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Abstract

This journal-style thesis presents chapters 2-6 in a format suitable for peer-reviewed
publication. In chapter 2, we study the quantum spinor field on N -dimensional de Sitter
spacetime (dSN) with (N − 1)-sphere (SN−1) spatial sections. We construct the mode
solutions and study their transformation properties under the de Sitter (dS) algebra,
spin(N, 1). We reproduce the expression for the massless spinor Wightman two-point
function using the mode-sum method. Then, taking advantage of the maximal symmetry
of dSN , we construct the massive Wightman two-point function. In chapter 3, we
construct the dictionary between the spaces of mode solutions for totally symmetric
spin-s = 3/2, 5/2 tensor-spinors with any mass parameter on dSN (N ≥ 3) and Unitary
Irreducible Representations (UIRs) of spin(N, 1). Remarkably, we find that the strictly
massless spin-3/2 field, as well as the strictly and partially massless spin-5/2 fields on dSN ,
are not unitary unless N = 4. Chapter 4 provides a technical explanation for the results
of chapter 3 by investigating the (non-)existence of positive-definite, dS invariant scalar
products for the mode solutions. In chapter 5, we uncover a ‘conformal-like’ spin(4, 2)
symmetry for strictly massless spin-s ≥ 3/2 tensor-spinors on dS4. We also show that
the mode solutions form UIRs of not only the dS algebra but also of spin(4, 2). In chapter
6, we shift focus to the ‘zilches’, a set of little-known conserved quantities for the free
electromagnetic (EM) field in four-dimensional Minkowski spacetime. We present, for
the first time, the derivation of all zilch conservation laws from ‘zilch symmetries’ of the
standard EM action using Noether’s theorem. We also show that the zilch symmetries
belong to the enveloping algebra of a "hidden" invariance algebra of free Maxwell’s
equations in potential form.
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1

Introduction

The current thesis adopts a journal-style presentation, integrating the primary chapters
(i.e., chapters 2-6) into a format suitable for publication in a peer-reviewed journal. Each
of these chapters is self-contained, incorporating its own introduction and discussion
sections, as well as background material and explanations for notation and conventions.
Additionally, each chapter includes its own reference list.
In chapter 2, the mode solutions of the Dirac equation on N -dimensional de Sitter space-
time (dSN) with (N − 1)-sphere spatial sections are obtained by analytically continuing
the spinor eigenfunctions of the Dirac operator on the N -sphere (SN). The analogs of
flat space-time positive frequency modes are identified and a vacuum is defined. The
transformation properties of the mode solutions under the de Sitter group double cover
(Spin(N ,1)) are studied. We reproduce the expression for the massless spinor Wightman
two-point function in closed form using the mode-sum method. By using this closed-form
expression and taking advantage of the maximal symmetry of dSN we find an analytic
expression for the spinor parallel propagator. The latter is used to construct the massive
Wightman two-point function in closed form.
In chapter 3, we present the dictionary between the one-particle Hilbert spaces of
totally symmetric tensor-spinor fields of spin s = 3/2, 5/2 with any mass parameter
on dSN and Unitary Irreducible Representations (UIR’s) of the de Sitter (dS) algebra
spin(N, 1). Our approach is based on expressing the eigenmodes on global dSN in
terms of eigenmodes of the Dirac operator on SN−1, which provides a natural way to
identify the corresponding representations with known UIR’s under the decomposition
spin(N, 1) ⊃ spin(N). Remarkably, we find that four-dimensional de Sitter space plays a
distinguished role in the case of the gauge-invariant theories. In particular, the strictly
massless spin-3/2 field, as well as the strictly and partially massless spin-5/2 fields on
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Chapter 1. Introduction

dSN , are not unitary unless N = 4.
In chapter 4, we provide a technical explanation for the results of chapter 3 by studying
the (non-)existence of positive-definite, dS invariant scalar products for the spin-3/2
and spin-5/2 eigenmodes of the strictly/partially massless theories on dSN (N ≥ 3).
In particular, we show the following. For odd N , any dS invariant scalar product is
identically zero. For even N > 4, any dS invariant scalar product must be indefinite.
This gives rise to positive-norm and negative-norm eigenmodes that mix with each other
under spin(N, 1) boosts. In the N = 4 case, the positive-norm sector decouples from the
negative-norm sector and each sector separately forms a UIR of spin(4, 1). Our analysis
makes extensive use of the analytic continuation of tensor-spinor spherical harmonics on
SN to dSN .
In chapter 5, we present new infinitesimal ‘conformal-like’ symmetries for the field
equations of strictly massless spin-s ≥ 3/2 totally symmetric tensor-spinors (i.e. gauge
potentials) on dS4. The corresponding symmetry transformations are generated by
the five conformal Killing vectors of dS4, but they are not conventional conformal
transformations. We show that the algebra generated by the ten dS symmetries and the
five conformal-like symmetries closes on the conformal-like algebra spin(4, 2) up to gauge
transformations of the gauge potentials. Furthermore, we demonstrate that the two sets
of physical mode solutions, corresponding to the two helicities ±s of the strictly massless
theories, form a direct sum of UIR’s of the conformal-like algebra. We also fill a gap
in the literature by explaining how these physical modes form a direct sum of Discrete
Series UIR’s of the dS algebra spin(4, 1).
In chapter 6, our attention shifts to the zilches, a set of conserved quantities in free
electromagnetism. Among the zilches, optical chirality was identified by Tang and Cohen
in 2010, serving as a measure of the handedness of light and leading to investigations into
light’s interactions with chiral matter. While the symmetries underlying the conservation
of the zilches have been examined, the derivation of zilch conservation laws from
symmetries of the standard free electromagnetic (EM) action using Noether’s theorem
has only been addressed in the case of optical chirality. We provide the full answer
by demonstrating that the zilch symmetry transformations of the four-potential, Aµ,
preserve the standard free EM action. We also show that the zilch symmetries belong
to the enveloping algebra of a "hidden" invariance algebra of free Maxwell’s equations.
This "hidden" algebra is generated by familiar conformal transformations and certain
"hidden" symmetry transformations of Aµ. Generalizations of the “hidden” symmetries
are discussed in the presence of a material four-current, as well as in the theory of a
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complex Abelian gauge field. Additionally, we extend the zilch symmetries of the standard
free EM action to the standard interacting action (with a non-dynamical four-current),
allowing for a new derivation of the continuity equation for optical chirality in the presence
of electric charges and currents. Furthermore, new continuity equations for the remaining
zilches are derived.
While each of the main chapters (i.e., chapters 2-6) contains its own discussion section,
in chapter 7 we further expand upon these discussions and present questions that could
potentially guide future research.
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2

The eigenmodes for spinor quantum field
theory in global de Sitter space-time

Abstract

The mode solutions of the Dirac equation on N -dimensional de Sitter space-time
(dSN ) with (N − 1)-sphere spatial sections are obtained by analytically continuing
the spinor eigenfunctions of the Dirac operator on the N -sphere (SN ). The
analogs of flat space-time positive frequency modes are identified and a vacuum is
defined. The transformation properties of the mode solutions under the de Sitter
group double cover (Spin(N ,1)) are studied. We reproduce the expression for the
massless spinor Wightman two-point function in closed form using the mode-sum
method. By using this closed-form expression and taking advantage of the maximal
symmetry of dSN we find an analytic expression for the spinor parallel propagator.
The latter is used to construct the massive Wightman two-point function in closed
form.

2.1 INTRODUCTION

The spinor functions that satisfy the eigenvalue equation of the Dirac operator on SN

/∇ψ = iλψ (2.1)

have been studied by Camporesi and Higuchi [8]. More specifically, the eigenspinors on
SN have been recursively constructed in terms of eigenspinors on SN−1 using separation
of variables in geodesic polar coordinates and their eigenvalues have been calculated.
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2.1. Introduction

The line element for SN may be written as

ds2
N = dθ2

N + sin2 θNds
2
N−1, (2.2)

where θN is the geodesic distance from the North Pole and ds2
N−1 is the line element of

SN−1. Similarly, the line element of Sn (n = 2, 3, ..., N − 1) can be expressed as

ds2
n = dθ2

n + sin2 θnds
2
n−1, (2.3)

while ds2
1 = dθ2

1.
The N -dimensional de Sitter space-time is the maximally symmetric solution of the
vacuum Einstein field equations with positive cosmological constant Λ [13]

Rµν − 1
2gµνR + Λgµν = 0. (2.4)

The cosmological constant is given by

Λ = (N − 2)(N − 1)
2 R2 , (2.5)

where R is the de Sitter radius. Throughout this paper we use units in which R = 1.
TheN -dimensional de Sitter space-time can also be obtained by an “analytic continuation"
of SN . More specifically, by replacing

θN → x ≡ π/2 − it (2.6)

in the SN metric (2.2) we find the line element for dSN with SN−1 spatial sections (see
Eq. (2.10))

ds2 = −dt2 + cosh2 tds2
N−1. (2.7)

Motivated by the above, one can obtain the mode solutions to the Dirac equation on
dSN

/∇ψ −Mψ = 0 (2.8)

just by analytically continuing the eigenmodes of (2.1). The Dirac spinors obtained by
analytic continuation can be used to describe spin-1/2 particles in de Sitter space-time
and they form a representation of Spin(N ,1). The latter has to be unitary to ensure that
negative probabilities will not arise. In order to study the unitarity of the representation
we are going to introduce a de Sitter invariant inner product among the analytically
continued eigenspinors (see Sec. 2.5). Note that this approach has been previously
applied for the divergence-free and traceless tensor eigenfunctions of the Laplace-Beltrami
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Chapter 2. The eigenmodes for spinor quantum field theory in global de
Sitter space-time

operator on SN [15], where the restriction of unitarity gave rise to the forbidden mass
range for the spin-2 field on dSN .
Main aim. In this paper our main aim is the identification of the mode functions for the
free Dirac field on global dSN with SN−1 spatial sections. As a consistency check, we
reproduce the expected form for the massless spinor Wightman function [19] using the
mode-sum method. We also use this Wightman function to find an analytic expression
for the spinor parallel propagator. To our knowledge, such an expression is absent from
the literature. Solutions of the free Dirac equation on de Sitter space-time with static
charts may be found in Ref. [20], with moving charts in Refs. [6, 24, 10] and with open
charts in Ref. [16].
Outline. The rest of this paper is organized as follows. In Sec. 2.2 we discuss the global
coordinate system that is relevant to the analytic continuation of SN and we review
the geodesic structure of dSN . In Sec. 2.3 we present the basics about Dirac spinors
and Clifford algebras on dSN . In Sec. 2.4 we begin by reviewing the eigenspinors of the
Dirac operator on SN following Ref. [8]. Then we obtain the mode solutions of the
Dirac equation on dSN by analytically continuing the eigenmodes on SN and we give a
criterion for generalized positive frequency modes. We also construct spinors satisfying
the Dirac equation with the sign of the mass term changed. These spinors are used
in Appendix 2.9 for an alternative construction of the negative frequency modes via
charge conjugation. In Sec. 2.5 we define a de Sitter invariant inner product among the
analytically continued eigenmodes and we show that the associated norm is positive-
definite (i.e. the representation is unitary). Using this norm we normalize the analytically
continued eigenspinors. Then the transformation properties of the positive frequency
solutions under Spin(N ,1) are studied using the spinorial Lie derivative [18]. It is shown
that the positive frequency solution subspace is Spin(N ,1) invariant (hence, so is the
corresponding vacuum). In Sec. 2.7, after presenting the negative frequency solutions of
the Dirac equation, we perform the canonical quantization procedure for the free Dirac
quantum field. Then we review the coordinate independent construction of Dirac spinor
Green’s functions on dSN following Ref. [19]. We present a closed-form expression for
the massless spinor Wightman two-point function obtained by the mode-sum method.
This closed-form expression is in agreement with the construction given in Ref. [19].
Then we find an analytic expression for the spinor parallel propagator and we use it to
obtain a closed-form expression for the massive Wightman two-point function in terms of
intrinsic geometric objects. Our summary and concluding remarks are given in Sec. 2.8.
There are six appendices. In Appendix 2.9 we construct the negative frequency solutions of
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2.2. Geometry of N-dimensional de Sitter space-time

the Dirac equation on dSN by charge conjugating our analytically continued eigenspinors.
In Appendix 2.14 we compare the mode-sum method for the massive spinor Wightman
function with the construction presented in Ref. [19] and we arrive at a closed-form
conjecture for a series containing the Gauss hypergeometric function. The rest of the
appendices concern technical details. Some minor details omitted in the main text are
presented in Appendices 2.10 and 2.11. In Appendix 2.12 we present details about the
mode-sum construction of the massless spinor Wightman function. In Appendix 2.13 we
demonstrate that our analytic expression for the spinor parallel propagator satisfies the
defining properties given in Ref. [19].
Notation and conventions. We use the mostly plus convention for the metric signature.
When it comes to tensors, lower case Greek indices refer to components with respect to
the “coordinate basis" while Latin ones refer to components with respect to the vielbein
(i.e. orthonormal frame) basis. Spinor indices (when not suppressed) are denoted with
capital Latin letters. For bitensors (or bispinors) that depend on two space-time points
x, x′, unprimed indices refer to the tangent space at x while primed ones refer to the
tangent space at x′. Summation over repeated indices is understood throughout this
paper.

2.2 GEOMETRY OF N -DIMENSIONAL DE SITTER SPACE-TIME

2.2.1 Coordinate system, Christoffel symbols and spin connection

The N -dimensional de Sitter space-time can be represented as a hyperboloid embedded
in (N + 1)-dimensional Minkowski space. The de Sitter hyperboloid is described by

ηabX
aXb = 1, (2.9)

where ηab = diag(−1, 1, 1, ..., 1) (a, b = 0, 1, ..., N) is the flat metric for the embed-
ding space and X0, X1, ..., XN are the standard Minkowski coordinates. The global
coordinates used in this paper are given by

X0 = X0(t,θ) = sinh t

X i = X i(t,θ) = cosh t Zi, i = 1, ..., N, (2.10)
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Chapter 2. The eigenmodes for spinor quantum field theory in global de
Sitter space-time

where t ∈ R, θ = (θN−1, θN−2, ..., θ1) and the Zi’s are the spherical coordinates for
SN−1 in N -dimensional Euclidean space

Z1 = sin θN−1 sin θN−2 ... sin θ2 sin θ1

Z2 = sin θN−1 sin θN−2 ... sin θ2 cos θ1

...
ZN−1 = sin θN−1 cos θN−2

ZN = cos θN−1, (2.11)

where 0 ≤ θ1 < 2π and 0 ≤ θi ≤ π (i ̸= 1). Using the coordinates (2.10) we obtain the
line element (2.7) for dSN .
The non-zero Christoffel symbols for the coordinates (2.10) are

Γtθiθj
= cosh t sinh t g̃θiθj

, Γθi
θjt

= tanh t g̃θi
θj
,

Γθk
θiθj

= Γ̃θk
θiθj

, (2.12)

where g̃θiθj
, Γ̃θk

θiθj
are the metric tensor and the Christoffel symbols, respectively, on SN−1.

The vielbein fields are given by

et0 = 1, eθi
i = 1

cosh t ẽ
θi
i, i = 1, ..., N − 1, (2.13)

where ẽθi
i are the vielbein fields on SN−1. The latter are given by

ẽθN−1
N−1 = 1,

ẽθj
j = 1

sin θN−1 sin θN−2 ... sin θj+1
, j = 1, ..., N − 2. (2.14)

The spin connection ωabc = ωa[bc] ≡ (ωabc − ωacb)/2 is given by

ωabc = eµa

(
∂µe

λ
b + Γλµνeν b

)
eλc (2.15)

and its only non-zero components are

ωijk = ω̃ijk
cosh t , ωi0k = tanh t δik i, j, k = 1, ..., N − 1, (2.16)

where ω̃ijk are the spin connection components on SN−1 and δij is the Kronecker delta
symbol. (Note that the sign convention we use for the spin connection is the opposite of
the one used in most supersymmetry texts.)
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2.2. Geometry of N-dimensional de Sitter space-time

2.2.2 Geodesics on dSN

Geodesics on dSN are obtained by intersecting the hyperboloid (2.9) with two-planes
passing through the origin [7]. Note that, contrary to the case of maximally symmetric
Euclidean spaces (RN , SN , HN ), on pseudo-Riemannian spaces two points cannot always
be connected by a geodesic.
Let x, x′ be two points on the de Sitter hyperboloid (2.9) and µ(x, x′) the geodesic
distance between them. Using the scalar product of the ambient space

Z (x, x′) = ηabX
a(x)Xb(x′) (2.17)

one can define the useful quantity

z(x, x′) = 1
2

(
1 + ηabX

a(x)Xb(x′)
)
. (2.18)

If −1 ≤ Z (x, x′) < 1 (i.e. z ∈ [0, 1)) the points x, x′ are spacelike separated (µ ∈ R)
and they can be connected by a spacelike geodesic. (The equality sign corresponds to
antipodal points.) The geodesic distance is then defined by Z (x, x′) = cos (µ(x, x′)) or
equivalently

z = cos2 µ

2 . (2.19)

If Z (x, x′) < −1 (i.e. z < 0) the points are spacelike separated but there is no geodesic
connecting them. However, the function µ(x, x′) can still be defined by Eq. (2.18) via
analytic continuation [3]. (Let x̄ be the antipodal point of x and let x′ be any point in
the interior of the past or future light cone of x̄. Then there is no geodesic connecting x
and x′ [3].) If Z (x, x′) = 1 (i.e. z = 1) the geodesic distance is zero and the two points
can be connected by a null geodesic (or they coincide). If Z (x, x′) > 1 (i.e. z > 1)
the two points are timelike separated (µ = iκ, κ ∈ R) and they can be connected by a
timelike geodesic. The geodesic distance for timelike separation is given by

z = cos2 µ

2 = cosh2 κ

2 . (2.20)

In the rest of this paper we suppose that the points under consideration can be connected
by a spacelike geodesic (unless otherwise stated). The corresponding results for the
timelike case can be obtained just by replacing µ → iκ.
The unit tangent vectors at x and x′ to the geodesic connecting the two points are
defined by

nκ(x, x′) = ∇κµ(x, x′), nκ′(x, x′) = ∇κ′µ(x, x′), (2.21)
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respectively. Since dSN is a maximally symmetric space-time, the unit tangents satisfy [3]

∇µnν = cotµ(gµν − nµnν), (2.22)

∇µ′nν = − 1
sinµ(gµ′ν + nµ′ην), (2.23)

∇κgµν′ = tan µ2 (gκµnν′ + gκν′nµ), (2.24)

where gµν(x) is the metric tensor and gµν′(x, x′) is the bivector of parallel transport.
The latter is also known as the vector parallel propagator and it performs the parallel
transport of a vector field V ν′(x′) from x′ to x along the geodesic connecting these
points [3]

V µ
|| (x) = gµν′V ν′(x′), (2.25)

where V µ
|| (x) is the parallelly transported vector at x. (In this paper by geodesic we

mean the shortest geodesic connecting the two points.) The covariant derivative of a
vector field W κ(x) for an infinitesimal interval can be expressed using the vector parallel
propagator as [9]

∇µW
κ(x)dxµ = gκν′(x, x+ dx)W ν′(x+ dx) −W κ(x).

It is worth noting the relations [3]

nµ = −g ν′

µ nν′ , nµ′ = −g ν
µ′ nν , (2.26)

gµν′ gν
′

λ = δµλ, gµ
′

κ g
κ
ν′ = δµ

′

ν′ . (2.27)

Using the coordinates (2.10) we obtain the following expression for the geodesic distance:

cos
(
µ(x, x′)

)
= − sinh t sinh t′ + cosh t cosh t′ cos ΩN−1, (2.28)

where

cos Ωn = cos θn cos θ′
n + sin θn sin θ′

n cos Ωn−1, (2.29)

for n = 2, ..., N − 1 and

cos Ω1 = cos (θ1 − θ′
1). (2.30)

Then the coordinate basis components of the tangent vector nµ(x, x′) = (nt(x, x′), nθi
(x, x′))

(i = 1, ..., N − 1) are given by

nt = 1
sinµ(cosh t sinh t′ − sinh t cosh t′ cos ΩN−1), (2.31)

nθi
= − 1

sinµ cosh t cosh t′ ∂
∂θi

(cos ΩN−1), (2.32)
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space-time

where

∂

∂θi
(cos ΩN−1) =

( N−(i+1)∏
r=1

sin θN−r sin θ′
N−r

)
× (− sin θi cos θ′

i + cos θi sin θ′
i cos Ωi−1). (2.33)

The components of nµ′(x, x′) are given by analogous expressions with t ↔ t′, θi ↔ θ′
i.

The vielbein basis components of the tangent vector at x, na(x, x′) = eµa(x)nµ(x, x′)
(a = 0, 1, ..., N − 1), are given by

n0 =nt, (2.34)

nN−1 = − cosh t′
sinµ (− sin θN−1 cos θ′

N−1

+ cos θN−1 sin θ′
N−1 cos ΩN−2), (2.35)

nb = − cosh t′
sinµ

( N−(b+1)∏
r=1

sin θ′
N−r

)
× (− sin θb cos θ′

b + cos θb sin θ′
b cos Ωb−1), (2.36)

(b = 1, ..., N − 2) while the components of na′(x, x′) = eµ
′

a′(x′)nµ′(x, x′) (a′ =
0′, 1′, ..., (N − 1)′) can be obtained from Eqs. (2.34)-(2.36) with t ↔ t′, θa ↔ θ′

a.
(Note that we define cos Ω0 ≡ 1.)

2.3 DIRAC SPINORS AND CLIFFORD ALGEBRA ONN -DIMENSIONAL
DE SITTER SPACE-TIME

Dirac spinors are 2[N/2]-dimensional column vectors that appear naturally in Clifford
algebra representations, where [N/2] = N/2 if N is even and [N/2] = (N − 1)/2 if N
is odd. A Clifford algebra representation in (N − 1) + 1 dimensions is generated by N
gamma matrices satisfying the anti-commutation relations

{γa, γb} = 2ηab1, a, b = 0, 1, ..., N − 1, (2.37)

where 1 is the identity matrix and ηab is the inverse of the N -dimensional Minkowski
metric ηab = diag(−1,+1, ...,+1). We follow the inductive construction of Ref. [8]
where gamma matrices in (N − 1) + 1 dimensions are expressed in terms of spacelike
gamma matrices in (N − 1) dimensions (γ̃i) as follows:
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• For N even

γ0 = i

0 1
1 0

 , γi =
 0 iγ̃i

−iγ̃i 0

 , i = 1, ..., N − 1, (2.38)

where the lower-dimensional gamma matrices satisfy the Euclidean Clifford algebra
anti-commutation relations

{γ̃i, γ̃j} = 2δij1, i, j = 1, ..., N − 1. (2.39)

• For N odd

γ0 = i

1 0
0 −1

 , γN−1 =
0 1

1 0

 ,

γj = γ̃j =
 0 i˜̃γj

−i˜̃γj 0

 , j = 1, ..., N − 2. (2.40)

The double-tilde is used to denote gamma matrices in N − 2 dimensions. For
N = 1 the only (one-dimensional) gamma matrix is equal to 1.

Note that the gamma matrices we use here for dSN can be obtained by the Euclidean
gamma matrices on SN used in Ref. [8] via the coordinate change (2.6). (Gamma
matrices transform as vectors under coordinate transformations and it can be checked
that all Euclidean γa’s remain the same under (2.6) apart from γN ; the latter transforms
into the timelike gamma matrix: γN → iγN = γ0.)
Spinors transform under 2[N/2]-dimensional spinor representations of Spin(N − 1,1)
(double cover of SO(N − 1,1)) as

ψ(x) → S(Λ(x)) ψ(x), (2.41)

where S(Λ(x)) ∈ Spin(N − 1,1) is a spinorial matrix. The N(N − 1)/2 generators of
Spin(N − 1, 1) are given by the commutators

Σab = 1
4[γa, γb] (2.42)

= 1
2γ

a γb − 1
2η

ab, a, b = 0, ..., N − 1 (2.43)

and they satisfy the Spin(N − 1, 1) algebra commutation relations

[Σab,Σcd] = ηbcΣad − ηacΣbd + ηadΣbc − ηbdΣac. (2.44)
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2.4. Solutions of the Dirac equation on N-dimensional
de Sitter space-time

The covariant derivative for a spinor along the vielbein is

∇aψ = eaψ − 1
2ωabcΣ

bcψ, (2.45)

where ea = eµa∂µ. The Dirac adjoint of a spinor is defined as

ψ̄ ≡ iψ†γ0

with covariant derivative given by

∇aψ̄ = eaψ̄ + 1
2 ψ̄ ωabcΣ

bc. (2.46)

The covariant derivative of the gamma matrices is

∇aγ
k = eaγ

k − ωa
k
cγ
c − 1

2ωabc[Σ
bc, γk]

= 0. (2.47)

One can show the following properties of the gamma matrices given by Eqs. (2.38) and
(2.40):

(γ0)T = γ0, (γr)T = (−1)[ N
2 ](−1)[ r

2 ]γr, (2.48)

(γ0)∗ = −γ0, (γr)∗ = (−1)[ N
2 ](−1)[ r

2 ]γr, (2.49)

(r = 1, ..., N − 1) and

(γa)† = γ0γaγ0, a = 0, ..., N − 1, (2.50)

where the star symbol denotes complex conjugation. Note that the timelike gamma
matrix is anti-hermitian while the spacelike ones are hermitian.

2.4 SOLUTIONS OF THE DIRAC EQUATION ON N -DIMENSIONAL
DE SITTER SPACE-TIME

We first present the basic results from Ref. [8] regarding the eigenmodes of the Dirac
operator on SN and then we perform analytic continuation for the two cases with N even
and N odd.
Case 1: N even. The eigenvalue equation for the Dirac operator on SN is

/∇ψ(s,s̃)
±nℓσ = ±i(n+ N

2 )ψ(s,s̃)
±nℓσ, (2.51)
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where n = 0, 1, ... and ℓ = 0, ..., n are the angular momentum quantum numbers on SN

and SN−1 respectively. The index s indicates the two different spin projections (s = ±).
The symbol σ stands for the angular momentum quantum numbers ℓN−2 ≥ ℓN−3 ≥
... ≥ ℓ2 ≥ ℓ1 ≥ 0 on the lower-dimensional spheres while s̃ stands for the (N/2 − 1) spin
projection indices sN−2, sN−4, ..., s2 on the lower-dimensional spheres SN−2, SN−4, ..., S2

respectively. (Note that there exists one spin projection index for each lower-dimensional
sphere of even dimension.) For each value of n we have a representation of Spin(N + 1)
on the space of the eigenspinors ψ(s,s̃)

+nℓσ (or ψ(s,s̃)
−nℓσ) with dimension [8]

dn = 2[N/2](N + n− 1)!
n!(N − 1)! . (2.52)

The solutions of the eigenvalue equation for the Dirac operator on SN (2.1) are found by
writing the spinor ψ in terms of “upper” (φ+) and “lower” (φ−) components as follows:

ψ ≡

φ+

φ−

 . (2.53)

By substituting Eq. (2.53) into Eq. (2.1) one obtains two coupled differential equations
for φ+, φ−. By eliminating φ+ (or φ−) one finds [8][( ∂

∂θN
+ N − 1

2 cot θN
)2

+ 1
sin2 θN

/̃∇
2

± cos θN
sin2 θN

i /̃∇
]
φ±

= −λ2φ±, (2.54)

where /̃∇ is the Dirac operator on SN−1. (Equations (2.54) are equivalent to /∇2
ψ =

−λ2ψ.) Then, by separating variables, the normalized eigenspinors of /∇|SN are found to
be [8]

ψ
(−,s̃)
±nℓσ(θN ,ΩN−1) = cN(nℓ)√

2

 ϕnℓ(θN)χ(s̃)
−ℓσ(ΩN−1)

±iψnℓ(θN)χ(s̃)
−ℓσ(ΩN−1)

 (2.55)

and

ψ
(+,s̃)
±nℓσ(θN ,ΩN−1) = cN(nℓ)√

2

 iψMℓ(θN)χ(s̃)
+ℓσ(ΩN−1)

±ϕMℓ(θN)χ(s̃)
+ℓσ(ΩN−1)

 , (2.56)

where ΩN−1 ∈ SN−1 and the normalization factor is given by

|cN(nℓ)|2 = Γ(n− ℓ+ 1)Γ(n+N + ℓ)
2N−2|Γ(N/2 + n)|2 . (2.57)

The eigenspinors on SN−1, χ(s̃)
±ℓσ(ΩN−1), satisfy the eigenvalue equation

/̃∇χ(s̃)
±ℓσ = ±i

(
ℓ+ N − 1

2

)
χ

(s̃)
±ℓσ. (2.58)
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They are normalized by∫
SN−1

dΩN−1χ
(s̃)
sℓσ(ΩN−1)†χ

(s̃′)
s′ℓ′σ′(ΩN−1) = δss′δℓℓ′δσσ′δs̃s̃′ , (2.59)

while the eigenspinors on SN are normalized by∫
SN
dΩNψ

(s,s̃)
±nℓσ(θN ,ΩN−1)†ψ

(s′,s̃′)
±n′ℓ′σ′(θN ,ΩN−1) = δss′δnn′δℓℓ′δσσ′δs̃s̃′ , (2.60)

where all the ψ+ eigenspinors are orthogonal to all the ψ− eigenspinors. The functions
ϕnℓ(θN), ψnℓ(θN) are given in terms of the Gauss hypergeometric function by

ϕnℓ(θN) =κ
(N)
ϕ (nℓ)

(
cos θN2

)ℓ+1 (
sin θN2

)ℓ

× F

(
n+N + ℓ,−n+ ℓ;N/2 + ℓ; sin2 θN

2

)
(2.61)

and

ψnℓ(θN) =
κ

(N)
ϕ (nℓ) (n+N/2)

N/2 + ℓ

(
cos θN2

)ℓ (
sin θN2

)ℓ+1

× F

(
n+N + ℓ,−n+ ℓ;N/2 + ℓ+ 1; sin2 θN

2

)
, (2.62)

where

κ
(N)
ϕ (nℓ) = Γ(n+N/2)

Γ(n− ℓ+ 1)Γ(N/2 + ℓ) . (2.63)

The condition n ≥ ℓ as well as the quantization of the eigenvalue of the Dirac operator
λ2 = (n+N/2)2 (n = 0, 1, ...) arise by requiring that the mode functions are not singular
[8]. The functions ϕnℓ, ψnℓ are related to each other by[

d

dθN
+ N − 1

2 cot θN − 1
sin θN

(
ℓ+ N − 1

2

) ]
ϕnℓ(θN)

= −
(
n+ N

2

)
ψnℓ(θN), (2.64)

[
d

dθN
+ N − 1

2 cot θN + 1
sin θN

(
ℓ+ N − 1

2

) ]
ψnℓ(θN)

= +
(
n+ N

2

)
ϕnℓ(θN). (2.65)

As mentioned in the Introduction, we can obtain the Dirac spinors which solve the Dirac
equation (γa∇a −M)ψ = 0 on dSN by analytically continuing the eigenmodes of the
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Dirac operator on SN . The eigenvalues on SN will be replaced by the spinor’s mass M .
It is easy to check that under the replacement θN → π/2 − it one finds /∇|SN → /∇|dSN

.
Without loss of generality, we choose to analytically continue the eigenspinors ψ+ with
the positive sign for the eigenvalue (see Eqs. (2.55)-(2.56)) by making the replacements

θN → x ≡ π/2 − it, n → −iM − N

2 . (2.66)

The solutions of the Dirac equation on dSN are then

ψ
(−,s̃)
Mℓσ (t,ΩN−1) = cN(Mℓ)√

2

 ϕMℓ(t)χ(s̃)
−ℓσ(ΩN−1)

iψMℓ(t)χ(s̃)
−ℓσ(ΩN−1)

 (2.67)

and

ψ
(+,s̃)
Mℓσ (t,ΩN−1) = cN(Mℓ)√

2

iψMℓ(t)χ(s̃)
+ℓσ(ΩN−1)

ϕMℓ(t)χ(s̃)
+ℓσ(ΩN−1)

 , (2.68)

where cN(Mℓ) is a normalization factor that will be determined later (ℓ = 0, 1, ...).
(Alternatively, we can choose to analytically continue the eigenspinors ψ− in order to
obtain the solutions (2.67)-(2.68) of the Dirac equation. In this case we need to make
the replacements θN → π/2 − it, n → iM −N/2 in Eqs. (2.55)-(2.56) instead of the
replacements (2.66).) The un-normalized functions that describe the time dependence
are

ϕMℓ(t) =
(

cos x2
)ℓ+1(

sin x2
)ℓ

× F
(
N

2 + ℓ+ iM,
N

2 + ℓ− iM ; N2 + ℓ; sin2 x

2

)
(2.69)

and

ψMℓ(t) = −iM
N/2 + ℓ

(
cos x2

)ℓ(
sin x2

)ℓ+1

× F
(
N

2 + ℓ+ iM,
N

2 + ℓ− iM ; N2 + ℓ+ 1; sin2 x

2

)
, (2.70)

where

cos x2 =
√

2
2

(
cosh t

2 + i sinh t

2

)
, (2.71)

sin x2 =
√

2
2

(
cosh t

2 − i sinh t

2

)
, (2.72)

sin2 x

2 = 1 − i sinh t
2 . (2.73)
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It is clear from Eq. (2.70) that ψMℓ(t) vanishes in the massless limit. Note the analytically
continued version of Eqs. (2.64) and (2.65)(

d

dt
+N − 1

2 tanh t+ i

cosh t

(
ℓ+ N − 1

2

))
ϕMℓ(t)

= +MψMℓ(t), (2.74)

(
d

dt
+N − 1

2 tanh t− i

cosh t

(
ℓ+ N − 1

2

))
ψMℓ(t)

= −MϕMℓ(t). (2.75)

Using the following relation [11]:

F (a, b; c; z) = (1 − z)c−a−bF (c− a, c− b; c; z) (2.76)

we can rewrite the functions ϕMℓ, ψMℓ as

ϕMℓ(t) =
(

cos x2
)−N−ℓ+1(

sin x2
)ℓ

× F
(
iM,−iM ; N2 + ℓ; sin2 x

2

)
(2.77)

and

ψMℓ(t) = −iM
N/2 + ℓ

(
cos x2

)−N−ℓ+2(
sin x2

)ℓ+1

× F
(
iM + 1,−iM + 1; N2 + ℓ+ 1; sin2 x

2

)
. (2.78)

The short wavelength limit (ℓ ≫ 1) of these functions can be found, by noting that the
hypergeometric functions here tend to 1 in this limit, as

d

dt
ϕMℓ(t) ∼ −i ℓ

cosh tϕMℓ(t), (2.79)
d

dt
ψMℓ(t) ∼ −i ℓ

cosh tψMℓ(t). (2.80)

We see that the time derivative of our mode solutions (2.67) and (2.68) reproduces
locally the positive frequency behaviour of flat space-time. Thus, our modes can
serve as the analogs of the positive frequency modes and we can use this criterion as
well as de Sitter invariance (see Sec. 2.5) in order to define a vacuum. Our positive
frequency conditions (2.79) and (2.80) for the high frequency modes refer to the adiabatic
condition [21] [note that ℓ/ cosh t is the physical (angular) momentum of the particle
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with angular momentum quantum number ℓ]. In the adiabatic limit, the high frequency
modes experience a slowly varying scale factor cosh t, i.e. ℓ/ cosh t >> | tanh t|, where
tanh t is the expansion/contraction rate. Under these assumptions, we can find the
approximate WKB solution to the second order equation satisfied by ϕMℓ(t) [8]:

 ∂2

∂x2 + (N − 1) cotx ∂
∂x

+
(
ℓ+ N − 1

2

) cosx
sin2 x

−
(ℓ+ N−1

2 )2 − 1
4(N − 1)(N − 3)

sin2 x
− (N − 1)2

4

ϕMℓ(t)

= M2ϕMℓ(t),

where x = π/2 − it. The adiabatic positive frequency form of ϕMℓ is the approximate
WKB positive frequency solution to this equation and corresponds to Eq. (2.79).
Note that by making the replacements (2.66) in the expressions for the spinors ψ− with
the negative sign for the eigenvalue on SN (see Eqs. (2.55)-(2.56)), we obtain the spinors

ψ
(−,s̃)
−Mℓσ(t,ΩN−1) =

 ϕMℓ(t)χ(s̃)
−ℓσ(ΩN−1)

−iψMℓ(t)χ(s̃)
−ℓσ(ΩN−1)

 (2.81)

and

ψ
(+,s̃)
−Mℓσ(t,ΩN−1) =

 iψMℓ(t)χ(s̃)
+ℓσ(ΩN−1)

−ϕMℓ(t)χ(s̃)
+ℓσ(ΩN−1)

 , (2.82)

which are not solutions of the Dirac equation (2.8) on dSN . However, these spinors
satisfy the equation /∇ψ−M = −Mψ−M and they serve as a tool in the construction of
the negative frequency solutions of the Dirac equation (2.8) using charge conjugation in
Appendix 2.9. (Note that the negative frequency solutions are obtained in two different
ways: by separating variables in Sec. 2.6 and via charge conjugation in Appendix 2.9.)
Case 2: N odd. For the construction of the eigenmodes of Eq. (2.1) it is convenient
to consider the eigenvalue equation for the iterated Dirac operator /∇2

ψ = −λ2ψ. The
latter may be written as follows [8]:

( ∂

∂θN
+ N − 1

2 cot θN
)2

+ 1
sin2 θN

/̃∇
2

− cos θN
sin2 θN

γN /̃∇

ψ
= −λ2ψ. (2.83)
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By separating variables, the spinor eigenfunctions of the Dirac operator on SN are found
to be [8]

ψ
(s,s̃)
±nℓσ(θN ,ΩN−1) = cN(nℓ)√

2
× (ϕnℓ(θN)χ̂(s,s̃)

−ℓσ (ΩN−1) ± iψnℓ(θN)χ̂(s,s̃)
+ℓσ (ΩN−1)), (2.84)

where
χ̂

(s,s̃)
−ℓσ = 1√

2
(1 + iγN)χ(s,s̃)

−ℓσ (2.85)

and the eigenvalues are the same as in Eq. (2.51) (i.e. λ = ± (n + N/2) with
n = 0, 1, ...). The spinors χ(s,s̃)

+ℓσ and χ̂(s,s̃)
+ℓσ are given by

γNχ
(s,s̃)
−ℓσ = χ

(s,s̃)
+ℓσ (2.86)

and
χ̂

(s,s̃)
+ℓσ = γN χ̂

(s,s̃)
−ℓσ . (2.87)

Here s is the spin projection index on SN−1 and s̃ stands for the rest of the spin projection
indices on the lower-dimensional spheres of even dimensions. The functions ϕnℓ, ψnℓ
are given by Eqs. (2.61) and (2.62), while the spinors χ̂(s,s̃)

±ℓσ (ΩN−1) are eigenfunctions
of the hermitian operator γN /̃∇ (that commutes with the iterated Dirac operator /∇2)
satisfying [8]

γN /̃∇χ̂(s,s̃)
±ℓσ = ±

(
ℓ+ N − 1

2

)
χ̂

(s,s̃)
±ℓσ . (2.88)

As in the even-dimensional case, for each value of n the eigenspinors ψ(s,s̃)
+nℓσ (or ψ(s,s̃)

−nℓσ)
form a representation of Spin(N + 1) with dimension dn given by Eq. (2.52). (The
dimension is half the dimension for the case with N even because there is no contribution
from spin projections on SN .) Notice that on S1 the Dirac operator is just ∂/∂θ1 and
the eigenspinors are χ±ℓ1(θ1) = exp{(±i (ℓ1 + 1/2)θ1)} (the normalization constant is
(2π)−1/2). The eigenspinors (2.84) are normalized as in the case with N even and the
normalization factors are given again by Eq. (2.57).
We choose to analytically continue the ψ+ eigenmodes. By making the replacements
(2.66) in the expression for the eigenspinors ψ(s,s̃)

+nℓσ(θN ,ΩN−1) (Eq. (2.84)) we obtain the
solutions of the Dirac equation on odd-dimensional dSN

ψ
(s,s̃)
Mℓσ(t,ΩN−1) = cN(Mℓ)√

2
× (ϕMℓ(t)χ̂(s,s̃)

−ℓσ (ΩN−1) + iψMℓ(t)χ̂(s,s̃)
+ℓσ (ΩN−1)), (2.89)
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where the normalization factor will be determined later. The functions ϕMℓ(t), ψMℓ(t)
are given again by Eqs. (2.69) and (2.70). Hence, the solutions (2.89) can be used as
positive frequency modes.
As in the even-dimensional case, we can analytically continue the eigenspinors ψ− to
obtain

ψ
(s,s̃)
−Mℓσ(t,ΩN−1)

= (ϕMℓ(t)χ̂(s,s̃)
−ℓσ (ΩN−1) − iψMℓ(t)χ̂(s,s̃)

+ℓσ (ΩN−1)), (2.90)

which satisfy the Dirac equation (2.8) with M → −M .

2.5 NORMALIZATION FACTORS AND TRANSFORMATION PROPER-
TIES UNDER SPIN(N ,1) OF THE ANALYTICALLY CONTINUED
EIGENSPINORS

For each value of M the set of the analytically continued eigenspinors of the Dirac
operator /∇|SN forms a representation of the Lie algebra of Spin(N ,1) (which is also
a representation of the group Spin(N ,1)). If we want to use these mode functions to
describe spin-1/2 particles on N -dimensional de Sitter space-time, the corresponding
representation has to be unitary. Unitarity ensures that no negative probabilities will
arise. A representation is unitary if there is a positive definite inner product that is
preserved under the action of the group. In this section we show that the representation
formed by our analytically continued eigenspinors is unitary by introducing a Spin(N ,1)
invariant inner product among the solutions of the Dirac equation and by verifying the
positive-definiteness of the associated norm for our positive frequency solutions. In
addition, we calculate the normalization factors cN(Mℓ) and we show that the positive
frequency modes transform among themselves under the action of a boost generator. In
view of a mode expansion of the quantum Dirac field using our analytically continued
modes, the transformation properties thus obtained imply that the corresponding vacuum
is de Sitter invariant.

2.5.1 Unitarity of the Spin(N ,1) representation and normalization
factors

Let ψ and ψ′ be any two Dirac spinors on a globally hyperbolic spacetime (global
hyperbolicity is assumed for later convenience). The Dirac inner product of ψ, ψ′ is then
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given by

(ψ, ψ′) = i
∫

Σ
dΣ n̂µ ψγµψ′, (2.91)

where the integration is over any Cauchy surface Σ and n̂µ is the unit normal to the
Cauchy surface with n̂0 > 0. Below we use this inner product in order to show that our
positive frequency modes on dSN have positive norm. (The Dirac inner product is also
used in Sec. 2.6 in order to normalize the negative frequency solutions and show that
the positive and negative frequency solution subspaces are orthogonal to each other.)
Now let ψ, ψ′ in Eq. (2.91) be positive frequency solutions of the Dirac equation on global
dSN with same mass M (see Eqs. (2.67)-(2.68)). Then the Dirac inner product (2.91)
is written as

(ψ(s,s̃)
Mℓσ, ψ

(s′,s̃′)
Mℓ′σ′) = i

∫
dθ

√
−g ψ

(s,s̃)
Mℓσγ

0ψ
(s′,s̃′)
Mℓ′σ′ (2.92)

=
∫
dθ

√
−g ψ

(s,s̃)†
Mℓσ ψ

(s′,s̃′)
Mℓ′σ′ , (2.93)

where the integration is over the Cauchy surface Σ = SN−1 and dθ stands for
dθ1dθ2...dθN−1 . The square root of the determinant of the de Sitter metric is

√
−g = coshN−1 t sinN−2 θN−1 . . . sin θ2 = coshN−1 t

√
g̃, (2.94)

where g̃ is the determinant of the SN−1 metric. First, we show that the inner product
(2.92) is both time independent and Spin(N ,1) invariant. Let ψ(1), ψ(2) be two analytically
continued eigenspinors which satisfy the Dirac equation (2.8). The Dirac equation and
Eq. (2.47) imply that the vector current

Jµ = iψ
(1)
γµψ(2) (2.95)

is covariantly conserved. Hence, the inner product (2.92) is time independent. As for
the invariance under Spin(N ,1), we can show that the change in the inner product due
to infinitesimal Spin(N ,1) transformations vanishes (as in Ref. [15]). Let ξµ be a Killing
vector of dSN satisfying

∇µξν + ∇νξµ = 0. (2.96)

The Lie derivative of Jµ with respect to the Killing vector ξµ (LξJ
µ) gives the change

in Jµ under the corresponding transformation; that is

δJµ = LξJ
µ = ξν∇νJ

µ − Jν∇νξ
µ

= ∇ν(ξνJµ − Jνξµ), (2.97)

33



Chapter 2. The eigenmodes for spinor quantum field theory in global de
Sitter space-time

where we used the fact that both Jµ, ξµ are divergence free. Then we find

δJ0 = ∇ν(ξνJ0 − Jνξ0) = 1√
−g

∂θκ

[√
−g(ξθκJ0 − Jθκξ0)

]
, (2.98)

where κ = 1, ..., N − 1. By integrating Eq. (2.98) over SN−1 we find

δ(ψ(1), ψ(2)) =
∫
dθ

√
−g δJ0 = 0. (2.99)

Below we study the positive-definiteness of the norm associated with the inner prod-
uct (2.92) for our positive frequency modes.
Case 1: N even. Substituting the analytically continued eigenspinors (2.67) (or (2.68))
into the inner product (2.92) we find

(ψ(s,s̃)
Mℓσ, ψ

(s′,s̃′)
Mℓ′σ′) = |cN(Mℓ)|2

2 coshN−1 t
(
ϕ∗
Mℓ(t)ϕMℓ(t) + ψ∗

Mℓ(t)ψMℓ(t)
)
δss′δs̃s̃′δℓℓ′δσσ′ ,

(2.100)

where the positive-definiteness is obvious (i.e. the representation is unitary).
Using Eqs. (2.74) and (2.75) one finds

d

dt

[
cosh(N−1)/2 t ϕMℓ

]
= − i cosh(N−3)/2 t

(
ℓ+ N − 1

2

)
× ϕMℓ +M cosh(N−1)/2 t ψMℓ, (2.101)

and
d

dt

[
cosh(N−1)/2 tψMℓ

]
= + i cosh(N−3)/2 t

(
ℓ+ N − 1

2

)
× ψMℓ −M cosh(N−1)/2 t ϕMℓ (2.102)

respectively. Consequently

coshN−1 t
(
ϕ∗
Mℓ(t)ϕMℓ(t) + ψ∗

Mℓ(t)ψMℓ(t)
)

= K, (2.103)

where K is a positive real constant (since the time derivative of the left-hand side
vanishes). We can determine the value of K just by letting t = 0 in Eq. (2.103). The
functions (2.69) and (2.70) for t = 0 are

ϕMℓ(t = 0) =
√

2
2

(1
2

)ℓ
F

(
δ, δ∗,

δ + δ∗

2 ; 1
2

)
(2.104)

and
ψMℓ(t = 0) = −i

√
2M

N + 2ℓ

(1
2

)ℓ
F

(
δ, δ∗,

δ + δ∗

2 + 1; 1
2

)
(2.105)

34



2.5. Normalization factors and Transformation properties under Spin(N ,1)
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respectively, where
δ = N

2 + ℓ+ iM.

Using the following two formulas [1], [2]:

F

(
a, b,

a+ b

2 ; 1
2

)
=

√
πΓ

(
a+ b

2

) 1
Γ((a+ 1)/2)Γ(b/2)

+ 1
Γ((b+ 1)/2)Γ(a/2)

, (2.106)

F

(
a, b,

a+ b

2 + 1; 1
2

)
= 2

√
π

a− b
Γ
(
a+ b

2 + 1
) 1

Γ((b+ 1)/2)

× 1
Γ(a/2) − 1

Γ((a+ 1)/2)Γ(b/2)

 (2.107)

we find

K = ϕ∗
Mℓ(0)ϕMℓ(0) + ψ∗

Mℓ(0)ψMℓ(0)

= 2N−1 |Γ(N2 + ℓ)|2

|Γ(N2 + ℓ+ iM)|2
, (2.108)

where we also used the Legendre duplication formula

Γ(2z) = 1√
π

22z−1Γ(z)Γ(z + 1/2). (2.109)

Since (ψ(s,s̃)
Mℓσ, ψ

(s,s̃)
Mℓσ) = |cN(Mℓ)|2K/2, it is straightforward to calculate the normalization

factor as

|cN(Mℓ)|2 = 2(2−N) |Γ(N2 + ℓ+ iM)|2

|Γ(N2 + ℓ)|2
. (2.110)

Our positive frequency solutions are now normalized by

(ψ(s,s̃)
Mℓσ, ψ

(s′,s̃′)
Mℓ′σ′) = δss′δs̃s̃′δℓℓ′δσσ′ . (2.111)

Case 2: N odd. Substituting the analytically continued eigenspinors (2.89) into the
inner product (2.92) we obtain again Eq. (2.100). Thus, the Spin(N ,1) representation
is unitary (due to the positive-definiteness of the norm) and the normalization is again
given by Eqs. (2.110) and (2.111).
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2.5.2 Transformation properties of the positive frequency solu-
tions under Spin(N ,1)

In this section we use the spinorial Lie derivative [18] with respect to the Killing vector
field ξ in order to study the Spin(N ,1) transformations of the analytically continued
modes of /∇|SN generated by ξ. More specifically, we show that our positive frequency
modes transform among themselves under the action of an infinitesimal boost in the
θN−1 direction.
The coordinate expression for the spinorial Lie derivative of a spinor field ψ with respect
to the Killing vector ξ is [18]

L s
ξ ψ = ξµ∇µψ + 1

4∇κξλγ
κγλψ. (2.112)

(We use the superscript s to distinguish the spinorial Lie derivative from the usual Lie
derivative.) We are interested in the transformation generated by the boost Killing vector

ξ = cos θN−1
∂

∂t
− tanh t sin θN−1

∂

∂θN−1
. (2.113)

After a straightforward calculation we find

L s
ξ ψ = ξµ∂µψ + sin θN−1

2 cosh t γ
N−1γ0ψ (2.114)

= cos θN−1∂tψ − tanh t sin θN−1∂θN−1ψ + sin θN−1

2 cosh t γ
N−1γ0ψ. (2.115)

The spinorial Lie derivative with respect to Killing vectors commutes with the Dirac
operator [18]. Hence if ψ is an analytically continued eigenspinor of /∇|SN we can express
Eq. (2.115) as a linear combination of other such eigenspinors. In order to proceed, it is
useful to introduce the ladder operators for the functions ϕMℓ(t), ψMℓ(t), ϕ̃ℓ ℓN−2(θN−1),
ψ̃ℓ ℓN−2(θN−1) sending the angular momentum quantum number ℓ to ℓ±1. (The functions
ϕ̃ℓ ℓN−2 , ψ̃ℓ ℓN−2 are given by Eqs. (2.61) and (2.62) respectively, with N → N − 1, n → ℓ

and ℓ → ℓN−2.) The ladder operators are given by the following expressions:

T
(+)
ϕ = d

dt
−
(
ℓ+ 1

2

)
tanh t− i

2 cosh t , (2.116)

T
(+)
ψ = d

dt
−
(
ℓ+ 1

2

)
tanh t+ i

2 cosh t , (2.117)

T
(−)
ϕ = d

dt
+
(
ℓ+N − 3

2

)
tanh t+ i

2 cosh t , (2.118)

T
(−)
ψ = d

dt
+
(
ℓ+N − 3

2

)
tanh t− i

2 cosh t , (2.119)
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2.5. Normalization factors and Transformation properties under Spin(N ,1)
of the analytically continued eigenspinors

T̃
(+)
ϕ̃

= sin θN−1
d

dθN−1
+
(
ℓ+N − 3

2

)
cos θN−1 −

ℓN−2 + N−2
2

2(ℓ+ N
2 )

, (2.120)

T̃
(+)
ψ̃

= sin θN−1
d

dθN−1
+
(
ℓ+N − 3

2

)
cos θN−1 +

ℓN−2 + N−2
2

2(ℓ+ N
2 )

(2.121)

T̃
(−)
ϕ̃

= sin θN−1
d

dθN−1
− cos θN−1

(
ℓ+ 1

2

)
+
ℓN−2 + N−2

2
2(ℓ+ N−2

2 )
, (2.122)

T̃
(−)
ψ̃

= sin θN−1
d

dθN−1
− cos θN−1

(
ℓ+ 1

2

)
−
ℓN−2 + N−2

2
2(ℓ+ N−2

2 )
. (2.123)

The corresponding ladder relations are

T
(+)
f fMℓ(t) = k(+)fMℓ+1(t), (2.124)
T

(−)
f fMℓ(t) = k(−)fMℓ−1(t), (2.125)
T̃

(+)
f̃

f̃ℓ ℓN−2(θN−1) = k̃(+)f̃ℓ+1 ℓN−2(θN−1), (2.126)

T̃
(−)
f̃

f̃ℓ ℓN−2(θN−1) = k̃(−)f̃ℓ−1 ℓN−2(θN−1), (2.127)

where fMℓ(t) ∈ {ϕMℓ(t), ψMℓ(t)}, f̃ℓ ℓN−2(θN−1) ∈ {ϕ̃ℓ ℓN−2(θN−1), ψ̃ℓ ℓN−2(θN−1)} and

k(+) = −i(N/2 + ℓ)2 +M2

N/2 + ℓ
, (2.128)

k(−) = −i(N/2 + ℓ− 1), (2.129)

k̃(+) = (ℓ+N − 1 + ℓN−2)(ℓ− ℓN−2 + 1)
(ℓ+N/2) , (2.130)

k̃(−) = −((N − 1)/2 + ℓ− 1)((N − 1)/2 + ℓ)
(N − 2)/2 + ℓ

. (2.131)

The ladder relations (2.124)-(2.127) can be proved using the raising and lowering operators
for the parameters of the Gauss hypergeometric function given in Appendix 2.10. Below
we describe how to express the spinorial Lie derivative (2.115) of a mode solution ψ(s,s̃)

Mℓσ

as a linear combination of other solutions with the same M .
Case 1: N even (> 2). Using Eq. (2.38) one finds

γN−1γ0 =
−γ̃N−1 0

0 γ̃N−1

 . (2.132)

Let ψ be the eigenspinor ψ(±,s̃)
Mℓ ℓN−2 σ̃

, where σ̃ stands for quantum numbers other than
ℓ, ℓN−2. Since the partial derivatives in Eq. (2.115) refer only to the coordinates
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{t, θN−1} we want to extract the t and θN−1 dependence from our analytically continued
eigenspinors. By combining Eqs. (2.67), (2.68) and (2.84) we can express the spinors
ψ

(±,s̃)
Mℓ ℓN−2 σ̃

(t,ΩN−1) in terms of eigenspinors on SN−2 ( ˆ̃χ
˜(s)

±ℓN−2 σ̃
(ΩN−2)) as follows:

ψ
(−,s̃)
Mℓ ℓN−2 σ̃

(t,ΩN−1) =cN(Mℓ)√
2

cN−1(ℓ ℓN−2)√
2

U (s̃)
−Mℓ ℓN−2 σ̃

(t, θN−1,ΩN−2)
D

(s̃)
−Mℓ ℓN−2 σ̃

(t, θN−1,ΩN−2)

 , (2.133)

ψ
(+,s̃)
Mℓ ℓN−2 σ̃

(t,ΩN−1) =cN(Mℓ)√
2

cN−1(ℓ ℓN−2)√
2

D(s̃)
+Mℓ ℓN−2 σ̃

(t, θN−1,ΩN−2)
U

(s̃)
+Mℓ ℓN−2 σ̃

(t, θN−1,ΩN−2)

 , (2.134)

where

U
(s̃)
∓Mℓ ℓN−2 σ̃

(t, θN−1,ΩN−2) = ϕMℓ(t)
(
ϕ̃ℓ ℓN−2(θN−1) ˆ̃χ(s̃)

−ℓN−2 σ̃
(ΩN−2)

∓ iψ̃ℓ ℓN−2(θN−1) ˆ̃χ(s̃)
+ℓN−2 σ̃

(ΩN−2)
)

(2.135)

and D
(s̃)
∓Mℓ ℓN−2 σ̃

is given by an analogous expression with ϕMℓ(t) → iψMℓ(t). By
substituting Eqs. (2.133)-(2.135) into the expression for the spinorial Lie derivative (2.115)
and making use of Eqs. (2.124)-(2.131) we find after a lengthy calculation

L s
ξ ψ

(∓,s̃)
Mℓσ =R(N)

Mℓ ℓN−2
ψ

(∓,s̃)
M ℓ+1σ + L

(N)
Mℓ ℓN−2

ψ
(∓,s̃)
M ℓ−1σ + C

(N)
Mℓ ℓN−2

ψ
(±,s̃)
Mℓσ , (2.136)

where the coefficients on the right-hand side are given by the following expressions:

R
(N)
Mℓ ℓN−2

= cN(Mℓ) cN−1(ℓ ℓN−2)
cN(M ℓ+ 1) cN−1(ℓ+ 1, ℓN−2)

k(+)k̃(+)

2(ℓ+ N−1
2 )

(2.137)

=−i
2

√
(N2 + ℓ)2 +M2

N
2 + ℓ

×
√

(ℓ− ℓN−2 + 1)(ℓ+ ℓN−2 +N − 1), (2.138)

L
(N)
Mℓ ℓN−2

= (−1) × cN(Mℓ) cN−1(ℓ ℓN−2)
cN(M, ℓ− 1) cN−1(ℓ− 1, ℓN−2)

k(−)k̃(−)

2(ℓ+ N−1
2 )

(2.139)

= −
(
R

(N)
M, ℓ−1,ℓN−2

)∗
, (2.140)

and

C
(N)
Mℓ ℓN−2

= −i
M(ℓN−2 + N−2

2 )
2(ℓ+ N−2

2 )(ℓ+ N
2 )
. (2.141)

Notice that in the last term of the linear combination in Eq. (2.136) the spin projec-
tion sign is flipped. We have checked the validity of the above results by using the
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de Sitter invariance of the inner product (2.92). More specifically, we have verified that
(L s

ξ ψMℓ, ψM ℓ±1) + (ψMℓ,L s
ξ ψM ℓ±1) = 0. (Some details regarding the derivation of

Eq. (2.136) can be found in Appendix 2.11 along with the N = 2 case.) It is clear from
Eq. (2.136) that our positive frequency solutions transform to other positive frequency
solutions with the same M under the transformation generated by ξ. Based on this
observation we can conclude that the vacuum corresponding to these positive frequency
modes is de Sitter invariant (see, e.g. Refs. [26] and [14]).
Case 2: N odd. Using Eq. (2.40) we find

γN−1γ0 = i

0 −1
1 0

 . (2.142)

As in the case with N even, it is convenient to express the analytically continued eigen-
spinors ψ(s,s̃)

Mℓ ℓN−2 σ̃
(t,ΩN−1) (Eq. (2.89)) in terms of eigenspinors on SN−2 (χ̃(s̃)

±ℓN−2 σ̃
(ΩN−2)).

By combining Eqs. (2.85), (2.55) and (2.56), we can rewrite Eq. (2.89) as

ψ
(−,s̃)
Mℓ ℓN−2 σ̃

(t, θN−1,ΩN−2) = cN(Mℓ)√
2

cN−1(ℓ ℓN−2)√
2

1√
2

×

 (1 + i)ϕ̃ℓ ℓN−2 [ϕMℓ + iψMℓ]χ̃(s̃)
−ℓN−2σ̃

(−1 + i)iψ̃ℓ ℓN−2 [ϕMℓ − iψMℓ]χ̃(s̃)
−ℓN−2σ̃

 (2.143)

and

ψ
(+,s̃)
Mℓ ℓN−2 σ̃

(t, θN−1,ΩN−2) = cN(Mℓ)√
2

cN−1(ℓ ℓN−2)√
2

1√
2

×

 (1 + i)iψ̃ℓ ℓN−2 [ϕMℓ + iψMℓ]χ̃(s̃)
+ℓN−2σ̃

(−1 + i)ϕ̃ℓ ℓN−2 [ϕMℓ − iψMℓ]χ̃(s̃)
+ℓN−2σ̃

 . (2.144)

Working as in the case with N even, we find after a lengthy calculation

L s
ξ ψ

(∓,s̃)
Mℓσ =R(N)

Mℓ ℓN−2
ψ

(∓,s̃)
M ℓ+1σ + L

(N)
Mℓ ℓN−2

ψ
(∓,s̃)
M ℓ−1σ ± C

(N)
Mℓ ℓN−2

ψ
(∓,s̃)
Mℓσ . (2.145)

Notice that, unlike the even-dimensional case, the two spin projections do not mix with
each other. As in the case with N even, we conclude that the vacuum is de Sitter
invariant.

2.6 CANONICAL QUANTIZATION

In this section we follow the canonical quantization procedure and give the mode
expansion for the free quantum Dirac field on N -dimensional de Sitter space-time with
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(N − 1)-sphere spatial sections using the analytically continued spinor modes of /∇|SN .
As mentioned earlier, our analytically continued eigenspinors can be used as the analogs
of the flat space-time positive frequency modes. However, the latter are not the only
solutions of the Dirac equation (2.8) on dSN . New solutions (i.e. the negative frequency
modes) can be obtained by separating variables. Below we present the negative frequency
solutions before proceeding to the canonical quantization. (Note that the negative
frequency solutions can also be obtained using charge conjugation as demonstrated in
Appendix 2.9.)

2.6.1 Negative frequency solutions

Case 1: N even. By making the replacements (2.66) in the expression for the iterated
Dirac operator on SN (2.54) one finds[( ∂

∂t
+ N − 1

2 tanh t
)2

− 1
cosh2 t

/̃∇
2

± sinh t
cosh2 t

/̃∇
]
φ±

= −M2φ±. (2.146)

Then by separating variables (as in Ref. [8]) one finds the negative frequency solutions

V
(−,s̃)
Mℓσ (t,ΩN−1) = cN(Mℓ)√

2

 ϕ∗
Mℓ(t)χ

(s̃)
+ℓσ(ΩN−1)

iψ∗
Mℓ(t)χ

(s̃)
+ℓσ(ΩN−1)

 , (2.147)

V
(+,s̃)
Mℓσ (t,ΩN−1) = cN(Mℓ)√

2

iψ∗
Mℓ(t)χ

(s̃)
−ℓσ(ΩN−1)

ϕ∗
Mℓ(t)χ

(s̃)
−ℓσ(ΩN−1)

 . (2.148)

These are normalized using the inner product (2.92) as

(V (s,s̃)
Mℓσ , V

(s′,s̃′)
Mℓ′σ′ ) = δss′δs̃s̃′δℓℓ′δσσ′ (2.149)

and they are orthogonal to the positive frequency solutions, i.e.

(ψ(s,s̃)
Mℓσ, V

(s′,s̃′)
Mℓ′σ′ ) = 0. (2.150)

As we can see, the negative frequency modes are given by the positive frequency solutions
(2.67) and (2.68) by replacing the functions ϕMℓ(t), ψMℓ(t) with their complex conjugate
functions and by exchanging χ±(ΩN−1) and χ∓(ΩN−1). The time derivatives of the
spinors (2.147)-(2.148) reproduce the flat space-time behaviour in the large ℓ limit, i.e.
the complex conjugate of Eqs. (2.79) and (2.80).
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Case 2: N odd. Working as in the even-dimensional case, the negative frequency
modes are found to be

V
(s,s̃)
Mℓσ (t,ΩN−1) = cN(Mℓ)√

2
(ϕ∗

Mℓ(t)χ̂
(s,s̃)
+ℓσ (ΩN−1) + iψ∗

Mℓ(t)χ̂
(s,s̃)
−ℓσ (ΩN−1)) (2.151)

and they satisfy the conditions (2.149) and (2.150).

2.6.2 Canonical Quantization

The Lagrangian density for a free spinor field Ψ is

−L =
√

−g Ψ
(
γµ∇µ −M

)
Ψ (2.152)

=
√

−g iΨ†
A(γ0)A B

(
(γµ)B C(∇µΨ)C −MΨB

)
, (2.153)

where we have written out the spinor indices explicitly in the second line (A,B,C =
1, ..., 2[N/2]). The corresponding equation of motion for Ψ is the Dirac equation (2.8).
By the standard canonical quantization procedure, we find

{Ψ(t,θ)A,Ψ†(t,θ′)B} = 1√
−g(t,θ)

δ(N−1)(θ − θ′)δAB, (2.154)

{Ψ(t,θ)A,Ψ(t,θ′)B} = {Ψ†(t,θ)A,Ψ†(t,θ′)B} = 0. (2.155)

The mode expansion for the free Dirac field is

Ψ(t,θ) =
∑
ℓ,σ

∑
s,s̃

(
a

(s,s̃)
Mℓσψ

(s,s̃)
Mℓσ(t,θ) + b

(s,s̃)†
Mℓσ V

(s,s̃)
Mℓσ (t,θ)

)
, (2.156)

where we are summing over all angular momentum quantum numbers and over all the
possible spin projections. (There are [N/2] spin projection indices in total.) Using the
normalization conditions (2.111), (2.149) and the orthogonality condition (2.150) we
may express the annihilation operators, a(s,s̃)

Mℓσ and b(s,s̃)
Mℓσ, as

a
(s,s̃)
Mℓσ = (ψ(s,s̃)

Mℓσ(t,θ),Ψ(t,θ))

=
∫
dθ

√
−g ψ(s,s̃)

Mℓσ(t,θ)† Ψ(t,θ) (2.157)

and

b
(s,s̃)
Mℓσ =

∫
dθ

√
−gΨ†(t,θ) V (s,s̃)

Mℓσ (t,θ). (2.158)
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By combining Eqs. (2.157)-(2.158) with the anti-commutation relations (2.154) and
(2.155) we obtain

{a(s,s̃)
Mℓσ, a

(s′,s̃′)†
Mℓ′σ′ } = δss′δs̃s̃′δℓℓ′δσσ′ , (2.159)

{b(s,s̃)
Mℓσ, b

(s′,s̃′)†
Mℓ′σ′ } = δss′δs̃s̃′δℓℓ′δσσ′ , (2.160)

while all the other anti-commutators are zero. The de Sitter invariant vacuum is defined
by

a
(s,s̃)
Mℓσ |0⟩ = b

(s,s̃)
Mℓσ |0⟩ = 0, (2.161)

for all ℓ, σ, (s, s̃). Using the mode expansion of the Dirac field (2.156) we can obtain the
mode-sum form for the Wightman two-point function

W
(
(t,θ), (t′,θ′)

)
≡ ⟨0| Ψ(t,θ)Ψ(t′,θ′) |0⟩ (2.162)

=
∑
ℓ,σ

∑
s,s̃

ψ
(s,s̃)
Mℓσ(t,θ)ψ(s,s̃)

Mℓσ(t′,θ′). (2.163)

The high frequency behaviour of our mode solutions (2.79)-(2.80) implies that we should
adopt the −iϵ prescription (i.e. the time variable t should be understood to have an
infinitesimal negative imaginary part: t → t− iϵ, ϵ > 0).

2.7 THE WIGHTMAN TWO-POINT FUNCTION

In this section we first review the basics about the construction of Dirac spinor Green’s
functions on dSN using intrinsic geometric objects following the work of Mück [19].
(Mück gave the coordinate independent construction of the spinor Green’s function in
terms of intrinsic geometric objects on maximally symmetric spaces of arbitrary dimensions
using Dirac spinors. An analogous construction on 4-dimensional maximally symmetric
spaces using two-component spinors was first presented in Ref. [4].) Then using the
mode-sum method (2.163) we obtain a closed-form expression for the massless spinor
Wightman two-point function on dSN that agrees with the construction presented in
Ref. [19]. Using this massless two-point function we infer the analytic expression for
the spinor parallel propagator and then obtain the massive spinor Wightman two-point
function in a closed form.

2.7.1 The spinor parallel propagator on dSN

Let |ψ⟩ be a state invariant under the action of the de Sitter group. Then two-point
functions (such as ⟨ψ| Ψ(x)Ψ(x′) |ψ⟩) define maximally symmetric bispinors [3]. These
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bispinors can be expressed in terms of the following “preferred geometric objects”: the
geodesic distance (2.19), the unit tangent vectors (2.21) to the geodesic with endpoints
x, x′ and the bispinor of parallel transport Λ(x, x′), also known as the spinor parallel
propagator [19, 9, 5]. The spinor parallel propagator parallel transports a spinor ψ(x′)
from x′ to x along the (shortest) geodesic joining these points, i.e.

ψ||(x)A = Λ(x, x′)A A′ ψ(x′)A′
, (2.164)

where ψ||(x) is the parallelly transported spinor. The covariant derivative of a spinor field
for an infinitesimal interval can be expressed using the spinor parallel propagator as [9]

∇µψ(x)dxµ = Λ(x, x+ dx)ψ(x+ dx) − ψ(x).

The following relations can be used as the defining properties of the spinor parallel
propagator for arbitrary space-time dimension [19]:

Λ(x′, x) = [Λ(x, x′)]−1, (2.165)
γν

′(x′) = Λ(x′, x)γµ(x)gν′

µ(x′, x)Λ(x, x′), (2.166)
nµ∇µΛ(x, x′) = 0, (2.167)

where the parallel transport equation (2.167) holds along the geodesic connecting x and
x′. Equation (2.166) describes the parallel transport of gamma matrices. By contracting
Eq. (2.166) with nν′(x, x′) and using Eqs. (2.26) and (2.165) we find

[Λ(x, x′)]−1 /nΛ(x, x′) = −/n′, (2.168)

where /n ≡ γµ(x)nµ(x, x′) and /n′ ≡ γµ
′(x′)nµ′(x, x′). Equation (2.168) conveniently

describes the parallel transport property of /n. In Appendix 2.13 we show that our result
for the spinor parallel propagator (given by Eq. (2.194)) is consistent with the defining
properties (2.165)-(2.168). On dSN the covariant derivatives of Λ(x.x′) can be expressed
as [19]

∇νΛ(x, x′) = −1
2 tan

(
µ

2

)
(γν/n− nν)Λ(x, x′), (2.169)

∇µ′Λ(x, x′) = 1
2 tan

(
µ

2

)
Λ(x, x′)(γµ′/n′ − nµ′). (2.170)

Note that /n2 = 1 and (/n′)2 = 1′, where 1,1′ are the identity spinor matrices at x and
x′, respectively.
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2.7.2 Constructing spinor Green’s function on dSN using intrinsic
geometric objects

The massive case. The massive spinor Green’s function SM (x, x′) on dSN satisfies the
inhomogeneous Dirac equation

[
(
/∇ −M

)
SM(x, x′)]A A′ = δ(N)(x− x′)√

−g(x)
δAA′ . (2.171)

The Green’s function SM(x, x′) can be expressed in terms of intrinsic geometric objects
as follows [19]:

SM(x, x′) = (αM(µ) + βM(µ)/n)Λ(x, x′), (2.172)

where αM(µ), βM(µ) are scalar functions of the geodesic distance. By requiring that
SM(x, x′) in Eq. (2.172) satisfies Eq. (2.171) we find the following system of ordinary
differential equations for αM(µ), βM(µ):

dαM
dµ

− N − 1
2 tan µ2 αM −MβM = 0, (2.173)

dβM
dµ

+ N − 1
2 cot µ2 βM −MαM = δ(x− x′)√

−g(x)
. (2.174)

Using the variable z = cos2 (µ/2) (see Eq. (2.18)) this system of equations is solved
by [19]

αM(z) = −M
|Γ(N2 + iM)|2

Γ(N2 + 1)(2π)N/22N/2

√
z

× F
(
N

2 − iM,
N

2 + iM ; N2 + 1; z
)

(2.175)

and

βM(z) = −
√

1 − z

M

[
√
z
d

dz
+ N − 1

2
√
z

]
αM(z). (2.176)

Using Eqs. (2.175) and (2.224) we can rewrite Eq. (2.176) as

βM(z) =
|Γ(N2 + iM)|2

Γ(N2 + 1)(2π)N/2 2N/2

×
√

1 − z
N

2 F
(
N

2 − iM,
N

2 + iM ; N2 ; z
)
. (2.177)

(Note that there is a misprint in the corresponding equation for βM(z) - equation (29) -
in Ref. [19]. Equation (2.177) of the present paper and equation (29) of Ref. [19] agree
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with each other after inserting a missing prefactor.) The proportionality constant for
αM(µ) (and hence for βM(µ)) has been determined by requiring that the singularity in
Eq. (2.175) for µ → 0 has the same strength as the singularity of the flat space-time
Green’s function [19]. This ensures that the spinor Green’s function (2.172) has the
desired short-distance behaviour. (Note that since /n, αM and βM are known, the only
remaining step for obtaining an explicit expression for the two-point function (2.172) is
to derive an analytic expression for the spinor parallel propagator.)
The massless case. Letting M = 0 in Eqs. (2.175) and (2.177) we find

α0(z) = 0, (2.178)

β0(z) = Γ(N/2)
2N/2(2π)N/2

1
(1 − z)(N−1)/2 , (2.179)

(z = cos2(µ/2)) where we used Eq. (2.268). These are just the solutions (with the
appropriate singularity strength) of the decoupled system

dα0

dµ
− N − 1

2 tan µ2 α0 = 0, (2.180)

dβ0

dµ
+ N − 1

2 cot µ2 β0 = δ(x− x′)√
−g(x)

. (2.181)

The massless Green’s function is then given as follows:

S0(x, x′) = β0(z)/nΛ(x, x′) (2.182)

= Γ(N/2)
2N/2(2π)N/2 (1 − z)−(N−1)/2/nΛ(x, x′). (2.183)

We find that the defining properties of Λ(x, x′) (Eqs. (2.165)-(2.167)) translate to the
following properties for the massless Green’s function:

[S0(x, x′)]−1/n = 1
β2

0
/n′S0(x′, x), (2.184)

[S0(x, x′)]−1 = − 1
β2

0
S0(x′, x), (2.185)(

nµ∇µ + N − 1
2 cot µ2

)
S0(x, x′) = 0. (2.186)

Note that by combining Eqs. (2.184) and (2.185) one obtains

/nS0(x, x′) = −S0(x, x′)/n′, (2.187)

which is equivalent to Eq. (2.168).
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2.7.3 Analytic expressions for the massless and massive Wightman
two-point function and the spinor parallel propagator

In the massive case the mode-sum approach for the Wightman function (2.163) leads
to complicated series involving products of hypergeometric functions and it seems that
their corresponding closed-form expressions do not exist in the literature. Fortunately,
the situation is simpler in the massless case and we can obtain a closed-form expression
for the Wightman two-point function. This directly results in the knowledge of the spinor
parallel propagator Λ(x, x′) due to Eq. (2.182). The spinor parallel propagator Λ(x, x′)
in turn can be used to obtain an analytic expression for the massive spinor Wightman
two-point function via Eq. (2.172).
Below we present the closed-form expression we have obtained by the mode-sum method
for the massless Wightman two-point function in agreement with Eq. (2.182). We present
the details of the lengthy calculation in Appendix 2.12 (as well as the result for the
N = 2 case).
Case 1: N even (N > 2). By letting M = 0 in Eqs. (2.67)-(2.68) we obtain the
massless positive frequency modes

ψ
(−,s̃)
0ℓσ (t,ΩN−1) = 2(2−N)/2

√
2

ϕ0ℓ(t)
χ(s̃)

−ℓσ(ΩN−1)
0

 , (2.188)

ψ
(+,s̃)
0ℓσ (t,ΩN−1) = 2(2−N)/2

√
2

ϕ0ℓ(t)
 0
χ

(s̃)
+ℓσ(ΩN−1)

 . (2.189)

Now the function describing the time dependence has the following form:

ϕ0ℓ(t) =
(tan x

2 )ℓ

(cos x
2 )N−1 , (2.190)

where cos(x/2) is given in Eq. (2.71) and

tan x2 = 1 − i sinh t
cosh t . (2.191)

Exploiting the rotational symmetry of SN−1 we may let θ′
N−1 = θ′

N−2 = ... = θ′
2 =

θ′
1 = 0 in the mode-sum (2.163). After a long calculation we obtain the following

2N/2-dimensional bispinorial matrix:

W0[(t,θ), (t′,0)] =(β0(µ)/n)|θ′=0 exp
{
λ(t, θN−1, t

′)
2 γ0γN−1

}

×
N−1∏
j=2

exp
{
θN−j

2 γN−j+1γN−j
}
, (2.192)
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where

/n|θ′=0 = γ0n0[(t,θ), (t′,0)] + γN−1 nN−1[(t,θ), (t′,0)] (2.193)

(see Eqs. (2.34)-(2.35)). By comparing Eq. (2.192) with Eq. (2.182) we find

Λ
(

(t,θ), (t′,0)
)

= exp
{
λ(t, θN−1, t

′)
2 γ0γN−1

}

×
N−1∏
j=2

exp
{
θN−j

2 γN−j+1γN−j
}
. (2.194)

The biscalar λ(t, θN−1, t
′) is defined by the following relations:

cosh λ2 = w+n+ + w−n−

2i sin (µ/2) = w1n0 + w2nN−1

sin (µ/2) ,

sinh λ2 = w+n+ − w−n−

2i sin (µ/2) = w1nN−1 + w2n0

sin (µ/2) , (2.195)

where n0 ≡ n0[(t,θ), (t′,0)], nN−1 ≡ nN−1[(t,θ), (t′,0)] and

w1(t, θN−1, t
′) = sinh t− t′

2 cos θN−1

2 , (2.196)

w2(t, θN−1, t
′) = cosh t+ t′

2 sin θN−1

2 , (2.197)

w±(t, θN−1, t
′) ≡ i[w1(t, t′, θN−1) ± w2(t, θN−1, t

′)], (2.198)
n± ≡ n0 ± nN−1. (2.199)

(This definition of λ is motivated naturally in the mode-sum construction of the massless
Wightman function given in Appendix 2.12.) It is worth mentioning that the biscalar
functions w+ and w− satisfy w+w− = sin2 (µ/2), i.e. β0(µ) ∝ (w+w−)−(N−1)/2 (see
Eqs. (2.28) and (2.179)). We have verified that Eqs. (2.195) are consistent with the
relation cosh2 (λ/2) − sinh2 (λ/2) = 1.
It is natural that the spinor parallel propagator (2.194) is given by a product of N − 1
matrices ∈ Spin(N − 1, 1); these correspond to one boost and N − 2 rotations (see
Appendix 2.12).
As mentioned earlier, we do not follow the mode-sum method for the construction of
the massive Wightman function. A closed-form expression for the latter can be found
using our result for the spinor parallel propagator (2.194). To be specific, by substituting
Eq. (2.194) into Eq. (2.172) one can straightforwardly obtain an analytic expression for
the massive Wightman function (with x = (t,θ) and x′ = (t′,0)) in terms of intrinsic
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geometric objects. In Appendix 2.14 we compare the mode-sum form of the massive
Wightman function with timelike separated points, x = (t,0) and x′ = (t′,0), with
the expression coming from Eq. (2.172) with µ = i(t− t′). Based on this comparison
we make a conjecture for the closed-form expression of a series containing the Gauss
hypergeometric function. Note that a closed-form expression for the spinor parallel
propagator on anti-de Sitter space-time (along with the construction of the Feynman
Green’s function for the Dirac field according to Eq. (2.172)) can be found in Ref. [5].
Case 2: N odd. The massless positive frequency solutions (2.89) are given by

ψ
(s,s̃)
0ℓσ (t,ΩN−1) = 2(2−N)/2

√
2

ϕ0ℓ(t) χ̂(s,s̃)
−ℓσ (ΩN−1). (2.200)

Working as in the even-dimensional case we obtain again Eqs. (2.192) and (2.194) (where
γ0 is given by Eq. (2.40)) and then we can construct the massive two-point function
using Eq. (2.172).

2.8 SUMMARY AND CONCLUSIONS

In this paper we analytically continued the eigenspinors of the Dirac operator on SN

to obtain solutions to the Dirac equation on dSN that serve as analogs of the positive
frequency modes of flat space-time. Our generalised positive frequency solutions were
used to define a vacuum for the free Dirac field. The negative frequency solutions were
also constructed. The de Sitter invariance of the vacuum was demonstrated by showing
that the positive frequency solutions transform among themselves under infinitesimal
Spin(N ,1) transformations.
In order to check the validity of our mode functions, the Wightman function for massless
spinors was calculated using the mode-sum method and it was expressed in a form that is
in agreement with the construction in terms of intrinsic geometric objects (µ, /n,Λ) given
in Ref. [19]. An analytic expression for the spinor parallel propagator was found. This
expression was tested using the defining properties of the spinor parallel propagator as
presented in Ref. [19] (see Appendix 2.13). Note that it has been checked that the spinor
Green’s functions expressed in terms of µ, /n,Λ have Minkowskian singularity strength in
the limit µ → 0 [19]. Thus, the conditions for the unique vacuum [17] are satisfied by
the vacuum for the free massless Dirac field defined in this paper.
Although we did not obtain a closed-form expression for the massive spinor Wightman
function by the mode-sum method using our analytically continued eigenspinors, we
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constructed it in terms of intrinsic geometric objects. Since the short-distance behaviour
has been checked in Ref. [19], the requirements for a preferred vacuum are again satisfied.
The mode-sum method and the geometric construction of Ref. [19] should give the same
result for the massive Wightman function. This observation leads to the series conjecture
of Appendix 2.14.
Acknowledgements. The author is grateful to Atsushi Higuchi for guidance, encour-
agement and useful discussions. He also thanks Wolfgang Mück for communications
and the referee for useful comments. Subsection 2.5.1 was part of the author’s MSc
thesis at Imperial College London. This work was supported by a studentship from the
Department of Mathematics, University of York.

2.9 APPENDIX A - CHARGE CONJUGATION AND NEGATIVE FRE-
QUENCY MODES

In this Appendix we demonstrate how the negative frequency solutions given by Eqs. (2.147)-
(2.148) and (2.151) are constructed by charge conjugating our analytically continued
eigenspinors. First, let us review charge conjugation for Dirac spinors on dSN and on
spheres following Ref. [25]. For convenience, our discussion will be based on the unitary
matrices B± that relate the gamma matrices to their complex conjugate matrices by
similarity transformations, i.e.

(γa)∗ = B+γ
aB−1

+ , −(γa)∗ = B−γ
aB−1

− , (2.201)

and not in terms of the conventional charge conjugation matrices C± that relate γa to
(γa)T . These two ways of defining charge conjugation are equivalent [25]. From this
point we will refer to the matrices B± as the charge conjugation matrices. (We should
note that the representation we use for the gamma matrices (2.38), (2.40) is different
from the one used in Ref. [25]. Also, note that charge conjugation matrices are defined
up to a phase factor and that γN ≡ −iγ0.)

2.9.1 Charge conjugation on N-dimensional de Sitter space-time
and on spheres

For convenience, let us work in d = τ + s dimensions, with τ ∈ {0, 1} being the number
of timelike dimensions and s being the number of spacelike dimensions.
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For d even dimensions there are both B+ and B−. For d odd dimensions we can use one
of the matrices from the (d− 1)-dimensional case [25]. (As it will be clear in the next
subsections, one needs to modify the charge conjugation matrix on dSd−1 before using it
on dSd. This is not the case in Ref. [25], because a different representation for γa’s is
used.) More specifically, on odd-dimensional spaces with Lorentzian (Euclidean) metric
signature there is only B+ (B−) for [d/2] odd and only B− (B+) for [d/2] even. (See
Refs. [25] and [12] for more details.)
Let Ψ be a 2[d/2]-dimensional Dirac spinor transforming under Spin(s, τ). Its charge
conjugated spinor is defined with either one of the following two ways:

ΨC+ := B−1
+ Ψ∗ or ΨC− := B−1

− Ψ∗. (2.202)

Suppose now that Ψ± is an eigenspinor of the Dirac operator with eigenvalue κ±
(τ,s), i.e.

/∇(τ,s)Ψ± = κ±
(τ,s)Ψ±, (2.203)

where /∇(1,N−1) ≡ /∇|dSN
is the Dirac operator on dSN with κ±

(1,N−1) ≡ ±M and
/∇(0,N−1) ≡ /̃∇ is the Dirac operator on SN−1 with κ±

(0,N−1) ≡ ±i(ℓ + (N − 1)/2).
The charge conjugated counterparts of the eigenspinors of the Dirac operator are also
eigenspinors. This can be understood as follows: taking the complex conjugate of
Eq. (2.203) and using Eqs. (2.201) and (2.202) we find

/∇(τ,s)Ψ
C+
± = +(κ±

(τ,s))
∗ ΨC+

± , (2.204)
/∇(τ,s)Ψ

C−
± = −(κ±

(τ,s))
∗ ΨC−

± , (2.205)

where we also used (Σab)∗ = B±ΣabB−1
± . It is clear from Eqs. (2.204)-(2.205) that

performing charge conjugation with B− changes the sign of the mass term on dSN .
Also, Eqs. (2.204)-(2.205) imply the following relations for the eigenspinors of the Dirac
operator on Sn (with Ψ± = χ

(s̃)
±ℓnσ and κ±

(0,n) = ±i(ℓn + n/2)):

(χ(s̃)
±ℓnσ)C− ∝ χ

(s̃′)
±ℓnσ, (χ(s̃)

±ℓnσ)C+ ∝ χ
(s̃′)
∓ℓnσ, (2.206)

where n is arbitrary, σ stands for angular momentum quantum numbers other than ℓn
and s̃ represents the [n/2] spin projection indices that correspond to this eigenspinor.
The label s̃′ is no necessarily equal to s̃.
Below we use the tilde notation for quantities defined on SN−1.
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2.9.2 Negative frequency solutions for N even

Case 1: N/2 even. The charge conjugation matrices B±, satisfying Eq. (2.201) on
dSN , are given by the following products of gamma matrices:

B+ = γ1
(N−4)/4∏
r=1

γ4rγ4r+1, (2.207)

B− = γ0
N/4∏
r=1

γ4r−2γ4r−1. (2.208)

On the odd-dimensional spatial part SN−1 there is only B̃− since [(N − 1)/2] is odd.
This is given by

B̃− = γ̃1
(N−4)/4∏
r=1

γ̃4rγ̃4r+1. (2.209)

For convenience, we choose to define charge conjugation using B+, which preserves the
sign of the mass term in the Dirac equation. Using the representation (2.38) for the
gamma matrices we can express B+ as follows:

B+ =
 0 iB̃−

−iB̃− 0

 . (2.210)

The charge conjugated counterparts of the positive frequency solutions ψ(−,s̃)
Mℓσ (Eq. (2.67))

can be constructed using Eqs. (2.206) and (2.210). Then we have (omitting the
normalization factors)

(ψ(−,s̃)
Mℓσ (t,ΩN−1))C+ =(−i)

iψ∗
Mℓ(t)(χ

(s̃)
−ℓσ(ΩN−1))C̃−

ϕ∗
Mℓ(t)(χ

(s̃)
−ℓσ(ΩN−1))C̃−


∝

iψ∗
Mℓ(t)χ

(s̃′)
−ℓσ(ΩN−1)

ϕ∗
Mℓ(t)χ

(s̃′)
−ℓσ(ΩN−1)

 . (2.211)

After normalizing these modes we find the negative frequency solutions (2.148). Similarly,
starting from the positive frequency solutions ψ(+,s̃)

Mℓσ (Eq. (2.68)) we find the negative
frequency modes (2.147).
Case 2: N/2 odd. The charge conjugation matrices on dSN are given by

B+ = γ0γ1
(N−2)/4∏
r=1

γ4rγ4r+1, (2.212)

B− = 1 ×
(N−2)/4∏
r=1

γ4r−2γ4r−1. (2.213)
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Since [(N − 1)/2] is even, the only charge conjugation matrix on SN−1 is B̃+. The
matrices B− and B̃+ are related to each other as follows:

B− =
(N−2)/4∏
r=1

γ̃4r−2γ̃4r−1 0
0 γ̃4r−2γ̃4r−1

 (2.214)

=
B̃+ 0

0 B̃+

 . (2.215)

In order to construct the negative frequency solutions it is convenient to use the charge
conjugation matrix B− that flips the sign of the mass term in the Dirac equation and
the “negative mass” spinors ψ(s,s̃)

−Mℓσ (Eqs. (2.81)-(2.82)). Then, by working as in the
case with N/2 even, we obtain the negative frequency solutions (2.147)-(2.148) (with
V

(−,s̃′)
Mℓσ ≡ (ψ(−,s̃)

−Mℓσ)C− and V (+,s̃′)
Mℓσ ≡ (ψ(+,s̃)

−Mℓσ)C−).

2.9.3 Negative frequency solutions for N odd

Case 1: [N/2] even. The only charge conjugation matrix on dSN is B−, which changes
the sign of the mass term of the Dirac equation. It is given by

B− = γ0
(N−1)/4∏
r=1

γ4r−2γ4r−1. (2.216)

Note that this is the matrix (2.208) with N → N−1, where now γ0 is given by Eq. (2.40).
Then Eq. (2.216) may be expressed in terms of the charge conjugation matrix on SN−1

as

B− = iγN B̃+ = B̃+iγ
N . (2.217)

By performing charge conjugation for the spinors ψ(s̃N−1)
−Mℓσ (Eq. (2.90)) we find

(ψ(s̃N−1)
−Mℓσ (t,ΩN−1))C−

= − i
[
ϕ∗
Mℓ(t)γN

(
χ̂

(s̃N−1)
−ℓσ (ΩN−1)

)C̃+ + iψ∗
Mℓ(t)γN

(
χ̂

(s̃N−1)
+ℓσ (ΩN−1)

)C̃+
]
,

(2.218)

where s̃N−1 represents the spin projection indices sN−1, sN−3, ..., s4, s2 on the lower-
dimensional spheres and the charge conjugated counterparts of the “hatted" spinors can
be found using Eqs. (2.85)-(2.87) and Eq. (2.206). More specifically, by introducing the
proportionality constant c, such that (χ(s̃N−1)

−ℓσ )C̃+ = cχ
(s̃′

N−1)
+ℓσ we find

(χ̂(s̃N−1)
±ℓσ )C̃+ = −i cχ̂(s̃′

N−1)
±ℓσ . (2.219)
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By substituting this equation into Eq. (2.218) we obtain the negative frequency solu-
tion (2.151).
Case 2: [N/2] odd. The only charge conjugation matrix on dSN is B+. This is given
by

B+ =γ0γ1
(N−3)/4∏
r=1

γ4rγ4r+1, (2.220)

=γ0B̃− = −B̃−γ
0. (2.221)

As in the case with [N/2] even, we introduce the proportionality constant m, such that
(χ(s̃N−1)

−ℓσ )C̃− = mχ
(s̃′

N−1)
−ℓσ , and we find

(χ̂(s̃N−1)
±ℓσ )C̃− = ∓mχ̂(s̃′

N−1)
±ℓσ . (2.222)

Then we use the matrix (2.221) in order to find the charge conjugate of the spinors
ψ

(s̃N−1)
Mℓσ (Eq. (2.89)) and working as in the previous case we obtain the negative frequency

solution (2.151).

2.10 APPENDIX B - SOME RAISING AND LOWERING OPERATORS
FOR THE PARAMETERS OF THE GAUSS HYPERGEOMETRIC
FUNCTION

The Gauss hypergeometric function F (a, b; c; z) satisfies [11]
d

dz
F (a, b; c; z) = ab

c
F (a+ 1, b+ 1; c+ 1; z), (2.223)(

z
d

dz
+ c− 1

)
F (a, b; c; z) = (c− 1)F (a, b; c− 1; z), (2.224)(

z
d

dz
+ a

)
F (a, b; c; z) = aF (a+ 1, b; c; z). (2.225)

By combining Eq. (2.225) with the following relation [23]:

(c− b)F (a+ 1, b− 1; c; z) + (b− a− 1)(1 − z)

× F (a+ 1, b; c; z) = (c− a− 1)F (a, b; c; z), (2.226)

we find (
a(b− c) + a(−b+ a+ 1)z − (−b+ a+ 1)z(1 − z) d

dz

)
× F (a, b; c; z) = a(b− c)F (a+ 1, b− 1; c; z). (2.227)
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Using Eqs. (2.223) and (2.224) we can show the ladder relations (2.124) and (2.125),
while using Eq. (2.227) we can show the ladder relations (2.126) and (2.127).

2.11 APPENDIX C - TRANSFORMATION PROPERTIES OF THE
POSITIVE FREQUENCY SOLUTIONS UNDER SPIN(N ,1)

2.11.1 Transformation properties for N > 2; some details for the
derivation of Eq. (2.136)

Here, we present some details for the derivation of Eq. (2.136) that expresses the spinorial
Lie derivative (2.115) of the analytically continued eigenspinors (2.67)-(2.68) as a linear
combination of solutions of the Dirac equation. The case with N odd (i.e. Eq. (2.145))
can be proved similarly and its derivation is not presented.
In order to obtain Eq. (2.136) it is useful to introduce the following relations (where
θ ≡ θN−1):

ξµ∂µ(ϕMℓ(t)ϕ̃ℓ ℓN−2(θ)) + i
ϕMℓ(t)
2 cosh t sin θ ψ̃ℓ ℓN−2(θ)

= 1
2(ℓ+ N−1

2 )

(
T

(+)
ϕ × T̃

(+)
ϕ̃

− T
(−)
ϕ × T̃

(−)
ϕ̃

)
ϕMℓ(t)ϕ̃ℓ ℓN−2(θ)

+
M(ℓN−2 + N−2

2 )
2(ℓ+ N

2 )(ℓ+ N−2
2 )

ψMℓ(t)ϕ̃ℓ ℓN−2(θ), (2.228)

ξµ∂µ(ϕMℓ(t)ψ̃ℓ ℓN−2(θ)) − i
ϕMℓ(θ)
2 cosh t sin θ ϕ̃ℓ ℓN−2(θ)

= 1
2(ℓ+ N−1

2 )

(
T

(+)
ϕ × T̃

(+)
ψ̃

− T
(−)
ϕ × T̃

(−)
ψ̃

)
ϕMℓ(t)ψ̃ℓ ℓN−2(θ)

−
M(ℓN−2 + N−2

2 )
2(ℓ+ N

2 )(ℓ+ N−2
2 )

ψMℓ(t)ψ̃ℓ ℓN−2(θ), (2.229)

ξµ∂µ(ψMℓ(t)ψ̃ℓ ℓN−2(θ)) + i
ψMℓ(t)
2 cosh t sin θ ϕ̃ℓ ℓN−2(θ)

= 1
2(ℓ+ N−1

2 )

(
T

(+)
ψ × T̃

(+)
ψ̃

− T
(−)
ψ × T̃

(−)
ψ̃

)
ψMℓ(t)ψ̃ℓ ℓN−2(θ)

+
M(ℓN−2 + N−2

2 )
2(ℓ+ N

2 )(ℓ+ N−2
2 )

ϕMℓ(t)ψ̃ℓ ℓN−2(θ), (2.230)
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ξµ∂µ(ψMℓ(t)ϕ̃ℓ ℓN−2(θ)) − i
ψMℓ(t)
2 cosh t sin θ ψ̃ℓ ℓN−2(θ)

= 1
2(ℓ+ N−1

2 )

(
T

(+)
ψ × T̃

(+)
ϕ̃

− T
(−)
ψ × T̃

(−)
ϕ̃

)
ψMℓ(t)ϕ̃ℓ ℓN−2(θ)

−
M(ℓN−2 + N−2

2 )
2(ℓ+ N

2 )(ℓ+ N−2
2 )

ϕMℓ(t)ϕ̃ℓ ℓN−2(θ). (2.231)

We can prove relation (2.228) as follows: We express ψ̃ℓ ℓN−2 on the left-hand side
in terms of ϕ̃ℓ ℓN−2 , dϕ̃ℓ ℓN−2/dθN−1 using Eq. (2.64). As for the right-hand side, we
expand T

(±)
ϕ , T̃

(±)
ϕ̃

using Eqs. (2.124)-(2.127) and then we express ψMℓ in terms of
ϕMℓ, dϕMℓ/dt using Eq. (2.74). Then it is straightforward to show that the two sides
are equal. Relations (2.229), (2.230) and (2.231) can be proved in the same way.
Let us now derive Eq. (2.136) for the negative spin projection solution (the positive spin
projection case can be treated in the same way). Substituting Eqs. (2.132) and (2.133)
into Eq. (2.115) we find

L s
ξ ψ

(−,s̃)
Mℓ ℓN−2 σ̃

= C1C2


ξµ∂µU

(s̃)
Mℓ ℓN−2 σ̃

− sin θ
2 cosh t γ̃

N−1U
(s̃)
Mℓ ℓN−2 σ̃

ξµ∂µD
(s̃)
Mℓ ℓN−2 σ̃

+ sin θ
2 cosh t γ̃

N−1D
(s̃)
Mℓ ℓN−2 σ̃

 , (2.232)

where C1 ≡ cN(Mℓ)/
√

2 and C2 ≡ cN−1(ℓ ℓN−2)/
√

2. Then, using

γ̃N−1 ˆ̃χ(s̃)
±ℓN−2 σ̃

(ΩN−2) = ˆ̃χ(s̃)
∓ℓN−2 σ̃

(ΩN−2)

(see Eq. (2.87)) and Eq. (2.135), it is straightforward to find

1
C1C2

L s
ξ ψ

(−,s̃)
Mℓ ℓN−2 σ̃

=


ˆ̃χ(s̃)

−ℓN−2 σ̃

(
ξµ∂µ[ϕMℓϕ̃ℓ ℓN−2 ] + i sin θ

2 cosh tϕMℓψ̃ℓ ℓN−2

)

i ˆ̃χ(s̃)
−ℓN−2 σ̃

(
ξµ∂µ[ψMℓϕ̃ℓ ℓN−2 ] − i sin θ

2 cosh tψMℓψ̃ℓ ℓN−2

)
 .

+


−i ˆ̃χ(s̃)

+ℓN−2 σ̃

(
ξµ∂µ[ϕMℓψ̃ℓ ℓN−2 ] − i sin θ

2 cosh tϕMℓϕ̃ℓ ℓN−2

)
ˆ̃χ(s̃)

+ℓN−2 σ̃

(
ξµ∂µ[ψMℓψ̃ℓ ℓN−2 ] + i sin θ

2 cosh tψMℓϕ̃ℓ ℓN−2

)
 (2.233)
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At this point we can use relations (2.228)-(2.231) to find

L s
ξ ψ

(−,s̃)
Mℓ ℓN−2 σ̃

= C1C2

×

 1
2(ℓ+ N−1

2 )

 T (+)
ϕ ϕMℓ

iT
(+)
ψ ψMℓ

[ ˆ̃χ(s̃)
−ℓN−2 σ̃

T̃
(+)
ϕ̃

ϕ̃ℓ ℓN−2 − i ˆ̃χ(s̃)
+ℓN−2 σ̃

T̃
(+)
ψ̃

ψ̃ℓ ℓN−2

]

− 1
2(ℓ+ N−1

2 )

 T (−)
ϕ ϕMℓ

iT
(−)
ψ ψMℓ

[ ˆ̃χ(s̃)
−ℓN−2 σ̃

T̃
(−)
ϕ̃

ϕ̃ℓ ℓN−2 − i ˆ̃χ(s̃)
+ℓN−2 σ̃

T̃
(−)
ψ̃

ψ̃ℓ ℓN−2

]

− i
M(ℓN−2 + N−2

2 )
2(ℓ+ N

2 )(ℓ+ N−2
2 )

iψMℓ

ϕMℓ

[ ˆ̃χ(s̃)
−ℓN−2 σ̃

ϕ̃ℓ ℓN−2 + i ˆ̃χ(s̃)
+ℓN−2 σ̃

ψ̃ℓ ℓN−2

]. (2.234)

Then using Eqs. (2.133) and (2.135) as well as the ladder relations (2.124)-(2.127) we
obtain Eq. (2.136).

2.11.2 Transformation properties for N = 2.

The massive positive frequency solutions (2.67)-(2.68) for N = 2 are given by

ψ
(−)
Mℓ (t, φ) = c2(Mℓ)

2
√
π

 ϕMℓ(t)
iψMℓ(t)

 e−i(ℓ+1/2)φ, (2.235)

ψ
(+)
Mℓ (t, φ) = c2(Mℓ)

2
√
π

iψMℓ(t)
ϕMℓ(t)

 e+i(ℓ+1/2)φ, (2.236)

where 0 ≤ φ ≡ θ1 < 2π and ℓ = 0, 1, ... . By calculating the spinorial Lie derivative
with respect to the boost Killing vector (2.113) we arrive again at Eq. (2.115), where
∂ψ

(±)
Mℓ/∂φ = ±i(ℓ+ 1

2)ψ(±)
Mℓ . By expressing cosφ and sinφ in terms of exp{(±iφ)} and

using the ladder operators (2.124), (2.125) with N = 2 it is straightforward to find

L s
ξ ψ

(±)
Mℓ =k

(+)

2
c2(Mℓ)

c2(M, ℓ+ 1)ψ
(±)
M ℓ+1 + k(−)

2
c2(Mℓ)

c2(M, ℓ− 1)ψ
(±)
M ℓ−1 (2.237)

= − i

2(ℓ+ 1 − iM)ψ(±)
M ℓ+1 − i

2(ℓ+ iM)ψ(±)
M ℓ−1. (2.238)

By using Eq. (2.238) we have verified that (L s
ξ ψMℓ, ψM ℓ±1) + (ψMℓ,L s

ξ ψM ℓ±1) = 0,
in agreement with the de Sitter invariance of the inner product (2.92).
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2.12 APPENDIX D - DERIVATION OF THE MASSLESS WIGHTMAN
TWO-POINT FUNCTION USING THE MODE-SUM METHOD

In this Appendix we present the derivation of the massless Wightman two-point function
using the mode-sum method (2.163) for N even. The derivation of the two-point function
for N odd has many similarities with the even-dimensional case and therefore is just
briefly discussed. The case with N = 2 is presented separately at the end.
Let us first introduce the notation and some useful relations used in the calculations.
The functions (2.61)-(2.62) used in the recursive construction of the eigenspinors of the
Dirac operator on SN−r (N − r = 1, 2, ..., N − 2) are denoted as

ϕ̃ℓN−r ℓN−r−1(θN−r) ≡ ϕ̃
(N−r)
ℓN−r ℓN−r−1

, ψ̃ℓN−r ℓN−r−1(θN−r) ≡ ψ̃
(N−r)
ℓN−i ℓN−r−1

, (2.239)

with ϕ̃(N−r)
0 0 = cos (θN−r/2) and ψ̃(N−r)

0 0 = sin (θN−r/2) (see Eqs. (2.251) and (2.252)
below). We let θN−r = (θN−r, θN−r−1, ..., θ1). The dimension of the Spin(N − 1,1)
representation is denoted as D ≡ 2N/2. Also, let s̃N−2 represent the spin projection
indices (sN−2, sN−4, ..., s4, s2), s̃N−4 represent (sN−4, ..., s4, s2) and so forth. Similarly,
σN−r represents the angular momentum quantum numbers (ℓN−r, ℓN−r−1, ..., ℓ2, ℓ1) etc.
Note that for θ′

N−1 = θ′
N−2 = ... = θ′

1 = 0 we have

cosµ|θ′=0 = − sinh t sinh t′ + cosh t cosh t′ cos θN−1, (2.240)

(see Eq. (2.28)) while the only non-zero (vielbein basis) components of the tangent
vector na|θ′=0 (see Eqs. (2.34)−(2.36)) are given by

n0|θ′=0 = 1
sinµ(cosh t sinh t′ − sinh t cosh t′ cos θN−1), (2.241)

nN−1|θ′=0 = cosh t′
sinµ sin θN−1 = 1

cosh tnθN−1|θ′=0. (2.242)

(For brevity we will denote n0|θ′=0, nN−1|θ′=0, and /n|θ′=0 by n0, nN−1 and /n respectively.)
Also, notice that Spin(N − 1, 1) transformation matrices can be expressed as

exp
{
aΣ0j

}
= exp

{
a

2 γ
0γj

}
= 1 cosh a2 + γ0γj sinh a2 , (2.243)

exp
{
bΣkj

}
= exp

{
b

2 γ
kγj

}
= 1 cos b2 + γkγj sin b2 , (2.244)

(with k ̸= j and k, j = 1, 2, ..., N − 1) where a, b are the transformation parameters.
The corresponding generators are given by Eq. (2.42). Also, many of the following
calculations involve the variables x = π/2 − it, x′ = π/2 − it′ (see Eq. (2.6)).
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We can now start deriving the massless Wightman two-point function for N even. By
expanding the summation over the spin projections (s = ±) Eq. (2.163) becomes

W0
(
(t,θN−1), (t′,0)

)
=

∞∑
ℓ=0

∑
σN−2

∑
s̃N−2

[
ψ

(+,s̃N−2)
0ℓσN−2

(t,θN−1)ψ
(+,s̃N−2)
0ℓσN−2

(t′,0) + ψ
(−,s̃N−2)
0ℓσN−2

(t,θN−1)ψ
(−,s̃N−2)
0ℓσN−2

(t′,0)
]
.

(2.245)

Then using Eqs. (2.188)-(2.189) we find

W0
(
(t,θN−1), (t′,0)

)
= −

∣∣∣∣cN(M = 0)√
2

∣∣∣∣2 ∞∑
ℓ=0

∑
σN−2

ϕ0ℓ(t)ϕ∗
0ℓ(t′)

×
∑
s̃N−4

∑
sN−2

 0 χ
(sN−2,s̃N−4)
−ℓσN−2

(θN−1)χ(sN−2,s̃N−4)
−ℓσN−2

(0)†

χ
(sN−2,s̃N−4)
+ℓσN−2

(θN−1)χ(sN−2,s̃N−4)
+ℓσN−2

(0)† 0

 ,
(2.246)

where χ(sN−2,s̃N−4)
±ℓσN−2

are the eigenspinors on SN−1. In order to proceed we need to express
the eigenspinors on SN−r, with N−r odd, in terms of eigenspinors on SN−r−2. Therefore,
using Eqs. (2.84), (2.55) and (2.56) we derive the following two recursive relations:

χ
(−,s̃N−r−3)
±ℓN−r σN−r−1

(θN−r) = cN−r(ℓN−r ℓN−r−1)√
2

cN−r−1(ℓN−r−1 ℓN−r−2)√
2

1√
2

×


(1 + i)ϕ̃(N−r−1)

ℓN−r−1 ℓN−r−2
[ϕ̃(N−r)
ℓN−r ℓN−r−1

± iψ̃
(N−r)
ℓN−r ℓN−r−1

]

−(1 + i)ψ̃(N−r−1)
ℓN−r−1 ℓN−r−2

[ϕ̃(N−r)
ℓN−r ℓN−r−1

∓ iψ̃
(N−r)
ℓN−r ℓN−r−1

]


× χ

(s̃N−r−3)
−ℓN−r−2, σN−r−3

(θN−r−2), (2.247)

χ
(+,s̃N−r−3)
±ℓN−r σN−r−1

(θN−r) = cN−r(ℓN−r ℓN−r−1)√
2

cN−r−1(ℓN−r−1 ℓN−r−2)√
2

1√
2

×


(−1 + i)ψ̃(N−r−1)

ℓN−r−1 ℓN−r−2
[ϕ̃(N−r)
ℓN−r ℓN−r−1

± iψ̃
(N−r)
ℓN−r ℓN−r−1

]

(−1 + i)ϕ̃(N−r−1)
ℓN−r−1 ℓN−r−2

[ϕ̃(N−r)
ℓN−r ℓN−r−1

∓ iψ̃
(N−r)
ℓN−r ℓN−r−1

]


× χ

(s̃N−r−3)
+ℓN−r−2, σN−r−3

(θN−r−2) (2.248)

(for r odd and N−3 ≥ r ≥ 1). Since ψ̃(N−r)
ℓN−r ℓN−r−1

(0) = 0 and ϕ̃(N−r)
ℓN−r ℓN−r−1

(0) is non-zero
only for ℓN−r−1 = 0, it is clear from the recursive relations (2.247)-(2.248) that the only
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non-vanishing terms in Eq. (2.246) are the ones with ℓN−2 = ℓN−3 = ... = ℓ2 = ℓ1 = 0.
Thus, only the summation over ℓN−1 ≡ ℓ survives in the mode-sum. Substituting
Eqs. (2.247) and (2.248) (with r = 1) into Eq. (2.246) one obtains (after some
calculations)

W0
(
(t,θN−1), (t′,0)

)
=
∣∣∣∣cN(M = 0)√

2

∣∣∣∣2 ∞∑
ℓ=0

ϕ0ℓ(t)ϕ∗
0ℓ(t′)

∣∣∣∣cN−1(ℓ0)√
2

∣∣∣∣2 ∣∣∣∣cN−2(00)√
2

∣∣∣∣2
× ϕ̃

(N−1)
ℓ0 (0)∗

[
iϕ̃

(N−1)
ℓ0 (θN−1) γ0 + ψ̃

(N−1)
ℓ0 (θN−1) γN−1

]

×

I2 ⊗

 ϕ̃
(N−2)
00 ψ̃

(N−2)
00

−ψ̃(N−2)
00 ϕ̃

(N−2)
00

⊗ ID/4


×

I2 ⊗
∑
s̃N−4

χ(s̃N−4)
−00 (θN−3)χ(s̃N−4)

−00 (0)† 0
0 χ

(s̃N−4)
+00 (θN−3)χ(s̃N−4)

+00 (0)†

 , (2.249)

where Id is the identity matrix of dimension d. Also, we are going to use the following
results:

|cN−1(ℓ0)|2 = Γ(ℓ+ 1)Γ(ℓ+N − 1)
2N−3|Γ(ℓ+ N−1

2 )|2
, (2.250)

ϕ̃
(N−1)
ℓ0 (θN−1) = κ

(N−1)
ϕ (ℓ0) cos θN−1

2 F

(
ℓ+N − 1,−ℓ; N − 1

2 ; sin2 θN−1

2

)
, (2.251)

ψ̃
(N−1)
ℓ0 (θN−1) = κ

(N−1)
ϕ (ℓ0)(ℓ+ (N − 1)/2)

(N − 1)/2 sin θN−1

2

× F

(
ℓ+N − 1,−ℓ; N + 1

2 ; sin2 θN−1

2

)
, (2.252)

where

κ
(N−1)
ϕ (ℓ0) =

Γ(ℓ+ N−1
2 )

ℓ! Γ(N−1
2 )

(2.253)

(see Eqs. (2.57) and (2.61)−(2.63)).
We complete the derivation of the massless two-point function in three steps: 1) we
calculate the proportionality constant (and we show that it agrees with the proportionality
constant in Eq. (2.183); 2) we obtain a closed-form result for the infinite sum over ℓ
and we determine the dependence on {t, θN−1, t

′}; 3) we obtain analytic expressions
for the terms of the two-point function that depend only on the angular variables
θN−2, θN−3, ..., θ1. We call the latter the “angular part” of the two-point function and
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we denote it as follows:

W̃0(ΩN−2) ≡

N−1∏
j=3

∣∣∣∣cN−j(00)√
2

∣∣∣∣−2
×

I2 ⊗

 ϕ̃
(N−2)
00 ψ̃

(N−2)
00

−ψ̃(N−2)
00 ϕ̃

(N−2)
00

⊗ ID/4


×

I2 ⊗
∑
s̃N−4

χ(s̃N−4)
−00 (θN−3)χ(s̃N−4)

−00 (0)† 0
0 χ

(s̃N−4)
+00 (θN−3)χ(s̃N−4)

+00 (0)†

 .
(2.254)

After completing these steps it will be clear that the obtained two-point function is of
the form (2.182) (i.e. it agrees with the construction presented in Ref. [19]).

2.12.1 The proportionality constant

The proportionality constant for the massless two-point function arises from the normal-
ization factors in Eq. (2.249). (Note that apart from cN(M = 0) and cN−1(ℓ0) there
are N − 2 additional normalization factors; one for each lower-dimensional sphere.) The
overall contribution from the normalization factors is given by the following product:∣∣∣∣cN(M = 0)√

2

∣∣∣∣2 ∣∣∣∣cN−1(ℓ0)√
2

κ
(N−1)
ϕ (ℓ0)

∣∣∣∣2 N−1∏
j=2

∣∣∣∣cN−j(00)√
2

∣∣∣∣2 (2.255)

= 1
2π

∣∣∣∣cN(M = 0)√
2

∣∣∣∣2 ∣∣∣∣cN−1(ℓ0)√
2

κ
(N−1)
ϕ (ℓ0)

∣∣∣∣2 N−2∏
j=2

∣∣∣∣cN−j(00)√
2

∣∣∣∣2 (2.256)

where c1(00) ≡ 1/
√
π is the normalization factor for eigenspinors on S1, while the nor-

malization factors for eigenspinors on higher-dimensional spheres are given by Eq. (2.57).
Using Eqs. (2.250) and (2.253) we observe that∣∣∣∣cN−1(ℓ0)κ(N−1)

ϕ (ℓ0)
∣∣∣∣2 =

∣∣∣∣cN−1(00)
∣∣∣∣2 (N − 1)ℓ

ℓ! , (2.257)

where (N − 1)ℓ = Γ(N − 1 + ℓ)/Γ(N − 1) is the Pochhamer symbol for the rising
factorial. Using Eq. (2.257) we may rewrite Eq. (2.255) as

1
π2N2N−2

N−2∏
j=1

Γ(N − j)
|Γ(N−j

2 )|22N−j−2
× (N − 1)ℓ

ℓ!

= Γ(N/2)
2N/2 (2π)N/2 × (N − 1)ℓ

ℓ! , (2.258)

where we also used Eqs. (2.57), (2.110) and the Legendre duplication formula (2.109).
Equation (2.258) clearly gives the desired form for the proportionality constant (see
Eq. (2.183)). The ℓ-dependence in Eq. (2.258) will be discussed later (it will be used in
the summation over ℓ).
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2.12.2 Obtaining a closed-form expression for the series

Using Eqs. (2.249), (2.251), (2.252) and (2.258) we collect all the ℓ-dependent terms of
the two-point function. Then the mode-sum expression (2.249) can be written as

W0
(
(t,θN−1), (t′,0)

)
= Γ(N/2)

2N/2 (2π)N/2 [iAγ0 +BγN−1] W̃0(ΩN−2), (2.259)

where

A = cos θN−1

2

∞∑
ℓ=0

(N − 1)ℓ
ℓ! ϕ0ℓ(t)ϕ∗

0ℓ(t′)F
(
ℓ+N − 1,−ℓ; N − 1

2 ; sin2 θN−1

2

)
,

(2.260)

B =
2 sin θN−1

2
N − 1

∞∑
ℓ=0

(N − 1)ℓ
ℓ!

(
ℓ+ N − 1

2

)
ϕ0ℓ(t)ϕ∗

0ℓ(t′)

× F

(
ℓ+N − 1,−ℓ; N + 1

2 ; sin2 θN−1

2

)
. (2.261)

Using Eq. (2.190) for ϕ0ℓ(t), ϕ∗
0ℓ(t′) we find

A = cos (θN−1/2)
(cos(x/2) [cos(x′/2)]∗)N−1

∞∑
ℓ=0

(N − 1)ℓ
ℓ!

(
ρ(t, t′)

)ℓ
× F

(
ℓ+N − 1,−ℓ; N − 1

2 ; sin2 θN−1

2

)
, (2.262)

B = 2
N − 1

sin (θN−1/2)
(cos(x/2) [cos(x′/2)]∗)N−1

∞∑
ℓ=0

(N − 1)ℓ
ℓ! (ℓ+ N − 1

2 )
(
ρ(t, t′)

)ℓ
× F

(
ℓ+N − 1,−ℓ; N + 1

2 ; sin2 θN−1

2

)
. (2.263)

where

ρ(t, t′) ≡ tan x2

[
tan x

′

2

]∗

= (1 − i sinh t)(1 + i sinh t′)
cosh t cosh t′ . (2.264)

Let us first find the infinite sum in A. By using the formula [22]
∞∑
k=0

(a)k
k! t

kF (−k, a+ k; c; z) = (1 − t)−aF (a2 ,
a+ 1

2 ; c; −4t
(1 − t)2 z), |t| < 1 (2.265)

Eq. (2.262) can be written as

A = cos (θN−1/2)
(cos (x/2) [cos (x′/2)]∗)N−1 (1 − ρ(t, t′))−N+1

× F
(
N − 1

2 ,
N

2 ; N − 1
2 ; −4ρ(t, t′)

(1 − ρ(t, t′))2 sin2 θN−1

2

)
(2.266)

= cos (θN−1/2)
(cos (x/2) [cos (x′/2)]∗)N−1

(1 − ρ(t, t′))−N+1 ((1 − ρ(t, t′))2)N/2

[(1 − ρ(t, t′))2 + 4ρ(t, t′) sin2( θN−1
2 )]N/2

, (2.267)
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where we also used

F (a, b; b; z) = 1
(1 − z)a . (2.268)

(Note that since |ρ(t, t′)| = 1 the series in Eq. (2.262) diverges. Therefore, we make the
replacement t → t− iϵ with ϵ > 0 before applying (2.265) and then we let ϵ → 0.) By
expressing x, x′ and ρ(t, t′) in terms of t and t′ we can write Eq. (2.267) as

A =i sinh t− t′

2 cos θN−1

2 (sin2 µ

2 )−N/2 (2.269)

= iw1(t, θN−1, t
′) (sin2 µ

2 )−N/2. (2.270)

(The biscalar function w1 is given in Eq. (2.196), while sin2 (µ/2) can be found by
Eq. (2.240)).
Let us now find the infinite sum in B. We can rewrite Eq. (2.263) as

B = 2
N − 1

sin (θN−1/2)
(cos(x/2) [cos(x′/2)]∗)N−1

×
(
ρ
∂

∂ρ
+ N − 1

2

)

×
∞∑
ℓ=0

(N − 1)ℓ
ℓ! ρℓ F

(
ℓ+N − 1,−ℓ; N + 1

2 ; sin2 θN−1

2

)
, (2.271)

where t should be understood as t− iϵ (ϵ > 0) in order to achieve convergence in this
series. (We take the limit ϵ → 0 at the end of the calculation.) At this point we use
again the formula (2.265) and then we introduce the variable

X ≡ −4ρ
(1 − ρ)2 sin2 θN−1

2 . (2.272)

After some calculations we can rewrite B as follows:

B = 2
N − 1

sin (θN−1/2)
(cos(x/2) [cos(x′/2)]∗)N−1

1 + ρ

(1 − ρ)N

× [X ∂

∂X
+ N − 1

2 ]F (N − 1
2 ,

N

2 ; N + 1
2 ;X), (2.273)

where we notice the appearance of the raising operator for the first parameter of the
hypergeometric function (2.225). Then using Eq. (2.268) we obtain

B = sin (θN−1/2)
(cos (x/2) [cos (x′/2)]∗)N−1

× 1 + ρ(t, t′)
[(1 − ρ(t, t′))2 + 4ρ(t, t′) sin2( θN−1

2 )]N/2

((1 − ρ(t, t′))2)N/2

(1 − ρ(t, t′))N . (2.274)
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After a straightforward calculation Eq. (2.274) can be written as

B = cosh t+ t′

2 sin θN−1

2 (sin2 µ

2 )−N/2 (2.275)

= w2(t, θN−1, t
′)(sin2 µ

2 )−N/2. (2.276)

(The biscalar function w2 is given in Eq. (2.197).)
By combining Eqs. (2.270) and (2.276), the two-point function (2.259) can be written
in the following form:

W0
(
(t,θN−1), (t′,0)

)
= β0(µ)

sin (µ/2)[−w1γ
0 + w2γ

N−1] W̃0(ΩN−2), (2.277)

where β0(µ) is given by Eq. (2.179). We can simplify this expression by using /n2 = 1
and observing that

/n[−w1γ
0 + w2γ

N−1] = (w1 n0 + w2 nN−1)1 + (w2 n0 + w1 nN−1)γ0γN−1 (2.278)

= sin µ2 (1 cosh λ2 + γ0γN−1 sinh λ2 ) (2.279)

= sin µ2 exp
{

(λ2γ
0γN−1)

}
, (2.280)

where in the last line we used Eq. (2.243). (For the definition of λ see Eq. (2.195).)
Substituting Eq. (2.280) into the expression (2.277) of the two-point function we find

W0
(
(t,θN−1), (t′,0)

)
= β0(µ)/n exp

{
(λ2γ

0γN−1)
}
W̃0(ΩN−2).

The bispinor exp
{
(λ2γ

0γN−1)
}
W̃0(ΩN−2) is the spinor parallel propagator (see Eq. (2.194)).

2.12.3 Determining the “angular part” of the two-point function

In this section of the Appendix we show that the “angular part” W̃0(ΩN−2) (which
is defined in Eq. (2.254)) can be written as a product of N − 2 rotation matrices ∈
Spin(N − 1, 1) (see Eq. (2.244)). As is well known, these rotation matrices can be
constructed by exponentiating the generators (2.42).
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It is convenient to express the 2N/2-dimensional gamma matrices (2.38) using the
tensor-product notation as follows:

γ0 = iσ2 ⊗ I2N/2−1 ,

γN−r = [
[r/2]+1⊗
i=1

σ1] ⊗ σ3 ⊗ I2(N−3−r)/2 ,

γN−r−1 = [
[r/2]+1⊗
i=1

σ1] ⊗ σ2 ⊗ I2(N−3−r)/2 , r odd, 1 ≤ r ≤ N − 3,

γ1 =
N/2⊗
i=1

σ1, (2.281)

where the Pauli matrices are given by

σ1 =
 0 i

−i 0

 , σ2 =
0 1

1 0

 , σ3 =
1 0

0 −1

 . (2.282)

Note that they satisfy σiσj = δij + i
∑
k ϵ

ijkσk, where ϵijk is the totally antisymmetric
tensor (the latter equals +1 if (i, j, k) is an even permutation of (1, 2, 3) and −1 if
it is an odd permutation). The form of the Pauli matrices we use here is related to
their conventional form as follows: σ1 = σ2, σ2 = −σ1, σ3 = σ3, where lower indices
are used to label the conventional Pauli matrices. For later convenience, consider the
rotation generators γN−r+1γN−r/2 and γN−rγN−r−1/2 (r odd) of Spin(N − 1, 1) (see
Eq. (2.42)). Using Eqs. (2.281) for the gamma matrices the generators can be written as

1
2γ

N−r+1γN−r = I2[r/2] ⊗ (− i

2σ
3) ⊗ σ3 ⊗ I2(N−3−r)/2 , r odd, N − 3 ≥ r ≥ 3,

(2.283)
1
2γ

N−rγN−r−1 = I2[r/2] ⊗ I2 ⊗ (− i

2σ
1) ⊗ I2(N−3−r)/2 , r odd, N − 3 ≥ r ≥ 1

(2.284)
and the corresponding rotation matrices with parameters θN−r, θN−r−1 are respectively
found to be

exp
{
θN−r

2 γN−r+1γN−r
}

= I2[r/2] ⊗ exp
[
−iθN−r

2 σ3 ⊗ σ3
]

⊗ I2(N−3−r)/2 ,

r odd, N − 3 ≥ r ≥ 3 (2.285)

and

exp
{
θN−r−1

2 γN−rγN−r−1
}

= I2[r/2] ⊗ exp
{
I2 ⊗ (−iθN−r−1

2 σ1)
}

⊗ I2(N−3−r)/2 ,

r odd, N − 3 ≥ r ≥ 1. (2.286)
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Similarly, one can show that

exp
[
θ1

2 γ
2γ1

]
=I2(N−2)/2 ⊗ exp

{
−iθ1

2 σ
3
}
. (2.287)

Our goal is to express the “angular part" of the two-point function (2.254) as a product
consisting of rotation matrices such as (2.285), (2.286) and (2.287). By using Eq. (2.286)
we can write the “angular part” (2.254) of the two point function as follows:

W̃0(ΩN−2) = exp
{

[θN−2

2 γN−1γN−2]
}I2 ⊗

X(N−3)
− 0
0 X

(N−3)
+

 , (2.288)

where we also used ϕ̃
(N−2)
0 0 = cos (θN−2/2), ψ̃(N−2)

0 0 = sin (θN−2/2) (see Eqs. (2.251)-
(2.252)) and we defined

X
(N−r)
± ≡

N−1∏
j=r

∣∣∣∣cN−j(00)√
2

∣∣∣∣−2

×

 ∑
s̃N−r−3

∑
sN−r−1

χ
(sN−r−1,s̃N−r−3)
±00 (θN−r)χ(sN−r−1,s̃N−r−3)

±00 (0)†

 ,
r odd, N − 3 ≥ r ≥ 3, (2.289)

with X(1)
± ≡ exp{[±iθ1/2]}. In order to proceed we use the recursive relations (2.247)-

(2.248) to find the following recursive relation:

X
(N−r)
± =


(ϕ̃(N−r)

00 ± iψ̃
(N−r)
00 )1 0

0 (ϕ̃(N−r)
00 ∓ iψ̃

(N−r)
00 )1



ϕ̃

(N−r−1)
00 1 ψ̃

(N−r−1)
00 1

−ψ̃(N−r−1)
00 1 ϕ̃

(N−r−1)
00 1



×


X

(N−r−2)
− 0

0 X
(N−r−2)
+



=




exp
{
(±i θN−r

2 )
}

0

0 exp
{
(∓i θN−r

2 )
}



cos θN−r−1
2 sin θN−r−1

2

− sin θN−r−1
2 cos θN−r−1

2

⊗ I2(N−3−r)/2



×


X

(N−r−2)
− 0

0 X
(N−r−2)
+

 , r odd, N − 3 ≥ r ≥ 3, (2.290)

where we expanded the summation over the spin projection index sN−r−1 in Eq. (2.289)
and we used ϕ̃

(n)
0 0 = cos (θn/2), ψ̃(n)

0 0 = sin (θn/2). Then, by combining Eqs. (2.285),
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(2.286) and (2.290), we can show that

I2[r/2] ⊗


X

(N−r)
− 0

0 X
(N−r)
+

 = exp
{
θN−r

2 γN−r+1γN−r
}

exp
{
θN−r−1

2 γN−rγN−r−1
}

×

I2[(r+2)/2] ⊗


X

(N−(r+2))
− 0

0 X
(N−(r+2))
+


 ,

r odd, N − 3 ≥ r ≥ 3. (2.291)

We can now sequentially apply the recursive relation (2.291) for r = 3, 5, ..., N − 3 in the
expression for the “angular part” of the two-point function (2.288). It is straightforward
to find

W̃0(ΩN−2)

= exp
{
θN−2

2 γN−1γN−2
}

exp
{
θN−3

2 γN−2γN−3
}
... exp

{
θ2

2 γ
3γ2

}
exp

{
θ1

2 γ
2γ1

}
(2.292)

=
N−1∏
j=2

exp
{
θN−j

2 γN−j+1γN−j
}
. (2.293)

2.12.4 Massless Wightman two-point function for N odd

The derivation for N odd shares many similarities with the case with N even. Therefore,
we just outline the steps involved in the calculation.
Substituting the massless positive frequency modes (2.200) into the mode-sum expres-
sion (2.163) and working as in the case with N even it is straightforward to derive
Eq. (2.259) (where A, B and the proportionality constant are calculated in the same
way as for N even). The “angular part” of the two-point function is given by

W̃0(ΩN−2) ≡

N−1∏
j=2

∣∣∣∣cN−j(00)√
2

∣∣∣∣−2


×
∑
s̃N−3

χ(s̃N−3)
−00 (θN−2)χ(s̃N−3)

−00 (0)† 0
0 χ

(s̃N−3)
+00 (θN−2)χ(s̃N−3)

+00 (0)†

 .
(2.294)
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The gamma matrices (2.40) have dimension D = 2[N/2] and can be expressed in terms
of Pauli matrices as follows:

γ0 = iσ3 ⊗ I2[N/2]−1 ,

γN−1 = σ2 ⊗ I2[N/2]−1 ,

γN−r−1 = [
[r/2]+1⊗
i=1

σ1] ⊗ σ3 ⊗ I2(N−4−r)/2 ,

γN−r−2 = [
[r/2]+1⊗
i=1

σ1] ⊗ σ2 ⊗ I2(N−4−r)/2 , r = odd, 1 ≤ r ≤ N − 4, (2.295)

γ1 =
[N/2]⊗
i=1

σ1. (2.296)

Then, as in the case with N even, we can obtain Eqs. (2.285), (2.286) and (2.291)
with N → N − 1 and r odd, 1 ≤ r ≤ N − 4. The recursive relation (2.291) (with
N → N − 1) can be sequentially applied for r = 1, 3, ..., N − 4 in Eq. (2.294). Then
one obtains the final expression (2.292) for the “angular part” .

2.12.5 Massless Wightman two-point function on dS2

In this subsection we derive the massless spinor Wightman two-point function on dS2

using the mode-sum method (2.163) and we show that it agrees with Eq. (2.182). The
derivation is slightly different but simpler than the case with N > 2. Note that in this
subsection we use the same (bi)scalar functions that we introduced for the case with
N > 2, with θN−1 → φ − φ′ and 0 ≤ φ, φ′ < 2π. (See Eqs. (2.195)-(2.199).) The
geodesic distance and the tangent vector components are

cosµ = − sinh t sinh t′ + cosh t cosh t′ cos(φ− φ′), (2.297)

n0 = 1
sinµ(cosh t sinh t′ − sinh t cosh t′ cos (φ− φ′)), (2.298)

n1 = 1
sinµ cosh t′ sin (φ− φ′), (2.299)

where n1 = nφ/ cosh t. (Note that by letting φ − φ′ → θN−1 in these expressions we
obtain Eqs. (2.241) and (2.242). This makes many steps of the calculation the same as
in the case with N > 2.) The massless positive frequency solutions (2.188)-(2.189) for
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N = 2 are given by

ψ
(−)
0ℓ (t, φ) = 1

2
√
π

ϕ0ℓ(t)
0

 e−i(ℓ+1/2)φ, (2.300)

ψ
(+)
0ℓ (t, φ) = 1

2
√
π

 0
ϕ0ℓ(t)

 e+i(ℓ+1/2)φ, (2.301)

where ϕ0ℓ(t) is given as function of x = π/2 − it by Eq. (2.190) (ℓ = 0, 1, ...). After a
straightforward calculation the mode-sum method (2.163) gives the following expression
for the Wightman two-point function:

W0[(t, φ), (t′, φ′)] = − 1
4π

1
cos (x/2) [cos (x′/2)]∗

 0 M−

M+ 0

 , (2.302)

where

M± = e±i(φ−φ′)/2
∞∑
ℓ=0

(
tan x2

[
tan x

′

2

]∗

e±i(φ−φ′)
)ℓ

= e±i(φ−φ′)/2
(

1 − tan x2

[
tan x

′

2

]∗

e±i(φ−φ′)
)−1

. (2.303)

Since
∣∣∣tan x

2

[
tan x′

2

]∗
e±i(φ−φ′)

∣∣∣ = 1 we let t → t− iϵ (i.e. x → x− ϵ, where ϵ > 0) in
order for the series to converge and then we let ϵ → 0. By expressing x, x′ in terms of
t, t′ we can show the following relations:

M± = 1
w∓

(2.304)

= w±

sin2(µ/2) , (2.305)

where in the second line we used the identity w+w− = sin2(µ/2). By substituting
Eq. (2.305) into the two-point function (2.302) it is straightforward to find

W0[(t, φ), (t′, φ′)] = β0(µ)
sin (µ/2)[−w1γ

0 + w2γ
1]. (2.306)

By repeating the same calculation that resulted in Eq. (2.280) we find

W0[(t, φ), (t′, φ′)] = β0(µ)/n exp
{
λ

2γ
0γ1

}
, (2.307)

where the exponential is the spinor parallel propagator (2.194) for dS2.
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2.13 APPENDIX E - TESTING OUR RESULT FOR THE SPINOR
PARALLEL PROPAGATOR

In this Appendix we show that our result for the spinor parallel propagator (i.e. Eq. (2.194))
satisfies the defining properties (2.165)− (2.167), as introduced in Ref. [19].

2.13.1 Parallel transport equation

Our result for the spinor parallel propagator (2.194) has to satisfy the parallel transport
equation (2.167). Starting from Eq. (2.167) and expressing the spinor parallel propagator
in terms of the massless Wightman function (using Eq. (2.182)) one can obtain Eq. (2.186).
For convenience, we use Eq. (2.186) rather than Eq. (2.167) in order to test the parallel
transport-property of the spinor parallel propagator. Let us express our two-point function
in the form (2.277). Since no derivatives act on the “angular part” it is straightforward
to write Eq. (2.186) as follows:

(D(t, θN−1, t
′) + N − 1

2 cot µ2 )
[

sin−N µ

2 (−w1(t, θN−1, t
′) γ0+w2(t, θN−1, t

′) γN−1)
]

= 0, (2.308)

where the differential operator D(t, θN−1, t
′) is defined as

D(t, θN−1, t
′) ≡ [nt∂t + nθN−1∂θN−1 − nθN−1

sinh t
2 γ0γN−1 ]θ′=0. (2.309)

(The tangent vectors for θ′ = 0 are given by Eqs. (2.241)-(2.242).) Now our initial
problem has reduced to a partial differential equation involving only the coordinates t, θN−1

and t′. This is expected because geodesics on SN−1 lie along the line (θN−2, ..., θ2, θ1) =
(θ′
N−2, ..., θ

′
2, θ

′
1) = (0, ..., 0, 0). In the rest of this Appendix we implicitly let θ′ =

0 in all relevant quantities unless otherwise stated (and hence nµ∂µ will stand for
[nt∂t + nθN−1∂θN−1 ]θ′=0). The parallel transport equation (2.308) gives rise to partial
differential equations involving just the biscalars w1(t, θN−1, t

′) and w2(t, θN−1, t
′) (see

Eqs. (2.196)-(2.197)). Below we derive these differential equations. Their validity has
been tested using Mathematica 11.2.
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Case 1: N even. Using the expressions for the γa’s (2.38) we find
−1

sinN(µ/2) (−w1(t, θN−1, t
′) γ0 + w2(t, θN−1, t

′) γN−1)

= 1
sinN(µ/2)


0 0 w− 0
0 0 0 w+

w+ 0 0 0
0 w− 0 0

 (2.310)

≡

 0 W1

W2 0

 , (2.311)

where W1 and W2 represent 2N/2−1-dimensional matrices and their matrix elements
can be read from above. Here 0 stands for the matrix having all entries zero. Then
Eq. (2.308) can be expanded in matrix-component form as follows:

1[nµ∂µ + N−1
2 cot (µ/2) ] − 1

2n
θN−1 sinh t γ̃N−1 0

0 1[nµ∂µ + N−1
2 cot (µ/2) ] + 1

2n
θN−1 sinh t γ̃N−1



×


0 W1

W2 0



=
0 0

0 0

 . (2.312)

After a straightforward calculation we obtain the following two equations for the biscalar
functions w1 and w2:

(nµ∂µ + N − 1
2 cot µ2 ) w1

sinN(µ/2) = −nθN−1

2 sinh t w2

sinN(µ/2) ,

(nµ∂µ + N − 1
2 cot µ2 ) w2

sinN(µ/2) = −nθN−1

2 sinh t w1

sinN(µ/2) . (2.313)

Then we use ∂αµ = nα in order to simplify Eqs. (2.313). Thus, we obtain the following
system of differential equations for w1 and w2:

(nt∂t + nθN−1∂θN−1)w1 − 1 + cosµ
2 sinµ w1 = −w2

nθN−1

2 sinh t,

(nt∂t + nθN−1∂θN−1)w2 − 1 + cosµ
2 sinµ w2 = −w1

nθN−1

2 sinh t, (2.314)
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where we also used nµnµ = 1, cot (µ/2) = (1 + cosµ)/ sinµ. These equations are
expressed in a particularly convenient form since there is a factor of 1/ sinµ (which can
be cancelled) in each term (see Eqs. (2.31) and (2.241)). We have verified that the
formulas we have derived for w1, w2 (given by Eqs. (2.196) and (2.197)) satisfy the
differential equations (2.314) using Mathematica 11.2. Thus, our result for the spinor
parallel propagator (2.194) satisfies the parallel transport equation (2.167).

Case 2: N odd. Using the gamma matrices (2.40) we find

−w1 γ
0 + w2 γ

N−1 =


−iw11 w21

w21 iw11

 , γ0γN−1 =
 0 i1

−i1 0

 . (2.315)

Then, as in the case with N even, we substitute these into Eq. (2.308) and we obtain
the system (2.314). The latter can be solved by our results for w1, w2 (Eqs. (2.196) and
(2.197)). Thus, our result for the spinor parallel propagator (2.194) satisfies the parallel
transport equation, as required.

2.13.2 Parallel-transport property of /n

In this subsection we show that our result for the spinor parallel propagator (2.194)
satisfies Eq. (2.168) describing the parallel-transport property of /n. Let L and R denote
the left- and right-hand sides of Eq. (2.168) respectively, i.e.

L ≡
(

Λ[(t,θ), (t′,0)]
)−1

γana|θ′=0 Λ[(t,θ), (t′,0)], (2.316)

R ≡ −γa′
na′ |θ′=0, (2.317)

where the inverse of the spinor parallel propagator can be readily found using Eq. (2.194).
The components of na|θ′=0 are given in Eq. (2.241), while the components of na′|θ′=0
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are found to be (see the paragraph below Eqs. (2.34)- (2.36))

n0′|θ′=0 = 1
sinµ(cosh t′ sinh t− sinh t′ cosh t cos θN−1),

n(N−1)′|θ′=0 = −cosh t
sinµ sin θN−1 cos θN−2,

n(N−2)′|θ′=0 = −cosh t
sinµ sin θN−1 sin θN−2 cos θN−3,

...

n2′|θ′=0 = −cosh t
sinµ (

N−2∏
i=1

sin θN−i) cos θ1,

n1′|θ′=0 = −cosh t
sinµ

N−1∏
i=1

sin θN−i. (2.318)

We will show that the two sides of Eq. (2.168) are equal by rearranging the terms in L.
Substituting Eqs. (2.193) and (2.194) into Eq. (2.316) we find

L = e− θ1
2 γ

2γ1
... e−

θN−2
2 γN−1γN−2

e− λ
2 γ

0γN−1 [γ0n0 + γN−1nN−1]θ′=0

× e
λ
2 γ

0γN−1
e

θN−2
2 γN−1γN−2

... e
θ1
2 γ

2γ1

= γ0n0|θ′=0
(
e− θ1

2 γ
2γ1
... e−

θN−2
2 γN−1γN−2)

eλγ
0γN−1(

e
θN−2

2 γN−1γN−2
... e

θ1
2 γ

2γ1)
+ γN−1nN−1|θ′=0

(
e− θ1

2 γ
2γ1
... e−

θN−3
2 γN−2γN−3)

× e+ θN−2
2 γN−1γN−2

eλγ
0γN−1(

e
θN−2

2 γN−1γN−2
... e

θ1
2 γ

2γ1)
, (2.319)

where we used the fact that if two matrices A,B anti-commute exp{(−A)}B =
B exp{(A)}. Our goal is to express L as a sum of N terms, where each term will
be of the form: γa× (scalar) like Eq. (2.317). In order to simplify Eq. (2.319) we use
exp

{
λγ0γN−1

}
= 1 cosh λ+ γ0γN−1 sinh λ and find

L =[n0 cosh λ− nN−1 sinh λ]θ′=0γ
0 + [−n0 sinh λ+ nN−1 cosh λ]θ′=0γ

N−1

×
(
e− θ1

2 γ
2γ1
... e−

θN−3
2 γN−2γN−3)

eθN−2γ
N−1γN−2(

e
θN−3

2 γN−2γN−3
...e

θ1
2 γ

2γ1)
. (2.320)

Similarly, by expanding exp
{
θN−2γ

N−1γN−2
}

(and then all the other exponentials of the
form exp{θjγj+1γj} that will appear, with j = N − 3, ..., 2, 1) we find

L = [n0 cosh λ− nN−1 sinh λ]θ′=0γ
0 − [−n0 sinh λ+ nN−1 cosh λ]θ′=0

× (cosh t
sinµ sin θN−1)−1[n(N−1)′γN−1 + n(N−2)′γN−2 + ...+ n2′γ2 + n1′γ1]θ′=0,

(2.321)
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where we also used Eq. (2.318). We have verified using Mathematica 11.2 that

[n0 cosh λ− nN−1 sinh λ]θ′=0 = −n0′ , (2.322)

[−n0 sinh λ+ nN−1 cosh λ]θ′=0 = cosh t
sinµ sin θN−1, (2.323)

where cosh λ and sinh λ can be found by Eqs. (2.195). By substituting these formu-
las into Eq. (2.321) we find that L = R, i.e. our expression for the spinor parallel
propagator (2.194) satisfies Eq. (2.168).

2.13.3 The inverse of the spinor parallel propagator

Finally, we show that our result for the spinor parallel propagator (2.194) satisfies the
defining property given by Eq. (2.165). First, let us derive an expression for the two-point
function with interchanged points, i.e. W0(x′, x) = W0[(t′, 0), (t,θ)]. This can be found
by the following relation:

W0(x′, x) = −γ0W0(x, x′)†γ0, (2.324)

(see Eq. (2.163)). Combining this equation with Eq. (2.192) and using /n† = γ0/nγ0 and
γ0Λ(x, x′)†γ0 = −[Λ(x, x′)]−1 (this can be verified using Eq. (2.194)) we find

W0[(t′,0), (t,θ)] = −β0(µ)
(

Λ[(t,θ), (t′,0)]
)−1

/n|θ′=0 (2.325)

= β0(µ) /n′|θ′=0

(
Λ[(t,θ), (t′,0)]

)−1
, (2.326)

where in the last line we used Eq. (2.168). Equation (2.182) implies that the massless
spinor Green’s function with interchanged points, x ↔ x′, has the following form:
S0(x′, x) = β0(µ)/n′ Λ(x′, x). Thus, we conclude that our expression for the spinor
parallel propagator satisfies:

(
Λ[(t,θ), (t′,0)]

)−1
= Λ[(t′,0), (t,θ)] in agreement with

the defining property (2.165).

2.14 APPENDIX F - A CONJECTURE FOR THE CLOSED-FORM
EXPRESSION OF A SERIES CONTAINING THE GAUSS HYPER-
GEOMETRIC FUNCTION

In Sec. 2.7.3 and in Appendix 2.12 we showed that the mode-sum approach (2.163) for the
massless Wightman two-point function reproduces the result of Ref. [19] (i.e. Eq. (2.182)).
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Motivated by this result, we compare the mode-sum method for the massive Wightman
two-point function (2.163) with Eq. (2.172) and we make a conjecture regarding the
closed-form expression of a series containing the Gauss hypergeometric function for N
even. For simplicity, we specialize to timelike separated points with θ = θ′ = 0. For
brevity, we represent the Gauss hypergeometric function as follows:

F
(a,b)
(c) (z) ≡ F (a, b; c; z). (2.327)

We first present our conjecture and then we give some details for the reasoning for this
conjecture.
The conjecture is

F
(a,b)
(c+1)

(
cosh2 t

)
=

∞∑
ℓ=0

(a)ℓ(b)ℓ
(c)ℓ(c+ 1)ℓ

(N − 1)ℓ
ℓ!

(cosh2 t

4

)ℓ
F

(a+ℓ,b+ℓ)
(c+ℓ)

(1 − i sinh t
2

)
F

(a+ℓ,b+ℓ)
(c+1+ℓ)

(1 − i sinh t
2

)
,

(2.328)

where

a = N

2 + iM, b ≡ N

2 − iM, c = N

2 . (2.329)

By introducing the variable w ≡ (1− i sinh t)/2 we may rewrite the conjecture as follows:

F
(a,b)
(c+1)

(
4w(1 − w)

)
=

∞∑
ℓ=0

(a)ℓ(b)ℓ
(c)ℓ(c+ 1)ℓ

(N − 1)ℓ
ℓ!

(
w(1 − w)

)ℓ
F

(a+ℓ,b+ℓ)
(c+ℓ)

(
w
)
F

(a+ℓ,b+ℓ)
(c+1+ℓ)

(
w
)
,

(2.330)

where 4w(1 − w) = 4|w|2 = cosh2 t. The time variable should be understood as t− iϵ

with ϵ > 0 (see the paragraph below Eq. (2.163)). This way, the branch cut of the
hypergeometric function F (A,B;C;X) along the real axis for X > 1 is avoided.
Below we describe the calculations that lead to the conjecture (2.328). For later
convenience let CM be the proportionality constant of the two-point function that
appears in Eq. (2.172), i.e.

CM ≡
|Γ(N2 + iM)|2

Γ(N2 + 1)(4π)N/2 . (2.331)

For θ = θ′ = 0 Eq. (2.172) gives the following expression for the two-point function:

SM [(t,0), (t′,0)] = αM(µ)1 + βM(µ)iγ0, (2.332)
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where µ = i(t− t′), /n = iγ0 and Λ = 1. The first term in Eq. (2.332) is diagonal while
the second is off-diagonal. On the other hand, the mode-sum (2.163) for massive spinors
gives the following expression:

WM [(t,0),(t′,0)]

=
∑
ℓm

∣∣∣∣cN(Mℓ)√
2

∣∣∣∣2[

iϕMℓ(t)ψ∗

Mℓ(t′) −ϕMℓ(t)ϕ∗
Mℓ(t′)

−ψMℓ(t)ψ∗
Mℓ(t′) −iψMℓ(t)ϕ∗

Mℓ(t′)

⊗ (χ−ℓm(0)χ−ℓm(0)†)

+


−iψMℓ(t)ϕ∗

Mℓ(t′) −ψMℓ(t)ψ∗
Mℓ(t′)

−ϕMℓ(t)ϕ∗
Mℓ(t′) iϕMℓ(t)ψ∗

Mℓ(t′)

⊗ (χ+ℓm(0)χ+ℓm(0)†)
]
, (2.333)

where the functions ϕMℓ and ψMℓ are given by Eqs. (2.69) and (2.70) and m stands
for the angular momentum quantum numbers and spin projection indices on the lower-
dimensional spheres. Using relations (2.258) and (2.291) the two-point function (2.333)
can be written as

WM [(t,0), (t′,0)] =CMΓ(N2 )Γ(N2 + 1)

×
∞∑
ℓ=0

(N − 1)ℓ
ℓ!

∣∣∣∣(N2 + iM)ℓ
Γ(N2 + ℓ)

∣∣∣∣2[Mℓ(t, t′)1 +Nℓ(t, t′)iγ0
]
, (2.334)

where Mℓ(t, t′), Nℓ(t, t′) are given by

Mℓ(t, t′) = −i
(

− ϕMℓ(t)ψ∗
Mℓ(t′) + ψMℓ(t)ϕ∗

Mℓ(t′)
)
, (2.335)

Nℓ(t, t′) = ϕMℓ(t)ϕ∗
Mℓ(t′) + ψMℓ(t)ψ∗

Mℓ(t′). (2.336)

By equating Eqs. (2.332) and (2.334) we find the following conjectured equalities:
∞∑
ℓ=0

(N − 1)ℓ
ℓ!

∣∣∣∣(N2 + iM)ℓ
Γ(N2 + ℓ)

∣∣∣∣2Mℓ(t, t′) = αM(t− t′)
CMΓ(N2 )Γ(N2 + 1)

, (2.337)

∞∑
ℓ=0

(N − 1)ℓ
ℓ!

∣∣∣∣(N2 + iM)ℓ
Γ(N2 + ℓ)

∣∣∣∣2Nℓ(t, t′) = βM(t− t′)
CMΓ(N2 )Γ(N2 + 1)

, (2.338)

where the first relation is obtained by comparing the diagonal parts of Eqs. (2.332)
and (2.334), while the second is obtained by comparing the off-diagonal parts. Equa-
tions (2.337) and (2.338) are the most general series conjectures we can find for the
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time-like case with µ = i(t − t′). (We have checked that these conjectures are true
for t′ = iπ/2 with ϕ∗

Mℓ(t′ = iπ/2) = δℓ0 and ψ∗
Mℓ(t′ = iπ/2) = 0.) By substituting

Eqs. (2.69), (2.70) and (2.175) into Eq. (2.337) and letting t′ = −t we find our con-
jecture (2.330). We also made use of the following relation: cos(x/2) [sin(x′/2)]∗ =
1
2(cosh t−t′

2 + i sinh t+t′
2 ) = [sin(x/2) [cos(x′/2)]∗]∗ (see Eqs. (2.71)-(2.72)).

In this Appendix, we made a series conjecture by letting t′ = −t in Eq. (2.337). One
can make additional series conjectures from Eqs. (2.337) and (2.338) by giving various
values to t′ (or t) or by just leaving it arbitrary.
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3

(Non-)unitarity of strictly and partially
massless fermions on de Sitter space

Abstract

We present the dictionary between the one-particle Hilbert spaces of totally
symmetric tensor-spinor fields of spin s = 3/2, 5/2 with any mass parameter on D-
dimensional (D ≥ 3) de Sitter space (dSD) and Unitary Irreducible Representations
(UIR’s) of the de Sitter algebra spin(D, 1). Our approach is based on expressing
the eigenmodes on global dSD in terms of eigenmodes of the Dirac operator on
the (D − 1)-sphere, which provides a natural way to identify the corresponding
representations with known UIR’s under the decomposition spin(D, 1) ⊃ spin(D).
Remarkably, we find that four-dimensional de Sitter space plays a distinguished
role in the case of the gauge-invariant theories. In particular, the strictly massless
spin-3/2 field, as well as the strictly and partially massless spin-5/2 fields on dSD,
are not unitary unless D = 4.

3.1 INTRODUCTION

3.1.1 Strictly and partially massless field theories in de Sitter
space

The de Sitter spacetime, apart from its relevance to inflationary cosmology, is also
thought to be a good model for the asymptotic future of our Universe, as suggested by
current experimental evidence in favor of a positive cosmological constant [37, 34, 32].
The D-dimensional de Sitter spacetime (dSD) is the maximally symmetric solution of
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the vacuum Einstein field equations with positive cosmological constant Λ [17]

Rµν − 1
2gµνR + Λgµν = 0, (3.1)

where gµν is the metric tensor, Rµν is the Ricci tensor and R is the Ricci scalar.
Throughout this paper we use units in which the cosmological constant is

Λ = (D − 2)(D − 1)
2 , (3.2)

i.e. the de Sitter radius is one.
Unlike Minkowskian field theories, possible field theories of spin s on dSD are not restricted
to the two usual cases of massive and strictly massless theories, where for D = 4 the
former has 2s + 1 propagating degrees of freedom (DoF), while the latter has only 2
helicity DoF (±s) due to the gauge invariance of the theory [40]. On dSD there also
exist intermediate gauge-invariant theories for s ≥ 2, known as partially massless 1

theories [10, 12, 9, 11, 8]. For a given spin s ≥ 1, there exists one strictly massless
theory and [s] − 1 different partially massless theories, where [s] = s if the spin s is
an integer and [s] = s − 1/2 if s is a half-odd integer. Partial masslessness was first
observed for the spin-2 field by Deser and Nepomechie [5, 6] and for higher integer-spin
fields by Higuchi [21]. Partially massless theories with various spins have been discussed
further in a series of papers by Deser and Waldron [10, 12, 9, 11, 8, 7]. Note that this
paragraph, as well as the rest of the paper, refers only to totally symmetric tensor and
tensor-spinor fields. Mixed-symmetry tensor fields on dSD - for which strict and partial
masslessness also occur - have been discussed in Ref. [2].
Each strictly or partially massless theory of spin s is conveniently labeled by a distinct value
of the ‘depth’ τ = 1, 2, ..., [s] (where the value τ = 1 corresponds to strict masslessness)
and in 4 dimensions there are 2τ propagating helicities, namely: (±s,±(s− 1), ...,±(s−
τ + 1)) [9, 10, 11]. For given spin s and depth τ, each of these gauge-invariant theories
corresponds to a distinct tuning of the mass parameter to the cosmological constant
Λ [21, 9, 10, 7, 11]. Higuchi classified the tunings of the mass parameter for all strictly
and partially massless theories with arbitrary integer spin by studying the group-theoretic
properties of the eigenmodes of the Laplace-Beltrami operator on dSD [21, 20]. Deser and
Waldron gave an analogous classification for arbitrary integer and half-odd-integer spins
by using group representation methods based on the de Sitter/CFT correspondence [7].

1Partially massless theories exist also in anti-de Sitter spacetime. Partially and strictly massless
theories on both de Sitter and anti-de Sitter spacetimes are discussed in Ref. [9].
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3.1.2 Eigenmodes, ‘field theory-representation theory’ dictionary
and purpose of this paper

Unitarity of field theories is very important for physical problems since it ensures the
positivity of probabilities. A sufficient condition for field-theoretic unitarity on dSD

is that of the unitarity of the underlying representation of the de Sitter (dS) algebra,
spin(D, 1). Particles in a D-dimensional dS universe correspond to Unitary Irreducible
Representations (UIR’s) of spin(D, 1).
Representation-theoretic insight from eigenmodes. The interplay between free field
theory on dSD and representation theory of spin(D, 1) manifests beautifully itself in the
solution space - consisting of eigenmodes - of the corresponding field equation.2 Let
us briefly discuss Higuchi’s work [20, 21] in order to demonstrate the great amount of
representation-theoretic knowledge that we can obtain for a free field theory on dSD by
studying its eigenmodes. In particular, in Refs. [20, 21] Higuchi studied the group-theoretic
properties of totally symmetric tensor eigenmodes of the Laplace-Beltrami operator on
dSD (D ≥ 3). In these works, he showed that the phenomenon of partial masslessness
exists for all totally symmetric tensor fields of spin s ≥ 2 on dSD by detecting pure
gauge modes (these eigenmodes indicate the gauge invariance of the theory). Also,
by calculating the norm of the physical strictly/partially massless eigenmodes using a
dS invariant scalar product, he showed that all strictly and partially massless theories
with arbitrary integer spin s are unitary for all D ≥ 3. Moreover, he showed that
for all integer spins there exist mass (parameter) ranges where the eigenmodes have
negative norm - i.e. the corresponding spin(D, 1) representations are non-unitary. The
unitary strictly/partially massless theories appear at special tunings of the mass parameter
corresponding to the boundaries of the ‘forbidden’ mass ranges - see Deser and Waldron’s
works for a detailed analysis and a physical insight into these ‘forbidden’ ranges [10, 12,
9, 11]. Last, Higuchi’s group-theoretic analysis of the eigenmodes showed that there
is a lower bound for the mass parameter of integer-spin fields, below which the fields
can only be non-unitary3. This bound is known as the ‘Higuchi bound’ in the modern
literature - see, e.g Ref. [29, 18].
‘Field theory-representation theory’ dictionary and a gap in the literature. The

2If a dS invariant positive-definite scalar product exists for the eigenmodes, then the vector space of
eigenmodes can be identified with the one-particle Hilbert of the corresponding unitary quantum field
theory.

3The Higuchi bound depends on both the (integer) spin of the field and the spacetime dimension
D [21].
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basis elements of spin(D, 1) correspond to the (D + 1)D/2 Killing vectors of dSD and
they act on eigenmodes in terms of Lie derivatives (or spinorial generalizations thereof [25,
30]). The (spinorial) Lie derivatives with respect to Killing vectors commute with the
field equation of the free theory [25, 30] and the solution space is identified with the
representation space of a - often irreducible - representation of spin(D, 1) [20, 21]. What
we would like to know is whether this representation, which is formed by eigenmodes,
is unitary. Fortunately, all UIR’s of spin(D, 1) have been classified by Ottoson and
Schwarz [31, 33] (see also Refs. [41, 22, 23]). Thus, as field theorists, we would like to
construct a dictionary between the known UIR’s of spin(D, 1) and eigenmode spaces
(i.e. one-particle Hilbert spaces) of free field theories on dSD. Such a dictionary was
first constructed by Higuchi [20] for totally symmetric integer-spin fields4 and was later
extended to mixed-symmetry integer-spin fields by Basile, Bekaert and Boulanger [2].
However, a detailed study of the dictionary for tensor-spinor fields for arbitrary D is
absent from the literature5.
Main aim. It is the purpose of the present article to construct the dictionary between
one-particle Hilbert spaces (consisting of eigenmodes) and UIR’s of spin(D, 1) for the
vector-spinor (i.e. spin-3/2) field and symmetric rank-2 tensor-spinor (i.e. spin-5/2) field
on dSD.

3.1.3 Main result for strictly and partially massless theories of
spin s = 3/2, 5/2

The dictionary between one-particle Hilbert spaces of unitary spin-s = 3/2, 5/2 field
theories on dSD and UIR’s of spin(D, 1) will be given in Section 3.7 (for both massive
and strictly/partially massless fields). However, here we would like to draw attention to
our remarkable main result concerning the strictly and partially massless theories:

• Main result: The strictly massless spin-3/2 field (gravitino field) and the strictly
and partially massless spin-5/2 fields on dSD (D ≥ 3) are not unitary unless
D = 4.

(The case with D = 2 is not discussed in the present article.) As we will see later, our
analysis for the spin-3/2 and spin-5/2 cases suggests that our main result should hold
for all strictly and partially massless fields with half-odd-integer spin s ≥ 3/2.

4See also Refs. [36, 35] for more recent discussions concerning the ‘field theory-representation theory’
dictionary for integer-spin fields on dSD.

5For D = 4, a dictionary for half-odd-integer-spin fields has been obtained in Ref. [15].
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According to our main result, four-dimensional dS space plays a distinguished role in
the unitarity of the strictly massless spin-3/2 field and the strictly and partially massless
spin-5/2 fields. This is an example of a remarkable and previously unknown feature
of dS field theory that has no known field-theoretic counterparts in anti-de Sitter and
Minkowski spacetimes. As will become clear, the significance of four-dimensional dS
space is related to the representation theory of spin(D, 1), where the latter allows (totally
symmetric) fermionic strictly/partially massless UIR’s only for D = 4 (corresponding to
a direct sum of spin(4, 1) UIR’s in the Discrete Series - see Section 3.7). Also, although
it might be a mere mathematical coincidence, it is interesting that the dimensionality
that plays a special representation-theoretic role happens to correspond to the number
of the observed macroscopic dimensions of our Universe.

3.1.4 Strategy

Our strategy in order to construct the dictionary between spin(D, 1) UIR’s and spin-
s = 3/2, 5/2 one-particle Hilbert spaces on dSD is based on constructing the dS
eigenmodes using the method of separation of variables [3, 4, 28]. More specifically, we
are going to express the spin-3/2 and spin-5/2 eigenmodes on global dSD in terms of
tensor-spinor eigenmodes of the Dirac operator on SD−1. This will help us determine
the spin(D) content of the spin(D, 1) representations formed by the eigenmodes on dSD
- by spin(D) content we mean the irreducible representations of spin(D) that appear
in a spin(D, 1) representation under the decomposition spin(D, 1) ⊃ spin(D) [31, 33].
We will also obtain the values of the spin(D, 1) quadratic Casimir corresponding to the
eigenmodes on dSD. Once we have determined both the quadratic Casimir and the
spin(D) content for the representations formed by the dS eigenmodes, we will be able to
construct the dictionary between one-particle Hilbert spaces and UIR’s of spin(D, 1) by
using the known classification of UIR’s [31, 33] under the decomposition spin(D, 1) ⊃
spin(D). We also provide the dictionary for the spin-1/2 field (as the group-theoretic
properties of the spin-1/2 eigenmodes on global dSD have been already studied by the
author [28]), while our analysis also allows us to propose a dictionary for totally symmetric
tensor-spinors of any spin s ≥ 3/2.
As for our main result concerning the strictly/partially massless theories of spin s =
3/2, 5/2, we will show that for D ̸= 4 there is a mismatch between the values of the
quadratic Casimir for the strictly/partially massless eigenmodes and the values corre-
sponding to the UIR’s of spin(D, 1) and/or another mismatch between the representation
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labels of the eigenmodes and the allowed labels in spin(D, 1) UIR’s. (The spin(D, 1)
representation labels we use in this paper specify a spin(D, 1) representation under the
decomposition spin(D, 1) ⊃ spin(D) [31, 33, 20, 21] and their role is similar to the role
played by the highest weights in spin(D + 1) representations - see Section 3.3.) In other
words, we will demonstrate that there are no UIR’s of spin(D, 1) that correspond to the
strictly massless spin-3/2 field and to the strictly and partially massless spin-5/2 fields on
dSD for D ̸= 4. However, for D = 4, both the quadratic Casimir and the representation
labels of the strictly/partially massless theories correspond to the Discrete Series UIR’s
of spin(4, 1).
An alternative technical explanation. A technical explanation of all the results
reported in this paper can be given by studying the (non-)existence of positive-definite
dS invariant scalar products for the spin-3/2 and spin-5/2 eigenmodes on dSD. Such an
analysis has been carried out in detail by the author and will be presented in a separate
article [26, 27], in which the author has extended Higuchi’s methods [20, 21] to the case
of spin-3/2 and spin-5/2 eigenmodes on dSD (D ≥ 3). In particular, in Refs. [26, 27]
the author has proved the following results for the strictly/partially eigenmodes of spin
s = 3/2, 5/2 on dSD (D ≥ 3):

• For odd D all dS invariant scalar products are identically zero.

• For even D > 4 all dS invariant scalar products are indefinite giving always rise
to positive-norm and negative-norm eigenmodes that mix with each other under
spin(D, 1) boosts.

• The D = 4 case is special as the positive-norm sector decouples from the negative-
norm sector. Then, both sectors can be viewed as positive-norm sectors and each
sector independently forms a spin(4, 1) UIR in the Discrete Series.

Although we have not performed such a technical analysis for the eigenmodes with
half-odd-integer spin s ≥ 7/2, the analysis of our present paper suggests that our main
result extends to all strictly and partially massless fields with half-odd-integer spin s ≥ 7/2
on dSD.

3.1.5 Outline of the paper, notation and conventions

The rest of the paper is organised as follows. In Section 3.2, we begin by presenting the
basics about tensor-spinor fields on dSD (gamma matrices, vielbein fields, spin connection,
and the spinorial generalisation of the Lie derivative) and, then, we specialise to the global
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slicing of dSD. In Section 3.3, we review the classification of the spin(D, 1) UIR’s under
the decomposition spin(D, 1) ⊃ spin(D) given originally in Refs. [31, 33]. In Section 3.4,
we begin by discussing the totally symmetric tensor-spinor eigenmodes of the Dirac
operator on SD−1 that are also gamma-traceless and divergence-free, as well as the way
they form representations of spin(D) (Subsection 3.4.1). Then, using the aforementioned
eigenmodes on SD−1, we present the construction of the TT eigenmodes of the spin-3/2
field on dSD for both even D ≥ 4 (Subsecton 3.4.2) and odd D ≥ 3 (Subsection 3.4.3),
in order to illustrate the method of separation of variables for tensor-spinor fields. The
spin(D) content of the spin(D, 1) representations formed by the spin-3/2 eigenmodes is
also identified and the main results are tabulated in Tables 3.1 and 3.2. In Subsection 3.4.4,
we present our basic results concerning the TT eigenmodes for the spin-5/2 field on dSD
(D ≥ 3). In Section 3.5, we obtain the quadratic Casimir for the spin(D, 1) representation
formed by eigenmodes with half-odd-integer spin s ≥ 1/2 on dSD by using “analytic
continuation" techniques that relate dSD to SD. In Section 3.6, after identifying the pure
gauge and physical modes of our strictly/partially massless theories (Subsection 3.6.1),
we prove the main result of this paper, i.e. the strictly massless spin-3/2 field, as well
as the strictly and partially massless spin-5/2 fields on dSD, are not unitary unless
D = 4 (Subsection 3.6.2). In order to achieve this, we take advantage of both the
spin(D) content and the quadratic Casimir corresponding to our physical modes on dSD
and then we show that they do not agree with any UIR of spin(D, 1) unless D = 4. In
Section 3.7, we present our dictionary between spin(D, 1) UIR’s and (totally symmetric)
tensor-spinor fields with arbitrary mass parameters on dSD (D ≥ 3). Although in the
main part of the present paper we discuss the spin-3/2 and spin-5/2 fields, our analysis
allows us to propose a dictionary for all (totally symmetric tensor-)spinor fields with spin
s ≥ 1/2.
Notation and conventions. We use the term ‘tensor-spinor field of rank r’ in order to
refer to a rth-rank tensor where each one of its tensor components is a spinor. Other
authors prefer the name spinor-tensors for these objects - see, e.g., Ref. [4]. We use
the mostly plus metric sign convention for dSD. Lowercase Greek tensor indices refer
to components with respect to the ‘coordinate basis’ on dSD. Coordinate basis tensor
indices on SD−1 are denoted as µ̃1, µ̃2, ... . Lowercase Latin tensor indices are ‘flattened’,
i.e. they refer to components with respect to the vielbein basis (the indices a, b, c, d, f
run from 0 to D − 1, while the indices i, j, k run from 1 to D − 1). Summation over
repeated indices is understood. We denote the symmetrisation of a pair of indices as
A(µν) ≡ (Aµν + Aνµ)/2 and the anti-symmetrisation as A[µν] ≡ (Aµν − Aνµ)/2. Spinor
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indices are always suppressed throughout this paper. The rank of tensor-spinors on dSD
is denoted as r, while the rank of tensor-spinors on SD−1 as r̃. The complex conjugate
of the complex number z is z∗.

3.2 BACKGROUND MATERIAL CONCERNING TENSOR-SPINORS
ON dSD

Fermionic fields with arbitrary half-odd-integer spin s ≡ r + 1/2 and mass parameter
M on dSD can be described by totally symmetric tensor-spinors Ψµ1...µr satisfying the
onshell conditions [10, 7]: (

/∇ +M
)

Ψµ1...µr = 0 (3.3)

∇αΨαµ2...µr = 0, γαΨαµ2...µr = 0, (3.4)

where /∇ = γν∇ν is the Dirac operator. From now on, we will refer to the divergence-free
and gamma-tracelessness conditions in eq. (3.4) as the TT conditions.
The half-odd-integer-spin theories described by eqs. (3.3) and (3.4) become gauge-
invariant (i.e. strictly/partially massless) for the following imaginary values of the mass
parameter M = iM̃ [7]:

M̃2 = −M2 =
(
r − τ + D − 2

2

)2
(τ = 1, ..., r) (3.5)

for r ≥ 1 (i.e. s ≥ 3/2). Real values of M - including M = 0 - correspond to
non-gauge-invariant theories.

3.2.1 Gamma matrices, vielbein fields, spin connection and Lie-
Lorentz derivative on dSD

The 2[D/2]-dimensional6 gamma matrices γa (with ‘flattened’ indices a = 0, 1, ..., D − 1)
satisfy the anti-commutation relations

{γa, γb} = 2ηab1, a, b = 0, 1, ..., D − 1, (3.6)

where 1 is the spinorial identity matrix and ηab = diag(−1, 1, ..., 1). The vielbein fields
ea = eµa∂µ, determining an orthonormal frame, satisfy

eµ
a eν

bηab = gµν , eµa eµ
b = δba, (3.7)

6For D even we have [D/2] = D/2. For D odd we have [D/2] = (D − 1)/2.
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where the co-vielbein fields ea = eµ
a dxµ define the dual coframe. The gamma matrices

with coordinate basis indices are defined using the vielbein fields as γµ(x) ≡ eµa(x)γa.
The covariant derivative for a vector-spinor field is

∇νΨµ = ∂νΨµ + 1
4ωνbcγ

bcΨµ − ΓλνµΨλ, (3.8)

where ωνbc = ων[bc] = eν
aωabc is the spin connection, Γλνµ are the Christoffel symbols

and γbc = γ[bγc]. The covariant derivatives for higher-spin tensor-spinors are given by
straightforward generalisations of eq. (3.8). It is easy to check that the gamma matrices
are covariantly constant, as ∇µγ

a = 1
4ωµbc(γ

bcγa − γaγbc) + ωµ
a
cγ
c = 0. According to

our sign convention, we have 7

∂µe
ρ
b + Γρµσeσb − ωµ

c
b e

ρ
c = 0. (3.9)

For each value of the mass parameter M in eq. (3.3), the set of TT eigenmodes Ψµ1...µr

forms a representation of the de Sitter algebra spin(D, 1), which - as we will see below -
may be unitary or non-unitary depending on both M and the dimension D. The Killing
vectors generating spin(D, 1) act on tensor-spinors in terms of the spinorial generalisation
of the Lie derivative [25, 30] - also known as Lie-Lorentz derivative - as:

Lξ Ψµ1...µr = ξν∇νΨµ1...µr + Ψνµ2...µr∇µ1ξ
ν + Ψµ1νµ3...µr∇µ2ξ

ν + ...+ Ψµ1...µr−1ν∇µrξ
ν

+ 1
4∇κξλγ

κγλΨµ1...µr , (3.10)

where ξµ is any dS Killing vector - i.e. ∇(µξν) = 0. The Lie-Lorentz derivative satisfies [30]

Lξ e a
µ = 0, (3.11a)

Lξ γa = 0, (3.11b)

as well as

(Lξ∇µ − ∇µLξ) Ψµ1...µr = 0, (3.12)

and hence Lξ commutes with the Dirac operator. Moreover, the Lie-Lorentz derivative
preserves the Lie bracket between any two vectors ξµ, Xµ ∈ spin(D, 1) as

(LξLX − LXLξ) Ψµ1...µr = L[ξ,X]Ψµ1...µr . (3.13)

As for the representation of our gamma matrices on dSD, we choose the following:
7The sign convention we use for the spin connection is the opposite of the one used in Refs. [3, 28].
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• For D even: the 2D/2-dimensional gamma matrices are

γ0 = i

0 1
1 0

 , γj =
 0 iγ̃j

−iγ̃j 0

 , (3.14)

(j = 1, ..., D − 1) where the 2(D−2)/2-dimensional gamma matrices γ̃j generate a
Euclidean Clifford algebra in D − 1 dimensions, as

{γ̃j, γ̃k} = 2δjk1, j, k = 1, ..., D − 1. (3.15)

One can construct the extra gamma matrix γD+1 which is given by the product
γD+1 ≡ ϵ γ1γ2...γD−1γ0, where ϵ is a phase factor. The matrix γD+1 anti-
commutes with each of the γa’s in eq. (3.14). We choose the phase factor ϵ such
that

γD+1 =
1 0

0 −1

 . (3.16)

For D = 4 this is the familiar matrix γ5.
• For D odd: the 2(D−1)/2-dimensional gamma matrices are

γ0 = i

1 0
0 −1

 , γj = γ̃j, j = 1, ..., D − 1, (3.17)

where the γ̃j’s are 2(D−1)/2-dimensional gamma matrices generating a Euclidean
Clifford algebra in D − 1 dimensions (see eq. (3.15)).

3.2.2 Specialising to global coordinates

In order to obtain explicit expressions for the TT eigenmodes of the field equation (3.3),
we will choose to work with the global slicing of dSD. In global coordinates the line
element is

ds2 = −dt2 + cosh2 t dΩ2
D−1, (3.18)

(t ∈ R) where dΩ2
D−1 is the line element of SD−1. The line element of Sm can be

parameterised as

dΩ2
m = dθ2

m + sin2 θmdΩ2
m−1, m = 2, 3, ..., D − 1, (3.19)

with 0 ≤ θm ≤ π, while dΩ2
m−1 is the line element of Sm−1. For m = 1 we have

dΩ2
1 = dθ2

1 with 0 ≤ θ1 ≤ 2π. We will use the symbol θD−1 ≡ (θD−1, θD−2, ..., θ1) to
denote a point on SD−1.
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The non-zero Christoffel symbols on global dSD are

Γtθiθj
= cosh t sinh t g̃θiθj

, Γθi
θjt

= tanh t g̃θi
θj
,

Γθk
θiθj

= Γ̃θk
θiθj

, (3.20)

where g̃θiθj
and Γ̃θk

θiθj
are the metric tensor and the Christoffel symbols, respectively, on

SD−1. We choose the following expressions for the vielbein fields on dSD:

et0 = 1, eθi
i = 1

cosh t ẽ
θi
i, i = 1, ..., D − 1, (3.21)

where ẽθi
i are the vielbein fields on SD−1. The non-zero components of the spin

connection on dSD are given by

ωijk = ω̃ijk
cosh t , ωi0k = −ωik0 = − tanh t δik, i, j, k = 1, ..., D − 1, (3.22)

where ω̃ijk are the spin connection components on SD−1.

3.3 CLASSIFICATION OF THE UIR’S OF SPIN(D, 1)

Here we review the classification of the spin(D, 1) UIR’s by Ottoson [31] and Schwarz [33].
These authors have classified the UIR’s of spin(D, 1) under the decomposition spin(D, 1) ⊃
spin(D) - in the present paper spin(D) denotes the Lie algebra of SO(D). Under this
decomposition, an irreducible representation of spin(D) appears at most once in a UIR
of spin(D, 1) [13]. The case with D = 2p and the case with D = 2p+ 1, where p is a
positive integer, are studied separately. Below we will adopt the notation for the labels
of UIR’s that were used by Higuchi in Ref. [20]. However, we will use the names of the
UIR’s that are used in the modern literature [2, 36, 35].
Representations of spin(D). Let us review the basics concerning spin(D) representa-
tions. As is well-known, a representation of spin(2p) or spin(2p+ 1) is specified by the
highest weight of the representation [1, 14], denoted here as

f⃗ = (f1, f2, ..., fp), (3.23)

where

f1 ≥ f2 ≥ ... ≥ fp−1 ≥ |fp|, for spin(2p), (3.24)
f1 ≥ f2 ≥ ... ≥ fp−1 ≥ fp ≥ 0, for spin(2p+ 1). (3.25)
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The labels fj (j = 1, ..., p) in eqs. (3.24) and (3.25) are all integers or all half-odd integers.
For spin(2p), the label fp can be negative, while the representation (f1, ..., fp−1,−fp) is
known as the ‘mirror image’ of (f1, ..., , fp−1, fp) - see, e.g. Ref. [38]. For spin(2p+ 1),
any representation f⃗ is equivalent to its mirror image [38].
The quadratic Casimir for the representation f⃗ = (f1, ..., fp) is given by [14]

c2
(
f⃗
)

=
p∑
j=1

fj(fj + 2p− 2j), for spin(2p), (3.26)

c2
(
f⃗
)

=
p∑
j=1

fj(fj + 2p+ 1 − 2j), for spin(2p+ 1). (3.27)

UIR’s of spin(2p,1) (even D = 2p ≥ 4). A UIR of spin(2p, 1) is specified by the
set of labels F⃗ = (F0, F1, ..., Fp−1). The labels F1, ..., Fp−1 satisfy

F1 ≥ F2 ≥ ... ≥ Fp−1 ≥ 0 (3.28)

and they are all integers or all half-odd integers. A representation (f1, ..., fp) of spin(2p)
that is contained in the UIR (F0, F1, ..., Fp−1) satisfies

f1 ≥ F1 ≥ f2 ≥ F2 ≥ ... ≥ fp−1 ≥ Fp−1 ≥ |fp|. (3.29)

Ottoson’s labels [31] and our labels are related to each other by [20]:

fj = l2p−1,j + j − p, (j = 1, ..., p), (3.30a)
Fj = l2p,j + j − p, (j = 1, ..., p− 1), (3.30b)
F0 = l2p,p − p. (3.30c)

Schwarz’s labels [33] and our labels are related to each other by:

fj = m2p,p−j+1, (j = 1, ..., p), (3.31a)
Fj = m2p+1,p−j, (j = 1, ..., p− 1), (3.31b)
F0 = z2p+1,p. (3.31c)

The UIR’s of spin(2p, 1) (even D = 2p ≥ 4) are classified as follows:
• Principal Series Dprin( F⃗ ):

F0 = −p+ 1
2 + iy = −D − 1

2 + iy, (y > 0). (3.32)

The labels F1, F2, ..., Fp−1 are all integers or all half-odd integers.
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• Complementary Series Dcomp( F⃗ ) :

−D − 1
2 = −p+ 1

2 ≤ F0 < −ñ, (ñ is an integer and 0 ≤ ñ ≤ p− 1).

(3.33)

If 0 ≤ ñ < p − 1, then Fñ+1 = Fñ+2 = ... = Fp−1 = 0 and F1, F2, ..., Fñ are all
positive integers, while for the spin(2p) content we have fñ+2 = fñ+3 = ... = fp =
0. If ñ = p− 1, then F1, F2, ..., Fp−1 are all positive integers. 8

• Exceptional Series Dex( F⃗ ) :

F0 = −ñ, (ñ is an integer and 1 ≤ ñ ≤ p− 1). (3.34)

If 1 ≤ ñ < p − 1, then Fñ+1 = Fñ+2 = ... = Fp−1 = 0 and F1, F2, ..., Fñ are all
positive integers, while for the spin(2p) content we have fñ+1 = fñ+2 = ... = fp =
0. If ñ = p− 1, then F1, F2, ..., Fp−1 are all positive integers, while fp = 0. 9

• Discrete Series D±( F⃗ ) : F0 is real and it is an integer or half-odd integer at
the same time as the labels F1, F2, ..., Fp−1.10 Also, the following conditions have
to be satisfied:

Fp−1 ≥ fp ≥ F0 + p ≥ 1
2 for D+( F⃗ ), (3.35)

−Fp−1 ≤ fp ≤ −(F0 + p) ≤ −1
2 for D−( F⃗ ). (3.36)

For a UIR of spin(2p, 1) labelled by F⃗ = (F0, F1, ..., Fp−1) the quadratic Casimir C2(F⃗ )
is expressed as

C2(F⃗ ) =
p−1∑
k=0

Fk (Fk + 2p− 2k − 1). (3.37)

8Our Complementary Series is called Exceptional Series D(e; l2p,1, ..., l2p,p) in Ottoson’s classifica-
tion [31]. Also, our notation for the Complementary Series is related to Schwarz’s notation [33] as follows.
The case with 0 ≤ ñ < p− 1 corresponds to Dk(m2p+1,k+1 ... m2p+1,p−1;x2p+1,p), where k is related
to ñ by k = p− ñ−1, while the case with ñ = p−1 corresponds to D0(m2p+1,1 ... m2p+1,p−1;x2p+1,p).

9Our Exceptional Series is called Supplementary Series D(s; l2p,1, ..., l2p,p) in Ottoson’s classi-
fication [31, 20]. Also, our notation is related to Schwarz’s notation [33] as follows. The case
with 1 ≤ ñ < p − 1 corresponds to Dk(m2p+1,k+1 ... m2p+1,p−1;m2p+1,p), where Schwarz’s la-
bel k is related to our label ñ by k = p − ñ − 1, while the case with ñ = p − 1 corresponds to
D0(m2p+1,1 ... m2p+1,p−1;m2p+1,p).

10Our Discrete Series D±(F⃗ ) are called Exceptional Series D(±; l2p,1, ..., l2p,p) in Ottoson’s classifi-
cation [31, 20]. Also, our Discrete Series D±(F⃗ ) correspond to D±(m2p+1,1 ...m2p+1,p−1;m2p+1,p) in
Schwarz’s classification [33].
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This expression for the quadratic Casimir can be readily obtained by applying the “analytic
continuation” techniques described in Refs. [33, 41] to the quadratic Casimir (3.27) of
spin(2p+ 1). These techniques “analytically continue” 2p of the rotation generators of
spin(2p+ 1) to the 2p boost generators of spin(2p, 1) - for more details see Refs. [33,
41].
Note. In the present paper, following Schwarz [33] and Ottoson [31], for even D

the value F0 = −(D − 1)/2 is not included in the Principal Series UIR’s, but it is
included in the Discrete Series UIR’s instead. For odd D, the value F0 = −(D − 1)/2
is included in the Principal Series UIR’s in the present paper. However, in Ref. [2] the
value F0 = −(D − 1)/2 (corresponding to the weight ∆c = (D − 1)/2) is included in
the Principal Series UIR’s for arbitrary D. The present note is important for reasons of
clarity, as we are going to show that the spin-3/2 and spin-5/2 fields on even-dimensional
dSD with mass parameter M = 0 have F0 = −(D − 1)/2 and they correspond to the
Discrete Series UIR’s in our paper (i.e. Principal Series in Ref. [2]) - see Section 3.7.
UIR’s of spin(2p+ 1, 1) (odd D = 2p+ 1 ≥ 3). A UIR of spin(2p+ 1, 1) is labelled
by F⃗ = (F0, F1, ..., Fp). The labels F1, ..., Fp satisfy

F1 ≥ F2 ≥ ... ≥ Fp ≥ 0 (3.38)

and they are all integers or half-odd integers. A representation (f1, ..., fp) of spin(2p+ 1)
that is contained in the UIR F⃗ = (F0, F1, ..., Fp) satisfies

f1 ≥ F1 ≥ f2 ≥ F2 ≥ ... ≥ fp ≥ Fp ≥ 0. (3.39)

Ottoson’s labels [31] and our labels are related to each other by [20]:

fj = l2p,j + j − p− 1 (j = 1, ..., p), (3.40a)
Fj = l2p+1,j + j − p (j = 1, ..., p), (3.40b)
F0 = l2p+1,p+1 − p, (3.40c)

while Schwarz’s labels [33] and our labels are related to each other by:

fj = m2p+1,p−j+1 (j = 1, ..., p), (3.41a)
Fj = m2p+2,p−j+1 (j = 1, ..., p), (3.41b)
F0 = z2p+2,p+1. (3.41c)

The UIR’s of spin(2p+ 1, 1) (odd D = 2p+ 1 ≥ 3) are classified as follows:
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• Principal Series Dprin( F⃗ ) :

F0 = −p+ iy = −D − 1
2 + iy, (y ∈ R). (3.42)

The labels F1, F2, ..., Fp are all integers or half-odd integers. If Fp = 0, then the
UIR with F0 = −(D − 1)/2 + iy and the UIR with F0 = −(D − 1)/2 − iy are
equivalent, and thus we can let y ≥ 0.

• Complementary Series Dcomp( F⃗ ) :

−D − 1
2 = −p < F0 < −ñ, (ñ is an integer and 0 ≤ ñ ≤ p− 1), (3.43)

while Fñ+1 = Fñ+2 = ... = Fp = 0 and F1, F2, ..., Fñ are all positive integers,
where for the spin(2p+ 1) content we have fñ+2 = fñ+3 = ... = fp = 0. 11

• Exceptional Series Dex( F⃗ ) :

F0 = −ñ, (ñ is an integer and 1 ≤ ñ ≤ p− 1), (3.44)

where Fñ+1 = Fñ+2 = ... = Fp = 0 and F1, F2, ..., Fñ are all positive integers,
where for the spin(2p+ 1) content we have fñ+1 = fñ+2 = ... = fp = 0. 12

For a UIR of spin(2p + 1, 1) specified by F⃗ = (F0, F1, ..., Fp) the quadratic Casimir
C2(F⃗ ) is expressed as13

C2(F⃗ ) =
p∑

k=0
Fk (Fk + 2p− 2k). (3.45)

3.4 SPIN-3/2 AND SPIN-5/2 EIGENMODES ON dSD

In this Section, we will obtain the spin-3/2 and spin-5/2 TT eigenmodes on global dSD
satisfying eq. (3.3) using the method of separation of variables - see, e.g., Refs. [21,
3, 4]. Schematically, in this method the spin-(r + 1/2) eigenmodes, Ψµ1...µr(t,θD−1),
are expressed as products of two ‘parts’; namely a part describing the time-dependence
(corresponding to a function of t) and another part describing the θD−1-dependence

11Our Complementary Series corresponds to Dk(m2p+2,k+1 ... m2p+2,p;x2p+2,p+1) in Schwarz’s
classification [33], where k is related to ñ by k = p− ñ.

12Our Exceptional Series corresponds to Dk(m2p+2,k+1 ... m2p+2,p;m2p+2,p+1) in Schwarz’s classi-
fication [33], where k is related to ñ by k = p− ñ.

13This expression for the quadratic Casimir can be obtained in the same way as in the even-dimensional
case - see eq. (3.37).

93



Chapter 3. (Non-)unitarity of strictly and partially massless fermions on
de Sitter space

of the eigenmode (corresponding to tensor-spinor eigenmodes of the Dirac operator on
SD−1). In view of the classification of the spin(D, 1) UIR’s under the decomposition
spin(D, 1) ⊃ spin(D), expressing our eigenmodes on dSD in terms of eigentensor-spinors
on SD−1 offers an easy way to understand the spin(D) content of our dS eigenmodes.
The outline of this Section is:

• In Subsection 3.4.1, we review the necessary material concerning the (totally
symmetric) TT tensor-spinor eigenmodes of the Dirac operator on SD−1 and the
way they form representations of spin(D) [24].

• In Subsections 3.4.2 and 3.4.3, we present the construction of spin-3/2 TT eigen-
modes on dSD in order to illustrate the method of separation of variables for
tensor-spinor fields. Some basic results are tabulated in Tables 3.1 and 3.2.

• In Subsection 3.4.4, we summarise our main results concerning the spin-5/2 TT
eigenmodes on dSD.

3.4.1 Tensor-spinor eigenmodes of the Dirac operator on SD−1 and
representations of spin(D)

The spectrum of the Dirac operator acting on tensor-spinor eigenmodes on spheres, as
well as the representations of spin(D) formed by the eigenmodes, have been discussed in
Refs. [39, 3, 24, 4] (see also references therein).
Let /̃∇ ≡ γ̃k∇̃k be the Dirac operator on SD−1, where ∇̃j is the covariant derivative on
SD−1. We are interested in rank-r̃ ≥ 0 totally symmetric TT tensor-spinor eigenmodes
ψ̃

(ℓ;m)
±µ̃1µ̃2...µ̃r̃

(θD−1) on SD−1. The eigenmodes ψ̃(ℓ;m)
±µ̃1µ̃2...µ̃r̃

(θD−1) satisfy

/̃∇ψ̃(ℓ;m)
±µ̃1µ̃2...µ̃r̃

= ±i
(
ℓ+ D − 1

2

)
ψ̃

(ℓ;m)
±µ̃1µ̃2...µ̃r̃

(3.46)

γ̃µ̃1ψ̃
(ℓ;m)
±µ̃1µ̃2...µ̃r̃

= ∇̃µ̃1ψ̃
(ℓ;m)
±µ̃1µ̃2...µ̃r̃

= 0, (3.47)

where the angular momentum quantum number on SD−1, ℓ, is allowed to take integer
values with ℓ ≥ r̃. The two sets of eigenmodes, {ψ̃(ℓ;m)

+µ̃1µ̃2...µ̃r̃
} [with eigenvalue +i(ℓ +

D−1
2 )] and {ψ̃(ℓ;m)

−µ̃1µ̃2...µ̃r̃
} [with eigenvalue −i(ℓ+ D−1

2 )], separately form representations
of spin(D). The label m represents quantum numbers (other than ℓ) the values of which
specify the content of the spin(D) representation concerning the chain of subalgebras
spin(D − 1) ⊃ spin(D − 2) ⊃ ... ⊃ spin(2).
Odd D ≥ 3 (even-dimensional spheres). For each allowed value of ℓ we have
a representation of spin(D) acting on the space of the eigenmodes {ψ̃(ℓ;m)

+µ̃1µ̃2...µ̃r̃
} (or
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{ψ̃(ℓ;m)
−µ̃1µ̃2...µ̃r̃

}) on SD−1 with highest weight (3.23) given by [24]

f⃗r̃ =
(
ℓ+ 1

2 , r̃ + 1
2 ,

1
2 , ...,

1
2

)
, (ℓ = r̃, r̃ + 1, ...), (3.48)

where we have used the subscript r̃ in order to denote the ‘spin’ of the representation -
e.g. f⃗0 corresponds to a spinor representation, f⃗1 to a TT vector-spinor representation,
f⃗2 to a rank-2 (totally symmetric) TT tensor-spinor representation and so forth. The two
sets of eigenmodes, {ψ̃(ℓ;m)

+µ̃1µ̃2...µ̃r̃
} and {ψ̃(ℓ;m)

−µ̃1µ̃2...µ̃r̃
}, form equivalent representations. For

D = 5 the highest weight is f⃗r̃ = (ℓ+ 1/2, r̃ + 1/2). On S2 - i.e. for D = 3 - there are
no totally symmetric TT eigenmodes satisfying eq. (3.46) with rank r̃ ≥ 1 - see Refs. [4,
26, 27] and Appendix 3.9. However, eigenmodes with r̃ = 0 - i.e. eigenspinors ψ̃(ℓ;m)

±

of the Dirac operator [3] - exist on S2 and the corresponding spin(3) representation is
labelled by the one-component highest weight ℓ+ 1/2 (with ℓ = 0, 1, ...).
Even D ≥ 4 (odd-dimensional spheres). For each allowed value of ℓ the eigenmodes
{ψ̃(ℓ;m)

+µ̃1µ̃2...µ̃r̃
} on SD−1 form a spin(D) representation with highest weight (3.23) given

by [24]

f⃗+
r̃ =

(
ℓ+ 1

2 , r̃ + 1
2 ,

1
2 , ...,

1
2

)
, (ℓ = r̃, r̃ + 1, ...), (3.49)

while the eigenmodes {ψ̃(ℓ;m)
−µ̃1µ̃2...µ̃r̃

} form a representation with highest weight [24]

f⃗−
r̃ =

(
ℓ+ 1

2 , r̃ + 1
2 ,

1
2 , ...,

1
2 ,−

1
2

)
, (ℓ = r̃, r̃ + 1, ...). (3.50)

For D = 4 the highest weights corresponding to the eigenmodes {ψ̃(ℓ;m)
±µ̃1µ̃2...µ̃r̃

} are
f⃗±
r̃ = (ℓ+ 1/2,±(r̃ + 1/2)).

For both even D [eqs. (3.49) and (3.50)] and odd D [eq. (3.48)], if the aforementioned
irreducible representations of spin(D) are contained in a spin(D, 1) representation, then
the allowed values for the angular momentum quantum number ℓ might not just be
ℓ = r̃, r̃ + 1, ...; ℓ might have to satisfy extra conditions because of the branching
rules (3.29) and (3.39). This will become clear in the next Subsection as ℓ will have to
satisfy ℓ ≥ r, where r is the rank of the tensor-spinor eigenmodes on dSD.

3.4.2 Separating variables for spin-3/2 eigenmodes on dSD for even
D ≥ 4

Let us illustrate the method of separation of variables for the TT vector-spinor field
Ψµ = (Ψt,ΨθD−1 ,ΨθD−2 , ...,Ψθ1) with arbitrary mass parameter M on global dSD for
even D ≥ 4.
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The Dirac equation (3.3) is expressed as

(
∂

∂t
+ D + 1

2 tanh t
)
γtΨt + 1

cosh t

 0 i /̃∇
−i /̃∇ 0

Ψt = −MΨt, (3.51)

(
∂

∂t
+ D − 3

2 tanh t
)
γtΨθj

+ 1
cosh t

 0 i /̃∇
−i /̃∇ 0

Ψθj
− tanh t γθj

Ψt = −MΨθj
,

(3.52)

(j = 1, 2, ..., D − 1), where we have made use of eqs. (3.8), (3.14) and (3.20)-(3.22),
while γθj

= e k
θj
γk. There are two different ways in which we can separate variables for

the TT vector-spinor Ψµ(t,θD−1) giving rise to two different types of eigenmodes: the
type-I modes and the type-II modes. These two different types of eigenmodes correspond
to spin(D) representations with different spin. In particular, the spin(D) content that is
relevant to type-I modes corresponds to the spinor representation f⃗±

0 = (ℓ+ 1
2 ,

1
2 , ...,

1
2 ,±

1
2)

with ℓ = 1, 2, ... .14 The spin(D) content that is relevant to type-II modes corresponds
to the vector-spinor representation f⃗±

1 = (ℓ+ 1
2 ,

3
2 ,

1
2 , ...,

1
2 ,±

1
2) with ℓ = 1, 2, ....

Type-I modes. Let us denote the type-I modes with spin(D) content given by f⃗±
0 =

(ℓ+ 1
2 ,

1
2 , ...,

1
2 ,±

1
2) as Ψ(M ; r̃=0,±ℓ;m)

µ (t,θD−1), where the label m has the same meaning
as in Subsection 3.4.1. We start with the case of f⃗−

0 = (ℓ + 1
2 ,

1
2 , ...,

1
2 ,−

1
2), i.e. with

the type-I modes Ψ(M ; r̃=0,−ℓ;m)
µ (t,θD−1). As in Refs. [3, 4, 28], we separate variables

for the t-component by expressing it in terms of upper and lower spinor components, as

Ψ(M ; r̃=0,−ℓ;m)
t (t,θD−1) =

−iΦ(1)
Mℓ(t) ψ̃

(ℓ;m)
− (θD−1)

−Ψ (1)
Mℓ(t) ψ̃

(ℓ;m)
− (θD−1)

 , (3.53)

where ψ̃(ℓ;m)
− are the 2D/2−1-dimensional eigenspinors of /̃∇ on SD−1 [see Eq. (3.46)].

Now, we have to determine the functions of time Φ(1)
Mℓ(t) and Ψ (1)

Mℓ(t) - the superscript
‘(1)’ in these functions has been used for later convenience. By substituting eq. (3.53)
into the Dirac equation (3.51), we can eliminate the lower component in eq. (3.53). We
find in this manner the second order equation for Φ(1)

Mℓ(t)

D(1)Φ
(1)
Mℓ = M2 Φ

(1)
Mℓ, (3.54)

14Under the decomposition spin(D, 1) ⊃ spin(D), the branching rules (3.29) give rise to the restriction
ℓ ≥ 1. One can also arrive at this restriction on ℓ by requiring the regularity of type-I eigenmodes, as we
will discuss below. See Refs. [26, 27] for more details concerning the explicit form of the eigenmodes.
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where the differential operator D(1) is a special case of the following family of differential
operators:

D(a) = ∂2

∂x2 + (D + 2a− 1) cotx ∂
∂x

+
(
ℓ+ D − 1

2

) cosx
sin2 x

−
(ℓ+ D−1

2 )2 − 1
4(D + 2a− 1)(D + 2a− 3)

sin2 x
− (D + 2a− 1)2

4 , (3.55)

where we have defined

x = x(t) := π

2 − it (3.56)

with cosx = i sinh t and sin x = cosh t. For later convenience, instead of just solving
the eigenvalue equation (3.54), we can solve the more general equation

D(a)Φ
(a)
Mℓ = M2 Φ

(a)
Mℓ, (3.57)

for arbitrary integer a. The solution is given by

Φ
(a)
Mℓ(t) =

(
cos x(t)

2

)ℓ+1−a (
sin x(t)

2

)ℓ−a

× F

(
−iM + D

2 + ℓ, iM + ℓ+ D

2 ; ℓ+ D

2 ; sin2 x(t)
2

)
, (3.58)

where F (A,B;C; z) is the Gauss hypergeometric function [16], while

cos x(t)
2 =

(
sin x(t)

2

)∗

=
√

2
2

(
cosh t

2 + i sinh t

2

)
. (3.59)

Thus, we have now determined the upper component of Ψ(M ; r̃=0,−ℓ;m)
t in eq. (3.53),

where Φ(1)
Mℓ is given by eq. (3.58) with a = 1.

In order to determine the lower component in eq. (3.53), we substitute eq. (3.53) into
the Dirac equation (3.51) and we straightforwardly find the relations

 d

dt
+ D + 1

2 tanh t−
i
(
ℓ+ D−1

2

)
cosh t

Ψ (1)
Mℓ(t) = −M Φ

(1)
Mℓ(t), (3.60)

 d

dt
+ D + 1

2 tanh t+
i
(
ℓ+ D−1

2

)
cosh t

Φ(1)
Mℓ(t) = M Ψ

(1)
Mℓ(t). (3.61)
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Then, substituting eq. (3.58) (with a = 1) into eq. (3.61) and using well-known properties
of the hypergeometric function [16], we find

Ψ
(1)
Mℓ(t) = −iM

ℓ+ D
2

(
cos x(t)

2

)ℓ−1 (
sin x(t)

2

)ℓ

× F

(
−iM + D

2 + ℓ, iM + ℓ+ D

2 ; ℓ+ D + 2
2 ; sin2 x(t)

2

)
. (3.62)

For later convenience, let us note that Ψ (1)
Mℓ(t) corresponds to a special case (i.e. the

case with a = 1) of the following functions:

Ψ
(a)
Mℓ(t) = −iM

ℓ+ D
2

(
cos x(t)

2

)ℓ−a (
sin x(t)

2

)ℓ+1−a

× F

(
−iM + D

2 + ℓ, iM + ℓ+ D

2 ; ℓ+ D + 2
2 ; sin2 x(t)

2

)
. (3.63)

These functions solve the differential equation (D̂(a) − M2)Ψ (a)
Mℓ(t) = 0 where the

differential operator D̂(a) is given by eq. (3.55) with x replaced by π − x. Thus, we have
now also determined the lower component of Ψ(M ; r̃=0,−ℓ;m)

t in eq. (3.53).
Now, by following the same procedure as the one described above, we can separate
variables for the type-I modes Ψ(M ; r̃=0,+ℓ;m)

µ (t,θD−1) corresponding to the spin(D)
highest weight f⃗+

0 = (ℓ+ 1
2 ,

1
2 , ...,

1
2). We find

Ψ(M ; r̃=0,+ℓ;m)
t (t,θD−1) =

 Ψ (1)
Mℓ(t) ψ̃

(ℓ;m)
+ (θD−1)

iΦ
(1)
Mℓ(t) ψ̃

(ℓ;m)
+ (θD−1)

 . (3.64)

The rest of the vector components of the type-I modes, Ψ(M ; r̃=0,±ℓ;m)
θj

(j = 1, ..., D −
1), can be straightforwardly determined by substituting the known expressions for
Ψ(M ; r̃=0,±ℓ;m)
t [eqs. (3.53) and (3.64)] into the TT conditions (3.4). By doing so,

one finds that there is a proportionality factor of 1
ℓ

in the expressions for each of the
Ψ(M ; r̃=0,±ℓ;m)
θj

and, thus, the regularity of type-I eigenmodes gives rise to the restric-
tion ℓ ≥ 1. However, here we will not present explicit expressions for Ψ(M ; r̃=0,±ℓ;m)

θj

(j = 1, ..., D − 1) as they are lengthy and they are not needed for our analysis. The
interested reader can find the explicit expressions in Refs. [26, 27].
Type-II modes. Let us denote the type-II modes with spin(D) content given by
f⃗±

1 = (ℓ + 1
2 ,

3
2 ,

1
2 , ...,

1
2 ,±

1
2) as Ψ(M ; r̃=1,±ℓ;m)

µ (t,θD−1) (ℓ ≥ 1). The type-II modes
are TT vector-spinors on SD−1 and thus Ψ(M ; r̃=1,±ℓ;m)

t (t,θD−1) = 0. The compo-
nents Ψ(M ; r̃=1,±ℓ;m)

θj
(t,θD−1) can be determined by applying the method of separation
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of variables as in the case of the type-I modes. However, now we have to express
Ψ(M ; r̃=1,±ℓ;m)
θj

(t,θD−1) in terms of TT eigenvector-spinors on SD−1, instead of eigen-
spinors on SD−1. By applying the method of separation of variables to the Dirac
equation (3.52), we find

Ψ(M ; r̃=1,−ℓ;m)
t (t,θD−1) = 0, Ψ(M ; r̃=1,−ℓ;m)

θj
(t,θD−1) =

 Φ
(−1)
Mℓ (t) ψ̃(ℓ;m)

−θj
(θD−1)

−iΨ (−1)
Mℓ (t) ψ̃(ℓ;m)

−θj (θD−1)


(3.65)

and

Ψ(M ; r̃=1,+ℓ;m)
t (t,θD−1) = 0, Ψ(M ; r̃=1,+ℓ;m)

θj
(t,θD−1) =

 iΨ (−1)
Mℓ (t) ψ̃(ℓ;m)

+θj
(θD−1)

−Φ(−1)
Mℓ (t) ψ̃(ℓ;m)

+θj (θD−1)

 ,
(3.66)

(j = 1, ..., D − 1) where ψ̃(ℓ;m)
±θj (θD−1) are the TT eigenvector-spinors (3.46) on SD−1.

The functions Φ(−1)
Mℓ (t) and Ψ

(−1)
Mℓ (t) are given by eqs. (3.58) and (3.63), respectively,

with a = −1.
Summary. Some basic results concerning the spin-3/2 eigenmodes for even D ≥ 4 are
tabulated in Table 3.1.

3.4.3 Separating variables for spin-3/2 eigenmodes on dSD for odd
D ≥ 3

The Dirac equation (3.3) is expressed as(
∂

∂t
+ D + 1

2 tanh t
)
γtΨt + 1

cosh t
/̃∇Ψt = −MΨt, (3.67)(

∂

∂t
+ D − 3

2 tanh t
)
γtΨθj

+ 1
cosh t

/̃∇Ψθj
− tanh t γθj

Ψt = −MΨθj
, (3.68)

(j = 1, 2, ..., D − 1), where the gamma matrices are now given by eq. (3.17). As in the
even-dimensional case, we have two different types of eigenmodes depending on their
spin(D) content.
Type-I modes. Let us denote the type-I modes with spin(D) content given by f⃗0 =
(ℓ+ 1

2 ,
1
2 , ...,

1
2) as Ψ(M ; r̃=0,ℓ;m)

µ (t,θD−1) (with ℓ ≥ 1). As in Refs. [3, 4, 28], we separate
variables as

Ψ(M ; r̃=0,ℓ;m)
t (t,θD−1) = 1√

2
(1 + γt)

{
−i Φ(1)

Mℓ(t) + i Ψ
(1)
Mℓ(t)γt

}
ψ̃

(ℓ;m)
− (θD−1), (3.69)
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where ψ̃(ℓ;m)
− are the eigenspinors (3.46) on SD−1, while iψ̃(ℓ;m)

+ = γtψ̃
(ℓ;m)
− as γt anti-

commutes with /̃∇. Substituting eq. (3.69) into the Dirac equation (3.67), we find
that Φ(1)

Mℓ(t), Ψ
(1)
Mℓ(t) must satisfy the relations (3.60) and (3.61). Then, we readily find

that Φ(1)
Mℓ(t) is given by eq. (3.58) with a = 1, while Ψ (1)

Mℓ(t) is given by eq. (3.62).
The components Ψ(M ; r̃=0,ℓ;m)

θj
(t,θD−1) can be determined with the use of the TT

conditions (3.4), as in the even-dimensional case.

Type-II modes. The type-II modes Ψ(M ; r̃=1,ℓ;m)
µ (t,θD−1) correspond to the following

spin(D) representation: f⃗1 = (ℓ + 1
2 ,

3
2 ,

1
2 , ...,

1
2) with ℓ ≥ 1 and they exist for D > 3.

We separate variables as

Ψ(M ; r̃=1,ℓ;m)
t (t,θD−1) = 0,

Ψ(M ; r̃=1,ℓ;m)
θj

(t,θD−1) = 1√
2

(1 + γt)
{
Φ

(−1)
Mℓ (t) − Ψ

(−1)
Mℓ (t)γt

}
ψ̃

(ℓ;m)
−θj

(θD−1), (3.70)

(j = 1, ..., D − 1) where ψ̃
(ℓ;m)
−θj

are the eigenvector-spinors (3.46) on SD−1, while
iψ̃

(ℓ;m)
+θj

= γtψ̃
(ℓ;m)
−θj

. Substituting eq. (3.70) into the Dirac equation (3.68), we find that
Φ

(−1)
Mℓ (t) and Ψ (−1)

Mℓ (t) are given by eqs. (3.58) and (3.63), respectively, with a = −1.

Summary. Some basic results concerning the spin-3/2 eigenmodes for odd D ≥ 3 are
tabulated in Table 3.2.

3.4.4 Spin-5/2 eigenmodes on dSD

In the case of rank-2 totally symmetric tensor-spinors Ψµν - which satisfy eqs. (3.3) and
(3.4) with r = 2 on dSD - the method of separation of variables can be applied in a
way analogous to the case of TT vector-spinors. Depending on the spin(D) content of
the spin-5/2 dS eigenmode we can distinguish three types of modes: type-I, type-II and
type-III modes (the last two exist for D > 3). Here we will just summarise some basic
results for the TT spin-5/2 eigenmodes on dSD. Below we use the same notation for
the labels of the eigenmodes as in the spin-3/2 case, while we refer again to the spin(D)
content of the eigenmodes using the highest weights f⃗±

r̃ for even D [eqs. (3.49) and
(3.50)] and f⃗r̃ for odd D [eq. (3.48)].

Even D ≥ 4. The TT spin-5/2 eigenmodes on dSD and their spin(D) content are
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given by:

Type-I: f⃗±
0 =

(
ℓ+ 1

2 ,
1
2 , ...,

1
2 ,±

1
2

)
, ℓ = 2, 3, ...

Ψ(M ; r̃=0,−ℓ;m)
tt =

−Φ(2)
Mℓ(t) ψ̃

(ℓ;m)
− (θD−1)

iΨ
(2)
Mℓ(t) ψ̃

(ℓ;m)
− (θD−1)

 ,Ψ(M ; r̃=0,+ℓ;m)
tt =

−iΨ (2)
Mℓ(t) ψ̃

(ℓ;m)
+ (θD−1)

Φ
(2)
Mℓ(t) ψ̃

(ℓ;m)
+ (θD−1)

 .
(3.71)

Type-II: f⃗±
1 =

(
ℓ+ 1

2 ,
3
2 ,

1
2 , ...,

1
2 ,±

1
2

)
, ℓ = 2, 3, ...

Ψ(M ; r̃=1,−ℓ;m)
tt = Ψ(M ; r̃=1,+ℓ;m)

tt = 0,

Ψ(M ; r̃=1,−ℓ;m)
tθj

=
−iΦ(0)

Mℓ(t) ψ̃
(ℓ;m)
−θj

(θD−1)
−Ψ (0)

Mℓ(t) ψ̃
(ℓ;m)
−θj

(θD−1)

 , Ψ(M ; r̃=1,+ℓ;m)
tθj

=
 Ψ (0)

Mℓ(t) ψ̃
(ℓ;m)
+θj

(θD−1)
iΦ

(0)
Mℓ(t) ψ̃

(ℓ;m)
+θj

(θD−1)

 .
(3.72)

Type-III: f⃗±
2 =

(
ℓ+ 1

2 ,
5
2 ,

1
2 , ...,

1
2 ,±

1
2

)
, ℓ = 2, 3, ...

Ψ(M ; r̃=2,−ℓ;m)
tµ = Ψ(M ; r̃=2,+ℓ;m)

tµ = 0,

Ψ(M ; r̃=2,−ℓ;m)
θjθk

=
 Φ

(−2)
Mℓ (t) ψ̃(ℓ;m)

−θjθk
(θD−1)

−iΨ (−2)
Mℓ (t) ψ̃(ℓ;m)

−θjθk
(θD−1)

 ,
Ψ(M ; r̃=2,+ℓ;m)
θjθk

=
 iΨ (−2)

Mℓ (t) ψ̃(ℓ;m)
+θjθk

(θD−1)
−Φ(−2)

Mℓ (t) ψ̃(ℓ;m)
+θjθk

(θD−1)

 , (3.73)

where ψ̃
(ℓ;m)
±θjθk

are the rank-2 tensor-spinor eigenmodes (3.46) on SD−1, while µ =
t, θD−1, ..., θ2, θ1 and j, k = 1, ..., D − 1. The components that have not been written
down explicitly can be found from the TT conditions (3.4) (for explicit expressions for all
the components see Refs. [26, 27]).
Odd D ≥ 3. The TT spin-5/2 eigenmodes on dSD and their spin(D) content are given
by:

Type-I: f⃗0 =
(
ℓ+ 1

2 ,
1
2 , ...,

1
2

)
, ℓ = 2, 3, ...

Ψ(M ; r̃=0, ℓ;m)
tt = 1√

2
(1 + γt)

{
−Φ(2)

Mℓ(t) + Ψ
(2)
Mℓ(t)γt

}
ψ̃

(ℓ;m)
− (θD−1). (3.74)

Type-II (for D > 3) : f⃗1 =
(
ℓ+ 1

2 ,
3
2 ,

1
2 , ...,

1
2

)
, ℓ = 2, 3, ...

Ψ(M ; r̃=1,ℓ;m)
tt = 0,

Ψ(M ; r̃=1, ℓ;m)
tθj

= 1√
2

(1 + γt)
{

−iΦ(0)
Mℓ(t) + iΨ

(0)
Mℓ(t)γt

}
ψ̃

(ℓ;m)
−θj

(θD−1). (3.75)
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Type-III (for D > 3): f⃗2 =
(
ℓ+ 1

2 ,
5
2 ,

1
2 , ...,

1
2

)
, ℓ = 2, 3, ...

Ψ(M ; r̃=2, ℓ;m)
tµ = 0,

Ψ(M ; r̃=2, ℓ;m)
θjθk

= 1√
2

(1 + γt)
{
Φ

(−2)
Mℓ (t) − Ψ

(−2)
Mℓ (t)γt

}
ψ̃

(ℓ;m)
−θjθk

(θD−1), (3.76)

where µ = t, θD−1, ..., θ2, θ1 and j, k = 1, ..., D − 1. As in the even-dimensional case,
the components that have not been written down explicitly can be found from the TT
conditions (3.4).

3.5 QUADRATIC CASIMIR FOR SPIN-3/2 AND SPIN-5/2 EIGEN-
MODES ON dSD

In order to find the values of the spin(D, 1) quadratic Casimir corresponding to the
representation formed by our spin-3/2 and spin-5/2 eigenmodes we will use the “analytic
continuation” techniques that have been already used in Refs. [21, 28]. More specifically,
we will use the fact that dSD can be obtained by an “analytic continuation” of SD. The
line element of SD can be written as

dΩ2
D = dθ2

D + sin2 θD dΩ2
D−1, (3.77)

where 0 ≤ θD ≤ π. By replacing the angle θD in dΩ2
D as:

θD → x(t) = π

2 − it, (3.78)

(t ∈ R) we find the line element (3.18) for global dSD (x(t) coincides with the ‘useful’
variable that we have already introduced in eq. (3.56)).
Quadratic Casimir for tensor-spinor eigenmodes on SD. Motivated by the afore-
mentioned observation, we can obtain the field equations (3.3) and (3.4) for spin-(r+1/2)
fields on dSD by analytically continuing the equations for totally symmetric TT tensor-
spinors of rank r on SD:

/∇ψ±µ1...µr = ±i
(
n+ D

2

)
ψ±µ1...µr , (n = r, r + 1, ...) (3.79)

∇αψ±αµ2...µr = 0, γαψ±αµ2...µr = 0, (3.80)

where ψ±µ1...µr is a tensor-spinor on SD, while n is the angular momentum quantum
number on SD. Equations (3.79) and (3.80) are essentially the D-dimensional counter-
parts of eqs. (3.46) and (3.47), while now n on SD plays the role of ℓ on SD−1. As we
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discussed in Subsection 3.4.1, the spin(D + 1) representations formed by tensor-spinor
eigenmodes of the Dirac operator on SD are known [24]. Using eqs. (3.26) and (3.27),
the spin(D + 1) quadratic Casimir corresponding to the eigenmodes ψ±µ1...µr on SD is
readily found to be

C (SD)
eigen =

(
n+ D

2

)2
− r − D(D − 1)

4 + (D − 2)(D − 3)
8 + s(s+D − 2) (3.81)

= − ∇µ∇µ + (D − 2)(D − 3)
8 + s(s+D − 2) (where s = r + 1/2),

for all D ≥ 3, while in the second line we used that ∇µ∇µ acts on ψ±µ1...µr as

∇µ∇µ = /∇2 + D(D − 1)
4 + r.

Analytic continuation to dSD. Without loss of generality, we can choose to analytically
continue the eigentensor-spinors with either one of the two signs for the eigenvalue in
eq. (3.79), since each of the two sets of modes, {ψ+µ1...µr} and {ψ−µ1...µr}, forms
independently a unitary representation of spin(D+1) labelled by n (see Subsection 3.4.1).
Here we choose to analytically continue the eigentensor-spinors ψ−µ1...µr . We perform
analytic continuation by making the following replacements in eqs. (3.79) and (3.80)15:

θD → x(t) = π

2 − it, n → −iM − D

2 (t ∈ R) (3.82)

and we obtain eqs. (3.3) and (3.4), respectively, for tensor-spinors Ψµ1...µr with mass
parameter M on dSD. Recall that the values of interest for M are: M ∈ R (corresponding
to massive fermions of spin s ≥ 3/2), as well as the purely imaginary values of M
corresponding to the strictly/partially massless tunings (3.5). The prescription for
obtaining the explicit form of dS eigenmodes by analytically continuing eigenmodes on
SD can be found in Refs. [21, 28, 26, 27].
Quadratic Casimir for tensor-spinor eigenmodes on dSD. With the use of the
replacements (3.82), we analytically continue the quadratic Casimir on SD [Eq. (3.81)],
and we find the value of the quadratic Casimir on dSD:

C (dSD)
eigen = −M2 − r − D(D − 1)

4 + (D − 2)(D − 3)
8 + s(s+D − 2) (3.83)

15By making the replacements (3.82), the tensor-spinor ψ−µ1...µr
on SD is analytically continued

to the tensor-spinor Ψµ1...µr [eq. (3.3)] on dSD. Alternatively, we could analytically continue the
eigentensor-spinors on SD by making the replacement θD → π/2 + it instead of the replacement (3.78).
The analytically continued eigentensor-spinors with θD → π/2 − it and the ones with θD → π/2 + it are
related to each other by charge conjugation. However, these two cases of eigenmodes form equivalent
representations of spin(D, 1) - see Refs. [26, 27].
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Type of eigenmode Notation spin(D) content
Type-I Ψ(M ; r̃=0,±ℓ;m)

µ f⃗±
0 = (ℓ+ 1

2 ,
1
2 , ...,

1
2 ,±

1
2), ℓ = 1, 2, ...

Type-II Ψ(M ; r̃=1,±ℓ;m)
µ f⃗±

1 = (ℓ+ 1
2 ,

3
2 ,

1
2 , ...,

1
2 ,±

1
2), ℓ = 1, 2, ...

Table 3.1: Spin-3/2 TT eigenmodes with mass parameter M on dSD (even
D ≥ 4). For real M ≠ 0, type-I and type-II modes together form a spin(D, 1)
Principal Series UIR. For M = 0 the representation is reducible as the two sets of
eigenmodes {Ψ(M ; r̃,−ℓ;m)

µ }r̃=0,1 and {Ψ(M ; r̃,+ℓ;m)
µ }r̃=0,1 separately form Discrete Series

UIR’s of spin(D, 1). For M = ±i(D − 2)/2 (strictly massless tuning) the type-I modes
become pure gauge modes, while the type-II modes are the physical modes forming
a non-unitary representation for D ̸= 4 and a direct sum of two ‘chiral’ UIR’s in the
Discrete Series for D = 4 - see Section 3.7. All these results have been also explained by
studying the group-theoretic properties of the eigenmodes in Refs. [26, 27].

Type of eigenmode Notation spin(D) content
Type-I Ψ(M ; r̃=0,ℓ;m)

µ f⃗0 = (ℓ+ 1
2 ,

1
2 , ...,

1
2), ℓ = 1, 2, ...

Type-II (for D > 3) Ψ(M ; r̃=1,ℓ;m)
µ f⃗1 = (ℓ+ 1

2 ,
3
2 ,

1
2 , ...,

1
2), ℓ = 1, 2, ...

Table 3.2: Spin-3/2 TT eigenmodes with mass parameter M on dSD (odd
D ≥ 3). Type-II modes exist for D > 3. For real M , type-I and type-II modes together
form a Principal Series UIR of spin(D, 1) for D > 3. For real M and D = 3, type-I
modes form a Principal Series UIR of spin(3, 1). For M = ±i(D− 2)/2 (strictly massless
tuning) and D > 3, the type-I modes become pure gauge modes, while the type-II modes
are the physical modes forming a non-unitary strictly massless representation. At the
strictly massless tuning M = ±i/2 for D = 3, the type-I modes are again pure gauge
modes and they form a non-unitary representation of spin(3, 1) - see Section 3.7. All
these results have been also explained by studying the group-theoretic properties of the
eigenmodes in Refs. [26, 27].

(with s = r + 1/2), which holds for all D ≥ 3 and for all totally symmetric TT tensor-
spinor eigenmodes with spin s ≥ 1/2 and mass parameter M on dSD. Specialising to
the spin-3/2 TT eigenmodes we find

C (dSD)
eigen = −M2 − (D − 1)(D − 8)

8 , (3.84)

while for the spin-5/2 TT eigenmodes we find

C (dSD)
eigen = −M2 − D(D − 17)

8 . (3.85)
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D ̸= 4 and unitarity for D = 4

3.6 STRICTLY AND PARTIALLY MASSLESS REPRESENTATIONS:
NON-UNITARITY FOR D ̸= 4 AND UNITARITY FOR D = 4

Here we will obtain the main result of this paper: the strictly massless spin-3/2 field,
as well as the strictly and partially massless spin-5/2 fields, on dSD (D ≥ 3) cannot
be unitary unless D = 4. Note that we already know the values of the quadratic
Casimir [eqs. (3.84) and (3.85)] for the representations formed by our dS eigenmodes for
any mass parameter M . By specialising to the strictly/partially massless tunings (3.5),
we find

C (dSD)
eigen = D(D + 1)

8 , spin-3/2, strictly massless, (3.86)

C (dSD)
eigen = D(D + 17)

8 , spin-5/2, strictly massless, (3.87)

C (dSD)
eigen = (D + 1)(D + 8)

8 , spin-5/2, partially massless. (3.88)

Apart from the values of the quadratic Casimir (3.86)-(3.88), we also know the spin(D)
content of the spin(D, 1) representations formed by our dS eigenmodes - see Tables 3.1
and 3.2, as well as Subsections 3.4.2-3.4.4. Keeping these results in mind, we can use
the classification of the UIR’s in Section 3.3 in order to readily deduce the (non-)unitarity
of the representations formed by our strictly/partially massless eigenmodes on dSD.

First, let us identify which types of dS eigenmodes correspond to pure gauge modes
and which to physical modes in the strictly/partially massless theories. By ‘physical
modes’ we mean the eigenmodes that form the strictly/partially massless representation
of spin(D, 1) and that correspond to the (non-gauge) propagating degrees of freedom
of the theory. (If the representation formed by the eigenmodes is non-unitary, then
the name ‘physical modes’ could be misleading as the theory is, of course, unphysical
due to the appearance of negative probabilities.) The pure gauge modes describe pure
gauge degrees of freedom of the theory. If a dS invariant scalar product exists, then the
pure gauge modes have zero norm and they are orthogonal to all physical modes [21,
26, 27]. The generators of spin(D, 1) act in terms of the Lie-Lorentz derivative (3.10)
on equivalence classes of physical modes with equivalence relation given by: “For any
two physical modes Ψ(1)

µ1...µr
and Ψ(2)

µ1...µr
we have Ψ(1)

µ1...µr
∼ Ψ(2)

µ1...µr
if and only if their

difference Ψ(1)
µ1...µr

− Ψ(2)
µ1...µr

is a linear combination of pure gauge modes”.
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3.6.1 Pure gauge modes and physical modes

Pure gauge and physical modes for strictly massless spin-3/2 field. The mass
parameter for the strictly massless spin-3/2 field is given by M = ±i(D − 2)/2 [this is
found by letting r = τ = 1 in eq. (3.5)]. The spin-3/2 type-I modes are the pure gauge
modes of the theory, while the spin-3/2 type-II modes are the physical modes that form
the (strictly massless) representation of spin(D, 1). More specifically, we find that for
M = ±i(D − 2)/2 all type-I modes [see eqs. (3.53) and (3.64) for even D ≥ 4 and
eq. (3.69) for odd D ≥ 3] are expressed in a pure gauge form as:

Ψ(PG)
±µ (t,θD−1) =

(
∇µ ± i

2γµ
)

Λ±(t,θD−1), (3.89)

where for convenience we have omitted all quantum number labels from Ψ(PG)
±µ and Λ±.

The subscript ‘±’ in Ψ(PG)
±µ denotes the sign of the mass parameter M = ±i(D − 2)/2.

The spinor gauge functions Λ±(t,θD−1) satisfy

/∇Λ± = ∓i D2 Λ±. (3.90)

Pure gauge and physical modes for strictly massless spin-5/2 field. The mass
parameter for the strictly massless spin-5/2 field is given by M = ±iD/2 [this is found
by letting r = 2 and τ = 1 in eq. (3.5)]. There are two types of pure gauge modes,
namely the type-I and type-II modes. The spin-5/2 type-III modes are the physical modes
that form the (strictly massless) representation of spin(D, 1). More specifically, we find
that for M = ±iD/2 all type-I modes [see eq. (3.71) for even D ≥ 4 and eq. (3.74) for
odd D ≥ 3] and all type-II modes [see eq. (3.72) for even D ≥ 4 and eq. (3.75) for odd
D ≥ 5] are expressed in a pure gauge form as:

Ψ(PG)
±µν (t,θD−1) =

(
∇(µ ± i

2γ(µ

)
λ±ν)(t,θD−1) (3.91)

for some TT vector-spinor gauge functions λ±µ(t,θD−1) with

/∇λ±µ = ∓i D + 2
2 λ±µ (3.92)

γµλ±µ = ∇µλ±µ = 0. (3.93)

(The gauge functions for type-I modes are different from the gauge functions for type-II
modes - for more details see Refs. [26, 27].)
Pure gauge and physical modes for partially massless spin-5/2 field. The mass
parameter for the partially massless spin-5/2 field is given by M = ±i(D − 2)/2 [this is
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found by letting r = 2 and τ = 2 in eq. (3.5)]. The type-I modes are the pure gauge
modes of the theory. Both type-II and type-III modes are physical modes that form the
(partially massless) representation of spin(D, 1). For M = ±i(D− 2)/2 all type-I modes
are expressed in a pure gauge form as:

Ψ(PG)
±µν (t,θD−1) =

(
∇(µ∇ν) ± iγ(µ∇ν) + 3

4gµν
)
φ±(t,θD−1), (3.94)

where the spinor gauge functions φ±(t,θD−1) satisfy

/∇φ± = ∓i D + 2
2 φ±. (3.95)

Explicit expressions on global dSD for the eigenmodes corresponding to the gauge
functions in eqs. (3.89), (3.91) and (3.94) can be found in Refs. [26, 27].
Remark 6.1. On dS3, both spin-3/2 and spin-5/2 theories with arbitrary mass parameters
have only type-I modes. Thus, specialising to the strictly/partially massless theories on
dS3, we conclude that all eigenmodes for these theories are pure gauge modes.
Remark 6.2. In the fermionic strictly/partially massless theories of spin s = r + 1/2
and depth τ = 1, ..., r on global even-dimensional dSD (D ≥ 4), we can deduce which
eigenmodes are pure gauge modes and which are physical modes from their spin(D)
content. The latter corresponds to the highest weights f⃗+

r̃ = (ℓ+1/2, r̃+1/2, 1/2, ..., 1/2)
and f⃗−

r̃ = (ℓ+ 1/2, r̃ + 1/2, 1/2, ..., 1/2,−1/2) with r̃ ≤ r ≤ ℓ. The pure gauge modes
correspond to the cases with 0 ≤ r̃ ≤ r − τ, while the physical modes correspond to
r − τ + 1 ≤ r̃ ≤ r.
Remark 6.3. In the fermionic strictly/partially massless theories of spin s = r + 1/2
and depth τ = 1, ..., r on global odd-dimensional dSD (D ≥ 3), we can deduce which
eigenmodes are pure gauge modes and which are physical modes from their spin(D)
content. The latter corresponds to the highest weights f⃗r̃ = (ℓ+1/2, r̃+1/2, 1/2, ..., 1/2)
with r̃ ≤ r ≤ ℓ. As in the even-dimensional case, the pure gauge modes correspond to
the cases with 0 ≤ r̃ ≤ r− τ, while the physical modes correspond to r− τ+ 1 ≤ r̃ ≤ r.
The validity of Remarks 6.1-6.3 for the spin-3/2 and spin-5/2 fields has been demonstrated
in this paper, as well as in Refs. [26, 27]. However, we expect that these remarks also
hold for all strictly/partially massless fields with half-odd-integer spins s ≥ 3/2. This
expectation is also motivated by the well-studied case of totally symmetric tensors [21].
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3.6.2 Studying the (non-)unitarity of the strictly/partially mass-
less theories with spin s = 3/2, 5/2

Our ‘tools’ in order to demonstrate that the unitarity of the strictly/partially massless
fields of spin s = 3/2, 5/2 occurs only for D = 4 are: on the one hand the values of the
quadratic Casimir [eqs. (3.86)-(3.88)] and the spin(D) content of the physical modes
[see Tables 3.1 and 3.2 and Remarks 6.1-6.3] and, on the other hand, the classification of
the UIR’s in Section 3.3. Although the readers can readily convince themselves about the
non-unitarity for D ̸= 4 (given our aforementioned tools), we will present here a detailed
discussion concerning the strictly massless spin-3/2 field. The cases of the strictly and
partially massless spin-5/2 fields can then be treated in the same manner and, therefore,
we will not present their details here.
Non-unitarity for odd D = 2p+1 ≥ 5. Let F⃗ = (F0, F1, ..., Fp) be the spin(2p+1, 1)
representation formed by the physical spin-3/2 modes. The corresponding spin(D) content
is given by f⃗1 = (ℓ + 1/2, 3/2, 1/2, ..., 1/2) with ℓ ≥ 1 - see Remark 6.3. The labels
F1, F2, ..., Fp must all be half-odd-integers. It is clear that these values for F1, ..., Fp

- as well as the spin(D) content - correspond neither to the UIR’s of the Exceptional
Series (3.44), nor to the UIR’s of the Complementary Series (3.43), since these UIR’s
allow only integer values for F1, ..., Fp. Then, the only remaining candidate that could
accommodate the strictly massless spin-3/2 field is the Principal Series (3.42), where
F0 = −(D − 1)/2 + iy (y ∈ R). We will readily show that the Principal Series cannot
accommodate the strictly massless spin-3/2 field. Suppose, for the sake of contradiction,
that the strictly massless spin-3/2 representation F⃗ = (F0, .., Fp) belongs to the Principal
Series UIR’s (3.42). Since we already know the spin(D) content of F⃗ , by using the
branching rules (3.39) we find that the following must hold: F1 = 3/2, F2 ∈ {1/2, 3/2}
and F3 = ... = Fp−1 = Fp = 1/2. Moreover, the quadratic Casimir for the Principal
Series C2(F⃗ ) [eq. (3.45)] must coincide with the quadratic Casimir C (dSD)

eigen = D(D+1)
8

[eq. (3.86)] corresponding to the physical modes. By equating these two values for the
quadratic Casimir we find that F0 must satisfy

F0(F0 +D − 1) + F2(F2 +D − 5) + 3
2 = 0, with F2 ∈

{1
2 ,

3
2

}
. (3.96)

For F2 = 1/2 this equation gives F0 = −1/2 or F0 = −D + 3/2, i.e. we arrive at a
contradiction as these values for F0 do not correspond to the Principal Series for odd
D ≥ 5. Similarly, for F2 = 3/2 we arrive again at a contradiction because eq. (3.96)
gives F0 = −3/2 or F0 = −D+ 5/2 and these values do not correspond to the Principal
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Series for odd D ≥ 5. To conclude, we have proved that the strictly massless spin-3/2
field cannot be accommodated by any UIR of spin(D, 1) for odd D ≥ 5.
Non-unitarity for D = 3. As we discussed earlier, on dS3 the strictly massless spin-
3/2 field (as well as the strictly and partially massless spin-5/2 fields) has only pure
gauge modes - see Remark 6.1. However, it is worth showing here that the spin(3, 1)
representation formed by the pure gauge modes of the strictly massless spin-3/2 theory
is non-unitary. Let F⃗ = (F0, F1) be the spin(3, 1) representation formed by the pure
gauge modes. The spin(3) content for this representation is given by ℓ+ 1/2 with ℓ ≥ 1
- see Remark 6.3. Also, the label F1 must be a half-odd-integer. Thus, we can rule out
both the Complementary Series (3.43) and the Exceptional Series (3.44) [in fact, the
Exceptional Series does not exist for D = 3 [33]]. Now, as in the case with odd D ≥ 5,
it is easy to show that the quadratic Casimir for the spin(3, 1) Principal Series C2(F⃗ )
[eq. (3.45)] does not coincide with the field-theoretic quadratic Casimir C (dS3)

eigen = 3
2

[eq. (3.86)] on dS3.16

Non-unitarity for even D = 2p ≥ 6. Let F⃗ = (F0, F1, ..., Fp−1) be the spin(2p, 1)
representation formed by the physical spin-3/2 modes. The corresponding spin(D) content
is given by f⃗+

1 = (ℓ+ 1/2, 3/2, 1/2, ..., 1/2) and f⃗−
1 = (ℓ+ 1/2, 3/2, 1/2, ..., 1/2,−1/2)

with ℓ ≥ 1 (see Remark 6.1), while the labels F1, F2, ..., Fp−1 must all be half-odd-integers.
These values are incompatible with both the UIR’s of the Exceptional Series (3.34) and
the UIR’s of the Complementary Series (3.33). Then, the UIR’s that are still candidates
for accommodating the strictly massless spin-3/2 field are: the Principal Series (3.32)
and the Discrete Series (3.35) and (3.36). Now, the following steps are as in the case
with odd D ≥ 5, i.e. we can prove by contradiction that the strictly massless spin-3/2
field corresponds neither to the Principal Series nor to the Discrete Series for even
D ≥ 6. In particular, starting with the contradicting assumption that F⃗ belongs to the
Principal or Discrete Series, and making use of the branching rules (3.29), we equate
the field-theoretic Casimir (3.86) with the quadratic Casimir from the UIR’s [eq. (3.37)].
By doing so, we find again that F0 must satisfy eq. (3.96). Then, we readily arrive at
a contradiction because the values of F0 that satisfy eq. (3.96) agree neither with the
Principal Series nor with the Discrete Series UIR’s for even D ≥ 6. To conclude, we
have proved that the strictly massless spin-3/2 field cannot be accommodated by any
UIR of spin(D, 1) for even D ≥ 6.
Unitarity for D = 4. The mass parameter for the strictly massless spin-3/2 field on dS4

16For arbitrary D, the physical modes have the same value for the quadratic Casimir as the pure
gauge modes.
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is M = ±i. However, the physical modes with M = i and the ones with M = −i form
equivalent representations17. Thus, below we can just let M = i. There are two ‘chiral’
UIR’s of spin(4, 1) that correspond to the strictly massless spin-3/2 field on dS4: one UIR
for the helicity +3/2 and one UIR for the helicity −3/2. The physical modes (i.e. the type-
II modes) with helicity ±3/2 have the following spin(4) content: f⃗±

1 = (ℓ+ 1/2,±3/2)
with ℓ ≥ 1. Let F⃗ = (F0, F1) be the spin(4, 1) representation formed by the physical
modes with helicity +3/2. The branching rules (3.29) give F1 = 3/2. Then, by
comparing the field-theoretic expression (3.86) for the quadratic Casimir with the UIR
expression (3.37), we find that the physical modes with helicity +3/2 form the Discrete
Series UIR D+(F⃗ ) = D+(−1/2, 3/2) [eq. (3.35)]. Similarly, we find that the physical
modes with helicity −3/2 form the Discrete Series UIR D−(F⃗ ) = D−(−1/2, 3/2)
[eq. (3.36)]. Thus, the strictly massless spin-3/2 field on dS4 corresponds to the direct
sum of Discrete Series UIR’s D+(−1/2, 3/2)⊕D−(−1/2, 3/2)18. More details can be
found in the dictionary in Section 3.7.

3.7 DICTIONARY BETWEEN (SYMMETRIC) TENSOR-SPINOR FIELDS
ON dSD AND UIR’S OF SPIN(D, 1) FOR D ≥ 3

Here we present a ‘field theory - UIR’s dictionary’ based on our analysis for the spin-
3/2 and spin-5/2 eigenmodes satisfying eq. (3.3) on dSD. This dictionary relies on
the classification of the UIR’s under the decomposition spin(D, 1) ⊃ spin(D) given in
Section 3.3 and it was constructed by taking advantage of both:

• The values for the spin(D, 1) quadratic Casimir corresponding to the eigenmodes
[eqs. (3.84), (3.85) and (3.86)-(3.88)].

• The spin(D) content of the eigenmodes (see Section 3.4, Tables 3.1 and 3.2 and
Remarks 6.1-6.3).

Although until now we have mainly discussed the spin-3/2 and spin-5/2 fields, our analysis
and the classification of the UIR’s in Section 3.3 allow us to propose a dictionary for totally

17This can be readily understood as follows. If we act with γ5 on any spin-3/2 physical mode with
mass parameter M = ±i on dS4, then the resulting eigenmode is a physical mode with the same spin(4)
content but with mass parameter M = ∓i. Moreover, the matrix γ5 commutes with the Lie-Lorentz
derivative (3.10) with respect to any spin(4, 1) Killing vector.

18The strictly/partially massless totally symmetric tensors of spin s = r and depth τ = 1, ..., r on dS4
also form a direct sum of Discrete Series UIR’s corresponding to D+(r−τ−1, r)

⊕
D−(r−τ−1, r) [20,

19].
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3.7. Dictionary between (symmetric) tensor-spinor fields on dSD and UIR’s
of spin(D, 1) for D ≥ 3

symmetric TT tensor-spinors (3.3) with mass parameter M and any half-odd-integer
spin s = r+ 1/2 ≥ 1/2 on dSD (D ≥ 3). However, we note that we have not performed
an eigenmode analysis for the fields with half-odd-integer spin s ≥ 7/2 yet, but this is
something that we leave for future work. In our dictionary, we give the explicit values
for all representation labels concerning the UIR’s under the decomposition spin(D, 1) ⊃
spin(D), and we also translate our results in the representation-theoretic language used
in the CFT literature [2]. While reading the following dictionary, one should recall that
the spin(D) content is described by the highest weights of the rank-r̃ TT tensor-spinor
eigenmodes (3.46) on SD−1: f⃗r̃ = (ℓ+ 1/2, r̃ + 1/2, 1/2, ..., 1/2) for odd D [eq. (3.48)]
and f⃗±

r̃ = (ℓ + 1/2, r̃ + 1/2, 1/2, ..., 1/2,±1/2) for even D [eqs. (3.49) and (3.50)] -
recall also Remarks 6.1-6.3.

Dictionary for fields with half-odd-integer spin s = r+ 1/2 ≥ 1/2 for D ≥ 3

• Real M ̸= 0 for all D ≥ 3: Principal Series UIR’s.
(This case corresponds to the Principal Series with so(1, 1) weight ∆c = D−1

2 − iM

in Ref. [2].) The representation labels are F⃗ = (−D−1
2 − iM, r + 1

2 ,
1
2 , ...,

1
2), while for

D ∈ {3, 4} we have F⃗ = (−D−1
2 − iM, r + 1

2). The spin(D) content corresponds to
the highest weights: f⃗r̃ (for odd D ≥ 3) and f⃗±

r̃ (for even D ≥ 4) with ℓ ≥ r ≥ r̃ ≥ 0.
For even D ≥ 4, the eigenmodes with opposite values for their mass parameters form
equivalent representations.

• M = 0 for odd D ≥ 3: Principal Series UIR’s.
(This case corresponds to the Principal Series with ∆c = D−1

2 in Ref. [2].) For D > 3
the representation labels are F⃗ = (−D−1

2 , r + 1
2 ,

1
2 , ...,

1
2), while for D = 3 we have

F⃗ = (−1, r + 1
2). The spin(D) content corresponds to the highest weights f⃗r̃ with

ℓ ≥ r ≥ r̃ ≥ 0.

• M = 0 for even D ≥ 4: Direct sum of two Discrete Series UIR’s D+(F⃗ )⊕D−(F⃗ ).
(In Ref. [2], this case corresponds to a direct sum of two Principal Series UIR’s with
∆c = D−1

2 that are related to each other by space reflection.) The eigenmodes
with spin(D) content f⃗+

r̃ (where ℓ ≥ r ≥ r̃ ≥ 0) form the Discrete Series UIR
D+(−D−1

2 , r + 1
2 ,

1
2 , ...,

1
2) for D > 4 and the UIR D+(−3

2 , r + 1
2) for D = 4. The

eigenmodes with spin(D) content f⃗−
r̃ (where ℓ ≥ r ≥ r̃ ≥ 0) form the Discrete Series

UIR D−(−D−1
2 , r+ 1

2 ,
1
2 , ...,

1
2) for D > 4 and D−(−3

2 , r+ 1
2) for D = 4. The eigenmodes
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that form the UIR D+ and the ones forming D− belong to different eigenspaces of the
matrix γD+1 [eq. (3.16)].

• Strictly/partially massless fields of depth τ = 1, ..., r with s ≥ 3/2 for D ̸= 4:
Non-unitary.

• Strictly/partially massless fields of depth τ = 1, ..., r with s ≥ 3/2 for D = 4:
Direct sum of two Discrete Series UIR’s of spin(4, 1), D+(F⃗ )⊕D−(F⃗ ).
(In Ref. [2], this case corresponds to a direct sum of two Discrete Series UIR’s with
∆c = 5

2 + r − τ that are related to each other by space reflection.) The physical modes
with spin(D) content f⃗+

r̃ = (ℓ + 1
2 , r̃ + 1

2) (where ℓ ≥ r ≥ r̃ ≥ r − τ + 1) form the
Discrete Series UIR D+(r − τ − 1

2 , r + 1
2). The physical modes with spin(D) content

f⃗−
r̃ = (ℓ + 1

2 ,−r̃ − 1
2) (where ℓ ≥ r ≥ r̃ ≥ r − τ + 1) form the Discrete Series UIR

D−(r − τ − 1
2 , r + 1

2). In particular, the UIR D±(r − τ − 1
2 , r + 1

2) corresponds to the
depth-τ field with propagating helicities (±s,±(s− 1), ...,±(s− τ + 1)). In the strictly
massless case (τ = 1), the UIR D+(r − 3

2 , r + 1
2) corresponds to the single helicity

s, while D−(r − 3
2 , r + 1

2) corresponds to the single helicity −s. No physical (or pure
gauge (3.89)) mode is an eigenfunction of the matrix γ5 [eq. (3.16)].

3.8 SUMMARY AND DISCUSSIONS

In the present paper, we demonstrated that four-dimensional dS space plays a distinguished
role in the unitarity of the strictly and partially massless (symmetric) tensor-spinor fields
of spin s = 3/2, 5/2. In particular, the strictly massless spin-3/2 field, as well as the
strictly and partially massless spin-5/2 fields on dSD, are not unitary unless D = 4.
The explanation relies on the representation theory of spin(D, 1), where the latter
does not allow strictly/partially massless UIR’s for (symmetric) tensor-spinors unless
D = 4. This is a remarkable feature of dS field theory, while it is also very interesting
that the dimensionality that plays a special representation-theoretic role matches the
dimensionality of our physical Universe. We also expect that this result should hold for
all totally symmetric tensor-spinors with spin s ≥ 7/2, while this expectation of ours
is justified by the classification of the spin(D, 1) UIR’s. A technical explanation of our
results in terms of the (non-)existence of positive-definite dS scalar products for the
spin-3/2 and spin-5/2 eigenmodes has been given in Refs. [26, 27].
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3.8. Summary and discussions

In Section 3.7, we presented a dictionary between (totally symmetric) half-odd-integer-
spin fields on dSD and UIR’s of spin(D, 1) (D ≥ 3). The validity of our dictionary for
the spin-3/2 and spin-5/2 fields was demonstrated in this paper. Our dictionary for
the cases with half-odd-integer spin s ≥ 7/2 is a ‘suggestion’ that is motivated by the
classification of the UIR’s and can be confirmed by performing an eigenmode analysis for
half-odd-integer spins s ≥ 7/2. This is something that we leave for future work.

In the present paper, ‘unitarity’ of a field theory does not just refer to the positivity of the
norm in the Hilbert space. In this paper, unitarity in the one-particle Hilbert space means
that: a positive-definite scalar product for the eigenmodes exists that is invariant under
spin(D, 1). If and only if these conditions are satisfied then the space of eigenmodes
can be identified with the representation space of a unitary representation of spin(D, 1).
For example, consider the strictly massless spin-3/2 field on dS4 satisfying the onshell
conditions (

/∇ ± i
)

Ψµ = 0 (3.97)

∇αΨα = 0, γαΨα = 0. (3.98)

The physical eigenmodes of this theory are given by eqs. (3.65) and (3.66). It is easy to
check that the following (Dirac-like) scalar product is positive-definite∫

S3

√
−g dθ3 g

µνΨ(1)†
µ (t,θ3) Ψ(2)

ν (t,θ3) (3.99)

for any two physical modes Ψ(1)
µ and Ψ(2)

ν , where g is the determinant of the dS4 metric,
while dθ3 stands for dθ3dθ2dθ1. This is the scalar product for the one-particle Hilbert
space that was implicitly used in order to check the positivity property of the equal time
anti-commutators in Ref. [9]. However, while the positivity of the norm with respect to the
scalar product (3.99) is clearly necessary, it is not sufficient for representation-theoretic
unitarity. In particular, it is straightforward to check that the scalar product (3.99)
is neither conserved nor dS invariant [26, 27]. The reason is that the conventional
(Dirac-like) vector current

Jµ = − Ψ(1)†
ν γ0γµΨ(2)ν (3.100)

is not covariantly conserved because of the imaginary mass parameter in eq. (3.97).
Thus, we cannot use the scalar product (3.99) in order to check the unitarity of the
spin(4, 1) representation formed by the physical modes. On the other hand, the (axial)
vector current

Jµax = − Ψ(1)†
ν γ0γµγ5Ψ(2)ν (3.101)
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is covariantly conserved, giving rise to the time-independent and dS invariant scalar
product [26, 27]∫

S3

√
−g dθ3J

0
ax =

∫
S3

√
−g dθ3 g

µνΨ(1)†
µ (t,θ3) γ5 Ψ(2)

ν (t,θ3). (3.102)

This scalar product is a good choice in order to study the unitarity of the corresponding
spin(4, 1) representation for the reasons mentioned above. In particular, the physical
modes (3.65) form the Discrete Series UIR D−(−1

2 ,
3
2) with the positive-definite scalar

product (3.102), while the physical modes (3.66) form the Discrete Series UIR D+(−1
2 ,

3
2)

with positive-definite scalar product given by the negative of eq. (3.102). The pure
gauge modes (3.89) have zero norm with respect to the scalar product (3.102) and they
are orthogonal to all physical modes. For more details concerning the eigenmodes see
Refs. [26, 27].

The fermionic strictly and partially massless tunings (3.5) were found in Ref. [7], but
the non-unitarity of the corresponding theories for D ̸= 4 could not be revealed with the
methods used in this reference.
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3.9 APPENDIX A - THE ONLY TOTALLY SYMMETRIC TT TENSOR-
SPINOR EIGENMODES OF THE DIRAC OPERATOR THAT EXIST
ON S2 ARE THE SPINOR EIGENMODES

The spinor eigenmodes of the Dirac operator on S2 (as well as on spheres of any dimension)
have been constructed in Ref. [3]. In Ref. [4], the TT vector-spinor eigenmodes of the
Dirac operator on Sd (d ≥ 3) were obtained, while it was found that there are no TT
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3.9. Appendix A - The only totally symmetric TT tensor-spinor eigenmodes
of the Dirac operator that exist on S2 are the spinor eigenmodes

vector-spinor eigenmodes on S2. In Refs. [26, 27], the author has constructed the rank-2
symmetric TT tensor-spinor eigenmodes of the Dirac operator on Sd (d ≥ 3) and he
also found that such eigenmodes do not exist on S2. In this Appendix, we will show that
there are no totally symmetric TT tensor-spinor eigenmodes ψ̃µ̃1...µ̃r̃ of rank r̃ ≥ 2 on S2.
Our proof will closely follow the analogous proof for totally symmetric tensors of rank
r̃ ≥ 2 on S2 in Ref. [21]. For convenience, we will drop the tildes from the tensor indices
and, thus, our tensor-spinor of rank r̃ ≥ 2 on S2 will be denoted as ψ̃µ1...µr̃ .
For later convenience, note that the Riemann tensor on S2 is

R̃µνκλ = g̃µκg̃νλ − g̃νκg̃µλ, (3.103)

where g̃µν is the metric tensor on S2. The commutator of covariant derivatives acting
on a vector-spinor on S2 is given by

[∇̃µ, ∇̃ν ]ψ̃α = 1
4R̃µνκλγ̃

κγ̃λψ̃α + R̃λ
ανµψ̃λ (3.104)

= 1
2(γ̃µγ̃ν − g̃µν)ψ̃α + 2g̃α[µψ̃ν], (3.105)

where γ̃µ are the gamma matrices on S2. The expressions for the commutators of
covariant derivatives for tensor-spinors of higher rank are straightforward generalisations
of eq. (3.105). Also, let ϵ̃µν be the anti-symmetric tensor on S2. In the coordinate
system (3.19), ϵ̃µν is defined by

ϵ̃θ1θ1 = ϵ̃θ2θ2 = 0

ϵ̃θ2θ1 = −ϵ̃θ1θ2 = sin θ2, (3.106)

where ∇̃αϵ̃µν = 0. Now, let us define

∇̃[θ1ψ̃θ2]µ2...µr̃ = ϵ̃θ1θ2Aµ2...µr̃ , (3.107)

where Aµ2...µr̃ is a totally symmetric tensor-spinor of rank r̃ − 1 on S2. Then

∇̃[µψ̃ν]µ2...µr̃ = ϵ̃µνAµ2...µr̃ . (3.108)

By taking the trace of eq. (3.108) with respect to the indices ν and µ2, and by using the
fact that ψ̃νµ2...µr̃ is traceless and divergence-free, we find Aµ2...µr̃ = 0. In other words,

∇̃[µψ̃ν]µ2...µr̃ = 0. (3.109)
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By taking the divergence of this equation with respect to the index µ, and making use of
eq. (3.105), we find

∇̃µ∇̃µψ̃νµ2...µr̃ =
(
r̃ + 1

2

)
ψ̃νµ2...µr̃ . (3.110)

However, as is well-known, ∇̃µ∇̃µ is negative-definite on compact manifolds. Thus,
ψ̃νµ2...µr̃ must be identically zero.
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4

(Non-)unitarity of strictly and partially
massless fermions on de Sitter space II: a

technical explanation

Abstract

In our previous article, we showed that the strictly massless spin-3/2 field, as well
as the strictly and partially massless spin-5/2 fields, on N -dimensional (N ≥ 3)
de Sitter spacetime (dSN ) are non-unitary unless N = 4. The (non-)unitarity was
demonstrated by showing that there is a (mis-)match between the representation-
theoretic labels that correspond to the Unitary Irreducible Representations (UIR’s)
of the de Sitter (dS) algebra spin(N, 1) and the ones corresponding to the space of
eigenmodes of the field theories. In this paper, we provide a technical explanation
for this fact by studying the (non-)existence of positive-definite, dS invariant
scalar products for the spin-3/2 and spin-5/2 eigenmodes on dSN (N ≥ 3). In
particular, we show the following. For odd N , any dS invariant scalar product
is identically zero. For even N > 4, any dS invariant scalar product must be
indefinite. This gives rise to positive-norm and negative-norm eigenmodes that mix
with each other under spin(N, 1) boosts. In the N = 4 case, the positive-norm
sector decouples from the negative-norm sector and each sector separately forms
a UIR of spin(4, 1). Our analysis makes extensive use of the analytic continuation
of tensor-spinor spherical harmonics on the N -sphere (SN ) to dSN .
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4.1. Introduction

4.1 INTRODUCTION

This is a technical sequel to our previous paper [25], in which we constructed a ‘field
theory-representation theory’ dictionary for totally-symmetric spin-s = 3/2, 5/2 tensor-
spinors on N -dimensional (N ≥ 3) de Sitter spacetime (dSN). Totally symmetric
tensor-spinors, Ψµ1...µr , of spin s ≡ r + 1/2 on dSN satisfy [10, 7](

/∇ +M
)

Ψµ1...µr = 0 (4.1)

∇αΨαµ2...µr = 0, γαΨαµ2...µr = 0, (4.2)

where /∇ = γν∇ν is the Dirac operator on dSN . (See Subsection 4.2.2 for our convention
for the gamma matrices.) From now on, we will refer to the divergence-free and
gamma-tracelessness conditions in eq. (4.2) as the TT conditions.
Main results of our previous paper. In our previous article [25], we constructed the
spin-s = 3/2, 5/2 eigenmodes of eqs. (4.1) and (4.2) on global dSN (N ≥ 3). Then, we
investigated the (mis-)match between the representation-theoretic labels that correspond
to the Unitary Irreducible Representations (UIR’s) of the de Sitter (dS) algebra, spin(N, 1),
and the ones corresponding to the eigenmodes. We found that for real values of M the
representations are unitary. However, the main interesting result of Ref. [25] concerns the
strictly and partially massless theories (i.e. the theories that enjoy a gauge symmetry).
In particular, the strictly and partially massless theories, for which the mass parameter is
known to be tuned to the special imaginary values 1M = iM̃ [7]:

M̃2 = −M2 =
(
r − τ + N − 2

2

)2
(τ = 1, ..., r), (4.3)

were found to be non-unitary, unless N = 4. (The analysis of the previous [25], as well
as of the present, papers focuses only on the cases with r = 1 and r = 2. However,
the ‘field theory-representation theory’ dictionary of Ref. [25] suggests that our main
result extends to all strictly/partially massless (totally symmetric) tensor-spinors of spin
s ≥ 7/2.) The quantity τ is known as the depth of the strictly/partially massless field
(i.e. gauge potential). The value τ = 1 corresponds to strict masslessness and the values
τ = 2, ..., r to partial masslessness - see Refs. [22, 21, 10, 12, 9, 11, 8, 7] for background
material concerning strict and partial masslessness.

1The imaginary values of M in eq. (4.3) imply that the action functional for strictly/partially
massless half-odd-integer-spin theories on dSN is not hermitian. The fact that the gauge-invariant
spin-3/2 field theory in de Sitter spacetime has an imaginary mass parameter had been already observed
in cosmological supergravity [28].
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4.1.1 Main aim and strategy of the present paper

The main aim of this paper is to provide a technical explanation for the results of our
previous paper [25], and, in particular, of the main result:

• Main result: The strictly massless spin-3/2 field (gravitino) and the strictly and
partially massless spin-5/2 fields on dSN (N ≥ 3) are unitary only for N = 4.

Our technical explanation relies on studying the (non-)existence of positive-definite, dS
invariant scalar products for the spin-3/2 and spin-5/2 eigenmodes on dSN (N ≥ 3) - see
Subsection 4.1.2 for a summary of our technical explanation. Since the strictly/partially
massless theories occur for imaginary values (4.3) of the mass parameter, we will focus
our group-theoretic analysis on the case where M is an arbitrary imaginary number
M = iM̃ (M̃ ̸= 0), and we will specialise to the strictly/partially massless values (4.3)
when necessary.
Our strategy is as follows:

• We re-obtain the TT vector-spinor eigenmodes Ψµ1 (spin-3/2 modes) and the
TT symmetric tensor-spinor eigenmodes Ψµ1µ2 (spin-5/2 modes) of eq. (4.1) with
arbitrary imaginary mass parameter M = iM̃ (M̃ ≠ 0) by taking advantage of
the well-known fact that SN can be analytically continued to dSN (see Section
4.7). (In Ref. [25], these eigenmodes were constructed directly on dSN using the
method of separation of variables.) In particular, we write down explicitly the mode
solutions of the following eigenvalue equation on SN :

/∇ψµ1...µr = iζψµ1...µr (4.4)
∇αψαµ2...µr = 0, γαψαµ2...µr = 0, (4.5)

where ψµ1...µr is a totally symmetric tensor-spinor of rank r on SN which also
satisfies the TT conditions (4.5) and /∇ is the Dirac operator on SN . The eigenvalue
in eq. (4.4) is imaginary [24], i.e. ζ ∈ R, since, as is well known, /∇2 is negative
semidefinite on compact spin manifolds. We call the eigenmodes satisfying eqs. (4.4)
and (4.5) the symmetric tensor-spinor spherical harmonics (STSSH’s). In
the present work we study only the STSSH’s with ranks r = 1 and r = 2 on
SN (N ≥ 3), where we are also going to normalise them, as well as study their
transformation properties under a spin(N + 1) transformation, where spin(N + 1)
is the Lie algebra of the isometry group of SN . Note that the unnormalised
STSSH’s of rank r = 1 - i.e. the TT vector-spinor eigenmodes of the Dirac
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operator /∇ on SN - have been already constructed in Ref. [6], but no emphasis
was given on their group-theoretic properties. To our knowledge, the STSSH’s of
rank r = 2 are constructed in the present paper for the first time (see Section 4.5
and Appendix 4.13). By applying analytic continuation techniques to eqs. (4.4)
and (4.5), we will obtain eqs. (4.1) and (4.2), respectively, on dSN .

• We study the transformation properties of the eigenmodes on dSN under a
spin(N, 1) boost. The corresponding transformation formulae are obtained by
analytically continuing the spin(N + 1) transformation formulae for the STSSH’s
on SN .

• By exploiting the transformation properties of the eigenmodes on dSN under the
spin(N, 1) boost, we examine when their norm with respect to a dS invariant scalar
product is positive-definite.

4.1.2 Technical explanation of the main result

The explanation of our main result is given by the following technical results concerning
the spin-3/2 and spin-5/2 TT eigenmodes of eq. (4.1) with arbitrary imaginary mass
parameter M = iM̃ (M̃ ̸= 0):

1. For even N > 4: all dS invariant scalar products for these eigenmodes must be
indefinite for all imaginary M = iM̃ (M̃ ≠ 0). This is demonstrated by showing
that both positive-norm and negative-norm mode solutions exist and they mix
with each other under spin(N, 1) for all M̃ ̸= 0 [including the strictly and partially
massless values (4.3)].

2. For N = 4: all dS invariant scalar products for these eigenmodes must be
indefinite unless M̃ is tuned to the strictly/partially massless values (4.3). The
solution space of the strictly/partially massless theories is divided into two spin(4, 1)
invariant subspaces, denoted as H− and H+, where all mode solutions in H−

have ‘negative helicity’, while all mode solutions in H+ have ‘positive helicity’.
Then, we introduce a specific dS invariant scalar product [eq. (4.173)] in H−

and H+. For this choice of scalar product, it happens that the norm is positive-
definite in H− and negative-definite in H+. However, group-theoretically, we are
allowed to have a different scalar product for each invariant subspace (since they
correspond to different irreducible representations). Thus, by a redefinition of the
scalar product in H+, we can change the sign of the associated norm and make
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it positive-definite. This shows that H− and H+ form a direct sum of unitary
irreducible representations of spin(4, 1).

3. For N odd: For all M = iM̃ ̸= 0 [including the strictly and partially massless
values (4.3)], there does not exist any dS invariant scalar product for these
eigenmodes. Thus, by definition, the corresponding spin(N, 1) representations are
not unitary.

These findings provide a technical explanation of the results presented in our previous
article [25]. However, our findings seem to contrast with the claims made in Refs. [4, 7].
The non-unitarity of the strictly and partially massless spin-s = 3/2, 5/2 fields on dSN
for N ̸= 4 was missed in Refs. [4, 7], apparently because the norm of the corresponding
eigenmodes was not examined. Subsequent discussions with the authors of [4, 7] have
clarified that this is indeed the case.
Note on real values of M . In this paper, we do not discuss eigenmodes with real
mass parameters on dSN . However, all of our results (i.e. explicit expressions for the
eigenmodes and spin(N, 1) transformation formulae) also hold for real M . A crucial
difference between the imaginary and the real mass parameter cases on dSN , is the dS
invariant scalar product. As we will demonstrate later, in the case of imaginary mass
parameter, a dS invariant scalar product is given by (4.173) for even N , while there
is no dS invariant scalar product for odd N . In the case of real mass parameter, the
conventional Dirac-like inner product can be always defined, and is dS invariant (this
inner product corresponds to the product that results by just removing γN+1 from the
scalar product (4.173)). The spin-3/2 and spin-5/2 theories with real mass parameters
on dSN are always unitary [25] - this is easy to check given the tools of the present
paper.

4.1.3 Outline of the paper, notation and conventions

The paper is organised as follows. In Section 4.2, we begin by presenting the Christoffel
symbols, vielbein fields and spin connection components on SN in geodesic polar coordi-
nates. Then, we present the basics about gamma-matrices and tensor-spinor fields on
SN . We also review the eigenspinors of the Dirac operator on SN−1. In Section 4.3,
we present the functions that describe the dependence of the STSSH’s on the geodesic
distance (θN) from the North Pole of SN . In Section 4.4, we write down explicitly the
unnormalised STSSH’s of rank 1 on SN (which have been constructed in Ref. [6]). In
Section 4.5, we write down explicitly the unnormalised STSSH’s of rank 2 on SN (which
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we construct in Appendix 4.13). In Section 4.6, we use the Lie-Lorentz derivative [27]
in order to study the transformation properties of the STSSH’s of rank r (r ∈ {1, 2})
on SN under a spin(N + 1) transformation and we give their normalisation factors. In
Section 4.7, we begin by obtaining the vector-spinor and rank-2 symmetric tensor-spinor
TT eigenmodes of the Dirac operator with arbitrary imaginary mass parameter on dSN by
analytically continuing the STSSH’s of rank 1 and rank 2, respectively, on SN . Then, we
identify the ‘pure gauge’ modes of the strictly/partially massless spin-3/2 and spin-5/2
theories on dSN . In Section 4.8, we derive the main result of this paper (i.e. we prove
statements 1, 2 and 3 listed above), by studying the transformation properties of the
TT eigenmodes of eq. (4.1) with arbitrary imaginary mass parameter under a spin(N, 1)
boost. More specifically, in Subsection 4.8.1, we show that all dS invariant scalar products
must be indefinite for even N > 4 (i.e. we prove statement 1). Also, for even N ≥ 4,
we show that the ‘pure gauge’ modes in the strictly/partially massless theories with spin
s ∈ {3/2, 5/2} have zero norm with respect to any dS invariant scalar product. Then,
for N = 4, we show that the requirement for dS invariance of the scalar product does not
imply the indefiniteness of the norm if and only if the imaginary mass parameter M = iM̃

(with M̃ ̸= 0) takes the strictly/partially massless values (4.3). We also find that for
the strictly/partially massless theories with spin s ∈ {3/2, 5/2} on dS4, the eigenmodes
with negative helicity and the ones with positive helicity separately form irreducible
representations of spin(4, 1) (the unitarity of these irreducible representations is proved
in Subsection 4.8.2). In Subsection 4.8.2, we calculate the norms of the eigenmodes
on dSN (for even N ≥ 4) with respect to a specific dS invariant scalar product and
we verify statement 1 (which was proved in the previous Subsection) and we also prove
statement 2. Subsection 4.8.3 concerns the case with N odd and we prove statement 3.
Finally, in Section 4.9, we give a summary of our results. We also discuss the possible
generalisation of our results to higher half-odd-integer spins, as well as to other vacuum
spacetimes with positive cosmological constant.
There are six Appendices. In Appendix 4.13, we construct the STSSH’s of rank 2 on SN

by making use of the method of separation of variables. In this method, the STSSH’s
of rank 2 on SN are expressed in terms of STSSH’s of rank r̃ (0 ≤ r̃ ≤ 2) on SN−1.
In Appendix 4.14, we present technical details omitted in Section 4.6. To be specific,
we first give a detailed derivation of the formulae for the spin(N + 1) transformation
of the rank-1 STSSH’s and we determine their normalisation factors. Then, we discuss
briefly the derivation of the transformation formulae and the normalisation factors for
the rank-2 STSSH’s on SN . The rest of the Appendices concern other technical details
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that were omitted in the main text.
Notation and conventions. We use the mostly plus metric sign convention for dSN .
Lowercase Greek tensor indices refer to components with respect to the “coordinate
basis”. Lowercase Latin tensor indices refer to components with respect to the vielbein
basis. Summation over repeated indices is understood. We denote the symmetrisation
of a pair of indices as A(µν) ≡ (Aµν + Aνµ)/2 and the anti-symmetrisation as A[µν] ≡
(Aµν − Aνµ)/2. Spinor indices are always suppressed throughout this paper. We use
the term strictly/partially massless field of spin s ∈ {3/2, 5/2} to refer to either one of
the following three cases (unless otherwise stated): the strictly massless spin-3/2 field
(r = τ = 1), the strictly massless spin-5/2 field (r = τ + 1 = 2), the partially massless
spin-5/2 field (r = τ = 2). The complex conjugate of the complex number z is denoted
as z∗. The notation concerning the representation-theoretic labels of the eigenmodes is
slightly different than the notation used in our previous article [25]. However, we make
sure to explain the representation-theoretic meaning properly such that no confusion will
arise.

4.2 GEOMETRY OF THE N -SPHERE AND TENSOR-SPINOR FIELDS

4.2.1 Coordinate system, Christoffel symbols and spin connection

The N -sphere (SN) embedded in the Euclidean space RN+1 is described by

δabX
aXb = 1, (4.6)

(a, b = 1, 2, ..., N + 1) where δab is the Kronecker delta symbol and X1, X2, ..., XN+1

are the standard coordinates for RN+1. The ‘geodesic polar coordinates’2 are given by

XN+1 = XN+1(θN) = cos θN
X i = X i(θN ,θN−1) = sin θN X̃ i(θN−1), i = 1, ..., N, (4.7)

where 0 ≤ θN ≤ π is the geodesic distance from the North Pole and θN−1 = (θN−1, ..., θ1)
(where 0 ≤ θ1 < 2π and 0 ≤ θi ≤ π for i = 2, 3, ..., N − 1). The X̃ i’s in eq. (4.7) are
the geodesic polar coordinates for SN−1 in N -dimensional Euclidean space.

2The geodesic polar coordinates are also known as hyperspherical coordinates. They correspond
to the straightforward generalisation of the standard spherical coordinates on S2. The North Pole of
SN is located at θN = 0. The geodesic distance, µSN , between two points θN−1 = (θN , ..., θ1) and
θ′

N−1 = (θ′
N , ..., θ

′
1) on SN is given by cosµSN = cos θN cos θ′

N + sin θN sin θ′
N cosµSN−1 . If we fix

θ′
N to be at the North Pole, then the geodesic distance is given as cosµSN = cos θN .
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The line element for SN is expressed in coordinates (4.7) as

ds2
N = dθ2

N + sin2 θNds
2
N−1, (4.8)

where ds2
N−1 is the line element for SN−1. (Note that we define ds2

1 ≡ dθ2
1.) The

non-zero Christoffel symbols in geodesic polar coordinates are

ΓθN
θiθj

= − sin θN cos θN g̃θiθj
, Γθi

θjθN
= cot θN g̃θi

θj
,

Γθk
θiθj

= Γ̃θk
θiθj

, (4.9)

where g̃θiθj
and Γ̃θk

θiθj
are the metric tensor and the Christoffel symbols, respectively,

on SN−1. The vielbein fields ea = eµa∂µ (where a = 1, ..., N and µ = θ1, ..., θN),
determining an orthonormal frame, satisfy

eµ
a eν

bδab = gµν , eµa eµ
b = δba, (4.10)

where the co-vielbein fields ea = eµ
a dxµ define the dual coframe. The co-vielbein

transforms under local rotations Λ : SN → SO(N) as

ea → Λ(x)ab eb. (4.11)

In geodesic polar coordinates the non-zero components of the vielbein fields are given by

eθN
N = 1, eθi

i = 1
sin θN

ẽθi
i, i = 1, ..., N − 1, (4.12)

where ẽθi
i are the vielbein fields on SN−1. The spin connection ωabc = ωa[bc] ≡

(ωabc − ωacb)/2 is given by

ωabc = −eµa
(
∂µe

λ
b + Γλµνeν b

)
eλc (4.13)

and its only non-zero components are

ωijk = ω̃ijk
sin θN

, ωiNk = −ωikN = − cot θN δik, i, j, k = 1, ..., N − 1, (4.14)

where ω̃ijk are the spin connection components on SN−1. (Note that the sign convention
we use for the spin connection is the opposite of the one used in Refs. [5, 26].)
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4.2.2 Gamma matrices and tensor-spinor fields on the N-sphere

A Clifford algebra representation in N dimensions is generated by N gamma matrices.
These are matrices of dimension 2[N/2] - where [N/2] = N/2 if N is even and [N/2] =
(N − 1)/2 if N is odd - satisfying the anti-commutation relations

{γa, γb} = 2δab1, a, b = 1, 2, ..., N, (4.15)

where 1 is the identity matrix. We adopt the representation of gamma matrices used
in Ref. [5], where gamma matrices in N dimensions are expressed in terms of gamma
matrices in N − 1 dimensions (γ̃i) as follows:

• For N even

γN =
0 1

1 0

 , γj =
 0 iγ̃j

−iγ̃j 0

 , (4.16)

(j = 1, ..., N−1) where the lower-dimensional gamma matrices satisfy the Euclidean
Clifford algebra anti-commutation relations

{γ̃j, γ̃k} = 2δjk1, j, k = 1, ..., N − 1. (4.17)

By using the vielbein fields (4.12) we can express the gamma matrices (4.16) in
the “coordinate basis” as γµ(x) = eµa(x) γa. Note that one can construct the
extra gamma matrix γN+1, which is given by the product γN+1 ≡ ϵ γ1γ2...γN ,
where ϵ is a phase factor. The matrix γN+1 anti-commutes with each of the γa’s
in eq. (4.16). As in Ref. [5], we choose the phase factor ϵ such that

γN+1 =
1 0

0 −1

 . (4.18)

• For N odd

γN =
1 0

0 −1

 , γN−1 = γ̃N−1 =
0 1

1 0

 ,
γj = γ̃j =

 0 i˜̃γj
−i˜̃γj 0

 , j = 1, ..., N − 2. (4.19)

The double-tilde is used to denote gamma matrices in N − 2 dimensions. In
N = 1 dimension the only (one-dimensional) gamma matrix is equal to 1. The
gamma matrices (4.19) are expressed in the “coordinate basis” by using the vielbein
fields (4.12), as in the case with N even.
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Note that all gamma matrices in eqs. (4.16)-(4.19) are hermitian.
The tensor-spinor fields ψµ1...µr of rank r are defined as rth-rank tensors where each one
of the tensorial components transforms as a 2[N/2]-dimensional spinor under Spin(N)
(double cover of SO(N)). Tensor-spinors transform under the local rotation of the
co-vielbein in eq. (4.11) as

ψµ1...µr(x) → Λ(x) ν1
µ1
...Λ(x) νr

µr
S(Λ(x))ψν1...νr(x), (4.20)

where the matrix Λ(x) ∈ SO(N) acts on the tensor indices of ψµ1...µr , while the matrix
S(Λ(x)) ∈ Spin(N) acts on the spinor indices of ψµ1...µr (the spinor indices have been
suppressed for convenience). For any Λ(x) ∈ SO(N) we have [13]

S(Λ(x))−1 γa S(Λ(x)) = Λ(x)abγb, (4.21)

where S(Λ(x)) is either one of the two matrices in Spin(N) that correspond to Λ(x).
(See, e.g., Ref. [5] and Appendix D of Ref. [13] for more detailed discussions on spinor
representations of orthogonal groups.)
The covariant derivative for a vector-spinor field is given by

∇νψµ = ∂νψµ + 1
2ωνbcΣ

bcψµ − Γλνµψλ, (4.22)

while the covariant derivative for a rank-2 tensor-spinor field is given by

∇νψµ1µ2 =∂νψµ1µ2 + 1
2ωνbcΣ

bcψµ1µ2 − Γλνµ1ψλµ2 − Γλνµ2ψµ1λ, (4.23)

where ωνbc = e d
ν ωdbc [see eq. (4.14)]. The matrices Σab are the generators of the

2[N/2]-dimensional spinor representation of Spin(N) and they are given by

Σab = 1
4[γa, γb] (4.24)

= 1
2γ

a γb − 1
2δ

ab, a, b = 1, ..., N. (4.25)

They satisfy the Spin(N) algebra commutation relations

[Σab,Σcd] = δbcΣad − δacΣbd + δadΣbc − δbdΣac. (4.26)

(The gamma matrices are covariantly constant, i.e. ∇aγ
b = 0 - see e.g. Appendix D of

Ref. [13].)
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Eigenspinors on SN−1. For later convenience, let us introduce the spinor eigenmodes
χ±ℓρ̃(θN−1) of the Dirac operator on SN−1 (see also Ref. [5] and Appendix 4.11 of the
present paper). These spinor eigenmodes satisfy [5]

/̃∇χ±ℓρ̃ = ±i
(
ℓ+ N − 1

2

)
χ±ℓρ̃, (4.27)

where /̃∇ = γa∇̃a is the Dirac operator on SN−1, ∇̃a is the spinor covariant derivative on
SN−1 and ℓ is the angular momentum quantum number on SN−1. The symbol ρ̃ represents
labels other than ℓ. The requirement for regularity of the spinor eigenmodes (4.27)
on SN−1 restricts ℓ to take the values ℓ = 0, 1, 2, ... [5]. We suppose that the spinor
eigenmodes (4.27) are normalised as∫

SN−1

√
g̃ dθN−1 χ±ℓρ̃(θN−1)† χ±ℓ′ρ̃′(θN−1) = δℓℓ′δρ̃ρ̃′ , (4.28)

where dθN−1 = dθN−1 dθN−2...dθ1. The square root of the determinant of the metric
on SN−1 is

√
g̃ = sinN−2 θN−1 sinN−3 θN−2 ... sin θ2 (4.29)

= sinN−2 θN−1

√
˜̃g, (4.30)

where ˜̃g is the determinant of the metric on SN−2. All the χ+ eigenspinors are orthogonal
to all the χ− eigenspinors in eq. (4.28) [5]. For each allowed value of ℓ, the eigenspinors
χ+ℓρ̃ and χ−ℓρ̃ separately form irreducible representations of spin(N) [24]. For odd
N = 2p + 1, the spinors χ+ℓρ̃ (or χ−ℓρ̃) form a spin(2p + 1) representation with the
(p-component) highest weight

f⃗0 =
(
ℓ+ 1

2 ,
1
2 , ...,

1
2

)
.

For even N = 2p, the spinors χ±ℓρ̃ form a spin(2p) representation with the (p-component)
highest weight

f⃗±
0 =

(
ℓ+ 1

2 ,
1
2 , ...,

1
2 ,±

1
2

)
.

4.3 TECHNICAL DETAILS FOR THE FUNCTIONS DESCRIBING THE
DEPENDENCE OF STSSH’S ON θN

Before writing down the explicit form of the STSSH’s of rank r (= 1, 2) on SN , it is useful
to introduce the functions ϕ(a)

nℓ (θN) [eq. (4.31)] and ψ(a)
nℓ (θN) [eq. (4.32)] that describe
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the dependence of the STSSH’s on θN , since they are going to be used extensively in the
rest of the paper. The properties of these functions play a crucial role in the normalisation
of the STSSH’s and in the derivation of the formulae for the spin(N + 1) transformation
of the STSSH’s (see Section 4.6 and Appendix 4.14). Most importantly, in view of the
analytic continuation of our STSSH’s to dSN , the properties of the functions ϕ(a)

nℓ (θN)
and ψ(a)

nℓ (θN) will play a very important role in studying the unitarity/non-unitarity of
the spin(N, 1) representations formed by the analytically continued STSSH’s.
As we will see in Sections 4.4 and 4.5, the θN -dependence of the STSSH’s on SN is
described by functions of the following form:

ϕ
(a)
nℓ (θN) = κϕ(n, ℓ)

(
cos θN2

)ℓ+1−a (
sin θN2

)ℓ−a

× F

(
−n+ ℓ, n+ ℓ+N ; ℓ+ N

2 ; sin2 θN
2

)
, (4.31)

ψ
(a)
nℓ (θN) = κϕ(n, ℓ)

n+ N
2

ℓ+ N
2

(
cos θN2

)ℓ−a (
sin θN2

)ℓ+1−a

× F

(
−n+ ℓ, n+ ℓ+N ; ℓ+ N + 2

2 ; sin2 θN
2

)
, (4.32)

where the normalisation factor κϕ(n, ℓ) is given by

κϕ(n, ℓ) = Γ(n+N/2)
Γ(n− ℓ+ 1)Γ(ℓ+N/2) , (4.33)

while F (A,B;C; z) is the Gauss hypergeometric function [17]. The number a in
eqs. (4.31) and (4.32) is taken to be an integer for the purposes of this paper. The
functions in eqs. (4.31) and (4.32) can be expressed in terms of the Jacobi polynomials [17],
where κϕ(n, ℓ) plays the role of the conventional normalisation factor for the Jacobi
polynomials [17]. (These functions with a = 0 were used to describe spinors on SN [5].)
As we will discuss in Section 4.4 and 4.5, the integer n is the angular momentum quantum
number of the STSSH’s on SN and it labels the representation of spin(N + 1) formed
by the STSSH’s. The angular momentum quantum number on SN−1, ℓ, is initially
assumed to be a positive integer or zero3. Furthermore, the requirement for the absence
of singularity in the STSSH’s on SN will give rise to the condition

n− ℓ ∈ N0 (4.34)
3This requirement on ℓ is motivated naturally in the recursive construction of the STSSH’s on SN

in terms of STSSH’s on SN−1 - see Appendix 4.13.
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or equivalently n ≥ ℓ, where N0 is the set of positive integers including zero. (This
condition also arises from the branching rules for spin(N + 1) ⊃ spin(N), as we will see
below.) In particular, eq. (4.34) is obtained in Appendix 4.13, by requiring the regularity
of ϕ(a)

nℓ (θN) and ψ(a)
nℓ (θN) in the limit θN → π.

The functions ϕ(a)
nℓ (θN ) and ψ(a)

nℓ (θN ) are related to each other by the following formulae:(
d

dθN
+ N + 2a− 1

2 cot θN + ℓ+ (N − 1)/2
sin θN

)
ψ

(a)
nℓ (θN) =

(
n+ N

2

)
ϕ

(a)
nℓ (θN)

(4.35)(
d

dθN
+ N + 2a− 1

2 cot θN − ℓ+ (N − 1)/2
sin θN

)
ϕ

(a)
nℓ (θN) = −

(
n+ N

2

)
ψ

(a)
nℓ (θN).

(4.36)

Equations (4.35) and (4.36) are proved using the raising and lowering operators for the
Gauss hypergeometric function in Appendix 4.10. Note also the relation

ψ
(a)
nℓ (θN) = (−1)n−ℓϕ

(a)
nℓ (π − θN). (4.37)

4.4 THE STSSH’S OF RANK 1 ON THE N -SPHERE

In this Section, we write down explicitly the unnormalised STSSH’s of rank 1 [i.e. the
TT vector-spinor eigenmodes of eq. (4.4)], by following Ref. [6] where these eigenmodes
have been originally constructed. However, we will present the results of Ref. [6] in a
slightly modified manner that is more suitable for studying the group-theoretic properties
of the eigenmodes. We also recommend that the readers refer to our previous article [25],
in which the steps in the method of separation of variables are discussed in greater detail
for spin-3/2 eigenmodes on dSN .

4.4.1 STSSH’s of rank 1 for N even

Representation-theoretic background. The equations (4.4) and (4.5) for the TT
vector-spinor eigenmodes on SN (N ≥ 4) are written as

/∇ψ(A;σ;nℓ;ρ̃)
±µ = ±i

(
n+ N

2

)
ψ

(A;σ;nℓ;ρ̃)
±µ , (4.38)

∇αψ
(A;σ;nℓ;ρ̃)
±α = γαψ

(A;σ;nℓ;ρ̃)
±α = 0. (4.39)
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We have denoted the TT vector-spinor eigenmodes with eigenvalue ±i(n + N
2 ) as

ψ
(A;σ;nℓ;ρ̃)
±µ , where n = 1, 2, ... and ℓ = 1, ..., n are the angular momentum quantum

numbers on SN and SN−1, respectively.4

For each value of n we have a representation of spin(N + 1) (i.e. algebra of Spin(N + 1))
acting on the space of the eigenmodes ψ(A;σ;nℓ;ρ̃)

+µ (or ψ(A;σ;nℓ;ρ̃)
−µ ) with highest weight

λ⃗ = (λ1, ..., λN/2) given by [24]

λ⃗ =
(
n+ 1

2 ,
3
2 ,

1
2 , ...,

1
2

)
, (n = 1, 2, ...). (4.40)

Note that for N = 4 we have λ⃗ = (n + 1/2, 3/2) (n = 1, 2, ...). The two sets of
eigenmodes, {ψ(A;σ;nℓ;ρ̃)

+µ } and {ψ(A;σ;nℓ;ρ̃)
−µ }, form equivalent representations and they are

related to each other by ψ(A;σ;nℓ;ρ̃)
+µ = γN+1ψ

(A;σ;nℓ;ρ̃)
−µ .

From a representation-theoretic viewpoint, the construction of eigenmodes on SN using
the method of separation of variables corresponds to specifying the basis vectors of a
spin(N + 1) representation space in the decomposition spin(N + 1) ⊃ spin(N). For a
spin(N+1) representation λ⃗ = (λ1, ..., λN/2) (N even), the spin(N) content corresponds
to highest weights f⃗ = (f1, ..., fN/2) with [5, 3, 15]

λ1 ≥ f1 ≥ λ2 ≥ ... ≥ λN/2 ≥ |fN/2|, (4.41)

where fN/2 can be negative. In the case of TT vector-spinor eigenmodes on SN ,
λ⃗ =

(
n+ 1

2 ,
3
2 ,

1
2 , ...,

1
2

)
, the spin(N) content corresponds to representations with highest

weights: f⃗σ0 =
(
ℓ+ 1

2 ,
1
2 , ...,

1
2 , σ

1
2

)
and f⃗σ1 =

(
ℓ+ 1

2 ,
3
2 ,

1
2 , ...,

1
2 , σ

1
2

)
with σ = ±. We

call the index σ ‘the spin projection index’ on SN . The symbol ρ̃ stands for the
representation-theoretic labels concerning the chain of subalgebras spin(N − 1) ⊃
spin(N − 2) ⊃ ... ⊃ spin(2).
Depending on the ‘spin’ of the spin(N) representations included in our spin(N + 1)
representation of interest, the solutions of equations (4.38) and (4.39) are separated
into two different types, namely, the type-I modes and the type-II modes [6]. In
particular, the type-I modes correspond to the spinor representation of spin(N)

f⃗±
0 =

(
ℓ+ 1

2 ,
1
2 , ...,

1
2 ,±

1
2

)
,

while the type-II modes correspond to the TT vector-spinor representation

f⃗±
1 =

(
ℓ+ 1

2 ,
3
2 ,

1
2 , ...,

1
2 ,±

1
2

)
.

4The angular momentum quantum numbers for our STSSH’s of rank r ∈ {1, 2} on SN satisfy
n ≥ ℓ ≥ r. The condition n ≥ ℓ was discussed in the previous Section - see eq. (4.34). However, as we
will see below, the condition ℓ ≥ r is obtained by using the explicit expressions of the STSSH’s.
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We assign to the label A the value ‘I’ in order to indicate the type-I modes (ψ(I;σ;nℓ;ρ̃)
±µ )

and the value ‘II-Ã’ in order to indicate the type-II modes (ψ(II-Ã;σ;nℓ;ρ̃)
±µ ), where the

label Ã on SN−1 corresponds to A on SN (the label Ã is discussed further in the passage
after eq. (4.53)).
Type-I modes. The type-I modes are expressed in their vector components as

ψ
(I;σ;nℓ;ρ̃)
±µ =

(
ψ

(I;σ;nℓ;ρ̃)
±θN

, ψ
(I;σ;nℓ;ρ̃)
±θj

)
(4.42)

(j = 1, ..., N −1), where ψ(I;σ;nℓ;ρ̃)
±θN

is a spinor on SN−1, while ψ(I;σ;nℓ;ρ̃)
±θj

is a vector-spinor
on SN−1 [6]. The type-I modes with negative spin projection (σ = −) on SN are given
by [6]

ψ
(I;−;nℓ;ρ̃)
±θN

(θN ,θN−1) =
 ϕ

(1)
nℓ (θN)χ−ℓρ̃(θN−1)

±iψ(1)
nℓ (θN)χ−ℓρ̃(θN−1)

 (4.43)

ψ
(I;−;nℓ;ρ̃)
±θj

(θN ,θN−1) =


C

(↑)(1)
nℓ (θN) ∇̃θj

χ−ℓρ̃(θN−1) +D
(↑)(1)
nℓ (θN) γ̃θj

χ−ℓρ̃(θN−1)

±iC(↓)(1)
nℓ (θN) ∇̃θj

χ−ℓρ̃(θN−1) ± iD
(↓)(1)
nℓ (θN) γ̃θj

χ−ℓρ̃(θN−1)

 .
(4.44)

The type-I modes with positive spin projection (σ = +) on SN are given by [6]

ψ
(I;+;nℓ;ρ)
±θN

(θN ,θN−1) =
 iψ(1)

nℓ (θN)χ+ℓρ̃(θN−1)
±ϕ(1)

nℓ (θN)χ+ℓρ̃(θN−1)

 (4.45)

ψ
(I;+;nℓ;ρ̃)
±θj

(θN ,θN−1) =


iC

(↓)(1)
nℓ (θN) ∇̃θj

χ+ℓρ̃(θN−1) − iD
(↓)(1)
nℓ (θN) γ̃θj

χ+ℓρ̃(θN−1)

±C(↑)(1)
nℓ (θN) ∇̃θj

χ+ℓρ̃(θN−1) ∓ iD
(↑)(1)
nℓ (θN) γ̃θj

χ+ℓρ̃(θN−1)

 .
(4.46)

The eigenspinors on SN−1, χ±ℓρ̃, satisfy eq. (4.27) and they are written down explicitly
in Appendix 4.11. The functions ϕ(1)

nℓ and ψ
(1)
nℓ are given by eqs. (4.31) and (4.32),

respectively. The functions C(↑)(a)
nℓ , C

(↓)(a)
nℓ are expressed in terms of ϕ(a)

nℓ and ψ
(a)
nℓ as

follows [6]:

C
(↑)(a)
nℓ (θN) = 1

ℓ(ℓ+N − 1)

 sin θN
[
N − 1

2 cos θN + ℓ+ N − 1
2

]
ϕ

(a)
nℓ (θN)

− N − 1
N − 2(n+ N

2 ) sin2 θN ψ
(a)
nℓ (θN)

, (4.47)
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C
(↓)(a)
nℓ (θN) = 1

ℓ(ℓ+N − 1) ×

 sin θN
[
N − 1

2 cos θN − ℓ− N − 1
2

]
ψ

(a)
nℓ (θN)

+ N − 1
N − 2

(
n+ N

2

)
sin2 θNϕ

(a)
nℓ (θN)

, (4.48)

while the functions D(↑)(a)
nℓ and D(↓)(a)

nℓ are given by:

D
(↑)(a)
nℓ (θN) = −i

N − 1

[
−
(
ℓ+ N − 1

2

)
C

(↑)(a)
nℓ (θN) + sin θN ϕ(a)

nℓ (θN)
]

(4.49)

and

D
(↓)(a)
nℓ (θN) = −i

N − 1

[
−
(
ℓ+ N − 1

2

)
C

(↓)(a)
nℓ (θN) − sin θN ψ(a)

nℓ (θN)
]
, (4.50)

respectively. Allowed values for angular momentum quantum numbers: The
appearance of ℓ in the denominator in eqs. (4.47) and (4.48) reflects the fact that there
is no type-I eigenmode if the θN -component (4.43) [or (4.45)] has ℓ = 0 (i.e. ℓ has
to satisfy ℓ ≥ r = 1). The condition n ≥ ℓ and the quantisation of the eigenvalue
in eq. (4.38) follow from the requirement of regularity of the functions ϕ(a)

nℓ (θN) and
ψ

(a)
nℓ (θN) (see Appendix 4.13). Thus, we have verified that the allowed values for the

angular momentum quantum numbers are n = 1, 2, ... and ℓ = 1, ..., n.
Type-II modes. The vector components of the type-II modes are expressed as [6]

ψ
(II-Ã;σ;nℓ;ρ̃)
±µ =

(
0, ψ(II-Ã;σ;nℓ;ρ̃)

±θj

)
, (4.51)

(j = 1, ..., N − 1) where ψ(II-Ã;σ;nℓ;ρ̃)
±θN

= 0. The type-II modes (4.51) are TT vector-
spinors on SN−1. Thus, they can be constructed in terms of TT vector-spinor eigenmodes
ψ̃

(Ã;ℓρ̃)
±θj

(θN−1) on SN−1 that satisfy

/̃∇ψ̃(Ã;ℓρ̃)
±θj

= ±i
(
ℓ+ N − 1

2

)
ψ̃

(Ã;ℓρ̃)
±θj

(4.52)

γ̃θiψ̃
(Ã;ℓρ̃)
±θi

= ∇̃θiψ̃
(Ã;ℓρ̃)
±θi

= 0, (4.53)

where the label Ã indicates the type of the eigenmode ψ̃(Ã;ℓρ̃)
±θj

5. (The TT vector-spinor
eigenmodes and the corresponding types of modes on odd-dimensional spheres are

5As in the case of the label A for eigenmodes on SN , the label Ã in ψ̃(Ã;ℓρ̃)
±θj

refers to the ‘spin’ of
the spin(N − 1) representations appearing in the spin(N − 1) content of the spin(N) representations
formed by {ψ̃(Ã;ℓρ̃)

±θj
}.
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presented in Subsection 4.4.2.) The requirement for regularity of ψ̃(Ã;ℓρ̃)
±θj

on SN−1 gives
the allowed values for ℓ, i.e. ℓ = 1, 2, ... . This requirement for ℓ follows naturally from
the recursive construction of the STSSH’s of rank 1 in Ref. [6]. We suppose that the
eigenmodes ψ̃(Ã;ℓρ̃)

±θj
are normalised on SN−1 as

∫
SN−1

√
g̃ dθN−1 ψ̃

(Ã;ℓρ̃)
±θi

(θN−1)† ψ̃
(Ã′;ℓ′ρ̃′)θi
± (θN−1) = δℓℓ′δρ̃ρ̃′δÃÃ′ , (4.54)

where √
g̃ is given by eq. (4.29). For each allowed value of ℓ, the set of eigenmodes

{ψ̃(Ã;ℓρ̃)
±θj

} forms a spin(N) representation with highest weight
f⃗±

1 =
(
ℓ+ 1

2 ,
3
2 ,

1
2 , ...,

1
2 ,±

1
2

)
[24].

The type-II modes ψ(II-Ã;σ;nℓ;ρ̃)
±µ on SN with negative (σ = −) and positive (σ = +) spin

projections are given by [6]

ψ
(II-Ã;−;nℓ;ρ̃)
±θN

(θN ,θN−1) = 0

ψ
(II-Ã;−;nℓ;ρ̃)
±θj

(θN ,θN−1) =
 ϕ

(−1)
nℓ (θN) ψ̃(Ã;ℓρ̃)

−θj
(θN−1)

±iψ(−1)
nℓ (θN) ψ̃(Ã;ℓρ̃)

−θj
(θN−1)

 (4.55)

and

ψ
(II-Ã;+;nℓ;ρ̃)
±θN

(θN ,θN−1) = 0

ψ
(II-Ã;+;nℓ;ρ̃)
±θj

(θN ,θN−1) =
 iψ(−1)

nℓ (θN)ψ̃(Ã;ℓρ̃)
+θi

(θN−1)
±ϕ(−1)

nℓ (θN)ψ̃(Ã;ℓρ̃)
+θj

(θN−1)

 , (4.56)

(j = 1, ..., N − 1) respectively. The functions ϕ(−1)
nℓ and ψ(−1)

nℓ are given by eqs. (4.31)
and (4.32), respectively. As in the case of type-I modes, we find the allowed values
n = 1, 2, ... and ℓ = 1, ..., n.

4.4.2 STSSH’s of rank 1 for N odd

Representation-theoretic background. The eigenvalue equation and the TT condi-
tions are given again by eqs. (4.38) and (4.39), respectively, while the gamma matrices
are now given by eq. (4.19). The TT eigenmodes on SN are denoted as ψ(A;nℓ;ρ̃)

±µ .
The allowed values for the angular momentum quantum numbers are n = 1, 2, ... and
ℓ = 1, ..., n.
For each allowed value of n we have a representation of spin(N + 1) acting on the
space of the eigenmodes ψ(A;nℓ;ρ̃)

±µ . The highest weights λ⃗ = (λ1, ..., λ(N+1)/2) for these
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representations are given by [24]

λ⃗± =
(
n+ 1

2 ,
3
2 ,

1
2 , ...,

1
2 ,±

1
2

)
, (n = 1, 2, ...). (4.57)

Unlike the case with N even, for N odd there does not exist any spinorial matrix that
relates ψ(A;nℓ;ρ̃)

+µ and ψ(A;nℓ;ρ̃)
−µ , since the two sets of modes form inequivalent representations

of spin(N + 1)6. Note that for N = 3 we have λ⃗± = (n+ 1/2, ±3/2) (n = 1, 2, ...).
As in the case with N even, the construction of eigenmodes on SN using the method
of separation of variables corresponds to specifying the basis vectors of a spin(N + 1)
representation space in the decomposition spin(N + 1) ⊃ spin(N). For a spin(N + 1)
representation λ⃗ = (λ1, ..., λ(N+1)/2) (N odd), where λ(N+1)/2 can be negative, the
spin(N) content corresponds to highest weights f⃗ = (f1, ..., f(N−1)/2) with [5, 3, 15]

λ1 ≥ f1 ≥ λ2 ≥ ... ≥ λ(N−1)/2 ≥ f(N−1)/2 ≥ |λ(N+1)/2|. (4.58)

In the case of TT vector-spinor eigenmodes on SN , λ⃗± =
(
n+ 1

2 ,
3
2 ,

1
2 , ...,

1
2 ,±

1
2

)
, the

spin(N) content corresponds to representations with highest weights: f⃗0 =
(
ℓ+ 1

2 ,
1
2 , ...,

1
2

)
and f⃗1 =

(
ℓ+ 1

2 ,
3
2 ,

1
2 , ...,

1
2

)
. As the representation f⃗r̃ =

(
ℓ+ 1

2 , r̃ + 1
2 , ...,

1
2 ,

1
2

)
is equiv-

alent to f⃗ ′
r̃ =

(
ℓ+ 1

2 , r̃ + 1
2 , ...,

1
2 ,−

1
2

)
[15], there is no need to introduce the notion of

the ‘spin projection index’ for tensor-spinor eigenmodes on odd-dimensional SN . As in
the case with N even, the symbol ρ̃ stands for representation-theoretic labels concerning
the chain of subalgebras spin(N − 1) ⊃ spin(N − 2) ⊃ ... ⊃ spin(2).
As in the even-dimensional case, the label A denotes the type of the mode, i.e. the ‘spin’
of the corresponding spin(N) representation. In particular, the type-I modes (ψ(I;nℓ;ρ̃)

±µ )
on SN are constructed in terms of eigenspinors on SN−1, which correspond to the
spin(N) highest weight f⃗0 =

(
ℓ+ 1

2 ,
1
2 , ...,

1
2

)
. The type-II modes (ψ(II-Ã;nℓ;ρ̃)

±µ ) on SN

are constructed in terms of TT eigenvector-spinors of type-Ã on SN−1, which correspond
to the spin(N) highest weight f⃗1 =

(
ℓ+ 1

2 ,
3
2 ,

1
2 , ...,

1
2

)
. Note that TT eigenvector-spinor

modes of any type on SN (with arbitrary N) exist only for N ≥ 3, while type-II modes
exist only for N ≥ 4 [6].
Type-I modes. The type-I modes are given by [6]

ψ
(I;nℓ;ρ̃)
±θN

(θN ,θN−1) = 1√
2

(1 + iγN)
{
ϕ

(1)
nℓ (θN) ± iψ

(1)
nℓ (θN)γN

}
χ−ℓρ̃(θN−1) (4.59)

6In general, for N odd there does not exist any spinorial matrix that relates two STSSH’s of arbitrary
rank r with different sign for the eigenvalue.
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ψ
(I;nℓ;ρ̃)
±θj

(θN ,θN−1) = 1√
2

(1 + iγN)

(C(↑)(1)
nℓ (θN) ± iC

(↓)(1)
nℓ (θN)γN

)
∇̃θj

χ−ℓρ̃(θN−1)

+
(
D

(↑)(1)
nℓ (θN) ± iD

(↓)(1)
nℓ (θN)γN

)
γ̃θj
χ−ℓρ̃(θN−1)

, (4.60)

(j = 1, ..., N − 1) where χ−ℓρ̃ are the eigenspinors on SN−1 satisfying eq. (4.27). (Since
γN anti-commutes with /̃∇ we have γNχ−ℓρ̃ = χ+ℓρ̃ [5].) As in the case with N even,
the functions ϕ(1)

nℓ and ψ
(1)
nℓ are given by eqs. (4.31) and (4.32), respectively, while

the functions C(↑)(1)
nℓ , C

(↓)(1)
nℓ , D

(↑)(1)
nℓ and D(↓)(1)

nℓ are given by eqs. (4.47), (4.48), (4.49)
and (4.50), respectively. As in the even-dimensional case, one finds that the angular
momentum quantum numbers are allowed to take the values n = 1, 2, ... and ℓ = 1, ..., n.
Type-II modes. The type-II modes are given by [6]

ψ
(II-Ã;nℓ;ρ̃)
±θN

(θN ,θN−1) =0

ψ
(II-Ã;nℓ;ρ̃)
±θj

(θN ,θN−1) = 1√
2

(1 + iγN)
{
ϕ

(−1)
nℓ (θN) ± iψ

(−1)
nℓ (θN)γN

}
ψ̃

(Ã;ℓρ̃)
−θj

(θN−1),

(4.61)

where the functions ϕ(−1)
nℓ and ψ

(−1)
nℓ are given by eqs. (4.31) and (4.32), respectively,

while the rank-1 STSSH’s of type-Ã on SN−1, ψ̃(Ã;ℓρ̃)
−θj

, satisfy eqs. (4.52)-(4.54) (where
γN ψ̃

(Ã;ℓρ̃)
−θj

= ψ̃
(Ã;ℓρ̃)
+θj

). As in the case with N even, we find that the angular momentum
quantum numbers are allowed to take the values: n = 1, 2, ... and ℓ = 1, ..., n.

4.5 THE STSSH’S OF RANK 2 ON THE N -SPHERE

In this Section we write down explicitly the STSSH’s of rank 2 on SN by using the method
of separation of variables. In this method the STSSH’s of rank 2 on SN are expressed in
terms of STSSH’s of rank r̃ (where r̃ ≤ r) on SN−1. (The 0th rank STSSH’s are the
eigenspinors of the Dirac operator constructed in Ref. [5].) We present the details of the
calculations in Appendix 4.13.
The representation-theoretic background concerning the STSSH’s of rank 2 is very similar
to the case of STSSH’s of rank 1 presented in the previous Section. Therefore, we are
not going to discuss the corresponding representation-theoretic details here; we will just
focus on the explicit expressions for the STSSH’s of rank 2 on SN . Let us recall the main
idea: the construction of eigenmodes on SN using the method of separation of variables
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corresponds to specifying the basis vectors of a spin(N + 1) representation space in the
decomposition spin(N + 1) ⊃ spin(N).

4.5.1 STSSH’s of rank 2 for N even

The equations for the STSSH’s of rank 2 are given by:

/∇ψ(B;σ;nℓ;ρ̃)
±µν = ±i|ζn,N |ψ(B;σ;ℓN ℓ;ρ̃)

±µν , (4.62)
∇αψ

(B;σ;nℓ;ρ̃)
±αν = γαψ

(B;σ;nℓ;ρ̃)
±αν = 0, (4.63)

gαβψ
(B;σ;nℓ;ρ̃)
±αβ = 0, (4.64)

[see eqs. (4.4) and (4.5)] where the labels σ, n, ℓ, ρ̃ have the same meaning as in the
case of STSSH’s of rank 1 [see the discussion after eqs. (4.38) and (4.39)]. Note
that eq. (4.64) is not independent of the gamma-tracelessness condition, as it arises
by contracting eq. (4.63) with γν . As demonstrated in Appendix 4.13, by requiring our
eigenmodes to be non-singular, we find the quantisation condition for the eigenvalue in
eq. (4.62),

|ζn,N | = n+ N

2 , n ∈ N0, (4.65)

(N0 is the set of positive integers including zero), while the allowed values for the angular
momentum quantum numbers are found to be n = 2, 3, ... and ℓ = 2, ..., n.
For each value of n we have a representation of spin(N + 1) acting on the space of
the eigenmodes ψ(B;σ;nℓ;ρ̃)

+µν (or ψ(B;σ;nℓ;ρ̃)
−µν ). The highest weight λ⃗ = (λ1, ..., λN/2) for this

representation is given by [24]

λ⃗ =
(
n+ 1

2 ,
5
2 ,

1
2 , ...,

1
2

)
, (n = 2, 3, ...). (4.66)

Note that for N = 4 we have λ⃗ = (n+1/2, 5/2). As in the case of STSSH’s of rank 1, the
two sets of eigenmodes, {ψ(B;σ;nℓ;ρ̃)

+µν } and {ψ(B;σ;nℓ;ρ̃)
−µν }, form equivalent representations

and they are related to each other by ψ(B;σ;nℓ;ρ̃)
+µν = γN+1ψ

(B;σ;nℓ;ρ̃)
−µν .

spin(N) content and types of eigenmodes. Equations (4.62)-(4.64) have three
different types of mode solutions, namely, the type-I modes, the type-II modes and
the type-III modes. The label B is used in order to indicate the type of the STSSH
ψ

(B;σ;nℓ;ρ̃)
±µν on SN . In analogy with the rank-1 STSSH’s discussed in Section 4.4, the

rank-2 type-I modes are constructed using the eigenspinors χ±ℓρ̃ on SN−1 [eq. (4.27)],
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while the type-II modes are constructed using the TT eigenvector-spinors ψ̃(Ã;ℓρ̃)
±θi

on
SN−1 [eqs. (4.52) and (4.53)].
The rank-2 type-III modes are constructed using the STSSH’s of rank 2 on SN−1

(ψ̃(B̃;ℓρ̃)
±θiθj

), satisfying

/̃∇ψ̃(B̃;ℓρ̃)
±θiθj

= ±i
(
ℓ+ N − 1

2

)
ψ̃

(B̃;ℓρ̃)
±θiθj

(4.67)

γ̃θiψ̃
(B̃;ℓρ̃)
±θiθj

= ∇̃θiψ̃
(B̃;ℓρ̃)
±θiθj

= 0, (4.68)

g̃θiθj ψ̃
(B̃;ℓρ̃)
±θiθj

= 0, (4.69)

where the label B̃ indicates the type of the STSSH ψ̃
(B̃;ℓρ̃)
±θiθj

on SN−1. (The rank-2
STSSH’s on odd-dimensional spheres are presented in Subsection 4.5.2.) We require
ℓ = 2, 3, ... in order for ψ̃(B̃;ℓρ̃)

±θiθj
to be non-singular on SN−1.7 We suppose that the

STSSH’s on SN−1, ψ̃(B̃;ℓρ̃)
±θiθj

, are normalised as∫
SN−1

√
g̃ dθN−1 ψ̃

(B̃;ℓρ̃)
±θiθj

(θN−1)† ψ̃
(B̃′;ℓ′ρ̃′)θiθj

± (θN−1) = δℓℓ′δρ̃ρ̃′δB̃B̃′ , (4.70)

where all the ψ̃+θiθj
modes are orthogonal to all the ψ̃−θiθj

modes. For each value of ℓ,
the set of eigenmodes {ψ̃(B̃;ℓρ̃)

±θiθj
} forms a spin(N) representation with highest weight [24]:

f⃗±
2 =

(
ℓ+ 1

2 ,
5
2 ,

1
2 , ...,

1
2 ,±

1
2

)
for N even, and

f⃗2 =
(
ℓ+ 1

2 ,
5
2 ,

1
2 , ...,

1
2

)
for N odd.
Now let us present the explicit form of the STSSH’s of rank 2 on SN (see Appendix 4.13
for the derivation).
Type-I modes. The type-I modes with negative spin projection (σ = −) on SN are
given by

ψ
(I;−;nℓ;ρ̃)
±θNθN

(θN ,θN−1) =
 ϕ

(2)
nℓ (θN)χ−ℓρ̃(θN−1)

±iψ(2)
nℓ (θN)χ−ℓρ̃(θN−1)

 (4.71)

ψ
(I;−;nℓ;ρ̃)
±θNθj

(θN ,θN−1) =


C

(↑)(2)
nℓ (θN) ∇̃θj

χ−ℓρ̃(θN−1) +D
(↑)(2)
nℓ (θN) γ̃θj

χ−ℓρ̃(θN−1)

±iC(↓)(2)
nℓ (θN) ∇̃θj

χ−ℓρ̃(θN−1) ± iD
(↓)(2)
nℓ (θN) γ̃θj

χ−ℓρ̃(θN−1)


(4.72)

7This requirement for ℓ is motivated naturally in the recursive construction of the STSSH’s of rank
2 in Appendix 4.13.

140



4.5. The STSSH’s of rank 2 on the N-sphere

ψ
(I;−;nℓ;ρ̃)
±θjθk

(θN ,θN−1)

=


K

(↑)
nℓ (θN) g̃θjθk

χ−ℓρ̃(θN−1)

±iK(↓)
nℓ (θN) g̃θjθk

χ−ℓρ̃(θN−1)



+


W

(↑)
nℓ (θN) H̃θjθk

χ−ℓρ̃(θN−1) + T
(↑)
nℓ (θN) H̃ ′

θjθk
χ−ℓρ̃(θN−1)

±iW (↓)
nℓ (θN) H̃θjθk

χ−ℓρ̃(θN−1) ± iT
(↓)
nℓ (θN) H̃ ′

θjθk
χ−ℓρ̃(θN−1)

 , (4.73)

(j, k = 1, ..., N − 1) where χ±ℓρ̃ are the eigenspinors on SN−1 [see eq. (4.69)] and we
have defined

H̃θjθk
≡ ∇̃(θj

∇̃θk) − g̃θjθk

□̃
N − 1 , (4.74)

H̃ ′
θjθk

≡ γ̃(θj
∇̃θk) − g̃θjθk

/̃∇
N − 1 . (4.75)

These differential operators satisfy g̃θjθkH̃θjθk
= g̃θjθkH̃ ′

θjθk
= 0. Note that /̃∇χ±ℓρ̃ =

±i
(
ℓ+ N−1

2

)
χ±ℓρ̃ [eq. (4.27)], while □̃χ±ℓρ̃ ≡ ∇̃θk∇̃θk

χ±ℓρ̃ is given by eq. (4.206).
The function ϕ

(2)
nℓ is given by eq. (4.31), the function ψ

(2)
nℓ is given by eq. (4.32), the

functions C(↑)(2)
nℓ and C

(↓)(2)
nℓ are given by eqs. (4.47) and (4.48), respectively, while

the functions D(↑)(2)
nℓ and D(↓)(2)

nℓ are given by eqs. (4.49) and (4.50), respectively. The
functions describing the dependence on θN in eq. (4.73) are given by

K
(↑)
nℓ (θN) = −sin2 θN

N − 1 ϕ
(2)
nℓ (θN), (4.76)

K
(↓)
nℓ (θN) = −sin2 θN

N − 1 ψ
(2)
nℓ (θN), (4.77)

T
(↑)
nℓ (θN) = −2i

N + 1

{
sin θN C(↑)(2)

nℓ (θN) −
(
ℓ+ N − 1

2

)
W

(↑)
nℓ (θN)

}
, (4.78)

T
(↓)
nℓ (θN) = −2i

N + 1

{
− sin θN C(↓)(2)

nℓ (θN) −
(
ℓ+ N − 1

2

)
W

(↓)
nℓ (θN)

}
, (4.79)

W
(↑)
nℓ (θN) = sin θN

(ℓ− 1)(ℓ+N)(N − 1)

×


[ N(N − 3)

(
ℓ+ N−1

2

)
N − 1 + N(N + 1)

2 cos θN
]
C

(↑)(2)
nℓ (θN)

− (n+ N

2 )(N + 1) sin θN C(↓)(2)
nℓ (θN) + N + 1

N − 1 sin θN ϕ(2)
nℓ (θN)

 (4.80)
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and

W
(↓)
nℓ (θN) = sin θN

(ℓ− 1)(ℓ+N)(N − 1)

×


[

−
N(N − 3)

(
ℓ+ N−1

2

)
N − 1 + N(N + 1)

2 cos θN
]
C

(↓)(2)
nℓ (θN)

+ (n+ N

2 )(N + 1) sin θN C(↑)(2)
nℓ (θN) + N + 1

N − 1 sin θN ψ(2)
nℓ (θN)

. (4.81)

The type-I modes with positive spin projection, ψ(I;+;nℓ;ρ̃)
±µν , are given by expressions

similar to the expressions for ψ(I;−;nℓ;ρ̃)
±µν . To be specific, the expression for ψ(I;+;nℓ;ρ̃)

±θNθN
is

found by exchanging ϕ(2)
nℓ and iψ

(2)
nℓ and replacing χ−ℓρ̃ by χ+ℓρ̃ in eq. (4.71) and the

expression for the component ψ(I;+;nℓ;ρ̃)
±θNθj

is found using eq. (4.72) as follows: we exchange
C

(↑)(2)
nℓ and iC(↓)(2)

nℓ ; we also exchange D(↑)(2)
nℓ and iD(↓)(2)

nℓ and we make the replacements
∇̃θj

χ−ℓρ̃ → ∇̃θj
χ+ℓρ̃ and γ̃θj

χ−ℓρ̃ → −γ̃θj
χ+ℓρ̃. Similarly, ψ(I;+;nℓ;ρ̃)

±θjθk
is found using the

expression for ψ(I;−;nℓ;ρ̃)
±θjθk

[eq. (4.73)] as follows: we exchange the functions with superscript
‘(↑)’ and the functions with superscript ‘(↓)’, i.e., K(↑)

nℓ ↔ iK
(↓)
nℓ , W (↑)

nℓ ↔ iW
(↓)
nℓ and

T
(↑)
nℓ ↔ iT

(↓)
nℓ (the symbol ↔ denotes the exchange of the functions appearing in the

two sides of the ‘left-right’ arrow) and we also make the replacements χ−ℓρ̃ → χ+ℓρ̃ and
H̃ ′
θjθk

→ −H̃ ′
θjθk

in eq. (4.73).
Allowed values for angular momentum quantum numbers. Let us now verify that
the allowed values for the angular momentum quantum numbers n and ℓ for the type-I
modes satisfy n ≥ ℓ ≥ r = 2. As in the case of STSSH’s of rank 1 (see Subsection 4.4.1),
the appearance of ℓ in the denominator in eqs. (4.47) and (4.48) implies that there is
no type-I mode if the θNθN -component (4.71) has ℓ = 0. Similarly, as eqs. (4.80) and
(4.81) indicate, there is no type-I mode with θNθN -component given by eq. (4.71) with
ℓ = 1. Also, as demonstrated in Appendix 4.13, the quantisation condition (4.65) for the
eigenvalue, as well as the condition n− ℓ ≥ 0, arise as the requirement for the absence
of singularity in the functions ϕ(2)

nℓ and ψ(2)
nℓ . Thus, the allowed values for n and ℓ are

n = 2, 3, ... and ℓ = 2, ..., n, respectively.
Type-II modes. The type-II modes with negative spin projection (σ = −) on SN are
given by

ψ
(II-Ã;−;nℓ;ρ̃)
±θNθN

(θN ,θN−1) = 0 (4.82)

ψ
(II-Ã;−;nℓ;ρ̃)
±θNθj

(θN ,θN−1) =
 ϕ

(0)
nℓ (θN) ψ̃(Ã;ℓρ̃)

−θj
(θN−1)

±iψ(0)
nℓ (θN) ψ̃(Ã;ℓρ̃)

−θj
(θN−1)

 (4.83)
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ψ
(II-Ã;−;nℓ;ρ̃)
±θjθk

(θN ,θN−1) =


Γ(↑)
nℓ (θN) ∇̃(θj

ψ̃
(Ã;ℓρ̃)
−θk) (θN−1) + ∆(↑)

nℓ (θN) γ̃(θj
ψ̃

(Ã;ℓρ̃)
−θk) (θN−1)

±iΓ(↓)
nℓ (θN) ∇̃(θj

ψ̃
(Ã;ℓρ̃)
−θk) (θN−1) ± i∆(↓)

nℓ (θN) γ̃(θj
ψ̃

(Ã;ℓρ̃)
−θk) (θN−1)


(4.84)

(j, k = 1, ..., N − 1), where ϕ(0)
nℓ is given by eq. (4.31) and ψ(0)

nℓ is given by eq. (4.32).
The type-Ã TT vector-spinor eigenmodes ψ̃(Ã;ℓρ̃)

±θk
on SN−1 satisfy eqs. (4.52)-(4.54) and

they are non-singular on SN−1 for ℓ = 1, 2, ... (see Section 4.4). The functions describing
the dependence on θN in eq. (4.84) are given by

∆(↑)
nℓ (θN)

2 = −i
N + 1

[
−
ℓ+ N−1

2
2 Γ(↑)

nℓ (θN) + sin θN ϕ(0)
nℓ (θN)

]
, (4.85)

∆(↓)
nℓ (θN)

2 = −i
N + 1

[
−
ℓ+ N−1

2
2 Γ(↓)

nℓ (θN) − sin θN ψ(0)
nℓ (θN)

]
(4.86)

and

Γ(↑)
nℓ (θN)

2 = 1
(ℓ− 1)(ℓ+N)

 sin θN
[
N + 1

2 cos θN + ℓ+ N − 1
2

]
ϕ

(0)
nℓ (θN)

− N + 1
N

(n+ N

2 ) sin2 θNψ
(0)
nℓ (θN)

, (4.87)

Γ(↓)
nℓ (θN)

2 = 1
(ℓ− 1)(ℓ+N)

 sin θN
[
N + 1

2 cos θN − ℓ− N − 1
2

]
ψ

(0)
nℓ (θN)

+ N + 1
N

(n+ N

2 ) sin2 θNϕ
(0)
nℓ (θN)

. (4.88)

The expressions for the type-II modes with positive spin projection, ψ(II-Ã;+;nℓ;ρ̃)
±µν , are

similar to the expressions for ψ(II-Ã;−;nℓ;ρ̃)
±µν presented above. More specifically, the expres-

sion for ψ(II-Ã;+;nℓ;ρ̃)
±θNθj

is found by exchanging ϕ(0)
nℓ and iψ(0)

nℓ and making the replacement
ψ̃

(Ã;ℓρ̃)
−θj

→ ψ̃
(Ã;ℓρ̃)
+θj

in eq. (4.83). The steps required in order to find the expression for
ψ

(II-Ã;+;nℓ;ρ̃)
±θjθk

by using eq. (4.84) are: we exchange Γ(↑)
nℓ and iΓ(↓)

nℓ , as well as ∆(↑)
nℓ and i∆(↓)

nℓ ,
and we make the replacements ∇̃(θj

ψ̃
(Ã;ℓρ̃)
−θk) → ∇̃(θj

ψ̃
(Ã;ℓρ̃)
+θk)

and γ̃(θj
ψ̃

(Ã;ℓρ̃)
−θk) → −γ̃(θj

ψ̃
(Ã;ℓρ̃)
+θk)

in eq. (4.84).
Allowed values for angular momentum quantum numbers. Let us now verify that
the allowed values for the angular momentum quantum numbers n and ℓ for the type-II
modes satisfy n ≥ ℓ ≥ r = 2. As mentioned in Section 4.4, the eigenvector-spinors on
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SN−1 (ψ̃(Ã;ℓρ̃)
−θj

) are non-singular for ℓ ≥ 1. Also, since ℓ−1 appears in the denominator in
eqs. (4.87) and (4.88), there is no type-II mode with θNθj-component given by eq. (4.83)
with ℓ = 1. As in the case of the type-I modes, the quantisation condition (4.65) and
the condition n − ℓ ≥ 0 arise by demanding ϕ(0)

nℓ and ψ
(0)
nℓ to be non-singular. Hence,

the allowed values for the angular momentum quantum numbers are n = 2, 3, ... and
ℓ = 2, ..., n.
Type-III modes. The type-III modes with negative (σ = −) and positive (σ = +)
spin projections on SN are given by

ψ
(III-B̃;−;nℓ;ρ̃)
±θNθN

(θN ,θN−1) = 0 (4.89)

ψ
(III-B̃;−;nℓ;ρ̃)
±θNθj

(θN ,θN−1) = 0 (4.90)

ψ
(III-B̃;−;nℓ;ρ̃)
±θjθk

(θN ,θN−1) =
 ϕ

(−2)
nℓ (θN) ψ̃(B̃;ℓρ̃)

−θjθk
(θN−1)

±iψ(−2)
nℓ (θN) ψ̃(B̃;ℓρ̃)

−θjθk
(θN−1)

 (4.91)

and

ψ
(III-B̃;+;nℓ;ρ̃)
±θNθN

(θN ,θN−1) = 0 (4.92)

ψ
(III-B̃;+;nℓ;ρ̃)
±θNθj

(θN ,θN−1) = 0 (4.93)

ψ
(III-B̃;+;nℓ;ρ̃)
±θjθk

(θN ,θN−1) =
 iψ(−2)

nℓ (θN) ψ̃(B̃;ℓρ̃)
+θjθk

(θN−1)
±ϕ(−2)

nℓ (θN) ψ̃(B̃;ℓρ̃)
+θjθk

(θN−1)

 , (4.94)

(j, k = 1, ..., N − 1) respectively, where ϕ(−2)
nℓ is given by eq. (4.31) and ψ(−2)

nℓ is given
by eq. (4.32). The STSSH’s of rank 2 on SN−1, ψ̃(B̃;ℓρ̃)

+θjθk
, satisfy eqs. (4.67)-(4.70) and

they are non-singular for ℓ = 2, 3, ... (see the next Subsection). By working as in the
case of type-I and type-II modes discussed above, we find again that the allowed values
for the angular momentum quantum numbers are n = 2, 3, ... and ℓ = 2, ..., n.

4.5.2 STSSH’s of rank 2 for N odd

The equations for the STSSH’s of rank 2 are given by eqs. (4.62)-(4.64), where the
gamma matrices are given by eq. (4.19). We denote the STSSH’s of rank 2 as ψ(B;nℓ;ρ̃)

±µν

(with n = 2, ... and ℓ = 2, ..., n), where the label B denotes the type of the mode. Note
that for N odd there is no spin projection index on SN [see also the discussion after
eq. (4.57)]. The labels n, ℓ and ρ̃ have the same meaning as in the case of the STSSH’s
of rank 1 in Subsection 4.4.2.
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For each value of n we have a representation of spin(N + 1) acting on the space of the
eigenmodes ψ(B;nℓ;ρ̃)

±µν . The highest weights λ⃗ = (λ1, ..., λ(N+1)/2) for these representations
are [24]

λ⃗± =
(
n+ 1

2 ,
5
2 ,

1
2 , ...,

1
2 ,±

1
2

)
, (n = 2, 3, ...). (4.95)

Note that for N = 3 we have λ⃗± = (n+ 1/2,±5/2).
Type-I modes. The type-I modes on SN are given by

ψ
(I;nℓ;ρ̃)
±θNθN

(θN ,θN−1) = 1√
2

(1 + iγN)
{
ϕ

(2)
nℓ (θN) ± iψ

(2)
nℓ (θN)γN

}
χ−ℓρ̃(θN−1) (4.96)

ψ
(I;nℓ;ρ̃)
±θNθj

(θN ,θN−1) = 1√
2

(1 + iγN)

(C(↑)(2)
nℓ (θN) ± iC

(↓)(2)
nℓ (θN)γN

)
∇̃θj

χ−ℓρ̃(θN−1)

+
(
D

(↑)(2)
nℓ (θN) ± iD

(↓)(2)
nℓ (θN)γN

)
γ̃θj
χ−ℓρ̃(θN−1)

 (4.97)

ψ
(I;nℓ;ρ̃)
±θjθk

(θN ,θN−1) = 1√
2

(1 + iγN)

(K(↑)
nℓ (θN) ± iK

(↓)
nℓ (θN)γN

)
g̃θjθk

χ−ℓρ̃(θN−1)

+
(
W

(↑)
nℓ (θN) ± iW

(↓)
nℓ (θN)γN

)
H̃θjθk

χ−ℓρ̃(θN−1)

+
(
T

(↑)
nℓ (θN) ± iT

(↓)
nℓ (θN)γN

)
H̃ ′
θjθk

χ−ℓρ̃(θN−1)

 (4.98)

(j, k = 1, ..., N − 1) where the eigenspinors χ−ℓρ̃ on SN−1 satisfy eq. (4.27). The
functions ϕ(2)

nℓ , ψ
(2)
nℓ , C

(b)(2)
nℓ , D

(b)(2)
nℓ , K

(b)
nℓ ,W

(b)
nℓ and T (b)

nℓ (where b =↑, ↓), describing the
dependence on θN , are the same as in the even-dimensional case [see eqs. (4.71)-(4.73)],
while H̃θjθk

and H̃ ′
θjθk

are given again by eqs. (4.74) and (4.75), respectively.
Type-II modes. The type-II modes on SN are given by

ψ
(II-Ã;nℓ;ρ̃)
±θNθN

(θN ,θN−1) = 0 (4.99)

ψ
(II-Ã;nℓ;ρ̃)
±θNθj

(θN ,θN−1) = 1√
2

(1 + iγN)
{
ϕ

(0)
nℓ (θN) ± iψ

(0)
nℓ (θN)γN

}
ψ̃

(Ã;ℓρ̃)
−θj

(θN−1)

(4.100)

ψ
(II-Ã;nℓ;ρ̃)
±θjθk

(θN ,θN−1) = 1√
2

(1 + iγN)

(Γ(↑)
nℓ (θN) ± iΓ(↓)

nℓ (θN)γN
)

∇̃(θj
ψ̃

(Ã;ℓρ̃)
−θk) (θN−1)

+
(
∆(↑)
nℓ (θN) ± i∆(↓)

nℓ (θN)γN
)
γ̃(θj

ψ̃
(Ã;ℓρ̃)
−θk) (θN−1)

, (4.101)
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(j, k = 1, ..., N−1) where the TT eigenvector-spinors ψ̃(Ã;ℓρ̃)
−θk

on SN−1 satisfy eqs. (4.52)-
(4.54). As in the even-dimensional case, the functions ϕ(0)

nℓ and ψ(0)
nℓ are given by eqs. (4.31)

and (4.32), respectively. The functions ∆(↑)
nℓ ,∆

(↓)
nℓ ,Γ

(↑)
nℓ and Γ(↓)

nℓ are given by eqs. (4.85) ,
(4.86), (4.87) and (4.88), respectively.
Type-III modes. The type-III modes on SN are given by

ψ
(III-B̃;nℓ;ρ̃)
±θNθN

(θN ,θN−1) = 0 (4.102)

ψ
(III-B̃;nℓ;ρ̃)
±θNθj

(θN ,θN−1) = 0 (4.103)

ψ
(III-B̃;nℓ;ρ̃)
±θjθk

(θN ,θN−1) = 1√
2

(1 + iγN)
{
ϕ

(−2)
nℓ (θN) ± iψ

(−2)
nℓ (θN)γN

}
ψ̃

(B̃;ℓρ̃)
−θjθk

(θN−1),

(4.104)

(j, k = 1, ..., N − 1) where the rank-2 STSSH’s on SN−1 (ψ̃(B̃;ℓρ̃)
−θjθk

) satisfy eqs. (4.67)-
(4.70), while the functions ϕ(−2)

nℓ and ψ(−2)
nℓ are given by eqs. (4.31) and (4.32), respectively.

As in the case with N even, by requiring that the rank-2 STSSH’s of all types (i.e. type-I,
type-II and type-III) on SN are non-singular, we obtain the quantisation condition (4.65)
for the eigenvalue, while the allowed values for the angular momentum quantum numbers
are found to be n = 2, 3, ... and ℓ = 2, ..., n.

4.6 NORMALISATION FACTORS AND TRANSFORMATION PROP-
ERTIES UNDER SPIN(N +1) OF RANK-1 AND RANK-2 STSSH’S

In this Section, we study the transformation properties of a specific class of STSSH’s of
ranks 1 and 2 on SN under a spin(N + 1) transformation. (This class will be specified
by determining the spin(N), as well as the spin(N − 1), contents in the decomposition
spin(N + 1) ⊃ spin(N) ⊃ spin(N − 1).) We also write down explicitly the normalisation
factors for all STSSH’s of ranks 1 and 2 and we make a conjecture for the normalisation
factors for STSSH’s of arbitrary rank r.
In order to derive the transformation formulae and determine the normalisation factors
for STSSH’s of ranks 1 and 2, we introduce an inner product on the solution space of
eqs. (4.4) and (4.5) and we also exploit the spin(N + 1) invariance of this inner product.
The transformation properties and the normalisation factors that we present in this
Section have been obtained after long and tedious calculations. For this reason, in this
Section, we simply present the results of our lengthy calculations and provide the necessary
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mathematical background (for example, we discuss the Lie-Lorentz derivative (4.105) [27]).
We refer the reader to Appendix 4.14 for details of the calculations.

4.6.1 Lie-Lorentz derivative and spin(N + 1) invariant inner prod-
uct

Let ψµ1...µr be any tensor-spinor of rank r and ξ be any Killing vector on SN . The
infinitesimal change δξψµ1...µr due to the spin(N + 1) transformation generated by ξ is
conveniently described by the Lie-Lorentz derivative [27]

Lξ ψµ1...µr = ξν∇νψµ1...µr + ψνµ2...µr∇µ1ξ
ν + ψµ1νµ3...µr∇µ2ξ

ν + ...+ ψµ1...µr−1ν∇µrξ
ν

+ 1
4∇κξλγ

κγλψµ1...µr . (4.105)

The Lie-Lorentz derivative satisfies [27]

Lξ e a
µ = 0, (4.106a)

Lξ γa = 0 (4.106b)

and - after a straightforward calculation - one can verify that

(Lξ∇µ − ∇µLξ) ψµ1...µr = 0. (4.107)

Thus, if ψµ1...µr satisfies eqs. (4.4) and (4.5) (i.e., if ψµ1...µr is a STSSH of rank r), then
Lξ ψµ1...µr also satisfies eqs. (4.4) and (4.5). Also, the Lie-Lorentz derivative preserves
the Lie bracket between two Killing vectors [Lξ,Lξ′ ] = L[ξ,ξ′], and, thus, generates a
spin(N + 1) representation in the space of eigenmodes.
Let us introduce the following inner product on the solution space of eqs. (4.4) and (4.5):

(
ψ(1), ψ(2)

)
(r)

=
∫
SN

√
g dθN ψ

(1)†
µ1...µr

ψ(2)µ1...µr , (4.108)

where dθN stands for dθN ...dθ2 dθ1, while ψ(1)
µ1...µr

and ψ(2)
µ1...µr

are any two STSSH’s of
rank r with the same angular momentum n on SN .8 Since the inner product (4.108) is
invariant under spin(N + 1), we have

(
Lξψ(1), ψ(2)

)
(r)

+
(
ψ(1),Lξψ(2)

)
(r)

= 0 (4.109)

8Any two STSSH’s with different signs for the eigenvalue in eq. (4.4) and/or with different n are
orthogonal to each other, since i /∇ is hermitian with respect to the inner product (4.108).
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for any Killing vector ξ on SN .
We will study the transformation properties of a certain class of STSSH’s of ranks 1 and
2 under spin(N + 1), by specialising to the case where the Killing vector in eq. (4.105) is
given by ξ = S

S = S µ∂µ = cos θN−1
∂

∂θN
− cot θN sin θN−1

∂

∂θN−1
. (4.110)

Now, let us discuss the certain class of STSSH’s of ranks 1 and 2 on SN (N ≥ 3), the
transformation properties of which we are interested in.

• STSSH’s of rank r = 1. We will study the transformation properties of the
class of STSSH’s which comprises: the type-I modes and a certain kind of type-II
modes, called type-II-I modes. The type-II-I modes on SN are defined for N ≥ 4
and they are constructed in terms of type-I eigenvector-spinors on SN−1. Thus,
the type-II-I modes on SN are given by letting Ã = I in eqs. (4.55) and (4.56)
(for N even) and in eq. (4.61) (for N odd).
From a representation-theoretic viewpoint, the type-I modes correspond to the
following spin(N) and spin(N − 1) highest weights:
Type-I modes for N even:

f⃗σ0 =
(
ℓ+ 1

2 ,
1
2 , ...,

1
2 , σ

1
2

)
for spin(N)

(with σ = ±) and

l⃗0 =
(
m+ 1

2 ,
1
2 , ...,

1
2

)
for spin(N − 1),

where f⃗±
0 has N/2 components, while l⃗0 has N/2 − 1 components. These highest

weights satisfy the branching rules for spin(N + 1) ⊃ spin(N) ⊃ spin(N − 1) [24,
15], which imply n ≥ ℓ ≥ 1 and ℓ ≥ m ≥ 0.
Type-I modes for N odd:

f⃗0 =
(
ℓ+ 1

2 ,
1
2 , ...,

1
2 ,

1
2

)
for spin(N)

and
l⃗
σN−1

0 =
(
m+ 1

2 ,
1
2 , ...,

1
2 , σN−1

1
2

)
for spin(N − 1),

where σN−1 = ±, f⃗0 has (N − 1)/2 components, while l⃗±0 also has (N − 1)/2
components. We will call the index σN−1 the ‘spin projection index’ on SN−1 (N
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odd). Again, these highest weights satisfy the branching rules for spin(N + 1) ⊃
spin(N) ⊃ spin(N − 1) [24, 15], which imply n ≥ ℓ ≥ 1 and ℓ ≥ m ≥ 0.
Similarly, the type-II-I modes correspond to the following spin(N) and spin(N−1)
highest weights:
Type-II-I modes for N even:

f⃗σ1 =
(
ℓ+ 1

2 ,
3
2 ,

1
2 , ...,

1
2 , σ

1
2

)
for spin(N)

(with σ = ±) and

l⃗0 =
(
m+ 1

2 ,
1
2 , ...,

1
2

)
for spin(N − 1).

The weight f⃗±
1 has N/2 components, while l⃗0 has N/2 − 1 components. Again,

these highest weights satisfy the branching rules for spin(N + 1) ⊃ spin(N) ⊃
spin(N − 1) [24, 15], which imply n ≥ ℓ ≥ 1 and ℓ ≥ m ≥ 1.
Type-II-I modes for N odd:

f⃗1 =
(
ℓ+ 1

2 ,
3
2 ,

1
2 , ...,

1
2

)
for spin(N)

and
l⃗
σN−1

0 =
(
m+ 1

2 ,
1
2 , ...,

1
2 , σN−1

1
2

)
for spin(N − 1),

where σN−1 = ±, while f⃗1 has (N − 1)/2 components, and l⃗±0 also has (N − 1)/2
components. Again, these highest weights satisfy the branching rules for spin(N +
1) ⊃ spin(N) ⊃ spin(N − 1) [24, 15], which imply n ≥ ℓ ≥ 1 and ℓ ≥ m ≥ 1.

• STSSH’s of rank r = 2. We will study the class of STSSH’s which comprises:
the type-I modes, the type-II-I modes and the type-III-I modes. As in the case
of rank-1 STSSH’s, the type-II-I modes on SN are defined for N ≥ 4 and they are
constructed in terms of type-I eigenvector-spinors on SN−1. Thus, these modes are
given by letting Ã = I in eqs. (4.82)-(4.84) (for N even) and in eqs. (4.99)-(4.101)
(for N odd). The type-III-I modes on SN are defined for N ≥ 4 and they are
constructed in terms of type-I STSSH’s of rank 2 on SN−1. Thus, the type-III-I
modes on SN are given by letting B̃ = I in eqs. (4.91) and (4.94) (for N even)
and in eq. (4.104) (for N odd).
The representation-theoretic content of this class of eigenmodes concerning the
decomposition spin(N + 1) ⊃ spin(N) ⊃ spin(N − 1) can be found as in the case
of STSSH’s of rank 1 discussed above.
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4.6.2 Normalisation factors and transformation properties under
spin(N + 1) of STSSH’s of ranks 1 and 2

Case 1: N even. Using the inner product (4.108), we define the normalisation factors
c

(B;r)
N (n, ℓ) for the STSSH’s of arbitrary rank r and type B on SN , ψ(B;σ;nℓ;ρ̃)

±µ1...µr
, as

(
ψ

(B;σ;nℓ;ρ̃)
± , ψ

(B′;σ′;nℓ′;ρ̃′)
±

)
(r)

≡

∣∣∣∣∣∣c
(B;r)
N (n, ℓ)√

2

∣∣∣∣∣∣
−2

δBB′δσσ′δℓℓ′δρ̃ρ̃′ . (4.111)

The normalised STSSH’s are c(B;r)
N (n, ℓ)/

√
2 ψ(B;σ;nℓ;ρ̃)

±µ1...µr
.

As discussed in Sections 4.4 and 4.5 (for r = 1 and r = 2, respectively), the STSSH’s of
rank r on SN , ψ(B;σ;nℓ;ρ̃)

±µ1...µr
, are constructed in terms of STSSH’s of rank r̃ ≤ r on SN−1,

using the method of separation of variables. The type of the mode ψ(B;σ;nℓ;ρ̃)
±µ1...µr

(i.e. the
value assigned to the label B) depends on the choice of r̃. For convenience, instead
of using the symbol r̃, let us denote the rank of the STSSH’s on SN−1 as r̃(B), where
the type-I STSSH’s (ψ(I;σ;nℓ;ρ̃)

±µ1...µr
) have r̃(I) = 0, the type-II STSSH’s (ψ(II-Ã;σ;nℓ;ρ̃)

±µ1...µr
) have

r̃(II) = 1, the type-III STSSH’s (ψ(III-B̃;σ;nℓ;ρ̃)
±µ1...µr

) have r̃(III) = 2 and so forth. As shown
in Appendix 4.14, the normalisation factors for STSSH’s of rank r ∈ {1, 2} are given by

∣∣∣∣∣∣c
(B;r)
N (n, ℓ)√

2

∣∣∣∣∣∣
2

= 2−N−2r+1+4r̃(B)(
r

r̃(B)

) Γ(n− ℓ+ 1)Γ(n+ ℓ+N)
|Γ(n+ N

2 )|2

×

 r−1∏
j=r̃(B)

N + j + r̃(B) − 2
N + 2j − 1

 r−1∏
j=r̃(B)

(ℓ− j)(ℓ+N − 1 + j)


×
r−r̃(B)∏
j=1

1(
n+ N

2

)2
−
(
r − j + N−2

2

)2 (4.112)

(r̃(B) ≤ r) where
(

r
r̃(B)

)
is the binomial coefficient. Here, if ν1 > ν2, then ∏ν2

j=ν1 = 1.
We have proved eq. (4.112) only for r = 1 (where B = I, II) and for r = 2 (where
B = I, II, III). We make the following conjecture, which is true for r = 1 and r = 2:
Conjecture: The normalisation factors for all types of STSSH’s (i.e. STSSH’s with all
possible values of B) of arbitrary rank r ≥ 1 on SN are given by eq. (4.112), where
n ≥ ℓ ≥ r ≥ r̃(B) and r̃(B) ∈ {0, 1, ..., r}. (This conjecture will be useful in future
attempts to extend our present study to the case with spin s ≥ 7/2.)
Useful shorthand notation. Before presenting the transformation properties of our
STSSH’s of rank r = 1, 2 under spin(N + 1), let us introduce the shorthand notation
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ψ
(B;σ;nℓm;ρ)
±Nr

for the STSSH’s of ranks 1 and 2, defined as follows:

ψ
(B;σ;nℓm;ρ)
±N1 = ψ

(B;σ;nℓm;ρ)
±µ1 (B = I, II-I), (4.113a)

ψ
(III-I;σ;nℓm;ρ)
±N1 = 0, (4.113b)
ψ

(B;σ;nℓm;ρ)
±N2 = ψ

(B;σ;nℓm;ρ)
±µ1µ2 (B = I, II-I, III-I), (4.113c)

where we have also written out explicitly the dependence on the angular momentum
quantum number on SN−2, m, which corresponds to ℓ on SN−1. The symbol ρ represents
labels other than σ, n, ℓ and m. For the type-I modes we have m = 0, 1, ..., ℓ, for the type-
II-I modes we have m = 1, 2, ..., ℓ and for the type-III-I modes we have m = 2, 3, ..., ℓ.
(In other words ℓ ≥ m ≥ r̃(B).)
Transformation formulae for type-I modes. As demonstrated in Appendix 4.14, the
spin(N + 1) transformation of the type-I modes is expressed as

LSψ
(I;σ;nℓm;ρ)
±Nr

= A (I) ψ
(I;σ;n (ℓ+1)m;ρ)
±Nr

+ B(I) ψ
(I;σ;n (ℓ−1)m;ρ)
±Nr

− iκ(I) ψ
(I;−σ;nℓm;ρ)
±Nr

+ K (I→II) ψ
(II-I;σ;nℓm;ρ)
±Nr

, (4.114)

where the coefficients on the right-hand side of eq. (4.114) are

A (I) = − (n+ ℓ+N)(ℓ+N + r − 1)
2(ℓ+ N

2 )(ℓ+N − 1)
×
√

(ℓ−m+ 1)(ℓ+N − 1 +m), (4.115)

B(I) = (n− ℓ+ 1)(ℓ− r)
2(ℓ+ N−2

2 )ℓ
×
√

(ℓ−m)(ℓ+m+N − 2), (4.116)

κ(I) = −
(n+ N

2 )(m+ N−2
2 )(N + 2r − 2)

2(ℓ+ N−2
2 )(ℓ+ N

2 )(N − 2)
, (4.117)

and

K (I→II) = −
4
[(
n+ N

2

)2
− (N − 2)2/4

]
(N + r − 2)

ℓ(ℓ+N − 1)(N − 2) ×

√√√√N − 3
N − 2

m(m+N − 2)
(ℓ+ 1)(ℓ+N − 2) .

(4.118)

Equations (4.114)-(4.118) hold for r = 1, 2. Note that the sign of the spin projection
index σ is flipped in the third term of the linear combination in eq. (4.114), while iκ(I)

is the only imaginary coefficient on the right-hand side of this equation. Also, note that
K (I→II) vanishes for m = 0, i.e. for m = 0 there is no mixing between type-I and
type-II-I modes in eq. (4.114). This is consistent with the fact that type-II-I modes
are defined only for m = 1, 2, ..., ℓ.
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Transformation formulae for type-II-I modes. The spin(N + 1) transformation of
the type-II-I modes is expressed as

LSψ
(II-I;σ;nℓm;ρ)
±Nr

= A (II) ψ
(II-I;σ;n (ℓ+1)m;ρ)
±Nr

+ B(II) ψ
(II-I;σ;n (ℓ−1)m;ρ)
±Nr

− iκ(II)ψ
(II-I;−σ;nℓm;ρ)
±Nr

+ K (II→I) ψ
(I;σ;nℓm;ρ)
±Nr

+ K (II→III) ψ
(III-I;σ;nℓm;ρ)
±Nr

(4.119)

where

A (II) = − (n+ ℓ+N)(ℓ+N + r − 1)
2(ℓ+ N

2 )(ℓ+N)

×

√√√√(ℓ+ 2)(ℓ+N − 2)
(ℓ+ 1)(ℓ+N − 1)(ℓ−m+ 1)(ℓ+m+N − 1), (4.120)

B(II) = (n− ℓ+ 1)(ℓ− r)
2(ℓ+ N−2

2 )(ℓ− 1)
×

√√√√(ℓ+ 1)(ℓ+N − 3)
ℓ(ℓ+N − 2) (ℓ−m)(ℓ+m+N − 2),

(4.121)

κ(II) =
−(n+ N

2 )(m+ N−2
2 )(N − 4)

2(ℓ+ N−2
2 )(ℓ+ N

2 )(N − 2)
×
(
N + 2
N

)r−1
(4.122)

(4.123)

K (II→I) =r

4 ×

√√√√ (N − 3)m(m+N − 2)
(N − 2)(ℓ+ 1)(ℓ+N − 2) , (4.124)

where r = 1, 2 and

K (II→III) = − 23

[(
n+ N

2

)2
−N2/4

]
(N + 1)

(ℓ− 1)(ℓ+N)N ×

√√√√N − 2
N

(m− 1)(m+N − 1)
ℓ(ℓ+N − 1)

(4.125)

[eq. (4.125) is defined only for r = 2]. The sign of the spin projection index is flipped in
the third term of the linear combination in eq. (4.119), while iκ(II) is the only imaginary
coefficient on the right-hand side of this equation. Note that κ(II) vanishes for N = 4
and thus type-II-I modes with different spin projections on S4 do not mix with each
other under the transformation (4.119).
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Transformation formulae for type-III-I modes. The spin(N + 1) transformation of
the rank-2 type-III-I modes is expressed as a linear combination of other STSSH’s of
rank 2, as follows:

LSψ
(III-I;σ;nℓm;ρ)
±µ1µ2 = A (III) ψ

(III-I;σ;n (ℓ+1)m;ρ)
±µ1µ2 + B(III) ψ

(III-I;σ;n (ℓ−1)m;ρ)
±µ1µ2

− iκ(III) ψ
(III-I;−σ;nℓm;ρ)
±µ1µ2 + K (III→II) ψ

(II-I;σ;nℓm;ρ)
±µ1µ2 , (4.126)

where

A (III) = − (n+ ℓ+N)
2(ℓ+ N

2 )
×

√√√√(ℓ+ 2)(ℓ+N − 2)
ℓ(ℓ+N) (ℓ−m+ 1)(ℓ+m+N − 1),

(4.127)

B(III) = (n− ℓ+ 1)
2(ℓ+ N−2

2 )
×

√√√√(ℓ+ 1)(ℓ+N − 3)
(ℓ− 1)(ℓ+N − 1)(ℓ−m)(ℓ+m+N − 2), (4.128)

κ(III) = −
(n+ N

2 )(m+ N−2
2 )(N − 4)

2(ℓ+ N−2
2 )(ℓ+ N

2 )N
(4.129)

and

K (III→II) = 1
4

√√√√(N − 2)(m− 1)(m+N − 1)
N ℓ(ℓ+N − 1) . (4.130)

As in eqs. (4.114) and (4.119), the spin projection index σ has flipped sign in the third
term of the linear combination in eq. (4.126). Note that the STSSH’s ψ(III-I;−;nℓm;ρ)

±µν

and ψ
(III-I;+;nℓm;ρ)
±µν do not mix with each other for N = 4 since the coefficient κ(III)

[eq. (4.129)] vanishes for this value of N .
Case 2: N odd. As in the case with N even, the normalisation factors for the STSSH’s
ψ

(B;nℓ;ρ̃)
±µ1...µr

are defined using the inner product (4.108), as

(
ψ

(B;nℓ;ρ̃)
± , ψ

(B′;nℓ′;ρ̃′)
±

)
(r)

≡

∣∣∣∣∣∣c
(B;r)
N (n, ℓ)√

2

∣∣∣∣∣∣
−2

δBB′δℓℓ′δρ̃ρ̃′ . (4.131)

As demonstrated in Appendix 4.14, the normalisation factors for N odd are given again
by eq. (4.112). The conjecture for the normalisation factors of the STSSH’s in the
passage below eq. (4.112) is made for both N odd and N even.
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As in the case with N even, we introduce the shorthand notation ψ(B;nℓ;σN−1;m;ρ)
±Nr

for the
STSSH’s of ranks 1 and 2, as

ψ
(B;nℓ;σN−1;m;ρ)
±N1 = ψ

(B;nℓ;σN−1;m;ρ)
±µ1 (B = I, II-I), (4.132a)

ψ
(III-I;nℓ;σN−1;m;ρ)
±N1 = 0, (4.132b)
ψ

(B;nℓ;σN−1;m;ρ)
±N2 = ψ

(B;nℓ;σN−1;m;ρ)
±µ1µ2 (B = I, II-I, III-I), (4.132c)

where we have also written out explicitly the dependence on the angular momentum
quantum number on SN−2, m, which corresponds to ℓ on SN−1, as well as the dependence
on the spin projection index on SN−1 (σN−1 = ±). The symbol ρ represents labels other
than n, ℓ, σN−1 and m.
Transformation formulae. As shown in Appendix 4.14, the spin(N + 1) (N odd)
transformation of the type-I, type-II-I and type-III-I modes are expressed as

LSψ
(I;nℓ;σN−1;m;ρ)
±Nr

= A (I) ψ
(I;n (ℓ+1);σN−1;m;ρ)
±Nr

+ B(I) ψ
(I;n (ℓ−1);σN−1;m;ρ)
±Nr

± i σN−1 κ(I) ψ
(I;nℓ;σN−1;m;ρ)
±Nr

+ K (I→II) ψ
(II-I;nℓ;σN−1;m;ρ)
±Nr

,

(4.133)

LSψ
(II-I;nℓ;σN−1;m;ρ)
±Nr

= A (II) ψ
(II-I;n (ℓ+1);σN−1;m;ρ)
±Nr

+ B(II) ψ
(II-I;n (ℓ−1);σN−1;m;ρ)
±Nr

± i σN−1 κ(II) ψ
(II-I;nℓ;σN−1;m;ρ)
±Nr

+ K (II→I) ψ
(I;σ;nℓ;σN−1;m;ρ)
±Nr

+ K (II→III) ψ
(III-I;nℓ;σN−1;m;ρ)
±Nr

, (4.134)

and

LSψ
(III-I;nℓ;σN−1;m;ρ)
±µ1µ2 = A (III) ψ

(III-I;n (ℓ+1);σN−1;m;ρ)
±µ1µ2 + B(III) ψ

(III-I;n (ℓ−1);σN−1;m;ρ)
±µ1µ2

± i σN−1 κ(III) ψ
(III-I;nℓ;σN−1;m;ρ)
±µ1µ2 + K (III→II) ψ

(II-I;nℓ;σN−1;m;ρ)
±µ1µ2 ,

(4.135)

respectively. [In eqs. (4.133) and (4.134) we have r ∈ {1, 2}, while eq. (4.135) is relevant
only for r = 2.] All coefficients in eqs. (4.133)-(4.135) are given by the same expressions
as the coefficients in the case with N even [see eqs. (4.114), (4.119) and (4.126)]. Unlike
the even-dimensional case, the two spin projections σN−1 = ± do not mix with each
other in eqs. (4.133)-(4.135). However, the two spin projections σN−1 = ± mix with each
other under spin(N) transformations. Note that the transformation formulae (4.134)
and (4.135) are defined only for N ≥ 5 (N odd), since type-II and type-III modes on
SN do not exist9 for N = 3.

9This is consistent with the fact that the coefficient K (I→II), given by eq. (4.118), vanishes for
N = 3.
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Sitter spacetime by the analytic continuation of STSSH’s

We are now ready to analytically continue our rank-1 and rank-2 STSSH’s to dSN and
study the group representation properties of the analytically continued STSSH’s.

4.7 OBTAINING SPIN-3/2 AND SPIN-5/2 MODE SOLUTIONS ON
N -DIMENSIONAL DE SITTER SPACETIME BY THE ANALYTIC
CONTINUATION OF STSSH’S

4.7.1 Analytic continuation techniques

In this Section, we begin by discussing our analytic continuation techniques for STSSH’s
of arbitrary rank r and then we specialise to the cases with r = 1 and r = 2.
It is well known that dSN can be obtained by an “analytic continuation” of SN (see,
e.g., Ref. [22]). By replacing the angle θN in the line element of SN (4.8) as:

θN → x(t) ≡ π

2 − it, (4.136)

(t ∈ R) we find the line element for global dSN :

ds2 = −dt2 + cosh2 t ds2
N−1. (4.137)

Motivated by this observation, we can obtain the field equations (4.1) and (4.2) on dSN
by analytically continuing eqs. (4.4) and (4.5), respectively, for the STSSH’s on SN . For
convenience, let us give here again eqs. (4.4) and (4.5) for STSSH’s on SN :

/∇ψ±µ1...µr = ±i
(
n+ N

2

)
ψ±µ1...µr , (n = r, r + 1, ...) (4.138)

∇αψ±αµ2...µr = 0, γαψ±αµ2...µr = 0. (4.139)

Without loss of generality, we can choose to analytically continue the STSSH’s with
either one of the two signs for the eigenvalue in eq. (4.138), since each of the two sets
of modes, {ψ+µ1...µr} and {ψ−µ1...µr}, forms independently a unitary representation of
spin(N + 1) labelled by n (see the beginning of Sections 4.4 and 4.5). Here we choose
to analytically continue the STSSH’s ψ−µ1...µr . By making the following replacements in
eqs. (4.138) and (4.139):

θN → x(t) ≡ π

2 − it, n → M̃ − N

2 (t ∈ R, M̃ ∈ R \ {0}) (4.140)
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we obtain eqs. (4.1) and (4.2), respectively, with imaginary mass parameter M = iM̃

(M̃ ̸= 0) on dSN . Recall that we are mainly interested in field equations with imaginary
mass parameter because our aim is to study strictly and partially massless representations
of spin(N, 1), where the mass parameter takes the imaginary values (4.3). Note that the
gamma matrices on SN [eqs. (4.16) and (4.19)] transform under the replacement (4.136)
as: γN → iγN = γ0, while the γj’s (j = 1, ..., N − 1) remain unchanged.10

Analytic continuation technicalities.

Let us now give a prescription for obtaining the explicit form of the spin-3/2 and spin-5/2
TT mode functions with mass parameter M = iM̃ on dSN by analytically continuing
the STSSH’s of rank 1 and 2, respectively.
Functions describing the time-dependence. The functions describing the time-
dependence of the analytically continued STSSH’s are found by making the replace-
ments (4.140) in the (unnormalised) functions ϕ

(a)
nℓ (θN) [eq. (4.31)] and ψ

(a)
nℓ (θN)

[eq. (4.32)], as

ϕ̂
(a)
M̃ℓ

(t) ≡
[
κϕ

(
M̃ − N

2 , ℓ
)]−1

ϕ
(a)
(M̃− N

2 ) ℓ(x(t)) (4.141)

=
(

cos x(t)
2

)ℓ+1−a (
sin x(t)

2

)ℓ−a

× F

(
−M̃ + N

2 + ℓ, M̃ + ℓ+ N

2 ; ℓ+ N

2 ; sin2 x(t)
2

)
, (4.142)

ψ̂
(a)
M̃ℓ

(t) ≡
[
κϕ

(
M̃ − N

2 , ℓ
)]−1

ψ
(a)
(M̃− N

2 ) ℓ(x(t)) (4.143)

= M̃

ℓ+ N
2

(
cos x(t)

2

)ℓ−a (
sin x(t)

2

)ℓ+1−a

× F

(
−M̃ + N

2 + ℓ, M̃ + ℓ+ N

2 ; ℓ+ N + 2
2 ; sin2 x(t)

2

)
, (4.144)

where κϕ(M̃ − N
2 , ℓ) is given by eq. (4.33) with n replaced by M̃ − N

2 , while

cos x(t)
2 =

(
sin x(t)

2

)∗

=
√

2
2

(
cosh t

2 + i sinh t

2

)
. (4.145)

10Alternatively, we could analytically continue the STSSH’s on SN by making the replacement θN →
π/2 + it instead of the replacement (4.136). The analytically continued STSSH’s with θN → π/2 − it
and the ones with θN → π/2 + it are related to each other by charge conjugation. However, these two
cases of analytically continued STSSH’s form equivalent representations of spin(N, 1).
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Note that ϕ̂(a)
(−M̃)ℓ = ϕ̂

(a)
M̃ℓ

and ψ̂(a)
(−M̃)ℓ = −ψ̂(a)

M̃ℓ
. The condition ℓ ≤ n does not hold for

dSN . Now ℓ can be any positive integer with ℓ ≥ r.11

Analytic continuation of eigenmodes. For brevity, let us use again the shorthand
notation introduced in eqs. (4.113) (for N even) and (4.132) (for N odd). For N even,
we denote the analytically continued STSSH’s as Ψ(B;σ;M̃ℓm;ρ)

Nr
(t,θN−1) (where σ = ±

is the spin projection index on dSN , while m ≤ ℓ and ℓ = r, r + 1, ... ). We define the
modes Ψ(B;σ;M̃ℓm;ρ)

Nr
by making the replacements (4.140) in the STSSH’s ψ(B;σ;nℓm;ρ)

−Nr
on

SN , as

Ψ(B;σ;M̃ℓm;ρ)
Nr

(t,θN−1) =
[
κϕ

(
M̃ − N

2 , ℓ
)]−1

ψ
(B;σ;(M̃−N/2) ℓm;ρ)
−Nr

(π/2 − it,θN−1)

(4.146)

where
[
κϕ
(
M̃ − N

2 , ℓ
)]−1

is essentially the factor used in eqs. (4.141) and (4.143) [it is
used in order to cancel the normalisation factor (4.33) of the Jacobi polynomials]. Note
that, by viewing the replacement θN → π

2 − it as a coordinate change, we find that
ψ

(B;σ;nℓm;ρ)
−θN

transforms as

ψ
(B;σ;nℓm;ρ)
−θN

→ i ψ
(B;σ;(M̃−N/2) ℓm;ρ)
−t .

Similarly, ψ(B;σ;nℓm;ρ)
−θNθN

and ψ(B;σ;nℓm;ρ)
−θNθj

transform as

ψ
(B;σ;nℓm;ρ)
−θNθN

→ −ψ(B;σ;(M̃−N/2) ℓm;ρ)
−t t

and
ψ

(B;σ;nℓm;ρ)
−θNθj

→ i ψ
(B;σ;(M̃−N/2) ℓm;ρ)
−t θj

,

respectively.
For N odd, the analytically continued STSSH’s are denoted as Ψ(B;M̃ℓ;σN−1;m;ρ)

Nr
(where

σN−1 = ±, m ≤ ℓ and ℓ = r, r + 1, ... ). They are obtained by analytically continuing
the STSSH’s ψ(B;nℓ;σN−1;m;ρ)

−Nr
(θN ,θN−1) on SN , as

Ψ(B;M̃ℓ;σN−1;m;ρ)
Nr

(t,θN−1) =
[
κϕ

(
M̃ − N

2 , ℓ
)]−1

ψ
(B;(M̃−N/2) ℓ;σN−1;m;ρ)
−Nr

(π/2 − it,θN−1).

(4.147)
11In our previous article [25], the function ϕ̂

(a)
M̃ℓ

(t) = ϕ̂
(a)
(−iM)ℓ(t) is denoted as Φ(a)

Mℓ(t) (where
M = iM̃). Similarly, the function ψ̂(a)

M̃ℓ
(t) = ψ̂

(a)
(−iM)ℓ(t) is denoted as Ψ (a)

Mℓ(t).
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Note that, unlike the case with N even [eq. (4.146)], the analytically continued STSSH’s
(4.147) have a spin projection index (σN−1) on SN−1 instead of a spin projection index
on dSN .

The aforementioned analytically continued eigenmodes have been also constructed directly
on dSN using the method of separation of variables in our previous article [25], where
representation-theoretic details concerning the decomposition spin(N, 1) ⊃ spin(N) can
also be found.

4.7.2 Pure gauge modes for the strictly/partially massless spin-3/2
and spin-5/2 theories

As in Minkowski spacetime, (strictly and partially) massless field theories in dSN are
gauge invariant [9]. In terms of mode solutions of the corresponding field equations,
gauge invariance manifests itself through the appearance of ‘pure gauge’ modes in the
set of mode solutions. The ‘pure gauge’ modes do not describe propagating DoF of the
field theory and - assuming that there exists an invariant inner product for the mode
solutions - these modes have zero norm (see, e.g. Ref. [22]).

For later convenience, let us present the ‘pure gauge’ modes that appear among the
analytically continued STSSH’s of rank r (r = 1, 2) when we tune the imaginary mass pa-
rameter (M = iM̃) to the strictly/partially massless values M̃ = ± [r − τ + (N − 2)/2],
where τ = 1, .., r [see eq. (4.3)]. For each strictly/partially massless value of M̃ , the
analytically continued STSSH’s of rank r with r − τ ≥ r̃ ≥ 0 are ‘pure gauge’ modes,
where r̃ is the rank of the STSSH on SN−1 used in the method of separation of variables
(see Sections 4.4 and 4.5). In Section 4.8 we will verify that our ‘pure gauge’ modes
have zero norm associated to a spin(N, 1) invariant scalar product for N even. We will
also demonstrate that for N odd there does not exist any spin(N, 1) invariant scalar
product for the analytically continued STSSH’s with imaginary mass parameter. Thus,
for N odd the norm of the ‘pure gauge’ modes cannot be calculated in a meaningful
way, as there is no de Sitter invariant notion of norm.

Strictly massless spin-3/2 field. The mass parameter for the strictly massless spin-3/2
field is given by M = iM̃ = ±i(N −2)/2 [this is found by letting r = τ = 1 in eq. (4.3)].
The analytically continued STSSH’s of type-I (r̃ = 0) are ‘pure gauge’ modes. As
demonstrated in Appendix 4.15, the analytically continued rank-1 STSSH’s (4.146) of
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type-I with M̃ = ±(N − 2)/2 are expressed in a ‘pure gauge’ form as follows:

Ψ(I;(± N−2
2 );ℓ̃)

µ (t,θN−1) =
(

∇µ ± i

2γµ
)

Λ(ℓ̃)
± (t,θN−1), (4.148)

where for brevity we use the symbol ℓ̃ to represent all the labels of the analytically
continued STSSH’s which have not been written down explicitly. The Dirac spinors
Λ(ℓ̃)

± (t,θN−1) satisfy

/∇Λ(ℓ̃)
± = ∓i N2 Λ(ℓ̃)

± . (4.149)

The ‘pure gauge’ expression (4.148) for the type-I modes coincides with the form of
the infinitesimal gauge transformation [9] (with a specific gauge condition) that leaves
invariant the action for the strictly massless spin-3/2 field in dS4. In Section 4.8 we show
that the ‘pure gauge’ modes (4.148) have vanishing dS invariant norm for even N ≥ 4.
Strictly massless spin-5/2 field. The mass parameter for the strictly massless spin-5/2
field is given by M = iM̃ = ±iN/2 [this is found by letting r = 2 and τ = 1 in eq. (4.3)].
There are two types of ‘pure gauge’ modes, namely the analytically continued STSSH’s of
type-I (r̃ = 0) and type-II (r̃ = 1). As demonstrated in Appendix 4.15, the analytically
continued rank-2 STSSH’s (4.146) of type-I and type-II with M̃ = ±N/2 are expressed
in the following ‘pure gauge’ form:

Ψ(B;(± N
2 );ℓ̃)

µν (t,θN−1) =
(

∇(µ ± i

2γ(µ

)
λ

(B;ℓ̃)
±ν) (t,θN−1), B = I, II, (4.150)

where the gauge functions λ(B;ℓ̃)
±µ (t,θN−1) (B = I, II) are vector-spinor fields satisfying

/∇λ(B;ℓ̃)
±µ = ∓i N + 2

2 λ
(B;ℓ̃)
±µ (4.151)

γµλ
(B;ℓ̃)
±µ = ∇µλ

(B;ℓ̃)
±µ = 0. (4.152)

The vector-spinors λ(B;ℓ̃)
±µ (t,θN−1) are given by the analytic continuation of rank-1

STSSH’s of type-B (B = I, II) - see Appendix 4.15. Note that the ‘pure gauge’
expressions (4.150) for the type-I and type-II modes coincide with the form of the
infinitesimal gauge transformation [9] (with a specific gauge condition) for the gauge-
invariant action for the strictly massless spin-5/2 field in dS4. In Section 4.8 we show
that the ‘pure gauge’ modes (4.150) have zero (dS invariant) norm for even N ≥ 4.
Partially massless spin-5/2 field. The mass parameter for the partially massless
spin-5/2 field is given by M = iM̃ = ±i(N − 2)/2 [this is found by letting r = 2 and
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τ = 2 in eq. (4.3)]. The analytically continued STSSH’s of type-I (r̃ = 0) are ‘pure
gauge’ modes. As demonstrated in Appendix 4.15, the analytically continued rank-2
STSSH’s (4.146) of type-I with M̃ = ±(N − 2)/2 are expressed in a ‘pure gauge’ form
as follows:

Ψ(I;(± N−2
2 );ℓ̃)

µν (t,θN−1) =
(

∇(µ∇ν) ± iγ(µ∇ν) + 3
4gµν

)
φ

(ℓ̃)
± (t,θN−1), (4.153)

where the spinor modes φ(ℓ̃)
± (t,θN−1) satisfy

/∇φ(ℓ̃)
± = ∓i N + 2

2 φ
(ℓ̃)
± . (4.154)

In Section 4.8 we show that the ‘pure gauge’ modes (4.153) have zero (dS invariant)
norm for even N ≥ 4. We note that we have not constructed a gauge-invariant action
for the partially massless spin-5/2 field in dSN with infinitesimal gauge transformation of
the form (4.153). However, we call the modes (4.153) ‘pure gauge’ modes because we
expect that such an action exists and that the expression (4.153) describes infinitesimal
gauge transformations (satisfying a specific gauge condition) for this action.
In Appendix 4.15, we discuss the relation between our ‘pure gauge’ modes (4.153) and
the gauge transformation of the partially massless spin-5/2 field in dS4 given in Ref. [9].
More specifically, we observe the following intriguing fact: for a specific choice for the
spinor gauge function in the gauge transformation used in Ref. [9], the gamma-traceless
part of this gauge transformation can be expressed in our ‘pure gauge’ form (4.153).

4.8 (NON)UNITARITY OF THE STRICTLY/PARTIALLY MASSLESS
REPRESENTATIONS OF SPIN(N, 1) FORMED BY THE ANALYT-
ICALLY CONTINUED STSSH’S

For each value of the imaginary mass parameter M = iM̃ in eq. (4.1), the TT tensor-
spinor mode solutions (i.e. the analytically continued STSSH’s) form a representation
of spin(N, 1). If one introduces a dS invariant scalar product among the analytically
continued STSSH’s, then the unitarity of the representation is equivalent to the positive-
definiteness of the associated norm. If there is no dS invariant scalar product, then the
corresponding representation of spin(N, 1) is, by definition, not unitary.
In this Section, we prove statements 1, 2 and 3 presented in the Introduction, which give
the technical explanation of the main result of our paper (which we mention here again
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for convenience): the strictly massless spin-3/2 field theory and the strictly and partially
massless spin-5/2 field theories on dSN (N ≥ 3) are unitary only for N = 4.

4.8.1 The strictly/partially massless spin-3/2 and spin-5/2 repre-
sentations of spin(N, 1) are non-unitary for even N > 4

In this Subsection, we show that the representations of spin(N, 1) with even N > 4 formed
by the spin-3/2 and spin-5/2 TT mode solutions of eq. (4.1) with arbitrary imaginary
mass parameter M = iM̃ (M̃ ̸= 0) are non-unitary (i.e. we prove statement 1). In order
to arrive at this result we study the transformation properties of our analytically continued
STSSH’s under a spin(N, 1) boost and then we demonstrate the indefiniteness of the
norm associated to a dS invariant scalar product for even N > 4. (In this Subsection we
work without specifying the form of the dS invariant scalar product. Thus, our results
hold for any dS invariant scalar product.) We also find that for N = 4 the requirement
for dS invariance of the scalar product does not imply the indefiniteness of the norm if
and only if the mass parameter M̃ is tuned to the strictly/partially massless values (4.3).
Also, for even N ≥ 4, we show that the ‘pure gauge’ modes in the strictly/partially
massless theories with spin s ∈ {3/2, 5/2} have zero norm with respect to any dS
invariant scalar product. Furthermore, for N = 4 and M̃ given by eq. (4.3), we show that
the TT modes in the strictly/partially massless theories are divided into two spin(4, 1)
invariant subspaces, denoted as H − and H + (where each subspace contains modes
with definite helicity). The positivity of the norm in each of these subspaces is shown
in Subsection 4.8.2 by calculating explicitly the norms of the eigenmodes with respect
to a specific dS invariant scalar product. (In Subsection 4.8.2 we also verify the results
obtained in the present Subsection for even N > 4 by explicit calculation of the norms
of the eigenmodes with arbitrary imaginary mass parameter M = iM̃ ̸= 0.)
The analytic continuation techniques introduced in Section 4.7 can also be applied to
the transformation properties of the STSSH’s under spin(N + 1). By doing so, one
obtains the transformation properties of the analytically continued STSSH’s on dSN under
spin(N, 1). Let us make the replacement (4.136) in the Killing vector S µ [eq. (4.110)]
on SN . One finds that the analytically continued version of S µ is expressed as iXµ,
where Xµ is the following boost generator of spin(N, 1):

Xµ∂µ = cos θN−1
∂

∂t
− tanh t sin θN−1

∂

∂θN−1
. (4.155)
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The de Sitter algebra spin(N, 1) is generated by the de Sitter boost (4.155) and the
generators of spin(N).
spin(N,1) transformation formulae. By making the replacements (4.140) in the
spin(N+1) transformation formulae (4.114), (4.119) and (4.126) [and using eq. (4.146)],
we find

LXΨ(I;σ;M̃ℓm;ρ)
Nr

= − i c(ℓ) A (I) Ψ(I;σ;M̃ (ℓ+1)m;ρ)
Nr

− i

c(ℓ−1)
B(I) Ψ(I;σ;M̃ (ℓ−1)m;ρ)

Nr

− κ(I) Ψ(I;−σ;M̃ℓm;ρ)
Nr

− iK (I→II) Ψ(II-I;σ;M̃ℓm;ρ)
Nr

, (4.156)

LXΨ(II-I;σ;M̃ℓm;ρ)
Nr

= − i c(ℓ)A
(II) Ψ(II-I;σ;M̃ (ℓ+1)m;ρ)

Nr
− i

c(ℓ−1)
B(II) Ψ(II-I;σ;M̃ (ℓ−1)m;ρ)

Nr

− κ(II)Ψ(II-I;−σ;M̃ℓm;ρ)
Nr

− iK (II→I) Ψ(I;σ;M̃ℓm;ρ)
Nr

− iK (II→III) Ψ(III-I;σ;M̃ℓm;ρ)
Nr

(4.157)

(r = 1, 2,) and

LXΨ(III-I;σ;M̃ℓm;ρ)
µ1µ2 = − i c(ℓ)A

(III) Ψ(III-I;σ;M̃ (ℓ+1)m;ρ)
µ1µ2 − i

c(ℓ−1)
B(III) Ψ(III-I;σ;M̃ (ℓ−1)m;ρ)

µ1µ2

− κ(III)Ψ(III-I;−σ;M̃ℓm;ρ)
µ1µ2 − iK (III→II) Ψ(II-I;σ;M̃ℓm;ρ)

µ1µ2 , (4.158)

respectively, with

c(ℓ) =
κϕ(M̃ − N

2 , ℓ+ 1)
κϕ(M̃ − N

2 , ℓ)
=
M̃ − ℓ− N

2
ℓ+N/2 , (4.159)

where κϕ(M̃−N/2, ℓ) is found by eq. (4.33) and LX is the Lie-Lorentz derivative (4.105)
on dSN . The coefficients A (B),B(B),κ(B) (withB = I, II, III), K (I→II),K (II→I),K (II→III)

and K (III→II) are found by making the replacement n → M̃ −N/2 in the corresponding
expressions for the coefficients of STSSH’s on SN [see eqs. (4.114), (4.119) and (4.126)].
Note that we use the same symbols to represent the coefficients in the transformation
formulae on SN and the analytically continued coefficients on dSN .

Investigating the (non-)existence of positive-definite, dS invariant scalar products.

Let
〈

Ψ(1)|Ψ(2)
〉

(r)
be a spin(N, 1) invariant scalar product for any two analytically

continued rank-r STSSH’s Ψ(1)
Nr
,Ψ(2)

Nr
(r = 1, 2) with imaginary mass parameter M = iM̃
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(M̃ ̸= 0). Due to the spin(N, 1) invariance of the scalar product we have〈
LξΨ(1)|Ψ(2)

(r)

〉
+
〈

Ψ(1)|LξΨ(2)
〉

(r)
= 0 (4.160)

for any Killing vector ξ on dSN . Then, by letting Ψ(1)
Nr

= Ψ(B;−;M̃ℓm;ρ)
Nr

and Ψ(2)
Nr

=
Ψ(B;+;M̃ℓm;ρ)
Nr

(with B = I, II-I, III-I) in eq. (4.160) with ξ = X and using the transfor-
mation formulae (4.156)-(4.158), we find that the norms of eigenmodes with opposite
spin projections must satisfy:

κ(I) ×
(〈

Ψ(I;−;M̃ℓm;ρ)|Ψ(I;−;M̃ℓm;ρ)
〉

(r)

+
〈

Ψ(I;+;M̃ℓm;ρ)|Ψ(I;+;M̃ℓm;ρ)
〉

(r)

)
= 0, (4.161)

κ(II) ×
(〈

Ψ(II-I;−;M̃ℓm;ρ)|Ψ(II-I;−;M̃ℓm;ρ)
〉

(r)

+
〈

Ψ(II-I;+;M̃ℓm;ρ)|Ψ(II-I;+;M̃ℓm;ρ)
〉

(r)

)
= 0, (4.162)

κ(III) ×
(〈

Ψ(III-I;−;M̃ℓm;ρ)|Ψ(III-I;−;M̃ℓm;ρ)
〉

(r=2)

+
〈

Ψ(III-I;+;M̃ℓm;ρ)|Ψ(III-I;+;M̃ℓm;ρ)
〉

(r=2)

)
= 0. (4.163)

Note that, since the scalar product is also spin(N) invariant, analytically continued
STSSH’s of different type or/and with different values for ℓ are orthogonal to each other
because they correspond to inequivalent irreducible representations of spin(N) in the
decomposition spin(N, 1) ⊃ spin(N). For convenience, we give here the explicit form of
the analytically continued coefficients κ(I) [eq. (4.117)], κ(II) [eq. (4.122)] and κ(III)

[eq. (4.129)]:

κ(I) = −
M̃(m+ N−2

2 )(N + 2r − 2)
2(ℓ+ N−2

2 )(ℓ+ N
2 )(N − 2)

(r = 1, 2), (4.164)

κ(II) = −
M̃(m+ N−2

2 )(N − 4)
2(ℓ+ N−2

2 )(ℓ+ N
2 )(N − 2)

×
(
N + 2
N

)r−1
(r = 1, 2), (4.165)

κ(III) = −
M̃(m+ N−2

2 )(N − 4)
2(ℓ+ N−2

2 )(ℓ+ N
2 )N

(4.166)
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[eq. (4.166) is relevant only for spin-5/2 modes, i.e. only for r = 2]. We also give
the explicit form of the analytically continued coefficients K (I→II) [eq. (4.118)] and
K (II→III) [eq. (4.125)]:

K (I→II) = −
4
(
M̃2 − (N − 2)2/4

)
(N + r − 2)

ℓ(ℓ+N − 1)(N − 2) ×

√√√√N − 3
N − 2

m(m+N − 2)
(ℓ+ 1)(ℓ+N − 2)

(where r = 1, 2), (4.167)

K (II→III) = − 23

(
M̃2 −N2/4

)
(N + 1)

(ℓ− 1)(ℓ+N)N ×

√√√√N − 2
N

(m− 1)(m+N − 1)
ℓ(ℓ+N − 1) , (4.168)

where eq. (4.168) is relevant only for r = 2. The analytically continued coefficients
K (II→I) and K (III→II) are given by the same expressions as the coefficients on SN , i.e.
eqs. (4.124) and (4.130), respectively.
• Cases with even N > 4. Let us first discuss the case with even N > 4, where
κ(I),κ(II) and κ(III) are all non-zero (for all M̃ ≠ 0). The representation can be unitary
only if eqs. (4.161)-(4.163) are consistent with the positive-definiteness of the norm.
However, it is clear from eqs. (4.161)-(4.163) that the norm of the modes Ψ(B;−;M̃ℓm;ρ)

Nr

is opposite of the norm of the modes Ψ(B;+;M̃ℓm;ρ)
Nr

(B = I, II-I, III-I) for all M̃ ̸= 0.
Hence, for even N > 4, there are negative-norm modes for all values of M̃ ̸= 0, unless
all modes have zero norm. (Not all modes could have zero norm if the field were to
describe a physical particle.) Thus, we have proved statement 1.
• dS invariance requires the norm of ‘pure gauge’ modes to be zero. Before
discussing the case with N = 4, we can show that the ‘pure gauge’ modes (discussed in
Subsection 4.7.2), which appear among the TT mode solutions in the strictly/partially
massless theories, have zero norm with respect to any dS invariant scalar product for
even N ≥ 4, as follows [23]. For the strictly massless spin-3/2 theory (r = τ = 1), as
well as for the partially massless spin-5/2 theory (r = τ = 2), the mass parameter is
M̃2 = (N − 2)2/4 [see eq. (4.3)], while the type-I modes are ‘pure gauge’ modes. We
observe that the coefficient K (I→II) [eq. (4.167)] vanishes for M̃2 = (N − 2)2/4 (with
r = 1, 2). Then, by letting Ψ(1)

Nr
= Ψ(I;σ;(± N−2

2 )ℓm;ρ)
Nr

and Ψ(2)
Nr

= Ψ(II-I;σ;(± N−2
2 )ℓm;ρ)

Nr
in

eq. (4.160) with ξ = X and using the transformation formulae (4.156) and (4.157), we
straightforwardly find〈

Ψ(I;σ;(± N−2
2 )ℓm;ρ)|Ψ(I;σ;(± N−2

2 )ℓm;ρ)
〉

(r)
= 0
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(with r = 1, 2), i.e. the type-I modes have zero norm for even N ≥ 4. For the
strictly massless spin-5/2 theory (r = τ + 1 = 2) the mass parameter is M̃2 =
N2/4 [see eq. (4.3)], while both type-I and type-II modes are ‘pure gauge’ modes.
For this value of M̃2 the coefficient K (II→III) [eq. (4.168)] vanishes. By letting
Ψ(1)
Nr

= Ψ(II-I;σ;(± N
2 )ℓm;ρ)

µ1µ2 and Ψ(2)
Nr

= Ψ(III-I;σ;(± N
2 )ℓm;ρ)

µ1µ2 in eq. (4.160) with ξ = X

and using the transformation formulae (4.157) (with r = 2) and (4.158), we find〈
Ψ(II-I;σ;(± N

2 )ℓm;ρ)|Ψ(II-I;σ;(± N
2 )ℓm;ρ)

〉
(r=2)

= 0. Then, by letting Ψ(1)
Nr

= Ψ(I;σ;(± N
2 )ℓm;ρ)

µ1µ2

and Ψ(2)
Nr

= Ψ(II-I;σ;(± N
2 )ℓm;ρ)

µ1µ2 in eq. (4.160) with ξ = X and using the transformation
formulae (4.156) (with r = 2) and (4.157) (with r = 2), we find

〈
Ψ(I;σ;(± N

2 )ℓm;ρ)|Ψ(I;σ;(± N
2 )ℓm;ρ)

〉
(r=2)

= 0.

Thus, in the strictly massless spin-5/2 theory the ‘pure gauge’ modes have zero norm for
even N ≥ 4.
• The special case N = 4. Let us now discuss the case with N = 4. First, we show
that if N = 4, then the dS invariance of the scalar product (4.160) (with ξ = X) for
the analytically continued STSSH’s with imaginary mass parameter M = iM̃ ̸= 0 does
not require indefiniteness of the norm if and only if M̃ is tuned to the strictly/partially
massless values (4.3). This can be shown as follows. For N = 4 eqs. (4.162) and (4.163)
are trivial due to the vanishing of κ(II) [eq. (4.165)] and κ(III) [eq. (4.166)], respectively.
It is clear that if eq. (4.161) is not trivial, then the indefiniteness of the norm cannot
be avoided. Equation (4.161) becomes trivial if we tune M̃ to the strictly/partially
massless values (4.3) because for this value of M̃ the type-I modes are pure gauge (i.e.
zero-norm modes). Hence, for N = 4 the dS invariance of the scalar product does not
require the indefiniteness of the norm for the strictly/partially massless theories with
spin s ∈ {3/2, 5/2}. Note that, since κ(II) and κ(III) are zero, the (non-zero-norm)
eigenmodes with negative spin projection do not mix with the eigenmodes with positive
spin projection under the spin(4, 1) boost in eqs. (4.157) and (4.158). We have also
verified that (non-zero-norm) eigenmodes with different spin projections on dS4 do not
mix each other under spin(4).
According to our analysis in the previous paragraph, in the case of strictly/partially
massless theories with spin s = r + 1/2 (r ∈ {1, 2}) on dS4, we conclude the following:

• The set H − = {Ψ(B;−;M̃ℓ;ρ̃)
Nr

} of (non-zero-norm) TT eigenmodes with negative
spin projection forms an irreducible representation of spin(4, 1).
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• The set H + = {Ψ(B;+;M̃ℓ;ρ̃)
Nr

} of (non-zero-norm) TT eigenmodes with positive
spin projection forms separately an irreducible representation of spin(4, 1).12

Conclusion concerning the irreducibility of strictly/partially massless represen-
tations in N = 4 dimensions. The two sets of eigenmodes, H + and H −, form a
direct sum of irreducible representations of spin(4, 1). In Subsection 4.8.2 we are going
to show that these irreducible representations are unitary by demonstrating the positivity
of the norm in each subspace. [As we demonstrated in our previous article [25], this is a
direct sum of Discrete Series representations of spin(4, 1).]
Note. Note that zero-norm modes (i.e. ‘pure gauge’ modes) transform only into zero-
norm modes under spin(4, 1) and they can be identified with zero, since, as we discussed
above, the coefficient (4.167) (in the transformation formula (4.156) with r ∈ {1, 2})
vanishes for M̃2 = (N − 2)2/4, while the coefficient (4.168) (in the transformation
formula (4.157) with r = 2) vanishes for M̃2 = N2/4. For the strictly massless spin-3/2
theory (r = τ = 1, M̃2 = (N − 2)2/4) and the partially massless spin-5/2 theory
(r = τ = 2, M̃2 = (N − 2)2/4), where the type-I modes have zero norm, the action of
spin(4, 1) is defined on equivalence classes of the TT modes contained in H σ (σ = ±)
with the equivalence relation

Ψ(B;σ;(± N−2
2 )ℓ;ρ̃)

Nr
∼ Ψ(B;σ;(± N−2

2 )ℓ;ρ̃)
Nr

+ Ψ(I;σ′;(± N−2
2 )ℓ′;ρ̃′)

Nr

(with B = II-I for r = 1 and B = II-I, III-I for r = 2), where Ψ(I;σ′;(± N−2
2 )ℓ′;ρ̃′)

Nr
is

any type-I mode, i.e. the labels σ′, ℓ′ and ρ̃′ are no necessarily equal to σ, ℓ and ρ̃,
respectively. For the strictly massless spin-5/2 theory (r = τ + 1 = 2, M̃2 = N2/4),
where both type-I and type-II-I modes have zero norm, the action of spin(4, 1) is defined
on equivalence classes of type-III-I modes in H σ (σ = ±) with the equivalence relation

Ψ(III-I;σ;(± N
2 )ℓ;ρ̃)

µ1µ2 ∼ Ψ(III-I;σ;(± N
2 )ℓ;ρ̃)

µ1µ2 + Ψ(PG)
µ1µ2 ,

where Ψ(PG)
µ1µ2 is any (finite or infinite) linear combination of type-I and type-II modes.

Eigenmodes and helicity for strictly/partially massless theories on dS4

For the strictly massless theories with spin s ∈ {3/2, 5/2} on dS4, the set H − is
identified with the set of states with ‘negative helicity’ (−s), while the set H + is

12This situation is similar to the case of the strictly massless spin-2 field in dS4 [19], where self-dual
and anti-self-dual modes correspond to different irreducible representations of SO(4, 1).
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identified with the set of states with ‘positive helicity’ (+s). This can be understood as
follows. As in Ref. [19], let us introduce the helicity operator ϵ̃ θjθk

θi
∇̃θj

, where ϵ̃θiθjθk
is

the invariant 3-form on S3 (i, j, k ∈ {1, 2, 3}). For the strictly massless spin-3/2 theory
on dS4, where

H σ = {Ψ(B;σ;M̃ℓ;ρ̃)
N1 } = {Ψ(II-I;σ;(±1)ℓ;ρ̃)

µ },

it can readily be shown that eigenmodes with different spin projections belong to different
eigenspaces of the helicity operator, as

ϵ̃
θjθk

θi
∇̃θj

Ψ(II-I;σ;(±1)ℓ;ρ̃)
θk

∝ /̃∇Ψ(II-I;σ;(±1)ℓ;ρ̃)
θi

= iσ
(
ℓ+ 3

2

)
Ψ(II-I;σ;(±1)ℓ;ρ̃)
θi

. (4.169)

(This equation can be readily proved using the fact that ϵ̃θiθjθk
∝ γ̃θiθjθk

, where γ̃θiθjθk
is

the third-rank gamma matrix on S3 which is given by the anti-symmetrised product of
three gamma matrices γ̃θiθjθk

= γ̃[θi
γ̃θj
γ̃θk] - see e.g. Ref. [16].) Similarly, for the strictly

massless spin-5/2 theory on dS4, where

H σ = {Ψ(B;σ;M̃ℓ;ρ̃)
N2 } = {Ψ(III-I;σ;(±2)ℓ;ρ̃)

µν },

it can readily be shown that

ϵ̃
θjθk

θi
∇̃θj

Ψ(III-I;σ;(±2)ℓ;ρ̃)
θkθl

∝ /̃∇Ψ(III-I;σ;(±2)ℓ;ρ̃)
θiθl

= iσ
(
ℓ+ 3

2

)
Ψ(III-I;σ;(±2)ℓ;ρ̃)
θiθl

. (4.170)

In the case of the partially massless spin-5/2 field on dS4, where

H σ = {Ψ(B;σ;M̃ℓ;ρ̃)
N2 } = {Ψ(II-I;σ;(±1)ℓ;ρ̃)

µν ,Ψ(III-I;σ;(±1)ℓ;ρ̃)
µν },

the helicity operator cannot be defined in the same way. However, it is natural to identify
H − with the set of states with helicities (−5/2,−3/2) and H + with the set of states
with helicities (+5/2,+3/2).
Below we choose a specific dS invariant scalar product for the analytically continued
STSSH’s with imaginary mass parameter. By calculating the associated norms of the
modes we will verify the non-unitarity of the spin(N, 1) representations for even N > 4
for arbitrary imaginary mass parameter M = iM̃ (M̃ ̸= 0). Also, in the case of
strictly/partially massless theories on dS4, we will show that each of the spin(4, 1)
invariant subspaces, H − and H +, separately forms a unitary representation of spin(4, 1)
(and, thus, we have a direct sum of UIR’s of spin(4, 1)).
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4.8.2 Strictly/partially massless spin-3/2 and spin-5/2 representa-
tions of spin(N, 1) for N even: norms of the eigenmodes

In this Subsection, by calculating the norms of the analytically continued STSSH’s
explicitly, we show that the representations of spin(N, 1) (even N ≥ 4) formed by the
spin-3/2 and spin-5/2 TT mode solutions of eq. (4.1) with arbitrary imaginary mass
parameter M = iM̃ (M̃ ̸= 0) are non-unitary, unless the following two conditions hold at
the same time: i) N = 4 and ii) M̃ is tuned to the strictly/partially massless values (4.3).
For N = 4, we show that the TT modes in the strictly/partially massless theories form a
direct sum of UIR’s of spin(4, 1). In other words, in the present Subsection we verify the
results of Subsection 4.8.1 for even N > 4 and we prove statement 2.
Let Ψ(1)

µ1...µr
and Ψ(2)

µ1...µr
be any two analytically continued STSSH’s [satisfying eqs. (4.1)

and (4.2)] with the same imaginary mass parameter M = iM̃ (M̃ ̸= 0) on dSN (N
even). The (axial) vector current

Jµ = iΨ(1)
µ1...µr

γµγN+1Ψ(2)µ1...µr (4.171)

is covariantly conserved [23], where Ψ(1)
µ1...µr

= iΨ(1)†
µ1...µr

γ0 and we used the fact that
gamma matrices are covariantly constant. Then, the scalar product〈

Ψ(1)|Ψ(2)
〉

(r)
=
∫
SN−1

√
−g dθN−1 J

0 (4.172)

is time independent, where dθN−1 stands for dθ1 dθ2...dθN−1, while g is the determinant
of the de Sitter metric. This scalar product is equivalently written as〈

Ψ(1)|Ψ(2)
〉

(r)
= coshN−1 t

∫
SN−1

√
g̃ dθN−1 Ψ(1)†

µ1...µr
γN+1Ψ(2)µ1...µr , (4.173)

where we used (γ0)2 = −1, as well as
√

−g = coshN−1 t
√
g̃, (4.174)

while √
g̃ is given by eq. (4.29).

Now let us show that the scalar product (4.173) is de Sitter invariant. Let ξµ be a Killing
vector of dSN satisfying

∇µξν + ∇νξµ = 0. (4.175)

The infinitesimal change δξJµ of the current (4.171) under the spin(N, 1) transformation
generated by ξµ is described by the Lie derivative

δξJ
µ = LξJ

µ = ξν∇νJ
µ − Jν∇νξ

µ

= ∇ν(ξνJµ − Jνξµ), (4.176)
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where we used ∇µJ
µ = ∇µξ

µ = 0. Then, it is straightforward to find

δξJ
0 = 1√

−g
∂θκ

[√
−g(ξθκJ0 − Jθκξ0)

]
, (4.177)

where κ = 1, ..., N − 1. By integrating eq. (4.177) over SN−1 we find that the scalar
product (4.173) is de Sitter invariant, as

δξ

〈
Ψ(1)|Ψ(2)

〉
(r)

=
∫
SN−1

dθN−1
√

−g δξJ0 = 0. (4.178)

It is possible to calculate the norms of the analytically continued STSSH’s of ranks 1
and 2 [the analytically continued STSSH’s are defined by eq. (4.146)] using the de Sitter
invariant scalar product (4.173). We find in this manner〈

Ψ(B;σ;M̃ℓ;ρ̃)|Ψ(B′;σ′;M̃ℓ′;ρ̃′)
〉

(r)

= (−σ) ×
(
r

r̃(B)

)
2N+2r−1−4r̃(B)

×
|Γ(ℓ+ N

2 )|2

Γ(ℓ+ N
2 + M̃)Γ(ℓ+ N

2 − M̃)

×

 r−1∏
j=r̃(B)

N + 2j − 1
N + j + r̃(B) − 2


×

 r−1∏
j=r̃(B)

1
(ℓ− j)(ℓ+N − 1 + j)


×

r−r̃(B)∏
j=1

{
−M̃2 +

(
r − j + N − 2

2

)2} δσσ′δℓℓ′δρ̃ρ̃′ (4.179)

for r ∈ {1, 2} and B = I, II, III (where σ = ±, M̃ ∈ R \ {0}, r̃(B) ≤ r, while r̃(I) = 0,
r̃(II) = 1 and r̃(III) = 2). The norms of type-I and type-II spin-3/2 modes, as well as the
norms of type-II and type-III spin-5/2 modes, can be determined by direct calculation
using the time-independence of the scalar product (4.173). The calculations are simplified
by using

∣∣∣ϕ̂(a)
M̃ℓ

(t = 0)
∣∣∣2 −

∣∣∣ψ̂(a)
M̃ℓ

(t = 0)
∣∣∣2 =

2N+2a−1 |Γ(ℓ+ N
2 )|2

Γ(ℓ+ N
2 + M̃)Γ(ℓ+ N

2 − M̃)
. (4.180)

[This equation can readily be proved using eqs. (4.192) and (4.193).] Once the norms
of type-II and type-III spin-5/2 modes have been calculated, the norm of the type-I
spin-5/2 modes is readily found using the dS invariance (4.160) of the inner product
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between type-I and type-II modes (by making use of the transformation formulae (4.156)
and (4.157)).
Consistency check. As a consistency check, by using our result for the norms (4.179) of
the eigenmodes with spin s ∈ {3/2, 5/2}, we can reproduce the strictly/partially massless
tunings (4.3) for the imaginary mass parameter as follows. For r = 1 (spin-3/2 field), we
find that the norm (4.179) of type-I modes (r̃(I) = 0) becomes zero if M̃2 = (N −2)2/4,
corresponding to the strictly massless spin-3/2 theory. For r = 2 (spin-5/2 field), we find
that both type-I (r̃(I) = 0) and type-II (r̃(II) = 1) modes have zero norm (4.179) for
M̃2 = N2/4, corresponding to the strictly massless spin-5/2 theory. Finally, for r = 2,
we find that type-I (r̃(I) = 0) modes have zero norm (4.179) for M̃2 = (N − 2)2/4,
corresponding to the partially massless spin-5/2 theory.
Note. We observe that the sign of the norm (4.179) depends on the sign of the spin
projection index σ = ±, as expected from the dS invariance of the scalar product (4.161)-
(4.163). Thus, it is easy to understand that representations of spin(N, 1) with spin
s ∈ {3/2, 5/2} and arbitrary imaginary mass parameter M = iM̃ ̸= 0 are non-unitary
for even N > 4, since positive-norm and negative-norm modes mix with each other under
spin(N, 1) [see the transformation formulae (4.157) and (4.158)]. Similarly, we find that
for N = 4 the representations of spin(4, 1) are not unitary if M̃ is not given by the
strictly/partially massless values in eq. (4.3).
Striclty/partially massless theories and direct sum of spin(4, 1) UIRs. Now, let us
suppose that the following two conditions are satisfied at the same time: i) N = 4 and
ii) the imaginary mass parameter is tuned to the strictly/partially massless values (4.3).
According to our discussion for the N = 4 case in Subsection 4.8.1, each of the solution
subspaces, H − and H +, forms separately an irreducible representation of spin(4, 1)
with spin s = r + 1/2 (r ∈ {1, 2}). (The ‘pure gauge’ modes are identified with zero in
each subspace.) We can show that the subspaces H − and H + form a direct sum of
UIR’s of spin(4, 1) as follows. By observing that the norms (4.179) of the eigenmodes
depend on the spin projection, we have:

• For the set of eigenmodes with negative spin projection (or negative helicity),
H − = {Ψ(B;−;M̃ℓ;ρ̃)

Nr
}, the positive-definite inner product is〈

Ψ(B;−;M̃ℓ;ρ̃)|Ψ(B′;−;M̃ℓ′;ρ̃′)
〉

(r)

= cosh3 t
∫
S3

√
g̃ dθ3 Ψ(B;−;M̃ℓ;ρ̃)†

µ1...µr
γ5 Ψ(B′;−;M̃ℓ′;ρ̃′)µ1...µr

The explicit expression for the positive-definite norm is given by eq. (4.179).
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• For the set of eigenmodes with positive spin projection (or positive helicity),
H + = {Ψ(B;+;M̃ℓ;ρ̃)

Nr
}, the positive-definite inner product is

−
〈

Ψ(B;+;M̃ℓ;ρ̃)|Ψ(B′;+;M̃ℓ′;ρ̃′)
〉

(r)
.

The explicit expression for the positive-definite norm is given by the negative of
eq. (4.179).

4.8.3 The strictly/partially massless spin-3/2 and spin-5/2 repre-
sentations of spin(N, 1) are non-unitary for N odd

In this Subsection, we show that the strictly massless spin-3/2 field theory, as well as the
strictly and partially massless spin-5/2 field theories, on dSN (N odd) are not unitary
(i.e. we prove statement 3).
spin(N,1) transformation formulae. As in the case with N even, we study the
transformation properties of the analytically continued STSSH’s under the de Sitter
boost (4.155). By making the replacements (4.140) in the spin(N + 1) transformation
formulae (4.133), (4.134) and (4.135) [and using eq. (4.147)], we find

LXΨ(I;M̃ℓ;σN−1;m;ρ)
Nr

= − i c(ℓ) A (I) Ψ(I;M̃ (ℓ+1);σN−1;m;ρ)
Nr

− i

c(ℓ−1)
B(I) Ψ(I;M̃ (ℓ−1);σN−1;m;ρ)

Nr

− σN−1 κ(I) Ψ(I;M̃ℓ;σN−1;m;ρ)
Nr

− iK (I→II) Ψ(II-I;M̃ℓ;σN−1;m;ρ)
Nr

,

(4.181)

LXΨ(II-I;M̃ℓ;σN−1;m;ρ)
Nr

= − i c(ℓ)A
(II) Ψ(II-I;M̃ (ℓ+1);σN−1;m;ρ)

Nr

− i

c(ℓ−1)
B(II) Ψ(II-I;M̃ (ℓ−1);σN−1;m;ρ)

Nr

− σN−1 κ(II)Ψ(II-I;M̃ℓ;σN−1;m;ρ)
Nr

− iK (II→I) Ψ(I;M̃ℓ;σN−1;m;ρ)
Nr

− iK (II→III) Ψ(III-I;M̃ℓ;σN−1;m;ρ)
Nr

(4.182)

(r = 1, 2,) and

LXΨ(III-I;M̃ℓ;σN−1;m;ρ)
µ1µ2

= − i c(ℓ)A
(III) Ψ(III-I;M̃ (ℓ+1);σN−1;m;ρ)

µ1µ2 − i

c(ℓ−1)
B(III) Ψ(III-I;M̃ (ℓ−1);σN−1;m;ρ)

µ1µ2

− σN−1 κ(III)Ψ(III-I;M̃ℓ;σN−1;m;ρ)
µ1µ2 − iK (III→II) Ψ(II-I;M̃ℓ;σN−1;m;ρ)

µ1µ2 , (4.183)
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respectively, where all the coefficients on the right-hand sides of eqs. (4.181)-(4.183) are
the same as the coefficients used in the case with N even [see eqs. (4.156)-(4.158)].

Non-existence of positive-definite, dS invariant scalar products.

Now, we will show that the representations of spin(N, 1) (N odd) formed by the spin-
3/2 and spin-5/2 TT mode solutions of eq. (4.1) are non-unitary for all values of the
imaginary mass parameter M = iM̃ (M̃ ̸= 0). Let

〈
Ψ(1)|Ψ(2)

〉
be a dS invariant

scalar product for any two analytically continued STSSH’s Ψ(1),Ψ(2) [satisfying eqs. (4.1)
and (4.2)] with M = iM̃ and M̃ ̸= 0. We will show that this scalar product must
vanish for all eigenmodes. First, let us make the following observation. The infinitesimal
transformations LXΨ(B;M̃ℓ;σN−1;m;ρ)

Nr
given by eqs. (4.181)-(4.183), always give rise to

a term of the form κ(B) Ψ(B;M̃ℓ;σN−1;m;ρ)
Nr

in the linear combination on the right-hand
sides of each of eqs. (4.181)-(4.183). The coefficients κ(I),κ(II) and κ(III) are given
by eqs. (4.164), (4.165) and (4.166), respectively, and they are all non-zero for N odd.
Thus, by combining the dS invariance of the scalar product:〈

LXΨ(B;M̃ℓ;σN−1;m;ρ)|Ψ(B;M̃ℓ;σN−1;m;ρ)
〉

+
〈

Ψ(B;M̃ℓ;σN−1;m;ρ)|LXΨ(B;M̃ℓ;σN−1;m;ρ)
〉

= 0 (4.184)

with the transformation formulae (4.181)-(4.183), we find〈
Ψ(B;M̃ℓ;σN−1;m;ρ)|Ψ(B;M̃ℓ;σN−1;m;ρ)

〉
= 0 (4.185)

for B = I, II-I, III-I and for all M̃ ≠ 0. Then, since the eigenmodes with different
labels are orthogonal, we conclude that there is no dS invariant scalar product (which is
not identically zero).

4.9 SUMMARY AND DISCUSSIONS

Summary. In this paper, we provided a technical explanation of the results of our
previous article [25]. In particular, we showed that the strictly massless spin-3/2 field
(i.e. gravitino field) theory, as well as the strictly and partially massless spin-5/2 field
theories on dSN (N ≥ 3) are unitary only in N = 4 dimensions. In order to arrive at
this result, we studied the group-theoretic properties of the eigenmodes for the following
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field theories with imaginary mass parameter on dSN (N ≥ 3): the vector-spinor field
and the symmetric rank-2 tensor-spinor field. The corresponding eigenmodes satisfy
eq. (4.1) with M = iM̃ (M̃ ≠ 0) and the TT conditions (4.2). These eigenmodes were
obtained by analytically continuing STSSH’s on SN . The transformation properties of
these eigenmodes under a spin(N, 1) boost were studied. By using these transformation
properties, we showed that all dS invariant scalar products for even N > 4 are indefinite.
We also showed that all dS invariant scalar products must vanish identically for odd N .
It was found that dS invariant scalar products that are positive-definite are allowed only
for strictly and partially massless theories in N = 4 dimensions (and, thus, these theories
are unitary). Also, for these unitary spin-s (s ∈ {3/2, 5/2}) theories in dS4, we showed
that eigenmodes with positive helicity and the ones with negative helicity separately
form UIR’s of spin(4, 1). All the results mentioned in this paragraph are summarised as
statements 1, 2 and 3 in the Introduction.

Towards future work. It would also be interesting to investigate whether our result
about the non-unitarity of the gauge-invariant spin-3/2 and spin-5/2 theories on dSN
for N ≠ 4 could be extended to other N -dimensional vacuum spacetimes with positive
cosmological constant. As an argument pointing towards the possible generalisation of
our result, we would like to mention the forbidden mass range for the symmetric spin-2
field on dSN [22, 18]. The forbidden mass range for the symmetric spin-2 field on dSN
was explained group-theoretically in Ref. [22] and it was first observed for dS4 in Ref. [18].
However, it was later shown that the forbidden mass range exists in all 4-dimensional
vacuum spacetimes with positive cosmological constant [20].
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majority of the material presented in this paper and helpful comments on earlier versions
of this paper. Also, it is a pleasure to thank Stanley Deser for communications and
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work was supported by a studentship from the Department of Mathematics, University
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4.10 APPENDIX A - RAISING AND LOWERING OPERATORS FOR
THE GAUSS HYPERGEOMETRIC FUNCTION AND OTHER USE-
FUL FORMULAE

The Gauss hypergeometric function F (a, b; c; z) satisfies [14]

d

dz
F (a, b; c; z) = ab

c
F (a+ 1, b+ 1; c+ 1; z), (4.186)(

z
d

dz
+ c− 1

)
F (a, b; c; z) = (c− 1)F (a, b; c− 1; z), (4.187)(

z
d

dz
+ a

)
F (a, b; c; z) = aF (a+ 1, b; c; z). (4.188)

By combining eq. (4.188) with the following relation [29]:

(c− b)F (a+ 1, b− 1; c; z) + (b− a− 1)(1 − z)F (a+ 1, b; c; z) = (c− a− 1)F (a, b; c; z),
(4.189)

we find (
a(b− c) + a(−b+ a+ 1)z − (−b+ a+ 1)z(1 − z) d

dz

)
F (a, b; c; z)

= a(b− c)F (a+ 1, b− 1; c; z). (4.190)

Using eqs. (4.186) and (4.187) we can show the ladder relations (4.286) and (4.287),
while using eq. (4.190) we can show the ladder relations (4.288) and (4.289).
The behaviour of the functions (4.31) and (4.32) in the limit θN → π is studied by using
the transformation formula [17]

F (α, β; γ; z) = Γ(γ)Γ(γ − α− β)
Γ(γ − α)Γ(γ − β) F (α, β;α + β − γ + 1; 1 − z)

+ (1 − z)γ−α−βΓ(γ)Γ(−γ + α + β)
Γ(α)Γ(β) F (γ − α, γ − β; γ − α− β + 1; 1 − z).

(4.191)

Equation (4.180) is proved using [1]

F

(
a, b,

a+ b

2 ; 1
2

)
=

√
π Γ

(
a+ b

2

)[
1

Γ((a+ 1)/2)Γ(b/2) + 1
Γ((b+ 1)/2)Γ(a/2)

]
(4.192)
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and [2]

F

(
a, b,

a+ b

2 + 1; 1
2

)
= 2

√
π

a− b
Γ
(
a+ b

2 + 1
)

×
[

1
Γ((b+ 1)/2)

1
Γ(a/2) − 1

Γ((a+ 1)/2)Γ(b/2)

]
. (4.193)

4.11 APPENDIX B - SPINOR EIGENMODES OF THE DIRAC OPERA-
TOR ON SN−1

The spinor eigenmodes of the Dirac operator (i.e. the STSSH’s of rank 0) on spheres of
arbitrary dimension have been computed in Ref. [5]. Here we write down explicitly the
eigenspinors on SN−1 that satisfy eq. (4.27). These eigenspinors play an important role
in the derivation of the formulae for the spin(N + 1) transformation of the STSSH’s in
Appendix 4.14.
Case 1: N − 1 odd. We denote the eigenspinors on SN−1 as χ±ℓmρ(θN−1,θN−2),
where ρ stands for labels other than ℓ and m. These eigenspinors are given by

χ±ℓmρ(θN−1,θN−2) = c̃N−1(ℓ,m)√
2

{
ϕ̃

(0)
ℓm(θN−1) ˆ̃χ−mρ(θN−2) ± iψ̃

(0)
ℓm(θN−1) ˆ̃χ+mρ(θN−2)

}
,

(4.194)

where ϕ̃(0)
ℓm(θN−1) and ψ̃(0)

ℓm(θN−1) are given by eqs. (4.273) and (4.274), respectively, and

ˆ̃χ±mρ(θN−2) = 1√
2

(1 + iγ̃N−1)χ̃±mρ(θN−2), (4.195)

ˆ̃χ+mρ(θN−2) =γ̃N−1χ̃−mρ(θN−2), (4.196)

where the spinors χ̃±mρ(θN−2) are the eigenspinors of the Dirac operator on SN−2.
[The gamma matrices on SN−1 are denoted as γ̃a - see eq. (4.16).] In order for the
eigenspinors (4.194) to be non-singular we require ℓ ≥ m and ℓ = 0, 1, ... [5]. The
eigenspinors (4.194) satisfy the normalisation condition (4.28), while the normalisation
factor is given by [5]∣∣∣∣∣ c̃N−1(ℓ,m)√

2

∣∣∣∣∣
2

= Γ(ℓ−m+ 1)Γ(ℓ+N − 1 +m)
2N−2|Γ(N−1

2 + ℓ)|2
. (4.197)

Case 2: N − 1 even. We denote the eigenspinors on SN−1 as χ(σN−1)
±ℓmρ (θN−1,θN−2),

where σN−1 = ± is the spin projection index on SN−1 and ρ stands for labels other than
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σN−1, ℓ and m. The eigenspinors with negative spin projection are given by

χ
(−)
±ℓmρ(θN−1,θN−2) = c̃N−1(ℓ,m)√

2

 ϕ̃
(0)
ℓm(θN−1) χ̃−mρ(θN−2)

±iψ̃(0)
ℓm(θN−1) χ̃−mρ(θN−2)

 (4.198)

and those with positive spin projection are given by

χ
(+)
±ℓmρ(θN−1,θN−2) = c̃N−1(ℓ,m)√

2

 iψ̃(0)
ℓm(θN−1) χ̃+mρ(θN−2)

±ϕ̃(0)
ℓm(θN−1) χ̃+mρ(θN−2)

 (4.199)

and they both satisfy eq. (4.27). The normalisation factors c̃N−1(ℓ,m), as well as the
functions ϕ̃(0)

ℓm(θN−1) and ψ̃
(0)
ℓm(θN−1), have the same expressions as in the case with

N − 1 odd.

4.12 APPENDIX C - SOME USEFUL FORMULAE ON SN−1

Let g̃µν be the metric tensor on SN−1. The Riemann tensor on SN−1 is

R̃µνκλ = g̃µκg̃νλ − g̃νκg̃µλ. (4.200)

Let ψ̃, ψ̃µ and ψ̃µν be any spinor, vector-spinor and rank-2 tensor-spinor field, respectively,
on SN−1. The commutator of covariant derivatives acting on these fields is given by

[∇̃µ, ∇̃ν ]ψ̃ = 1
4R̃µνκλγ̃

κγ̃λψ̃ (4.201)

= 1
2(γ̃µγ̃ν − g̃µν)ψ̃, (4.202)

[∇̃µ, ∇̃ν ]ψ̃α = 1
4R̃µνκλγ̃

κγ̃λψ̃α + R̃λ
ανµψ̃λ (4.203)

= 1
2(γ̃µγ̃ν − g̃µν)ψ̃α + 2g̃α[µψ̃ν], (4.204)

[∇̃µ, ∇̃ν ]ψ̃αβ = 1
2(γ̃µγ̃ν − g̃µν)ψ̃αβ + 2g̃α[µψ̃ν]β + 2ψ̃α[ν g̃µ]β. (4.205)

The Laplace-Beltrami operator on SN−1 is defined as □̃ ≡ g̃κλ∇̃κ∇̃λ. The eigenspinors
on SN−1 [see eq. (4.27)] satisfy [5]

□̃χ±ℓρ̃ =
[
/̃∇

2
+ (N − 1)(N − 2)

4

]
χ±ℓρ̃

=
[
−
(
ℓ+ N − 1

2

)2
+ (N − 1)(N − 2)

4

]
χ±ℓρ̃. (4.206)
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Note also the following relations:

γ̃θi∇̃(θi
∇̃θj)χ±ℓρ̃ = ±i

(
ℓ+ N − 1

2

)
∇̃θj

χ±ℓρ + N − 2
4 γ̃θj

χ±ℓρ̃, (4.207)

γ̃θi γ̃(θi
∇̃θj)χ±ℓρ̃ = N + 1

2 ∇̃θj
χ±ℓρ ∓ i

ℓ+ N−1
2

2 γ̃θj
χ±ℓρ̃, (4.208)

∇̃θi∇̃(θi
∇̃θj)χ±ℓρ̃ = ∇̃θj

(
□̃ +N − 5

4

)
χ±ℓρ̃ ∓ 3

4i
(
ℓ+ N − 1

2

)
γ̃θj
χ±ℓρ̃, (4.209)

∇̃θi γ̃(θi
∇̃θj)χ±ℓρ̃ = ±i

ℓ+ N−1
2

2 ∇̃θj
χ±ℓρ̃ + 1

2 γ̃θj

(
□̃ + N − 2

2

)
χ±ℓρ̃, (4.210)

where in order to prove eqs. (4.207) and (4.210) we have to use eq. (4.202), while in
order to prove eq. (4.209) we have to use eqs. (4.202) and (4.204).
The TT vector-spinor eigenmodes [see eqs. (4.52)-(4.53)] satisfy

□̃ψ̃(Ã;ℓρ̃)
±θj

=
[
−
(
ℓ+ N − 1

2

)2
+ (N − 1)(N − 2)

4 + 1
]
ψ̃

(Ã;ℓρ̃)
±θj

(4.211)

(j = 1, ..., N − 1). By combining this equation with eq. (4.204) we can prove the
following relation:

∇̃θi∇̃(θi
ψ̃

(Ã;ℓρ̃)
±θk) = 1

2

(
□̃ +N − 3

2

)
ψ̃

(Ã;ℓρ̃)
±θk

= 1
2

(
/̃∇

2
+ N(N + 1)

4

)
ψ̃

(Ã;ℓρ̃)
±θk

. (4.212)

The rank-2 STSSH’s on SN−1 [see eqs. (4.67)- (4.69)] satisfy

□̃ψ̃(B̃;ℓρ̃)
±θjθk

=
[
−
(
ℓ+ N − 1

2

)2
+ (N − 1)(N − 2)

4 + 2
]
ψ̃

(B̃;ℓρ̃)
±θjθk

(4.213)

(j, k = 1, ..., N − 1).

4.13 APPENDIX D - CONSTRUCTING STSSH’S OF RANK 2 ON THE
N -SPHERE

In this Appendix, we construct the STSSH’s of rank 2 on SN . These STSSH’s satisfy
eqs. (4.62)-(4.64) and we construct them explicitly by using the method of separation
of variables in geodesic polar coordinates (4.7), as in Refs. [5, 6]. In the method of
separation of variables, the STSSH’s of rank 2 on SN are expressed in terms of STSSH’s
of rank r̃ (with r̃ = 0, 1, 2) on SN−1.
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For later convenience, note that the functions ϕ(a)
nℓ (θN) [eq. (4.31)] satisfy the following

differential equation:

D(a)ϕ
(a)
nℓ (θN) = −ζ2

n,Nϕ
(a)
nℓ (θN), (4.214)

where ζ2
n,N ≡ ζ2 = (n + N

2 )2 is the eigenvalue of the STSSH in eq. (4.4), while the
differential operator is given by

D(a) = ∂2

∂θ2
N

+ (N + 2a− 1) cot θN
∂

∂θN
+
(
ℓ+ N − 1

2

) cos θN
sin2 θN

−
(ℓ+ N−1

2 )2 − 1
4(N + 2a− 1)(N + 2a− 3)

sin2 θN
− (N + 2a− 1)2

4 . (4.215)

One can readily verify that the functions ϕ(a)
nℓ (θN) [eq. (4.31)] are the unique regular

solutions (up to a normalisation constant) of the differential equation (4.214) by using
the results of Ref. [5], as follows. By expressing ϕ(a)

nℓ as

ϕ
(a)
nℓ (θN) =

(
sin θN2 cos θN2

)−a

ϕ
(0)
nℓ (θN) (4.216)

[see eq. (4.31)] we rewrite eq. (4.214) as D(0)ϕ
(0)
nℓ = −ζ2

n,Nϕ
(0)
nℓ . The latter has been

solved in Ref. [5] and it was found that the unique regular solutions ϕ(0)
nℓ are the ones

given by eq. (4.31) (with a = 0). For the rank-1 STSSH’s on SN the integer a takes
the values a = −1, 1 (see Section 4.4), while for rank-2 STSSH’s a takes the values
a = −2, 0, 2 (see Section 4.5). The functions ϕ(a)

nℓ (θN) are regular for a = 1 and a = 2
despite the factor

(
sin θN

2 cos θN

2

)−a
in eq. (4.216) because of the restriction ℓ ≥ r (this

restriction on ℓ is proved in Section 4.4 for r = 1 and in Section 4.5 for r = 2).
The differential equation satisfied by the functions ψ(a)

nℓ (θN ) [eq. (4.32)] is obtained from
eq. (4.214) by making the replacement θN → π − θN in the expression (4.215) for the
differential operator D(a).
Let us also briefly explain how to obtain the condition n ≥ ℓ [eq. (4.34)]. By taking the
limit θN → π for ϕ(a)

nℓ (θN) and using the transformation formula (4.191) for the Gauss
hypergeometric function, we readily find that the requirement for absence of singularity
in ϕ(a)

nℓ (θN) gives rise to the condition n ≥ ℓ, as well as to the quantisation condition

|ζn,N | = n+ N

2 , n ∈ N0. (4.217)
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4.13.1 Constructing the STSSH’s of rank 2 for N even

Our aim is to obtain the STSSH’s ψ(B;σ;nℓ;ρ̃)
µν that satisfy eqs. (4.62)-(4.64), where the

gamma matrices for N even are given by eq. (4.16). As in Ref. [5], we write ψ(B;σ;nℓ;ρ̃)
µν

in terms of upper and lower 2N/2−1-dimensional spinor components

ψ
(B;σ;nℓ;ρ̃)
±µν (θN ,θN−1) =


(↑)ψ

(B;σ;nℓ;ρ̃)
±µν (θN ,θN−1)

(↓)ψ
(B;σ;nℓ;ρ̃)
±µν (θN ,θN−1)

 . (4.218)

It is clear that eqs. (4.62)-(4.64) - which determine the form of our STSSH’s - reduce
to a system of equations for the upper and lower components. We will now obtain
the system of equations for the upper and lower components. By using eqs. (4.9),
(4.14), (4.16), (4.23), (4.24), (4.62) and (4.63) and by expressing ψ(B;σ;nℓ;ρ̃)

±µν in terms
of the upper and lower components as in (4.218), we find that the eigenvalue equation
/∇ψ(B;σ;nℓ;ρ̃)

±θNθN
= ±i|ζn,N |ψ(B;σ;nℓ;ρ̃)

±θNθN
is written as(

∂

∂θN
+ N + 3

2 cot θN + i

sin θN
/̃∇
)

(↓)ψ
(B;σ;nℓ;ρ̃)
±θNθN

= ±i|ζn,N | (↑)ψ
(B;σ;nℓ;ρ̃)
±θNθN

, (4.219a)(
∂

∂θN
+ N + 3

2 cot θN − i

sin θN
/̃∇
)

(↑)ψ
(B;σ;nℓ;ρ̃)
±θNθN

= ±i|ζn,N | (↓)ψ
(B;σ;nℓ;ρ̃)
±θNθN

. (4.219b)

Similarly, we find that the eigenvalue equation /∇ψ(B;σ;nℓ;ρ̃)
±θNθj

= ±i|ζn,N |ψ(B;σ;nℓ;ρ̃)
±θNθj

(j =
1, ..., N − 1) is written as(

∂

∂θN
+ N − 1

2 cot θN + i

sin θN
/̃∇
)

(↓)ψ
(B;σ;nℓ;ρ̃)
±θNθj

+ i cos θN γ̃θj

(↓)ψ
(B;σ;nℓ;ρ̃)
±θNθN

= ±i|ζn,N | (↑)ψ
(B;σ;nℓ;ρ̃)
±θNθj

, (4.220a)(
∂

∂θN
+ N − 1

2 cot θN − i

sin θN
/̃∇
)

(↑)ψ
(B;σ;nℓ;ρ̃)
±θNθj

− i cos θN γ̃θj

(↑)ψ
(B;σ;nℓ;ρ̃)
±θNθN

= ±i|ζn,N | (↓)ψ
(B;σ;nℓ;ρ̃)
±θNθj

, (4.220b)

while /∇ψ(B;σ;nℓ;ρ̃)
±θjθk

= ±i|ζn,N |ψ(B;σ;nℓ;ρ̃)
±θjθk

(j, k = 1, ..., N − 1) is written as(
∂

∂θN
+ N − 5

2 cot θN + i

sin θN
/̃∇
)

(↓)ψ
(B;σ;nℓ;ρ̃)
±θjθk

+ 2i cos θN γ̃(θj

(↓)ψ
(B;σ;nℓ;ρ̃)
±θk)θN

= ±i|ζn,N | (↑)ψ
(B;σ;nℓ;ρ̃)
±θjθk

, (4.221a)(
∂

∂θN
+ N − 5

2 cot θN − i

sin θN
/̃∇
)

(↑)ψ
(B;σ;nℓ;ρ̃)
±θjθk

− 2i cos θN γ̃(θj

(↑)ψ
(B;σ;nℓ;ρ̃)
±θk)θN

= ±i|ζn,N | (↓)ψ
(B;σ;nℓ;ρ̃)
±θjθk

. (4.221b)
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By making use of eq. (4.218), we express the gamma-tracelessness condition (4.63) as

(↓)ψ
(B;σ;nℓ;ρ̃)
±θNµ

+ i

sin θN
γ̃θi (↓)ψ

(B;σ;nℓ;ρ̃)
±θiµ

= 0,

(↑)ψ
(B;σ;nℓ;ρ̃)
±θNµ

− i

sin θN
γ̃θi (↑)ψ

(B;σ;nℓ;ρ̃)
±θiµ

= 0, (µ = θ1, ..., θN and θi = θ1, ..., θN−1)

(4.222)

and the tracelessness condition (4.64) as

(↓)ψ
(B;σ;nℓ;ρ̃)
±θNθN

+ 1
sin2 θN

g̃θiθj (↓)ψ
(B;σ;nℓ;ρ̃)
±θiθj

= 0,

(↑)ψ
(B;σ;nℓ;ρ̃)
±θNθN

+ 1
sin2 θN

g̃θiθj (↑)ψ
(B;σ;nℓ;ρ̃)
±θiθj

= 0.

(4.223)

Similarly, by substituting eq. (4.218) into the divergence-free condition (4.63), we may
express the condition ∇αψ

(B;σ;nℓ;ρ̃)
±αθN

= 0 as

[
∂
∂θN

+ (N + 1
2) cot θN

]
(↑)ψ

(B;σ;nℓ;ρ̃)
±θNθN

+ 1
sin2 θN

∇̃θi (↑)ψ
(B;σ;nℓ;ρ̃)
±θiθN

= 0,

[
∂
∂θN

+ (N + 1
2) cot θN

]
(↓)ψ

(B;σ;nℓ;ρ̃)
±θNθN

+ 1
sin2 θN

∇̃θi (↓)ψ
(B;σ;nℓ;ρ̃)
±θiθN

= 0,

(4.224)

while the condition ∇αψ
(B;σ;nℓ;ρ̃)
±αθj

= 0 (j = 1, ..., N − 1) is expressed as

[
∂
∂θN

+ (N − 1
2) cot θN

]
(↑)ψ

(B;σ;nℓ;ρ̃)
±θNθj

+ 1
sin2 θN

∇̃θi (↑)ψ
(B;σ;nℓ;ρ̃)
±θiθj

= 0,

[
∂
∂θN

+ (N − 1
2) cot θN

]
(↓)ψ

(B;σ;nℓ;ρ̃)
±θNθj

+ 1
sin2 θN

∇̃θi (↓)ψ
(B;σ;nℓ;ρ̃)
±θiθj

= 0.

(4.225)

Type-I STSSH’s of rank 2 for N even. Let us start by describing how to obtain
the type-I modes, given by eqs. (4.71)-(4.73). The component ψ(I;σ;nℓ;ρ̃)

±θNθN
is a spinor on

SN−1. Thus, in order to solve the system of equations (4.219) we separate variables as
in the case of spinor eigenmodes in Ref. [5], i.e.

(↑)ψ
(I;−;nℓ;ρ̃)
±θNθN

(θN ,θN−1) = ϕ
(2)
nℓ (θN)χ−ℓρ̃(θN−1),

(↓)ψ
(I;−;nℓ;ρ̃)
±θNθN

(θN ,θN−1) = ±iψ(2)
nℓ (θN)χ−ℓρ̃(θN−1) (4.226)

(↑)ψ
(I;+;nℓ;ρ̃)
±θNθN

(θN ,θN−1) = iψ
(2)
nℓ (θN)χ+ℓρ̃(θN−1),

(↓)ψ
(I;+;nℓ;ρ̃)
±θNθN

(θN ,θN−1) = ±ϕ(2)
nℓ (θN)χ+ℓρ̃(θN−1), (4.227)
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where χ±ℓρ̃ are the eigenspinors on SN−1 (see eq. (4.27)). By substituting eq. (4.226)
[or eq. (4.227)] into the system of equations (4.219) and eliminating (↓)ψ

(I;−;nℓ;ρ̃)
±θNθN

(or
(↓)ψ

(I;+;nℓ;ρ̃)
±θNθN

) we find that ϕ(2)
nℓ has to satisfy the differential equation (4.214) (with a = 2),

while ψ(2)
nℓ has to satisfy the differential equation (4.214) (a = 2) with θN replaced by

π − θN in the differential operator D(2) [eq. (4.215)]. Thus, we find that ϕ(2)
nℓ and ψ(2)

nℓ

are given by eqs. (4.31) and (4.32), respectively. As a check, one readily finds that the
components defined by eqs. (4.226) and (4.227) satisfy the system of equations (4.219)
by making use of the formulae (4.35) and (4.36).
The components ψ(I;σ;nℓ;ρ̃)

±θNθj
(j = 1, ..., N − 1) are vector-spinors on SN−1 and thus we

may separate variables analogously to eqs. (4.44) and (4.46). Thus, for STSSH’s with
negative spin projection (σ = −) we separate variables as
(↑)ψ

(I;−;nℓ;ρ̃)
±θNθj

(θN ,θN−1) =C
(↑)(2)
nℓ (θN) ∇̃θj

χ−ℓρ̃(θN−1) +D
(↑)(2)
nℓ (θN) γ̃θj

χ−ℓρ̃(θN−1),
(↓)ψ

(I;−;nℓ;ρ̃)
±θNθj

(θN ,θN−1) = ± iC
(↓)(2)
nℓ (θN) ∇̃θj

χ−ℓρ̃(θN−1) ± iD
(↓)(2)
nℓ (θN) γ̃θj

χ−ℓρ̃(θN−1),
(4.228)

while for STSSH’s with positive spin projection (σ = +) we separate variables as
(↑)ψ

(I;+;nℓ;ρ̃)
±θNθj

(θN ,θN−1) = iC
(↓)(2)
nℓ (θN) ∇̃θj

χ+ℓρ̃(θN−1) − iD
(↓)(2)
nℓ (θN) γ̃θj

χ+ℓρ̃(θN−1),
(↓)ψ

(I;+;nℓ;ρ̃)
±θNθj

(θN ,θN−1) = ± C
(↑)(2)
nℓ (θN) ∇̃θj

χ+ℓρ̃(θN−1) ∓D
(↑)(2)
nℓ (θN) γ̃θj

χ+ℓρ̃(θN−1).
(4.229)

By using the gamma-tracelessness condition (4.222) we readily find that the functions
D

(b)(2)
nℓ and C(b)(2)

nℓ (b =↑, ↓) are related to each other by eqs. (4.49) and (4.50). Then,
using the divergence-free condition (4.224), we find that C(↑)(2)

nℓ is given by eq. (4.47) and
C

(↓)(2)
nℓ is given by eq. (4.48), where we also have used eqs. (4.35), (4.36) and eq. (4.206).

One can straightforwardly verify that the components defined by eqs. (4.228) and (4.229)
are solutions of the system of equations (4.220), where the calculations are significantly
simplified by using the following formulae: ∂

∂θN
+ N − 1

2 cot θN −
ℓ+ N−1

2
sin θN

C(↑)(2)
nℓ (θN) − 2i

sin θN
D

(↑)(2)
nℓ (θN)

= −
(
n+ N

2

)
C

(↓)(2)
nℓ (θN), (4.230) ∂

∂θN
+ N − 1

2 cot θN +
ℓ+ N−1

2
sin θN

C(↓)(2)
nℓ (θN) + 2i

sin θN
D

(↓)(2)
nℓ (θN)

=
(
n+ N

2

)
C

(↑)(2)
nℓ (θN), (4.231)
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which can be proved by using the formulae (4.35) and (4.36).
The components ψ(I;σ;nℓ;ρ̃)

±θjθk
(j, k = 1, ..., N − 1) are rank-2 symmetric tensor-spinors on

SN−1. Let us first discuss the case with negative spin projection (σ = −). We choose to
separate variables for ψ(I;−;nℓ;ρ̃)

±θjθk
as follows:

(↑)ψ
(I;−;nℓ;ρ̃)
±θjθk

(θN ,θN−1) =K(↑)
nℓ (θN) g̃θjθk

χ−ℓρ̃(θN−1)

+W
(↑)
nℓ (θN)

(
∇̃(θj

∇̃θk) − g̃θjθk

□̃
N − 1

)
χ−ℓρ̃(θN−1)

+ T
(↑)
nℓ (θN)

γ̃(θj
∇̃θk) − g̃θjθk

/̃∇
N − 1

χ−ℓρ̃(θN−1),

(↓)ψ
(I;−;nℓ;ρ̃)
±θjθk

(θN ,θN−1) = ± iK
(↓)
nℓ (θN) g̃θjθk

χ−ℓρ̃(θN−1)

± iW
(↓)
nℓ (θN)

(
∇̃(θj

∇̃θk) − g̃θjθk

□̃
N − 1

)
χ−ℓρ̃(θN−1)

± iT
(↓)
nℓ (θN)

γ̃(θj
∇̃θk) − g̃θjθk

/̃∇
N − 1

χ−ℓρ̃(θN−1), (4.232)

where /̃∇χ−ℓρ̃ = −i
(
ℓ+ N−1

2

)
χ−ℓρ̃ (see eq. (4.27)) and □̃χ−ℓρ̃ ≡ ∇θk∇θk

χ−ℓρ̃ is given
by eq. (4.206). By using the tracelessness condition (4.223), we find that K(↑)

nℓ and K(↓)
nℓ

are given by eqs. (4.76) and (4.77), respectively. Then, by using the gamma-tracelessness
condition (4.222) (and by making use of eqs. (4.207) and (4.208)) we find that the
function T (↑)

nℓ (T (↓)
nℓ ) is expressed in terms of W (↑)

nℓ (W (↓)
nℓ ) as in eq. (4.78) (eq. (4.79)).

Then, by making use of the divergence-free condition (4.225) (and using eqs. (4.209)
and (4.210)) we find ∂

∂θN
+ (N − 1

2) cot θN

C(b)(2)
nℓ (θN) + 1

sin2 θN
K

(b)
nℓ (θN)

+ 1
sin2 θN

W
(b)
nℓ (θN)

−

(
ℓ+ N−1

2

)2
(N − 2)

N − 1 + N2 − 1
4


− i

1
2 sin2 θN

(
ℓ+ N−1

2

)
(N − 3)

N − 1 T
(b)
nℓ (θN) = 0, b =↑, ↓ . (4.233)

Finally, by solving the system of equations consisting of eqs. (4.78), (4.79) and (4.233)
(and using eqs. (4.230) and (4.231)) we find that W (↑)

nℓ is given by eq. (4.80), while W (↓)
nℓ

is given by eq. (4.81).
By working as in the case with negative spin projection, we find that the components
ψ

(I;+;nℓ;ρ̃)
±θjθk

with positive spin projection are expressed in terms of upper and lower spinorial

182



4.13. Appendix D - Constructing STSSH’s of rank 2 on the N-sphere

components as follows:

(↑)ψ
(I;+;nℓ;ρ̃)
±θjθk

(θN ,θN−1) =iK(↓)
nℓ (θN) g̃θjθk

χ+ℓρ̃(θN−1)

+ iW
(↓)
nℓ (θN)

(
∇̃(θj

∇̃θk) − g̃θjθk

□̃
N − 1

)
χ+ℓρ̃(θN−1)

− iT
(↓)
nℓ (θN)

γ̃(θj
∇̃θk) − g̃θjθk

/̃∇
N − 1

χ+ℓρ̃(θN−1),

(↓)ψ
(I;+;nℓ;ρ̃)
±θjθk

(θN ,θN−1) = ±K
(↑)
nℓ (θN) g̃θjθk

χ+ℓρ̃(θN−1)

±W
(↑)
nℓ (θN)

(
∇̃(θj

∇̃θk) − g̃θjθk

□̃
N − 1

)
χ+ℓρ̃(θN−1)

∓ T
(↑)
nℓ (θN)

γ̃(θj
∇̃θk) − g̃θjθk

/̃∇
N − 1

χ+ℓρ̃(θN−1). (4.234)

We have verified using Mathematica 11.2 that the components defined by eqs. (4.232)
and (4.234) satisfy the system of equations (4.221).
Type-II STSSH’s of rank 2 for N even. Now let us describe how to obtain the type-
II modes given by eqs. (4.83) and (4.84). The type-II modes satisfy ψ(II-Ã;σ;nℓ;ρ̃)

±θNθN
= 0

by definition. The components ψ(II-Ã;σ;nℓ;ρ̃)
±θNθj

(j = 1, ..., N − 1) may be expressed as

(↑)ψ
(II-Ã;−;nℓ;ρ̃)
±θNθj

(θN ,θN−1) = ϕ
(0)
nℓ (θN) ψ̃(Ã;ℓρ̃)

−θj
(θN−1),

(↓)ψ
(II-Ã;−;nℓ;ρ̃)
±θNθj

(θN ,θN−1) = ±iψ(0)
nℓ (θN) ψ̃(Ã;ℓρ̃)

−θj
(θN−1), (4.235)

(↑)ψ
(II-Ã;+;nℓ;ρ̃)
±θNθj

(θN ,θN−1) = iψ
(0)
nℓ (θN) ψ̃(Ã;ℓρ̃)

+θj
(θN−1)

(↓)ψ
(II-Ã;+;nℓ;ρ̃)
±θNθj

(θN ,θN−1) = ±ϕ(0)
nℓ (θN) ψ̃(Ã;ℓρ̃)

+θj
(θN−1). (4.236)

The TT eigenvector-spinors ψ̃(Ã;ℓρ̃)
±θj

(j = 1, ..., N − 1) on SN−1 satisfy eqs. (4.52) and
(4.53). By working as in the case of type-I modes presented above, we find that ϕ(0)

nℓ

has to satisfy the differential equation (4.214) with a = 0, while ψ(0)
nℓ has to satisfy

the differential equation (4.214) (a = 0) with θN replaced by π − θN in the differential
operator D(0) [eq. (4.215)]. Thus, we find that ϕ(0)

nℓ and ψ(0)
nℓ are given by eqs. (4.31)

and (4.32), respectively. By making use of the formulae (4.35) and (4.36), one can
readily verify that the components defined by eqs. (4.235) and (4.236) are solutions of
the system of equations (4.220).
The components ψ(II-Ã;σ;nℓ;ρ̃)

±θjθk
(j, k = 1, ..., N−1) are symmetric rank-2 tensor-spinors on

SN−1. Let us first discuss the case with negative spin projection (σ = −). We separate
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variables as

(↑)ψ
(II-Ã;−;nℓ;ρ̃)
±θjθk

(θN ,θN−1) = Γ(↑)
nℓ (θN) ∇̃(θj

ψ̃
(Ã;ℓρ̃)
−θk) (θN−1) + ∆(↑)

nℓ (θN) γ̃(θj
ψ̃

(Ã;ℓρ̃)
−θk) (θN−1),

(↓)ψ
(II-Ã;−;nℓ;ρ̃)
±θjθk

(θN ,θN−1) = ± iΓ(↓)
nℓ (θN) ∇̃(θj

ψ̃
(Ã;ℓρ̃)
−θk) (θN−1) ± i∆(↓)

nℓ (θN) γ̃(θj
ψ̃

(Ã;ℓρ̃)
−θk) (θN−1),

(4.237)

where we have to determine the functions Γ(b)
nℓ and ∆(b)

nℓ (with b =↑, ↓). By using the
TT conditions as in the case of type-I modes, we find that ∆(↑)

nℓ and ∆(↓)
nℓ are given by

eqs. (4.85) and (4.86), respectively, while Γ(↑)
nℓ and Γ(↓)

nℓ are given by eqs. (4.87) and
(4.88), respectively, where we also have used eqs. (4.35), (4.36) and (4.212). By using
the formulae (4.35) and (4.36), we can also prove the following formulae:

(
∂

∂θN
+ N − 5

2 cot θN −
ℓ+ N−1

2
sin θN

)
Γ(↑)
nℓ (θN) − 2i

sin θN
∆(↑)
nℓ (θN) = −(n+ N

2 )Γ(↓)
nℓ (θN),

(4.238)(
∂

∂θN
+ N − 5

2 cot θN +
ℓ+ N−1

2
sin θN

)
Γ(↓)
nℓ (θN) + 2i

sin θN
∆(↓)
nℓ (θN) = (n+ N

2 )Γ(↑)
nℓ (θN).

(4.239)

Similarly, we find that the upper and lower components of ψ(II-Ã;+;nℓ;ρ̃)
±θjθk

(j, k = 1, ..., N−1)
are given by

(↑)ψ
(II-Ã;+;nℓ;ρ̃)
±θjθk

(θN ,θN−1) = iΓ(↓)
nℓ (θN) ∇̃(θj

ψ̃
(Ã;ℓρ̃)
+θk) (θN−1) − i∆(↓)

nℓ (θN) γ̃(θj
ψ̃

(Ã;ℓρ̃)
+θk) (θN−1),

(↓)ψ
(II-Ã;+;nℓ;ρ̃)
±θjθk

(θN ,θN−1) = ± Γ(↑)
nℓ (θN) ∇̃(θj

ψ̃
(Ã;ℓρ̃)
+θk) (θN−1) ∓ ∆(↑)

nℓ (θN) γ̃(θj
ψ̃

(Ã;ℓρ̃)
+θk) (θN−1).

(4.240)

By making use of the formulae (4.238) and (4.239), as well as eq. (4.204), one can
readily verify that the system of equations (4.221) is satisfied by the type-II modes in
eqs. (4.237) and (4.240).
Type-III STSSH’s of rank 2 for N even. Finally, let us construct the type-III
modes, given by eqs. (4.91) and (4.94). The type-III modes satisfy ψ(III-B̃;σ;nℓ;ρ̃)

±θNθN
= 0

and ψ
(III-B̃;σ;nℓ;ρ̃)
±θNθi

= 0 (i = 1, ..., N − 1) by definition. The components ψ(III-Ã;σ;nℓ;ρ̃)
±θjθk

(j, k = 1, ..., N − 1) are rank-2 symmetric tensor-spinors on SN−1. Since type-III modes
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are divergence-free and gamma-traceless, we separate variables in the following way:
(↑)ψ

(III-B̃;−;nℓ;ρ̃)
±θjθk

(θN ,θN−1) = ϕ
(−2)
nℓ (θN) ψ̃(B̃;ℓρ̃)

−θjθk
(θN−1),

(↓)ψ
(III-B̃;−;nℓ;ρ̃)
±θjθk

(θN ,θN−1) = ±iψ(−2)
nℓ (θN) ψ̃(B̃;ℓρ̃)

−θjθk
(θN−1), (4.241)

(↑)ψ
(III-B̃;+;nℓ;ρ̃)
±θjθk

(θN ,θN−1) = iψ
(−2)
nℓ (θN) ψ̃(B̃;ℓρ̃)

+θjθk
(θN−1),

(↓)ψ
(III-B̃;+;nℓ;ρ̃)
±θjθk

(θN ,θN−1) = ±ϕ(−2)
nℓ (θN) ψ̃(B̃;ℓρ̃)

+θjθk
(θN−1), (4.242)

where eq. (4.241) describes the type-III STSSH with negative spin projection, while
eq. (4.242) describes the type-III STSSH with positive spin projection. The functions
ϕ

(−2)
nℓ and ψ(−2)

nℓ are given by eqs. (4.31) and (4.32), respectively. It is straightforward to
verify that the type-III modes in eqs. (4.241) and (4.242) are solutions of the system of
equations (4.221) (with the use of eqs. (4.35) and (4.36)).

4.13.2 Constructing the STSSH’s of rank 2 for N odd

Now the gamma matrices are given by eq. (4.19). By combining eqs. (4.9), (4.14),
(4.19), (4.23) and eq. (4.24) we find

/∇ψ(B;nℓ;ρ̃)
±θNθN

=
( ∂

∂θN
+ N + 3

2 cot θN
)
γN + 1

sin θN
/̃∇

ψ(B;nℓ;ρ̃)
±θNθN

= ±i|ζn,N |ψ(B;nℓ;ρ̃)
±θNθN

,

(4.243)

where we have used the gamma-tracelessness condition

γNψ
(B;nℓ;ρ̃)
±θNθN

= −γθjψ
(B;nℓ;ρ̃)
±θjθN

(see eq. (4.63)). Similarly, we find

/∇ψ(B;nℓ;ρ̃)
±θNθj

=
( ∂

∂θN
+ N − 1

2 cot θN
)
γN + 1

sin θN
/̃∇

ψ(B;nℓ;ρ̃)
±θNθj

+ cot θNγθj
ψ

(B;nℓ;ρ̃)
±θNθN

(4.244)

= ±i|ζn,N |ψ(B;nℓ;ρ̃)
±θNθj

(j = 1, ..., N − 1) and

/∇ψ(B;nℓ;ρ̃)
±θjθk

=
( ∂

∂θN
+ N − 5

2 cot θN
)
γN + 1

sin θN
/̃∇

ψ(B;nℓ;ρ̃)
±θjθk

+ 2 cot θNγ(θj
ψ

(B;nℓ;ρ̃)
±θk)θN

(4.245)

= ±i|ζn,N |ψ(B;nℓ;ρ̃)
±θjθk
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(j, k = 1, ..., N − 1). Note that for N odd we have

γN /̃∇ + /̃∇γN = 0, (4.246)

since {γN , γ̃j} = 0 (j = 1, ..., N − 1) - see eq. (4.19). Now let us separate variables in
eqs. (4.243)-(4.245).
Type-I STSSH’s of rank 2 for N odd. As in Ref. [5], since N is odd we choose to
express the type-I modes in terms of the following spinors on SN−1:

χ̂−ℓρ̃(θN−1) ≡ 1√
2

(1 + iγN)χ−ℓρ̃(θN−1) (4.247)

χ̂+ℓρ̃(θN−1) ≡ γN χ̂−ℓρ̃(θN−1) = 1√
2

(1 + iγN)χ+ℓρ̃(θN−1), (4.248)

where χ±ℓρ̃ are the eigenspinors on SN−1 (satisfying eq. (4.27)). Since N is odd, χ+ℓρ̃

and χ−ℓρ̃ are related to each other as follows [5]:

χ+ℓρ̃(θN−1) = γNχ−ℓρ̃(θN−1). (4.249)

The spinors χ̂±ℓρ̃ are eigenfunctions of the operator γN /̃∇ (that commutes with /∇2) and
they satisfy [5]

γN /̃∇χ̂±ℓρ̃ = ±
(
ℓ+ N − 1

2

)
χ̂±ℓρ̃. (4.250)

In order to construct the rank-2 type-I modes on SN , we separate variables as follows:

ψ
(I;nℓ;ρ̃)
±θNθN

(θN ,θN−1) =ϕ(2)
nℓ (θN)χ̂−ℓρ̃(θN−1) ± iψ

(2)
nℓ (θN)χ̂+ℓρ̃(θN−1) (4.251)

ψ
(I;nℓ;ρ̃)
±θNθj

(θN ,θN−1) =C(↑)(2)
nℓ (θN)∇̃θj

χ̂−ℓρ̃(θN−1) ± iC
(↓)(2)
nℓ (θN)∇̃θj

χ̂+ℓρ̃(θN−1)

− iD
(↑)(2)
nℓ (θN)γ̃θj

χ̂+ℓρ̃(θN−1) ∓D
(↓)(2)
nℓ (θN)γ̃θj

χ̂−ℓρ̃(θN−1)
(4.252)

ψ
(I;nℓ;ρ̃)
±θjθk

(θN ,θN−1) =g̃θjθk

(
χ̂−ℓρ̃(θN−1)K(↑)

nℓ (θN) ± χ̂+ℓρ̃(θN−1) iK(↓)
nℓ (θN)

)
+
[
∇̃(θj

∇̃θk) −
g̃θjθk

N − 1□̃
]

×
(
χ̂−ℓρ̃(θN−1)W (↑)

nℓ (θN) ± χ̂+ℓρ̃(θN−1) iW (↓)
nℓ (θN)

)
+
[
γ̃(θj

∇̃θk) −
g̃θjθk

N − 1
/̃∇
]

×
(
−χ̂+ℓρ̃(θN−1) iT (↑)

nℓ (θN) ∓ χ̂−ℓρ̃(θN−1)T (↓)
nℓ (θN)

)
, (4.253)

(j, k = 1, ..., N − 1). By working as in the case with N even, we find that the functions
ϕ

(2)
nℓ , ψ

(2)
nℓ , C

(b)(2)
nℓ , D

(b)(2)
nℓ , K

(b)
nℓ ,W

(b)
nℓ and T (b)

nℓ (where b =↑, ↓), describing the dependence
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on θN , are the same functions as the ones used in the even-dimensional case (see
eqs. (4.71)-(4.73)). By expressing χ̂±ℓρ̃ in terms of χ±ℓρ̃ (by making use of eqs. (4.247)
and (4.248)), it is straightforward to show that eqs. (4.251), (4.252) and (4.253) are
equal to eqs. (4.96), (4.97) and (4.98), respectively, as presented in Subsection 4.5.2.
Type-II STSSH’s of rank 2 for N odd. In order to construct the type-II STSSH’s
of rank 2 on SN , we use the following vector-spinors on SN−1:

ˆ̃ψ(Ã;ℓρ̃)
−θj

(θN−1) ≡ 1√
2

(1 + iγN)ψ̃(Ã;ℓρ̃)
−θj

(θN−1) (4.254)

ˆ̃ψ(Ã;ℓρ̃)
+θj

(θN−1) ≡ γN ˆ̃ψ(Ã;ℓρ̃)
−θj

(θN−1), (4.255)

where ψ̃
(Ã;ℓρ̃)
±θj

(j = 1, ..., N − 1) are the TT eigevector-spinors on SN−1 (satisfying
eqs. (4.52) and (4.53)) and ψ̃(Ã;ℓρ̃)

+θj
= γN ψ̃

(Ã;ℓρ̃)
−θj

. The vector-spinors ˆ̃ψ(Ã;ℓρ̃)
±θj

satisfy

γN /̃∇ ˆ̃ψ(Ã;ℓρ̃)
±θj

= ±
(
ℓ+ N − 1

2

)
ˆ̃ψ(Ã;ℓρ̃)

±θj
(4.256)

γ̃θi ˆ̃ψ(Ã;ℓρ̃)
±θi

= ∇̃θi ˆ̃ψ(Ã;ℓρ̃)
±θi

= 0. (4.257)

By making use of the vector-spinors ˆ̃ψ(Ã;ℓρ̃)
±θj

, we separate variables for the type-II STSSH’s
ψ

(II-Ã;nℓ;ρ̃)
±µν on SN as follows:

ψ
(II-Ã;nℓ;ρ̃)
±θNθj

(θN ,θN−1) =ϕ(0)
nℓ (θN) ˆ̃ψ(Ã;ℓρ̃)

−θj
(θN−1) ± iψ

(0)
nℓ (θN) ˆ̃ψ(Ã;ℓρ̃)

+θj
(θN−1) (4.258)

ψ
(II-Ã;nℓ;ρ̃)
±θjθk

(θN ,θN−1) =Γ(↑)
nℓ (θN)∇̃(θj

ˆ̃ψ(Ã;ℓρ̃)
−θk) (θN−1) ± iΓ(↓)

nℓ (θN)∇̃(θj

ˆ̃ψ(Ã;ℓρ̃)
+θk) (θN−1)

− i∆(↑)
nℓ (θN)γ̃(θj

ˆ̃ψ(Ã;ℓρ̃)
+θk) (θN−1) ∓ ∆(↓)

nℓ (θN)γ̃(θj

ˆ̃ψ(Ã;ℓρ̃)
−θk) (θN−1)

(4.259)

(j, k = 1, ..., N − 1), while ψ(II-Ã;nℓ;ρ̃)
±θNθN

= 0 by definition. By working as in the case with
N even, we find that the functions ϕ(0)

nℓ , ψ
(0)
nℓ ,∆

(b)
nℓ and Γ(b)

nℓ (where b =↑, ↓) are given
by the same expressions as in the even-dimensional case (see eqs. (4.100) and (4.101)).
By expressing ˆ̃ψ(Ã;ℓρ̃)

±θj
in terms of ψ̃(Ã;ℓρ̃)

±θj
(with the use of eqs. (4.254) and (4.255)), we

straightforwardly find that eqs. (4.258) and (4.259) are equal to eqs. (4.100) and (4.101),
respectively.
Type-III STSSH’s of rank 2 for N odd. In order to construct the type-III STSSH’s
of rank 2 on SN , we use the following rank-2 symmetric tensor-spinors on SN−1:

ˆ̃ψ(B̃;ℓρ̃)
−θjθk

(θN−1) ≡ 1√
2

(1 + iγN)ψ̃(B̃;ℓρ̃)
−θjθk

(θN−1) (4.260)

ˆ̃ψ(B̃;ℓρ̃)
+θjθk

(θN−1) ≡ γN ˆ̃ψ(B̃;ℓρ̃)
−θjθk

(θN−1), (4.261)
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where ψ̃
(B̃;ℓρ̃)
±θjθK

(j, k = 1, ..., N − 1) are the STSSH’s of rank 2 on SN−1 (satisfying
eqs. (4.67)-(4.69)). Also, note that ψ̃(B̃;ℓρ̃)

+θjθk
= γN ψ̃

(B̃;ℓρ̃)
−θjθk

. The tensor-spinors ˆ̃ψ(B̃;ℓρ̃)
±θjθk

satisfy

γN /̃∇ ˆ̃ψ(B̃;ℓρ̃)
±θjθk

= ±
(
ℓ+ N − 1

2

)
ˆ̃ψ(B̃;ℓρ̃)

±θjθk
(4.262)

γ̃θi ˆ̃ψ(B̃;ℓρ̃)
±θiθk

= ∇̃θi ˆ̃ψ(B̃;ℓρ̃)
±θiθk

= 0 (4.263)

g̃θiθj ˆ̃ψ(B̃;ℓρ̃)
±θiθj

= 0 (4.264)

(i, j, k = 1, ..., N − 1).
By making use of the tensor-spinors ˆ̃ψ(B̃;ℓρ̃)

±θjθk
, we separate variables for the type-III

STSSH’s ψ(III-B̃;nℓ;ρ̃)
±µν on SN as follows:

ψ
(III-B̃;nℓ;ρ̃)
±θjθk

(θN ,θN−1) =ϕ(−2)
nℓ (θN) ˆ̃ψ(B̃;ℓρ̃)

−θjθk
(θN−1) ± iψ

(−2)
nℓ (θN) ˆ̃ψ(B̃;ℓρ̃)

+θjθk
(θN−1) (4.265)

(j, k = 1, ..., N − 1), while ψ(III-B̃;nℓ;ρ̃)
±θNθN

= 0 and ψ
(III-B̃;nℓ;ρ̃)
±θNθj

= 0 (by definition). By
working as in the case with N even, we find that the functions ϕ(−2)

nℓ and ψ(−2)
nℓ are given

by eqs. (4.31) and (4.32), respectively [and, thus, eq. (4.265) is equal to eq. (4.104)].

4.14 APPENDIX E - DERIVING THE SPIN(N + 1) TRANSFORMA-
TION FORMULAE OF STSSH’S AND DETERMINING THEIR
NORMALISATION FACTORS

In Subsections 4.14.1-4.14.3 of this Appendix we derive the transformation formu-
lae (4.114), (4.119), (4.133) and (4.134) for STSSH’s of rank 1 on SN and we calculate
the normalisation factors c(I;r=1)

N (n, ℓ) and c(II;r=1)
N (n, ℓ) [eq. (4.112)]. The derivation

of the transformation formulae and the calculation of the normalisation factors for the
STSSH’s of rank 2 have many similarities with the case of rank-1 STSSH’s and, thus,
we discuss them in less detail in Subsection 4.14.4.

4.14.1 Calculating c
(II;r=1)
N (n, ℓ) and making the first step towards

the calculation of c
(I;r=1)
N (n, ℓ)

Since it is a quite simple task, let us start by calculating directly the normalisation
factor for type-II STSSH’s of rank 1 for arbitrary N . For N even, we substitute the
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unnormalised type-II modes (4.55) (or (4.56)) into the inner product (4.111). Then, by
performing the integration over SN−1 using eq. (4.54), we find∣∣∣∣∣∣c

(II;r=1)
N (n, ℓ)√

2

∣∣∣∣∣∣
−2

=
∫ π

0
dθN sinN−3 θN

[(
ϕ

(−1)
nℓ (θN)

)2
+
(
ψ

(−1)
nℓ (θN)

)2
]

= 1
4

∫ π

0
dθN sinN−1 θN

[(
ϕ

(0)
nℓ (θN)

)2
+
(
ψ

(0)
nℓ (θN)

)2
]
, (4.266)

where the functions ϕ(0)
nℓ and ψ(0)

nℓ are given by eqs. (4.31) and (4.32), respectively. The
integral in the last line is the same integral that appears in the normalisation of spinor
eigenfunctions on SN in Ref. [5]. Thus, using the result of Ref. [5] we readily find∣∣∣∣∣∣c

(II;r=1)
N (n, ℓ)√

2

∣∣∣∣∣∣
2

= 1
2N−3

Γ(n− ℓ+ 1)Γ(n+ ℓ+N)
|Γ(n+ N

2 )|2
, (4.267)

which is a special case of eq. (4.112). For N odd, the calculation is similar and we find
again that the normalisation factor is given by eq. (4.112).
The normalisation factor of the type-I modes can be found by calculating the following
integral:∣∣∣∣∣∣c

(I;r=1)
N (n, ℓ)√

2

∣∣∣∣∣∣
−2

=
∫ π

0
dθN sinN−1 θN

[(
ϕ

(1)
nℓ (θN)

)2
+
(
ψ

(1)
nℓ (θN)

)2
]

+
[(
ℓ+ N − 1

2

)2
− (N − 1)(N − 2)

4

]

×
∫ π

0
dθN sinN−3 θN

[(
C

(↑)(1)
nℓ (θN)

)2
+
(
C

(↓)(1)
nℓ (θN)

)2
]

+ (N − 1)
∫ π

0
dθN sinN−3 θN

[∣∣∣D(↑)(1)
nℓ (θN)

∣∣∣2 +
∣∣∣D(↓)(1)

nℓ (θN)
∣∣∣2]

+ 2i
(
ℓ+ N − 1

2

)
×
∫ π

0
dθN sinN−3 θN

×
[
C

(↑)(1)
nℓ (θN)D(↑)(1)

nℓ (θN) + C
(↓)(1)
nℓ (θN)D(↓)(1)

nℓ (θN)
]
, (4.268)

where C(↑)(1)
nℓ , C

(↓)(1)
nℓ , D

(↑)(1)
nℓ and D

(↓)(1)
nℓ are given by eqs. (4.47), (4.48), (4.49) and

(4.50), respectively. For N even, eq. (4.268) is derived by substituting the expres-
sions (4.43) and (4.44) for type-I modes into the inner product (4.111) and then
performing the integration over SN−1 (with the use of eqs. (4.28) and (4.206)). For N
odd, by working similarly we find again eq. (4.268). Since the integrals in eq. (4.268)
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are not as simple as in the case of type-II modes, we are going to take an indirect
route. To be specific, we first obtain by direct calculation the normalisation factor of the
type-I modes with the highest allowed value for ℓ, i.e. c(I;r=1)

N (n, ℓ = n). Then, once we
have obtained the transformation formulae of the type-I modes under spin(N + 1), the
normalisation factor c(I;r=1)

N (n, ℓ) (for ℓ = 1, 2, ....n− 1) will be constructed in terms of
c

(I;r=1)
N (n, n) by exploiting the spin(N + 1) invariance of the inner product (4.108). To

calculate c(I;r=1)
N (n, n) we let ℓ = n in eq. (4.268) and by calculating the integrals using

Mathematica 11.2 we find∣∣∣∣∣∣c
(I;r=1)
N (n, n)√

2

∣∣∣∣∣∣
2

=
n(N − 2)Γ(n+ N

2 + 1
2)

41−n(1 + n)(N − 1)
√
πΓ(n+ N

2 )
. (4.269)

4.14.2 Derivation of the transformation formulae of type-I and
type-II-I STSSH’s of rank 1 and calculation of the normal-
isation factor c

(I;r=1)
N (n, ℓ) for N even

Below we give details for the derivation of the transformation formulae (4.114) and (4.119)
for rank-1 (r = 1) modes with positive spin projection [these modes are given by
eqs. (4.45), (4.46) and (4.56)]. The calculations for the rank-1 modes with negative spin
projection are not presented here, as they can be performed in the same way.
In order to derive the desired transformation formulae (4.114) and (4.119), it is sufficient
to study the following two components of the Lie-Lorentz derivative (4.105): LS ψθN

and LS ψθN−1 . After a straightforward calculation we find

LS ψθN
=
(
S µ∂µ + sin θN−1

2 sin θN
γNγN−1

)
ψθN

+ sin θN−1

sin2 θN
ψθN−1 (4.270)

and

LS ψθN−1 =
(
S µ∂µ − cot θN cos θN−1 + sin θN−1

2 sin θN
γNγN−1

)
ψθN−1 − sin θN−1 ψθN

,

(4.271)

where we have substituted eqs. (4.9), (4.14), (4.22) and (4.110) into eq. (4.105). Since
N is even, we express γNγN−1 in eqs. (4.270) and (4.271) as

γNγN−1 =
−iγ̃N−1 0

0 iγ̃N−1

 , (4.272)

where we have used eq. (4.16).
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The partial derivatives in eqs. (4.270) and (4.271) act only on the coordinates {θN , θN−1}.
Thus, for later convenience let us introduce the functions ϕ̃(ã)

ℓm(θN−1) and ψ̃
(ã)
ℓm(θN−1)

describing the θN−1-dependence of the STSSH’s on SN−1 . In analogy to eqs. (4.31)
and (4.32), these functions are given by

ϕ̃
(ã)
ℓm(θN−1) = κ̃ϕ̃(ℓ,m)

(
cos θN−1

2

)m+1−ã (
sin θN−1

2

)m−ã

× F

(
−ℓ+m, ℓ+m+N − 1;m+ N − 1

2 ; sin2 θN−1

2

)
, (4.273)

and

ψ̃
(ã)
ℓm(θN−1) = κ̃ϕ̃(ℓ,m)

ℓ+ N−1
2

m+ N−1
2

(
cos θN−1

2

)m−ã (
sin θN−1

2

)m+1−ã

× F

(
−ℓ+m, ℓ+m+N − 1;m+ N + 1

2 ; sin2 θN−1

2

)
, (4.274)

where the normalisation factor is given by

κ̃ϕ̃(ℓ,m) =
Γ(ℓ+ N−1

2 )
Γ(ℓ−m+ 1) Γ(m+ N−1

2 )
. (4.275)

The number ã in eqs. (4.273) and (4.274) is an integer and m is the angular momentum
quantum number on SN−2 [with ℓ ≥ m, in analogy with eq. (4.34)]. The formulae
analogous to eqs. (4.35) and (4.36) are given by

 d

dθN−1
+ N + 2ã− 2

2 cot θN−1 +
m+ N−2

2
sin θN−1

ψ̃(ã)
ℓm =

(
ℓ+ N − 1

2

)
ϕ̃

(ã)
ℓm (4.276)

and d

dθN−1
+ N + 2ã− 2

2 cot θN−1 −
m+ N−2

2
sin θN−1

ϕ̃(ã)
ℓm = −

(
ℓ+ N − 1

2

)
ψ̃

(ã)
ℓm , (4.277)

respectively.
Motivated by the techniques used in Refs. [22] and [26], in order to derive the transfor-
mation formulae of our STSSH’s we introduce the ladder operators for ℓ, sending ℓ to
ℓ± 1 when acting on the functions ϕ(a)

nℓ (θN), ψ(a)
nℓ (θN), ϕ̃(ã)

ℓm(θN−1) and ψ̃(ã)
ℓm(θN−1). The
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ladder operators are given by the following expressions:

T
(+;a)
ϕ = d

dθN
+
(

−ℓ+ a− 1
2

)
cot θN + 1

2 sin θN
, (4.278)

T
(+;a)
ψ = d

dθN
+
(

−ℓ+ a− 1
2

)
cot θN − 1

2 sin θN
, (4.279)

T
(−;a)
ϕ = d

dθN
+
(
ℓ+N + a− 3

2

)
cot θN − 1

2 sin θN
, (4.280)

T
(−;a)
ψ = d

dθN
+
(
ℓ+N + a− 3

2

)
cot θN + 1

2 sin θN
, (4.281)

Π̃(+;ã)
ϕ̃

= sin θN−1
d

dθN−1
+
(
ℓ+ ã+N − 3

2

)
cos θN−1 −

m+ N−2
2

2(ℓ+ N
2 )
, (4.282)

Π̃(+;ã)
ψ̃

= sin θN−1
d

dθN−1
+
(
ℓ+ ã+N − 3

2

)
cos θN−1 +

m+ N−2
2

2(ℓ+ N
2 )
, (4.283)

Π̃(−;ã)
ϕ̃

= sin θN−1
d

dθN−1
+
(

−ℓ+ ã− 1
2

)
cos θN−1 +

m+ N−2
2

2(ℓ+ N−2
2 )

, (4.284)

Π̃(−;ã)
ψ̃

= sin θN−1
d

dθN−1
+
(

−ℓ+ ã− 1
2

)
cos θN−1 −

m+ N−2
2

2(ℓ+ N−2
2 )

. (4.285)

These operators act as follows:

T
(+;a)
f f

(a)
nℓ (θN) = k(+)f

(a)
n ℓ+1(θN), (4.286)

T
(−;a)
f f

(a)
nℓ (θN) = k(−)f

(a)
n ℓ−1(θN), (4.287)

Π̃(+;ã)
f̃

f̃
(ã)
ℓm (θN−1) = k̃(+)f̃

(ã)
ℓ+1m(θN−1), (4.288)

Π̃(−;ã)
f̃

f̃
(ã)
ℓm (θN−1) = k̃(−)f̃

(ã)
ℓ−1m(θN−1), (4.289)

where f (a)
nℓ (θN) ∈ {ϕ(a)

nℓ (θN), ψ(a)
nℓ (θN)}, f̃ (ã)

ℓm (θN−1) ∈ {ϕ̃(ã)
ℓm(θN−1), ψ̃(ã)

ℓm(θN−1)} and

k(+) = −(n+ ℓ+N), (4.290)
k(−) = n− ℓ+ 1, (4.291)

k̃(+) = (ℓ+N − 1 +m)(ℓ−m+ 1)
ℓ+N/2 , (4.292)

k̃(−) = −
(ℓ+ N−1

2 − 1)(ℓ+ N−1
2 )

ℓ+ (N − 2)/2 . (4.293)

One can straightforwardly prove the ladder relations (4.286)-(4.289) using the raising
and lowering operators for the parameters of the Gauss hypergeometric function given in
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Appendix 4.10. (Similar ladder relations have been obtained by the author in Ref. [26]
while studying the Dirac field on dSN .)
Let us now proceed to the derivation of the transformation formulae of the type-I and
type-II-I modes. It is clear from the expressions (4.270) and (4.271) for the Lie-Lorentz
derivative that we need to express the type-I and type-II-I modes in a form where the
dependence on both θN and θN−1 is written out explicitly. By substituting eq. (4.194)
into eqs. (4.45) and (4.46), we express the type-I modes with positive spin projection as

ψ
(I;+;nℓm;ρ)
±θN

(θN , θN−1,θN−2)

= c̃N−1(ℓ,m)√
2


iψ

(1)
nℓ (θN)

[
ϕ̃

(0)
ℓm(θN−1) ˆ̃χ−mρ(θN−2) + iψ̃

(0)
ℓm(θN−1) ˆ̃χ+mρ(θN−2)

]

±ϕ(1)
nℓ (θN)

[
ϕ̃

(0)
ℓm(θN−1) ˆ̃χ−mρ(θN−2) + iψ̃

(0)
ℓm(θN−1) ˆ̃χ+mρ(θN−2)

]


(4.294)

ψ
(I;+;nℓm;ρ)
±θN−1

(θN , θN−1,θN−2)

= c̃N−1(ℓ,m)√
2


i
[
E

(1)
nℓm(θN , θN−1) ˆ̃χ−mρ(θN−2) + iΣ(1)

nℓm(θN , θN−1) ˆ̃χ+mρ(θN−2)
]

±
[
H

(1)
nℓm(θN , θN−1) ˆ̃χ−mρ(θN−2) + iO

(1)
nℓm(θN , θN−1) ˆ̃χ+mρ(θN−2)

]
 ,

(4.295)

where c̃N−1(ℓ,m) is the normalisation factor (4.197) for the eigenspinors on SN−1, while
the spinors ˆ̃χ±mρ(θN−2) on SN−2 are defined by eq. (4.195). Also, we have defined

O
(a)
nℓm(θN , θN−1) = C

(↑)(a)
nℓ (θN) ∂

∂θN−1
ψ̃

(0)
ℓm(θN−1) + iD

(↑)(a)
nℓ (θN) ϕ̃(0)

ℓm(θN−1) (4.296)

H
(a)
nℓm(θN , θN−1) = C

(↑)(a)
nℓ (θN) ∂

∂θN−1
ϕ̃

(0)
ℓm(θN−1) − iD

(↑)(a)
nℓ (θN) ψ̃(0)

ℓm(θN−1) (4.297)

E
(a)
nℓm(θN , θN−1) = C

(↓)(a)
nℓ (θN) ∂

∂θN−1
ϕ̃

(0)
ℓm(θN−1) − iD

(↓)(a)
nℓ (θN) ψ̃(0)

ℓm(θN−1) (4.298)

Σ(a)
nℓm(θN , θN−1) = C

(↓)(a)
nℓ (θN) ∂

∂θN−1
ψ̃

(0)
ℓm(θN−1) + iD

(↓)(a)
nℓ (θN) ϕ̃(0)

ℓm(θN−1). (4.299)

(Recall that C(↑)(a)
nℓ , C

(↓)(a)
nℓ , D

(↑)(a)
nℓ and D(↓)(a)

nℓ are given by eqs. (4.47), (4.48), (4.49)
and (4.50), respectively.) Similarly, the type-I modes with negative spin projection are
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expressed as

ψ
(I;−;nℓm;ρ)
±θN

(θN , θN−1,θN−2)

= c̃N−1(ℓ,m)√
2


ϕ

(1)
nℓ (θN)

[
ϕ̃

(0)
ℓm(θN−1) ˆ̃χ−mρ(θN−2) − iψ̃

(0)
ℓm(θN−1) ˆ̃χ+mρ(θN−2)

]

±iψ(1)
nℓ (θN)

[
ϕ̃

(0)
ℓm(θN−1) ˆ̃χ−mρ(θN−2) − iψ̃

(0)
ℓm(θN−1) ˆ̃χ+mρ(θN−2)

]


(4.300)

ψ
(I;−;nℓm;ρ)
±θN−1

(θN , θN−1,θN−2)

= c̃N−1(ℓ,m)√
2


H

(1)
nℓm(θN , θN−1) ˆ̃χ−mρ(θN−2) − iO

(1)
nℓm(θN , θN−1) ˆ̃χ+mρ(θN−2)

±i
[
E

(1)
nℓm(θN , θN−1) ˆ̃χ−mρ(θN−2) − iΣ(1)

nℓm(θN , θN−1) ˆ̃χ+mρ(θN−2)
]
 .

(4.301)

Similarly, it is straightforward to express the type-II-I modes with positive spin projec-
tion (4.56) as follows:

ψ
(II-I;+;nℓm;ρ)
±θN

(θN , θN−1,θN−2) =0, (4.302)

ψ
(II-I;+;nℓm;ρ)
±θN−1

(θN , θN−1,θN−2)

= c̃
(I;r̃=1)
N−1 (ℓ,m)√

2


iψ

(−1)
nℓ (θN)

[
ϕ̃

(1)
ℓm(θN−1) ˆ̃χ−mρ(θN−2) + iψ̃

(1)
ℓm(θN−1) ˆ̃χ+mρ(θN−2)

]

±ϕ(−1)
nℓ (θN)

[
ϕ̃

(1)
ℓm(θN−1) ˆ̃χ−mρ(θN−2) + iψ̃

(1)
ℓm(θN−1) ˆ̃χ+mρ(θN−2)

]
 ,

(4.303)

where c̃(I;r=1)
N−1 (ℓ,m) is the normalisation factor of the STSSH’s of rank 1 on SN−1 and it

will be determined later. The type-II-I modes with negative spin projection (4.55) are
expressed as

ψ
(II-I;−;nℓm;ρ)
±θN

(θN , θN−1,θN−2) = 0, (4.304)

ψ
(II-I;−;nℓm;ρ)
±θN−1

(θN , θN−1,θN−2)

= c̃
(I;r̃=1)
N−1 (ℓ,m)√

2


ϕ

(−1)
nℓ (θN)

[
ϕ̃

(1)
ℓm(θN−1) ˆ̃χ−mρ(θN−2) − iψ̃

(1)
ℓm(θN−1) ˆ̃χ+mρ(θN−2)

]

±iψ(−1)
nℓ (θN)

[
ϕ̃

(1)
ℓm(θN−1) ˆ̃χ−mρ(θN−2) − iψ̃

(1)
ℓm(θN−1) ˆ̃χ+mρ(θN−2)

]
 ,

(4.305)
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4.14.2.1 Derivation of the transformation formula (4.114) for type-I modes of
rank 1 and calculation of the normalisation factor c(I;r=1)

N (n, ℓ)

By using the expressions (4.294) and (4.295) for the type-I modes, we express the
Lie-Lorentz derivative (4.270) as

LSψ
(I;+;nℓm;ρ)
±θN

= c̃N−1(ℓ,m)√
2


i ˆ̃χ−mρ(θN−2)T(I)

3 (θN , θN−1) − ˆ̃χ+mρ(θN−2)T(I)
4 (θN , θN−1)

± ˆ̃χ−mρ(θN−2)T(I)
1 (θN , θN−1) ± i ˆ̃χ+mρ(θN−2)T(I)

2 (θN , θN−1)

 ,
(4.306)

where

T(I)
1 = S µ∂µ

[
ϕ

(1)
nℓ ϕ̃

(0)
ℓm

]
− sin θN−1

2 sin θN
ϕ

(1)
nℓ ψ̃

(0)
ℓm + sin θN−1

sin2 θN
H

(1)
nℓm, (4.307)

T(I)
2 = S µ∂µ

[
ϕ

(1)
nℓ ψ̃

(0)
ℓm

]
+ sin θN−1

2 sin θN
ϕ

(1)
nℓ ϕ̃

(0)
ℓm + sin θN−1

sin2 θN
O

(1)
nℓm, (4.308)

T(I)
3 = S µ∂µ

[
ψ

(1)
nℓ ϕ̃

(0)
ℓm

]
+ sin θN−1

2 sin θN
ψ

(1)
nℓ ψ̃

(0)
ℓm + sin θN−1

sin2 θN
E

(1)
nℓm, (4.309)

T(I)
4 = S µ∂µ

[
ψ

(1)
nℓ ψ̃

(0)
ℓm

]
− sin θN−1

2 sin θN
ψ

(1)
nℓ ϕ̃

(0)
ℓm + sin θN−1

sin2 θN
Σ(1)
nℓm. (4.310)

(Recall that O(1)
nℓm, H

(1)
nℓm, E

(1)
nℓm and Σ(1)

nℓm are given by eqs. (4.296), (4.297), (4.298) and
(4.299), respectively.) In order to proceed we need to make use of the following relations:

T(I)
1 = R(I)k(+)k̃(+)ϕ

(1)
n ℓ+1ϕ̃

(0)
ℓ+1m + L (I)k(−)k̃(−)ϕ

(1)
n ℓ−1ϕ̃

(0)
ℓ−1m + κ(I)ψ

(1)
nℓ ϕ̃

(0)
ℓm, (4.311)

T(I)
2 = R(I)k(+)k̃(+)ϕ

(1)
n ℓ+1ψ̃

(0)
ℓ+1m + L (I)k(−)k̃(−)ϕ

(1)
n ℓ−1ψ̃

(0)
ℓ−1m − κ(I)ψ

(1)
nℓ ψ̃

(0)
ℓm, (4.312)

T(I)
3 = R(I)k(+)k̃(+)ψ

(1)
n ℓ+1ϕ̃

(0)
ℓ+1m + L (I)k(−)k̃(−)ψ

(1)
n ℓ−1ϕ̃

(0)
ℓ−1m − κ(I)ϕ

(1)
nℓ ϕ̃

(0)
ℓm, (4.313)

T(I)
4 = R(I)k(+)k̃(+)ψ

(1)
n ℓ+1ψ̃

(0)
ℓ+1m + L (I)k(−)k̃(−)ψ

(1)
n ℓ−1ψ̃

(0)
ℓ−1m + κ(I)ϕ

(1)
nℓ ψ̃

(0)
ℓm, (4.314)

where k(+), k(−), k̃(+) and k̃(−) are given by eqs. (4.290), (4.291), (4.292) and (4.293),
respectively, while κ(I) is the coefficient defined in eq. (4.117) (with r = 1) and

R(I) = ℓ+N

2(ℓ+ N−1
2 )(ℓ+N − 1)

, L (I) = 1 − ℓ

2ℓ(ℓ+ N−1
2 )

. (4.315)

Let us outline the steps required for proving eq. (4.311). (Equations (4.312)-(4.314) are
proved similarly.) First, we express T(I)

1 on the left-hand side of eq. (4.311) in terms of
ϕ

(1)
nℓ , dϕ

(1)
nℓ /dθN , ϕ̃

(0)
ℓm and dϕ̃(0)

ℓm/dθN−1 by making use of eqs. (4.307), (4.297), (4.277),
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(4.47), (4.49) and (4.36). As for the right-hand side, we express ϕ(1)
n ℓ±1 and ϕ̃

(0)
ℓ±1m

in terms of ϕ(1)
nℓ , dϕ

(1)
nℓ /dθN and ϕ̃

(0)
ℓm, dϕ̃

(0)
ℓm/dθN−1, respectively, by making use of the

ladder relations (4.286)-(4.289) and we also express ψ(1)
nℓ in terms of ϕ(1)

nℓ and dϕ
(1)
nℓ /dθN

by making use of eq. (4.36). Then, it is straightforward to show that the two sides of
eq. (4.311) are equal. We have verified the calculations using Mathematica 11.2.
Then, by substituting eqs. (4.311)-(4.314) into eq. (4.306), we express the latter as

LSψ
(I;+;nℓm;ρ)
±θN

= c̃N−1(ℓ,m)√
2

R(I)k(+)k̃(+)


iψ

(1)
n ℓ+1

[
ϕ̃

(0)
ℓ+1m ˆ̃χ−mρ + iψ̃

(0)
ℓ+1m ˆ̃χ+mρ

]

±ϕ(1)
n ℓ+1

[
ϕ̃

(0)
ℓ+1m ˆ̃χ−mρ + iψ̃

(0)
ℓ+1m ˆ̃χ+mρ

]


+ L (I)k(−)k̃(−)


iψ

(1)
n ℓ−1

[
ϕ̃

(0)
ℓ−1m ˆ̃χ−mρ + iψ̃

(0)
ℓ−1m ˆ̃χ+mρ

]

±ϕ(1)
n ℓ−1

[
ϕ̃

(0)
ℓ−1m ˆ̃χ−mρ + iψ̃

(0)
ℓ−1m ˆ̃χ+mρ

]


− iκ(I)


ϕ

(1)
nℓ

[
ϕ̃

(0)
ℓm

ˆ̃χ−mρ − iψ̃
(0)
ℓm

ˆ̃χ+mρ
]

±iψ(1)
nℓ

[
ϕ̃

(0)
ℓm

ˆ̃χ−mρ − iψ̃
(0)
ℓm

ˆ̃χ+mρ
]

 (4.316)

and we straightforwardly rewrite this as

LSψ
(I;+;nℓm;ρ)
±θN

= A (I)ψ
(I;+;n (ℓ+1)m;ρ)
±θN

+ B(I)ψ
(I;+;n (ℓ−1)m;ρ)
±θN

− iκ(I)ψ
(I;−;nℓm;ρ)
±θN

,

(4.317)

as in eq. (4.114), where we have defined

A (I) ≡ R(I)k(+)k̃(+) c̃N−1(ℓ,m)
c̃N−1(ℓ+ 1,m) , (4.318)

B(I) ≡ L (I)k(−)k̃(−) c̃N−1(ℓ,m)
c̃N−1(ℓ− 1,m) . (4.319)

It easy to verify that these expressions for A (I) and B(I) agree with the expressions
given by eqs. (4.115) (with r = 1) and (4.116) (with r = 1), respectively.
Now, we can determine the normalisation factor c(I;r=1)

N (n, ℓ) for the type-I modes. By
using the spin(N + 1) invariance of the inner product (4.109) between ψ(I;σ;nℓm;ρ)

±µ and
ψ

(I;σ;n(ℓ+1)m;ρ)
±µ and using the transformation formula (4.114) we find

∣∣∣∣∣∣ c
(I;r=1)
N (n, ℓ)

c
(I;r=1)
N (n, ℓ+ 1)

∣∣∣∣∣∣
2

= (n− ℓ) ℓ (ℓ+N − 1)
(ℓ+ 1)(ℓ+N)(n+ ℓ+N) . (4.320)
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By iterating this equation and using eq. (4.269), one can straightforwardly find∣∣∣∣∣∣c
(I;r=1)
N (n, ℓ)√

2

∣∣∣∣∣∣
2

= 1
2N+1

Γ(n− ℓ+ 1)Γ(n+ ℓ+N)
|Γ(n+ N

2 )|2

× (N − 2)ℓ(ℓ+N − 1)
(N − 1)

(
[n+N/2]2 − [N − 2]2 /4

) , (4.321)

which is eq. (4.112) with r = 1 and r̃(B) = r̃(I) = 0. For later convenience, note that we
can easily deduce the form of the normalisation factor for the type-I STSSH’s of rank 1
on SN−1 by making the replacements N → N − 1, n → ℓ and ℓ → m in eq. (4.321), as∣∣∣∣∣∣ c̃

(I;r̃=1)
N−1 (ℓ,m)√

2

∣∣∣∣∣∣
2

= 1
2N

Γ(ℓ−m+ 1)Γ(ℓ+m+N − 1)
|Γ(ℓ+ N−1

2 )|2

× (N − 3)m(m+N − 2)
(N − 2)(ℓ+ 1)(ℓ+N − 2) . (4.322)

Let us now discuss the mixing between type-I and type-II-I modes under the spin(N+1)
transformation. By using the equation ψ(II-I;σ;nℓm;ρ)

±θN
= 0 and eqs. (4.294) and (4.303)

(or eqs. (4.300) and (4.305)), one readily finds that the component given by (4.270) of
the infinitesimal transformation of a type-II-I mode is proportional to a type-I mode, as

LSψ
(II-I;σ;nℓm;ρ)
±θN

=sin θN−1

sin2 θN
ψ

(II-I;σ;nℓm;ρ)
±θN−1

=K (II→I)ψ
(I;σ;nℓm;ρ)
±θN

, (4.323)

in agreement with eq. (4.119), where we have defined

K (II→I) ≡ 1
2
c̃

(I;r̃=1)
N−1 (ℓ,m)
c̃N−1(ℓ,m) . (4.324)

It is easy to show that this expression for K (II→I) is equal to the expression given by
eq. (4.124) (with r = 1). Then, since type-II-I modes transform into type-I modes under
the spin(N + 1) transformation, the spin(N + 1) invariance of the inner product (4.109)
(between ψ(I;σ;nℓm;ρ)

±µ and ψ(II-I;σ;nℓm;ρ)
±µ ) implies that

LSψ
(I;σ;nℓm;ρ)
±µ = ...+ K (I→II)ψ

(II-I;σ;nℓm;ρ)
±µ , (4.325)

where all the STSSH’s in ‘...’ are type-I modes, while K (I→II) is given by

K (I→II) = −K (II→I)∗

∣∣∣∣∣∣c
(II;r=1)
N (n, ℓ)
c

(I;r=1)
N (n, ℓ)

∣∣∣∣∣∣
2

, (4.326)
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where the asterisk denotes complex conjugation. Then, by using the expression for
K (II→I) [eq. (4.124)] and the expressions for the normalisation factors [eq. (4.112)] we
find that K (I→II) in eq. (4.326) is equal to the expression given by eq. (4.118) (with
r = 1).

4.14.2.2 Derivation of the transformation formula (4.119) for type-II-I modes of
rank 1

By substituting the type-II-I mode (4.303) into the Lie-Lorentz derivative (4.271) we
find

LSψ
(II-I;+;nℓm;ρ)
±θN−1

= c̃
(I;r̃=1)
N−1 (ℓ,m)√

2


i ˆ̃χ−mρ(θN−2)T(II)

3 (θN , θN−1) − ˆ̃χ+mρ(θN−2)T(II)
4 (θN , θN−1)

± ˆ̃χ−mρ(θN−2)T(II)
1 (θN , θN−1) ± i ˆ̃χ+mρ(θN−2)T(II)

2 (θN , θN−1)

 ,
(4.327)

where

T(II)
1 = (S µ∂µ − cot θN cos θN−1)

[
ϕ

(−1)
nℓ ϕ̃

(1)
ℓm

]
− sin θN−1

2 sin θN
ϕ

(−1)
nℓ ψ̃

(1)
ℓm, (4.328)

T(II)
2 = (S µ∂µ − cot θN cos θN−1)

[
ϕ

(−1)
nℓ ψ̃

(1)
ℓm

]
+ sin θN−1

2 sin θN
ϕ

(−1)
nℓ ϕ̃

(1)
ℓm, (4.329)

T(II)
3 = (S µ∂µ − cot θN cos θN−1)

[
ψ

(−1)
nℓ ϕ̃

(1)
ℓm

]
+ sin θN−1

2 sin θN
ψ

(−1)
nℓ ψ̃

(1)
ℓm, (4.330)

T(II)
4 = (S µ∂µ − cot θN cos θN−1)

[
ψ

(−1)
nℓ ψ̃

(1)
ℓm

]
− sin θN−1

2 sin θN
ψ

(−1)
nℓ ϕ̃

(1)
ℓm. (4.331)
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Then, as in the case of the type-I modes, we prove the following relations:

T(II)
1 = R(II)k(+)k̃(+)ϕ

(−1)
n ℓ+1ϕ̃

(1)
ℓ+1m + L (II)k(−)k̃(−)ϕ

(−1)
n ℓ−1ϕ̃

(1)
ℓ−1m + κ(II)ψ

(−1)
nℓ ϕ̃

(1)
ℓm

+ H
(1)
nℓm

2 , (4.332)

T(II)
2 = R(II)k(+)k̃(+)ϕ

(−1)
n ℓ+1ψ̃

(1)
ℓ+1m + L (II)k(−)k̃(−)ϕ

(−1)
n ℓ−1ψ̃

(1)
ℓ−1m − κ(II)ψ

(−1)
nℓ ψ̃

(1)
ℓm

+ O
(1)
nℓm

2 , (4.333)

T(II)
3 = R(II)k(+)k̃(+)ψ

(−1)
n ℓ+1ϕ̃

(1)
ℓ+1m + L (II)k(−)k̃(−)ψ

(−1)
n ℓ−1ϕ̃

(1)
ℓ−1m − κ(II)ϕ

(−1)
nℓ ϕ̃

(1)
ℓm

+ E
(1)
nℓm

2 , (4.334)

T(II)
4 = R(II)k(+)k̃(+)ψ

(−1)
n ℓ+1ψ̃

(1)
ℓ+1m + L (II)k(−)k̃(−)ψ

(−1)
n ℓ−1ψ̃

(1)
ℓ−1m + κ(II)ϕ

(−1)
nℓ ψ̃

(1)
ℓm

+ Σ(1)
nℓm

2 , (4.335)

where κ(II) is given by eq. (4.122) (with r = 1) and

R(II) = ℓ+N − 2
2(ℓ+ N−1

2 )(ℓ+N − 1)
, L (II) = −(1 + ℓ)

2ℓ(ℓ+ N−1
2 )

. (4.336)

By substituting eqs. (4.332)-(4.335) into eq. (4.327) we find

LSψ
(II-I;+;nℓm;ρ)
±θN−1

= A (II)ψ
(II-I;+;n (ℓ+1)m;ρ)
±θN−1

+ B(II)ψ
(II-I;+;n (ℓ−1)m;ρ)
±θN−1

− iκ(II)ψ
(II-I;−;nℓm;ρ)
±θN−1

+ K (II→I)ψ
(I;+;nℓm;ρ)
±θN−1

, (4.337)

in precise agreement with the transformation formula (4.119), where we have defined

A (II) ≡ R(II)k(+)k̃(+) c̃
(I;r̃=1)
N−1 (ℓ,m)

c̃
(I;r̃=1)
N−1 (ℓ+ 1,m)

, (4.338)

B(II) ≡ L (II)k(−)k̃(−) c̃
(I;r̃=1)
N−1 (ℓ,m)

c̃
(I;r̃=1)
N−1 (ℓ− 1,m)

. (4.339)

It easy to verify that these expressions for A (II) and B(II) agree with the expressions
given by eqs. (4.120) (with r = 1) and (4.121) (with r = 1), respectively.
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4.14.3 Derivation of the transformation formulae of type-I and
type-II-I STSSH’s of rank 1 and calculation of the normal-
isation factor c

(I;r=1)
N (n, ℓ) for N odd

The Lie-Lorentz derivative is given by eqs. (4.270) and (4.271), where γNγN−1 is given
by

γNγN−1 =
 0 1

−1 0

 , (4.340)

where 1 is the identity spinorial matrix of dimension 2N−1
2 /2.

The type-I modes on SN with positive spin projection index on SN−1 (σN−1 = +) are
found by substituting eq. (4.199) into eqs. (4.59) and (4.60), as

ψ
(I;nℓ;+;m;ρ)
±θN

(θN , θN−1,θN−2)

= c̃N−1(ℓ,m)√
2

1√
2


(1 + i) iψ̃(0)

ℓm(θN−1)
[
ϕ

(1)
nℓ (θN) ± iψ

(1)
nℓ (θN)

]
χ̃+mρ(θN−2)

(1 − i) ϕ̃(0)
ℓm(θN−1)

[
−ϕ(1)

nℓ (θN) ± iψ
(1)
nℓ (θN)

]
χ̃+mρ(θN−2)

 ,
(4.341)

ψ
(I;nℓ;+;m;ρ)
±θN−1

(θN , θN−1,θN−2)

= c̃N−1(ℓ,m)√
2

1√
2


(1 + i)

[
iO

(1)
nℓm(θN , θN−1) ∓ Σ(1)

nℓm(θN , θN−1)
]
χ̃+mρ(θN−2)

(1 − i)
[
−H(1)

nℓm(θN , θN−1) ± iE
(1)
nℓm(θN , θN−1)

]
χ̃+mρ(θN−2)


(4.342)

(the functions describing the dependence on θN and θN−1 in eq. (4.342) are given by
eqs. (4.296)-(4.299)). The component ψ(I;nℓ;−;m;ρ)

±θN
is obtained from eq. (4.341) by

making the replacement χ̃+mρ → χ̃−mρ and exchanging iψ̃(0)
ℓm and ϕ̃(0)

ℓm. The component
ψ

(I;nℓ;−;m;ρ)
±θN−1

is obtained from eq. (4.342) by making the replacement χ̃+mρ → χ̃−mρ and
exchanging iO(1)

nℓm and H
(1)
nℓm, as well as exchanging ∓Σ(1)

nℓm and ±iE(1)
nℓm. The ladder

relations for the functions ϕ(a)
nℓ (θN), ψ(a)

nℓ (θN), ϕ̃(ã)
ℓm(θN−1), ψ̃(ã)

ℓm(θN−1) are given again by
eqs. (4.286)-(4.289). Equations (4.311)-(4.314) hold as in the even-dimensional case.
The type-II-I modes on SN with positive spin projection index on SN−1 (σN−1 = +)
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are expressed as

ψ
(II-I;nℓ;+;m;ρ)
±θN−1

(θN , θN−1,θN−2)

= c̃
(I;r̃=1)
N−1 (ℓ,m)√

2
1√
2


(1 + i) iψ̃(1)

ℓm(θN−1)
[
ϕ

(−1)
nℓ (θN) ± iψ

(−1)
nℓ (θN)

]
χ̃+mρ(θN−2)

(1 − i) ϕ̃(1)
ℓm(θN−1)

[
−ϕ(−1)

nℓ (θN) ± iψ
(−1)
nℓ (θN)

]
χ̃+mρ(θN−2)

 ,
(4.343)

while ψ(II-I;nℓ;−;m;ρ)
±θN−1

is obtained from eq. (4.343) by making the replacement χ̃+mρ →
χ̃−mρ and exchanging iψ̃

(1)
ℓm and ϕ̃

(1)
ℓm. Equations (4.332)-(4.335) hold as in the even-

dimensional case.
The rest of the derivation of the transformation formulae is similar to that for the even-
dimensional case. We find that the transformation formulae for the type-I and type-II-I
modes are given by eqs. (4.133) and (4.134), respectively, while the normalisation factor
c

(I;r=1)
N (n, ℓ) is given by eq. (4.321).

4.14.4 Transformation properties under spin(N + 1) and normalisa-
tion factors for STSSH’s of rank 2 on SN

As mentioned in the beginning of this Appendix, the calculations needed in order to
derive the transformation formulae and determine the normalisation factors for STSSH’s
of rank 2 on SN have many similarities with the case of rank-1 STSSH’s, which was
presented above. Therefore, below we just provide a brief description of the basic steps.
Let us begin by determining the normalisation factor for type-III STSSH’s of rank 2,
c

(III;r=2)
N (n, ℓ). In the case with N even, we substitute the rank-2 type-III modes (4.89)-

(4.91) into the inner product (4.111), while in the case with N odd we substitute the
type-III modes (4.102)-(4.104) into the inner product (4.131). By working as in the
case of rank-1 type-II modes, we readily find (with the use of eq. (4.70))

∣∣∣∣∣∣c
(III;r=2)
N (n, ℓ)√

2

∣∣∣∣∣∣
2

= 1
2N−5

Γ(n− ℓ+ 1)Γ(n+ ℓ+N)
|Γ(n+ N

2 )|2
, (4.344)

for both N even and N odd, which is eq. (4.112) with r = r̃(III) = 2.
Now we will determine the normalisation factor for type-II STSSH’s of rank 2, c(II;r=2)

N (n, ℓ).
For N even we substitute eqs. (4.82)-(4.84) into the inner product (4.111), while for N
odd we substitute eqs. (4.99)-(4.101) into the inner product (4.131). By performing the
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integration over SN−1 (using eqs. (4.212) and (4.54)), we straightforwardly find

∣∣∣∣∣∣c
(II;r=2)
N (n, ℓ)√

2

∣∣∣∣∣∣
−2

= 2
∫ π

0
dθN sinN−3 θN

[(
ϕ

(0)
nℓ (θN)

)2
+
(
ψ

(0)
nℓ (θN)

)2
]

+ 2
[(
ℓ+ N − 1

2

)2
− N(N + 1)

4

]

×
∫ π

0
dθN sinN−5 θN


Γ(↑)

nℓ (θN)
2

2

+
Γ(↓)

nℓ (θN)
2

2


+ 2(N + 1)
∫ π

0
dθN sinN−5 θN


∣∣∣∣∣∣∆

(↑)
nℓ (θN)

2

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣∆
(↓)
nℓ (θN)

2

∣∣∣∣∣∣
2


+ i
(
ℓ+ N − 1

2

)
×
∫ π

0
dθN sinN−5 θN

[
Γ(↑)
nℓ (θN)∆(↑)

nℓ (θN) + Γ(↓)
nℓ (θN)∆(↓)

nℓ (θN)
]
,

(4.345)

where Γ(↑)
nℓ ,Γ

(↓)
nℓ ,∆

(↑)
nℓ and ∆(↓)

nℓ are given by eqs. (4.87), (4.88), (4.85) and (4.86),
respectively. The calculations can be significantly simplified by making use of the
following relations:

4
sin2 θ

ϕ
(0)
nℓ (θ) = ϕ

(1)
n′ ℓ′(θ)

∣∣∣
N→N+2

,

4
sin2 θ

ψ
(0)
nℓ (θ) = ψ

(1)
n′ ℓ′(θ)

∣∣∣
N→N+2

,

2
sin2 θ

Γ(b)
nℓ (θ) = C

(b)(1)
n′ ℓ′ (θ)

∣∣∣
N→N+2

,

2
sin2 θ

∆(b)
nℓ (θ) = D

(b)(1)
n′ ℓ′ (θ)

∣∣∣
N→N+2

, (b =↑, ↓) (4.346)

where θ ∈ [0, π], n′ = n− 1 and ℓ′ = ℓ− 1, while on the right-hand sides of the relations
in eq. (4.346) we have denoted the replacement of N by N + 2 as N → N + 2. The
relations in eq. (4.346) can be readily proved by using eqs. (4.31), (4.32), (4.47), (4.48),
(4.49), (4.50), (4.85), (4.86) (4.87) and (4.88). By comparing eqs. (4.345) and (4.268)
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and by using eq. (4.346), we straightforwardly find∣∣∣∣∣∣c
(II;r=2)
N (n, ℓ)√

2

∣∣∣∣∣∣
2

= 23

∣∣∣∣∣∣c
(I;r=1)
N+2 (n− 1, ℓ− 1)√

2

∣∣∣∣∣∣
2

(4.347)

= 1
2N

Γ(n− ℓ+ 1)Γ(n+ ℓ+N)
|Γ(n+ N

2 )|2

× N(ℓ− 1)(ℓ+N)
(N + 1)

(
[n+N/2]2 −N2/4

) , (4.348)

which is eq. (4.112) with r = 2 and r̃(B) = r̃(II) = 1.
As for the normalisation of rank-2 type-I modes, by working as in the case of rank-1
type-I modes, we calculate the normalisation factor for ℓ = n using Mathematica 11.2∣∣∣∣∣∣c

(I;r=2)
N (n, n)√

2

∣∣∣∣∣∣
2

=
(n− 1)(N − 2)Γ(n+ N

2 + 1
2)

42−n(n+ 1)(N + 1)
√
πΓ(n+ N

2 )
, (4.349)

while the normalisation factor c(I;r=2)
N (n, ℓ) (for ℓ = 2, 3, ..., n − 1) will be determined

using the spin(N + 1) invariance of the inner product (4.109).
In order to derive the transformation formulae (4.114), (4.119), (4.126), (4.133), (4.134)
and (4.135) for the STSSH’s of rank 2 it is sufficient to study the following components
of the Lie-Lorentz derivative (4.105):

LSψθNθN
=
(
S µ∂µ + sin θN−1

2 sin θN
γNγN−1

)
ψθNθN

+ 2 sin θN−1

sin2 θN
ψθNθN−1 , (4.350)

LSψθNθN−1 =
(
S µ∂µ − cos θN−1 cot θN + sin θN−1

2 sin θN
γNγN−1

)
ψθNθN−1

+ sin θN−1

sin2 θN
ψθN−1θN−1 − sin θN−1ψθNθN

(4.351)

and

LSψθN−1θN−1 =
(
S µ∂µ − 2 cos θN−1 cot θN + sin θN−1

2 sin θN
γNγN−1

)
ψθN−1θN−1

− 2 sin θN−1 ψθNθN−1 . (4.352)

By working as in the case of rank-1 STSSH’s, we make use of the ladder operators (4.286)-
(4.289) and (after a long calculation) we find the transformation formulae (4.114), (4.119)
and (4.126) for N even, and the transformation formulae (4.133)-(4.135) for N odd.
Then, as in the case of rank-1 type-I modes, the normalisation factor of rank-2 type-I
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modes is found by combining the spin(N + 1) invariance of the inner product between
ψ

(I;σ;nℓm;ρ)
±µ1µ2 and ψ(I;σ;n(ℓ+1)m;ρ)

±µ1µ2 with eq. (4.349), as∣∣∣∣∣∣c
(I;r=2)
N (n, ℓ)√

2

∣∣∣∣∣∣
2

= 1
2N+3

Γ(n− ℓ+ 1)Γ(n+ ℓ+N)
|Γ(n+ N

2 )|2

× N − 2
N + 1

ℓ(ℓ+N − 1)(ℓ− 1)(ℓ+N)(
[n+N/2]2 − [N − 2]2 /4

) (
[n+N/2]2 −N2/4

) ,
(4.353)

(for both N even and N odd) which is eq. (4.112) with r = 2 and r̃(B) = r̃(I) = 0.

4.15 APPENDIX F - PURE GAUGE MODES

In this Appendix, we present details for the derivation of the pure gauge expressions (4.148),
(4.150) and (4.153) for N even. The calculations for N odd are similar and, thus, we do
not present them here.
For later convenience, note that by making the replacements θN → x(t) = π/2 − it,
n → M̃ −N/2 [eq. (4.140)] in the formulae (4.35) and (4.36) we find(

d

dx
+ N + 2a− 1

2 cotx+ ℓ+ (N − 1)/2
sin x

)
ψ̂

(a)
M̃ℓ

(t) = M̃ ϕ̂
(a)
M̃ℓ

(t) (4.354)

and (
d

dx
+ N + 2a− 1

2 cotx− ℓ+ (N − 1)/2
sin x

)
ϕ̂

(a)
M̃ℓ

(t) = −M̃ψ̂
(a)
M̃ℓ

(t), (4.355)

respectively, where cotx = i tanh t and sin x = cosh t. Also, let us obtain lowering
operators for M̃ as follows. By making the replacements N → N + 1, θN−1 → x(t) =
π/2 − it, ℓ → M̃ −N/2, ã → a and m → ℓ in the lowering operator (4.284) we find

L̂
(M̃ ;a)
ϕ ϕ̂

(a)
M̃ℓ

(t) ≡
[
sin x ∂

∂x
+
(

−M̃ + N − 1
2 + a

)
cosx+

ℓ+ N−1
2

2(M̃ − 1/2)

]
ϕ̂

(a)
M̃ℓ

(t)

= −
M̃
(
M̃ − ℓ−N/2

)
M̃ − 1/2

ϕ̂
(a)
(M̃−1)ℓ(t), (4.356)

while by making the same replacements in the lowering operator (4.285) we find

L̂
(M̃ ;a)
ψ ψ̂

(a)
M̃ℓ

(t) ≡
[
sin x ∂

∂x
+
(

−M̃ + N − 1
2 + a

)
cosx−

ℓ+ N−1
2

2(M̃ − 1/2)

]
ψ̂

(a)
M̃ℓ

(t)

= −
M̃
(
M̃ − ℓ−N/2

)
M̃ − 1/2

ψ̂
(a)
(M̃−1)ℓ(t). (4.357)
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4.15.1 Pure gauge modes for strictly massless spin-3/2 field, N
even

The type-I modes (4.148) for the strictly massless spin-3/2 field (with M̃ = ±(N−2)/2)
are ‘pure gauge’ modes. In this Subsection, we prove explicitly the t-component of
eq. (4.148) and we describe the calculations needed in order to prove the rest of the
components. Let us denote the spinors Λ(ℓ̃)

± in eq. (4.148) as Λ(σ;ℓ;ρ̃)
± , where we have

written out explicitly the dependence on the spin projection index σ = ± and the angular
momentum quantum number ℓ = 1, 2, ... . Since these spinors satisfy the Dirac equation
( /∇ ± iN/2)Λ(σ;ℓ;ρ̃)

± = 0, they are given by [26]

Λ(−;ℓ;ρ̃)
± (t,θN−1) = 2

ℓ

 ϕ̂
(0)
N
2 ,ℓ

(t)χ−ℓρ̃(θN−1)
∓iψ̂(0)

N
2 ,ℓ

(t)χ−ℓρ̃(θN−1)

 , (4.358)

Λ(+;ℓ;ρ̃)
± (t,θN−1) = 2

ℓ

 iψ̂(0)
N
2 ,ℓ

(t)χ+ℓρ̃(θN−1)
∓ϕ̂(0)

N
2 ,ℓ

(t)χ+ℓρ̃(θN−1)

 , (4.359)

where ϕ̂(0)
N
2 ,ℓ

(t) and ψ̂(0)
N
2 ,ℓ

(t) are found by letting M̃ = N/2 in eqs. (4.142) and (4.144),
respectively, while χ±ℓρ̃ are the eigenspinors (4.27) of the Dirac operator on SN−1. The
factor of 2/ℓ will be motivated naturally below [it arises from the use of the lowering
operators (4.356) and (4.357)]. Below we prove the t-component of eq. (4.148) only for
negative spin projection σ = −. The case with σ = + can be proved in the same way.
The type-I modes Ψ(I;−;(± N−2

2 )ℓ;ρ̃)
µ for the strictly massless spin-3/2 field (M̃ = ±(N −

2)/2) are found by combining eq. (4.146) with eqs. (4.43) and (4.44), as

Ψ(I;−;(± N−2
2 )ℓ;ρ̃)

t (t,θN−1) = −i

 ϕ̂
(1)
( N−2

2 )ℓ(t)χ−ℓρ̃(θN−1)
∓iψ̂(1)

( N−2
2 )ℓ(t)χ−ℓρ̃(θN−1)

 (4.360)

Ψ(I;−;(± N−2
2 )ℓ;ρ̃)

θj
(t,θN−1)

=


Ĉ

(↑)(1)
( N−2

2 )ℓ(t) ∇̃θj
χ−ℓρ̃(θN−1) + D̂

(↑)(1)
( N−2

2 )ℓ(t) γ̃θj
χ−ℓρ̃(θN−1)

∓iĈ(↓)(1)
( N−2

2 )ℓ(t) ∇̃θj
χ−ℓρ̃(θN−1) ∓ iD̂

(↓)(1)
( N−2

2 )ℓ(t) γ̃θj
χ−ℓρ̃(θN−1)

 ,
(4.361)

where the functions Ĉ(b)(1)
M̃ℓ

(t) and D̂
(b)(1)
M̃ℓ

(t) (b =↑, ↓) are obtained by making the
replacements θN → π/2 − it, n → M̃ −N/2, ϕ(1)

nℓ (θN) → ϕ̂
(1)
M̃ℓ

(t), ψ(1)
nℓ (θN) → ψ̂

(1)
M̃ℓ

(t)
in the functions C(b)(1)

nℓ (θN) and D(b)(1)
nℓ (θN) (b =↑, ↓), respectively, in eq. (4.44).
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Now, let us prove eq. (4.148) for the t-component of Ψ(I;−;(± N−2
2 )ℓ;ρ̃)

µ . We will show that
the two sides of eq. (4.148) are equal by making use of the lowering operators (4.356)
and (4.357). We want to show

Ψ(I;−;(± N−2
2 )ℓ;ρ̃)

t =
(
∂

∂t
± i

2γt
)

Λ(−;ℓ;ρ̃)
± (4.362)

which is expressed in terms of upper and lower components as

−i


ϕ̂

(1)
( N−2

2 )ℓ(t)χ−ℓρ̃(θN−1)

∓iψ̂(1)
( N−2

2 )ℓ(t)χ−ℓρ̃(θN−1)

 = 2
ℓ



[
∂
∂t
ϕ̂

(0)
N
2 ,ℓ

(t) − i
2 ψ̂

(0)
N
2 ,ℓ

(t)
]
χ−ℓρ̃(θN−1)

∓
[
i ∂
∂t
ψ̂

(0)
N
2 ,ℓ

(t) − 1
2 ϕ̂

(0)
N
2 ,ℓ

(t)
]
χ−ℓρ̃(θN−1)

 ,
(4.363)

[where we have used eq. (4.16) and γt = iγN ] or equivalently
ℓ

2 ϕ̂
(1)
( N−2

2 )ℓ(t) = ℓ

sin x ϕ̂
(0)
( N−2

2 )ℓ(t) = ∂

∂x
ϕ̂

(0)
N
2 ,ℓ

(t) + 1
2 ψ̂

(0)
N
2 ,ℓ

(t) (4.364)
ℓ

2 ψ̂
(1)
( N−2

2 )ℓ(t) = ℓ

sin x ψ̂
(0)
( N−2

2 )ℓ(t) = ∂

∂x
ψ̂

(0)
N
2 ,ℓ

(t) − 1
2 ϕ̂

(0)
N
2 ,ℓ

(t), (4.365)

where we have used eqs. (4.142) and (4.144). Then, by using the formulae (4.354) and
(4.355) we rewrite eqs. (4.364) and (4.365) as(

sin x d
dx

− 1
2 cotx+ ℓ+ (N − 1)/2

N − 1

)
ϕ̂

(0)
N
2 ,ℓ

(t) = N ℓ

N − 1 ϕ̂
(0)
( N−2

2 )ℓ(t) (4.366)

and (
sin x d

dx
− 1

2 cotx− ℓ+ (N − 1)/2
N − 1

)
ψ̂

(0)
N
2 ,ℓ

(t) = N ℓ

N − 1 ψ̂
(0)
( N−2

2 )ℓ(t), (4.367)

respectively. It is easy to verify that eq. (4.366) is equal to the lowering operator (4.356)
acting on ϕ̂(0)

N
2 ,ℓ

(t), while eq. (4.367) is equal to the lowering operator (4.357) acting on
ψ̂

(0)
N
2 ,ℓ

(t). Hence, the two sides of the time component of eq. (4.148) are equal. The

rest of the components of eq. (4.148), i.e. Ψ(I;−;(± N−2
2 )ℓ;ρ̃)

θj
=
(
∇θj

± i
2γθj

)
Λ(−;ℓ;ρ̃)

±

(j = 1, ..., N −1), can be proved straightforwardly just by using eqs. (4.366) and (4.367),
as well as formulae (4.354) and (4.355).

4.15.2 Pure gauge modes for strictly massless spin-5/2 field, N
even

The type-I and type-II modes for the strictly massless spin-5/2 field (with M̃ = ±N/2
- see eq. (4.150)) are ‘pure gauge’ modes. In this Subsection, we briefly describe how
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to obtain the ‘pure gauge’ expression in eq. (4.150). We denote the vector-spinors
λ

(B;ℓ̃)
±ν (t,θN−1) in eq. (4.150) as λ(B;σ;ℓ;ρ̃)

±ν (t,θN−1) (σ = ±, B = I, II and ℓ = 2, 3, ...).
Since the calculations for σ = − and σ = + are similar, below we discuss only the case
with σ = −.
Pure gauge modes of type-I. The type-I modes Ψ(I;−;(± N

2 )ℓ;ρ̃)
µν for the strictly massless

spin-5/2 field (M̃ = ±N/2) are found by combining eq. (4.146) with eqs. (4.71). The
‘time-time component’ is

Ψ(I;−;(± N
2 )ℓ;ρ̃)

tt (t,θN−1) = (−1) ×

 ϕ̂
(2)
N
2 ,ℓ

(t)χ−ℓρ̃(θN−1)
∓iψ̂(2)

N
2 ,ℓ

(t)χ−ℓρ̃(θN−1)

 . (4.368)

Similarly, since the TT vector-spinors λ(B;−;ℓ;ρ̃)
±µ (t,θN−1) in eq. (4.150) satisfy(

/∇ ± i
N + 2

2

)
λ

(B;−;ℓ;ρ̃)
±µ = 0,

they are given by the analytic continuation of the type-I STSSH’s of rank 1 in eqs. (4.43)
and (4.44). The ‘time component’ is given by

λ
(I;−;ℓ;ρ̃)
±t (t,θN−1) = − 2i

ℓ− 1

 ϕ̂
(1)
( N+2

2 )ℓ(t)χ−ℓρ̃(θN−1)
∓iψ̂(1)

( N+2
2 )ℓ(t)χ−ℓρ̃(θN−1)

 . (4.369)

(The factor of 2/(ℓ−1) is inserted for the same reason as the factor of 2/ℓ in eqs. (4.358)
and (4.359).) Then, by using eqs. (4.368) and (4.369), we expand the two sides of
Ψ(I;−;(± N

2 )ℓ;ρ̃)
tt =

(
∇t ± i

2γt
)
λ

(I;−;ℓ;ρ̃)
±t [see eq. (4.150)] and find

ℓ− 1
sin x ϕ̂

(1)
N
2 ,ℓ

(t) = ∂

∂x
ϕ̂

(1)
( N+2

2 )ℓ(t) + 1
2 ψ̂

(1)
( N+2

2 )ℓ(t) (4.370)
ℓ− 1
sin x ψ̂

(1)
N
2 ,ℓ

(t) = ∂

∂x
ψ̂

(1)
( N+2

2 )ℓ(t) − 1
2 ϕ̂

(1)
( N+2

2 )ℓ(t). (4.371)

These equations are proved in the same way as eqs. (4.364) and (4.365). Thus, we
have verified the ‘time-time component’ of the ‘pure gauge’ expression (4.150). The
rest of the components of eq. (4.150), i.e. Ψ(I;−;(± N

2 )ℓ;ρ̃)
tθj

=
(
∇(t ± i

2γ(t
)
λ

(I;−;ℓ;ρ̃)
±θj) and

Ψ(I;−;(± N
2 )ℓ;ρ̃)

θkθj
=
(
∇(θk

± i
2γ(θk

)
λ

(I;−;ℓ;ρ̃)
±θj) , can be proved using eqs. (4.370) and (4.371).

Pure gauge modes of type-II. By working as in the case of type-I modes presented
above, we find

Ψ(II-Ã;−;(± N
2 )ℓ;ρ̃)

tθj
(t,θN−1) = (−i) ×

 ϕ̂
(0)
N
2 ,ℓ

(t)ψ̃(Ã;ℓρ̃)
−θj

(θN−1)

∓iψ̂(0)
N
2 ,ℓ

(t)ψ̃(Ã;ℓρ̃)
−θj

(θN−1)

 (4.372)
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and

λ
(II-Ã;−;ℓ;ρ̃)
±θj

(t,θN−1) = 4
ℓ− 1

 ϕ̂
(−1)
( N+2

2 )ℓ(t)ψ̃
(Ã;ℓρ̃)
−θj

(θN−1)

∓iψ̂(−1)
( N+2

2 )ℓ(t)ψ̃
(Ã;ℓρ̃)
−θj

(θN−1)

 . (4.373)

(Recall that for type-II modes we have Ψ(II-Ã;σ;(± N
2 )ℓ;ρ̃)

tt = 0 and λ(II-Ã;σ;ℓ;ρ̃)
±t = 0.) Then,

we can verify the ‘pure gauge’ expression (4.150) by working as in the case of type-I
modes presented above.

4.15.3 Pure gauge modes for partially massless spin-5/2 field, N
even

The type-I modes [eq. (4.153)] for the partially massless spin-5/2 field (with M̃ =
±(N − 2)/2) are ‘pure gauge’ modes. Below we describe briefly how to obtain the
‘pure gauge’ expression in eq. (4.153) for N even. (We present the proof only for the
tt-component of eq. (4.153).) We denote the Dirac spinors φ(ℓ̃)

± (t,θN−1) in eq. (4.153)
as φ(σ;ℓ;ρ̃)

± (t,θN−1) (σ = ± and ℓ = 2, 3, ...). Again, the calculations for σ = − and
σ = + are similar and, thus, we discuss only the case with σ = −.

For later convenience let us write down explicit expressions for lowering operators that
lower the parameter M̃ to M̃ − 2 of the functions f̂ (a)

M̃ℓ
(t) ∈ {ϕ̂(a)

M̃ℓ
(t), ψ̂(a)

M̃ℓ
(t)}. By

applying each of the lowering operators (4.356), (4.357) twice, we find

L̂
(M̃−1;a)
f L̂

(M̃ ;a)
f f̂

(a)
M̃ℓ

(t) =
 sin2 x

∂2

∂x2 + bf (x) ∂

∂x
+ cf (x)

f̂ (a)
M̃ℓ

(t)

=
M̃(M̃ − 1)(M̃ − ℓ− N

2 )(M̃ − 1 − ℓ− N
2 )

(M̃ − 1
2)(M̃ − 3

2)
f̂

(a)
(M̃−2)ℓ(t),

(4.374)

(recall x = π/2 − it) where

bf (x) = sin x cosx
(
−2M̃ + 1 + 2a+N

)
+ sf

(ℓ+ N−1
2 )(M̃ − 1) sin x

(M̃ − 1/2)(M̃ − 3/2)
(4.375)
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and

cf (x) =
(ℓ+ N−1

2 )2

4(M̃ − 1/2)(M̃ − 3/2)

+ sf
(ℓ+ N−1

2 ) cosx
2

(
−M̃ + a+ N−1

2
M̃ − 3/2

+
1 − M̃ + a+ N−1

2
M̃ − 1/2

)

+
(

−M̃ + a+ N − 1
2

)(
1 − M̃ + a+ N − 1

2

)
− sin2 x

(
−M̃ + a+ N − 1

2

)(
2 − M̃ + a+ N − 1

2

)
, (4.376)

with sf = 1 if f̂ (a)
M̃ℓ

(t) = ϕ̂
(a)
M̃ℓ

(t) and sf = −1 if f̂ (a)
M̃ℓ

(t) = ψ̂
(a)
M̃ℓ

(t).
Now we will verify the ‘time-time component’ of eq. (4.153) with negative spin projection
(σ = −), i.e.

Ψ(I;−;(± N−2
2 )ℓ;ρ̃)

tt (t,θN−1) =
(

∇t∇t ± iγt∇t + 3
4gtt

)
φ

(−;ℓ;ρ̃)
± (t,θN−1). (4.377)

Since the spinors φ(σ;ℓ;ρ̃)
± (t,θN−1) satisfy the Dirac equation

[
/∇ ± i(N + 2)/2

]
φ

(σ;ℓ;ρ̃)
± =

0, they are given by [26]

φ
(−;ℓ;ρ̃)
± (t,θN−1) = 4

ℓ(ℓ− 1)

 ϕ̂
(0)
( N+2

2 )ℓ(t)χ−ℓρ̃(θN−1)
∓iψ̂(0)

( N+2
2 )ℓ(t)χ−ℓρ̃(θN−1)

 , (4.378)

φ
(+;ℓ;ρ̃)
± (t,θN−1) = 4

ℓ(ℓ− 1)

 iψ̂(0)
( N+2

2 )ℓ(t)χ+ℓρ̃(θN−1)
∓ϕ̂(0)

( N+2
2 )ℓ(t)χ+ℓρ̃(θN−1)

 , (4.379)

where the factor 4/ (ℓ [ℓ− 1]) is motivated naturally below. On the other hand, the
tt-component of the type-I mode of the partially massless spin-5/2 field is given by

Ψ(I;−;(± N−2
2 )ℓ;ρ̃)

tt (t,θN−1) = (−1) ×

 ϕ̂
(2)
( N−2

2 )ℓ(t)χ−ℓρ̃(θN−1)
∓iψ̂(2)

( N−2
2 )ℓ(t)χ−ℓρ̃(θN−1)

 . (4.380)

By substituting eqs. (4.378) and (4.380) into eq. (4.377) we find
ℓ(ℓ− 1)

4 ϕ̂
(2)
( N−2

2 )ℓ(t) = ℓ(ℓ− 1)
sin2 x

ϕ̂
(0)
( N−2

2 )ℓ(t)

=
(
∂2

∂x2 + 3
4

)
ϕ̂

(0)
( N+2

2 )ℓ(t) + ∂

∂x
ψ̂

(0)
( N+2

2 )ℓ(t) (4.381)

ℓ(ℓ− 1)
4 ψ̂

(2)
( N−2

2 )ℓ(t) = ℓ(ℓ− 1)
sin2 x

ψ̂
(0)
( N−2

2 )ℓ(t)

=
(
∂2

∂x2 + 3
4

)
ψ̂

(0)
( N+2

2 )ℓ(t) − ∂

∂x
ϕ̂

(0)
( N+2

2 )ℓ(t). (4.382)
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Equation (4.381) is proved using the lowering operator (4.374) as follows. First, we
express ∂ψ̂(0)

( N+2
2 )ℓ /∂x in eq. (4.381) in terms of ∂ϕ̂(0)

( N+2
2 )ℓ /∂x and ϕ̂

(0)
( N+2

2 )ℓ by making
use of the formulae (4.354) and (4.355). Then, after a long calculation, we rewrite
eq. (4.381) as

ℓ(ℓ− 1)
sin2 x

ϕ̂
(0)
( N−2

2 )ℓ = (N − 1)(N + 1)
N(N + 2) sin2 x

(
L̂

( N
2 ;a=0)

f L̂
( N+2

2 ;a=0)
f ϕ̂

(0)
( N+2

2 )ℓ

)
, (4.383)

which is readily verified using the lowering relation (4.374). Equation (4.382) is proved
in the same way. Thus, we have verified the tt-component of the ‘pure gauge’ expres-
sion (4.153).
Let us now show that our ‘pure gauge’ expression for the type-I modes Ψ(I;σ;(M̃=+1)ℓ;ρ̃)

µν

on dS4 in eq. (4.153) is equal to the gamma-traceless part of the gauge transformation
that is proposed in Ref. [9] (for a specific choice of the spinor gauge function in the gauge
transformation of Ref. [9]). In order to compare our results with the results of Ref. [9]
we let N = 4 and M̃ = +(N − 2)/2 = +1 in eq. (4.153). [Now, the spinors φ(σ;ℓ;ρ̃)

+ in
eq. (4.153) satisfy /∇φ(σ;ℓ;ρ̃)

+ = −3iφ(σ;ℓ;ρ̃)
+ .] By using units in which the cosmological

constant is Λ = 3, the gauge transformation for the partially massless spin-5/2 field ψµν
in Ref. [9] is

δψµν =
(

∇(µ∇ν) − 1
4γ(µ∇ν) /∇ + 15

16gµν
)
ϵ (4.384)

=
(

∇(µ∇ν) + 3i
4 γ(µ∇ν) + 15

16gµν
)
ϵ, (4.385)

where we have chosen ϵ to be a solution of the equation /∇ϵ = −3i ϵ. (For this choice
it is clear that our spinors φ(σ;ℓ;ρ̃)

+ are the mode functions corresponding to the field ϵ.)
Note that for this choice of ϵ the gauge transformation of the auxiliary field is zero -
see Ref. [9]. Also, for this choice of ϵ it can be readily verified that gµνδψµν = 0, but
γµδψµν ̸= 0. Let δψ′

µν be the gamma-traceless part of δψµν , i.e.

δψ′
µν = δψµν − γµ

6 γ
αδψαν − γν

6 γ
αδψαµ, (4.386)

where γαδψ′
αν = 0 and gµνδψ′

µν = 0. Then, we can straightforwardly show that

δψ′
µν =

(
∇(µ∇ν) + iγ(µ∇ν) + 3

4gµν
)
ϵ, (4.387)

which is in precise agreement with the expression for our type-I modes in eq. (4.153).
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5

New conformal-like symmetry of strictly
massless fermions in four-dimensional de

Sitter space

Abstract

We present new infinitesimal ‘conformal-like’ symmetries for the field equations
of strictly massless spin-s ≥ 3/2 totally symmetric tensor-spinors (i.e. gauge
potentials) on 4-dimensional de Sitter spacetime (dS4). The corresponding
symmetry transformations are generated by the five conformal Killing vectors
of dS4, but they are not conventional conformal transformations. We show
that the algebra generated by the ten de Sitter (dS) symmetries and the five
conformal-like symmetries closes on the conformal-like algebra so(4, 2) up to
gauge transformations of the gauge potentials. Furthermore, we demonstrate
that the two sets of physical mode solutions, corresponding to the two helicities
±s of the strictly massless theories, form a direct sum of Unitary Irreducible
Representations (UIRs) of the conformal-like algebra. We also fill a gap in the
literature by explaining how these physical modes form a direct sum of Discrete
Series UIRs of the dS algebra so(4, 1).

5.1 INTRODUCTION

Four-dimensional de Sitter spacetime (dS4) is believed to be a good approximation of
the very early epoch of our Universe (Inflation). Also, according to recent data indicating
the accelerated expansion of space [50, 48, 43], there is evidence to suggest that our
Universe is asymptotically approaching another de Sitter phase.

214



5.1. Introduction

The D-dimensional de Sitter spacetime (dSD) is the maximally symmetric solution of
the vacuum Einstein equations with positive cosmological constant Λ,

Rµν − 1
2gµνR + Λgµν = 0, (5.1)

where gµν is the de Sitter metric tensor, Rµν is the Ricci tensor and R is the Ricci scalar.
In this paper, we use units in which 2Λ = (D − 1)(D − 2), while the Riemann tensor is

Rµνρσ = gµρ gνσ − gνρ gµσ. (5.2)

De Sitter (dS) field theories are known to exhibit characteristics with no Minkowskian
analogs. Two such interesting characteristics of integer-spin fields on dSD - related to
the representation theory of the dS algebra so(D, 1) - are:

• The existence of unitarily forbidden ranges for the mass parameters of integer-spin
fields depending on both D and the spin of the fields [26, 29].

• The existence of exotic unitary “partially massless” fields for spin s ≥ 2 [12, 13,
29, 16, 17, 18].

For the sake of completeness, let us give here some details about these two field-theoretic
characteristics. As discovered by Higuchi [26, 29, 28], massive (i.e. non-gauge-invariant)
totally symmetric tensor fields of spin s ≥ 1, satisfying(

∇α∇α −m2 + (s− 2)(s+D − 3) − s
)
hµ1...µs = 0,

∇αhαµ2...µs = 0, gαβhαβµ3...µs , (5.3)

are always non-unitary for the following values of the mass parameter:

m2 < (s− 1)(s+D − 4).

Unitary massive theories thus obey the ‘Higuchi bound’

m2 > (s− 1)(s+D − 4). (5.4)

Moreover, Higuchi observed that for the following special values of the mass parameter [26,
29, 28]:

m2 = (τ − 1)(2s+D − 4 − τ), (τ = 1, ..., s), (5.5)

the theory is unitary, while at the same time it enjoys a gauge symmetry. A field with
mass parameter given by Eq. (5.5) is a gauge potential known as partially massless field
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of depth τ in the modern literature [16, 17, 18].1 The case with τ = 1 corresponds
to the theory known as strictly massless. In 4 dimensions, a strictly massless field has
two propagating helicity degrees of freedom ±s, while a partially massless field of depth
τ has 2τ of them: (±s,±(s − 1), ...,±(s − τ + 1)) [16, 17, 18]. In dS field theory,
the strictly massless fields are the closest analogs of Minkowskian massless fields, while
partially massless fields of depth τ > 1 have no Minkowsian counterparts. The Unitary
Irreducible Representations (UIRs) of the dS algebra so(D, 1) corresponding to totally
symmetric strictly/partially massless integer-spin fields were first discussed in Higuchi’s
PhD thesis [29, 28]. More recent discussions concerning both totally symmetric and
mixed symmetry integer-spin fields can be found in Ref. [7].

What about the representation theory of fermions on dSD?

Unlike the integer-spin case, the representation-theoretic properties of fermionic fields on
dSD are not well-studied.
Recent results. Although the phenomena of strict and partial masslessness also occur
in the case of spin-s ≥ 3/2 fermionic fields on dSD [16, 17, 18], the study of the
corresponding unitarity properties was absent from the (mathematical) physics literature
for a long time. Interestingly, as the author has recently shown [33, 35], four-dimensional
dS space plays a distinguished role in the unitarity of strictly/partially massless (totally
symmetric) tensor-spinors on dSD (D ≥ 3). More specifically, the representations of the
dS algebra so(D, 1), which correspond to strictly/partially massless totally symmetric
tensor-spinors of spin s ≥ 3/2, are non-unitary unless D = 4 [33, 34, 35].2

1The partially massless spin-2 field was first discovered by Deser and Nepomechie [12, 13].
2Note: For the cases with spin s = 3/2, 5/2, these results were obtained following two different

approaches: a) on the one hand, by performing a technical analysis of the representation-theoretic
properties of the mode solutions on global dSD (this includes constructing the mode solutions explicitly,
studying their transformation properties under so(D, 1), and investigating the existence/non-existence
of dS invariant, positive definite scalar products in the space of mode solutions) [34, 35], and, b)
on the other hand, by carefully examining the list of the dS algebra UIRs in the decomposition
so(D, 1) ⊃ so(D) [33] and inferring (non-)unitarity from the (mis-)match between the UIR and the field-
theoretic representation labels. For the cases with spin s ≥ 7/2, the results were obtained in Ref. [33]
motivated only by the examination of the so(D, 1) UIRs and the (mis-)match of the representation
labels. The technical analysis of the representation-theoretic properties of the mode solutions with
spin s ≥ 7/2 is still absent from the literature for D ̸= 4 (the D = 4 case is studied in the present
paper). Thus, if we want to be careful - as we should, if we wish to avoid the representation-theoretic
confusion that appeared in the past dS literature - the results of Ref. [33] for s ≥ 7/2 may be viewed as
a “suggestion” motivated by the examination of the so(D, 1) UIRs. This suggestion can be confirmed
by studying the representation-theoretic properties of the spin-s ≥ 7/2 mode solutions on dSD, as in
the spin-s = 3/2, 5/2 cases [34, 35]. This is something that we leave for future work.
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5.1. Introduction

In the present paper, we uncover a new group-theoretic feature of all strictly massless
totally symmetric spin-s ≥ 3/2 tensor-spinors on dS4: these fermionic gauge potentials
possess a conformal-like so(4, 2) global symmetry algebra. Moreover, we show that
the mode solutions with fixed helicity, i.e. the modes forming Unitary Irreducible
Representations (UIRs) of the dS algebra so(4, 1) [33], also form UIRs of the larger
conformal-like so(4, 2) algebra.

5.1.1 List of main results and methodology

Here we give some information about our main results and investigations concerning the
new conformal-like symmetries of strictly massless fermions on dS4.

• We present new conformal-like infinitesimal transformations (5.80) for strictly
massless totally symmetric tensor-spinors on dS4. These new transformations are
generated by conformal Killing vectors of dS4 and they are symmetries of the field
equations [Eqs. (5.20) and (5.21)], i.e. they preserve the solution space of the field
equations. In this paper, by conformal Killing vectors we mean the five genuine
conformal Killing vectors of dS4 with non-vanishing divergence - see Eq. (5.77).

• The conformal-like transformations (5.80), together with the ten known dS trans-
formations (5.14), generate an algebra that is isomorphic to so(4, 2). However,
this conformal-like algebra closes up to field-dependent gauge transformations.

• We fill a gap in the literature by clarifying the way in which the spin-s ≥ 3/2
physical (i.e. non-gauge) mode solutions with fixed helicity form a direct sum of
Discrete Series UIRs of the dS algebra so(4, 1). The modes with opposite helicity
correspond to different UIRs - this is also true in the case of strictly massless
totally symmetric tensors [28]. (Recall that a strictly massless field has only two
propagating helicities ±s corresponding to two sets of physical mode solutions
with opposite helicities.)

• Then, we show that the physical mode solutions also form a direct sum of UIRs
of the conformal-like so(4, 2) algebra. We arrive at this result by following two
basic steps (which stem from the mathematical definitions of representation-
theoretic irreducibility and unitarity). First, we show that the mode solutions
with fixed helicity transform among themselves under all so(4, 2) transformations
(this means under the ten dS isometries (5.14), as well as the five conformal-like
symmetries (5.80)). Then, we show that there is a so(4, 2)-invariant, and gauge-
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invariant, positive definite scalar product for each set of mode solutions with fixed
helicity.

• As the name suggests, our conformal-like symmetry transformations are not con-
ventional infinitesimal conformal transformations. This is exemplified as follows.
For the cases with spin s = 3/2, 5/2, by investigating the conformal-like transfor-
mations of the field strength tensor-spinors (i.e. curvatures) of the strictly massless
fermions3, we find that these transformations correspond to the product of two
transformations: an infinitesimal axial rotation (i.e. multiplication with γ5) times
an infinitesimal conformal transformation. For the cases with spin s ≥ 7/2, we
present a (justified) conjecture concerning the expressions for the conformal-like
transformations of the field-strength tensor-spinors.
We conclude this part of the Introduction with a brief literature review. The UIRs
of so(4, 1) corresponding to certain fermions on dS4 have been also discussed in
Ref. [21]. The mode solutions and the Quantum Field Theory of spin-1/2 fermions
on dSD have been discussed in various articles, such as Refs. [8, 36, 42, 46, 38, 40,
6, 49, 11, 10, 21, 31, 2]. The invariance of maximal-depth integer-spin partially
massless theories on dS4 under conformal transformations has been investigated in
Ref. [15] - however, interestingly, a representation-theoretic study suggests that
the associated symmetry algebra does not correspond to the conformal algebra [4].

5.1.2 Outline, notation, and conventions

The rest of this paper is organised as follows. In Section 5.2, we review the basics
concerning (strictly massless) tensor-spinors on dS4. In Section 5.3, we review the
classification of the UIRs of the dS algebra so(4, 1). In Section 5.4, we discuss the (pure
gauge and physical) mode solutions for strictly massless fermions of spin s ≥ 3/2 on
global dS4. In particular, we use the method of separation of variables to express the
physical mode solutions on global dS4 in terms of tensor-spinor spherical harmonics on
S3 (these spherical harmonics are not constructed explicitly here). We also identify the
analogs of the flat-space positive and negative frequency modes. In Section 5.5, we
discuss the way in which the (positive frequency) physical modes with fixed helicity form
a direct sum of Discrete Series UIRs of so(4, 1). In Section 5.6, we present our new

3The field strength tensor(-spinor), also known as “generalised Weyl tensor(-spinor)” (see, e.g. [4]),
is invariant under gauge transformations. It plays the role of the electromagnetic tensor Fµν = ∂[µAν]
in the case of the U(1) gauge potential Aµ - or, likewise, the role of the linearised Weyl tensor in the
case of the spin-2 gauge potential (graviton) in linearised gravity.
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conformal-like symmetry transformations and we show that the associated symmetry
algebra (generated by both dS and conformal-like transformations) closes on so(4, 2) up to
gauge transformations. In Section 5.7, we show that the physical modes that form a direct
sum of so(4, 1) UIRs, also form a direct sum of so(4, 2) UIRs. In Section 5.8, we discuss
the conformal-like transformations of the gauge invariant filed strength tensor-spinors.
There are two Appendices, 5.10 and 5.11, in which we include technical details that were
omitted in the main text.
Notation and conventions. We use the mostly plus metric sign convention for dS4.
Lowercase Greek tensor indices refer to components with respect to the ‘coordinate basis’
on dS4. Coordinate basis tensor indices on S3 are denoted as µ̃1, µ̃2, ... . Lowercase
Latin tensor indices refer to components with respect to the vielbein basis. Repeated
indices are summer over. We denote the symmetrisation of indices with the use of round
brackets, e.g. A(µν) ≡ (Aµν + Aνµ)/2, and the anti-symmetrisation with the use of
square brackets, e.g. A[µν] ≡ (Aµν − Aνµ)/2. Spinor indices are always suppressed
throughout this paper. The rank of spin-s tensor-spinors on dS4 is r (i.e. s = r + 1/2).
The complex conjugate of the number z is denoted as z∗. By conformal Killing vector
we mean a genuine conformal Killing vector of dS4 with non-vanishing divergence - see
Eq. (5.77).

5.2 BACKGROUND MATERIAL FOR STRICTLY MASSLESS FERMIONS
ON dS4

5.2.1 Field equations for higher-spin fermions on dS4

Fermions of spin s ≡ r + 1/2 ≥ 3/2 on dS4 can be described by totally symmetric
tensor-spinors Ψµ1...µr that satisfy the on-shell conditions [17, 14, 45]:(

/∇ +M
)

Ψµ1...µr = 0 (5.6)

∇αΨαµ2...µr = 0, γαΨαµ2...µr = 0, (5.7)

where M is the mass parameter, γα are the four gamma matrices and /∇ = γν∇ν is
the Dirac operator. We call the conditions in Eq. (5.7) the transverse-traceless (TT)
conditions.
The ‘curved space gamma matrices’, γµ(x), are defined with the use of the vierbein fields
as γµ(x) = eµ b(x)γb, where γb (b = 0, 1, 2, 3) are the spacetime-independent gamma
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matrices. The gamma matrices γµ(x) satisfy the anti-commutation relations

γµγν + γνγµ = 2gµν 1, (5.8)

where 1 is the spinorial identity matrix. The vierbein and co-vierbein fields satisfy

eµ
a eν

bηab = gµν , eµa eµ
b = δba, (5.9)

where ηab = diag(−1, 1, 1, 1). The fifth gamma matrix is determined as [23]

ϵµνρσ = iγ5γ[µγνγργσ], (5.10)

where ϵµνρσ are the components of the dS4 volume element. In the vierbein (i.e.
orthonormal frame) basis we have ϵ0123 = +1. The matrix γ5 anti-commutes with the
other four gamma matrices, and, hence, with the Dirac operator.
The derivative ∇ν acts on our totally symmetric tensor-spinors as

∇νΨµ1...µr =
(
∂ν + 1

4ωνbcγ
bγc
)

Ψµ1...µr − r Γλν(µ1Ψµ2...µr)λ, (5.11)

where Γλνµ are the Christoffel symbols. The spin connection, ωνbc = ων[bc] = eν
aωabc, is

determined as
∂µe

ρ
b + Γρµσeσb − ωµ

c
b e

ρ
c = 0. (5.12)

The gamma matrices are covariantly constant, ∇νγ
µ = 0. The commutator of covariant

derivatives acting on totally symmetric tensor-spinors is given by

[∇µ,∇ν ]Ψµ1...µr = 1
2(γµγν − gµν)Ψµ1...µr

+ r
(
gµ(µ1Ψµ2...µr)ν − gν(µ1Ψµ2...µr)µ

)
. (5.13)

5.2.2 Basics about dS symmetries of the field equations

The dS algebra is generated by the ten Killing vectors of dS4 satisfying ∇(µξν) = 0. The
dS generators act on solutions Ψµ1...µr in terms of the spinorial generalisation of the Lie
derivative - also known as the Lie-Lorentz derivative [32, 39]. The Lie-Lorentz derivative
acts on arbitrary tensor-spinors as follows:

LξΨµ1...µr = ξν∇νΨµ1...µr + ∇µ1ξ
ν Ψνµ2...µr + ∇µ2ξ

ν Ψµ1νµ3...µr + ...+ ∇µrξ
ν Ψµ1...µr−1ν

+ 1
4∇κξλγ

κλΨµ1...µr ., (5.14)
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where γκλ = γ[κγλ]. The Lie-Lorentz derivative LξΨµ1...µr conveniently describes the
infinitesimal so(4, 1) transformation of Ψµ1...µr generated by the Killing vector ξµ. From
the properties [39]:

Lξγa = 0,

Lξ∇νΨµ1...µr = ∇νLξΨµ1...µr , (5.15)

it follows that if Ψµ1...µr is a solution of Eqs. (5.6) and (5.7), then so is LξΨµ1...µr . In
other words, the Lie-Lorentz derivative is a symmetry of the field equations for any value
of M . It is easy to conclude that the associated symmetry algebra is isomorphic to
so(4, 1) as [39]

[Lξ,Lξ′ ]Ψµ1...µr = L[ξ,ξ′]Ψµ1...µr (5.16)

for any two Killing vectors ξµ and ξ′µ.
The dS algebra, so(4, 1), has four non-compact generators (‘dS boosts’) and six compact
ones (‘dS rotations’). The compact generators generate the so(4) rotational subalgebra
of so(4, 1). For any fixed value of M , the mode solutions of the field equations (5.6)
and (5.7) form an infinite-dimensional representation of so(4, 1). The eigenvalue of the
quadratic Casimir for this representation is given by [33]

C =
∑

dS boosts
LξLξ −

∑
ξ∈so(4)

LξLξ = −M2 − 9
4 + s(s+ 1), (5.17)

where s = r + 1/2 ≥ 3/2 4. The unitarity of the representation depends on the value
of the mass parameter M [33]. In this paper, we are interested in the strictly massless
theories, which appear for special imaginary values of M (see Subsection 5.2.3) - for
discussions on arbitrary values of M in any spacetime dimension see Ref. [33].

5.2.3 Strictly massless fermions on dS4

For real values of M , Eqs. (5.6) and (5.7) describe a unitary massive theory with 2s+ 1
propagating degrees of freedom [17, 14]. The theory enjoys a gauge symmetry for each
of the following imaginary tunings of M [17, 14]:

M2 = − (r − τ + 1)2 . (5.18)

4The expression (5.17) for the quadratic Casimir is also true for spin-1/2 fields.
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As in the bosonic case discussed in the Introduction, the value τ = 1 corresponds to the
strictly massless theory with two propagating helicities. Each of the values τ = 2, ..., r
corresponds to a partially massless field with 2τ helicities: (±s,±(s− 1), ...,±(s− τ +
1)) [17].
In this paper, we are interested in the equations for strictly massless fermions, i.e.
Eqs. (5.6) and (5.7) with mass parameter given by [17, 14]

M = ±i r. (5.19)

Strict masslessness occurs for either of the two signs for the mass parameter in Eq. (5.19).
However, the representations of so(4, 1) corresponding to the ‘+’ sign are equivalent to
the representations corresponding to the ‘−’ sign [33]. This is easy to understand as, if
Ψµ1...µr satisfies

/∇Ψµ1...µr = −M Ψµ1...µr ,

then the field Ψ′
µ1...µr

≡ γ5Ψµ1...µr satisfies

/∇Ψ′
µ1...µr

= +M Ψ′
µ1...µr

,

while, also, γ5 commutes with all dS transformations (5.14) [33].
Based on the discussion of the previous paragraph, below we will only discuss the field
with the ‘+’ sign in Eq. (5.19). Thus, from now on, Ψµ1...µr denotes the strictly massless
field satisfying (

/∇ + ir
)

Ψµ1...µr = 0, (5.20)

∇αΨαµ2...µr = 0, γαΨαµ2...µr = 0. (5.21)

Equations (5.6) and (5.7) are invariant under the following restricted gauge transforma-
tions:

δresΨµ1...µr = ∇(µ1λµ2...µr) + i

2γ(µ1λµ2...µr), (5.22)

where the gauge functions λµ2...µr are totally symmetric tensor-spinors of rank r− 1 that
satisfy (

/∇ + i(r + 1)
)
λµ2...µr = 0, (5.23)

∇αλαµ3...µr = 0, γαλαµ3...µr = 0. (5.24)

For r = 0, i.e. in the case of the massless spin-1/2 field satisfying /∇Ψ = 0, the theory
does not have gauge symmetry.
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5.3 CLASSIFICATION OF THE UIRS OF THE DS ALGEBRA

In this Section, we review the classification of the so(4, 1) UIRs in the decomposition
so(4, 1) ⊃ so(4) [47, 41]. An irreducible representation of so(4) appears at most once in
a UIR of so(4, 1) [19].
Let us recall that an irreducible representation of so(4) is specified by the highest
weight [5, 20]

f⃗ = (f1, f2), (5.25)

where

f1 ≥ |f2|. (5.26)

The numbers f1 and f2 are both integers or half-odd integers, while f2 can be negative.
The representation (f1,−f2) is the ‘mirror image’ of (f1, f2) [51].
UIRs of so(4,1). A UIR of so(4, 1) is specified by two numbers F⃗ = (F0, F1).
The number F1 ≥ 0 is an integer or half-odd integer. For the so(4) representations
f⃗ = (f1, f2) contained in the UIR F⃗ = (F0, F1) we have:

f1 ≥ F1 ≥ |f2|. (5.27)

The UIRs of so(4, 1) are listed below [47, 41]:
• Principal Series Dprin( F⃗ ):

F0 = −3
2 + iy, (y > 0). (5.28)

F1 is an integer or half-odd integer.

• Complementary Series Dcomp( F⃗ ) :

−3
2 ≤ F0 < −ñ, ñ ∈ {0, 1}. (5.29)

If ñ = 0, then F1 = 0, while for the so(4) content we have f2 = 0. If ñ = 1, then
F1 is a positive integer.

• Exceptional Series Dex( F⃗ ) :

F0 = −1. (5.30)

F1 is a positive integer, while f2 = 0.
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• Discrete Series D±( F⃗ ) : F0 is real, while F0 and F1 are both integers or
half-odd integers. The following conditions have to be satisfied:

F1 ≥ f2 ≥ F0 + 2 ≥ 1
2 for D+( F⃗ ), (5.31)

−F1 ≤ f2 ≤ −(F0 + 2) ≤ −1
2 for D−( F⃗ ). (5.32)

For any so(4, 1) UIR, F⃗ = (F0, F1), the quadratic Casimir, C2(F⃗ ), is expressed as:

C2(F⃗ ) = F0 (F0 + 3) + F1(F1 + 1). (5.33)

5.4 MODE SOLUTIONS OF STRICTLY MASSLESS SPIN-(r + 1/2) ≥
3/2 FERMIONS

In this Section, we obtain the mode solutions of the spin-(r+1/2) ≥ 3/2 strictly massless
theories [(5.20) and (5.21)]. The spin-3/2 ans spin-5/2 mode solutions (for arbitrary
spacetime dimensions) have been already studied in Refs. [33, 34, 35].

5.4.1 Global coordinates and representation of gamma matrices

In order to obtain the mode solutions of Eqs. (5.20) and (5.21) we will work with the
global coordinates of dS4, where the line element is

ds2 = −dt2 + cosh2 t dΩ2. (5.34)

The line element of S3, dΩ2, can be parameterised as

dΩ2 = dθ2
3 + sin2 θ3

(
dθ2

2 + sin2 θ2 dθ
2
1

)
, (5.35)

where 0 ≤ θj ≤ π (for j = 2, 3) and 0 ≤ θ1 ≤ 2π. We will also use the following
notation for a point on S3: θ3 ≡ (θ3, θ2, θ1).
In global coordinates, the non-zero Christoffel symbols are

Γtθiθj
= cosh t sinh t g̃θiθj

, Γθi
θjt

= tanh t g̃θi
θj
,

Γθk
θiθj

= Γ̃θk
θiθj

, (5.36)
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where g̃θiθj
and Γ̃θk

θiθj
are the metric tensor and the Christoffel symbols, respectively, on

S3. The vierbein fields on dS4 can be chosen to be:

et0 = 1, eθi
i = 1

cosh t ẽ
θi
i, i = 1, 2, 3, (5.37)

where ẽθi
i are the dreibein fields on S3. The non-zero components of the dS spin

connection are given by

ωijk = ω̃ijk
cosh t , ωi0k = −ωik0 = − tanh t δik, i, j, k ∈ {1, 2, 3} (5.38)

where ω̃ijk is the spin connection on S3.
We will work with the following representation of gamma matrices on dS4:

γ0 = i

0 1
1 0

 , γj =
 0 iγ̃j

−iγ̃j 0

 , (5.39)

(j = 1, 2, 3) where the lower-dimensional gamma matrices, γ̃j, satisfy

{γ̃j, γ̃k} = 2δjk1, j, k = 1, 2, 3. (5.40)

The fifth gamma matrix (5.10) is given by

γ5 =
1 0

0 −1

 . (5.41)

5.4.2 Constructing the mode solutions of the strictly massless
theories

There are two kinds of spin-(r + 1/2) TT mode solutions satisfying the strictly massless
field equations [(5.20) and (5.21)] on dS4:

• The ‘physical modes’ describing the propagating degrees of freedom of the theory.
• The ‘pure gauge modes’ describing the gauge degrees of freedom of the theory.

In this Subsection, we present some details for the construction of these mode solutions.
The mode solutions on global dS4 can be constructed using the method of separation
variables. Schematically, this means that we are looking for solutions that can be expressed
as a product “function of t × function of θ3”. As we will see below, the functions
describing the θ3-dependence are tensor-spinor spherical harmonics on S3 forming UIRs
of so(4). Thus, from a representation-theoretic viewpoint, the solutions on global dS4

obtained with the method of separation of variables form so(4, 1) representations in the
decomposition so(4, 1) ⊃ so(4). The method of separation of variables has been applied
in Refs. [29, 27, 28] for integer-spin fields, in Refs. [8, 36] for spin-1/2 fields and in
Refs. [33, 35] for spin-3/2 and spin-5/2 fields.
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5.4.2.1 Physical spin-(r + 1/2) ≥ 3/2 modes on dS4

Let us start by obtaining the physical mode solutions of Eqs. (5.20) and (5.21). We
first discuss the spherical eigenmodes on S3 that describe the spatial dependence of
physical modes. Then, we discuss the time dependence of physical modes and we apply
the method of separation of variables.

Spatial dependence and so(4) content of physical modes

The spatial dependence of the spin-(r+ 1/2) physical mode solutions on dS4 is expressed
in terms of (totally symmetric) tensor-spinor spherical harmonics of rank r on S3. The
latter are the totally symmetric TT tensor-spinor eigenmodes of the Dirac operator on
S3 satisfying [30, 8]

/̃∇ψ̃(ℓ;m;k)
+µ̃1µ̃2...µ̃r

(θ3) = +i
(
ℓ+ 3

2

)
ψ̃

(ℓ;m;k)
+µ̃1µ̃2...µ̃r

(θ3), (ℓ = r, r + 1, ...)

γ̃µ̃1ψ̃
(ℓ;m;k)
+µ̃1µ̃2...µ̃r

(θ3) = ∇̃µ̃1ψ̃
(ℓ;m;k)
+µ̃1µ̃2...µ̃r

(θ3) = 0, (5.42)

and

/̃∇ψ̃(ℓ;m;k)
−µ̃1µ̃2...µ̃r

(θ3) = −i
(
ℓ+ 3

2

)
ψ̃

(ℓ;m;k)
−µ̃1µ̃2...µ̃r

(θ3), (ℓ = r, r + 1, ...)

γ̃µ̃1ψ̃
(ℓ;m;k)
−µ̃1µ̃2...µ̃r

(θ3) = ∇̃µ̃1ψ̃
(ℓ;m;k)
−µ̃1µ̃2...µ̃r

(θ3) = 0. (5.43)

The subscripts ‘±’ in ψ̃
(ℓ;m;k)
±µ̃1µ̃2...µ̃r

have been used in order to indicate the sign of the
eigenvalue in Eqs. (5.42) and (5.43), while γ̃µ̃, ∇̃µ̃ and /̃∇ = γ̃µ̃∇̃µ̃ are the gamma
matrices, covariant derivative and Dirac operator, respectively, on S3. The numbers
ℓ,m, and k are representation-theoretic labels corresponding to the chain of subalgebras
so(4) ⊃ so(3) ⊃ so(2). In particular, the number ℓ = r, r + 1, ... is the angular
momentum quantum number on S3. The numbers m and k are the angular momentum
quantum numbers on S2 and S1, respectively, and they are allowed to take the values:
m = r, r + 1, ..., ℓ and k = −(m + 1),−m, ..., 0, ...,m. The explicit form of the
tensor-spinors ψ̃(ℓ;m;k)

±µ̃1µ̃2...µ̃r
(θ3) is not needed for the purposes of this paper5.

The set of eigenmodes {ψ̃(ℓ;m;k)
+µ̃1µ̃2...µ̃r

} (with fixed ℓ) forms a so(4) representation with
highest weight (5.26) given by [30]:

f⃗+
r =

(
ℓ+ 1

2 , r + 1
2

)
, ℓ = r, r + 1, ... . (5.44)

5See Refs. [52, 8] for explicit expressions for the spinor eigenfunctions of the Dirac operator on
spheres and Refs. [9, 35] for the vector-spinor and symmetric rank-2 tensor-spinor cases. The general
representation-theoretic properties of tensor-spinor spherical harmonics of arbitrary rank have been
discussed in Ref. [30].
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5.4. Mode solutions of strictly massless spin-(r + 1/2) ≥ 3/2 fermions

Similarly, the set {ψ̃(ℓ;m;k)
−µ̃1µ̃2...µ̃r

} (with fixed ℓ) forms a so(4) representation with highest
weight [30]:

f⃗−
r =

(
ℓ+ 1

2 ,−r − 1
2

)
, ℓ = r, r + 1, ... . (5.45)

Each of the so(4) UIRs f⃗±
r =

(
ℓ+ 1

2 ,±(r + 1
2)
)

has the following content concerning
its subalgebras: the so(3) content corresponds to the so(3) highest weight m+ 1

2 with
ℓ+ 1

2 ≥ m+ 1
2 ≥ r+ 1

2 , while the so(2) content corresponds to the so(2) highest weight
k + 1/2 with m+ 1

2 ≥ k + 1
2 ≥ −m− 1

2 .
In this paper we assume that the eigenmodes in Eqs. (5.42) and (5.43) are already
normalised using the standard inner product on S3:∫

S3

√
g̃ dθ3 g̃

µ̃1ν̃1 g̃µ̃2ν̃2 ...g̃µ̃r ν̃r ψ̃
(ℓ′;m′;k′)
σ′ µ̃1µ̃2...µ̃r

(θ3)† ψ̃
(ℓ;m;k)
σ ν̃1ν̃2...ν̃r

(θ3)

= δσσ′ δℓℓ′ δmm′δkk′ , (5.46)

where σ, σ′ ∈ {+,−} and dθ3 ≡ dθ3dθ2dθ1, while g̃ is the determinant of the metric on
S3.6

Time dependence of physical modes

The physical modes Ψµ1...µr(t,θ3) on dS4 are essentially TT tensor-spinors on S3, and,
thus, we have Ψtµ2...µr = 0, where µ2, µ3, ..., µr ∈ {t, θ3, θ2, θ1} - as will become clear,
the TT conditions (5.21) will be automatically satisfied by construction. The only
non-zero components of the physical modes are the spatial components Ψµ̃1...µ̃r , where
µ̃1, µ̃2, ..., µ̃r ∈ {θ3, θ2, θ1}. These can be determined by solving the Dirac equation (5.20).
To be specific, letting µ1 = µ̃1, µ2 = µ̃2, ..., µr = µ̃r, the Dirac equation (5.20) for the
physical modes is expressed as
(
∂

∂t
+ 3 − 2r

2 tanh t
)
γtΨµ̃1...µ̃r + 1

cosh t

 0 i /̃∇
−i /̃∇ 0

Ψµ̃1...µ̃r = −irΨµ̃1...µ̃r , (5.47)

where we have made use of the expressions for the Christoffel symbols, spin connection,
vierbein fields and gamma matrices from Subsection 5.4.1.

6In Eq. (5.46), the eigenmodes with different values for σ = ± and/or ℓ = r, r + 1, ... are
orthogonal to each other because they belong to different so(4) representations. Similarly, eigenmodes
with different values of m and/or k are orthogonal to each other because, in the decomposition
so(4) ⊃ so(3) ⊃ so(2), they correspond to representations with different content concerning the chain
of subalgebras so(3) ⊃ so(2).
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Before proceeding to the construction of the modes, note that the physical modes on
dS4 are naturally split into two classes depending on their so(4) representation-theoretic
content - i.e. depending on whether their θ3-dependence is given by the spherical
eigenmodes (5.42) or (5.43). Let us introduce the following notation:

• The physical modes with so(4) content given by f⃗−
r [Eq. (5.45)] are denoted as

Ψ(phys,−ℓ;m;k)
µ1...µr

(t,θ3). We also refer to these modes as ‘physical modes with helicity
−s’ (recall that s = r + 1/2).

• The physical modes with so(4) content given by f⃗+
r [Eq. (5.44)] are denoted as

Ψ(phys,+ℓ;m;k)
µ1...µr

(t,θ3). We also refer to these modes as ‘physical modes with helicity
+s’.

Following our previous work [33], we separate variables for Ψ(phys,−ℓ;m;k)
µ1...µr

(t,θ3) as:

Ψ(phys,−ℓ;m;k)
tµ2...µr

(t,θ3) = 0, Ψ(phys,−ℓ;m;k)
µ̃1...µ̃r

(t,θ3) =
 αℓ(t) ψ̃(ℓ;m;k)

−µ̃1...µ̃r
(θ3)

−iβℓ(t) ψ̃(ℓ;m;k)
−µ̃1...µ̃r

(θ3)

 , (5.48)

where ℓ = r, r + 1, ..., while αℓ(t) and βℓ(t) are functions of time that we must
determine.7 Substituting Eq. (5.48) into Eq. (5.47), we find d

dt
+ 3 − 2r

2 tanh t−
i
(
ℓ+ 3

2

)
cosh t

 βℓ(t) = −i r αℓ(t), (5.49)

 d

dt
+ 3 − 2r

2 tanh t+
i
(
ℓ+ 3

2

)
cosh t

αℓ(t) = i r βℓ(t). (5.50)

Using these two relations, and introducing the variable

x = π

2 − it, (5.51)

we find two second-order equations: ∂2

∂x2 + (3 − 2r) cotx ∂
∂x

+
(
ℓ+ 3

2

) cosx
sin2 x

−
(ℓ+ 3

2)2 − 1
4(3 − 2r)(1 − 2r)
sin2 x

− (3 − 2r)2

4

αℓ(t) = −r2αℓ(t) (5.52)

7The functions αℓ(t) and βℓ(t) correspond to Φ(a)
Mℓ and Ψ (a)

Mℓ, respectively, with a = −r and M = ir
(in four spacetime dimensions) in our previous work [33].
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and  ∂2

∂x2 + (3 − 2r) cotx ∂
∂x

−
(
ℓ+ 3

2

) cosx
sin2 x

−
(ℓ+ 3

2)2 − 1
4(3 − 2r)(1 − 2r)
sin2 x

− (3 − 2r)2

4

βℓ(t) = −r2 βℓ(t), (5.53)

where cosx = i sinh t, sin x = cosh t and cotx = i tanh t.8 The solutions are given in
terms of the Gauss hypergeometric function [25] as:

αℓ(t) =
(

cos x(t)
2

)ℓ+1+r (
sin x(t)

2

)ℓ+r

× F

(
r + 2 + ℓ,−r + ℓ+ 2; ℓ+ 2; sin2 x(t)

2

)
, (5.54)

and

βℓ(t) = r

ℓ+ 2

(
cos x(t)

2

)ℓ+r (
sin x(t)

2

)ℓ+r+1

× F

(
r + 2 + ℓ,−r + ℓ+ 2; ℓ+ 3; sin2 x(t)

2

)
, (5.55)

where

cos x(t)
2 =

(
sin x(t)

2

)∗

=
√

2
2

(
cosh t

2 + i sinh t

2

)
. (5.56)

We have now completely determined the form of the physical modes Ψ(phys,−ℓ;m;k)
µ1...µr

(t,θ3)
in Eq. (5.48).
Similarly, we find that the physical modes with so(4) content given by f⃗+

r [Eq. (5.44)]
are expressed as

Ψ(phys,+ℓ;m;k)
tµ2...µr

(t,θ3) = 0, Ψ(phys,+ℓ;m;k)
µ̃1...µ̃r

(t,θ3) =
 iβℓ(t) ψ̃(ℓ;m;k)

+µ̃1...µ̃r
(θ3)

−αℓ(t) ψ̃(ℓ;m;k)
+µ̃1...µ̃r

(θ3)

 . (5.57)

The functions αℓ(t) and βℓ(t) are given again by Eqs. (5.54) and (5.55), respectively.
The physical modes (5.48) and (5.57) can also be obtained by analytically continuing
tensor-spinor spherical harmonics on S4 (see Refs. [36, 35, 33, 29] for details concerning
such analytic continuation techniques).

8Note that the third term of the differential operator in Eq. (5.52) has an opposite sign from the
third term of the differential operator in Eq. (5.53). This is the only difference between these two
differential operators.
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Short wavelength limit of physical modes

Using the property [25]:

F (A,B;C; z) = (1 − z)C−A−B F (C − A,C −B;C; z), (5.58)

we find that in the limit ℓ >> 1 (short wavelength limit), the functions αℓ(t) [Eq. (5.54)]
and βℓ(t) [Eq. (5.55)] describe the time dependence of positive frequency Minkowskian
modes, as

dαℓ(t)
dt

∼ − iℓ

cosh t αℓ(t),

d βℓ(t)
dt

∼ − iℓ

cosh t βℓ(t). (5.59)

Apart from the physical modes (5.48) and (5.57), there are also physical modes that are
the analogs of Minkowskian negative frequency modes. These are given by

Ψ(phys,+ℓ;m;k)C
tµ2...µr

(t,θ3) = 0, Ψ(phys,+ℓ;m;k)C
µ̃1...µ̃r

(t,θ3) =
 α∗

ℓ(t) ψ̃
(ℓ;m;k)
+µ̃1...µ̃r

(θ3)
+iβ∗

ℓ (t) ψ̃
(ℓ;m;k)
+µ̃1...µ̃r

(θ3)

 (5.60)

and

Ψ(phys,−ℓ;m;k)C
tµ2...µr

(t,θ3) = 0, Ψ(phys,−ℓ;m;k)C
µ̃1...µ̃r

(t,θ3) =
 iβ∗

ℓ (t) ψ̃
(ℓ;m;k)
−µ̃1...µ̃r

(θ3)
+α∗

ℓ(t) ψ̃
(ℓ;m;k)
−µ̃1...µ̃r

(θ3)

 . (5.61)

It is straightforward to verify that these modes satisfy Eq. (5.47). In this paper, we do
not discuss the representation-theoretic properties of the ‘negative frequency’ modes
Ψ(phys,±ℓ;m;k)C
µ1...µr

, because they form the same so(4, 1) UIRs as the ones formed by the
‘positive frequency’ modes Ψ(phys,±ℓ;m;k)

µ1...µr
.

5.4.2.2 Pure gauge spin-(r + 1/2) ≥ 3/2 modes on dS4

The pure gauge modes of the striclty massless spin-(r+1/2) equations [(5.20) and (5.21)]
satisfy the same conditions as the restricted gauge transformations (5.22). This means
that the pure gauge modes are expressed as

Ψ(pg, r̃,±ℓ;m)
µ1...µr

(t,θ3) =
(

∇(µ1 + i

2γ(µ1

)
λ

(r̃,±ℓ;m)
µ2...µr) (t,θ3). (5.62)

The “gauge-function modes”, λ(r̃,±ℓ;m)
µ2...µr

, are totally symmetric tensor-spinors of rank
r − 1 and they satisfy Eqs. (5.23) and (5.24). As in the case of physical modes, explicit
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5.5. The physical modes form UIRs of the dS algebra

expressions for λ(r̃,±ℓ;m)
µ2...µr

can be obtained using the method of separation of variables, but
they are not needed for the purposes of this paper9. The two labels r̃,±ℓ in Eq. (5.62)
are used to denote the so(4) content of each pure gauge mode; this corresponds to the
so(4) highest weights

f⃗±
r̃ = (ℓ+ 1

2 ,±r̃ ± 1
2), r̃ ∈ {0, 1, ..., r − 1}, (5.63)

with ℓ = r, r+ 1, ... [the value r̃ = r is excluded in Eq. (5.63) since it corresponds to the
so(4) content of physical modes - see Eqs. (5.44) and (5.45)]. The label m represents
angular momentum quantum numbers corresponding to the subalgebras so(3) ⊃ so(2).
The pure gauge modes must have zero norm with respect to any dS invariant scalar
product and be orthogonal to all physical modes [28, 29, 35, 33, 27]. Because of these
properties, the pure gauge modes can be identified with zero in the solution space of the
field equations (5.20) and (5.21). These properties will be demonstrated in Section 5.5
for a specific choice of dS invariant scalar product - see also Refs. [33, 35].

5.5 THE PHYSICAL MODES FORM UIRS OF THE DS ALGEBRA

In this Section, we explain how the ‘positive frequency’ physical modes (5.48) and (5.57)
of the fermionic strictly massless theories form a direct sum of Discrete Series UIRs of the
dS algebra so(4, 1). In order to identify the so(4, 1) UIRs formed by the mode solutions,
we follow two basic steps:

• Irreducibility: We identify the sets of physical modes that form irreducible
representations of so(4, 1).
This means that we need to study the infinitesimal dS transformations of the physical
mode solutions. We show that the physical modes with fixed helicity ±s transform
among themselves under all so(4, 1) transformations (up to gauge equivalence).
Thus, the physical modes form a direct sum of irreducible representations - one
corresponding to the helicity +s and one to −s. Moreover, it is already easy to
see that pure gauge modes transform only into other pure gauge modes under
infinitesimal dS transformations, as the Lie-Lorentz derivative (5.14) commutes
with the operator ∇µ + i

2γµ in Eq. (5.62), while also, it leaves invariant the
conditions (5.23) and (5.24), which determine the restricted gauge transformations.

9Explicit expressions for the spin-3/2 and spin-5/2 cases can be found in Refs. [34, 35].
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• Unitarity: We introduce a dS invariant and gauge-invariant scalar product that is
positive definite for physical modes of fixed helicity.
With respect to this scalar product, the pure gauge modes are shown to be

orthogonal to themselves, as well as to all physical modes (i.e. it is demonstrated
that the pure gauge modes can be identified with zero in the solution space).
Interestingly, it turns out that our scalar product is positive definite for the physical
modes with helicity −s and negative definite for the physical modes with helicity
+s. However, as these two sets of fixed-helicity modes form different irreducible
so(4, 1) representations, we are allowed to use a different scalar product for each
set. We thus redefine the scalar product for the +s modes by introducing a factor
of −1, in order to achieve positive-definiteness. This peculiarity - i.e. having a
different positive definite scalar product for physical modes with different helicity -
is already known to appear in the spin-3/2 and spin-5/2 cases on even-dimensional
dSD for D ≥ 4 [33, 35].
Note. Although unitarity is often considered to be equivalent to the positive-
definiteness of the scalar product in the Hilbert space of mode solutions, this is not
a sufficient requirement. For representation-theoretic unitarity, the scalar product
must be both positive definite and invariant under the symmetry algebra (or group)
of interest. In this Section, the symmetries of interest correspond to the dS algebra,
while, in Section 5.6, they correspond to the conformal-like so(4, 2) algebra.

Once we ensure both the unitarity and irreducibility of the so(4, 1) representations formed
by the physical modes with fixed helicity, we will recall the so(4) content [Eqs. (5.44) and
(5.45)] of these modes, as well as the value of the field-theoretic quadratic Casimir (5.17).
Then, it will be straightforward to identify the UIRs formed by the physical modes with a
direct sum of Discrete Series UIRs of so(4, 1) [Eqs. (5.31) and (5.32)].

5.5.1 Infinitesimal dS transformations of physical modes and irre-
ducibility of so(4, 1) representations

The infinitesimal dS transformations of the mode solutions can be studied with the use
of the Lie-Lorentz derivative (5.14) with respect to the dS Killing vectors. Since the so(4)
content of the so(4, 1) representations formed by mode solutions is already known (see
Section 5.4), we just need to study the transformation properties of our mode solutions
under dS boosts. In fact, it is sufficient to focus on just one dS boost (the reason is that
the Lie bracket between a boost Killing vector and a rotational one is equal to another
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boost Killing vector). We choose to work with the following boost Killing vector:

X = Xµ∂µ = cos θ3
∂

∂t
− tanh t sin θ3

∂

∂θ3
. (5.64)

Our aim is to express LXΨ(phys,−ℓ;m;k)
µ1...µr

(t,θ3) and LXΨ(phys,+ℓ;m;k)
µ1...µr

(t,θ3) as linear com-
binations of other mode solutions10. There are (at least) two different ways we can follow
in order to proceed:

• i) Direct calculation, where in order to express LXΨ(phys,±ℓ;m;k)
µ1...µr

as a linear combi-
nation of other modes, one has to use the raising and lowering differential operators
for the angular momentum quantum number ℓ, as in Refs. [29, 27, 36, 35].

or
• ii) Making use of the matrix elements of so(5) generators obtained by Gelfand and

Tsetlin [24]. More specifically, one can use these matrix elements to find explicit
expressions for the so(5) transformations of tensor-spinor spherical harmonics on
S4 and then perform analytic continuation to dS4.

In this paper, we follow approach ii. Here we present the final expressions for LXΨ(phys,±ℓ;m;k)
µ1...µr

.
The reader who is familiar with so(D+1) representations formed by tensor-spinor spherical
harmonics on SD [30] can infer the results from Gelfand and Tsetlin’s work [24]. Technical
details for the derivation can be found in Appendix 5.10.
Without further ado, following approach ii, the infinitesimal transformation of the physical
spin-(r + 1/2) ≥ 3/2 modes under the dS boost (5.64) are found to be:

LXΨ(phys,±ℓ;m;k)
µ1...µr

= − i

2(ℓ+ 2)
√

((ℓ+ 2)2 − r2) (ℓ−m+ 1)(ℓ+m+ 3) Ψ(phys,±(ℓ+1) ;m;k)
µ1...µr

− i(ℓ+ 1)
2

√√√√(ℓ−m)(ℓ+m+ 2)
(ℓ+ 1)2 − r2 Ψ(phys,±(ℓ−1) ;m;k)

µ1...µr
+ (pure gauge),

(5.65)

where the term ‘(pure gauge)’ is proportional to the pure gauge mode Ψ(pg, r̃=r−1,±ℓ;m;k)
µ1...µr

[see Eq. (5.62)].
Conclusion. From the transformation properties (5.65), we conclude that the modes
{Ψ(phys,−ℓ;m;k)

µ1...µr
} and {Ψ(phys,+ℓ;m;k)

µ1...µr
} separately form irreducible representations of so(4, 1)

(up to gauge equivalence).
10In the spin-3/2 and spin-5/2 cases, the transformations LXΨ(phys, −ℓ; m;k)

µ1...µr (t,θ3) and
LXΨ(phys, +ℓ; m;k)

µ1...µr (t,θ3) have already been expressed as linear combinations of other mode solutions by
direct calculation in Refs. [34, 35].
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In the next Subsection, by making a choice of a dS invariant scalar product, we will
explicitly show that all pure gauge modes have zero associated norm. Thus, the Lie-
Lorentz derivatives (5.14) essentially act on equivalence classes of physical modes, i.e. if
for any two physical modes, Ψ(1)

µ1...µr
and Ψ(2)

µ1...µr
, the difference Ψ(1)

µ1...µr
− Ψ(2)

µ1...µr
is a

linear combination of pure gauge modes, then Ψ(1)
µ1...µr

and Ψ(2)
µ1...µr

belong to the same
equivalence class.

5.5.2 dS invariant scalar product and unitarity

For any two (physical or pure gauge) solutions Ψ(1)
µ1...µr

,Ψ(2)
µ1...µr

of Eqs. (5.20) and (5.21),
define the (axial) vector current Jµ(Ψ(1),Ψ(2)) as

Jµ(Ψ(1),Ψ(2)) = −iΨ(1)
ν1...νr

γ5γµΨ(2)ν1...νr , (5.66)

where Ψ(1)
ν1...νr

= iΨ(1)†
ν1...νr

γ0. This is covariantly conserved, ∇µJµ(Ψ(1),Ψ(2)) = 0 11.
Thus, it immediately follows that the scalar product〈

Ψ(1)|Ψ(2)
〉

=
∫
S3

√
−g dθ3 J

0(Ψ(1),Ψ(2))

= cosh3 t
∫
S3

√
g̃ dθ3 Ψ(1)†

ν1...νr
(t,θ3) γ5 Ψ(2)ν1...νr(t,θ3) (5.67)

is time-independent, where cosh3 t
√
g̃ = √

−g, while g is the determinant of the dS
metric.
dS invariance of the scalar product. The dS invariance of the scalar product (5.67)
can be demonstrated as follows. Let δξJµ be the change of the current (5.66) under the
infinitesimal dS transformation generated by a dS Killing vector ξµ. Then, we have

δξJ
µ(Ψ(1),Ψ(2)) = Jµ(LξΨ(1),Ψ(2)) + Jµ(Ψ(1),LξΨ(2))

= ∇ν

(
ξν Jµ(Ψ(1),Ψ(2)) − ξµ Jν(Ψ(1),Ψ(2))

)
(5.68)

= 1√
−g

∂ν

√
−g

(
ξν Jµ(Ψ(1),Ψ(2)) − ξµ Jν(Ψ(1),Ψ(2))

)  (5.69)

where we have used that ∇νJ
ν = ∇νξ

ν = 0. As δξJµ is equal to the divergence of an
anti-symmetric tensor, the following integral vanishes:

δξ

〈
Ψ(1)|Ψ(2)

〉
=
∫
S3

√
−g dθ3 δξJ

0(Ψ(1),Ψ(2)) = 0. (5.70)
11I would like to thank Atsushi Higuchi for pointing out that this current is conserved.
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In other words, the value of the scalar product (5.67) does not change under infinitesimal
dS transformations. This directly implies that〈

LξΨ(1)|Ψ(2)
〉

+
〈

Ψ(1)|LξΨ(2)
〉

= 0, (5.71)

for any dS Killing vector ξ.
Gauge invariance of the scalar product. Let us show that, with respect to the scalar
product (5.67), all pure gauge modes (5.62) are orthogonal to themselves, as well as
to all physical modes. In particular, letting Ψ(2)

µ1...µr
be a pure gauge mode (5.62) - i.e.

Ψ(2)
µ1...µr

= Ψ(pg)
µ1...µr

= (∇(µ1 + i
2γ(µ1)λµ2...µr), where we have omitted the quantum number

labels for convenience - the current (5.66) can be expressed as

Jµ(Ψ(1),Ψ(pg)) = 2i∇λ

(
Ψ(1)ν2ν3...νr[λ

γµ]γ5 λν2ν3...νr

)
, (5.72)

where Ψ(1) is any physical or pure gauge mode. As Jµ(Ψ(1),Ψ(pg)) in Eq. (5.72) is equal
to the divergence of an anti-symmetric tensor, the scalar product between any pure
gauge mode and any other mode is always zero. Also, this directly implies that the scalar
product (5.67) is invariant under restricted gauge transformations (5.22).
Positive-definiteness. Let us now calculate the norm of the physical mode solutions
with respect to the scalar product (5.67). Substituting the expressions for the physical
modes, (5.48) and (5.57), into the scalar product (5.67), we find〈

Ψ(phys, σℓ;m;k)|Ψ(phys, σ′ℓ′;m′;k′)
〉

=(−σ) × cosh3−2r t

×
(
|αℓ(t)|2 − |βℓ(t)|2

)
δσσ′δℓℓ′δmm′δkk′ , (5.73)

where σ, σ′ ∈ {−,+}, while we have made use of the normalisation condition (5.46) of
the tensor-spinor spherical harmonics on S3. This expression is time-independent and its
value has been calculated in equation (8.26) of Ref. [35]. The result is [35]〈

Ψ(phys, σℓ;m;k)|Ψ(phys, σ′ℓ′;m′;k′)
〉

= (−σ) × 23−2r |Γ(ℓ+ 2)|2
Γ(ℓ+ 2 + r)Γ(ℓ+ 2 − r)δσσ

′δℓℓ′δmm′δkk′ . (5.74)

According to this equation, the physical modes with helicity −s, {Ψ(phys,−ℓ;m;k)
µ1...µr

}, form
a UIR of so(4, 1) with positive definite scalar product given by Eq. (5.67), while the
physical modes with helicity +s, {Ψ(phys,+ℓ;m;k)

µ1...µr
}, form a UIR of so(4, 1) with positive

definite scalar product given by the negative of Eq. (5.67).
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5.5.3 Identifying the dS algebra UIRs

The analysis presented in the previous Subsections has demonstrated that the physical
modes, {Ψ(phys,+ℓ;m;k)

µ1...µr
} and {Ψ(phys,−ℓ;m;k)

µ1...µr
}, of the strictly massless theories separately

form UIRs of so(4, 1). It can be understood that we have a direct sum of Discrete
Series UIRs (5.31) and (5.32) as follows. Combining the so(4) content of physical
modes [Eqs. (5.44) and (5.45)] with the branching rules (5.27), we find that both
{Ψ(phys,+ℓ;m;k)

µ1...µr
} and {Ψ(phys,−ℓ;m;k)

µ1...µr
} correspond to UIRs with F1 = r + 1/2 (see Sec-

tion 5.3). Then, comparing the field-theoretic quadratic Casimir (5.17) (with M = ir)
with the representation-theoretic one (5.33), we find the following “field theory - repre-
sentation theory dictionary”:

• The set of physical modes with helicity +s, {Ψ(phys,+ℓ;m;k)
µ1...µr

}, forms the Discrete
Series UIR D+(F0, F1) = D+(r − 3

2 , r + 1
2) [Eq. (5.31)] of so(4, 1). The so(4)

content is given by Eq. (5.44). The positive definite norm is given by the negative
of Eq. (5.74) (with σ = +).

• The set of physical modes with helicity −s, {Ψ(phys,−ℓ;m;k)
µ1...µr

}, forms the Discrete
Series UIR D−(F0, F1) = D−(r − 3

2 , r + 1
2) [Eq. (5.32)] of so(4, 1). The so(4)

content is given by Eq. (5.45). The positive definite norm is given by Eq. (5.74)
(with σ = −).

Thus, the set of all physical mode solutions for the strictly massless spin-(r+ 1/2) ≥ 3/2
theory, satisfying Eqs. (5.20) and (5.21), corresponds to the direct sum of Discrete Series
UIRs D−(r− 3

2 , r+ 1
2)⊕D+(r− 3

2 , r+ 1
2) 12. This is in agreement with the “field theory

- representation theory dictionary” suggested previously by us [33].

5.6 CONFORMAL-LIKE SYMMETRIES FOR STRICTLY MASSLESS
FERMIONS

In this Section, we present our main results, i.e. we present and study new conformal-like
symmetries for strictly massless spin-s ≥ 3/2 fermions on dS4.
Conformal Killing vectors of dS4. For later convenience, let us review the basics
concerning the conformal Killing vectors on dS4. The five conformal Killing vectors of

12This is also true for the massless spin-1/2 field on dS4, i.e. for r = 0 [33].
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dS4 satisfy

∇µVν + ∇νVµ = gµν
∇αVα

2 (5.75)

with ∇αVα ̸= 0. (The ten dS Killing vectors, ξµ, satisfy the same equation, but they are
divergence-free.) The 15-dimensional Lie algebra generated by the dS Killing vectors and
the conformal Killing vectors is isomorphic to so(4, 2). The Lie bracket between a dS
Killing vector and a conformal Killing vector is equal to a conformal Killing vector, while
the Lie bracket between two conformal Killing vectors closes on so(4, 1). These facts
can be understood from the so(4, 2) commutation relations:

[MA′B′ ,MC′D′ ] = (η′
B′C′MA′D′ + η′

A′D′MB′C′) − (A′ ↔ B′), (5.76)

with A′, B′, C ′, D′ = −1, 0, ..., 4, where MA′B′ = −MB′A′ and

η′
A′B′ = diag(−1,−1, 1, 1, 1, 1)

(with η′
−1−1 = η′

00 = −1). The generators M−1A′ , with A′ = 0, ..., 4, can be identified
with the five conformal Killing vectors of dS4, while the generators MA′B′ , with A′, B′ =
0, ..., 4, can be identified with the ten dS Killing vectors.
Each of the five conformal Killing vectors of dS4, denoted for convenience as V (0)µ, V (1)µ,

..., V (4)µ, can be expressed as a gradient of a scalar function 13

V (A)
µ = ∇µϕV (A) . (5.77)

Each of the five scalar functions ϕV (A) (A = 0, 1, ..., 4) satisfies

∇µ∇νϕV (A) = −gµνϕV (A) , (5.78)

i.e. ∇µV
(A)
ν = −gµνϕV (A) . The scalar functions satisfying Eq. (5.78) can be found by

analytically continuing the scalar functions that are annihilated by the operator ∇µ∇ν+gµν
on S4 14. If we embed dS4 in 5-dimensional Minkowski space as −(X0) 2 +∑4

j=1(Xj) 2 =
1, then the five scalar functions ϕV (A) are ϕV (A) = XA (this equality holds up to a
proportionality constant, which we ignore in the present paper). In the case of global

13I would like to thank Atsushi Higuchi for pointing this out.
14It is known that such functions on S4 exist [1]. More specifically, they correspond to scalar spherical

harmonics on S4 [29].
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coordinates (5.34) we have

X0 = sinh t

X4 = cosh t cos θ3

X3 = cosh t sin θ3 cos θ2

X2 = cosh t sin θ3 sin θ2 cos θ1

X1 = cosh t sin θ3 sin θ2 sin θ1. (5.79)

Below we will often drop the label ‘(A)’ from V (A)µ and ϕV (A) . Thus, from now on, we
will denote conformal Killing vectors of dS4 as V µ = ∇µϕV or W µ = ∇µϕW , unless
otherwise stated.

5.6.1 Conformal-like symmetry transformations

The main new result of the present paper is:
• If Ψµ1...µr is a strictly massless tensor-spinor satisfying Eqs. (5.20) and (5.21), then

these equations are also satisfied by TV Ψµ1...µr defined as

TV Ψµ1...µr ≡ γ5
(
V ρ∇ρΨµ1...µr + i r V ργρΨµ1...µr − i r V ργ(µ1Ψµ2...µr)ρ − 3

2ϕV Ψµ1...µr

)
− 2r

2r + 1

(
∇(µ1 + i

2γ(µ1

)
γ5Ψµ2...µr)ρV

ρ, (5.80)

for any conformal Killing vector V µ = ∇µϕV . The latter satisfies ∇µV
µ = −4ϕV

[see Eq. (5.78)]. Equation (5.80) describes the new conformal-like infinitesimal
symmetry transformations for strictly massless fermions generated by conformal
Killing vectors on dS4.

The differential operator TV maps solutions of Eqs. (5.20) and (5.21) into other solutions,
i.e. TV corresponds to a symmetry of these equations.
Note. The term in the last line of Eq. (5.80) does not correspond to a restricted
gauge transformation (5.22). This can be understood by observing that the gauge
function, λµ2...µr , in the restricted gauge transformation (5.22) satisfies Eq. (5.23), while
γ5Ψµ2...µrρV

ρ in the last line of Eq. (5.80) does not; it satisfies the following equation
instead 15:

/∇γ5Ψµ2...µrρV
ρ = ir γ5Ψµ2...µrρV

ρ.

15Although the term in the second line of Eq. (5.80) is not a restricted gauge transformation, it still
corresponds to an “off-shell” gauge transformation - by “off-shell” gauge transformation we mean any
gauge transformation that leaves invariant the Lagrangian for strictly massless fermions (the restricted
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In order to prove that the conformal-like transformation (5.80) corresponds to a symmetry
we need to show that TV Ψµ1...µr satisfies the same field equations as Ψµ1...µr , i.e.
Eqs. (5.20) and (5.21). It is convenient to define the totally symmetric tensor-spinors
∆V Ψµ1...µr and PV Ψµ1...µr as

∆V Ψµ1...µr ≡ γ5
(
V ρ∇ρΨµ1...µr + i r V ργρΨµ1...µr − i r V ργ(µ1Ψµ2...µr)ρ − 3

2ϕV Ψµ1...µr

)
(5.81)

and

PV Ψµ1...µr ≡ − 2r
2r + 1

(
∇(µ1 + i

2γ(µ1

)
γ5Ψµ2...µr)ρV

ρ, (5.82)

such that

TV Ψµ1...µr = ∆V Ψµ1...µr + PV Ψµ1...µr . (5.83)

We observe that ∆V Ψµ1...µr and PV Ψµ1...µr have opposite gamma traces

γα∆V Ψαµ2...µr = −γαPV Ψαµ2...µr = 2iγ5Ψµ2...µrρV
ρ. (5.84)

Thus, the gamma-tracelessness property of the conformal-like transformation (5.80),

γα TV Ψαµ2...µr = 0,

is straightforwardly shown.
Now let us show that, if Ψµ1...µr satisfies Eq. (5.20), then so does TV Ψµ1...µr . In other
words, we will show that TV Ψµ1...µr is an eigenfunction of the Dirac operator with
eigenvalue −ir. Acting with the Dirac operator on ∆V Ψµ1...µr and PV Ψµ1...µr , we find

(
/∇ + ir

)
∆V Ψµ1...µr = r

(
∇(µ1 − i

2γ(µ1

)
γα∆V Ψµ2...µr)α (5.85)

gauge transformations (5.22) correspond to a special case of the “off-shell” transformations). Hermitian
and gauge-invariant Lagrangians for strictly massless fermions on AdS4 have been constructed in
Ref. [22] (see also Ref. [44]). By analytically continuing AdS4 to dS4, i.e. by replacing the AdS radius
as RAdS → iRdS , where RdS is the dS radius (RdS = 1 in our units), one can extend the Lagrangians
for strictly massless fermions on AdS4 [22] to gauge-invariant, but non-hermitian, Lagrangians on dS4.
The field equations derived from these non-hermitian Lagrangians on dS4 are invariant under “off-shell”
gauge transformations that have the form δΨµ1...µr = (∇(µ1 + i

2γ(µ1)χµ2...µr), where χµ2...µr is a
totally symmetric tensor-spinor with γµ2χµ2...µr

= 0. If one specialises to the TT gauge, these field
equations reduce to Eqs. (5.20) and (5.21), while the initial “off-shell” gauge invariance reduces to the
restricted gauge invariance with gauge transformations given by (5.22).
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and
(
/∇ + ir

)
PV Ψµ1...µr = r

(
∇(µ1 − i

2γ(µ1

)
γαPV Ψµ2...µr)α, (5.86)

respectively, where we have used Eq. (5.13). Adding Eqs. (5.85) and (5.86) by parts,
and making use of Eqs. (5.83) and (5.84), we find

(
/∇ + ir

)
TV Ψµ1...µr = 0,

as required. Finally, contracting this equation with γµ1 , and using the gamma-traceleness
property of TV Ψµ1...µr , we find that TV Ψµ1...µr is also divergence-free.
To conclude, we have proved that the conformal-like transformation TV Ψµ1...µr [Eq. (5.80)]
satisfies

(
/∇ + ir

)
TV Ψµ1...µr = 0, (5.87)

∇α TV Ψαµ2...µr = 0, γα TV Ψαµ2...µr = 0 (5.88)

for any conformal Killing vector V µ and for all spins s ≥ 3/2. In other words, the
operator TV [Eq. (5.80)] is a symmetry of the field equations (5.20) and (5.21) for strictly
massless fermions.

5.6.2 Conformal-like so(4, 2) algebra generated by the dS symme-
tries and the conformal-like symmetries

In order to understand the structure of the algebra generated by the dS transforma-
tions (5.14) and the conformal-like transformations (5.80) we need to study the cor-
responding Lie brackets (i.e. commutators). Below, V µ = ∇µϕV and W µ = ∇µϕW

denote any two conformal Killing vectors of dS4 [see Eq. (5.77)].
Commutator between dS and conformal-like transformations. After a straightfor-
ward calculation, the commutator between a dS transformation (5.14) and a conformal-like
transformation (5.80) is found to be

[Lξ, TV ]Ψµ1...µr = LξTV Ψµ1...µr − TVLξΨµ1...µr

= T[ξ,V ]Ψµ1...µr , (5.89)

where [ξ, V ] is the Lie bracket between the Killing vector ξ and the conformal Killing
vector V , i.e. [ξ, V ]µ = LξV

µ (Lξ is the usual Lie derivative with respect to ξ).
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Commutator between two conformal-like transformations. The calculation of the
commutator between two conformal-like transformations, [TW , TV ]Ψµ1...µr , is quite long.
Thus, here we present the final result and we refer the reader to Appendix 5.11 for some
details of the calculation. The result is

[TW , TV ]Ψµ1...µr = L[W,V ]Ψµ1...µr +
(

∇(µ1 + i

2γ(µ1

)
Lµ2...µr), (5.90)

where [W,V ]µ = LWV
µ = ϕWV

µ − ϕVW
µ is a Killing vector. The second term on the

right-hand side of Eq. (5.90) is a restricted gauge transformation of the form (5.22),
where

Lµ2...µr = 4r
(2r + 1)2

(
(∇λ − i

2 γ
λ)Ψρ

µ2...µr
∇λ[W,V ]ρ − (r + 1) Ψρ

µ2...µr
[W,V ]ρ

)
.

(5.91)

(We have verified that Lµ2...µr satisfies Eqs. (5.23) and (5.24).)
Structure of the conformal-like algebra. To conclude, the structure of the conformal-
like algebra generated by the ten dS transformations (5.14) and the five conformal-like
transformations (5.80) is determined by the following commutation relations:

[Lξ,Lξ′ ]Ψµ1...µr = L[ξ,ξ′]Ψµ1...µr , (5.92a)

[Lξ, TV ]Ψµ1...µr = T[ξ,V ]Ψµ1...µr , (5.92b)

[TW , TV ]Ψµ1...µr = L[W,V ]Ψµ1...µr +
(

∇(µ1 + i

2γ(µ1

)
Lµ2...µr), (5.92c)

where Lµ2...µr is given by (5.91), ξµ and ξ′µ are any two dS Killing vectors, while
W µ = ∇µϕW and V µ = ∇µϕV are any two conformal Killing vectors. The commutation
relations (5.92a)-(5.92c) coincide with the so(4, 2) commutation relations (5.76) up to
the restricted gauge transformation in Eq. (5.92c).
Our results demonstrate that there is a representation of so(4, 2) (which closes up to
field-dependent gauge transformations) acting on the solution space of Eqs. (5.20) and
(5.21). In the following Subsection, we will show that the physical modes, which have
been shown to form a direct sum of so(4, 1) UIRs (see Section 5.5), also form a direct
sum of so(4, 2) UIRs.

• Note. One might think that the closure of the conformal-like algebra up to
(field-dependent) gauge transformations is a consequence of the term in the second
line of Eq. (5.80). In order to argue that this is not the case, let us focus on the
strictly massless spin-3/2 field and depart from the TT gauge:
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Consider the full Rarita-Schwinger (RS) equation for the strictly massless spin-3/2
field (gravitino) on dS4 [23]

γµρσ(∇ρ + i

2γρ)ψσ = 0, (5.93)

where γµρσ = γ[µγργσ]. This equation is invariant under “off-shell” gauge transfor-
mations

δψµ = (∇µ + i

2γµ)ϵ, (5.94)

where ϵ is an arbitrary spinor. If we choose to work in the TT gauge, then the RS
equation reduces to Eqs. (5.20) and (5.21), which have a smaller gauge invariance
corresponding to restricted gauge transformations (5.22). After a straightfor-
ward calculation, we find that the RS equation (5.93) enjoys the conformal-like
symmetry16

∆V ψµ = γ5
(
V ρ∇ρψµ + i V ργρψµ − i V ργµψρ − 3

2ϕV ψµ
)
. (5.95)

In other words, if ψµ satisfies the RS equation, then so does ∆V ψµ. Because of the
“off-shell” gauge symmetry (5.94), Eq. (5.95) does not include a part corresponding
to the second line of Eq. (5.80). Then, the commutator between two conformal-like
transformations (5.95) is found to be

[∆W ,∆V ]ψµ = L[W,V ]ψµ − 2i
(

∇µ + i

2γµ
)
γλψρ ∇λ[W,V ]ρ, (5.96)

where we notice the appearance of an “off-shell” gauge transformation (which is
not a restricted gauge transformation (5.22)) on the right-hand side. The rest of
the structure of the symmetry algebra is determined by the same commutation
relations as in Eqs. (5.92a) and (5.92b) (with TV replaced by ∆V ).
Conclusion. As in the TT gauge, the full RS equation (5.93) enjoys a conformal-
like so(4, 2) symmetry and the algebra closes up to “off-shell” gauge transforma-
tions (5.94) that do not correspond to restricted gauge transformations (5.22).
However, in the TT case (5.92c), the algebra closes up to restricted gauge trans-
formations.

16The expression in Eq. (5.95) corresponds just to the the first part (5.81) of the conformal-like
transformation in the TT gauge [Eq. (5.80)].
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5.7 THE PHYSICAL MODES ALSO FORM UIRS OF THE CONFORMAL-
LIKE ALGEBRA

In this Section, we show that the ‘positive frequency’ physical modes (5.48) and (5.57)
of the strictly massless spin-s ≥ 3/2 fermionic theories form UIRs of the conformal-like
so(4, 2) algebra. To be specific:

• The irreducibility of the so(4, 2) representations will be demonstrated by showing
that the physical modes with fixed helicity transform among themselves under
the infinitesimal conformal-like transformations (5.80). In particular, the physical
modes with helicity +s [Eq. (5.57)], and the ones with helicity −s [Eq. (5.48)],
will be shown to separately form irreducible representations of so(4, 2). (Recall
that we have already shown that these modes form a direct sum of UIRs of the dS
algebra so(4, 1) - see Section 5.5.)

• As for showing the unitarity of the two aforementioned irreducible so(4, 2) repre-
sentations, we work as follows. First, we recall from Section 5.5 that the physical
modes with helicity ∓s form a so(4, 1) UIR with dS invariant and positive definite
scalar product given by (±1)×(5.67). Then, since a positive definite and so(4, 1)-
invariant scalar product is known, it is sufficient to show that this scalar product is
also invariant under the conformal-like symmetries (5.80).

5.7.1 Conformal-like transformations of physical modes and irre-
ducibility of so(4, 2) representations

Let us start with the simple observation that, according to Eq. (5.76), the Lie bracket
between a conformal Killing vector and a dS Killing vector is equal to a conformal
Killing vector. Similarly, the commutator [Lξ, TV ]Ψµ1...µr in Eq. (5.92b) is equal to a
conformal-like symmetry transformation. Thus, as the so(4, 1) representation-theoretic
properties of the physical modes are known (see Section 5.5), it is sufficient to study
just one of the five conformal-like transformations (5.80) for our physical modes. Then,
the transformation properties of the physical modes under the rest of the conformal-like
transformations can be found using the commutation relations (5.92b).
Let us now choose to work with the conformal Killing vector V (0)µ [Eq. (5.77)] given by

V (0)
µ = ∇µ sinh t, (5.97)
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i.e. (V (0)
t , V

(0)
θ3 , V

(0)
θ2 , V

(0)
θ1 ) = (cosh t, 0, 0, 0). The conformal-like transformation (5.80)

generated by V (0)µ is expressed as

TV (0)Ψµ1...µr = −γ5 cosh t

×

 ∂

∂t
+
(

−r + 3
2

)
tanh t− ir γt

Ψµ1...µr . (5.98)

Specialising to the physical modes (5.48) and (5.57), and making use of Eqs. (5.39),
(5.49) and (5.50), we readily find

TV (0)Ψ(phys,−ℓ;m;k)
µ1...µr

= +i
(
ℓ+ 3

2

)
Ψ(phys,−ℓ;m;k)
µ1...µr

(5.99)

and

TV (0)Ψ(phys,+ℓ;m;k)
µ1...µr

= −i
(
ℓ+ 3

2

)
Ψ(phys,+ℓ;m;k)
µ1...µr

. (5.100)

From these equations (and from the discussion at the beginning of this Subsection),
it follows that the two sets of modes, {Ψ(phys,+ℓ;m;k)

µ1...µr
} and {Ψ(phys,−ℓ;m;k)

µ1...µr
}, separately

form irreducible representations of the conformal-like so(4, 2) algebra.

5.7.2 so(4, 2)-invariant scalar product and unitarity

In the previous Subsection, we showed that the physical modes form a direct sum
of irreducible representations of the conformal-like algebra. The only remaining step
for showing that this is a direct sum of so(4, 2) UIRs is to ensure the existence of a
so(4, 2)-invariant and positive definite scalar product.
Let us show that the dS invariant scalar product (5.67) is also invariant under the
conformal-like symmetries (5.80) - and, thus, under the whole conformal-like so(4, 2)
algebra (recall that this scalar product is also invariant under restricted gauge transfor-
mations). Let Ψ(1)

µ1...µr
and Ψ(2)

µ1...µr
be any two solutions of Eqs. (5.20) and (5.21). We

consider the change

δV J
µ(Ψ(1),Ψ(2)) = Jµ(TV Ψ(1),Ψ(2)) + Jµ(Ψ(1), TV Ψ(2))

of the vector current (5.66) under the conformal-like transformations (5.80). After a
straightforward calculation, we find

δV J
µ(Ψ(1),Ψ(2)) = −i∇λE

λµ, (5.101)
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where Eλµ is an anti-symmetric tensor given by:
1
2E

λµ

= −Ψ(1)
ν1...νr

V [λγµ]Ψ(2)ν1...νr + 2r
2r + 1V

ρ
(

Ψ(1)
ν2...νrργ

[µΨ(2)λ]ν2...νr + Ψ(1)ν2...νr[λ
γµ]Ψ(2)

ν2...νrρ

)
.

(5.102)

This ensures that the dS invariant scalar product (5.67) is also invariant under infinitesimal
conformal-like transformations, as

δV

〈
Ψ(1)|Ψ(2)

〉
=
∫
S3

√
−g dθ3 δV J

0(Ψ(1),Ψ(2)) = 0.

Based on the discussions in the previous paragraph (and in the previous Subsection), we
conclude the following:

• The set of physical modes with helicity +s, {Ψ(phys,+ℓ;m;k)
µ1...µr

}, forms a UIR of so(4, 2)
with positive definite norm given by the negative of Eq. (5.74) (with σ = +).

• The set of physical modes with helicity −s, {Ψ(phys,−ℓ;m;k)
µ1...µr

}, forms a UIR of so(4, 2)
with positive definite norm given by Eq. (5.74) (with σ = −).

5.8 CONFORMAL-LIKE TRANSFORMATIONS OF FIELD STRENGTH
TENSOR-SPINORS

In order to gain some insight into the interpretation of the conformal-like transformations
TV Ψµ1...µr (5.80), we study the corresponding transformations of the field strength
tensor-spinors (i.e. curvatures). In particular, we study the transformations of the
spin-s = 3/2, 5/2 field strengths explicitly, while in the spin-s ≥ 7/2 cases we make a
conjecture for the expressions of the transformations.

5.8.1 Spin-3/2 field strength tensor-spinor

The field strength tensor-spinor for the strictly massless spin-3/2 field is

Fµ1ν1 = −Fν1µ1 =
(

∇[µ1 + i

2γ[µ1

)
Ψν1]. (5.103)

For later convenience, we will denote this as Fµ1ν1(Ψ). The field strength Fµ1ν1(Ψ)
is invariant under not only restricted gauge transformations (5.22) but also “off-shell”
gauge transformations (5.94).
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Useful properties. Let us discuss some of the properties of Fµ1ν1(Ψ) that will be useful
in studying its conformal-like transformation. Using the field equations (5.20) and (5.21)
for Ψν , we find

γµ1Fµ1ν1(Ψ) = ∇µ1Fµ1ν1(Ψ) = 0. (5.104)

The dual field strength tensor-spinor is defined as

∗Fµ1ν1(Ψ) ≡ 1
2ϵ

κλ
µ1ν1 Fκλ(Ψ). (5.105)

Expressing ϵ κλ
µ1ν1 in Eq. (5.105) in terms of gamma matrices [see Eq. (5.10)], and using

the gamma-tracelessness of Fµ1ν1(Ψ), we find

∗Fµ1ν1(Ψ) = −iγ5Fµ1ν1(Ψ). (5.106)

Also, a straightforward calculation shows that the following identity holds:

∇[ρFµ1ν1](Ψ) + i

2γ[ρFµ1ν1](Ψ) = 0. (5.107)

It is easy to show that each of the two terms in this equation is zero by observing that17

∇[ρ
∗Fµ1ν1](Ψ) = 0. (5.108)

It immediately follows from Eqs. (5.106)-(5.108) that

∇[ρFµ1ν1](Ψ) = γ[ρFµ1ν1](Ψ) = 0. (5.109)

Conformal-like transformation. After a straightforward calculation, the conformal-like
transformation of the field strength, Fµ1ν1(TV Ψ), is expressed as

Fµ1ν1(TV Ψ) = Fµ1ν1(∆V Ψ)

= γ5
(
V ρ∇ρ − 5

2ϕV
)
Fµ1ν1(Ψ) + 3 iγ5 V ρ γ[ρFµ1ν1](Ψ), (5.110)

where in the first line we have used TV Ψµ = ∆V Ψµ + PV Ψµ [see Eq. (5.83)] and
Fµ1ν1(PV Ψ) = 0 (the latter follows from the gauge-invariance of the field strength).
Then, using Eq. (5.109), we find

Fµ1ν1(TV Ψ) = γ5
(
V ρ∇ρ − 5

2ϕV
)
Fµ1ν1(Ψ), (5.111)

17Proof of Eq. (5.108). In order to prove Eq. (5.108), we contract ∇[ρ
∗Fµ1ν1](Ψ) with ϵ µ1ν1

αβ and
we use the definition (5.105) of the dual field strength. Then, using well-known identities for ϵ µ1ν1

αβ ,
while also using the divergence-freedom of the field strength, we can show that ϵ σκ

αβ ∇[ρ
∗Fσκ](Ψ) = 0.

Finally, contracting this equation with ϵ αβ
µ1ν1

, we arrive at Eq. (5.108). End of proof.
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or equivalently

Fµ1ν1(TV Ψ) = γ5
(
LV + ∇κV

κ

8

)
Fµ1ν1(Ψ), (5.112)

where LV is the Lie-Lorentz derivative (5.14) with respect to the conformal Killing vector
V (5.77)18.
Conclusion. The expression (5.112) makes clear that the conformal-like transformation of
the spin-3/2 field strength tensor-spinor corresponds to the product of two transformations:
an infinitesimal axial rotation (i.e. multiplication with γ5) times an infinitesimal conformal
transformation (i.e. Lie-Lorentz derivative plus a conformal weight term).

5.8.2 Spin-5/2 field strength tensor-spinor

The field strength tensor-spinor for the strictly massless spin-5/2 field is a rank-4 tensor-
spinor given by

Fµ1ν1µ2ν2(Ψ)

=1
2

(
∇µ2∇[µ1 + 3

4gµ2[µ1 − 1
4γµ2[µ1 + i

2∇µ2γ[µ1 + i

2γµ2∇[µ1

)
Ψν1]ν2 − (µ2 ↔ ν2).

(5.113)

This is symmetric under the exchange of pairs of indices

Fµ2ν2µ1ν1(Ψ) = Fµ1ν1µ2ν2(Ψ). (5.114)

It is also anti-symmetric in its first two and last two indices

Fµ1ν1µ2ν2(Ψ) = F[µ1ν1]µ2ν2(Ψ) = Fµ1ν1[µ2ν2](Ψ), (5.115)

and satisfies the identity

Fµαβγ(Ψ) + Fµγαβ(Ψ) + Fµβγα(Ψ) = 0. (5.116)

As in the spin-3/2 case, the field strength is invariant under not only restricted gauge
transformations (5.22) but also gauge transformations of the following form:

δΨµν =
(

∇(µ + i

2γ(µ

)
ϵν) (5.117)

18The infinitesimal Lorentz transformation term ∇αVβγ
αβ/4 in the Lie-Lorentz derivative LV in

Eq. (5.112) vanishes because, according to Eq. (5.77), ∇[αVβ] = 0.
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(i.e. Fµ1ν1µ2ν2(δΨ) = 0), where ϵν is an arbitrary vector-spinor.
Working as in the spin-3/2 case, we can show that the spin-5/2 field strength (5.113) is
gamma-traceless and divergence-free with respect to all of its indices, and it also satisfies
the identities

∇[ρFµ1ν1]µ2ν2(Ψ) = γ[ρFµ1ν1]µ2ν2(Ψ) = 0. (5.118)

Conformal-like transformation. Let us find the conformal-like transformation of the
field strength, Fµ1ν1µ2ν2(TV Ψ). The calculation is similar to the spin-3/2 case, but quite
longer. The result is

Fµ1ν1µ2ν2(TV Ψ) = γ5
(
V ρ∇ρ − 7

2ϕV
)
Fµ1ν1µ2ν2(Ψ), (5.119)

or equivalently

Fµ1ν1µ2ν2(TV Ψ) = γ5
(
LV − ∇κV

κ

8

)
Fµ1ν1µ2ν2(Ψ). (5.120)

Conclusion. As in the spin-3/2 case (5.112), the expression (5.120) makes clear that the
conformal-like transformation of the spin-5/2 field strength corresponds to the product:
infinitesimal axial rotation times infinitesimal conformal transformation.

5.8.3 A conjecture for the spin-(r+1/2) ≥ 7/2 field strength tensor-
spinors

(Here we do not present explicit expressions for the field strength tensor-spinors Fµ1ν1....µrνr(Ψ)
of the strictly massless spin-(r + 1/2) ≥ 7/2 fields.) We define the field strength
Fµ1ν1....µrνr(Ψ) as the gauge-invariant rank-2r tensor-spinor that satisfies

γµ1Fµ1ν1...µrνr(Ψ) = ∇µ1Fµ1ν1...µrνr(Ψ) = 0, (5.121)

and it is also anti-symmetric under the exchange of the indices µl ↔ νl for l = 1, ..., r.
It is also symmetric under the exchange of any two pairs of indices as in the following
example:

Fµ1ν1µ2ν2....µrνr(Ψ) = Fµ2ν2µ1ν1....µrνr(Ψ) = Fµrνrµ2ν2....µr−1νr−1µ1ν1 and so forth,
(5.122)

while it also satisfies the identities

F[µ1ν1µ2]ν2....µrνr(Ψ) = 0 (5.123)
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and

∇[ρFµ1ν1]µ2ν2....µrνr(Ψ) = γ[ρFµ1ν1]µ2ν2....µrνr(Ψ) = 0. (5.124)

Conjecture. The conformal-like transformation of the spin-(r+1/2) ≥ 7/2 field strength
tensor-spinor is given by

Fµ1ν1...µrνr(TV Ψ) = γ5
(
V ρ∇ρ −

(
r + 3

2

)
ϕV

)
Fµ1ν1...µrνr(Ψ), (5.125)

or equivalently

Fµ1ν1...µrνr(TV Ψ) = γ5
(
LV − (2r − 3)∇κV

κ

8

)
Fµ1ν1...µrνr(Ψ). (5.126)

This conjecture has been verified for r = 1 in Subsection 5.8.1 and for r = 2 in
Subsection 5.8.2. Our conjecture is further justified by observing that Fµ1ν1...µrνr(TV Ψ)
[Eq. (5.126)] satisfies Eqs. (5.121)-(5.124).

5.9 SUMMARY AND DISCUSSIONS

In this paper, we uncovered new conformal-like symmetries (5.80) for the field equations
[(5.20) and (5.21)] of strictly massless fermions of spin s ≥ 3/2 on dS4. The associated
symmetry algebra closes on so(4, 2) up to gauge transformations [see Eqs. (5.92a)-
(5.92c)]. We also showed that the physical (positive frequency) mode solutions (5.48)
and (5.57) form a direct sum of UIRs of the conformal-like so(4, 2) algebra. As for the
interpretation of the conformal-like symmetries, we found that, at the level of the field
strength tensor-spinors, each conformal-like transformation is expressed as a product
of two transformations: an infinitesimal axial rotation and an infinitesimal conformal
transformation (this was shown explicitly for the spin-s = 3/2, 5/2 cases and conjectured
for the cases with s ≥ 7/2 - see Section 5.8).
Let us discuss in passing the flat-space limit of the conformal-like symmetries (i.e. the
limit of zero cosmological constant). First, we observe that the flat-space limit of the five
conformal Killing vectors (5.77) of dS4 gives rise to the four translation Killing vectors
and the generator of dilations of Minkowski spacetime (rather than the five conformal
Killing vectors of Minkowski spacetime as one might expect). This can be verified by
recovering the dS radius, RdS, such that (5.34) is written as

ds2 = R2
dS

− dt2 + cosh2 t
[
dθ2

3 + sin2 θ3
(
dθ2

2 + sin2 θ2 dθ
2
1

)],
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while Eqs. (5.20) and (5.21) are written as(
/∇ + ir

RdS

)
Ψµ1...µr = 0,

∇αΨαµ2...µr = 0, γαΨαµ2...µr = 0.

Then, defining t ≡ T/RdS and θ3 ≡ r/RdS and letting RdS → ∞, we can find the
flat-space limit of the dS conformal Killing vectors (5.77). The flat-space version of
equations (5.20) and (5.21) corresponds to

/∂Ψµ1...µr = 0,

∂αΨαµ2...µr = 0, γαΨαµ2...µr = 0. (5.127)

The five de Sitterian conformal-like symmetries (5.80) reduce to the following flat-space
symmetries of Eq. (5.127)

T flatw Ψµ1...µr = γ5wρ∂ρΨµ1...µr , (5.128)

where wρ is a translation Killing vector or the generator of dilations (i.e., in the standard
Minkowski coordinates x0, x1, x2, x3 with line element −(dx0)2 +∑3

j=1(dxj)2, we have
wρ ∈ {δρ0 , δ

ρ
1 , δ

ρ
2 , δ

ρ
3 , x

ρ}). We observe that the transformation (5.128) is a product
of two transformations. However, unlike in dS4, in Minkowski spacetime, each of the
two transformations present in the product (5.128) is also a symmetry. In other words,
Eqs. (5.127) are invariant under the replacement Ψµ1...µr → γ5Ψµ1...µr (infinitesimal axial
rotations), as well as under Ψµ1...µr → wρ∂ρΨµ1...µr .
In Ref. [54], using the unfolded formalism, Vasiliev presented a sp(8,R) invariant
formulation of free massless fields (gauge potentials) of any spin in AdS4 and showed that
the free field equations are invariant under o(4, 2) (see also Ref. [53]). Although further
study is required, it is likely that the dS version of Vasiliev’s conformal invariance [54] is
related to the conformal-like symmetries we presented in this paper.
It is worth recalling that unitary superconformal field theories on dS4 are known to
exist [3]. In view of our newly discovered conformal-like symmetries for strictly massless
fermions, it is interesting to look for new (and possibly unitary) supersymmetric theories
on dS4 that include strictly massless fermions of any spin s ≥ 3/2.
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5.10 APPENDIX A - DERIVING EQ. (5.65) BY ANALYTICALLY CON-
TINUING so(5) ROTATION GENERATORS AND THEIR MATRIX
ELEMENTS TO so(4, 1)

The aim of this Appendix is to explain how to use group-theoretic tools and analytic
continuation techniques in order to derive the transformation properties of physical modes
in Eq. (5.65).

5.10.1 Background material for representations of so(5) and Gelfand-
Tsetlin patterns

The representations of the algebra so(D + 1) - with arbitrary D - and the specification
of the matrix elements of the generators have been studied by Gelfand and Tsetlin [24].
The D(D + 1)/2 generators IAB = −IBA (A,B = 1, 2, ..., D + 1) of so(D + 1) satisfy
the commutation relations

[IAB, ICD] = (δBCIAD + δADIBC) − (A ↔ B). (5.129)

In Ref. [24], the action of the so(D + 1) generators has been determined in the decom-
position so(D + 1) ⊃ so(D). In particular, the representation space for a so(D + 1)
representation is chosen to be the direct sum of the representation spaces of all representa-
tions of so(D) that appear in the so(D+ 1) representation. (If a representation of so(D)
appears in a representation of so(D+ 1), then it appears with multiplicity one.) Similarly,
the generators of so(D) are determined in the decomposition so(D) ⊃ so(D − 1) and
so forth. In other words, Gelfand and Tsetlin [24] determined a so(D+ 1) representation
in the decomposition so(D + 1) ⊃ so(D) ⊃ ... ⊃ so(2).
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Focusing on so(5). We now specialise to so(5) - since this is the non-compact partner
of the dS algebra so(4, 1). Let us review some basic results obtained by Gelfand and
Tsetlin [24] (with slightly modified notation).

A (unitary) irreducible representation of so(5) is specified by the highest weight s⃗ = (s1, s2)
with s1 ≥ s2 ≥ 0, where the numbers s1 and s2 are simultaneously integers or half-
odd-integers. The 10 anti-hermitian generators IAB = −IBA (A,B = 1, ..., 5) act on a
finite-dimensional vector space corresponding to a direct sum of so(4) representation
spaces (as described at the beginning of the Subsection). Let v denote the orthonormal
basis vectors in the so(5) representation space. Each basis vector is uniquely labelled by
a “Gelfand-Tsetlin pattern”, α, as follows:

v(α) ≡ v


s1 s2

f1 f2

p

q

 . (5.130)

The labels s1, s2 are the same for all basis vectors, since they correspond to the highest
weight specifying the so(5) representation. The rest of the labels in Eq. (5.130) specify
the content of the so(5) representation concerning the chain of subalgebras so(4) ⊃
so(3) ⊃ so(2). In particular, the labels f1, f2 correspond to a so(4) highest weight
f⃗ ≡ (f1, f2) with f1 ≥ |f2|, where f1 and f2 are both integers or half-odd integers, while
f2 can be negative. The so(3) weight p ≥ 0 is an integer or half-odd integer. The full
basis of the representation space is given by all v(α)’s in eq. (5.130) - with fixed s1, s2 -
satisfying:

s1 ≥ f1 ≥ s2 ≥ |f2|,

f1 ≥ p ≥ |f2|,

p ≥ q ≥ −p. (5.131)

The numbers s1, s2, f1, f2, p and q are all integers or half-odd integers.

In order to obtain the desired transformation formulae (5.65) using analytic continuation,
we need to study the action of the generator I54 on the basis vectors (5.130). This is
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given by [24]:

−I54 v


s1 s2

f1 f2

p

q

 = − 1
2A(f1, f2) v


s1 s2

f1 + 1 f2

p

q

− 1
2B(f1, f2) v


s1 s2

f1 f2 + 1
p

q



+ 1
2A(f1 − 1, f2) v


s1 s2

f1 − 1 f2

p

q



+ 1
2B(f1, f2 − 1) v


s1 s2

f1 f2 − 1
p

q

 , (5.132)

where

A(f1, f2) =

√√√√(f1 − p+ 1)(f1 + p+ 2)(s1 − f1)(s1 + f1 + 3)(f1 − s2 + 1)(f1 + s2 + 2)
(f1 + f2 + 1)(f1 + f2 + 2)(f1 − f2 + 1)(f1 − f2 + 2)

(5.133)

and

B(f1, f2) =

√√√√(p− f2)(f2 + p+ 1)(s2 − f2)(s2 + f2 + 1)(s1 − f2 + 1)(s1 + f2 + 2)
(f1 + f2 + 1)(f1 + f2 + 2)(f1 − f2)(f1 − f2 + 1) .

(5.134)

(Our matrix elements differ from the matrix elements of Ref. [24] by a factor of 1/2.)
Note that A(f1,−f2) = A(f1, f2) and B(f1, f2) = B(f1,−f2 − 1).

5.10.2 Specialising to so(5) representations formed by tensor-spinor
spherical harmonics on S4

The line element of S4 can be parametrised as

ds2
S4 = dθ2

4 + sin2 θ4 dΩ2, (5.135)

where 0 ≤ θ4 ≤ π and dΩ2 is the line element of S3 (5.35). For later convenience, note
that the line element (5.135) can be analytically continued to the dS4 line element (5.34)

253



Chapter 5. New conformal-like symmetry of strictly massless fermions in
four-dimensional de Sitter space

by making the replacement

θ4 → x = π

2 − it (5.136)

- the variable x has been already introduced in Eq. (5.51).
Let /∇ = γµ∇µ be the Dirac operator on S4, where γµ and ∇µ are the gamma matrices
and covariant derivative, respectively, on S4. We are interested in (totally symmetric)
rank-r tensor-spinor spherical harmonics ψ̂(n; r̃, σℓ;m;k)

µ1...µr
(θ4,θ3) (with σ = ±) on S4 that

satisfy [30]

/∇ψ̂(n; r̃, σℓ;m;k)
µ1...µr

= −i(n+ 2) ψ̂(n; r̃, σℓ;m;k)
µ1...µr

,

γµ1ψ̂(n; r̃, σℓ;m;k)
µ1...µr

= ∇µ1ψ̂(n; r̃, σℓ;m;k)
µ1...µr

= 0, (n = r, r + 1, ...), (5.137)

where n is the angular momentum quantum number on S4 19. The representation-
theoretic meaning of the labels n, σ, ℓ, r̃,m and k will be discussed below. The hat has
been used in order to indicate that the eigenmodes ψ̂(n; r̃, σℓ;m;k)

µ1...µr
(θ4,θ3) are normalised

with respect to the standard inner product on S4∫
S4

√
gS4 dθ4 dθ3 dθ2 dθ1 ψ̂

(n′; r̃′, σ′ℓ′;m′;k′)
µ1...µr

ψ̂(n; r̃, σℓ;m;k)µ1...µr = δnn′δℓℓ′δσσ′δr̃r̃′δmm′δkk′ ,

(5.138)
where gS4 is the determinant of the S4 metric. The indices µ1, ..., µr run from θ1 to θ4,
while the indices µ̃1, ..., µ̃r run from θ1 to θ3.
Gelfand-Tsetlin patterns and tensor-spinor spherical harmonics. The ten Killing
vectors of S4 act on the solution space of Eqs. (5.137) in terms of the Lie-Lorentz
derivatives (5.14), and the latter generate a representation of so(5) on this solution
space. In particular, for each allowed value of n, the set of eigenmodes {ψ̂(n; r̃, σℓ;m;k)

µ1...µr
}

forms an irreducible representation of so(5) with highest weight

s⃗ = (s1, s2) =
(
n+ 1

2 , r + 1
2

)
(5.139)

with n = r, r + 1, .... Each eigenmode ψ̂(n; r̃, σℓ;m;k)
µ1...µr

(θ4,θ3) corresponds to the following
Gelfand-Tsetlin pattern (see Eq. (5.130)):

α =


n+ 1

2 r + 1
2

ℓ+ 1
2 σ(r̃ + 1

2)
m+ 1

2

k + 1
2

 . (5.140)

19There are also tensor-spinor spherical harmonics on S4 that satisfy Eqs. (5.137) but with an opposite
sign for the eigenvalue. We will not discuss these here as they form equivalent so(5) representations
with the tensor-spinor spherical harmonics in Eq. (5.137).
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The numbers ℓ,m and k are the angular momentum quantum numbers on S3, S2 and
S1, respectively, and their allowed values are found from (5.131).
Based on the discussion in the previous paragraph, we can identify each eigenmode
ψ̂(n; r̃, σℓ;m;k)
µ1...µr

(θ4,θ3) with a basis vector (5.130) labeled by the pattern (5.140). In
particular, we make the identifications:

v


n+ 1

2 r + 1
2

ℓ+ 1
2 r̃ + 1

2

m+ 1
2

k + 1
2

 → ψ̂(n; r̃,+ℓ;m;k)
µ1...µr

(5.141)

and

v


n+ 1

2 r + 1
2

ℓ+ 1
2 −(r̃ + 1

2)
m+ 1

2

k + 1
2

 → −i (−1)r̃ψ̂(n; r̃,−ℓ;m;k)
µ1...µr

, (5.142)

where the phase factor −i(−1)r̃ has been introduced for convenience.

5.10.3 Transformation properties of tensor-spinor spherical har-
monics on S4 under so(5)

In this Subsection, we find the so(5) transformation formulae for LS ψ̂
(n; r̃=r,±ℓ;m;k)
µ1...µr

that
(after analytic continuation) will give rise to the so(4, 1) transformation formulae (5.65)
for the physical modes of the strictly massless fermions on dS4. Here LS is the Lie-Lorentz
derivative on S4 with respect to the Killing vector

S = S µ∂µ = cos θ3
∂

∂θ4
− cot θ4 sin θ3

∂

∂θ3
. (5.143)

This Killing vector corresponds to the so(5) generator I45 = −I54 in Eq. (5.132) and by
making the replacement (5.136) it is analytically continued as: S → iX, where X is
the dS boost Killing vector (5.64).
We focus on the eigenmodes ψ̂(n; r̃=r,+ℓ;m;k)

µ1...µr
(θ4,θ3) and ψ̂(n; r̃=r,−ℓ;m;k)

µ1...µr
(θ4,θ3), as the

former will be analytically continued to the physical modes Ψ(phys,+ℓ;m;k)
µ1...µr

(t,θ3) (5.57)
and the latter to the physical modes Ψ(phys,−ℓ;m;k)

µ1...µr
(t,θ3) (5.48). We will also discuss in

passing the eigenmodes ψ̂(n; r̃=r−1,±ℓ;m;k)
µ1...µr

(θ4,θ3) as they will be analytically continued
to the pure gauge modes Ψ(pg, r̃=r−1,±ℓ;m;k)

µ1...µr
(t,θ3), which appear in the transformation

formulae (5.65).

255



Chapter 5. New conformal-like symmetry of strictly massless fermions in
four-dimensional de Sitter space

Explicit expressions for the infinitesimal transformations LS ψ̂
(n; r̃=r,±ℓ;m;k)
µ1...µr

and
LS ψ̂

(n; r̃=r−1,±ℓ;m;k)
µ1...µr

are immediately found from Eq. (5.132) with the use of Eqs. (5.141)
and (5.142). However, these transformation properties refer to normalised eigenmodes,
while the desired dS transformation properties (5.65) refer to un-normalised eigenmodes.
Therefore, we will first find the so(5) transformation properties for the un-normalised
eigenmodes on S4 (the un-normalised eigenmodes will be defined below) and then perform
analytic continuation to dS4.

Some useful expressions for eigenmodes on S3

For later convenience, let us present some expressions for certain tensor-spinor spherical
harmonics on S3 [see Eqs. (5.42) and (5.43)]. These expressions can be easily obtained
using the method of separation of variables as has been explained in Refs. [8, 9, 33].
Below, we use the notation θ3 = (θ3, θ2, θ1) = (θ3,θ2). We only need the following
expressions for our computations:
• Rank-r eigenmodes ψ̃(ℓ;m;k)

±µ̃1...µ̃r
(θ3,θ2) on S3: The component ψ̃(ℓ;m;k)

±θ3θ3...θ3(θ3,θ2) is a
spinor on S2. It is given by

ψ̃
(ℓ;m;k)
±θ3θ3...θ3

r times
(θ3,θ2) = c̃(r, ℓ;m)√

2
1√
2

(1 + iγ̃3)
{
ϕ̃

(r)
ℓm(θ3) ± iψ̃

(r)
ℓm(θ3)γ̃3

}
˜̃ψ(m;k)

− (θ2),

(5.144)

where c̃(r,ℓ;m)√
2 is the normalisation factor, ˜̃ψ(m;k)

− (θ2) are the spinor eigenfunctions of the
Dirac operator ˜̃

/∇ on S2 satisfying

˜̃
/∇ ˜̃ψ(m;k)

− = −i(m+ 1) ˜̃ψ(m;k)
− ,

while the spinors ˜̃ψ(m;k)
+ ≡ γ̃3 ˜̃ψ(m;k)

− satisfy

˜̃
/∇ ˜̃ψ(m;k)

+ = +i(m+ 1) ˜̃ψ(m;k)
+ .

The functions ϕ̃(r)
ℓm(θ3) and ψ̃(r)

ℓm(θ3) correspond to special cases of the following functions:

ϕ̃
(ã)
ℓm(θ3) = κ̃ϕ̃(ℓ,m)

(
cos θ3

2

)m+1−ã (
sin θ3

2

)m−ã

× F

(
−ℓ+m, ℓ+m+ 3;m+ 3

2; sin2 θ3

2

)
, (5.145)
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and

ψ̃
(ã)
ℓm(θ3) = κ̃ϕ̃(ℓ,m)

ℓ+ 3
2

m+ 3
2

(
cos θ3

2

)m−ã (
sin θ3

2

)m+1−ã

× F

(
−ℓ+m, ℓ+m+ 3;m+ 5

2; sin2 θ3

2

)
, (5.146)

where ã is an integer, while the factor κ̃ϕ̃(ℓ,m) is given by

κ̃ϕ̃(ℓ,m) =
Γ(ℓ+ 3

2)
Γ(ℓ−m+ 1) Γ(m+ 3

2) . (5.147)

• Rank-(r−1) eigenmodes ψ̃(ℓ;m;k)
±µ̃2...µ̃r

(θ3,θ2) on S3: The component ψ̃(ℓ;m;k)
±θ3θ3...θ3(θ3,θ2)

is a spinor on S2. It is given by

ψ̃
(ℓ;m;k)
±θ3θ3...θ3

r−1 times
(θ3,θ2) = c̃(r − 1, ℓ;m)√

2
1√
2

(1 + iγ̃3)
{
ϕ̃

(r−1)
ℓm (θ3) ± iψ̃

(r−1)
ℓm (θ3)γ̃3

}
˜̃ψ(m;k)

− (θ2),

(5.148)

where c̃(r−1,ℓ;m)√
2 is the normalisation factor, while ϕ̃(r−1)

ℓm (θ3) and ψ̃(r−1)
ℓm (θ3) are given by

Eqs. (5.145) and (5.146), respectively, with ã = r − 1.

Expressions for the eigenmodes ψ̂(n; r̃=r,±ℓ;m;k)
µ1µ2...µr

on S4

Working as in Section 5.4, we separate variables for equations (5.137) on S4. We find

ψ̂
(n; r̃=r,+ℓ;m;k)
θ4µ2...µr

(θ4,θ3) = 0,

ψ̂
(n; r̃=r,+ℓ;m;k)
µ̃1...µ̃r

(θ4,θ3) = c(r, n; r̃ = r, ℓ)√
2

 iψ(−r)
nℓ (θ4) ψ̃(ℓ;m;k)

+µ̃1...µ̃r
(θ3)

−ϕ(−r)
nℓ (θ4) ψ̃(ℓ;m;k)

+µ̃1...µ̃r
(θ3)

 (5.149)

and

ψ̂
(n; r̃=r,−ℓ;m;k)
θ4µ2...µr

(θ4,θ3) = 0,

ψ̂
(n; r̃=r,−ℓ;m;k)
µ̃1...µ̃r

(θ4,θ3) = c(r, n; r̃ = r, ℓ)√
2

 ϕ
(−r)
nℓ (θ4) ψ̃(ℓ;m;k)

−µ̃1...µ̃r
(θ3)

−iψ(−r)
nℓ (θ4) ψ̃(ℓ;m;k)

−µ̃1...µ̃r
(θ3)

 , (5.150)

where c(r,n;r̃=r,ℓ)√
2 is a normalisation factor that will be determined below. The functions

ϕ
(−r)
nℓ (θ4) and ψ(−r)

nℓ (θ4) belong to the following family of functions:

ϕ
(a)
nℓ (θ4) = κϕ(n, ℓ)

(
cos θ4

2

)ℓ+1−a (
sin θ4

2

)ℓ−a

× F

(
−n+ ℓ, n+ ℓ+ 4; ℓ+ 2; sin2 θ4

2

)
, (5.151)
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ψ
(a)
nℓ (θ4) = κϕ(n, ℓ)

n+ 2
ℓ+ 2

(
cos θ4

2

)ℓ−a (
sin θ4

2

)ℓ+1−a

× F

(
−n+ ℓ, n+ ℓ+ 4; ℓ+ 3; sin2 θ4

2

)
, (5.152)

where the factor κϕ(n, ℓ) is given by

κϕ(n, ℓ) = Γ(n+ 2)
Γ(n− ℓ+ 1)Γ(ℓ+ 2) . (5.153)

Substituting the eigenmode (5.149) (or (5.150)) into the inner product (5.138), and
using the normalisation of the tensor-spinor eigenmodes on S3 (5.46), we find∣∣∣∣∣c(r, n; r̃ = r, ℓ)√

2

∣∣∣∣∣
2

= 22r−3 Γ(n− ℓ+ 1)Γ(4 + n+ ℓ)
|Γ(n+ 2)|2

. (5.154)

Introducing the un-normalised eigenmodes. Now, let us define the un-normalised
eigenmodes ψ(n; r̃,±ℓ;m;k)

µ1µ2...µr
(θ4,θ3) (for any value of r̃ ∈ {0, ..., r}) as

ψ(n; r̃,±ℓ;m;k)
µ1µ2...µr

(θ4,θ3) ≡
√

2
c(r, n; r̃, ℓ)

1
κϕ(n, ℓ)

ψ̂(n; r̃,±ℓ;m;k)
µ1µ2...µr

(θ4,θ3), (5.155)

where the normalisation factors c(r, n; r̃, ℓ) that are needed for our computations (and
have not been defined yet) will be defined later. (Recall that the un-normalised eigenmodes
are the ones that will be analytically continued to dS4.)
Transformation of the un-normalised eigenmodes ψ(n; r̃=r,±ℓ;m;k)

µ1µ2...µr
. The infinitesimal

so(5) transformation of the un-normalised modes LSψ
(n; r̃=r,±ℓ;m;k)
µ1µ2...µr

can be straightfor-
wardly found from the transformation of the normalised modes LS ψ̂

(n; r̃=r,±ℓ;m;k)
µ1µ2...µr

(see
the discussion at the beginning of this Subsection). We find in this manner

LSψ
(n; r̃=r,±ℓ;m;k)
µ1µ2...µr

= − κϕ(n, ℓ+ 1)
2κϕ(n, ℓ)

√√√√(ℓ−m+ 1)(ℓ+m+ 3)
(ℓ+ 2)2 − r2 (n+ ℓ+ 4)

× ψ(n; r̃=r,±(ℓ+1);m;k)
µ1µ2...µr

+ κϕ(n, ℓ− 1)
2κϕ(n, ℓ)

√√√√(ℓ−m)(ℓ+m+ 2)
(ℓ+ 1)2 − r2 (n− ℓ+ 1)

× ψ(n; r̃=r,±(ℓ−1);m;k)
µ1µ2...µr

+

√
(n+ 2)2 − r2

2 Kℓm
c(r, n; r̃ = r − 1, ℓ)
c(r, n; r̃ = r, ℓ)

× ψ(n; r̃=r−1,±ℓ;m;k)
µ1µ2...µr

, (5.156)

258



5.10. Appendix A - Deriving Eq. (5.65) by analytically continuing so(5)
rotation generators and their matrix elements to so(4, 1)

where

Kℓm =

√√√√ ((m+ 1)2 − r2) (2r + 1)
((ℓ+ 1)2 − r2) ((ℓ+ 2)2 − r2) . (5.157)

Note that, under this so(5) transformation, the modes ψ(n; r̃=r,+ℓ;m;k)
µ1µ2...µr

do not mix with
the modes ψ(n; r̃=r,−ℓ;m;k)

µ1µ2...µr
. This observation plays a key role when performing analytic

continuation to dS4, as it implies that the strictly massless fermions on dS4 correspond
to a direct sum of irreducible representations of so(4, 1) - see Eq. (5.65).

Expressions for the eigenmodes ψ̂(n; r̃=r−1,±ℓ;m;k)
µ1µ2...µr

on S4

By separating variables again for equations (5.137) we find

ψ̂
(n; r̃=r−1,+ℓ;m;k)
θ4θ4µ3...µr

(θ4,θ3) = 0,

ψ̂
(n; r̃=r−1,+ℓ;m;k)
θ4µ̃2...µ̃r

(θ4,θ3) = c(r, n; r̃ = r − 1, ℓ)√
2

 iψ(−r+2)
nℓ (θ4) ψ̃(ℓ;m;k)

+µ̃2...µ̃r
(θ3)

−ϕ(−r+2)
nℓ (θ4) ψ̃(ℓ;m;k)

+µ̃2...µ̃r
(θ3)

 (5.158)

and

ψ̂
(n; r̃=r−1,−ℓ;m;k)
θ4θ4µ3...µr

(θ4,θ3) = 0

ψ̂
(n; r̃=r−1,−ℓ;m;k)
θ4µ̃2...µ̃r

(θ4,θ3) = c(r, n; r̃ = r − 1, ℓ)√
2

 ϕ
(−r+2)
nℓ (θ4) ψ̃(ℓ;m;k)

−µ̃2...µ̃r
(θ3)

−iψ(−r+2)
nℓ (θ4) ψ̃(ℓ;m;k)

−µ̃2...µ̃r
(θ3)

 ,
(5.159)

where c(r,n;r̃=r−1,ℓ)√
2 is the normalisation factor, while the functions ϕ

(−r+2)
nℓ (θ4) and

ψ
(−r+2)
nℓ (θ4) are given by Eqs. (5.151) and (5.152), respectively, with a = −r + 2.

The components ψ̂(n; r̃=r−1,±ℓ;m;k)
µ̃1...µ̃r

(θ4,θ3) can be found using the TT conditions in
Eq. (5.137).
Now that we know the expressions (5.158) and (5.159), we can perform the follow-
ing calculation for later convenience. Letting µ1 = θ4 and µ2 = ... = µr = θ3 in
LSψ

(n; r̃=r,±ℓ;m;k)
µ1...µr

[Eq. (5.156)], we find

LSψ
(n; r̃=r,±ℓ;m;k)
θ4θ3...θ3 =

√
(n+ 2)2 − r2

2 Kℓm
c(r, n; r̃ = r − 1, ℓ)
c(r, n; r̃ = r, ℓ) ψ

(n; r̃=r−1,±ℓ;m;k)
θ4θ3...θ3 ,

(5.160)
while using the explicit expressions (5.149), (5.150), (5.158) and (5.159) we rewrite this
equation as

LSψ
(n; r̃=r,±ℓ;m;k)
θ4θ3...θ3 = 1

2
c̃(r, ℓ;m)

c̃(r − 1, ℓ;m) ψ
(n; r̃=r−1,±ℓ;m;k)
θ4θ3...θ3 , (5.161)
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Then, comparing Eqs. (5.160) and (5.161) we find

c(r, n; r̃ = r − 1, ℓ) ∝ 1√
(n+ 2)2 − r2

. (5.162)

Transformation of the un-normalised eigenmodes ψ(n; r̃=r−1,±ℓ;m;k)
µ1µ2...µr

. Again, the
infinitesimal so(5) transformation of the un-normalised modes LSψ

(n; r̃=r−1,±ℓ;m;k)
µ1µ2...µr

can be straightforwardly found from the transformation of the normalised modes
LS ψ̂

(n; r̃=r−1,±ℓ;m;k)
µ1µ2...µr

(see the discussion at the beginning of this Subsection). We
find

LSψ
(n; r̃=r−1,±ℓ;m;k)
µ1µ2...µr

= −

√
(n+ 2)2 − r2

2 Kℓm
c(r, n; r̃ = r, ℓ)

c(r, n; r̃ = r − 1, ℓ) ψ
(n; r̃=r,±ℓ;m;k)
µ1µ2...µr

+ ... ,

(5.163)

where ‘...’ includes eigenmodes that are orthogonal to both ψ(n; r̃=r,±ℓ;m;k)
µ1µ2...µr

and
ψ(n; r̃=r−1,±ℓ;m;k)
µ1µ2...µr

.

5.10.4 Performing analytic continuation

Let us analytically continue the tensor-spinor spherical harmonics (5.137) on S4 in order to
obtain tensor-spinors satisfying Eqs. (5.6) and (5.7) on dS4. By making the replacements
θ4 → x(t) = π/2 − it [see Eq. (5.136)] and

n → −2 − iM, (5.164)

we analytically continue the un-normalised tensor-spinor spherical harmonics on S4 to
tensor-spinors on dS4 as

ψ(n; r̃, σℓ;m;k)
µ1...µr

(θ4,θ3) → ψ(−2−iM ; r̃, σℓ;m;k)
µ1...µr

(x(t),θ3).

The analytically continued tensor-spinors satisfy Eqs. (5.6) and (5.7) on dS4, which we
rewrite here again for convenience

/∇ψ(−2−iM ; r̃, σℓ;m;k)
µ1...µr

= −M ψ(−2−iM ; r̃, σℓ;m;k)
µ1...µr

,

γµ1ψ(−2−iM ; r̃, σℓ;m;k)
µ1...µr

= ∇µ1ψ(−2−iM ; r̃, σℓ;m;k)
µ1...µr

= 0 . (5.165)

Let us focus on imaginary values of the mass parameter M . For these values of M , a dS
invariant (and time-independent) scalar product is given by (5.67).
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By applying the aforementioned analytic continuation techniques to the so(5) transfor-
mation formulae (5.156) and (5.163), we find

LXψ(−2−iM ; r̃=r,±ℓ;m;k)
µ1µ2...µr

= i
κϕ(−2 − iM, ℓ+ 1)

2κϕ(−2 − iM, ℓ)

√√√√(ℓ−m+ 1)(ℓ+m+ 3)
(ℓ+ 2)2 − r2 (−iM + ℓ+ 2)

× ψ(−2−iM ; r̃=r,±(ℓ+1);m;k)
µ1µ2...µr

− i
κϕ(−2 − iM, ℓ− 1)

2κϕ(−2 − iM, ℓ)

√√√√(ℓ−m)(ℓ+m+ 2)
(ℓ+ 1)2 − r2 (−iM − ℓ− 1)

× ψ(−2−iM ; r̃=r,±(ℓ−1);m;k)
µ1µ2...µr

− i

√
−M2 − r2

2 Kℓm
c(r,−2 − iM ; r̃ = r − 1, ℓ)
c(r,−2 − iM ; r̃ = r, ℓ) ψ(−2−iM ; r̃=r−1,±ℓ;m;k)

µ1µ2...µr
, (5.166)

and

LXψ(−2−iM ; r̃=r−1,±ℓ;m;k)
µ1µ2...µr

= i

√
−M2 − r2

2 Kℓm
c(r,−2 − iM ; r̃ = r, ℓ)

c(r,−2 − iM ; r̃ = r − 1, ℓ) ψ
(−2−iM ; r̃=r,±ℓ;m;k)
µ1µ2...µr

+ ... ,

(5.167)

where

c(r,−2 − iM ; r̃ = r − 1, ℓ) ∝ 1√
−M2 − r2

. (5.168)

Recall that we focus on imaginary values of M . For convenience we assume that
−M2 > r2 [the value −M2 = r2 corresponds to the strictly massless case (5.19)]. Using
the dS invariance (5.71) of the scalar product (5.67), we have〈

LXψ(−2−iM ; r̃=r,±ℓ;m;k)|ψ(−2−iM ; r̃=r−1,±ℓ;m;k)
〉

+
〈
ψ(−2−iM ; r̃=r,±ℓ;m;k)|LXψ(−2−iM ; r̃=r−1,±ℓ;m;k)

〉
= 0. (5.169)

Then, using the transformation formulae (5.166) and (5.167), we find〈
ψ(−2−iM ; r̃=r−1,±ℓ;m;k)|ψ(−2−iM ; r̃=r−1,±ℓ;m;k)

〉

= −
∣∣∣∣∣ c(r,−2 − iM ; r̃ = r, ℓ)
c(r,−2 − iM ; r̃ = r − 1, ℓ)

∣∣∣∣∣
2 〈

ψ(−2−iM ; r̃=r,±ℓ;m;k)|ψ(−2−iM ; r̃=r,±ℓ;m;k)
〉

(5.170)

∝
√

−M2 − r22
. (5.171)
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From this equation, we understand that the analytically continued eigenmodes ψ(−2−iM ; r̃=r−1,±ℓ;m;k)
µ1...µr

have zero norm in the strictly massless limit (M2 = −r2). In other words, they be-
come pure gauge modes (5.62) in this limit, i.e. ψ(−2+r; r̃=r−1,±ℓ;m;k)

µ1...µr
(x(t),θ3) =

Ψ(pg, r̃=r−1,±ℓ;m;k)
µ1...µr

(t,θ3).
Specialising to the strictly massless case and, finally, deriving Eq. (5.65). Now
we tune the mass parameter to the strictly massless value M = ir (5.19). The physical
modes are ψ(−2+r; r̃,±ℓ;m;k)

µ1...µr
(x(t),θ3) ≡ Ψ(phys,±ℓ;m;k)

µ1...µr
(t,θ3) [see Eqs. (5.48) and (5.57)].

The infinitesimal dS transformation of these modes is found by letting M = ir in
Eq. (5.166). By doing so, we straightforwardly arrive at Eq. (5.65), as required.

5.11 APPENDIX B - DETAILS FOR THE COMPUTATION OF THE
COMMUTATOR (5.90) BETWEEN TWO CONFORMAL-LIKE
TRANSFORMATIONS

We wish to calculate [TW , TV ]Ψµ1...µr in order to arrive at Eq. (5.90). For convenience,
we split each of the conformal-like transformations in the commutator in two parts as in
Eq. (5.83), i.e. TWΨµ1...µr = ∆WΨµ1...µr + PWΨµ1...µr and TV Ψµ1...µr = ∆V Ψµ1...µr +
PV Ψµ1...µr . Then, we split [TW , TV ]Ψµ1...µr into three parts as

[TW , TV ]Ψµ1...µr = [∆W ,∆V ]Ψµ1...µr +
(

[∆W , PV ] − [∆V , PW ]
)

Ψµ1...µr + [PW , PV ]Ψµ1...µr .

(5.172)

Let us now calculate each of the three parts in this equation. (Recall that we denote the
Lie bracket between two vectors as [W,V ]µ = LWV

µ.)
Calculating [∆W ,∆V ]Ψµ1...µr

. Using Eqs. (5.77) and (5.78), we find (after a long
calculation):

[∆W ,∆V ]Ψµ1...µr = L[W,V ]Ψµ1...µr − 2ir
(

∇(µ1 + i

2γ(µ1

)
γλΨρ

µ2...µr) ∇λ[W,V ]ρ

− 2ir∇λ[W,V ]ρ
(
γ(µ1K

λρ
|µ2...µr) + γρK λ

(µ1 |µ2...µr) + γλKρ
(µ1|µ2...µr)

)
,

(5.173)

where we have used that any Killing vector ξ (such as [W,V ]) satisfies [37]

∇µ1∇λξρ = Rρλµ1σξ
σ, (5.174)
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while we have also introduced the rank-(r + 1) tensor-spinor

Kλρ|µ2...µr = −Kρλ|µ2...µr = Kλρ|(µ2...µr) =
(

∇[λ + ir

2 γ[λ

)
Ψρ]µ2...µr , (5.175)

which is anti-symmetric in its first two indices and symmetric in its last r − 1 indices.
(For r = 1, this tensor-spinor coincides with the rank-2 anti-symmetric gauge-invariant
field-strength tensor-spinor

(
∇[λ + i

2γ[λ
)

Ψρ], while for r ≥ 2, Kλρ|µ2...µr is not gauge-
invariant.) Note that because of the field equations (5.20) and (5.21), the tensor-
spinor (5.175) satisfies

γλKλρ|µ2...µr = 0. (5.176)

Now we will show that

γµ1K
λρ

|µ2...µr
+ γρK λ

µ1 |µ2...µr
+ γλKρ

µ1|µ2...µr
= 0. (5.177)

It is convenient to proceed by defining

⋆Kαβ
|µ2...µr

≡ 1
2ϵ

αβλρKλρ|µ2...µr , (5.178)

which satisfies

γµ1
∗Kαβ

|µ2...µr
+ γβ ∗K α

µ1 |µ2...µr
+ γα ∗Kβ

µ1|µ2...µr
= 0 (5.179)

(this is easy to show by contracting with ϵγδαβ and using well-known properties of the
totally anti-symmetric tensor). Then, using ϵαβλρ = iγ5γ[αγβγλγρ] [see Eq. (5.10)] and
the gamma-tracelessness property (5.176), we find that Eq. (5.178) becomes

⋆Kαβ
|µ2...µr

= −i γ5Kαβ
|µ2...µr

. (5.180)

Substituting this into Eq. (5.179), we immediately derive Eq. (5.177), and thus, we have

[∆W ,∆V ]Ψµ1...µr = L[W,V ]Ψµ1...µr − 2ir
(

∇(µ1 + i

2γ(µ1

)
γλΨρ

µ2...µr) ∇λ[W,V ]ρ.

(5.181)

Calculating
(

[∆W , PV ] − [∆V , PW ]
)

Ψµ1...µr
. We find

(
[∆W , PV ] − [∆V , PW ]

)
Ψµ1...µr = − 2r

2r + 1
×
(

∇(µ1 + i

2γ(µ1

) [
2[W,V ]ρΨµ2...µr)ρ − i(2r + 1) ∇λ[W,V ]ρ γλΨρ

µ2...µr)

]
.

(5.182)
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Calculating [PW , PV ]Ψµ1...µr
. We find

[PW , PV ]Ψµ1...µr = 4r
(2r + 1)2

×
(

∇(µ1 + i

2γ(µ1

) [
r [W,V ]ρΨµ2...µr)ρ + ∇ρ[W,V ]λ (∇ρ − i

2γ
ρ)Ψλ

µ2...µr)

]
.

(5.183)

Finally, adding Eqs. (5.181), (5.182) and (5.183) by parts, we arrive at Eq. (5.90), as
required.

REFERENCES

[1] B. Allen. “Graviton propagator in de Sitter space”. In: Phys. Rev. D 34 (1986),
p. 3670.

[2] B. Allen and C. A. Lütken. “Spinor Two Point Functions in Maximally Symmetric
Spaces”. In: Commun. Math. Phys. 106 (1986), p. 201.

[3] T. Anous, D. Z. Freedman, and A. Maloney. “de Sitter supersymmetry revisited”.
In: J. High Energ. Phys. 2014 (2014), p. 119.

[4] G. Barnich, X. Bekaert, and M. Grigoriev. “Notes on conformal invariance of
gauge fields”. In: Journal of Physics A: Mathematical and Theoretical 48 (2015),
p. 505402.

[5] A. Barut and R. Raczka. Theory of Group Representations and Applications.
WORLD SCIENTIFIC, 1986.

[6] A. O. Barut and I. H. Duru. “Exact Solutions of the Dirac Equation in Spatially
Flat Robertson-Walker Space-Times”. In: Phys. Rev. D 36 (1987), p. 3705.

[7] T. Basile, X. Bekaert, and N. Boulanger. “Mixed-symmetry fields in de Sitter space:
a group theoretical glance”. In: Journal of High Energy Physics 2017 (2016), p. 1.

[8] R. Camporesi and A. Higuchi. “On the eigenfunctions of the Dirac operator on
spheres and real hyperbolic spaces”. In: J. Geom. Phys. 20 (1996), p. 1.

[9] C.-H. Chen, H. T. Cho, A. S. Cornell, and G. Harmsen. “Spin-3/2 fields in D-
dimensional Schwarzschild black hole spacetimes”. In: Phys. Rev. D 94 (2016),
p. 044052.

264



References

[10] I. Cotăescu. “Integral representation of the Feynman propagators of the Dirac
fermions on the de Sitter expanding universe”. In: Eur. Phys. J. C 78 (2018),
p. 769.

[11] I. Cotăescu and C. Crucean. “New Dirac quantum modes in moving frames of the
de Sitter space–time”. In: Int. J. Mod. Phys. A 23 (2012), pp. 3707–3720.

[12] S. Deser and R. I. Nepomechie. “Anomalous propagation of gauge fields in confor-
mally flat spaces”. In: Physics Letters B 132 (1983), p. 321.

[13] S. Deser and R. I. Nepomechie. “Gauge invariance versus masslessness in de Sitter
spaces”. In: Annals of Physics 154 (1984), p. 396.

[14] S. Deser and A. Waldron. “Arbitrary spin representations in de Sitter from dS /
CFT with applications to dS supergravity”. In: Nuclear Physics 662 (2003), p. 379.

[15] S. Deser and A. Waldron. “Conformal invariance of partially massless higher spins”.
In: Physics Letters B 603 (2004), p. 30.

[16] S. Deser and A. Waldron. “Gauge invariances and phases of massive higher
spins in (A)dS”. In: Phys. Rev. Lett. 87 (2001), p. 031601. eprint: arXiv:hep-
th/0102166.

[17] S. Deser and A. Waldron. “Null propagation of partially massless higher spins in
(A)dS and cosmological constant speculations”. In: Phys. Lett. B 513 (2001),
p. 137. eprint: hep-th/0105181.

[18] S. Deser and A. Waldron. “Partial masslessness of higher spins in (A)dS”. In:
Nuclear Physics 607 (2001), p. 577.

[19] J. Dixmier. “Sur les représentations de certains groupes orthogonaux”. In: Compt.
Rend. 250 (1960), p. 3263.

[20] V. K. Dobrev, G. Mack, V. B. Petkova, S. G. Petrova, and I. T. Todorov. “Harmonic
Analysis on the n-Dimensional Lorentz Group and Its Application to Conformal
Quantum Field Theory”. In: Lecture Notes in Physics 63 (1977).

[21] M. Enayati, J. P. Gazeau, H. Pejhan, and A. Wang. “The de Sitter group and its
representations: a window on the notion of de Sitterian elementary systems”. In:
(2022). eprint: arXiv:2201.11457.

[22] J. Fang and C. Fronsdal. “Massless, half-integer-spin fields in de Sitter Space”. In:
Phys. Rev. D 22 (1980), p. 1361.

265

arXiv:hep-th/0102166
arXiv:hep-th/0102166
hep-th/0105181
arXiv:2201.11457


Chapter 5. New conformal-like symmetry of strictly massless fermions in
four-dimensional de Sitter space

[23] D. Z. Freedman and A. V. Proeyen. Supergravity. Cambridge University Press,
2012.

[24] I. M. Gelfand and M. L. Tsetlin. “Finite-dimensional representations of groups of
orthogonal matrices”. In: Dokl. Akad. Nauk SSSR 71 (1950). English translation
in: I. M. Gelfand, “Collected papers”. Vol II, Berlin: Springer-Verlag 1988, pp.
657–661, pp. 1017–1020.

[25] I. S. Gradshteyn and I. M. Ryzhik. Table of integrals, series, and products. seventh.
Elsevier/Academic Press, 2007.

[26] A. Higuchi. “Forbidden mass range for spin-2 field theory in de Sitter spacetime”.
In: Nuclear Physics B 282 (1987), pp. 397–436.

[27] A. Higuchi. “Linearized gravity in de Sitter spacetime as a representation of
SO(4, 1)”. In: Classical and Quantum Gravity 8 (1991), pp. 2005–2021.

[28] A. Higuchi. “Quantum fields of nonzero spin in De Sitter spacetime”. PhD thesis.
Yale University, 1987.

[29] A. Higuchi. “Symmetric tensor spherical harmonics on the N -sphere and their
application to the de Sitter group SO(N, 1)”. In: J. Math. Phys. 28 (1987),
p. 1553.

[30] Y. Homma and T. Tomihisa. “The spinor and tensor fields with higher spin on
spaces of constant curvature”. In: Annals of Global Analysis and Geometry 60
(2021), pp. 829–861.

[31] S. Kanno, M. Sasaki, and T. Tanaka. “Vacuum State of the Dirac Field in de
Sitter Space and Entanglement Entropy”. In: J. High Energy Phys. 2017 (2016),
p. 68.

[32] Y. Kosmann. “Dérivées de Lie des spineurs”. In: Annali di Mat. Pura Appl. (IV)
91 (1971), p. 317.

[33] V. A. Letsios. “(Non-)unitarity of strictly and partially massless fermions on de
Sitter space”. In: Journal of High Energy Physics 2023 (2023), p. 15.

[34] V. A. Letsios. “On representation-theoretic properties of fermionic fields in de
Sitter spacetime and symmetries underlying the conservation of the electromagnetic
zilches”. PhD thesis. University of York, 2023. Chap. (Non-)unitarity of strictly
and partially massless fermions on de Sitter space II: a technical explanation.

266



References

[35] V. A. Letsios. “The (partially) massless spin-3/2 and spin-5/2 fields in de Sitter
spacetime as unitary and non-unitary representations of the de Sitter algebra”. In:
(2022). eprint: arXiv:2206.09851v3.

[36] V. A. Letsios. “The eigenmodes for spinor quantum field theory in global de Sitter
spacetime”. In: Journal of Mathematical Physics 62 (2021), p. 032303.

[37] C. Misner, K. Thorne, and J. A. Wheeler. Gravitation. W.H. Freeman and Company,
1973. isbn: 9780716703440.

[38] W. Mück. “Spinor parallel propagator and Green function in maximally symmetric
spaces”. In: J. Phys. A: Math. Gen. 33 (2000), p. 3021.

[39] T. Ortín. “A note on Lie-Lorentz derivatives”. In: Classical and Quantum Gravity
19 (2002), p. L143.

[40] V. S. Otchik. “On the Hawking radiation of spin-1/2 particles in the de Sitter
spacetime”. In: Class. Quant. Grav. 2 (1985), p. 539.

[41] U. Ottoson. “A Classification of the Unitary Irreducible Representations of SO0(N, 1)”.
In: Commun. Math. Phys. 8 (1968), p. 228.

[42] B. Pethybridge and V. Schaub. “Tensors and spinors in de Sitter space”. In: Journal
of High Energy Physics 2022 (2022), p. 123.

[43] PLANCK collaboration. “Planck 2018 results - VI. Cosmological parameters”. In:
Astron. Astrophys. 641 (2020), A6.

[44] R. Rahman. “Frame- and Metric-Like Higher-Spin Fermions”. In: Universe 4 (2018).

[45] R. Rahman. “The involutive system of higher-spin equations”. In: Nuclear Physics
B 964 (2021), p. 115325.

[46] V. Schaub. “Spinors in (Anti-)de Sitter Space”. In: (2023). eprint: arXiv:2302.
08535v1.

[47] F. Schwarz. “Unitary Irreducible Representations of the Groups SO0(n, 1)”. In:
Journal of Mathematical Physics 12 (1971), p. 131.

[48] SDSS collaboration. “Baryon acoustic oscillations in the Sloan Digital Sky Survey
Data Release 7 Galaxy Sample”. In: Mon. Not. Roy. Astron. Soc. 401 (2010),
p. 2148.

[49] G. V. Shishkin. “Some exact solutions of the Dirac equation in gravitational fields”.
In: Class. Quant. Grav. 8 (1991), p. 175.

267

arXiv:2206.09851v3
arXiv:2302.08535v1
arXiv:2302.08535v1


Chapter 5. New conformal-like symmetry of strictly massless fermions in
four-dimensional de Sitter space

[50] SUPERNOVA COSMOLOGY PROJECT collaboration. “Measurements of Ω and
Λ from 42 High-Redshift Supernovae”. In: Astrophys. J. 517 (1999), p. 565.

[51] I. T. Todorov, M. C. Mintchev, and V. B. Petkova. Conformal Invariance in
Quantum Field Theory. Pisa: Scuola Normale Superiore, 1978.

[52] A. Trautman. Spin structures on hypersurfaces and the spectrum of the Dirac
operator on spheres. Kluwer Academic Publishers, 1993.

[53] M. A. Vasiliev. “Conformal higher spin symmetries of 4D massless supermultiplets
and osp(L, 2M) invariant equations in generalized (super)space”. In: Phys. Rev.
D 66 (2002), p. 066006.

[54] M. A. Vasiliev. “On conformal, SL(4,R) and Sp(8,R) symmetries of massless
fields”. In: Nuclear Physics B 793 (2008), pp. 469–526.

268



6

Conservation of all Lipkin’s zilches from
symmetries of the standard electromagnetic

action and a hidden algebra

Abstract

In 1964, Lipkin discovered the zilches, a set of conserved quantities in free
electromagnetism. Among the zilches, optical chirality was identified by Tang and
Cohen in 2010, serving as a measure of the handedness of light and leading to
investigations into light’s interactions with chiral matter. While the symmetries
underlying the conservation of the zilches have been examined, the derivation
of zilch conservation laws from symmetries of the standard free electromagnetic
(EM) action using Noether’s theorem has only been addressed in the case of
optical chirality. We provide the full answer by demonstrating that the zilch
symmetry transformations of the four-potential, Aµ, preserve the standard free
EM action. We also show that the zilch symmetries belong to the enveloping
algebra of a "hidden" invariance algebra of free Maxwell’s equations. This "hidden"
algebra is generated by familiar conformal transformations and certain "hidden"
symmetry transformations of Aµ. Generalizations of the “hidden” symmetries
are discussed in the presence of a material four-current, as well as in the theory
of a complex Abelian gauge field. Additionally, we extend the zilch symmetries
of the standard free EM action to the standard interacting action (with a non-
dynamical four-current), allowing for a new derivation of the continuity equation
for optical chirality in the presence of electric charges and currents. Furthermore,
new continuity equations for the remaining zilches are derived. The de Sitterian
version (for fermionic gauge potentials) of the “hidden” symmetries presented in
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this chapter corresponds to the conformal-like symmetries of chapter 5.

6.1 INTRODUCTION

Noether’s seminal theorem [20] is the cornerstone in understanding the deep connection
between symmetries of physical theories and conservation laws. Starting from continuous
symmetries of the action functional of a theory, Noether’s theorem can be used to derive
conservation laws for the associated Euler-Lagrange equations. In relativistic field theories,
such as electromagnetism in Minkowski spacetime, the knowledge of a symmetry leads to
a Noether (four-)current, V µ, which is conserved (∂µV µ = 0). This conservation holds
for fields satisfying the Euler-Lagrange equations - i.e. for on-shell field configurations -
and the corresponding Noether charge, Q =

∫
d3xV 0, is time-independent.

An example of little-known time-independent quantities in free electromagnetism is given
by the ten zilches that were discovered by Lipkin in 1964 [16]. One of the zilches, now
known as optical chirality, started drawing renewed theoretical and experimental interest
in 2010, when Tang and Cohen realized that this particular zilch provides a measure
of the chirality (or handedness) of light [39]. The optical chirality density for the free
electromagnetic (EM) field is [16, 39]

C = 1
2

(
−E · ∂B

∂t
+B · ∂E

∂t

)
, (6.1)

where E and B are the electric and magnetic fields, respectively 1. (Throughout this
Letter, we adopt the system of units in which the speed of light and the permittivity of
free space are c = ε0 = 1.) The flux of optical chirality is given by the three-vector

S = 1
2E × ∂E

∂t
+ 1

2B × ∂B

∂t
, (6.2)

while the differential conservation law for optical chirality [16]
∂

∂t
C + ∇ · S = 0 (6.3)

1An alternative expression for optical chirality density that appears in the literature is
C = 1

2 (E · ∇ ×E +B · ∇ ×B) [39]. This expression is equal to Eq. (6.1) only in the absence
of electric charges and currents. In this Letter, we use the expression (6.1) when electric charges
and currents are present. The justification for our choice is that the expression (6.1) is equal to the
000-component of the zilch tensor (6.10) (up to a factor of 1/2), while, as we show in this Letter,
the zilch tensor is the Noether current corresponding to the zilches in free electromagnetism. Also,
arguments in favor of defining the optical chirality density in the presence of electric charges and currents
using Eq. (6.1) can be found in Ref. [9].
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is satisfied if E and B obey the free Maxwell equations

∇ ×B = ∂E

∂t
, ∇ ×E = −∂B

∂t
,

∇ ·E = 0, ∇ ·B = 0. (6.4)

Optical chirality is given by the integral of C over the space, ∫ d3xC, and is a constant
of motion for free electromagnetism [16].
In Ref. [39], Tang and Cohen demonstrated that, in the presence of an EM field, the
dissymmetry in the excitation rate of two small chiral molecules that are related to each
other by mirror reflection is determined by the optical chirality. These findings have
motivated novel investigations into chiral light-matter interactions [39, 42, 10, 38, 11,
32, 31, 33, 36, 27, 28, 18, 25]. Understanding these interactions is very important in
various disciplines. For example, it is known that deriving products of a given handedness
in chemical reactions can be crucial - because molecules of a given handedness must be
used in order to design drugs without negative side-effects [40] - and chiral light has
been suggested to serve as a useful tool in order to achieve this [34, 17, 4]. Applications
of chiral light to the detection and characterization of chiral biomolecules have been also
discussed [10]. As for the other nine zilches, recently, Smith and Strange shed light on
the mystery of their physical meaning for certain topologically non-trivial vacuum EM
fields [35].
Although the zilch symmetries - i.e. the symmetries underlying the zilch conservation laws
- and their generalization have been discussed in previous works [12, 6, 1, 14, 43, 29, 37,
5, 2, 15], there are still certain gaps concerning our mathematical understanding of them.
Most importantly, there is a gap in the literature concerning the explicit derivation of all
zilch conservation laws from symmetries of the standard free EM action using Noether’s
theorem. In this Letter, we fill this gap and we also provide new insight concerning the
zilch symmetries. Before proceeding to the main part of this article, let us discuss what
is already known concerning the zilch symmetries in Subsection 6.1.1, as well as review
the main findings of the present article in Subsection 6.1.2. For later convenience, we
present here our notation and conventions.
Conventions.—Greek tensor indices run from 0 to 3 and Latin tensor indices from 1 to 3.
We follow the Einstein summation convention, while indices are raised and lowered with
the mostly plus Minkowski metric ηµν = diag(−1, 1, 1, 1). A spacetime point in standard
Minkowski coordinates is xµ = (x0, x1, x2, x3) ≡ (t, xi). The totally antisymmetric
tensors in 4 and 3 dimensions are ϵµνρσ and ϵijk, respectively (ϵ0123 = −ϵ123 = −1).
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Let Aµ = (−ϕ,A) denote the EM four-potential. The standard free EM action

S = 1
2

∫
d4x (E ·E −B ·B) ,

with E = −∂A

∂t
− ∇ϕ, B = ∇ ×A, (6.5)

is expressed as

S = − 1
4

∫
d4xF µνFµν , (6.6)

where the antisymmetric EM tensor is defined as Fµν ≡ ∂µAν − ∂νAµ (with F0i = −Ei
and Fik = ϵikmB

m). We denote the dual EM tensor as ⋆Fµν = 1
2ϵµνρσF

ρσ. The free
Maxwell’s equations ∂νFνµ = 0 are expressed in potential form as

□Aµ − ∂µ∂
νAν = 0, (6.7)

where □ = ∂ν∂ν . Because of the definition of Fµν in terms of the four-potential, the
equation

∂ρFµν + ∂νFρµ + ∂µFνρ = 0 (6.8)

is identically satisfied. Equation (6.7), as well as the action (6.6), are invariant under
infinitesimal gauge-transformations

δgaugeAµ = ∂µa, (6.9)

where a is an arbitrary scalar function.

6.1.1 What is known about the zilch symmetries?

The zilch conservation laws can be conveniently described in terms of the zilch tensor [16,
13]

Zµ
νρ = − ⋆F µλ∂ρFλν + F µλ ∂ρ

⋆Fλν . (6.10)

This is conserved on-shell, ∂ρZµ
νρ = 0, and the ten time-independent quantities [16]:

Z µν = Z νµ =
∫
d3xZµν0

are the ten zilches (see Section 6.2 for background material concerning the zilches). The
optical chirality density (6.1) is related to the zilch tensor as Z000 = 2C.
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At the level of free Maxwell’s equations expressed in terms of the EM tensor, the zilch
symmetries are known [14, 2]. More specifically, the zilch symmetry transformations of
the EM tensor are [14, 2]

∆Fµν = ñαnρ ∂α∂ρ
⋆Fµν , (6.11)

where ñα and nρ are two arbitrary constant four-vectors. These transformations are
symmetries of free Maxwell’s equations, i.e. if Fµν is a solution, then so is ∆Fµν . In
Ref. [2], a complete classification of all independent local conservation laws of Maxwell’s
equations was given by using the methods described in Refs. [21, 3]. Using these methods,
it was shown that the zilch symmetries (6.11) of free Maxwell’s equations give rise to
the conservation of the zilch tensor (6.10). However, in Ref. [2] the invariance of the
standard EM action (6.6) was not discussed.
The zilch symmetries have also been studied in the case of duality-symmetric electro-
magnetism [1]. The duality-symmetric EM action is [6]

S̃ = −1
8

∫
d4x (F µνFµν +GµνGµν) . (6.12)

This theory is an extension of the standard EM theory as it has two four-potentials,
Aµ and Cµ, and two EM tensors Fµν = ∂µAν − ∂νAµ and Gµν = ∂µCν − ∂νCµ. The
duality-symmetric theory coincides with the standard EM theory only after we impose
the duality constraint Gµν = ∗Fµν . In Ref. [1], following the reverse Noether procedure,
it was shown that the ‘generalized’ version of the zilch tensor:

Z µ
νρ = − 1

2 G
µλ∂ρFλν + 1

2F
µλ ∂ρGλν

− 1
2G

λ
ν ∂ρF

µ
λ + 1

2F
λ

ν ∂ρG
µ
λ (6.13)

is the Noether current corresponding to the following zilch symmetry transformations [1]:

∆̃Aν = nρñµ ∂ρGµν

∆̃Cν = −nρñµ ∂ρFµν . (6.14)

It has been shown that these transformations leave invariant the duality-symmetric
action (6.12) [1]. Then, the conservation of the zilches follows from the fact that the
tensor (6.13) coincides with the zilch tensor (6.20) of the standard EM theory if we apply
the duality constraint.
The derivation of the zilch conservation laws from symmetries of alternative actions has
been studied in Refs. [37, 14].
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6.1.2 Filling a gap in the literature, main results and outline

In order to derive all zilch conservation laws using Noether’s theorem in the case of
standard electromagnetism, one needs to find the zilch symmetry transformations of the
four-potential that leave the standard action (6.6) invariant. It is easy to observe that
the zilch symmetry transformations ∆Fµν [Eq. (6.11)] of free Maxwell’s equations are
induced by the following zilch transformations of the four-potential:

∆Aν = nρñµ ϵµνσλ ∂
σ∂ρA

λ = nρñµ ∂ρ
∗Fµν , (6.15)

with ∆Fµν ≡ ∂µ∆Aν − ∂ν∆Aµ for on-shell field configurations. (The transforma-
tions (6.15) coincide with ∆̃Aν in Eq. (6.14) if we apply the duality constraint.) Interest-
ingly, the variation of the standard action (6.6) under the zilch transformations (6.15)
has not been studied in the literature. This means that the following question is still
open:

How can we derive all zilch conservation laws from

symmetries of the standard free EM action using

Noether’s theorem?

In this Letter, we give the full answer to this question by showing that the zilch
transformations (6.15) leave the standard EM action (6.6) invariant, and, then, we derive
all zilch conservation laws using the standard Noether procedure (see, e.g. Ref. [41]).
Note that the only zilch conservation law that has hitherto been derived from symmetries
of the standard action (6.5) is the one concerning the conservation of optical chirality [22].
In particular, Philbin showed that optical chirality is the Noether charge corresponding to
the following symmetry transformations [22]:

∆ϕ = 0, ∆A = ∇ × ∂A

∂t
. (6.16)

This equation corresponds to a special case of the zilch symmetry transformation (6.15)
with ñµ = nµ = δµ0 . In this article we provide an alternative (and covariant) derivation
of Philbin’s [22] result for optical chirality.
Outline and main results. The basics concerning the zilch tensor and the zilches are
reviewed in Section 6.2. The derivation of all zilch conservation laws using the invariance
of the standard action (6.6) under the zilch symmetries (6.15) is presented in Section 6.3.
Then, we proceed by providing new insight concerning the conservation of the zilches
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and their underlying symmetries. More specifically, the rest of the investigations and
findings of this article are summarized as follows:

• A hidden invariance algebra of free Maxwell’s equations and the zilch
symmetries (Subsection 6.4.1).—We show that the zilch symmetry trans-
formations (6.15) of the four-potential belong to the enveloping algebra of a
“hidden” invariance algebra of free Maxwell’s equations in potential form. This
“hidden” algebra closes on the 30-dimensional real Lie algebra so(6,C)R - i.e. the
‘realification’ of the complex Lie algebra so(6,C) - up to gauge transformations
of the four-potential. (The so(6,C)R invariance of free Maxwell’s equations in
terms of the electric and magnetic fields was uncovered in Ref. [23], but the
potential form of Maxwell’s equations was not discussed.) The 30 generators of
the “hidden” algebra correspond to the 15 well-known infinitesimal conformal
transformations [Eq. (6.40)] and to 15 little-known (“hidden”) infinitesimal trans-
formations [Eq. (6.41)]. The “hidden” transformations (6.41) take a simpler form
when acting on the EM tensor; that is a product of a duality transformation with
an infinitesimal conformal transformation [14, 43] (see Eq. (6.42)) 2.

• Hidden symmetries in the presence of matter (Subsection 6.4.2) and in
the theory of a complex gauge field (Subsection 6.4.3).—We show that
the “hidden” symmetries [Eq. (6.41)] of free Maxwell’s equations persist in the
presence of a material four-current [see Eq. (6.50)]. However, unlike the free
case, the invariance algebra does not close on so(6,C)R. Then, we observe that
the “hidden” symmetries of the real potential Aµ also exist for the free field
equations (6.56) of a complex Abelian gauge field Aµ - this is related to the
complex formulation of duality-symmetric electromagnetism with the complex
potential given by Aµ = Aµ + iCµ [1]. We show that if we redefine the “hidden”
transformations of Aµ by multiplying with i =

√
−1, the 30-dimensional algebra

becomes so(4, 2)⊕ so(4, 2) (it closes again up to gauge transformations of the
complex potential).

• Zilch continuity equations from symmetries in the presence of matter (Sec-
tion 6.5) and a new question (Section 6.6).—We also study the derivation
of zilch continuity equations in the presence of electric charges and currents by
extending the zilch symmetries of the standard free action (6.6) to zilch symmetries

2The fact that the product of a duality transformation with an infinitesimal conformal transformation
is a symmetry of Maxwell’s equations expressed in terms of the EM tensor was first observed by Krivskii
and Simulik [14, 43].
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[Eqs. (6.60) and (6.61)] of the standard interacting action (6.59) (in which Aµ
couples to a non-dynamical material four-current Jµ). Taking advantage of the
invariance of the interacting action under the zilch symmetries, we present a new
way to derive the known continuity equation for optical chirality [9]

∂

∂t
C + ∇ · S = 1

2

(
j · ∂B

∂t
− ∂j

∂t
·B

)
(6.17)

(j is the material electric current density). In Ref. [9], the continuity equation (6.17)
was obtained from the complementary fields formalism, while a similar continuity
equation had been first obtained in Ref. [39]. Apart from Eq. (6.17), in this Letter,
we also obtain new continuity equations [Eqs. (6.65) and (6.68)] for the rest of
the zilches in the presence of electric charges and currents from symmetries of
the interacting EM action (6.59). Then, we pose the interesting open question
of whether the aforementioned invariance of the interacting EM action with a
non-dynamical material four-current can be extended to the case where the material
four-current is dynamical.

6.2 BACKGROUND MATERIAL CONCERNING THE ZILCH TENSOR
AND THE ZILCHES

In this Section we review the basics concerning the zilch tensor and the zilches.
The zilch tensor (6.10) can be expressed in various forms [16, 13]. For example, using
the following identity [13]:

∂ρ
(
⋆FλνF

µλ
)

= −1
4δ

µ
ν ∂ρ

(
⋆F λκFλκ

)
, (6.18)

the zilch tensor (6.10) can be equivalently expressed as

Zµ
νρ = − ⋆F µλ∂ρFλν − ⋆F λ

ν ∂ρF
µ
λ − 1

2δ
µ
ν
⋆F λκ∂ρFλκ. (6.19)

This expression makes manifest that the properties Zµν
ρ = Zνµ

ρ and Zµ
µρ = 0 are

identically satisfied. Moreover, by using free Maxwell’s equations, it is straightforward to
show that the zilch tensor is divergence-free with respect to all of its indices and also
satisfies Zρ

νρ = 0 [13]. Using the fact that the zilch tensor is symmetric in its first two
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indices we can rewrite Eq. (6.10) as

Zµ
νρ = − 1

2
⋆F µλ∂ρFλν + 1

2F
µλ ∂ρ

⋆Fλν

− 1
2
⋆F λ

ν ∂ρF
µ
λ + 1

2F
λ
ν ∂ρ

⋆F µ
λ . (6.20)

As mentioned in the Introduction, the ten zilches are given by the following ten time-
independent quantities [16, 13]:

Z µν = Z νµ =
∫
d3xZµν0, (6.21)

with ∂Z µν/∂t = 0. Only nine zilches in Eq. (6.21) are independent since Zµ
µ 0 = 0.

The µν0-component (Zµν0) of the zilch tensor is the spatial density of the zilch Z µν ,
and the µνj-components (Zµνj) are the components of the three-vector describing the
corresponding flux [16]. The time-independence of the ten zilches follows from the ten
differential conservation laws described by ∂ρZµνρ = 0. The conservation law (6.3) for
optical chirality corresponds to 1

2 (∂0Z
000 + ∂jZ

00j) = 0.
For later convenience, note that the integral in Eq. (6.21) has the symmetry property∫

d3xZµν0 =
∫
d3xZµ0ν

(
=
∫
d3xZ0µν

)
(6.22)

because the difference Zµν0 − Zµ0ν can always be expressed as a spatial divergence [13]

Zµν0 − Zµ0ν = ∂jΛµνj,

where the explicit expression for the tensor Λ is not needed for the present discussion 3.
It immediately follows that the difference Zµ0ν − Zν0µ can also be written as a spatial
divergence. Hence, the µν-zilch, Z µν , can be actually interpreted as the time-independent
quantity that corresponds to any of the three differential conservation laws: ∂ρZµνρ = 0
(which is the one used by Lipkin [16]), ∂ρZµρν = 0 and ∂ρZνρµ = 0. These differential
conservation laws are not independent of each other. For example, the conservation law
∂ρZ

µνρ = 0 can be re-written as ∂ρZµρν = 0 by using the relations

∂0Z
µν0 = ∂0

(
Zµ0ν + ∂jΛµνj

)
(6.23)

and

∂jZ
µνj = ∂j

(
Zµjν − ∂0Λµνj

)
(6.24)

for the corresponding spatial densities and fluxes, respectively.
3The interested reader can find the expression for Λ from equation (14) of Ref. [13] or they can set

Jµ = 0 and let ρ = 0 in Eq. (6.66) of the present article.
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6.3 CONSERVATION LAWS FOR ALL ZILCHES FROM THE INVARI-
ANCE OF THE STANDARD ACTION UNDER THE ZILCH TRANS-
FORMATIONS

In this Section we show that the zilch symmetry transformation (6.15), which is given
here again for convenience:

∆Aν = nρñµ ϵµνσλ ∂
σ∂ρA

λ = nρñµ ∂ρ
∗Fµν , (6.25)

is a symmetry of the standard free EM action (6.6). Then, we derive all zilch conservation
laws using Noether’s theorem.
Let us start by examining the way in which the zilch symmetry transformation (6.25)
acts on the EM tensor for off-shell field configurations; that is

∆Fµν ≡ ∂µ∆Aν − ∂ν∆Aµ
= ñαnρ

(
∂α∂ρ

⋆Fµν − ϵαµνσ∂ρ∂λF
λσ
)
, (6.26)

where we have made use of the following important off-shell identity 4:

∂α
⋆Fµν + ∂ν

⋆Fαµ + ∂µ
⋆Fνα = ϵαµνσ∂

βF σ
β . (6.27)

We now proceed to demonstrate that the zilch symmetry transformation (6.25) is indeed
a symmetry of the action (6.6) and then apply Noether’s theorem. We find that the
variation

∆S = −1
2

∫
d4xF µν ∆Fµν (6.28)

is given by a total divergence (without making use of the equations of motion), as

∆S =
∫
d4x ∂νD

ν (6.29)

with

Dν = 1
2n

ρñµ
(
2 ⋆F λν∂ρFµλ + Z ν

µ ρ + δνρ
⋆Fµσ ∂

βF σ
β

)
(6.30)

- see Appendix 6.8 for some details of the calculation. Now, the usual procedure [41] can
be followed in order to construct the conserved Noether current, V ν , associated with the
zilch symmetry transformation (6.25), as

V ν = ∂L

∂(∂νAµ)∆Aµ −Dν , (6.31)

4Equation (6.27) can be readily proved by contracting with ϵ µν
γδ and then using well-known

properties of the totally antisymmetric tensor.
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where L = −1
4F

αβFαβ is the free EM Lagrangian density. Substituting the expression
for Dν [Eq. (6.30)] into Eq. (6.31) and making use of the identity (6.18), we find

V ν = 1
2n

ρñµ
(
Z ν
µ ρ − δνρ

⋆Fµσ ∂
βF σ

β

)
. (6.32)

The definition of a conserved Noether current is not unique; we are free to add any term
that vanishes on-shell and/or any term that is equal to the divergence of any rank-2
antisymmetric tensor to the expression for the Noether current [30]. Thus, we are allowed
to express the Noether current in Eq. (6.32) as

V ν
zilch = 1

2n
ρñµZ ν

µ ρ (6.33)

with ∂νV ν
zilch = 0. Since the constant four-vectors nρ and ñµ in Eq. (6.33) are arbitrary,

we conclude that

∂νZ
µνρ = 0. (6.34)

In other words, the zilch tensor is the conserved Noether current corresponding to the
zilch symmetries (6.25) of the standard free action (6.6), while the corresponding Noether
charges are the zilches (6.21).

6.4 “HIDDEN” SYMMETRIES

6.4.1 “Hidden” invariance algebra of free Maxwell’s equations
and the zilch symmetries

Here we investigate the relation of the zilch symmetry transformations (6.25) to a “hidden”
so(6,C)R invariance algebra of free Maxwell’s equations in potential form (6.7).
Let ξµ denote any of the fifteen conformal Killing vectors of Minkowski spacetime
satisfying

∂µξν + ∂νξµ = ∂αξα
2 ηµν . (6.35)

The conformal Killing vectors ξµ of Minkowski spacetime consist of [8]: the four generators
of spacetime translations,

P(α) = P µ
(α)∂µ = ∂α, (6.36)
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the six generators of the Lorentz algebra so(3, 1),

M(β,γ) = Mµ
(β,γ)∂µ = xβ∂γ − xγ∂β, (6.37)

the generator of dilations

D = Dµ∂µ = xµ∂µ, (6.38)

and the four generators of special conformal transformations

K(α) = Kµ
(α)∂µ = xνxν∂α − 2xαxµ∂µ. (6.39)

These fifteen vectors form a basis for the algebra of infinitesimal conformal transformations
of Minkowski spacetime which is isomorphic to so(4, 2).
The “hidden” invariance algebra of free Maxwell’s equations (6.7) is generated by two
types of infinitesimal symmetry transformations of the four-potential. The first type
corresponds to the well-known infinitesimal conformal transformations, conveniently
described by the Lie derivative

LξAµ = ξλ∂λAµ + Aλ∂µξ
λ, ξ ∈ so(4, 2). (6.40)

These transformations generate a representation of so(4, 2) on the solution space of
Maxwell’s equations (6.7). The second type of transformations corresponds to the
little-known (“hidden”) transformations [24]

TξAµ = ξρϵρµσλ∂
σAλ, ξ ∈ so(4, 2). (6.41)

If Aµ is a solution of Maxwell’s equations, then so are LξAµ and TξAµ for all ξ ∈
so(4, 2) [24]. The effect of the “hidden” transformation (6.41) on Fµν corresponds to
the product of a duality transformation with an infinitesimal conformal transformation as

TξFµν ≡ ∂µTξAν − ∂νTξAµ = Lξ
⋆Fµν , (6.42)

where

Lξ
⋆Fµν = ξρ∂ρ

⋆Fµν + ⋆Fρν ∂µξ
ρ + ⋆Fµρ ∂νξ

ρ. (6.43)

This symmetry transformation of the EM tensor was first found in Refs. [14, 43].
The structure of the “hidden” invariance algebra of Maxwell’s equations in potential form
is determined by the Lie brackets:

[Lξ′ , Lξ]Aµ = L[ξ′,ξ]Aµ (6.44)
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[Lξ′ , Tξ]Aµ = T[ξ′,ξ]Aµ (6.45)

and

[Tξ′ , Tξ]Aµ = − L[ξ′,ξ]Aµ + ∂µ ([ξ′, ξ]σAσ − ξ′
σξρF

σρ) , (6.46)

where, e.g., [Lξ′ , Lξ] = Lξ′Lξ − LξLξ′ , while ξ and ξ′ are any two basis elements of
so(4, 2) with [ξ′, ξ]ρ = Lξ′ξρ. We observe the appearance of a gauge transformation of
the form (6.9) in the last term of Eq. (6.46). To the best of our knowledge, the explicit
expressions for the commutators (6.45) and (6.46) appear here for the first time. The
commutation relations in Eqs. (6.44)-(6.46) coincide with the commutation relations of
the 30-dimensional real Lie algebra so(6,C)R [23] (up to the gauge transformation in
Eq. (6.46)).
Now, let us denote the zilch symmetry transformation (6.25) with associated Noether
current corresponding to Z ν

α β (α and β have fixed values) as ∆(β,α)Aµ. The latter is
readily expressed as [see Eq. (6.25)]

∆(β,α)Aµ = ∂β
(
ϵαµσλ ∂

σAλ
)

= LP(β)TP(α)Aµ. (6.47)

It is obvious from this expression that ∆(β,α)Aµ is given by the product of a “hidden”
transformation (6.41) with respect to the translation Killing vector P(α) = ∂α and a Lie
derivative (6.40) with respect to the translation Killing vector P(β) = ∂β. This makes
clear that the zilch symmetry transformation ∆(β,α)Aµ belongs to the enveloping algebra
of our “hidden” invariance algebra [and so do all transformations of the form (6.25)].

6.4.2 “Hidden” symmetries of Maxwell’s equations in the presence
of a material four-current

In the presence of a material four-current Maxwell’s equations are

□Aµ − ∂µ∂
νAν = −Jµ, (6.48)

where Jµ = (ρ, j) and ∂µJµ = 0. Maxwell’s equations remain invariant under simulta-
neous infinitesimal conformal transformations of Aµ and Jµ, i.e. Eq. (6.48) will still be
satisfied if we make the following replacements:

Aµ → LξAµ,

Jµ → LξJµ + ∂αξ
α

2 Jµ, ξ ∈ so(4, 2), (6.49)
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where Lξ is the Lie derivative (6.40). It is interesting to investigate whether the “hidden”
symmetries (6.41) of free Maxwell’s equations also persist in the presence of matter.
Indeed, we find that if Aµ and Jµ satisfy Eq. (6.48), then Eq. (6.48) will still be satisfied
if we make the following replacements:

Aµ → TξAµ,

Jµ → δhidξ Jµ = ϵρµσλ∂
σ
(
ξρJλ

)
, ξ ∈ so(4, 2), (6.50)

where TξAµ is given by Eq. (6.41), while we call δhidξ Jµ in the second line the “hidden”
transformation of the four-current. Equation (6.50) describes the “hidden” symmetries
of Maxwell’s equations in the presence of a material four-current.
Unlike the free case, in the presence of matter, the algebra does not close on so(6,C)R
up to gauge transformations of the four-potential 5. This can be readily understood from
the following example. By calculating the commutator between “hidden” symmetries
generated by translation Killing vectors (6.36), we find:

[TP(α) , TP(β) ]Aµ
= ∂µ

(
−P σ

(α)P
ρ
(β)Fσρ

)
+
(
P(α)µP

ρ
(β) − P ρ

(α)P(β)µ
)
∂σFσρ (6.51)

(compare this equation with Eq. (6.46)). In the absence of matter, the second
term in Eq. (6.51) vanishes and the algebra closes up to the gauge transformation
∂µ
(
−P σ

(α)P
ρ
(β)Fσρ

)
- see Eq. (6.46). However, in the presence of matter, the second

term in Eq. (6.51) seems to describe a new symmetry transformation. Similarly, we find
the commutator for the four-current:

[δhidP(α)
, δhidP(β)

]Jµ = ∂µ
(
−P σ

(α)P
ρ
(β)(∂σJρ − ∂ρJσ)

)
+
(
P(α)µP

ρ
(β) − P ρ

(α)P(β)µ
)
□Jρ. (6.52)

From Eqs. (6.51) and (6.52), it follows that Maxwell’s equations (6.48) will still be
satisfied (this is easy to verify) if we simultaneously make the replacements:

Aµ →
(
P(α)µP

ρ
(β) − P ρ

(α)P(β)µ
)
∂σFσρ (6.53)

and

Jµ → ∂µ
(
−P σ

(α)P
ρ
(β)(∂σJρ − ∂ρJσ)

)
+
(
P(α)µP

ρ
(β) − P ρ

(α)P(β)µ
)
□Jρ. (6.54)

5If one considers only the familiar conformal transformations (6.49), then the algebra closes on
so(4, 2).

282



6.4. “Hidden” symmetries

The study of the full structure of the algebra in the presence of matter is something that
we leave for future work.

6.4.3 “Hidden” symmetries for the complex Abelian gauge field

The free (hermitian) action for the complex Abelian gauge field, Aµ, is

−1
8

∫
d4xF †

µνF
µν , (6.55)

where † denotes complex conjugation, while Fµν = ∂µAν − ∂νAµ. Expressing Aµ as
Aµ = Aµ + iCµ, the action (6.55) takes the form of the duality-symmetric action (6.12).
The field equation for the complex potential is

□Aµ − ∂µ∂
νAν = 0. (6.56)

This equation is invariant under the infinitesimal conformal transformations LξAµ in
Eq. (6.40) (with Aµ replaced by Aµ), as well as under the “hidden” transformations
TξAµ in Eq. (6.41) (with Aµ replaced by Aµ). As in the case of the real potential, the
structure of the algebra generated by the conformal and the “hidden” transformations is
determined by the commutators in Eqs. (6.44)-(6.46) with Aµ replaced by Aµ and F σρ

replaced by F σρ.
Now, we will show that if we redefine the “hidden” transformations TξAµ, the “hidden”
algebra of Eq. (6.56) will be isomorphic to so(4, 2)⊕ so(4, 2). Let us redefine TξAµ by
multiplying with i as

T ′
ξAµ ≡ i TξAµ = i ξρϵρµσλ∂

σA λ, ξ ∈ so(4, 2). (6.57)

These transformations leave both the action (6.55) and Eq. (6.56) invariant (on the
other hand, Tξ is a symmetry of the field equation only). Now, the “hidden” algebra of
the field equation (6.56) is generated by the conformal transformations LξAµ and the
redefined “hidden” transformations T ′

ξAµ. If we now define the new generators:

T ±
ξ Aµ ≡ 1√

2
(
Lξ ± T ′

ξ

)
Aµ, ξ ∈ so(4, 2), (6.58)

it is easy to see that the T +
ξ ’s generate a so(4, 2) algebra on their own, and so do

the transformations T −
ξ , while [T +

ξ ,T
−
ξ′ ] = 0 for any ξ, ξ′ ∈ so(4, 2) [these follow

directly from Eqs. (6.44)-(6.46)]. Thus, the “hidden” algebra is now isomorphic to
so(4, 2)⊕ so(4, 2) and closes up to gauge transformations of the complex potential Aµ.
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6.5 ZILCH CONTINUITY EQUATIONS IN THE PRESENCE OF ELEC-
TRIC CHARGES AND CURRENTS FROM SYMMETRIES OF THE
STANDARD INTERACTING ACTION

In the presence of a non-dynamical material four-current, Jµ = (ρ, j), the standard
interacting EM action is

S ′ = S +
∫
d4x JνAν =

∫
d4x

(
−1

4F
µνFµν + JνAν

)
. (6.59)

Let us consider the variation of S ′ under the following simultaneous transformations of
Aν and Jν :

∆Aν = nρñµ ϵµνσλ ∂
σ∂ρA

λ, (6.60)
∆Jν = nρñµ ϵ ν

µ σλ ∂
σ∂ρJ

λ, (6.61)

where nρ and ñµ are two arbitrary constant four-vectors, while Eq. (6.60) coincides with
the zilch symmetry transformation (6.25). The variation of the free action, S, is already
known to be a total divergence [see Eq. (6.29)]. Also, after a straightforward calculation,
we find that the variation of the interaction term is a total divergence, as

∆
( ∫

d4x JνAν

)
=
∫
d4x (∆JνAν + Jν∆Aν) (6.62)

=
∫
d4x ∂νD

ν
int,

where

Dν
int = ñµnρ(δνρ Jλ ⋆Fµλ − ∂ρJ

λAαϵ ν
µλ α). (6.63)

Thus, the variation of the interacting action is

∆S ′ =
∫
d4x ∂ν (Dν +Dν

int) , (6.64)

where Dν is given by Eq. (6.30).
Now, by applying the standard Noether algorithm [41], we find the following continuity
equations for the zilch tensor:

∂λZ
µλν = Jλ ∂

ν ⋆F µλ − ⋆F µλ ∂νJλ. (6.65)

These continuity equations determine the rate of gain or loss of the quantity ∫ d3xZµ0ν ,
with spatial density given by Zµ0ν and flux components given by Zµjν .
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The continuity equations (6.65) can be re-expressed in the form of continuity equations
for the zilches (6.21), with spatial density given by Zµν0 and flux components given by
Zµνj , as follows. First, we observe that, although in the presence of electric charges and
currents the quantity ∫ d3xZµ0ν and the µν-zilch, ∫ d3xZµν0 [Eq. (6.21)] are not equal
to each other unless ν = 0 (because the symmetry property (6.22) no longer holds), they
are related to each other by 6

Zµνρ − Zµρν = 1
2

(
ϵκµνρ ∂σT

σ
κ − ϵκλνρ∂λT

µ
κ − ϵκρλµ∂λT

ν
κ + ϵκνλµ∂λT

ρ
κ

− 2F µ
λ ϵ

ρλνσJσ + 2Jµ ⋆F νρ
)
, (6.66)

where

Tαβ = −FαλFλβ − 1
4δ

α
βF

κλFκλ (6.67)

is the Maxwell stress-energy tensor (with ∂αTαβ = JαFαβ). Then, by taking the diver-
gence of Eq. (6.66) with respect to the index ρ and using the continuity equation (6.65)
we find

∂ρZ
µνρ = ηµν ⋆Fλσ ∂

λJσ − ⋆F µσ (∂νJσ − ∂σJ
ν)

− ⋆F νσ (∂µJσ − ∂σJ
µ). (6.68)

These are the ten continuity equations determining the rate of gain (or loss) for the
ten zilches (6.21) in the presence of electric charges and currents. For µ = ν = 0,
both continuity equations (6.65) and (6.68) coincide with the known equation (6.17) for
optical chirality. To the best of our knowledge, the other nine continuity equations in
Eq. (6.68) are presented here for the first time.

6.6 AN INTERESTING OPEN QUESTION

Let us suppose that the EM field interacts with a dynamical matter field with corresponding
four-current J̃µ. Now, the action of the full interacting theory is∫

d4x
(

−1
4FµνF

µν + J̃νAν

)
+ Smatter, (6.69)

6Equation (6.66) is obtained following analogous steps as the ones described by Kibble in order to
derive equation (14) (for the free EM field) in Ref. [13]. Our Eq. (6.66) coincides with equation (14) of
Ref. [13] if no electric charges and currents are present.
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where Smatter is the action corresponding to the free matter field. According to our earlier
discussion, the simultaneous transformations (6.60) and (6.61) (with Jν replaced by J̃ν)
are symmetries of the first two terms in Eq. (6.69). Motivated by this observation, we
may pose the question of whether one could identify symmetries of the full interacting
theory (i.e. symmetries of all three terms in Eq. (6.69)). In other words, is it possible to
identify a transformation of the matter field such that: this transformation is a symmetry
of Smatter, while the four-current J̃µ transforms as in Eq. (6.61)?

6.7 DISCUSSION

The results of the present Letter establish a clear connection between all zilch continuity
equations and symmetries of the standard EM action via Noether’s theorem. Having
identified all zilches with Noether charges, we can interpret them as the generators of
the corresponding symmetry transformations (6.25) of the four-potential in the standard
(classical or quantum) EM theory [41, 19, 22]. In the case of optical chirality, the explicit
knowledge of the underlying symmetry generator is known to offer physical insight, since
it allows the identification of the optical chirality eigenstates with plane waves of circular
polarization [22]. Similarly, the symmetry transformations (6.25) can be used to identify
the eigenstates of all zilches, which is something that we leave for future work.
A particularly interesting uninvestigated question is the one concerning the role of all
zilches in light-matter interactions - the case of optical chirality is the only exception
since its role has been studied [39]. The importance of this question becomes manifest
by considering the fact that a physical interpretation for all zilches has been recently
provided [35]. In particular, in Ref. [35] it was found that the zilches of a certain class
of topologically non-trivial EM fields in vacuum can be expressed in terms of energy,
momentum, angular momentum and helicity of the fields. Also, it was demonstrated
that the zilches of these fields encode information about the topology of the field lines.
We hope that the results presented in this Letter will be useful in future attempts to
study the role of all zilches in light-matter interactions. More specifically, motivated by
the interpretation and applications of the known continuity equation (6.17) for optical
chirality [39, 9, 26, 7, 19], it is natural to interpret each of our new zilch continuity
equations [Eq. (6.68)] as determining the rate of loss or gain of the corresponding “zilch
quantity” of the EM field.
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6.8 APPENDIX A - INVARIANCE OF THE STANDARD FREE EM
ACTION UNDER THE ZILCH SYMMETRIES

Here we present some details for the calculation concerning the invariance of the standard
free EM action (6.6) under the zilch symmetry transformation (6.25). For convenience,
we focus only on the invariance of the action and not on the derivation of the associated
Noether current (6.32). Also, we drop all terms that are total divergences in order to
simplify the presentation. However, note that one needs to keep all such terms if they
wish to re-derive Eq. (6.29).
Varying the action (6.6) with respect to the zilch symmetry transformation (6.25) we
find

−2 ∆S =
∫
d4xF µν ∆Fµν

=
∫
d4x

(
F µνñαnρ ∂ρ∂α

⋆Fµν − F µνñαnρϵαµνσ∂ρ∂λF
λσ
)
, (6.70)

where in the second line we used Eq. (6.26). The first term is readily shown to be equal
to a total divergence as follows:∫

d4xF µνñαnρ ∂ρ∂α
⋆Fµν = −

∫
d4x ∂ρF

µνñαnρ ∂α
⋆Fµν

= 2
∫
d4x ∂νF µ

ρ ñαnρ ∂α
⋆Fµν

= 2
∫
d4x ∂ν

(
F µ
ρ ñαnρ ∂α

⋆Fµν
)
,

where in the second line we used Eq. (6.8), and in the third line we used that the
divergence of ⋆Fµν vanishes identically because of Eq. (6.8). We now drop the first term
in Eq. (6.70) (since we showed that it is a total divergence) and we express Eq. (6.70) as

−2 ∆S = −2
∫
d4x ⋆Fασ ñ

αnρ ∂ρ∂λF
λσ. (6.71)
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On the other hand, keeping both terms in Eq. (6.70) and using the off-shell identity (6.27),
Eq. (6.70) is re-written as

−2 ∆S = 2
∫
d4x F νσñαnρ ∂ρ∂ν

⋆Fασ. (6.72)

Integrating by parts twice, we find

−2 ∆S = 2
∫
d4x ⋆Fασ ñ

αnρ ∂ρ∂λF
λσ. (6.73)

Comparing this equation with Eq. (6.71), we find ∆S = 0 (i.e. ∆S is equal to the
integral of a total divergence), as required.
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7

Discussion and Future Perspectives

While each of the main chapters (i.e., chapters 2-6) contains its own discussion section,
our aim here is to further expand upon these discussions and present intriguing questions
that could potentially guide future research.

Discussing the results of chapters 3 and 4

(Here our notation for the physical modes is as in chapter 5.) Let us first recall our
main result from chapters 3 and 4: the strictly massless spin-3/2 field (i.e. gravitino),
as well as the strictly and partially massless spin-5/2 fields on dSD (D ≥ 3), are not
unitary unless D = 4. In chapter 3, we also suggested that this result extends to
all strictly/partially massless (totally symmetric) tensor-spinors of spin s ≥ 7/2 - this
suggestion was motivated by investigating the (mis-)match between the representation-
theoretic labels of the eigenmodes and the representation-theoretic labels corresponding
to UIRs of the dS algebra so(D, 1). In order to verify this suggestion, one should extend
the technical analysis of chapter 4 to all half-odd-integer spins s ≥ 7/2. This is expected
to be a very cumbersome process that will include1:

• Constructing the spin-s ≥ 7/2 eigenmodes on SD, and then on dSD by analytic
continuation.

• Determining the transformation formulae for the eigenmodes under an infinitesimal
dS boost and investigating whether these are compatible with the existence of dS
invariant scalar products that are also positive-definite.

1The integer-spin analog of this technical analysis has been carried out by Higuchi [5], and Higuchi’s
calculations can be characterized, at the very least, as heroic. The haf-odd-integer spin-s ≥ 7/2 cases
are expected to be even more complicated, as it is already evident from the spin-s = 3/2, 5/2 cases
presented in chapter 3 and 4.
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• Identifying the physical and the pure gauge modes of the strictly/partially massless
theories. All pure gauge modes are expected to have zero norm with respect to
any dS invariant scalar product.

Motivated by our technical findings for the strictly/partially massless spin-s = 3/2, 5/2
cases in chapter 4, we expect that for s ≥ 7/2 there will be no dS invariant scalar
products for odd D. We also expect that for even D > 4, the physical modes will be
separated into a positive-norm and a negative-norm sector that mix with each other
under dS boosts. The D = 4 case is expected to be special and the negative-norm
sector will decouple from the positive-norm one. Then, both sectors will essentially be
positive-norm sectors, and the strictly/partially massless theories will correspond to a
direct sum of Discrete Series UIRs of the dS algebra so(4, 1) - see our ‘field theory -
representation theory dictionary’ in chapter 3.
However, it recently occurred to us that there are certain group-theoretic tools, which
are not widely known among mathematical physicists at the moment, and which we feel
can help streamline certain cumbersome calculations. In particular, we are referring to
the work of Gelfand and Tsetlin [4], in which the matrix elements of all so(D) generators
acting on so(D− 1) representation spaces were determined. In Appendix A of chapter 5,
we explain in detail how to analytically continue Gelfand’s and Tsetlin’s results for so(5)
(i.e. we translate these results in the language of tensor-spinor spherical harmonics
on S4) in order to find explicit expressions for the so(4, 1) transformation formulae of
spin-s ≥ 3/2 mode solutions for the strictly massless theories on dS4. We leave the
generalisation of our results to arbitrary dimensions, as well as to partially massless fields
of any depth, for future work.
Quantisation. In this thesis, we have not discussed the quantization of the spin-s ≥ 3/2
fermionic fields. However, it is already evident that there are certain complications in
the striclty/partially massless cases, which we can exemplify as follows. Consider the
strictly massless spin-3/2 field on dS4. First, we recall that the usual Rarita-Schwinger
Lagrangian density [3]

−L =
√

−g ψµγµρσ
(

∇ρ + i

2γρ
)
ψσ (7.1)

is known to be non-hermitian. This ‘reality problem’ can be fixed by considering a new
hermitian Lagrangian that gives rise to the same equations of motion, as follows:

−L′ =
√

−g ψµγ5γµρσ
(

∇ρ + i

2γρ
)
ψσ. (7.2)
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This Lagrangian density also has the pleasant feature that it gives rise to a dS invariant
scalar product2. This is a necessary ingredient for unitarity in the one-particle Hilbert
space. To be specific, the one-particle Hilbert space we are referring to here coincides
with the space of physical mode solutions. This means that we are considering the
completely gauge-fixed quantum gravitino field, i.e. we are referring to the field satisfying
the equations of motion in the ‘Coulomb-like’ gauge

ψt = 0, γjψj = 0

(j is a spatial index) and
( /∇ + i)ψµ = 0.

This gauge is the one that the physical modes come with naturally.
Now, one might think that we can straightforwardly proceed by expanding the gravitino
field in terms of the physical modes and introducing annihilation and creation operators,
as

ψµ(t,θ3) =
∑
σ=±

∞∑
ℓ=1

ℓ∑
m=1

m∑
k=−(m+1)

√
ℓ+ 2

2(ℓ+ 1)

×
(
a

(σ)
ℓmk Ψ(phys, σℓ;m;k)

µ (t,θ3) + b
(σ)†
ℓmk Ψ(phys, σℓ;m;k)C

µ (t,θ3)
)
. (7.3)

However, recall from chapters 3 and 4 that the physical modes with helicity −3/2 have
an opposite positive-definite, dS invariant scalar product from the physical modes with
helicity +3/2. Thus, the quantum field (7.3) that contains both helicity degrees of
freedom does not correspond to a unitary theory. On the other hand, one can consider
two separate chiral unitary quantum fields, one with helicity −3/2 and one with helicity
+3/2, as

ψ−
µ (t,θ3)

=
∞∑
ℓ=1

ℓ∑
m=1

m∑
k=−(m+1)

√
ℓ+ 2

2(ℓ+ 1)
(
a

(−)
ℓmk Ψ(phys,−ℓ;m;k)

µ (t,θ3) + b
(+)†
ℓmk Ψ(phys,+ℓ;m;k)C

µ (t,θ3)
)
,

(7.4)

ψ+
µ (t,θ3)

=
∞∑
ℓ=1

ℓ∑
m=1

m∑
k=−(m+1)

√
ℓ+ 2

2(ℓ+ 1)
(
a

(+)
ℓmk Ψ(phys,+ℓ;m;k)

µ (t,θ3) + b
(−)†
ℓmk Ψ(phys,−ℓ;m;k)C

µ (t,θ3)
)
.

(7.5)
2This dS invariant scalar product arises as the Noether charge associated with the invariance under

infinitesimal (global) u(1) transformations δψµ = iaψµ, with a ∈ R.

294



However, this splitting of helicities cannot be achieved locally at the level of the Lagrangian
(or action). On the other hand, at the level of the equations of motion, we are free to
focus on solution spaces with definite helicity, as they separately form chiral UIRs of
so(4, 1). (In order to define the helicity projector one needs to introduce the inverse of
the Dirac operator on S3, which is, of course, a non-local operator.) Does this mean
that there is no satisfactory Lagrangian description for the free quantum gravitino field
on dS4?
Some philosophical thoughts. Here I would like to take a short break from the
mathematically focused presentation and entertain some philosophical thoughts (I will
also shift from the collective "we" to the individual "I" for this paragraph). The starting
point of my thought process is the aforementioned observation that four-dimensional de
Sitter space, unlike its higher-dimensional counterparts, plays a distinguished role in the
unitarity of strictly/partially fermions, and of course, the fact that our four-dimensional
Universe was/is/will be approximated by de Sitter space. I feel it is worth wondering
whether these findings could have any relation to the following quote by Dirac [2]:
At present we are, of course, very far from this stage [where pure mathematics and
physics unify], even with regard to some of the most elementary questions. For example,
only four-dimensional space is of importance in physics, while spaces with other numbers
of dimensions are of about equal interest in mathematics. It may well be, however, that
this discrepancy is due to the incompleteness of present-day knowledge, and that future
developments will show four-dimensional space to be of far greater mathematical interest
than all the others.

In this quote, Dirac highlights the idea that pure mathematics and physics have the
potential to unify. But, in order to achieve this unification we have to understand the
discrepancy concerning the role of four dimensions in physics and mathematics. The
question I would like to pose, assuming Dirac’s viewpoint, is: can we view the existence
of fermionic strictly/partially massless UIRs of so(D, 1) only for D = 4, as a sign of
mathematical interest of four-dimensional space?
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Discussing the results of chapter 5

In chapter 5, we uncovered new conformal-like symmetries for the field equations of
strictly massless fermions of spin s = r + 1/2 ≥ 3/2 on dS4(

/∇ + ir
)

Ψµ1...µr = 0,

∇αΨαµ2...µr = 0, γαΨαµ2...µr = 0.

In particular, we showed that these equations enjoy infinitesimal conformal-like symmetries
given by

TWΨµ1...µr

= γ5
(
W ρ∇ρΨµ1...µr + i rW ργρΨµ1...µr − i rW ργ(µ1Ψµ2...µr)ρ + 3

8∇αW
α Ψµ1...µr

)
− 2r

2r + 1

(
∇(µ1 + i

2γ(µ1

)
γ5Ψµ2...µr)ρW

ρ,

where W is any conformal Killing vector (with non-vanishing divergence) of dS4. The
conformal-like symmetries, together with the dS symmetries, generate the algebra so(4, 2),
which closes up to gauge transformations. We also showed that the physical (positive
frequency) mode solutions form a direct sum of UIRs of the conformal-like so(4, 2)
algebra.
SUSY in de Sitter. Now, we would like to turn our attention to the topic of supersym-
metry (SUSY) in de Sitter space. As is well-known, the role (if any) played by SUSY
in a dS Universe is a longstanding question, while the most popular results indicate
that unbroken SUSY must be non-unitary in dS4 (if the bosonic subalgebra closes on
the dS algebra [6]). However, interestingly, unitary superconformal field theories (with
unbroken SUSY) on dS4 are known to exist [1]. Motivated by this and by our newly
discovered conformal-like symmetries for strictly massless fermions, it is interesting to
look for new (and possibly unitary) supersymmetric theories on dS4 that include strictly
massless fermions of spin s ≥ 3/2. For example, although we are not going to present
details here, we have performed calculations suggesting that the following pair of complex
strictly massless fields (of spins 1 and 3/2) on dS4

∇µ (∇µAν − ∇νAµ) = 0, (7.6)

γµρσ
(

∇ρ + i

2γρ
)
ψσ = 0 (7.7)
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realise a representation of unbroken SUSY, where the commutator of two SUSY variations
closes on the conformal-like so(4, 2) bosonic algebra. The representation is likely to
be unitary, but we aim to present more details in a separate article in the future. The
bosonic dS symmetries act on ψµ in terms of the Lie-Lorentz derivative, while the
bosonic conformal-like ones act in terms of TWψµ. As for the spin-1 field, the bosonic
dS symmetries act on it in terms of the familiar Lie derivative, while the conformal-like
symmetries correspond to the following expressions:

δWAµ = iW ρϵρµσλ∇σAλ. (7.8)

This expression describes new conformal-like symmetries of the spin-1 equation (7.6) on
dS4, and has been discovered collaboratively by Atsushi Higuchi and myself. (This is out
of the scope of my PhD work. We aim to present more details in a joint paper in the
future.)
Although it plays no role in the aforementioned supersymmetric theory, it is worth
mentioning that the strictly massless spin-1 equations (7.6) on dS4 enjoy more symmetries
than the ones in (7.8), namely

δKAµ = iKρϵρµσλ∇σAλ, (7.9)

where K is any Killing or conformal Killing vector of dS4 (i.e. K ∈ so(4, 2)).

Discussing the results of chapter 6

As for the discussions concerning the results of chapter 6, our primary focus has centered
around the two main points highlighted in the concluding sections of the same chapter.
To briefly recap these points, the first concerns the possibility of extending the zilch
symmetries to a classical interacting theory of the electromagnetic and matter (e.g.
spinor) fields. The second point concerns the potential application of our new zilch
continuity equations to experimental investigations into the role of all zilches in light-
matter interactions.
For the sake of completeness, let us also explain how chapter 6 relates to chapter 5 from
the viewpoint of symmetries. The answer lies in the “hidden” symmetries of the four-
potential in Minkowski spacetime presented in chapter 6, which underlie the conservation
of the zilches. These “hidden” symmetries correspond to the symmetries (7.9) of the
gauge potential on dS4 (where, of course, we have to remove the factor of ‘i’ from
Eq. (7.9) if we want to focus on symmetries of the real gauge potential on dS4). This
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naturally leads us to pose the question: Do the zilches also exist in dS4? If so, how
can we derive them from the symmetries of the standard Maxwell action in dS4 using
Noether’s theorem?
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