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Abstract 

 

Background: To improve disease outcomes, Rheumatoid Arthritis (RA) should be treated 

early as possible. The role of biomarkers is essential to facilitate diagnosis and early access to 

treatment. Epigenetic modification is an important mechanism that could act as a biomarker in 

early RA. The value of differential methylation of the TNF gene was explored as a biomarker 

using the quantitative methylation specific qPCR (qMSP). 

 

Hypothesis: There will be significant difference in the percentage of DNA methylation of the 

TNF gene in patients with RA. 

 

Objective: To measure percentage DNA methylation of the TNF gene from PBMC samples of 

patients with early drug naïve inflammatory arthritis using a qMSP assay to measure difference 

in TNF gene methylation between RA and non-RA in patient from an early inflammatory 

arthritic clinic and see whether it can be utilised as a biomarker to predict the diagnosis of RA. 

 

Methods: A qMSP assay was developed to measure DNA methylation from blood samples. 

PBMC samples from the IACON and RADAR cohorts (n=312). Logistic regression was used 

to establish the added value of the assay compared to clinical data only.  

 

Results: Percentage DNA-methylation of the TNF gene was significantly lower in RA (median 

3.13) compared with other forms of inflammatory arthritis (median 6.61), with a p-value 

4.1x10-9 by MWU, distinguishing early RA from other forms of inflammatory arthritis. Using 

Forward logistic regression, the qMSP assay performed well, with an OR of 1.840 (95%CI: 

1.567-2.162, p<0.0001) and an AUROC of 0.826 (0.771-0.881) for predicting RA. The 

reference model predicted 87.8% of cases with an AUC=0.950 (P=≤0.0001). Adding the TNF 

DNA methylation levels increased the prediction accuracy by +1.7% (89.4%) accuracy and an 

AUC=0.967 (P=≤0.0001).  

 

Conclusion: The outcome is the characterisation of a novel biomarker of early RA which could 

be utilised to improve the management of RA. 
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Chapter 1: Introduction 

 

1 The Presentation and Management of Rheumatoid Arthritis 

 

1.1 Epidemiology and Clinical Presentation 

 

Rheumatoid Arthritis (RA) is an immune-mediated arthropathy where inflammation, swelling 

and pain in the joints are the predominant manifestation of the disease(1,2). RA impacts 

approximately 1% of the population of most developed nations, making it a particularly 

prevalent autoimmune disease(3). RA is more frequent in females, with a ratio approximately 

3:1 females to males(4). The disease is most prevalent in the age range of 40 to 60 years old and 

has both genetic and environmental contributions to disease manifestation and progression(5).  

 

RA most commonly impacts the metacarpal phalangeal joints and proximal interphalangeal 

joints of the hands and metatarsal phalangeal joints of the feet, though inflammation and 

damage to larger joints, such as the shoulders, elbows, knees and ankles are a frequent clinical 

presentation(2,6). The disease tends to impact the joints symmetrically and impacts more than 5 

joints, described as polyarthropathy(2). Morning stiffness is a key feature of the disease, and an 

improvement of symptoms tends to occur later in the day or through physical activity(6).  

Progression of the disease in the joints can lead to deformity and disability. In the hands, 

manifestations of deformity include swan neck deformity, buttonhole deformity, ulnar 

deviation and Z-thumb deformity. In the feet, manifestations of deformity include hammer toe 

deformity, claw toe deformity and mallet toe deformity. These deformities result from the 

hyperextension, flexion and subluxation of the joints of the hands and feet(6). Bone erosions, 

osteopenia  and osteoporosis occur, resulting in loss of structural integrity of the bone and 

deformity(7). Pathological presentations of RA can be clinically identified through imaging, 

usually by ultrasound but also MRI in clinical trials, and has served as a key tool in aiding 

diagnosis and monitoring disease progression(8,9).  

 

RA can also present systemically, where multiple organs may be affected(6). Rheumatoid 

Nodules can develop on the skin, a very common extra-articular presentation of RA(10). Chronic 

inflammation in RA can also lead to interstitial lung disease, fibrosis of the lungs and pleural 
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effusion(11). Inflammation and damage to the heart tissue or blood vessels, and the build-up of 

atheromatous plaques, increase the risk of cardiovascular disease, such as heart attack and 

stroke(12). Patients with RA may also develop a triad of conditions, where low blood cell count, 

splenomegaly and the core joint manifestations of RA occur, described as Felty Syndrome(13).  

 

1.2 Diagnosis 

 

Diagnosis of RA is based on fulfilling classification criteria following the guidance of the the 

American College of Rheumatology (ACR) and European League Against Rheumatism 

(EULAR) criteria for RA, updated in 2010(2). This scoring system is a guideline and not 

definitive, nor do patients need to meet all the criteria for diagnosis but serves to guide the 

probability of correct diagnosis based on progress made regarding biomarkers of disease and 

our understanding of disease progression. The guidelines score points based upon clinical 

presentation of joint involvement, serology and duration of symptoms (see Table 1). Counting 

tender joint count (TJC) and swollen joint count (SJC) at clinic and through imaging is one 

metric used and also serves to confirm symmetrical polyarthropathy. The presence of the 

autoantibodies in serology, such as rheumatoid factor (RF) and anti-citrullinated peptide 

antibodies (ACPA), are also scored. High levels of the inflammatory markers C-reactive 

protein (CRP) and erythrocyte sedimentation (ESR) in the blood are also contributors towards 

a diagnosis but are by no means indicative, occurring in a plethora of inflammatory diseases 

and infection as generalised markers of inflammation. A high score, in combination with the 

patient’s family history, clinical history, symptom presentation and duration can collectively 

aid towards a diagnosis at the discretion of the clinician(2). 
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Joint Involvement 

1 large joint 0 

2-10 large joints 1 

1-3 small joints 2 

4-10 small joints 3 

>10 joints 5 

Serology 

Negative RF and negative ACPA 0 

Low-positive RF or low-positive ACPA 2 

High-positive RF or high positive ACPA 3 

Acute Phase reactants 

Normal CRP and normal ESR 0 

Abnormal CRP or abnormal ESR 1 

Duration of symptoms 

<6 weeks 0 

≥6 weeks 1 

 

Table 1 – EULAR 2010 Classification Criteria for Rheumatoid Arthritis(2) 

The criteria of classification of Rheumatoid Arthritis, as outlined by the European League 

Against Rheumatism 2010. This involves a scoresheet based on the categories of joint 

involvement, presence of anti-citrullinated autoantibodies (ACPA) and Rheumatoid Factor 

(RF) by serology, presence of C-Reactive Protein (CRP) and Erythrocyte Sedimentation Rate 

(ESR) and duration of symptoms. The higher the score, the greater the likelihood of 

Rheumatoid Arthritis. 
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1.3 Management and Treatment 

 

Monitoring of RA after diagnosis usually involves imaging by ultrasound to compare progress 

in tissue swelling, bone erosions, structural changes and deformity(8,9). This is used in 

combination with the disease activity score (DAS28), a composite score for RA that is used to 

monitor changes in activity as outlined by the National Institute for Health and Care Excellence 

(NICE) guidance(14). This composite score combines the total number of tender joints (TJC) 

and swollen joints (SJC) impacted, the concentration of CRP and ESR in the blood and a Visual 

Analogue Scale of General Health (VAS-GH, a scale rating from 0-100) by the patient, 

regarding the extent of symptoms such as pain and mobility over the last 7 days, which is used 

as a subjective measure of disease impact. Several cut-off points are used to define clinical 

stages of disease for remission (DAS28<2.6), low disease activity (DAS28<3.2), and high 

disease activity (DAS28>5.1)(14). 

 

The standard treatment regime for RA usually starts with a conventional synthetic disease 

modifying anti-rheumatic drug (csDMARD) as first-line treatment, most commonly 

methotrexate. Leflunomide or sulfasalazine may be used if a contraindication for methotrexate 

is present or added upon methotrexate treatment when LDA is not achieved with MTX alone 

after 6 months. Systemic corticosteroids (usually glucocorticoids), and NSAIDs may also be 

used for symptomatic treatment during this time and for glucocorticoids as a bridging therapy 

until the more gradual effects of the csDMARD has been established during initial 

therapy(15,16). This overall strategy is now called the Treat to Target (T2T) approach, the target 

being the achievement of clinical remission defined by DAS28<2.6(17).  

 

If either LDA or remission is achieved, a gradual tapering of csDMARDs is implemented, 

either by dose reduction or by longer intervals between doses. However, if significant disease 

progression is still occurring, with concern for progression of cumulative disability, an addition 

of a targeted monoclonal antibody therapeutic, known as biologics or biological disease 

modifying anti-rheumatic drug (bDMARDs), can be combined with a csDMARD after 

unsuccessful csDMARD therapy alone (defined by a DAS28>5.1), known as combination 

therapy(15,16). bDMARDs offer a targeted mechanism of action but are more expensive than 

csDMARDs(18). Numerous bDMARDs target the excessive production of pro-inflammatory 

cytokines secreted by immune cells. TNFα inhibitors Adalimumab and Infliximab and IL6 

inhibitor Tocilizumab have been highly successful therapeutics in the treatment of RA(16,19). 
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Other biologics used to treat RA include Anakinra, an IL1 inhibitor, and Abatacept and 

Rituximab, which supress T-cell and B-cell activity, respectively(19). However, biologics are 

usually only prescribed upon unsuccessful response or contraindication from a csDMARD 

because bDMARDs are more likely to cause side effects, such as increased risk of opportunistic 

infection(16).  

 

Janus kinase inhibitors (JAKis), such as Tofacitinib and Baricitinib, are inhibitor molecules of 

the antiviral intracellular JAK-STAT pathway recently brought to market(20). Their mechanism 

of action is based upon inhibiting the excessive production of interferons. JAKis, considered 

tsDMARDS, may carry the same heightened risk of infection as bDMARDS and therefore they 

are also currently advised to be reserved until unsuccessful treatment of a csDMARD(16).  

 

Advice is continually being updated about the most appropriate tapering of therapeutics, side 

effects and cost-benefit analysis of various treatment strategies. Guidelines based on these 

discussions are continually updated from sources such as EULAR and American College of 

Rheumatology (ACR) guidance(15,16). Difficult-to-treat RA occurs in a proportion of patients 

with RA and poses challenges regarding our existing therapeutics(21,22). Therefore, research is 

being conducted to develop biomarkers that predict therapeutic response to optimise treatment 

and prognosis for RA patients(23).  

 

Unsuccessful therapeutic intervention or delayed diagnosis can result in substantial disease 

progression(24). Fortunately, prognosis for patients with RA has improved drastically over the 

years due to the increased attainment of remission or LDA because of earlier diagnosis and 

intervention and the improvements in targeted therapeutics on the market(25). Nonetheless, 

patients with long-lasting sequalae of RA have a significantly reduced quality of life and a 

population of patients still have little option in terms of therapeutics, having exhausted all 

available drugs(21,26,27). Mortality also remains lower in patients with RA compared with the 

general population, which may be predominantly due to increased cardiovascular disease risk 

amongst patients with RA, which can lead to earlier risk of stroke and myocardial infarction(12). 

However, co-morbidities including pulmonary disease and increased risk of malignancy has 

also been associated with RA and so may also cause early mortality(28,29). Research therefore 

needs to be carried to further improve prognostic outcomes for patients with RA. 
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2 The Pathogenesis of Rheumatoid Arthritis 

 

2.1 Disease Associated Risk Factors 

 

As a polygenic disease, the cause of RA is complicated, but known to be immune 

mediated(30,31). Individuals who develop RA are likely to have a family history of the disease, 

however the probability of inheriting RA in both monozygotic twins is about 15-30%, 

indicating factors beyond genetics(32,33). Known genetic mutations associated with RA include 

alleles of human leukocyte antigen (HLA) genes, such as the HLA-DRB1 shared epitope (SE). 

These alleles code for protein sequences for the major histocompatibility complex (MHC) type 

2, which have the function of antigen presentation to CD4+T-cells. This can stimulate T-cells 

to become effector cells capable of inflammatory immune responses or eliciting tolerance, 

depending upon the antigen and co-stimulatory signals involved. Variations to this allele cause 

alterations in the folding of the MHC protein that may impact the binding affinity to peptide 

presented to the T-cell and their response(34).  

 

Comprehensive epigenome-wide association studies (EWAS) have revealed many non-HLA 

mutations of genes associated with RA, including many T-cell related genes that lead to 

alteration of co-stimulatory proteins (CD2, CD28, CD40, CD56 and CTLA-4) and T-cell 

receptor (TCR) genes(35-37). PTPN22 is a strongly associated gene, which is involved in the 

activation threshold of both T-cells and B-cells(37,38). Furthermore, alterations to genes 

associated with inflammatory responses, such as STAT4 of the JAK-STAT pathway, have also 

been implicated(39). Genes associated with PAD enzymes, such as PADI4, have been associated 

with RA(37,40). PAD enzymes are involved in the process of citrullination, a post-translational 

modification implicated in RA through associated autoimmune reaction by ACPA to 

citrullinated proteins(41). Lastly, TRAF1-C5 has been associated with rheumatoid arthritis, a 

loci of chromosome 9 that encodes tumour necrosis factor receptor 1 and complement C5(42). 

Interestingly, ACPA+ and ACPA– disease do not share the same genetic predisposition 

suggesting distinct mechanisms are at play in these two subgroups of RA patients(122). 
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2.2 Environmental Risk Factors 

 

Environmental factors have also been linked to the development of RA, such as smoking, high 

BMI, dysbiosis of the gut microbiome and periodontal disease(43,44). An environmental 

mechanism associated with RA is through the citrullination of proteins, a post-translational 

modification of arginine to citrulline. Increased citrullination is associated with the generation 

of anti-citrullinated protein antibodies (ACPA) that target the citrullinated proteins, particularly 

in the joint in RA, such as to fibrinogen, vimentin and α-enolase, which contributes to 

pathology(41). Free citrullinated proteins from dysregulated apoptosis can be phagocytosed and 

presented to adaptive immune cells on MHC class 2 receptors to trigger immune responses and 

induce B-cell maturation that switch to an IgG-ACPA repertoire(45,46). Many environmental 

factors implicate the citrullination of proteins in their mechanism of action. Smoking has been 

associated with the prevalence of citrullinated proteins, shared epitope and ACPA antibodies, 

through the mechanism of action is uncertain(46-48). The bacterium which commonly causes 

periodontal disease, Porphyromonas Gingivalis, has been associated with RA by releasing 

arginine-gingipain enzymes, which is able to cleave proteins to reveal arginine residues that 

are the target of citrullination by PAD enzymes expressed by the pathogen and the host(49,50). 

This may contribute to the increase of citrullinated proteins in the mouth during periodontal 

disease, a region of the body critical in generating tolerance to exogenous antigens and 

ultimately causes a build-up of ACPA. Further studies should investigate whether pathobionts 

in the gut and lung may contribute to a protein citrullination burden by similar mechanisms, 

which could explain the association between gut and lung microbiome dysbiosis and RA. 

 

Further microbial associations could be explained due to dysbiosis of the gut and oral 

microbiome, where a reduction of species diversity and species richness in the gut that has been 

associated with inflammation and a variety of non-communicable diseases, including some 

associations with RA(44,51). The role of the microbiome in regulating the mucosal immune 

system is a current topic of research. Dysbiosis may lead to immune dysregulation, aberrant 

signalling and transcriptomic changes and vice-versa, disease-related change in diet and 

lifestyle may cause the dysbiosis, so whether this is a true cause of the disease or a consequence 

of having RA remains to be established(52). There has been associations between gut dysbiosis 

and RA with pathobionts such as Prevotella Copri, and potentially other pathobionts of the 

prevotella genus, though the mechanism behind this association is not clear(53). Porphyromonas 

Gingivalis also produces the enzyme α-enolase, which displays 82% homology to host α-
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enolase, raising the possibility of molecular mimicry, as autoantibodies to α-enolase have been 

observed in patients with RA(54). 

 

Additional environmental associations include vitamin D deficiency, where patients with RA 

and numerous other autoimmune diseases have been found far more prevalent in populations 

in the northern hemisphere with deficient vitamin D. The mechanism behind this association 

is inconclusive and poorly understood(55). Lastly, chronic exposure to environmental toxins, 

including organic particulates, silica and mineral dust has been linked with the development of 

RA, perhaps through the irritation and cell damage induced stress by these exogenous particles, 

which may lead to chronic inflammation, particularly in the lung(56,57).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

18 

3  Inflammatory Arthritis Continuum 

 

3.1 The Concept of a Continuum  

 

The presence of autoantibodies, particularly ACPA, can appear years before clinical symptoms 

and the diagnosis of RA(58,59). This indicate a slow progression of disease, now fully 

acknowledged as the Inflammatory Arthritis Continuum (IAC)(60). Here, distinct phases of 

disease before clinical RA have been characterised (Figure 3). 

 

 

Figure 1 – The Inflammatory Arthritis Continuum 

The IAC is a model of disease progression. Healthy individuals at risk with genetic 

susceptibility for RA (shared epitope, T-cell related genes) may also experience 

environmental triggers including smoking and periodontal disease, which increases the 

chance of the “first hit”, an event describing progression of disease towards a breach of 

tolerance and subsequent autoimmunity, expressing autoantibodies such as ACPA and RF. 

Patients may then clinically progress to experience arthralgia. Subclinical synovitis may be 

present. Patients may further progress to show clinically observable inflammation and 

swelling and may show early signs of joint deformity. However, patients at this stage may not 

meet the diagnostic criteria for RA, being diagnosed as having undifferentiated arthritis. 

However, many will progress to meet the classification criteria for RA and therefore may be 

clinically diagnosed with RA. 
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The first phase involves healthy patients that have genetic and environmental factors that are 

associated with RA, described as at-risk individuals. This includes factors mentioned earlier 

that contribute to pathogenesis, such as the genetic mutations (HLA-DR4, HLA-DRB1, HLA-

DR1,) and environmental factors such as smoking and periodontal disease(33,47,50,53,61). These 

factors increase susceptibility to RA and may be associated with loss of tolerance and the 

production of autoantibodies in RA, such as ACPA or anti-CarP(58,62).  

 

Once this triggering event has occurred, described as the first hit, the patient may gradually 

develop idiopathic pain without the presence of clinical signs of pathology. This phase is 

described as arthralgia, where symptoms are present but there is no SJC despite some TJC(63). 

However, subclinical synovitis may be detectable with ultrasound or MRI imaging(64).  

Another triggering event, the second hit, may occur that leads towards progression into 

undifferentiated arthritis (UA), usually with clinical synovitis (SJC) and other pathological 

involvement without yet meeting the EULAR classification criteria(65-67). At this stage, the 

patient usually has clear signs of disease that may involve inflammation markers such as CRP, 

tender joints, swelling present and pathology in the joints particularly upon clinical assessment 

by ultrasound(65-67). Some patients remain classified as undifferentiated arthritis due to the 

complex and atypical presentation of their disease and many will progress further to meeting 

EULAR criteria of RA classification(2,68). This phase of disease is often described as the 

‘window of opportunity’ because patients can meet diagnostic criteria at this stage whilst early 

intervention with therapeutics has proven critical for their long-term prognostic outcomes(69).  

 

However, there is not a single path to RA, and many patients never present with autoantibodies 

while with clear IA symptoms(60,70,71). This represents approximately a third of the patients 

developing RA seen in the Early Arthritis Clinic, experiencing delays in diagnosis (for up to 

24 months sometimes) and therefore access to treatment. 

  

3.2 The Application of the IAC 

 

The establishment of the IAC and evidence of stages of progression to RA can be very useful 

for clinicians and researchers in the diagnosis and prognosis of patients with inflammatory 

arthritis. Firstly, the model proposes that mechanisms of autoimmunity in RA may not be solely 

responsible for the pathogenesis and progression of the disease due to the presence of 
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autoantibodies in patients ‘at risk’ who do not have clinically noticeable inflammation and 

those with clinical symptoms that progress along the IAC and match EULAR criteria who are 

seronegative for autoantibodies(70,72). Furthermore, the model indicates a ‘window of 

opportunity’ that is critical for desirable prognostic outcomes that may frequently be missed in 

seronegative patients(70,71). This is reflected by the findings that patients who are ACPA 

negative and develop RA by virtue of meeting the other EULAR criteria have different genetic 

risk, whilst development and progression to RA in these circumstances can still be 

predicted(73,74). 

 

 

4 Immunological Mechanisms in Rheumatoid Arthritis 

 

4.1 T-cells 

 

T-cells originate in the thymus, where they undergo positive selection in the cortex and 

negative selection in medulla. This process is aided by antigen presenting cells (APCs) and 

structural cells of the thymus, thymocytes. Positive selection encourages adequate affinity to 

foreign antigen and negative selection depletes autoreactive T-cells(75). Thymic development 

is therefore critical in governing the healthy immune responses of T-cells and have been a focus 

of research in autoimmune disease. T-cell receptor excision circles (TRECs) are small circles 

of DNA found in naïve T-cells that function in T-cell receptor (TCR) rearrangement to provide 

the diversity of TCR repertoire for antigen found in T-cell populations. TRECs are not inherited 

during cell division, so as the population of peripheral T-cells expand, the concentration of 

TRECs that can be detected dilute. TREC content can therefore indicate thymic activity and/or 

the extent of proliferation and differentiation of T-cells(76). TREC content has been shown to 

be depleted in the T-cell populations of RA patients compared to healthy controls, particularly 

within the naïve helper T-cell subset, suggesting the abnormal thymic activity, in association 

with defective IL7 producton by the thymus epithelium cells(76,77).  

 

Abnormal maturation of T-cells have been noted in patients with RA. This appears to result in 

the loss of CD62L homing receptor expression specifically on naïve CD4+ T-cells, defining a 

subpopulation of naïve T-cells termed inflammation related cells (IRCs) not seen in health(77). 

These cells could evade trafficking to lymph nodes through their lack of CD62L expression, 
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accumulating in the periphery(77). Furthermore, they can enter IL6-expressing tissue and hence 

home for inflamed sites and my group hypothesise that this is the results of chronic exposure 

of naïve cells to IL6(77). 

 

Activation and polarisation of naïve CD4+T-cells is a core aspect of their function (Figure 1). 

Upon stimulation from antigen presenting cells (APCs), naive T-cells mature and polarise 

towards effector phenotypes. This is governed by transcription factors, where T-Bet polarise 

naïve T-cells into Th1 cells, GATA3 polarise naïve T-cells into Th2 cells and RORγT polarise 

naïve T-cells into Th17 cells(78). In RA, Th1 cells are not polarising appropriately, with no full 

engagement of Tbet(79,80). Research has also demonstrated an increased polarisation of CD4+T-

cells into a mixed, pro-inflammatory Th1/Th17 cell phenotype(81).  

 

 

 

Figure 2 – The Polarisation of CD4+ Helper T-Cells 

In blue: key cytokines involved in polarisation of naïve T-cells into specialised CD4+ helper 

T-cells. In green: the transcription factor implicated in governing epigenetic change of the 

naïve T-cell into the respective CD4+ helper T-cells. In red: key cytokines produced by 

polarised CD4+ helper T-cells. 
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Regulatory T-cells (Tregs) are another important subset of CD4+T-cells that are generated in 

the thymus, characterised by the transcription factor FOXP3(62). They can also be generated 

from normal effector T-cells as a product of polarisation(62) (inducible Treg, Figure 1). They 

function to regulate and resolve pro-inflammatory responses to avoid chronic inflammation(82). 

Abnormalities in Tregs have been noted in RA, such as a deficiency in particular phenotypes 

of Tregs, including lower frequencies(83). High concentrations of TNFα was shown to be 

partially responsible for diminishing the regulatory capacity of Tregs in RA. TNFα appears to 

alter the Treg functional capacity by reducing the activity of the transcription factor FOXP3, 

which is critical for the differentiation of naïve CD4+T-cells into Tregs in the periphery(84).  

 

Other subsets of T-cells have been associated with chronic inflammation and extra-articular 

manifestations in RA, such as memory CD28- CD4+T-cells(85,86). Th9 and Th22 subsets have 

also been identified and associated with autoimmune disease, secreting IL9 and IL22, 

respectively, though research is ongoing regarding their potential pro-inflammatory roles(87,88). 

Th9 and Th22 cell polarisation is possibly driven by transcription factors PU.1 and AhR, 

respectively(87,89). The flexibility between these phenotypes demonstrates that CD4+T-cells can 

be very adaptable in their functions depending on the environment and that the disease 

environment in RA may drastically alter T-cell activity to favour inflammatory roles that 

consequentially contribute to pathology. 

 

Altogether, naïve CD4+T-cells are not maturing appropriately in RA, where a high number of 

T-cells express markers of both naïve (CD45RA) and mature (CD45RO) surface markers 

simultaneously and losing CD62L(77). These cells (termed IRC) appear early in RA (notably in 

pre-clinical RA), predicting progression to disease(74) and seem to remain present even in 

remission(77,90). These cells are also hyper-responsive to stimulation by antigen and mitogens 

and therefore may have a lower activation threshold towards inflammatory phenotype(77). 

Furthermore, subsets of CD4+T-cells in RA also seem to upregulate chemokine surface 

markers inappropriately, such as CXCR4, CCR4 and CCR5(73). This may contribute to 

increased homing of these cells to sites of inflammation, such as the joint(77).  

 

The expansion of knowledge regarding T-cell subset dysregulation in RA has been exploited 

to develop biomarkers for RA progression based on cell subsets in the blood. Using flow 

cytometry, quantifying cell subset frequencies is possible and loss of naïve CD4+T-cells, 

abnormal differentiation into IRC and loss of Treg precede and predict the development of 
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symptoms in the at-risk stage of the inflammatory disease continuum, allowing for the 

classification of RA patients (notably ACPA-negative patients) early at the undifferentiated 

arthritis stage(91-94). Biomarkers based on cell subsets have also had success in predicting 

response to methotrexate and flare of disease upon tapering of csDMARDs(91-94).  

 

4.2 B-cells and Autoantibodies 

 

B-cells are involved in activating T-cells by presenting antigens along with co-stimulatory 

signals(95). This is particularly relevant considering the success of B-cell depleting therapy in 

RA (using anti-CD20 notably, such as Rituximab) that results in B-cell loss, but that do not 

affect plasma cells, hence the production of antibodies(96).  

 

However, B-cells are also associated with pathogenesis in RA through other direct mechanisms 

also, such as the production of RANKL, inflammatory cytokines such as IL-6 and 

autoantibodies(97,98). 

 

Rheumatoid Factor (RF) is an autoantibody found in approximately 70% of RA patients. RF is 

an IgM autoantibody that binds to the patients IgG to form immune complexes which can 

deposit in the joint(99). Depositions of RF enhance the activity of macrophages, including 

increasing the production of TNFα(100,101). Deposition of immune complexes can also trigger 

the complement cascade, contributing to further inflammation(99).  

 

ACPA are autoantibodies that bind to proteins that have been citrullinated as part of 

physiological responses, such as fibrinogen, fibronectin, vimentin, α-enolase; among many 

other proteins in the joint(102). This causes immune-mediated response and results in damage to 

connective tissue, likely also through activating innate mechanisms such as the complement 

cascade and activating innate immune cells through Fc receptor signalling(103). ACPA has also 

been associated with the increased production of TNFα through engaging macrophages(103).  

 

Anti-carbamoylated protein antibodies (anti-CarP) have also been observed in patients with 

RA, which are autoantibodies that bind to proteins that have been carbamoylated(62,104). 

Carbamoylation has also been associated with increased bone destruction, though the precise 

mechanism of his association is not clear(62). Additional post-transcriptional modifications 
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(acetylation, phosphorylation and more) also generate autoantibodies and have been reported 

in RA (albeit in lower frequency) and appear to link autoimmune responses to particular attacks 

on tissue or proteins(105). 

 

4.3 Macrophages 

 

Resident macrophages in RA polarise to express an inflammatory M1 phenotype, which can 

be initiated by cytokines and possibly ACPA(106,107). Macrophages can promote inflammation 

in RA that contribute to osteoclastogenesis and bone erosion(108,109). They secrete pro-

inflammatory cytokines, such as IL6, IL17 and TNFα, which engage fibroblasts, fibroblast-like 

synoviocytes and osteoclasts to initiate cartilage degradation and bone erosion, respectively(110-

113). Altogether, they are heavily contributing to perpetuating inflammation through their highly 

active production of inflammatory mediators.   

 

4.4 Resident Cells  

 

Resident cells of the joint in RA, such as fibroblasts, fibroblast-like synoviocytes and 

chondrocytes, express a phenotype very different than in health, favouring high production of 

proteinases, such as MMPs, that contribute to extracellular matrix and cartilage tissue 

degradation(114-116). The progressive destruction and deformity of joints by these cells is driven 

in part from the inflammatory signalling of macrophages and T-cells, such as IL6, IL17 and 

TNFα(110,117). IL1, IL6 and TNFα has been shown to induce the expression of RANKL in 

fibroblast-like synoviocytes, promoting osteoclastsogenesis(118). T-cells and B-cells also 

express RANKL, which communicate by binding with RANK on osteoclasts to promote local 

bone erosion(98,119). 
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4.5 Cytokine Dysregulation and Immune Mediated Inflammatory Disease 

 

Pro-inflammatory cytokines are excessively secreted by various immune and resident stromal 

cells in the synovial joint of patients with RA, leading to chronic synovitis and joint 

destruction(120). Cytokines frequently implicated include IL1, IL6, IL17, IL23, IFNγ and 

TNFα(121). This inflammatory network maintains chronic inflammation, however, development 

of cytokine dysregulation may change depending on stage of disease (early, established, 

chronicity)(121). The spatial and temporal dependent crosstalk between cell types demonstrates 

the complexity of disease pathophysiology in RA, involving adaptive immune cells (Th1 cells, 

Th17 cells, B-cells), innate cells (macrophages, neutrophils) and resident stromal cells 

(fibroblasts, fibroblast-like synoviocytes, chondrocytes, osteoclasts) in propagating the disease 

environment of RA(121). The heterogeneity of disease, including the importance of innate and 

stomal cells in disease progression, indicate the disease is not simply propagated through 

classical mechanisms of autoimmunity, but also through mechanisms of dysregulated cytokine 

signalling and inflammatory cell phenotype that overlaps significantly with research exploring 

polygenic autoinflammatory diseases(122). This observation of the overlap of polygenic 

autoimmune disease pathophysiology with that of polygenic autoinflammatory diseases 

suggests that they may be treatable with similar therapeutics(31). This concept has allowed for 

increased collaboration of research, therapeutic insight and broadening of scope into 

pathogenesis of these conditions, using an umbrella term of immune mediated inflammatory 

diseases (IMIDs), which can be seen as a spectrum of non-communicable conditions that cause 

damage to self from those predominantly autoimmune in nature by adaptive immune 

mechanisms to those predominantly autoinflammatory by innate dysfunction(31,122). Common 

culprits involved in cytokine dysregulation, such as IL1, IL6, IL17, IL23, TNFα, IFNγ as 

mentioned, are implicated across the spectrum of IMIDs and therefore these conditions may 

share common origins in early pathophysiology and progression(31,122). There has even been 

documented cases of patients matching the criteria of RA who display seemingly predominant 

autoinflammatory mechanisms of disease, exemplifying the fluid nature of immune-mediated 

diseases(123). Understanding this overlap and targeting dysregulated cytokines with novel 

biologics is therefore a critical step forward regarding the focus of research for RA and beyond. 
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Figure 3 – Cytokine Dysregulation in Rheumatoid Arthritis 

In the synovium of the joint of a patient with RA, there is dysregulation of cytokine signalling 

and cell phenotype. For example, the expression of high titres of autoantibodies such as 

ACPA and RF by B-cells, cytokines such as IL6 and TNFα by T-cells and macrophages, 

MMPs by fibroblasts,  fibroblast-like synoviocytes and chrondrocytes that lead to cartilage 

destruction and signalling of RANKL to osteroclasts that leads to bone absorption and 

erosions by osteoclastogenesis. 

 

 

 

 

Overall, the pathophysiology of RA involves both innate and adaptive immune 

responses(121,124). Early RA may implicate T-cell driven events, whether antigen specific is not 

clear, leading to activation and polarisation of other cells in a self-maintaining network of pro-

inflammatory signals, towards the development of a chronic stage that can no longer be 

returned to normal by regulatory mechanisms(90,121,125).  Hence the need for early diagnosis, to 

be able to treat before this chronic stage has been fully established.  
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5 Epigenetic Changes in Rheumatoid Arthritis: 

 

5.1 An introduction to Epigenetics 

 

Epigenetics refers to the ability of cells to regulate the expression of genes by mechanisms 

independent of transcription, but which modulate the accessibility of the DNA to the 

transcriptional machinery by regulating the structure of the chromatin. The phenotype of cells 

is therefore not solely based on the genetic material that codes for proteins but also by a 

program that allows or restricts access to these genes. However, this program is highly flexible 

and can be modulated based on cues from the environment. DNA is wrapped around histone 

proteins, which is required to keep a compact DNA structure inside the nucleus of cells, 

forming chromatin. However, the configuration of DNA wrapped around histones can be 

altered and can selectively allow genes to be expressed. Two core methods of epigenetic 

regulation include chromatin remodelling and DNA modification(126,127). 

 

5.2 Chromatin Remodelling 

 

Chromatin remodelling is one way in which epigenetic regulation occurs. Chromatin structural 

complexes are responsible for packing nucleosomes close together to form heterochromatin or 

unpacking nucleosomes and spreading them apart to unpack DNA into a euchromatin 

configuration (Figure 4). When the genetic material is in heterochromatin configuration, the 

strand of DNA is tightly wrapped around histone proteins, preventing the access of 

transcription factors to the promotors of entire sets of genes. When the DNA is in euchromatin 

configuration, where the strand of DNA is loosened away from the histone proteins, access of 

transcription factors to the gene promotors is possible. The histones can regulate this process 

based on harbouring post-translational modifications mediated by specific enzymes that 

modify their capacity to wrap the DNA around them. Histone acetylation occurs on lysine 

residues of histone tails. Lysine is positively charged and attracted to the DNA backbone and 

other nucleosomes and acetylation results in less attraction of the histones to the DNA, 

promoting chromatin unfolding. Histone methylation is another mechanism of chromatin 

remodelling that occurs on lysine or arginine residues of histone tails, mediated by histone 

methyl transferases (HMTs)(126,127).  
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Figure 4 – Epigenetic Modification of the Chromosome and DNA 

An example of epigenetics – heterochromatin confers a closed configuration, whilst 

euchromatin confers an open configuration, where transcription can then occur by 

transcription factors on revealed promotors. Post-translational modification by methylation 

is governed by methyl transferase enzymes and methyl-cytosine dioxygenase enzymes. An 

increase in DNA and chromosomal methylation leads to a closed configuration 

(heterochromatin) of genes and demethylation leads to an open configuration (euchromatin). 
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5.3 DNA Modification 

 

DNA modification is another mechanism by which epigenetic regulation occurs. The promotor 

is the region of any gene that provides the binding site for transcription factors and these regions 

of the DNA also undergo inhibition or activation, altering the regulation of the corresponding 

genes. This occurs by methylation of cytosine in a dinucleotide sequence with guanine (Figure 

4), which do not alter the genetic code but modulate the structure and accessibility of the 

chromatin. CpG are often grouped in islands, which are small regions of DNA particularly rich 

in CpG dinucleotide pairs. A CpG island is defined by having over 50% CpG pairs for longer 

than 200 base pairs. These islands occur in over 60% of gene promotors and are rarely found 

outside of promotors. DNA methylation occurs on the cytosine residues of CpGs and therefore 

although DNA methylation can occur all over the genome, it particularly occurs in the promotor 

region of genes. DNA methyl transferases (DNMTs) are enzymes which covalently attach a 

methyl group to cytosine residues on carbon 5, converting cytosine into 5-methyl-cytosine, 

which can occur at CpG islands of gene promoters. Demethylases are the enzymes which 

remove the methyl groups from cytosine residues, utilising the enzymatic proteins ten-eleven 

translocation methyl-cytosine dioxygenases (TET) and activation-induced cytidine deaminase 

(AID), which can reverse the effects of gene silencing at promotors. DNA methylation of the 

promotor region of a gene typically results in the repression of gene transcription. This is 

achieved through methylated DNA attracting methyl-CpG-binding domain proteins (MBDs), 

which bind the methylated-CpG and prevent access of the transcription factor. MBDs can also 

allow the binding of HDACs, which can then function to remove acetyl groups from histones 

and promote the condensing of DNA into heterochromatin in combination with the action of 

chromatin remodelling complexes, preventing transcription factors from expressing those 

genes. Both DNMTs and MBDs bound to the methylated-DNA can also directly methylate 

histones in conjunction with DNA-methylation(128).  
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5.4  Measuring DNA Methylation 

 

An initial approach towards studying DNA methylation is through a process of discovery. This 

is achieved by indiscriminately exploring a wide area of the genome for potential differential 

methylation signatures of interest, known as Epigenome-Wide Association Studies (EWAS). 

There are a number of ways this can be achieved, such as through large microarrays (450k, 

EPIC), whole genome bisulphite sequencing (WGBS) or reduced representation bisulphite 

sequencing (RRBS) that provide high throughput of data(129). Comprehensive bioinformatic 

pipelines can then be used to interpret large datasets(129). Such studies can be used as a process 

of discovery for areas of intrigue in large cohorts of patients or patient data from in-silico 

datasets. This can often be a starting point for hypothesis generation or determining areas of 

intrigue for deeper analysis of a particular loci or CpG region of interest(129). 

 

Pyrosequencing is a next-generation sequencing method which involves special dinucleotides 

(dNTPs) of each base containing pyrophosphate as part of their backbone, which emits light 

each time a new base is added to the sequence catalysed by DNA polymerase. Primers for 

target sequences can be designed using MethPrimer(130). The technique is based around the 

release of pyrophosphate when a dinucleotide is bound to the sequence, where pyrophosphate 

is converted into ATP by the enzyme ATP sulfurylase. The ATP is then utilised by luciferase, 

which generates the photon of light when the enzyme luciferase converts luciferin with oxygen 

into oxyluciferin. The enzyme apyrase removes unincorporated dNTPs. dNTPs are added one 

at a time into a flow cell, which means we can determine the sequence of the DNA strand 

working through base pairs one at a time. Subsequent repeat dNTPs will multiply the 

amplification of the signal. By sequencing DNA that is both untreated and treated with 

bisulphite conversion into a purpose-made machine, you can compare both strands as a 

pyrograph with software to look for the proportion of cytosine dinucleotides in the methylated 

strand that has been converted into uracil in the unmethylated strand. By deducting the number 

of unmethylated cytosines from the total number of cytosines in the strand, you can calculate 

the proportion of methylated cytosines as a percentage methylation of that strand(131). 

 

Quantitative Methylation Specific Polymerase Chain Reaction (qMSP) is a technique based 

upon qPCR that utilises primers for both methylated DNA and unmethylated DNA sequences. 

The primers are typically designed using MethPrimer for a particular CpG target sequence(130). 
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The methylated sequence will retain cytosine nucleotides at CpG regions, as the modification 

is not impacted by bisulphite conversion, whereas the unmethylated sequence will have any 

cytosine nucleotides at CpG sites converted into uracil. The mismatch between the two 

sequences will be noticeable as the unmethylated sequence will produce amplification during 

qPCR, whereas the methylated sequence will not. Samples can be run and compared with 100% 

methylated and 100% unmethylated controls to determine percentage methylation of the total 

cytosines at the target CpG region of your sample.(132).  

 

 

 

Figure 5 – The Process Behind qMSP 

On the left: A methylated cytosine, unaffected by bisulphite conversion of DNA.  

On the right: An unmethylated cytosine, converted from cytosine to uracil and causing a 

mismatch compared with the methylated DNA strand. The unmethylated strand will then be 

amplified upon qPCR, whereas the methylated strand will not. 

Methylated Sequence Unmethylated Sequence 
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5.5  Hypomethylation in Rheumatoid Arthritis 

 

Epigenome-wide association studies (EWAS) are a promising avenue of research for RA. 

Previously, epigenome-wide association studies (EWAS) have been used to identify numerous 

loci of various non-HLA genes, such as T-cell related genes, associated with RA(35,36,42). More 

recently, epigenome-wide association studies looking at DNA methylation is becoming 

invaluable regarding the study of epigenetic changes in many diseases(133). 

 

Patients with RA have shown a tendency of genome-wide hypomethylation in various cell 

types (T-cells, fibroblasts, fibroblast-like synoviocytes)(134-136). Our group explored DNA 

methylation in 3 cells type in early, drug naïve patients (CD4+T-cell naïve and memory as well 

as monocytes), where we have shown the most significant difference in naïve T-cells(137), with 

over 600 gene being differentially methylated (with 55% hypomethylation) while only 400 

genes were identified in memory cell (90% hyper-methylated) and less than 50 genes in 

monocytes. Many differentially methylated genes in naïve T-cells were cytokine/chemokine 

and their receptors (including IL6/IL6R and TNF/TNF-Rs), while an overall network analysis 

of the 600 genes pointed to a central role for STAT3/JAK/IL6 signalling with links to 

TNF/related genes and Th17 cells(137).  

 

Others have shown particular effects on many genes individually, especially within T-cell 

associated genes. For example, hypomethylation of the CTLA-4 gene has been observed in 

patients with RA compared with healthy controls, associated with Treg dysfunction(138). 

Hypomethylation of the IL6 gene was also confirmed in patients with RA compared with 

healthy controls, which also led to over-expression of the IL6 gene and was associated with 

excessive inflammation and disease progression through IL6 signalling(139). 

 

Epigenetic regulation of genes early in RA could have a critical role in RA pathogenesis and 

may explain the non-genetic element of disease shown in monozygotic twin studies(32,140). 
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6 Diagnostic Biomarkers of Rheumatoid Arthritis 

 

6.1 Heterogeneity in Rheumatoid Arthritis 

 

RA is a heterogeneous disease, where different pathophysiology can be seen between patients 

due to the complex and variable mechanisms involved in the disease course over many 

years(60,141). This includes the different presentation of cell subsets involved in disease, 

serology, joint pathology, systemic complications, relapse/remission and resistance to current 

therapeutics(21,73,90,92,124,141). 

 

Establishing endotypes of disease, where subgroups of RA patients can be clustered based on 

the characteristics measured by biomarkers present in disease, is the goal of precision medicine 

approaches(142). This allows for clinical and therapeutic interventions to be tailored for the 

patient based upon their endotype to optimise long-term favourable prognosis, including 

therapeutic response(70). However, in RA, evidence suggests that earlier diagnosis and 

intervention are crucial for improving the prognosis of patients with RA before the extensive 

heterogeneity of established disease has manifested, adding an important temporal element(23). 

It is critical to avoid worsening of pathology and cumulative disability by predicting and 

treating RA early within the ‘window of opportunity’(69). With the support of the IAC model, 

numerous biomarkers of disease endotype and progression have been developed, allowing for 

the ability to give confident diagnosis, prognosis and monitoring of disease early in the 

development of RA(69). There is also an overlap between pre-RA and the clinical presentation 

of other forms of inflammatory arthritis, so establishing biomarkers specific to RA also requires 

the ability to distinguish RA from other forms of early inflammatory arthritis(143). Many 

biomarkers have been proposed and some have made it to clinical practice, whilst others have 

failed to demonstrate significant clinical utility but provided information about the 

pathophysiology of disease progression. 
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6.2 Serological Biomarkers in Rheumatoid Arthritis 

 

ACPA is present in approximately 50-60% of early IA patients developing RA and shows more 

specificity (~97-99%) than RF and many other serological biomarkers(58,144,145). The level of 

ACPA can indicate severity of disease, including increased likelihood of active disease, 

pathological progression and bone erosions(146,147). However, with ~40-50% of RA patients 

ACPA negative, this poses issues regarding early diagnosis, where prognostic outcomes for 

ACPA negative individuals can be worsened substantially due to delayed diagnosis(71). Further 

biomarkers need to be established in conjunction with ACPA to further improve classification 

of RA, with focus centred towards establishing biomarkers for effective diagnosis of RA in 

those with ACPA negative disease.   

 

RF also appears frequently in patients with RA (60-70%); however, it has worse predictive 

power for diagnosis of RA than ACPA(148). It has a low specificity (~30%)(148), being associated 

with many inflammatory and non-inflammatory conditions, infections and also with ageing(149). 

 

Anti-Carp autoantibodies are an alternative serological biomarker that has high specificity for 

RA but even lower sensitivity than ACPA and RF, only being present in ~10% of early RA 

patients(104). Our group showed that it has nonetheless additional value in early IA for RA 

classification(150). In addition, anti-Carp autoantibodies have been shown to be a useful 

biomarker in predicting worse prognosis regarding joint damage(62).  

 

6.3 Other Clinical Biomarkers in Rheumatoid Arthritis 

 

Markers of systemic inflammation, such as CRP and ESR, appear in a myriad of inflammatory 

diseases, including a plethora of communicable and non-communicable conditions, making 

them poor diagnostic biomarkers due to low specificity for RA(151,152). Normal ranges of CRP 

and ESR are also frequently observed in patients with early disease, meaning lower than ideal 

sensitivity, leading to missed diagnosis(152). 

 

Clinical assessment can be standardised and utilised as biomarkers, such as with individual 

metrics of disease (TJC, SJC) or the DAS28 compound score(153). These metrics are important 

and widely utilised regarding the monitoring of disease severity and remission in patients(14,153).  
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Imaging has proven vital in detecting damage and disease progression in the joint and 

associated tissues(9). Subclinical synovitis, such as grey scale synovitis, are detectable by 

ultrasound early in disease and being investigated as potential biomarkers of diagnosis and 

disease progression(64,154). The predictive power of ultrasound imaging early in disease is 

potentially advanced further using power doppler scale ultrasound (PDUS)(66). Though 

ultrasound is cheaper and more accessible as a technology, alternative imaging techniques, 

such as MRI and PET, have also been investigated with promising results, but remain 

impractical due to limitations in cost, accessibility and tolerability of radiation for some 

patients(9).   

 

6.4 T-cell Subsets as Biomarkers 

 

In our group, the presence of T-cell subsets have previously been explored before my project 

as biomarkers for predicting diagnosis in individuals pre-RA and for prognosis across the IAC. 

Populations of naïve T-cells, Th17 cells, Tregs and inflammation related cells (IRCs) have been 

found to be significantly different between those with pre-RA and healthy controls(83,94,155). In 

a comprehensive study of more than 700 participants, Treg cells were diminished early in the 

IAC, having a more important role in the at-risk stage of disease progression. Naïve T-cells 

had the strongest prediction value of prognosis towards progression to RA from at-risk stage, 

prediction of disease flare and successful MTX induced remission(155). This was sufficiently 

strong to inform clinicians towards rapid therapeutic treatment for those progressing swiftly 

across the IAC into clinical RA and a clinical trial is currently stratifying early RA for treatment 

choice, which may lead towards more informed decisions regarding the likely success of drug 

tapering. On the other hand, both Tregs and naïve T-cells were found to be diminished in pre-

RA, but IRCs were found to be significantly raised early in disease, providing insight into the 

second hit event being able to trigger naïve CD4+T-cells to differentiate into IRCs(77,83). In 

another study, IRCs were also found during remission, but lacking chemokine receptors and 

their inflammatory potential diminished, no longer hyper-responsive. A higher number of these 

IRCs during remission predicted the likelihood of unsuccessful tapering of medication and 

inability to sustain remission, meaning this T-cell subset has potential clinical utility as a 

biomarker for relapse risk(90). 
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7 Preliminary Findings 

 

7.1 Changes in DNA Methylation  

 

In a previous paper by our group before my project, involving the work of PhD graduate Dr. 

Rujiraporn Pitaksalee, it was shown that multiple CpG regions are differentially methylated 

(DM) in early drug naïve RA patients(137). The DNA methylation of CpG regions was compared 

in monocytes, naïve CD4+ T-cells and CD4+ memory T-cells in 10 patients with RA and 6 

healthy controls. Multidimensional scaling (MDS) and in-house code was utilised to analyse 

samples, including +/-1500 base pairs from CpGs. The naïve T-cells in RA had 18,020 DM 

CpGs (p≤0.01), more than 14197 for memory T-cells and 6490 for monocytes. When 

corresponding to genes, T-cells displayed 648 DM genes, memory T-cells displayed 605 DM 

genes and monocytes only displayed 58 DM genes. The monocytes displayed isolated DM-

CpGs, whereas memory CD4+ T-cells displayed larger groups of DM CpGs but spread over 

greater regions that weren’t numerous. CD4+ naive T-cells, however, displayed numerous DM-

CpGs clustered in CpG islands(137). 

 

Many DM genes in naïve CD4+ T-cells were associated with cytokines, such as IL6 and TNFα 

and their receptors. The TNF gene displayed hypomethylation, with significant clustering of 

DM CpGs observed in the CD4+ naïve T-cells, whilst no DM of TNF was observed in the 

monocytes or CD4+ memory T-cells.  

 

Using DMRcate, we investigated DM regions (DMR) for the most highly DM genes(156). The 

dataset was filtered to 355 candidates, where 262 were hypomethylated and 93 were 

hypermethylated in CD4+ naïve T-cells. This included TNF, STAT5, IFN signalling genes and 

HLA-related genes. 

  

Utilising two gene expression datasets for CD4+ T-cells, a list of differentially expressed (DE) 

genes was aggregated between early drug naïve RA patients and healthy controls. The most 

DE genes between RA and healthy controls were JAK1, STATs, TNF family genes and IFN 

signalling genes. DM and DE genes showed close associations(137). 
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We then investigated whether these DM genes in CD4+ naïve T-cells could indicate specific 

pathways associated with pathogenesis using the STRING database network analysis. We built 

an interaction model that displayed three JAK1/STAT nodes, which were IL6-

IL6R/JAK1/STAT3, JAK1/STAT2, and IL2R/IL15R/JAK1/STAT5. Further inflammatory 

pathways deriving from IL6 involved the TNF/TNFR family. An additional inflammatory node 

for IL18/JAK1/STAT4 also indicated additional members of the TNF family, linking IL4R, 

IL13 and STAT5(137). 

 

7.2 DNA Methylation for the TNF Gene Candidate 

 

The TNF gene was selected for further validation by our group before my project, involving 

the work of Dr. Rujiraporn Pitaksalee, based on its known relationship in RA pathogenesis. A 

region -850/+2000 base pairs from the transcriptional start of the TNF gene was analysed and 

showed partial demethylation, with a β-value of 50% methylation in CD4+ naïve cells (Figure 

5). This region was almost fully demethylated (average 8%) in CD4+ memory T-cells and 

almost fully methylated (average 88%) in monocytes, but on a shortened scale of -175/+343 

base pairs. 

 

A sequencing assay was then developed to be utilised on DNA from early RA patients and 

healthy controls. A 273 base pair region that contained 8 CpGs of the region of interest (Figure 

6, highlighted in the pink box) was sequenced from CD4+ T-cell DNA. In healthy controls, 

50%/50% methylated and demethylated DNA was observed, suggesting two subpopulations of 

CD4+ T-cells, one with methylated DNA and the other with unmethylated DNA. In RA (n=9), 

90% of the DNA was unmethylated for all CpGs.  

 

We decided to develop a quantitative methylation specific polymerase chain reaction (qMSP) 

assay that could be utilised to measure percentage difference of DNA methylation of the TNF 

gene between groups. This assay was developed by PhD graduate Dr. Rujiraporn Pitaksalee, 

and my project consisted of further contributing to the generation and analysis of data generated 

with the assay to validate the assay as a clinical biomarker, across the IAC, between those 

eventually diagnosed with RA and other forms of inflammatory arthritis (non-RA)(137,157). 
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Chapter 2: Hypothesis & Objectives 

 

1. Hypothesis 

 

My hypothesis was that there will be a significant difference in percentage of DNA-methylation 

of the TNF gene in patients with RA compared with patients with an alternative diagnosis (the 

non-RA group). 

 

2. Objectives 

 

The first objective of my project was: 

 

- To measure the percentage DNA methylation of the TNF gene from PBMC samples 

of patients with early drug naïve inflammatory Arthritis using the qMSP assay.  

 

- To establish if there is a difference in TNF gene methylation between those classified 

as Rheumatoid Arthritis and other forms of inflammatory arthritis (non-RA group). 

 

- To evaluate the utility of TNF gene methylation as a biomarker for disease outcome 

(i.e., diagnosis) above and beyond the currently used criteria for classification  
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Figure 6 – The Workflow of the Project 

In green: The clinical aspects of the project, involving patient recruitment, clinical 

measurements, clinical data collection and formatting. In red: the core development of the 

TNF assay from the utilisation of patient bloods, involving PBMC isolation, DNA extraction, 

bisulphite conversion and the qMSP assay measurements. In blue: the preparations required 

to validate the qMSP assay, including selection of the target CpG region of the TNF gene, 

primer design, quantification of the assay through primer matrix, methylation specificity and 

dilution series, In yellow: the statistical analysis of data, including descriptive statistics of 

the cohort, DAS28 calculations, TNF methylation comparisons and modelling statistics, 

including logistic regression and AUROC. 

 

EAC = Early Arthritis Clinic, ChA = Chapel Allerton Hospital; All other components of the 

project occurred at the Brenner Building of St James University Teaching Hospital. 

 

TS = Mr. Thomas Sargent, RPi = Dr. Rujiraporn Pitaksalee, RPa = Mrs. Rekha Parmar,  

CL = Miss Chin Liu, HN = Miss Helen Ng, FP = Dr.. Frederique Ponchel. 
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Chapter 3: Methods 

 

1 Ethics 

 

This project has been approved by the Leeds (West) Research Ethics Committee (Ethically 

approved REC: 09/H1307/98). Blood samples were obtained from patients recruited from the 

Early Arthritis Clinic at Chapel Allerton Hospital in Leeds, forming the cohorts IACON and 

RADAR. All patients involved in this project gave informed consent through a form regarding 

how their data and samples would be utilised for the study and gave the option of the right to 

withdraw. All clinical data necessary was extracted from research databases and NHS servers 

by researchers with permission to obtain and utilise such data. The clinical data was 

anonymised on these records by allocating each patient a study-ID number and identifiable 

data was removed, (such as date of birth), notably as it was not required for the multivariate 

and statistical analysis required for this project. Data was only shared through university 

systems onto an encrypted, shared drive. 

 

2 Participant Recruitment and Data Collection 

 

Participants were recruited into the IACON and RADAR cohorts from the Early Arthritis 

Clinic. Participants were undiagnosed patients suspected to have inflammatory arthritis by a 

general practitioner (GP), with symptoms such as arthralgia, inflammation and swelling of the 

joints, who were referred to the EAC. Participants underwent clinical assessment, which 

involved the recording of swollen and tender joint counts (SJC, TJC), serology for 

inflammatory markers (CRP, ESR), serology for autoantibodies (ACPA, RF), a visual analogue 

scale for patient wellbeing (VAS-GH) and a question regarding smoking status (had they ever 

previously smoked?). The date since they experienced joint pain, inflammation and swelling 

was also recorded and the duration of symptoms until first visit was calculated. These 

participants were then assessed at 0 months (baseline), 6 months and 12 months. A diagnosis 

of RA, if fulfilling EULAR classification criteria, another form of inflammatory arthritis (e.g., 

PsA, Reactive Arthritis) or undifferentiated arthritis (UA) was established at baseline for 

suitability for the project and then re-evaluated during follow-up visits at 6 months and 12 

months. All participants were drug-naïve upon baseline visit (0 month) when bloods were taken 

for the project, and data used for a prediction model of final diagnosis given at 12 months. 
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3 Assay Development and Optimisation 

 

3.1 qMSP Primer Design 

 

Differential methylation of the TNF gene was selected as a candidate from an illumina genome-

wide discovery as an ideal CpG target by a bioinformatic analysis in R Studio/Bioconductor 

and a search of genomic databases and also based on the bisulphite sequencing data. This work 

was performed by PhD graduate Dr. Rujiraporn Pitaksalee.  

 

Based on the results of the assay developed for validation, utilising bisulphite sequencing of 

DNA, the overall region around the candidate CpG was demethylated in RA and the qMSP 

assay design could assume that the whole region was demethylated. Design of a novel 

primer/probe for the qMSP occurred from a sequence which has high demethylation. This 

resulted in lower complexity once converted with bisulphite required, so that the assay was 

designed toward measuring methylated DNA, as needed to obtain a suitable TM for primers. 

This was also performed by Dr. Rujiraporn Pitaksalee before I joined the group. Her design is 

as follows: 

 

 

 

Gene Position F/R/Probe Sequence 
Product 

size 

TNF 

 
 

Chr 6: 

31,543,091-

31,543,211 

F 5' to 3' TTTCGGAATCGGAGTAGGGAG 121 

R 5' to 3' ACCCTACACCTTCTATCTCGATTTCTT  

Probe TCGTTTTCGCGATGGAG  

GAPDH 

 
 

Chr 12: 

6,645,449-

6,645,570 

F 5' to 3' TTGGGTAGTTTTGGAGTTTTTAGTTG 122 

R 5' to 3' AATACAACATCTCCTTACCCCCAA  

Probe AGTTAGGTTAGTTTGGTAGGGAA  

 

Table 2 - qMSP Assay Primer & Probe 

A table demonstrating the position on the chromosome, forward and reverse primer and 

probe and product size of the primers and probes for the CpG target region of the TNF gene 

and GAPDH housekeeping control gene. 
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3.2 qMSP Primer Matrix 

 

Surfaces & equipment (pipettes, racks, filter tip boxes) were cleaned thoroughly before use 

with ethanol & DNase.  

 

Reverse primers, forward primers and probes for GAPDH and TNF were kept on ice with a lid 

to avoid light. Commercially available 100% methylated and 100% un-methylated control-

DNA were obtained. The appropriate volume of below reagents for Master Mix and primers 

and probe was calculated as displayed in Table 1 and mixed and loaded in a 96 well plate of 

PCR-optical grade plastic. Methylated and unmethylated DNA template or nuclease free water 

(as negative control) was then pipetted into each wells using the format shown in table 2. The 

PCR plate was then centrifuged at 700g for 10 minutes, room temperature. The same procedure 

was then carried out for the forward and reverse primer for GAPDH. then the PCR reactions 

were carried out on a QS5 qPCR Machine and analysed using QuantStudio.  

 

3.3 qMSP Standard Curve 

 

Surfaces & equipment (pipettes, racks, filter tip boxes) were cleaned thoroughly before use 

with ethanol & DNase.  

 

Reverse primers, forward primers and probes for GAPDH and TNF were kept on ice with a lid 

to avoid light. The appropriate volume of reagents for primer mix, master mix and plating were 

calculated for the TNF and GAPDH forward reverse primer and pipetted into Eppendorf tubes 

respectively. The plates were then centrifuged at 700g for 10 minutes, room temperature, and 

then run on a QS5 qPCR Machine and analysed using QuantStudio. 
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4 Preparing Samples 

 

4.1 Isolation of PBMCs 

 

The samples were analysed from IACON and RADAR came from the department tissue bank 

and were processed and stored between 2010-2019 by the facility staff.  

 

Phosphate buffer saline (PBS) was made from commercial tablets in 1 litre of water.  30ml of 

blood was collected from participants into 9ml green heparin tubes. The blood was transferred 

into a 50ml falcon tube and diluted with 20ml PBS. 15ml Ficoll-Paque solution (Axis Shield) 

was added to two separate 50ml falcon tubes. The blood/PBS was carefully layered onto 15ml 

Ficoll-Paque. The falcon tubes were centrifuged at 2400rpm, 20 minutes, no accelerator and 

no brake, room temperature. The layer of PBMCs was carefully extracted from both 50ml 

falcon tubes and transferred to a separate 50ml falcon tube. The falcon tube was then topped 

up to 50ml with PBS for wash and centrifuged at 1800rpm, 10 minutes, brake on, room 

temperature. The supernatant was discarded, and the pellet was resuspended in 2ml PBS. The 

solution was then transferred to a 15ml falcon tube and topped up with PBS to 15ml. The 15ml 

falcon tube was then centrifuged at 1500rpm, 10 minutes, brake on, room temperature. The 

supernatant was discarded, and the pellet was resuspended in 2ml freezing medium (pure foetal 

calf serum (FCS), 10% dimethyl sulfoxide (DMSO)). The PBMCs were then transferred over 

to -150 oC freezers and stored untouched until used.  

 

4.2 Unfreezing PBMCs 

 

Frozen vials containing PBMCs were suspended in a water bath at 36oC and removed when 

they almost fully defrosted. 10ml PBS was added to 15ml falcon tubes and defrosted cells were 

transferred to the falcon tube. Each tube was centrifuged at 1600rpm for 10 minutes, room 

temperature, brake and acceleration on. The pellet was kept on ice for DNA extraction. 
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5 qMSP Assay 

 

5.1 DNA Extraction 

 

DNA extraction was performed using the DNA Extraction Kit by Kyogen and the protocol 

included for the kit was followed and optimised for this process. Surfaces & equipment 

(pipettes, racks, filter tip boxes) were cleaned thoroughly before use with ethanol & DNase. A 

heat block was set to 56oC.  

 

200uL PBS was pipetted up and down to resuspend the cell pellets from the above steps. 200uL 

of each sample was then transferred to a sterile Eppendorf tubes. 20uL of Kyogen Protease was 

added to each Eppendorf tube. 200ul Lysis Buffer (AL) was also added. Each Eppendorf tube 

was then mixed by vortex for 15 seconds. The tubes were then incubated in the heat block at 

56oC for 10 minutes. The tubes were then centrifuged at full speed 13,000 rpm (machine name 

and company), 10 seconds, room temperature to remove condensation. 200uL ethanol was 

pipetted to each tube and this solution was mixed by vortex for 15 seconds. The tubes were 

then centrifuged at full speed, 10 seconds, room temperature. The samples were then 

transferred into a column sitting in collection tubes. The collection tubes were then centrifuged 

at 10,000RPM for 1 minute, room temperature. The columns were transferred to fresh 

collection tubes. 500ml of Wash Buffer 1 (AW1) was pipetted into the columns. The collection 

tubes were centrifuged at 10,000RPM for 1 minute, room temperature. The columns were 

switched to fresh collection tubes. 500ml of Wash Buffer 2 (AW2) was pipetted into the 

columns and were then centrifuged at 12,000RPM for 3 minutes, room temperature. The 

columns were then transferred into new sterile Eppendorf tubes. The Eppendorf tubes were 

then centrifuged at 10,000RPM for 1 minute, room temperature. 100uL Elution Buffer (AE) 

was added to each of the columns in Eppendorf tubes. The columns were then allowed to soak 

at room temperature for 5 minutes. The Eppendorf tubes were then centrifuged at 10,000RPM 

for 1 minute, room temperature. The elute from the Eppendorf were collected (the column 

discarded) and the DNA concentration in the solution was measured by the Nanodrop1000 and 

analysed with the software ND1000 Nucleic Acid mode. Nuclease Free Water was used to 

calibrate the Nanodrop, and Elution Buffer (AE) was used as blank. The ng/uL and 260/280 

values for each sample was recorded. DNA was stored at -20oC until used.  
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5.2 Bisulphite Conversion 

 

Bisulphite conversion was performed using the Bisulphite Conversion Kit by Kyogen and the 

kit protocol was followed and optimised for this process. Surfaces & equipment (pipettes, 

racks, filter tip boxes) were cleaned thoroughly before use with ethanol & DNase. DNA 

samples were retrieved from freezers and left to thaw in the heat block. The volume needed for 

each sample was calculated from the DNA concentration obtained in the previous step. 

Complementary volume of nuclease free water was added to Axygen PCR Strips and the 

correct volume of DNA was transferred. 

 

CT Reagent was made fresh each time, by using CT Reagent powder, 900ul of Nuclease Free 

Water, 300uL of M-Dilution Buffer and 50uL of M-Dissolving Buffer. The CT Reagent was 

then added to a shaker to mix for 10 minutes. 130uL CT Reagent was added to each PCR Strip. 

The PCR strips were then centrifuged at 700g for 5 minutes, room temperature. The PCR Strips 

were run on the PCR Machine under the setting recommended by Zymo Biconversion. The 

PCR strips were then centrifuged at 700g for 5 minutes, room temperature. 600uL of M-

Binding Buffer was pipetted into IC columns sitting in collection tubes. Each sample from the 

PCR Strip was added into a column in the collection tube. The IC columns were centrifuged at 

full speed for 1 minute, room temperature. The columns were then placed into fresh collection 

tubes. 24ml 100% ethanol was added with 6ml M-Wash Buffer (4:1 ratio) into a Falcon tube. 

100uL of the ethanol/M-Wash Buffer was added to each column in the collection tube. The 

collection tube was then centrifuged at full speed for 1 minute, room temperature. 200uLl of 

M-Desulphonation Buffer was then added to each column and the solution was incubated at 

room temperature for 20 minutes. The collection tubes were then centrifuged at full speed for 

1 minute, room temperature. The columns were transferred into fresh collection tubes. 200uL 

of M-Wash Buffer was added to the column. The columns were centrifuged at full speed for 1 

minute, room temperature. The columns were placed into sterile Eppendorf tubes and 20uL of 

M-Elution Buffer was added to the columns. The solution was then incubated at room 

temperature for 5 minutes. The columns in the Eppendorf tubes were then centrifuged at full 

speed for 2 minutes, room temperature. The converted DNA solution was measured by the 

Nanodrop1000 and analysed with the software ND1000 Nucleic Acid mode. Nuclease Free 

Water was used to calibrate the Nanodrop, and Elution Buffer (AE) was used as blank. The 

ng/uL and 260/280 values for each sample was recorded. DNA was stored at -20oC until used.  
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5.3 qMSP 

 

Surfaces & equipment (pipettes, racks, filter tip boxes) were cleaned thoroughly before use 

with ethanol & DNase. Bisulphite-converted DNA samples were retrieved and left to thaw at 

room temperature.  

 

0.5uL forward primer and reverse primer for TNF was added to Eppendorf tubes and made up 

to 100uL with nuclease free water. 3.6uL forward primer and 10.8 reverse primer for GAPDH 

was added to Eppendorf tubes and both made up to 120uL. A master mix was prepared for both 

primers, consisting of 104uL diluted forward and reverse primer, 104uL TaqMan probe, 520uL 

universal master mix and 104uL nuclease free water into an Eppendorf tube. 18uL master mix 

for TNF and GAPDH was then pipetted into a qPCR plate. 10ng/uL of bisulphite converted 

DNA was calculated and made up in nuclease free water. 2uL of each sample was then pipetted 

into a qPCR plate, allowing for triplicates. Finally, methylated and unmethylated DNA, as well 

as nuclease free water as a control, was pipetted into the qPCR plate. The plates were then 

centrifuged at 700g for 10 minutes, room temperature, and then run on a QS5 qPCR Machine 

and analysed using QuantStudio. 

 

Appropriate volume of reagents for primers/probe, master mix and water was calculated 

according to the final optimised qMSP conditions, as described below. 
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6 Data Processing 

 

6.1 TNF Gene Methylation Data Processing 

 

qMSP results were exported from the qPCR machine as Ct scores. These scores were then 

transferred into excel, organised by plate, and the Ct values for each duplicate repeat was 

averaged and converted into ΔCt scores.  

 

Percentage methylation of the CpG region of the target gene, TNF, and housekeeping control 

gene, GAPDH, was determined by Ct values measured by the qPCR machine. Each PCR plate 

was processed through a formula that acted as a calibrator in excel, which was necessary for 

the results to be reproducible between each experiment.  

 

The formula of the calibrator was as follows: 

 

Percentage of methylation (%)  = Relative level of methylation x 100 

     = 2 -ΔΔCt x 100 

Where: 

ΔCt sample                                      = Ct sample target gene - Ct sample internal control 

ΔCt calibrator                                     =  Ct calibrator target gene - Ct calibrator internal control 

ΔΔCt                                                  =  ΔCt sample - ΔCt calibrator 

 

Sample      = DNA template from an individual patient after bisulfite conversion. 

Calibrator            =  Control DNA template 100% methylated and bisulfite converted. 

Target gene         =  Is the gene of interest for the assay (e.g., TNF gene) at the CpG chosen 

for the assay development with expected change in methylation status. 

Internal control   = Is the GAPDH gene used for normalization from a region independent 

of any methylation change. 

 

Based upon the primer matrix and dilution series data to analyse the performance of each batch 

of primers and probes and consistency between the TNF and GAPDH genes, any plate variation 

of TNF methylation data due to small deviation in pipetting was appropriately adjusted between 

plates using the calibration corrections. 
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6.2 Clinical Data Retrieval and Processing 

 

Clinical data was downloaded from the IACON and RADAR cohorts study database, which 

consisted of participants who had opted to take part in the biomarker sub-study and donated 

blood for research. The initial extraction of data from these study databases was conducted by 

Miss Helen Ng (HN) and Miss Chin Liu (CL), two medical students whom I worked alongside 

to retrieve and process the clinical data from patient records into standardised variables for data 

analysis. Clinical data, consisting of patient demographics, clinical presentation and serology, 

was gathered from the database, including hospital visits at baseline 6 and 12 months. The data 

was anonymised and given a consistent formatting and converted into excel tables. 

 

Demographic variables were patient age, sex (male / female), smoking status (ever / never) and 

symptom duration. Clinical presentations measured were tender joint count (TJC), swollen 

joint count (SJC) and a Visual Analogue Scale of General Health (VAS-GH) score. Serological 

data included C-Reactive protein (concentration), Rheumatoid Factor (RF) (positive or 

negative) and Anti-Citrullinated Antibody (ACPA) (positive or negative). Time to diagnosis 

was calculated as difference between 1st visit and the visit at which a diagnosis was recorded. 

Categorical data (gender, smoking, autoantibodies) were coded into binary options to be 

utilised by the software IBM SPSS Statistics 27. Continuous data was rounded to 2 decimal 

places for consistency where relevant. Missing data was marked as -99 and that figure was set 

for IBM SPSS Statistics 27 to recognise as missing values. Variables with missing data was 

disregarded in the statistical analysis. If any one component of the DAS28 score, including 

TJC, SJC, CRP or VAS-GH was missing for a participant, the entire DAS28(4)CRP score was 

not calculated and also included as missing data. 

 

DAS28(4)CRP was calculated for each patient from the individual components of the 

compound score, including TJC, SJC, CRP and VAS-GH using the following formula: 

 

DAS28(4)CRP  =  0.56 x  + 0.28 x  + 0.36 x ln(CRP+1) + 0.014 x VAS-GH + 0.96  
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7. Statistics 

 

7.1 Descriptive Statistics 

 

A test of normality was performed on variables with continuous data and were all found to 

display a skewed distribution. Therefore, non-parametric tests were used throughout, including 

the Mann-Whitney U test. The range (including minimum and maximum values) and 25%/75% 

inter-quartile range was calculated and used in tables alongside the number of participants (n 

number) and number of missing data points. Categorical data was analysed for significance 

using the chi squared test. 

 

7.2 Modelling Statistics 

 

Multivariate analysis, combining clinical data (variables for demographics, clinical 

presentation and serology as outlined earlier) and TNF qMSP data, was conducted. Binary 

Logistical Regression was carried out to calculate the Odds Ratio (OR) of predicting diagnosis 

of RA for clinical variables without and then combined with the TNF qMSP data. An area 

under the receiver operator curve (AUROC) was plotted to visually represent the prediction of 

each model (univariate and multivariate) and to calculate their area under the curve (AUC). 

Percentage accuracy (ACC), sensitivity (SEN), specificity (SPE), positive predictive value 

(PPV) and negative predictive value (NPV) for predicting RA diagnosis was calculated.  
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Chapter 4: Results 

 

1. Candidate CpG Selection 

 

Data was analysed from a number of public datasets utilised by Dr. Rujiraporn Pitaksalee to 

complement our own dataset(137). The data involved epigenome-wide methylation of RA 

patients and healthy controls from a variety of immune cell types, including naïve CD4+T-

cells, memory CD4+T-cells and monocytes. 

 

We began to filter the results for potential candidates based upon specific criteria. First, CpG 

regions were selected that were demethylated in both naïve CD4+T-cells and memory CD4+T-

cells, with between a 0% and 50% a methylation β-value, while highly methylated in monocyte, 

with a β-value that was above 80%. We then filtered the results for CpG regions that displayed 

significant difference in differential methylation between RA patients and healthy controls, 

with a significance of p=≤0.0001. 26 candidates were chosen from this initial selection criteria.   

The candidates were then further filtered based upon the region surrounding the candidates, 

based upon methylation activity or demethylation 300-500bp surrounding the region of the 

candidate. After this filtering process had occurred, the genes that showed most promise were 

TNF and IFITM1. 

 

Candidates were then selected from our dataset based on extent of the observed differential 

methylation between RA patients and healthy controls in various sources of sample (PBMCs, 

whole blood, isolated cells) and across a variety of immune cell types (CD4+T cell populations, 

B cells, monocytes, NK cells, granulocytes) because we wanted our assay to be adaptable 

across a number of sample sources and work with a mix of cell populations. The datasets of 

various sample sources and populations of immune cells were filtered for an Δβ-value at least 

≥10% and a statistical significance of at least p=≤0.01. After this filtering process, 22 potential 

CpG candidates were selected. The genes that showed the most promise was HDAC4, IRF8 

and MIR21.  

 

With all the preliminary results considered from filtering our dataset and public online datasets 

for candidates, the gene candidates with the most potential that were selected to trial for the 

assay were TNF, HDAC, IRF4, IRF8, IFITM1 and MIR21(157). 
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Figure 7 – Identification of the CpG Target 

Percentage methylation of the region of DNA involving and surrounding the candidate CpG 

region of the TNF gene, A) Comparing naïve CD4+T-cells, memory CD4+T-cells and 

monocytes between RA patients and healthy controls, and B) In other immune cells that form 

PBMCs and whole blood, such as B cells, NK cells and granulocytes . The target sequence 

selected displayed differential methylation in naïve T cells between RA patients and healthy 

controls, with no demethylation in monocytes and full demethylation with no significant 

difference in methylation levels between RA patients and healthy controls in memory T cells. 



  

 

52 

2. Primer Design 

 

Primer design was performed by Dr. Rujiraporn Pitaksalee for the candidate gene, TNF, and 

the housekeeping control gene, GAPDH. Primers were designed to run optimally at 59-60oC, 

which is the optimal temperature for conventional qPCR. 

 

Table 2, displayed earlier within the methods section, demonstrates the nucleotide sequence of 

primer pairs designed for the assay. 

 

 

Figure 8 – Amplification Plot of the TNF and GAPDH Genes  

A qMSP assay was designed, using forward and reverse primers at different concentrations 

(50-900nM) to determine optimal amplification difference of the target genes Ct value 

compared with the GAPDH housekeeping gene. 

 

 

There were no primers available for the sequences of interest for MIR21, eliminating this 

candidate gene of interest.  

 

The designed primers were further optimised to find the best conditions for amplification using 

10ng of 100% methylated control DNA. The aim was to find the lowest Ct value for the TNF 

gene primer that was consistent with the amplification for the housekeeping control gene, 

GAPDH. The TNF gene candidate showed consistency across all primer concentrations that 

were used. However, with the housekeeping gene, GAPDH, the reverse primer posed a 

bottleneck on amplification as the limiting reagent, regardless of the concentration of forward 

primer used(157). 
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3. Assay Optimisation 

 

3.1. Primer Matrix 

 

A primer matrix was conducted by Dr. Rujiraporn Pitaksalee to test for the activity of the 

forward and reverse primers for the gene of interest, TNF, and the housekeeping control gene, 

GAPDH. The optimum concentration of forward and reverse primer for both genes could then 

be determined based upon the closest consistency of Ct value between our candidate gene of 

interest, TNF, and the housekeeping control, GAPDH(157). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9  – Primer matrix for GAPDH and TNF Genes 

Different combinations of primer concentrations between 50-900nM were tested for  

A) The housekeeping control gene, GAPDH, and B) The candidate target gene, TNF. 

Primer concentrations of F300/R50 and F900/R900nM were chosen for TNF and GAPDH, 

as these concentrations displayed the closest consistency of Ct value between both genes. 
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3.2. Specificity for Methylation 

 

The candidate gene, TNF, was then tested for specificity to methylated DNA by Dr. Rujiraporn 

Pitaksalee for 100% unmethylated DNA. In turn, there should be no amplification for 

unmethylated DNA. The housekeeping gene, GAPDH, is required to be methylation 

independent to act as a housekeeping control. Specificity for methylation was observed for the 

candidate genes TNF, HDAC4 and IFITM1, but not for the other candidate genes, IRF4 and 

IRF8, where some amplification was observed for unmethylated DNA. This eliminated these 

genes as candidates for the qMSP assay and further validated the selection of the TNF gene 

candidate for the qMSP assay(157). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 -  Assay Specificity for Methylation 

Solid bars: Methylated DNA amplification. Striped bars: Unmethylated DNA amplification. 

The candidate target gene, TNF, displayed specificity for methylation, where no Ct value was 

observed using unmethylated DNA. The housekeeping control, GAPDH, displayed activity 

consistent and independent from methylation, making it an ideal control. The target gene, 

TNF, and the housekeeping gene, GAPDH, should also be consistent in observed 

amplification (Ct value). Both genes were investigated using a range of concentrations to 

establish the most efficient results for the qMSP assay. 
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3.3. Dilution Series 

 

A dilution series was conducted by Dr. Rujiraporn Pitaksalee, which tested for the consistency 

of the forward and reverse primers for the gene of interest, TNF, and housekeeping control, 

GAPDH. Through the testing of various concentrations of 100% methylated DNA and 100% 

unmethylated DNA by incremental gradients of concentrations ranging from 0.2ng to 50ng, 

consistency of the primers could be tested across the various dilutions by plotting a line of best 

fit. A consistent gradient, with closely matching Ct values between the gene of interest, TNF, 

and housekeeping gene, GAPDH, ensured consistency in function of the primers regardless of 

concentration of methylated DNA present and also helped to show that there was lack of 

impurities in the samples(157). 

 

 

 

 

 

  

 

 

 

  

 

 

 

 

 

 

 

Figure 11  – Dilution Curve for TNF and GAPDH Genes 

In green: The line of best fit for the housekeeping gene, GAPDH, for methylated and 

unmethylated control DNA. In pink: The line of best fit for the candidate target gene, TNF, 

for methylated and unmethylated control DNA, where only the 100% methylated control DNA  

showing amplification. Both genes displayed consistency in the efficiency of amplification 

across the concentrations of methylated and unmethylated DNA. 
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A linear regression model was used for the standard curve to plot and determine qPCR 

efficiency. The regression was linear for both the candidate gene of interest, TNF, and the 

housekeeping control gene, GAPDH, over the varying concentrations used, which ensured that 

the concentration of DNA used in the assay would not be a confounding factor. The assay was 

between 95.7% to 99.9% efficient, which indicated that there was a genuine 2-fold 

amplification for both the target gene, TNF, and the housekeeping control gene, GAPDH, for 

each PCR cycle. 

 

The relative level of methylation for the target gene was calculated by comparing the Ct value 

of the candidate target gene, TNF, in proportion to the Ct value of the housekeeping control 

gene, GAPDH, and displayed as a percentage methylation (%). For HDAC4 and IFITM1, these 

candidate target genes ultimately didn’t show meaningful amplitude differences between the 

RA and non-RA groups, meaning they failed at this stage as candidate genes for the assay. 

 

Ultimately, the TNF gene candidate showed promise along each stage of validation, including 

a decent display of potential in the preliminary genome-wide association study data, having 

primers available for design with sequences of interest, performing well in the primer matrix 

without being a significant limiting factor, having methylation specificity and performing 

consistently in the dilution series alongside the housekeeping control, GAPDH. The gene also 

showed promise regarding differential methylation between the RA and healthy control group 

in the preliminary epigenome-wide associated study (EWAS) and bioinformatic analysis. This 

data meant that the TNF gene was selected for the target gene for the qMSP assay. 

 

Variation in primer, probe, reagents and pipetting between plates could be a confounding factor 

that may impact the amplification of the qMSP assay. We therefore added a calibrator control 

for each plate and also added a reaction mix for 100% methylation DNA and 100% 

unmethylated DNA to act as positive and negative controls, alongside nuclease free water as a 

negative control, to ensure both the reproducibility and validity of the qMSP reactions. 

 

With the different aspects of the qMSP assay design now validated for the candidate gene of 

interest, TNF, in relation with the housekeeping control gene, GAPDH,  this qMSP assay could 

then be adopted on patient samples as a method to compare methylation of the candidate gene 

of interest TNF, to that of the GAPDH housekeeping control gene(157). 
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3.4 Source of Samples 

 

As different sources of sample for DNA extraction matter, isolated CD4+T-cells, PBMCs and 

whole blood were all compared in both RA patients and healthy controls, to determine the 

optimal source of extracted DNA. This was performed by Dr. Rujiraporn Pitaksalee. 

 

Significant differential methylation was observed between healthy controls and RA patients 

for isolated CD4+T-cells. A reduction in methylation of 2.6-fold was observed for the RA 

patients compared with healthy controls. For PBMCs, a reduction in methylation of 1.7-fold 

was observed for the RA patients compared with healthy controls.  For whole blood, there was 

not a significant difference in differential methylation between patients with RA and healthy 

controls. The reason for this observed lack of significant difference in differential methylation 

between the RA patients and the healthy controls in whole blood may be explained by the fact 

whole blood incorporates a much wider repertoire of cells. CD4+ T-cells only consist of a 

fraction of total whole blood cells, meanwhile can consist of up to half of the cells that make 

up PBMCs. This means that the DNA for CD4+T-cells is diluted by the larger populations of 

cells with different DNA.  

 

Isolated CD4+T-cells and PBMCs were sources of sample that displayed statistically 

significant differential methylation between patients with RA and healthy control. However, 

PBMCs were ultimately chosen over isolated CD4+T-cells because they are the least processed 

source of sample of the three which showed promising statistical significance in differential 

methylation between patients with RA and healthy controls. Therefore, PBMCs from early, 

drug-naïve inflammatory arthritis patients were chosen as the source of sample to use for our 

TNF gene qMSP assay(157). 
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4. Clinical Data Associations 

 

A total of n=312 PBMC samples from patients registered into the IACON/RADAR study were 

obtained from our tissue bank. After 2-year follow-up, n=218 patients were classified as RA 

and n=94 were classified as non-RA  

 

Table 3 describes the demographics and clinical data in both groups. 

 

A) 

 

B) 

 

Table 3 – Demographics of the Cohort for RA and Non-RA Patients 

A) Variables that displayed continuous data. Number of patients, median, range, 

interquartile range, number of missing data and P value by Mann Whitney U test is 

displayed. 

B) Variables that displayed categorical data. Number of patients, value of each binary 

variable, percentage of first variable, number of missing data and P value by Chi Square (χ2) 

test is displayed. 

 

Binary variables: Sex (female, male); Smoker (ever smoked, never smoked), RF (positive, 

negative), ACPA (positive, negative) 
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Females were found to be more likely than males to have RA in both RA and the non-RA 

groups with no significant difference in gender skew (RA 74.77%, non-RA 69.15%, X2 

p=0.304). The median age of diagnosis was higher in RA compared with those with other forms 

of inflammatory arthritis (RA 58 (20-78), non-RA 45 (19-87), MWU p=7.85x10-12). Those 

who had ever smoked were found to be more likely than those never smoked to have RA and 

this skew was much more pronounced than in the non-RA group with mild statistical 

significance (RA 61.79%, non-RA 47.73%, X2 p=0.025). Symptom duration until assessment 

was roughly comparable between the two groups with no significant difference (RA 6 (1-146), 

non-RA 6 (1-68), MWU 0.256) but time to diagnosis was much later in the non-RA group (RA 

0 months (baseline diagnosis), non-RA 6 months, MWU p=≤0.0001). Patients with RA had 

significantly higher ACPA titres in their serum compared with the non-RA group (RA 61.20%, 

non-RA 8.6%, MWU p=3.25x10-17). Patients with RA had significantly higher titres of RF in 

their serum compared with the non-RA group (RA 54.73%, non-RA 10.87%, MWU 

p=1.39x10-12). Patients with RA scored significantly higher in TJC score compared with the 

non-RA group (RA 9 (0-27), non-RA 3 (0-28), MWU p=5.58x10-7). Patients with RA also 

scored significantly higher in the SJC score compared with the non-RA group (RA 4.5 (0-50), 

non-RA 1 (0-20), MWU p=5.80x10-9). Patients with RA scored significantly higher in CRP 

concentrations in the blood compared with the non-RA group (RA 11.7 (0-241), non-RA 2.5 

(0-78), MWU p=1.19x10-4). Patients with RA scored significantly higher in the VAS-GH score 

compared with the non-RA group (RA 50 (0-100), non-RA 30 (0-100), MWU p=0.002). 

Patients with RA scored significantly higher in the overall DAS28(4)CRP compound score 

when compared with the non-RA group (RA 4.92 (1-7.8), non-RA 3.36 (1.2-6.7), MWU 

p=1.65x10-9). 
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5. qMSP Assay 

 

5.1 TNF Gene Methylation in Inflammatory Arthritis 

 

Samples were collected and qMSP data acquired over more than 2 years due to the pandemic. 

Dr. Rujiraporn Pitaksalee performed over a half of the data acquisition and I then took over 

with Mrs. Rekha Parmer to continue data acquisition. DNA was extracted from the patient 

samples, bisulfite converted and utilised in the qMSP assay for the target gene, TNF, and 

housekeeping control gene, GAPDH. Results were plotted as percentage methylation and 

displayed as box plots and histograms. 

 

Patients with RA had significantly lower percentage methylation (hypomethylation) of the 

TNF gene compared with the non-RA group (RA 3.31%, 95%CI 3.34- 3.78, non-RA 6.16%, 

95%CI 5.95 - 7.33. MWU p=≤4.1x10-9), confirming that the TNF-qMSP assay has the ability 

to discriminate patients progressing to RA from other forms of inflammatory arthritis. 

  

  RA  Non-RA  p-value 

DNA 

methylation of 

TNF gene (%) 

  

3.13 

  

6.61 

 

P=4.1x10-9 

 

Table 4 – Percentage DNA Methylation of the TNF Gene between RA and non-RA Cohort 

The mean percentage of TNF gene methylation at the CpG target for the RA and non-RA 

groups, with difference in percentage TNF methylation reaching statistical significance at the 

genome-wide level, tested by Mann-Whitney (P= 4.1x10-9). 

 

The statistical significance of the site-specific differential percentage methylation of the CpG 

target at the TNF gene between the RA and non-RA group was found to surpass the threshold 

of genome-wide significance for epigenome wide association studies (EWAS) and 

extrapolations to other epigenome-based assay techniques (P=3.6×10−8), as estimated by a 

recent paper by Saffari et al.(158). This highlights the ability of this developed qMSP assay in 

distinguishing site-specific CpG differential methylation in RA towards the exploration of the 

application of this assay as a clinical biomarker for predicting RA diagnosis and towards 

potential uses beyond for other modelling parameters and clinical applications. 
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A)  

 

B) 

 

 

Figure 12  – TNF Gene Methylation between RA and Non-RA Cohort 

A) as a boxplot B) as a histogram. Median percentage TNF gene methylation between RA 

and non-RA groups were statistically significant by Mann Whitney U (P=4.1x10-9). 

 

**** 
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5.2. Modelling Statistics: Logistic Regression and AUROC 

 

Once a statistically significant difference by Mann-Whitney U for percentage TNF methylation 

was observed between RA and the non-RA group (P=4.1x10-9), the predictive potential for the 

TNF gene methylation qMSP assay was explored.  

 

Logistic Regression was first performed and individually, percentage TNF methylation had an 

odds ratio (OR) of 1.840 (95%CI: 1.567-2.162, p<0.0001) and an AUROC of 0.826 (0.771-

0.881) for predicting RA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 – Receiver Operator Curve of TNF Gene Methylation  

Logistic regression was performed on TNF gene demethylation for the RA and non-RA 

groups towards predicting diagnosis of RA. TNF gene demethylation (extent of 

hypomethylation) showed high sensitivity and specificity for predicting diagnosis of RA, with 

an OR of 1.840 (95%CI: 1.567-2.162, p<0.0001) and an AUROC of 0.826 (0.771-0.881) for 

predicting RA diagnosis. 
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5.3. TNF Gene Methylation as a Biomarker of Diagnosis 

 

After successfully showing a high sensitivity and specificity for diagnosis of RA with the TNF 

methylation qMSP assay, the utility of the assay was extended to compare the predictive power 

of the TNF methylation qMSP assay with the biomarkers that form the current standard of 

classification of RA according to the EULAR guidance 2010 for classification of RA(2). 

 

Logistic regression was selected using a stepwise forward approach. Initially, a reference 

model, including all demographic and clinical parameters that form the EULAR classification 

criteria, was constructed. This notably included first ACPA, Age, SJC, and RF. Diagnosis of 

RA was predicted with this reference model with an accuracy of 87.8% and AUC=0.950.  

 

Adding the percentage TNF methylation assay results as an additional variable to the reference 

model changed the priority of most significant variables of prediction of RA diagnosis. The 

model selected ACPA as the first step and the most associated biomarker with classification. 

Age was the second step. TNF methylation came third. RF was the fourth step. Swollen joint 

count the fifth step and lastly, gender was the sixth step. 
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Figure 14 – Receiver Operator Curve for the Clinical Model 

In blue: The clinical model alone, involving EULAR classification criteria biomarkers.  

In green: The clinical model with the addition of the TNF methylation qMSP assay 

biomarker. Including the TNF methylation assay as a biomarker has an added value of 

specificity and sensitivity in addition to the established clinical biomarkers. 
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As mentioned previously, the reference model was able to predict the diagnosis of RA with 

87.8% accuracy and an AUC=0.950 (P=≤0.0001). When the assay results of percentage TNF 

methylation was added to the reference model, this increased the accuracy of the model by 

+1.7% (89.4% total), with an AUC=0.967 (P=≤0.0001).  

 

 

 

Model Area under curve Prediction Gain in AUC 

Clinical 

 

0.950 

 

87.8% 

  

Clinical + 

TNF 

 

0.967 

 

89.4% +1.7% 

 

Table 5 – AUROC and the Accuracy of the Models 

AUROC and percentage accuracy towards predicting the diagnosis of RA from patients other 

non-RA, with the clinical model alone and with the addition of the TNF gene methylation 

assay. Lastly, the percentage gain in accuracy for prediction of RA from non-RA patents with 

the addition of the TNF gene methylation variable as an additional biomarker to the 

reference model is shown on the bottom right. 

 

 

 

 

 

 

 

 

 

 

 



  

 

66 

Chapter 5: Discussion 

 

1. Summary 

 

During my master project, I worked within the team to demonstrate the value of the TNF gene 

qMSP assay as a biomarker for RA classification. Individually, the TNF gene qMSP assay 

performed very well with high performance indexes. Combined with clinical data, it provided 

additional value for the classification of RA and importantly, this was reproduced in ACPA- 

patients, which are those more in need of a diagnostic biomarker.  

 

2. Optimisation of the Assay 

 

qMSP is a technique based upon polymerase chain reaction (PCR), which can amplify DNA 

that has been bisulphite converted(132). Bisulphite sequencing uses sodium bisulphite to convert 

unmethylated cytosine into uracil. Unmethylated regions can then be distinguished from 

methylated regions, as methylated cytosines remain unaffected as cytosine(159). qMSP is cost 

efficient and easy to perform, with ready-made kits that have established protocols available 

for purchase for DNA extraction and bisulphite sequencing. As such, it is a technology that 

could be used in routine hospital laboratories. qMSP is developing rapidly as a technology and 

may serve as a convenient, cost-efficient assay for testing the differential methylation of gene 

targets in clinic(132). This technology could be utilised for clinical testing during assessment 

(for diagnosis, stratification for therapeutics) and monitoring of patients (progression, 

remission/flare). Differential methylation of the TNF gene may be a useful application of this 

technology that could be piloted in routine hospital service, with the potential to distinguish in 

clinic between pre-RA and other forms of early inflammatory arthritis from clinical samples. 

 

Compared with pyrosequencing, which needs to be run on a specialist machine such as the 

PyroMark MD pyrosequencer to automate this niche sequencing technique, qMSP can be run 

on a typical qPCR machine, making the use-case of the qMSP assay far more adaptable in 

terms of existing infrastructure and training in the clinical setting(131). Furthermore, the speed 

and ease of use of qMSP, with an already familiar process, will be most suitable to the clinical 

environment for rapid acquisition of results for tests(132).  qMSP also has a high sensitivity for 

results, avoiding false negatives(132). 
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The design of primers for TNF gene target and GAPDH control was established from data 

collected by illumina genome-wide methylation sequencing, bioinformatic analysis in R Studio 

with Bioconductor packages and a search of omics databases. The sequence selected needed to 

be specific to methylation and demethylation, not other factors that may generate a signal and 

confound the results, as this would cause false positive results. This was achieved for the TNF 

gene successfully, although other candidates also developed in the group failed mainly due to 

the sequence not allowing the design of primers at 60oC, poor specificity for the methylated 

and unmethylated DNA target and a major difference in qPCR efficacy between the gene and 

the GAPDH control, therefore not allowing for a satisfactory design. This highlights the high 

dependency on local sequence for this type of assay.  

 

3.  The Cohorts 

 

Collating a large amount of clinical data from patient records from an early arthritis cohort 

offered the opportunity to compare demographics and clinical metrics among patients early in 

disease, eventually diagnosed with RA or other forms of inflammatory arthritis. Patients who 

were diagnosed with RA were 3x more likely to be female, accounting for 74.77% of my RA 

cohort, which is comparable to past findings in the literature(160). The reason for this female 

bias across IMIDs is uncertain, but hypotheses include hormonal factors, such as oestrogen, 

having an impacting in disease or X-linked chromosomal factors(4). The median age of patients 

was older in those diagnosed with RA compared with other forms of inflammatory arthritis. 

Biomarkers of RA, such as RF, are associated with ageing, even within the healthy population, 

so mechanisms of inflammageing may contribute to the increased susceptibility to RA with 

age(161). A history of ever smoking had a much greater risk of developing RA than other forms 

of inflammatory arthritis. This is possibly due to the closely associated role of citrullination in 

RA and the response of ACPA in disease, which has a high specificity for RA not commonly 

found in other forms of inflammatory arthritis. Other variables were less different due to the 

confounding symptoms between RA and other forms of inflammatory arthritis, including CRP 

TJC and SJC. Despite CRP being utilised as a non-specific biomarker for inflammation, there 

was clearly a higher titre of CRP associated with RA. Similarly, swollen joint counts were seen 

with more frequency in RA, whilst tender joint counts were less discriminative between groups.  

The DAS28 score is a composite score used routinely to monitor inflammatory arthritis, though 

variation does occur due to differing presentation between these conditions. Here, RA patients 
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did show a significantly higher DAS28 score than the non-RA group. The DAS28 score was 

therefore more specific for RA, which is not surprising, as it was developed for RA. All these 

parameters therefore align this cohort of patients with other similar groups of patients recruited 

in Leeds and the UK in early arthritis clinics, as well as in other countries with similar clinical 

set-ups (Netherlands and Sweden notably).  

 

4. TNF Gene Methylation 

 

4.1 TNF Gene Methylation in RA  

 

Patients with RA had hypomethylation of the TNF gene when compared to other forms of 

inflammatory arthritis. The literature, including a previous study by our group, has shown 

genome-wide hypomethylation in RA patients compared to healthy controls(137). The effect of 

methylation on gene expression varies depending on the region of the gene where the CpGs 

are (promoter, enhancer or regions with no regulatory role) or on other epigenetic marks, such 

as histone tails undergoing post-translational modification(126,127). In the context of 

hypomethylation of CpG regions associated with the TNF gene, this was shown to affect gene 

transcription activity. Hypomethylation of the TNF gene suggests wider opening of the 

chromatin locally, enabling TNF gene expression, therefore resulting in over-expression of the 

TNF gene and a higher concentration of the TNFα cytokine. TNFα is well-recognised as a 

prominent inflammatory cytokine in RA pathophysiology, with CD4+ helper T-cells and 

macrophages being prominent producers of this cytokine(121). We have shown that early 

epigenetic changes in RA alter the phenotype of CD4+ naïve T-cells in previous findings(137). 

Here, we not only validate findings regarding the role of TNFα early in disease but also a role 

of epigenetic changes occurring at the TNF gene site. Because the CpG of choice was located 

in the Naive CD4+T-cell specific regulatory region, it may be hypothesised that the differences 

in methylation levels observed are reflecting signal coming mainly from naive and memory 

CD4+T-cells, whilst not fully excluding contribution from CD8+ T-cells and possibly NK 

cells, although those cells did not show differential methylation in publicly available data 

comparing HC and RA. Immune dysregulation, involving TNFα, has been known in patients 

with clinically established RA, whilst within very early RA, increase in circulating levels of 

protein in serum were observed but not predictive of diagnosis, maybe as coming from multiple 
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sources. This confirmed the specificity of the DNA-methylation changes in CD4+T-cells 

compared to other cell subsets.  

 

TNFα is known to be both secreted by and interact with T cells and macrophages, which then 

upregulates genes that produce further inflammatory cytokines, such as IL1, IL6, IL17, IL23 

and IFNγ, promoting further inflammation and cytokine dysregulation that contributes to 

synovitis and joint destruction in the joints of RA patients(120,121). In the preliminary results of 

our lab regarding the epigenome-wide association study (EWAS) and bioinformatic analysis 

of early, drug naïve RA patients, the genes for IL6 and various IFN signalling genes showed 

promising differential methylation between RA and healthy controls(137). These findings are 

important considering the temporal changes that may occur to cytokine dysregulation and 

immune pathophysiology across the IAC, depending on stage of disease (early, established, 

chronicity(121).  

 

Due to the importance of IL6 and IFN known in disease pathophysiology of RA as mentioned, 

and the promising results found regarding the genes related to activity of these cytokines in our 

preliminary study, potential future direction for the project would be to explore the differential 

methylation of CpG sites of genes associated with IL6 and IFN signalling in a similar cohort 

of early, drug naïve RA patients to further test our qMSP assay and see whether these 

differential methylation of CpG targets of these genes could also be promising as clinical 

biomarkers of prediction for diagnosis, prognosis (predicting flare or remission) and treatment 

response (e.g., Methotrexate). 

 

4.2 TNF Gene Methylation as a Biomarker 

 

TNF gene methylation state in early RA was explored in this project to see whether it could be 

utilised as a clinical biomarker that can predict diagnosis of RA compared with other forms of 

inflammatory arthritis and observing whether it can compare clinically with the current 

EULAR 2010 criteria of classification, offering translational findings from bench to bedside(2). 

We compared the ability to predict diagnosis of RA or non-RA against the current  

characteristics used in clinic, which involves autoantibody profile (ACPA, RF) inflammatory 

markers (CRP), duration of symptoms, clinical assessment (joint counts) and demographics 

such as age, gender and smoking status. Using binary logistic regression, I found that an 
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improvement of the performance index of the predictive model was seen for both accuracy and 

AUC. This demonstrates a potential clinical utility for TNF gene methylation as a biomarker 

for diagnosis in addition to current practices, using clinical characteristics. However, these 

results should be repeated and validated in additional cohorts. Epigenetic changes to the TNF 

gene by CpG methylation is one of the changes which occur in T-cells in RA. Elucidating how 

this occurs and at which particular time point across the IAC needs to be established in further 

studies to better understand the disease. 

 

This also demonstrates the importance of epigenetic change early in disease. IL6 and IFN 

signalling may also play a predominant role in pathophysiology early in disease and both 

showed differential DNA-methylation in our original work in naïve CD4+T-cells. The efficacy 

and reliance upon anti-TNFα biologics in particular, but also IL6 inhibitor Tocilizumab and 

increasingly Jakis, show a vital role of these cytokine in established clinical RA, as outlined in 

the EULAR guidance to therapeutic treatment 2022(16). The particular efficacy of anti-IL6 in 

early RA is still under investigation but would fit with our previous data putting this cytokine 

as central and possibly upstream of the change in TNF biology. It is possible that these events 

occur before clinical diagnosis and that with the genetic prevalence of T-cell related genes 

associated with disease, T-cells may be playing a critical role genetically and epigenetically, 

establishing cytokine dysregulation very early in disease. This potential divergence in the 

prominence of cytokine dysregulation early in disease between RA and other forms of 

inflammatory arthritis may serve to distinguish disease at the most pertinent stage to treat 

patients, before prominent pathology. Biomarkers that can be utilised in clinic for assessments 

and monitoring could be utilised to give accurate diagnosis and tailored intervention strategies.  

 

Here, we have shown that the TNF gene is differentially methylated by statistically significant 

reduction of methylation levels (hypomethylation) compared to other forms of inflammatory 

arthritis, and particularly in ACPA- patients in need of novel biomarker. This difference can 

distinguish patients developing RA from other examples of overlapping presentations and 

therefore could be utilised as a tool for clinicians to support in separating the overlap between 

these pathologically related conditions. However, further studies will need to validate these 

findings, before this can be adopted widely.  

 

ACPA is currently the most relied upon biomarker utilised in the diagnosis of RA, as it displays 

higher specificity for RA compared to RF and other biomarkers currently used in clinic(162). As 
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the importance of mechanisms of citrullination in RA and consequential humoral autoimmune 

reaction to citrullinated proteins is unique to RA when compared with other forms of 

inflammatory arthritis, this affords a degree of specificity for ACPA. However, the sensitivity 

of ACPA for RA (~40-50%), whilst better performing than most markers and other 

pathological features, is still far from desirable(162). This is evidenced by the presence of ACPA- 

(while possibly RF+ or anti-Carp+) individuals who never develop RA(145). Furthermore, a 

large proportion of ACPA+ pre-RA individuals with arthralgia never develop RA and my group 

also showed recently that many (up to 10%) of OA patients can be ACPA+(91,93). Furthermore, 

approximately one third of all patients eventually diagnosed with RA (by scoring highly on 

other metrics of the EULAR guidelines for diagnostic criteria) remain ACPA- (and again, often 

RF-)(163). These patients desperately need a biomarker that can indicate disease early in the 

progression of RA because the over-reliance of ACPA for the diagnosis of RA and the lack of 

confidence in diagnosing ACPA- patients with RA leads to significantly delayed diagnosis. 

This delays therapeutic intervention and time to diagnosis has shown to be associated with 

worse disease outcomes. Here, we have shown the potential utilisation of a biomarker early in 

disease that can be utilised for RA patients, including those ACPA-. TNF gene 

hypomethylation was shown to occur in both ACPA+ and ACPA- patients, offering a potential 

biomarker which could be useful across these two endotypes. 
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5. Limitations 

 

5.1 Limitations of Clinical Data  

 

When the clinical data was compiled, some patient records did not contain all the required 

information for all variables collected, such as certain tests not conducted at patient visits. This 

included some patients not being asked their smoking status (if ever smoked) and did not have 

certain tests performed, such as for CRP concentrations, TJC, SJC or VAS-GH. This meant 

that missing data was apparent for a number of variables which may confound the output of 

the overall results or underestimate the significance. Though only a small number of variables 

contained any missing data in this study, this occurred most frequently with DAS28, due to the 

reliance of this composite score on all four variables of TJC, SJC, CRP and VAS-GH in the 

scores calculated. In these instances, when even one metric was missing, the DAS28 

calculation had to be disregarded for that patient. In the future, we would hope there is more 

consistency in the data collected during patient triage and that the attainment of all data 

necessary for the project could be acquirable from patient records. 

 

5.2 Technical Limitations of the Assay  

 

The project contained a large cohort of participants, where bloods were collected, DNA 

extracted and qMSP performed over the course of a few years. Primer reagent that was made 

for each batch had slight alterations in performance, which risked confounding the results 

between batches of the project. This was mitigated by running a primer matrix and dilution 

series to analyse the performance of each batch of primers/probes and test for consistency 

between TNF and GAPDH. Any plate variation due to small deviation in pipetting was 

appropriately adjusted between plates using the calibration corrections. Nevertheless, this was 

an expected technical limitation of the technique when it was developed that could be 

circumvented entirely in subsequent iterations of a qMSP assay design.  
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6. Future Directions 

 

6.1 Expanding Cohorts 

 

TNF gene methylation could have a role clinically as a biomarker to distinguish patients with 

RA from other forms of inflammatory arthritis, but the results need to be repeated in a larger 

cohort to increase validity, especially from other countries for international validation to factor 

in different practices and demographics.  This is important to establish that the assay can be 

clinically applicable worldwide. Validation of this data is also a necessary step before any work 

can be adopted worldwide. As such, early arthritis clinics similar to the one set up in Leeds 

exist in the UK and in other EU countries, notably Sweden and Netherlands, while in others, 

the organisation of care is different and prevent such work, for example in France, where 

patients are only seen at hospital very late in their disease course, when needing biologics. Any 

biomarker research programme is highly dependent on the selection criteria for the population 

studies and as such, it is very important to do this in early IA patients developing RA or other 

form of inflammatory arthritis and not comparing RA to health, as is done in many biomarker 

studies. The characteristics of the patients are also important and again, early IA needs to be 

defined as patients having IA, with a symptoms of less than 24 months of duration, drug naïve 

notably with respect to DMARDs. Oral Steroids may modify the biology and while routinely 

used in some countries (Netherlands notably), in others steroid are used locally (intramuscular 

injection, UK), this may also be an important confounding factor to consider.  

 

At other points across the IAC, it would be important to clarify with greater precision the point 

in pre-RA disease progression this epigenetic modelling seems to occur. A cohort is being 

developed from those attending the CCP clinic, where participants are being gathered and 

bloods taken to be utilised to further expand on the results developed so far by our research 

team. By understanding the chronological events of immune dysregulation that develops in 

early RA, this may help us understand the pathogenesis of the disease and how we could utilise 

this in clinical practice as biomarkers and tackle the disease early with therapeutics and 

intervention. Going forward from here, it would be useful to establish which underlying 

mechanisms encourage such epimutations to occur and at which specific stage of the IAC this 

change begins in naïve CD4+ T cells. Therefore, carrying out similar studies from cohorts of 

patients identified earlier in disease progression will be an important direction for this work. 
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Those who attended the early arthritis clinic (EAC) had treatment was initiated and it would be 

important to establish whether this assay could provide a stratification biomarker for RA 

patients able to achieve remission with the 1st line recommended drug, methotrexate, whilst 

others should benefit more from biologics. The potential of TNF gene methylation by qMSP 

as a biomarker could be explored for the prediction of other outcomes. For example, likelihood 

of response to methotrexate at 6 months and 12 months of prescription would be the 1st outcome 

to investigate, where response to the therapeutic could be categorised as remission (if 

successful remission had been achieved as defined by EULAR guidelines) or non-remission 

(even if low disease activity had been achieved). The TNF gene methylation biomarker could 

therefore be tested utilising the qMSP assay to see if there is significant difference regarding 

TNF gene methylation and methotrexate response.  

 

6.2 Future Utilisation of the Assay 

 

The methylation of CpGs at other genes of interest identified from the genome-wide 

methylation sequencing, bioinformatic analysis and searching of omics databases, outlined in 

the pilot data, need to be further investigated. For example, differential methylation of the 

IL17A gene was observed and my group has established that a qMSP assay for this gene also 

has diagnostic value in EAC patients and for MTX response(94). in contrast, the differential 

methylation of IFN related genes, which was associated with RA compared to healthy controls 

in the functional analysis of inflammatory nodes from a STING network, also suggested a 

prominent role of IFN-signalling. The methylation status of genes that code for STAT proteins, 

IFN proteins and related factors could therefore be an area of investigation. However, IFN-

gene expression signature showed limited value in early RA (and none in established RA) as 

biomarker for any outcome, while a study suggested a possible role of IFN gene expression in 

arthralgia or pre-RA(164). This suggests a precise timing of multiple events that needs further 

elucidation in pre-RA, early RA and for personalised medicine.  
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7. Conclusion 

 

In conclusion, rheumatoid arthritis is a heterogeneous disease with complex, aetiology. The 

IAC model has been established to highlight distinct phases of disease progression, from at-

risk individuals to patients with clinically established disease(60). Current research is focussed 

on developing an understanding of RA pathogenesis and pathophysiology earlier along the 

IAC. This is particularly useful for developing biomarkers that have translational benefit from 

bench to bedside, such as predicting diagnosis sooner in the pre-RA disease course, predicting 

severity and pathological presentation of disease, predicting sustained remission and flare and 

also predicting successful therapeutic treatments. Pilot data utilising in-silico analysis and 

genome-wide methylation has revealed differential methylation of CpGs in early RA, which 

could also be apparent earlier in the IAC and needs further validation. This pilot data 

highlighted suspect genes, both in terms of differential methylation and also functional protein 

analysis using the STING database. Key genes implicated were those relating to IL6, TNFα, 

IL17 and IFN signalling. The TNF gene was selected for further analysis. In this thesis, a qMSP 

assay was developed to detect the methylation of the TNF gene in early RA patients obtained 

from the Early Arthritis Clinic, including the IACON and RADAR cohorts. We have shown a 

greater extent of hypomethylation of the TNF gene in patients with RA compared with other 

forms of inflammatory arthritis , especially early in disease. The predictive power of TNF gene 

methylation was then analysed as a biomarker to predict RA diagnosis and compared with the 

current standard of classification used in clinic, defined by the EULAR 2010 criteria for 

classification(2). I have shown an even greater predictive value within this cohort when all 

metrics were combined with the TNF-qMSP data than with the current EULAR 2010 

classification criteria alone. 

  

Going forward from here, we need to establish where along the IAC TNF gene 

hypomethylation occurs and by which mechanisms this change occurs. In doing so, we could 

understand the early pathophysiology of RA and further establish the predictive potential of 

TNF gene methylation as a biomarker, by identifying if these epimutations occur earlier in the 

disease course for naïve T cells. This assay and the use of TNF gene methylation as a biomarker 

could therefore have the potential to diagnose patients earlier in the disease course and allow 

for earlier clinical intervention. In doing so, we may improve the prognosis of patients with 

RA and limit the extent of cumulative disability that develop due to the sustained progression 

of disease. 
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