enable organisations to develop high-quality

Variable/
Characteristics Task Info direction Recipient status

Product
architecture

The product architecture design allows the assignation
of detailed design and testing activities to teams or
individuals.

In/Out Active

Performs design task In/Out Active

Performs design activity In/Out Active

Problem and solution interrelations, 38% of average time In/Out Active

Generation of design Solution, 54% of average time In/Out Active

Assessing the validity of solutions, 8% of average time In/Out Active

Ask for information Out Active

Ask again In/Out Active

Disseminating information Provide information (Answer to questions) In/Out Active

Not communicated In/Out Passive

Incomplete information In/Out Passive

Carry-on Out Active

Communicated effectively Out Active

Design iteration Well communicated information
In-Stage Iteration between within stages with cero
impact in previous decision

In/Out Passive

Rework Not communicated/ Incomplete information
Cross-gate iterations, iterations happening after a
decision, affecting previous decisions

In/Out Passive

Planning Opportunity identification
Target market, business goals, key assumptions and
constrains

Out Active

Concept development Generation of product concepts
Generation and evaluation of concepts based on
identified market needs

In/Out Active

Decision gate Evaluation to proceed to next In/Out Passive

System-level design
Decomposition of the product into
subsystems and components

Preliminary design key components and allocation of
detail design responsibilities

In/Out Active

Decision gate Evaluation to proceed to next In/Out Passive

Detail Design
Specification of the geometry, materials
and tolerances

Complete specification of all unique parts in the product In/Out Active

Decision gate Evaluation to proceed to next In/Out Passive

Testing and refinement
The construction and evaluation of multiple
pre-production versions

Alpha and Beta versions are constructed with the
intended production processes

In/Out Active

Decision gate Evaluation to proceed to next In/Out Passive

Product Ramp-up
Product is made using intended product
system

Products are carefully evaluated to identify remaining
flaws

In/Out Active

Activity

Product
development
process

 Functional and physical elements are identified

Design activity

Design Task

Designer

Communication
processes

 Analysis

 Synthesis

 Evaluation

 Design team or designer

Gathering information (Requesting Info)

Evaluating information

Feedback loop

86

ideas and products efficiently and effectively. Team working environments require

members to communicate and collaborate across disciplinary, departmental, and

company boundaries (Crowder et al., 2012). The team process theory describes the

interdependent activities of team members as a single interwoven process (Cash et

al., 2019) that can be described in terms of the activities involved and how they vary

concerning the goals, underpinning actions and context. The design activity

operationalises these elements concerning the design work (Cash et al., 2015).

Teamwork does not result simply from aggregating the behaviour of individuals, nor

can its outcome be measured at the scale of individual units (Perišić et al., 2016).

Martinec et al (2017) points that team activities underpinning team processes can be

addressed by one or more team members, allocated or distributed with one specific

project, in a cross-functional project team or with a particular design phase as in a

functional team. As team members move between the team and taskwork and

address various sub-goals, the individual activity threads intertwine to form the team

processes. The teamwork activity is a set of design operations driven by the same

goal (Martinec et al., 2017).

Communication is at the core of the design activity; designers communicate their

ideas using different means and representations. Due to a better understanding of

the problem and solution added to the social interactions, their ideas evolve, and the

designers' documents evolve accordingly, adding uncertainty and the need for more

exploration and hence more iteration (Piccolo et al., 2019; Robinson, 2010). The

large body of literature that analyses information behaviours of engineering

designers asserts that designers expend 12% of their working time obtaining or

receiving information, 8 %providing information, and 4% is dedicated to overhead

activities associated with information transfer (Robinson, 2010). Active information

gathering is the acquisition of precise information or user-specific information. In

contrast, passive patterns are the reception of the information, whether requested or

not.

Too much information can be as detrimental as too little, and optimum level is most

beneficial. Empirical evidence suggests that moderate levels of communication lead

to the most effective performance in engineering teams (Patrashkova-Volzdoska,

McComb, Green, & Compton, 2003). Based on the literature, this research identified

two states of communication between engineers and engineering teams. The state

of gathering information is where the engineering designer actively seeks

information, asking questions, researching or requesting information from external or

non-human sources (Robinson, 2010). The state of disseminating knowledge is

when the designer provides answers or shares information with the team in response

87

to a requirement. This state includes the response rate (Crowder et al., 2012) that

informs the frequency and speed of answering a question.

This study has established that design processes can be either observed using

different granularity levels, perceived as a complex system representing the overall

processes or observed through the necessary steps performed during the design

activity at the micro-steps of thinking during design (Lindemann, 2014). On a

different note, Martinec et al. (2017) suggest that; to achieve enough abstraction for

the domain and development context-independent analysis of the design operations,

the identification of the elementary design operations as analysis, synthesis and

evaluation is necessary (Cross, 2001; Liu and Lu, 2014). In this context, the study of

the problem and its interrelations as part of the potential solution corresponds to the

analysis stage (Jin and Benami, 2010), and the synthesis stage corresponds to the

generation of the design solution. Moreover, the evaluation stage assesses the

solutions' validity (Afacan and Demirkan, 2011).

Martinec et al. (2017) performed a protocolar empirical analysis of the design teams'

activity, codifying seven sub-activities within the significant stages of analysis,

synthesis, and evaluation, such as problem analysis, solution generation, solution

analysis, evaluation planning and others. Their study found variations in the

research, synthesis, and evaluation design operation sequences. Their protocolar

analysis shows that an average proportion of the teams expended approximately

38% of the time in analysis, 54% in synthesis and 8% in evaluation; the study also

revealed that patterns of transitions between operations are significant.

In this study, the design task considers the design operation sequences of analysis,

synthesis, and evaluation; In the model, the analysis stage uses 30% of the time

established for the task, the analysis stage uses 50% and synthesis 20%. Within the

context of the stage gates model process, two types of iterations have been

identified:

1. In-stage iterations, which happen within the stage, between each gate, with

low or zero impact on previous decisions.

2. Cross-gate iterations, which happen after a decision, and after the next gate

starts, affecting previous decisions that significantly impact the stage's

progression.

In-stage iterations must be understood as something other than a repetition of the

same activity. These iterations are learning cycles of validation and systems

integration under realistic boundary conditions (Meboldt et al., 2013), seeking the

overall system's improvement, and finding the best solution. Cross-gate iterations

88

significantly impact time and cost outcomes and must be prevented (Meboldt et al.,

2013). However, the team must look for critical issues and assess them as early as

possible.

The feedback loops perspective perceives the world as an interconnected set of

circular relationships. Feedback is the transmission and return of information,

informing the systems how they are doing concerning the desired state in a system's

interrelated and mutually interacting components. Feedback loops represent the

social reality of the system with negative and positive circles of causality. Feedback

loops provide the continuous information necessary to bring the system under

control (Chirumalla, 2017).

Time to the market or development time is necessary for elaborating simulation

models. At the same time, several research studies have looked at the factors that

influence changes in new product development (NPD) cycle time. A few companies

have disclosed cycle times for specific projects; there is a need for more data on how

long NPD takes.

The New Product Development Best Practices study (Griffin, 2002) asserts that

industrial organisations take an average of 2.25 years (27 months) to create more

innovative projects. Companies that incorporate all nine stages in their product

development processes take an average of five additional months to complete.

Furthermore, the stage of development (turning an idea into a functional prototype)

takes an average of 8 months to complete. It is the most time-consuming step of the

process; while testing and validation are 4.8 months, commercialisation or launch

takes 4.5 months. Time spent in New Product Development is about 80.1% and

occurs once the business case has been approved. However, almost all the

empirical findings on project strategy are predictable. Longer development

timeframes or longer time-to-market deliveries are related to newer, larger, more

complicated, more technically demanding, and more creative projects. In contrast,

shorter time to the market deliveries is related to projects with incremental

innovations.

The information flows, deliverables, specifications, and other sources between teams

allow the modelling of workflows and environments that reflect different types of

product development projects organisations: the project characteristics, activities, the

complexity of the organisation and the product being designed. Including innovation

level and resources lead to the generation of the workflow, affecting its structure,

mainly in activity dependence and iteration (Perišić et al., 2016). Activity

89

fragmentation should allow for the simulation of only specific activities or phases

(Perišić et al., 2016).

The previous analysis allowed the identification of what and who is in the model. The

aim of the model formalisation stage is to establish who does and when. Supported

in the previous analysis and previous stages, the model narrative is developed as”

an account” of series of events, facts, etc., given in order and with the stablished

connection between them, table 4.4.1.1 presents the developed model narrative.

Table 4.4.1.1 Model narrative.

The agent types are the designers or design teams for each part defined within the
system boundaries. The design task activities, analysis, synthesis, and evaluation are
agent states performed/adopted by designers; those states change chronologically.

Communication activities are behaviours adopted by the agents during the process that
influence the design task activity. The request for information is triggered in any design
task stages (Dx), the agent will leave the design task execution, moving to communication
states (Ix+Cx). From there, the designer/agent waits for an answer or answers a question.
When the designer receives an answer, it moves from the state of gathering information
to the state of evaluating the information (Ix). In the states of information evaluation, the
agent decides to ask again, to carry on without the correct or complete information, or
return to the design task when the information is complete (Dx). Feedback loops
iterations manifest during the exchange information cycles between the designer, asking
and answering and asking again; however, when the agent/designer decides to carry on
without proper information, a cycle or rework is generated and has a direct impact on the
workflow.

90

Figure 4.4.1.1 Communication patterns between the actors in model narrative.

4.5 Logical model

The previous stages have identified the system, model elements, relations,

interrelations, agent types, behaviours, and states. At this stage, it is necessary to

ensure the identified concepts can be translated into a computer language retaining

their original meaning.

This research used abstraction levels or views of the system identified during the

building intervention-evaluation artifact cycles in Section 3.2.2 of Chapter 3. These

abstraction levels were used to model the tactical-level interactions of product

development processes, including the product architecture representing the parts to

be designed and the development process representing the process workflow. The

fine detail operational levels at the microscale were used to model designer

interactions such as design task that includes the methods of analysis and synthesis,

and evaluation and the design activities, including communication and information

processes.

The conceptual framework for simulating feedback loops in engineering design, is

shown in Figure 4.5.1.1, and presents the individual parts process on the left side

and the assembly or integration processes on the right side. In this process, the

designer or design team needs to have the complete set of parts to proceed to the

integration process; In this case, the workflow diagram shows the three queues

where the parts must wait until all of them arrive, and the process can finally start.

The conceptual framework is implemented by grouping the system elements in four

rectangular areas; (1) the design task includes the respective activities of analysis

synthesis and evaluation, followed by the corresponding area of (2) the process and

evaluation of the information that includes the "not communicated and effectively

communicate activities”, the next rectangular area include, (3) the gathering of

information process with the correspondent “ask, ask again and answering”.

Moreover, the area that includes (4) the development process is at the bottom of the

diagram. The necessary designers or design teams for each part are represented as

layers labelled as parts "a", "b", and "c". The model uses circles to depict the actions

or activities of the designer within the design task and design activities. In the

91

process development, rectangular shapes represent blocks to illustrate the meso-

level operations.

This thesis has established that interaction points are pairs of information exchange

between the models that are correctly “captured by” or "influenced by". The

simulation modelling approach is the result of mapping the boundaries of the models

that need communication. The framework identified five preliminary interaction points

between the meso-level and the micro-level models. The first interaction point

releases the design requirement into the workflow, which triggers the process star in

the design task. Second, the design process time is governed by the design task

activity and directly influences the process block in the workflow. The third interaction

point generated in the evaluating information activity influences the decision block by

sending back the processed design requirement. The fourth interaction point also

affects the decision block; the carry-on block influences it, and the effect is to send

the already processed design requirement to a rework queue. Finally, the fifth

interaction point passes the approved design requirement to go to the integration

model.

92

Figure 4.5.1.1 Conceptual framework for simulating feedback loops in engineering design.

93

4.6 Summary.

This thesis stands for the understanding that conceptual modelling activity aims to

clarify the meaning of ambiguous terms and avoid problems with different

interpretations focusing on capturing the representation of human perceptions of the

natural world to be included in an information system (Pastor, 2016) that can be

specified using verbal narratives and sketches (Grimm et al., 2020) allowing the

development of a conceptual framework for simulating feedback loops in

engineering design presented in the previous sections. For developing a conceptual

framework for simulating feedback loops, this study followed a process that includes

five main stages: (1) Problem identification, (2) system identification, (3) system (4)

conceptualisation, (4) model formalisation and (5) Logical model.

The problem identification stage, through literature analysis, found that the product

development system, which receives inputs in the form of market opportunities from

the environment, is significantly impacted by social-organizational aspects. These

aspects include factors such as communication and coordination mechanisms and

social and cultural characteristics, such as individuals' background and level of

experience. The product development is also shaped by the process characteristics,

which are defined as the set of activities performed to execute the product

development project. This includes hardware and software modules and components

that are specified in the product architecture design to produce the intended product

or service. This thesis also established in the conceptualisation of the research

opportunity in the problem formulation Section 3.2.1 of the ADR method in Chapter

3, that product development systems are a multidimensional network of intricately

linked operations with feedback loops across several levels of hierarchy, and these

feedback loops increase complexity, time to market, and cost and are essential

elements of engineering design processes. Feedback loops have a beneficial effect

on design outcomes (i.e., the quality of the final design) (Tapia et al., 2021);

nevertheless, while loops arising from rework have a positive effect on the final

design, their negative influence on project development outcomes may be

significant.

System identification consists of an inventory of the system components, explicitly

identifying relevant concepts, actors and objects, appropriate behaviours,

interactions or flows, states, or properties (Nikolic and Ghorbani, 2011). From the

problem formulation, the relevant system elements identified are actors, who are the

designers or design teams for components. Actors exhibit behaviours of asking

questions, answering questions, asking again, and can carry on without proper

94

information and performing a non-coordinated rework. Actors perform design

activities triggered by a design brief or receiving or requesting design information.

Interactions then lead to design iterations and feedback loops triggered between

actors.

In the system conceptualisation, the system under analysis must be explicit, formal,

and expressed in a way to be understood by computers and human beings(Nikolic

and Lukszo, 2013). This thesis uses ontologies to help in the process of

formalisation of concepts and relationships without focusing on software

implementations. In the ontology, “what” is the model, including all entities within the

system boundaries and its relationships are “formally encoded”. Even though there

“is no single correct ontology design methodology” (Noy and McGuinness, 2001).

The developed ontology model allowed the concepts' formalisation to be used during

the simulation model construction in the implementation stage. The ontology

developed using Ottes’ (2019) approach enabled the formalisation of the interactions

between the system elements, formalising the relationship between processes,

information and material entities.

In the model formalisation stage, two main tasks were performed: first, creating a

model narrative as an account of a series of events and facts, given in order and with

an established connection between them(Nikolic and Lukszo, 2013). That includes

an analysis of two relevant frameworks for the simulations of engineering teams to

identify those variables useful in developing the narrative in the simulations of

engineering design teams.

The logical model implementation consisted of a graphical representation of the

conceptual framework implemented, using the abstraction levels or views of the

system identified during the building intervention-evaluation artifact cycles. These

then model the tactical-level interactions of product development processes,

including the product architecture representing the parts to be designed and the

development process representing the process workflow.

The conceptual framework is implemented by grouping the system elements in four

rectangular areas; (1) the design task, followed by the corresponding area of (2) the

process and evaluation of the information, (3) the gathering of information process

and the (4) the development process workflows at the bottom of the diagram. The

framework identified five preliminary interaction points between the meso-level and

the micro-level models.

The major challenge for the practical analysis of product development processes that

this conceptual model addressed are (1) the comprehension of process behaviour

95

and (2) the understanding of the characteristics and behaviours of engineering

designers’ communication patterns. The analysis of how human and organisational

feedback loops affect design task performance in engineering design processes,

either positively or negatively. Is a key contribution. The technical systems in the

form of product development processes and product architecture, were also included

as relevant features for the simulation feedback loops in engineering design.

4.6.1 Agile Scrum Methods

The agile scrum methodology is defined as a method to organise and follow up on

the design tasks and activities of design teams, suggesting a control on design

requirements and progression of the development tasks dividing the project into

small design projects and controlling progression through what is called a sprint

backlog. In the agile sprint method, the iterations are incremental cycles that

contribute to the progressive completion of the tasks and improve quality.

Within the classification of the iterative approaches proposed in section 2.5.1, sprints

can be categorized as strategic iterations, where is expected that appropriate

strategies and policies influence the process and the final designed product.

A sprint includes sprint planning, sprint execution and sprint retrospective, And t the

work is regarded as being complete when it is deemed to be a good quality and, a

potentially, shippable product.

Sprint Iterations are governed by the sprint backlog and assessed among the criteria

of the potentially shippable product, which is defined by the Product owner and the

sprint development team, based on the customer requirements. In the scrum sprint

methodology, when the sprint team do not reach the potentially shippable product,

the incomplete sprint is reorganized in the sprint backlog and needs to be revisited in

the following sprint which could be recognised as rework.

96

Cooper and Sommer (2018) assert that when a scrum is implemented within a stage

gated process, gates remain an important part of the hybrid model, providing vital

go/kill decision points, enabling management to review projects at key transition

points (Cooper and Sommer, 2018).

Mvulane (2020) explains that the Scrum methodology comprises key elements,

including a product owner, Scrum master, and a development team. It is integrated

with various components such as sprint planning, daily stand-up meetings,

development (sprint) iterations, sprint reviews, and sprint retrospectives. The Scrum

process involves essential components: Scrum roles, Scrum events, and Scrum

artifacts.

The Scrum roles include the product owner, the Scrum master, and the development

team. The product owner's primary responsibility is to maximize the value of the

product, estimate the budget (Mvulane, 2020), and work closely with stakeholders.

This role involves managing the product backlog by collecting stakeholders'

requirements, defining, and prioritizing tasks. The product owner plays a crucial role

in deciding the prioritization of backlog items and addressing the consequences of

those decisions (Sif, Thor, & Ingi, 2014). It is vital for the product owner to maintain a

balance between the different product features when prioritizing items (Mvulane,

2020).

The Scrum master's primary function is to ensure that the Scrum team adheres to

the theory, practices, and rules of the Scrum methodology, thereby ensuring a deep

understanding and enactment of Scrum philosophy (Rossberg, 2019). The Scrum

master is also responsible for removing impediments and creating a conducive

working environment where the team can work at a sustainable pace (Rossberg,

2019).

The development team works on completing the sprint tasks specified in the product

backlog. They are responsible for producing increments during the development

sprint iterations and ensuring that these increments meet the definition of done

(Mvulane, 2020). The development team is also responsible for updating the Scrum

board during daily stand-up meetings and managing the sprint backlog.

The Scrum artifacts encompass the product backlog, sprint backlog, and Scrum

board or burndown chart. The product backlog consists of an ordered list of product

requirements established by stakeholders in collaboration with the product owner.

This list includes business requirements, technical and functional requirements, and

97

nonfunctional requirements, all of which are part of the definition of done (Rossberg,

2019).

The sprint backlog outlines what the development team needs to deliver during the

sprint and includes a plan for how the team will work to achieve the product

increment. Tasks in the sprint backlog are broken down during the sprint planning.

The development team has ownership of the sprint backlog and can add or remove

tasks as needed (Rossberg, 2019). The team tracks their progress using a burndown

chart (Scrum board).

The sprint planning meeting is used to discuss changes in the product backlog. This

meeting is timeboxed to eight hours for a calendar month. During these meetings,

the team makes decisions about what and how the increment will be delivered. The

key Scrum events are Sprint, daily scrum, sprint review, and sprint retrospective.

The daily scrum is a daily meeting where the team reviews what was completed in

the previous sprint, discusses the goals for the day, and identifies any restrictions or

risks that may impede progress. The sprint review takes place at the end of the

sprint iteration, during which the team showcases what has been accomplished to

the product owner and stakeholders. The suggested time for this meeting is three

hours for a calendar month sprint, and the outcomes of the sprint review inform

updates to the product backlog or the retrospective following the review (Rossberg,

2019).

The sprint retrospective is used to agree on continuous process improvement

actions, and the duration of these meetings should be one and a half hours for a two-

week sprint. Rossberg also defines backlog refinement as an ongoing process to

review the product backlog items and appropriate prioritization, breaking down larger

product backlog items into smaller ones to fit them into the sprint planning. Within the

backlog refinement, the acceptance criteria are clarified (Rossberg, 2019).

The definition of done outlines the requirements, including the stakeholder's

acceptance criteria, which need to be fulfilled. It is a primary quality document that

defines what constitutes a finished stage of the product to be delivered as a product

increment. A product increment is understood as the sum of all backlog items

completed during a sprint, including items delivered from previous sprints. At the end

of each new sprint, the new increment must meet the requirements outlined in the

definition of done.

The following table summarizes the key elements of the scrum sprint methodology.

98

Table 4.6.1 Summary of the Scrum sprint events, roles and artefacts based on
Mvulane, 2020).

Because the conceptual framework for the simulation of feedback loops in

engineering design takes a socio-technical approach, it considers technical aspects

such as technology, infrastructure, and processes, alongside socio aspects like

people, goals, and culture. This approach recognizes the systematic connections

between these elements (Clegg et al., 2017). The study suggests that new product

development processes within design domains, like the Scrum sprint agile methods,

which involve team collaboration, complex problem-solving, creativity, and

information exchange, are representative examples of complex socio-technical

systems (Robinson, 2016).

The conceptual framework for simulating feedback loops in engineering design has

four stages for analysing and implementing a simulation model: conceptual model

development, simulation model implementation, verification and validation, and

documentation.

99

The development of the conceptual model involves five main stages: (1) problem

identification, (2) system identification, (3) system conceptualization, (4) model

formalization, and (5) logical model.

For problem identification within the conceptual framework, it is essential to establish

and understand the problem that needs to be addressed. The "problem" is viewed as

a poorly understood situation that exhibits suboptimal performance or signifies a lack

of knowledge about a system, its behaviour, or its response to interventions (Nikolic

and Lukszo, 2013).

4.6.1.1 Problem Identification in Scrum

Scrum is an iterative and incremental process where development activities occur in

timeboxed intervals known as iterations, typically lasting from two to four weeks.

During iterations, daily scrum meetings are conducted to inspect the work done,

enabling necessary adaptations and adjustments to the design to be quickly

identified and implemented. Within the Scrum methodology, the "definition of done"

determines the completion of the design activity within the established stages

(Rossberg, 2019). This definition outlines what user requirements, in addition to the

user's acceptance criteria, must be fulfilled. It serves as a preliminary quality

document.

Iterations conclude with inspections, and this cycle continues until the project is no

longer funded (Rossberg, 2019). The key challenge in the Scrum sprint method lies

in achieving a balance between what is considered within the definition of done and

the sprint backlog activities performed before the project's funding ceases.

4.6.1.2 System Identification

The criteria for identifying system elements in the framework for simulating feedback

loops in engineering design suggest that actors are entities capable of decision-

making, while all others are considered objects. Properties that describe and specify

agents are called states. Interactions refer to in-out interplays between agents, and

behaviors are state changes resulting from interactions (Nikolic and Lukszo, 2013).

Agents are the fundamental units of the model, representing one or more actors

within the system. They are distinguished by their boundaries, states, behaviors, and

100

interaction capabilities. Interactions can vary in terms of duration, immediacy, and

impact.

For identifying system elements in the Scrum sprint, the product owner, scrum

master, development team, and stakeholders can be considered as actors. Sprint

iteration events can be identified as relevant behaviours and interactions, while sprint

development is regarded as a state or property. Within the category of Scrum

artifacts, product backlog and sprint backlog can be seen as interactions, while the

Scrum board is an object with no interactivity with the agents. Table 4.6.2

summarizes the identification of system elements and their categorization using the

system identification criteria proposed in the conceptual framework for simulating

feedback loops in engineering design.

4.6.1.3 System Conceptualization

The previous stage provided a general identification of the system elements in the

Scrum sprint and a preliminary categorization of interactions, agents, states, and

behaviours, resulting in an inventory of system components. However, the identified

concepts expressed in natural language are unsuitable for computer interpretation.

The model of the world needs to be explicit, formal, and comprehensible to both

computers and humans.

The formalization activity aims to generalize the system description beyond a single

domain. Ontologies can assist in the formalization of concepts and relationships

without a focus on software implementations. Two approaches to ontology

implementation are used in this thesis. In the first approach, an instance represents

a single identifiable object within the model's scope, and a class is a generalization

of several instances.

In the second approach, Otte et al.'s (2019) suite of modular ontologies for the

product life cycle and its successive phases is employed. This modular ontology

identifies material entities, information entities, and processes. It captures

relationships with a two-place instance-level relationship, involving artifacts and

human agents. The terms defined by Otte et al. (2019) are used to identify

relationships between the system elements, specifying that material entities are

agents with a physical existence, processes relate to planned or unplanned activities

required to achieve a goal, and information entities represent various forms of

communication, related or unrelated to processes or material entities.

The systems conceptualization stage concludes with the implementation of the

system ontology, as presented in the following diagram. The development of this

ontology facilitates the formalization of interactions between system elements

101

concerning processes, information, and material entities, following the criteria

established in Section 4.3.

Figure.4.6.1.3.1 Scrum sprint ontology.

102

4.6.1.4 Model Formalization

The preceding stage has identified who and what is within the model. In the

formalization stage, the objective is to define who performs what actions and when.

This stage seeks to transform the previously identified concepts into an artificial

model with an abstract representation, creating a model narrative that presents a

series of events and facts in a sequential order with established connections

between them.

The system elements of the traditional product development process identified in

Section 4.3 of the model conceptualization stage can be equated with the system

elements of the Scrum sprint methodology. In Table 4.6.1.4.1 Traditional product

development process versus scrum sprint method, the left side comprises the

system elements of the traditional product development process, while the right side

encompasses the system elements of the Scrum sprint methodology. The

classification of Otte's ontology, including Material, Processes, and Information

entities, aligns with the Roles, Events, and Artifacts of the Scrum method.

Table 4.6.1.4.1 Traditional product development process vs scrum sprint
method.

Material entities are agents or elements from the real world. These correspond to the

Scrum roles, where the Product Owner, the Scrum Master, and the Development

Team are individuals involved in the process, each performing distinct activities. In

103

the traditional product development process, these roles are akin to designers and

design teams.

Processes are associated with planned or unplanned activities, representing the

actions required to achieve a goal. In the context of Scrum, these are reflected in the

sprint iteration events, which are carefully planned activities with specific timeframes

and durations. The sprint iteration aligns with the design task, wherein designers

conceptualize, design, and evaluate solutions, and with design activities that

encompass actions beyond the design task, such as communication and information

behaviours of the designers while executing the design tasks.

Scrum artifacts are the means through which designers communicate their ideas and

control the progression of the design process. The design brief corresponds to the

product backlog, capturing the requirements of the stakeholders. The product

architecture informs the configuration of the product development, like how the sprint

backlog captures and prioritizes the necessary tasks for the design process.

The previous analysis conducted during systems identification and systems

conceptualization suggests that the identified variables and characteristics defined

as elements of the scrum sprint methodology are valuable for the application of the

conceptual framework for the simulation of feedback loops in engineering design,

facilitating the simulation of the scrum sprint processes.

4.6.1.5 Logical model

Having identified what and who is in the model. The next step in the formalisation

stage is to establish who does what and when. The model narrative is developed as

an account of series of events, facts, etc., given in order and with the stablished

connection between them. The narrative in Figure 4.6.1.5.1 describes how the sprint

process develops.

In previous stages, the system, model elements, relations, interrelations, agent

types, behaviours, and states have been identified, this stage, aims to ensure the

concepts can be translated into a computer language retaining their original

meaning. Table 4.6.1.5.1 present the possible variable identified.

104

Table 4.6.1.5.1 Variables identification.

Categories System elements Task
Info
direction

Recipient
status

Product Owner Define sprint scope and vision Out Active

Scrum Master Protects the team In/Out Active

Development Team Performs product design In/Out Active

Sprint planning Is used to define priorities In/Out Active

Daily standup meetings Updates scrum board and inspects progress In/Out Active

Sprint Design and development activities In/Out Active

Sprint Review Is used to show and asses product increment In/Out Active

Sprint retrospective
Is used to provide process feedback and to
inspect the product increment

Out Active

Product backlog Is used to capture product requirements In/Out Passive

Sprint backlog & Scrum board
Is used to organize and prioritize tasks and
activities

In/Out Passive

Definition of done
Is used to determine what the acceptation
criteria in each stage

Out Passive

Sprint
iteration
events

Scrum
artefacts

Scrum
Roles

105

The conceptual framework has been integrated with Scrum-sprint constructs to

facilitate the construction of the simulation model. This conceptual framework utilizes

three rectangles that represent the original three components: process, information

processing and evaluation, and communication. It then allocates the Sprint agents to

their corresponding components. The Development Team corresponds to the block

Figure 4.6.1.5.1 Sprint process narrative, based on Mvulane, (2020).

106

of design activities, the Scrum Master to the information processing and evaluation,

and the Product Owner is assigned to the communication block.

The framework proposes three initial interaction points: "Process start," which injects

agents from the workflow to the agents; from the Sprint Review to the process,

controlling the flow; and a trigger events relationship from the "Definition of Done."

According to the definition of done, this relationship determines what is considered

completed. This application illustrates the flexibility of the proposed framework, as it

analyses and implements design processes from a socio-technical perspective,

encompassing people, processes, and technology.

107

Figure.4.6.1.5.3 Conceptual framework adaptation for the simulation of agile
sprint processes.

In summary the previous implementation of the conceptual model demonstrates that

the conceptual framework, originally designed for simulating feedback loops in

engineering design, possesses the flexibility to be adapted for simulating Agile

sprints. This adaptation considers the socio-technical characteristics inherent to agile

processes. By repopulating the conceptual framework with Scrum-sprint constructs,

the model successfully integrates the elements, relations, agent types, behaviours,

and states specific to agile methodologies.

108

Notably, the model allocates Scrum agents to their corresponding components: the

Development Team, Scrum Master,

109

Chapter 5: Conceptual framework implementation

Figure 5.1 Chapter layout.

This chapter introduces the simulation model implemented after the conceptual

framework phase in Chapter 4 using the case bicycle study introduced Section 3.4.

This thesis has examined the Mykoniatis and Angelopoulou’s (2020) framework for

the integration of different simulation methods in other domains as socio-technical,

cyber-physical, business systems, and healthcare organisation. This framework

provides a structure for the implementation of multiparadigm simulation models,

integrating agent-based, discrete events, and system dynamics simulation methods.

Mykoniatis and Angelopoulou (2020) identified three critical questions to guide the

implementation of the simulation approach; The first question attempts to establish

why and when a real-world system requires multiparadigm modelling and simulation.

The second question concerns the interaction points among the simulation models

used. The third question asks how the simulation models interact with each other. To

answer the first question, this thesis has established that realistic simulations with a

comprehensive view of the engineering design process must consider the technical

aspects of the product development, such as the architecture of the product, the

linear logic of the development process, along with the social aspects of design

teams' communication patterns and feedback loops.

Those considerations must include the identification of the organisational activities in

engineering design and development processes, such as those related to individual

actions and their context (micro-level), those associated with the flow of tasks and

design progression (meso-level), and those related to project/programme and

contextual considerations (the macro-level), as part of the complex dependency

structures of the product development processes (Wynn and Maier, 2022).

110

5.1. Implementation

The problem and its underlying system were established in the previous chapter

during the conceptualisation stage in Chapter 4 of this thesis. This stage involves

defining the details necessary for programming the simulation. During this process,

changes to concepts and the model design may occur during implementation due to

unforeseen outcomes or issues (Nikolic and Ghorbani, 2011).

The development of the conceptual framework for simulating feedback loops

includes five main sages, (1) problem identification, (2) system identification, (3)

system conceptualisation, (4) Model formalization and (5) Logical model.

The problem identification defined in Chapter 4, Section 4.1.1, established that

product development processes within engineering design are significantly impact

social-organizational aspects, including factors such as communication and

coordination mechanisms, and social and cultural characteristics. Product

development is also shaped by process characteristics, defined as the activities

performed to execute the product development project. This includes hardware and

software modules and components specified in the product architecture design to

produce the intended product or service.

For the implementation of the simulations using the conceptual framework developed

in the previous chapter. The handlebar assembly case study in this research is an

example of an engineering design process, starting with identifying the design

structure (shown in Figure 3.3.1.3). The bicycle handlebar assembly integrates the

individual parts, brake lever, gear change, and handlebar. Each feature needs to be

designed independently but integrated into the assembly at the end of the process.

Section 3.3 of Chapter 3 established that the design process begins with each team

receiving a simultaneous design request, which initiates their respective design

activities. However, the handlebar assembly design team must wait for the

completion of all three component designs before proceeding. During the design

process, iteration may occur within each design team during the processing and

evaluating of the information used in the design task. Effective and timely

communication is therefore essential to prevent rework and avoid a vicious cycle.

The systems identification stage in the conceptual framework (see Section 4.2)

prescribes the elaboration of an inventory of the system components identifying

relevant concepts, actors, objects, behaviours, interaction flows, states or properties.

The outcome of the analysis of the identification of system elements is a list of 21

system components identified and classified is presented in Table 5.1.1.1, the table

111

of the system concepts and their respective classification show in the first column is

the consecutive numbering and in the second is the system element name. In the

following columns, the categories are (a) Concepts, (b) Actors, (c) Behaviours, (d)

Interactions, and (e) States.

Table 5.1.1.1 Concepts, Actors, Behaviours, Interactions, and States
identification.

The system conceptualisation of the case study is supported by the process

instrumented in Section 4.3 in Chapter 4 of this thesis. the relationships of four

identified designers or design teams/actors necessary to perform the design of the

handlebar assembly, their relationships, the corresponding interactions, the design

task, and design activity, which includes information processing and evaluation and

communication. The correspondent behaviours and the three states that can

describe the agents in the handlebar design case study are also provided (1) the

agent performs a design task, (2) process and evaluates information, and (3)

communicates are shown in table 5.1.1.2.

No. System elements a) Concepts b) Actors c) Behaviours d) Interactions e) States
1 Bicycle design

2 Design request

3 Brake lever

4 Gear change

5 Handlebar

6 Handlebar assembly

7 Part design

8 Designer iterates

9 Communicates

10 Asking questions

11 Answering questions

12 Feedback loops

13 Communicated effectively

14 Not communicated

15 Incomplete information

16 Decide to ask

17 Carry on without proper information

18 Not coordinated

19 Rework

20 Not coordinated rework

21 Vicious circle

112

Table 5.1.1.2. System components identification for the handlebar design
structure.

In this thesis, the model formalisation stage has been established in Section 4.4 that

model narrative describes the events in the given order and the established

connection between them. A model representing the narrative of the handlebar

design process using Unified Modelling Language (UML) diagram is presented in

Figure 5.1.1.1

Actors Relationship Interaction Behaviours States

Brake lever designer
or design team

Design Task Works in the design task
Analysis, Synthesis
and Evaluation

Gear Change system
designer or design
team

Ask for information

Handlebar designer
or design team

Answers to information
requests

Determines the need for
information

Provides information

Decide to carry on

Evaluate
information

Communicate
Design activity/
communication

Design
activity/information
processing and
evaluation

Sub-systems for the
handlebar assembly

Handlebar assembly
designer or design
team

Figure 5.1.1.1 UML activity diagram for the handlebar design process narrative.

113

5.1.2 Identification of MS methods

Section 3.2.2 of this research established the use of the Djanatliev and German

(2015) method to guide the prototyping/development of domain-specific hybrid

simulations. The framework provides a macro-structure for implementing simulation

models with three critical processes for structuration of the simulation scope.

The framework asserts that identifying the abstraction levels is possible by dividing

the overall domain scope into specific subclasses. Independent simulations can be

implemented through a hierarchical breakdown where macro, meso, and micro

levels cover the actual situations within the simulation context. The framework

prescribes that explaining how simulation models are linked to the abstraction levels

is essential to determine: the relevant continuous structures if they are present, if

processes must be traversed, or if the representation of individual behaviours is

necessary (Djanatliev & German, 2015).

The literature about the modelling of the iterative process suggests three approaches

to identify a system's independent levels. (1) The information-based approach uses

the information about the process to determine process behaviour and capture

feedback associated with iteration. (2) Task-based approaches consider the design

process as a collection of tasks attempted and revisited until completion. In this

application, each iteration is considered the repetition of a completed task or the

execution of the same task in a different context. (3) The actor-based approach is

based on the modelling of multiple agents and their coordination process; in this

approach, iteration is perceived as a function of the continuous dialogue between

process participants (Wynn et al., 2007).

The modelling approaches identified by Wynn (2007) can be mapped to determine

the abstraction levels suggested by Djanatliev and German (2013) , considering the

critical features of the design processes simulated in this research. The information-

based approach can be identified as a high-level abstraction paradigm and the

system's dynamics can be used at this level however is not used in this research.

The tactical task-based approach, with medium detail and operational interactions in

fine detail, can be used at the meso-level suggested by Djanatliev and German.

Finally, the actor-based approaches, at a low abstraction level with detailed data,

can provide the system’s micro-level view. In this thesis has been stablished that,

the stage-gates model provides the chronological structure (the process) and the

product architecture to form the development process structure for designing a give

product deriving the workflow. The discrete events simulation modelling captures the

task’s progression, the process structure, and the cross-gate iterations (rework).

114

Here, the stage-gates model provides the chronological structure (the process), and

product architecture is used to identify the parts being designed to form the

development process structure for designing a given product, deriving in the

workflow. The engineering design processes identify systems and subsystems of

the designed product and the social interactions of the designers (the people). The

agent-based simulation modelling can capture the design team's micro-level

interactions and information patterns, sharing and evaluating information while

performing design tasks, and the iteration feedback loops of individual designers. On

a different note, rework stage-gated feedback loops govern the development

processes, therefore, are well-suited to discrete event simulation and on the other

hand, design iteration feedback loops are driven by individual designers and best

modelled using agent-based simulation (Tapia et al., 2021). Figure 5.1.2.1 illustrate

the coupling of the abstraction levels (left side), simulation approaches (middle part)

and the simulation methods used (right side).

Figure 5.1.2.1 Identification of abstraction levels, simulation approaches and
methods adapted from Djanatliev and German (2013).

5.1.3 Identification of the interaction points.

The stage of identifying the abstraction levels and the simulation approach has been

completed by describing how to use the simulation paradigms to model structures at

the considered level. The next step describes the interaction between abstraction

115

levels defining how the simulation-related elements can be connected (Djanatliev

and German, 2015).

Interaction points are the pair of inputs-outputs of data exchange between interacting

models that need to communicate, resulting from mapping the models’ boundaries.

According to the framework for the implementation of hybrid simulations proposed by

Mykoniatis and Angelopoulou (2020), there are two kinds of inputs, two types of

outputs and four boundaries to be considered during the process of the interaction

points identifications as shown in the Figure 5.1.3.1

Figure 5.1.3.1 The four interaction points’ boundaries, based on Mykoniatis

and Angelopoulou (2020).

The initial inputs are the ones used to start the simulation and are at the initial

boundary of the simulation model; the outputs of the simulation are the ones

produced as final data or expected results and are at the end-ending boundary of the

simulation system. Works produced during the simulation are those generated for

different models or agents and are allocated in the lower boundary of the model. The

inputs entering during the simulation come from other models or agents and are

distributed in the upper limit of the simulation boundary. Communication between

models of similar paradigms must be considered through the identification of

variables properly “captured by” or “influenced by” (Mykoniatis and Angelopoulou,

2020).

5.1.4 Relationship definition.

Chahal (2010) identified four generic relationships between discrete events and

system dynamics models usable to establish a the relationships definition, (1)To

directly replacement of variables, (2) to summarize data or breaking down data in to

116

a component parts and (3) causal relationships Interactions that involve state

changes injecting, adding or removing objects or entities, transfer entities, control

flow statements, trigger events, and (4) state-chart control relationships are related

to agent-based model interactions (Mykoniatis and Angelopoulou, 2020).

On a different note, Mykoniatis and Angelopoulou (2020) suggest the use of two

categories to identify interaction points: Value assignment relationships and impact

statements.

Value statements include mathematical formulations and the replacement of values

between equivalent variables (Mykoniatis and Angelopoulou, 2020). On the contrary

impact statement relationships cannot be expressed using value assignments, they

are related to more abstract concepts. They may include one or more or a

combination of value assignment relationships (Mykoniatis and Angelopoulou, 2020);

in table 5.1.4.1, the categories’ nomenclature and types and description of the

interaction points are provided.

Table 5.1.4.1 Categories and types of relationships, based on Mykoniatis and
Angelopoulou (2020)

From the logical model construction, three main sections have been identified, the

design task, the communications and trust and the workflow.

During the building intervention and evaluation (BIE) cycles of the Action Design

Research method in Chapter 3, several iterations were carried out, implementing

different aspects of the system process to understand the instrumentation of the

modelling approach. Initially, the discrete events model of the product development

process was built using different discrete events simulation approaches. However,

Category Types of relationship Description
Direct replacement of values
of variables

Corresponds to interaction points that represent equivalent variables
of information exchange in both models.

Aggregation/dissagregation
Corresponds to interaction points that seize values of information
exchange that need to be aggregated (accumulated) or disaggregated
form the one model to equivalent values of the other model.

Causal relationships
Correspond to interaction points described by explicitly mathematical
relationships.

Add/remove inject agents
entities

Inject agents, in any point of the simulation process.

Control flow
Correspond to "if" "for" and "while" statements and define the flow of
a particular logic.

Trigger event Could be "timeout" "message", "condition" "rate" and arrival.

State-chart control
Correspond to the state that may control the flow among two models,
update variables from other models or trigger other relationship.

 A.Value
Assignement

B. Impact
Statement

117

the Anylogic 8 software allowed the construction of a simulation model and offered

possibly to include an agent-based and discrete events methods within the same

simulation environment.

Those cycles consisted of elaborating different conceptual model in the system

identification process and the system conceptualisation outcome in the form of

diagrams, depicting the main system elements under study using the Unified

modelling language (UML). The UML is a formal language used to specify and

construct object-oriented systems that provide with a unified grammar to document

and visualise the system elements and their relationships (Nikolic and Ghorbani,

2011). (Nikolic and Lukszo, 2013)

The integration of the agent-based with the discrete events model considers that

each designer (agent) works in one of the identified parts of the bicycle handlebar

assembly. The critical interaction points identified are between the end of the

process of the agent-based model and the process (delay, service, or wait) block in

the discrete events model. The interaction between them can be defined as a direct

replacement of values because the process block is designed to seize the agent for

a determined period; however, the seized time is determined for the time the agent-

based takes to complete the activities until they arrive at the “finished_design” state.

The following interacting points in the model are between the agent-based and the

discrete events conceptual model's informing decisions in the agent-based to the

decision blocks in the discrete events model. This relationship can be classified as a

trigger event relationship since the change in the condition of the decision construct

in the agent-based model produces an action in the decision block in the discrete

events model. The next pair of interacting points is from the carry on construct in the

agent-based model to the rework block in the discrete events model; this interaction

can be identified as a trigger event relationship because it uses a condition to

introduce a change in the decision block in the discrete events model.

Figure 5.1.4.1 shows the interaction points diagram between the discrete events and

agent-based models. The second diagram in Figure 5.1.4.2 identifies the agent-

based interaction points in state chart structures. There are three interaction points

between agents; The transition_ask construct simulates the designer's request for

information to the other designers through a message. In the Answering_gathering

information state, the agent acknowledges the request and sends an answer to the

requester, when the message is received in the state chart construct. The summary

Transition_answer. the next state is the evaluation of the, where the agent decides to

118

ask for information. The summary of the identified interaction points in the UML

hybrid model diagrams is depicted in table 5.1.4.2.

119

Figure 5.1.4.1 UML hybrid model diagram, showing interaction points between agent-based and discrete events model.

120

Table 5.1.4.2 Summary of interaction points in UML hybrid model diagrams

Agent/Part
Agent-based
construct Category Type

Discrete-
events
block Description

info_decision
Impact
statement

Trigger event Decision

Simulates the outcome of the information
evaluation, and returns to the information
request state when it is true. The cycles of
information requests, answers and request
information after evaluation simulate
feedback loop iterations.

Info processing
(Carry-on)

Impact
statement

Trigger event Rework

Decision to carry on with available info.
Simulates the chance that the designer
decides to carry on with incomplete or
defective information, resulting in general in
rework.

Finished design
Value
assignment

Direct
replacement

process

Simulates the end of the design activity, that
delays the progression of the task in the
discrete events model, the time taken to
finish the process affects the time to
complete the assembly.

Agent/Part
Agent-based
construct Category Type

Agent-based
construct Description

Transition ask
Impact
statement

Trigger event
Anwering_gathe
ring information

Simulates the need for information detected
for the designer, sending request to other
the designers

Anwering_gatheri
ng information

Impact
statement

Message
Transition
Anwer

Simulates when designer answers the
request of information

Transition Anwer
Impact
statement

Message
Anwering_gathe
ring information

Simulates the reception of information from
other designers and the transition to the
information evaluation state

(1)Brake lever,
(2)Gear change,
(3)Handlebar,
(4)Handlebar
assembly.

(1)Brake lever,
(2)Gear change,
(3)Handlebar,
(4)Handlebar
assembly.

121

Figure 5.1.4.2 UML hybrid model diagram, showing interaction points between agent-based structures.

- 122 -

5. 2 Simulation.

In the modelling design stage, the identified concepts must be implemented

in a computational language, retaining their original meaning (Nikolic and

Ghorbani, 2011). In this stage, the research uses the meso-level approach,

identifying the four components of the handlebar assembly and their

relationships. The developed model combines a general-purpose design

process framework and the product's architecture. Delineating specific

feedback loops in the process that, in the context of the stage gates, reflect

rework feedback loops or iteration feedback loops of individual designers

and design teams.

Agents are the basic elements of an agent-based model. They can perform

actions for themselves and other agents, receiving inputs from the

environment and other agents and behaving flexibly and autonomously.

Agents consist of states and rules (Nikolic and Lukszo, 2013). The agent

states represent the specific parameters collection of all the relevant

information about what the agent is now.

The rules describe how states are translated to action or new conditions.

Rules should be understood as mechanical transformation functions rather

than the colloquial use of the social notion of rules as regulations or

agreements (Nikolic and Lukszo, 2013).

Actions are the actual actions agents carry out because of decision rules

being applied to their states, and the behaviour is the total observable sum

of the agent's activities. State changes are the agent's behaviour. It is an

emergent attribute that results from the interaction of internal, local, and

environmental states and decision rules.

The discrete events modelling visualises the systems as a series of

sequential or parallel activities with delays and starting and endpoints. The

suites for modelling in discrete events models include special blocks that

allow merging the outcome from various individual processes into a new

development; those blocks are usually named assemblers or assembly

blocks. Some blocks can diverge entities from previous approaches; those

blocks can accept, reject, or deviate entities with probabilistic or conditional

criteria; in Anylogic eight, those blocks are called “decision” blocks.

- 123 -

In the conceptualisation of the handlebar design case study, the reception of

a design requirement is identified as the process starting point. The product

architecture defines the four actors performing design activities, and the

progression from the individual parts to the assembly stage is

conceptualised as the stage-gate process.

5.2.1 Discrete events modelling

The discrete events modelling visualises the systems as a series of

sequential or parallel activities with delays and starting and endpoints. The

suites for modelling in discrete events model include special blocks that

allow merging the outcome from various individual processes into a new

development; those blocks are usually named assemblers or assembly

blocks. Some blocks can diverge entities from previous approaches; those

blocks can accept, reject, or deviate entities with probabilistic or conditional

criteria; in Anylogic eight, those blocks are called “decision” blocks.

In the conceptualisation of the handlebar design case study, the reception of

a design requirement is identified as the process starting point. The product

architecture defines the four actors performing design activities, and the

progression from the individual parts to the assembly stage is

conceptualised as the stage-gate process. The discrete events model

implemented uses the input/source block to simulate the arrival of the design

requirement. The design activities are modelled using operation blocks in

Anylogic eight "service/delays" blocks. The "assembler" block merges the

three individual parts in the handlebar assembly, and "decision" blocks are

used to simulate iterations and reworks.

In Table 5.2.2.1, the initial parameters for the implementation of the

simulation are shown; In the first column, the conceptual system elements

are listed; in the second column, the correspondent Anylogic eight block

used; in the third column, the simulation parameters used in the

implementation of the discrete events model, and the fourth column the

initial values of the simulation model.

- 124 -

Table 5.2.1.1 Initial parameters for the discrete events model.

The simulation model considers how to design iteration rework and how

interactions within and across design teams influence the progression and

efficiency of design tasks in the new product development systems.

In the simulation model (Figure 5.2.1.1), design requirements are fed into the

model and transformed into finished designs. The number of feedback loops

influences the number of designs produced. During the simulation, iterations

are randomly selected feedback loops that occur within the design process

of a given part. In contrast, rework loops span the design process of multiple

components and are modelled as service delays to queues. Together, these

- 125 -

feedback loops influence the time taken to produce a design, and so the

number of designs created in a simulation experiment with a fixed runtime.

Figure 5.2.1.1 Discrete events simulation model, implemented in
Anylogic 8

The initial input parameter of the simulation model is the number of design

requirements. The assumptions are that the time taken for a design team to

complete the design task is between 4 and 7 weeks, and the amount of

iteration allowed is about 30 per cent. The simulation output is the number of

designs produced in the runtime experiment, which affected the number of

iterations and volume of rework given a fixed capacity.

5.2.2 Agent-based

Agent-based simulation models a system as a collection of autonomous

individuals called agents that individually evaluate and make decisions

based on a set of rules and execute various behaviours appropriate for the

system they represent (Bonabeau, 2002). Agent-based simulations

contribute to the construction of models without knowledge about the global

interdependences or the global sequence of operations. Those models can

be constructed by perceiving how individual participants of the process

behave, obtaining a global behaviour (Borshchev & Filippov, 2004). The

intervention artefact of this iteration was developed using eight. This

package uses state charts to model system behaviours that cannot be

defined using events or dynamic events. The Anylogic state charts have

states and transitions triggered by user-defined conditions (timeouts or rates,

- 126 -

messages received by the state chart, and Boolean conditions) (Anylogic,

2022). Figure 5.2.2.1 illustrates the state charts construct elements from

Anylogic eight.

Figure 5.2.2.1 State chart constructs from Anylogic 8 (2022).

The system identification and conceptualisation outcome of the engineering

design, the information processing and communication is a conceptual

model represented using a UML machine states diagram shown in Figure

5.2.2.2

At the centre of the diagram, the designer moves to the state of processing

information or communicating alternatively during the design activity. While

the designer is in the design activity state it goes through the stages of

analysis, synthesis, and evaluation. Within each step, designers may require

information from the other design teams working in different parts of the

system.

To acquire the information, designers (agents) transit from the design task

state to the communication state and from there to the information

processing state to return to the same point they left in the design task.

During the information processing, the agent evaluates information and

decides whether to ask for more details (iterates) or to complete the job with

incomplete or missing information.

- 127 -

Figure 5.2.2.2 UML State chart diagrams for the agent-based
conceptual model.

The state chart constructs and parameters used in the simulation model of

the designer agents are depicted in Table 5.2.2.1 The first column identifies

the correspondent Anylogic eight state chart constructs. In the first column,

the description starts with the states, followed by the transitions, decision

blocks, and history blocks and finalises with the identification of the

variables. The second column shows identification names resulting from the

system conceptualisation process but adds other constructs necessary for

the configuration of the simulation. The third column contains a brief

description of the construct element function, followed by the column of the

definition of the parameters; here, parameters are defined as time scales,

week, month, year, or Boolean values like true or false.

The triggers used in transitions define the model behaviour, changing the

agent state or creating conditions for a state change. Not all the constructs

have implicit triggers or parameters; some constructs are used to support

the flow in the simulation diagram. Finally, the last column contains the

parameters used in the simulation. Those parameters are assumptions, i.e.,

- 128 -

the time to complete that design task is estimated in a period of 4 to 7

weeks; this time is divided into the three design stages identified, giving 20

per cent to the analysis activity, 50 per cent to the synthesis stage and 30

per cent to the design evaluation stage.

Table 5.2.2.1 Initial parameters for agent-based simulation.

The need for information transition has an essential role in the simulation

model. Together with the time between stages, determine the simulated

system's efficiency. Figure 5.2.2.3 presents the state chart diagram of the

simulation structure developed in Anylogic eight. The brief state is used as

an Idle state, so the model initialises when the transition Design_req triggers

the state change to the Design_Task composite state; there, the other states

and transitions start interacting. In the analysis stage, the state change is

triggered by the Time_1 transition, repeating a similar pattern going through

- 129 -

the Synthesis and Evaluation states until the system reaches the

finished_Design state and returns to the idle state in the Brief state.

However, when the transition_Ask triggers the state change. The simulation

goes through cycles of asking for information, evaluating information, asking

again, simulating iteration feedback cycles or deciding to carry on without

incomplete information, and returning through the History construct to the

design_Task until the process is complete. The difference between the

conceptual model and the simulation state chart is due to the simulation

constructs’ configuration requirements.

Figure 5.2.2.3 Agent-based simulation diagram implemented in
Anylogic 8

Similar to the discrete events model, the initial input parameter of the

simulation is the number of design requirements; in the case of the agent-

- 130 -

based model, requirements can be set up to one to four per month in each

experiment. The assumptions for the simulation parameters are the time

taken for a design team to complete the design task is between 4 and 7

weeks. The amount of iteration allowed in this case ranges from 15 per cent

to .30. The simulation output is the number of designs produced in the

runtime experiment, which is affected by the number of iterations and

volume of rework given a fixed capacity.

5.2.3 Hybrid Simulation, Discrete events+Agent-based

Discrete events modelling is often considered as a list of events to be

processed, or a flowchart with entities and mobile resources flowing through

the processes (Goh and Ali, 2016) in this approach entities and resources

are not able to interact with each other and they do not display adaptative

behaviours (Scheidegger et al., 2018). On the other hand, agent-based

modelling is a bottom up approach focused on designing individual agents

able to make decisions and perform actions, and their emergent behaviour

arises from those interactions (Borshchev, 2013; Dubiel and Tsimhoni,

2005).

The combination of two or more simulation approaches leads to what is

called hybrid or multiparadigm simulation modelling. Scheidegger et al.

(2018) argues that the integration of two or more simulation methods, is

useful to develop simpler and more efficient models. Because through those

approaches is possible to gain a better understanding of complex systems

with different dimensions and perspectives. (Scheidegger et al., 2018).

The Multi-Paradigm Modelling methods enable to model each aspect of a

system explicitly at the most appropriate abstraction level (Challenger et al.,

2020), allowing the generation of an interoperable simulation able to capture

interactions among elements (Mykoniatis and Angelopoulou, 2020) identified

in the Section 3.2.2 of the methodology chapter.

The integration of two simulation methods suggested in the conceptual

framework, captures the social and behavioural patterns of the actors, the

effects on the progress of design work and the process. Including, the logical

and chronological structure of the project and the product architecture.

The integration of the agent-based with the discrete events model considers

that each designer (agent) works in one of the identified parts of the bicycle

handlebar assembly, so there is one agent for the brake lever, one agent for

the gear change, one for the handlebar and on for the handlebar assembly.

- 131 -

Each agent has three main interaction points with the correspondent branch

of the discrete events model.

First, between the end of the agent-based model and the process (wait)

block in the discrete events model the time taken for the designer agents to

process the design requirement determines the time to pass to the next

block. The interaction between them can be defined as a direct replacement

of values because the process block is designed to seize the agent for a

determined period; however, the seized time will be determined for time to

complete the design task of designer agents.

The second relevant interaction point is the between the “carry on” which

has direct influence in the “rework” block in the discrete events model. The

carry-on of each individual part evaluated in handlebar assembly agent-

based model triggers the “timeout” function in the wait (process) block in the

discrete events model, simulating the rework that will affect a previous stage

in each branch of the discrete events model. In the hybrid model this relation

is identified as impact statement, triggering the “timeout” function in the wait

(process) block.

In the third interaction point, individual part agents (designers) influence their

respective “decision” block for simulate the iterations in the discrete events

model. These interacting points are impact instatements triggering the

actions.

The agent-based model has three interactions points that simulate the

information and communication patterns between each agent (designer)

First, ask question, agent (designer), asks for information to other agents,

second agents answer the question, and third the agent receive answer and

move the next state, those three interaction points are in the same category

impact statement, type message. The table 5.2.4.1 summarizes the main

interaction points identified in the hybrid simulation implementation.

- 132 -

Table 5.2.3.1 Summary of the interaction points identified.

Agent/Part
Agent based
construct

Initial
boundary

U
pper

boundary
Low

er
boundary

Ending
boundary

Category
Type

D
iscrete-

events block
Initial
boundary

U
pper

boundary
Low

er
boundary

Ending
boundary

D
escription

Finished
design

X
Value
assignm

ent
D

irect
replacem

ent
W

ait,
(release w

ait)
X

Sim
ulates the end of the design

activity, that delays the
progression of the task in the
discrete events m

odel, the tim
e

taken to finish the process affects
the tim

e to com
plete the assem

bly.

Carry-on
X

Im
pact

statem
ent

Trigger event
"Tim

eout" in
W

ait
(Rew

ork)
X

The decision to carry on w
ith

available info. This sim
ulates the

chance that the designer decides
to carry on w

ith incom
plete or

defective inform
ation, in general

resulting in rew
ork.

(4)H
andlebar

assem
bly.

Inform
ation

evaluation
X

Im
pact

statem
ent

Trigger event
D

ecision block
X

Triggers the tim
eout function.

Sim
ulates the detection of rew

ork
that w

ill affect a previous stage.

Agent/Part
Agent-based
construct

Initial
boundary

U
pper

boundary
Low

er
boundary

Ending
boundary

Category
Type

Agent-based
construct

Initial
boundary

U
pper

boundary
Low

er
boundary

Ending
boundary

D
escription

 Ask Q
uestion

X
Im

pact
statem

ent
M

essage
Answ

er
Q

uestion
X

Sim
ulates the need for inform

ation
detected for the designer, sending
request to other the designers

Answ
er

Question
X

Im
pact

statem
ent

M
essage

H
ave answ

er
X

Sim
ulates w

hen designer answ
ers

the request of inform
ation

Have answ
er

X
Im

pact
statem

ent
M

essage
Evaluates
inform

ation
X

Sim
ulates the reception of

inform
ation from

 other designers
and the transition to the
inform

ation evaluation state

(1)Brake lever,
(2)G

ear change,
(3)H

andlebar,
(4)H

andlebar
assem

bly.

(1)Brake lever,
(2)G

ear change,
(3)H

andlebar,
(4)H

andlebar
assem

bly.

- 133 -

5.3 Validation

 Nikolic and Ghorbani, (2011) assert that several experimental methods, are

used to explore the parameters space of the model to search for the optimal

configuration that has been developed. Parameter sweeps consist in

systematically adjusting model parameters to investigate as many

combinations possible(Nikolic and Ghorbani, 2011). Each test parameter

has a start, end, and increment value that sets the parameter's range of

potential values. They also suggest the parameters variation experiment,

similar to the parameters sweeps method mentioned above, includes the

parameters' start, end, and increment values and allows the configuration of

simulation models comprising several single models runs, varying one or

more parameters (Nikolic and Ghorbani, 2011).

The evaluation of the BIE assemblies artefact as a simulation model uses an

experiment performed in three sets of 20 simulation runs,

The required parameter is changed in each experiment, which helps to

observe how changes in the workload of the designers' teams impact the

number of iterations and rework implemented. The plots created from the

simulations are shown in Figures 5.3.1.1.

5.3.1 Validation of the Discrete Events Model

The first experiment runs a single requirement per month, with the simulation

stopping at 156 weeks, and using the option of "unique simulation runs"

shows that from a total of 36 requirements, 20 requirements were completed

in time and without iterations or rework, 15 requirements were iterated and

from those three were reworked (shown in plot “a”). In the second plot, the

parameter for design requirements was set to two per month for 156 weeks

The system received an average of 76 requirements, from which 43 were

completed in time, 31 were iterated, and seven were reworked (see plot “b”).

For the final experiment (plot “c”), the input was three monthly requirements

for 156 weeks of runtime. The experiment shows a noticeable change in the

rework. Of the 112 requirements accepted, 53 were completed in time, 41

required iterations, and 52 required reworks.

- 134 -

Figure 5.3.1.1 Time plots showing results of the discrete events
simulations.

The model development allowed the identification of the task's temporal

aspects and the system's conceptualisation, where iterations and rework are

characterised as random events occurring during the execution of the design

process. In the configuration and characteristics of this artifact, design is

highly influenced by the number of design requests and the number of

information requests received to the point that the number of requests

produces the same number of reworks.

5.3.2 Validation of the Agent Based Model

Similar to the discrete events model, the initial input parameter of the

simulation is the number of design requirements; in the case of the agent-

based model, requirements can be set between one to four per month in

each experiment. The assumptions for the simulation parameters are that

the time taken for a design team to complete the design task is between 4

and 7 weeks. The amount of iteration allowed in this case ranges from 15

per cent to.30. The simulation output is the number of designs produced in

the runtime experiment, which is affected by the number of iterations and

volume of rework given a fixed capacity.

Req. 1/month

Req. 3/month

Req. 2/month

(a) (b)

(c)

- 135 -

The evaluations of the simulation experiment presented in Figure 5.3.2.1 are

performed in four sets of 10 simulation runs, changing the transition_Ask

parameter in each experiment, which helps to observe changes in the

designers' workload, impacting the number of finished designs, iterations

and rework. The plots reporting the result of the four variables investigated;

(accepted requirements, iterations, reworked, and the finished design) is

shown in the figures below. The first experiment (shown in a) runs the

transition_Ask at randomTrue (0.15), with the simulation stopping at 156

weeks and using the “unique simulation runs” option”, which shows that the

system can produce an average of 13.3 requirements.

Figure 5.3.2.1 Time plots showing the results for agent-based
experiments.

From there, an average of 5.4 were iterated, and from those, 3.17 were

reworked. The outcome was an average of 12.50 finished designs. In the

plot b, the system processes an average of 9.36 requirements. From which

8.64 were completed in time, 12.18 were iterated, and five were reworked. In

randomTrue (1.5) randomTrue (2.0)

randomTrue (2.5) randomTrue (3.0)

(a) (b)

(c) (d)

- 136 -

the following experiment shown in plot c, the transition_Ask was set to

randomTrue 0.25, producing the following results. The requirements average

was 6.45, and the average of iterations was 15.73, having an average of

8.82 reworks and a total of 5.50 finished designs at the end of the 156

weeks of the simulation run.

The evaluation experiments used the same input of two requirements per

month in 156 weeks of runtime. However, the transition_Ask trigger

parameter was set to randomTrue 0.3 presented in plot d. There is a

noticeable change in the average number of iterations and the finished

designs. From an average of 4.00 requirements accepted, an average of

3.09 were completed, 23.09 iterated and 9.45 reworked. For all experiments,

the info_evaluaton parameter was set to randomTrue (0.3).

 The agent-based simulation model considers design iteration rework, and

the interactions influence the progression and efficiency of the design

process in the simulation model. The number of designs produced is

affected by the number of feedback loops and the time set in the transitions

between the design stages of analysis, synthesis, and evaluation. Iterations

are random feedback loops within the information evaluation process,

whereas rework loops result from a lack of communication between the

agents.

5.3.3 Validation of the hybrid simulation.

The simulations experiments used for validation of the framework use a

distinct set of parameters, first the model time was set to 312 weeks (6

years) doubling the time of the previous experiments, in consequence the

number of runs to 20. There is an increment in the range of Ask, Evaluation

and Carry on parameters looking to reflect a mayor impact in the system.

Table 5.3.3.1 summarizes the parameters used in the validation

experiments.

- 137 -

Table 5.3.3.1 Validation experiment parameters.

The design requirements for the development system experiments will vary

the quantity of experiments between three design requirements per year and

six requirements per year. The parameters variation experiment changes the

probabilistic chance to require information (ask), the probabilistic chance to

evaluate to ask again (iteration) and the probabilistic chance to carry on

without the information (rework). The data of the experiments are linked, the

simulation run that produced scatter plot data, also produced the data for the

staked plot. For instance, the data presented in a,1 is linked to the data in

a,2. The plots for the simulation runs are presented in following graphs

numbers from 5.3.3.1 to 53.3.18,

Exp No. Requirement
Design Task
Time

Model
time Randomness Ask Evaluation Carry on

Number
of runs

Scatter x,y
plot Staked plot

0.25 0.35 0.45 a,1 a,2
0.35 0.45 0.25 a,3 a,4
0.45 0.35 0.25 a,5 a,6
0.25 0.35 0.45 b,1 b,2
0.35 0.45 0.25 b,3 b,4
0.45 0.35 0.25 b,5 b,6
0.25 0.35 0.45 c,1 c,2
0.35 0.45 0.25 c,3 c,4
0.45 0.35 0.25 c,5 c,6

Evaluation Brake lever
Iteration Gear Change
Rework Handlebar

Handlebar assembly

Legend

3 parts per year (one
part each 18 weeks)

Uniform
(3,7) Weeks

312
Weeks

Random seed 20

Validation hybrid simulation experiment parameters

 4 parts per year (one
each 12 weeks)

2

1

6 parts per year (one
each 9 weeks)

3

- 138 -

Figure 5.3.3.2 a,2 average number of events per run

Figure 5.3.3.1 a,1 average time per part designer

- 139 -

Figure 5.3.3.3 a,3 average time per part designer

Figure 5.3.3.4 a,4 average number of events per run

- 140 -

Figure 5.3.3.5 a,5 average time per part designer

Figure 5.3.3.6 a,6 average number of events per run

- 141 -

Figure 3.5.5.7 b,1 average time per part designer

Figure 3.5.5.8 b,2 average number of events per run.

- 142 -

Figure 5.3.3.9 b,3 average time per part designer

Figure 5.3.3.10 b,4 average number of events per run

- 143 -

Figure 5.3.3.11 b,5 average time per part designer

Figure 5.3.3.12 b,6 average number of events per run

- 144 -

Figure 5.3.3.13 c,1 average time per part designer

Figure 5.3.3.14 c,2 average number of events per run.

- 145 -

Figure 5.3.3.15 c,3 average time per part designer

Figure 5.3.3.16 c,4 average number of events per run

- 146 -

Figure 5.3.3.17 c,5 average time per part designer

Figure 5.3.3.18 c6 average number of events per run

- 147 -

Design managers face a key challenge in balancing the dynamic nature of

product development. Simulation modelling techniques offer a controlled

environment for testing and analysing different scenarios, providing insights

into how the system may respond to different inputs. This allows for the

identification of strategies for managing complex real-world systems without

incurring the risks or costs associated with real-life experiments.

By simulating scenarios where designers spend too much time gathering

information or answering questions, delaying responses, project managers

or design managers can identify potential risks that affect the efficiency of

the overall design task. It has been found that moderate levels of

communication lead to the most effective performance in engineering teams

(Robinson, 2010). Conversely, insufficient and excessive communication

levels are associated with performance decline (Patrashkova-Volzdoska et

al., 2003). Therefore, a key challenge for design managers is to establish a

balance between positive feedback loops in the form of design iteration and

negative feedback loops in the form of avoidable rework (Tapia et al, 2021).

The analysis of experiments shows that moderate levels of information

requirements, evaluations, and rework are not determined to produce stable

outcomes in the process. Figures a,1, a,2, and a,3 show a dispersion in the

points representing the times taken per individual designer or design team to

conclude the design task. The lower average data is about 5 weeks, but at

the top level, it is possible to observe points over 11 weeks and beyond,

such as the point in figure a,3 between 140 and 160 weeks of the simulation

time. On the other hand, despite the limited number of reworks reflected in

figure a,6, the points in figure a,5 still reflect irregular patterns of time to

complete the design tasks.

In a different note, experiments with four design requirements per year tend

to show more regular patterns of time to complete the design task. In figure

b,1, it is possible to observe that the concentration of data point of times to

complete the tasks is allocated between five and nine weeks. Figure b3

presents a similar pattern, with less density between the ranges of five to

ten. In both cases, there is a high rate of iteration and evaluation. Figure b,4

presents a peak of 24 events in run nine, with rework being low as expected.

An interesting turn in the trend of this set of data is figure b,6. Contrary to

figures b,2 and b,4, there are no peaks in figure b,6, despite rework being

set to be low in this scenario. In comparison with a,6, it is lower.

- 148 -

The experiment with six requirements per year presents a particular

behaviour. The density of the points in the scatter graph c,3 shows

similarities with c,5. However, comparing the data from b,6 with c,4, the

iteration and evaluations are much higher.

5.4 Documentation

The documentation of the conceptual framework implementation will be

allocated in the online open access research repository figshare.

Figshare https:/figshare.com/account/home#/data.

Contents:

 Simulation documentation.

 Simulation files.

 Conceptual model diagrams.

 Simulation results data, spreadsheet files.

5.5 Summary

The Action Design Research (ADR) development process consisted of

developing several BIE cycles of simulation models, starting with the

discrete events simulation method, observing how to design iteration and

rework, and the social interactions within and across design teams

influenced the progression and quality of design tasks. In the discrete events

simulation models, changes in the inputs are reflected directly in the time

taken for an entity to pass through the simulation system until the end. In the

resulting discrete event simulation model, iterations are selected feedback

loops randomly happening with the part design process. In contrast, rework

loops span the design processes of multiple parts and are modelled as

delays.

During the second part of the BIE cycle, the development of the agent-based

model focused on the characteristics of individual agents (designer or design

teams). The agent-based simulation model considers the design activity

from a socio-technical perspective that involves the communication

behaviours of design teams, the influence of social interactions in the

- 149 -

process and the product architecture identified as the critical element for

developing realistic simulations. Capturing iterations and rework in the form

of feedback loops because of the interactions between the agents when they

communicate.

In the third part of the BIE cycle, the resulting hybrid simulation model

integrates the agent-based models with the discrete event model. In this

model, time task completion is determined for the agent-based structures,

which are also influenced by the design teams' information and

communication behaviours. A relevant contribution of the third BIE cycle is

identifying interaction points between simulation models.

- 150 -

5.5.1 Scrum sprint simulations

The implementation of the simulation model for the Scrum Sprint agile

process, developed from the model formalization stage, is structured with

consideration of actors, relationships, interactions, behaviours, and states. It

is important to highlight that not all identified system components will be

included in the simulation model. The Sprint methodology primarily focuses

on design development teams, with different products of the product

architecture integrated into the product backlog as priority tasks. The actions

of the Product Owner and Scrum Master are represented as assumptions,

such as in the acceptance or non-acceptance of finished tasks. Table 5.5.1

provides a summarized representation of actors, relationships, interactions,

behaviours, and states.

The result of the preceding stage is the definition of potential parameters

utilized for the simulation. Table 5.5.2 illustrates the possible parameters

employed to configure the hybrid simulation model, encompassing the

parameters utilized in the state chart constructs that represent the sprint

development team and the stage gates development process.

Table 5.5.1 Summary of actors, relationships, interactions, and states.

- 151 -

Table 5.5.2 Simulation initial parameters. Description of blocks form
Anylogic 8

The implementation of the simulation model created in Anylogic 8 follows the

Scrum Sprint narrative introduced in Section 4.6.1.5. It begins with a Sprint

Planning activity, followed by Daily Scrums, Sprint Development, Sprint

Review, and Sprint Retrospective, all incorporated within a composite state.

The process culminates with a "done" state, which is then assessed as

either completed or not.

- 152 -

The discrete events model injects agents into the simulation. The entire

process starts when the system utilizes the discrete events block "wait" to

pause the discrete events process until the agent-based model completes

the Sprint and a decision regarding its completion status is made. If the

agent-based model's decision is "not completed," the decision block within

the discrete events sends the agent back to the queue block for

reintroduction into the system, creating a backlog. In this study, we've

identified this as a cross-gate iteration.

The simulation uses three parameters to evaluate different scenarios:

1) Quantity of requirements per year, which simulates the team's workload at

varying levels: 6, 8, and 12 requirements per year.

2) The Sprint time parameter, which simulates different Sprint durations

ranging from 1, 2, and 4.5 weeks.

3) The Scrum end parameter, which simulates the extension of the Scrum

parameter. In the simulation, it is set to a length of 4.5 weeks, as suggested

in Agile Scrum literature.

The Scrum Sprint simulation model, integrating both the agent-based model

and the discrete events model, is depicted in the following diagram.

- 153 -

A design of experiments for testing sets of parameters and graphs to

represent the results is presented in the following section. The experimental

design consists of three scenarios, each including three experiments. Each

experiment varies the number of requirements per year, and each scenario

adjusts the Sprint duration in weeks. All scenarios use a random seed

setting and run for 104 weeks (two years).

Figure 5.5.1 Simulation model diagram made in Anylogic 8.

- 154 -

Table 5.5.3 Experiments design specification.

In following section figures 5.5.2, 5.5.3, 5.5.4 display graphs with the results

for the average time it takes for the Sprint development team to complete

tasks within the Sprint event, using the parameters of the three different

scenarios. The mean column reports the time to complete the sprint in the

three scenarios.

Graph 5.5.2 summarizes the results of 10 runs with the parameters of

scenario one, experiment one, considering a requirement of 6 projects per

year, 4.5 days per sprint and 4.5 weeks for the length of the sprint event.

Scenario
Experiment

No.
Requirement
projects per year

Sprint time
in
days/weeks

Scrum end in
weeks

Complete /Not
complete

Number of
simulation
runs

Randomness
Time of
simulation run
in weeks

1 6 4.5 4.5
2 8 4.5 4.5
3 12 4.5 4.5

1 6 2 4.5
2 8 2 4.5
3 12 2 4.5

1 6 1 4.5
2 8 1 4.5
3 12 1 4.5

104

Random seed

Random seed

Random seed

INPUTS

1

2

3

10

10

10

50%

50%

50%

104

104

Figure 5.5.2 Average time to complete a sprint (Scenario 1)

- 155 -

Figure 5.5.3 depicts the graphs shown results of experiments of scenario

two, with eight requirements per year.

In figure 5.5.4 the results of scenario 3 are presented. The analysis of the

results of the three scenarios shows that time in scrum sprint events tends to

be homogeneous with a range of variations between 2.1 to 3.4 weeks per

event despite the number of requirements per year introduced in the

experiments.

Figure 5.5.3 Average time to complete a sprint (Scenario 2)

Figure 5.5.4 Average time to complete a sprint (Scenario 3)

- 156 -

The following section presents graphs 5.5.5, 5.5.6, and 5.5.7 illustrating the

results of the scenario experiments, evaluating the average number of

requirements among the accepted and not accepted design jobs. In the

graphs each column presents the data from experiments one (blue), two

(orange) and three (grey). The graphs show the average of not accepted,

the average of accepted designs and the average of requirements per year.

Figure 5.5.5 shows the average of accepted and not accepted jobs using

parameters from scenario one. The simulation experiment runs for 104

weeks.

Figure 5.5.5 Average of accepted and not accepted designs
(Scenario 1)

- 157 -

 Figure 5.5.6 presents the results of average accepted and not accepted

designs of experiments in scenario two.

The result of this analysis of the data collected in the graphs 5.5.5. 5.5.6 and

5.5.7 shows that amount of not accepted designs is not affected by the

Figure 5.5.7 Average of accepted and not accepted designs
(Scenario 3)

Figure 5.5.6 Average of accepted and not accepted designs
(Scenario 2)

- 158 -

number of requirements, in the graphs the amount of not accepted designs

from 6.4 to 9.4 is slightly smaller than the number of accepted designs, from

5.2 to 6 designs per year.

The next set of graphs, figures 5.5.8, 5.5.9 and 5.5.10, show the data

regarding the number of sprints among the design jobs done, each column

represents a run and the experiments are paired the design jobs done and

the total of sprints, for example run one have “Experiment 3 jobs done”

paired with “Experiment 3 Total Sprints”.

The graph in figure 5.5.8, shows the results of experiments in scenario one.

In the experiment one the short time given to the sprints is noticeable. In a

range of 36 to 66 in the orange sections, from 36 to 83 in the yellow sections

and from 60 to 100 in the green sections.

Figure 5.5.8 Average design jobs vs Sprints per run (Scenario 1)

- 159 -

The graph in figure 5.5. 9, shows the results of experiments in scenario

number two, which show a more balanced number of sprints among the

design jobs done, for example run number one experiment one shows 18

sprints per 9 design jobs.

Figure 5.5.9 Average Design jobs vs Sprints per run (Scenario 2)

- 160 -

The graph presented in figure 5.5.10 present the data from the scenario 3.

Section 4.6.1.5 demonstrates that the conceptual framework possesses the

flexibility to be adapted for simulating Agile sprints. By repopulating the

conceptual framework with Scrum-sprint constructs, the model successfully

integrates the elements, relations, agent types, behaviours, and states

specific to agile methodologies.

The model allocates Scrum agents to their corresponding components, it

also introduces interaction points, such as 'Process start,' 'Sprint Review,'

and 'Definition of Done,' which demonstrated the model's ability to capture

and represent the complex, dynamic nature of agile processes. This

adaptability highlights the conceptual model's capacity to comprehensively

analyse and simulate agile sprints by considering the interplays between

people, processes, and technology within these socio-technical systems.

At this stage, the simulation model can produce simulations that visualize

the time taken by the sprint development team to complete a task, the

number of tasks compared to the total number of sprints during the Scrum

event period, and the count of requirements among the accepted and non-

accepted sprints. The variations in the selected parameters, such as the

quantity of requirements and sprint duration in the design experiments, do

Figure 5.5.10 Average Design jobs vs Sprints per run (Scenario 3)

- 161 -

not seem to significantly influence the number of non-accepted jobs. In all

three scenarios, the number of non-accepted jobs is higher than the number

of accepted ones.

On the other hand, the simulation model suggests that one of the main

problems of the agile sprint method is that tends to produce unnecessary

iterations, the results of the experiments show that a larger number of sprint

iterations, produce in proportion the same amount of non-accepted jobs that

a shorter or a regular amount. To be able to produce more realistic

simulations, it is necessary to identify how the produced design increments

during the sprints are identified and assessed and how these are produced

during the sprint iterations.

Future works suggested by this study include:

1) Investigating the parameters defining 'the definition of done' to better

understand how Scrum Sprint Agile methods evaluate the

'increments' in the design.

2) Since this framework adopts a socio-technical approach, the study

needs to gain an understanding of the communication behaviours and

information processing of the teams working under Scrum Sprint

Agile.

.

- 162 -

Chapter 6: Conclusions

In the engineering design literature, design iterations are defined as

revisiting an already finished task to add more information (Ulrich and

Eppinger, 2012). Iterations are seen as learning cycles (Meboldt et al., 2013)

that contribute to a better understanding of the design problem and solutions

(Eckert et al., 2014).Design iterations can be seen also as cycles of learning

and knowledge accumulation that lead to creativity in what is known as the

co-evolution of problem-solution space suggested by Dorst and Cross

(2001). During these cycles of learning and creativity, designers develop and

refine the formulation of a problem and ideas for solution in a constant cycle

of analysis, synthesis, evaluation, and decision making (Chusilp and Jin,

2006) at individual or small teams level (Wynn and Eckert, 2017). On a

different note, the Iterations performed by teams, due to new information

arriving or because previous iterations (Chusilp and Jin, 2006), are used to

generate meaningful data to define and refine a design solution towards a

desired state (Costa and Sobek, 2003). These iterations are influenced by

technology, communications and new design solutions when design teams,

customers and suppliers iterate to converge on a practical design solution

(Eckert et al., 2014).

Rework is defined as revisiting an activity at the same abstraction level on

the same part of a design to correct errors made earlier (Costa and Sobek,

2003). Drivers for rework include a prior decision that was found to be

defective (Kennedy et al., 2014), or a change due to initially imperfect

information or changes in requirements (Smith, R., P. and Eppinger, 1997b;

Taylor and Ford, 2006b). Causes of rework during project execution are

often related to project complexity (Cho and Eppinger, 2001) and information

evolution and completeness (Dullen et al., 2019).

These reflections led to the conclusion that iterations and rework are forms

feedback loops. With different impacts on the product and process, iterations

seek to improve and evolve a design while rework aims to correct and

control. Meboldt et al. (2013) assert that In-stage Iterations are feedback

loops within a development stage that have limited effect on the previous

gates’ decisions and lead to product maturity (Krehmer et al., 2009).

Conversely, cross-gate iterations require changes to decisions made in

earlier stages or trigger issues at the end of the product development

process; both are expensive in time and cost.

- 163 -

On a different note, dynamical systems are those whose behaviour changes

over time. Feedback loops result in a situations where two or more dynamic

systems are interrelated, influencing each other in a strongly coupled circular

manner(Åström and Murray, 2021). In social and organisational theory,

feedback loops are essential to understanding relationships between

complex social systems (Tsoukas and e Cunha, 2017). The term feedback

loop is used to define activities aimed to reduce a gap between a perceived

and future state of a system and to explain how a process's outputs

influence its input directly or indirectly at some point in time. Feedback loops

are associated with the evolution of a system over time when they are

related to control and stabilisation and with the improvement or with the

decline of a process or behaviour when they are associated with virtuous

and vicious circles (Masuch, 1985). Vicious circles are feedback loops that

turn a negative situation into worse. On the contrary, virtuous circles are

feedback loops that improve a good condition (Tsoukas and e Cunha, 2017).

The key research challenge of this study was to find ways of identifying the

interplays between positive and negative feedback loops in product

development systems with a view to providing tools that allow managers to

balance positive feedback iterations and negative feedback loops, in the

form of avoidable rework. A conceptual framework for simulating feedback

loops in engineering design was established in response. This framework

couples a generic process model of product development with the product

architecture of the designed product. The conceptual framework combines

two simulation methods to form a hybrid simulation model. An agent-based

simulation model reflects design activities, communication and design

iterations, and a discrete events model reflects the product architecture and

stage gates influencing the process development structure and capturing the

rework feedback loops.

6.1 Research Contribution.

The contributions of this thesis are described in the following sections:

Objective No 1: To identify key technical and social aspects of product

development processes for the simulation of feedback loops in engineering

design.

The following aspects were identified.

- 164 -

 The product development process is a sequential set of development

activities where engineering teams carry out design work, separated

by stage gates where go/no go decisions are made. Together, these

form the process workflow (Shepherd and Ahmed, 2000; Montagna

and Cantamessa, 2017). Meboldt et al., (2013) suggest that two types

of iteration are present during the stage gated development process:

in-stage iterations, that do not impact decisions made in previous

stages; and cross-gate iterations where decisions affect decisions

made in previous gates, so impacting project time and cost (Meboldt

et al., 2013).

 Design iteration is an in-stage iteration, which occurs within each

development stage, where design activities are carried out. They tend

to improve the quality of the design within a design stage. In these

iterative cycles designers revisit and re-evaluate previous design

decisions (Wynn and Eckert, 2017) resulting in new activities and

feedback loops.

 Rework is a form of cross-gate iteration. It affects decisions made in

previous stages so affecting project time and cost. Rework is a result

of information dynamics in new product development processes and

is, caused by inadequacy of information due to changes in

requirements, poor decisions, defective outputs or changes in

implementation that alter work previously done (Smith, R., P. and

Eppinger, 1997a).

 Product architectures are described by their elements and

relationships (McKay et al., 2016). They define system boundaries,

including functional and physical configurations (Jankovic and Eckert,

2016). Product architectures, inform the structures of the product

development process and are used to establish the development

tasks and design activities (McKay et al., 2022; Jankovic and Eckert,

2016) that result in design descriptions and including shape

definitions and material specifications (McKay et al., 2016).

 The product architecture also influences technical communications

and interactions within design teams (Clarkson and Eckert, 2010).

During design activity, engineering designers and stakeholders

interact to find a design solution (Montagna and Cantamessa, 2017).

Communications, negotiation, and coordination mechanisms are

determinant for the outcome and progress of the design work (Hoegl

and Weinkauf, 2005; Maier, A.M. et al., 2007).

- 165 -

Given these aspects, the engineering design processes within product

development can be regarded as complex information-processing activities,

consisting of creating, transferring, or disseminating information (King, 1994)

directed by the decisions made by individuals in design teams (Wallace and

Ahmed, 2003). Engineering designers spend 24% of their working time in

activities (Marsh, 1997), searching for information, identifying relevant

sources, accessing and acquiring information from those information

sources, processing and analysing the obtained information, and finalising

the search process (Meho and Tibbo, 2003). This research included all four

of information-seeking stages: Requesting, Answering, Receiving, and

Evaluating information.

Objective No 2. To identify critical characteristics of feedback loops that

influence the performance of product development processes.

The performance of product development processes is typically assessed

through four key performance indicators.

-Time: The time taken to render a design from a set of requirements to the

delivery of the product.

-Cost: The resources used in designing and delivering products to the

market. This typically includes both financial resources and staff time used,

which can impact monetary costs.

-Quality: The extent to which the given design fulfils stakeholders’

expectations and the expected value.

-Responsiveness: The ability of an organisation to respond to change.

In the engineering design literature, it has been established that design

iteration adds time and cost to the design activity. For example, Costa

(2004) asserts that “iterations shape the outcomes of the design in terms of

cost, time and quality”, and continues arguing that iterative approaches tend

to increase development time and cost. On the other hand, design iterations

are learning cycles that contribute to knowledge acquisition and the

mitigation of uncertainty and ambiguity. Iteration feedback loops improve

quality by the systematic exploration the design problems leading to an

efficient design problem-solution finding process (Le, H.N. et al., 2010).

Although design iteration adds time to the design activity, it has the potential

to improve the resulting design by contributing to design quality (Tapia et al.,

- 166 -

2021). On the other hand, rework iterations consume time (Arundachawat et

al., 2009) and therefore affect project duration and cost (Tapia et al., 2021).

Rework iteration results from changes in requirements or repetitions of tasks

due to initially imperfect information (Smith and Eppinger, 1997), producing

adverse effects and the need to redo tasks, impacting other stages of the

development process.

In this study the critical characteristics of feedback loops that influence the

performance of the product development processes are related to quality,

accuracy, and timely information. When the information is adequate,

accurate and produced on time within design activities, these iterative cycles

are positive iteration feedback loops contributing to the quality of the design.

On the contrary, when new information needs to be more accurate or

adequate, requiring modifications on previous activities from earlier phases

considered already finished. These are negative rework feedback loops

affecting project performance and design quality.

Objective No.3, To design and develop a conceptual framework for

simulating feedback loops in engineering design that incorporates the

identified critical elements for the implementation of more realistic

simulations of product development processes.

The conceptual framework for simulating feedback loops in engineering

design, introduced in Chapter 4 uses linear logic of the traditional stage gate

product development process model to establish a chronological structure

with gates where decisions to proceed or not are made. The architecture of

the product being designed is used to identify the parts to be designed,

leading to the identification of the required agents (designers or design

teams) to perform the engineering design processes within each stage of the

development process. The framework couples social characteristics of

engineering design activities with processes (consisting in designing,

communicating, processing and evaluating information) and iteration

feedback loops. The communication patterns identified are related to asking

and answering questions and the information patterns are identified as

gathering information, processing information and evaluating information.

The feedback loops identified are in-stage iterations, which do not impact

decisions made in a previous stage; and cross-gate iterations where

decisions affect decisions made in previous gates.

- 167 -

The chronological structure of the traditional product development process

model is a relevant feature of the conceptual framework because it provides

an organisation of the tasks and events in the order in which they occur in

the process workflow. The relevance of the product architecture in the

conceptual framework it enables the identification of the parts and

relationships of the product to be designed so providing the identification of

physical elements, these elements in turn determine the necessary agents

and is useful in the identification of the limits of the system being simulated.

The product development chronological structure and the product

architecture makes possible the establishment of workflow as the sequence

of steps necessary to complete the specific tasks to complete a design. The

social interactions of the designers and design teams communicating and

processing and evaluating information, resulting from engineering design

tasks activities, is a determinant for the performance of the product

development process.

In summary the research contribution of the conceptual framework for

simulating feedback loops in engineering (presented in Figure 4.4.2) is that

such a model enables the analysis of both intangible aspects,

(communication and information processes), as well as tangible aspects

(product architecture). In this way a comprehensive view of the system's

performance (Škec et al., 2017) becomes possible

The application of the conceptual framework for the simulation of feedback

loops in engineering design will enable the development of realistic

simulations with a comprehensive view of the engineering design process,

considering the technical aspects of the product development, such as the

product architecture of the product, the linear logic of the product

development process, and social aspects of design teams' communication

patterns and feedback loops.

Objective No. 4, To implement an engineering design process case study

for use in validating the framework.

An engineering design case study (introduced in Chapter 3 and used to

validate the conceptual framework in Chapter 5), was used to validate the

conceptual framework The case study focused on a bicycle handlebar

assembly, which consists of a handlebar, brake lever, gear change lever,

and the handlebar assembly itself. The design architecture of the handlebar

- 168 -

assembly, with three independent parts integrated in a final assembly, was

used to identify the general configuration of the simulation model, with each

part of the product architecture being designed by a different design agent.

The conceptual framework guided the implementation of the agents

performing design tasks of analysis, synthesis and evaluation and design

activities that include, information processing, and communication activities.

The structuration of the agents used the outcomes from the Section 5.1

implementation to identify, behaviours, interactions, and states. The design

agents are integrated into the product development process structure, which

is represented as a sequence of operations performed across activities

(Borshchev, 2013) informing the workflow and the discrete event simulation

model (shown in Figure 5.1.2.2).

In the simulation model, the interaction points between the simulation

models are identified as pairs of inputs/outputs of information exchange

(Chahal, 2010).Each interaction is "captured by" or "influenced by" each of

the simulation models (Mykoniatis and Angelopoulou, 2020). The simulation

case study, presented in Chapter 5, captures the interactions between

different teams and processes involved in designing the bicycle handlebar

assembly using both a discrete events simulation model and an agent-based

model.

Objective No.5, To consider how such simulation models might be used to

inform the management of product development systems.

The research contribution includes two features of the conceptual framework

for simulating feedback loops in engineering design. The first feature is the

use of parameters that influence social interactions. These parameters

include factors like asking and answering questions as well the time it takes

to answer a question. By incorporating these parameters into the simulation,

project managers or design managers are able to simulate the risks of

information misuse during the design process. Specifically, these

parameters can be used to simulate scenarios where too much time is

spend gathering information, answering questions from other designers or

delaying responses to information requests. Additionally, the simulation can

also account for scenarios where designers have to ask for clarifications or

expansions on information, by simulating these scenarios project managers

or design manages are able to identify potential risks affecting the efficiency

of the overall design task. Moderate levels of communication lead to most

effective performance in engineering teams (Robinson, 2010) conversely

- 169 -

insufficient and excessive communication. levels are associated with

performance decline (Patrashkova-Volzdoska et al., 2003). Design

managers or project managers can counteract these effects by running

simulation experiments to identify features that define good practices or an

information policy, regarding information and communications between

project participants.

The second contribution is the incorporation of the product architecture as a

key feature in the construction of the simulation model. Product architectures

inform the structure of the product development process and are used to

establish development tasks and design activities (McKay et al., 2022;

Jankovic and Eckert, 2016). As a result, they also influence technical

communication and interactions among design teams (Clarkson and Eckert,

2010). The conceptual framework allows managers to experiment with

alternative product architectures and management strategies and, through

computer simulations, gain insights on how this impact the product

development performance. A key challenge for design managers lies in

deciding how to define a product architecture that will result on the best

performing product development process. These techniques offer a

controlled environment for testing and analysing different scenarios,

providing insights into how the system will respond to different inputs. This

allows the identification of strategies for managing real-world complex

systems without incurring the risks or costs associated with real-life

experiments.

The conceptual framework for simulating feedback loops in engineering

design, leverages the experimental characteristics of simulation modelling,

using a discrete-event modelling approach to reflect the product architecture

and its influence on the product development process structure, including

potential rework feedback loops. Additionally, an agent-based model reflects

the social facets of design activity and communication behaviours within

design teams, including design iteration.

6.2 Research Limitations.

This study represents a first step in developing conceptual frameworks for

the simulating feedback loops in engineering design. However, two

limitations where identified. First the absence of a real-world engineering

design case study that includes process information that allow the

- 170 -

experimentation with different configurations of the development process

and product architecture. Second, as a consequence of the absence of a

real case study there were limited opportunities to use traditional validation

methods for simulation.

At this stage of the research the simulation model can represent feedback

iterations and rework happening during the design process as a group of

simulation constructs, influencing the system performance. However, there

is a need for an engineering design case that include process information,

which allows the identification of system elements and creates the

opportunities to experiment with alternative configurations to observe not

only the intangible aspects but also include tangible aspects of the

development process.

On the other hand, Traditional validation methods for standalone simulations

are concerned with whether the model is an accurate representation of the

real-world system by comparing experimental results with real-world data

(Sargent, 2020). However, Nikolic and Lukszo (2013) assert that is not

possible to compare a computed behaviour to real system behaviour if there

is not real system available for comparison. They assert that the value of

complex systems simulations is its ability to explain the system possible

operation or potential states (Nikolic and Lukszo, 2013). The use of a

synthetic engineering design case study led to several assumptions of the

system configuration and performance that is difficult to validate against a

real-world system.

6.3 Future Work.

This section outlines work that could be carried out to cope with the

mentioned limitations identified in Section 6.2 and, more widely, to expand

across the simulation of feedback loops in engineering design in the short,

medium, and long term.

In the short term, Nikolic and Lukszo (2013) suggest a strategy to validate

the model by literature comparison, which involves identifying those studies

that reached similar conclusions ,This could include the implementation of

experiments in the case of this research to explore how early design

decisions in product architecture, may impact, the performance of the

product development process. Such studies rather than focusing on

replicating the exact outputs of other studies would observe the general

- 171 -

outcomes and recommendations. The model validity increases when the

model recommendations are compatible with the available theory and case

studies (Nikolic and Lukszo, 2013).

In the medium term. Qualitative research studies to identify constitutive

elements of the product development systems in real-world organisations,

using structured questionaries and workshops. This would enable the

validation of the model assumptions, mechanisms, and outcomes, in the

form of characteristics of design activities process structures, and product

architectures among academic and practitioner experts.

In the long term, For the use in design management, end user interface for

non-computer sciences background individuals is need. This would allow

project managers and design managers the experimentation with different

parameters, i.e., configurations of systems architectures, designers’

behaviours, project constraints, and feedback loop iterations. to evaluate

different system configurations and find the best possible arrangement for a

particular project or product.

- 172 -

List of References

Artmann, C. 2009. Literature Review. In: Artmann, C. ed. The Value of
Information Updating in New Product Development. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp.1-31.
Borshchev, A. 2013. Multi-method modelling. In: Proceedings of the 2013
Winter Simulation Conference: Simulation: Making Decisions in a Complex
World, pp.4089-4100.
Borshchev, A. and Filippov, A. 2004. From system dynamics and discrete
event to practical agent-based modeling: reasons, techniques, tools. In:
Proceedings of the 22nd international conference of the system dynamics
society: Citeseer.
Browning, T.R., Fricke, E. and Negele, H. 2006. Key concepts in modeling
product development processes. Systems Engineering. 9(2), pp.104-128.
Chiva-Gomez, R. 2004. Repercussions of complex adaptive systems on
product design management. Technovation. 24(9), pp.707-711.
Chusilp, P. and Jin, Y. 2006. Impact of mental iteration on concept
generation. Journal of Mechanical Design. 128(1), pp.14-25.
Clegg, C.W., Robinson, M.A., Davis, M.C., Bolton, L.E., Pieniazek, R.L. and
McKay, A. 2017. Applying organizational psychology as a design science: A
method for predicting malfunctions in socio-technical systems (PreMiSTS).
Design Science. 3.
Costa, R. and Sobek, I.D.K. 2003. Iteration in engineering design: inherent
and unavoidable or product of choices made? In: ASME 2003 International
design engineering technical conferences and Computers and information in
engineering conference: American Society of Mechanical Engineers, pp.669-
674.
de Weerd-Nederhof, P.C. 1997. Organizational design and management
characteristics of new product development systems and (their interactions
with) their context, related to performance. Book. p47.
Dorst, K. and Cross, N. 2001. Creativity in the design process: co-evolution
of problem–solution. Design Studies. 22(5), pp.425-437.
Dym, C.L., Agogino, A.M., Eris, O., Frey, D.D. and Leifer, L.J. 2005.
Engineering Design Thinking, Teaching, and Learning. Journal of
Engineering Education. 94(1), pp.103-120.
Eckert, C.M., Isaksson, O. and Earl, C.F. 2014. Design margins as a key to
understanding design iteration. In: ASME 2014 International Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference: American Society of Mechanical Engineers,
pp.V007T007A022-V007T007A022.
Eckert, C.M., Isaksson, O., Hallstedt, S., Malmqvist, J., Rönnbäck, A.Ö. and
Panarotto, M. 2019. Industry trends to 2040. In: Proceedings of the Design
Society: International Conference on Engineering Design: Cambridge
University Press, pp.2121-2128.
Eckert, C.M. and Stacey, M. 2010. What is a process model? Reflections on
the epistemology of design process models. Modelling and management of
engineering processes. Springer, pp.3-14.

- 173 -

Edgeman, R., Hammond, S., Keller, C. and McGraw, J. 2020. Virtuous
cycles: Organizational dynamics of innovation and excellence. Total Quality
Management & Business Excellence. 31(11-12), pp.1290-1306.
Freeman, D.L. and Cameron, L.J.T.M.L.J. 2008. Research methodology on
language development from a complex systems perspective. 92(2), pp.200-
213.
Hoegl, M. and Weinkauf, K. 2005. Managing task interdependencies in Multi‐
Team projects: A longitudinal study. Journal of Management Studies. 42(6),
pp.1287-1308.
Jankovic, M. and Eckert, C.M. 2016. Architecture decisions in different
product classes for complex products. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing. 30(3), pp.217-234.
King, D.W. 1994. Communication by Engineers: A Literature Review of
Engineers' Information Needs, Seeking Processes, and Use. In.
Kline, S.J. and Rosenberg, N. 1986. An overview of innovation. The positive
sum strategy: Harnessing technology for economic growth. The National
Academy of Science, USA. 35, p36.
Le, H.N., Wynn, D.C. and Clarkson, P.J. 2010. Evaluating the positive and
negative impact of iteration in engineering processes. In: Heisig, P., et al.
eds. Modelling and Management of Engineering Processes. Springer-
Verlag London Limited, pp.89-100.
Love , P.E. 2002. Auditing the indirect consequences of rework in
construction: a case based approach. Managerial Auditing Journal. 17(3),
pp.138-146.
Maier, A.M., Hepperle, C., Kreimeyer, M., Eckert, C.M., Lindemann, U. and
Clarkson, P.J. 2007. Associations between factors influencing engineering
design communication. In: DS 42: Proceedings of ICED 2007, the 16th
International Conference on Engineering Design, Paris, France, 28.-31.07.
2007, pp.649-650 (exec. Summ.), full paper no. DS642_P_164.
Maier, J.F., Wynn, D.C., Biedermann, W., Lindemann, U. and Clarkson, P.J.
2014. Simulating progressive iteration, rework and change propagation to
prioritise design tasks. Research in Engineering Design. 25(4), pp.283-307.
Marsh, J.R. 1997. The capture and utilisation of experience in engineering
design. thesis, University of Cambridge.
McCarthy, I.P., Tsinopoulos, C., Allen, P. and Rose‐Anderssen, C. 2006.
New product development as a complex adaptive system of decisions.
Journal of product innovation management. 23(5), pp.437-456.
Meboldt, M., Matthiesen, S. and Lohmeyer, Q. 2013. The dilemma of
managing iterations in time-to-market development processes. In: Second
International Workshop on the Modelling and Management of Engineering
Processes (MMEP 2012): Eidgenössische Technische Hochschule Zürich.
Meho, L.I. and Tibbo, H.R. 2003. Modeling the information‐seeking behavior
of social scientists: Ellis's study revisited. Journal of the American society for
Information Science and Technology. 54(6), pp.570-587.
Abdel-Hamid, T. and Madnick, S.E. 1991. Software project dynamics: an
integrated approach. Prentice-Hall, Inc.
Adams, R. and J. Atman, C. 2000. Characterizing Engineering Student
Design Processes: An Illustration of Iteration.

- 174 -

Afacan, Y. and Demirkan, H. 2011. An ontology-based universal design
knowledge support system. Knowledge-based systems. 24(4), pp.530-541.
Ahmadi, R. and Wang, R.H. 1999. Managing development risk in product
design processes. Operations Research. 47(2), pp.235-246.
Ahmed, S., Wallace, K.M. and Blessing, L.T. 2003. Understanding the
differences between how novice and experienced designers approach
design tasks. Research in Engineering Design. 14(1), pp.1-11.
AitSahlia, F., Johnson, E. and Will, P.J.I.T.o.E.M. 1995. Is concurrent
engineering always a sensible proposition? 42(2), pp.166-170.
Amigo, C.R., Iritani, D.R., Rozenfeld, H. and Ometto, A. 2013. Product
Development Process Modeling: State of the Art and Classification. In:
Berlin, Heidelberg. Springer Berlin Heidelberg, pp.169-179.
Arp, R., Smith, B., Spear, A.D., Arp, R., Smith, B. and Spear, A.D. 2015.
85Introduction to Basic Formal Ontology I: Continuants. Building Ontologies
With Basic Formal Ontology. The MIT Press, p.0.
Artmann, C. 2009. Literature Review. In: Artmann, C. ed. The Value of
Information Updating in New Product Development. Berlin, Heidelberg:
Springer Berlin Heidelberg, pp.1-31.
Arundachawat, P., Roy, R., Al-Ashaab, A. and Shehab, E. 2009. Design
rework prediction in concurrent design environment: current trends and
future research directions. In: Proceedings of the 19th CIRP Design
Conference–Competitive Design: Cranfield University Press.
Asimow, M. 1962. Introduction to design. Englewood Cliffs, NJ, Prentice-
Hall.
Asimow, M.J.I., Englewood Cli s, NJ. 1962. Introduction to Design Prentice-
Hall.
Åström, K.J. and Murray, R.M. 2021. Feedback systems: an introduction for
scientists and engineers. Princeton university press.
Atman, C.J., Chimka, J.R., Bursic, K.M. and Nachtmann, H.L.J.D.s. 1999. A
comparison of freshman and senior engineering design processes. 20(2),
pp.131-152.
Austin, S., Steele, J., Macmillan, S., Kirby, P. and Spence, R. 2001. Mapping
the conceptual design activity of interdisciplinary teams. Design Studies.
22(3), pp.211-232.
Badke-Schaub, P. and Gehrlicher, A. 2003. Patterns of decisions in design:
leaps, loops, cycles, sequences and meta-processes. In: DS 31:
Proceedings of ICED 03, the 14th International Conference on Engineering
Design, Stockholm.
Ballard, G. 2000. Positive vs negative iteration in design. In: Proceedings
Eighth Annual Conference of the International Group for Lean Construction,
IGLC-6, Brighton, UK, pp.17-19.
Bhuiyan, N., Gerwin, D. and Thomson, V. 2004. Simulation of the New
Product Development Process for Performance Improvement. Management
Science. 50(12), pp.1690-1703.
Blessing, L.T. 1995. Comparison of design models proposed in prescriptive
literature.
Bogus, S.M., Molenaar, K.R. and Diekmann, J.E. 2006. Strategies for
overlapping dependent design activities. Construction Management and
Economics. 24(8), pp.829-837.

- 175 -

Borshchev, A. 2013. Multi-method modeling. In: Proceedings of the 2013
Winter Simulation Conference: Simulation: Making Decisions in a Complex
World, pp.4089-4100.
Borshchev, A. and Filippov, A. 2004. From system dynamics and discrete
event to practical agent based modeling: reasons, techniques, tools. In:
Proceedings of the 22nd international conference of the system dynamics
society: Citeseer.
Boudouh, T., Anghel, D.-C. and Garro, O. 2006. Design Iterations in a
Geographically Distributed Design Process. In: ElMaraghy, H.A. and
ElMaraghy, W.H. eds. Advances in Design. London: Springer London,
pp.377-385.
Braha, D. and Bar-Yam, Y. 2007. The Statistical Mechanics of Complex
Product Development: Empirical and Analytical Results. MANAGEMENT
SCIENCE. 53(7), pp.1127-1145.
Braha, D. and Maimon, O. 1998. The measurement of a design structural
and functional complexity. A Mathematical Theory of Design: Foundations,
Algorithms and Applications. Springer, pp.241-277.
Braha, D. and Maimon, O. 2013. A mathematical theory of design:
foundations, algorithms and applications. Springer Science & Business
Media.
Brown, S.L. and Eisenhardt, K.M. 1995. Product Development - Past
Research, Present Findings, and Future-Directions. Academy of
Management Review. 20(2), pp.343-378.
Browning, T.R. 1998. Modeling and analyzing cost, schedule, and
performance in complex system product development. thesis,
Massachusetts Institute of Technology, Sloan School of Management,
Technology and Policy Program.
Browning, T.R. 2018. Building models of product development processes:
An integrative approach to managing organizational knowledge. Systems
Engineering. 21(1), pp.70-87.
Browning, T.R. and Eppinger, S.D. 2002. Modeling impacts of process
architecture on cost and schedule risk in product development. Ieee
Transactions on Engineering Management. 49(4), pp.428-442.
Browning, T.R., Fricke, E. and Negele, H. 2006. Key concepts in modeling
product development processes. Systems Engineering. 9(2), pp.104-128.
Bucciarelli, L.L. 1994. Designing engineers. MIT press.
Campbell, M.I., Cagan, J. and Kotovsky, K. 1999. A-design: an agent-based
approach to conceptual design in a dynamic environment. Research in
Engineering Design. 11(3), pp.172-192.
Cannondale. 2020. Cannondale bad boy. [Online]. [Accessed 2022].
Available from: https://www.cannondale.com/en-gb/bikes/active/urban/bad-
boy
Cash, P., Hicks, B. and Culley, S. 2015. Activity Theory as a means for
multi-scale analysis of the engineering design process: A protocol study of
design in practice. Design Studies. 38, pp.1-32.
Cash, P., Škec, S. and Štorga, M. 2019. The dynamics of design: exploring
heterogeneity in meso-scale team processes. Design Studies. 64, pp.124-
153.

- 176 -

Chahal, K. 2010. A generic framework for hybrid simulation in healthcare.
thesis, Brunel University School of Information Systems, Computing and
Mathematics ….
Chakrabarti, A. and Blessing, L. 2016a. Anthology of Theories and Models of
Design. Springer.
Chakrabarti, A. and Blessing, L. 2016b. A review of theories and models of
design. 95(4), pp.325-340.
Chakravarty, A.K. 2001. Overlapping design and build cycles in product
development. European Journal of Operational Research. 134(2), pp.392-
424.
Challenger, M., Vanherpen, K., Denil, J. and Vangheluwe, H. 2020. FTG+
PM: Describing Engineering Processes in Multi-Paradigm Modelling.
Foundations of Multi-Paradigm Modelling for Cyber-Physical Systems.
Springer, pp.259-271.
Chirumalla, K. 2017. Clarifying the feedback loop concept for innovation
capability: A literature review. In: ISPIM Innovation Symposium: The
International Society for Professional Innovation Management (ISPIM), p.1.
Chiva-Gomez, R. 2004. Repercussions of complex adaptive systems on
product design management. Technovation. 24(9), pp.707-711.
Cho, S.H. and Eppinger, S.D. 2001. Product development process modeling
using advanced simulation.
Cho, S.H. and Eppinger, S.D. 2005. A simulation-based process model for
managing complex design projects. Ieee Transactions on Engineering
Management. 52(3), pp.316-328.
Chusilp, P. and Jin, Y. 2006. Impact of mental iteration on concept
generation. Journal of Mechanical Design. 128(1), pp.14-25.
Clark, K.B., Chew, W.B., Fujimoto, T., Meyer, J. and Scherer, F.M. 1987.
Product Development in the World Auto Industry. Brookings Papers on
Economic Activity. 1987(3), pp.729-781.
Clarkson, P.J. and Eckert, C.M. 2010. Design process improvement: a
review of current practice. Springer Science & Business Media.
Clarkson, P.J. and Hamilton, J.R. 2000. ‘Signposting’, a parameter-driven
task-based model of the design process. Research in Engineering Design.
12(1), pp.18-38.
Clausing, D. 1994. Total Quality Development. New York: ASME Press,.
Clegg, C.W., Robinson, M.A., Davis, M.C., Bolton, L.E., Pieniazek, R.L. and
McKay, A. 2017. Applying organizational psychology as a design science: A
method for predicting malfunctions in socio-technical systems (PreMiSTS).
Design Science. 3.
Cooper, K.G. 1980. Naval ship production: A claim settled and a framework
built. Interfaces. 10(6), pp.20-36.
Cooper, R.G. and Sommer, A.F. 2018. Agile–Stage-Gate for Manufacturers:
Changing the Way New Products Are Developed Integrating Agile project
management methods into a Stage-Gate system offers both opportunities
and challenges. Research-Technology Management. 61(2), pp.17-26.
Costa, R. 2004. Productive iteration in student engineering design projects.
thesis, Montana State University-Bozeman, College of Engineering.
Costa, R. and Sobek, I.D.K. 2003. Iteration in engineering design: inherent
and unavoidable or product of choices made? In: ASME 2003 International

- 177 -

design engineering technical conferences and Computers and information in
engineering conference: American Society of Mechanical Engineers, pp.669-
674.
Cronholm, S. and Göbel, H. 2022. Action design research: integration of
method support. International Journal of Managing Projects in Business.
15(8), pp.19-47.
Cross, N. 2001. Design cognition: Results from protocol and other empirical
studies of design activity. Design knowing and learning: Cognition in design
education. pp.79-103.
Crowder, R.M., Robinson, M.A., Hughes, H.P. and Sim, Y.-W. 2012. The
development of an agent-based modeling framework for simulating
engineering team work. IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans. 42(6), pp.1425-1439.
Cusumano, M. and Selby, R.W. 1997. How Microsoft builds software.
Communications of the Acm. 40(6), pp.53-61.
Cusumano, M.A. 1997. How Microsoft makes large teams work like small
teams. Sloan Management Review. 39(1), pp.9-&.
Cutkosky, M.R., Engelmore, R.S., Fikes, R.E., Genesereth, M.R., Gruber,
T.R., Mark, W.S., Tenenbaum, J.M. and Weber, J.C. 1993. PACT: An
experiment in integrating concurrent engineering systems. Computer. 26(1),
pp.28-37.
De Bruijn, H. and Herder, P.M. 2009. System and actor perspectives on
sociotechnical systems. IEEE Transactions on systems, man, and
cybernetics-part A: Systems and Humans. 39(5), pp.981-992.
de Weerd-Nederhof, P.C. 1997. Organizational design and management
characteristics of new product development systems and (their interactions
with) their context, related to performance. Book. p47.
de Weerd-Nederhof, P.C. 2001. Qualitative case study research. The case
of a Ph.D. research project on organizing and managing new product
development systems. Management decision. 39(7), pp.513-538.
Dehkordi, F.M., Thompson, A. and Larsson, T. 2012. Impacts of project-
overload on innovation inside organizations: agent-based modeling.
International Journal of Social, Behavioral, Educational, Economic, Business
and Industrial Engineering. 6(11), pp.2808-2813.
Djanatliev, A. and German, R. 2013. Prospective healthcare decision-
making by combined system dynamics, discrete-event and agent-based
simulation. In: 2013 Winter Simulations Conference (WSC): IEEE, pp.270-
281.
Djanatliev, A. and German, R. 2015. Towards a guide to domain-specific
hybrid simulation. In: 2015 Winter Simulation Conference (WSC): IEEE,
pp.1609-1620.
Dorst, K. and Cross, N. 2001. Creativity in the design process: co-evolution
of problem–solution. Design Studies. 22(5), pp.425-437.
Dresch, A., Lacerda, D.P. and Antunes, J.A.V. 2015. Design science
research. Design science research. Springer, pp.67-102.
Dubiel, B. and Tsimhoni, O. 2005. Integrating agent based modeling into a
discrete event simulation. In: Proceedings of the Winter Simulation
Conference, 2005.: IEEE, p.9 pp.

- 178 -

Dullen, S., Verma, D. and Blackburn, M. 2019. Review of Research into the
Nature of Engineering and Development Rework: Need for a Systems
Engineering Framework for Enabling Rapid Prototyping and Rapid Fielding.
Procedia Computer Science. 153, pp.118-125.
Dybå, T. and Dingsøyr, T. 2008. Empirical studies of agile software
development: A systematic review. Information and Software Technology.
50(9), pp.833-859.
Dym, C.L., Agogino, A.M., Eris, O., Frey, D.D. and Leifer, L.J. 2005.
Engineering Design Thinking, Teaching, and Learning. Journal of
Engineering Education. 94(1), pp.103-120.
Eastman, R.M. 1980. Engineering information release prior to final design
freeze. IEEE transactions on Engineering Management. (2), pp.37-42.
Eckert, C.M., Clarkson, P.J. and Zanker, W. 2004. Change and
customisation in complex engineering domains. Research in engineering
design. 15(1), pp.1-21.
Eckert, C.M., Isaksson, O. and Earl, C.F. 2014. Design margins as a key to
understanding design iteration. In: ASME 2014 International Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference: American Society of Mechanical Engineers,
pp.V007T007A022-V007T007A022.
Eckert, C.M., Isaksson, O., Hallstedt, S., Malmqvist, J., Rönnbäck, A.Ö. and
Panarotto, M. 2019. Industry trends to 2040. In: Proceedings of the Design
Society: International Conference on Engineering Design: Cambridge
University Press, pp.2121-2128.
Eckert, C.M. and Stacey, M. 2010. What is a process model? Reflections on
the epistemology of design process models. Modelling and management of
engineering processes. Springer, pp.3-14.
Edgeman, R., Hammond, S., Keller, C. and McGraw, J. 2020. Virtuous
cycles: Organizational dynamics of innovation and excellence. Total Quality
Management & Business Excellence. 31(11-12), pp.1290-1306.
Eppinger, S.D., Whitney, D.E., Smith, R.P. and Gebala, D.A. 1994. A Model-
Based Method for Organizing Tasks in Product Development. Research in
Engineering Design-Theory Applications and Concurrent Engineering. 6(1),
pp.1-13.
Fairley, R.E. and Willshire, M.J. 2005. Iterative rework: the good, the bad,
and the ugly. Computer. 38(9), pp.34-41.
Fernandes, J., Henriques, E., Silva, A. and Moss, M.A. 2014. A method for
imprecision management in complex product development. Research in
Engineering Design. 25(4), pp.309-324.
Ford, D.N. and Sterman, J. 1997. Dynamic modeling of product development
processes.
Ford, D.N. and Sterman, J.D. 2003. The Liar's Club: concealing rework in
concurrent development. Concurrent Engineering. 11(3), pp.211-219.
Frillici, F., Rotini, F. and Fiorineschi, L. 2016. Re-design the design task
through TRIZ tools. In: DS 84: Proceedings of the DESIGN 2016 14th
International Design Conference, pp.201-210.
Galbraith, J.R. 1974. Organization design: An information processing view.
Interfaces. 4(3), pp.28-36.

- 179 -

Gericke, K. and Blessing, L. 2011. Comparisons of design methodologies
and process models across domains: a literature review. In: DS 68-1:
Proceedings of the 18th International Conference on Engineering Design
(ICED 11), Impacting Society through Engineering Design, Vol. 1: Design
Processes, Lyngby/Copenhagen, Denmark, 15.-19.08. 2011.
Gero, J.S. 1990. Design prototypes: a knowledge representation schema for
design. AI magazine. 11(4), pp.26-26.
Goh, Y.M. and Ali, M.J.A. 2016. A hybrid simulation approach for integrating
safety behavior into construction planning: An earthmoving case study.
Accident Analysis & Prevention. 93, pp.310-318.
Griffin, A. 2002. Product development cycle time for business-to-business
products. Industrial Marketing Management. 31(4), pp.291-304.
Grimm, V., Railsback, S.F., Vincenot, C.E., Berger, U., Gallagher, C.,
DeAngelis, D.L., Edmonds, B., Ge, J., Giske, J. and Groeneveld, J. 2020.
The ODD protocol for describing agent-based and other simulation models:
A second update to improve clarity, replication, and structural realism.
Journal of Artificial Societies and Social Simulation. 23(2).
Gruber, T.R. 1993. A translation approach to portable ontology
specifications. Knowledge acquisition. 5(2), pp.199-220.
Guindon, R. 1990. Designing the design process: Exploiting opportunistic
thoughts. Human-Computer Interaction. 5(2), pp.305-344.
Ha, A.Y. and Porteus, E.L. 1995. Optimal timing of reviews in concurrent
design for manufacturability. Management Science. 41(9), pp.1431-1447.
Haller, M., Lu, W., Stehn, L. and Jansson, G. 2015. An indicator for
superfluous iteration in offsite building design processes. Architectural
Engineering and Design Management. 11(5), pp.360-375.
Hao, Q., Shen, W., Zhang, Z., Park, S.-W. and Lee, J.-K. 2006. Agent-based
collaborative product design engineering: An industrial case study.
Computers in industry. 57(1), pp.26-38.
Hardebolle, C. and Boulanger, F. 2009. Exploring Multi-Paradigm Modeling
Techniques. SIMULATION. 85(11-12), pp.688-708.
Hassannezhad, M., Cantamessa, M., Montagna, F. and Clarkson,
P.J.J.J.o.M.D. 2019. Managing Sociotechnical Complexity in Engineering
Design Projects. 141(8).
Hatchuel, A. 2001. Towards Design Theory and expandable rationality: The
unfinished program of Herbert Simon. Journal of management and
governance. 5(3-4), pp.260-273.
Hoedemaker, G.M., Blackburn, J.D. and Van Wassenhove, L.N. 1999. Limits
to Concurrency*. Decision Sciences. 30(1), pp.1-18.
Hoegl, M. and Weinkauf, K. 2005. Managing task interdependencies in Multi‐
Team projects: A longitudinal study. Journal of Management Studies. 42(6),
pp.1287-1308.
Huberman, B.A. and Wilkinson, D.M. 2005. Performance variability and
project dynamics. Computational & Mathematical Organization Theory.
11(4), pp.307-332.
Hughes, H.P., Clegg, C.W., Robinson, M.A. and Crowder, R.M. 2012. Agent‐
based modelling and simulation: The potential contribution to organizational
psychology. Journal of Occupational and Organizational Psychology. 85(3),
pp.487-502.

- 180 -

Hwang, B.-G., Thomas, S.R., Haas, C.T. and Caldas, C.H. 2009. Measuring
the impact of rework on construction cost performance. Journal of
Construction Engineering and Management. 135(3), pp.187-198.
Hybs, I. and Gero, J.S. 1992. An evolutionary process model of design.
Design Studies. 13(3), pp.273-290.
Iansiti, M. and MacCormack, A. 1997. Developing products on Internet time.
Harvard business review. 75(5), pp.108-118.
Isaksson, O., Keski-Seppälä, S. and Eppinger, S.D. 2000. Evaluation of
design process alternatives using signal flow graphs. Journal of Engineering
Design. 11(3), pp.211-224.
Jankovic, M. and Eckert, C.M. 2016. Architecture decisions in different
product classes for complex products. Artificial Intelligence for Engineering
Design, Analysis and Manufacturing. 30(3), pp.217-234.
Jin, Y. and Benami, O. 2010. Creative patterns and stimulation in conceptual
design. Artificial Intelligence for Engineering Design, Analysis and
Manufacturing: AI EDAM. 24(2), p191.
Jin, Y. and Chusilp, P. 2006. Study of mental iteration in different design
situations. Design Studies. 27(1), pp.25-55.
Jin, Y. and Levitt, R.E. 1996. The virtual design team: A computational
model of project organizations. Computational & Mathematical Organization
Theory. 2(3), pp.171-195.
Joglekar, N.R., Yassine, A.A., Eppinger, S.D. and Whitney, D.E. 2001.
Performance of coupled product development activities with a deadline.
Management Science. 47(12), pp.1605-1620.
Jun, H. and Suh, H. 2008. A Modeling Framework for Product Development
Process Considering its Characteristics. IEEE Transactions on Engineering
Management. 55(1), pp.103-119.
Keller, R., Eckert, C.M. and Clarkson, P.J. 2008. Determining component
freeze order: a redesign cost perspective using simulated annealing. In:
International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, pp.333-342.
Kennedy, B.M., Sobek, D.K. and Kennedy, M.N. 2014. Reducing rework by
applying set‐based practices early in the systems engineering process.
Systems Engineering. 17(3), pp.278-296.
Kim, M., Zimmermann, T. and Nagappan, N. 2014. An empirical study of
refactoringchallenges and benefits at microsoft. IEEE Transactions on
Software Engineering. 40(7), pp.633-649.
King, D.W. 1994. Communication by Engineers: A Literature Review of
Engineers' Information Needs, Seeking Processes, and Use. In.
Kline, S.J. and Rosenberg, N. 1986. An overview of innovation. The positive
sum strategy: Harnessing technology for economic growth. The National
Academy of Science, USA. 35, p36.
Kolodner, J.L. and Wills, L.M. 1996. Powers of observation in creative
design. Design Studies. 17(4), pp.385-416.
Kratzer, J., Leenders, R.T.A. and Van Engelen, J.M. 2010. The social
network among engineering design teams and their creativity: A case study
among teams in two product development programs. International Journal of
Project Management. 28(5), pp.428-436.

- 181 -

Krehmer, H., Meerkamm, H. and Wartzack, S. 2009. The product’s degree
of maturity as a measurement for the efficiency of design iterations. In: DS
58-3: Proceedings of ICED 09, the 17th International Conference on
Engineering Design, Vol. 3, Design Organization and Management, Palo
Alto, CA, USA, 24.-27.08. 2009.
Krishnan, V., Eppinger, S.D. and Whitney, D.E. 1995. Accelerating product
development by the exchange of preliminary product design information.
Krishnan, V., Eppinger, S.D. and Whitney, D.E. 1997. A model-based
framework to overlap product development activities. Management science.
43(4), pp.437-451.
Krishnan, V., Eppinger, S.D. and Whitney, D.E. 1997. Simplifying iterations
in cross-functional design decision making. Journal of Mechanical Design.
119(4), pp.485-493.
Krishnan, V. and Ulrich, K. 2001. Product development decisions: A review
of the literature. Management Science. 47(1), pp.1-21.
Kruchten, P. 2002. Planning an Iterative Project. The Rational Edge.
Kvale, S. 2012. Doing interviews. Sage.
Lawson, B. 2006. How designers think: The design process demystified.
Routledge.
Le, H.N. 2013. A transformation-based model integration framework to
support iteration management in engineering design. PhD thesis, University
of Cambridge.
Le, H.N., Wynn, D.C. and Clarkson, P.J. 2010. Evaluating the positive and
negative impact of iteration in engineering processes. In: Heisig, P., et al.
eds. Modelling and Management of Engineering Processes. Springer-
Verlag London Limited, pp.89-100.
Le, H.N., Wynn, D.C. and Clarkson, P.J. 2012. Impacts of concurrency,
iteration, design review, and problem complexity on design project lead time
and error generation. Concurrent Engineering-Research and Applications.
20(1), pp.55-67.
Lee, J. and Hong, Y.S. 2015. Design freeze sequencing using Bayesian
network framework. Industrial Management & Data Systems.
Lee, S. and Peña‐Mora, F. 2007. Understanding and managing iterative
error and change cycles in construction. System Dynamics Review: The
Journal of the System Dynamics Society. 23(1), pp.35-60.
Leenders, R.T.A., Van Engelen, J.M. and Kratzer, J. 2003. Virtuality,
communication, and new product team creativity: a social network
perspective. Journal of Engineering and technology management. 20(1-2),
pp.69-92.
Lévárdy, V. and Browning, T.R. 2009. An adaptive process model to support
product development project management. IEEE Transactions on
Engineering Management. 56(4), pp.600-620.
Levitt, R.E., Thomsen, J., Christiansen, T.R., Kunz, J.C., Jin, Y. and Nass,
C. 1999. Simulating project work processes and organizations: Toward a
micro-contingency theory of organizational design. Management Science.
45(11), pp.1479-1495.
Liker, J.K. and James, M.M. 2006. The Toyota Way in Services: The Case of
Lean Product Development. Academy of Management Perspectives. 20(2),
pp.5-20.

- 182 -

Lindemann, U. 2014. Models of design. An anthology of theories and models
of design. Springer, pp.121-132.
Liu, A. and Lu, S.C.-Y. 2014. Alternation of analysis and synthesis for
concept generation. CIRP Annals. 63(1), pp.177-180.
Loch, C., Mihm, J. and Huchzermeier, A. 2003. Concurrent engineering and
design oscillations in complex engineering projects. Concurrent Engineering.
11(3), pp.187-199.
Loch, C.H. and Terwiesch, C. 1998. Communication and uncertainty in
concurrent engineering. Management Science. 44(8), pp.1032-1048.
Love, P.E. 2002. Auditing the indirect consequences of rework in
construction: a case based approach. Managerial Auditing Journal. 17(3),
pp.138-146.
Love, P.E. and Edwards, D.J. 2004a. Determinants of rework in building
construction projects. Engineering, Construction and Architectural
Management.
Love, P.E. and Edwards, D.J. 2004b. Forensic project management: The
underlying causes of rework in construction projects. Civil Engineering and
Environmental Systems. 21(3), pp.207-228.
Love, P.E., Edwards, D.J., Watson, H. and Davis, P. 2010. Rework in civil
infrastructure projects: Determination of cost predictors. Journal of
construction Engineering and Management. 136(3), pp.275-282.
Love, P.E., Mandal, P. and Li, H. 1999. Determining the causal structure of
rework influences in construction. Construction Management & Economics.
17(4), pp.505-517.
Love, P.E.D. and Li, H. 2000. Quantifying the causes and costs of rework in
construction. Construction Management and Economics. 18(4), pp.479-490.
Lüftenegger, E. 2020. Using Action Design Research for Co-creating
Service-Dominant Business Artifacts between Academia and Industry. In:
EMISA Forum: Vol. 40, No. 1: De Gruyter.
MacCormack, A., Verganti, R. and Iansiti, M. 2001. Developing products on
“Internet time”: The anatomy of a flexible development process.
Management science. 47(1), pp.133-150.
Madhusudan, T. 2005. An agent-based approach for coordinating product
design workflows. Computers in Industry. 56(3), pp.235-259.
Maher, M.L. 2000. A model of co-evolutionary design. Engineering with
Computers. 16(3-4), pp.195-208.
Maier, A.M., Hepperle, C., Kreimeyer, M., Eckert, C.M., Lindemann, U. and
Clarkson, P.J. 2007. Associations between factors influencing engineering
design communication. In: DS 42: Proceedings of ICED 2007, the 16th
International Conference on Engineering Design, Paris, France, 28.-31.07.
2007, pp.649-650 (exec. Summ.), full paper no. DS642_P_164.
Maier, A.M. and Störrle, H. 2011. What are the characteristics of engineering
design processes? In: DS 68-1: Proceedings of the 18th International
Conference on Engineering Design (ICED 11), Impacting Society through
Engineering Design, Vol. 1: Design Processes, Lyngby/Copenhagen,
Denmark, 15.-19.08. 2011.
Maier, J.F., Wynn, D.C., Biedermann, W., Lindemann, U. and Clarkson, P.J.
2014. Simulating progressive iteration, rework and change propagation to
prioritise design tasks. Research in Engineering Design. 25(4), pp.283-307.

- 183 -

March, L. 1984. In Developments in design Methodology. de The Logic of
Design, London,(John Wiley. pp.265-276.
Marsh, J.R. 1997. The capture and utilisation of experience in engineering
design. thesis, University of Cambridge.
Martinec, T., Škec, S. and Štorga, M. 2017. Exploring the decomposition of
team design activity. In: DS 87-8 Proceedings of the 21st International
Conference on Engineering Design (ICED 17) Vol 8: Human Behaviour in
Design, Vancouver, Canada, 21-25.08. 2017, pp.229-238.
Martínez-Miranda, J., Aldea, A., Bañares-Alcántara, R. and Alvarado, M.
2006. TEAKS: Simulation of human performance at work to support team
configuration. In: Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems: ACM, pp.114-116.
Masuch, M.J.A.S.Q. 1985. Vicious circles in organizations. pp.14-33.
McCarthy, I.P., Tsinopoulos, C., Allen, P. and Rose‐Anderssen, C. 2006.
New product development as a complex adaptive system of decisions.
Journal of product innovation management. 23(5), pp.437-456.
McChrystal, G.S., Collins, T., Silverman, D. and Fussell, C. 2015. Team of
teams: New rules of engagement for a complex world. Penguin.
McComb, C., Cagan, J. and Kotovsky, K. 2015. Studying Human Design
Teams via Computational Teams of Simulated Annealing Agents. In: ASME
2015 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, V007T06A030.
McKay, A., Chittenden, R., Hazlehurst, T., de Pennington, A., Baker, R. and
Waller, T. 2022. The derivation and visualization of supply network risk
profiles from product architectures. Systems Engineering. 25(5), pp.421-442.
McKay, A., Stiny, G.N. and de Pennington, A. 2016. Principles for the
definition of design structures. International journal of computer integrated
manufacturing. 29(3), pp.237-250.
Meboldt, M., Matthiesen, S. and Lohmeyer, Q. 2013. The dilemma of
managing iterations in time-to-market development processes. In: Second
International Workshop on the Modelling and Management of Engineering
Processes (MMEP 2012): Eidgenössische Technische Hochschule Zürich.
Meho, L.I. and Tibbo, H.R. 2003. Modeling the information‐seeking behavior
of social scientists: Ellis's study revisited. Journal of the American society for
Information Science and Technology. 54(6), pp.570-587.
Mihm, J., Loch, C. and Huchzermeier, A. 2003. Problem–solving oscillations
in complex engineering projects. Management Science. 49(6), pp.733-750.
Mitchell, V.L. and Nault, B.R. 2007. Cooperative planning, uncertainty, and
managerial control in concurrent design. Management Science. 53(3),
pp.375-389.
Moen, R.D. and Norman, C.L. 2010. Circling back. Quality Progress. 43(11),
p22.
Montagna, F. and Cantamessa, M. 2017. Who has the development process
in his hands? International Journal of Product Development. 22(3), pp.189-
211.
Moore, D., Sauder, J. and Jin, Y. 2016. Exploring Dual-Processes of
Iteration in Conceptual Design. International Journal of Engineering
Education. 32(3), pp.1385-1395.

- 184 -

Mykoniatis, K. and Angelopoulou, A. 2020. A modeling framework for the
application of multi-paradigm simulation methods. 96(1), pp.55-73.
Nelson, R.G., Azaron, A. and Aref, S. 2016. The use of a GERT based
method to model concurrent product development processes. European
Journal of Operational Research. 250(2), pp.566-578.
Nikolic, I. and Ghorbani, A. 2011. A method for developing agent-based
models of socio-technical systems. In: 2011 International Conference on
Networking, Sensing and Control: IEEE, pp.44-49.
Nikolic, I. and Lukszo, Z. 2013. Agent-based modelling of socio-technical
systems. Springer.
Noy, N.F. and McGuinness, D.L. 2001. Ontology development 101: a guide
to creating your first ontology. Stanford knowledge systems laboratory
technical report KSL-01-05 and Stanford medical informatics technical report
SMI-2001-0880. Stanford.
Orlikowski, W.J. and Iacono, C.S. 2001. Desperately seeking the “IT” in IT
research–a call to theorizing the IT artifact. Information systems research.
12(2), pp.121-134.
Osborne, S.M. 1993. Product development cycle time characterization
through modeling of process iteration. thesis, Massachusetts Institute of
Technology.
Otte, J.N., Kiritsi, D., Ali, M.M., Yang, R., Zhang, B., Rudnicki, R., Rai, R.
and Smith, B. 2019. An ontological approach to representing the product life
cycle. Applied Ontology. 14(2), pp.179-197.
Pastor, O. 2016. Conceptual modeling of life: beyond the homo sapiens. In:
International Conference on Conceptual Modeling: Springer, pp.18-31.
Patrashkova-Volzdoska, R.R., McComb, S.A., Green, S.G. and Compton,
W.D. 2003. Examining a curvilinear relationship between communication
frequency and team performance in cross-functional project teams. IEEE
Transactions on Engineering Management. 50(3), pp.262-269.
Perišić, M.M., Martinec, T., Štorga, M. and Kanduč, T. 2016. Agent-based
simulation framework to support management of teams performing
development activities. In: DS 84: Proceedings of the DESIGN 2016 14th
International Design Conference, pp.1925-1936.
Perišić, M.M., Štorga, M. and Podobnik, V. 2018. Agent-based modelling
and simulation of product development teams. Tehnički vjesnik.
25(Supplement 2), pp.524-532.
Pessôa, M.V.P. and Trabasso, L.G. 2017. The product development system.
The Lean Product Design and Development Journey. Springer, pp.3-18.
Petersson, A.M. and Lundberg, J. 2016. Applying action design research
(ADR) to develop concept generation and selection methods. Procedia Cirp.
50, pp.222-227.
Piccolo, S.A., Maier, A.M., Lehmann, S. and McMahon, C.A. 2019. Iterations
as the result of social and technical factors: empirical evidence from a large-
scale design project. Research in Engineering Design. 30(2), pp.251-270.
Pritsker, A.A.B. 1966. GERT: Graphical Evaluation and Review Technique,
Part II. Probabilistic and Industrial Engineering. J. Ind. Eng. (6), pp.293-301.
Rahmandad, H. and Hu, K. 2010. Modeling the rework cycle: capturing
multiple defects per task. System Dynamics Review. 26(4), pp.291-315.

- 185 -

Regenwetter, L., Curry, B. and Ahmed, F. 2021. BIKED: A Dataset and
Machine Learning Benchmarks for Data-Driven Bicycle Design. arXiv e-
prints. parXiv: 2103.05844.
Repenning, N.P. 2001. Understanding fire fighting in new product
development⋆. Journal of Product Innovation Management: AN
INTERNATIONAL PUBLICATION OF THE PRODUCT DEVELOPMENT &
MANAGEMENT ASSOCIATION. 18(5), pp.285-300.
Richardson, G.P. and Pugh, A.L. 1981. Introduction to system dynamics
modeling with DYNAMO. MIT press Cambridge, MA.
Ritchie, E. 1972. Planning and control of R & D activities. Journal of the
Operational Research Society. 23(4), pp.477-490.
Robinson, M.A. 2010. An empirical analysis of engineers' information
behaviors. Journal of the American Society for information Science and
technology. 61(4), pp.640-658.
Robinson, M.A. 2016. Quantitative research principles and methods for
human-focused research in engineering design. Experimental Design
Research. Springer, pp.41-64.
Roemer, T.A. and Ahmadi, R. 2004. Concurrent crashing and overlapping in
product development. Operations research. 52(4), pp.606-622.
Roemer, T.A., Ahmadi, R. and Wang, R.H. 2000. Time-cost trade-offs in
overlapped product development. Operations Research. 48(6), pp.858-865.
Rycroft, R.W. and Kash, D.E. 1999. The complexity challenge:
Technological innovation for the 21st century. Burns & Oates.
Safoutin, M.J. 2003. A methodology for empirical measurement of iteration in
engineering design processes. thesis, University of Washington Seattle.
Safoutin, M.J. and Smith, R.P. 1996. The iterative component of design. In:
IEMC 96 Proceedings. International Conference on Engineering and
Technology Management. Managing Virtual Enterprises: A Convergence of
Communications, Computing, and Energy Technologies, 18-20 Aug 1996,
pp.564-569.
Sargent, R., G. 2020. Verification and validation of simulation models: an
advanced tutorial. In: 2020 Winter Simulation Conference (WSC): IEEE,
pp.16-29.
Scheidegger, A.P.G., Pereira, T.F., de Oliveira, M.L.M., Banerjee, A. and
Montevechi, J.A.B. 2018. An introductory guide for hybrid simulation
modelers on the primary simulation methods in industrial engineering
identified through a systematic review of the literature. Computers &
Industrial Engineering. 124, pp.474-492.
Schlick, C.M., Duckwitz, S. and Schneider, S. 2013. Project dynamics and
emergent complexity. Computational and Mathematical Organization
Theory. 19(4), pp.480-515.
Schon, D.A. and Wiggins, G. 1992. Kinds of seeing and their functions in
designing. Design studies. 13(2), pp.135-156.
Schrader, S., Riggs, W.M. and Smith, R.P. 1993. Choice over uncertainty
and ambiguity in technical problem solving. Journal of Engineering and
Technology Management. 10(1-2), pp.73-99.
Sein, M.K., Henfridsson, O., Purao, S., Rossi, M. and Lindgren, R. 2011.
Action design research. MIS quarterly. pp.37-56.

- 186 -

Sharman, D.M. and Yassine, A.A. 2004. Characterizing complex product
architectures. Systems Engineering. 7(1), pp.35-60.
Shepherd, C. and Ahmed, P.K. 2000. NPD frameworks: a holistic
examination. European Journal of Innovation Management.
Shin, J.-H., Jun, H.-B., Kiritsis, D. and Xirouchakis, P. 2011. A decision
support method for product conceptual design considering product lifecycle
factors and resource constraints. The International Journal of Advanced
Manufacturing Technology. 52(9), pp.865-886.
Singh, H., Cascini, G., Casakin, H. and Singh, V. 2019. A computational
framework for exploring the socio-cognitive features of teams and their
influence on design outcomes. In: Proceedings of the Design Society:
International Conference on Engineering Design: Cambridge University
Press, pp.1-10.
Singh, V., Dong, A. and Gero, J.S. 2013. Social learning in design teams:
The importance of direct and indirect communications. AI EDAM. 27(2),
pp.167-182.
Škec, S., Cash, P. and Štorga, M. 2017. A dynamic approach to real-time
performance measurement in design projects. Journal of Engineering
Design. 28(4), pp.255-286.
Smith, R., P. and Eppinger, S., D. 1993. Characteristics and models of
iteration in engineering design. International Motor Vehicle Program,
Massachusetts Institute of Technology.
Smith, R., P. and Eppinger, S.D. 1997a. Identifying Controlling Features of
Engineering Design Iteration. Management Science. 43(3), pp.276-293.
Smith, R., P. and Eppinger, S.D. 1997b. A predictive model of sequential
iteration in engineering design. Management Science. 43(8), pp.1104-1120.
Smith, R., P., Eppinger, S.D. and Gopal, A. 1992. Testing an engineering
design iteration model in an experimental setting.
Smith, R., P. and Morrow, J., A. 1999. Product development process
modeling. Design Studies. 20(3), pp.237-261.
Smith, R., P. and Tjandra, P. 1998. Experimental observation of iteration in
engineering design. Research in Engineering Design. 10(2), pp.107-117.
Smith, R.P. and Leong, A. 1998. An observational study of design team
process: A comparison of student and professional engineers.
Sosa, M.E., Eppinger, S.D. and Rowles, C.M. 2004. The misalignment of
product architecture and organizational structure in complex product
development. Management science. 50(12), pp.1674-1689.
Sulmall. 2022. Bycyle design with BikeCad. [Online]. [Accessed 2022].
Available from: https://www.sulmall.com/?product_id=239153977_35
Szejka, A.L., Canciglieri Jr, O., Panetto, H., Rocha Loures, E. and Aubry, A.
2017. Semantic interoperability for an integrated product development
process: a systematic literature review. International Journal of Production
Research. 55(22), pp.6691-6709.
Tapia, F., McKay, A. and Robinson, M. 2021. Simulation of Feedback Loops
in Engineering Design. Proceedings of the Design Society. 1(Proceedings of
the Design Society), pp.2661-2670.
Taylor, T. and Ford, D.N. 2006a. Tipping point failure and robustness in
single development projects. System Dynamics Review. 22(1), pp.51-71.

- 187 -

Taylor, T. and Ford, D.N. 2006b. Tipping point failure and robustness in
single development projects. System Dynamics Review: The Journal of the
System Dynamics Society. 22(1), pp.51-71.
Terwiesch, C. and Loch, C.H. 1999. Measuring the Effectiveness of
Overlapping Development Activities. Management Science. 45(4), p455.
Terwiesch, C., Loch, C.H. and Meyer, A.D. 2002. Exchanging preliminary
information in concurrent engineering: Alternative coordination strategies.
Organization Science. 13(4), pp.402-419.
Thomke, S. and Bell, D.E. 2001. Sequential testing in product development.
Management Science. 47(2), pp.308-323.
Thomke, S.H. 1997. The role of flexibility in the development of new
products: An empirical study. Research Policy. 26(1), pp.105-119.
Thomke, S.H. 1998. Managing Experimentation in the Design of New
Products. Management Science. 44(6), pp.743-762.
Toye, G., Cutkosky, M.R., Leifer, L.J., Tenenbaum, J.M. and Glicksman, J.
1994. SHARE: A methodology and environment for collaborative product
development. International journal of intelligent and cooperative information
systems. 3(02), pp.129-153.
Tsoukas, H. and e Cunha, M.P. 2017. On Organizational Circularity. The
Oxford Handbook of Organizational Paradox. p393.
Tsvetovat, M. and Carley, K.M. 2004. Modeling complex socio-technical
systems using multi-agent simulation methods. KI. 18(2), pp.23-28.
Ulrich, K. 1995. The role of product architecture in the manufacturing firm.
Research policy. 24(3), pp.419-440.
Ulrich, K. and Eppinger, S.D. 2012. Product design and development. Fifth
edition. ed. Maidenhead: McGraw-Hill.
Wallace, K.M. and Ahmed, S. 2003. How engineering designers obtain
information: Human behaviour in design. Human Behabviour in design:
Individuals, teams, tools. Springer Verlag, pp.184-194.
Wang, J.X., Tang, M.X., Song, L.N. and Jiang, S.Q. 2009. Design and
implementation of an agent-based collaborative product design system.
Computers in industry. 60(7), pp.520-535.
Wang, Z. and Yan, H.-S. 2005. Optimizing the concurrency for a group of
design activities. IEEE Transactions on Engineering Management. 52(1),
pp.102-118.
Ward, A., Liker, J.K., Cristiano, J.J. and Sobek, D.K. 1995. The second
Toyota paradox: How delaying decisions can make better cars faster. Sloan
management review. 36, pp.43-43.
Whitworth, B. 2009. The Social Requirements of Technical Systems.
Wynn, D.C. 2007. Model-based approaches to support process
improvement in complex product development. thesis, University of
Cambridge.
Wynn, D.C. and Clarkson, P.J. 2005. Models of designing. Design process
improvement. Springer, pp.34-59.
Wynn, D.C. and Clarkson, P.J. 2017. Process models in design and
development. Research in Engineering Design. 29(2), pp.161-202.
Wynn, D.C. and Clarkson, P.J. 2021. Improving the engineering design
process by simulating iteration impact with ASM2. 0. Research in
Engineering Design. 32(2), pp.127-156.

- 188 -

Wynn, D.C. and Eckert, C.M. 2017. Perspectives on iteration in design and
development. Research in Engineering Design. 28(2), pp.153-184.
Wynn, D.C., Eckert, C.M. and Clarkson, P.J. 2007. Modelling iteration in
engineering design.
Wynn, D.C., Eckert, C.M. and Clarkson, P.J. 2019. Research into the design
and development process: some themes and an overview of the special
issue. Research in Engineering Design. 30(2), pp.157-160.
Wynn, D.C. and Maier, A.M. 2022. Feedback systems in the design and
development process. Research in Engineering Design. pp.1-34.
Wynn, D.C., Wyatt, D.F., Nair, S. and Clarkson, P.J. 2010. An introduction to
the Cambridge advanced modeller.
Yang, Q., Lu, T., Yao, T. and Zhang, B. 2014. The impact of uncertainty and
ambiguity related to iteration and overlapping on schedule of product
development projects. International Journal of Project Management. 32(5),
pp.827-837.
Yang, Q., Yao, T., Lu, T. and Zhang, B. 2013. An overlapping-based design
structure matrix for measuring interaction strength and clustering analysis in
product development project. IEEE Transactions on Engineering
Management. 61(1), pp.159-170.
Yassine, A.A. 2018. A Three-Dimensional View of Complex Product
Development Management. In: 2018 IEEE Technology and Engineering
Management Conference (TEMSCON): IEEE, pp.1-6.
Yassine, A.A. 2019. Managing the Development of Complex Product
Systems: An Integrative Literature Review. IEEE Transactions on
Engineering Management. pp.1-18.
Yassine, A.A. and Braha, D. 2003. Complex concurrent engineering and the
design structure matrix method. Concurrent Engineering-Research and
Applications. 11(3), pp.165-176.
Yassine, A.A., Chelst, K.R. and Falkenburg, D.R. 1999. A decision analytic
framework for evaluating concurrent engineering. IEEE Transactions on
Engineering Management. 46(2), pp.144-157.
Yassine, A.A., Joglekar, N., Braha, D., Eppinger, S.D. and Whitney, D. 2003.
Information hiding in product development: the design churn effect.
Research in Engineering Design. 14(3), pp.145-161.
Yassine, A.A., Sreenivas, R.S. and Zhu, J. 2008. Managing the exchange of
information in product development. European Journal of Operational
Research. 184(1), pp.311-326.
Yin, C. and McKay, A. 2018. Introduction to Modeling and Simulation
Techniques. In: Proceedings of ISCIIA 2018 and ITCA 2018: Leeds.
Yin, R.K. 1994. Discovering the future of the case study. Method in
evaluation research. Evaluation practice. 15(3), pp.283-290.
Zhang, X., Luo, L., Yang, Y., Li, Y., Schlick, C.M. and Grandt, M. 2009. A
simulation approach for evaluation and improvement of organisational
planning in collaborative product development projects. International Journal
of Production Research. 47(13), pp.3471-3501.
Zhang, X., Zhang, S., Li, Y. and Schlick, C. 2012. Task scheduling behaviour
in agent-based product development process simulation. International
Journal of Computer Integrated Manufacturing. 25(10), pp.914-923.

