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Abstract

Quantum-many body scarring is a recently discovered paradigm of weak
ergodicity breaking that allows specific states to evade thermalisation in
chaotic quantum systems. Since its discovery in a Rydberg atom quantum
simulator, signatures of quantum many-body scarring have been predicted
in numerous theoretical models. However, most of these models do not
lend themselves to implementation on the current generation of quantum
simulators. In this thesis, we develop theoretical blueprints for realising
many-body scarring phenomena in three types of quantum devices beyond
Rydberg atom arrays. We start by providing an introduction to quantum
thermalisation and weak ergodicity breaking in Chapter 2, focusing on the
PXP model – an effective kinetically-constrained model describing Rydberg
atoms. In Chapter 3, we illustrate anomalous dynamical properties of the
PXP model, such as superdiffusive energy transport, and its possible applic-
ations as a resource for quantum metrology. In Chapter 4, we demonstrate
how the PXP model can be emulated by ultracold bosonic atoms in a tilted
optical lattice. The realisation of quantum many-body scarring in a new
experimental platform will allow us to identify a larger set of initial config-
urations that lead to scarring. In Chapter 5, we employ similar techniques
to implement a different type of quantum many-body scarring in a Fermi–
Hubbard chain. We explain the distinct scarring mechanism in this model
using a graph-based approach. Finally, in Chapter 6 we demonstrate how
to create tunable scars in a quantum processor based on superconducting
qubits. Overall, these results expand the realm of many-body scarring phe-
nomena to a greater variety of experimental systems and they demonstrate
that scarring is a powerful tool for protection of quantum information and
entanglement engineering in out-of-equilibrium many-body systems.
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Chapter 1

Introduction

When compared to their classical counterparts, many-body quantum systems display
a plethora of intriguing properties due to quantum superposition and entanglement.
Notably, the number of possible configurations in such systems grows exponentially
with the number of particles, which makes their classical simulation unfeasible due to
the sheer amount of memory and computing power required. In particular, one of the
challenging tasks is predicting the properties of the system after letting it evolve from
a specific initial state. Moreover, even a basic understanding of quantum dynamics
via classical terms turns out to be a challenge, due to the quantum dynamics being
unitary. In simple terms, this means that it is always possible to “rewind” the quantum
evolution of a state backwards in time. Consequently, a specific state at a given time
can only be obtained from one single initial state. Since thermalisation in classical
physics embodies the idea that many states will end up in the same configuration at
late times, this makes the notion of quantum thermalisation subtle to define.

Empirically, however, it is well-established that in many physically relevant cases,
accurate predictions for the expectation values of local observable quantities can be
obtained, even after the system has evolved for long times. This provides a way to
define a quantum equivalent to thermalisation, in the sense that the observable prop-
erties depend only on the effective temperature, dictated by the energy of the initial
state. This independence on details of the initial state has been distilled into a powerful
conjecture called the Eigenstate Thermalisation Hypothesis (ETH). The ETH conjec-
tures that all eigenstates around a given energy have similar properties, leading to the
same expectations value for local observables. Thus, the exact distribution of the ini-
tial configuration on the eigenstates does not matter, as they will all lead to the same
thermal value. While this is undeniably an advantage for predicting long-time values
of observables, it also implies that recovering any information about the initial state
beyond its average energy is essentially impossible from observables alone.

The ETH implications are problematic for devices such as quantum memories and
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1. INTRODUCTION

quantum computers, where it is necessary to robustly store and retrieve quantum states.
Recent flurry of research efforts has aimed at understanding the conditions for ETH
to break down. Finely-tuned integrable models and many-body localised systems with
strong disorder both evade the fate of thermalisation due to an extensive number of
conserved quantities. These effectively separate the Hilbert space in a multitude of
isolated sectors, confining the system’s wave-function into a small part of it. From the
eigenstates point of view, it means that eigenstates in different sectors need not have
similar properties. This is an example of a “strong” ETH violation, as generically all
eigenstates at a similar energy will have widely different characteristics. As such, for
any initial state the long-time value of observables will heavily depend on microscopic
properties of the state, not just its energy.

More recently, in 2017 a new type of ergodicity breaking emerged from experiments
on large-scale Rydberg atom quantum simulators. In those systems, the vast majority of
initial states indeed lead to thermalisation, as expected from ETH. However, when the
atoms are prepared in a specific product state, coherent oscillations can be seen, lasting
well beyond the known thermalisation timescales. This puzzling “weak” breaking of
ergodicity could not be explained by integrability or localisation, nor was it due to
symmetries. Instead, it was found that this phenomenon bears a resemblance to the
non-ergodic behaviour of a single particle inside a stadium billiard, where an unstable
classical periodic orbit leaves a “scar” upon the particle’s quantum eigenfunctions.
Hence, the phenomenon was named “quantum many-body scars” (QMBSs), triggering
a great deal of theoretical efforts to understand its origin. However, the realisations
of QMBS phenomena in other platforms beyond Rydberg atoms have remained very
sparse compared to the plethora of theoretical models. Moreover, the potential practical
utility of QMBS has not been fully understood or appreciated.

In this thesis, we expand the realm of quantum many-body scarring phenomena
to two important classes of synthetic quantum systems: ultracold atoms in optical
lattices and superconducting quantum processors. We show that the previously-known
QMBS physics from Rydberg atom systems can be successfully emulated in these new
platforms. More importantly, the unique properties of these platforms also inspired us
to formulate entirely new QMBS models. This not only allows for a deeper fundamental
understanding of weak ergodicity breaking due to QMBS, but it also opens the door
to their practical applications in quantum control and entanglement engineering in
complex many-body systems.

In Chapter 2, we set the stage by reviewing the main concepts of quantum therm-
alisation, focusing on ETH and its violations. We also introduce the concept of single
particle scars and explain its relation to the many-body case. To illustrate the latter,
we refer to the so-called PXP model – an effective model describing the Rydberg atom
experiments in which QMBSs were first observed – which will play an important role
throughout this thesis. We conclude this Chapter by presenting an overview of some
of the leading mechanisms known to give rise to QMBS phenomena.

In Chapter 3, we show that scarred eigenstates with a specific su(2) algebraic struc-
ture also possess multipartite entanglement, rendering them highly useful for quantum
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metrology. We demonstrate that this is the case in the PXP model, despite the fact
that the su(2) algebraic structure is not exact in that model. In the second half of this
chapter, we study the PXP model in more detail, finding that it contains multiple sub-
spaces with an approximate su(2) structure. We show that this leads to signatures of
non-ergodicity in various observable quantities, including energy transport, where the
signatures manifest as coherent oscillations at moderate times. Meanwhile, through
large-scale numerical simulations we also unveil signs of superdiffusion at long times,
which are at odds with the näıve expectations of diffusion for a generic chaotic model.

The results in Chapter 3 highlight the fact that the PXP model exhibits many
surprising and still poorly understood properties, calling for development of new ex-
perimental probes. To this end, in Chapter 4, we use a tilt potential in resonance with
on-site interaction to engineer the PXP model in a Bose-Hubbard chain. This allows
us to simulate the PXP model with Rubidium-87 atoms trapped in an two-dimensional
optical lattice. Using the unique capabilities of this platform, one can interfere multiple
copies of the same chain to access quantum fidelity and entanglement entropy, allowing
for new types of probes compared to Rydberg atom systems. These new capabilities
will allow us to identify scarring from a new initial state in the presence of chemical
potential. We also provide a theoretical explanation for our findings based on the
semiclassical picture of the dynamics.

In Chapter 5, we apply a similar mapping to the spinful Fermi-Hubbard model. Us-
ing the resonance between tilt and on-site interaction, we create an effective kinetically-
constrained model. However, in this case we show that the resulting model is completely
different from PXP and it has not been previously explored in the literature. Never-
theless, we show that this new model also hosts QMBSs, with a similar phenomenology
to those in Chapter 4, but due to a different mechanism, which we elucidate through a
new graph-theoretic approach.

In Chapter 6, we take advantage of the graph approach developed in Chapter 5
to engineer QMBSs on a superconducting (SC) quantum processor. We realise QMBS
states both in one-dimensional (1D) chains and beyond 1D geometries. This is made
possible by the high tunability of the SC platform, which allows to adjust each coupling
individually. We also use the advanced readout capabilities to obtain the fidelity and
entanglement entropy for multi-site subsystems. Moreover, utilising a circuit with a
ladder geometry, we show that it is possible to create QMBS states that are tunable by
disorder in the couplings between qubits, allowing to control entanglement dynamics
in a disordered many-body system far from equilibrium.

Finally, in Chapter 7 we will conclude and discuss the different models and exper-
imental platforms, mentioning a few directions for future research. The Appendices
contain analytical derivations and numerical simulations that support the results in
the main text.

3



1. INTRODUCTION

4



Chapter 2

Quantum thermalisation, weak
ergodicity breaking and many-body scars

In that chapter, we present an overview of the main concepts in thermalisation of
isolated quantum systems. First of all, we introduce the notion of ergodicity through the
lens of the Eigenstate Thermalisation Hypothesis and discuss a few important examples
of its violation. Among these, we highlight the case of single-particle quantum scars as
an example of weak ergodicity breaking. We then move on to introduce a many-body
analogue of this phenomenon, first through its original experimental discovery, then
followed by theoretical studies of the corresponding effective model. We discuss in detail
the origin of ergodicity breaking in that case, drawing parallels with single-particle
scarring. Finally, we conclude by providing a broader overview of weak ergodicity
breaking mechanisms, along with their physical realisations and experimental relevance.

2.1 Thermalisation and ergodicity

2.1.1 Ergodicity and the Eigenstate Thermalisation Hypothesis

We start by briefly reviewing the notion of ergodicity in the classical case before jumping
to quantum mechanics. We will consider a Hamiltonian system with many degrees of
freedom, where each point in phase space is characterised by x⃗ = (q⃗, p⃗), with q⃗ and
p⃗ the generalised position and momentum, respectively. Let us initialise the system
at coordinates x⃗0, which corresponds to an energy E0. The ergodic hypothesis [9]
postulates that over a long period of time, the system will explore all configurations
with the same energy. Due to Liouville’s theorem [10], these will then be explored
uniformly. This means that for a local observable O, the long-time average is equal to
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the microcanonical average on all states with energy E0:

lim
T→∞

1
T

∫ T

0
O(t)dt = OMC =

∫
x⃗∈MCO(x⃗)dx⃗∫

x⃗∈MC dx⃗ , (2.1)

where MC denotes the microcanonical ensemble. Notably, the right hand side of this
equation only depends on E0 and not on any other detail of the initial configuration
x⃗0.

A similar statement can be made in quantum systems. Let us consider a quantum
system with N degrees of freedom and a Hamiltonian Ĥ with no symmetries. The state
of the system is characterised by the wave-function |ψ⟩ which can be assigned an energy
E0 = ⟨ψ|Ĥ|ψ⟩. This state will evolve in time according to the Schrödinger equation
as |ψ(t)⟩ = e−iĤt |ψ⟩ (here and in the rest of this thesis we will work in natural units
ℏ = 1). We can once again look at a local operator Ô (or a sum of local operators)
over time, now focusing on the expectation value O(t) = ⟨ψ(t)| Ô |ψ(t)⟩. If we denote
the energy eigenvalues of the Hamiltonian by Ek, with the corresponding eigenvectors
|Ek⟩, we can then expand O(t) as

O(t) =
∑
j

|cj |2Ojj +
∑
j ̸=k

c⋆jckOjke
i(Ej−Ek)t, (2.2)

with Ojk = ⟨Ej | Ô |Ek⟩ and ck = ⟨Ek|ψ⟩. If there are no special structures in the
spectrum such as clustering of states around certain energies (including, of course,
exact degeneracies), then at late time the phases of ei(Ej−Ek)t will essentially cancel
out. This only leaves the diagonal contributions and allows to write

lim
T→∞

1
T

∫ T

0
O(t)dt =

∑
j

|cj |2Ojj . (2.3)

This weighted average on the right hand side is called the “diagonal ensemble” [11].
The previous scenario holds provided that |ψ⟩ is a “generic” state, i.e., it does

not have overlap only on a very small number of eigenstates. This is not a stringent
requirement, since it is typically the case for product states (and more generally for
states with low entanglement). Notably, for these states the standard deviation of the
energy with respect to Ĥ scales as

√
N while the the energy range of the system scales

as N [12]. Therefore, if |ψ⟩ belongs to this category, it means that it only has strong
overlap on eigenstates within a small (relative to the energy range) energy window
[E0 −∆, E0 +∆] with ∆ ≈

√
N . This represents our microcanonical ensemble. Coming

back to the ergodic hypothesis, we can now write it in the quantum case as
∑
j

|cj |2Ojj = lim
T→∞

1
T

∫ T

0
O(t)dt = OMC = 1

M

∑
j∈MC

Ojj , (2.4)

where M is the number of states in the microcanonical ensemble.
The meaning of Eq. (2.4) is pretty straightforward. It implies that the late-time

value of any physical observable only depends on the original energy of the state.
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2.1 Thermalisation and ergodicity

Thus, thermalisation occurs as the energy is being spread homogeneously across the
entire system. However, for this to hold, the eigenstates themselves must have special
properties. Indeed, this requires that the distribution of the |cj |2 for all Ej in the energy
window does not matter. For this to be true, Ojj must be identical and equal to OMC
for essentially all states in the energy window. Additionally, this must be true as the
energy window is moved around by choosing a different initial state. Therefore, OMC
(and the Ojj) must also be a smooth function of energy. This is the main pillar of the
(diagonal) Eigenstate Thermalisation Hypothesis (ETH) [12–14].

The ETH conjecture for the observable matrix elements was put forward by Sred-
nicki [13, 15] to describe the observed thermalisation in isolated quantum systems.
With the help of the microcanonical average introduced above, the ansatz for the mat-
rix element can be written as

Ojk = δj,kOMC(E) + e−S(E)/2fO(E,ω)Rjk, (2.5)

where ω = Ej − Ek denotes the eigenenergy difference and E = (Ej + Ek)/2 is their
average. The diagonal contribution is thus the microcanonical value, with some fluctu-
ations around it due to the second (off-diagonal) term. Rjk is a pseudo-random number
with zero mean and unit variance, while fO(E,Ω) is a function smooth with respect
to both variables and intensive in system size, which relates to linear response of the
system to perturbations. The scale of the off-diagonal fluctuations is dictated by the
thermodynamic entropy S(E), which is extensive in system size [11]. This means that
the amplitude of off-diagonal terms will vanish in the thermodynamic limit. Note that
in the presence of symmetries that split the Hilbert space into multiple sectors, the
ETH is expected to hold within each individual sector [11, 12, 16]. While the ETH is
still a conjecture with no formal proof, extensive study has shown that its predictions
hold for many quantum systems [12, 16].

It is important to note that there are two versions of the ETH. For Eq. (2.4) to hold
for all initial states, Eq. (2.5) must also hold for all eigenstates. We will refer to this as
strong ETH. However, we can also consider the case where both equations are violated
for a small number of states, which represent a vanishing fraction of the Hilbert space in
the thermodynamic limit. Any randomly selected initial state will thermalise and any
randomly selected eigenstate will obey the ETH, however there are still non-thermal
eigenstates in the spectrum. In this case, we say that a weak ETH holds.

Beyond local observables, the ETH also makes predictions for other properties of
eigenstates, in particular their entanglement properties. In most of this thesis, we
consider a bipartition of our physical system into a set of sites A and its complement
Ā, such that H = HA ⊗ HĀ. We can then use the Schmidt decomposition [17] to split
any pure state of the total system as

|ψ⟩ =
χ∑
j=1

λj |ϕAj ⟩ ⊗ |ϕĀj ⟩ , (2.6)

where the λj are the Schmidt coefficients and the |ϕAj ⟩ and |ϕĀj ⟩ are the orthonormal
Schmidt basis states in HA and HĀ, respectively. The number of non-zero coefficients
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χ is always between one and min{dim(HA),dim(HĀ)}. The reduced density matrix
describing the subsystem A can be built directly from there as

ρ̂A = TrĀ [|ψ⟩ ⟨ψ|] =
χ∑
j=1

|λj |2 |ϕAj ⟩ ⟨ϕAj | . (2.7)

In order to quantify the amount of entanglement between A and Ā, a commonly used
metric is the von Neumann entanglement entropy

SvN = −Tr [ρ̂A ln(ρ̂A)] = −
∑
j

|λj |2 ln
(
|λj |2

)
. (2.8)

We thus see that the Schmidt coefficients directly determine the amount of bipartite
entanglement. With a single nonzero Schmidt coefficient, the state is a product state
without any entanglement. On the other hand, if all the Schmidt coefficients λj are
non-zero and of similar magnitude, we obtain a state that maximises the entanglement
entropy.

We note that there are other entropies which are occasionally used, such as the
Rényi entropies:

S
(n)
R = 1

1 − n
ln (Tr [ρ̂nA]) . (2.9)

with integer n ≥ 2, although the case n → 1 recovers the von Neumann entropy. The
low-order Rényi entropies are much more accessible in experiment as they only require
measuring powers of the reduced density matrix, for which a useful proxy exists, as
opposed to the logarithm of it. In this thesis, by entanglement entropy we will primarily
refer to the von Neumann entanglement entropy, with an exception of Chapter 4 where
Rényi entropy will be useful.

In order to intuitively understand the predictions of the ETH for entanglement en-
tropy, it is helpful to consider a simplified picture of thermalisation. As the latter im-
plies that the energy of the system is homogeneously distributed, for a small subsystem
A we can consider the rest of the system as a thermal reservoir. From the initial energy
E0, we can then define an inverse temperature β such that (1/Z)Tr

[
Ĥe−βĤ

]
= E0,

with Z = Tr
[
e−βĤ

]
the partition function. At late time, the density matrix in the

subsystem A should then resemble the Gibbs density matrix

ρ̂A ≈ ρ̂β = 1
ZA

e−βĤA , (2.10)

with ĤA the Hamiltonian in subsystem A and ZA its partition function. It is straight-
forward to see that for ρ̂β, the squared Schmidt coefficients are all non-zero and simply
given by e−βEa/ZA. Near the middle of the spectrum where β = 0, they are all equal to
1/dim(HA), leading to S(ρβ=0) = ln[dim(HA)]. Taking as an example a system of NA

qubits in A, we have S ∝ NA, i.e., entanglement entropy scales with the volume of the
subsystem. This result is not limited to infinite temperature but generically holds away
from the edges of the spectrum. This so-called volume-law scaling of entanglement will
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2.1 Thermalisation and ergodicity

also be present in eigenstates. Indeed, from Eqs. (2.4) and (2.5), the eigenstates of a
thermalising system must resemble Gibbs states in the sense of measurable properties
on their subsystems. Intuitively, it is useful to think of thermalising eigenstates as ran-
dom vectors in the Hilbert space, for which entanglement entropy can be analytically
computed and shown to obey volume law scaling, the so-called Page entropy in that
case [18].

2.1.2 Chaos and random matrix theory

Quantum chaos is closely tied with the notions of thermalisation and ergodicity. While
these terms are often used interchangeably, a Hamiltonian is said to be chaotic if correla-
tions in the spectrum match those of random matrices belonging to the same symmetry
class [19]. This is tightly linked to properties like repulsion between energy levels of the
system [20]. This property is now commonly used as a diagnostic for verifying whether
a given system is indeed chaotic.

Let us consider the normalised energy spacing between consecutive eigenstates [21],
sj = (Ej+1 − Ej)/⟨s⟩loc, with ⟨s⟩loc the local mean spacing and where we assume
that the eigenstates are sorted such that Ej+1 ≥ Ej . For a random matrix, it is
possible to compute the probability distribution of the sj , which is the Wigner-Dyson
distribution [19]. This distribution has a free parameter β (the Dyson index) that
depends on the symmetries of the random matrix. Three different classes have been
introduced by Wigner in the 1950s [22]. To reproduce properties of Hamiltonians
that are invariant under time-reversal (meaning they can be written as real matrices),
the corresponding ensemble is that of real symmetric matrices with Gaussian entries.
This ensemble is called the Gaussian orthogonal ensemble (GOE) as it is invariant
under the conjugate action of any orthogonal matrix. If time-reversal symmetry is not
present, then the Gaussian unitary ensemble (GUE), consisting of Hermitian matrices,
is used instead. Finally, the Gaussian symplectic ensemble (GSE), where matrices are
Hermitian but also self-dual, is relevant for the special case of systems with time-reversal
symmetry that are not invariant under rotation [19]. These ensembles respectively
correspond to a Dyson index β = 1, β = 2 and β = 4. The exact distribution for large
matrices does not admit a closed form expression. However it can be well approximated
by the Wigner surmise, which gives this spacing for a 2 x 2 random matrix from a given
ensemble. This surmise then predicts [23]

Pβ(s) = sβaβe
−s2bβ , (2.11)

with a1=π/2, a2 = 32/π2 and and a4 = 218/(36π3) and b1 = π/4, b2 = 4/π and
b4 = 64/(9π).

One problem encountered when numerically checking the match with these results
for a realistic Hamiltonian is the need to resolve ⟨s⟩loc in sj = (Ej+1 −Ej)/⟨s⟩loc. One
way to get rid of these influences is to “unfold” the spectrum [19], which allows to have
a homogeneous density of states across the whole spectrum. A simpler way to bypass
this problem is to use instead a quantity that is insensitive to the local density of states.
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A common choice of such a quantity is the level spacing ratio, defined as [24]

rj = min{sj+1, sj}
max{sj+1, sj}

, (2.12)

meaning that rj is always between 0 and 1. As sj+1 and sj are tied to eigenstates very
close in energy, they share the same ⟨s⟩loc that is cancelled by taking their ratio. The
probability distribution of the rj can be computed from the Wigner surmise, leading
to [25]

P (r) = 2
Zβ

(r + r2)β
(1 + r + r2)1+3β/2 , for r ∈ [0, 1] (2.13)

with Z1 = 8/27, Z2 = 4
81

π√
3 and Z4 = 4

729
π√
3 . One can also reduce this test to a

single number, by computing the average level spacing ratio ⟨r⟩. This makes it much
easier to compare with numerical computations of the results for the actual Wigner-
Dyson distribution in large systems instead of the surmise. In that case, the predicted
outcomes are approximately [24, 25]

⟨r⟩β=1 = 0.5307, ⟨r⟩β=2 = 0.5996 and ⟨r⟩β=4 = 0.6744. (2.14)

These values are very close to the analytical values that can be derived using Eq. (2.13).

2.1.3 Non-ergodic quantum systems

Counterexamples to the ETH have been known for a long time. Obvious counter-
examples can be constructed from projectors on individual energy eigenstates, which
trivially commute with the Hamiltonian and therefore do not “relax”. However, such
examples are not physical as they result in highly non-local models with complex
structure. An important class of physical counterexamples to ETH are integrable sys-
tems [26]. These quantum models are characterised by an extensive number of non-
trivial conservation laws which can be expressed in a local form (or as a sum of local
terms). The presence of these conservation laws effectively prevents states in the many
different symmetry sectors from interacting with each other. More recently, many-body
localisation (MBL) has been argued to give rise to a similar effect [27, 28]. This many-
body equivalent of Anderson localisation [29] happens in systems where strong disorder
leads to the emergence of an extensive number of local integrals of motions that con-
strain the dynamics in a similar way to integrable systems (see the reviews [30, 31]).
The nature of these conserved charges lead to the entanglement entropy of eigenstates
scaling with the area of subsystem A instead of with its volume [30, 31]. Similar ETH
violations can also occur due to strong “Hilbert space fragmentation” [32–35], where
the Hilbert space shatters into exponentially many disconnected sectors, acting simil-
arly as the symmetry sectors in the two cases discussed above. We will address this
case in more detail in Sec. 2.5.

These types of ETH breakdown affect all eigenstates, hence they represent strong
ETH violation. The lack of interactions between states in the various sectors also has
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2.2 Quantum scars of a single particle

a profound effect on the energy spacing statistics. Indeed, as there is no repulsion
between energies corresponding to eigenstates with different quantum numbers, the
energy spacings between consecutive eigenstates obey the Poisson distribution typical
of independent events:

P (s) = e−s, P (r) = 2
(1 + r)2 , and ⟨r⟩ = 2 ln(2) − 1 = 0.3863, (2.15)

where we recall that r ∈ [0, 1].
Eq. (2.15) provides a practical means to detect strong ETH violation by comparison

with Eqs. (2.13)-(2.14). However, in this thesis, our focus will be on quantum systems
with weak ergodicity breaking, which still obey Eqs. (2.13)-(2.14) but feature subtler
violations of the strong ETH. While we will mainly concentrate on many-body systems
in what follows, it is important to keep in mind that analogous phenomena can arise
in the context of single-particle or few-body systems. A prominent example of such
systems that display a form of weak ergodicity breaking are quantum billiards, which
we discuss in the next section.

2.2 Quantum scars of a single particle

A well-known example of weak ergodicity breaking in single-particle systems is the
phenomenon of quantum scars in chaotic billiards. This was first observed in the two-
dimensional Bunimovich stadium billiard [36], composed of a rectangle capped by two
semicircles as shown in Fig. 2.1. We can consider the classical case, where a particle is
initialised inside the billiard at the position q⃗ = (q1, q2) and momentum p⃗ = (p1, p2). For
most initial configurations of q⃗ and p⃗, the classical dynamics is chaotic. This means that
small changes in the initial conditions will rapidly evolve into large differences, and the
trajectory taken will not have any apparent structure, exploring the entire configuration
space at long times in an ergodic fashion. However, there exist a small number of
trajectories that do lead to periodic orbits. This includes “bouncing ball” trajectories
where the particle simply bounces up and down in the rectangular part of the billiard,
as well as more complicated trajectories like the “figure-of-eight” trajectory displayed
in Fig. 2.1a Importantly, such trajectories are “rare”, i.e., the measure of the initial
conditions leading to regular dynamics is zero [37]. Additionally, these trajectories are
unstable, meaning that small deviations away from them will bring the system back to
a non-periodic orbit.

We can then look at the equivalent quantum system, where q⃗ and p⃗ are now oper-
ators and the dynamics in the billiard obeys the time-dependent Schrödinger equation.
Instead of a set of coordinates in phase space, we can think of a particle being initially
prepared in a localised wave-packet. This wave-packet must have a non-zero width in
all coordinates and therefore it will have some support also on the chaotic part of phase
space. As a consequence, one would näıvely expect that the wave-packet will quickly
deviate away from the periodic trajectory and spread homogeneously across the entire
billiard. However, the wave-packet shows a surprisingly long lifetime [37]. It was found
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Figure 2.1: Signature of quantum scarring in the Bunimovich billiard. a Periodic and chaotic
trajectories, respectively in red and blue. b Wave-function amplitude for a scarred eigenfunction
of the quantum billiard concentrated around the red orbit in a. The same orbit is shown as the
solid black line. Panel b reproduced with permission from Ref. [36], American Physical Society.

that the initial wave-packet has a large overlap with a small number of special eigen-
functions. These special eigenfunctions are highly localised around the classical periodic
orbit, unlike other eigenfunctions at the same energy that show a more homogeneous
spread in space [36, 38, 39]. This is illustrated in Fig. 2.1b for one such eigenfunction
that concentrates around the figure-of-eight trajectory. This phenomenon was named
“quantum scarring” due to the classical periodic orbit imprinting a “scar” upon the
corresponding quantum system.

The scarred eigenfunctions, such as the one in Fig. 2.1b, are few and far between,
with the majority of eigenfunctions being ergodic. This vanishing fraction of non-
ergodic states is a hallmark of weak ergodicity breaking. Despite the rare occurrence
of these special eigenfunctions in the spectrum, they can still lead to observable con-
sequences in many physical systems, as seen in numerous experiments during the 1980s
and 1990s, e.g., on microwave cavities [40], quantum wells in semiconductors [41] and
the hydrogen atom in a magnetic field [42]. However, all these systems can be described
in terms of essentially non-interacting particles, and for a long time it has been unknown
whether a similar phenomenon can occur in systems where the non-interacting particle
description breaks down. As such systems may not have an obvious classical limit, the
answer to this question was not apparent. In the next section, we discuss an experiment
that kick-started a broad exploration of scarring in many-body systems.

2.3 PXP model of Rydberg atom arrays

2.3.1 Rydberg atom experiments

The many-body equivalent of single-particle quantum scarring was first discovered in
a experiment on an array of 51 Rydberg atoms [43]. This array can be modelled as a
chain of coupled two-level systems, where each atom can either be in the ground state,
denoted |◦⟩, or the excited Rydberg state |•⟩. The transition between these states is
driven by lasers, at a Rabi frequency ω. Additionally, there is detuning ∆ between the
driving lasers and the energy spacing between the |◦⟩ and |•⟩ states. Finally, atoms
excited into the Rydberg states also interact with each other via van der Waals forces,
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which decay with interatomic distance as 1/d6. The full Hamiltonian of the system is
then given by

ĤRydberg = ω

2
∑
j

σ̂xj − ∆
∑
j

n̂i +
∑
j<k

Vj,kn̂jn̂k, (2.16)

where Vj,k = C/R6
i,j with Rj,k the distance between atoms j and k, σx = |◦⟩ ⟨•|+ |•⟩ ⟨◦|

is the Pauli X matrix, and n̂ = (σ̂z + 1)/2 = |•⟩ ⟨•|. In a 1D chain with lattice spacing
a, we have Rj,k = a|j − k| and so Vj,k = V|j−k| = C/(a6|j − k|6).

Due to the large exponent of the interaction, the difference between Vk and Vk+1
is also large, with Vk+1 = Vk/64. Thus, it is possible to reach a regime where Vk ≫
ω > Vk+1. This means that the energy scale of the interaction between excitations at
a distance d ≤ k is much larger than the energy scale ω of Rabi flips. As such, these
neighbouring excitations are heavily suppressed. This regime is called the Rydberg
blockade [44], and the blockade radius Rb is defined as the distance such that V = ω.

If the detuning is turned on such that Vk ≫ ∆ ≫ ω > Vk+1, we can also find the
atomic ground state by satisfying the constraints in descending energy order. First,
very large Vk imposes that excitations are spaced by at least k sites apart. Then, a
large ∆ requires that as many excitations as possible are present. Neglecting ω for
simplicity, this leaves the following crystalline states as ground states:

|Zk⟩ = |• ◦ · · · ◦︸ ︷︷ ︸
k−1

• ◦ · · · ◦︸ ︷︷ ︸
k−1

· · · • ◦ · · · ◦︸ ︷︷ ︸
k−1

⟩ . (2.17)

These states are schematically illustrated in Fig. 2.2a. Alternatively, if ∆ is large and
negative, excitations are suppressed and the ground state is simply the polarised state
|0⟩ = |◦ ◦ ◦ . . . ◦⟩. As this state is straightforward to prepare, this offers a clear pathway
for reaching the |Zk⟩ state by starting from the |0⟩ state and slowly ramping ∆ from
a large negative value to a large positive one. This was experimentally achieved in
Ref. [43] to prepare the states |Z2⟩, |Z3⟩ and |Z4⟩.

Beyond probing the equilibrium phase diagram of the Rydberg atom chain, the
same experiments also allow to study a global quench of the system by preparing the
atoms in a |Zk⟩ state and then rapidly setting ∆ back to 0. Note that the value of
Rb is not changed, meaning that the constraint on close-by excitations remains present
throughout the process. In the case k = 2 (where only neighbouring excitations are
suppressed), the quench is performed from the |Z2⟩ initial state, also called the Néel
state due to the alternation of excited and unexcited atoms. For ∆ = 0 this state
is essentially at “infinite temperature”, i.e., its energy is exactly in the middle of the
spectrum (assuming the Rydberg blockade condition, i.e., no neighbouring excitations).
Therefore, the expectation value of any local observable (or a sum of those) should
quickly converge towards the thermal value after a quench from the |Z2⟩ state. However,
when monitoring the domain wall density, which is proportional to the number of
consecutive |◦⟩, Ref. [43] found persistent oscillations instead of the expected decay, see
Fig. 2.2b. Meanwhile, quenches from other simple initial states, such as the polarised
state |0⟩ mentioned above, were found to lead to fast thermalisation, as expected. In
order to better understand this phenomenon, it is helpful to consider a simpler effective
model for Rb = 1, which we introduce next.
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Figure 2.2: a Ground state phase diagram of the Rydberg atom chain. b Domain wall density
after a quench from the |Z2⟩ state in the regime where Rb = 1 and ∆ = 0. The markers
indicate experimental results while the thick blue line is numerical simulation using matrix
product states (MPS) methods. In all cases, persistent oscillations are seen instead of fast
decay towards the thermal value. Panels reproduced with permission from Ref. [43], Springer
Nature Ltd.

2.3.2 PXP model

The PXP model [45, 46] derives from the Rydberg chain Hamiltonian (2.16) in the
limit of very large interaction strength V2 ≫ ω > V1. In that case, we can perform a
Schrieffer-Wolf transformation [47] and keep the leading term which is of order 1, which
results in

Ĥ = P̂

Ω
N∑
j=1

σ̂xj + µ
N∑
j=1

n̂j

 P̂, (2.18)

where we have introduced Ω = ω/2 and µ = −∆1. As a result of the Schrieffer-Wolff
transformation, the Rabi term becomes dressed by a global projector P̂ defined as

P̂ =
N∏
j=1

(1 − |••⟩ ⟨••|)j,j+1 . (2.19)

This projector ensures that the dynamics generated by Rabi flipping never generates
neighbouring excitations, which are energetically forbidden. Fortunately, the effect of
the project can be equivalently recast in a much more convenient local form, resulting
in the so-called PXP model:

Ĥ = Ω
N∑
j=1

P̂j−1σ̂
x
j P̂j+1 + µ

N∑
j=1

n̂j , P̂j = |◦⟩ ⟨◦| =
1j − σ̂zj

2 . (2.20)

1This sign change is simply due to a different convention being used in most theoretical papers on
the PXP model.
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2.3 PXP model of Rydberg atom arrays

Throughout this thesis, we will consider both periodic and open boundary conditions.
For periodic boundary conditions (PBCs), as implied in the equation above, we simply
identify atom N + 1 with atom labelled 1. In the case of open boundary conditions
(OBCs), the boundary terms with j = 1 and j = N are modified to become σ̂x1 P̂2 and
P̂N−1σ̂

x
N , respectively, as a boundary atom lacks a neighbour to one side. In the rest of

this chapter, we will restrict to PBCs, as this choice is more common in the literature.
Moreover, we will set µ = ∆ = 0 for the rest of this chapter, as this is the regime in
which scarring was initially observed. It is worth noting that, prior to the experiment
in Ref. [43], thermalisation in the PXP model was numerically studied in Refs. [48, 49].

The Hamiltonian in Eq. (2.20) only allows a single process |◦ ◦ ◦⟩ ⇄ |◦ • ◦⟩, i.e., an
atom can only flip its state if both neighbouring atoms are in the ground state and it
is impossible to create or destroy two neighbouring excitations. As such, most of the
literature has focused only on the largest connected sector of the Hilbert space, which
is the one containing no neighbouring excitations. This sector also contains the Néel
state, from which the anomalous dynamics was observed in experiment. Due to the
constraint, for a chain with N atoms, the Hilbert space dimension is no longer equal
to 2N but to D = FN−1 + FN+1 with PBC and FN+2 for OBC, where Fn is the nth
Fibonacci number [50]. This model is thus also known as the Fibonacci chain [51]. This
means that, asymptotically, the dimension grows as ϕN , where ϕ = (1 +

√
5)/2 is the

Golden Ratio. The effect of the constraint on the Hilbert space and the action of the
Hamiltonian is shown schematically in Fig. 2.3a.

Figure 2.3: a Graph representation of the Hilbert space of the PXP model with 6 sites. Each
vertex corresponds to a basis state in the Fock basis, and two vertices are linked by an edge
if the Hamiltonian matrix element between them is non-zero. The x axis labels the Hamming
distance of each state, i.e., the number of Rabi flips needed to reach this state starting from
the leftmost |Z2⟩ state. b Energy level spacing statistics of the PXP model. The statistics are
computed in the sector invariant under translation and point group symmetries (see text for
details). Panel a reproduced with permission from Ref. [50], Springer Nature Ltd

Once the Hilbert space is reduced down to the sector without neighbouring excita-
tions, the constraint does not bring any additional conserved quantities. The Hamilto-
nian (with PBCs) is only invariant under translation T̂ and spatial reflection R̂. The
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former takes site j to j + 1, while the latter takes site j to N + 1 − j. Each symmetry
sector can then be labelled with a momentum value of k between −π and π, e.g., see
Ref. [52]. As R̂ maps momentum k to −k, it only commutes with T̂ when k = 0 and
k = π, when a change of sign maps back to the same sector. Thus, only these sectors
are labelled with a value p of ±1 corresponding to its eigenvalue under R̂. Once these
symmetries are resolved, one can expect the system to be chaotic. Indeed, the neigh-
bouring terms in Eq. (2.20) do not commute as

[
P̂ , σ̂x

]
̸= 0. As such the system is

not a collection of non-interacting particles and its many-body nature should lead to
fast thermalisation. This can be probed by looking at the level spacing statistics in the
fully symmetric sector, i.e., the one with {k = 0, p = +1}, as done in Fig. 2.3b.

In computing the level statistics for the PXP model, care must be taken to remove
“zero modes”, i.e., states with energy E = 0, as there is an exponentially large number
of such states, which can impact the level statistics in finite systems. The origin of
these states can be explained through symmetry analysis [50, 53]. Indeed, when µ = 0,
the PXP Hamiltonian anti-commutes with the operator

Ẑ =
N∏
j=1

σ̂zj , (2.21)

which is directly related to the parity of the number of excitations. As the only dynam-
ical term is σ̂x, it always changes the number of excitations by 1, thus changing the
parity between ±. This also means that the graph representation of the PXP Hamilto-
nian in Fig. 2.3a is bipartite, with states with an even/odd number of excitations being
the two classes. The mismatch between the number of states in these two classes then
creates an exponential number of zero modes [50, 53]. In order to filter out these states,
a common procedure is to only consider states with energy strictly lower than 0, since
the spectrum is symmetric between ±E and no information is lost in doing so. At the
same time, this excludes all the degenerate eigenstates at E = 0. After doing this, the
unfolded distribution of level spacing is close to the Wigner-Dyson one, with better
agreement as N increases, as seen in Fig. 2.3b.

2.4 Quantum many-body scars in the PXP model

Having established that the PXP model shows no traces of strong ergodicity breaking,
we come back to the anomalous dynamics observed from the Néel state in Fig. 2.2.
The same oscillations that were observed in the full Rydberg model can be reproduced
numerically in the PXP model as well, assuming µ = 0. Rather than studying different
observables, numerics allow us to compute the return fidelity of the wave-function itself,
which is more convenient to analyse. The fidelity is defined as

F(t) = |⟨ψ(t)|ψ(0)⟩|2, with |ψ(t)⟩ = e−iĤt |ψ(0)⟩ . (2.22)

This quantifies the overlap between the initial wave-function |ψ(0)⟩ and the time-
evolved wave-function at time t. For a generic state, we expect the wave-function to
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spread evenly into the Hilbert space and thus its overlap with any pure state (including
the initial wave-function) should be ≈1/D, where D is the Hilbert space dimension.
The fidelity should therefore vanish rapidly as system size is increased, meaning that
there will be negligible probability for a chaotic system to return to its initial state.

Contrary to the previous expectation, as shown in Fig. 2.4a, after a quench from the
Néel state there are pronounced oscillations in F, with the first peak reaching fidelity
of F ≈ 0.66 for the system size N = 30 and period T ≈ 4.8. The growth of bipartite
entanglement entropy is also highly suppressed, with oscillations visible, Fig. 2.4b. Note
that the oscillations in entanglement entropy occur at twice the frequency of those in
the return fidelity. This is due to the particular trajectory taken by the wave-function.
Indeed, at t = T/2, the wave-function is almost entirely concentrated on the state
|Z′

2⟩ = |◦ • ◦ • . . . ◦ •⟩, also called the anti-Néel state. The dynamics can be thought of
as repeated “state transfer” between these two states. As they are product states, the
entropy is minimal when close to them. Meanwhile, at t ≈ T/4 the wave-function is
instead spread into large parts of the space, leading to higher values of S.

Figure 2.4: Signatures of ergodicity breaking in the PXP model. a Return fidelity and b half-
chain entanglement entropy after quench. There is a stark contrast between the behaviour of
the Néel and polarised states, despite both of them being infinite-temperature states. c Overlap
between the Néel state and the eigenstate and d entanglement entropy of the eigenstates. The
colour indicates the density of data points, with dark blue being less dense and yellow being
the densest. The red markers indicates the state with the highest overlap at the top of each
tower of states and highlight the same states in both c and c. All data is for the PXP model
with N = 30.

The origin of the oscillations in Fig. 2.4a-b is to be found in a set of atypical
eigenstates of the PXP model. They can be identified by plotting the overlap of the Néel
state with all the eigenstates as shown in Fig. 2.4c. Due to the homogeneous properties
of thermal eigenstates, one would expect such a plot to be featureless. Instead, a set of
N + 1 towers of states are visible. The tower at E = 0 is less pronounced as numerical
diagonalisation leads to strong mixing between all the degenerate eigenstates at this
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energy. Importantly, the states at the top of each tower (which we will call the top
band) are also approximately equally spaced, with a spacing close to ∆E ≈ 1.34 near the
middle of the spectrum. This equal spacing is one of the conditions for the persistence
of oscillations in large systems. By expressing the Néel state in the eigenbasis of Ĥ as

|Z2⟩ =
D∑
n=1

cn |En⟩ , with cn = ⟨E|Z2⟩, (2.23)

one can then rewrite

|⟨Z2|Z2(t)⟩|2 =
D∑

m=1

D∑
n=1

c⋆mcn⟨Em|e−iĤt|En⟩ =
D∑
n=1

|cn|2e−iEnt. (2.24)

The overlaps plotted in Fig. 2.4c are nothing but the |cn|2. The states with high overlap
will therefore have a dominant impact on the behaviour of the return fidelity. Due to
their approximate equal spacing, the phases of their contribution will realign after a
time equal to 2π/(En+1 − En). We can check that this is the case here as 2π/1.34 is
indeed close to the observed period of 4.8. The slight mismatch between the two is
caused by the energy spacing getting smaller (and so the period getting longer) as we
move away from the middle of the spectrum.

This anomalously high overlap also has consequences for the eigenstate themselves,
as it implies they are much less homogeneously spread across the Hilbert space. This is
visible, for example, in the entanglement entropy of eigenstates shown in Fig. 2.4d. The
eigenstates in the top band have a much lower entropy than other states at the same
energy. In fact, the scaling of their entanglement entropy with system size strongly
suggests that S ∝ ln(N) instead of the expected S ∝ N for thermalising states [54].
A precise quantification of this scaling is somewhat hindered by hybridisation with
thermal states. Indeed, the density of states grows exponentially with N , resulting in
thermal eigenstates getting closer and closer in energy to the states in the top band.
As the latter are not protected by a symmetry, they can hybridise with thermal states.
This will render the top band state “less atypical” and the states they hybridise with
less thermal. Effects of this can already be seen in Fig. 2.4d, where some top band states
have much higher entanglement entropy than their neighbours. These same states also
display a slightly lower overlap in Fig. 2.4c than other top band states close in energy.

Beyond entanglement, violation of the ETH as formulated in Eq. (2.5) can be dir-
ectly probed by computing expectation values of observables for eigenstates. Let us
focus in particular on the normalised density of excitations n̂dens = 2

N

∑N
j=1 n̂j , which

is between 0 and 1 for all states in the constrained PXP Hilbert space. Focusing on
the {k = 0, p = 1} sector and on an energy window centred on E = 2Ω with a width of
1.6Ω, Fig. 2.5a shows that the states in the top band are far from the microcanonical
value. To rule out a finite-size effect, the scaling of ETH violation with system-size can
be quantified. Denoting the microcanonical average by nMC, two different metrics can
be computed as done in Ref. [55]. On the one hand, the maximum difference between
nMC and the expectation value for a state in the energy window will be denoted by
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Figure 2.5: Violation of the strong ETH in the {k = 0, p = 1} sector of the PXP model, probed
by local observables. a Expectation value of the normalised excitation density for eigenstates
in system size N = 32. The states in the top band are highlighted in red. The grey shaded area
indicates the energy window used for the microcanonical value. b Scaling of the two metrics of
ETH violation in a window centred around E = 2Ω and with width 1.6Ω.

dnMax. On the other hand, dnstd denotes the standard deviation of the expectation of
n̂dens for all states in the energy window. Fig. 2.5 shows that the former is stable with
N , while the latter decays approximately exponentially with N . This means that in
the thermodynamic limit, the vast majority of states in the window obey the ETH, but
there are some eigenstates that do not. Thus, this is a violation of the strong ETH,
but the ETH in the weak sense continues to hold.

In conclusion, the PXP model displays multiple signatures of weak ergodicity break-
ing. While most of its eigenstates are thermal, there are a few non-thermal eigenstates
that show atypical concentration in certain parts of the Hilbert space. Initialising
a state with high-overlap on these non-thermal eigenstates leads to regular periodic
dynamics, while quenches from other states lead to fast thermalisation. All these phe-
nomena are reminiscent of quantum scarring seen in single-particle billiards. Thus, the
atypical eigenstates observed in the PXP model have been dubbed “quantum many-
body scars” [50] (QMBSs). However, one piece that is missing to complete the analogy
with the single-particle case is the periodic orbit corresponding to the classical limit of
the model. We discuss a way to recover this orbit in the next section.

2.4.1 Semi-classical limit for many-body scarred dynamics

In the case of single-particle scarring, the quantum system is directly obtained by
quantising a classical system. As such, the quantum-classical relation is clear and
it is straightforward to identify any imprint of classical trajectories on the quantum
eigenstates. This framework is generally lacking for many-body quantum systems,
including the PXP model. While there exists a well-defined classical limit as the spin
value goes to infinity, what we are interested in here is instead the thermodynamic limit
where the number of sites goes to infinity.
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A semi-classical limit for many-body systems [56] can be obtained by appealing
to the notion of the time-dependent variational principle (TDVP) [57, 58]. The idea
behind this method is to define a variational manifold M on which the wave-function is
parameterised by a set of classical variables z. TDVP equations of motion for variables
z can be derived as the saddle point equations for the following Lagrangian [56, 57]:

L = i

2
(
⟨ψ|ψ̇⟩ − ⟨ψ̇|ψ⟩

)
− ⟨ψ

∣∣∣Ĥ∣∣∣ψ⟩. (2.25)

Essentially, this means that, at each point z in the manifold, we minimise the differ-
ence between the instantaneous evolution within the manifold, |ψ̇⟩ = ż∂z |ψ(z)⟩, and
the full quantum evolution, −iĤ |ψ(z)⟩, generated by the Schrödinger equation. This
corresponds to projecting the local quantum evolution onto the manifold, as shown
schematically in Fig. 2.6a. The difference between the full quantum dynamics and the
projected one then quantifies the instantaneous “leakage” of the exact wave-function
out of the manifold. We denote this quantity by Λ, which is defined according to

Λ2 = Nγ2 = ∥ψ̇⟩ − iĤ|ψ⟩∥2. (2.26)

Here γ is the leakage density, which we will find more convenient to use as it removes
the system-size dependence and allows extrapolation to the thermodynamic limit.

Figure 2.6: a Schematic representation of the instantaneous dynamics in the TDVP manifold
M, corresponding to the projection of the true instantaneous quantum motion. b For the PXP
model, states in the manifold can be chosen as product states projected into the constrained
space satisfying the Rydberg blockade. In this product state, the configuration of each atom is
specified by two angles θ and ϕ that describe its position on the Bloch sphere. States in the
manifold can be conveniently described as MPS, as represented graphically on the bottom row.
Figure adapted with permission from Ref. [59], American Physical Society.

The Ansatz proposed by Ref. [59] for the PXP model is given by a bond-dimension
2 matrix product state (MPS) [60]. The MPS matrices are given by

A•(θj , ϕj) =
(

0 −ieiϕj sin
(
θj

2

)
0 0

)
, A◦(θj , ϕj) =

(
cos

(
θj

2

)
0

1 0

)
, (2.27)

where the angles θj , ϕj play the role of variational parameters z in the previous dis-
cussion. As standard in MPS formalism, the wave-functions belonging to the manifold
are constructed via the usual expression [61]

|ψ(θ, ϕ)⟩ =
∑
σ⃗

Tr
[
Aσ1(θ1, ϕ1)Aσ2(θ2, ϕ2)Aσ3(θ3, ϕ3) · · ·AσN (θN , ϕN )

]
|σ⃗⟩ . (2.28)
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This Ansatz has a simple interpretation, illustrated in Fig. 2.6b. The Ansatz takes a
product state of the atoms, where each site is characterised by angles θ and ϕ on the
Bloch sphere, and then projects it to the constrained space of the PXP model, akin to
the Gutzwiller projection [62].

The MPS bond dimension of 2 allows just enough entanglement between neighbour-
ing sites to guarantee that the Rydberg blockade is never violated. More precisely, the
Ansatz can capture states with entanglement entropy of at most ln(2) between adjacent
subsystems (ln(4) with PBC). This is clearly rather small, especially in large systems
– for any state evolving under a chaotic Hamiltonian, the entanglement entropy is ex-
pected to exceed this limit very quickly. Thus, in general, this manifold should not
be able to capture faithfully the full quantum dynamics and leakage is expected to be
high. However, the quench from the Néel state in the PXP model is characterised by
a very slow growth of entanglement, and this Ansatz will prove to be very useful.

The |Z2⟩ state has a simple structure in that all odd sites are identical and the
same is true for even sites. In order to describe quench dynamics from the |Z2⟩ state in
the crudest possible approximation, it makes sense to restrict the variational manifold
to only four degrees of freedom: θ1 and ϕ1 for odd sites and θ2 and ϕ2 for even sites.
This makes the computation of equation of motions for these variables tractable in the
thermodynamic N → ∞. The result is a set of 4 non-linear equations that have not
been solved analytically to this day. Interestingly, when µ = 0, if ϕ1 and ϕ2 are set to
0 initially they will stay at this value at all times. This means that starting from the
Néel state at θ1 = π, θ2 = 0 and ϕ1 = ϕ2 = 0 leads to a system with only two degrees
of freedom. Numerically integrating the equations of motion from the Néel state leads
to a periodic orbit that passes through the anti-Néel state, in a very similar fashion
to the true quantum dynamics. This is illustrated in Fig. 2.7a, which also shows that
this trajectory is confined to the low-leakage region. This means that the full quantum
trajectory will be relatively close to the one in the manifold.

Subsequent work explored the consequences of “requantising” this classical dynam-
ical system, in a way that mimics the procedure for single-particle scars [63]. It was
shown that this results in a mean-field description of the PXP model, which contains in-
formation only about the total numbers of excitations on the odd and even sites, rather
than their exact locations. The scarred eigenstates obtained in this mean-field picture
displayed high overlap with the exact scarred eigenstates of the PXP model, while the
same was no longer the case for thermalising eigenstates. In addition, projecting these
scarred eigenstates on the (θ1, θ2) phase space showed anomalous concentration around
the periodic orbit of the Néel state. This can be seen in Fig. 2.7b, which bears a striking
resemblance to the results on single-particle billiards.

Nonetheless, there is an important difference between the PXP model and chaotic
billiards. Indeed, in the original Bunimovich stadium studied by Heller [36], there are
enough degrees of freedom to allow for chaos to develop. The classical trajectories re-
sponsible for scarring are rare and unstable. Meanwhile, in the PXP case, the classical
limit obtained through TDVP only has two independent degrees of freedom, formally
precluding the possibility of chaos. Nevertheless, quantum leakage provides further
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Figure 2.7: a Flow diagram in the (θ1, θ2) phase space of the PXP model. The Néel state
trajectory is highlighted in red. It is periodic, and unlike other trajectories does not flow
towards the high-leakage areas at (±π,±π). b Projection of a scarred eigenstate in a mean-
field approximation of the PXP model introduced in Ref. [63]. The concentration around the
Néel state trajectory highlighted in black is evident. Panel a adapted with permission from
Ref. [59], Americal Physical Society. Panel b adapted from [63] under a Creative Commons
licence CC BY 4.0.

insight that allows us to identify which orbits are more or less prone to chaos. For
example, the Néel state trajectory is special as it is the only one that does not flow to-
wards the point θ1 = θ2 = π, where leakage is high. As such, it is the only trajectory for
which we expect the full quantum trajectory to bear any resemblance to the variational
one. The same is true for the eigenstates obtained in the mean-field limit of the PXP
model. While for many eigenstates their projection onto the (θ1, θ2) space is anomal-
ously localised, only the ones around the Néel periodic orbit are similar to eigenstates
of the full model, which turn out to be the scarred ones. Ref. [64] has further explored
this paradigm by changing the period of the MPS manifold to 3, allowing chaos to
develop. In that case, the TDVP phase space was found to be mixed, with regular
islands surrounded by chaotic regions, as expected from weak perturbation to classical
integrable systems according to the Kolmogorov-Arnold-Moser theorem [65, 66].

Beyond establishing an additional similarity between quantum many-body scarring
and its single-particle equivalent, the accurate description of the dynamics through
the simple TDVP Ansatz of Ref. [59] helps us to understand intuitively the scarred
dynamics in the PXP model. Indeed, as all angles are the same on odd sites, we can
understand these sites are forming a large spin coherent state before the projection
into the constrained space. The same is true for even sites. Without projection, we
could understand the periodic dynamics as a precession of two uncoupled large spins of
magnitude N/4. Of course, the Rydberg constraint will couple and generally destroy
this picture. However, the Néel state trajectory is special in that when one large spin
is maximal along the Z axis, the other spin is minimal. As such, the effect of the
constraint is reduced compared to arbitrary configurations and the picture of two large
spins approximately holds, however they are now coupled in a complicated way by the
constraint. A schematic view of the dynamics using two Bloch spheres is shown in
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Figure 2.8: Large-spin precession picture of scarring in the PXP model. a-b Dynamics seen
as the precession of two large spins (with total spin N/4) corresponding to coherent states on
odd and even sites and coupled by the Rydberg constraint. a Initial configuration in the Néel
state. b Configuration after a half-period, where the state is now the anti-Néel. The fact that
when one lattice is fully occupied the other is empty greatly reduces the effect of the constraint
and allows this large spin picture to hold. c-d Combining the two spins into a single one with
total spin N/2 makes apparent the full su(2) algebra in the model. Panels c and d correspond
to the same state as panels a and b respectively.

Fig. 2.8a and b. If we instead start in the polarised state |0⟩, this can still be described
in the two large spin picture, but they are now both down. As they precess, they will
both reach the zenith of the sphere at the same time. This is the regime where the
effect of the constraint is the strongest, leading to a complete breakdown of the large
spin picture. Logically, it also corresponds to the point with maximum leakage on
Fig. 2.7. For other initial configurations of the two large spins, the dynamics is more
complicated but the end results is the same. On top of providing a simple picture for
visualising the origin of scarring in the PXP model, this large spin picture also hints
at the presence of a special su(2) algebraic structure, that we discuss next.

2.4.2 Algebraic structure of scarred eigenstates

The presence of an approximate su(2) algebra in the PXP model was first pointed
out by Ref. [67], although the groundwork had already been laid out in Refs. [50] and
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[54] through the so-called Forward Scattering Approximation (FSA). The FSA was
originally introduced as a scheme to construct approximations to the scarred eigenstates
in the PXP model. In this section, we first present an overview of the FSA and
explain how it gives rise to su(2) algebra representation in the subspace of scarred
PXP eigenstates. As an important piece of evidence in favour of the FSA, we then
illustrate that it allows to construct perturbations to the PXP model that “enhance”
its scarring behaviour by bringing the structure constants of the algebra closer to su(2).
Finally, we discuss a complementary approach, introduced more recently in Ref. [68],
which provides a hint to the origin of the algebra: an emergent spin-1 degree of freedom.

The FSA relies on the decomposition of the Hamiltonian into two parts as ĤPXP =
Ĥ+ + Ĥ−. Let us set Ω = 1 to simplify the notation, we then have

Ĥ± =
∑
j odd

P̂j−1σ̂
∓
j P̂j+1 +

∑
j even

P̂j−1σ̂
±
j P̂j+1. (2.29)

The structure of these operators mimic the structure of the Néel state. In the graph
picture of Fig. 2.3a, the action of Ĥ± is easy to visualise as each application of these
operators starting from the Néel states simply changes the Hamming distance in units
of 1. Moreover, it is easy to see that applying Ĥ− to the Néel state annihilates it
(similarly, Ĥ+ annihilates the anti-Néel state). Consequently, starting from the Néel
state and applying Ĥ+ to it, one can construct a closed subspace of N + 1 states, due
to the fact that Hamming distance can be at most N . Within this subspace, a Lanczos-
type diagonalisation then produces an effective tight-binding model with N + 1 sites,
which can serve as an approximation to the scarred subspace [50]. The eigenstates of
the effective tight-binding model are found to be excellent approximations of the exact
scarred eigenstates [54].

From the semiclassical point of view presented above, we can understand why the
FSA works well. Essentially, Ĥ+ acts as a raising operator for the big spin encompassing
all even sites and as a lowering one for the odd sites. It is then equivalent to combining
these two big spins into a spin of magnitude N/2 by taking the one for even sites minus
the one for odd sites. The dynamics can be seen as the precession of a single big spin,
as illustrated in Fig. 2.8c and d. In that picture, Ĥ+ acts as a global raising operator
and Ĥ− as a lowering one. It is then natural to ask about the diagonal operator Ĥz

which, for a true spin, must be equal to 1
2

[
Ĥ+, Ĥ−

]
in order to be consistent with

su(2) commutation rules. We proceed to construct Ĥz in this way, as this ensures that
the commutation relation between Ĥx and Ĥy satisfies

[
Ĥx, Ĥy

]
= iĤz, as expected
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for an su(2) algebra. Thus, we get [67, 69]

Ĥx = Ĥ+ + Ĥ−

2 = 1
2ĤPXP = 1

2

N∑
j=1

P̂j−1σ̂
x
j P̂j+1,

Ĥy = Ĥ+ − Ĥ−

2i = 1
2ĤPYP = 1

2

N∑
j=1

(−1)jP̂j−1σ̂
y
j P̂j+1,

Ĥz = 1
2
[
Ĥ+, Ĥ−

]
= 1

2

N∑
j=1

(−1)jP̂j−1σ̂
z
j P̂j+1.

(2.30)

It can be easily verified that the Néel and anti-Néel states are respectively the ground
and ceiling state of Ĥz. Thus, when acted on with the PXP Hamiltonian (which is
directly proportional to Ĥx), we would expect a free precession with state transfer
from one state to the other if the algebra was exact. This explains why we observe
revivals from the |Z2⟩ state in the PXP model.

However, if the scarred subspace could simply be interpreted as a free spin, the
revivals would be perfect, while in both numerics and experiment they clearly decay
in time. The reason is that, by defining the generators according to Eq. (2.30), we are
not guaranteed for the algebra to close. For example, we should have

[
Ĥz, Ĥ+

]
= Ĥ+.

Directly plugging in the expressions from Eq. (2.30), it can be verified that this relation
is not obeyed exactly, but up to a correction term

[
Ĥz, Ĥ+

]
= Ĥ+ + δ+, denoted by

δ+. This term is equal to [69]

δ+ = −1
2
∑
j odd

P̂j−1σ̂
−
j P̂j+1

(
P̂j+2+P̂j−2

)
−1

2
∑
j even

P̂j−1σ̂
+
j P̂j+1

(
P̂j+2+P̂j−2

)
. (2.31)

Thus, while the algebra formed by Ĥ+, Ĥ− and Ĥz is not closed, it is still resembles an
su(2) algebra. It is therefore natural to attempt to close the algebra by incorporating
δ+ into the definition of Ĥ+ and doing the same with δ− (obtained from

[
Ĥz, Ĥ−

]
=

−Ĥ− + δ−) and Ĥ−. Doing this still does not make the algebra closed, however the
“closeness” can be iteratively improved as in each step we can reduce the norm of the
operator

[
Ĥz, Ĥ+

]
− Ĥ+ [69].

We illustrate the process of closing the algebra by deriving the first-order perturb-
ation to the model resulting from imposing su(2) structure on it. We can combine δ+

and δ− to create a perturbation for the PXP Hamiltonian, as it is directly proportional
to Ĥ+ + Ĥ−. The resulting perturbation is Hermitian and equal to

δĤPXPP =
N∑
j=1

P̂j−1σ̂
x
j P̂j+1

(
P̂j−2 + P̂j+2

)
. (2.32)

Since this perturbation brings the algebra closer to the exact su(2), we predict that it
will lead to an improvement in revivals from the Néel state. Indeed, for system size N =
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24, the largest improvement in fidelity is seen with a perturbation strength λ = 0.108,
with the fidelity at the first peak increasing from 1−2.85×10−1 to 1−6.76×10−4 [69].

As the projector P̂ can be decomposed into σ̂z and the identity, the PXPP perturb-
ation is equivalent to

δĤPXPZ = −
N∑
j=1

P̂j−1σ̂
x
j P̂j+1

(
σ̂zj−2 + σ̂zj+2

)
. (2.33)

up to a non-linear mapping of the perturbation strength. This corresponds to the
perturbation found to enhance the revivals and the algebra for λ = 0.051 in Ref. [67].
Surprisingly, it was also found to make system nearly integrable for λ = 0.025, as
indicated by the energy level spacing statistics [70]. In addition, Ref. [67] found that
even better revivals could be obtained by extending the perturbation range. This is
done by adding terms with a similar structure, increasing range, but an exponentially
decaying strength. More precisely, the PXP Hamiltonian is deformed using the quasi-
local operator

δĤQL = −
N∑
j=1

R∑
d=2

hd P̂j−1σ̂
x
j P̂j+1

(
σ̂zj−d + σ̂zj+d

)
, (2.34)

with the strength given by

hd = h0
(
ϕ(d−1) − ϕ−(d−1)

)−2
, (2.35)

where ϕ =
(
1 +

√
5
)
/2 is the golden ratio, and h0 ≈ 0.051 is a (numerically determined)

strength of the deformation. Finally, we note that the same PXPZ perturbation was
also derived by Ref. [71] by considering the dynamics as a scattering problem.

The effects of the PXPZ perturbation and of its longer-range version are illustrated
in Fig. 2.9. The improvement in the dynamics of both fidelity and entanglement en-
tropy is very clear. This can be traced back to the scarred eigenstates, as for larger
perturbation range R their spacing in energy becomes much closer to equal. The over-
lap of the Néel state with them also increases, leading to highly reduced influence from
thermal states in the dynamics.

2.4.3 Spin-1 interpretation

While the PXPP and PXPZ perturbations were found to be crucial in improving the
approximate su(2) algebra of the PXP model, the origin of this structure was not well
understood. An alternative explanation was put forward in Ref. [68] using a spin-
1 formulation of the PXP Hamiltonian first used in Ref. [72]. Due to the Rydberg
constraint, a pair of neighbouring atoms can never be in the configuration |••⟩ and can
be mapped to spin-1 basis states according to

|•◦⟩ ≡ |−⟩ , |◦◦⟩ ≡ |0⟩ , and |◦•⟩ ≡ |+⟩ . (2.36)
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Figure 2.9: Scar-enhancing perturbations in the PXP model. a-b Fidelity and entanglement
entropy after a quench from the Néel state in the PXP model with N = 28. Different curves
correspond to different ranges of the perturbation in Eq. (2.34), with R = 0 being the unper-
turbed PXP model, R = 2 is the PXPZ perturbation in Eq. (2.33), while R = N/2 encompasses
all longer-range terms found in Ref. [67]. The insets are zooms of the respective plots and show
that for R = N/2 the dynamics is almost exactly periodic, with the fidelity coming back to 1
and the entanglement entropy back to 0 up to at least three decimal places. c-e Overlap of the
Néel state with eigenstates in the cases discussed in panels a and b. The red squares indicate
scarred eigenstates. The vertical dashed lines are equally spaced with an energy separation
corresponding to that between scarred states near E = 0. As R is increased, the top band
becomes more separated from the other eigenstates and the energy spacing in it is also more
equal.

Thus, grouping neighbouring atoms in disjoint pairs, this maps each configuration on N
sites to a spin-1 chain with N/2 sites. However, the spin-1 model is still constrained as
neighbouring pairs |+−⟩ = |◦ • •◦⟩ are forbidden. The PXP constraint can be rewritten
in the spin-1 language, giving

P̂ =
∏
b∈ΛB

(
1 − |+−⟩ ⟨+−|b,b+1

)
, (2.37)

where ΛB denotes the set of all dimers. To distinguish between operators acting on the
full spin-1 Hilbert space and those acting in the restricted PXP subspace, we will write
the former in boldface. The full spin-1 Hamiltonian is then

ĤΛB
=

√
2
∑
b∈ΛB

Ŝxb −
∑
b∈ΛB

(|+, 0⟩ + |0,−⟩) ⟨+,−|b,b+1 −
∑
b∈ΛB

|+,−⟩ (⟨+, 0| + ⟨0,−|)b,b+1

≡ ĤFX + Ĥ1 + Ĥ2,
(2.38)

where Ŝxj is the spin-1 X operator acting on site j. We will also denote the global
spin operator along the α axis as Ŝα = ∑

b∈ΛB
Ŝαb , with α = x, y, z. This means

that ĤFX =
√

2Ŝx is a free paramagnet along the X direction, and Ĥ1 and Ĥ2 are
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added to cancel the matrix elements violating the constraint. As a consequence, the
full Hamiltonian does not connect the PXP constrained space to the rest of the spin-1
Hilbert space, and it must hold that

[
P̂, ĤΛB

]
= 0. This allows to write

ĤΛB
= ĤPXP ⊕ Ĥ⊥, (2.39)

where Ĥ⊥ acts on the complement of the PXP subspace in the spin-1 Hilbert space.
We then define

Ĥ′
PXP ≡ ĤPXP ⊕ 0̂⊥ = P̂ĤΛB

P̂ = P̂2ĤΛB
= P̂ĤΛB

, (2.40)

that acts as PXP in its sector but annihilates any state outside of it. More generally,
we will use the prime to denote operators in the PXP subspace “blown up” to the full
spin-1 space but acting as the null operator in its complement.

One can also notice that P̂Ĥ2 = 0 but P̂Ĥ1 ̸= 0. This means that if we take
an eigenstate |E⟩ of ĤFX (with energy E), the only thing preventing its constrained
version |E′⟩ = P̂ |E⟩ = |E⟩ ⊕ 0⊥ to be an eigenstate of Ĥ ′ is Ĥ1. However, if there
is a perturbation δĤ such that P̂

(
Ĥ1 + δĤ

)
|E⟩ = 0 and

[
P̂, δĤ

]
= 0, then the

contribution of Ĥ1 is cancelled and |E′⟩ is an eigenstate of Ĥ′
PXP + δĤ′ with energy E,

where δĤ′ = P̂δĤ. Indeed, after some simple manipulations(
Ĥ′

PXP+δĤ′
)

|E′⟩ =
(
Ĥ′

PXP + δĤ′
) (

P̂ |E⟩
)

= P̂
(
ĤΛB

+ δĤ
)

|E⟩

= P̂
(
ĤFX + Ĥ1 + Ĥ2 + δĤ

)
|E⟩

= P̂ĤFX |E⟩ +P̂
(
Ĥ1 + Ĥ2 + δĤ

)
|E⟩

= P̂
(
ĤFX |E⟩

)
= P̂ (E |E⟩) = E |E′⟩ .

(2.41)

Equivalently, it means that |E⟩ will be an eigenstate of ĤPXP+δĤ with energy E.
The desired perturbation

δĤ =
∑
ΛB

1
2 (|+, 0⟩ + |0,−⟩) ⟨0, 0|b,b+1 (2.42)

was found in Ref. [68]. However, the condition
(
Ĥ1 + δĤ

)
|E⟩ = 0 does not hold for

all states. To work, it requires that neighbouring dimers form a spin-2 quintuplet.
The only eigenstates of ĤFX that satisfy this for all pairs are the ones with maximal
total spin, i.e, N/2. This means that the spin-1/2 Hamiltonian ĤPXP+δĤ has N + 1
scarred eigenstates that correspond to the projection of the eigenstates of ĤFX with
maximal total spin into the constrained space. Unlike in the unperturbed PXP model,
the structure of these states and their energies can be written down analytically. This
generally allows to perform a (local) change of basis that completely decouples the
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subspace containing the scarred states from the rest of the Hilbert space. As such, the
scarred states in this model are referred to as exact scars, as opposed to the ones in
the unperturbed PXP model where such constructions hold only approximately.

One clear limitation of δĤ (and so of δĤ) is that it is non-Hermitian. Furthermore,
δĤ will not be translation invariant, either, in the spin-1/2 formulation. One can still
enforce these properties by adding the Hermitian conjugate and the translation by one
(spin-1/2) site, but the resulting model will not have exact scars. Nonetheless, we can
expect it to show relatively good scarring and an enhanced algebra when compared to
the unperturbed PXP model. In fact, in the spin-1/2 language this perturbation δĤinv
is exactly proportional to the PXPP perturbation in Eq. (2.32). Thus the origin of this
perturbation is explained using the spin-1 picture, where it counteracts the effects of
the terms perturbing the free paramagnet.

Beyond finding perturbations, the spin-1 approach also makes some properties of
the scarred states in the unperturbed PXP model more evident. Indeed, the scarred
eigenstates are still relatively well approximated by projecting the eigenstates of ĤFX
with total spin N/2. As ĤFX is a free paramagnet, its eigenstates will be eigenstates
of angular momentum, also called Dicke states, which have logarithmic entanglement
entropy. This naturally explains why the entanglement entropy of the PXP scarred
eigenstates was found to also obey a similar type of scaling. In the unconstrained spin-
1 model, one can also see that the Néel state is the ground state of the free paramagnet
along the Z direction. As such, it has maximum total spin and only has overlap on
the eigenstates of ĤFX with the same characteristic, which once projected will end up
being the scarred eigenstates. As a result we see these states have maximum overlap
with the Néel state. Finally, we can write down the spin-1/2 operators corresponding to
the projection of the su(2) algebra of the spin-1 free model into the constrained space.
These operators, denoted as Ŝα, are defined as

Ŝα ⊗ 0̂⊥ = P̂SαP̂. (2.43)

With the definitions in Eq. (2.30), these are equal to

Ŝx = 1√
2
ĤPXP, Ŝy = 1√

2
ĤPYP, Ŝz = 1

2

N∑
j=1

(−1)j σ̂zj , (2.44)

in the spin-1/2 language. We note that a similar algebra was first used in Ref. [73].
In that work, the algebraic structure was used to create a raising operator in the X
basis and the scarred states were then approximated by acting with this operator on
the ground state. As the eigenstates of ∑b∈ΛB

Ŝxb have energy spacing one and ĤFX is
equal to

√
2 times this operator, we would expect the scarred eigenstates of PXP to be

spaced in energy by
√

2. This approximation can be refined by computing the first order
perturbation in energy due to Ĥ1, which predicts an energy spacing of 13

√
2/14 = 1.31

in the middle of the spectrum, very close to the 1.34 found numerically [68]. Overall,
the spin-1 derivation of Ref. [68] provides an explanation for the appearance of non-
thermal eigenstates in the PXP model. It also highlights the origin of the approximate
su(2) algebra and how some specific perturbations can enhance it.
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2.4.4 Beyond the original PXP model

Due to its intriguing properties, many variations of the PXP model have been studied
since the original experiment on Rydberg atoms. This comprises studying the effect
of perturbations [54, 70, 74] as well as disorder [75], and extensions to higher dimen-
sions [64, 68, 76–79] and higher spin [59]. Interestingly, is has also been shown that
the PXP exactly maps to a quantum link model (QLM) corresponding to a regular-
isation of the lattice Schwinger model of electrodynamics in 1+1D [80]. This provides
another way to generalise the PXP model to values of spin beyond 1/2, with scarring
still being present in all of them accessible to numerical simulations [81, 82]. Beyond
static Hamiltonians, the impact of adding a periodic drive was also studied [78, 83–87],
showing that it can improve the scarred dynamics. In parallel to these findings, scarred
dynamics was also found in a flurry of other models, unrelated to PXP. We discuss
these models and the underlying scarring mechanisms in the next section.

2.5 Mechanisms of weak ergodicity breaking

While the term QMBS was first put forward in Ref. [50], the quest to identify
and construct isolated non-thermalising eigenstates in quantum systems has a much
longer history. Most notably, such states were theoretically established in the Affleck-
Kennedy-Lieb-Tasaki (AKLT) model in Ref. [88] back in 1989. Since then, there has
been a flurry of models in which various aspects of QMBS physics have been witnessed,
see the reviews [89–92]. In this section, we will go over the most important of these
mechanisms. We will focus on the case of exact scars, in which there exists a dy-
namically disconnected subspace with a relatively simple structure, where all scarred
eigenstates are located, as illustrated in Fig. 2.10a. In this section, we will mention
three important mechanisms how such a subspace can arise in non-integrable many-
body systems, which are summarised in Fig. 2.10b-d.

Before discussing in detail the QMBS mechanisms, we need to introduce the broader
concept of Krylov restricted thermalisation [34]. As the name indicates, Krylov restric-
ted thermalisation means that equilibration dos not happen at the level of the full
Hilbert space but is limited to a single Krylov subspace. For any pure state |ψ⟩, the
Krylov subspace K is spanned by the states |ψ⟩, Ĥ |ψ⟩, Ĥ2 |ψ⟩, Ĥ3 |ψ⟩, etc. In general,
this procedure provides a subspace closed under the action of Ĥ only after the full
Hilbert space is explored, i.e., once the state ĤD−1 |ψ⟩ is reached, with D the Hilbert
space dimension. However, for certain models and certain initial states, it can hap-
pen that Ĥn |ψ⟩ = 0 or that Ĥn is not linearly independent from the previous states.
In both cases, the Krylov subspace has dimension n and is closed under the action
of Ĥ. As a consequence, if a quench is performed from |ψ⟩, the time-evolved wave-
function e−iĤt |ψ⟩ will always be in K spanned by {|ψ⟩ , Ĥ |ψk⟩ , . . . , Ĥn−1 |ψ⟩}, which
has dimension n. Due to K being separated from the rest of states, the properties of
the eigenstates in this subspace can be drastically different, and thus create ergodicity
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Figure 2.10: Schematic illustration of the Hamiltonian matrix structure for the main mech-
anisms to engineer QMBSs. a The Hamiltonian matrix is split between the ergodic subspace
containing the vast majority of states (red) and the scarred subspace (blue), which can be gener-
ated using various mechanisms summarised in b-d. b For projector embedding, the Hamiltonian
in the scarred subspace can have any structure specified by Ĥ0. c In the case of a restricted
spectrum generating algebra, the scarred eigenstates are equidistant in energy and can be gen-
erated iteratively by the raising operator Q̂†. d For rainbow scarring, the scarred eigenstates
are generated by acting on the rainbow state with the generators of the half-system symmetries
Ôk. The spacing in energy is dictated by the interplay of Ôk and the interaction Hamiltonian
Ĥint.

breaking. We emphasise that we only consider the non-trivial Krylov subspaces that
are not created by any global property of the Hamiltonian such as symmetries.

One example of Krylov restricted thermalisation occurs in so-called “fractonic” mod-
els, in which the conjunction of a global dipole conservation law and a purely local dy-
namical terms creates many frozen sectors [32–35]. This creates an exponential number
of Krylov subspaces, i.e., much larger than the number of invariant subspaces for the
dipole symmetry alone. This phenomenon is named “Hilbert space fragmentation” [91]
and it also leads to a form of ergodicity breaking. However, within that framework one
needs to distinguish two different cases. In the classification or Ref. [35], the fragment-
ation is called strong if the fraction of the Hilbert space each Krylov subspace takes
goes to zero in the thermodynamic limit. In that case, we observe strong ergodicity
breaking as all states will thermalise in a small portion of the Hilbert space. In contrast,
fragmentation is considered weak when the fraction of the Hilbert space occupied by
the largest Krylov subspace goes to 1 in the thermodynamic limit. As a consequence,
eigenstates in this sector will dictate the microcanonical values of all observables and we
expect agreement with the ETH. However, the vanishing fraction of eigenstates located
in other sectors may not obey the ETH, leading to weak ergodicity breaking.

Exact QMBS is similar in principle to weak Hilbert space fragmentation, with the
caveat that there is a sub-exponential number of Krylov subspace. In most models,
there is in fact a single large thermal subspace and a small (vanishing in the thermo-
dynamic limit) scarred subspace. We will now review the main mechanisms to create
such Krylov subspaces.

2.5.1 Projector embedding

Shiraishi and Mori [93] introduced a general method to “embed” desired non-thermal
eigenstates into a spectrum of a chaotic many-body Hamiltonian. As the name indic-
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ates, this method relies on a set of local projectors P̂j to protect a set of eigenstates
from the action of the local operators ĥj , both centred around site j. Let us consider
the global Hamiltonian

Ĥ = Ĥ0 +
∑
j

P̂j ĥjP̂j , (2.45)

with Ĥ0 such that [Ĥ0, P̂j ] = 0 for all j. Then if there exists a set of states |ψk⟩ that
obey P̂j |ψk⟩ = 0 ∀ j, k, this set must be closed under the application of Ĥ. Indeed,
|ϕk⟩ = Ĥ |ψk⟩ = Ĥ0 |ψk⟩ must also be annihilated by all P̂j since P̂j |ϕk⟩ = P̂jĤ0 |ψk⟩ =
Ĥ0P̂j |ψk⟩ = 0. As such, the set of all |ψk⟩ forms its own Krylov subspace. As the |ψk⟩
are the only states not affected by the ĥj , they will be non-thermal with respect to
the vast majority of eigenstates. However, no additional structure is imposed on these
states and their properties depend on the particular details of P̂j and Ĥ0, as illustrated
in Fig. 2.10b. Notably, the scarred construction still holds if Ĥ0 = 0. In that case, all
|ψk⟩ states are degenerate at zero energy.

We note that despite the apparent similarity between Eq. (2.45) and the PXP
Hamiltonian, the scarred eigenstates in that model are not trivially due to this con-
struction with the projector on the Rydberg ground states acting as the Shiraishi-
Mori projectors. Nonetheless, a few isolated exact scars have been found in the PXP
model using a similar construction [72]. Projector embedding has been used to realise
scars in lattice systems with super-symmetry [94], using compact localised states [95],
in a kagome lattice [96], or in topologically ordered models [97] and their deforma-
tions [98]. Generalisation of the Shiraishi-Mori construction have also been devised
using the “broken unitary” picture [99] and for dual unitary circuits [100].

2.5.2 Restricted spectrum generating algebra

A system governed by Hamiltonian Ĥ is said to possess a spectrum generating algebra
(SGA) – also called a dynamical symmetry – whenever there exists an operator Q̂†

such that [Ĥ, Q̂†] = ωQ̂†. This means that if |E⟩ is an eigenstate with energy |E⟩, then
Q̂† |E⟩ must be an eigenstate with energy E + ω. This is a well-known property of
models such as the Fermi-Hubbard model, where it is called η pairing symmetry [101].

More interestingly, it is also possible to have the SGA only in a reduced part of
the Hilbert space. Indeed, let us suppose there exists a subspace W closed under the
action of Ĥ such that the dynamical symmetry is absent at the level of the entire
Hilbert space, [Ĥ, Q̂†] ̸= ωQ̂†, but holds upon restriction to W :

[Ĥ, Q̂†]W = ωQ̂†W. (2.46)

Then the Hamiltonian must admit the following exact eigenstates |Sn⟩ and correspond-
ing eigenvalues En,

|Sn⟩ = (Q̂†)n |S0⟩ , En = E0 + nω , (2.47)

where |S0⟩ is an eigenstate of the Hamiltonian Ĥ with eigenvalue E0, as shown in
Ref. [102]. In other words, Q̂† is a spectrum generating algebra of the Hamiltonian
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limited to the subspace W , which we call a restricted spectrum generating algebra
(RSGA).

Note that Eq. (2.47) implies equal energy spacing amongst the scarred eigenstates,
as illustrated in Fig. 2.10c. Importantly, any state that has overlap only on these scarred
eigenstates will show perfect wave-function revivals. The RSGA picture means that
scarred eigenstates can be understood from a quasi-particle perspective [90]. Indeed,
taking |S0⟩ as the vacuum, the operator Q̂† then creates a quasi-particle. The scarred
state |Sn⟩ can then be thought of as a condensate of n of these quasi-particles. The fact
that they are non-interacting is manifested in the energy of these states only depending
on the number of such quasi-particles.

One of the general frameworks that makes use of RSGA is the “tunnels to towers”
construction [103], although other group theoretic approaches have also been devised [104,
105]. The tunnels-to-towers construction starts with a Hamiltonian Ĥsym which con-
tains multiplets of degenerate eigenstates. In the common case of an su(2) algebra,
this would be a term proportional to the total spin, while Q̂† could be a global raising
operator for the magnetisation along a given axis. In that case, Q† leaves the total
spin unchanged which leads to [Ĥsym, Q̂

†] = 0. One then adds an additional term ĤSG
that breaks the degeneracy between states in the same multiplet. In the su(2) picture,
this term is typically proportional to the total magnetisation along the same axis as Q̂,
leading to the SGA structure [ĤSG, Q̂

†] = ωQ̂†. Finally, in order to turn the SGA into
an RSGA, a third term ĤA is added that annihilates only a single set of multiplets and
makes the system non-integrable. This means that Q̂† only acts as raising operator in
the subspace corresponding to that multiplet. This last step is similar to the Fermi-
Hubbard model in Ref. [106, 107], where additional term couplings were added to the
Hamiltonian to turn the η pairing from an SGA to a RSGA.

It is important to note that the tunnels-to-towers construction is not orthogonal to
the projector embedding case. Notably, one can see that Ĥsym + ĤSG fills the role of
Ĥ0, while ĤA and ∑j P̂j ĥjP̂j have the same purpose. In fact, in the su(2) case, it is
straightforward to show an example where the two construction coincide. Indeed, let
us consider that the multiplet we want to preserve is the one with maximum total
spin, and assume that the effective spin on each site is a spin-1/2. In that case,
neighbouring effective spin pairs must all combine to have maximum spin 1. So it
is easy to create an operator ĤA using the Shiraishi-Mori construction where P̂ is a
projector on the maximum effective spin configurations on two sites. Such a projector
will then commute with the global total spin and global magnetisation, meaning that
Ĥ0 ≡ Ĥsym+ĤSG commutes with all P̂j . In fact, this is exactly what happens in the XY
spin-1 magnet, where an effective spin-1/2 corresponding to the states |m = +1⟩ and
|m = −1⟩ is used on each site [108]. The PXP model also resembles this construction.
When formulated in the spin-1 language and when the perturbation δĤ is used, ĤFX
acts as Ĥ0 ≡ Ĥsym + ĤSG while Ĥ1 + δĤ acts as ĤA, locally projecting out pairs of
states with total spin-2 to annihilate only eigenstates of ĤFX with maximum total spin.
The main differences here is the presence of the additional projection steps that gets
rid of Ĥ2 and has a non-trivial effect on the eigenstates of ĤFX. Nonetheless, we see a
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close resemblance to the tunnels-to-towers and Shiraishi-Mori constructions, explaining
the emergence of an approximate RSGA.

However, we stress that the tunnels-to-towers formalism is not simply a specific case
of projector embedding. For example, the spin-1 AKLT chain features an RSGA [109]
but it has been shown that it cannot be recast using projectors that are local in the
spin-1 Hilbert space, despite the Hamiltonian being purely local [102] in that space.
The only way to recover locality of projectors is to first fractionalise each spin-1 into two
spin-1/2, and then only build local projectors into this expanded Hilbert space [110].
This procedure bears resemblance to the PXP case, showing that fractionalisation can
play an import role in QMBS phenomena [110]. Other QMBSs stemming from an
RSGA have been devised in a spin-1/2 model with emergent kinetic constraints [111],
in a model with the dynamical Onsager algebra [112] and in a three-coloured model on
a kagome lattice [113], amongst others.

2.5.3 Rainbow scars

The final mechanism we choose to discuss is a way to engineer scarring in models
that can be decomposed into two identical subsystems. This so-called “rainbow scars”
construction [114, 115] is based on having two subsystems, labelled “1” and “2”. These
subsystems have L sites with each site having p levels. Let us denote their Hilbert spaces
by H1 and H2, and the Hilbert space dimension D1 = D2 = pL. The construction
requires that the subsystems’ Hamiltonians obey the relation

Ĥ2 = −M̂Ĥ⋆
1M̂

†, (2.48)

where M̂ is a unitary transformation mapping between the subsystems 1 and 2. This
implies that the eigenvalues of Ĥ1 and Ĥ2 are identical but with an opposite sign.
Notably, we can see that the eigenstates |E1,j⟩ in subsystem 1 and |E2,j⟩ in subsystem
2 have opposite energies are are related by |E2,j⟩ = M̂ |E⋆1,j⟩.

One consequence of the previous construction is that |E1,j⟩ ⊗ |E2,j⟩ will be an
eigenstate of the composite system with energy exactly 0 for all j. Such states form an
orthonormal basis of a zero-energy subspace of dimension D1, which always contains
the state

|I⟩ = 1√
D1

D1∑
j=1

|E1,j⟩ ⊗ |E2,j⟩ . (2.49)

This state is special as it can be recast into a simpler form that is independent of the
microscopic details of Ĥ1. To do that, we first rewrite it as

|I⟩ = 1√
D1

D1∑
j=1

|E1,j⟩ ⊗ M̂ |E⋆1,j⟩ = 1√
D1

D1∑
j=1

∑
|τ⃗⟩,|σ⃗⟩∈H1

(|σ⃗⟩ ⟨σ⃗|E1,j⟩) ⊗ M̂
(
|τ⃗⟩ ⟨τ⃗ |E⋆1,j⟩

)
(2.50)

where σj denotes the state of site j, and σ⃗ denotes a configuration of multiple sites in
the computational basis. In the second equation, we introduced two resolutions of the
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identity as sums of projectors |σ⃗⟩ ⟨σ⃗| (and same for τ⃗) on all configurations in subsystem
1. We can manipulate this further to show

|I⟩ = 1√
D1

∑
|τ⃗⟩,|σ⃗⟩∈H1

|σ⃗⟩ ⊗ M̂ |τ⃗⟩

D1∑
j=1

⟨σ⃗|E1,j⟩ ⟨τ⃗ |E⋆1,j⟩

 = 1√
D1

∑
|σ⃗⟩∈H1

|σ⃗⟩ ⊗ M̂ |σ⃗⟩ ,

(2.51)
The term in parentheses simply reduces to ⟨σ⃗|τ⃗⟩ as the |E1,j⟩ form an orthonormal
basis of H1. Importantly, the final expression for |I⟩ only depends on M̂.

If an additional condition is met, then we can recast |I⟩ in a more local form,
which gets rid of the sum over all possible configurations in subsystem 1. This requires
the operator M̂ to be composed of a mapping operator R̂ and another operator Ô as
M̂ = ÔR̂, where R̂ maps site j (located in subsystem 1) to site j̄ located in subsystem 2,
thus creating pairs of sites across subsystems. Ô must be a tensor product of single-site
operator acting in subsystem 2 as Ô = ⊗

j ôj . The state |I⟩ can then finally be written
as

|I⟩ = 1√
D1

∑
|σ⃗⟩∈H1

|σ⃗⟩⊗M̂ |σ⃗⟩ = 1√
D1

∑
|σ⃗⟩∈H1

|σ⃗⟩⊗Ô
(
R̂ |σ⃗⟩

)
=

L⊗
j=1

1
√
p

∑
σj

|σj⟩ ⊗(ôj̄ |σj̄⟩).

(2.52)
To get the final expression, we use the fact that the sum on all possible configurations
in H1 can be rewritten as a tensor product of the sum of all states on the individual
sites. This decomposition is also possible for M̂ |σ⃗⟩ as R̂ maps any site j to another
site j̄ in subsystem 2 and as Ô is a tensor product of local operators ôj̄ .

The state |I⟩ is called the rainbow state and is simply a tensor product of Bell pairs.
For example, in the case where each subsystem is composed of spin-1/2 and Ô is the
identity, we end up with

|I⟩ =
L⊗
j=1

1√
2

(
|↑⟩j |↑⟩j̄ + |↓⟩j |↓⟩j̄

)
. (2.53)

Importantly, in this state there is maximum entanglement within the Bell pairs but
no entanglement between them. This means that the bipartite entanglement entropy
of this state will heavily depend on the chosen cut. If the cut separates subsystems 1
and 2, then it separates all Bell pairs and the entanglement entropy of |I⟩ is maximal
and scales as the volume of the system. We can also have the opposite case where no
Bell pairs are separated and the entanglement entropy is identically 0. Any behaviour
between these can also be observed, with area-law or sub-area-law scaling possible.

Due to the relatively simple structure of |I⟩, it is straightforward to add a term
Ĥint that connects subsystems 1 and 2 and has |I⟩ as eigenstate. For example, for the
state in Eq. (2.53) any XY-type term between states in the same Bell pair will do. The
dynamics of full system is then

Ĥfull = Ĥint + Ĥ1 ⊗ 1̂2 + 1̂1 ⊗ Ĥ2, (2.54)
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with |I⟩ as one of its eigenstates. It is important to note that |I⟩ is an eigenstate of
the full Hamiltonian independent of the microscopic details of Ĥ1. Its structure only
depends on Ô and its energy on Ĥint. As such, the rainbow state will generically be
very different from other eigenstates that depend heavily on the details of Ĥ1.

We note that this mechanism is not limited to embedding a single scarred eigenstate.
Indeed, if there is an operator Ô1 that only acts on subsystem 1 and commutes with Ĥ1
then acting with Ô1 ⊗ 1̂2 on |I⟩ leads to another eigenstate of Ĥ1 ⊗ 1̂2 + 1̂2 ⊗Ĥ2. Indeed,
it is straightforward to check that Ô1 |E1,j⟩ is also an eigenstates of Ĥ1 with the same
energy as Ĥ1Ô1 |E1,j⟩ = Ô1Ĥ1 |E1,j⟩ = E1,jÔ1 |E1,j⟩. It can thus be used instead of
Ô1 |E1,j⟩ in Eq. (2.49), and if it is taken out of the sum in subsequent manipulations, we
simply end up with

(
Ô1 ⊗ 1̂2

)
|I⟩. Therefore, if this state is also an eigenstate of Ĥint,

it will be an eigenstate of the full Hamiltonian. If there are multiple symmetries Ôk
of Ĥ1, it also possible to combine them to create additional scarred states as Ô1Ô2 |I⟩
as shown in Fig. 2.10d. Note that if there are multiple states generated this way,
the scarred eigenstates might not be exactly equal to them. Indeed, these states are
not guaranteed to be orthogonal. What is important is that they are all degenerate
eigenstates of Ĥ1 ⊗ 1̂2 + 1̂1 ⊗ Ĥ2 with energy zero. Thus, they span a degenerate
subspace, from which we can construct eigenstates of Ĥint that will automatically be
eigenstates of the full system.

This addition of new scarred states can also be achieved with higher powers of a
single operator. Notably, if Ĥ1 has a U(1) symmetry with n different values, we can have
n+1 scarred eigenstates using Ôk1Ĥ1 with k = 0 to n. As Ôk1Ĥ1 generates the k-th states
from state k − 1, it will then act as a raising (or effective Ĵx) operator. We can then
chose a suitable Ĥint that acts as an effective Ĵz operator such that the (orthogonalised)
states are equally spaced in energy, giving a tower of scarred eigenstates obeying the
spectrum generating-algebra construction [114]. This precise case occurs in the spin-1
XY magnet [108, 115]. However, to be made apparent, it requires splitting the spin-1
into two spin-1/2 that will constitute the two subsystems. Some η-pairing tower of
states in the spinful Fermi-Hubbard model [106, 107] can also be explained in that way,
with the up and down spin species acting as the two subsystems [115]. Finally, we note
that it is also possible to engineer other algebraic structures. To do this, one needs to
chose Ĥ1 with a compatible symmetry and the possibility to engineer an Ĥint that acts
as the required operator within the effective algebra [114].

2.5.4 Other constructions

As we already mentioned while discussing the individual cases, the three mechanisms of
QMBS reviewed in this chapter are far from orthogonal to each other. In some cases,
like the XY magnet [108], we can explain the appearance of scarring through all of
them. These constructions are mostly useful as a way to engineer Hamiltonian systems
featuring QMBSs. Other such mechanisms have been proposed, relying on proximity
to Floquet evolution [116] or making use of matrix product states [117]. We note that
recently, a new framework based on commutant algebras has been proposed to unify
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the different construction above along with conventional symmetries and Hilbert space
fragmentation [118–121]. Beyond these exact constructions, approximate scars have
also been devised in other non-integrable lattice models [122], models of correlated
fermions and bosons [123–125], and periodically driven systems [126–129]. Finally,
there has been a recent interest in “inverted scarring” [130–132]. In this case, special
eigenstates are instead embedded in a many-body localised system.

2.6 Summary

In this chapter, we have reviewed the key concepts of ergodicity and thermalisation in
quantum systems that are explained by the ETH. We have also discussed how these
notions relate to quantum chaos, in particular through the similarities between the
eigenstates of physical Hamiltonians and those of random matrices, providing a way to
diagnose if a given quantum system will thermalise or not. Moreover, we have surveyed
some known violations of the ETH. We have introduced the concept of strong ETH
violation, where all eigenstates deviate from the thermal prediction, as exemplified by
integrable and MBL systems. By contrast, most of our attention was focused on weak
ETH violation, where only a handful of eigenstates in the spectrum disagree with the
ETH. We have first illustrated this with an example of single-particle quantum scars,
arguing that similar physics occurs in a many-body system of Rydberg atoms, described
by the PXP model. Finally, we have discussed a few complementary mechanisms that
give rise to QMBSs in other physical systems.

Despite the plethora of theoretical models that host QMBSs, experimental realisa-
tions remain limited. Apart from Rydberg atom experiments, only a handful of other
analogue quantum simulators have shown scarring-like behaviour. Exact helix states
in XXZ spin models [133] have been observed in ultracold atoms, although only in 1D
where the model is integrable [134]. These states only become true QMBSs in higher di-
mension or upon the addition of perturbations that make the model chaotic [134, 135],
which has not been experimentally achieved yet. Signatures of ergodicity breaking re-
sembling QMBS have also been measured in a 1D dipolar gas [136]. More recently,
there have also been simulations of quantum many-body scarring in digital quantum
systems. This include the reproduction of quenches of the original Rydberg atoms [137]
as well the preparation of scarred eigenstates in the spin-1/2 scarred system [138]. Fi-
nally, using nitrogen-vacancy centres, quenches in the XY spin-1 magnet have also been
simulated [139]. However, these results are limited to relatively short times and small
sizes due to the restrictions of the current generation of devices.

In conclusion, the most important realisations of QMBS to date remain the ones
in Rydberg atom arrays, both in 1D [43] and 2D [78]. These are the only results in
large enough systems that go beyond the capabilities of classical simulation while at the
same time providing clear revivals and state transfer of the wave-function in otherwise
chaotic systems. This limited availability on other quantum platforms is currently a
hindrance to the more widespread study of QMBSs. In this thesis, we will tackle this
problem by proposing experimental implementations of QMBSs in quantum platforms

37



2. QUANTUM THERMALISATION, WEAK ERGODICITY
BREAKING AND MANY-BODY SCARS

such as ultracold atoms in optical lattices (Chapters 4 and 5) and superconducting
qubits (Chapter 6). We will also show results from quantum simulators for each of
these platforms, demonstrating the feasibility of our proposals.

Beyond simply witnessing their presence in a quantum system, QMBSs were used
in Rydberg atoms to prepare specific entangled states [140]. This hints to a potential
practical use of this phenomenon: protecting a quantum trajectory from the scrambling
action of chaotic quantum dynamics. This includes preserving the memory of the
initial state or using QMBSs for state transfer. Beyond these simple orbits, quantum
trajectory steering techniques based on QMBSs have also been devised [141, 142]. In
Chapter 6, we will develop a way to tune the structure of QMBSs, allowing enhanced
control on which states avoid thermalisation and the ability to change it dynamically.
Similarly, due to the long coherence times associated with QMBSs, it has also been
proposed that they could lead to better metrological accuracy [143]. In Chapter 3, we
will show that certain classes of QMBSs have additional properties that indeed make
them valuable for entanglement-enhanced quantum metrology.
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Chapter 3

Algebraic structure of many-body scars
and implications for transport and
metrology

In the previous chapter, we have introduced various mechanisms known to give rise
to QMBSs. In this chapter, we focus on the RSGA construction and explore two of
its physical consequences. First, we show that when the relevant algebra is su(2), the
QMBS eigenstates acquire additional desirable properties, regardless of the microscopic
details of the system. In particular, we will show they possess extensive multipartite
entanglement, making them a valuable resource for quantum metrology. Using the
PXP model as an example, we demonstrate that multipartite entanglement can be
experimentally accessed even when the su(2) algebra structure is only approximate.
As a second consequence of RSGA, we demonstrate that it leads to anomalous beha-
viour in the energy transport of the PXP model. This will be attributed to the fact
that this model possesses multiple su(2) representations, all stemming from the model’s
proximity to a free spin-1 paramagnet. These multiple representations conspire to pro-
duce observable dynamical signatures even at infinite temperature, e.g., oscillations in
energy autocorrelation function when starting from a maximally mixed initial state.
Finally, we show that even after these oscillations have dampened, an enigmatic re-
gime of superdiffusion sets in, which is remarkably long-lived and robust to certain
perturbations.

3.1 Multipartite entanglement of eigenstates

Thus far, we have repeatedly made use of von Neumann bipartite entanglement en-
tropy to elucidate the difference of scarred eigenstates from thermal states. However,
this is not the only measure of entanglement, and in particular it does not quantify
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useful entanglement. Indeed, while classical states have no entanglement and are not
a good resource from a quantum information (QI) point of view, thermal states that
feature maximal volume-law entanglement scaling are also of little use. In comparison,
the Greenberger-Horne-Zeilinger (GHZ) state is heavily used in QI despite having a
constant (area-law) entanglement entropy of ln(2). In order to better characterise the
potential usefulness of scarred states, we now turn to multipartite entanglement, which
describes how many particles in a given system are entangled together.

3.1.1 Multipartite entanglement and quantum Fisher information

A quantum state state |ψ⟩ is said to be k-producible granted it can be written as [144]

|ψ⟩ = |ϕ1⟩ ⊗ |ϕ2⟩ ⊗ · · · ⊗ |ϕn⟩ , (3.1)

where the |ϕj⟩ all contain k or fewer particles. This means that there are no groups of
more than k particles entangled together. From this, we can say that a state contains
genuine k-partite entanglement if it is k-producible but not (k−1)-producible, meaning
that it contains at least a block of k particles entangled together. These definitions can
be straightforwardly extended to mixed states via convex combinations [144].

Clearly, inspecting every possible bipartition to check which ones are non-entangled
is not practical. In order to determine multipartite entanglement, one can use the
quantum Fisher information (QFI) denoted by FQ [145–147]. QFI has key mathemat-
ical properties such as convexity, additivity and monotonicity [146, 148–150]. It is also
fundamental in quantum metrology, as it is the main factor determining the achievable
accuracy in parameter estimation.

Let us consider the situation where we want to know the value of a parameter λ
that enters some quantum phenomenon. For that, we let it act on a quantum state
ρ̂, giving us a new state ρ̂λ that now directly depends on λ. By measuring ρ̂λ we
can then estimate the true value of this parameter. However, our estimator has some
uncertainty characterised by the variance (∆λ)2. The lower limit that this variance can
take is given by the quantum Cramér-Rao bound

(∆λ)2 ≥ 1
MFQ(ρ̂λ) , (3.2)

where M is the number of independent measurements made during the measure-
ment protocol [148, 150]. If ρ̂λ is generated by an Hermitian operator Ô such that
ρ̂λ = eiλÔρ̂e−iλÔ, then FQ admits an exact expression. For a general mixed state
ρ̂ = ∑

n pn|n⟩⟨n|, it is [148]

FQ(Ô, ρ̂) = 2
∑
n,m

(pn − pm)2

pn + pm
|⟨n|Ô|m⟩|2. (3.3)

This quantity is upper bounded by 4Tr
[
ρ̂ Ô2

]
−4Tr

[
ρ̂ Ô

]2
, with the inequality saturated

only if ρ̂ is a pure state. In that case, the density matrix is simply ρ̂ = |ψ⟩ ⟨ψ| and the
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QFI is
FQ(Ô, |ψ⟩) = 4 ⟨∆Ô2⟩ = 4 ⟨ψ|Ô2|ψ⟩ − 4 ⟨ψ|Ô|ψ⟩2

. (3.4)
Finally, there is a direct relation between the QFI and multipartite entanglement [151–
153]. Let us consider a system with N particles and a global operator Ô = 1

2
∑N
i=1 ôi

which is an extensive sum of operators ôi with local support and with eigenvalues λ such
that λmax − λmin = 2, e.g. Pauli matrices. If the QFI density satisfies the inequality

fQ ≡ FQ(Ô, ρ̂)
N

> m , (3.5)

then at least (m + 1) parties in the system are entangled (with 1 ≤ m ≤ N − 1 a
divisor of N). This means that the system has genuine (m+ 1)-partite entanglement.
In particular, if N − 1 ≤ fQ(Ô) ≤ N , then the state is genuinely N -partite entangled.

Now that we have defined QFI and multipartite entanglement, we move on to
computing the expected values for both chaotic and scarred eigenstates. We will show
that there is a stark contrast between the two when QMBSs stem form an su(2) RSGA,
as derived with our collaborators in Ref. [1].

3.1.2 QFI for chaotic eigenstates

Computing the QFI for generic eigenstates might seem an impossible task without the
knowledge of microscopic details of the system. However, in this section we show that
this can be done by relying on their similarity to thermal states. In general, differ-
ent operators Ô lead to different bounds on QFI and there is no systematic method
(without some knowledge about the physical system [154, 155]) to choose the optimal
one. Here, we restrict ourselves to one-dimensional systems and collective operators
Ô = 1

2
∑N
i=1 ôi, which are typically explored in cold-atoms experiments and in interfer-

ometric schemes [150]. For the eigenstates |En⟩, the QFI with respect to such collective
operators FQ(Ô, |En⟩) = 4⟨En| ∆Ô2 |En⟩ can be expressed in terms of the connected
correlation functions Gi,j(En) ≡ ⟨En|ôiôj |En⟩ − ⟨En|ôi|En⟩⟨En|ôj |En⟩. If we further
assume translational invariance, then Gi,j = G|i−j| and the QFI density (3.5) reads

fQ(Ô, |En⟩) = G0(En) + 2
N−1∑
r=1

Gr(En) . (3.6)

Note that G0(En) = O(1) is always an intensive quantity1, hence the scaling of fQ
depends on the behaviour of Gr(En) as a function of distance r. Generic chaotic
eigenstates of a locally-interacting many-body Hamiltonian far from criticality are well-
known to obey ETH [13, 156]. In this case, the connected correlation functions scale
as

Gr(En) ∼ cre
−r/ξ , r ≫ ξ , (3.7)

where |cr| = O(1) is an intensive constant that depends on the operators, and ξ is
the correlation length at energy En. This is a consequence of the clustering property

1For instance, G(En) = 1 for spin operators and eigenstates in the middle of the spectrum.
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of connected correlation functions of local observables, which has been demonstrated
for canonical thermal states [157]. Appealing to ETH [158], the same clustering prop-
erty holds for eigenstates of local Hamiltonians up to sub-extensive corrections [159].
Notable exceptions include global conserved quantities, e.g., B̂ = ∑

i b̂i, which obeys
[Ĥ, B̂] = 0. In this case the variance of the conserved operator is zero in each eigenstate,
⟨B̂2⟩c = 0, imposing a sum rule that leads to ⟨b̂ib̂i+r⟩ ∼ − 1

2(N−1) , see e.g. Ref. [28].
A few remarks are in order. The scaling in Eq.(3.7), despite being unambiguous

classically, might look counterintuitive with respect to common wisdom about quantum
chaotic eigenstates. Namely, the latter are well known to be highly entangled quantum
states, characterised by a volume law scaling of the entanglement entropy [160–162].
In other words, they can not be represented as matrix product states (MPS) of finite
bond dimension. This might seem to contradict Eq.(3.7), which states the absence of
long-range correlations between local operators. First of all, the connected correlation
functions Gr(En) of local (small) operators encode only the local information of the
two-point reduced density matrix (on sites i and i+ r). Hence, their scaling makes no
predictions on the non-local structure encoded in the entanglement entropy of the —
usually large — region A. Such entanglement entropy SA is defined as the von Neumann
entropy of the reduced density matrix ρ̂A and, to study its scaling with the system size,
one typically lets the region A scale with the volume of the system. Therefore, to falsify
the volume law scaling, one would need exponential decay of correlations of non-local
(large) operators with support over A ∝ Vol. This statement is much stronger than
Eq. (3.7) and it is usually wrong (interestingly, this occurs for many-body-localised
eigenstates [31]). A final comment concerns the MPS representation of the eigenstates.
While one could always describe the two-point reduced density matrix (on sites i and
i+r) as an MPS of finite bond dimension, the MPS representation of the full eigenstate
constitutes a global description and, for what argued above, the site in the middle of
the system should carry the non-local correlations for size N/2.

The previous comments highlight in what sense chaotic ETH eigenstates are dif-
ferent from thermal density matrices ρ̂Gibbs: they have the same correlations as local
operators, but when it comes to non-local ones they can be very different. Indeed, the
mutual information of ρ̂Gibbs is area law and this state can be written efficiently as
a matrix product operator (MPO). On the other hand, chaotic eigenstates are more
complicated, hosting volume law entanglement and non-local correlations.

Now that we have argued that correlations in chaotic eigenstates obey Eq. (3.7),
this equation can be plugged in Eq. (3.6). Summing over r, we obtain for N ≫ 1

fQ(Ô, |En⟩) ≲ G0(En) + 2c
e1/ξ − 1

+ O(e−N ) , (3.8)

where we have used |cr| ≤ c = O(1). This equation shows that generically the QFI
density of chaotic eigenstates, away from criticality, is an intensive quantity that can be
evaluated explicitly from the knowledge of a thermal correlation length. Furthermore,
whenever the correlation length ξ is large (but finite), one has

fQ(Ô, |En⟩) ≃ 2ξ for ξ ≫ 1 . (3.9)
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Thus, the QFI is also large and finite. By comparing this expression with the relation
to multipartite entanglement (3.5), we find that the size of the biggest entangled block
scales as twice the correlation length. This finding is fully consistent with known results
for critical pure or thermal states, where the QFI for the order parameter diverges
universally [154, 163–167].

3.1.3 QFI for scarred eigenstates

We now contrast the scaling of the QFI for thermal eigenstates (3.8) to the one for
a class of exact scars. More precisely, we focus on QMBS eigenstates that stem from
an RSGA, as introduced in Chapter 2. Additionally, we require here that the raising
operatorQ† is a collective operator Q̂† = ∑N

i=1 ôi with ôi an operator with local support.
For convenience and additional clarity when considering the su(2) case, let us define

Ĵ+ ≡ Q̂†

2 , Ĵ− ≡ Q̂

2 , Ĵz ≡ Ĥ

ω
. (3.10)

The commutation relations between Ĵz and Ĵ± (in the scarred subspace W ) are already
known from Eq. (2.46). However, there is the some freedom in the properties of
[Ĵ+, Ĵ−]W . These will prove to be important, as ⟨Sn| Ĵ+Ĵ− |Sn⟩ /N2 acts as probe
for off-diagonal long-range order (ODLRO) [168], which would be signalled by values
of this quantity scaling as O(1). If, for instance, one has ([Ĵ+, Ĵ−] − 1)W = 0 – the
standard algebra of the harmonic oscillator – then Ĵ± act like creation and annihilation
operators, while Ĵ+Ĵ− acts as a number operator. It then follows

⟨Sn| Ĵ+Ĵ− |Sn⟩
N2 = 1

N

n

N
, (3.11)

and there is no long-range order. Suppose, instead, that the operators Ĵ obey the usual
su(2) commutation relations

[Ĵ+, Ĵ−] =w 2Ĵz, (3.12)

where we use =w to denote that the equality only holds in the subspace W . Then
Eq. (3.10) is simply the Cartan-Weyl basis and we can define the effective spin operators
Ĵx =

(
Ĵ+ + Ĵ−

)
/2 and Ĵy =

(
Ĵ+ − Ĵ−

)
/(2i) as well as a the total spin

Ĵ2 = (Ĵx)2 + (Ĵy)2 + (Ĵz)2 = (Ĵz)2 + 1
2
(
Ĵ+Ĵ− + Ĵ−Ĵ+

)
=w Ĵ

z (̂Jz + 1) + Ĵ−Ĵ+ =w Ĵ
z(Ĵz − 1) + Ĵ+Ĵ− . (3.13)

Since [Ĵ2, Jz,±] =w 0, the scarred states |Sn⟩ are characterised by a fixed eigenvalue of
Ĵ2 that can be determined directly from the ground state as

Ĵ2 |S0⟩ =
[
Ĵz(Ĵz − 1) + Ĵ+Ĵ−

]
|S0⟩ = E0

ω

(
E0
ω

− 1
)

|S0⟩ , (3.14)
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where we have used J− |S0⟩ = 0 and the definition of Ĵz in Eq. (3.10). This is equi-
valent to a total spin S = −E0/ω. Note that this quantity is always positive as the
Hamiltonian in W is proportional to the total magnetisation along the Z axis, which
has a ground state with E0 < 0. While Eq. (2.46) leaves the possibility that an addi-
tional term proportional to the identity is also included in the Hamiltonian, it would
then not directly satisfy Eq. (3.12). Nonetheless, in such a case our results would still
apply. Due to the part of the Hamiltonian acting as µ times the identity in W , the
total spin would then be S = −(E0 − µ)/ω.

For simplicity, let us only consider the case µ = 0, for which we can compute

⟨Sn| Ĵ+Ĵ− |Sn⟩ = ⟨Sn| Ĵ2 − Ĵz(Ĵz − 1) |Sn⟩

= E0
ω

(
E0
ω

− 1
)

− En
ω

(
En
ω

− 1
)

= −2E0
ω
n− n2 + n .

(3.15)

If we now use the extensivity of the ground state energy E0 = −ϵ0N and divide
everything by N2, we directly obtain

⟨Sn| Ĵ+Ĵ− |Sn⟩
N2 = 2ϵ0

ω

n

N
−
(
n

N

)2
+ n

N2 , (3.16)

As n = 0 to N , the first two terms are O(1) while the last one is only O(1/N). Note
that Eq. (3.15) gives back exactly Eq. (8) of Ref. [108] with ω = 2h and ϵ0 = h.

Hence, we have shown that exact scars with finite energy density (n/N = O(1))
possess long-range order [168]. As such, for the local operators ôi appearing in Q̂†, the
connected correlation functions are finite in the thermodynamic limit i.e.

Gr(En) ∼ const , r → ∞ , N → ∞ . (3.17)

This property was used in Ref. [73] to interpret scarred eigenstates as finite-energy-
density condensates of weakly interacting π-magnons that possess long-range order in
both space and time. Our key result is that, through Eq. (3.6), the presence of long-
range order implies genuine multipartite entanglement of this class of QMBSs. In fact,
the QFI density with respect to the operator Ĵx can be directly computed. We first
decompose Ĵx into Ĵ+ and Ĵ− to get

fQ(Ĵx, |Sn⟩) = 4
N

⟨Sn|
(
Ĵ+ + Ĵ−

2

)(
Ĵ+ + Ĵ−

2

)
|Sn⟩ − 4

N

(
⟨Sn| Ĵx |Sn⟩

)2

= ⟨Sn| Ĵ+Ĵ− + Ĵ−Ĵ+ |Sn⟩
N

= 2⟨Sn| Ĵ+Ĵ− |Sn⟩
N

− 2⟨Sn| Ĵz |Sn⟩
N

,

(3.18)

where we used ⟨Sn| Ĵx |Sn⟩ = ⟨Sn| (Ĵ±)2 |Sn⟩ = 0 to go from the first to the second line
and the definition of Ĵz in Eq. (3.12) to go between the second and third line. Finally,
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looking at the last line, we can use Eq. (3.16) to obtain the analytical expression for
the first term while the second is equal to −ϵ0N/ω + n by construction. This leads to
the final expression

fQ(Ĵx, |Sn⟩) = 2
(2ϵ0
ω

− n

N

)
n+ 2ϵ0

ω
, (3.19)

Therefore, exact scars with finite energy density n ∼ N possess super-extensive QFI
FQ ∼ N2 and they are genuinely multipartite entangled. This is an important result,
as it is highly non-trivial to engineer super-extensive scaling of quantum Fisher inform-
ation for many-body states [149]. We note that results can be obtained for Ĵy and for
linear combinations of Ĵx and Ĵy.

Figure 3.1: a Overlap between exact PXP eigenstates and the Néel state. Red squares indicate
the QMBS eigenstates. b The QFI density of the PXP eigenstates in the k = 0, p = 1 and
k = π, p = −1 sectors. The red squares denote the same QMBS eigenstates as in a. In both
plots, the dips in the middle of the spectrum are due to hybridisation of QMBS eigenstates
with thermal states. The colour code indicates the density of points and all data is for the PXP
model in Eq. (2.20) with N=32 spins.

3.2 Multipartite entanglement in the PXP model

In the PXP model (introduced in Chapter 2), the algebraic structure of scarred states
is only approximate, hence Eq. (2.46) is not exactly obeyed. Nonetheless, we can
numerically probe the QFI density using the staggered magnetisation

M̂S = 1
2
∑
j

(−1)j σ̂zj , (3.20)
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which is exactly equal to Ŝz as obtained from the total magnetisation along the Z axis
in the parent spin-1 model, see Eq. 2.44. This operator is a natural choice because it
is experimentally accessible and it is proportional to the total spin Ĵx operator in the
language of the RSGA, while QMBSs are eigenstates of the corresponding Ĵz operator.

For simplicity, we will set Ω = 1 in the rest of this chapter. The numerical results
for the QFI density of eigenstates are then shown on Fig. 3.1. As for exact scars,
the scarred eigenstates in the PXP model have largest QFI among all eigenstates.
However, as the scarred PXP subspace is weakly connected to the rest of the Hilbert
space, in larger systems the QMBS eigenstates begin to hybridise with thermal eigen-
states [54], which is manifested as a reduction in QFI and the overlap with the Néel
state. Signatures of this in the middle of the spectrum can be observed in Fig. 3.1.
Hybridisation can thus prevent the QFI of the individual scarred eigenstates to scale
super-extensively beyond a certain size, see Fig. 3.2. The same figure also shows that,
for thermal eigenstates, fQ does not show a clear dependence on N , as predicted in
Eq. (3.8). While hybridisation will likely prevent any single QMBS eigenstate from

14 16 18 20 22 24 26 28 30 32
N

0

5

10

f Q E ≈ −5.30

E ≈ −3.99

E ≈ −2.67

E ≈ −1.34

Mean

Figure 3.2: Finite size scaling of QFI density for several QMBS eigenstates of the PXP model
with energies E near the middle of the spectrum, contrasted against the mean value over all
eigenstates. The scaling is extensive until N=28, where hybridisation between the scarred
eigenstates and thermal eigenstates with a similar energy starts to lower fQ.

having a super-extensive QFI, FQ∝N2, in the asymptotic limit, such exact eigenstates
cannot realistically be prepared in Rydberg atom experiments, as they lack protection
from any global symmetry. Instead, we propose that extensive QFI in this model can
be leveraged in practice by dynamically evolving the system to moderate times, i.e.,
times longer than the initial relaxation scale ∼1/Ω, where Ω is the Rabi frequency for
the model in Eq. (2.20). In Fig. 3.3 we computed the evolution of QFI density when
the PXP model is quenched from various initial states, contrasting the behaviour of
|Z2⟩ with thermalising initial states, such as the polarised state, |◦◦◦ · · · ⟩, and other
random product states.

The dynamics from the |Z2⟩ state in Fig. 3.3 clearly stands out from other therm-
alising initial states. Following the initial spreading, fQ undergoes a fast growth in the
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Figure 3.3: a Time evolution of QFI density following quenches from various initial states for
N = 32. The horizontal lines show the infinite-time QFI density averages for the Néel state and
the polarised state. b Long-time QFI density averages for various initial states as a function
of system size. The green crosses correspond to the average over the time window indicated in
grey in a. Its width is longer than the revival period of the Néel state in order to average over
these higher-frequency oscillations. The window is centred around t = 180, because at this time
the maximum has been reached for all system sizes investigated but the drop at even later times
has not started yet. The dashed green line is a linear fit 0.20N + 3.06 to this data. In both
plots the data for random states is an average over 20 samples and the error bars correspond
to the standard deviation.

|Z2⟩ case, reaching a broad maximum at intermediate times, O(102). For all system
sizes investigated (including the ones where eigenstate hybridisation is observed), the
value of this maximum is extensive in system size. At much later times, however, fQ
starts to drop, as expected from the eigenstate plot in Fig. 3.1. The non-extensivity of
the late-time value of fQ can be independently confirmed by computing the infinite-time
average using the diagonal ensemble with corrections for higher moments (see App. A).
We attribute this behaviour as stemming from the very small energy difference between
the scarred eigenstate and the thermal state it hybridises with. This spacing only be-
comes apparent at very late time, and before that the two states essentially have the
same phase. As such, the fact that the anomalous properties become “spread” between
these two states has no effect.
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3.2.1 Effect of perturbations

Beyond quenches, we can also try to improve the QFI of eigenstates themselves by
using the quasi-local PXPZ perturbation in Eq. (2.34). This further separates the
top band of scarred states from the rest and makes the approximate su(2) algebra
almost exact in the scarred subspace. As a consequence, the QFI of the scarred states
is essentially equal to the analytical formula in Eq. (3.19). While this perturbation

Figure 3.4: QFI density of the PXP eigenstates with and without perturbation probed with
staggered magnetisation MS for N = 30. The scarred states (identified by their high-overlap
with the Néel state) are highlighted in red. The QFI density of the scarred eigenstates of the
perturbed PXP model shows good agreement with the expectations based on the exact su(2)
algebra. In the perturbed case, no hybridisation is visible, unlike in the pure PXP model.
This is a consequence of the algebra being almost closed, and thus providing a much stronger
separation between the scarred states and the thermal bulk.

restores the extensive QFI density of scarred states for the system sizes we can reach
numerically, this is a quasi-local perturbation that is extremely complicated to engineer
in a quantum device.

To try and overcome this last issue, we can turn towards more experimentally
friendly perturbations. Among these, a prime candidate is the staggered magnetisation
itself. Indeed, as it is part of the approximate su(2) algebra, one can wonder about its
impact on both the dynamics and the eigenstates. More precisely we study the effect
of χ in the Hamiltonian

ĤStag = ĤPXP + 2χM̂S =
N∑
j=1

P̂j−1σ̂
x
j P̂j+1 + χ

N∑
j=1

(−1)j σ̂zj . (3.21)

Looking at the PXP su(2) algebra in Eq. (2.44), it is straightforward to see that
the first term corresponds to the total X operator of the algebra, while the second
term corresponds to the total Z operator, and so the Hamiltonian can be rewritten as√

2Ŝx+2χŜz. Due to this, the dynamics of the model in Eq. (3.21) can be understood
in a simple spin-precession picture for all χ, similar to what was discussed in Chapter 2
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for the case χ = 0. We illustrate this with the help of the Bloch sphere in Fig. 3.5a.
The Néel state is at the South Pole, along the Z axis. For χ = 0, the precession axis
is the X axis, lying in the equatorial plane. As χ is increased, the precession axis is
tilted out of plane and moved closer to the Z axis. Hence, the antipodal point on the
trajectory is no longer the anti-Néel state (at the North Pole), but another state placed
on the opposite side of the precession axis. As χ is further increased, this opposite
point gets closer and closer to the Néel state. In the limit χ → ∞, the precession
axis becomes the Z axis and the Néel state an exact eigenstate of the system. As a
consequence, we would naively expect better revivals as χ increases. However, detailed
analysis (see Appendix B) shows that the improvement of revivals is non-monotonic in
χ, with local maxima at χ = 0, χ = ±1/

√
8 and χ → ±∞. Importantly, the maximum

at χ = ±1/
√

8 leads to better revivals than χ = 0.
In practical terms, using staggered magnetisation with χ = ±1/

√
8 provides a

relatively simple way to enhance dynamical signatures of scarring compared to the
other perturbations with similar effect that were discussed in Chapter 2. Nonetheless,
it also has limitations. Indeed, the staggered magnetisation does not make the algebra
as closed as do PXPP and PXPZ perturbations, as it main effect is a more equal spacing
between QMBS states. The fact that the Hamiltonian is now

√
2Ŝx+2χŜz instead of

just
√

2Ŝx also means that the staggered magnetisation (equal to Ŝz) will no longer
be orthogonal to it. As such, the variance of the scarred eigenstates with respect to
it will no longer be maximal. This can be seen in Fig. 3.5b, where it is clear that the
QFI of eigenstates is higher in the unperturbed PXP model than for χ = 1/

√
8 when

probed with the staggered magnetisation. While this is in general not a problem and
one could simply use Ŝy instead, this operator is equal to staggered PYP in the PXP
model. So this is no longer a sum of single-site operators. The projectors P̂ also mean
that the extremal value of this operator are not ±N/2 like for M̂S but will be smaller,
leading to a significantly reduced value of the maximum variance. The main message is
that, while it provides a clear advantage for the lifetime and amplitude of oscillations
after a quench, the staggered magnetisation does not lead to a clear improvement for
metrology.

So overall, we find that there is no experimentally realisable perturbation that allows
to restore the extensive QFI density for eigenstates. Beyond this, preparing high-energy
eigenstate is generally a very difficult task as well, as the energy gap to the neighbouring
states decreases exponentially with system size. On the other hand, the Néel state is
straightforward to prepare thanks to its simple structure. As such, we view performing
quenches from that state until intermediate times as the most promising way to obtain
states with extensive QFI density in the PXP model.

3.3 Multiple su(2) representations and spectral proper-
ties of the PXP model

In the previous sections, we have discussed the consequences of RSGA on the structure
of the eigenstates. We have also studied the PXP case, where this algebra is only
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Figure 3.5: a Schematic picture of the effect of staggered magnetisation on the dynamics after
a quench form the Néel state. As χ is increased, the precession axis is tilted towards the Z axis.
The X, Y and Z labels refer to the the approximate su(2) algebra, which matches with the spin-
1 description. b QFI density of the PXP eigenstates with χ = 1/

√
8 and in the pure PXP model

(χ = 0) probed with staggered magnetisation MS for N = 24. The scarred states (identified by
their high-overlap with the Néel state) are highlighted in red. The scarred eigenstates of the
perturbed PXP model show a smaller value of QFI that in the unperturbed one. This is mainly
explained by the staggered magnetisation not being orthogonal to the Hamiltonian anymore.

approximate. As we reviewed in Chapter 2, the algebraic structure in the PXP model
can be linked to a parent spin-1 model, where the Hamiltonian is simply the free
paramagnet ĤFX plus some perturbations Ĥ1 and Ĥ2. The scarred states can then
be understood as the eigenstates of this paramagnet (projected into the constrained
space) with the largest total spin. However, it is natural to ask what is the fate of the
other eigenstates of ĤFX. Do they get completely scrambled by Ĥ1 and Ĥ2, or can we
still find traces of them in the PXP model?

In order to answer this question, it is important to recall why the scarred states are
left relatively untouched by these two perturbations. In Ref. [68], it was found that
the effect of Ĥ1 could be counterbalanced by adding a small term δĤ, but only for
neighbouring spin-1 pairs forming a spin-2 quintuplet. The only eigenstates for which
this is true for all pairs are the one with maximal total spin, i.e |S⃗| = N/2. Hence
the effect of Ĥ1 on them is relatively small. However the proportion of these spin-2
pairs (in contrast to spin 0 or spin 1) is still close to 1 for all large spin representations
|S⃗| = N/2 − d, d ≪ N/2 for sufficiently many sites. So while the perturbation cannot
preserve them from the effect of Ĥ1, we can still expect them to have an imprint in the
PXP model. In this section, we will explore this and the effects these multiple su(2)
representations have on the dynamics.

As discussed in Chapter 2, the Néel state can be obtained as the projection of the
eigenstates of the spin-1 Sz operator with total spin |S⃗| = N/2 and magnetisation
mz = −N/2. As such, it has overlap with states with |S⃗| = N/2 and mx = −N/2
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Figure 3.6: Signatures of multiple su(2) representations in the PXP model. a Overlap between
eigenstates of the global spin-1 Sz operator with mz = −|S⃗| and the PXP eigenstates. Each
panel corresponds to a different momentum sector. The red squares indicate the primary QMBS
eigenstates with high overlap on the Néel state. b QFI density of PXP eigenstates. The red
crosses in a and b highlight the same eigenstates, which are the ones with the highest overlap
in a. c Oscillations in the smoothened density of states for N = 26 sites, with the inset showing
the difference between different sDOS (see text). d Spectral form factor for various system
sizes.

to N/2. So in order to probe if there are eigenstates of the PXP model which are
approximately projection of states with |S⃗| = N/2 −d and mx = −N/2 +d to N/2 −d,
we can probe overlap with a projected eigenstate of Sz with |S⃗| = −mz = N/2 − d,
which will fulfil the role of the Néel state for these representations. Anomalously high
overlap with this state would then indicate the presence of additional su(2) structures
in the PXP model. Let us denote the projected state with |S⃗| = −mz = N/2 − d
by |sz = N/2 − d⟩. The d = 1 state is the superposition of all single-spin flips with
momentum k,

|sz=N/2−1⟩k ∝
N/2∑
j=1

eikjσ−
2j−1|Z2⟩. (3.22)

The anomalous overlap of these states with some eigenstates was already noted in [80],
but the connection with multiple su(2) representations was not established. For any
k ̸= 0 we obtain a state with similar properties that is the lowest weight state of its
own approximate su(2) representation. Initial states with d ≥ 2 have more complicated
forms due to the non-trivial effect of the projection to the constrained Hilbert space. On
Fig. 3.6a, we show the overlap of the states |sz = N/2−d⟩k with the eigenstates of the
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PXP model with d = 0 to 2. In order to make sure that the middle and right panels have
no overlap with the usual scarred eigenstates, all three panels are for different momenta
sectors. As such, this clearly indicates the presence of other anomalous eigenstates in
the model. We note that on this figure, for d = 0 and d = 1 there are N/2 − d visible
towers of states implying a total of N+1−2d in the full spectrum. This is the expected
number for total spin N/2 − d. However, this is not the case for d = 2. We attribute
this to the relatively strong mixing between the representations as d increases. This
mixing is also the reason why we see towers of states instead of a clean top band. It
explains why, even for d = 0, we generally see additional structure below the top band
of states.

Fig. 3.6b shows fQ using staggered magnetisation for the PXP eigenstates with
the same momentum as the projected state. We generally see a higher fQ for state
displaying high-overlap with our projected states. However, in the rightmost panel the
states with maximal QFI density are not those with maximal overlap on |sz=N/2−2⟩k.
Further inspection reveal that these eigenstates instead display large overlap on the
state |sz=N/2−1⟩k, which is the highest total spin present in that momentum sector.
This illustrates well that the su(2) representations get progressively worse as the total
spin decreases. For fQ this effect is further amplified as this quantity scales with total
spin even for an exact algebra.

This deterioration with |S⃗| makes it unclear if these multiple su(2) representa-
tions leave imprints on the system beyond quenches from specific states. To show
that the bulk spectral properties of the PXP model are indeed affected, we consider a
smoothened density of states (sDOS) and spectral form factor (SFF) [19]. The sDOS
is defined as

ρσ2(E) = (1/D)
∑
n

exp
(
−(E − En)2/2σ2

)
/
√

2πσ2, (3.23)

where En are eigenenergies, D is the reduced Hilbert space dimension, and σ sets the
smoothing interval. Fig. 3.6c shows that the sDOS has tiny oscillations in the middle of
the spectrum. These oscillations can be made more prominent by subtracting the sDOS
at low and high variances, ∆ρ = ρσ2=0.06 − ρσ2=0.5, plotted in the inset. The energy
difference between the peaks in sDOS roughly coincides with the oscillation period in
the SFF, defined as

K(t) =
∑
n,m

e−i(En−Em)t, (3.24)

and plotted in Fig. 3.6d for a range of system sizes. Although the SFF, in general, is
not a self-averaging quantity, the peaks appear converged in system size, and thus they
are expected to persist in the thermodynamic limit.

These other su(2) representations can also be stabilised by the PXPZ perturbation
in Eq. (2.33) with the same strength λ = 0.051. This is reflected in the presence
of clearer peaks in the sDOS and by more prominent oscillations in the SFF. More
importantly, it can lead to fidelity close to 1 for initial states |sz = N/2−d⟩k linked to
k, d ̸= 0. In Fig. 3.7, we show the fidelity at the first QMBS revival for d = 0 and
d = 1 for various system sizes. For the Néel state (d = 0), the fidelity is always close to
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1 but decreases slowly as N gets larger due to the Hilbert space size increasing. This
is the usual behaviour in systems with non-exact QMBSs. However for d = 1, where
the initial state is given in Eq. (3.22) with k = −4π/N , the revivals actually get better
with an increase in system size, at least in the range of N probed. Based on the data,
it is likely that for larger system sizes the case d = 1 will have very close fidelity and
period to the d = 0 case. We can understand this behaviour by remembering that
in the dimerised model the perturbation stabilises neighbouring spin-1 pairs forming
spin-2 quintuplets. In the case with maximal total spin (d = 0), all pairs form such
quintuplet regardless of system size. While this is not the case for d = 1, the total
deviation from quintuplets is constant while the number of pairs increases with system
size. As a consequence, each pair gets closer and closer to a quintuplet as system size
increases. This explains the increase in fidelity that we observe.
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Figure 3.7: a Fidelity and b period of revivals for two eigenstates of Sz projected into the
PXP Hilbert space and evolved with PXP and the PXPZ perturbation. For |S⃗| = N/2 − 1 the
revivals get better as system size is increased, and should theoretically match up with those of
|S⃗| = N/2 in the thermodynamic limit.

3.4 Superdiffusive energy transport in the PXP model

While the SFF and DOS are fine probes of special features in the spectrum, they are
not directly accessible in experiment. We now turn towards observables to show that
the multiple su(2) representations also impact their behaviour. In particular, we focus
on correlation functions of the type ⟨Ô(t = 0)Q̂(t)⟩ = Tr

[
Ô(t = 0)Q̂(t)

]
. The absence

of any explicit density matrix ρ̂ means that ρ̂ ∝ 1, and so the trace corresponds to
the expectation value at infinite temperature. The prime candidates for demonstrating
non-thermal behaviour are the ones of the approximate su(2) algebra in Eq. 2.44.
Indeed, in the parent Hamiltonian the operators Ŝx, Ŝy and Ŝz obey the usual su(2)
commutation relations. If sufficiently many su(2) representations survive in the PXP
model, we expect the projection of these operators to at least approximately obey the
same commutation relations as well. In that case, we should see

⟨Ŝy(t)Ŝy(0)⟩ ≈ ⟨Ŝz(t)Ŝz(0)⟩ ≈ cos(ωt), (3.25)
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provided that the operators are normalised such that ⟨Ô(0)Ô(0)⟩ = 1 As the operator(
Ŝy
)2

+
(
Ŝz
)2

= S⃗2 −
(
Ŝx
)2

commutes with Ŝx, one can also probe if the operator

Ŝ2
y,z =

(
Ŝy
)2

+
(
Ŝz
)2

gives rise to ⟨Ŝ2
y,z(t)Ŝ2

y,z(0)⟩ ≈ 1 as expected for a constant of
motion. Fig. 3.8 shows that all these relations are sufficiently well obeyed at short times
in a finite system with 20 sites.
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Figure 3.8: Time evolution of the various global spin operators projected to the constrained
space. In particular, ⟨Ŝ2

y,z(t)Ŝ2
y,z(0)⟩ remains close to 1, indicating an approximate conservation

law. All operators are normalised to satisfy ⟨Ô(0)Ô(0)⟩ = 1.

We now turn towards quantum transport as a probe that is agnostic to the exact
form of the approximate algebra. Importantly, transport is also a universal behaviour,
with generic chaotic models typically exhibiting diffusive transport of conserved quant-
ities such as spin [169–175], charge [169, 172] or energy [170, 172, 176–178]. On the
other hand, disorder can give rise to slower than diffusive (subdiffusive) dynamics or
even localisation [27, 171, 179–183].

For the PXP model, as only energy is conserved we study its transport using the
energy-energy correlation function. Intuitively, this setup tracks the spreading of a
small energy “hump” created at the central site of the chain, atop of the infinite temper-
ature density matrix. We probe energy transport via the connected energy correlation
function

⟨ĥ0(0)ĥℓ(t)⟩c = ⟨ĥ0(0)ĥℓ(t)⟩ − ⟨ĥ0(0)⟩⟨hℓ(t)⟩, (3.26)

where ĥℓ(0) = P̂ℓ−1σ̂
x
ℓ P̂ℓ+1 is the energy density operator at site ℓ, and hℓ(t) =

eiĤPXPthℓ(0)e−iĤPXPt. As before, we set µ = 0 and restrict our study to the re-
duced Hilbert space containing no neighbouring excitations. This is a crucial difference
with respect to the earlier studies of particle transport in constrained models, e.g., in
Refs. [184, 185]. In particular, in Ref. [184] a magnetisation-conserving variant of the
PXP model was studied without restricting to a single sector of the Hilbert space. Due
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to the large number of disconnected sectors and frozen local configurations, this model
displayed localisation, with the initial energy hump never spreading homogeneously into
the whole system. More generally, Refs. [184, 185] have found that kinetic constrains
lead to subdiffusive transport.
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Figure 3.9: a The connected energy autocorrelation function in the PXP model has a short-
time oscillatory regime (I) followed by power-law decay (II). b The inverse instantaneous dy-
namical exponent extracted from the correlation function approaches the ballistic value of one
at t ∼ 100, followed by slow decay at later times that appears to saturate to a superdiffusive
value 1/z ≈ 2/3. c Double-logarithmic plot of the data in b shows that power-law convergence
to diffusion 1/z = 1/2 is also consistent with the data. Dashed line corresponds to ∝ t−0.8

dependence. The data is for a chain with N = 1024 sites and bond dimension of dMax = 512.

Accessing energy transport in the thermodynamic limit requires the evaluation of
the connected correlation function (3.26) in large systems at late times. To access the
required system sizes and times, we use a state-of-the-art massively parallel implement-
ation of the TEBD algorithm [61, 186] based on the ITensor library [187], performed
with our collaborators at IST Austria in Ref. [2]. This allows us to simulate operator
dynamics in the PXP model up to times exceeding t ≳ 300, requiring N = 1024 lattice
sites to avoid the operator-spread reaching the boundary of the system.

Fig. 3.9a highlights two distinct regimes in the decay of the connected energy auto-
correlation function for the PXP model. At short times, marked by the shaded area,
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we observe oscillatory behaviour. This is due to due to the multiple su(2) representa-
tions discussed above and the period of the oscillations matches with the ones in the
SFF and the energy spacing in the DOS. As expected, at long times the oscillations
disappear and the correlation function settles to a power-law like decay. This decay is
conveniently probed via the instantaneous dynamical exponent

z−1(t) = −d ln⟨ĥ0(0)ĥ0(t)⟩c
d ln t , (3.27)

that gives the running exponent of the power-law decay. For diffusion we expect 1/z =
1/2, while any larger value implies superdiffusive behaviour. Fig. 3.9b shows that 1/z
first approaches the ballistic value of 1 before relaxing slowly to a smaller value. Despite
the decrease of 1/z, its value remains superdiffusive (1/z > 1/2) even at extremely long
times t ≈ 300, at which the correlation function has spread approximately 300 sites
from the centre.

This superdiffusive behaviour is very surprising. Indeed, in contrast to (sub)diffusion,
faster-than-diffusive transport typically rests on the existence of special structures. In
one dimension, integrable models [26] can support ballistic transport since their mac-
roscopic number of conserved quantities may prevent currents from decaying. Fur-
thermore, intermediate behaviour between diffusion and ballistic transport can arise in
integrable models with certain symmetries, where superdiffusive Kardar-Parisi-Zhang
(KPZ) dynamics has been observed [173, 175, 188–198] with an exponent of 1/z = 2/3.
Importantly, all examples of faster-than-diffusive dynamics in short range models rely
on integrability. The same, naturally, does not hold for long-range models where su-
perdiffusion has also been observed and explained by classical arguments using Lévy
flights [199, 200].

As the PXP model is neither integrable nor long-range, the appearance of super-
diffusion with an exponent close to the KPZ one is unexpected. Nevertheless, plotting
the data for 1/z on a log-log scale in Fig. 3.9c, one cannot rule out power-law relax-
ation of z to diffusion at times that are inaccessible to our numerics. We note that
even if diffusion is recovered at long-times, the fact that such timescales are observed
is anomalous in itself.

3.4.1 Stability of superdiffusion to perturbations

Possible origins of this superdiffusion could be the proximity of the PXP model to an
integrable Hamiltonian (as discussed in Chapter 2) and the presence of multiple su(2)
representations. In order to test this, we can use the PXPZ perturbation that can
enhance both depending on the strength. To further probe the relevance of multiple
su(2) representations, we deform the model with the local PXPZ perturbation,as defined
in Eq. (2.33). We chose it over Eq. (2.34) to avoid introducing any long-range coupling
and for its much simpler implementation with TEBD. Previously, it was shown that
λ ≈ 0.05 stabilises the highest-spin su(2) representation [67]. Our results indicate that
they also lead to stronger signs of multiple su(2) representations in the sDOS and SFF.
It was also seen that λ ≈ 0.024 leads to level statistics close to integrability [70].
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Figure 3.10: a Connected energy auto-correlation function for several strengths λ of the PXPZ
deformation. Early time oscillations approximately peak at times t ∈ {5.1, 10.2, 15.3, 20.4}
(dashed lines) for the su(2)-enhancing perturbation λ = 0.05. b Long time decay is fastest
for λ = 0.024, as manifested by the inverse dynamical exponent approaching the value of one
from above. In contrast, large λ = 0.5 results in a rapid onset of diffusive dynamics. c Spatial
dependence of the connected energy correlation function at t = 200 in the PXP model with the
PXPZ deformation. In the vicinity of λ ≈ 0.026, the profile becomes visibly flat. The data is
for N = 768 and bond dimensions dMax = 384 [panels a, b] and dMax = 256 in c.

Fig. 3.10a illustrates its effect on the energy autocorrelation function and the dy-
namical exponent. We observe that the deformation strength λ = 0.05 gives the
strongest enhancement of oscillations in the early time regime, further confirming that
oscillations are caused by multiple su(2) representations. However, the long-time value
of 1/z for λ = 0 and 0.05 behave nearly identically. In contrast, the value λ = 0.024
only weakly enhances the oscillations but yields a much faster decay of the correla-
tion function at late times. The extracted 1/z exponent in Fig. 3.10b overshoots the
ballistic value z = 1 and converges to it from above, consistent with a proximate integ-
rable point. Finally, a large deformation λ = 0.5 leads to fast saturation of 1/z ≈ 0.5
corresponding to conventional diffusion.

In the vicinity of an integrable point, superdiffusion can appear as a crossover
between nearly-ballistic behaviour at short times and diffusion at late times [172, 201,
202] (see also the review [203]). The intuition is that transport should at first be-
have as in a corresponding integrable model until the system starts to feel the effect
of the integrability-breaking perturbation, which leads to slow quasiparticle decay pro-
cesses. To corroborate this picture of ballistic transport followed by slow decay, we
computed the spatial profiles of the correlation function in the PXP model with the
PXPZ deformation in Fig. 3.10c. As seen in this figure, the profile exhibits a nearly
flat dependence on position. This is similar to what is seen in the same model at the
integrable hard-square point [2].

The proximity of an integrable point naturally explains the observed long timescales
in the dynamics of the PXP model. In order to avoid slow convergence towards the
thermodynamic limit, we must consider stronger deformations of the model. While
a large PXPZ deformation restores diffusion in Fig. 3.10, such a perturbation is not
readily available in experiments. Instead, we focus on the detuning/chemical potential
µ introduced in Eq. (2.20) in Chapter 2. As a reminder, this term counts the number
of Rydberg excitations in the constrained Hilbert space. We note this term cannot be
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expressed using the generators of the approximate su(2) structure in Eq. 2.44. As such,
it destroys the peaks in the sDOS already for small values of µ and it has been shown
to make the dynamics from the |Z2⟩ state ergodic [204].
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Figure 3.11: Stable superdiffusive energy transport for a large detuning in the PXP model.
a Sufficiently large deformations µ ≥ 0.4 lead to a clear superdiffusive exponent z ≈ 1.5. b
Single-parameter scaling of the spatial profiles of the connected correlation function for µ = 0.5
shows a collapse for 1/z ≈ 0.669 (average value of 1/z in the interval t ∈ [100, 200]). The
ballistically propagating peaks at large |x| are expected to disappear as t → ∞. The data is
for N = 1024 sites with bond dimensions dMax = 384 for µ = 2 and dMax = 256 for µ ≤ 1. For
clarity purposes, data in panel a has been smoothed using a Gaussian filter.

Fig. 3.11a shows the instantaneous dynamical exponent for a range of deformation
parameters µ ∈ [0, 2]. For weak deformations µ ≤ 0.2, the exponent varies slowly,
similar to the PXP model in Fig. 3.9b. However, the effect of a nearby integrable
point diminishes once the deformation is sufficiently strong. Surprisingly, for large
deformations µ ≥ 0.4, we observe clear superdiffusive transport with a well-converged
dynamical exponent z ≈ 1.5. The robust superdiffusion, observed over a broad range
of µ, suggests that even the PXP model itself may have z ≈ 1.5, although much longer
times may be needed to observe the convergence of the exponent to this value. We note
that other perturbations lead to superdiffusion for small strengths λ, but for λ > 1.5
diffusion is generally recovered. We do not show these results here, but they can be
found in Ref. [2].

The transport exponent z = 3/2 is one of the hallmarks of the KPZ universality
class, which has recently been observed in integrable quantum systems with certain
symmetries [175, 188, 189, 191, 193]. To further test if HPXP with µ ̸= 0 belongs to
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the same universality class, we analyse the spatial profile of the correlation function in
Fig. 3.11b. The profiles of correlation function at different times show a clear collapse
with a single scaling parameter that matches the average value of 1/z in the interval
t ∈ [100, 200]. However, the presence of ballistic peaks visible at the edges of numerically
computed profiles in Fig. 3.11b prohibits us from reliably discriminating between the
theoretically expected KPZ or Gaussian scaling functions.

Finally, we note that this anomalous transport is not a generic consequence of
projecting a free paramagnet onto a reduced Hilbert space. If instead the range-2
Rydberg blockade is used – the constraint now excludes both nearest-neighbour as well
as next-nearest-neighbour up spins – diffusion is quickly recovered, as we discuss in
Ref. [2].

3.4.2 Origin of superdiffusion

Overall, our observations challenge the current understanding of chaotic quantum mod-
els, which are expected to exhibit diffusive (or slower) transport dynamics. In partic-
ular, our findings suggests that certain classes of constrained models, when studied in
the reduced Hilbert space, may provide stable examples of superdiffusive transport.
At present, the explanation for the robust superdiffusive transport observed here is
missing, highlighting the need for the development of a theoretical description of trans-
port in systems with constraints. Indeed, while proximity to integrability seemed like
the obvious candidate, strong deformations with the chemical potential were shown to
move the PXP model away from an integrable point but still gave rise to a broad re-
gime of superdiffusive energy transport. The observed transport exponent, z ≈ 3/2, is
tantalisingly close to the value corresponding to KPZ universality class. Nevertheless,
it remains unclear why the PXP model would belong to this class, given the existing
examples of KPZ dynamics in integrable spin chains with SU(2) or higher symmetry.
Furthermore, it is known that higher order corrections can lead to a transient KPZ-like
exponent [176]. However, with perturbations such as detuning, the observed superdif-
fusion remains stable up to long times of ∼ 200 in natural units 1/Ω, casting doubt on
the relevance of higher-order corrections. Moreover, it is not clear why the chemical
potential would particularly enhance such corrections.

One potential explanation for superdiffusion in chaotic models could stem from
nonlinear fluctuating hydrodynamics [205], provided additional conserved charges exist
within the reduced Hilbert space. Indeed, KPZ transport has been shown to arise in
a broad class of low-dimensional classical models with particle, momentum and energy
conservation [206]. Our brute-force numerical search did not yield a clear signature
of additional conservation laws in the PXP model, hence it remains unclear whether
its transport fits the framework of Refs. [205, 206]. Another potential explanation for
the unusual transport could be related to the semiclassical aspects of the PXP dy-
namics when the latter is projected onto the variational manifold of matrix product
states [59]. The study of quantum dynamics with translationally-invariant initial con-
ditions in Ref. [64] revealed the existence of large Kolmogorov-Arnold-Moser (KAM)
tori in the classical phase space resulting from the variational projection. Provided
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these tori survive in the absence of translation invariance, they may play a role in en-
ergy transport. Finally, the current capabilities of Rydberg quantum simulators [207]
may allow to probe our predictions experimentally and to gain further insights into the
energy transport, in particular in higher dimensions.

The link between scarring and superdiffusion also remains to be understood. On
the one hand, as we explained above, the chemical potential µ destroys the su(2)
structure responsible for scarring from the |Z2⟩ state, while at the same time this does
not appear to affect the late-time dynamical exponent, suggesting the two phenomena
to be unrelated.

3.5 Summary

We have shown that QMBS eigenstates stemming from su(2) RSGA have QFI scaling
quadratically with system size. This means that these states have extensive multipartite
entanglement and so they constitute a valuable resource for quantum metrology. A re-
cent work expands on these results to propose an actual implementation protocol [208].
Using the PXP model as an example, we have demonstrated numerically that scarred
eigenstates also have similar properties when the RSGA is only approximate. However,
in that case, the quadratic scaling breaks down in large systems due to the hybridisa-
tion with thermal eigenstates. Nonetheless, we can still obtain states with large QFI
by quenching from a simple product state that is easy to prepare in experiment. At
intermediate times, the QFI of the time-evolved state displays the desired quadratic
scaling.

In the same PXP model, we have demonstrated that there exists multiple approx-
imate su(2) representations beyond the maximal total spin representation studied in
the previous literature. The origin of these algebraic structures is traced back to the
parent spin-1 model introduced in Ref. [68] and reviewed in Chapter 2. As their total
spin decreases, the number of representations increases but their quality (i.e., how close
to exact they are) gets worse. This makes it hard to quantify the impact of lower-spin
representations on the observable properties of the PXP model. Nonetheless, we can
see that they leave clear spectral signatures in the form of peaks in the DOS and oscil-
lations in the SFF, even at infinite temperature. Beyond this, they also impact energy
transport by inducing oscillations at short times.

Surprisingly, beyond these initial oscillations, the PXP model also shows super-
diffusive transport when restricting to the largest connected component of its Hilbert
space. The long-time behaviour is shown to be affected by a nearby integrable point,
confirming that the PXPZ deformation gives rise to nearly ballistic transport, as sug-
gested by the level statistics indicators [70]. However, while deforming the PXP model
with a chemical potential removes the remnants of integrability, instead of restoring
diffusion it leads to a stable superdiffusive regime with a dynamical exponent z ≈ 3/2.
The exact origin of this superdiffusive behaviour is still unknown, and further work on
the topic is needed.
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Chapter 4

Realising many-body scars in
Bose-Hubbard quantum simulators

In the previous chapter, we have shown that, under certain conditions, QMBSs can be
useful for quantum metrology. One obvious limitation to their practical usage in that
context is a small number of experimental realisations [43, 78, 136, 139]. In particular,
the only large-scale example of QMBSs stemming from an (approximate) RSGA is
in Rydberg atoms, in the form of the PXP model and its generalisations to higher
dimensions [43, 78]. Therefore, engineering QMBSs in other experimental platforms
is paramount. Moreover, as the previous chapter has demonstrated, many properties
of the PXP model remain poorly understood, such as its energy transport behaviour.
Thus, implementing this model in new experimental setups with different measurement
capabilities could shed new light on these intriguing properties.

In this chapter, we realise the PXP model on a large-scale quantum simulator made
of ultracold bosonic atoms in a tilted optical lattice, designed and operated by our
experimental collaborators at Universities of Hefei and Heidelberg [4]. We first explain
the mapping between the models and contrast our implementation to the Rydberg atom
arrays. We then benchmark our experimental setup by performing quenches from the
Néel state, showing that local fidelity and entanglement entropy can be extracted using
interference between identical copies of the system. One of the notable new findings
of our experiment is that scarred dynamics is not limited to the Néel initial state but
can also be observed in the polarised initial state in the presence of chemical potential.
This result is surprising as the polarised state has previously served as a reference for
ergodic dynamics in the PXP model. We derive a semi-classical description of quantum
dynamics after a quench from the polarised state, and relate it to an approximate
su(2) algebra. Finally, we demonstrate that periodic driving can enhance the scarring
behaviour from both the polarised and Néel initial states.
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4.1 The tilted Bose-Hubbard model

We begin by describing our experimental setup, before showing its effective Hamiltonian
and how it maps to the PXP model. Our experiment consists of a 87Rb Bose-Einstein
condensate, which is compressed in the z-direction and loaded into a single layer of a
pancake-shaped trap. We then perform superfluid to Mott insulator phase transition
with optical lattices in the x−y plane. In both x and y directions, we have a superlattice
that is formed by super-imposing the “short” lattice, with as = 383.5 nm spacing, and
the “long” lattice, with al = 767 nm spacing [209, 210], each can be individually
controlled. We realise independent 1D Bose-Hubbard models in the y-direction by
ramping up the short lattice depth in the x-direction over 40Er, with Er=h2/8ma2

s the
short-lattice recoil energy, where h is the Planck constant and m is the 87Rb atomic
mass.

Figure 4.1: Realising the PXP model in a Bose-Hubbard quantum simulator. a A schematic
of the optical lattice. Deep lattice potential in the x-direction forms isolated chains in the y-
direction, where the linear tilting potential is applied. Spin-dependent superlattices consisting
of two standing waves in each direction can be individually controlled for state preparation and
measurement. At the resonance U≈∆≫J , the dominant hopping process is 11 ↔ 20. The PXP
excitations, •, live on the bonds between the lattice sites. The doublon configuration 20 in the
Bose-Hubbard model maps to an excitation in the PXP model, while all other configurations
are mapped to an empty site, ◦. For example, the given state |. . . ◦•◦•◦◦◦• . . .⟩ maps to the
Fock state |. . . 120201120 . . .⟩. b Emergence of the PXP subspace in the Bose-Hubbard model
at the resonance U≈∆≫J . Dots represent Fock states of the tilted Bose-Hubbard model with
5 bosons on 5 sites (restricting to at most three bosons on any site). Lines denote the allowed
hopping processes. The colour scale shows the sum of interaction and tilt energies ⟨Û + ∆̂⟩
for each Fock state, and this value is conserved by resonant processes. The PXP dynamical
subspace and its Fock states are explicitly labelled.

The short lattice in the y-direction makes an approximate 4◦ angle with gravity,
which results in a static linear tilt per site of ∆g=816 Hz, see Fig. 4.1a. An external
magnetic field gradient ∆B may be added to create a tunable linear tilting potential
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∆=∆g+∆B. The effective Hamiltonian describing each 1D array of the atoms is then

Ĥ = −J
L−1∑
i=1

(
b̂†
i b̂i+1 + b̂†

i+1b̂i
)

+ Û + ∆̂, (4.1)

where J is the hopping amplitude and b̂, b̂† are the standard Bose annihilation and
creation operators. The interaction energy is Û = (U/2)∑L

i=1 n̂i (n̂i − 1) and the tilt
potential is ∆̂ = ∆∑L

i=1(i − 1)n̂i, with n̂i the number operator n̂i = b̂†
i b̂i. L denotes

the number of sites in the chain with open boundary conditions and we restrict to the
total filling equal to 1, i.e., with the same number of bosons as lattice sites.

4.1.1 Mapping the PXP model onto the tilted Bose-Hubbard model

In order to realise the PXP model in the Bose-Hubbard quantum simulator, we tune
the parameters to the resonant regime U≈∆≫J [211, 212], which has been studied
extensively in the context of quantum Ising chains [213–215]. In that limit, the energy
spectrum of the Hamiltonian in Eq. (4.1) splits into bands with essentially constant
expectation value of the diagonal terms, ⟨Û+∆̂⟩ ≈ const, and the Hilbert space becomes
fragmented. Performing a Schrieffer-Wolff transformation [47] at this resonance, we find
that the first-order effective Hamiltonian is equal to

Ĥeff = −J
L−1∑
i=1

(
b̂†
i b̂i+1δn̂i,1δn̂i+1,1 + b̂†

i+1b̂iδn̂i,2δn̂i+1,0
)

+ Û + ∆̂. (4.2)

This operator only allows the hopping 11 ↔ 20, as it is the only resonant process that
conserves ⟨Û + ∆̂⟩. Indeed, moving a particle to the left decreases the energy by ∆
while creating a doublon increases it by U , leading to no net energy difference when
U = ∆. We note that due to this limited number of resonant processes, Ĥeff splits the
Hilbert into disconnected sectors beyond the conservation of ⟨Û + ∆̂⟩.

We focus on the connected component of the Hilbert space containing the Mott
state |111 . . . 111⟩. In that sector, the Hamiltonian (4.2) is equivalent to the PXP
Hamiltonian [45, 46], as we show now (see also Ref. [211] for the original derivation of
the mapping in the context of Ising phase transitions and a recent review [212]). As
mentioned before, the only allowed dynamical process is 11 ↔ 20. Let us now think
of each bond between overlapping pairs of sites as a spin-1/2. We can then say that
setting this pair to 20 is flipping the corresponding spin up, while otherwise it is down.
But if one pair is 20, the neighbouring pair to the left must be 12 or 02 as it shares one
site. It is thus dynamically frozen and cannot be flipped up. The same is true for the
pair to the right which must be 01 or 02. It is straightforward to see that this is exactly
the PXP constraint for the spin-1/2 living on the bonds. The mapping to the usual
notation is simple, with 20 being equivalent to •, while all other possible configurations
(11, 12, 02 and 01) map to ◦. Note that as we use open boundary conditions, there
is one less PXP spin that bosonic site. We identify the unit-filling state |111 . . . 11⟩
with the PXP polarised state, |0⟩. The exact mapping to the Néel state depends on the
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parity of L, as for even L it becomes |20 . . . 2020⟩ while for odd L it is |20 . . . 20201⟩. The
same is true for the anti-Néel state which is respectively |02 . . . 0202⟩ or |102 . . . 0202⟩.
Fig. 4.1b illustrates the profound change in the connectivity of the Fock space near
the resonance U≈∆≫J , with an emergent dynamical subspace isomorphic to the PXP
model in the sector containing the Mott state.

We now derive the effective Hamiltonian in the PXP formulation. To do that, we
need to account for the diagonal terms Û and ∆̂. Exactly at the U = ∆ resonance,
their sum is simply equal to ∆L(L−1)/2 for all states in the sector. But what happens
if we are not exactly at the resonance? As long as U,∆ ≫ |U − ∆|, the Schrieffer-Wolff
transformation still holds. Nonetheless, we now need to account for the fact that the
diagonal terms are not equal for all states in the sector. Let us denote the detuning
between them by U0, such that U = ∆ + U0. The polarised state (or Mott insulator
state) still has energy ∆L(L − 1)/2, but now every process that creates a doublon by
moving a boson to the left loses energy ∆ and gains energy U . So each doublon leads
to an increase of energy of U0 on top of the constant energy E0 = ∆L(L − 1)/2. As
the latter is an additive constant, we can get rid of it when restricting to the sector of
interest. This allows to write the effective Hamiltonian in the sector of interest in both
the bosonic and spin languages as

Ĥeff=−J
L−1∑
i=1

b̂†
i b̂i+1δn̂i,1δn̂i+1,1︸ ︷︷ ︸√

2P̂j−1σ̂
+
j P̂j+1

+ b̂†
i+1b̂iδn̂i,2δn̂i+1,0︸ ︷︷ ︸√

2P̂j−1 ˆ̂σ−
j P̂j+1

+ U0
2

L∑
i=1
n̂i (n̂i − 1)︸ ︷︷ ︸
n̂j=1−P̂j

. (4.3)

In this equation, the index i labels the bosonic sites, while j labels the bonds between
sites. The Kronecker delta functions have been expressed in terms of projectors, P̂j =
|◦j⟩⟨◦j |, and the bosonic hopping terms correspond to the spin raising and lowering
operators, σ̂±

j , on the bond j. Moving a particle to a neighbouring site on the left
corresponds to creating an excitation, moving to the right to annihilating, while the
delta functions act as constraints. Due to this equivalence between creating a doubly-
occupied site and an excitation, the detuning term counting the former can be turned
into a chemical potential term counting the latter.

Finally, the effective Hamiltonian is equivalent to the PXP Hamiltonian in Eq. (2.20)
as

ĤPXP = X̂1P̂2 + P̂N−1X̂N + Ω
N−1∑
j=2

P̂j−1X̂jP̂j+1 + µ0

N∑
j=1

n̂j , (4.4)

with Ω = −
√

2J , µ0 = U0 = U − ∆, and N = L − 1. The number operator n̂j is 1 if
there is an excitation and 0 otherwise. As the last bosonic sites can never be doubly-
occupied using the resonant process, the U0 term acting on it has been dropped. This
shows that it is straightforward to engineer the PXP chemical potential in the Bose-
Hubbard model use a simple detuning between U and ∆. This will make it possible
to create a time-dependent chemical potential by modulating U . It is important to
note that as Ω = −

√
2J , it must hold that U0/J = −

√
2µ/Ω. While the minus sign is
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not important for dynamics from the Néel or polarised state, the factor of
√

2 must be
accounted for when converting parameters between the two models.

Using numerics we can verify the mapping between the ideal PXP dynamics and the
Bose-Hubbard model. We use exact diagonalisation techniques to obtain the full energy
spectrum of both the PXP and Bose-Hubbard Hamiltonian with L ≲ 12, which allows
us to directly access the system’s eigenstate properties. Unless specified otherwise, we
restrict the occupancy of any site to be at maximum 3 bosons, as our results are found
to be insensitive to allowing more than 3 bosons on any site. In analogy with the PXP
model, the system initialised in the state 2020 . . . 201 is expected to oscillate between
this state and the state 12020 . . . 20. This is not only the case for the effective model
(4.3) which is exactly equivalent to PXP, but also for the full tilted Bose-Hubbard
model (4.1) at the U = ∆ resonance, as can be observed in Fig. 4.2. This figure also
shows the evolution of the bipartite von Neumann entanglement entropy SvN(t). The
system is initially prepared in the state 2020 . . . 201 or the completely homogeneous
state 111 . . . 111. As in the PXP model, the entanglement entropy for the 2020 . . . 201
state exhibits slow and approximately linear growth in time. In contrast, the entan-
glement entropy for the state 111 . . . 111 rapidly saturates, implying that the system
quickly thermalises.
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Figure 4.2: Comparison between the full Bose-Hubbard model at the resonance and the
PXP model. Left: Evolution of quantum fidelity starting from the state |ψ0⟩ = |2020 . . . 201⟩
(red) and the amplitude of state transfer with the state |ψ⟩ = |12020 . . . 2020⟩ (blue). Right:
Evolution of the bipartite entanglement entropy for the initial states |2020 . . . 201⟩ (red) and
|111 . . . 111⟩ (blue). The dashed and dotted black lines correspond to the effective model from
Eq. (4.3). System size L = 11, subsystem LA = 5, filling factor ν = 1.

4.1.2 Higher-order terms in the mapping

The implementation of the PXP model is only exact at U = ∆ → ∞. For any finite
values of these two parameters, there will be additional contributions. These correspond
to the higher-order terms in the Schrieffer-Wolff transformation and can be computed
in the same way. We find that the next leading terms are at order 2. To simplify the
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notation we write these terms as sums of range-3 operators, where |111⟩ ⟨120|j denotes
the operator changing sites j − 1, j and j + 1 from 120 to 111 while leaving all other
sites unaffected. First, we can identify the matrix elements that take the system out of
the PXP sector. This happens by an appearance of sites with 3 bosons via the operator

Ĥ
(2)
Out =

√
3J2

U

L−1∑
j=2

(
|300⟩ ⟨201|j + |201⟩ ⟨300|j + 2 |300⟩ ⟨120|j + 2 |120⟩ ⟨300|j

)
. (4.5)

The off-diagonal matrix elements connecting states within the PXP sector are given
by:

Ĥ
(2)
OD = 2J2

U

L−1∑
j=2

(
|120⟩ ⟨201|j + |201⟩ ⟨120|j

)
. (4.6)

There are also additional off-diagonal matrix elements connecting states various states
outside of the PXP sector, but as they do not directly influence the dynamics out of it
we do not describe them here. Finally, the diagonal operator in this sector is given by

Ĥ
(2)
Diag = J2

U

L−1∑
j=2

(
4 |120⟩ ⟨120|j − |111⟩ ⟨111|j + |020⟩ ⟨020|j − |112⟩ ⟨112|j

)
+ J2

U

(
|01⟩ ⟨01|L−1 − |11⟩ ⟨11|1 − |12⟩ ⟨12|1

)
,

(4.7)

where the two-site operator |11⟩ ⟨12|j acts on sites j and j + 1.
In order to see how these second-order terms change the effective model we can

rewrite Eqs. (4.6)-(4.7) for the PXP model with N = L− 1 sites. We then obtain

Ĥ
(2),PXP
OD =2J2

U

N−2∑
j=1

(
P̂j−1σ̂

+
j σ̂

−
j+1P̂j+2+P̂j−1σ̂

−
j σ̂

+
j+1P̂j+2

)
+2J2

U

(
σ̂+

1 σ̂
−
2 P̂3 + σ̂−

1 σ̂
+
2 P̂3

)
+ 2J2

U

(
P̂N−3σ̂

+
N−1σ̂

−
N + P̂N−2σ̂

−
N−1σ̂

+
N

) (4.8)

and

Ĥ
(2),PXP
Diag =J2

U

N−2∑
j=1

(
4P̂j−1P̂jn̂j+1P̂j+2 − P̂j−1P̂jP̂j+1P̂j+2

+ n̂j−1P̂jn̂j+1P̂j+2 − P̂j−1P̂jP̂j+1n̂j+2
)

+J2

U

(
4P̂0n̂1P̂2 − P̂0P̂1P̂2−P̂0P̂1n̂2+4P̂N−2P̂N−1n̂N−P̂N−2P̂N−1P̂N

+ n̂N−2P̂N−1n̂N
)

+ J2

U

(
n̂N−1P̂N − P̂0P̂1 − P̂0n̂1

)
,

(4.9)

respectively. We notice that the off-diagonal correction has the form of a constrained
XY term.
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Now that we have a more complete list of subleading perturbations, a few things
need to be highlighted. First, all terms are local, with a maximum range of 4 sites.
This means that there is no process where hopping to the left on one side of the
chain is compensated by hopping to the right on the other. Thus there will not be
any effective long-range process that could significantly impact the dynamics even at
small strength. Second, all terms have a prefactor J2/U . While this is expected
from perturbation theory, it is important to contrast that with the Rydberg case in
Eq. 2.16. In the latter, higher-order terms are also suppressed with a term proportional
to Ω2/V1. However, there is an undesirable diagonal term at first order n̂jn̂j+2 which
is equal to V2 = V1/64, and so it increases with V1. Thus there is always a trade-
off between this next-nearest-neighbour interaction and the Schrieffer-Wolff terms at
higher orders. In other words, one cannot make the blockade more perfect without
increasing longer-range correlations. This is not the case in the Bose-Hubbard model,
where increasing U = ∆ suppresses all terms which are not part of the PXP model.
Thus our implementation has an advantage over the Rydberg experiment in that regard.

4.2 Observation of Z2 quantum many-body scars

Equipped with the mapping between Bose-Hubbard and PXP models, we are now in
position to benchmark our quantum simulator against the known results for the |Z2⟩ ini-
tial state. To prepare the initial state, we first employ an entropy-redistribution cooling
method [209] with the superlattice in the y-direction to prepare a n=2 Mott insulator in
the left (odd) sites, while removing all atoms on the right (even) sites via site-dependent
addressing [210]. This gives us the desired initial state |ψ0⟩ = |Z2⟩ = |2020 . . .⟩. In the
region of interest, we have prepared 50 copies of the initial state |ψ0⟩ isolated by the
short lattice along the x-direction. Each copy extends over 50 short lattice sites along
the y-direction.

Following the state preparation, we quench the system out of equilibrium by ab-
ruptly dropping the y-lattice depth to 11.6Er, which corresponds to switching J from
0 to 51(1) Hz. This is done while simultaneously adjusting the lattice depth in the
x and z-directions accordingly, such that the interaction strength matches the lin-
ear tilt with U=∆=∆g≈16J . After evolution time t, we freeze the dynamics by
ramping up the y-lattice depth rapidly, and read out the atomic density on the left
(⟨n̂Left⟩) and right (⟨n̂Right⟩) sites of the double-wells formed by the y-superlattice suc-
cessively [210, 216]. This provides access to density imbalance, ⟨M̂z⟩ = (⟨n̂Left⟩ −
⟨n̂Right⟩)/(⟨n̂Left⟩ + ⟨n̂Right⟩), an observable corresponding to the staggered magnetisa-
tion in the PXP model, see Fig. 4.3a. Another observable is the density of excitations
in the PXP model, which is measured by projecting out the even atomic number occu-
pancy on each site, then reading out the average odd particle density ⟨P̂n̂∈odd⟩(1) [216].
Due to highly suppressed multi-boson occupancy, we have ⟨P̂|•⟩⟩ = ⟨n̂doublon⟩(1) ≈
(1 − ⟨P̂n̂∈odd⟩(1))/2.

Away from the resonance, the dynamics is ergodic and the staggered magnetisation
present in the initial |Z2⟩ state quickly decays with time, see Fig. 4.3b. In contrast, by
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Figure 4.3: Observation of Z2 quantum many-body scars in a Bose-Hubbard quantum sim-
ulator. a Starting from the state |ψ0⟩ = |. . . 2020 . . .⟩ – the analogue of |Z2⟩ state in the PXP
model – we utilise gravity to provide linear tilt ∆=∆g. We characterise quench dynamics by
measuring density imbalance and the number of doublons, corresponding to staggered mag-
netisation ⟨M̂z⟩ and density of excitations ⟨P̂|•⟩⟩ in the PXP model. In the detuned regime
∆ − U≈ − 2J , the dynamics is ergodic and the system has no memory of the initial state at
late times. b: Tuning to U≈∆, we observe persistent oscillations in both ⟨M̂z⟩ and ⟨P̂|•⟩⟩.
This memory of the initial state is a signature of weak ergodicity breaking due to quantum
many-body scars. c, d: Periodic modulation of the interaction U(t) = ∆ + U0 + Um cos(ωt)
with U0=1.85J , Um=3.71J , ω=3.85J × 2π leads to an enhancement of scarring. Panel c shows
the numerically computed trajectory in the sublattice occupation plane for the PXP model
with N = 24 sites, with and without driving. The sublattice occupancies ⟨n̂Left⟩, ⟨n̂Right⟩ are
normalised to interval the [0,1]. The driving is seen to strongly suppress the spreading of the
trajectory. d: Experimental measurements on the driven Bose-Hubbard model show robust
scarred oscillations at all accessible times. In both the static and driven case, experimental
data for ⟨M̂z⟩ and ⟨P̂|•⟩⟩ are in excellent agreement with TEBD numerical simulations shown
by gray and red solid lines. Gray line in the lowest panel shows the modulation U(t).

tuning to the vicinity of the resonance, ∆=U , we observe distinct signatures of scarring:
the system approximately undergoes persistent oscillations between the Néel and anti-
Néel states, as can be seen in the staggered magnetisation profile and the density of
excitations in Fig. 4.3b. The density of excitations does not distinguish between the
Néel and anti-Néel states, hence there is a trivial factor of 2 difference between the
oscillation frequencies of ⟨P̂|•⟩⟩ and ⟨M̂z⟩.

The scarred oscillations in Fig. 4.3b are visibly damped with a decay time τ =
49.6±0.8 ms. Nevertheless, as shown in Ref. [78], by periodically driving the system it is
possible to ‘refocus’ the spreading of the many-body wave-function in the Hilbert space
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and thereby enhance the scarring effect, as we demonstrate numerically in Fig. 4.3c
and experimentally in Fig. 4.3d. Our driving protocol is based on modulating the laser
intensity of the z-lattice, which translates into periodic modulation of the interaction
energy, U(t) = ∆+U0 +Um cos(ωt), while ∆ is kept fixed. This results in a modulation
of the detuning in the chain, acting as the analogue of the chemical potential in the
PXP model.

Numerical simulations of the PXP model with the driven chemical potential, using
the TEBD method [186] as implemented in TenPy package [217], are shown in Fig. 4.3c.
These results demonstrate the dynamical stabilisation of the Hilbert space trajectory.
We visualise the trajectory by plotting the average sublattice occupations, ⟨n̂Left⟩ and
⟨n̂Right⟩, normalised to the interval [0,1]. The |Z2⟩ and |Z′

2⟩ states are located at the
coordinates (1,0) and (0,1), which are the lower right and upper left corners of this
diagram, respectively. The polarised state |0⟩ is at the origin (0,0). In the undriven
case [left panel of Fig. 4.3c], the trajectory at first oscillates between |Z2⟩ and |Z′

2⟩
states, while passing through a region with a lower number of excitations. However,
as the time passes, the trajectory drifts, exploring progressively larger parts of the
Hilbert space. By contrast, when the driving is turned on [right panel of Fig. 4.3c],
the trajectory approximately repeats the first revival period of the undriven case, even
at late times. Thus, the driving stabilised the scarred revivals without significantly
altering their period.

Experimental measurements on the driven Bose-Hubbard model in Fig. 4.3d find
a strong enhancement of the amplitude of the oscillations in staggered magnetisation
with the decay time τ increasing to 208 ± 10 ms, while the period remains nearly the
same as in the static case. Optimal driving parameters were determined numerically
using a combination of simulated annealing and brute force search.

We note that the experimental measurement of ⟨M̂z⟩ damps slightly faster than
the theoretical prediction, shown by a line in Fig. 4.3b, at late times (t>60 ms). We
attribute this to an inherent residual inhomogeneity across the lattice, which results in
dephasing between different parts of the system, as well as possible decoherence induced
by scattering of the lattice lasers. To avoid the effect of these undesired dephasing or
decoherence effects, in the following we limit our investigation up to 60 ms.

4.3 Unravelling the details of scarred dynamics via quantum
interference

Now that we have benchmarked our platform by reproducing observable dynamics
after a quench from the Néel state, we can move on to measuring more challenging but
informative quantities. Fidelity and entanglement entropy are key for characterising
scarring behaviour. They provide a window to the evolution of the system’s wave-
function and the spreading of quantum correlations. For a system trapped in a scarred
subspace, thermalisation is inhibited and the system exhibits suppressed entropy growth
and periodic fidelity revivals.

Measuring fidelity and entanglement entropy usually requires brute-force state tomo-
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Figure 4.4: Probing many-body scarred dynamics via quantum interference. a After evolution
time t, we freeze the dynamics in the y-direction, then by interfering two identical copies in the
double wells along the x-direction, we obtain the second order Rényi entropy. b The entropy for
a single site, S(1), shows robust oscillations with the same frequency as in Fig. 4.3b, indicating
a lack of thermalisation. The single-site entropy is a good approximation to the half-chain
entropy, S(L/2), evaluated numerically using TEBD (grey line). c In the x-superlattice, we flip
all atoms on right sites to the state |↑⟩ (red), while keeping atoms on left sites |↓⟩ (blue). Then
we apply a magnetic field gradient in the y-direction, creating state-dependent linear tilting
with ∆|↑⟩

B = −2∆|↓⟩
B . The magnetic force almost cancels out gravitational force for |↑⟩ atoms,

thus breaking the resonance condition. Fine tuning of the interaction strength makes |↓⟩ atoms
undergo scarred dynamics to |ψ(t)⟩, while keeping |↑⟩ frozen in the initial state |ψ0⟩. Finally, we
flip |↑⟩ atoms back to |↓⟩ and interfere many-body states |ψ0⟩ and |ψ(t)⟩ in the x-superlattice
to read out the average fidelity. d The square fidelity of single-site subsystems F2

(1) displays
pronounced revivals, indicating periodic returns close to the initial state. The global fidelity F,
obtained numerically using TEBD, is shown by the grey line.
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graphy, but for our 50-site Bose-Hubbard system with a Hilbert space dimension ex-
ceeding 1028, this approach is generally impossible. However, the superlattice in the
x-direction allows us to probe these observables by interfering identical copies in the
double wells, analogous to the 50 : 50 beam splitter (BS) interference employed in
photonics experiments [218]; see Fig. 4.4a. This is done by freezing the dynamics
along the chains in the y-direction after evolution time t, then we interfere copies of
|ψ(t)⟩ in the double wells formed by the x-superlattice. After the interference, a parity
projection helps read out the average odd particle density ⟨P̂BS

n̂∈odd⟩(1), which gives us
access to the second-order Rényi entropy [219]. We measure the entropy of single-site
subsystems S(1)= − ln(Tr(1)

[
ρ̂(t)2]) = −ln(1 − 2⟨P̂BS

n̂∈odd⟩(1)), where ρ̂(t) = |ψ(t)⟩ ⟨ψ(t)|
is the density matrix. Entanglement entropy S(1), shown in Fig. 4.4b, grows much
more slowly than expected in a thermalising system. The growth is accompanied by
oscillations with the same frequency as ⟨P̂|•⟩⟩ in Fig. 4.3b, implying that the system re-
turns to the neighbourhood of product states |Z2⟩ and |Z′

2⟩. Furthermore, the entropy
growth becomes almost fully suppressed by periodic driving, indicating that the scarred
subspace disconnects from the thermalising bulk of the spectrum. Numerical TEBD
simulations confirm that this lack of thermalisation at the single-site level provides a
good approximation for the behaviour of larger subsystems, as demonstrated by the
half-chain bipartite entropy S(L/2) plotted in Fig. 4.4b. This shows that scarring traps
the system in a vanishingly small corner of an exponentially large Hilbert space.

Furthermore, we demonstrate a protocol for probing unequal-time correlators without
brute-force tomography. Before initiating the evolution, we first transfer atoms on
the right sites of the double wells in the x-superlattice to the hyperfine internal state
|↑⟩ = |F=2,mF= − 2⟩ while leaving the atoms on the left sites in the state |↓⟩ =
|F=1,mF= − 1⟩. By applying the magnetic field gradient, we generate a state-dependent
linear tilt with ∆|↑⟩

B = − 2∆|↓⟩
B , see Fig. 4.4c. We fine-tune the gradient strength such

that the total linear potential ∆|↑⟩ = ∆|↑⟩
g − |∆|↑⟩

B | ≪ U would avoid resonant pro-
cesses while suppressing the direct tunnelling. This means that the |↑⟩ atoms on the
right sites are effectively “frozen” in the initial state |ψ0⟩, while evolving the chains
along the left sites to |ψ(t)⟩. After the evolution, we transfer |↑⟩ atoms back to
|↓⟩, such that all atoms are identical bosons again. We then interfere these copies
of |ψ0⟩ and |ψ(t)⟩ in the x-superlattice, and thus read out the single-site fidelity with
F(1) = Tr(1) [ρ̂0ρ̂(t)] = 1 − 2⟨P̂BS

n̂∈odd⟩(1).
A few remarks are in order. First, as our system does not have single-site addressing,

we will measure the average single-site fidelity and single-site entropy over all sites. In
Appendix C we provide a rigorous proof that the single-site fidelity is an upper bound
for the many-body fidelity F = |⟨ψ0|ψ(t)⟩|2 and show the different quantities for the
same quench. We also discuss the use of the square average single-site fidelity F2

(1).
While it can fail to act as an upper bound for the many-body fidelity in some cases, we
find through our numerical simulation that this virtually never happens and that this
quantity gives a much closer approximation of it. We will thus use it as a proxy of F(t).
In Fig. 4.4d, we observe that F2

(1) displays persistent revivals at the frequency of ⟨M̂z⟩,
revealing the system’s periodic return to the vicinity of its initial state. The behaviour
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of F2
(1) and F(t) (computed numerically) in that figure is qualitatively identical.

4.4 Emergence of detuned scarring in the polarised state

Up to this point, we have provided extensive benchmarks of our quantum simulator
against the previously known case of Z2 quantum many-body scars [43] and shown how
we can measure fidelity and entanglement entropy after quenches. In this section we
demonstrate that our quantum simulator also hosts distinct scarring regimes for initial
states other than |Z2⟩, which are enabled by detuning and can be further stabilised by
a periodic drive. We highlight this finding by observation of scarring behaviour in the
polarised state |0⟩, previously not associated with scars.
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Figure 4.5: a: Fast thermalisation from the unit-filling Mott insulator state in the Bose–
Hubbard chain at U=∆ resonance. b: Emergence of scarred dynamics in the presence of static
detuning. c: Dynamical stabilisation of scarred dynamics in the presence of both detuning and
periodic driving. Panels a, b, c are experimental measurements of the density of excitations,
second Rényi entropy and squared fidelity for a single site. Static detuning is U0= − 2.38J
and the modulation parameters are Um=1.54J , ω=4.9J×2π. Lines are the results of TEBD
simulations. d, e, f: Exact diagonalisation results for the PXP model. d,e show overlaps of all
eigenstates with the polarised state in the PXP chain on a ring with N=32 sites. The value of
static detuning in e matches that used in b. f shows the spectrum of the Floquet unitary for
the PXP chain with N=24 sites and driving parameters corresponding to c.

We first prepare the unit-filling state |1111 . . .⟩ by transferring |2, 0⟩ to |1, 1⟩ states
in the superlattice [209], which maps to the polarised state in the PXP model. In
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the absence of detuning or periodic drive, we observe fast relaxation: the density of
excitations, single-site entropy, and fidelity all rapidly relax, with no visible oscillations
beyond the timescale ∼1/J , see Fig. 4.5a. Interestingly, when we bias the system by
a static detuning, U0= − 2.38J (corresponding to µ0 = 2.38/

√
2 = 1.68 in the PXP

model), we observe the emergence of oscillations in all three observables, accompanied
by a slight decay, see Fig. 4.5b. Finally, if we also periodically modulate the interaction
with amplitude Um=1.54J and frequency ω=4.9J×2π, we find a dramatic enhancement
of scarring, Fig. 4.5c. In particular, both entropy and fidelity now show pronounced
oscillations, signalling robust scar-induced coherence at all experimentally-accessible
times.

The intuitive picture behind our observations is summarised as follows. In the
absence of detuning or periodic drive, the system initialised in the polarised state un-
dergoes chaotic dynamics and rapidly explores the entire Hilbert space. By biasing the
system via static detuning, thermalisation can be suppressed over moderate timescales.
Finally, by periodically driving the system it is possible to ‘refocus’ the spreading of
the many-body wave-function in the Hilbert space and thereby enhance the scarring
effect, similar to the findings of Ref. [78] for the |Z2⟩ state.

Fig. 4.5d, e show the results of exact diagonalisations of the PXP model in Eq. (2.20)
in the presence of static detuning µ0, which is proportional to the Bose-Hubbard de-
tuning parameter U0. Fig. 4.5a plots the overlap of all energy eigenstates |E⟩ of the
pure PXP model (µ0 = 0) with the polarised state |ψ0⟩ = |0⟩. As expected, we do not
see any hallmarks of scars, such as ergodicity-violating eigenstates with anomalously
enhanced projection on |0⟩. On the other hand, when we add the static chemical po-
tential µ0 = 1.68Ω, corresponding to the detuning value in Fig. 4.5b, a band of scarred
eigenstates with anomalously large overlap with |0⟩ emerges; see Fig. 4.5e. The band of
scarred eigenstates pans the entire energy spectrum, but their support on |0⟩ is biased
towards the ground state due to the breaking of particle-hole symmetry by detuning.
Finally, similar to the |Z2⟩ case, scarring from the |0⟩ state can be further enhanced
by periodic modulation of the PXP chemical potential, µ(t) = µ0 + µm cos(ωt). By
evaluating the corresponding Floquet operator, we find that a single Floquet mode
develops a very large overlap with the |0⟩ state, as shown on Fig. 4.5f. The existence
of a single Floquet mode, whose mixing with other modes is strongly suppressed, gives
rise to robust oscillations in the dynamics well beyond the experimentally accessible
timescales.

A few comments are in order. We note that exact diagonalisation confirms that
the PXP model remains chaotic for the value of detuning used in Fig. 4.5e, and this
detuning is not large enough to trivially fragment the entire spectrum into disconnec-
ted sectors with the given numbers of excitations. Moreover, we confirmed that the
scarred eigenstates in Fig. 4.5e are distinct from the ones associated with the |Z2⟩
state. The Hilbert space trajectory of |0⟩ is also very different from that of the |Z2⟩
state. In the latter case, there is approximate state transfer between two product
states that correspond to the highest- and lowest-weight states of some approximate
su(2) spectrum-generating algebra. This is distinct from the |0⟩ state, where the tra-
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jectory after half the period passes through the highest entropy state along the orbit.
In the rest of this chapter, we focus on understanding scarring from the polarised state.

4.5 Mechanism of scarring in the polarised state

While our experimental results have shown conclusive evidence of ergodicity breaking
at moderate times from the polarised state, we now develop theoretical understanding
of the non-ergodic long-time behaviour. First, we compare the difference between
the predictions of the diagonal and canonical ensembles for an observable such as the
average number of excitations, see Fig. 4.6. These two ensembles are expected to give
the same result if the ETH holds [11] and all eigenstates at a similar energy density yield
the same expectation value for local observables. This diagnostic correctly identifies
that scarring from the Néel state is the strongest at µ0 = 0 as shown on Fig. 4.6a.
Meanwhile, for the polarised state, Fig. 4.6b shows that the discrepancy between the
two ensembles is the strongest around µ0 ≈ 1.68Ω, where we observe strong scarring.
For µ0/Ω close to 0, the polarised state thermalises quickly towards the thermal value
expected for an infinite-temperature states. For very large µ0/Ω, we enter a trivial
regime where the polarised state is close to the ground state and only a few eigenstates
at low energies are relevant for the dynamics. Hence, in this regime, quenching from the
polarised state is similar to quenching from a thermal state at a very low temperature
and the agreement between the two ensembles is again very good. However, in this
regime, only a very small part of the many-body Hilbert space is explored by the
dynamics. This is not the case in the scarred regime that we investigate experimentally,
and this can be demonstrated by studying the relevant classical limit, as shown in the
next section. Finally, Fig. 4.6c conclusively shows that the Néel and polarised states
are highly atypical at µ0/Ω = 0 and µ0/Ω = 1.68 respectively when compared to other
initial states. As the diagonal and canonical ensembles both relate to infinite-time, this
shows that ergodicity-breaking is not limited to oscillations at short time.

4.5.1 Semi-classical limit

In Chapter 2, we have discussed the semi-classical limit that gave a good approximation
to the dynamics from the Néel state. Here, we extend the same approach to the
polarised state. Instead of the parameterisation in Eq. (2.27) given in Ref. [59], we use
the one from Ref. [64] where the MPS matrices describing the state of each site are

A•(θj , ϕj) =
(

0 ie−iϕj

0 0

)
, A◦(θj , ϕj) =

(
cos(θj) 0
sin(θj) 0.

)
(4.10)

We recall that the full wave-function is obtained from these matrices using Eq. (2.28).
While this parameterisation has a few minor differences from the one in Eq. (2.27)
(e.g., normalisation, the θj angles being different by a factor of 2, etc.), it encodes the
same type of product state where each site is characterised by θ and ϕ, which is then
projected into the constrained PXP space. As we now consider the polarised state

74



4.5 Mechanism of scarring in the polarised state

0.000

0.025

0.050

|δn
|

a
|Z2〉

16 20 24 28 32N

0.007

0.008

|δn
|

0.00

0.01

|δn
|

b
|0〉

16 20 24 28 32N

0.0165

0.0175

|δn
|

0 1 2 3 4 5 6
µ0/Ω

0.000

0.025

0.050

δn

c
Rand. |Z2〉 |0〉

14

16

18

20

22

24

26

28

30

N

Figure 4.6: Difference between the expectation values of the diagonal and canonical ensembles
for the average number of excitations in the PXP model. a Discrepancy after a quench from
the Néel state. As expected, the difference is maximised at µ0 = 0 for this state. The inset
shows the scaling of |δn| at µ0/Ω ≈ 1.68. b: Discrepancy after a quench from the polarised,
for which the difference is maximised at µ0 ≈ 1.68. The inset shows the scaling of |δn| at this
point, displaying an increase of the difference with system size. c: Values of δn for N = 30 for
various initial states. The Néel and polarised states show much larger discrepancies between
the ensembles than all other states.

which is homogeneous in space, we will set all θj = θ identical and the same for all
ϕj = ϕ. This means that our Ansatz essentially describes a single large-spin coherent
state. The derivation of the equations of motion and instantaneous leakage out of the
manifold can be found in Appendix D for an infinite system. The equations of motion
are given by

θ̇ = −Ω cos(θ) cos(ϕ)
[
1 + sin2(θ)

]
, (4.11)

ϕ̇ = µ0 + Ωsin(ϕ)
sin(θ)

[
1 − 4 sin2(θ) − sin4(θ)

]
. (4.12)

Moreover, this simple Ansatz also allows to determine analytically the important quant-
ities such as the excitation density

1
N

∑
j

⟨n̂j⟩ = sin2(θ)
1 + sin2(θ) , (4.13)
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and the energy density

E(θ, ϕ)/N = sin(θ)
1 + sin2(θ)

(
µ0 sin(θ) + 2Ω cos2(θ) sin(ϕ)

)
. (4.14)

Using these results, we can get a better understanding of the trajectory in the
manifold. In particular, we can get the maximum angle θ reached for a given value
of µ0/Ω. From Eq. (4.11), we see that the turning point in the derivative of θ along
the trajectory is governed by cos(ϕ). A sign flip therefore must occur when ϕ = ±π/2.
Energy is exactly conserved along a TDVP trajectory, and for the polarised state we
have that E(0, 0) = 0. Setting ϕmax = π/2 in Eq. (4.14) and setting it to zero then
allows us to determine the θmax coordinate of the turning point:

sin (θmax) =
(

|µ0/Ω| −
√

(µ0/Ω)2 + 16
)
/4. (4.15)

We can compare these analytical predictions against exact quantum dynamics.
While we were not able to find an analytical solution for the equations of motions,
they can be integrated numerically. This comparison is shown in Fig. 4.7 and the
agreement with exact diagonalisation results gets increasingly better with µ0/Ω. We
note that at µ0 = 1.68Ω the TDVP numerics already gives a good prediction for short
times, correctly capturing the oscillation period and amplitude.
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Figure 4.7: Comparison between the exact quantum results for N = 32 and the semi-classical
prediction for an infinite system for the density of excitation after a quench from the polarised
state. The two agree better as µ0/Ω increases. The horizontal dashed line corresponds to the
analytical value for the maximum excitation density for a given µ0/Ω value.

76



4.5 Mechanism of scarring in the polarised state

Finally, as the TDVP approach is variational, it is important to quantify its accuracy
in capturing the quantum dynamics. This can be characterised by “quantum leakage” –
the instantaneous norm of a component of the state vector that lies outside the TDVP
manifold – which was introduced in Eq. (2.26). We find that the analytical expression
for the intensive leakage is

γ2 = Ω2 sin6(θ)
1 + sin2(θ) , (4.16)

see Appendix D for the full derivation. The leakage is higher as θ is increased, corres-
ponding to a larger density of excitations. This can be intuitively understood, as in this
regime the PXP constraint has a strong effect and the spin-coherent state Ansatz does
not faithfully capture the dynamics. On the other hand, for large values of µ0/Ω, the
leakage is low but θ is confined to values near zero, thus the trajectory does not explore
much of the Hilbert space. This corresponds to the trivial case where the dynamics
is confined to very low densities of excitations, rendering the constraint unimportant.
Finally, in the intermediate regime of µ0/Ω where we observe the scarring, the TDVP
dynamics is able to “avoid” the high-leakage area, as seen in Fig. 4.8a, while at the
same time θ is not pinned to zero and the dynamics explores a sizeable part of the
Hilbert space.

As the TDVP results are computed for an infinite system, they also allow us to make
prediction about the quantum dynamics in that limit. Indeed, from the instantaneous
leakage rate γ one can compute ΓT =

[∫ T
t=0 γ(t)dt

]2
by doing the integral over a periodic

orbit with period T . ΓT then provides an upper bound [64] on the quantum fidelity
density after one period fT = − ln

(
| ⟨ψ(T )|ψ(0)⟩ |2

)
/N , and thus a lower bound on

the fidelity itself. Essentially, ΓT gives the fidelity density in the worst possible case
where every part of the wave-function that leaves the manifold never returns into it.
We also compute fT in the thermodynamic limit through finite-size scaling of the
exact dynamics. Both ΓT and fT can be seen in Fig. 4.8b. For the value of µ0/Ω =
1.68 investigated experimentally, we find fT ≈ 0.0268 and ΓT = 0.0327, an order of
magnitude closer to zero than the value of − ln

(
1
D

)
/N = ln

(
1+

√
5

2

)
= 0.481, expected

for a thermalising state 1. This indicates that ergodicity breaking will be present in
the thermodynamic limit for this value of µ0/Ω.

4.5.2 Algebraic picture

As the Ansatz used in the previous section is a single large-spin coherent state, it hints
at the presence of an approximate su(2) algebra in the polarised state, similar to he
Néel state discussed in Chapter 2. We propose that the parent model in the former
case is simply the unconstrained spin-1/2 paramagnet along the X direction. Once

1While our state is restricted to the symmetry sector with zero momentum and +1 eigenvalue under
spatial reflection, the size of this sector grows asymptotically as ϕN /(2N). So − ln

(
1
D

)
/N is the same

up to a ln(N)/N correction that will go to zero in the thermodynamic limit.
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Figure 4.8: a: Trajectory in the TDVP manifold for different values of µ0/Ω. Colour scale
denotes quantum leakage γ, which serves as a bound on the accuracy of the TDVP approxim-
ation. The markers are spaced in time by ∆t = 0.15/Ω. For the optimal value µ0 = 1.68Ω also
used in experiment, the trajectory avoids the high-leakage region and approximates well the
quantum dynamics, while it is not limited to a small corner of the many-body Hilbert space.
b Fidelity density after one period computed using exact dynamics and its upper bound ΓT

computed using the TDVP framework. A smaller value indicates better revivals.

projected into the constrained space, the generator of the algebra are equal to

Ŝx = 1
2ĤPXP, Ŝy = 1

2

N∑
j=1

P̂j−1σ̂
y
j P̂j+1, Ŝz = 1

2

N∑
j=1

σ̂zj = −N

2 +
N∑
j=1

n̂j . (4.17)

Unlike in the Néel state case, it is clear that this projected algebra is poor, as can be
checked from the commutation relation. However, the quality of the algebra actually
depends on the density of excitations. Indeed, in the dilute limit where ⟨n̂⟩ ≪ N , the
excitations essentially do not see each other and, consequently, the projectors P̂ in the
Ŝx and Ŝy operators effectively act as the identity. Thus we recover the usual su(2)
commutation relations and the dynamics can be well described as the precession of a
big spin. As the density of excitation gets larger, this is no longer the case and the
algebra drifts further and further from being exact. As this happens, the wave-function
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4.5 Mechanism of scarring in the polarised state

can no longer be described as a large spin and the TDVP description breaks down. The
effect of the detuning µ0/Ω can be easily understood in that context. As it is equivalent
to the global Ŝz operator (up to an irrelevant constant factor), changing µ0/Ω is akin
to tilting the axis of precession of the spin. This is the same effect that the staggered
magnetisation had in the Néel state case, as was showcased in Fig. 3.5 a. This changes
the trajectory on the Bloch sphere and brings the antipodal point closer to the initial
state. In the Néel case, the algebra is good in the entire Bloch sphere and revivals can
be witnessed for all values of the staggered magnetisation (see Appendix B). For the
polarised state, the algebra is only good in the lower portion of the sphere. As such, the
axis needs to be sufficiently tilted in order for the trajectory to avoid the upper part,
corresponding to a high density of excitation. This is shown schematically on Fig. 4.9.

Figure 4.9: Representation of scarring from the polarised state as precession on a Bloch sphere
with additional effects from the Rydberg constraint. Panels a to d represent the trajectory for
increasing values of µ0/Ω, corresponding to an increasingly tilted precession axis. The orange
colour scale indicates the areas of the sphere where the spin coherent state approximation
breaks down, which is essentially equivalent to the leakage in Fig. 4.8a. Panels a and b lead
to thermalisation due to this. Panels c correspond to the scarred regime while panel d is the
trivial regime where only low-energy physics occur.
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4.6 Summary

We performed a quantum simulation of the paradigmatic PXP model of many-body
scarring using a tilted Bose-Hubbard optical lattice. We demonstrated the existence
of persistent quantum revivals from the |Z2⟩ initial state and their dynamical stabil-
isation, opening up a new route for the investigation of scarring beyond Rydberg atom
arrays. By harnessing the effect of detuning and periodic driving, we observed a dis-
tinct scarring regime associated with the polarised initial state. As the latter state is
spatially homogeneous, its preparation does not require a superlattice, which makes
further investigations of scarring phenomena accessible to a large class of ultracold
atom experiments. The versatility of such platforms allows to directly probe the link
between many-body scarring and other forms of ergodicity breaking phenomena, such
as Hilbert space fragmentation and disorder-free localisation, as the latter can be con-
veniently studied in our setup by varying the tilt.

Our methods for probing unequal-time correlators allow for state-of-the-art monit-
oring of non-equilibrium dynamics and its applications in quantum technology. Not-
ably, this protocol can be used to probe the global fidelity, as well as the unequal-time
correlations between arbitrary quantum states, e.g., |⟨ψ(t1)|ψ(t2)⟩|2, with the help of
single-atom resolution quantum gas microscopes [219, 220]. This would empower de-
tailed experimental studies of exotic quantum phenomena such as dynamical quantum
phase transitions [221]. Moreover, the observation of long-lived quantum coherence
due to scarring and its controllable enhancement via periodic modulation, lays the
foundation for applications such as quantum memories and quantum sensing [143].
The dynamical manipulation of a many-body system employed in this work can be
directly used to prepare states with extensive multipartite entanglement [1] discussed
in Chapter 3, thus lending itself to novel protocols for phase estimation and quantum
metrology.

Finally, our discovery of scarring in the |0⟩ state highlights the ubiquity of su(2)
algebraic structures in the PXP model. Indeed, we have shown that scarring from that
state can be captured by a semi-classical Ansatz corresponding to the precession of a
single large spin. We have also proposed that the origin of this is an unconstrained
paramagnet which leaves a strong imprint in the PXP model for sufficiently low density
of excitations. By adding a strong enough detuning, the system can be kept in this
regime, where remnants of the algebraic structure of the unconstrained paramagnet are
relatively well preserved.
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Chapter 5

Graph-theoretic approach to quantum
many-body scarring in tilted
Fermi-Hubbard chains

In the previous chapter, we have emphasised the need for engineering QMBS on different
experimental platforms, and we have demonstrated that the emblematic PXP model
itself can be simulated using a Bose-Hubbard simulator with a tilted potential. A
natural question, in particular in view of solid-state material realisations, is whether
this construction can be generalised to systems described by a Fermi-Hubbard model.
We will now show that we can use the same mechanism – linear tilt potential – to
create a constrained effective model in the Fermi-Hubbard chain. However, in contrast
to the Bose-Hubbard case in Chapter 4, the effective Hamiltonian will turn out not to
be equivalent to the PXP or any other previously-known QMBS model. Nevertheless,
we will show that the new model exhibits familiar QMBS phenomenology, including
revivals from simple product states. We will explain the mechanism of scarring from a
graph-theoretical point of view by visualising the Hamiltonian as an adjacency graph,
where each computational basis state represents a graph vertex. The origin of scarring
is traced back to a subset of this graph which is isomorphic to an integrable system,
whilst being weakly coupled to the rest of the Hilbert space. The graph picture will
also allow us to directly identify the reviving initial states, as they are the only vertices
belonging to the integrable subgraph which have no edges connecting them to the
remainder of the graph representing thermal states.

The model studied in this chapter is motivated by a recent experiment [222], which
demonstrated the existence of Hilbert space fragmentation in a tilted Fermi-Hubbard
optical lattice. The study of QMBSs in that system would allow to investigate its
interplay with both fragmentation as well as Stark many-body localisation [223–225],
which can similarly be induced by a strong tilt.
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5.1 The tilted Fermi-Hubbard model

The 1D Fermi-Hubbard model is given by the Hamiltonian

Ĥ=
∑

j, s=↑, ↓
−Jĉ†

j,sĉj+1,s + h.c.+ ∆jn̂j,s + U
∑
j

n̂j,↑n̂j,↓, (5.1)

where ĉ†
j,s denotes the usual electron creation operator on site j with spin projection s,

n̂j,s ≡ ĉ†
j,sĉj,s is the density operator, J and U are the hopping and on-site interaction

terms, respectively. Tilt of the optical lattice is parameterised by ∆, which can be
experimentally implemented via an electric field gradient and we assume it to be spin-
independent [222]. Note that tilting has the structure of a dipole term, ∼ jn̂j . Below
we impose open boundary conditions on the model in Eq. (5.1), and restrict to the
electron filling factor ν = 1, i.e., with N/2 fermions with spin ↑ and N/2 fermions with
spin ↓ on a chain of N sites (assumed to be even). We also set J = 1 for simplicity. We
label the Fock states using ↑ to denote a fermion with spin up and ↓ with spin down,
while 0 stands for an empty site and ↕ denotes a doublon.

As in the previous chapter, we focus on the regime ∆ ≈ U ≫ J . In this case the
sum of the dipole moment and the number of doublons is effectively conserved. The
dominant contribution to the Hamiltonian (using a Schrieffer-Wolff transformation at
first order [47]) is then given by

Ĥeff = −J
∑
j,s

ĉ†
j,sĉj+1,sn̂j,s̄(1 − n̂j+1,s̄) + h.c.+ (U − ∆)

∑
j

n̂j,↑n̂j,↓, (5.2)

where j is summed over all lattice sites while s is summed over the spin values ↓
and ↑, and s̄ denotes opposite spin from s. As in the bosonic case, in this effective
Hamiltonian hopping to the left (which decreases the total dipole moment by 1) is only
allowed if it increases the number of doublons by the same amount, which is enforced
by the projectors. While this might seem identical to the Bose-Hubbard case, the
exclusion principle affecting fermions and their spin result in a completely different
model. Indeed, creating a doublon is only possible with fermions of opposite spins.
Thus, configurations like |↑↑⟩ and |↓↓⟩ are dynamically frozen. Meanwhile, |↕ 0⟩ is
connected to both |↑↓⟩ and |↓↑⟩. This means that each link between fermions can no
longer be mapped to a spin-1/2 and we need to keep track of the fermion spins.

In order to simplify the computations, we perform a Jordan-Wigner transformation
to express the Hamiltonian in terms of Pauli spin operators σ̂z, σ̂± = (σ̂x ± iσ̂y)/2.
As we have two species ↑, ↓ of fermions, each species therefore gets mapped to a
corresponding Jordan-Wigner spin σ̂α↑ , σ̂α↓ . In order to minimise the confusion between
the spin of the original fermions and the Jordan-Wigner spins, we will reserve the term
“spin” to exclusively refer to the original fermion spin. For the Jordan-Wigner spins,
we will describe the physics in term of “excitations”, e.g., the action of σ̂+

j,↓ is to create
an excitation on site j with spin down. Furthermore, as a Jordan-Wigner convention,
we will set that the spin-down fermions are located “on the right” of the up-spin ones.
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For open boundary conditions the resulting Hamiltonian of the effective model is:

Ĥeff,JW = −J
∑
j

σ̂+
j,↓σ̂

−
j+1,↓n̂j,↑

(
1 − P̂j+1,↑

)
+ J

∑
j

σ̂+
j,↑σ̂

−
j+1,↑n̂j,↓

(
1 − P̂j+1,↓

)
, (5.3)

where P̂ and n̂ are projectors respectively on the non-excited and excited state of the
Jordan-Wigner spin. The two subscript on the σ̂ operators denote the site and spin of
the fermion.

5.1.1 Largest connected component of the Hilbert space

The action of the Hamiltonian (5.2) within the ν = 1 sector fragments the Hilbert
space beyond the simple conservation of U + ∆. In this work we focus on the largest
connected component, which is the one containing the state with alternating ↑ and ↓
fermions. From this state, neighbouring ↓ and ↑ fermions can always be exchanged
through the ↕ 0 configuration. Thus, all possible configurations of fermions with no
doublons must be in the same sector. On top of this, we also have states with a ↕ 0
instead of neighbouring ↑ and ↓. Meanwhile, the other sectors all contain at least one
frozen site through which ↑ and ↓ fermion cannot be exchanged. This splits the chain
into multiple disconnected fragments, leading to a reduced number of states.

The dimension of the largest connected sector can be computed analytically by
relying on the similarity of its structure to that of the PXP model. Indeed, while the
spin of the fermions means that the mapping used in the Bose-Hubbard model is no
longer correct, it still captures some of the characteristics of our effective Hamiltonian.
In particular, we can start with it and then add the action of the fermionic spin on top.
As for the Bose-Hubbard case treated in Chapter 4, let us put a spin-1/2 on each link
between fermions. Let N = 2M be the number of fermionic sites, the effective PXP
model then has 2M−1 sites. We can map any link between |↕ 0⟩ as an excitation while
other configurations corresponding to unexcited PXP sites. This captures all possible
configurations of doublons in the effective model, but now for each of these there are
multiple ways to arrange the remaining fermions depending on their spin. If there are
n doublons/PXP excitations, then we are left with 2(M − n) fermions. Half of them
have spin up and the other half spin down, and they live on the 2(M − n) remaining
sites. As such they can take exactly

(2(M−n)
M−n

)
different configurations. For the PXP

model with N − 1 = 2M − 1 sites, it has been shown in Ref. [226] that the number of
configurations with n excitations is

NPXP(2M − 1, n) =
(

2M − 1 − n

n

)
+
(

2M − 1 − n

n− 1

)
=
(

2M − n

n

)
, (5.4)

with n taking any value between 0 and M . This leaves us with a total number of states
in the effective Fermi-Hubbard model of

DM =
M∑
n=0

(
2M − n

n

)(
2(M − n)
M − n

)
, (5.5)
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which, after some combinatorial manipulations and using a change of variable k =
M − n, can be written as

DM =
M∑
k=0

(
M + k

k

)(
M

k

)
=

M∑
k=0

(
M + k

k

)(
M

k

)(3 − 1
2

)k
= PM (3), (5.6)

where PM (3) denotes the Legendre polynomial of degree M evaluated at the point
x = 3. This also allows us to use the recursion relation for Legendre polynomials to get

DM = 3(2M − 1)DM−1 − (M − 1)DM−2
M

, (5.7)

which makes it straightforward to compute DM numerically using only integers. It
also allows to analytically get the asymptotic behaviour of DM . Let us use the Ansatz
DM = αM . Then in the M → ∞ limit, we can rewrite Eq. (5.7) as

αM = 6αM−1 − αM−2. (5.8)

Dividing this by αM−2 and solving the resulting degree-2 equation leads to α = 3+2
√

2.

5.1.2 Symmetries of the model and level statistics

In order to verify that the effective Hamiltonian in the largest connected sector is
chaotic, we first need to identify and explicitly resolve the various symmetries of the
model. The full model in Eq. (5.1), has two symmetries linked to the fermionic spin.
Namely the SU(2) spin symmetry and a Z2 symmetry related to spin-reversal [227].
The latter is given by

ŷ1 =
∏
j

e−iπ 1
2 (iĉ†

j,↓ĉj,↑−iĉ†
j,↑ĉj,↓). (5.9)

After the Jordan-Wigner transformation, this symmetry cam be simply formulated
using the joint action of the doublon parity operator and the spin inversion operator.
The doublon parity is diagonal in the product basis and gives +1 if there is an even
number of doublons and -1 otherwise. The spin inversion simply changes the excitations
between up spin and down spin. The symmetry can then be expressed as

ẑ1 =
N∏
j=1

(−1)n̂j,↓n̂j,↑

(
σ̂+
j,↑σ̂

−
j,↓+σ̂+

j,↓σ̂
−
j,↑+

1+σ̂zj,↑σ̂zj,↓
2

)
. (5.10)

This is equivalent to Eq. (5.9) up to an overall spin-rotation and some charge-dependent
phase factors.

In the largest Hilbert space sector, the Hamiltonian (5.2) has an additional sym-
metry related to spatial inversion and particle-hole exchange. In the fermionic language,
it can be written as

ŷ2 =
∏
j

(−1)n̂j,↑n̂j,↓P̂R̂, (5.11)
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Figure 5.1: Level-spacing statistics for the effective Fermi-Hubbard model in Eq. (5.2) for
N = 16. a Average r value in all sectors in the relevant Hilbert space sector. The black dotted
line is at ⟨r⟩ = 0.39 (expected value for Poisson statistics) while the red dash-dotted line is at
⟨r⟩ = 0.53 (expected value for Wigner-Dyson statistics). b Number of states in each symmetry
sector. Overall we find that in all sectors with at least D ≈ 103 states, ⟨r⟩ is very close to 0.53
c Full distribution of the energy level spacing after unfolding [19] in the sector z⃗ = (1, 1) and
total spin S = 2. We again find good agreement with the Wigner-Dyson ensemble.

using the particle-hole operator P̂ and spatial-reflection operator R̂ defined by the
adjoint actions,

P̂c†
j,s = cj,sP̂, R̂c†

j,s = c†
N−j−1,sR̂. (5.12)

The particle-hole operator also has a non-trivial action on the vacuum state

P̂ |0⟩ =
∏
j

c†
j,↑c

†
j,↓ |0⟩ . (5.13)

After the Jordan-Wigner transformation, the second symmetry generator can be ex-
pressed as

ẑ2 =
N/2∏
j=1

∏
s

(
σ̂+
j,sσ̂

+
N−j−1,s + σ̂−

j,sσ̂
−
N−j−1,s +

1 − σ̂zj,sσ̂
z
N−j−1,s

2
)
. (5.14)

The spatial inversion swaps sites j and N−j, while the particle-hole conjugation places
an excitation in every empty site and vice-versa.

As our numerical results are obtained using the spin formulation, we will specify
the symmetry sectors by z⃗ = (z1, z2) = (±1,±1), where z1 and z2 are the eigenvalue of
the operators in Eqs. (5.10) and (5.14) respectively. After resolving these symmetries,
we find the level statistics parameter ⟨r⟩ [24] to be close to 0.53 for all symmetry
sectors with large numbers of states (≳ 103). From these values which coincide with
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the Wigner-Dyson statistics [19], we expect the model in Eq. (5.2) to be chaotic. In
Fig. 5.1, we further probe the full distribution of level spacings after unfolding for one
sector. Once again, we recover extremely good agreement with Wigner-Dyson. Of
course, it will turn out that our model does not represent a completely generic chaotic
system, as it contains special QMBS eigenstates in its spectrum. We next outline an
intuitive approach based on graph theory that allows us to identify QMBSs in the
model (5.2).

5.2 Embedded hypergrid subgraph

One of the main difficulties of identifying weak ergodicity breaking is that its effect is
restricted to a small class of initial states and cannot be detected using global quantities
such as the level spacing statistics. As a brute force search from all product states
is numerically demanding, we propose here an approach to find the reviving states
based on the graph of the model. In this graph each vertex corresponds to a basis
state (usually in the Fock basis), and two vertices are connected by an edge if the
Hamiltonian matrix element between their respective basis states is non-zero. We next
show, by examining the adjacency graph of the model in Eq. (5.2), that we can identify
a subgraph, weakly coupled to the rest of the Hilbert space, which contains the reviving
initial states and leaves a strong imprint on the scarred eigenstates. This leads to a
transparent manifestation of scarring in the original Fock basis, in contrast with the
PXP model. In the latter case, the subspace which is weakly coupled to the rest of
the Hilbert space has a much more complicated structure, leading to the wave-function
spreading across the entire adjacency graph [54] before refocusing onto the Néel state.

In order to reduce the Hamiltonian to its connectivity, it is desirable for it to be
purely off-diagonal, and to have all its non-zero matrix elements of equal sign and
magnitude. This means that the corresponding graph can be treated as an unweighted
graph. In the case of the tilted Fermi-Hubbard chain, the off-diagonal condition is
satisfied for the effective Hamiltonian in Eq. (5.2). However, it is clear that there are
both positive and negative matrix elements. We show that a simple basis transformation
is enough to get rid of all minus signs in the Hamiltonian. These occur only when
moving a spin down excitation. Here we propose the following convention for fixing
the signs: we assign to each product a sign equal to the parity of the number of
spin down excitations on the even sites. This corresponds to a change of basis using
the diagonal matrix T̂ = ∑N/2

j=1(−1)P̂j,↓ . If a spin up excitation is moved, this does
not change this quantity and it follows that both states connected by this move have
the same sign. Whether it is +1 or -1 is irrelevant as the matrix element will get a
factor equivalent to their product, which is always +1. On the other hand, if a spin
down excitation is moved, this parity number will always change by 1, and the states
connected by the move will have opposite signs. From this, it follows that all the
matrix elements of T̂ Ĥeff,JWT̂ are equal to +1, thus we can view the model in terms
of an undirected, unweighted graph. Alternatively, the same result can be obtained
by choosing a different convention for the Jordan-Wigner transformation. Instead of
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interleaving the fermions with a different spin-projection, one can first place all up-spin
fermions and then all down-spin ones with a simple linear order for each species. This
has the effect of ensuring that each of the ‘hopping’ terms never takes a fermion past
another. Then, all these matrix elements are equal and can be brought to 1 by the
choice of the coupling constant J .

In Fig. 5.2 we plot the adjacency graph of the Hamiltonian in Eq. (5.2) for a
small system. We recall that each vertex corresponds to a Fock state, and two states
are connected by an edge if the matrix element between them is non-zero. As the
Hamiltonian (5.2) (for U = ∆) has no diagonal elements and the spectrum is symmetric
around zero, all product states effectively belong to the infinite temperature ensemble
and thus are expected to thermalise quickly. As we will confirm numerically below,
there are two important exceptions.

| − +〉, | +−〉
| ↓ 2 ↑〉, | ↑ 2 ↓〉
Hypergrid
Other states

Figure 5.2: Adjacency graph of the effective model in Eq. (5.2) for N = 6. Red vertices denote
the states belonging to the hypergrid, with the black vertices corresponding to the states |−+⟩
and |+−⟩ defined in the text. Green vertices are the isolated states |↓ 2 ↑⟩ and |↑ 2 ↓⟩ which
live on the tails of the graph. For this graph, the hypergrid contains 27 vertices out of 63.

First, as highlighted in red colour in Fig. 5.2, there is a regular subgraph which has
the form of the hypergrid – a Cartesian product of line graphs (in our case, of length 3),
i.e., the hypergrid is isomorphic to an adjacency graph of a free spin-1 paramagnet. This
mapping can be understood by looking at the state |↓↑↓↑↓↑ . . .⟩. Each cell of two sites
(comprising sites 2j − 1 and 2j with j = 1 to N/2) can take the values − ≡↓↑, 2 ≡↕ 0
or + ≡↑↓, leading to a three level system. Note that the configuration 0 ↕ is omitted,
as doublons can only be formed by hopping to the left. On the other hand, hopping
between two neighbouring cell will break this mapping and take the system out of the
hypergrid subgraph. Inside the hypergrid, we identify two states for which the cell
alternates between − and +. These are the state |−+⟩ ≡ |−+−+ . . .⟩ = |↓↑↑↓↓↑↑↓ . . .⟩
and its spin-inverted partner, |+−⟩ = |+−+− . . .⟩ ≡ |↑↓↓↑↑↓↓↑ . . .⟩. The states |−+⟩
and |+−⟩ for N = 6 are shown in black colour in Fig. 5.2. These two states are the only
corners of the hypergrid (state with only + and − cells) with no edges going out of it. As
we show below, both of these states shows persistent oscillations in quench dynamics,
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undergoing robust state transfer to their spin-inverted counterpart. While other corners
of the hypergrid also show revivals, they are much smaller in amplitude and decay
faster due to the leakage out of this substructure. The second example of a reviving
state is |↓ 2 ↑⟩ ≡ |↓↓ . . . ↓↕ 0 ↑↑ . . . ↑⟩ (and its spin-reversed partner |↑ 2 ↓⟩), which is
situated on a tail-like structure of length 3 (independent of system size) with minimal
connectivity to the rest of the Hilbert space (green points in Fig 5.2). Similar tail-like
structures occur in constrained spin models such as the quantum East model [228].

5.3 Scarred dynamics

Having identified candidate states for quantum revivals in the hypergrid picture, we
now scrutinise their quench dynamics using large-scale exact diagonalisation simulations
of the effective model in Eq. (5.2). Making use of various symmetries present in the
model, we have been able to exactly simulate dynamics for up to N = 22 fermions. For
convenience, the simulations were performed in the spin representation of the model.

Fig. 5.3a shows the time dependence of the entanglement entropy Sent(t) when
the system is quenched from various initial product states, such as |−+⟩, |↓ 2 ↑⟩ and
a few randomly-chosen product states. Sent is defined as the von Neumann entropy
of the reduced density matrix for one half of the chain. In all cases, entropy grows
linearly in time, consistent with thermalisation of the system. However, the coefficient
of linear growth is visibly different for |−+⟩ and |↓ 2 ↑⟩ states, and it is smaller than
that of random states, indicating non-ergodic dynamics. The long-time value of the
entropy is also different for the |−+⟩ state, hinting that the wave-function is still not
completely spread into the whole Hilbert space. The hallmark of many-body scars are
the oscillations superposed on top of the linear growth, as seen in the scarred dynamics
in the PXP model [50]. Rapid growth of entropy at short times is a consequence of the
bipartition being located in the middle of an two-site effective cell.

Entropy oscillations mirror those of the wave-function return probability F(t) in
Fig. 5.3b. For the isolated state |↓ 2 ↑⟩, only a single revival is clearly visible as the
return probability decays rapidly once the wave-function leaks out of the tail of the
graph. The revival time can be accurately estimated by assuming the tail is completely
disconnected, leading to the period π/

√
2. In contrast, the state |−+⟩ displays several

revivals with the sizeable weight of the wave-function ∼ 40% returning to its initial
value. The fidelity density at the first revival, 1

N ln(F), shown in the inset, converges
as 1/N to a value of −0.058. In contrast, the inverse Hilbert space dimension, D−1,
expected for a random state leads to a fidelity density of −0.855 – an order of magnitude
higher. The scarred dynamics in this case can be visualised as the state bouncing
within the hypergrid between |−+⟩ and its partner |+−⟩, illustrated by the dotted line
in Fig. 5.3b. From the hypergrid analysis, we expect the revival period to be

√
2π,

coming from the 2π period of free precession and the spin-1 matrix elements
√

2. This
prediction closely matches the revival period observed in Fig. 5.3b.

The importance of the hypergrid for scarred dynamics is illustrated in Fig. 5.3c
which plots the probability to remain in the hypergrid, PHG(t) = ⟨ψ0|eiĤtP̂HGe

−iĤt|ψ0⟩,
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Figure 5.3: Dynamics in the effective model (5.2) for N = 18 for |−+⟩, |↓ 2 ↑⟩ and randomly
chosen initial states. a Entanglement entropy Sent for an equal bipartition of the system.
Entropy grows linearly in time for all states, consistent with thermalising dynamics, but for the
special initial states it shows QMBS oscillations. |ϕ⟩ /∈ HG and |ϕ⟩ ∈ HG denote the average
over 10 random product states outside or within the hypergrid, respectively, and the shading
represents standard deviation. b Fidelity dynamics for the same initial states as in a. Inset
shows the finite-size scaling of the fidelity density 1

N ln |⟨ψ0|e−iĤt|ψ0⟩|2 at the first revival for
|−+⟩ state, demonstrating a value much higher than 1

N ln(1/D) (with D the dimension of the
Hilbert space derived in Section 5.1.1), expected for a random state. Blue dotted line shows
the amplitude of state transfer between |−+⟩ and |+−⟩ states. c Probability to remain within
the hypergrid over time is much higher for |−+⟩ than other states.

where P̂HG is the projector onto the subspace spanned by product states belonging to
the hypergrid. For the initial state |−+⟩, we observe that the wave-function remains
concentrated inside the hypergrid, even at late times. This is in stark contrast with the
PXP model [54], where the wave-function spreads across the entire graph by the time it
undergoes the first revival. Finally, for this initial state after a long time PHG converges
to a non-zero value which is higher than expected from the relative size of the hypergrid
in the Hilbert space, hinting that the subgraph has additional structure that prevents
states from leaking out. This is important, because in the thermodynamic limit the
hypergrid occupies a vanishing fraction of the Hilbert space. Indeed, as the hypergrid
has dimension 3N/2 while the Hilbert has dimension (3 +

√
8)N/2, the fraction of states

in the former decreases exponentially with N . The fact that this higher-than-expected
value is only witnessed for |−+⟩ state and not for other random states within the
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hypergrid confirms that this state occupies a special position within this substructure.
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Figure 5.4: Signatures of the non-trivial embedding of the hypergrid in the effective tilted
Fermi-Hubbard model. a Expectation value of the projector on the hypergrid states over time
for various system sizes with the initial state |−+⟩. The dotted black lines show the average
of this projector at long times. Panel b shows these long-time value compared to the expected
value from the relative size of the hypergrid for various system sizes. c Entanglement entropy
as a function of time for different initial states and system size N = 16. |ϕ⟩ /∈ HG and |ϕ⟩ ∈
HG denote the average over 10 random product states, respectively outside of and within the
hypergrid, that have been projected into the symmetry sectors in which the |−+⟩ state has
support. This was done to remove the influence of these symmetries in the entanglement
entropy. The shaded area corresponds to the standard deviation. Panel d shows the long-time
value for different initial states as a function of system size. For the system sizes investigated,
all states except |−+⟩ converge towards the same entropy value.

In Fig. 5.4, we perform similar quench dynamics but now for much longer times
and for a range of system sizes. The same kind of behaviour of PHG as in Fig. 5.3 is
observed. This is also true for the long-time value of the entanglement entropy. For
a large enough system, most states saturate to the same entropy but for |−+⟩ this
saturation value is lower, showing that the wave-function is not entirely spread into
the entire Hilbert space. This lower saturation entropy is not visible for generic states,
even the ones picked from within the hypergrid. This is consistent with our picture of
the wave-function being partially trapped in the hypergrid when the system starts out
in |−+⟩ state. These long-time results show that our previous results are not merely
a prethermal regime. While the scaling with system size does not allow us to make
decisive prediction on the fate of scarring in the thermodynamic limit, it at least hints
that we can expect similar infinite-time results for several tens of atoms.
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5.4 Eigenstate properties

Properties of eigenstates of the model (5.2) are summarised in Fig. 5.5. The projec-
tion of eigenstates onto the |−+⟩ state, shown in panel a, displays prominent tower
structures reminiscent of other scarred models. The existence of towers implies that
eigenstates tend to concentrate around certain energies in the spectrum, causing an
ETH violation. The separation between the towers is approximately ∆E ≈

√
2, as

expected from the embedded hypergrid. Note that the eigenstates have been classified
according to the conserved total value of spin S; in contrast, the |−+⟩ state is not an
eigenstate of S2. One can show that for this state, ⟨S2⟩ = N/2, thus |−+⟩ is predom-
inantly supported by S = 1 and S = 2 eigenstates for N = 16 used in Fig. 5.5 . The
S = 1 eigenstates are indicated by red points in that figure.

Figure 5.5: Eigenstate properties of the effective model (5.2) for N = 16. a Overlap of
eigenstates with the |−+⟩ state as a function of their energy E. b Entanglement entropy Sent
of the eigenstates. Red dots correspond to eigenstates with total spin S = 1, while the blue
ones ones mark all other spin values. The squares indicate the eigenstates sitting at the top of
each tower of states. These towers have an energy separation of approximately

√
2, as expected

for the spin-1 hypergrid.

Similar ETH violation can be seen in the entanglement properties of eigenstates,
shown in Fig. 5.5b, showing that eigenstates of similar energy have very different
amounts of entanglement. This broad entanglement distribution, however, can mostly
be attributed to the eigenstates belonging to different spin sectors S, giving rise to
multiple bands that do not fully overlap at the system size shown in Fig. 5.5b. The
distribution of entropy in S = 1 sector [red points in Fig. 5.5b] is relatively narrow
apart from two “outliers” shown at energy E ≈ ±

√
2. These two outliers have high-

overlap with |−+⟩ and sit at the top of their respective towers of states when restricting
to the sector S = 1. The states at the top of each tower are indicated by squares, but
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unlike the PXP model [54] these states are not well separated from other states in the
same tower.

In a fully ergodic system, one expects the support of an eigenstate on a subset of
states to be approximately equal to the ratio of the number of states belonging to this
subset and the total dimension of the Hilbert space. Performing this computation for
the effective model and choosing the hypergrid subgraph as the subset shows anomalous
concentration of some eigenstates – see Fig. 5.6. As the overlap with the |−+⟩ state
forms a lower bound to the support on the hypergrid, we find the same kind of towers
of states, located at the same energies, in this plot. However, where the maximum
overlap with |−+⟩ was approximately 0.011 for N = 16, the maximum support on the
hypergrid is instead close to 0.76 for the same size. This confirms that the hypergrid
subgraph still leaves a large imprint on the eigenstates, even when it only comprises
less than 2.5% of the Hilbert space for N = 16. This means that there are special
eigenstates that are concentrated within the hypergrid, and especially onto the |−+⟩
state. As a consequence, the |−+⟩ state has a large overlap within these states, leading
to a permanent concentration of its time-evolved wave-function within the hypergrid.
This explains the quench results shown previously.

Figure 5.6: Expectation value of the projector onto the hypergrid for the eigenstates at N = 16.
The colours indicate the value of total spin for each eigenstate and the dashed line is the average
value of PHG for the system. Crosses are the states with highest overlap on the |−+⟩ state
around their energy, irrespective of spin.
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5.5 Algebraic structure and scar-enhancing perturbation

From the graph picture, we can easily develop the su(2) algebra behind scarring. The
raising operator is

Ĥ+
eff =

√
2
N/4∑
j=1
ĉ†

4j−1,↓ĉ4j,↓n̂4j−1,↑(1 − n̂4j,↑) +
√

2
N/4∑
j=1
ĉ†

4j,↑ĉ4j−1,↑n̂4j−1,↓(1 − n̂4j,↓)

+
√

2
N/4∑
j=1
ĉ†

4j+1,↑ĉ4j+2,↑n̂4j+1,↓(1 − n̂4j+2,↓) +
√

2
N/4∑
j=1
ĉ†

4j+2,↓ĉ4j+1,↓n̂4j+1,↑(1 − n̂4j+2,↑),

(5.15)
from which the lowering operator can be derived as Ĥ−

eff . Finally, the Z operator is

Ĥz
eff=1

2

N/4∑
j=1

[n̂4j−1,↑ − n̂4j−1,↓ + n̂4j,↓ − n̂4j,↑] + 1
2

N/4∑
j=1

[n̂4j+1,↓ − n̂4j+1,↑ + n̂4j+2,↑ − n̂4j+2,↓] .

(5.16)
While these formulas are rather complicated, their interpretation is actually simple.
Essentially, the raising operator Ĥ+

eff acts as a spin-1 raising operator by generating the
transition |−⟩ → |0⟩ → |+⟩ on odd cells and |+⟩ → |0⟩ → |−⟩ on even cells. Similarly,
the Ĥz

eff operator acts as |+⟩ ⟨+|−|−⟩ ⟨−| on odd cells and |−⟩ ⟨−|−|+⟩ ⟨+| on even cells.
This means that the |−+⟩ state is the ground state of Ĥz and repeated applications of
Ĥ+

eff on it will lead to the |+−⟩ state. Thus, the algebra is that of a free spin-1, with
the correct sign that ensures |−+⟩ and |+−⟩ are the ground and, respectively, ceiling
state of Ĥz

eff .
One notable difference from the PXP model is that the operator Ĥx

eff =
(
Ĥ+

eff + Ĥ−
eff

)
/2

is not proportional to the effective Hamiltonian. Indeed, Ĥx only encompasses hopping
within cells, and not between them. The effective Hamiltonian is then

Ĥeff = −J
√

2Ĥx
eff − ĤPert,eff , (5.17)

where ĤPert,eff generates hopping between cells and is defined as

ĤPert,eff = J

N/2−1∑
j=1

∑
s

ĉ†
2j,sĉ2j+1,sn̂2j,s̄(1 − n̂2j+1,s̄)+h.c.. (5.18)

As such, it is natural to use ĤPert,eff as a perturbation to Ĥeff , and vary the correspond-
ing perturbation strength λ to tune the scarred revivals. For λ = 1, the hopping term
between the cells in the Hamiltonian and in the perturbation cancel each other. As a
result, the hypergrid becomes completely isolated from the rest of the Hilbert space,
resulting in perfect wave-function revival. This is confirmed in Figure 5.7. These results
also show that the perturbation has a very weak effect on the period of the revivals,
but only modulates their amplitude.
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Figure 5.7: Fidelity revivals for the perturbed effective model for N = 14. At λ = 1 the
hypergrid subgraph is completely isolated from the rest of the Hilbert space and the revivals
from the |−+⟩ state (and from any other of the hypergrid corners) become perfect.

5.6 Experimental implications

The effective model studied above is exact in the limit U = ∆ → ∞. For experimental
realisations, it is important to ascertain that the same physics persists for accessible
values of U , ∆. First of all, we can analytically compute the leading order corrections
to the effective model at U = ∆ using the Schrieffer-Wolff transformation framework.
We find that, at second order, there are both diagonal and off-diagonal terms that
affect the Hilbert-space sector of interest. These can be written respectively as

Ĥ(2) = J2

∆

N−1∑
j=1

[
|0 ↕⟩ ⟨0 ↕| + |↑↕⟩ ⟨↑↕| + |↓↕⟩ ⟨↓↕|

+ |0 ↑⟩ ⟨0 ↑| + |0 ↓⟩ ⟨0 ↓| − 1
2
(

|↑↓⟩ ⟨↑↓| + |↓↑⟩ ⟨↓↑|
)] (5.19)

and

Ĥ
(2)
OD = −J2

∆

N−2∑
j=1

|↑↕ 0⟩ ⟨↕ 0 ↑| + |↓↕ 0⟩ ⟨↕ 0 ↓| + J2

2∆

N−1∑
j=1

|↑↓⟩ ⟨↓↑| + H.c . (5.20)

In order to have a more compact notation, we described the system after the Jordan-
Wigner transformation, where all plus and minus signs due to fermionic commutation
relations are written explicitly. The indices of all kets and bras have been kept implicit,
and we use the convention that the leftmost site is j and the subsequent ones are to its
right. This means that ⟨0 ↕↑| describes sites j, j + 1 and j + 2. As expected, all terms
are local and have a prefactor of J2/∆, meaning that they can be efficiently suppressed
provided U and ∆ can reach large enough values.

Importantly, unlike in the Bose-Hubbard case, these second-order terms do not
create leakage out of the Hilbert space sector we have investigated. To show that, we
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first recall what differentiates terms in this sector to disconnected terms with the same
value of ⟨Û + ∆̂⟩. In the former, all occurrences of doubly-occupied sites must have an
empty site on their right. Meanwhile, all states that violate this must be in a different
sector. We can look at the different off-diagonal terms individually. Terms in Eq. (5.20)
of the form |↑↕ 0⟩ ⟨↕ 0 ↑| move a |↕ 0⟩ block but do not separate its components. As
|↑↓⟩ ⟨↓↑| terms only shuffle sites with a single fermion, they also cannot destroy |↕ 0⟩
blocks. So the Hilbert space sector we investigate is still disconnected at second order.
In other sectors, additional terms are present such as |0 ↕↑⟩ ⟨↑ 0 ↕|. However, they act
as identically zero in the sector of interest and so we do not describe them in detail.

1 3 5 7 9
U

1

3

5

7

9

∆

a

0 5 10
t

0.0

0.5

1.0

|〈ψ
(0

)|ψ
(t

)〉|
2

b

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

λ0 1
λ

0.5

0.6

0.7

f 0

0.25 0.50 0.75f0

Figure 5.8: Signatures of scarring in fidelity after quenches from the |−+⟩ state in the full
Fermi-Hubbard model for N = 12. a Maximum revival fidelity in the full model between t = 1
and t = 10 for a wide range of U and ∆ values. The revivals show an increasingly better fidelity
on the U = ∆ diagonal as the value of these parameters get larger. The high fidelity in the
top left corner corresponds to the high-tilt regime investigated in [222], where a large number
of states show revivals due to Hilbert space fragmentation linked to the conservation of the
dipole moment. We emphasise that in this regime the large fidelity is not due to scarring but
to Hilbert space fragmentation. b Fidelity after a quench for different perturbation strengths
λ and U = ∆ = 5. As for the effective model λ = 1 gives the best revivals for the this state.

In our analysis of the effective model, we looked at the fidelity of wave-function
revivals; here we show that they are also visible in the full model for a relatively broad
range of parameters U and ∆, see Fig. 5.8 a. As the origin of scarring in the full model
should still be the presence of the hypergrid, the perturbation in Eq. (5.18) can also be
used. In that case it takes the form

ĤPert = J

N/2−1∑
j=1

∑
s

ĉ†
2j,sĉ2j+1,s + h.c. (5.21)

As shown in Fig. 5.8 b, the optimal value of λ for the first peak of the fidelity revivals
is also at λ = 1, but the revivals are no longer perfect (the first peak reaches ∼ 70%).
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Furthermore, unlike in the effective model, looking at the second revival peak gives an
optimal value of lambda closer to 0.3. This is likely caused by interactions between the
perturbation and the high-order terms in the Schrieffer-Wolff transformation. The fact
that this perturbation still significantly improves the revivals in the full model strongly
suggests that the oscillatory dynamics is still due to the imprint of the hypergrid in
this case.

Finally, as fidelity is generally not accessible in experiment, we now show that scar-
ring can also be detected using local measurements. We demonstrate this in Fig. 5.9
for the full model in Eq. (5.1) focusing on the regime U,∆ < 10. Panel a shows the
dynamics of imbalance on the even/odd sublattices, I = (No − Ne)/(No + Ne), where
Ne/o is the total number of fermions on the even or odd sites. This observable was
chosen as it was used in Ref. [222] to witness Hilbert space fragmentation. The imbal-
ance is bounded between -1 and 1. We see robust oscillations in I with the frequency
matching half the wave-function revival frequency in Fig. 5.3b. The amplitude of the
imbalance revival remains close to the infinite-limit value for U = ∆ ≳ 6.
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Figure 5.9: a Occupation imbalance in the full model in Eq. (5.1) with N=12 for various values
of U=∆ for the initial state |−+⟩, and for U=∆=6 for the initial states |ϕ0⟩ = |↑↓↑↓ · · · ↑↓⟩
(within the hypergrid) and |ϕ1⟩ = |↓↕ 0 ↑↕ 0 ↕ 0 ↓↕ 0 ↑⟩ (outside of it). b U − ∆ phase diagram
showing the scarring regime near the diagonal (dashed line). The colour scale represents the
value of the first peak of the imbalance for N=12.

5.7 Scarring at half-filling in the large-tilt limit

Up to this point we have exclusively focused on the U = ∆ resonance. We will now
show that other regimes can lead to similar constrained models which display scarring.
In particular, we will investigate the high-tilt regime ∆ ≫ U, J that was investigated
experimentally in Ref. [222]. In that limit, the dipole term is effectively conserved and
one can similarly write down an effective Hamiltonian. However, unlike in the U = ∆
case, here the leading term appears only at third order. The corresponding effective
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Hamiltonian was derived in Ref. [222] and can be written as, up to constant terms,

Ĥdip
eff = J (3)T̂3 + U

(
1 − 4J2

∆2

)∑
i

n̂j,↑n̂j,↓ + 2J (3)T̂XY + 2J (3)∑
j,s

n̂j,sn̂j+1,s̄, (5.22)

where

J (3) = J2U

∆2 , T̂3 =
∑
i,s

ĉi,sĉ
†
i+1,sĉ

†
i+1,s̄ĉi+2,s̄ + H.c., T̂XY =

∑
i,s

ĉ†
i,s̄ĉi+1,s̄ĉ

†
i+1,sĉi,s.

(5.23)
The T̂3 term acts as a ”squeezing“ operator that creates transitions of the form |↓ 0 ↑⟩ ↔
|0 ↕ 0⟩. The other dynamical term, T̂XY , engineers an XY-type interaction that ex-
changes fermions of opposite spin between neighbouring sites. Finally, the two poten-
tial terms count respectively the number of doubly-occupied sites and the number of
neighbouring sites occupied by fermions of different spin.

Due to the rather peculiar form of the dynamical terms, the Hilbert space shows
further fragmentation than predicted purely by the conserved quantities (expectation
value of the tilt and filling factor). We will now focus on a particular sector characterised
by a filling of fraction of ν = 1/2 (with N/4 fermions with spin down and N/4 with spin
up). This sector contains the charge-density wave (CDW) state |↑ 0 ↓ 0 ↑ 0 ↓ 0 ↑ · · · 0⟩,
with fermions of alternating spin on every other site. The effective Hamiltonian pro-
jected to the sector of this state can be further simplified by noticing that some terms
exactly vanish. The T̂3 operator only allows to squeeze two fermions with opposite
spin to create a doublon between them. As all fermions are originally separated by
an empty site it is impossible for this operator to reach a state with neighbouring
fermions: they will always be either on the same site or with an empty site between
them. Hence, the operator T̂XY and the potential terms n̂j,sn̂j+1,s̄ are always zero. As
the doublon-counting term is diagonal, the only term that allows for hopping between
product states is T̂3. By studying the effect of this operator in a 4-site cell we will show
that it leads to the same constrained Hilbert space structure as the sector studied at
filling ν = 1 in the U = ∆ limit.

For ν = 1 with two sites we have the possible states |↑↓⟩ ↔ |↕ 0⟩ ↔ |↓↑⟩ forming
a three level system. For ν = 1/2, the operator T̂3 also only allows 3 states but now
for four sites as |↑ 0 ↓ 0⟩ ↔ |0 ↕ 00⟩ ↔ |↓ 0 ↑ 0⟩. In both cases, in each ”cell“ there
are two fermions with opposite spin, and there can only be interactions between cells
if fermions of different spin are at the boundaries. As all actions of the Hamiltonian
can be understood in terms of these cells, it ensues that both models have exactly the
same off-diagonal matrix elements if Nν=1/2 = 2Nν=1. The |−+⟩ state we investigate at
filling 1 can be directly mapped to the half-filling case by inserting empty sites between
every fermion. This is illustrated on Fig. 5.10, which shows equivalent configurations
between the two different filling levels and how their respective dynamical operator
engineer identical moves.

As a consequence, we can also expect to see scarring in the ∆ ≫ U, J and ν = 1/2
regime. One main difference is the presence of an additional diagonal term counting
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Figure 5.10: Mapping between the ν = 1/2 and ν = 1 sectors of the tilted Fermi-Hubbard
model with N = 12 and N = 6 respectively. Blue and red circles denote fermions with down
and up spin respectively, while black dots denote empty lattice sites. A sequence of states that
can be induced by the effective Hamiltonian of each model is displayed. In all cases, we see
that the order of the fermions is identical.

the number of doublons in that case. To better grasp the consequences of this poten-
tial term, it is useful to rewrite the effective Hamiltonian in Eq. (5.22) without the
redundant terms (i.e the one that are identically zero in this sector) and with the J (3)

prefactor in front. This leads to the compact expression

ĤCDW = J (3)T̂3 +U
(
1 − 4J2

∆2

)∑
i

n̂j,↑n̂j,↓ = J (3)
[
T̂3 +

(∆2

J2 − 4
)∑

i

n̂j,↑n̂j,↓

]
. (5.24)

As the Hamiltonian in Eq. (5.22) is only valid for ∆ ≫ U, J , this is also the case for the
one in Eq. (5.24). However, it is easy to see that as ∆/J increases, the potential term
will dominate the dynamics. Thus, there is no way to obtain the Hamiltonian T̂3 on its
own. Set ∆ too low and the higher order terms in the Schrieffer-Wolff transformation
will not be negligible, set it too high and the potential term will dominate the dynamics.
Thus, we conclude that the conditions ∆ ≫ U, J and ν = 1/2 will generally lead to
worse scarring compared to ν = 1 case we focused on. However, ν = 1/2 may have a
practical advantage in that it requires only one large parameter instead of two. Most
importantly, this analysis clearly illustrates there are many possibilities for engineering
very complex kinetically-constrained models by playing with electron spin, filling factor
and parameter regimes of the Fermi-Hubbard model.

5.8 Summary

In this chapter, we have proposed an experimental realisation of QMBSs in the regime
U = ∆ of the tilted Fermi-Hubbard model. We have identified product states |−+⟩,
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|+−⟩ at filling factor ν = 1 which give rise to scarred dynamics and reveal towers
of ergodicity-breaking many-body eigenstates. To understand the origin of QMBSs
in this model, we have developed a new approach inspired by the graph structure
of the Hamiltonian matrix, which highlighted the presence of an integrable subgraph
isomorphic to that of a free spin-1 paramagnet. This integrable subsystem provides a
new type of scarring mechanism that extends beyond the PXP model. Furthermore,
the graph picture also allowed us to devise a perturbation that improved the revivals
in the quantum dynamics, both in the effective model U = ∆ = ∞ and in the full
model, at experimentally relevant values of U and ∆. We then showed that QMBS
oscillations could be directly probed using observables that are routinely measured in
current experiments, such as the density imbalance. Finally, we demonstrated how an
analogous subgraph-induced scarring can be observed in a different parameter regime
of ∆ ≫ U, J at filling factor ν = 1/2.

These results show that the tilted Fermi-Hubbard is a promising model for future
investigations of scarring. Our theoretical predictions could be directly tested in current
setups, such as the one in Ref. [222] which uses potassium-40 atoms trapped in an
optical lattice. In addition, the presence of other ergodicity breaking phenomena such as
Hilbert space fragmentation [222] and localisation would allow to study their interplay.
Nevertheless, one potential problem is the preparation of the initial state. Indeed, unlike
the PXP model (both with Rydberg atoms and in the Bose-Hubbard implementation)
where the scarred initial states have period 1 and 2, the |−+⟩ state has period 4, thus
it cannot be prepared using two optical lattices with wavelengths λ and 2λ. Given that
most setups are currently limited to this type of lattice/superlattice combinations, it
makes probing scarring from the |−+⟩ state more challenging than other proposals in
this thesis.

We note that subsequent studies have also found relations between subgraphs and
QMBSs [229, 230]. In particular, Ref. [230] found that sampling random graphs and
their corresponding Hamiltonians led to the appearance of many scarred eigenstates.
However, these are generally linked to tail-like structures like the |↓ 2 ↑⟩ state discussed
in this chapter.
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Chapter 6

Tunable many-body scars on a
superconducting quantum processor

In the previous chapter, we argued that QMBSs could be engineered using ultracold
fermionic atoms trapped in optical lattices. The main idea was to employ the reson-
ance between the tilt potential and the Fermi-Hubbard interaction, in order to create
an effective model with kinetic constraints. The resulting QMBS states stem from
a subgraph of the Hamiltonian adjacency graph, which has two important features:
it is a highly regular graph on its own and it is weakly connected to the rest of the
Hilbert space. Both features were directly enabled by the constraints of the effective
model. In this chapter, we will show that a similar subgraph mechanism can be used
to create QMBSs in unconstrained models implemented on a superconducting (SC)
quantum processor. SC qubit arrays are now widely used for both digital and analogue
quantum computing and show impressive capabilities [231, 232]. For quantum simu-
lation, they have advantages over cold-atom systems such as compact integration and
a high level of control [233, 234]. This granular tunability of the coupling parameters
allows to emulate many models with a single device (e.g., the Heisenberg and Ising spin
models [235], among others). Moreover, the readout of the SC platform enables direct
measurements of important quantities beyond population-related dynamics, such as
the entanglement entropy [236], out-of-time-ordered correlation [237, 238], and energy
spectrum information [239].

In this chapter, we will explore QMBS phenomena on SC chips with fully tunable
XY coupling between nearest-neighbour qubits, fabricated and operated by our exper-
imental collaborators at Zhejiang University [7, 8]. We will focus on two classes of
models that host QMBS states. The first type of model draws inspiration from the
topological structure of the Su-Schrieffer-Heeger (SSH) model of polyacetylene [240],
which features alternating strong and weak XY couplings. Similar to the previous
chapter, we will utilise this structure to create a nearly decoupled subgraph with the
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structure of a hypercube, that will give rise to emergent QMBS phenomena. Signatures
of QMBSs will be confirmed in experiment, with circuits consisting of up to 30 qubits
and a Hilbert space dimension of

(30
15
)

= 155, 117, 520. In contrast to optical lattice
experiments in Chapter 4, the capabilities of the SC platform will allow us to perform
full quantum state tomography on a subset of 4 qubits. With this, we can extract the
subsystem many-body fidelity and entanglement entropy, extending beyond the single-
site observables in Chapter 4. Furthermore, going beyond 1D geometry, our second
model will allow to create tunable QMBSs in a ladder geometry. This will be achieved
using a different mechanism – the rainbow scar construction discussed in Chapter 2.
The versatility of the rainbow construction will allow to create QMBS eigenstates that
are not only robust to disorder, but that can be tuned by it.

6.1 Experimental device and the effective XY model

We use a SC quantum processor in a flip-chip package, see Fig. 6.1 for an illustration.
The processor contains a square of 6 × 6 transmon qubits (Qi), with 60 couplers (Qc),
each inserted in-between two neighbouring qubits. Each qubit (coupler) is effectively
a quantum two-level system with ground state |◦⟩ and excited state |•⟩, whose energy
separation can be dynamically tuned in the frequency range 4.3 − 4.8 GHz (4.9 −
6.0 GHz). Each qubit has individual microwave (XY) and flux (Z) controls and is
capacitively coupled to a readout resonator for state discrimination. Each coupler has
an individual flux (Z) control and remains in the ground state during the experiment.
We use high-precision synchronised analogue signals to control the qubits and couplers,
with microwave pulses for qubit XY rotations and state readout, and square flux pulses
for tuning the qubit and coupler frequencies. A complete experimental sequence consists
of three stages: (1) state preparation where single-qubit π pulses are applied to half
of the qubits, (2) multi-qubit interaction stage where the nearest neighbouring qubit
couplings are programmed by adjusting the frequencies of the couplers, and (3) the
measurement stage where all qubits are jointly read out. The mean values of the singe-
qubit energy relaxation times and Ramsey dephasing times are respectively T1 = 53.4
µs and T ⋆2 = 1.9 µs, while the mean of the single-qubit randomised benchmarking
fidelities is 0.993.

We first derive the effective spin-1/2 XY model describing our experimental SC
processor. The full Hamiltonian of the SC system with both qubits and couplers is
given by [241]

Ĥfull =
∑
i

(
ωib̂

+
i b̂

−
i +ηi

2 b̂
+
i b̂

+
i b̂

−
i b̂

−
i

)
+
∑
c

(
ωcb̂

+
c b̂

−
c + ηc

2 b̂
+
c b̂

+
c b̂

−
c b̂

−
c

)
+
∑
⟨i,j⟩

gij(b̂−
i b̂

+
j +b̂−

j b̂
+
i )+

∑
⟨i,c⟩

gic(b̂+
i b̂

−
c +b̂−

i b̂
+
c ),

(6.1)

where ωi (ωc) is the frequency of the ith qubit (cth coupler), b̂+
i (b̂−

i ) is the creation
(annihilation) operator of Qi, gij (gic) is the coupling strength between Qi and Qj (Qc),
and the rotating wave approximation is imposed on the qubit-coupler and qubit-qubit
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Figure 6.1: Experimental superconducting circuit of Device I with qubits and couplers in a
square geometry. Light gray dashed rectangles represent dimers that constitute the chain with
intra coupling Ja, inter coupling Je, and small cross coupling Jx.

couplings. The subscripts “i, j” and “c” represent the indices of qubits and couplers,
respectively. ⟨i, j⟩ or ⟨i, c⟩ stands for a nearest-neighbour qubit-qubit or qubit-coupler
pair.

While each qubit can technically hold more than one photon (which are the ex-
citations in our system), in our experiment the anharmonicity ηi is much larger than
the couplings between the nearest neighbouring qubits (typically ηi/gij > 50). As a
consequence, any double occupancy is strongly suppressed. The degrees of freedom can
therefore be treated as spin-1/2, and we can replace the bosonic creation and annihil-
ation operators by the Pauli operators σ̂+ and σ̂−. The full Hamiltonian (6.1) then
reduces to the XY Hamiltonian:
Ĥ =

∑
i

ωiσ̂
+
i σ̂

−
i +

∑
c

ωcσ̂
+
c σ̂

−
c +

∑
⟨i,j⟩

gij(σ̂−
i σ̂

+
j + σ̂−

j σ̂
+
i )+

∑
⟨i,c⟩

gic(σ̂+
i σ̂

−
c + σ̂−

i σ̂
+
c ). (6.2)

We apply the Schrieffer-Wolff transformation [47] U = eW to the Hamiltonian with

W =
∑
c

∑
i

gic
∆ic

(σ̂+
i σ̂

−
c − σ̂−

i σ̂
+
c ), (6.3)

since all qubits are far detuned from the couplers with |∆ic| = |ωi − ωc| ≫ |gic|. The
effective Hamiltonian can then be approximated as

Ĥeff ≈
∑
⟨i,j⟩

Jij(σ̂−
i σ̂

+
j + σ̂+

i σ̂
−
j ) +

∑
i

Ωiσ̂
+
i σ̂

−
i , (6.4)

where the effective coupling strength and transition frequencies are, respectively, given
by

Jij = gij +
∑
c

gicgjc
[ 1
∆ic

+ 1
∆jc

]
and Ωi = ωi +

∑
c

g2
ic

∆ic
. (6.5)

The strength of the indirect coupling can be tuned by adjusting the coupler frequency, so
the net coupling strength for Jij can be dynamically tuned over a wide range, typically
Jij/2π ∈ [−15, 1] MHz.
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6.2 One-dimensional XY model

We consider the model described by Eq. (6.4) where the qubits follow a “snake”-like
layout shown in Fig. 6.1. This layout allows us to accommodate a 1D chain of length
L of up to 30 qubits on the given device. The qubits 2i− 1 and 2i (with i = 1 to L/2)
are grouped into dimers, with the intra-dimer coupling Ji,i+1 = Ja, i ∈ odd, set to be
slightly stronger than the inter-dimer coupling Ji,i+1 = Je, i ∈ even. This pattern of
couplings along the chain reproduces the structure of the SSH model [240], with the
Hamiltonian

Ĥ = Ja

L/2∑
j=1

(σ̂−
2j−1σ̂

+
2j + σ̂+

2j−1σ̂
−
2j) + Je

L/2−1∑
j=1

(σ̂−
2j σ̂

+
2j+1 + σ̂+

2j σ̂
−
2j+1). (6.6)

We consider an even number of sites, such that the Hamiltonian is invariant under
spatial reflection that takes site i to site L+ 1 − i. Eq. (6.6) also conserves the number
of excitations, and we will restrict our study to half-filling, meaning that there are L/2
excitations. In that case, as all couplings are of XY type, the model is also invariant
under particle-hole transformation ◦ ↔ •.

The chain above only features hopping between nearest-neighbours, hence it maps
to a fermionic model with only quadratic terms. As such, the model Eq. (6.6) is
integrable and it can be expressed in terms of free fermions. Nonetheless, recent studies
of the quench dynamics from certain initial states, such as the fully polarised and Néel
states [242, 243], have shown that the integrability of the model generally does not
imply persistent revivals. Below we will show that it is possible to identify, based on
the graph structure of the Hamiltonian, other initial states that do exhibit quantum
revivals, even after we make the system interacting and break integrability. Indeed, on
top of the nearest-neighbour couplings Ja and Je, there is also non-negligible hopping
between qubits placed diagonally from each other in Fig. 6.1. These couplings are also
of XY type and are essentially random in strength in a range Jx/2π ∈ [0.3, 1.2] MHz.
This breaks integrability and spatial reflection in the physical device.

6.2.1 Embedded hypercubic subgraph and signatures of scarring

Beyond the free-fermionic limit, there is another limit in which the SSH chain turns into
a non-interacting model. In the limit of Ja ≫ Je, each dimer only weakly interacts with
its neighbours. The dynamics is dominated by intra-dimer hopping, i.e., transitions
between |d+⟩ = |•◦⟩ and |d−⟩ = |◦•⟩. If we start in a state with a single photon in
each dimer, we will have very low connectivity to any state with dimers containing
zero or two photons. The relevant part of the Hilbert space is the span of all states
with a single photon per dimer. Each dimer then acts as a two-level system (|d+⟩
and |d−⟩), and the Hamiltonian is isomorphic to that of a free spin-1/2 paramagnet,
i.e Ĥfree = ∑

j σ̂
x
j . Such a Hamiltonian is known to lead to perfect state transfer and

revivals from many initial states. But this effect is not “many-body”, as the dimers
do not interact with each other. Another useful property of this Hamiltonian is the
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structure of its adjacency graph. As in the previous chapter, let us use one vertex
for each Fock basis state and draw an edge between two of them if there is a non-zero
matrix element between them in the Hamiltonian. For the non-interacting Hamiltonian
in the Ja ≫ Je limit, this adjacency graph takes the form of a hypercube of dimension
N = L/2, as each dimer can have two states and there are L/2 of them.

When we move away from the limit Ja ≫ Je, the assumption that the dimers are
non-interacting is no longer valid and we have to consider the entire Hilbert space. The
adjacency graph of the full Hamiltonian acquires a non-trivial structure, but it still
contains the hypercube as a subgraph. Note that as we have coupling with strength
Ja and Je, the graph is now weighted. The hypercube has many edges connecting it to
the rest of the Hilbert space (all with weight Je), which has a negative effect on the re-
vivals from most states inside the hypercube. Typically, we find the dynamics becomes
ergodic, with the wave-function spreading into the entire Hilbert space. However, not
all states with one photon per dimer have the same leakage out of the hypercube. Two
states that are very anomalous in this respect are the states

|Π⟩ = |d+d−d+d− · · · ⟩, and |Π′⟩ = |d−d+d−d+ · · · ⟩. (6.7)

These states are located at opposite corners of the hypercube and have the unique
property of only having intra-dimer couplings. This can be seen by explicitly writing
out the action of the Hamiltonian on pairs of dimers

Ĥ|d+d−⟩ = Ĥ|•◦◦•⟩ = Ja (|◦•◦•⟩ + |•◦•◦⟩) = Ja (|d−d−⟩ + |d+d+⟩) , (6.8)
Ĥ|d−d+⟩ = Ja (|d−d−⟩ + |d+d+⟩) . (6.9)

In both cases, the dimers always have a single photon. This property strongly reduces
the leakage out of the hypercube and allows the revivals from these two state to per-
sist outside of the trivial regime Ja ≫ Je. We note that, in contrast to the model
investigated in the previous chapter, the existence of states with no leakage outside the
hypercube is not due to strong kinetic constraints. It can instead be understood simply
from the locality of the hopping and the geometry of the lattice. As such, the same
kind of subgraph persists in other lattice geometries, e.g., the comb geometry [7].

To quantify the impact of the hypercube on the dynamics, note that the sum of the
hypercubic-thermal couplings (inter dimer and cross couplings) gives the decay rate Γ
of the hypercube to the thermal parts. The summation of intra hypercubic couplings ∆
is given by the number of hypercubic edges, ∆ = N2N−1Ja. Their ratio ∆/Γ converges
to a finite value for different values of Ja/Je, see Fig. 6.2 a, which shows that the
hypercube is not trivially disconnected from the rest of the Hilbert space. At the same
time, while other parts of the Hilbert space are frustrated by the irregular Jx couplings,
no two states within the hypercube are linked by them. Thus these couplings lead to
increased leakage out of the hypercube, but do not disturb the dynamics within it.
Indeed, as the Jx connect sites with a distance of at least two in the chain, they cannot
be intra-dimer. As a consequence, if we start from a state in the hypercube and act
with a Jx coupling, it will take a photon from one dimer to another dimer. Hence, we
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Figure 6.2: a Ratio ∆/Γ as a function of the system size L evaluated numerically for different
ratios of Ja/Je and the experimentally measured values of Jx. b Schematic of the bipartition of
the system. Tomography is performed on the first four qubits forming subsystem A. c Quantum
state tomography for the four-qubit fidelity FA(t) and entanglement entropy SA(t) in a 30-qubit
chain for thermalising initial states, |◦•◦• . . . ◦••◦⟩ (labelled as “i”) and |◦•◦◦• . . . •◦◦••◦••◦⟩
(“ii”) and the QMBS state Π′ (green). The couplings are Ja/2π = 1.5Je/2π ≃ −9 MHz. The
inset shows the Fourier transform of the four-qubit fidelity with the peak at ω1/2π ≈ 21 MHz.
The dashed grey line in the bottom panel represents the maximal thermal entropy for the
subsystem, equal to 4 ln(2). d: Same as c, but for different couplings Ja/2π = 2.5Je/2π ≃ −10
MHz from Device II and ω′

1/2π ≈ 22 MHz.

will no longer be in the hypercube, which is characterised by all dimers having a single
photon.

After these theoretical considerations, in Fig. 6.2c-d we present the experimental
observations of QMBS states in our SC processor. With the high-precision control
and readouts, we were able to perform tomography measurements to directly ob-
tain elements of the reduced density matrix of subsystem A, ρ̂A, which determine
the fidelity dynamics of the subsystem FA(t) and the bipartite entanglement entropy
SA(t). The fidelity and entanglement entropy of a subsystem are respectively defined
as FA(t) = Tr [ρ̂A(0)ρ̂A(t)] and SA(t) = −Tr [ρ̂A(t)logρ̂A(t)]. The complexity of such
measurements grows rapidly with the size of the subsystem A and below we consider A
to be four qubits, as schematically illustrated in Fig. 6.2b. We emphasise that although
we consider a relatively small subsystem here, the four-qubit fidelity FA mirrors the
behaviour of the full fidelity. The data points in Fig. 6.2c give, for a 30-qubit chain,
the time evolution of the four-qubit fidelity for the collective state |Π′⟩ and two typical
thermalising states. The fidelity of the QMBS state exhibits revivals with the period
of about 50 ns and the peak value of the first revival can be as high as 0.5, while no
such revivals occur for the thermalising states.

In the bottom panel of Fig. 6.2c we measure the time evolution of the entanglement
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entropy SA(t) for the same states as in the upper panel. Compared to the thermalising
states, scarred dynamics leads to a slightly slower growth of entanglement entropy, su-
perposed with oscillations whose frequency is twice that of fidelity revivals. This double
frequency is due to the fact that the system oscillates between the |Π′⟩ and |Π⟩ states.
Thus, entropy is locally minimised or maximised (depending on the choice of subsys-
tem) when the system is near either of these states, while the fidelity only measures
the return to its initial state |Π′⟩. In our experiment, both scarred and thermalising
states ultimately approach the Page entropy 4 ln(2) of the 4-qubit subsystem.

We note that scarring, and in particular the difference in rate of entanglement
entropy growth between the scarred vs. thermalising initial states, can be improved by
increasing the coupling ratio Ja/Je to 2.5, as experimentally demonstrated by Fig. 6.2d.
This ratio controls the coupling of the hypercube to the rest of the Hilbert space, as we
emphasised above. For the data in Fig. 6.2d, we have used a second superconducting
chip (Device II) with a similar design as the first. Indeed, some couplings in Device I
could not be tuned to large enough frequencies to engineer the ratio Ja/Je = 2.5 on 30
qubits. The geometry and design of both devices are identical, with device II showing
longer single-qubit energy relaxation time T1 = 101.0 µs.

6.2.2 Integrability-breaking perturbations

In order to show that |Π⟩, |Π′⟩ are bona fide QMBS states, it is crucial to demonstrate
that revivals from |Π⟩, |Π′⟩ states are not trivially due to the integrability of the SSH
chain in Eq. (6.6). Thermalisation in our setup is naturally induced by the irregular
cross couplings Jx with strengths Jx(i, j)/2π ∈ [0.3, 1.2]. The exact values of these
couplings have been measured in Device I and are given in Fig. 6.3. Due to their

Figure 6.3: The dominant cross coupling values Jx/2π in MHz from experimental measure-
ments.

random nature, it is clear that they break any spatial symmetry of the circuit as well
as making it non-integrable. Indeed, due to their long-range nature (they connect sites
with labels j and k with |j − k| > 1) they cannot be mapped to quadratic fermionic
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operators due the Jordan-Wigner string of σ̂z that should be present between the two
sites. As such the system is expected to thermalise.

To confirm thermalisation, we numerically compute the average energy level-spacing
ratio ⟨r⟩ for various system sizes and strengths of the Jx couplings. For a chaotic
system, we expect ⟨r⟩ ≈ 0.53. For an integrable system, the usual value given is
⟨r⟩ ≈ 0.39. However this assumes that all energies are independent, which is usually not
the case in non-interacting models. Indeed, as the many-body spectrum is composed of
combinations of the single-body spectra, its structure can actually favour degeneracies.
This leads to an average level-spacing ratio lower than 0.39. As we are only interested in
distinguishing the integrable and non-integrable regimes and not in the precise structure
in the integrable case, we will treat all values of ⟨r⟩ smaller than 0.38 as equal to
0.38. Using this convention, the results for ⟨r⟩ are shown in Fig. 6.4 and confirm our
expectation: as the mean Jx gets larger, we see a rapid transition from integrability
to chaos. At the same time, large Ja/Je ratio brings us closer to integrability because
the system becomes essentially a set of non-interacting dimers. As the system size gets
larger, it becomes more sensitive to perturbations, requiring a larger Ja/Je ratio and
smaller Jx to be close to integrability. Already at L = 16, we see that the regime used
in the experiment is deep in the chaotic phase with ⟨r⟩ ≈ 0.53. This means that at
L = 30 there should be no effect due to proximity to integrability.
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0.38
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a b c

Figure 6.4: Average energy level spacing parameter ⟨r⟩ as a function of the coupling ratio
Ja/Je and average cross coupling J̄x for system sizes a 12, b 14 and c 16 qubits. For clarity
the values of ⟨r⟩ are limited to the range [0.38, 0.54], meaning that any value below 0.38 is set
to 0.38 and any value above 0.54 is set to 0.54. Je/2π is fixed at −6 MHz. The white dashed
lines denote the average value of Jx in our experiments.

As conclusive evidence that revivals we see are not linked to the integrability of
the SSH chain, we devise a regular perturbation that enhances revivals while breaking
integrability. For that we turn on the next-next-nearest-neighbour couplings Jnn =
Ji,i+3, such that the following Hamiltonian is added to the SSH chain:

Ĥnn = Jnn

L−3∑
j=1

(
σ̂+
j σ̂

−
j+3 + σ̂+

j+3σ̂
−
j

)
, (6.10)

Note that this perturbation is translation-invariant (i.e., there is no disorder) and pre-
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serves the reflection symmetry as well as the particle-hole symmetry. Fig. 6.5a shows
that for Ja/Je = 1.5, scarring is present for a relatively broad range of values of Jnn,
and that it is most prominent not at Jnn = 0 but at Jnn/Je ≈ −0.21. Meanwhile,
Fig. 6.5b shows that a small Jnn is enough to break integrability. As for the Jx coup-
ling, the Jnn terms induce long-range hopping and so cannot be mapped to quadratic
fermionic operators. Thus the perturbed model no longer maps to free fermions and is
not integrable. The values of ⟨r⟩ smaller than 0.39 that can be seen on Fig. 6.5 b at
Jnn = 0 are due to the system being non-interacting at that point, as discussed in the
previous paragraph.
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F 0

−0.21Je

a

|Π〉
|•◦〉
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18

L

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
Jnn/Je
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〈r
〉

WD
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b

Figure 6.5: SSH chain with Ĥnn perturbation and no cross coupling Jx. The parameters used
are Ja/2π = −9 MHz and Je/2π = −6 MHz. a, Fidelity at the first revival peak F (t1) for
the |Π⟩ and |•◦⟩ = |•◦ . . . •◦⟩ states for different systems sizes L and perturbation strengths in
units of Je. b, Average level-spacing ratio for the same data in the sector with eigenvalues +1
for both spatial reflection particle-hole exchange. The vertical dash-dotted line indicates the
optimal points for revivals from the |Π⟩ state, while the horizontal dashed lines indicate the
expected value of ⟨r⟩ for Poisson and Wigner-Dyson distributions.

While it is easy to see how the Jnn perturbation breaks integrability, at first glance
it is unclear why it should improve the revivals. Indeed, it induces hopping between
different dimers, and as such creates additional leakage out of the hypercube. In par-
ticular, it induces leakage out of the initial states |Π⟩ and |Π′⟩. However, if we look
at other states during the dynamics we will see that it can cancel the leakage induced
by Je. Let us consider an example with L = 4. If we start from the |Π⟩ state and
only consider the wave-function within the hypercube, after a quarter of a period the
wave-function should be approximately (|•◦⟩ + i |◦•⟩)(|•◦⟩ − i |◦•⟩)/2 up to an overall
phase. Acting on this state with inter-dimer hopping (which acts between sites 2 and
3) gives Je(|••◦◦⟩ + |◦◦••⟩)/2. Meanwhile, acting with the Jnn perturbation (which
acts between sites 1 and 4) will give the same term Jnn(|••◦◦⟩ + |◦◦••⟩)/2 but with a
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different prefactor. It is then clear that setting Jnn = −1 will exactly cancel the leak-
age from this state. So the optimal value of Jnn is a trade-off between the additional
leakage from certain configurations and the enhanced leakage from other ones. While
we were not able to analytically derive the value of −0.21Je found numerically, it is
coherent with this picture of leakage that predicts an optimal Jnn between −Je and 0.
It also explains why fidelity decays monotonically for Jnn/Je positive, as this increases
leakage from all configurations.

6.2.3 Population dynamics

Now that we have shown that the revivals are caused by genuine many-body scar-
ring, we provide additional experimental data on qubit population dynamics. Such
measurements are more time-saving than tomography, and this allows us to further
probe thermalisation of the entire many-body system by randomly choosing many ini-
tial product states. The evolution of the occupation probability for individual qubits
in a 30-qubit chain is shown in Figs. 6.6a and 6.6b, which contrasts the evolution of a
scarred initial states with a typical thermalising state. The former exhibits remarkable
oscillations which are absent in the latter.

In order to define a global marker of thermalisation, we turn towards the generalised
population imbalance

I(t) = 1
L

L∑
i

⟨σ̂zi (0)⟩⟨σ̂zi (t)⟩. (6.11)

For any Fock state, this observable acts as an indicator of the memory of the initial state.
Indeed, I(t) will be exactly one only for the initial Fock state and should thermalise to
a value of 0 as photons should be on any site with equal probability. For the scarred
initial states, I(t) is expected to display the same type of oscillation as the many-
body fidelity, while for a thermalising state it should quickly decrease towards 0. The
imbalance dynamics I(t) is plotted in Figs. 6.6c and 6.6d, which reveals more clearly
the differences between two initial states. In general, for the thermalising state, after
about 30ns the population is nearly half photon in each qubit, meaning there is no
imbalance.

The distinct features of QMBS states can be further highlighted through the overlap
between the product states and the eigenstates |⟨α|En⟩|2. For scarred initial states,
we expect to see towers of states with approximate equal spacing. Meanwhile, for
thermalising initial state this overlap should homogeneous among all eigenstates. While
this quantity is not accessible in experiment, we can probe it indirectly by looking at
the Fourier spectrum of the imbalance. This is shown in Figs. 6.6e and 6.6f for the |Π⟩
state and thermalising states respectively. For the former, there is very sharp peak in
the squared Fourier amplitude gα(ω) at ω1/2π ≈ 20 MHz indicating that the towers of
states have approximately that spacing. In the case Je = 0, we would expect the peak
to be at 2Ja/2π ≈ 18.6 MHz, so we see that the presence of the rest of the Hilbert
space has an influence on the energy spacing. For a thermalising state, we see no
clear peak in the Fourier amplitude, as expected form the lack of periodic behaviour
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Figure 6.6: Qubit population dynamics observed in experiment on Device I. a-b, Contour
diagrams of the experimental qubit population as a function of the interaction time for a scarred
state and a rapidly thermalising state, respectively. c-d, Generalised imbalance I(t) extracted
from plots a and b as a function of the interaction time. Insets: imbalance dynamics from
experiments (circles) and numerical simulations (solid curves) in a 20-qubit chain. e-f Fourier
transform amplitude of the imbalance in c-d, which characterises the squared overlap between
the initial states and the energy eigenstates. The time window for the fast Fourier transform
is extended to 4 µs with zero padding. g Fourier peak as a function of the coupling ratio
Ja/Je in a chain of L = 20 from experimental measurements (green hexagrams) and numerical
simulations (solid curve). h The squared Fourier amplitude g2

α(ω = ω1) of |α⟩ for 120 randomly
chosen initial product states, including two QMBS states (green hexagrams) that clearly stand
out from the rest of thermalising product states (yellow squares). The simulation parameter
values in panels c-f are Ja/2π = −9.3 MHz, Je/2π = −6.1 MHz and Jx/2π ∈ [0.3, 1.2] MHz.

of the imbalance. We also test 120 random initial product states and find that their
squared Fourier amplitudes g2

α(ω = ω1) are unambiguously distinct from those of the
|Π⟩ state, as shown in Fig. 6.6h. Note that, for the cases in Figs. 6.6a-f, full numerical
diagonalisation of the system is not possible due to the large Hilbert space. To validate
the experimental data numerically, it is necessary to use a smaller system size, say
L = 20, whose results are shown in the insets in Figs. 6.6 c-f, where the agreement
between numerical and experimental results is excellent.

The advantage of our experimental system – the tunable effective couplings between
two nearest-neighbour qubits – allows us to systematically probe the stability of QMBS
states as the ratio of intra- and inter-dimer couplings Ja/Je is varied. As shown in
Fig. 6.6g, both the numerical and experimental results indicate that QMBS states
emerge consistently in the regime of Ja/Je ≳ 1. Also, even for a chain with uniform
nearest-neighbouring couplings (Ja/Je=1), the value of gΠ(ω1) ≈ 0.008 is significant
compared to the average value of thermal states around 0.0035 in Fig. 6.6h. This
implies that scarring is not trivially induced by the unbalance between intra-dimer
and inter-dimer couplings since this value difference ∼ 0.0045 is significantly above the
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measurement standard deviations. In the regime of large coupling (Ja,e/2π > 12 MHz),
the effective Hamiltonian describing our system [see Eq. (6.4)] is no longer accurate
due to the population leakage to couplers.
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Figure 6.7: Scaling behaviour of the first revival peak FA(t1 ≈ 52ns) of the subsystem A,
Fourier amplitude gΠ(ω1), and the inverse Hilbert space dimension 1/D versus the system size
for Ja/2π ≃ −9 MHz and Je/2π ≃ −6 MHz. The light blue area denotes the regime where
classical simulations using exact diagonalisation is feasible.

To verify the persistence of the QMBS states for different system sizes, we perform
experimental measurements of chains of sizes L = 12 to 30. Time evolution of the
imbalance, entanglement entropy, and the four-qubit fidelity were found to behave
consistently for different system sizes, thereby establishing the robustness of scarring
in collective states |Π⟩ and |Π′⟩. The relatively small variations between the imbalance
and entanglement entropy for different system sizes are due to the difference in the cross
couplings and the couplers. The Fourier amplitude gΠ(ω1) and the four-qubit fidelity
FA(t1) at the first revival plateaus for L > 16, as shown in Fig. 6.7, whereas the inverse
of the Hilbert space dimension characterising the scaling of a random state shows an
expected rapid exponential decrease with the system size. The plateaued behaviour
in the scaling suggests that QMBS states persist in the regime of large system size
approaching the thermodynamic limit.

On fig. 6.7, we also show that our experimental results go beyond system sizes
where exact diagonalisation is currently possible. While this numerical method is not
the only one available for this problem, we argue that alternative options are not ideal
for studying QMBS in large systems. Methods based on Krylov subspace and matrix-
product states can clearly access the dynamics from the Π and Π′ states beyond 24
qubits. However, to show scarring requires studying the dynamics from a large number
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of initial states. In contrast to exact diagonalisation, these two methods require an in-
dependent computation for each initial state. Furthermore, for MPS methods, it would
also be costly to simulate the dynamics of thermalising states as their entanglement
entropy quickly grows. This would limit the simulation to a relatively short time, as
the bond dimension of the matrix-product states (and consequently, the computational
resources needed) required to faithfully capture the dynamics would rapidly become
large. Due to this, we believe that producing data like what is presented in Fig. 6.6h
is best suited to a quantum simulator.

6.3 XY model on a ladder with tunable couplings

In the previous section, we have used part of the tunability of the couplings in our SC
chip to engineer the SSH chain in 1D. However, this could also be done in a cold atom
quantum simulator by using a superlattice. In the remainder of this chapter, we fully
utilise the capabilities of our SC setup. To do that, we go beyond the 1D chain geometry
and study a 2D ladder. We also use the tuning of each individual coupling to realise
quenched disorder. Despite this increased complexity, we will be able to create QMBSs
as well. More importantly, the scarred states themselves can be deterministically tuned
by the disorder. In order to achieve that, we no longer rely on generating a weakly-
coupled subgraph, but take inspiration from the rainbow scar construction [114, 115],
reviewed in Chapter 2. We will show that our model hosts several distinct families of
QMBS states and entanglement structures. While the first family is a direct realisation
of the rainbow construction, the second family emerges from a hitherto unexplored
mechanism: it is obtained by acting on the first family with the Hamiltonian of a
single subsystem. By making the couplings spatially inhomogeneous, we can then turn
these states into disordered QMBS states whose exact wave functions and entanglement
structure can still be written down in analytic form. Unlike their energies, the structure
of these exact eigenstates can be explicitly modulated via the disorder profile, allowing
to tune their properties. We experimentally observe the two types of entanglement via
their distinct ergodicity-breaking signatures in quantum dynamics at late times.

We consider a system which contains N = 2M qubits arranged in a ladder config-
uration, with two horizontal chains containing M qubits each. Similar to the previous
experiment in this chapter, we make use of a flip-chip SC quantum processor, now
hosting 2×20 frequency-tunable transmon qubits in a ladder configuration, depicted in
Fig. 6.8. The properties of the sample and the Hamiltonian governing it are similar to
the devices used in Sec. 6.1. One notable difference is that the XY couplings between
a pair of nearest-neighbour transmon qubits can be tuned in the range [−8, 8] MHz
and [−8,−2] MHz for the parallel and vertical couplings, respectively. This means that
couplings can now be tuned to large positive and negative values, which will be essential
to the appearance of rainbow QMBSs, as we will discuss below. The mean values of
the singe-qubit energy relaxation times and Ramsey dephasing times are respectively
T1 = 26.6 µs and T ⋆2 = 1.34 µs, while the mean of the single-qubit randomised bench-
marking fidelities is 0.993. The anharmonicity is equal to η/2π ≈ −175 MHz. Finally,
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the estimated values of the Jx cross-couplings are in the range Jx/2π ∈ [0.10, 0.45]
MHz. We note that, unlike in the 1D case, the model we study is chaotic even if the
Jx couplings are set to zero.

Figure 6.8: Micrograph of the superconducting quantum processor in a ladder configuration.
The tunable couplings, Ja and Je, between nearest-neighbour qubits, belonging to the same or
opposite rows, are indicated. Blue and red curves illustrate the disordered coupling strengths
±Je,k, carrying opposite signs in the two rows.

The qubits belonging to the top row are described by ûα Pauli matrices (with α =
x, y, z), while d̂α are Pauli matrices acting on the bottom-row qubits. The Hamiltonian
can be written as

Ĥ = Ĥu ⊗ 1 + 1 ⊗ Ĥd + Ĥint, (6.12)

where the top/bottom row and inter-row Hamiltonians, respectively, are given by

Ĥσ=u,d =
M−1∑
k=1

±Je,k
2
(
σ̂xk σ̂

x
k+1+σ̂yk σ̂

y
k+1

)
+

M∑
k=1

ωkσ̂
z
k,

Ĥint =
M∑
k=1

Ja
2
(
ûxkd̂xk+ûykd̂

y
k

)
. (6.13)

Here, the intra-layer coupling amplitude Je,k and the frequency ωk can be site-dependent,
allowing for the possibility of disorder, as sketched in Fig. 6.8. We assume the inter-row
couplings Ja to be uniform.

The exact nature of the couplings is chosen in order to satisfy the rainbow scars
construction. As discussed in Chapter 2, this construction relies on splitting the system
into two subsystems that have opposite spectra. Here, subsystem 1 is the top row of
the ladder while subsystem 2 is the bottom row. The transformation relating their
Hamiltonians is

M =
(

M∏
k=1

d̂xk

)
P̂d↔u, (6.14)

where P̂d↔u is the operator exchanging the top and bottom row and the term between
parentheses is a particle-hole exchange. The d̂xk operators will not affect the XY terms,
but they will change the sign of the d̂zk. This is why we require the Je,k to be of opposite
signs but the ωk to be of identical sign between the two chains. Before discussing QMBS
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states in detail, we will first show that the model we study is chaotic and identify its
symmetries.

6.3.1 Symmetries of the model and level statistics

The model in Eq. (6.12) possesses a U(1) symmetry corresponding to the conservation
of total magnetisation along the z-direction and, unless specified otherwise, we will
restrict to its largest sector with zero magnetisation (or half-filling). Interestingly, the
exchange rules of the Hamiltonian give rise to an additional, more subtle, symmetry.
To formulate this symmetry, we will first express the Hamiltonian in a basis of non-
overlapping dimers. This will also be convenient when discussing the structure of
QMBS states. For each rung of the ladder, we can use a basis formed of doublons,
holons, triplets and singlets defined respectively as

|D⟩ :=
∣∣∣∣••
〉
, |H⟩ :=

∣∣∣∣◦◦
〉
, |T⟩ := 1√

2

(∣∣∣∣◦•
〉

+
∣∣∣∣•◦
〉)

, |S⟩ := 1√
2

(∣∣∣∣◦•
〉

−
∣∣∣∣•◦
〉)

.

(6.15)
While at first glance this new basis is not useful since the action of the Hamiltonian in
it is non-trivial, it will greatly simplify the description of QMBS states and symmetries
of the model.

In order to write down the Hamiltonian in the dimer basis, it will be more convenient
to split it as

Ĥ =
M−1∑
k=1

ĥ
∥
k,k+1 +

M∑
k=1

ĥ⊥
k (6.16)

with

ĥ
∥
k,k+1 =Je,k

2
(
ûxkûxk+1+ûykû

y
k+1−d̂xkd̂xk+1−d̂ykd̂

y
k+1

)
,

ĥ⊥
k =Ja

2
(
ûxkd̂xk + ûykd̂

y
k

)
+ ωk

(
ûzk + d̂zk

)
.

(6.17)

We recall that ûα and d̂α are Pauli matrices acting on the top and bottom rows,
respectively. Terms in ĥ⊥

k act perpendicular to the ladder and so act on a single dimer,
while terms in ĥ

∥
k,k+1 act parallel to the ladder, and act on two dimers.

Let us start by analysing the action of ĥ⊥
k . It is straightforward to see that every

state in the dimer basis is an eigenstate of ĥ⊥
k with

ĥ⊥
k |H⟩ = −2ωk |H⟩ ,
ĥ⊥
k |T⟩ = Ja |T⟩ ,

ĥ⊥
k |D⟩ = 2ωk |D⟩ ,
ĥ⊥
k |S⟩ = −Ja |S⟩ .

(6.18)

The action of ĥ||
k,k+1 is more complicated and requires looking at two neighbouring

dimers. The first thing one can notice is that ĥ∥
k,k+1 |σσ⟩ = 0 for any σ = H,D,T,S.
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The non-zero terms are then

ĥ
∥
k,k+1 |TS⟩ = Je(|HD⟩ − |DH⟩),

ĥ
∥
k,k+1 |TH⟩ = −Je |HS⟩ ,

ĥ
∥
k,k+1 |SH⟩ = −Je |HT⟩ ,

ĥ
∥
k,k+1 |HD⟩ = Je(|TS⟩ − |ST⟩),

ĥ
∥
k,k+1 |TD⟩ = Je |DS⟩ ,

ĥ
∥
k,k+1 |SD⟩ = Je |DT⟩ .

(6.19)

The missing combinations can be obtained by flipping the two sites under consideration
on the right- and left-hand sides. Importantly, this leads to the following combinations
of states being annihilated by ĥ∥

k,k+1:

ĥ
∥
k,k+1 (|TS⟩ + |ST⟩) = 0, ĥ

∥
k,k+1 (|HD⟩ + |DH⟩) = 0. (6.20)

Fig. 6.9a summarises the action of ĥ∥ on neighbouring dimers.

Figure 6.9: Properties of the model (6.12) on the SC ladder. a Schematic of the Hamiltonian
action on neighbouring dimers. b Example of a sequence of states obtained using only allowed
processes. The colour of the singlet and triplet states indicates if they have been “exchanged”
an even (blue) or odd (red) number of times. This exactly corresponds to the parity of the
sum of the number of holons and doublons to their left. If one gets +1 for all blue triplets and
red singlets, and −1 for all blue singles and red triplets, then for all states in the sequence the
sum is the same and gives Q=−2, illustrating the conservation of this charge. c Distribution
of energy level spacings s ≡ En+1 − En for the model in Eq. (6.12) with N=20 sites. Data
is for half filling and Q=0, with 25 disorder realisations. The level statistics displays excellent
agreement with the Wigner-Dyson ensemble. The inset shows the average consecutive spacing
ratio ⟨r⟩ for each realisation, which is very close to the expected value of 0.53 for a chaotic
system. Data is for Ja=3 and Je,k ∈ [2, 2.5], ωk ∈ [0.5, 1.5] drawn from a uniform distribution.

Now that we have established the action of the Hamiltonian in the dimer basis,
we can discuss the additional U(1) symmetry. Consider a simple configuration like
TSSSTS. The Hamiltonian rules dictate that we can only exchange TS or ST into
HD or DH. Through this, we can exchange any neighbouring TS into ST and so
reach any configuration with the same number of singlets and triplets as in the initial
state. Therefore, a natural guess for the conserved quantity would be the difference
between the total number of triplets and the number of singlets. This can be expressed
as the operator ∑k(T̂k − Ŝk), where T̂k and Ŝk are projectors on the triplet and singlet
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configurations of dimer k. This works perfectly until we start having configurations with
neighbouring dimers like SH. In that case, we can turn it into HT and thus change∑
k(T̂k − Ŝk). However, for that to happen it means that we first created HD and

that the dimer that was switched between S and T must be surrounded by H and D.
Effectively, the Hamiltonian creates domains inside which all T and S are “exchanged”.
Thus, we can keep track of how many times such exchanges have occurred for a given
dimer by counting the number of doublons or holons to its left. Fig. 6.9b shows an
example of this process. We can write the conserved quantity in a compact way in the
dimer basis as

Q̂ =
M∑
k=1

(
T̂k − Ŝk

) k−1∏
l=1

(−1)Ĥl+D̂l , (6.21)

where T̂k, Ŝk, D̂k and Ĥk are projectors on the respective dimer state at the given
site k. This operator has M + 1 sectors with eigenvalues Q = −M, −M + 2, −M +
4 . . .M − 2, M .

While we focus on the half-filling sector, we briefly note that Q̂ is a symmetry at any
filling. The interplay of Q̂ and filling leads to a large number of disconnected sectors.
Some of them are of small dimension and similar to the ones studied in Ref. [244].
Nonetheless, for large sectors we find good agreement with random matrix predictions,
as shown on Fig. 6.9 c. All individual disorder realisations show ⟨r⟩ close to 0.53.
Their average also does, and displays a very close agreement with the Wigner-Dyson
distribution.

Finally, beyond the symmetry Q̂, at half-filling the Hamiltonian anti-commutes with

Ĉ = P̂d↔u

M∏
k=1

ûxkd̂xkd̂zk (6.22)

where P̂d↔u is an operator exchanging the top and bottom rows. Ĉ is related to a
particle-hole transformation along with a swap between the top and bottom row and
an additional phase. In the dimer picture, Ĉ simply switches T and S as well as D
and H, with a (−1) phase for every D present. Note that, as we are at half filling,
there are always the same number of D and H, so Ĉ = Ĉ† and Ĉ2 = 1. As it also
anti-commutes with Q̂, Ĉ exchanges the sectors with Q = q and Q = −q. For M -even,
we have a sector with q = 0; in that sector the spectrum is symmetric around E=0
because of Ĉ, however, this is not the case in other sectors.

6.3.2 Two families of rainbow scars

We are now in position to identify rainbow QMBS states in the model (6.12). As the
Hamiltonians of the upper and lower chains have opposite spectra and are related by
the transformation M in Eq. (6.14), the following rainbow state is a zero eigenstate of
their sum:

|I⟩ ≡ |EM ⟩ =
M⊗
j=1

1√
2

(∣∣∣∣•◦
〉

+
∣∣∣∣◦•
〉)

≡ |TTT . . .TT⟩ . (6.23)
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The fact that the state of each atom in the lower chain is always opposite to that of
its counterpart on the upper chain is directly caused by the presence of d̂x in M. The
form of this state reveals the structure of Bell pairs formed between the two rungs of
the ladder. Importantly, upon addition of Ĥint, the rainbow state |I⟩ remains an exact
eigenstate with energy MJa, thus becoming a rainbow scar of the full model. However,
the rainbow construction is not limited to a single state. Two different families of scars
can be built from it using operators that commute with the half-system Hamiltonian
Ĥu, as we show next.

First family of scars

To construct the first family of QMBS states, we use the operator Ẑ = ∑M
k=1 ûzk, which

clearly commutes with Ĥu as the latter conserves z-magnetisation. The powers of Ẑ are
linearly independent up to ẐM , thus we can apply Ẑ up to M times. The Ẑ operator
simply converts triplets into singlets and vice versa. The resulting states |M − n, n⟩
will be symmetric superpositions of all states with a fixed number n of triplets and
M−n singlets. The QMBS states of the first family are precisely these states, up to
normalisation:

|En⟩ =
(
M

n

)−1/2

|M−n, n⟩ ∝ P̂Q2n−M Ẑ |En+1⟩ , (6.24)

where n ranges between 0 and M − 1 and |EM ⟩ ≡ |I⟩. The second equality illustrates
that we can build |En⟩ recursively from |En+1⟩ by making use of the projector P̂Qq on
the sector of Q̂ with an eigenvalue q. The projector P̂Qq is introduced for convenience
as it simplifies the recursion, since acting with Ẑ on |En⟩ creates a superposition of
|En−1⟩ and |En+1⟩. As every singlet (triplet) gives eigenvalue −Ja (+Ja) under Ĥint, it
is easy to verify that the state |En⟩ is an eigenstate of Ĥ with energy En = Ja(2n−M).

We note that the underlying structure of this first family of scarred states |En⟩ is
the RSGA [102], introduced in Chapter 2. This is seen by noting that its states can
be built by the raising operator Ŝ+ = ∑M

k=1 |Tk⟩ ⟨Sk|. If we define Ŝ− =
(
Ŝ+
)†

we get
that Ŝ+ + Ŝ− ∝ Ẑ. So this algebraic structure is directly linked to the rainbow scar
construction. We can then equivalently express the first type of scar states as

|En⟩ = 1
N

(Ŝ+)n |E0⟩ = 1
N

(Ŝ+)n |SS . . .S⟩ , (6.25)

where N is a normalisation constant. We recognise that these scarred eigenstates are
built in a similar way to previously known examples, e.g., in the spin-1 XY model [108].
In Appendix. F we compute their entanglement entropy for the bipartition perpen-
dicular to the ladder, and we find that the eigenstate at zero energy has S1,⊥ =
0.5 + 0.5 ln(πM/8), in the limit M → ∞. From our discussion in Chapter 3, we
note that the su(2) algebraic structure of these states implies they have extensive mul-
tipartite entanglement [1, 208].
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Second family of scars

While symmetry generators come to mind when we look for operators Ô that commute
with Ĥu, we can build a different family of QMBS states by using Ĥu itself as the
generator. The second scar family can be built recursively from the first family that
way. Specifically, the second type of scar states are given by raising from |En−1⟩
according to

|E′
n⟩ ∝P̂QM−2n

[
Ĥu−

(∑
k

ωk
M

)
Ẑ

]
|En−1⟩ , (6.26)

or, equivalently, by lowering from |En+1⟩ as

|E′
n⟩ ∝P̂QM−2n

[
Ĥu−

(∑
k

ωk
M

)
Ẑ

]
|En+1⟩ , (6.27)

with n = 1, 2, . . . ,M − 1. The second term in the square bracket automatically or-
thogonalises the states |E′

n⟩ with respect to the first family of scars. The projectors
P̂Qq once again isolate |E′

n−1⟩ from |E′
n+1⟩. In order to write the states |E′

n⟩ in a more
explicit form, let us define ensembles of sites Λ = {1, 2, . . .M}, Λk = {k, k + 1} and
Λ̄k = Λ \ Λk. With this, we can express |E′

n⟩ as

|E′
n⟩=

M−1∑
k=1

Je,k
2Nn

(
|HD⟩Λk

+ |DH⟩Λk

)
⊗|M−n−1, n−1⟩Λ̄k

+ 1
Nn

(
M∑
k=1

T̂kωk

)
|M − n, n⟩Λ ,

(6.28)
with n = 1, 2, . . . ,M−1, ωj = ωj− 1

M

∑M
k=1 ωk, and |a, b⟩A the symmetric superposition

of all states with a singlets and b triplets on sites in the ensemble A. More details about
the construction of these states and the proof that they are eigenstates of the model is
given in Appendix E, where we also derive the normalisation factors Nn. As the holons
and doublons are annihilated by Ĥint, only the triplet and singlets will give a non-zero
energy contribution. And since the state |E′

n⟩ has M −n−1 singlets and n−1 triplets,
the second family of QMBS states have energies E′

n = Ja(2n−M), which are identical
to those of the first family |En⟩.

To the best of our knowledge, there is no su(2) algebraic construction for the second
family of scarred states |E′

n⟩, despite their equal energy spacing. Indeed, the latter are
generated by acting with an operator on |En−1⟩ or |En+1⟩, and not on |E′

n−1⟩ or |E′
n+1⟩.

Moreover, the second type of scarred eigenstates depend sensitively on the parameters
Je,k and ωk of the model. Therefore, the entanglement of these states is not fixed, like in
the first family of scars, as we discuss in detail in Appendix F. For a cut perpendicular
to the ladder, the second type of scarred states generally possess entanglement entropy
that scales logarithmically with subsystem size. While we were unable to formally rule
out the possibility of volume-law entanglement scaling, our analytical and numerical
results strongly suggest that, in the large M limit, the second type of scarred state with
zero energy has entanglement entropy S⊥,2 that obeys S⊥,1 < S⊥,2 < S⊥,1 +ln(4). This
suggests it should always be possible to find a low-entangled state which has overlap
only on the scarred stats of the second family, regardless of the values of parameters.
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Comparison between the two families of scars

Figure 6.10: Schematic representation of entanglement structure for a a thermalising state, b
the first family, and c second family of scars, respectively. The shaded blue region in a indicates
large entanglement between all qubits in the thermalising case. In b and c, dark curves depict
the Bell pair entanglement of neighbouring qubits, with dimers locally forming |T⟩ or |S⟩
states. The tetramer configurations denote doublon-holon entanglement (|DH⟩ + |HD⟩) /

√
2,

characteristic of the second scar family.

It is instructive to contrast the two families of scars. Their structure is shown
schematically in Fig. 6.10. While both families occur at the same, regularly spaced
energies throughout the spectrum, the total number of states in the second family is
smaller by two than in the first family. Furthermore, there are stark differences in
entanglement structures. The states belonging to the second family explicitly depend
on disorder through their dependence on Je,k and ωk, unlike the first family. The
states in the first family contain only singlets or triplets, with no doublons or holons,
Fig. 6.10b. By contrast, the second family has overlap with states involving a symmetric
superposition on a single doublon-holon pair |. . .DH. . .⟩+|. . .HD. . .⟩ with weight Je,k/2
on top of a background of M−n−1 singlets and n−1 triplets, Fig. 6.10c. They also have
overlap with all states with M−n singlets and n triplets, with prefactors depending on
the ωk and on the location of the triplets. The dependence of |E′

n⟩ states on ωk and Je,k
allows to tune their properties, such as entanglement entropy or overlap with special
initial states.

The properties of both families of scars can be contrasted with those of thermal
eigenstates. This is particularly clear when looking at the entanglement entropy SA,
where A denotes the subsystem of interest. The rainbow entanglement manifests as
a striking difference in entropy depending on the type of bipartition that defines the
subsystem A, and we will consider two types illustrated in Fig. 6.11a. For the parallel
cut between the two rows of the ladder, i.e., when A comprises qubits {u1, u2, . . . , uM},
the entanglement is large, as the bipartition cuts through an extensive number of Bell
pairs. By contrast, for the bipartition perpendicular to the ladder, i.e., when A =
{u1, d1, . . . , uM/2, dM/2} ≡ {k = 1, 2, · · · ,M/2}, the entanglement is much lower. As
seen in Fig. 6.11b-c, this distinction is maximal for the |E0⟩ and |EM ⟩ states, which
have exactly maximal entropy M ln(2) in the case of a parallel bipartition but zero
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entanglement in the case of a perpendicular bipartition. More generally, we find that in
the middle of the spectrum both types of scarred state display logarithmic entanglement
growth with M for a perpendicular cut (see Appendix. F).

While the dependence of entanglement on the cut clearly shows the presence of
scarred states, it is difficult to do in experiment as preparing high-energy eigenstates
is an arduous task. We will thus turn towards dynamical signatures of the scarred
eigenstates that can be probed on our superconducting chip. Before proceeding to that,
we briefly discuss an additional property of the half-system Hamiltonian Ĥu. Indeed,
this Hamiltonian is in 1D and only contains nearest-neighbour hopping and onsite
potential. As such, it can be mapped to a free-fermionic model using a Jordan-Wigner
transformation and is integrable and non-interacting. This means that this Hamiltonian
technically has many conserved quantities, and one could wonder if this is what causes
the presence of the second family of scars. We argue that this is not the case, as the
rainbow states formed by the individual free-fermionic modes are not eigenstates of
Ĥint. We have also studied a similar model but with next-nearest neighbours hopping.
This destroys integrability in a single chain, but the ladder still holds two families of
rainbow scars generated by the same operators Ẑ and Ĥu.

Figure 6.11: a Schematic of the ladder with dashed lines indicating two types of bipartitions.
The parallel cut splits all entangled pairs in the rainbow state, while the perpendicular cut
does not affect them. b-c Bipartite entropy of eigenstates in different Q-symmetry sectors
for the two cuts shown in a. The two families of scarred states are highlighted by red circles
(first family) and blue diamonds (second family). Their rainbow nature is revealed by the fact
that they move between minimal and maximal entropy, depending on the cut. Coloured cross
sections represent different sectors labelled by the values on the Q axis. Data is obtained by
exact diagonalisation with N = 18 qubits, Ja = 4, and Je,k ∈ [4, 4.5], ωk ∈ [0.5, 1.5] drawn from
a uniform distribution.

6.3.3 Dynamical signatures of the two scar families

Both families of scarred states are evenly spaced in energy with spacing 2Ja, hence
they can lead to persistent revivals following the quench from a suitably chosen initial
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state. Here we identify such initial states for the two scar families. To probe the first
scar family, we will use the state |Π⟩ given by:

|Π⟩ =
∣∣∣∣•◦ •

◦
· · · •

◦

〉
. (6.29)

This state must undergo perfect revivals due to the exact su(2) algebraic structure,
as we now explain. From the raising operator Ŝ+ = ∑

k |Tk⟩ ⟨Sk|, we can infer Ŝx ∝
Ŝ+ + (Ŝ+)† or, equivalently,

Ŝx ∝
∑
k

(∣∣∣∣◦•
〉〈◦

•

∣∣∣∣− ∣∣∣∣•◦
〉〈•

◦

∣∣∣∣)
k
, (6.30)

which we recall is proportional to the action of Ẑ as discussed in Sec. 6.3.2. The
corresponding Ŝz operator is given by Ŝz = ∑

k |Tk⟩ ⟨Tk| − |Sk⟩ ⟨Sk|, which is easily
seen to have the same action as Ĥint in this subspace. Hence, if we prepare the system
in the lowest-weight state of Ŝx, it will undergo perfect precession around an effective
field in the z-direction. It is easy to see that our state |Π⟩ in indeed the lowest weight
state of Eq. (6.30). The precession that starts out in |Π⟩ state will result in perfect
state transfer to the highest-weight state |Π′⟩ = |◦

•
◦
• · · · ◦

•⟩.
The existence of revivals from the |Π⟩ initial state can be shown more explicitly

by computing the overlap |⟨Π|En⟩|2 with eigenstates of the first scar family. First, it
will be important to observe that we obtain a simple product state when all possible
combinations of singlets and triplets are summed up:

M∑
n=0

|M − n, n⟩ =
M⊗
k=1

(|T⟩ + |S⟩) = 2M/2 |◦
•

· · · ◦
•

⟩ , (6.31)

where in the second equality we made use of |T⟩ + |S⟩ =
√

2 |◦
•⟩. Since |En⟩ =(M

n

)−1/2 |M − n, n⟩, it is easy to see that

|Π′⟩ = |◦
•

· · · ◦
•

⟩ =
M∑
n=0

√(M
n

)
2M |En⟩ . (6.32)

The same procedure can be applied to the |Π⟩ state by noting that |T⟩ − |S⟩ =
√

2 |•
◦⟩.

This means that there is now a factor of −1 for each singlet present, such that

|Π⟩ = |•
◦

· · · •
◦

⟩ =
M∑
n=0

(−1)M−n

√(M
n

)
2M |En⟩ . (6.33)

Thus, the |Π⟩ and |Π′⟩ states only have overlap on the first family of scarred eigenstates.
As the latter are regularly spaced in energy, the dynamics initialised in |Π⟩ or |Π′⟩
exhibits perfect revivals.

For QMBS states belonging to the second family, the identification of the reviving
initial state |ϕL⟩ is more subtle as the eigenstates now depend on disorder realisation
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and there is no apparent algebraic structure. However, we can once again appeal to
the fact that the sum of all singlet and triplet configurations can be written as a simple
state in the Fock basis. For any n, |E′

n⟩ contain terms

Je,k
2Nn

(|HD⟩Λk
+ |DH⟩Λk

)⊗|M−n−1, n−1⟩Λ̄k
, (6.34)

with Nn the normalisation factor given in Eq. (E.18) of the Appendix. Recall that Λk
denotes sites k and k+1 and Λ̄k denotes all sites except k and k+1. As a consequence,
summing all |E′

n⟩ with a prefactor Nn as ∑M−1
n=1 Nn |E′

n⟩ gives

M∑
k=1

Je,k
2 (|HD⟩Λk

+ |DH⟩Λk
)⊗
M−1∑
n=1

|M−n−1, n−1⟩Λ̄k
+
(

M∑
k=1

ωkT̂k

)
M−1∑
n=1

|M−n, n⟩Λ

=
M∑
k=1

Je,k
2 (|HD⟩Λk

+ |DH⟩Λk
)⊗ 2

M−2
2 |◦

•
· · · ◦

•
⟩
Λ̄k

+
(

M∑
k=1

ωkT̂k

)(
2M/2 |Π′⟩ − |E0⟩ − |EM ⟩

)

=2
M−4

2

M∑
k=1

Je,k(|HD⟩Λk
+ |DH⟩Λk

)⊗|◦
•

· · · ◦
•

⟩
Λ̄k

+ 2M/2
(

M∑
k=1

ωkT̂k

)
|Π′⟩ ,

(6.35)
where we recall that T̂ is the projector on the triplet state. Between the second and
third line, |E0⟩ and |EM ⟩ were discarded as they are annihilated by ∑M

k=1 ωkT̂k. This
is trivial for |E0⟩ since it has no triplet, while for |EM ⟩ each site is a triplet and so the
overall prefactor ends up being ∑M

k=1 ωk = 0, as ωj = ωj − 1
M

∑M
k=1 ωk.

In order to simplify this state and to make the orthogonality with |En⟩ obvious, we
will drop the last term in Eq. (6.35) and consider the initial state

∣∣ϕ′
J

〉
= 1
Z

M∑
k=1

Je,k(|HD⟩Λk
+ |DH⟩Λk

)⊗
∣∣∣∣◦• · · · ◦

•

〉
Λ̄k

= 1
Z

(
Je,1

∣∣∣∣•• ◦
◦

◦
•

· · · ◦
•

〉
+ Je,1

∣∣∣∣◦◦ •
•

◦
•

· · · ◦
•

〉

+ Je,2

∣∣∣∣◦• •
•

◦
◦

◦
•

· · · ◦
•

〉
+Je2

∣∣∣∣◦• ◦
◦

•
•

◦
•

· · · ◦
•

〉
+ Je,M−1

∣∣∣∣◦• · · · ◦
•

•
•

◦
◦

〉
+Je,M−1

∣∣∣∣◦• · · · ◦
•

◦
◦

•
•

〉)
,

(6.36)
with the normalisation factor Z =

√
2∑M−1

k=1 J2
e,k. As the |ϕ′

J⟩ state only has overlap
with states containing one doublon and one hole, it has zero overlap with the scarred
states of the first family that have neither of those. As such, any non-trivial dynamics
after a quench from this state must come from scarred states of the second family. We
can compute this overlap exactly:

|⟨ϕ′
J |E′

n⟩|2 =
(M−2
n−1

)
2M−2

∑M−1
k=1 J2

e,k(∑M−1
k=1 J2

e,k + 2∑M
k=1 ω

2
k

) , (6.37)

which leads to
M−1∑
n=1

|⟨ϕ′
J |E′

n⟩|2 =
∑M−1
k=1 J2

e,k(∑M−1
k=1 J2

e,k + 2∑M
k=1 ω

2
k

) . (6.38)
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It is important to notice here that it is not the ωk that enter this equation but their
counterparts ωj = ωj − 1

M

∑M
k=1 ωk, with the mean removed. Thus, if we draw the Je,k

and ωk from the same distribution [∆ − δ,∆ + δ], if ∆ ≫ δ then we will have that
J2
e,k ≫ ω2

k as the former is at the scale of ∆2 but the latter at the scale of δ2. In that

case the state |ϕ′
J⟩ will have total overlap of order

(
1 + 2Mδ2

(M−1)∆2

)−1
on the QMBSs of

the second family, making these states the only relevant ones.
We can also define |ϕJ⟩ with the same structure as |ϕ′

J⟩, but with the top and bottom
chain swapped. We expect that a quench from this state will lead to approximate state
transfer to |ϕ′

J⟩ and vice versa. It obeys the same |⟨ϕJ |E′
n⟩|2 as Eq. (6.37), but with

additional minus signs

⟨ϕJ |E′
n⟩ = (−1)M−1−n⟨ϕ′

J |E′
n⟩. (6.39)

Figure 6.12: Properties of special initial states in the XY ladder. a-c Overlap between the |Π⟩,
|ϕJ⟩ and |ϕL⟩ states and the eigenstates of the model in Eq. (6.12). Pentagrams and squares
denote scarred states of the first and second family respectively, while each colour correspond to
a sector of Q̂. |Π⟩ only has overlap on the scarred eigenstates of the first family, while |ϕJ⟩ and
|ϕL⟩ have no overlap on them. For both of these states the scarred states of the second family
dominate. d-f Fidelity and bipartite entanglement entropy over time following the quench from
various initial states indicated in the legend. The thin black lines are randomly chosen Fock
basis states at half filling. For |Π⟩ and |ϕJ⟩ there is no visible growth of entanglement entropy,
while for |ϕL⟩ the growth is strongly suppressed. For all three state the entanglement entropy
heavily depends on the cut. All data is for N = 18, Ja = 4 and Je,k ∈ [4, 4.5], ωk ∈ [0.5, 1.5]
drawn from a uniform distribution.

Finally, for experimental implementations, it is preferable to use an initial state
that requires fewest gates to prepare. Because of this, we will consider a state that is
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only a superposition of two states in the Fock basis and which is defined as

|ϕL⟩ = 1
N

(
|•
•

◦
◦

•
◦

· · · •
◦

⟩ + |◦
◦

•
•

•
◦

· · · •
◦

⟩
)
. (6.40)

For this state, the overlap with the scarred states of the second family is

|⟨ϕL|E′
n⟩|2 =

(M−2
n−1

)
2M−2

J2
e,1(∑M−1

k=1 J2
e,k+2∑M

k=1 ω
2
k

) . (6.41)

To confirm our analysis above, we numerically compute the overlap of states |Π⟩,
|ϕJ⟩ and |ϕL⟩ with eigenstates of the model in Eq. (6.12) in Fig. 6.12 a-c. All the states
have predominant support on scarred eigenstates, either of the first family (|Π⟩ state)
or the second family (|ϕJ⟩ and |ϕL⟩ states). We emphasise that, as scarred states of
the first family have no doublons or holons, they are exactly orthogonal to |ϕJ⟩ and
|ϕL⟩. Thus, persistent revivals from the latter states provide unambiguous evidence
for the second type of QMBSs. Indeed, Fig. 6.12d-f shows that the initial states |Π⟩,
|ϕJ⟩ and |ϕL⟩ lead to revivals of the wave function and slow growth of entanglement
entropy when compared to random Fock basis states – clear signatures of scarring. The
rainbow nature of |En⟩ and |E′

n⟩ is also apparent in the dynamics, as the growth of
entropy shows a stark difference between two different cuts, shown in Figs. 6.12 e-f.
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Figure 6.13: Improving the revivals by modulating the hopping strength on the first site
according to Je,1 = J0

e,1 + ∆1. Monotonic increase of revival peaks can be seen as ∆1 is
increased. Data is for N = 16, Ja = 4, Je,k ∈ [4, 4.5], ωk ∈ [0.5, 1.5] drawn from a uniform
distribution.

While the revival fidelity from the |ϕL⟩ initial state in Fig. 6.12 is not particularly
high, we can leverage the tunability of the second family of scarred states to enhance
it. Indeed, from Eq. (6.41) it directly follows that the projection of |ϕL⟩ state on the
set of scarred eigenstates |E′

n⟩ is given by
M−1∑
n=1

|⟨ϕL|E′
n⟩|2 =

J2
e,1∑M−1

k=1 J2
e,k+2∑M

k=1 ω
2
k

. (6.42)
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Thus, in the limit of Je,1→∞, we recover perfect revivals. To illustrate the effect of Je,1
on the dynamics, in Fig. 6.13 we compute the fidelity dynamics as Je,1 is modulated
by an amount ∆1 ∈ [0, 8]. Setting ∆1 = 4 – which amounts to approximately doubling
Je,1 – leads to a two-fold increase of the first revival peak, with the increase being even
more pronounced at the second revival peak. This shows that the tunability of the
initial state can be obtained with experimentally realistic values of the parameters for
which the model remains chaotic.

Figure 6.14: a-c Signature of the first family of scars in a ladder with N = 10 qubits. The
plots show the measurements of a population imbalance, b the 4-qubit fidelity, and c the
4-qubit entanglement entropy, specified in the text. The inset in c shows the entropy of a
subsystem consisting of 2 qubits, sketched on the left. Purple dots with error bars stand for
the average and standard deviation over 8 disorder realisations of Je,k, randomly selected from
an interval as Je,k/2π ∈ [1, 3] MHz. For reference, we also show a typical thermalisation case
with an initial state | •

•
◦
◦

•
•

◦
◦

•
◦ ⟩. The lines are the results of numerical simulations for the same

parameters, including the additional cross couplings Jx/2π ≈ 0.3 MHz and nonlinearity of
qubits η/2π ≈ −175 MHz, present in the physical device. d-g Signature of the second family
of scar in a ladder with N = 16 qubits. d Circuit diagram for generating the entangled initial
state |ϕL⟩ used to probe the dynamics of the second scar family. Symbols “+”,“H”, and “X”
stand for CNOT, Hadamard, and Pauli-X gates, respectively. e Absolute values of the reduced
density matrix elements ρ̂k=1,2 at t = 0, with the colour bar denoting their phase. f-g Fidelity
and entanglement entropy dynamics of a 4-qubit subsystem for initial states |Π⟩ and |ϕL⟩, which
overlap with the first and second family of scars, respectively. The clean couplings are set to
values Je,k/2π = Ja/6π = −2 MHz in all plots.
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6.3.4 Experimental realisation of the two scar families

To observe signatures of scarring on our SC chip, we utilise an established diagnostics
of QMBSs [43]: the evolution of local observable expectation values in quench dynamics
of the circuit, consisting of two contiguous rows with up to 8 qubits each.

We first focus on the first family of scars and chose |Π⟩ as our initial state. Fig-
ure 6.14a shows the dynamics of population imbalance, which is defined as I(t) =
(1/N)∑M

k=1
∑
σ=u,d⟨σ̂zk(0)⟩⟨σ̂zk(t)⟩. The population imbalance exhibits remarkable os-

cillations that persist up to time scales ∼1µs. This is in contrast with typical therm-
alising states, for which the population imbalance rapidly decays to zero by ∼50 ns.
A salient feature of the first family of scars is their insensitivity to the disorder in the
Hamiltonian couplings. Thus, we expect the coherent dynamics from the |Π⟩ state to
be unchanged when inhomogeneity is introduced in Je,k couplings. This signature is
clearly confirmed by experimental observations in Fig. 6.14a.

Furthermore, we utilise quantum tomography to obtain the reduced density matrix
of the subsystem consisting of the 4 leftmost qubits A = {k = 1, 2}, which gives us
additional information about the dynamics beyond local observables. The subsystem
fidelity,

√
FA = Tr

[√√
ρ̂A(t)ρ̂A(0)

√
ρ̂A(t)

]
, and entanglement entropy, Sk=1,2, are

shown in Figs. 6.14b-c. For the initial state |Π⟩, the subsystem fidelity dynamics
undergoes persistent revivals, implying that the initial information is restored many
times, with a period of about 80 ns. Meanwhile, for generic initial product states,
Fk=1,2 quickly decays towards a value close to the inverse of the subsystem Hilbert
space dimension, as shown in Fig. 6.14b. The growth of entanglement entropy also
shows a stark contrast between initial states. Compared to the thermal states, the |Π⟩
state exhibits a slow linear growth with superposed oscillations. The small oscillations
are in correspondence with the peaks and valleys observed in the fidelity dynamics,
with roughly half the period of the latter. Furthermore, we show the entropy dynamics
with different subsystems {u1, u2} and {u1, d1} in the inset of Fig. 6.14c, confirming
the rainbow entanglement structure previously sketched in Fig. 6.10 b.

We note that, unlike in our initial numerical simulations on Fig. 6.12, Fig. 6.14
shows a weak population and fidelity decay, along with a slow growth of entanglement
after a quench form the |Π⟩ state. This is due to the presence of the Jx cross-couplings
and of a less strong suppression of the third level on each site. effectively, this means
that the full Hamiltonian in our superconducting chip is given by

Ĥexp = Ĥ + Ĥx + V̂ ,

Ĥx/2π = Jx

M−1∑
k=1

(
û+
k d̂−

k+1 + d̂+
k û−

k+1 + h.c.
)
,

V̂ /2π = η

2

M∑
k=1

(
û+
k û+

k û−
k û−

k + d̂+
k d̂+

k d̂−
k d̂−

k

)
.

(6.43)

Here, Ĥ denotes the Hamiltonian of Eq. (6.13), which has been reformulated in terms
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of bosons to allow multiple photons on a single site. The operators û± and d̂± are then
the bosonic raising/lowering operators on the upper and lower chain respectively.

When simulating these perturbations, we will consider a maximum of 2 photons
per site as triple occupations are highly suppressed. The last two terms represent the
experimental imperfections due to the cross coupling Jx between the diagonal qubits
and anharmonicity η of the transmon qubits [7]. Numerical simulations accounting for
these additional terms, shown by lines in Fig. 6.14, confirm that these perturbations
capture the main sources of decay of local observables and entanglement growth. The
effect of these perturbations, however, is sufficiently weak such that clear signatures of
the two families of scars can be observed.

To probe the second family of scars, we use the state |ϕL⟩. It can be prepared
using the circuit schematically shown in Fig. 6.14d, which is composed of a few single-
qubit and two-qubit gates. By utilising high-precision tomography measurements, we
then obtain the reduced density matrix of the subsystems {k = 1, 2} or {k = 2, 3}.
Its value at t = 0 is visualised in Fig. 6.14e, demonstrating that the entangled state
|ϕL⟩ is successfully prepared. To reveal the difference between the first and second
family of scars, we focus on the subsystem A′ ≡ {k = 2, 3}, whose fidelity Fk=2,3(t)
and entanglement entropy Sk=2,3(t), are plotted in Figs. 6.14f-g. The choice of the
subsystem is motivated by the fact that it leads to entropy ln(2) for the |ϕL⟩ initial
state, while the entropy is still trivially zero for the |Π⟩ state (up to the influence of the
cross-couplings). This distinction is verified in our experiment, as shown in Fig. 6.14d.

6.4 Summary

We have presented the first experimental realisation of QMBS states in a solid-state SC
platform. Our circuit emulates the quantum many-body systems effectively described
by the hard-core Bose-Hubbard model – a model of particles freely hopping on a lattices
– with local interactions. This is in contrast with previous realisations of QMBSs in
ultracold atomic systems [4, 43], which relied on particles being kinetically constrained.
In the 1D circuit example, scarring was engineered by utilising a regular subgraph
intrinsic to the Hilbert space and taking advantage of the high level of control of our
SC platform to reduce the connectivity of the subgraph to the rest of the Hilbert
space. This is essentially the same mechanism that we proposed in Chapter 5 to
engineer scarring in the tilted Fermi-Hubbard model. We have also provided an in-
depth characterisation of QMBSs using quantum state tomography on multi-qubits
subsystems. By observing the population dynamics and entanglement entropy, we
distinguished the weak ergodicity breaking associated with QMBS initial states from
the conventional thermalising states.

In a 2D circuit, we have used the rainbow scar method to realise two families of non-
thermalising states. Our construction allows to write down exact wave functions for
these states, even in the disordered case. The existence and stability of QMBSs in the
presence of disorder have recently attracted much attention in theoretical studies [75,
79, 112, 245, 246]. Beyond demonstrating experimentally that scarring can survive in

128



6.4 Summary

the presence of disorder, our model actually allows to uniquely tailor the structure of
QMBS states through the disorder realisation. To the best of our knowledge, this is
the first model with such a capability. Similar to the 1D experiment, signatures of
rainbow entanglement were observed on our SC device by performing quantum state
tomography of a many-body state of the ladder following the quench from special initial
states, confirming the expected hallmarks of QMBS behaviour.

While throughout this chapter the disorder strength was assumed to be sufficiently
weak such that the system overall remains chaotic, the versatility of our setup allows
direct access to strong ergodicity-breaking regimes, where many-body localisation was
recently proposed to give rise to new types of “inverted scarring” phenomena [130–
132]. More generally, our work bridges the gap between theoretical studies of QMBSs,
which place the emphasis on exact constructions of scarred eigenstates [90, 91], and
experimental realisations, e.g., in Rydberg atom arrays [43, 78] or optical lattices [4],
in which the scarred states are not known exactly (apart from a few exceptions [72]).
In contrast, our model in Eq. (6.12) hosts exact scars. While our experiment contains
additional perturbations, they were shown to be sufficiently weak in our device to allow
unambiguous observation of scar signatures. It would be interesting to study in detail
their effects on the stability of QMBS states in larger circuits or higher-dimensional
geometries that would rapidly exceed the capability of classical computers.
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Chapter 7

Conclusions and outlook

Unravelling how quantum systems thermalise is one of the great challenges of quantum
mechanics. A major leap in understanding was the formulation of the Eigenstate
Thermalisation Hypothesis (ETH) [13, 156], that relates the late-time behaviour of
observables with special properties of eigenstates. However, although the ETH was
put forward in the early 1990s, special cases of its violations are still being discovered,
like many-body localisation (MBL) and quantum and many-body scars (QMBSs). The
latter are quite special, as unlike MBL or other non-ergodic systems like integrable
ones, they only weakly violate the ETH. This translates into dynamics from most ini-
tial states displaying thermalisation, with a few specific states leading to long-lived
coherent oscillations. This new discovery generated some excitement as a way of pro-
tecting quantum information from scrambling, even in a chaotic system. Following
the original observation of QMBSs, a plethora of theoretical realisations have been
formulated. However, experimental realisations of QMBSs are still largely confined to
the Rydberg atom platform in which they were first observed. This scarcity of new
experimental realisations, along with difficulties of taking advantages of their special
properties, means that QMBSs are currently still rarely used in quantum technology.

In this thesis, we have tackled this problem by developing new realisations of QMBSs
inspired by the current generation of quantum simulators. In particular, we have tar-
geted the popular platforms of ultracold atoms in optical lattice (with both fermions
and bosons) and superconducting qubits. Through close collaboration with experiment-
alists working on these devices, we have conclusively demonstrated that our theoretical
proposals lead to strong QMBS signatures in the lab. For example, in Chapter 4 we
have realised the PXP model in a Bose-Hubbard model using ultracold bosons. Beyond
making this model available to a much broader class of experimental devices, this new
realisation also has advantages over its Rydberg atom version. Indeed, in both cases
the PXP model is the leading order term driving the dynamics, but the additional
couplings at higher orders are different. Importantly, in the Bose-Hubbard case it is
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possible to suppress all unwanted terms provided the experimental device can produce
high enough values of tilt and on-site interaction. Meanwhile, in the Rydberg case there
is always a trade-off between a perfect blockade and next-nearest-neighbour interac-
tions. Thus, our new implementation provides a way to create a more pristine version
of the PXP model. Similarly, the models we proposed in Chapter 6 for superconduct-
ing (SC) qubit systems also offer important advantages over the other platforms, the
most obvious one being the high tunability of individual couplings. Beyond that, the
SC qubit processor also supports larger coupling amplitudes that directly drive the
coherent dynamics. These are of the order of ∼107 Hz in the SC platform, compared
to ∼103 Hz for Bose gases [247] (and only around 50 Hz in Chapter 4) and ∼106 Hz for
Rydberg atom [78]. This means that the SC platform can process the same quantum
information in a shorter amount of time.

In order to create scarring in these different platforms, we have relied on a few
different mechanisms. One common theme in our approach was using resonances to
engineer effective models with kinetic constraints in otherwise unconstrained models.
This provides a relatively simple way to recreate models like PXP in a multitude of
systems. While kinetic constraints do not automatically imply QMBSs, through a
graph-theoretic approach, we have revealed how the link between the two can emerge.
While we have not included it in this thesis, we have studied this relation in more detail
in a variety of models in Ref. [229]. In addition, we have used the same graph approach
in an unconstrained model in Chapter. 6. We emphasise that our construction is one
of the very few known ways to create non-exact scars in quantum systems and is an
important addition to the various mechanisms reviewed in Chapter 2.

Beyond making scarring more widely available, we have also made several advances
that make this phenomenon easier to use in quantum technology applications. This
has been achieved by demonstrating conclusively that QMBSs offer an advantage for
entanglement-enhanced metrology. Moreover, we have utilised the high-level of control
of the SC platform to show that it is possible to tune the entanglement structure of
scarred states. This opens many possibilities of dynamically controlling which states
are protected from thermalisation, adding a new tool to trajectory-steering techniques
based on QMBSs.

While the main focus of this work has been quantum many-body scarring in general,
Chapters 3 and 4 have explored many facets of the PXP model in particular. In these
chapters, we have uncovered several important – and hitherto unknown – properties of
the PXP model, such as the presence of scarring from the polarised initial state, the
existence of multiple approximate su(2) representations, and superdiffusion in energy
transport at late times. We have shown that the polarised state dynamics can be un-
derstood from the same approximate algebraic structure as the Néel state, with the
difference that the quality of the algebra depends on the number of excitations. For
the multiple su(2) representations, their origin can be traced back to the spin-1 parent
model from Ref. [68], however this still leaves many questions open. For example, the
resilience of spin-1 eigenstates to the perturbations naturally present in the PXP model
remains a puzzle. Moreover, the consequences of these multiple algebraic structures are
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also largely unexplored. The oscillations that can been seen in the spectral form factor
and energy transport in an infinite temperature Gibbs state imply that stronger signs
of ergodicity breaking should be visible at finite temperatures. This could lead to
scarring being actually resilient to finite temperatures, which would be very useful for
experimental realisations. Finally, there is still much to understand regarding the an-
omalous transport in the PXP model. Most importantly, it remains an open question
if the model is truly superdiffusive at all times, or if diffusion is eventually recovered at
very late times. Furthermore, the origin of the observed superdiffusion is also unclear.
While proximity to integrability provides a compelling narrative, the observed robust-
ness of this behaviour to detuning makes it unlikely. Further study of these properties
is needed, especially to understand the role of the constraints in their appearance and
if they can be found in other similar models. As the results are currently only numer-
ical, observing this anomalous energy transport in an actual quantum simulator would
confirm these findings and show their robustness to experimental perturbations.

The implications of our findings for other interpretations of the PXP model should
also be considered. As we have mentioned in Chapter 2, the PXP model is equival-
ent to a spin-1/2 regularisation of a U(1) lattice-gauge theory [80]. This provides an
interesting interpretation of scarring as a “string-inversion” mechanism. It also opens
a way to explore generalisations of the PXP model to higher values of spin in a way
that is different from previous studies [59]. In our works [81, 82], which we did not
discuss in this thesis, we have found that scarring actually survives for these higher-spin
regularisations. The staggered magnetisation, which we mentioned in Chapter 3 as a
mechanism for improving the revivals in the PXP model, has a particularly interest-
ing interpretation in the lattice gauge theory language: it corresponds to the potential
which induces confinement of pairs of particles and anti-particles. This implies that con-
finement can make scarring stronger, as we have numerically demonstrated in Ref. [3].
The interplay between scarring and confinement is currently not well understood and
it is also unclear if this enhancement persists for higher spin values. As classical simu-
lation becomes harder with increasing spin, developing a way to simulate these models
on quantum hardware would likely provide an advantage already for small system sizes.

Beyond the PXP model, there are still big gaps in the overall understanding of
QMBSs. Most mechanisms leading to exact scars can be unified using the commut-
ant algebra framework [118–121], which also describes Hilbert space fragmentation
and usual symmetries. However, this construction is not applicable to cases where
the scarred subspace is not fully isolated from the thermal bulk. More generally, few
formal results have been derived for non-exact scars, despite them forming the ma-
jority of experimentally relevant models. This means that there is no simple way of
comparing different scarred models or of predicting their thermalisation timescale. The
consequences of this lack of quantitative results are perhaps best illustrated in the PXP
model with its multiple approximate su(2) representations. While the level statistics
are that of a chaotic model with level repulsion, which suggest that most states obey
the ETH and that any randomly picked product state will thermalise at infinite-time,
the spectral form factor and transport properties still shows anomalous behaviour way
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beyond the expected thermalisation timescale. These global non-ergodic signatures in
a system that obeys the weak ETH call for markers of thermalisation that do not solely
rely on infinite-time properties. Alternatively, it also questions the relation between
weak and strong ETH violations. This could be explored for example in the interplay
between many-body localisation and quantum scars, as made possible by our rainbow
scars construction in the SC qubit device.

Finally, another major open question that was brought into focus by QMBS research
is the lack of a general procedure for defining a classical limit for general many-body
systems, in a way that has been achieved for single-particle scars. While such a limit
has been found in the PXP model [59] and it can be generalised to other systems [142],
it is a rather ad hoc procedure that requires prior knowledge of the scarred dynamics.
Quantum field theories offer a promising way of going beyond that as they admit a well-
defined classical limit and QMBSs have recently been found in these systems [248, 249].
Importantly, as some quantum field theories have direct links to microscopic quantum
many-body models, this could provide a direct way to establish classical limits for the
latter as well.
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Appendix A

Infinite-time average of the quantum
Fisher information

In this Appendix, we derive the long-time value of the quantum Fisher information
from the diagonal ensemble. In particular, we focus on the case of the PXP model that
we then use in Chapter 3.

As discussed in Chapter 2, if the spectrum of the Hamiltonian used for time-
evolution is non-degenerate, then for an operator Ô the long-time average obeys the
diagonal ensemble prediction as

⟨Ô⟩∞= lim
T→∞

1
T

∫
dt ⟨ψ(t)|Ô|ψ(t)⟩ =

∑
n

|cn|2On,n, (A.1)

where Oi,j = ⟨Ei|Ô|Ej⟩, cn = ⟨En|ψ⟩, and |Ej⟩ is the eigenstate of Ĥ with energy
Ej . In the case of the PXP model we also need to consider the large number of “zero
modes” [53, 54, 226] and treat them separately, leading to

⟨Ô⟩∞ = lim
T→∞

1
T

∫
dt ⟨ψ(t)|Ô|ψ(t)⟩ =

∑
n s.t.
En ̸=0

|cn|2On,n +
∑

n,m s.t.
En=Em=0

c⋆ncmOn,m. (A.2)

To simplify the notation, we introduce the diagonal ensemble density matrix ρ̂,
such that ρm,n = c⋆mcnδ(Em − En). In that case we simply have ⟨Ô⟩∞ = Tr

[
ˆ̂ρÔ
]
.

For the PXP model this allows to compute the infinite-time average of the staggered
magnetisation M̂S and of its square M̂2

S . However in order to get the QFI we also need
the infinite-time average of ⟨Ô⟩2. Explicitly computing this quantity leads to the more
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complicated expression

lim
T→∞

1
T

∫
dt ⟨Ô⟩2=

∑
a,b,c,d

c⋆acbc
⋆
ccdOa,bOc,d lim

T→∞

1
T

∫
dt eit(Ea−Eb+Ec−Ed)

=
∑
a,b,c,d

c⋆acbc
⋆
ccdOa,bOc,dδ(Ea − Eb + Ec − Ed),

(A.3)

with the Dirac delta now holding 4 energies instead of 2. Fortunately, as the number
of combinations that satisfy it is relatively limited, this is still tractable numerically.

The simplest case is Ea = Eb, Ec = Ed, which can be rewritten as

∑
a,c

|ca|2|cc|2Oa,aOc,c=
(∑

a

|ca|2Oa,a

)(∑
c

|cc|2Oc,c

)
=
(
Tr
[
ρ̂Ô
])2

=
(
⟨Ô⟩∞

)2
. (A.4)

We note that for brevity, the first two terms are shown assuming no degeneracies in the
spectrum. To include the degeneracies would require keeping the four indices a to d and
adding δ(Ea − Eb)δ(Ec − Ed), leading to a bulky expression. Nonetheless, expressing
this term as

(
Tr
[
ρ̂Ô
])2

takes into account the degeneracies and that is what we will
use in the final expression. The other cases will be treated in similar fashion.

Another possibility to satisfy the Dirac delta is to have Ea = Ed and Eb = Ec. In
that case we have∑
a,b

|ca|2|cb|2Oa,bOb,a=
∑
a,b

⟨ψ|Ea⟩ ⟨Ea|Ô|Eb⟩ ⟨Eb|ψ⟩ ⟨ψ|Eb⟩ ⟨Eb|Ô|Ea⟩ ⟨Ea|ψ⟩ =Tr
[
ρ̂Ôρ̂Ô

]
.

(A.5)
Finally, as in the PXP model the spectrum is symmetric around E=0, the last

possibility is Ea= −Ec and Eb= −Ed. However for M̂S in the momentum sectors k=0
and k=π (where the Néel state has support) we can take advantage of the eigenstates,
the operator, and the initial state being real. Indeed, as the Hamiltonian projected to
one of these sectors is real and symmetric, the eigenvectors themselves can be chosen
to be real. In that case ca = c⋆a (as all initial states are real in the Fock basis) and
(M̂S)a,b = (M̂S)b,a since the matrix is symmetric (as it is both real and Hermitian).
We can then rewrite∑

a,b

c⋆acbc
⋆
acbOa,bOa,b =

∑
a,b

c2
ac

2
bOa,bOb,a

∑
a,b

|ca|2|cb|2Oa,bOb,a = Tr
[
ρ̂Ôρ̂Ô

]
, (A.6)

which is the same as the contribution with Ea=Ed and Eb=Ec.
Summing all these contributions together, we can compute the long-time average

of the QFI in the PXP model in the sectors k = 0 and k = π for a real-valued operator
Ô, and from a real initial state |ψ⟩, as

lim
T→∞

1
T

∫
dt 4

(
⟨ψ(t)|Ô2|ψ(t)⟩ − ⟨ψ(t)|Ô|ψ(t)⟩2)

= 4 Tr
[
ρ̂Ô2

]
− 4

(
Tr
[
ρ̂Ô
])2

− 8 Tr
[
ρ̂Ôρ̂Ô

]
.

(A.7)
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Appendix B

Effect of staggered magnetisation on the
PXP model

In this Appendix, we investigate the effect of adding staggered magnetisation to the
PXP Hamiltonian. More precisely, we study the Hamiltonian

ĤStag = Ω
N∑
j=1

P̂j−1σ̂
x
j P̂j+1 + χ

N∑
j=1

(−1)j σ̂zj . (B.1)

To simplify the notation, we will keep Ω = 1 and thus χ will be expressed in units of Ω.
This Hamiltonian has previously been studied in Ref. [250] in the limit of χ ≫ Ω. In
this regime, the Hilbert space fractures and an emergent symmetry appears due to an
approximate su(2) algebra. It has also been studied when driven [85]. Here we instead
investigate the experimentally relevant regime where the staggered magnetisation is
time independent but with strength χ of the same order as Ω.

We recall that the staggered magnetisation is equal to 2Ŝz in the spin-1 parent
Hamiltonian while the PXP itself is akin to

√
2Ŝx, recall Eq. (2.44). Using the spin-1

representation, Eq. (B.1) can be expressed as(√
2Ŝx+Ĥ1+Ĥ2

)
+2χŜz = ĤStag ⊕ Ĥ⊥, (B.2)

where the exact form of Ĥ⊥ is unimportant as it acts in the complement of the PXP
subspace. Without Ĥ1 and Ĥ2, the Hamiltonian in Eq. (B.2) would be a free spin-1
model. There would then be perfect revivals from the Néel state (|− − · · · − −⟩ in the
spin-1 language) with a period

T = 2π√
4χ2 + 2

. (B.3)

This can be understood from a spin precession point of view, as discussed in Sec-
tion 3.2.1 and illustrated in Fig. 3.5a. Without Ĥ1 and Ĥ2, there would be perfect
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revivals for all values of χ. As we know that in the actual PXP models revivals are not
perfect at χ = 0 and that the fidelity F(t) will be identically 1 for χ → ∞, we näıvely
expect that the fidelity will increase monotonically as χ gets larger. However, for a large
value of χ, this is no longer due to scarring but only to the dynamics being restricted to
one of the edges of the spectrum. This manifests itself by a large fidelity even between
the revivals. We will denote the first revival peak of the self-fidelity by F1, and the
self-fidelity at half that time by F1/2. The signature of QMBSs therefore is F1 ≈ 1 and
F1/2 ≈ 0. Hence, we will use the quantity F1 − F1/2 as a probe of QMBSs, where it
expected to take values close to 1. This quantity distinguishes QMBSs from the trivial
situation where the initial state is close to an eigenstate, in which case F(t) ≈ 1 at all
times and the fidelity difference is strongly suppressed, F1 − F1/2 ≪ 1.

Figure B.1: Effect of staggered magnetisation on the Néel state in the PXP model with N = 26.
a The first fidelity peak F1 is large for all values of χ, indicating the presence of revivals.
However, as χ becomes large, the Néel state effectively becomes an eigenstate, leading to an
increase of F1/2 and therefore a decrease of F1 −F1/2. The vertical dashed line is at χ = 1/

√
8,

corresponding to the prediction of perturbation theory for the maximum. b The revival period
T is in good agreement with the prediction based on spin precession, 2π/

√
2 + 4χ2. The red

dashed-dotted line labelled E′
s0

shows the period according to perturbation theory. c-e The
non-monotonic behaviour of F as a function of χ can be related to changes in the structure
of the overlap between the Néel state and the energy eigenstates |E⟩, here plotted for χ = 0,
χ = 0.3 and χ = 1.52. The value of χ corresponding to each plot is also indicated on panel a.

In Fig. B.1a, we plot both F1 and F1 −F1/2 as a function of staggered magnetisation
for the PXP model with the Néel initial state. We observe interesting non-monotonic
behaviour as a function of χ. Fig. B.1b shows the period of the revivals, and displays
pretty good agreement with the prediction in Eq. B.3. The effect of χ can also be
seen in the overlap between the Néel state and the corresponding PXP eigenstates, as
shown in Fig. B.1c-e. The top band of scarred states is always visible. However, as
χ is increased, the eigenstates with the highest overlap shift from the middle of the
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spectrum towards its left edge, where the ground state resides.
While the precession picture, discussed in Chapter 3, gives a relatively good ap-

proximation of the revival period, it also predicts the revivals would increasingly get
better as χ becomes larger. Indeed, as Sz starts to dominate, the relative contribution
of Ĥ1 and Ĥ2 becomes weaker, until we reach the limit χ = ∞ where the model be-
comes integrable. This is in stark contrast with the observed non-monotonic behaviour,
in particular with the strong revival enhancement around χ ≈ 0.342. To explain this
behaviour, we will use perturbation theory to more precisely compute the action of
Ĥ1 and Ĥ2 on the eigenstates of

√
2Ŝx+2χŜz. This approach predicts a maximum in

fidelity at χ = 1/
√

8 ≈ 0.353, close to the observed value as shown in Fig. B.1a. It also
gives a better approximation of the revival period, see Fig. B.1b.
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Figure B.2: a Bipartite von Neumann entanglement entropy after a quench from the Néel
state for N = 26 and various values of χ. The entropy growth is strongly suppressed around
χ = 0.34. b Excitation density on odd sites for N = 32 and various values of χ and their
exponential fit. Only times for which the expectation values are converged in system size are
used. Once χ ≥ 0.5 oscillations are visible in the peaks and an exponential decay no longer
describes their behaviour with time.

Before using the perturbative approach, let us first verify that other hallmarks of
scarring are also present around χ ≈ 0.342. We find that the growth of entangle-
ment entropy is highly suppressed near that point, as shown in Fig. B.2a. This non-
monotonicity in the post-quench behaviour as a function of χ can also be witnessed
in local observables, measurable in experiment. For a local observable, we choose the
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excitation density 2
N ⟨n̂o⟩ on the odd sublattice, where n̂o = ∑

j odd n̂j . In order to
avoid finite-size effects, we consider only the times where the dynamics is converged in
system size for N = 32. As the sublattice density oscillates in time, we first identify
the local maxima and then fit its envelope. The results are shown in Fig. B.2b for
several values of χ. Overall, we find a clear enhancement of QMBS revivals around
χ = 0.3 compared to other values. The decay time τ shows an approximately 3-fold
increase around χ = 0.3 compared to case with χ = 0 (see legend). Finally, we see that
for χ = 0.6 the peaks themselves show an oscillatory behaviour and are no longer well
approximated by a decaying exponential. We emphasise that this is not a finite-size
effect but rather a sign that we enter the low-energy regime where only a handful of
eigenstates participate in the dynamics. The oscillation in the maxima is then a beating
frequency linked to the mismatch in the energy spacing of these eigenstates.
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Figure B.3: Ergodicity of the PXP model with staggered magnetisation. a Fidelity density
after a quench from the Néel state. The data is converged with system size already at small
values of N . b Quench from various initial states at χ = 0.342. c Maximum return fidelity
after quench from various states for a wide range of values of χ. The non-monotonic behaviour
is only visible for the Néel state. d Average level-spacing ratio for different system sizes and
values of χ. At χ = 0.342, ⟨r⟩ ≈ 0.53 as expected from a chaotic system. The system becomes
more ergodic as the system size is increased, as shown in the inset.

Near the optimal χ, we also verify that the oscillations are stable in system size.
To do that, we study the fidelity density log10(F(t))/N , shown in Fig. B.3a. The
agreement between different system sizes is almost perfect. We check the fidelity after
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quenches from different states to assess to which extent the Néel state is atypical, as
shown in Fig. B.3b-c. While the polarised starts showing revival with a small fidelity at
χ = 0.342, it is nowhere near that observed for the Néel state. Furthermore, randomly
chosen states still thermalise as expected. Finally, to make sure that the system is still
chaotic and is not fragmented due to χ being too large, we compute the average level
spacing ratio ⟨r⟩ for various values of χ and system sizes. This is shown in Fig. B.3d
and demonstrates good agreement with the Wigner-Dyson value at χ = 0.342. Based
on these different metrics, we can conclude that what we observe in our numerical
simulation is genuine quantum many-body scarring and investigate the origin of this
behaviour.

In order to understand the non-monotonic behaviour, we construct the states |Sk⟩,
which are the eigenstates |Sk⟩ of the spin-1 operator

√
2Ŝx+2χŜz (with Ek=k

√
2 + 4χ2)

projected into the constrained PXP space, with k = −N/2,−N/2 + 1, . . . , N/2. For
simplicity, let us denote the number of sites in the spin-1 model by Nb = N/2. In
Chapter 2, we have reviewed how these states provide a good approximation at χ = 0 as
found in Ref. [68]. By computing the energy variance of these approximate eigenstates,
one can get a qualitative picture of how close the projected states are to the true PXP
eigenstates. The lower the variance, the better the agreement and so the better we
expect the spin-precession picture to hold. Formally, we define the energy variance
for these states as, σ2

Ek
≡ ⟨Sk|Ĥ2

PXP|Sk⟩ − ⟨Sk|ĤPXP|Sk⟩2. The variance is shown in
Fig. B.4a, where we observe very different behaviours depending on the value of k. In
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Figure B.4: Energy variance of the |Sk⟩ states in the PXP model with N = 26. a Data for
individual states. b Data weighted by the overlap with the Néel state, which accounts for their
relevance in the dynamics. The non-monotonic behaviour in χ with local minima at χ = 0 and
χ → ∞ is clearly visible. This explains why these points are local maxima of revival fidelity.

order to pick out the relevant states, we need to understand their overlap with the Néel
state. At χ = 0, the Néel state can be written as a superposition of the |Sk⟩ states
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as [68]

|Z2⟩ =
Nb∑

k=−Nb

dk |Sk⟩ , d2
k =

(
2Nb

k +Nb

)
. (B.4)

For arbitrary χ, a similar expansion holds with the weights given by

d2
k =

( 2Nb
k+Nb

)
4Nb

(
√

2χ− sgn(k)
√

1 + 2χ2)2|k|

(1 + 2χ2)Nb
. (B.5)

A simple argument as to why this is possible is that the Néel state is the highest-weight
eigenstate of Ŝz in the spin-1 picture. This implies that it also has maximal total spin,
and the |Sk⟩ always form a basis of maximal total spin states. We can then use this to
compute the average of the σ2

Ek
weighted by it. This is shown in Fig. B.4b, where we

observe a non-monotonic behaviour in χ. The local minima at χ = 0 and χ → ∞ are
visible, and this explain why as we go away from these points the fidelity of the revivals
starts to decay. However, there is no local minimum visible around χ ≈ 0.34 here. To
understand its appearance, a finer analysis is needed that also accounts for the energy
spacing of the eigenstates.

For that we need to compute the perturbation of the energies of the |Sk⟩ states due
to the presence of Ĥ1 in the full Hamiltonian in Eq. (B.2). We can completely disregard
Ĥ2 as it it will not lead to an energy shift because P̂Ĥ2 = 0 (see Section 2.4.3). Thanks
to the simple structure of the |Sk⟩, it is possible to compute analytically the first-order
correction as ∆Ek = ⟨Sk|Ĥ1|Sk⟩. Our derivation follows closely the one in Appendix
D of Ref. [68]. To match the notation used in that work, we will temporarily change
the indexing of the |Sk⟩ (with k = −Nb to Nb) to |Sn⟩ with n = 0 to 2Nb = N . As the
Hamiltonian of which the |Sn⟩ are eigenstates is the same as for χ = 0 up to a rotation
around Ŝy, the |Sn⟩ will also be identical up to a rotation. The eigenstate n will have
energy En = (n−Nb)

√
2 + 4χ2. The construction from Ref. [68] is not fundamentally

modified, meaning that the state |SN−n⟩ can still be computed by applying a lowering
operator on |SN ⟩. We can then also target a pair of spin-1 sites and decompose it in
the basis of the local

√
2Ŝx + 2χŜz operator with total spin equal to 2. Let us denote

these local eigenstates as |T̂2,m⟩, where m is the magnetisation quantum number. It is
straightforward to compute δem = −⟨T̂2,m|(|+, 0⟩ + |0,−⟩) ⟨+,−| |T̂2,m⟩, and we get

δE2 = −δE−2 = −
√

2
8

1
(1+2χ2)3/2 , δE1 = −δE−1 = −

√
2

2
χ2

(1+2χ2)3/2 , δE0 = 0.

(B.6)

The next step is to compute the coefficients cm that describe the weight of the state
|SN−n⟩ on |T̂2,m⟩. Since this computation only depends on the number of times the
lowering operator has been applied, it is completely unaffected by the rotation. Hence
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we get the same values as in Ref. [68]:

c2 =
Nb−2∏

M=Nb−n−1
α(Nb,M), (B.7)

c1 = 2n
Nb−2∏

M=Nb−n
α(Nb,M), (B.8)

c0 =
√

6n(n−1)
Nb−2∏

M=Nb−n+1
α(Nb,M), (B.9)

c−1 = 2n(n−1)(n−2)
Nb−2∏

M=Nb−n+2
α(Nb,M), (B.10)

c−2 = n(n−1)(n−2)(n−3)
Nb−2∏

M=Nb−n+3
α(Nb,M), (B.11)

with α(Nb,M) =
√

(Nb−1)(Nb−2)−M(M−1). The overall normalisation of the state
is also unaffected and is given by

NN−n =
Nb∏

M=Nb−n+1
[Nb(Nb + 1) −M(M − 1)] . (B.12)

To simplify computations, we can perform an additional step that is not used in
Ref. [68]. These products can be recast is a more similar way, that allows to get cancel-
lations between their terms. Indeed, by performing the change of variable M = Nb−K
we get

NN−n =
n−1∏
K=0

(K + 1)(2N −K). (B.13)

Similarly, using M = Nb − 2 −K we get

|c2|2 =
n−1∏
K=0

(K+1)=
n−1∏
K=0

(K+1)
n−1∏
K=0

(2N−K−4)=
n−1∏
K=0

(K+1)
n+3∏
K=4

(2N−K), (B.14)

which leads to the simple expression

|c2|2

NN−n
=

3∏
K=0

2N −K − n

2N −K
. (B.15)
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The same kind of transformation can be done for the other cm to get

|c2|2

NN−n
=

3∏
K=0

2N −K − n

2N −K
(B.16)

|c1|2

NN−n
= 4n

2N − 3

2∏
K=0

2N −K − n

2N −K
(B.17)

|c0|2

NN−n
= 6n(n− 1)(2N − n)(2N − n− 1)∏3

K=0(2N −K)
(B.18)

|c−1|2

NN−n
= 4n(n− 1)(n− 2)(2N − n)∏3

K=0(2N −K)
(B.19)

|c−2|2

NN−n
=

3∏
K=0

n−K

2N −K
. (B.20)

This simplification allows to directly compute the overall energy shift of |SN−n⟩ for any
Nb, n and χ as

∆EN−n=Nb

2∑
m=−2

|cm|2

NNb−n
δEm=(n−Nb)[1+n2−3Nb−2nNb+2N2

b −8n(n−2Nb)χ2]
4
√

2(1 + 2χ2)3/2(Nb − 1)(2Nb − 1)

=(n−Nb)
(1−3Nb)+(Nb−n)2(1−8χ2)+N2

b (1 + 8χ2)
4
√

2(1 + 2χ2)3/2(Nb − 1)(2Nb − 1)
.

(B.21)
This finally allows to get

∆En= − (n−Nb)
(1−3Nb)+(n−Nb)2(1−8χ2)+N2

b (1 + 8χ2)
4
√

2(1 + 2χ2)3/2(Nb − 1)(2Nb − 1)
. (B.22)

We can perform a change of variable to recover the label k for the energies as
k = n−Nb, where k runs between −Nb and +Nb. The state k then has energy Ek with
the correction ∆Ek given by

Ek = k
√

2 + 4χ2 and ∆Ek= − k
(1−3Nb)+k2(1−8χ2)+N2

b (1 + 8χ2)
4
√

2(1 + 2χ2)3/2(Nb − 1)(2Nb − 1)
. (B.23)

In general, this cannot be factorised further. However, in the special case χ = 1/
√

8,
we find it reduces to −2k/(5

√
10). This is a remarkable result: for any state |Sk⟩, at

first order its energy will be given by

Ek = k

[√
5
2 − 2

5
√

10

]
= 23k

5
√

10
. (B.24)

As a consequence, the energy spacing between two consecutive eigenstates will simply
be 23

5
√

10 , which is independent of both k and Nb. Thus, at first order, all scarred states
are exactly equidistant for any system size. This means that any superposition of these
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states will have good revivals, which explains the peak in fidelity around this value of
χ.

This special property of the spacing at χ = 1/
√

8 is linked to a change in the
behaviour of ∆Ek. Namely, for |χ| < 1/

√
8, ∆Ek is larger near the middle of the

spectrum, while for |χ| > 1/
√

8, ∆Ek is at its largest at the edges of the spectrum.
This becomes much clearer after taking the thermodynamic limit, Nb → ∞. We can
define s ≡ k/Nb, where s ∈ [−1, 1], to get

∆Es = −Nbs
(1 + 8χ2) + s2(1 − 8χ2)

8
√

2(1 + 2χ2)3/2 (B.25)

Adding the nominal reference energy of sNb

√
2 + 4χ2, we get

Es = sNb
15 + 56χ2 + 64χ4 − s2(1 − 8χ2)

32(1/2 + χ2)3/2 (B.26)

It is straightforward to see that the sign of the only term non-linear in s (which causes
unequal spacing in the spectrum) switches at χ = 1/

√
8. As the period of revivals

is determined by the energy difference between the eigenstates, we need to compute
Ek+1 − Ek which becomes the derivative 1

Nb

dEs
ds , leading to

E′
s = 1

Nb

dEs
ds =15 + 56χ2 + 64χ4 − 3s2(1 − 8χ2)

32(1/2 + χ2)3/2 . (B.27)

Finally, in order to predict the revival frequency, we need to target the value of s
which maximises the overlap with the Néel state. Eq. (B.5) gives us the overlap with
|Sk⟩; this is not the same as |Sk⟩, however the difference between the two is polynomial
in Nb. As we will show later, this means we can neglect this as a subleading correction
in the limit Nb → ∞. In the same limit, we can use the Stirling approximation(

2Nb

k +Nb

)
≈ e

−2NbH( k+Nn
2Nb

)√
π(Nb + k)(1 − k/Nb)

, (B.28)

where H(x) = −x ln(x) − (1 − x) ln(1 − x) is the Shannon entropy function. We can
then rewrite the d2

k using s = k/Nb to get

d2
s = e−2NbH( 1+s

2 )√
πNb(1 − s2)

(
√

2χ− sgn(s)
√

1 + 2χ2)2Nb|s|

(1 + 2χ2)Nb
. (B.29)

Let us first focus on the case χ > 0. In that regime,
√

2χ −
√

1 + 2χ2 goes to 0 as χ
becomes large while

√
2χ +

√
1 + 2χ2 increases with χ. This is expected as the Néel

state gets closer to the ground state for larger positive χ. A consequence is that for
positive χ the maximum value will always be in the range [−1, 0]. We can then restrict
to this range and drop the signum function and absolute values. In the end, this allows
us to rewrite

d2
s = e−Nbf(s)

4Nb(1 + 2χ2)Nb
√
πNb(1 − s2)

, (B.30)
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with

f(s) = (1 + s) ln(1 + s) + (1 − s) ln(1 − s) + 2s ln
(√

2χ+
√

1 + 2χ2
)
. (B.31)

We recognise here that in the thermodynamic limit the most important term is the
exponential e−Nbf(s) and we use a saddle point approximation. This means that the
maximum of d2

s will simply be the minimum of f(s), which yields

s0 = − 2χ2 +
√

2
√

1 + 2χ2

1 + 2χ2 +
√

2
√

1 + 2χ2 . (B.32)

This justifies why we can neglect the difference in norm between the |Sk⟩ and |Sk⟩: as
it is polynomial in Nb and s, it will irrelevant in the thermodynamic limit and lead to
the same s0.

A quick sanity check shows that Eq. (B.32) correctly yields s0 = 0 at χ = 0 and
s0 → −1 as χ → ∞. A similar derivation can be done for χ < 0, yielding the same
formula but without the minus sign in front. This allows us to estimate the frequency
of oscillations for a given χ after a quench from the Néel state by plugging s0 into
Eq. (B.27) and using T = 2π/E′

s0 . While this derivation is done in the thermodynamic
limit, Fig. B.1b shows that this formula leads to a good agreement with numerical data
for finite systems.

To conclude, the non-monotonic behaviour observed with χ is due to two factors.
On the one hand, the projected states |Sk⟩ stemming from the spin-1 free paramagnet
are closer to true eigenstates of the PXP model at χ = 0 and χ → ±∞. On the other
hand, the energy shift caused by Ĥ1 is the most homogeneous at χ = 1/

√
8, leading

to almost equal energy spacing of scarred states and better revivals. This explains the
local maxima in fidelity at χ = 0, χ = ±1/

√
8 and χ → ±∞. The case χ = ±1/

√
8

is the most useful, as it provides a way to amplify dynamical signatures of scarring
compared to χ = 0 using a perturbation that is simple to implement in an experiment.
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Appendix C

Single-site fidelity

In this Appendix, we discuss the relation between two measures of similarity that we
use to characterise scarring in the Bose-Hubbard quantum simulator in Chapter 4. One
measure is the standard quantum fidelity

F(|ϕ⟩ , |ψ⟩) = |⟨ϕ|ψ⟩|2, (C.1)

i.e., the global overlap between two pure states. This measure is very convenient for
numerical simulations and theoretical analysis, but hard to measure in experiment.
For this reason, we also consider a different measure consisting of an average of local
measurements. In a system with L sites, it is defined as

F(r)(|ϕ⟩ , |ψ⟩)≡ 1
L+ 1 − r

L+1−r∑
j=1

Tr
[
ρ̂ϕj,j+r−1ρ̂

ψ
j,j+r−1

]
, (C.2)

where 1 ≤ r ≤ L is the range of the measurements and

ρ̂ϕj,j+r−1 = Tr⊥,j,j+r−1 [|ϕ⟩ ⟨ϕ|] (C.3)

is the density matrix obtained by performing the partial trace on all sites except sites
j to j − 1 + r.

Both quantities, F and F(r), are real and obey

0 ≤ F(|ϕ⟩ , |ψ⟩),F(r)(|ϕ⟩ , |ψ⟩) ≤ 1, (C.4)

and
F(r)(|ϕ⟩ , |ψ⟩) = F(r)(|ψ⟩ , |ϕ⟩), F(|ϕ⟩ , |ψ⟩) = F(|ψ⟩ , |ϕ⟩). (C.5)

It is also important to note that

F(L)(|ϕ⟩ , |ψ⟩) = Tr [|ϕ⟩ ⟨ϕ|ψ⟩ ⟨ψ|] = |⟨ϕ|ψ⟩|2 = F(|ϕ⟩ , |ψ⟩).
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C. SINGLE-SITE FIDELITY

While for arbitrary states F(r) is neither an upper bound nor a lower bound of F, it
does not mean that this is never the case. We are now limiting our study to the case
where the state ϕ is a product state. The consequence of that is that the reduced
density matrix ρ̂ϕj,j+r−1 will correspond to a pure state for any r. We can then chose a
basis for each site such that |ϕ⟩ is a product of local basis states, and so a Fock basis
state for the whole Hilbert space. Let us then denote the orthonormal states of this
basis by |α⟩.

This allows us to rewrite the reduced density matrix as ρ̂ϕj,j+r−1 = |ϕj,j+r−1⟩ ⟨ϕj,j+r−1|,
where |ϕj,j+r−1⟩ corresponds to the state ϕ for sites j to j + r − 1 (remember that we
can only do this because |ϕ⟩ is a product state). This formulation implies the following
simplification

F(r)(|ϕ⟩ , |ψ⟩)= 1
L+1−r

L+1−r∑
j=1

Tr
[
ρ̂ϕj,j+r−1ρ̂

ψ
j,j+r−1

]

= 1
L+1−r

L+1−r∑
j=1

Tr
[
|ϕj,j+r−1⟩ ⟨ϕj,j+r−1| ρ̂ψj,j+r−1

]

= 1
L+1−r

L+1−r∑
j=1

∑
|α⟩

⟨α| (|ϕj,j+r−1⟩ ⟨ϕj,j+r−1| ⊗ 1) |ψ⟩ ⟨ψ|α⟩

= 1
L+1−r

∑
|α⟩

|⟨α|ψ⟩|2
L+1−r∑
j=1

j+r−1∏
k=j

⟨αk|ϕk⟩

=|⟨ϕ|ψ⟩|2+ 1
L+1−r

∑
|α⟩≠|ϕ⟩

|⟨α|ψ⟩|2
L+1−r∑
j=1

j+r−1∏
k=j

⟨αk|ϕk⟩

≥|⟨ϕ|ψ⟩|2 = F(|ϕ⟩ , |ψ⟩),

(C.6)

where ⟨αk|ϕk⟩ is 1 if the site k of |α⟩ and |ϕ⟩ is in the same state and 0 otherwise. This
means that |⟨α|ψ⟩|2 contributes to F(r)(|ϕ⟩ , |ψ⟩) with a weight of 1

N+1−r each time r
consecutive sites are in the same state in |α⟩ and |ϕ⟩. This simple rule allows us to
not only derive this inequality between F and F(r), but also to assess the effect of r
on F(r). Indeed, let us suppose that for a given r, a basis state |α⟩ has a weight of

n
L+1−r , meaning that we can find n instances of r consecutive sites in the same state in
|α⟩ and |ϕ⟩. Let us now consider the case with r − 1. If n > 0, the minimum number
of r − 1 consecutive sites in the same state in |α⟩ and |ϕ⟩ is n + 1. As such, |α⟩ has
a minimum weight of n+1

L+2−r . In addition, there are a total of L + 1 − r possibilities
for the r consecutive sites, leading to the inequality n ≤ L + 1 − r. This implies that

n
L+1−r ≤ n+1

L+2−r . If n = 0 then for r − 1 the same state cannot contributes less, and so
for any n it contributes more or the same amount. Hence we can conclude that

F(1)(|ϕ⟩ , |ψ⟩)≥F(2)(|ϕ⟩ , |ψ⟩)≥. . .F(L)(|ϕ⟩ , |ψ⟩)=F(|ϕ⟩ , |ψ⟩). (C.7)

Finally, it is important to note that the inequality n
L+1−r ≤ n+1

L+2−r is saturated if
and only if n = L+ 1 − r, meaning that |α⟩ and |ϕ⟩ are the same. This is important as
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F(r)(|ϕ⟩ , |ψ⟩) is a weighted sum of all the |⟨α|ψ⟩|2 with weights equal or smaller to 1.
In order for F(r)(|ϕ⟩ , |ψ⟩) to be equal to F(r−1)(|ϕ⟩ , |ψ⟩), all weights corresponding to
a non-zero |⟨α|ψ⟩|2 must stay the same. But the only weights that are not increasing
are either the ones that stay equal to zero or the one of |α⟩ = |ϕ⟩ which stays equal to
one. This implies that all inequalities of Eq. C.7 are simultaneously saturated if and
only if |ψ⟩ = |ϕ⟩ (in which case they are all equal to one) or F(1)(|ϕ⟩ , |ψ⟩) = 0 (in that
case they are all equal to 0). It is also possible for some of them to be saturated. This
can only happen if all consecutive subsets of length m of |ϕ⟩ and |ψ⟩ are orthogonal,
meaning that all F(r) are equal to 0 for all r ≥ m.

In the experimental setup we only have access to the single-site fidelity F(1), which
already mimics the behaviour of the real fidelity F (see Fig. C.1). While it bounds F

from above, that bound is fairly loose. If we instead look at its square F2
(1), we can see

that it approximates F much better as it takes a lower value when F is close to zero.
While F2

(1) is not guaranteed to be an upper bound of F, our theoretical simulations
indicate that it still effectively acts as one for the conditions we study. Our simulations
also show that the single-site second Rényi entropy S(1) shows a very similar behaviour
to the bipartite half-chain second Rényi entropy S. While it is limited in the range of
values it can take, S(1) is clearly able to distinguish between the two regimes we are
seeing in our setup: rapid entropy growth until a plateau is reached, and very slow
entropy growth with oscillations on top.
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C. SINGLE-SITE FIDELITY
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Figure C.1: Comparison between global and local quantities for the polarised state in the
tilted Bose-Hubbard model introduced in Chapter 4. Panels a-b are without and panels c-d
with periodic driving. Both the single-site fidelity and the single-site entropy effectively capture
the behaviour of their global counterpart. In both the undriven and driven cases, the squared
single-site fidelity F2

(1) provides a better approximation of F than F(1) while still acting as an
upper bound. Data is for the tilted Bose-Hubbard model in Eq. (4.1), J = 1, ∆ = U = 16,
L = 11, LA = 5, driving parameters U0 = −2.38, Um = 1.54, ω = 4.90.
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Appendix D

Derivation of TDVP equations of motion
and quantum leakage in the PXP model

In this Appendix we first derive the TDVP equations of motion and then compute the
instantaneous leakage rate for the TDVP Ansatz in Eq. (4.10) for the PXP model.
These derivations follow Appendices A and C of Ref. [64].

D.1 Equations of motion

To reproduce the spatially homogeneous structure of the polarised state, all θj = θ
are set to be identical and the same is true for all ϕj = ϕ. For convenience, we split
our Hamiltonian into two terms as ĤPXP = ĤX + Ĥµ0 and express µ0 in units of
Ω (effectively setting Ω = 1). Throughout this section we will consider mixed MPS
transfer matrices, denoted by

TBC =
∑
σ

B̄σ ⊗ Cσ, (D.1)

where B and C are arbitrary MPS tensors. The MPS transfer matrix for the PXP
ansatz chosen in the main text takes the form

TAA = T =


cos2 θ 0 0 1

cos θ sin θ 0 0 0
cos θ sin θ 0 0 0

sin2 θ 0 0 0

 . (D.2)
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D. DERIVATION OF TDVP EQUATIONS OF MOTION AND
QUANTUM LEAKAGE IN THE PXP MODEL

The dominant left and right eigenvalues of the transfer matrix are equal to 1, and the
corresponding eigenvectors are

|R) =


1

cos θ sin θ
cos θ sin θ

sin2 θ

 , (L| =
(

1 0 0 1
)
, (D.3)

which obey (L|R) = 1 + sin2 θ. Using the mixed transfer matrix expression, it is
straightforward to compute

f = −iN

(
L
∣∣∣T ∂ϕAA

∣∣∣R)
(L|R) = N

2 sin2 θ

cos 2θ − 3 , with T ∂ϕAA =


0 0 0 −i
0 0 0 0
0 0 0 0
0 0 0 0

 . (D.4)

Next we compute the expectation value of the Hamiltonian. We first find

〈
ψ
∣∣∣ĤX

∣∣∣ψ〉 = N

(
L
∣∣∣ĤX

∣∣∣R)
(L|R) = N

2 cos2 θ sin θ sinϕ
1 + sin2 θ

. (D.5)

We then get

⟨ψ|
∑
j

n̂j |ψ⟩ = N

(
L
∣∣∣∑j n̂j

∣∣∣R)
(L|R) = N

sin2 θ

1 + sin2 θ
, (D.6)

leading to

⟨ψ|Ĥµ0 |ψ⟩ = Nµ0
sin2 θ

1 + sin2 θ
. (D.7)

The total expectation value is given by the sum of Eqs. (D.5) and (D.7), which yields
the energy density

E(θ, ϕ)/N = sin θ
1 + sin2 θ

(
µ0 sin θ + 2 cos2 θ sinϕ

)
. (D.8)

To get the equations of motion for θ and ϕ, we need to compute

η = ∂θf = −4N sin 2θ
(cos2 θ − 3)2 . (D.9)

From there the equations of motion are given by

θ̇ = 1
η
∂ϕ⟨ψ|Ĥ|ψ⟩, ϕ̇ = −1

η
∂θ⟨ψ|Ĥ|ψ⟩, (D.10)

which lead to

θ̇ = − cos θ cosϕ
(
1 + sin2 θ

)
, (D.11)

ϕ̇ = µ0 + sinϕ
sin θ

(
1 − 4 sin2 θ − sin4 θ

)
. (D.12)
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D.2 Instantaneous leakage

D.2 Instantaneous leakage

The instantaneous leakage quantifies how much of the wave-function escapes from the
TDVP manifold, and is given by

Λ2(θ, ϕ) = ∥|ψ̇⟩ − iĤ|ψ⟩∥2

=
〈
ψ
∣∣∣Ĥ2

∣∣∣ψ〉
c

− 2θ̇ Im
(〈
∂θψ|Ĥ|ψ

〉
c

)
+ (θ̇)2 Re (⟨∂θψ|∂θψ⟩c) − 2ϕ̇ Im

(〈
∂ϕψ|Ĥ|ψ

〉
c

)
+ (ϕ̇)2 Re

(
⟨∂ϕψ|∂ϕψ⟩c

)
+ 2ϕ̇θ̇Re

(
⟨∂ϕψ|∂θψ⟩c

)
(D.13)

Due to the gauge choice, the leakage depends on connected correlators defined as

⟨∂θψ|∂θψ⟩c = ⟨∂θψ|∂θψ⟩ − ⟨∂θψ|ψ⟩⟨ψ|∂θψ⟩.

In order to evaluate these connected correlators, we introduce the projector on the
dominant subspace, P = |R)(L|/(L|R), and its complement Q = 1 − P. We also
introduce T, which is obtained by re-summing the contribution of the non-dominant
subspace of T in ∑∞

q=0 T
q and is defined from T−1 = Q(1 − QTQ)−1Q. Finally, we will

use the following shorthand for a 3-site local Hamiltonian term contracted with MPS
tensors on every site:

H = H
A,A,A
A,A,A =

∑
σi

Āσ1Āσ2Āσ3hσ1,σ2,σ3
σ4,σ5,σ6A

σ4Aσ5Aσ6 . (D.14)

Let us now evaluate the various terms involved in the instantaneous leakage. Taking
each term one by one, we find that:

⟨∂θψ|∂θψ⟩c = N

(L|R)
(
L|T ∂θA

∂θA
+ TA∂θA

T−1T ∂θA
A + T ∂θA

A T−1TA∂θA
− TA∂θA

PT ∂θA
A |R

)
, (D.15)

which after a straightforward calculation evaluates to

⟨∂θψ|∂θψ⟩c = N

1 + sin2 θ
. (D.16)

Turning our attention to the term
〈
∂θψ|Ĥ|ψ

〉
c
, we find that this evaluates to

N

(L|R)
(
L
∣∣∣H∂θA + HT−1TA∂θA

+ TA∂θA
T−1H − 3HPTA∂θA

∣∣∣R) , (D.17)

which yields
〈
∂θψ|Ĥ|ψ

〉
c

= −iN cos θ cosϕ+N
cos θ sin θ(
1 + sin2 θ

)2 ϕ̇. (D.18)
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D. DERIVATION OF TDVP EQUATIONS OF MOTION AND
QUANTUM LEAKAGE IN THE PXP MODEL

As we are only interested in the imaginary part, we can discard the second term and
are left with

Im
(〈
∂θψ|Ĥ|ψ

〉
c

)
= −N cos θ cosϕ = N

1 + sin2 θ
θ̇. (D.19)

The expressions containing the derivatives with respect to ϕ can be calculated similarly.
Starting with ⟨∂ϕψ|∂ϕψ⟩c which we compute as

N

(L|R)
(
L
∣∣T ∂ϕA
∂ϕA

+ TA∂ϕA
T−1T

∂ϕA
A + T

∂ϕA
A T−1TA∂ϕA

− TA∂ϕA
PT

∂ϕA
A

∣∣R) (D.20)

Evaluating this term, we find

⟨∂ϕψ|∂ϕψ⟩c = N
cos2 θ sin2 θ(
1 + sin2 θ

)3 . (D.21)

The next term to compute is the cross-term

⟨∂ϕψ|∂θψ⟩c=
N

(L|R)
(
L
∣∣T ∂ϕA
∂θA

+ TA∂θA
T−1T

∂ϕA
A + T ∂ϕAT−1T∂θA − T∂θAPT

∂ϕA
∣∣R). (D.22)

The result after evaluating Eq. (D.22) is

⟨∂ϕψ|∂θψ⟩c = −iN cos θ sin θ(
1 + sin2 θ

)2 , (D.23)

however, because its real part is identically zero, we get no contribution from this term.
We now compute

〈
∂ϕψ|Ĥ|ψ

〉
c

as

⟨∂ϕψ|Ĥ|ψ⟩c=
N

(L|R)
(
L
∣∣H∂ϕA + HT−1TAA∂ϕA

+ TA∂ϕA
T−1H − 3HPT∂ϕA

∣∣R). (D.24)

We find this can be expressed as:〈
∂ϕψ|Ĥ|ψ

〉
c

= N cos θ cosϕ+ iN
cos2 θ sin2 θ(
1 + sin2 θ

)3 ϕ̇ (D.25)

We now move onto the terms involving the square of the Hamiltonian, Ĥ2. The con-
nected correlator in this case is

〈
ψ
∣∣∣Ĥ2

∣∣∣ψ〉
c

= N

(
L
∣∣∣H(2) + 2HT−1H − 5HPH

∣∣∣R)
(L|R) . (D.26)

where H(2) is the product of two overlapping local Hamiltonian terms. As the local
Hamiltonian spans three sites, the two terms will both act upon one, two, or three
shared sites. Evaluating this expression, we obtain〈

ψ
∣∣∣Ĥ2

∣∣∣ψ〉
c

= N sin6 θ

1 + sin2 θ
+ N cos2 θ sin2 θ(ϕ̇)2(

1 + sin2 θ
)3 + N(θ̇)2

1 + sin2 θ
. (D.27)
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D.2 Instantaneous leakage

Substituting each of these into the equation for the leakage, we finally arrive at:

Λ2 = N
sin6 θ

1 + sin2 θ

Rescaling this by the system size yields the intensive expression for the leakage

γ2 = sin6 θ

1 + sin2 θ
. (D.28)
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Appendix E

Structure of rainbow scars

In this Appendix we derive the exact form of the scarred states of the second family in
the superconducting ladder discussed in Sec. 6.3. We then prove that both families of
rainbow states are eigenstates of the Hamiltonian in Eq. (6.12).

E.1 Building scarred states of the second family

Scarred states of the second family |E′
n⟩ are obtained by acting on scarred states of the

first family with Ĥu− (∑k ωk/M) Ẑ. Let us first derive the action of this operator in
the dimer basis. To this end we define

ĥ
∥,u
k,k+1 = Je,k

2
(
ûxkûxk+1+ûykû

y
k+1

)
. (E.1)

From there it is straightforward to see that

Ĥu−
(∑

k

ωk
M

)
Ẑ =

M−1∑
k=1

ĥ
∥,u
k,k+1 +

M∑
k=1

ωkuzk, (E.2)

where ωk = ωk− (∑i ωi/M). As we will only apply this operator to scarred states of the
first family, which contain no |D⟩ or |H⟩, we can ignore any configurations containing
them. The action of ĥ∥,u

k,k+1 and uzk on dimers is then

ĥ
∥,u
k,k+1 |TT⟩ = 1

2Je,k(|HD⟩ + |DH⟩)

ĥ
∥,u
k,k+1 |TS⟩ = 1

2Je,k(|HD⟩ − |DH⟩),

ωkûzk |S⟩ = −ωk |T⟩ ,

ĥ
∥,u
k,k+1 |SS⟩ = −1

2Je,k(|HD⟩ + |DH⟩),

ĥ
∥,u
k,k+1 |ST⟩ = −1

2Je,k(|HD⟩ − |DH⟩),

ωkûzk |T⟩ = −ωk |S⟩ .

(E.3)

From there, we immediately see that

ĥ
∥,u
k,k+1(|TS⟩ + |ST⟩) = 0. (E.4)
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E. STRUCTURE OF RAINBOW SCARS

To represent symmetric superpositions of triplets and singlets, we recall the notation
where |L−n, n⟩ is the (non-normalised) symmetric superposition of all configurations
on L sites with L−n singlets and n triplets. We also remind that the scarred states of
the first family can be written directly using this notation as

|En⟩ = 1
N

|M−n, n⟩ = 1
N

∑
|ϕ⟩∈(M−n,n)

|ϕ⟩ . (E.5)

We now compute explicitly Eq. (6.26), where |E′
n⟩ is obtained as by acting with

P̂QM−2n

[
Ĥu−

(∑
k
ωk
M

)
Ẑ
]

on |En−1⟩. For brevity, we will first work out what happens
when we apply ĥ∥,u

1,2 to |En−1⟩ (the same is true for any ĥ∥,u
k,k+1):

ĥ
∥,u
1,2 |En−1⟩ =

ĥ
∥,u
1,2
N

|M−n+1, n−1⟩

=
ĥ

∥,u
1,2
N

[
(|TS⟩ + |ST⟩) |M−n, n−2⟩ + |TT⟩ |M−n+1, n−3⟩ + |SS⟩ |M−n−1, n−1⟩

]
=Je,1

2N (|HD⟩ + |DH⟩) |M−n+1, n−3⟩ −Je,1
2N (|HD⟩ + |DH⟩) |M−n−1, n−1⟩ ,

(E.6)
where we used the condition (E.4) to cancel the contribution of the first term. Applying
the projector P̂QM−2n singles out one of the terms:

P̂QM−2nĥ
∥,u
1,2 |En−1⟩ = −Je,1

2N (|HD⟩ + |DH⟩) |M−n−1, n−1⟩ . (E.7)

Next, we look at the action of ω1ûz1:

ω1ûz1 |En−1⟩=ω1ûz1
N

|M−n+1, n−1⟩ =ω1ûz1
N

[
|T⟩ |M−n+1, n−2⟩ + |S⟩ |M−n, n−1⟩

]
=−ω1

N

[
|S⟩ |M−n+1, n−2⟩ + |T⟩ |M−n, n−1⟩

]
.

(E.8)
Applying the projector in this case gives

P̂QM−2nω1ûz1 |En−1⟩ = − ω1
N

|T⟩ |M−n, n−1⟩ . (E.9)

The result is similar if we act on another site k, with a prefactor ωk and a triplet on
that site. Ultimately, we end up with a collection of all states with M − n singlets and
n triplets, but each of them has a prefactor that depends on the location of the triplets.
Let us introduce the operator T̂k that gives 1 if this site is a triplet and 0 otherwise.
We can then write

P̂QM−2n

M∑
k=1

ωkûzk |En−1⟩ = − 1
N

(
M∑
k=1

T̂kωk

)
|M−n, n⟩ . (E.10)
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E.1 Building scarred states of the second family

To write down the scarred states of the second family, we now simply need to
gather the terms from Eqs. (E.7) and (E.10). We also remove the overall minus sign
and normalise the state. Let us introduce the ensembles of sites Λ = {1, 2, . . .M} ,
Λk = {k, k+ 1} and Λ̄k = Λ − Λk = {1, 2 . . . k− 1, k+ 2, k+ 3, . . .M}. They represent,
respectively, all sites, sites k and k+ 1, and all sites except k and k+ 1. This allows us
to write |E′

n⟩ as

|E′
n⟩=

M−1∑
k=1

Je,k
2Nn

(|HD⟩Λk
+ |DH⟩Λk

)⊗|M−n−1, n−1⟩Λ̄k
+ 1
Nn

(
M∑
k=1

T̂kωk

)
|M − n, n⟩Λ ,

(E.11)
with n = 1, 2, . . . ,M − 1. As an example, let us write out the case for M = 4 and
n = 1:

|E′
1⟩ = 1

2N1

[
Je,1(|DHSS⟩ + |HDSS⟩) + Je,2(|SDHS⟩ + |SHDS⟩)

+ Je,3(|SSDH⟩ + |SSHD⟩)
]

+ 1
N1

[
ω1 |TSSS⟩ + ω2 |STSS⟩ + ω3 |SSTS⟩ + ω4 |SSST⟩

]
.

(E.12)

Finally, let us show that the same result is obtained if we generate |E′
n⟩ by “lowering”

from |En+1⟩ as discussed in Eq. (6.27). We have

P̂QM−2nĥ
∥,u
1,2 |En+1⟩ = Je,1

2N (|HD⟩ + |DH⟩) |M−n−1, n−1⟩ . (E.13)

and
P̂QM−2nω1ûz1 |En+1⟩ =−ω1

N
|S⟩ |M−n−1, n⟩ . (E.14)

From the latter equation, we can derive that

P̂QM−2n

M∑
k=1

ωkûzk |En−1⟩ =−1
N

(
M∑
k=1

Ŝkωk

)
|M−n, n⟩ , (E.15)

where Ŝk gives 1 if this site is a triplet and 0 otherwise. Now we can notice that
|M−n, n⟩ is composed entirely of triplets and singlets. Consequently, (T̂k + Ŝk) = 1k
when acting on that state. Moreover, we know that the ω must sum to 0 by construction.
This allows us to state that

M∑
k=1

ωk(Ŝk+T̂k) |M−n, n⟩ =
(

M∑
k=1

ωk

)
|M−n, n⟩ =0. (E.16)

From there we can conclude that

P̂QM−2n

M∑
k=1

ωkûzk |En−1⟩=−1
N

(
M∑
k=1

Ŝkωk

)
|M−n, n⟩ = 1

N

(
M∑
k=1

T̂kωk

)
|M−n, n⟩ .

(E.17)
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E. STRUCTURE OF RAINBOW SCARS

Gathering the results of Eqs. (E.13) and (E.17) we find the same result as in Eq. (E.11).
As we have the exact wave-function for the scarred states of the second family, we

can also compute their normalisation factor Nn. It admits a simple expression

Nn =

√√√√(M − 2
n− 1

)[
1
2

M−1∑
k=1

J2
e,k +

M∑
k=1

ω2
k

]
. (E.18)

This expression does not contain any cross-term ωkωj because all possible combinations
of k ̸= j appear and we can then express them as

M−1∑
k=1

M∑
j=k+1

ωkωj = −1
2

M∑
k=1

ω2
k, (E.19)

by using the fact that ∑M
k=1 ωk = 0 and as such

0 =
(

M∑
k=1

ωk

)2

=
M∑
k=1

ω2
k + 2

M−1∑
k=1

M∑
j=k+1

ωkωj . (E.20)

E.2 Proof that rainbow scars are eigenstates

Now that we have discussed the exact wave-function of both types of scarred states, we
prove that they are actually eigenstates of the model in Eq. (6.12). We first address the
straightforward cases of n = 0 and n = M . We then show the proof for the slightly more
complicated n = 1 case and finally demonstrate that the same arguments generalise to
arbitrary n.

E.2.1 n = 0 and n = M scarred states

For n = 0, the only scarred state present belongs to the first family and is |E0⟩ =
|SS . . . S⟩. From Eq. (6.18) we know that |S⟩ is an eigenstates of ĥ⊥

k with energy −Ja
and from Eq. (6.19) that |SS⟩ is an eigenstate of ĥ∥

k,k+1 with energy 0. Thus, |E0⟩ must
be an eigenstate of Ĥ with energy −MJa. Similarly, |T⟩ is an eigenstate of ĥ⊥

k with
energy Ja and |TT⟩ is an eigenstate of ĥ∥

k,k+1 with energy 0. Thus, |EM ⟩ = |TT . . .T⟩
must be an eigenstate of Ĥ with energy MJa.

E.2.2 n = 1 scarred states

For n = 1 we will prove the eigenstate property by considering a 2 × 3 ladder and then
show that the same holds for larger systems. Consider the state

|ψ⟩=β1 (|HDS⟩ + |DHS⟩) +β2 (|SHD⟩ + |SDH⟩) +α1 |TSS⟩ +α2 |STS⟩ +α3 |SST⟩ .
(E.21)
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E.2 Proof that rainbow scars are eigenstates

Applying the Hamiltonian to this state and after some algebra, we obtain
Ĥ |ψ⟩= − Ja |ψ⟩ + [2β1 (ω1−ω2) +Je,1 (α2−α1)] (|DHS⟩ − |HDS⟩)

+ [2β2 (ω2−ω3) +Je,2 (α3−α2)] (|SDH⟩ − |SHD⟩)
+ (Je,2β1 − Je,1β2) (|HTD⟩ − |DTH⟩) .

(E.22)

For |ψ⟩ to be an eigenstate, all prefactors must cancel and so the coefficients must obey

2β1 (ω1−ω2) +Je,1 (α2−α1) = 0, (E.23)
2β2 (ω2−ω3) +Je,2 (α3−α2) = 0, (E.24)

Je,2β1 − Je,1β2 = 0. (E.25)

In general, we have 5 unknowns but only 3 equations. The normalisation of the state
provides a fourth equation, leaving room for two solutions. The first option is to set
all αj to be equal and all βj to zero:

αj = 1, βj = 0. (E.26)

From Eq. (E.21), it is straightforward to see that this corresponds to the scarred state
of the first family, |E1⟩. The other solution is given by the scarred states of the second
family that obey (up to a normalisation factor)

αj = ωj − 1
M

∑
k

ωk = ωk, βj = Je,j
2 . (E.27)

This is easy to see from Eqs. (E.23)-(E.25) as ωk − ωk+1 = ωk − ωk+1. The reason
why the ωk are used instead of the ωk is to guarantee that the two families of scars are
orthogonal as their overlap is given (up to their normalisation factors) by ∑j 1×ωj = 0.
This completes the proof for the special case of M = 3. However, generalising this to
an arbitrary M is now straightforward. The general state is

|ψ⟩ = β1 (|HDS . . .S⟩ + |DHS . . .S⟩) +β2 (|S . . .SHDS⟩ + |S . . .SDHS⟩)
+ . . .+βM−2 (|S . . .SHD⟩ + |S . . .SDH⟩) +βM−1 (|HDS . . .S⟩ + |DHS . . .S⟩)
+α1 |TS . . .S⟩ +α2 |STS . . .S⟩ + . . .+αM |S . . .ST⟩ − (M−2)Ja |ψ⟩ .

(E.28)
Now we have M different αj and M − 1 different βj , so 2M − 1 unknowns in total. For
each block of 2 × 2 sites we get an equation similar to Eqs. (E.23) and (E.24). Thus,
for j = 1 to M − 1 we have

2βj (ωj−ωj+1) +Je,j (αj+1−αj) = 0. (E.29)

For each rectangular block of 2 × 3 sites we get an equation similar to Eq. (E.25).
Hence, for j = 1 to M − 2 we have

Je,j+1βj − Je,jβj + 1 = 0. (E.30)

For a chain with 2M sites, this yields (M−1)+(M−2) = 2M−3 equations. Adding the
constraint of normalisation, this always leaves us with two scarred states with energy
−(M − 2)Ja (assuming the equations are linearly independent). It is straightforward
to check that the two solutions given in Eqs. (E.26) and (E.27) are still valid.
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E. STRUCTURE OF RAINBOW SCARS

E.2.3 Other values of n

While we treated the case n = 1 on its own to provide a simple example, the recipe is
exactly the same for general n (except for n = 0 and n = M that were already proven).
We use the same Ansatz in which we only consider states with one DH +HD pair in
a background of n − 1 triplets and M − n − 1 singlets and states with n triplets and
M − n singlets.

We first restrict our investigation to an arbitrary location k, k + 1 for the hole-
doublon pair.

|ψ⟩ =βj (|. . .XHDY . . .⟩ + |. . .XDHY . . .⟩) +αTS |. . .XTSY . . .⟩ +αST |. . .XSTY . . .⟩ ,
(E.31)

where X and Y denote either S or T. For ĥ⊥, the contribution on all other sites except
k and k + 1 is diagonal and equal to Ja(2n − M). Therefore, to prove that states
are eigenstates with this energy, we need to prove that the action of the rest of the
Hamiltonian annihilates the state. For ĥ∥

k,k+1 we only have to care about the action on
sites k−1 to k+2. Indeed, the rest of the state is composed of triplets and singlets. For
any other pair, if it is SS or TT, then it is annihilated by the action of the Hamiltonian.
If, instead, it is TS, then there exists another state in the superposition, with the same
weight, that has ST instead. Therefore, their superposition is also annihilated by the
Hamiltonian.

First, we can look at what happens if we act on the middle pair. This leads to

2βj (ωj−ωj+1) (|. . .XDHY . . .⟩ − |. . .XHDY . . .⟩)
+Je,j (αST−αTS) (|. . .XDHY . . .⟩ − |. . .XHDY . . .⟩) ,

(E.32)

and so
2βj (ωj − ωj+1) + Je,j (αST − αTS) = 0. (E.33)

We get a unique equation for every of the M−1 pair of sites and for every of the
(M−2
n−1

)
possible background configurations, where n = 1 to M − 1 is the index of the scarred
states.

Now we still need to look at the effect of ĥ∥ on XD, XH (as well as HY and DY).
For that, we need to also consider the DH and HD pair placed one site to the left:

βj−1 (|. . .HDXY . . .⟩ + |. . .DHXY . . .⟩) +βj (|. . .XHDY . . .⟩ + |. . .XDHY . . .⟩) .
(E.34)

Applying the Hamiltonian to these states leads to

βj−1Je,j
(
|. . . HX̄DY . . .⟩ − |. . . DX̄HY . . .⟩

)
−βjJe,j−1

(
|. . . HX̄DY . . .⟩ + |. . . DX̄HY . . .⟩

)
,

(E.35)

where X̄ = T if X = S and X̄ = S if X = T. Hence we get an equation

βj−1Je,j − βjJe,j−1 = 0, (E.36)
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E.2 Proof that rainbow scars are eigenstates

for j = 1 to M − 2. Thus, for the β coefficients, we always have M − 1 unknown and
M − 2 equations. Furthermore, these equations take the form of Eq. (E.36) and are
identical for any value of n. Once again we recognise that setting all α equal and all β
to 0 is a valid solution, and so the first family of scarred state is indeed an eigenstate.
As for the n = 1, we also recognise that Eq. (E.36) admits βj = Je,j/2 as a solution.

For the α, if we add a contribution of ωj for each site that has a triplet on site j as in
the second family of scars, we recognise that αST and αTS have the same contributions
outside of site k and k+1. It is then straightforward to see that αST −αTS = ωj+1 −ωj
and that Eq. (E.33) is satisfied, concluding our proof.
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Appendix F

Entanglement entropy of rainbow scars

In this Appendix, we discuss the entanglement entropy of the two families of scarred
eigenstates in the XY ladder of Sec. 6.3. Due to the su(2) algebra, the eigenstates of
the first family have the structure of angular momentum eigenstates. As a result, they
have entanglement entropy scaling as ∝ ln(M). In fact, it is straightforward to compute
their entanglement entropy analytically. Let us assume that M is even and equal to
2R. For simplicity, we will concentrate on the state with n = R which has exactly zero
energy, as it has the highest entanglement entropy among all scarred states. We will
make heavy use of the state |a, b⟩, which as we recall denotes the superposition of all
states with a singlets and b triplets. Using this notation, it is easy to decompose the
state |ER⟩ as

|ER⟩ = |R,R⟩√(2R
R

)= 1√(2R
R

) R∑
k=0

|R− k, k⟩ ⊗ |k,R− k⟩ =
R∑
k=0

(R
k

)√(2R
R

) |ψ1,k⟩ ⊗ |ψ2,k⟩ , (F.1)

where |ψ1,k⟩, |ψ2,k⟩ are the normalised versions of |R− k, k⟩ and |k,R− k⟩, respect-
ively. From the last expression, we recognise the prefactors as the Schmidt coefficients.
Therefore, the entanglement spectrum has R+ 1 = M/2 + 1 non-zero values with

pk =
(R
k

)2(2R
R

) , (F.2)

for k = 0, 1, . . . , R. In the large-M limit, one can perform a saddle-point approximation
to arrive at the result S1,⊥ = 0.5+0.5 ln(πM/8), demonstrating the logarithmic scaling
with system size.

For the second family of scars, the computation is more arduous as the entanglement
entropy depends on the disorder realisation. Here we provide an exact computation
for a few extremal cases. While we do not have proof that these are the cases with
maximum and minimum entanglement entropy, they match with the results of our
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F. ENTANGLEMENT ENTROPY OF RAINBOW SCARS

numerical optimisations. First, we can focus on the |Je,k| ≫ |ωk| case, in which we
assume that the ωk are negligible. Let us also set all Je,k equal to 1, except for the
middle one which we set to Je,R = Je. We can then find the Schmidt decomposition of
this state as

|E′
R⟩ = Je

2NR

R−1∑
k=0

|R−1−k, k⟩ |D⟩ ⊗ |H⟩ |k,R−1−k⟩ + 1
2NR

R−2∑
k=0

|ψ̃1,k⟩ ⊗ |k+1, R−1−k⟩

+ Je
2NR

R−1∑
k=0

|R−1−k, k⟩ |H⟩ ⊗ |D⟩ |k,R−1−k⟩ + 1
2NR

R−2∑
k=0

|k+1, R−1−k⟩ ⊗ |ψ̃2,k⟩ ,

(F.3)
with

|ψ̃1,k⟩ =
R−1∑
j=1

(
|DH⟩Λj

+ |HD⟩Λj

)
⊗ |R−2−k, k⟩Λj

,

|ψ̃2,k⟩ =
M−1∑
j=R+1

(
|DH⟩Λj

+ |HD⟩Λj

)
⊗ |R−2−k, k⟩Λj

,

(F.4)

where Λj denotes sites j and j + 1 while Λj denote all other sites in the same half-
system. To find the Schmidt coefficient the only step left is to normalise each ket in
the decomposition. We already see that we have at most 4R − 2 = 2M − 2 non-zero
coefficients, showing that a state of this form can have, at most, entanglement growing
as ln(M).

Let us first write down NR from Eq. (E.18) as

NR = 1√
2

√√√√(2R− 2
R− 1

)
(J2
e +M − 2). (F.5)

Consequently, the contribution to the entanglement spectrum in the first two sums are
identical and given by

pDHk = pHDk = J2
e

2 (J2
e +M − 2)

(R−1
k

)2(2R−2
R−1

) . (F.6)

Similarly, the third and fourth sums have the same coefficients given by

p1
k = p2

k = (R− 1)
(J2
e +M − 2)

(R−2
k

)( R
k+1
)(2R−2

R−1
) . (F.7)

The maximal entanglement entropy is obtained for Je = J⋆e which scales as
√
M . In

that case, we find numerically that Smax
2,⊥ = S1,⊥ + ln(4) in the large-M limit. It is

easy to understand how this additive factor can appear. For the first family of scarred
states, we have R+ 1 non-zero values in the entanglement spectrum, while in this case
we have 4R− 2. For R very large, this is a fourfold increase of the number of non-zero
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Figure F.1: a Entanglement entropy computed from the analytical formula of the entanglement
spectrum. The gray and black lines represent the expected large-M limit and they are in good
agreement with the data already for M ≈ 20. b Difference between the data and the large-M
prediction. For all three cases, the difference approximately decays as a power-law. We find
that the slope is approximately −1, indicating a decay of |∆S⊥| as ≈ 1/M .

values. As they have a similar distribution, this leads to a simple additive factor of 4
due to the log involved in the calculation.

The case with minimal entanglement entropy is in the limit of a single Je,k (with
k ̸= R) being much larger than all other ones. For simplicity, let us consider Je,k = δ1,k.
Then the state can be decomposed as

|E′
R⟩ = 1√

2
(2R−2
R−1

) R−2∑
k=0

[
(|DH⟩ + |HD⟩) ⊗ |R−2−k, k⟩

]
⊗ |k+1, R−1−k⟩ . (F.8)

This gives us only R−1 Schmidt values, and the entanglement spectrum can be written
down as

pk =
(R−2
k

)( R
k+1
)(2R−2

R−1
) . (F.9)

In the limit of large M , we recover the same result as for scarred state of the first family
Smin

2,⊥ = S1,⊥ = 0.5+0.5 ln(πM/8). This can, once again, be understood simply from the
number of nonzero values in the entanglement spectrum as their distribution is similar
in both cases. As they have, respectively, R − 1 and R + 1 such values, they become
identical at leading order in the large M limit. For all three cases, we can compute the
entanglement entropy efficiently from the analytical form of the entanglement spectrum
for systems with hundreds of sites. Fig. F.1 displays this along with the expected large-
M behaviour. We find very good agreement between them already at M ≈ 20, with
the difference between them decreasing as 1/M .
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While we do not have a proof that the cases treated are the true maximum and
minimum of S2,⊥ we now illustrate numerically that they provide excellent bounds in
the large N limit. Fig. F.2a shows the entanglement entropy obtained for multiple ran-
dom realisations with different ranges of parameters, and for numerical minimisation
and maximisation over all Je,k and ωk parameters. For the minimum we find exact
agreement between our analytical and numerical results. For the maximum case, we
find that in smaller systems, realisations with large disorder can have slightly higher
entanglement entropy than our analytical Ansatz. Nonetheless, the difference between
the numerical and analytical maxima quickly decreases as N gets larger. This is con-
firmed by looking at the entanglement spectrum. In all states obtained by numerical
maximisation of entropy, there are exactly N = 4R nonzero values in it. This pre-
cludes them from being volume-law states. Asymptotically, this will also be equivalent
to the 4R−2 nonzero values in our analytical Ansatz, up to 1/N corrections. For these
reasons, we believe that the scarred states of the second family cannot be volume-law
entangled and that our analytical Ansatz provides an upper-bound in the large N limit.

12 16 20 24N

1

2

3

S
⊥

a Rand.
Min. analytical
Max. analytical

Min. numerical
Max. numerical

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
E

1

2

3

S
⊥

b 1st kind
2nd kind

Figure F.2: a Entanglement entropy of the scarred state of the second family with
E = 0 for random realisations, for the analytical formulas, and from numerical minimisa-
tion/maximisation. As N increases, the analytical and numerical results converge. b Entangle-
ment entropy of eigenstates in the Q = 0 sector for N = 12 in the parameter regime found to
maximise the entanglement entropy of the scarred state of the second family. The non-scarred
eigenstates concentrate around an arc, as is typical from chaotic systems. This shows that high
entanglement entropy can be obtained without getting close to a fine-tuned point where all
parameters are identical.

The maxima of entanglement entropy obtained numerically are also useful to show
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that it cannot only be reached by fine-tuned cases where many parameters are identical.
As these case might be integrable or have additional symmetries, they are usually not
trivially chaotic. Meanwhile, the numerical maxima do not have degenerate parameters
and generically show characteristics of ergodic systems. This can be seen for example
in the N = 12 case, for which the entanglement entropy of eigenstates is plotted in
Fig. F.2b. The concentration of points around an arc is typical of systems obeying the
ETH.
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transport in kinetically constrained models, Phys. Rev. X 13, 011033 (2023)

[3] J.-Y. Desaules, G.-X. Su, I. P. McCulloch, B. Yang, Z. Papić et al., Ergodi-
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[182] Y. B. Lev, D. M. Kennes, C. Klöckner, D. R. Reichman and C. Karrasch, Trans-
port in quasiperiodic interacting systems: From superdiffusion to subdiffusion,
EPL (Europhysics Letters) 119, 37003 (2017)
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[244] T. Iadecola and M. Žnidarič, Exact localized and ballistic eigenstates in dis-
ordered chaotic spin ladders and the Fermi-Hubbard model, Phys. Rev. Lett.
123, 036403 (2019)

[245] B. van Voorden, M. Marcuzzi, K. Schoutens and J. c. v. Minář, Disorder enhanced
quantum many-body scars in Hilbert hypercubes, Phys. Rev. B 103, L220301
(2021)

187

http://dx.doi.org/10.1063/1.5089550
http://dx.doi.org/10.1103/RevModPhys.93.025005
http://dx.doi.org/10.1103/PhysRevX.5.021027
http://dx.doi.org/10.1103/PhysRevLett.120.050507
http://dx.doi.org/10.1103/PhysRevLett.120.050507
http://dx.doi.org/10.1038/s41586-019-0952-6
http://dx.doi.org/https://doi.org/10.1126/science.abg5029
http://dx.doi.org/https://doi.org/10.1126/science.aao1401
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/https://doi.org/10.1126/science.aao4309
http://dx.doi.org/https://doi.org/10.1126/science.aao4309
http://dx.doi.org/10.1103/PhysRevLett.118.015701
http://dx.doi.org/10.1088/1742-5468/ab3413
http://dx.doi.org/10.1088/1742-5468/ab3413
http://dx.doi.org/10.1103/PhysRevLett.123.036403
http://dx.doi.org/10.1103/PhysRevB.103.L220301


REFERENCES

[246] G. Zhang and Z. Song, Quantum scars in spin- isotropic Heisenberg clusters, New
Journal of Physics 25, 053025 (2023)

[247] N. Malvania, Y. Zhang, Y. Le, J. Dubail, M. Rigol et al., Generalized hydro-
dynamics in strongly interacting 1D Bose gases, Science 373, 1129 (2021)

[248] J. Cotler and A. Y. Wei, Quantum scars in quantum field theory, Phys. Rev. D
107, 125005 (2023)
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