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Abstract

Stratified turbulent fluids exhibit a wide variety of fascinating behaviours. One of the most
interesting is the phenomenon of staircase formation, where the density field spontaneously
evolves into a series of well-mixed layers separated by sharp interfaces with high gradients.
Staircases appear in a wide range of contexts, from the geophysical examples of oceanic
thermohaline staircases and atmospheric potential vorticity staircases, to the EEE×BBB staircase
of plasma physics.

In this thesis we present models for staircases in stirred stratified convection and double
diffusive convection. We derive a one-dimensional horizontally-averaged mixing-length
model from the Boussinesq equations, which we apply first to layering in stirred stratified
convection, and then to double-diffusive layering.

In stirred stratified convection, the model consists of equations for the buoyancy and
kinetic energy, closed via a length scale parameterised in terms of the variables. We
investigate the linear stability of the system, determining the effects of varying the viscous
and molecular diffusivities. A novel choice of boundary conditions allows us to investigate
the behaviour of numerical solutions to very late times. Staircase solutions undergo layer
mergers, which we demonstrate occur on a logarithmic timescale, providing a link with
other models of layering. We also present an experimental study to test predictions of the
theory.

For double-diffusive convection, the model consists of three equations, for temperature,
salinity and energy. We present a linear stability analysis for a general three-component
flux-law system, which we apply to our specific model. A suitable parameterisation for the
length scale allows the model to produce staircases in salt fingering convection without the
need for any external forcing. In diffusive convection, some energy source is required for
layering. Temperature and salinity fluxes through staircases increase during layer mergers,
accounting for heightened fluxes in observed staircases in comparison with non-layered
states.
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Chapter 1

Introduction

1.1 Introduction

The dynamics of stratified turbulent flows presents a rich variety of behaviour. One of
the most striking examples is the spontaneous development of density staircases: given
an initially uniform density gradient, stirring the fluid can lead to the formation of well-
mixed layers, in which the density is nearly constant, separated by sharp interfaces with
strong density gradients. The interfaces are narrow, but the density field across them is
smooth, with a well-defined finite thickness. Experimental work has produced such layered
structures by dragging a rod or grid back and forth through an initially stable gradient of
salt concentration (Linden, 1979; Ruddick et al., 1989; Park et al., 1994).

One of the most fascinating aspects of staircase formation is its appearance in a number
of ostensibly different areas of physics. One of the most important geophysical examples
is oceanic thermohaline staircases, with well-documented layered structures observed
in temperature and salinity measurements over large areas of the oceans (e.g. Tait &
Howe, 1968; Timmermans et al., 2008). As a specific example, the Caribbean Sheets and
Layers Transects (C-SALT) programme (Schmitt et al., 1987) found a system of about 10
well-mixed layers 5-30m thick, existing on a lateral scale of 200–400km. The survey ran
for a continuous eight-month period, with the staircase remaining essentially unchanged
throughout this time. These layered structures appear in areas of ocean with competing
temperature and salinity gradients, i.e. where the contribution to the density gradient from
temperature acts to stabilise the fluid, whereas that from salinity is destabilising, or vice
versa. In such regions, a phenomenon called ‘double-diffusive convection’ (DDC) can
occur, where an instability stems from the difference in the rates of thermal and saline
diffusion. Soon after the discovery of thermohaline staircases, a link was made with DDC,
with Turner (1967) suggesting that layers could form due to a double-diffusive process.
A more detailed introduction to DDC is given in Sec. 1.3. Thermohaline staircases are
found across incredibly large areas of the Earth’s oceans; Fig. 1.1 shows the distribution of
staircases across the world, with colour intensity corresponding to number of steps. The
area of the C-SALT study can be seen around 10◦N, 50◦W. Other notable areas include a
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Fig. 1.1 Global distribution of the occurrence of thermohaline staircases, coloured by
number of steps, in the salt finger regime (red dots) and diffusive convection regime (blue
dots). Taken from van der Boog et al. (2021).

large region of staircases south of Australia (40◦S, 130◦E), and another significant area
in the Canada Basin (75◦N, 140◦W). In astrophysics, similar double-diffusive staircase
structures may be found in the interiors of stars and giant planets, where instead of salt,
the solutal gradient is provided by heavy elements dissolved in a mixture of hydrogen and
helium (e.g. Garaud, 2018).

In an atmospheric context, rotating stratified flow can give rise to a potential vorticity
(PV) staircase, where wide regions with small PV gradients are separated by strong zonal
jets where the PV gradient is high (e.g Dritschel & McIntyre, 2008). These strong jets
can be observed most clearly in the atmosphere of Jupiter, leading to a characteristic
pattern of stripes (e.g. Marcus, 1993). Closer to home, PV layers have been observed
in the terrestrial stratosphere (e.g. Haynes & Shuckburgh, 2000), and can be produced
in laboratory experiments (e.g. Sommeria et al., 1989). The jets in PV staircases act as
barriers to eddy transport, and so they are important in understanding the exchange of
atmospheric chemicals, as well as being an important problem for our understanding of
atmospheric dynamics.

In hot magnetised plasmas, turbulence can generate permeable localised transport
barriers that globally organise into the so-called ‘EEE×BBB staircase’. This was first established
in the results of gyro-kinetic simulations (Dif-Pradalier et al., 2010). Staircases were later
found experimentally in the Tore Supra tokamak (Dif-Pradalier et al., 2015). With layers
in the EEE ×BBB staircase acting as barriers to heat and momentum transport, understanding its
dynamics may be key to plasma confinement — a vital problem to solve to make nuclear
fusion viable.

That staircases should form in a turbulent fluid may be surprising, with fine structure
being generated from coarser initial conditions. Understanding how layers can form,
and how they evolve over time, is clearly therefore a problem of considerable scientific
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interest. With such a range of physical systems displaying staircase structures, it is still
unclear whether the same process causes layering in every case, and if it is possible to
produce a unified model for layering in all its physical contexts. This would be a significant
breakthrough in our understanding of several areas of physics, allowing predictions to be
made for one system on the basis of observations from completely different fields.

Furthermore, layered systems exhibit very different transport properties to those of
familiar weakly inhomogeneous systems, with significantly larger turbulent fluxes through
a system that has evolved into staircases compared with the flux through more homogeneous
systems (see, for example Stellmach et al., 2011; Rosenblum et al., 2011; Hughes &
Brummell, 2021). Thus, understanding the physics of layering is also crucial to developing
an accurate description of transport in oceanographic and atmospheric flows, in stellar
interiors and in magnetically-confined plasmas. The parameterisation of transport through
oceans and atmospheres is a key component of climate and weather modelling. Given how
common staircases are in the Earth’s oceans, a fuller understanding of layering could play
a large role in informing better climate models in the future.

In this thesis we investigate staircases in geophysical systems, taking a mostly theo-
retical approach. We present horizontally-averaged, one-dimensional models for layering
in stirred stratified flow with a single component of density, and in double-diffusive con-
vection. Our models encapsulate the so-called ‘Phillips effect’ (Phillips, 1972), in which
layering results from a specific dependence of the turbulent density flux on the density
gradient. We investigate both the initial generation of staircases, and their evolution to
late times. While we are primarily motivated by oceanic examples, the following work is
equally applicable to astrophysical thermocompositional staircases, with the only differ-
ence being in parameter values. While the bulk of the work is theoretical, we also present
an experimental study of stirred stratified layering, to test the predictions of the theory
against real fluid behaviour.

1.2 The Phillips effect

The formation of layers is anti-diffusive, with up-gradient transport, and so represents
behaviour contrary to the naïvely expected case of homogenisation. Early work on layering
by Phillips (1972) and Posmentier (1977) (independently) proposed a mechanism for
the development of staircases. They appealed directly to this anti-diffusive property,
based on the turbulent diffusion of buoyancy with a diffusion coefficient that could be
negative. Specifically, Phillips and Posmentier modelled the evolution of the buoyancy
profile b(z, t) = (ρ0 −ρ)g/ρ0 (where ρ is the fluid density, ρ0 a reference density, and g
the gravitational acceleration) by the one-dimensional diffusion equation

∂b
∂ t

=
∂

∂ z
( f (bz)) =

∂ f
∂bz

∂ 2b
∂ z2 , (1.1)
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Fig. 1.2 The solid lines show the flux-gradient relations used by Posmentier (black) and
BLY (red). The black dashed line shows the minimum value g = gc for which Posmentier’s
flux satisfies the instability condition (1.2). The red dashed lines show the boundaries of
the finite region in which the flux in the BLY model satisfies condition (1.5).

where z is height, t is time, and the specified function f (bz) relates the local flux of
buoyancy to the local buoyancy gradient bz(z, t). Equation (1.1) admits uniform steady
state solutions bz = g0, which are linearly unstable to perturbations if the diffusivity is
negative, i.e.

∂ f
∂bz

(g0)< 0. (1.2)

If condition (1.2) holds, then a perturbation that increases the local buoyancy gradient
bz acts to decrease the buoyancy flux f , which further increases the buoyancy gradient
through negative diffusion, in accordance with (1.1). Further, Posmentier proposed a
flux-gradient relation, f (bz), of the form shown in Fig. 1.2, such that there is a critical
value gc above which condition (1.2) is satisfied. For a background gradient bz > gc, a
small perturbation will grow in amplitude. If the perturbation acts to increase bz, then it
may grow without constraint, as inequality (1.2) is satisfied for all bz > gc. However, if the
perturbation acts to decrease bz, then the amplitude of the perturbation will grow only until
bz = gc locally, at which point the instability is arrested. Hence, perturbations can develop
into a stepped structure, with alternating regions of large and small buoyancy gradients —
a process commonly known as the ‘Phillips effect’. The argument advanced above is based
on linear stability considerations and hence provides information on the initial evolution
to a layered state. Once the perturbations attain a sufficiently large amplitude, nonlinear
dynamics will come into play.

The model described by equation (1.1) provides a good starting point to describe a
mechanism for layering. However, it relies on specifying the buoyancy flux function,
and hence cannot give a full description of the physics from first principles, nor of the
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intricacies of layer evolution. For example, (1.1) takes no account of the impact of the
buoyancy on the velocity field; nor does it provide a mechanism to arrest the steepening
of the interface, meaning that the buoyancy field eventually develops discontinuities.
A particular mathematical difficulty of the model is that the linearised version of (1.1)
becomes a negative diffusion equation for b in regions where f ′(bz)< 0. The growth rate
of perturbations therefore diverges as the wavenumber increases, causing the problem to
be ill-posed.

To look beyond the initial formation of layers, and investigate their longer-term evolu-
tion, the problem needs to be regularised. One possibility is to add a time delay, so that
the flux does not adjust immediately to changes in the gradient, but takes a finite time to
react (Barenblatt et al., 1993; Kosuga et al., 2013). More specifically, the flux F(t) can be
prescribed to depend on the buoyancy gradient bz(t −τ), for some small delay time τ . This
removes the high-wavenumber instability, but the solutions still develop discontinuities in
finite time.

To regularise the dynamics, Balmforth et al. (1998) (hereinafter BLY) coupled the
buoyancy equation (1.1) to an energy equation, considering the system

gt = fzz, (1.3)

et = (κez)z + p, (1.4)

where g(z, t) is the buoyancy gradient, f (g,e) is some flux function, e(z, t) is the turbulent
kinetic energy, κ is a turbulent diffusion coefficient, p(g,e) is a general source (production)
of energy, and (·)t and (·)z represent partial derivatives with respect to time and height. In
the absence of double-diffusive effects, a parameterisation for p must include an energy
source to drive the layering process. For linear instability in the system (1.3)–(1.4), BLY
showed that the equivalent of the Phillips condition (1.2) is

d f
dg

≡
fg pe − fe pg

pe
< 0. (1.5)

The high-wavenumber instability inherent to the Phillips model (1.1) is avoided by pa-
rameterisations such that d f/dg < 0 but ∂ f/∂g > 0. With this regularisation, (1.3)–(1.4)
provide a complete model that can be used to analyse layer formation, evolution and
merger in a stirred singly-stratified fluid. A crucial aspect to the model is the dependence
of the turbulent fluxes on a turbulent mixing length l(g,e), used to close the system.

To prevent the formation of infinite buoyancy gradients, BLY specified that the buoy-
ancy flux should be an N-shaped function of the buoyancy gradient, so that condition (1.5)
is satisfied for only a finite range of bz. This is shown by the curve labelled ‘BLY’ in
Fig. 1.2. The layering instability occurs only in the finite range of g between the red dashed
lines; interfaces thus steepen only to a finite value, at which point the instability is arrested.
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Fig. 1.3 Stability boundaries resulting from the classical stability analysis. The boundary
for direct instabilities given by (1.7) is labelled SF; the boundary for oscillatory instabilities
given by (1.8) is shown by the line labelled DC. Unstable modes exist above and to the left
of these two lines. After Turner (1973).

1.3 Double-diffusive convection

Double-diffusive convection (DDC) is the name given to convection driven by opposing
gradients of two scalar quantities that contribute to the fluid density, with each component
diffusing at a different rate. These are commonly referred to as ‘temperature’ and ‘salt’,
reflecting an oceanic context, where the thermal diffusivity is a factor of one hundred larger
than the saline diffusivity. However, DDC can exist in any system with a stratification
provided by two scalars, with another notable example being in stellar interiors, where,
alongside the temperature, the concentration of a solute such as helium controls the
buoyancy. In laboratory experiments, sugar-salt stratifications are commonly used to avoid
the effects of heat loss (Stern & Turner, 1969).

Oceanic thermohaline staircases (with layers in both the heat and salinity fields) were
first reported in the late 1960s (e.g. Tait & Howe, 1968). At a similar time, similar staircases
were found in laboratory experiments on DDC (e.g. Turner, 1967), and the existence of
oceanic staircases was quickly attributed to double-diffusive convection.

DDC occurs in two different regimes. Salt fingering (SF) refers to the case where
the density differences driving the instability are due to salinity, with the temperature
gradient acting to stabilise the overall density gradient. Diffusive convection (DC), also
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called semiconvection in astrophysical contexts, refers to the opposite case, where the
temperature gradient is destabilising, with a statically stable salt gradient. The regimes are
commonly defined in terms of the Rayleigh numbers

Ra =
gα∆T d3

κT ν
, Rs =

gβ∆Sd3

κT ν
, (1.6)

where g is the gravitational acceleration, α and β the thermal and solutal expansion
coefficients of the fluid, d the fluid depth, κT the thermal diffusivity, ν the kinematic
viscosity and ∆T = T (z = 0)−T (z = H) and ∆S = S(z = 0)−S(z = H) the temperature
and salinity differences across the fluid of depth H. We further define the diffusivity
ratio τ = κT/κS, where κS is the saline diffusivity. Letting ρ be the fluid density and T
and S the temperature and salinity respectively, we assume the linear equation of state
ρ =−αgT +βgS, such that a positive temperature gradient and a negative salinity gradient
contribute to a stable (negative) density gradient. Hence the salt fingering regime is defined
by Ra, Rs < 0, where the temperature gradient is stabilising, and the diffusive convection
regime is defined by Ra, Rs > 0, where the salinity gradient is stabilising. The overall
density gradient is stable (negative) if Ra < Rs. Figure 1.3 shows a regime diagram, taken
from Turner (1973), showing the regions for instability in both the SF and DC regimes. A
linear stability analysis of uniform gradient solutions to the governing equations leads to
the stability boundaries in the Rs–Ra plane

SF : Ra =
Rs
τ

+
27π4

4
, (1.7)

DC : Ra =
σ + τ

σ +1
Rs+(1+ τ)

(
1+

τ

σ

) 27π4

4
. (1.8)

Points in the region between the unit slope line Rs=Ra and the boundary (1.7) are unstable
to salt fingering, while those between Rs = Ra and the boundary (1.8) are unstable to
diffusive layering. In the shaded region, the system is stable, while outside the shaded
region and above the unit slope line, Rayleigh Bénard convection (RBC) occurs (Rayleigh,
1916). Note that in classical RBC (i.e. convection in a fluid layer driven by a temperature
difference between the top and the bottom), the critical Rayleigh number for instabil-
ity is 27π4/4. By considering Ra−τ−1 Rs to be an effective Rayleigh number, the SF
boundary (1.7) reduces to this critical number for Rayleigh-Bénard convection.

There are well documented, long lasting (on the order of months) density staircases
in regions of the ocean susceptible to both types of double-diffusive instability. For
example, measurements have been taken for several decades of salt fingering staircases in
the Mediterranean outflow and western tropical North Atlantic (e.g. Tait & Howe, 1968;
Schmitt et al., 1987; Schmitt, 1994), and diffusive convection staircases in the Arctic (Neal
et al., 1969; Timmermans et al., 2008). Figure 1.4 shows some observational results. The
two-dimensional temperature profile in the C-SALT study of Schmitt et al. (1987) is shown
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in Fig. 1.4(a). Layers are clearly visible, and they are coherent across the entire horizontal
distance. Observations from Timmermans et al. (2008) are shown in Fig. 1.4(b), showing
clear diffusive staircases in both the temperature and salinity profiles.

Staircases have also been observed in numerical simulations of double-diffusion, in
both SF (Radko, 2003; Stellmach et al., 2011) and DC regimes (Rosenblum et al., 2011;
Mirouh et al., 2012; Hughes & Brummell, 2021). As an example, the results of Stellmach
et al. (2011) are reproduced in Fig. 1.5. An initial salt fingering instability is first seen,
followed by a phase where the dynamics are dominated by gravity waves. Finally, the
system develops into a clear stack of well-mixed layers separated by sharp interfaces.
Fig. 1.5(d) shows time series of the Nusselt number Nu, which measures the ratio of
convective to diffusive transport, and the ratio γ of the temperature and salinity fluxes.
The transition to the staircase phase is associated with a simultaneous increase in Nusselt
number, giving a significantly larger turbulent temperature flux in the staircase than in
the previous unlayered state. This heightened flux is also seen in the numerical studies of
Rosenblum et al. (2011) and Hughes & Brummell (2021).

1.3.1 Suggested mechanisms for DDC layering

Several theories have been proposed for the driving mechanism behind layering, which are
well-documented in reviews by Merryfield (2000) and Radko (2013). An early hypothesis
was that of collective instability (Stern, 1969), in which growing salt fingers excite large-
scale internal waves that overturn and generate a stepped structure. It has also been
suggested that staircases are the long-time state of thermohaline intrusions (Zhurbas &
Ozmidov, 1984; Merryfield, 2000), or that they are metastable equilibria of the system,
requiring a finite amplitude perturbation from an initial linearly stable state (Veronis, 1965;
Stern & Turner, 1969). Other models rely on heating a stably stratified fluid from below,
with convective layers forming sequentially from the bottom upwards due to the applied
flux (Turner & Stommel, 1964; Huppert & Linden, 1979). All of these suggestions provide
good explanations for layering, and studies have shown that they do indeed produce
staircases. However, none of them is responsible for all layering behaviour — for example
staircases are found in regions of oceans with very little internal wave activity, suggesting
that collective instability cannot be the main driver of layering. The intrusion theory would
require the existence of lateral gradients, but staircases can be produced in models with
no horizontal variation. Numerical simulations have shown that staircases can form from
a linear perturbation of a background stable state (e.g. Stellmach et al., 2011), so the
metastable equilibria argument is not essential for layering. Likewise, rather than staircases
being controlled by an applied temperature flux, simulations show that the increase in
flux follows the development of staircases. Of course, it is possible that multiple different
mechanisms are in play, depending on the physical setup.

A further idea is that of Radko (2003), who proposed that the driving factor behind
staircases is the result of an instability arising from variation of the ratio of the thermal to
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Fig. 1.4 Observational data from (a) Schmitt et al. (1987), showing the temperature profile
in a section of the western tropical North Atlantic, from the C-SALT programme; and (b)
Timmermans et al. (2008), showing temperature and conductivity profiles (from which
salinity can be deduced) in the Arctic, from the pan-Arctic Beringia 2005 Expedition.
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Fig. 1.5 Numerical simulations from Stellmach et al. (2011), showing (a)–(c) snapshots in
three different phases of the evolution. The system first evolves into salt fingers, which
become unstable to large scale gravity waves that saturate at finite amplitude. Eventually
convective layers form, separated by thin interfaces. The top panels show the temperature
perturbation on the data-cube faces, with the lower ones showing the internal structure. (d)
Time series of the Nusselt number Nu = 1− f and flux ratio γ = f/c, where f and c are
the temperature and salinity fluxes respectively.
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solutal fluxes. With T (z, t) and S(z, t) representing the horizontally-averaged temperature
and salinity fields, and subscripts of t and z denoting partial derivatives with respect to
time and height, Radko (2003) models the two components contributing to the density by

Tt = fz, St = cz, (1.9)

where f (R) is the temperature flux and c(R) the salinity flux, dependent on the density ratio
R = Tz/Sz; the flux ratio γ(R) is defined by γ = f/c. The growth rate of perturbations is
found to be positive if and only if dγ/dR is negative. On the basis of numerical simulations,
Radko (2003) argues that γ(R) should be non-monotonic with a single minimum, so that
there is an unstable range of R, but the instability is arrested in regions where dγ/dR > 0.
Radko’s model provides a helpful conceptual framework for relating the condition for
instability in terms of properties of the buoyancy fluxes. However, it describes only
the conditions for an initial linear instability, with a growth rate that diverges at infinite
wavenumber. As identified by Radko (2019a), such an ultraviolet catastrophe precludes
the identification of a preferred wavelength or maximal growth rate, and prevents its use
to study the dynamics of larger scale layers. A more complex regularised physical theory
is required to model the full evolution from initial perturbation to staircase. In addition,
the flow velocity is absent from the model, with the fluxes depending only on the density
ratio R. To regularise the high wavenumber instability, Radko (2019a) proposed a model
based on an asymptotic multiscale analysis, which leads to hyperdiffusion terms in the
temperature and salinity equations, giving negative growth rates at high wavenumbers.
Thus, the flux-gradient model can be adapted to study the evolution beyond an initial
instability to a large scale staircase structure.

1.3.2 The Phillips effect in double-diffusive convection

It has been suggested that the same mechanism of negative density diffusion modelled by
Phillips (1972) and Balmforth et al. (1998) (BLY) may also be of importance in double-
diffusion (e.g. Schmitt, 1994). This makes some intuitive sense: the double-diffusive
instability is due to release of potential energy, which acts to reduce the density of relatively
lighter fluid, and increase the density of heavier fluid in a column — the eddy diffusion is
negative. Hence, as we have seen that negative diffusion drives a layering instability in
stirred stratified fluids, it is natural to suggest that it may also be of importance in DDC
layering.

Models of the general form (1.3)–(1.4) have been used to study layering in several
contexts. Malkov & Diamond (2019) produced a similar style of model to describe the
formation of potential vorticity staircases. We will refer to these as two-component models.
However, to study double-diffusive convection, the buoyancy field must be split into two
independent components (e.g. temperature and salt). Hence, to produce a BLY-style model
for double-diffusion, a third equation must be added to account for the second component
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of buoyancy. Paparella & von Hardenberg (2014) adapted the BLY model to a double-
diffusive context by arguing, on the basis of their previous numerical simulations (Paparella
& von Hardenberg, 2012), that the flux ratio γ remained constant, and hence that the
evolution of the temperature and salinity fields could be investigated with a single equation
for the total buoyancy. This assumption reduces their model to a two-component model
similar to that of BLY. The model of Paparella & von Hardenberg (2014) is forced by a
constant up-gradient salt finger flux, with an eddy diffusivity term representing stirring
due to ‘clusters’ of salt fingers. The constant salt finger flux has no effect on the buoyancy
equation, but contributes a positive source in the energy equation. As such, while the
underlying physics is different, the model of Paparella & von Hardenberg (2014) takes a
very similar form to that of BLY, modelling salt fingering staircases with a forced system,
and only one independent component of buoyancy.

However, it is useful to investigate whether layering is also possible without such
forcing, instead including double-diffusion explicitly. In this case, a third equation is
necessary that allows temperature and salinity to be described individually. There has been
some limited use of three-component models to study EEE×BBB staircases in plasma drift-wave
turbulence (Ashourvan & Diamond, 2016, 2017; Guo et al., 2019). In these systems, the
instability takes place in only two of the equations, so the modelling of instability again
reduces to a form similar to the two-component BLY framework.

For a uniform buoyancy gradient to develop into a more complex layered structure,
some energy input is necessary. BLY included an explicit source term to represent stirring,
while Paparella & von Hardenberg (2014) included a constant background salt-finger flux.
However, several computational studies of DDC have shown that no such external energy
input is necessary for staircases to form. Instead, the double-diffusive instability provides
a mechanism for the transfer of potential energy into kinetic energy. This is true in both
the salt fingering regime (e.g. Stellmach et al., 2011) and the diffusive convection regime
(e.g. Rosenblum et al., 2011; Hughes & Brummell, 2021). As such, we seek to formulate a
model with no prescribed external forcing.

Ma & Peltier (2022) note that the values of the density ratio R found in observed oceanic
staircases in the diffusive convection regime (2 < 1/R < 7) differ significantly from the
values predicted by classical linear stability theory (1 < 1/R < 1.14) (e.g. Turner, 1973).
By contrast, in the salt fingering regime, the values of R in observed staircases match well
with linear theory. On this basis, Ma & Peltier (2022) suggest that the instability in diffusive
convection is not actually the driver behind diffusive staircases, instead proposing that the
layering instability relies on external forcing from a background flow, with double-diffusive
effects being important only in the regularisation and stabilisation of layers.
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1.4 Experimental studies of staircases

As well as the large volume of theoretical work discussed above, there have been several
experimental studies of layering, most commonly in stirred stratified convection. Ruddick
et al. (1989) performed experiments in which a fluid with a uniform stable salt gradient was
stirred by the oscillation of a grid of rods. With the amplitude of oscillations fixed, high
stirring rates caused the gradient to decrease over time while remaining smooth, gradually
mixing the fluid. Lower stirring rates cause the uniform gradient to break down into a
series of well-mixed layers. Park et al. (1994) developed this study in a more quantitative
manner, varying the Reynolds number Re =Ud/ν by varying the speed of the rod, and
the Richardson number Ri = N2d2/U2 by changing the stratification and speed of the rod.
Both Ruddick et al. (1989) and Park et al. (1994) found that at sufficiently high Ri, long
lasting staircases formed.

Holford & Linden (1999b) built upon the work of Park et al. (1994), finding a difference
in the evolution to layers, depending on the value of Ri. At low values of Re and low
values of Ri, layers formed by the Phillips mechanism, but with higher values of Ri the
development of layers followed a process dominated by the interaction of vortex sheets, as
described by Holford & Linden (1999a).

For each value of Re, there is a critical value of Ri above which layering occurs, i.e. a
critical N2 = bz. Park et al. (1994) estimated this stability boundary at

Ric ≈ exp(Re/900). (1.10)

Figure 1.6 is taken from Park et al. (1994), and shows shadowgraph images of a
staircase in stirred salt-stratified convection. Interfaces can be seen as bright bands sepa-
rating darker layers. Figure 1.6 shows an early time while layers are still forming, while
Figs. 1.6(b)–(d) show a fully developed staircase. A layer merger can be seen between (c)
and (d), where the lowermost two interfaces drift and combine to form a single interface.

The experimental studies mentioned above have all produced staircases by stirring
the fluid locally with a rod or grid of rods. With different geometries, different forcing
methods are possible. Oglethorpe et al. (2013) conducted experiments in turbulent Taylor-
Couette flow, where fluid is contained between two cylinders, with turbulence being
generated by rotation of the inner cylinder, finding that an initially linear stratification
spontaneously evolves into layers and interfaces. The measured density flux had a non-
monotonic dependence on the Richardson number, confirming that layers form by the
Phillips mechanism. Manucharyan & Caulfield (2015) applied forcing using a rotating
disc on the surface of the fluid. As well as a surface mixed layer forming in contact with
the disc, the Phillips effect led to the formation of a series of transient secondary mixed
layers. These secondary layers appeared, then gradually merged with the main mixed layer,
before a new secondary layer formed lower down and the process repeated.



1.4 Experimental studies of staircases 14

Fig. 1.6 Shadowgraph images from Park et al. (1994), showing the evolution of a staircase
in a salt-stratified fluid stirred with a rod. Layers can be seen as darker regions, separated by
bright interfaces. The two lowermost interfaces in (a)-(c) gradually move closer together,
and have merged to form a single interface in (d). The black strip at the side of each image
is the stirring rod.
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1.5 Outline of thesis

This thesis focuses on layering in the geophysical contexts of stirred stratified convection
and double-diffusive convection. In Chapter 2 we present the derivation of a general
one-dimensional model for the formation of density staircases, by applying a horizontal
averaging process to the Boussinesq equations. This contrasts with the model of Balmforth
et al. (1998), which was obtained using phenomenological and dimensional arguments.
This model is then adapted throughout the rest of the thesis to model layering first in stirred
stratified flow, and both SF and DC regimes of double-diffusive convection.

In Chapter 3 we adapt the model to study the long-term behaviour of layers in stirred
stratified convection — the problem first considered by Phillips (1972) and Posmentier
(1977), and extended by Balmforth et al. (1998). In previous work, the behaviour of
solutions of this style of model has not been investigated to late times, because of the
existence of edge regions with low gradients, linking the boundaries to the layered interior.
These edge regions expand into the interior at a rate of z ∝ t1/2, gradually engulfing layers
from the outside inwards. This means that for a domain of depth H, all the layers will
be destroyed by a time t ∝ H2, so any investigation of the layers’ dynamics beyond this
point is impossible. We show that by adopting different boundary conditions to BLY, the
edge regions are removed, allowing the investigation of the behaviour of layers to long
times. Further, the number of layers has an approximate inverse logarithmic dependence
on time — the same as is found in Cahn-Hilliard (CH) models of layering, providing a
link between BLY-style and CH models. The model of Chapter 3 is derived from the
Boussinesq equations, as shown in Chapter 2, and includes both viscous and molecular
diffusion directly, allowing it to be tailored to specific physical parameters. This work has
been published as Pružina et al. (2022).

To test the prediction that layers will form only from a finite range of buoyancy
gradients, we present an experimental study in Chapter 4. So far, experiments have
demonstrated only the existence of a minimum gradient, but the results of Chapter 3
predict that a maximum gradient also exists, above which layers will not form. We show
that this maximum gradient does appear to exist. However, more experimental work is
necessary to establish the stability boundary more quantitatively.

So far, no BLY-style model has been used to study double-diffusion, except that of
Paparella & von Hardenberg (2014), in which certain assumptions reduced the dynamics to
a two-component stirred system. To study layering caused by double-diffusive convection,
rather than stirring, an extra equation must be added to the system to model the second
component of buoyancy, and the linear stability analysis of Balmforth et al. (1998) (for
a two-component buoyancy–energy system) is no longer valid. We begin in Chapter 5
by demonstrating the Phillips effect in a three-component system for energy and two
independent components of buoyancy. While three-component systems have been used
before (e.g. Ashourvan & Diamond, 2017), the instability has always been as a function
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of only two components, relying on BLY’s stability analysis presented in Sec. 3.3.2. We
categorise the different modes of instability that can occur, and make comparisons with
previous theories. We show that the γ-instability of Radko (2003) and the Phillips effect
are mathematically equivalent, and depend on the same instability condition. These are two
separate physical processes however, and can be distinguished by specific parameterisations
in the model equations.

To form a model for DDC layering, we take the same approach as we did for stirred
stratified layering, deriving our model in the same way. Initially we keep the stirring term,
and use BLY parameterisations for the length scale and dissipation terms, as a ‘halfway
house’ between the BLY-style model of Chapter 3 and a fully double-diffusive model.
These results are presented in Chapter 6. This model produces clean layers in the salt
fingering regime, but suffers a high wavenumber instability in the diffusive convection
regime, which can be countered by the addition of hyperdiffusion terms. In both regimes,
the temperature and salinity fields evolve almost identically, suggesting that the major
physical effect is that of stirred layering, rather than any double-diffusive effects being
important.

To model staircases that form due to double-diffusion, rather than the forced Phillips
instability, the forcing must be removed. In Chapter 7, we present a model for DDC
layering without stirring. By parameterising the turbulent fluxes in terms of the density
ratio R and turbulent kinetic energy e, we produce a model with the appropriate release
of potential energy from the background density fields to drive the layering instability,
without the need for an external energy source. We analyse the linear stability of steady
states, and demonstrate that the γ-instability is active in the SF regime, producing staircase
solutions, in which the temperature and salinity fields evolve independently. This work is
under review for publication.

In agreement with the results of Ma & Peltier (2022) we find that the model of
Chapter 7 does not lead to layering in the DC regime unless a forcing term is reintroduced.
In Chapter 8 we reintroduce a simple forcing term that is sufficient to produce staircase
structures in the DC regime, and discuss the similarities and differences between these
solutions and those found in the SF regime in Chapter 7.

In Chapter 9 we present a summary of this work, detailing our key conclusions and
suggesting some promising avenues for future work.



Chapter 2

Formulation of a model for staircase
formation

2.1 Introduction

In this chapter, we present a detailed derivation of a model for layering. As discussed in
the introduction, Balmforth et al. (1998) (BLY) developed a model for staircases in stirred
stratified flow with a single component of buoyancy, extending the Phillips condition (1.2)
to a model able to describe the full evolution of layers. Using dimensional and physical
arguments, they obtained the following dimensionless system for the evolution of the
horizontally averaged buoyancy b(z, t) and turbulent kinetic energy e(z, t):

bt =
(

le1/2bz

)
z
, (2.1)

et =
(

le1/2ez

)
z
− le1/2bz −

εe3/2

l
+P, (2.2)

where l = l(bz,e) is a suitably parameterised mixing length and P = P(bz,e) is the energy
production term representing stirring. Equations (2.1)–(2.2) form a system of turbulent
diffusion equations, with the first term on each right hand side representing eddy diffusion.
In the energy equation (2.2), the second term on the right hand side is necessarily the same
as the buoyancy flux on the right-hand side of (2.1), accounting for the transfer between
potential and kinetic energy. The penultimate term in (2.2) describes the dissipation of
turbulent kinetic energy.

The BLY model (2.1)–(2.2) was developed using phenomenological and scaling ar-
guments. In this chapter, we derive a similar model for layering, by applying a spatial
averaging process to the governing Boussinesq equations. In our derivation, we retain vis-
cous and molecular diffusion in the equations, allowing the model to be tailored to specific
fluids, in contrast with the BLY model where no physical parameters remain, except in
the parameterisations of l and P. Further, the inclusion of molecular diffusion allows us to
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extend our model to multiple components of buoyancy with different diffusivities, so that
layering can be studied in double-diffusive fluids.

Beginning with the Boussinesq equations, we use a spatial averaging process and simple
closure assumptions, giving a system of one-dimensional partial differential equations for
the horizontally averaged turbulent kinetic energy and buoyancy fields in terms of time and
height. The system is closed using a mixing length, to be parameterised in terms of the
dependent variables. While we present the derivation for a fluid with only one component
of density, the process can be simply extended to an arbitrary number of independent
components. We do this for a double-diffusive fluid with two components in Chapters 6–8.

2.2 Model formulation

We consider the evolution of a density-stratified fluid, defined by velocity uuu(xxx, t) = (u,v,w)
and buoyancy b(xxx, t) = g(ρ0 −ρ)/ρ0, where g is gravitational acceleration, and ρ(xxx, t)
and ρ0 are the fluid density and a reference density respectively. In general, the fluid may
be subject to a body forcing ΦΦΦ(xxx) (for example due to stirring by an oscillating rod or grid).
The dynamics are governed by the Boussinesq equations:

∂uuu
∂ t

+uuu ·∇uuu =− 1
ρ0

∇p+bẑzz+ν∇
2uuu+

1
ρ0

ΦΦΦ, (2.3)

∂b
∂ t

+uuu ·∇b = κ∇
2b, (2.4)

∇ ·uuu = 0, (2.5)

where ν is the kinematic viscosity and κ the molecular diffusivity. The pressure p(xxx, t)
represents the perturbation away from the reference hydrostatic pressure −ρ0gz. While
in later chapters we will work with these equations in dimensionless form, the choice
of nondimensionalisation will vary. As such, we present the derivation of the model for
layering with the dimensional form of the equations. For the purpose of developing our
horizontally averaged model, we consider a horizontally periodic domain.

We now develop, via suitable averaging and parameterisations, a one-dimensional
model for layering in a stratified fluid. Oceanic observations of density staircases show that
they exhibit little variation over horizontal length scales much greater than the thickness of
a typical layer (e.g. Timmermans et al., 2008). Hence, a horizontally averaged model is
an appropriate approximation to gain phenomenological insight, while being significantly
easier to solve computationally than the full Boussinesq equations.

Let
⟨q⟩ ≡ 1

A

∫
A

q(xxx, t) dA (2.6)

denote the horizontal spatial average of a quantity q(xxx, t) over a horizontal cross-section
A at a given height z of the domain; ⟨q⟩ is thus a function of z and t. Let uuuh = (u,v)
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represent the horizontal velocity, and ∇h the horizontal gradient operator. The variables
will be considered in terms of the sum of their horizontal mean and fluctuation components:
b = ⟨b⟩+b′, uuuh = ⟨uuuh⟩+uuu′h, w = ⟨w⟩+w′.

Taking the average of the incompressibility condition (2.5) we obtain

⟨∇h ·uuuh⟩+ ⟨∂w
∂ z

⟩= 0. (2.7)

Assuming periodic boundary conditions on the horizontal velocity (appropriate for a
phenomenon with such a large aspect ratio), the average of the horizontal divergence
⟨∇h ·uuuh⟩ vanishes, and hence

∂ ⟨w⟩
∂ z

= 0. (2.8)

Thus, the horizontally averaged vertical velocity is uniform across the height of the domain.
Assuming impermeability conditions on the top and bottom boundaries, it follows that
⟨w⟩= 0. Thus there is no mean vertical velocity and w = w′.

Our aim is to obtain a model purely in terms of horizontal averages of the buoyancy
b and kinetic energy e = 1

2uuu · uuu. To this end, we first apply an averaging process to
equations (2.3)–(2.4), and then parameterise any terms involving products of fluctuations
in terms of mean quantities.

Splitting the variables into both mean/perturbation and horizontal/vertical components,
the buoyancy equation (2.4) becomes

⟨b⟩t +b′t +
(
⟨uuuh⟩ ·∇h +uuu′h ·∇h +w′ ∂

∂ z

)(
⟨b⟩+b′

)
= κ∇

2⟨b⟩+κ∇
2b′, (2.9)

where the subscripts (·)t and (·)z represent partial derivatives with respect to time and
height. Once again assuming a horizontally periodic domain, the horizontal derivative of
the horizontal average terms (i.e. ∇h⟨b⟩ and ∇2

h⟨b⟩) vanish, leaving

⟨b⟩t +b′t + ⟨uuuh⟩ ·∇hb′+uuu′h ·∇hb′+w′⟨b⟩z +w′b′z = κ⟨b⟩zz +κ∇
2b′. (2.10)

Using the incompressibility equation (2.5) to write
(
⟨uuuh⟩+uuu′h

)
·∇hb=∇h ·

((
⟨uuuh⟩+uuu′h

)
b′
)
,

and once again appealing to periodic boundary conditions so that its average vanishes, we
take the horizontal average of (2.10) to obtain

⟨b⟩t + ⟨w′b′⟩z = κ⟨b⟩zz. (2.11)

Expression (2.11) is a diffusion equation for the mean buoyancy ⟨b⟩, forced by the
eddy flux term ⟨wb′⟩z. The equation for b′ is obtained by subtracting the mean equation
(2.11) from the full equation (2.4) to give

b′t + ⟨uuuh⟩ ·∇hb′+uuu′h ·∇hb′+w⟨b⟩z +w′b′z −⟨w′b′⟩z = κ∇
2b′. (2.12)
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As layering is a strongly one-dimensional phenomenon, we assume that the horizontal
velocity uuuh is small, and use a quasilinear approximation to neglect both the terms ⟨uuuh⟩ ·
∇hb′+uuu′h ·∇hb′ and the perturbation buoyancy flux wb′z −⟨wb′⟩z. This gives the following
equation for the perturbation buoyancy

b′t +w⟨b⟩z = κ∇
2b′. (2.13)

To parameterise the term ⟨wb′⟩ in (2.11) in terms of mean quantities, we use a scaling
argument to represent the derivatives algebraically. We assume that the mean of the square
of the vertical velocity is a constant multiple of the mean total kinetic energy ⟨e⟩= ⟨uuu ·uuu⟩/2,
i.e.

⟨w′2⟩= β
2⟨uuu ·uuu⟩/2 = β

2⟨e⟩, (2.14)

for some dimensionless constant β . While, in general, the value of β may vary between
layers and interfaces, we assume it is constant here to avoid overcomplicating the system.
We assume that the turbulence varies on a mixing length scale l (to be parameterised as a
function of the dependent variables) and on the dynamical timescale τ ∼ l/β ⟨e⟩1/2, defined
as the characteristic time to move a distance l vertically. These length and time scales
are designed to provide approximations of the characteristic values for the derivatives
∂t ∼ 1/τ = β ⟨e⟩1/2/l and ∇2 ∼−1/l2. With these scalings, the fluctuation equation (2.13)
becomes

β ⟨e⟩1/2

l
b′+w⟨b⟩z =−κ

l2 b′. (2.15)

We multiply (2.15) by w and take the horizontal average, then rearranging to obtain an
expression for the turbulent buoyancy flux ⟨w′b′⟩

⟨w′b′⟩=− l2⟨w′2⟩
β l⟨e⟩1/2 +κ

⟨b⟩z. (2.16)

Using (2.14), this flux can be written in terms of ⟨b⟩ and ⟨e⟩ as

⟨w′b′⟩=−β
l2⟨e⟩

l⟨e⟩1/2 +κ/β
⟨b⟩z. (2.17)

Finally, combining (2.11) and (2.17) gives the equation for the averaged buoyancy:

1
β
⟨b⟩t =

(
l2⟨e⟩

l⟨e⟩1/2 +κ/β
⟨b⟩z

)
z
+

κ

β
⟨b⟩zz. (2.18)

The first term on the right-hand side of (2.18) represents the turbulent transport of ⟨b⟩,
and the second term molecular diffusion. To complete the model, we must couple equa-
tion (2.18) with an evolution equation for the horizontally averaged kinetic energy ⟨e⟩, and
provide a parameterisation for the mixing length l.
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We formulate the energy equation by taking the scalar product of the momentum
equation (2.3) with uuu, giving

et +∇ · (uuue) =− 1
ρ0

∇ · (uuup)+w′b+ν
(
∇

2e−|∇uuu|2
)
+

1
ρ0

uuu ·ΦΦΦ. (2.19)

The terms on the right-hand side of (2.19) represent, in order, the effect of pressure, the
conversion from potential to kinetic energy, diffusion of kinetic energy, viscous dissipation
D=−ν |∇uuu|2 and production through stirring P=(1/ρ0)uuu ·ΦΦΦ. Following the same process
as for the buoyancy equation, taking the horizontal average of (2.19) and assuming periodic
boundary conditions on the energy gives

⟨e⟩t + ⟨w′e′⟩z −ν⟨e⟩zz =− 1
ρ0

⟨w′p⟩+ ⟨w′b′⟩−⟨D⟩+ ⟨P⟩. (2.20)

The fluctuation buoyancy flux ⟨w′b′⟩ is given by (2.17). The fluctuation turbulent energy
flux ⟨w′e′⟩ can be parameterised in a similar way to the buoyancy flux: we subtract (2.20)
from (2.19) and use a quasilinear approximation to neglect the terms ⟨uuuh⟩ ·∇h⟨e⟩+uuu′h ·
∇h⟨e⟩, uuuh ·∇h p/ρ0, w′e′z −⟨w′e′z⟩ and (w′pz −⟨w′p⟩z)/ρ0, obtaining

e′t +w′⟨e⟩z −νe′zz = w′b′−D′+P′. (2.21)

Once again, we approximate the time and space derivatives with ∂t ∼ β ⟨e⟩1/2/l and
∇2 ∼−1/l2, multiply by w′/2, and make a quasilinear approximation to neglect the terms
quadratic in fluctuation quantities (w′2b′, w′D′ and w′P′), giving

β ⟨e⟩1/2

2l
w′e′+

w′2

2
⟨e⟩z +

ν

2l2 w′e′ = 0. (2.22)

Once again, we take the average, apply (2.14) and rearrange to give the energy flux

⟨w′e′⟩=−β
l2⟨e⟩

l⟨e⟩1/2 +ν/β
⟨e⟩z. (2.23)

Combining (2.20) with (2.17) and (2.23) gives the following equation for the horizontally
averaged kinetic energy.

1
β
⟨e⟩t =

(
l2⟨e⟩

l⟨e⟩1/2 +ν/β
⟨e⟩z

)
z
− l2⟨e⟩

l⟨e⟩1/2 +κ/β
⟨b⟩z +

ν

β
⟨e⟩zz −

1
β
⟨D⟩+ 1

β
⟨P⟩. (2.24)

To close the system, a parameterisation is required for the turbulent length scales l in
terms of the dependent variables ⟨b⟩ and ⟨e⟩. The choice of parameterisation is a vital part
of the model. The length scale must be prescribed to model both small scales in interfaces,
where the density gradient is large and energy small, and larger scales in layers, where
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the gradient is small and the energy large. At this stage, we leave the length general, with
more detailed discussions in later chapters.

To parameterise the dissipation ⟨D⟩ we follow BLY. The only combination of e and
l that provides the correct dimensions for D is D = εe3/2/l, where ε is a dimensionless
number that is treated as a parameter. This parameterisation of dissipation is commonly
used in k–ε models of turbulence (e.g. Jones & Launder, 1972).

The dimensionless parameter β in equations (2.18) and (2.24) acts simply as a scale
factor on the time derivative, effectively setting a new time variable t̃ = β t, with new
dimensionless parameters defined similarly: κ̃ = κ/β , ν̃ = ν/β and ε̃ = ε/β . With these
rescalings, all factors of β disappear from (2.18) and (2.24), including in the parameterisa-
tions for the terms ⟨D⟩/β and ⟨P⟩/β .

By adopting these rescaled forms of time and the dissipation and source terms, and
dropping tildes and angled brackets from (2.18) and (2.24), we obtain the full model as

bt =

(
l2e

le1/2 +κ
bz

)
z
+κbzz, (2.25)

et =

(
l2e

le1/2 +ν
ez

)
z
− l2e

le1/2 +κ
bz +νezz − ε

e3/2

l
+P. (2.26)

The system (2.25)–(2.26) forms a coupled nonlinear diffusion model describing the evo-
lution of the horizontally averaged buoyancy b(z, t) and energy density e(z, t), dependent
on turbulent fluxes parameterised using a mixing length l(bz,e). The second term in the
energy equation (2.26) is necessarily the same as the turbulent buoyancy flux, and accounts
for transfer between potential and kinetic energy. The final terms in (2.26) represents the
effects of viscous dissipation and any energy source from stirring.

We have shown this derivation for a single component of density, leading to a two-
component model. In Chapter 3 we will discuss the conditions for layering in this two-
component framework, and investigate the behaviour of solutions. However, to study
double-diffusive convection, it is necessary to treat the temperature and salinity fields
independently. In this case, temperature and salinity are both governed by advection-
diffusion equations of the form (2.4), but with different values of κ . Applying the same
averaging process yields equations to model the turbulent transport of temperature and salt
independently, yielding a three-component model. We will discuss three variants of this
three-component model in Chapters 5–7.



Chapter 3

Layering in stirred stratified convection

3.1 Introduction

In this chapter, we present a model for layering in the simplest possible physical system —
a stirred stratified fluid with a single component of density. This is the system considered
by Phillips (1972) and Posmentier (1977). As discussed in the introduction, BLY developed
a more detailed model (2.1)–(2.2) to extend the Phillips condition (1.2) to a fuller model
for layering. Taking the stirring term to be P = εe1/2/l, where ε is a dimensionless mixing
parameter, the BLY model is given in dimensionless form by:

bt =
(

le1/2bz

)
z
, (3.1)

et =
(

le1/2ez

)
z
− le1/2bz − ε(e−1)

e1/2

l
, (3.2)

The parameterisation of the length scale l(bz,e) is a crucial component of the model. In
the initial non-layered state, the key length scale is that of the turbulent eddies induced by
stirring, which is non-dimensionalised to unity (l = 1). As a result of the stirring, a shorter
length scale emerges in regions where the buoyancy gradient is high. This is represented
by the Ozmidov length scale lO = (e/bz)

1/2, defined as the characteristic size of the largest
eddy that is not significantly affected by buoyancy in a stably stratified fluid (Ozmidov,
1965). The parameterisation for l(bz,e) interpolates between these two scales, taking the
stirring length when the stratification is weak, and the Ozmidov length in strongly stratified
regions. The particular dimensionless form chosen by BLY is

l(bz,e) =
e1/2

(e+bz)
1/2 , (3.3)

which appropriately transitions from the stirring length l ∼ 1 for bz ≪ e to the Ozmidov
length as bz ≫ e.
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Fig. 3.1 Reproduction of numerical results using the BLY model (3.1)–(3.2), showing the
initial development of the layered state, layer mergers, and expansion of the edge regions.
The plots show the spatial profile of the dimensionless buoyancy gradient g(z, t) = bz(z, t)
across the depth of the layer at regular time intervals. The scale bar at the top of the panel
indicates the magnitude of g. Panel (a) reproduces the simulation of Fig. 6 of BLY, while
panel (b) shows the continued long-term evolution to t = 106. The edge regions expand at
a rate ∝ t1/2 into the interior, eventually destroying the entire layered region and filling the
domain. In both panels, the solution at t = 2×104 is shown in red; this denotes the first
time at which consistent layers exist across the entire interior region.
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The system (3.1)–(3.3) is solved in the domain 0 < z < H. BLY prescribe no-flux
boundary conditions on both buoyancy and energy, as specified by

bz(0, t) = bz(H, t) = 0, ez(0, t) = ez(H, t) = 0. (3.4)

These no-flux conditions imply that the total energy is changed only by dissipation and
stirring.

The coupling of the buoyancy b(z, t) to the energy e(z, t) in the BLY model (3.1)–(3.2)
is found to suppress the high wavenumber instability inherent in equation (1.1), thereby
ensuring that the problem is well posed. To prevent the formation of infinite buoyancy
gradients, BLY’s model specifies an N-shaped flux-gradient relation, so that condition
(1.2) is satisfied for only a finite range of bz. This is shown by the curve labelled ‘BLY’
in Fig. 1.2. The layering instability occurs only in the finite range of g between the red
dashed lines; interfaces thus steepen only to a finite value, at which point the instability is
arrested.

A reproduction of a numerical solution to the system (3.1)–(3.4) with H = 2000 is
shown in Fig. 3.1. Figure 3.1(a) shows the initial development of the layered region,
while Fig. 3.1(b) shows the long-time evolution of the solution. Layers initially start to
develop across the interior of the domain, beginning at a distance of ≈ 200 from the top
and bottom of the domain. By t ≈ 2×104 (shown red in both panels), a pack of layers of a
regular wavelength and amplitude has formed across the full depth of the domain, with
the exception of two smooth non-layered regions extending from the top and bottom of
the domain to the interior pack of layers. Over time, the layers within the pack undergo
sporadic merger events, in which two adjacent interfaces move together and join to form
a single interface. At the same time, smooth regions, referred to herein as edge regions,
expand from the two boundaries of the domain towards the interior at a rate of z ∝ t1/2,
engulfing layers from the outside inwards. Eventually, the edge regions take up the entire
domain, meeting in the middle to form a single well-mixed layer across the full depth of
the fluid. By totally engulfing the layered region by t ∼ H2/4, the development of the edge
regions limits investigation into the dynamics of layer mergers beyond this time.

In this chapter we present a model obtained using the averaging process detailed in
Chapter 2, and use it to investigate the long-term behaviour of layers in stratified turbulence.
We retain the parameterisations used by BLY for the dissipation, stirring, and mixing-length.
We investigate the predictions of our generalised model, establishing the general effects
of viscosity and molecular diffusivity on the conditions for layer formation. Diffusion
and viscosity both have a stabilising effect on the system, reducing the range of unstable
gradients and the maximum growth rates.

As an inroad towards investigating trends in long-term merger dynamics, we also
demonstrate that the adoption of different boundary conditions to those used by BLY can
eliminate the expanding edge regions, allowing the long-term dynamics of the layers to
be apparent. As noted above, the no-flux conditions of (3.4) resulted in the development
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of edge regions that engulf the entire layered region by time t ∼ H2/4. We show that the
alternative boundary conditions of fixed buoyancy, equivalent to specifying the temperature
at the top and bottom of the domain, prevents the expansion of edge regions. The layered
region is then changed only by merging behaviour. The removal of the time constraint
imposed by the edge regions thus allows us to investigate long-term trends in the dynamics
of layer mergers. Each group of mergers approximately halves the number of interfaces,
until eventually only a single interface remains. We show that for long times, the number of
layers remaining, N(t), is consistent with the scaling 1/N ∼ log t. An inverse logarithmic
dependence of this form has been found previously to arise in solutions to the Cahn-Hilliard
(CH) equation for phase separation (Kawakatsu & Munakata, 1985), and an analogy can
be made between kinks (separating phases) and interfaces (separating layers of density),
allowing the CH equation to be used to model layering (e.g. Balmforth & Young, 2005).
BLY demonstrated that the model (3.1)–(3.2) can be reduced asymptotically to the CH
equation by perturbing the governing equations about the critical point of marginal stability.
The logarithmic timescale that we demonstrate here further consolidates and extends this
link.

This chapter is organised as follows. Section 3.2 discusses the derivation of the diffusive
model. To begin our analysis of this system, we first find uniform steady solutions in
Sec. 3.3.1. We investigate the linear stability of these steady states in Sec. 3.3.2, discussing
how the stability is affected by changing the viscosity and molecular diffusivity. In
Sec. 3.3.3, we consider parameter values relevant to water, where the stratification is due
to either a salinity gradient at constant temperature, or a temperature gradient at constant
salinity, and compare the differences between these two cases. In Sec. 3.4, we investigate
the long-term behaviour of solutions. We begin in Sec. 3.4.1 by showing that the adoption
of fixed-buoyancy boundary conditions allows layer dynamics to be observed for very
long times without the intrusion of edge regions. In Sec. 3.4.2 we discuss such long-term
numerical solutions of the model in detail, making comparisons with the linear stability
predictions described in Sec. 3.3.2, and investigating the long-term merger dynamics of
the interfaces. We demonstrate that the long-term dynamics of our model are consistent
with predictions from Cahn-Hilliard models of layering. Our conclusions and a discussion
of possible extensions of the work are contained in Sec. 3.5. The results contained in this
chapter have been published as Pružina et al. (2022).
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3.2 Model formulation

To derive the model, we follow the process outlined in Chapter 2, beginning with the
dimensional Boussinesq equations:

uuut +uuu ·∇uuu =− 1
ρ0

∇p+bẑzz+ν∇
2uuu+

1
ρ0

ΦΦΦ, (3.5)

bt +uuu ·∇b = κ∇
2b, (3.6)

∇ ·uuu = 0, (3.7)

where ν is the kinematic viscosity and κ the molecular diffusivity. The pressure p(xxx, t)
represents the perturbation away from the reference hydrostatic pressure −ρ0gz. We
non-dimensionalise the system through the scalings

t̂ =
U
d

t, ẑ =
1
d

z, ûuu =
1
U

uuu, b̂ =
d

U2 b, p̂ =
1

ρ0U2 p, Φ̂ΦΦ =
d

ρ0U2 ΦΦΦ, (3.8)

where hats denote dimensionless variables, and d and U are characteristic length and
velocity scales of the stirring. Note that the dimensionless buoyancy gradient b̂z = d2bz/U2

can be interpreted as a Richardson number, although the velocity used is that of a stirring
device, not an imposed shear. On substituting from (3.8) into equations (3.5)–(3.7), and
dropping hats, we obtain the non-dimensional Boussinesq equations:

uuut +uuu ·∇uuu =−∇p+bẑzz+Re−1
∇

2uuu+ΦΦΦ, (3.9)

bt +uuu ·∇b = Pe−1
∇

2b, (3.10)

∇ ·uuu = 0, (3.11)

where Re is the Reynolds number Ud/ν , and Pe is the Péclet number Ud/κ . Note that
the Reynolds and Péclet numbers are related by Pe = PrRe, where Pr = ν/κ is the Prandtl
number. For the purpose of developing our horizontally averaged model, we can assume
either impermeability conditions on the sidewalls of the domain, or, for the case of a
rectangular cross-section, a horizontally periodic domain.

We apply the averaging process of Chapter 2 to (3.9)–(3.11) to obtain the following
system:

bt =

(
l2e

le1/2 +Pe−1 bz

)
z
+Pe−1 bzz, (3.12)

et =

(
l2e

le1/2 +Re−1 ez

)
z
− l2e

le1/2 +Pe−1 bz +Re−1 ezz − ε (e−1)
e1/2

l
, (3.13)

l = l(bz,e) =
e1/2

(e+bz)
1/2 . (3.14)



3.3 Conditions for initial layer development 28

The energy production term has been parameterised as P = εe1/2/l. BLY describe this as
an ‘equipartition’ model for production, formulated such that the eddy speed e1/2 adjusts
to the velocity scale of the stirring device on the eddy turnover timescale l/e1/2, and which
provides an N-shaped flux-gradient relation.

Also following BLY, we adopt a length scale of the form (3.3), but it should be noted
that this is not the only possible parameterisation for the length scale. We anticipate that
any monotonic function that interpolates between the stirring length when the stratification
is weak, and a smaller length when the stratification is strong, would serve the same
purpose. We choose here to adopt the BLY length scale in the form (3.3) as it allows us to
compare the results of our model directly with those of BLY, so that our study of the effects
of diffusion and different boundary conditions is not affected by the further complication
of adopting a different mixing length.

The system (3.12)–(3.14) forms a coupled nonlinear diffusion model describing the
evolution of the horizontally averaged buoyancy b(z, t) and energy density e(z, t), de-
pendent on turbulent fluxes parameterised using a mixing length l(bz,e). The second
term in the energy equation (3.13) is necessarily the same as the turbulent buoyancy flux,
and accounts for transfer between potential and kinetic energy. The final term in (3.13)
represents the combined effects of viscous dissipation and the energy source from stirring.
When e = 1, dissipation balances production. If e < 1, there is a net source of energy; if
e > 1, there is a net sink. The BLY model can be recovered from the system (3.12)–(3.14)
by setting Pe−1 = Re−1 = 0, which turns off both viscous and molecular diffusion.

3.3 Conditions for initial layer development

In this section, we consider the initial development of layers, and investigate the effects of
viscosity and diffusion on the system through varying the inverse Reynolds number Re−1

and inverse Péclet number Pe−1. We saw in Sec. 3.2 that these parameters appear not only
as standard diffusion terms, but also in the flux terms in equations (3.12)–(3.13).

We begin, in Sec. 3.3.1, by seeking steady solutions that have uniform bz and e. We
then proceed to analyse their linear stability in Sec. 3.3.2, finding that larger values of Pe−1

and Re−1 both suppress the instability. In Sec. 3.3.3, we consider the combined effects of
changing Pe−1 and Re−1 together, using values relevant for water, with the stratification
provided either by a salinity gradient at constant temperature, or a temperature gradient at
constant salinity.

3.3.1 Uniform-gradient steady states

To begin our linear stability analysis, we return to the full system (3.12)–(3.14), and seek
uniform steady states b = g0z, e = e0, where g0 and e0 are constants. For such basic states,
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Fig. 3.2 Steady-state energy e0 (solutions to (3.16)) as a function of buoyancy gradient g0.
In (a), r = 50 is fixed and Pe−1 varies; in (b), Pe−1 = 0.1 is fixed and r varies.

the buoyancy equation (3.12) is trivially satisfied, and the energy equation (3.13) becomes

0 =− l2e0

le1/2
0 +Pe−1

g0 − ε
e1/2

0
l

(e0 −1) . (3.15)

On substituting for l from (3.14), rearranging and writing r = 1/ε , we obtain the steady-
state energy equation

0 = re2
0g0 +(e0 −1)(e0 +g0)e0 +Pe−1 (e0 −1)(e0 +g0)

3/2 . (3.16)

Figure 3.2 shows the solutions to (3.16) as solid lines, for a range of values of Pe−1

and r. In Fig. 3.2(a) we fix r = 50 while varying Pe−1. In every case, e0 = 1 at g0 = 0,
corresponding to a dimensional energy of U2/2 — the energy is set by the stirring speed.
As g0 increases, the energy decreases monotonically. For small values of Pe−1, the
solutions are similar to the BLY solution (shown black), but for larger Pe−1 the profile is
significantly shallower, with e0(g0) decreasing more gradually.
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Figure 3.2(b) also shows the steady-state energy e0(g0), this time fixing Pe−1 = 0.1
while varying r. Here we see that larger values of r produce profiles for which e0(g0)

decreases more steeply. For large values of r (small ε), the combined viscous dissipation
and stirring term εe1/2

0 (e0 −1)/l in the steady-state energy equation (3.15) is O(ε). For
the equation to be satisfied, the buoyancy flux term −l2e0g0/(le

1/2
0 +Pe−1) must therefore

also be small. This requires either e0 or g0 to be sufficiently small, producing the sharp
decrease in e0(g0) shown in the figure.

3.3.2 Stability and conditions for layering

We now proceed to investigate the linear stability of the uniform-gradient steady states
found in Sec. 3.3.1. To do this, we will consider results derived by BLY for a more general
system, and show how they apply to our model. The system (3.12)–(3.13) can be written
in the form

gt = fzz, (3.17)

et = (κez)z + p, (3.18)

where the functions f (g,e), p(g,e) and κ(g,e) are defined as

f =
(

l2e
le1/2 +Pe−1 +Pe−1

)
g, (3.19)

p =− l2e
le1/2 +Pe−1 g− ε

e3/2

l
+ ε

e1/2

l
, (3.20)

κ =
l2e

le1/2 +Re−1 +Re−1 . (3.21)

BLY presented a linear stability analysis of the general system (3.17)–(3.18), which can
be applied for any given specification of f (g,e), p(g,e) and κ(g,e). Considering the more
general form (3.17)–(3.18) thus allows us to apply the linear stability results obtained by
BLY to our generalised situation allowing for viscosity and molecular diffusion, as given
by (3.19)–(3.21). The general form also means that the results remain valid if we change
any parameterisations in the system, such as presenting a different formulation of the
mixing length l.

BLY showed that the steady state g = g0, e = e0, is linearly unstable if

F ′(g0) :=
fg pe − fe pg

pe
< 0, (3.22)

where the partial derivatives fg(g,e), fe(g,e), pg(g,e), pe(g,e) are evaluated in the steady
state (g0,e0), and F ′(g0) is defined as the total derivative of f with respect to g, evaluated
at (g0,e0(g0)). In essence, this represents the Phillips effect (cf. condition (1.2)), but gen-
eralised to a more complex, physically-derived diffusion problem. BLY further proposed
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Fig. 3.3 (a) Flux-gradient relations for a selection of values of Pe−1, for r = 50, calculated
by substituting the steady-state energy e0 (found as exact solutions of (3.16)) into the
buoyancy flux f (g,e) given by (3.19). The N-shaped curve required for the layering
instability is displayed by the smaller values of Pe−1. (b) Loci of F ′(g0;r) = 0, for a range
of Pe−1 (constant on each curve). For each value of r, the gradients g0 inside the curve are
unstable.
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that, in order for layering to occur, the flux-gradient relation F ′(g) should be N-shaped, so
that there is instability only for an intermediate range of g, with very low and very high
gradients being stable.

The system (3.17)–(3.18) contains two time derivatives, so the linear stability analysis
produces two growth rates. The first is positive if condition (3.22) is satisfied. The second,
‘energy mode’, growth rate is equal to pe, and allows for the possibility of an instability
arising from the energy equation (3.18) alone, without any interaction with the buoyancy
equation. This could happen if the forcing were too strong, or the buoyancy gradient
were negative, for example. For the model to be an accurate representation of the layering
mechanism, it is necessary that the only instability comes from the Phillips effect. Hence
the energy mode must be stable, so we require pe < 0.

For the functions relevant to our model (3.19)–(3.21), the condition pe < 0 is satisfied
for all values of (g0,e0), Pe−1 and Re−1. Hence the energy mode is damped, with the
only instability arising from the Phillips effect. Note that the inverse Péclet number Pe−1

affects f and p, while the inverse Reynolds number Re−1 is contained only in κ . Because
the condition for instability (3.22) depends only on f and p, this means that varying Re−1

independently of Pe−1 does not change whether or not the system is unstable, but only
affects the range of unstable wavenumbers.

Figure 3.3(a) shows flux-gradient relations f (g) for a range of values of Pe−1, for
the illustrative case r = 50. The plots display the clear N-shape required for the layering
instability for values of Pe−1 < 0.113 (a critical value that depends on r). As Pe−1

increases, the N-shape flattens. For all Pe−1 > 0.113, f (g) is a monotonically increasing
function. Thus, with all other conditions identical, a sufficiently high density diffusion
(sufficiently large Pe−1) eventually suppresses the layering instability.

Figure 3.3(b) shows the loci on which F ′(g0;r) = 0 for a range of values of Pe−1.
These lines correspond to the top of the peak and bottom of the trough of the N-shape in
Fig. 3.3(a). It is clear that for any value of r, the unstable range of g0 is greatest when
Pe−1 = 0. As Pe−1 increases, the unstable range of g0 at fixed r decreases, and the critical
value of r above which instability occurs increases. The loci in Fig. 3.3(b) illustrate that
when the stratification is too weak, no layering is possible — physically it seems reasonable
that without a strong enough gradient, mixing will simply destroy the stratification and
lead to homogeneous turbulence. On the other hand, when the gradient is too large, the
stratification cannot be sufficiently disturbed by the mixing, so no layers form. Using
the expressions for f and p given by (3.19)–(3.20), we find that the outermost (black,
Pe−1 = 0) locus is represented by

r(g0) =
4−3g0 ±2

√
1−12g0

3g0
. (3.23)

The case with the − sign represents the left-hand part of the locus; the + sign represents
the right-hand part. The tip of the locus is at g0 = 1/12, where both expressions are equal.
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Fig. 3.4 Growth rate plotted as a function of wavenumber, for r = 50 and g0 = 0.0218. In
(a), Re−1 = 0 is fixed and Pe−1 varies; in (b), Pe−1 = 0 is fixed and Re−1 varies. Since
the parameters are linked by Pe = PrRe, (a) corresponds to the limit of Pr = 0, and (b)
to Pr → ∞. The dashed black curve represents the diffusionless system. The lower set of
curves represents the damped energy mode.

Across all values of r and Pe−1, this is the maximum possible gradient for layering. For
r → 0, expression (3.23) reduces to the two asymptotes

g1(r)∼
2
3r

, g2(r)∼
2
r
. (3.24)

Thus, for any finite value of r, there is a positive range of g0 for which the stratification is
too weak for layering, as well as a finite range of g0 for which layering is possible. We can
see from Fig. 3.3 that increasing the value of Pe−1 shrinks the locus of marginal stability,
both by increasing the critical value of r for instability (i.e. the tip of the curve), and by
decreasing the unstable range of g0 for each value of r.

The plots in Fig. 3.4 show how the growth rate of perturbations depends on the
wavenumber. In panel (a), Re−1 = 0 is fixed and Pe−1 varies, while panel (b) has Pe−1 = 0
while Re−1 varies. The parameters are linked by the relation Pe = PrRe, so panel (a)
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shows the limit of Pr = 0, panel (b) the limit of Pr → ∞. In both cases, there is one set
of unstable modes, as well as a second stable set of growth rates representing the energy
mode. We see that, in accordance with the stability criteria discussed in Sec. 3.3.2, higher
values of Pe−1 suppress the instability entirely. Furthermore, increasing Re−1 has no effect
on the criterion for instability, but alters the range of unstable wavenumbers.

To summarise, the introduction of either molecular diffusivity or viscosity suppresses
the layering instability, as might be expected. Viscosity does not change whether or not a
steady state is unstable, but reduces the unstable range of wavenumbers and, consequently,
the wavenumber of maximum growth rate. Hence, we expect larger values of Re−1 to
produce staircases with thicker layers and fewer interfaces. Incorporating molecular
diffusivity has the same effect of decreasing the unstable range of wavenumbers, but can
also suppress the instability entirely by reducing the unstable range of buoyancy gradients.
We conclude that introducing diffusion to the system will make staircases less pronounced,
by increasing the gradient in layers, and decreasing the gradient in interfaces.

3.3.3 Implications for typical values of Pe−1 and Re−1

To examine simultaneously the combined effects of viscosity and diffusion, we con-
sider some realistic parameters for both temperature- and salt-stratified water. Here,
temperature-/salt-stratified means that the density gradient is caused by a variation in
temperature/salt alone. Note that for a temperature-stratified fluid,

Pe = PrRe, (3.25)

where Pr = ν/κ is the Prandtl number. For a salt-stratified fluid with solutal diffusivity
κS, the analogue of Pr is the Schmidt number Sc = ν/κS. Some characteristic values
of Pr and Sc are shown in Table 3.1, for typical conditions relevant to both oceanic and
laboratory settings. For a reasonable range of temperatures and salinities, Pr ∼ 10, while
Sc ∼ 100-1000. Hence, for a given Reynolds number, the Péclet number is 10-100 times
smaller for salt-stratified water than for the temperature-stratified case. For the ranges
shown in Table 3.1, variations in salinity have only a small effect on Pr and Sc compared to
variations in temperature. In a typical turbulent terrestrial flow, Re ≳ O(1000), but Fig. 3.4
shows that even for Re−1 = 0.1, the growth rate profile is very close to that for Re−1 = 0.
As such, to demonstrate fully the effect of parameter choices we will consider a range of
larger values of Re−1.

Figure 3.5 shows plots of growth rate versus wavenumber for three values of Re−1 and
for a range of values of Pr and Sc; the Péclet number follows from the relations Pe−1 =

(PrRe)−1 and Pe−1 = (ScRe)−1. In Fig. 3.5(a), we take values relevant for temperature-
stratified water. Instability occurs only for sufficiently small Re−1; all the solutions for
Re−1 = 10 are stable. Larger values of Pr increase both the range of unstable g0 and the
maximum growth rate, as they give smaller values of Pe−1. For the case of Re−1 = 1,
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Temperature/°C Salinity/‰ Pr Sc

0 0 13.18 1620
0 20 13.22 1680
0 40 13.34 1750
10 0 9.32 831
10 20 9.39 884
10 40 9.52 934
20 0 6.95 480
20 20 7.04 514
20 40 7.17 547

Table 3.1 Prandtl and Schmidt numbers of water at various temperatures (in degrees
Celsius) and salinities (in parts per thousand). The values of Pr are taken from Nayar et al.
(2016); Sharqawy et al. (2010) and those of Sc from Ramsing & Gunderson (2020).

the system is unstable only for the higher values of Pr chosen. In Fig. 3.5(b), parameter
values are taken to be relevant for salt-stratified water; here, all the values considered lead
to instability. There is little difference between the results for the four different Schmidt
numbers, but increasing Re−1 does decrease the range of unstable g0 and the maximum
growth rates. This is because the Schmidt numbers are large and hence the inverse Péclet
numbers are small; e.g. for Re−1 = 0.1, the values of Sc used correspond to Pe−1 =

O(10−4). In contrast, the values of Pr used in the temperature-stratified case correspond to
Pe−1 = O(10−2). Hence, changing the background temperature, and therefore Pr, has a
much greater effect on Pe−1 in the temperature-stratified case than changing Sc in a salt
stratification. The existence of the layering instability is therefore more sensitive to the
background temperature, and requires larger Reynolds numbers, in a temperature-stratified
fluid than in a salt-stratified fluid.

Table 3.2 shows maximum growth rates and their corresponding wavenumbers, for
characteristic values of Pr and Sc in oceanic configurations, as well as for two smaller
choices of Pr. There is only a very slight difference between the results for Pr = 1 and
Pr = 0, so a more detailed study of the small Pr region of parameter space is unlikely to
reveal any new behaviour. From Table 3.2 and Figs. 3.3-3.5, we see that increasing density
diffusion decreases the area in (g0,r) parameter space that is unstable. Increasing density
diffusion or viscosity decreases the range of unstable wavenumbers for each background
gradient, as well as decreasing the wavenumber of maximum growth rate and the maximum
growth rate itself.

3.4 Long-term evolution of layered solutions

In this section, we present solutions to the model (3.12)–(3.14), focusing on the long-term
dynamics. In Sec. 3.4.1, we demonstrate that the adoption of fixed-buoyancy boundary
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Fig. 3.5 Growth rate plotted as a function of wavenumber, for (a) temperature- and (b)
salt-stratified fluids, for r = 50, gi = 0.0218, with three different choices of Re−1 and a
range of values of Prandtl and Schmidt numbers. The values of Pr and Sc are chosen to
be representative of water under common terrestrial conditions, as seen in Table 3.1. For
comparison with Fig. 3.4, note that in (a), Pe−1 = (PrRe)−1, and in (b), Pe−1 = (ScRe)−1.
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Re−1 Pe−1 mmax n = Hm
2π

L = 2π

m growth rate

BLY case 0 0 0.14 45 44 1.6×10−3

Pr = 10 0.1 0.01 0.12 40 51 1.1×10−3

Pr = 10 1 0.1 0.018 5.8 350 2.6×10−6

Pr = 10 10 1 stable

Sc = 1000 0.1 10−4 0.14 43 46 1.5×10−3

Sc = 1000 1 10−3 0.076 24 83 5.0×10−4

Sc = 1000 10 10−2 0.024 7.7 26 4.7×10−5

Pr = 1 0.001 0.01 0.13 41 48 1.2×10−3

Pr = 1 0.01 0.1 0.027 8.6 230 6.6×10−6

Pr = 1 0.1 1 stable

Pr = 0 0 0.01 0.13 41 48 1.2×10−3

Pr = 0 0 0.1 0.027 8.6 230 6.9×10−6

Pr = 0 0 1 stable
Table 3.2 Predicted dimensionless wavenumbers of the mode of maximum growth rate
mmax, and the corresponding dimensionless growth rates, for characteristic values of Pr, Sc
and Re−1, with r = 50, g0 = 0.0218. For Pr ≲ 1, there is little difference from the Pr = 0
case. Plots of wavenumber versus growth rate are shown for selected parameter choices in
Fig. 3.5.

conditions prevents the formation of the expanding regions that appear in solutions to the
BLY model (3.1)–(3.4), thus allowing the observation of layer dynamics to long times. An
investigation of the long-term dynamics is presented in Sec. 3.4.2, where we show how
the predictions of Sec. 3.3.3 are manifest in the solutions at long times. Furthermore, we
demonstrate a general trend for the long-term behaviour.

3.4.1 The effects of fixed-buoyancy boundary conditions on the long-
term behaviour

We begin by investigating the effects of fixed-buoyancy boundary conditions on the
system. For simplicity, and to isolate the effects of the boundary conditions, we take
Pe−1 = Re−1 = 0 in this section, reducing the model (3.12)–(3.13) to the BLY system
(3.1)–(3.2) exactly. Once the effects of the boundary conditions are understood, we will
reincorporate finite molecular diffusivity and viscosity.

The no-flux boundary conditions (3.4) ensure that the total energy is changed only by
dissipation and stirring. For a temperature-stratified fluid, this is equivalent to the upper
and lower boundaries being insulated and impermeable. The no-flux conditions admit
an approximate similarity solution describing the growth of the edge region towards the
centre of the domain, represented by bz = g(z/t1/2), e = e(z/t1/2). This prediction was
confirmed numerically by BLY, who demonstrated that the edge regions expand into the
interior at a rate of z ∼ t1/2. For such a similarity solution to exist, it is necessary that
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boundary conditions are imposed on the buoyancy gradient g = bz, rather than on the
buoyancy itself, b. Hence it is of interest to determine how the edge regions behave, and
indeed if they even exist, if different boundary conditions are imposed.

In the case of a temperature-stratified fluid, a common experimental setup is a fluid
layer between two conducting plates held at constant temperatures. For a statically stable
gradient, we consider a hot plate above a cold plate, and adopt the Dirichlet conditions

b(0, t) = 0, b(H, t) = g0H, (3.26)

forming a uniform stable stratification. Here, g0 is the initial uniform background buoyancy
gradient, and H is the fluid depth. Without loss of generality, the buoyancy on the bottom
boundary can be taken as zero, as the equations depend only on buoyancy gradients. In
contrast to the choice of no-flux boundary conditions, the fixed-buoyancy condition (3.26)
allows us to take a uniform background buoyancy gradient g(z) = g0, which we use as
a basic state for the system, creating a uniform stratification. Taking this solution to be
a steady basic state gives e(z) = e0(g0), uniform throughout the domain. Thus a no-flux
(Neumann) condition on the energy is possible:

ez(0) = ez(H) = 0. (3.27)

Alternatively, we can choose to fix the energy on the boundaries with the Dirichlet condition

e(0, t) = e(H, t) = e0. (3.28)

In considering appropriate initial conditions, we begin by noting that (3.26) admits
steady-state solutions with both bz and e uniform with height, for either choice of condition
on the energy, (3.27) or (3.28). Assuming that b = g0z and e = eB, we find steady solutions
to (3.12)–(3.14) by setting time derivatives to zero. Taking a uniform buoyancy gradient
and uniform energy means that all the spatial derivatives also vanish, leaving a quadratic
equation for eB(g0), with solution

eB(g0) =
1
2

(
1−g0 (1+ r)+

√
(1−g0 (1+ r))2 +4g0

)
, (3.29)

where r = 1/ε (Balmforth et al., 1998). For the case of no stratification (g0 = 0), the
steady-state energy eB = 1 is associated with the non-dimensional stirring length scale.
As g0 → ∞, eB → 0, thereby demonstrating the damping of motion as the stratification is
increased.
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For the buoyancy initial condition, we take a uniform gradient steady state plus a
sinusoidal perturbation of amplitude a and wavenumber 2πn/H:

b(z,0) = g0

[
z−asin

(
2πnz

H

)]
, (3.30)

e(z,0) = eB(g0), (3.31)

where eB(g0) is given by (3.29). We set the amplitude to be a = 0.001. The integer n is
chosen to produce the maximum linear growth rate for perturbations about this steady
state (cf. Sec. 3.3.2), ensuring that layers develop quickly from the perturbations, with
little interference from other wavenumbers. BLY used the parameter values g0 = 0.0218,
r = 50, H = 2000, and demonstrated that, for these values, the dominant wavenumber
corresponds to n = 45. To facilitate comparison with BLY’s results, we will adopt the
same values.

All the numerical solutions of the full nonlinear system were obtained using the
MATLAB pdepe solver. Figure 3.6 shows the short- and long-time evolution of solutions
to equations (3.12)–(3.14). All plots have 4000 spatial mesh points. The early evolution
plots have 1000 time steps, while long-time solutions were calculated using a series of nine
integrations, each with 1000 time steps. There are 1000 linearly spaced time steps between
each time labelled on the vertical axis, giving a piecewise linear time axis, with the size of
a time step increasing by a factor of 10 or 100 between each label. The solutions are not
sensitive to finer spatial resolutions or integration tolerances, and the pdepe solver chooses
timesteps dynamically to ensure that the solutions are well resolved in time.

Figures 3.6(a,b) show the integration carried out with no-flux (Neumann) boundary
conditions on the energy (3.27). The initial perturbation grows into a regular pattern
of spikes in the buoyancy gradient g(z, t), separating regions in which the fluid is well
mixed and the gradient is small. The spikes represent smeared interfaces separating the
well-mixed layers. At this stage, the evolution is similar to that arising from the no-flux
buoyancy boundary conditions (3.4) (cf. Fig. 3.1). A key difference, however, is that
the region in which layers form extends across the full depth of the domain, with little
influence from the boundaries (an aspect that becomes increasingly important at later
times). Initially 45 spikes (layer interfaces) develop in the buoyancy gradient profile g(z, t).
The wavenumber of this initial pattern of layering matches that of the initial perturbation
m = 45(2π/H). The interfaces begin to merge at t ≈ 1.6×105, with mergers happening
evenly across the domain. After the first merger, the spike height (i.e. the maximum
gradient in an interface) is approximately double that of the initial spikes. After subsequent
mergers take place, the height of the spikes remains constant, with successive mergers
doubling the width of each spike, as the maximum unstable gradient has been reached.
These merger events follow the ‘H–merger’ pattern described by Radko (2007), where
neighbouring mergers drift and combine, in contrast with the ‘B-merger’ where strong
interfaces grow at the expense of weaker ones. The state at t ≈ 1×1016 is not the final
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Fig. 3.6 Time evolution of the buoyancy gradient g(z, t) = bz(z, t), resulting from solution
of the system (3.12)–(3.14) for fixed-buoyancy boundary conditions (3.26), and initial
conditions (3.30)–(3.31), with n = 45, background buoyancy gradient g0 = 0.0218, dis-
sipation parameter r = 50, and domain thickness H = 2000. Zero-energy-flux boundary
conditions (3.27) are adopted in (a) and (b); fixed energy conditions (3.28) are adopted
in (c) and (d). The scale bar at the top left of each panel indicates the magnitude of the
gradient g(z, t).
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state of the system — the solution will continue to evolve through mergers until eventually
a single interface remains.

Figures 3.6(c,d) show the integration carried out with fixed-energy (Dirichlet) boundary
conditions (3.28) instead of no-flux (Neumann) conditions (3.27), with all other parameters
and conditions identical to those used in the simulation shown in Figs. 3.6(a,b). As with
the Neumann conditions, the initial perturbation develops into 45 spikes, which undergo
mergers. However, the first mergers now appear at the earlier time of t ≈ 15000, first near
the boundaries, and progress inwards towards the centre of the domain, until all but one
spike has merged with its neighbours by t ≈ 110000. After the initial development of
the layers, the outermost interfaces move to the boundaries, resulting in a thicker layer.
This thicker layer provokes the second spike from the boundary to merge with the third,
creating another thicker layer. In turn this provokes a merger of the next two spikes, with
the process continuing into the interior. After this first group of mergers, the dynamics are
very similar to those in Figs. 3.6(a,b). Successive mergers take place evenly across the
domain, and the most notable difference from Figs. 3.6(a,b) is the time at which mergers
happen — which is a consequence of the different times at which the first mergers are
complete.

The key conclusion to be drawn is that, for fixed-buoyancy boundary conditions, the
evolution of layers is largely unaffected by the boundaries (except at early times, in the case
of fixed-energy boundary conditions). The layered region evolves independently through
merger events until a single interface remains in the middle of the domain. This behaviour
differs from the situation of BLY, where edge regions moved into the interior (cf. Fig. 3.1),
gradually engulfing the layers until a uniform state exists across the entire domain. Further
numerical simulations with more complex initial conditions show that even for initial
conditions that do produce edge regions, fixed-buoyancy boundary conditions prevent the
intrusion of the edge regions into the interior.

3.4.2 Evolution to late times

We now turn our attention to the long-term nonlinear evolution of solutions to the full
system (3.12)–(3.14), for non-zero values of Pe−1 and Re−1. As discussed in Sec. 3.4.1,
we take boundary conditions (3.26) and (3.27) to prevent the development of expanding
edge regions and provide a clean framework in which to analyse the dynamics of layers.
For the buoyancy, we take initial condition (3.30), namely a uniform buoyancy gradient
perturbed by the wavenumber of maximum growth rate. For numerical convenience, we
initialise the energy with the steady-state energy corresponding to Pe−1 = 0 — this is
appropriate because the values of Pe−1 that we consider are sufficiently small that the true
steady-state energy is close to the energy for Pe−1 = 0. In the numerical solutions, the
energy adjusts rapidly to its true steady-state value.

One aim of our numerical simulations is to demonstrate how the predicted wavenum-
bers of maximum growth rate, and the growth rates themselves, are manifest in the
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Fig. 3.7 Long-time evolution of the buoyancy gradient g(z, t), resulting from solution of
the system (3.12)–(3.14) with diffusion included; in the basic state g0 = 0.0218. Panel (a)
shows a typical temperature-stratified case with Pe−1 = 0.01, Re−1 = 0.1, and n = 40
initial interfaces; (b) a typical salt-stratified case with Pe−1 = 0.0001, Re−1 = 0.1, n = 43;
(c) Pe−1 = 0.001, Re−1 = 1, n = 24; (d) Pe−1 = 0.1, Re−1 = 1, n = 6. In each case, the
dissipation parameter r = 50. The scale bar at the top left of each panel indicates the
magnitude of the gradient g(z, t).
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nonlinear solutions; these predictions are detailed in Table 3.2. First, we show solutions for
parameters relevant to typical temperature- and salt-stratified water at Re−1 = 0.1. Next,
we consider two choices of parameters that predict, and produce, significantly fewer layers,
thereby demonstrating the behaviour of larger-scale layers and interfaces. We conclude this
section by investigating the trends in the long-term evolution of layers and the occurrence
of mergers, inferring a general law describing the number of interfaces with time.

In Sec. 3.3.3, we showed the effects of changing parameter values on the initial
development of layers. Figure 3.7 demonstrates the effects of changing Pe−1 and Re−1

on solutions of (3.12)–(3.14), for values chosen from Table 3.2. In each case, we take
the dissipation parameter r = 50, and choose the background buoyancy gradient to be
g0 = 0.0218. This value of g0 is chosen to be approximately in the middle of the unstable
range of buoyancy gradients predicted for this value of r, for a wide range of choices of
Pe−1, as seen in Fig. 3.3(b).

Figure 3.7(a) shows a typical temperature-stratified case with Pe−1 = 0.01 and Re−1 =

0.1, chosen such that Pr = Pe/Re = 10. In the initial condition (3.30), we take n = 40,
giving a predicted linear growth rate of 1.15 × 10−3. The initial perturbation grows
into a series of 40 layers across the entire fluid depth, which undergo a set of mergers
by t ≈ 0.5× 106. Successive merger events take place, until there are four interfaces
remaining by t = 1018. The maximum gradient in an interface (shown in the plot as the
height of a spike) is initially g = 0.056, increasing to g = 0.91 in the first set of mergers.
After the first mergers are complete, successive mergers do not increase the maximum
gradient, but instead create thicker interfaces, conserving the total density difference across
an interface following a merger.

Figure 3.7(b) shows a typical salt-stratified case with Pe−1 = 0.0001 and Re−1 = 0.1,
such that Sc = Pe/Re = 1000. Here we take n = 43 in the initial condition (3.30), giving
a growth rate of 1.5×10−3, approximately one and a half times greater than that in the
temperature-stratified case shown in Fig. 3.7(a). The system initially develops into 43
layers, which merge by t ≈ 0.9×106, taking almost twice as long as for the temperature-
stratified case. Thus, the increased linear growth rate of perturbations does not imply that
mergers happen more quickly. The maximum interfacial gradient is initially g = 0.064,
increasing to g = 0.12 after the first mergers — these gradients are both slightly larger
than for the temperature-stratified case, reflecting the fact that smaller values of Pe−1 give
a larger range of unstable buoyancy gradients in the linear analysis of Sec. 3.3.2.

Figures 3.7(c,d) show the evolution of the system for parameter choices that produce
significantly smaller wavenumbers of maximum growth rate. In both cases, we take
Re−1 = 1. Figure 3.7(c) has Pe−1 = 0.001, which predicts a wavenumber of maximum
growth rate corresponding to n = 24. Here, the evolution resembles that in Figs. 3.7(a,b),
with the main difference being the initial number of layers. The predicted growth rate
is 5× 10−4, approximately half that for the temperature-stratified case. The first set of
mergers is complete by t ≈ 4×105 — similar to both Figs. 3.7(a,b), demonstrating again
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that the linear growth rate cannot be used to predict a timescale for mergers. Figure 3.7(d)
has Pe−1 = 0.1, giving n = 6 as the most unstable wavenumber. The linear growth rate
of 2.6×10−6 is significantly smaller than in any of the other plots, and clear layers are
not apparent until t > 106. The first mergers occur at t ≈ 108. The interfaces are very
thick, with small gradients: the maximum interfacial gradient is g = 0.03, a factor of three
smaller than for the cases shown in Figs. 3.7(a–c).

The plots in Fig. 3.8 show how the interfaces change over long timescales; they are
derived from several numerical simulations across a range of parameters chosen to cover
the full unstable range shown in Fig. 3.3(b). The parameters used to produce these results
are given in Table 3.3. Figure 3.8(a) shows the maximum buoyancy gradient across the
whole solution at each time; this corresponds to the gradient at the centre of the sharpest
interfaces (and is representative of all interfaces). Figure 3.8(b) shows how the number
of interfaces decreases with time; merger events can be seen as sharp downward steps
in the profiles. In Fig. 3.8(a), the early phase of the evolution is marked by a smooth
increase in the gradient from the initial perturbation to a value at which the first interfaces
appear. The maximum gradient then remains unchanged for a prolonged period, until the
first mergers occur. At this point, the maximum gradient increases sharply before settling
again at a new value. In most cases, this second increase in gradient has approximately
the same magnitude as the first. However, for the red and yellow lines (beginning at
max(bz) = 0.015 and 0.8 respectively) the second increase is significantly smaller. Once
the stable maximum gradient is reached, it remains unchanged, even with further mergers,
as can be seen by comparison of Figs. 3.8(a,b). However, the density difference across two
merging interfaces must be conserved, so the remaining interface is thicker than either of
the two interfaces that formed it. This increase in interface thickness can be seen clearly in
Figs. 3.7(a–d).

In Fig. 3.8(b), each solid line begins at the time when the initial layered state is
fully formed (corresponding to the end of the first step up in Fig. 3.8(a)), and tracks the
number of interfaces, including those on the boundaries. The interfaces are determined
by locating all peaks in the buoyancy gradient with a magnitude above a critical value,
chosen to be the steady gradient of the initial interfaces seen in Fig. 3.8(a). BLY briefly
state that the timescale for successive mergers ‘becomes exponentially long’. However,
the expanding edge regions in their solutions prevent a thorough investigation of long-term
merger behaviour. Our choice of boundary conditions allows us to examine the long-
term evolution of the solutions and, in turn, quantify this dependence more precisely. In
Fig. 3.8(b), the dashed lines are fitted according to a least squares regression, and show a
good fit with the general relation

1
N

∼ α log t +β , (3.32)



3.5 Discussion 45

representing an inverse (natural) logarithmic dependence for the number of layers over
time, N(t). As shown in Fig. 3.8, the relation (3.32) captures the overall trend for N(t)
over several orders of magnitude of time, potentially indicating a self-similar structure to
successive layer mergers. Expression (3.32) indicates the existence of a general law for
how interfaces in stratified turbulence evolve, with the coefficients α and β dependent
on the viscosity and diffusivity of the fluids. Values of α and β for each case are given
in Table 3.3. Analysis of layering in the Cahn-Hilliard equation has demonstrated such
a logarithmic timescale (Kawakatsu & Munakata, 1985), which has been confirmed by
several numerical studies (e.g. Nagai & Kawasaki, 1983; Watson et al., 2003). BLY
showed that their model could be transformed into the Cahn-Hilliard equation through an
asymptotic analysis about the point of marginal stability in g0-r space (the tip of the black
curve in Fig. 3.3(b)). Figure 3.8(b) demonstrates such a logarithmic timescale across the
entire unstable range of parameters, confirming the relevance of Cahn-Hilliard dynamics
to models of layering that employ the Phillips effect.

3.5 Discussion

In this chapter, we have made four primary developments in the analysis of layering in
stratified turbulent flow. First, we have presented a general horizontally averaged model
derived from the Boussinesq equations using a spatial averaging approach. Our formulation
retains the effects of viscosity and molecular diffusivity, and explicitly clarifies the closure
assumptions required. Second, we have demonstrated how the layering instability is af-
fected by molecular diffusivity and viscosity. Third, we have demonstrated the importance
of boundary conditions on the long-term evolution of the solutions. Finally, we have shown
how the long-term distribution of layers changes through merger events, with the inference
of a general power law dependence describing the number of layers as a function of time.

In order to understand the essential conditions for layer formation, we investigated
the linear stability of uniform gradient, uniform energy steady states. Increasing Pe−1

suppresses the instability by decreasing the range of unstable gradients. Increasing Re−1

does not affect which gradients lead to instability, but does decrease the range of unstable
wavenumbers, so the instability occurs only at larger scales. Since for temperature-stratified
water, Pe−1 is two orders of magnitude larger than for salt-stratified water, the latter is
more susceptible to layering.

We have shown that fixed-buoyancy boundary conditions ensure that the layered regions
extend across the entire depth of the domain for all time. This contrasts with the case
of fixing the buoyancy gradient, which allows layer-free edge regions to expand into
the interior, gradually engulfing the layers (Balmforth et al., 1998). In our numerical
solutions, multiple layer merger events take place in groups, with the general property
that the maximum gradient across an interface approximately doubles after the first group
of mergers. In subsequent mergers, the gradient does not increase further. Instead,
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Fig. 3.8 Plots showing variation in the interfaces over time, obtained using a numerical
peak finder to count peaks in the buoyancy gradient bz. Panel (a) shows the maximum
gradient at each time, corresponding to the gradient at the centre of the sharpest interface.
Panel (b) shows the number of interfaces at each time, plotted against the natural logarithm
log(t). The dashed lines show the best fits to relation (3.32). Parameters used for each
curve are reported in Table 3.3.

Line r Pe−1 Re−1 H n α β

50 0.01 0.1 2000 40 0.0080 −0.059
100 0.1 0.1 2000 12 0.015 −0.098
15 0 0 2000 15 0.011 −0.044
50 0.01 0.1 6000 119 0.0027 −0.018
50 0.001 0.1 4000 87 0.0037 −0.022

Table 3.3 Parameter values for the plots in Fig. 3.8, and corresponding values of α and β

for the trend law (3.32).
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the thicknesses of the interfaces increase, conserving the total density difference across
the interface. Our analysis of the solutions over long times shows that after the initial
development of layers, the number of interfaces conforms to the law 1/N ∼ log t, thereby
generalising the link to Cahn-Hilliard dynamics shown by BLY.

The model presented in this chapter is intended as a phenomenological study, rather than
a direct comparison to observations. The Reynolds numbers considered in Section 3.3.2
are considerably smaller than the values required for real turbulence, but were chosen
instead to demonstrate the effects of changing Re. This would not have been possible at
more realistic values, as the results would have been almost identical to Re−1 = 0. To
produce realistic predictions, it is necessary to calibrate the value of the parameter ε —
this could be done by comparing the stability curves in Fig. 3.3(b) to the real layering
boundary found in experimental or observational studies.

The mixing length formulation of BLY assumes that all the turbulent transport in the
system is done by turbulent mixing, with an eddy diffusivity of le1/2. In this chapter, we
have allowed for finite Re and Pe, leading to altered flux terms. These fluxes include BLY’s
original le1/2, but also take into account the small component of diffusive transport repre-
sented by Re−1 and Pe−1 in the denominator. These terms are of secondary importance
in this chapter, with a single component of density, however in later chapters where we
study double diffusive layering, the diffusive terms are vital, as layering is driven by the
difference in diffusivities between the two components of density.

In the following chapters we extend this work in several ways. We present an ex-
perimental study to test some of the predictions of the model in Chapter 4. Next, this
work on stratified layering provides a basis for generalisation to other systems where
layering occurs. In particular, the two-component model for buoyancy and energy can be
expanded to a double-diffusive system by the inclusion of an additional equation for the
second component of buoyancy. This produces a three-component model for temperature
and salinity (or any other two components of density), and energy. A general stability
analysis for three-component systems is presented in Chapter 5. Two specific physical
problems suggest themselves. The first, which is presented in Chapter 6, is to study a three-
component model with an external forcing, as used here. This will provide insights into the
second problem, in which the turbulent motions arise naturally from the double-diffusive
instability of the basic state. This work is discussed in Chapter 7.



Chapter 4

Experimental study of stirred stratified
layering

4.1 Introduction

As mentioned in Sec. 1.4, there is a significant body of experimental work on staircase
formation, most commonly in stirred stratified convection. In this chapter we relate the
model of Chapter 3 to real-world fluid systems, by presenting a new experimental study.

We saw in Sec. 3.3.2 that for any fixed set of parameter values, the model predicts
that there is a finite range of dimensionless buoyancy gradients bz that are unstable to the
Phillips instability. Recall that the variables were nondimensionalised as follows:

b̂ =
d

U2 b, ẑ =
1
d

z, (4.1)

where hats denote dimensionless variables, and U and d are the characteristic velocity and
length scales of the stirring. As such, the dimensionless buoyancy gradient is

b̂z =
d2

U2 bz ≡
d2

U2 N2 = Ri, (4.2)

where N2 is the Brunt-Väisälä frequency, and Ri is the (local) Richardson number, which
measures the relative strength of the density gradient in comparison to shear. This means
that the finite range of dimensionless buoyancy gradient for layering to occur corresponds to
a finite range of Ri. Note that the dinemsionless buoyancy gradient also defines an inverse
squared Froude number Fr−2 (where Fr measures the ratio of intertial to gravitational
forces on a fluid element to its weight); for consistency with previous literature we write
b̂z = Ri.

From a physical perspective, it makes sense that layering will occur only for a finite
range of Ri. If the density gradient is too strong compared to the shear, then the turbulence
cannot disrupt the gradient enough to form layers. Conversely, if the turbulence is too
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strong compared to the density gradient, the entire fluid will mix and become homogenous,
rather than evolving into layers.

The experimental study of Ruddick et al. (1989) involved a fluid with a uniform stable
salt gradient being stirred by the oscillation of a grid of rods. Low stirring rates led to the
formation of layers, while higher stirring rates caused the density gradient gradually to
decrease while remaining smooth, eventually homogenising. Park et al. (1994) developed
this work, using a single stirring rod rather than a grid. Both the speed of the rod and the
strength of the stratification were varied, allowing Re and Ri to be changed independently.

The experiments of Park et al. (1994) initially produced mixed layers at the top and
bottom boundaries — this is because the no-flux condition across the boundaries required
the vertical gradient to vanish. For small values of Ri, the density profile showed two
advancing mixed layers moving into the interior with little interior structure. For larger
initial values of Ri, interfaces first formed between the boundary mixed layers and the
interior. These interfaces moved towards the interior, eventually becoming close enough
and merging. For an even larger Ri, multiple interfaces formed, resembling those seen in
Chapter 3. For sufficiently high Ri, long-lasting steps were easy to confirm, but for smaller
values, steps did not maintain their shape for a very long time, giving a marginal region
where it was unclear whether layering was occurring or not. For sufficiently small Ri,
transient interfaces were sometimes observed, but dissipated quickly, leaving a generally
uniform gradient. The plot in Re−Ri space in Fig. 4.1 shows the parameter regions where
layering occurred.

A further study by Holford & Linden (1999b) built upon the work of Park et al. (1994),
this time stirring by moving a rake of bars through the fluid. They found that at low Ri, the
density profiles remained smooth, with well-mixed boundary layers growing from the top
and bottom, as found by Park et al. (1994). At low enough Re, layering developed by a
Phillips mechanism in a certain range of Ri. However, at high values of Ri, layers formed
due to mixing by vortex sheets left in the wake of the stirring rake.

Zatsepin et al. (1999) conducted similar experiments to Park et al. (1994) and Holford
& Linden (1999b), stirring using oscillating vertical rods, once again producing layers
from an initially linear stratification. A summary plot of their results, and those of Park
et al. (1994), is shown in Fig. 4.1, showing a clear boundary between regions of Re–Ri
space where layers do and do not form.

The existence of a minimum value of Ri for layers to form has been clearly established
by the numerous experimental studies detailed above. However, according to the theory of
BLY and Chapter 3, an upper boundary in Ri should exist, above which the density gradient
is too strong compared to the stirring speed for layers to form. No such boundary has yet
been demonstrated experimentally. We saw in Fig. 3.3(b) that the unstable range of bz ≡ Ri
decreases as Pe−1 increases. Writing Pe = PrRe, and assuming Pr is fixed, this means
that the unstable range of Ri should increase as Re is increased. We found the form of the
boundary in r–g0 space to be (3.23) when Pe−1 = Re−1 = 0; with the appropriate value of



4.1 Introduction 50

Fig. 4.1 Diagram summarising experimental runs of Park et al. (1994) and Zatsepin et al.
(1999) in Re–Ri plane: × - layers (L), + - no layers (N) (Park et al., 1994), □ - (L), ◦ -
(N) (Zatsepin et al., 1999). The dashed vertical line approximately separates runs with
turbulence (to the left) from those without (to the right). The solid line separates runs with
(above) and without layers (below). (Taken from Zatsepin et al., 1999)

r, this boundary should give the asymptotic values of the critical values Ric as Re → ∞.
Figure 4.2 shows the locus of marginal stability in Re–Ri space on which FgCd −FdCg = 0.
There is a clear minimum value of Re for instability, and as Re increases, there are upper
and lower asymptotes for Ri as Re → ∞. Inverting (3.23) for g0 ≡ Ri, we obtain the values
for these asymptotes

Ric ∼
4(r−1)±2

√
r2 −14r+1

3(1+ r)2 . (4.3)

Setting r = 50 gives the two values Ric ∼ 0.0142 and 0.0360. Fig. 4.2 shows the full
predicted stability boundary in Re–Ri space, showing two critical values of Ri for each
value of Re. Note that this is not a quantitatively accurate picture — it shows layering for
very small values of Re where there will be no turbulence, and hence the turbulent model
of Chapter 3 is no longer valid. However, we expect the qualitative picture to be valid,
with layering occurring for only a finite range of Ri for each value of Re.

The Richardson number can be changed by varying either N2, d or U . Practically, it
is simplest in an experimental setup to change U , as changing N2 requires refilling the
tank with a new salinity gradient, and changing d requires a change to the geometry. The
velocity scale U can be varied simply by changing the speed of the motor driving the
stirring. As such, to achieve high Ri requires low stirring speeds, leading to low Re. At
sufficiently low Re, the fluid will no longer be turbulent, with no layering occurring. So to
investigate layering at high Ri requires a particular experimental setup, with a fast enough
stirring speed to ensure that Re is large enough for the fluid to be turbulent, and at the
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Fig. 4.2 Stability boundary in Re–Ri space for the stirred stratified system considered in
Chapter 3, with dissipation parameter r = 50. For each value of Re, there are upper and
lower values of Ric, between which the system is unstable to layering. Dashed lines show
Ri = 0.0142 and Ri = 0.0360, the asymptotic limits of Ric as Re → ∞.

same time strong enough buoyancy gradients that the high Ri boundary for layering can be
captured.

4.2 Experimental method

We present a basic experimental study to establish the existence of the upper critical value
Ric, above which layering does not take place. In each experiment, we create a uniform
stratification, and start stirring at a low speed. We gradually increase the stirring speed,
decreasing Ri, until layers form, thus establishing the existence of the upper boundary.

We employ a basic experimental setup taking advantage of equipment already available
in the School of Mathematics laboratory. Instead of a back-and-forth stirrer in a rectangular
tank, the stirring is provided by a stationary rod suspended in a rotating cylindrical tank.
To visualise the density, we use a shadowgraph method, with a torch shining through the
tank projecting an image on a sheet of tracing paper. A camera pointing at the screen
photographs the shadowgraph image at fixed time intervals.

4.2.1 Double bucket method

The stratification is created in the tank using the double bucket method (Oster, 1965).
Fig. 4.3 shows the setup for this process. Two buckets are filled with water: Bucket A
with 4500ml fresh water, Bucket B with 4500ml salty water. The salt solution is made in
advance of the experiment to allow it to regain the ambient temperature. Before creating the
stratification in the cylindrical tank, the density of the salty water in Bucket B is measured
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Fig. 4.3 Diagram showing double bucket setup for filling the cylindrical experimental tank.

Fig. 4.4 Diagram showing the rotating table setup. A metal rod of diameter d is suspended
in the fluid at radius Rs, and the rotating table is turned on, thus stirring the fluid.
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using a hydrometer. Both buckets are connected by a siphon so that a reduction in water
level in one bucket draws in water from the other. Salty water is siphoned out of bucket B
and onto a floating sponge in the cylindrical tank. The sponge floats on the surface of the
tank, so that new water spreads out on top with a low velocity, rather than penetrating into
the fluid owing to its momentum. Bucket B is continuously stirred, so that it remains well
mixed, while being diluted from bucket A. The tank is full when the buckets are empty.

Note: the cylindrical tank does not have a flat bottom, so a plastic base is inserted.
However, the base is lighter than a saturated salt solution, so to prevent it from floating, a
magnet is taped to the bottom of the base, and another magnet on outside of the bottom
of the tank. There is a depression in the middle of the rotating table that the magnet fits
inside, allowing the tank to sit flat.

4.2.2 Layer formation

Fig. 4.4 shows the experimental setup. The tank is placed on top of the rotating table and
the stirring rod inserted halfway between the edge and the centre (7.5cm from the edge).
The torch is set up to shine through the tank, and the screen attached to the opposite end
of the table so that an image is projected. A camera is positioned on the opposite side
of the screen from the tank, pointing towards the screen. After the water in the tank is
still, the camera is set to take pictures at fixed intervals (30s, normally), and the tank set to
rotate. The initial starting speed depends on the stratification, but low voltages of ≈ 4−5V
are appropriate. The time period for the rotation must be measured. The initial spin-up
takes several minutes before all transient behaviour dies down — during this time, there is
significantly more mixing activity in the lower section of the tank, as the rotation of the
bottom boundary provides forcing. We rotate at the initial speed for 30 minutes to allow
time for this transient behaviour to decay. If no layers have formed after this time, the
voltage is increased. We calculate the new period of rotation and rotate the tank for 15
minutes. If no layers have formed, we continue increasing the voltage every 15 minutes
until layer formation is observed.

Layers can be identified by bright bands representing interfaces. These can be dis-
tinguished from normal turbulence by their continued existence over reasonably long
times.

To calculate the Richardson number, we take d to be the diameter of the rod in metres,
and U = ωRs to give Ri = d2

U2
∂b
∂ z . The tank that we use has a radius of Ro = 150mm,

and the fluid depth is H = 125mm. The rod of diameter of d = 12.5mm is placed so
that Rs = Ro/2 = 75mm. Writing ρb for the density of the salty water in Bucket B, and
taking ρ0 = 1kgm−3 for the fresh water, the buoyancy of the salty water (in ms−2) is
bb = g(ρ0 −ρb)/ρ0 = g(1−ρb), with g = 9.81ms−2, and the buoyancy of fresh water
is 0. The buoyancy gradient (in s−2) is therefore calculated as bz = g(1−ρb)/H. The
kinematic viscosity of salt water is taken to be ν = 10−6m2 s−1. Experiments were carried
out for initial stratifications with bottom density range 1.06 ≤ ρb ≤ 1.195kgm−3. We
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measure the time period of the rotation T and density of salty water ρb, and use these to
calculate the following

U =
0.47

T
ms−1, bz = 78(ρb −1)s−2, Ri = 0.055T 2(ρb −1), Re = 12500

0.15π

T
.

(4.4)
,

4.3 Results

We begin by presenting the results of a single experimental run, displaying the shadowgraph
results. Figure 4.5 shows the images captured at several times throughout an experiment.
We begin with a slow rotation rate, with the fluid mostly non-turbulent. On increasing
the rotation rate (decreasing Ri), the system attains a turbulent state, but no layers form
initially. On increasing the rotation rate further, an interface begins to form. The interface
can be seen first near the bottom of the image, although the true interface is higher up
in the tank, with optical effects causing it to appear lower. As the stirring continues, the
interface gradually moves further up the tank.

We repeat the experiment for a range of initial salinity gradients, each time starting
with a slow rotation rate that is gradually increased. Each gradient/rotation speed pair
is classified as either layered (L) or nonlayered (N). The scatter plot in figure 4.6 shows
this classification, on (a) bz–U axes and (b) Re–Ri axes. For each gradient, the points
with the lowest values of U are classified as (N), with higher speeds giving layers (L). For
three experimental runs, the speed was gradually increased further; in two of these cases a
further transition to nonlayered (N) occurred at the point where the speed was fast enough
to destroy the existing interface.

From Fig. 4.6(a) it is clear that, for fixed bz, there is a critical value for U above
which layers will form. However, Fig. 4.6(b) is less conclusive. For the largest values of
Ri, no layers form, but for intermediate values of Ri, the layering behaviour is strongly
dependent on the value of Re. Data points from each experimental run lie on lines
Ri = constant/Re, so in Re–Ri space the points have only a small spread. By comparison
with the predicted stability boundary shown in Fig. 4.2, the rough boundary seen in
Fig. 4.6(b) between 600 ≲ Re ≲ 1000 resembles the curved predicted boundary, but the
numerical values of both Re and Ri are significantly different. However, this is to be
expected — the theoretical work assumed a dissipation parameter r ≡ 1/ε = 50, with
the stability boundaries depending strongly on r. So it is possible that the true value of
r is significantly different to the one used. To produce more conclusive results it will be
necessary to extend the experiment further, with more experimental runs. Using a setup
with different geometry would allow a larger range of values to be investigated — for
example, changing the diameter d of the stirring rod produces a linearly proportional
change in Re, but a quadratic change in Ri.
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Fig. 4.6 Results of thirteen experimental runs, varying background buoyancy gradient
bz (s−2) and characteristic speed U (ms−1). For each run, bz was fixed, and U gradually
increased. Blue crosses represent points where layers formed, red plus signs represent
conditions where no layers were evident. Scatter plot on (a) bz–U axes, (b) Ri–Re axes.)

The stability boundary seen in Fig. 4.6(b) appears to follow the logarithmic curve
Ri ∼ 12.05− 1.7472log(Re), shown as the dashed black line on the figure. However
more data for smaller and larger values of Re is required to confirm this, and to find the
equivalent curve for the upper boundary on Ri.

4.4 Discussion

We have conducted experimental work to test the prediction of Chapter 3 that there exists
an upper limit on the Richardson number for layers to form. Previous experimental studies
have established the existence of a lower limit, but no upper limit (Ruddick et al., 1989;
Park et al., 1994; Holford & Linden, 1999a; Zatsepin et al., 1999). Taken together, the
lower limit of previous studies, and the upper limit that we test here, lead to a finite range
of Ri in which layering takes place.

We adopted a method using a rotating table to provide the stirring motion, rather
than moving a stirring rod in a stationary tank as previous studies have done. This has
demonstrated a much simpler and cheaper way to investigate the problem than in previous
studies, and we do not expect it to have a significant qualitative effect on the evolution after
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the spin-up period. To consider the effects of the rotation, we discuss here the mathematical
implications of adding Coriolis and centrifugal forces to the model discussed in Chapter 3.
To account for a frame rotating at angular velocity Ω in the Boussinesq equation we add
the terms

−2ΩΩΩ×uuu−ΩΩΩ×ΩΩΩ× rrr, (4.5)

to the momentum equation (2.3), where rrr is the position vector. After taking the scalar
product with uuu to form the energy equation, the Coriolis term −2uuu ·ΩΩΩ×uuu vanishes, while
the centrifugal term can be written as

uuu ·ΩΩΩ× (ΩΩΩ× rrr)−|Ω|2uuu · ((ẑzz · rrr) ẑzz− (ẑzz · ẑzz)rrr) = |Ω2|uuu · rrr⊥, (4.6)

where rrr⊥ = (x,y,0) is the horizontal position. The centrifugal contribution to the energy
equation is therefore purely horizontal, and vanishes in the horizontal averaging process of
Chapter 2. As such, the model (3.12)–(3.13) is identical in a rotating or inertial frame, so
the results of Chapter 3 should be applicable in either case. This does not mean that the
rotation has no effect, but rather that it should be accounted for in parameter choices, and
possibly in the form of the length scale.

The experimental results shown in Fig. 4.5 show the development of a single interface
in the middle of the tank when rotated at a sufficiently high speed. This single interface
appeared alone; it is unclear whether the depth of the tank is not sufficient for more
interfaces to form, or if a number of narrower layers formed initially and merged into the
interface that is seen. The strength of the interface appears to increase over time, with
the bright band gradually becoming brighter and thicker. Considering the results of a
larger number of experimental runs, Fig, 4.6 shows that while fixing bz, there is indeed a
minimum speed U required for layers to form. However, when considered in Re–Ri space
the picture is less obvious. No layers formed for the highest values of Ri, but these all
correspond with low values of Re. At lower values of Ri, the value of Re has a significant
effect, with layers forming only for larger values of Re.

The interface seen in Fig. 4.5(e)–(h) initially appears to form near the bottom of the
tank, and gradually move upwards. The images also might be interpreted as showing more
turbulent motion beneath the interface than in the layer above. These observations would be
consistent with an interpretation of the results as a mixed layer forming due to interaction
with the bottom boundary, with the mixed layer gradually entraining fluid above, leading to
its growth upwards. We do not believe that this is the correct explanation for the results, for
the following reasons. When the interface first appears, it is approximately a third of the
way up the tank; the lower position seen in the images is due to optical effects caused by
the cylindrical tank. If the mixed layer was generated by the bottom boundary, it would be
expected that the interface would appear much lower down. In addition, during the initial
spin-up phase of evolution (not pictured), some transient interfaces do appear to form in
the bottom two centimetres of the fluid. These typically last for one or two minutes before
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vanishing, and never form into a longer-lasting interface. These transient interfaces seem
more likely to be caused by interaction with the bottom boundary, with the main central
interface instead being generated by the Phillips effect. The formation of mixed layers
due to bottom boundary effects has previously been studied by Manucharyan & Caulfield
(2015), who demonstrated that a rotating disc applied to the top of a cylindrical tank of
fluid produced expanding mixed layers. The key difference between this previous work
and our current study is that in the experiments of Manucharyan & Caulfield (2015), the
fluid motion was forced by a rotating top boundary, with the tank remaining stationary,
where by contrast in our experiments the entire tank rotates, with only the stirring rod held
stationary. The fluid and bottom boundary are moving in the same frame of reference, so
we do not expect to see the same effects as are caused by a moving boundary in a stationary
tank. A simple test of our interpretation would be to repeat the experiments with a rigid top
boundary as well. If a second interface forms closer to the top, then the boundary-mixing
interpretation is likely to be correct; if the results are the same as in our current study, then
our explanation that layering is caused by the Phillips effect is more appropriate.

Several improvements could be made to this study. First, the parameter space could
be extended by the use of different equipment; Ri has a quadratic dependence, and Re a
linear dependence, on the diameter of the stirring rod d. Hence, changing d would allow
new regions of parameter space to be accessed. Changing the solute would also produce
larger ranges of density, and therefore Ri. For example, a saturated solution of potassium
hydroxide has a density of 1.5kgm−3, compared to the maximum density of salt water
1.2kgm−3. Second, we were unable to produce quantitative measurements of the fluid
density during the experiment. Detailed density profiles could be obtained using a high
resolution conductivity probe, but budget constraints prevented this. Lastly, to form a
direct comparison to the previous literature, the experiment could be redesigned to use a
rectangular tank, with a back-and-forth stirring mechanism, as used by Park et al. (1994).
As well as being a more direct comparison to previous experimental work, a rectangular
tank would produce less distortion to the image than the cylindrical tank used in this study,
and there would be no effects due to the spin-up behaviour of the fluid.

If this study had produced more conclusive results, the next step would have been to
use it to tune the model of Chapter 3. By comparing the stability curves in Fig. 3.3(b) with
the real stability boundary found by experiments, an empirical value of the dissipation
parameter r could be found. The numerical results of Chapter 3 produced dimensional layer
depths of between 40−50 d; taking the characteristic stirring length d = 0.0125m gives
layer depths of 50−60cm—much larger than our experimental tank. The dimensionless
buoyancy gradient is calculated as bzd2/U2 ≈ 0.01bz, and so the range of values considered
(cf. Fig. 4.6) is similar to that of Chapter 3. Hence the results of Chapter 3 are not
directly comparable to these experiments, so parameters must be changed (for example, by
considering more physically relevant values of Re) to make the theoretical results fully
applicable to this experimental setup.
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To conclude, this experimental study provides evidence to support the existence of
an upper limit on Ri for layering to occur, as predicted by Balmforth et al. (1998) and
Chapter 3. However, it cannot be viewed as a conclusive result due to the limited range of
parameter space that was investigated. To produce more quantitative results, and to form
an accurate estimate for this stability boundary, further experimental work is required.



Chapter 5

The three-component Phillips effect

5.1 Introduction

In the previous chapters, we have investigated the phenomenon of staircase formation
in stirred single-component stratified convection. As discussed in Sec. 1.1, models of a
similar form to that presented in Chapter 3 have been used to describe layering in a range of
physical contexts, including atmospheric potential vorticity staircases (Malkov & Diamond,
2019) and salt fingering staircases (Paparella & von Hardenberg, 2014). However, a two-
component system such as (3.12)–(3.13) is not sufficient to model the dynamics in every
case. In a double-diffusive fluid, there are two independent contributions to the buoyancy.
Treating these separately, and adding an equation for the energy forms a three-component
system. Such three-component systems have previously been used to study EEE×BBB staircases
in plasmas (Ashourvan & Diamond, 2016, 2017; Guo et al., 2019), but in these models the
instability comes from interaction between two equations, reducing the stability analysis
to the two-component framework of Chapter 3. In this chapter, we develop a stability
analysis for a three-component system (e.g. temperature, salinity, energy). We discuss the
different possible conditions leading to linear instability of uniform basic states, and make
comparisons with previous results from similar systems. The analysis presented in this
chapter for a general three-component system forms a basis for subsequent chapters in
which we develop specific models for layering in double-diffusive convection.

5.2 A general three-component system

To develop a theory for three-component models, we first investigate the linear stability
properties of a general three-component system of the form

gt = fzz, (5.1)

dt = czz, (5.2)

et = (κez)z + p. (5.3)
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Here, e(z, t) is the kinetic energy, g(z, t) and d(z, t) are the independent components of the
buoyancy gradient, with f (g,d,e) and c(g,d,e) their corresponding turbulent fluxes, and
κ(g,d,e) the turbulent kinetic energy diffusivity. To analyse the conditions for instability in
this general system, we perform a linear stability analysis. We assume that (g0,d0,e0) is a
uniform steady state, such that p(g0,d0,e0) = 0, and that (g′,d′,e′) is a small perturbation.
From the chain rule, we can write the z-derivative as

∂

∂ z
=

∂g
∂ z

∂

∂g
+

∂d
∂ z

∂

∂d
+

∂e
∂ z

∂

∂e
. (5.4)

On applying (5.4), expanding p(g,d,e) as a Taylor series, and neglecting terms quadratic
in the perturbation quantities, we obtain the linear form of the general model:

g′t ≈ g′zz fg +d′
zz fd + e′zz fe, (5.5)

d′
t ≈ g′zzcg +d′

zzcd + e′zzce, (5.6)

e′t ≈ e′zzκ +g′pg +d′pd + e′pe, (5.7)

where the partial derivatives fg etc. are evaluated in the uniform steady state. On seeking
solutions of the form (g′,d′,e′) ∝ exp(st + imz), where s is the growth rate and m the
vertical wavenumber, the linearised forms of (5.1)–(5.3) may be expressed in matrix form
as s+m2 fg m2 fd m2 fe

m2cg s+m2cd m2ce

−pg −pd s+m2κ − pe


g1

d1

e1

= 0. (5.8)

Equation (5.8) has a non-trivial solution only if the determinant of the matrix is zero,
leading to the characteristic equation

s3 + s2[m2( fg + cd +κ)− pe
]

+ s
[
m4( fgcd − fdcg +κ fg +κcd)+m2( fe pg − fg pe + ce pd − cd pe)

]
+m6

κ( fgcd − fdcg)+m4( fgce pd − fgcd pe + fecd pg − fecg pd + fdcg pe − fdce pg) = 0,
(5.9)

forming a cubic equation relating the growth rate to the vertical wavenumber.
We now explore the conditions for the existence of unstable wavenumbers (ℜ(s)> 0).

While solubility conditions for the cubic (5.9) can be established analytically, it is simpler,
and the individual conditions can be separated more easily, by considering the asymptotic
limits of small and large wavenumber m. We note that a positive growth rate ℜ(s)> 0 in
either limit is a sufficient condition for instability.
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5.2.1 Instability at small wavenumbers

When m= 0, corresponding to infinitely long spatial scales, the characteristic equation (5.9)
reduces to

s3 − pes2 = 0, (5.10)

giving one root s = pe and two zero roots. If

−pe < 0, (5.11)

there is growth in the energy equation alone, without requiring interaction from the
temperature equations. This energy mode instability was also theoretically possible in
the two-component BLY formulation, but the parameterisation adopted by BLY produces
−pe > 0 everywhere.

To determine the stability of the two zero roots of (5.10) for small but finite m, it is
necessary to include higher order terms. On taking the limit m → 0, the dominant balance
in (5.9) results from s = O(m2), giving

s2 +(Fg +Cd)m2s+(FgCd −FdCg)m4 = 0, (5.12)

where we have adopted the following notation for simplicity:

Fg =
fg pe − fe pg

pe
, (5.13)

Cd =
cd pe − ce pd

pe
, (5.14)

Fd =
fd pe − fe pd

pe
, (5.15)

Cg =
cg pe − ce pg

pe
. (5.16)

These expressions represent the total derivatives of the fluxes f (g,d,e) and c(g,d,e) with
respect to g and d, taking into account the contribution of the energy linked by the steady
state equation p(g,d,e) = 0. Equation (5.12) has at least one root with positive real part if
either

FgCd −FdCg < 0 or Fg +Cd < 0. (5.17a,b)

If (5.17a) is satisfied, then there is exactly one root with positive real part, implying that
the state is unstable. If (5.17b) is satisfied, but not (5.17a), then there are two roots with
positive real part. Condition (5.17a) represents the direct equivalent of the Phillips effect
in a three-component system; (5.17b) extends this to allow for an oscillatory instability.
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These conditions can also be interpreted in a vector framework, which is helpful for
generalising to an N-component system. Let FFF be the vector function

FFF(GGG) =

(
f (g,d,e(g,d))
c(g,d,e(g,d))

)
, (5.18)

where e(g,d) is defined implicitly via p = 0. The Jacobian of FFF with respect to GGG = (g,d)
is then

JJJ =

(
Fg Fd

Cg Cd

)
. (5.19)

Hence, conditions (5.17a,b) can be rewritten respectively as

det(JJJ)< 0, tr(JJJ)< 0. (5.20)

Together, these conditions are equivalent to the single condition that there is instability if JJJ
has at least one eigenvalue with negative real part. The same condition can be obtained by
considering the system in the general form

∂G
∂ t

=
∂ 2

∂ z2 FFF (GGG,e(GGG)) , p(GGG,e(GGG)) = 0. (5.21)

Equation (5.21) can be readily extended into a general N-dimensional system, producing
instability if the Jacobian of FFF with respect to GGG has at least one eigenvalue with negative
real part.

5.2.2 Instability at high wavenumbers

For m → ∞, the characteristic equation (5.9) simplifies at leading order to

s3 + s2m2( fg +cd +κ)+ sm4( fgcd − fdcg +κ fg +κcd)+m6
κ( fgcd − fdcg) = 0. (5.22)

In this limit, all three solutions obey s = O(m2). There is at least one root s with positive
real part if either the s-independent term m6κ( fgcd − fdcg) is negative, or the characteristic
equation (5.9) has a stationary point with s > 0. Assuming that fg, cd and κ are all
positive, in order to avoid the high-wavenumber instability of Phillips (1972), both of these
conditions reduce to

fgcd − fdcg < 0, (5.23)

thereby providing us with a criterion for the existence of an unstable large wavenumber.
Note that if there is no energy equation, then p ≡ 0 and Fg = fg, etc. In this special case,
conditions (5.17a) and (5.23) are identical, and the growth rate of the Phillips instability
s → ∞ as m → ∞. This demonstrates how the inclusion of the energy equation (5.3)
regularises the instability at high wavenumbers.
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5.2.3 Condition for marginal stability

To check for instability at intermediate wavenumbers, we consider the point of marginal
stability. Setting s = 0 in (5.9), we find the critical wavenumbers for a direct instability to
be m = 0 and

m = m∗ =

√
pe (FgCd −FdCg)

κ ( fgcd − fdcg)
. (5.24)

If m∗ is real, then s is of one sign for 0 < m < m∗, and the opposite sign for m > m∗.
There is only one positive value for m∗, so as m is varied, s can change sign no more than
once. Likewise, the critical wavenumber for oscillatory instability can be found by setting
ℜ(s) = 0 in (5.9). In this case, m∗ is given by solutions to

m4 ( fg + cd)( fgcd − fdcg +κ ( fg + cd +κ))

+m2
(

κ ( fg + cd +Fg +Cd)

−pe
+( fg + cd)

2 +
( fg fe pg + cdce pd + fdce pg + fecg pd)

−pe

)
+(−pe)(FgCd −FdCg) = 0. (5.25)

Assuming that fg > 0 and cd > 0, in order to avoid the high-wavenumber instability of
Phillips (1972), the only possibility for a positive real solution m∗ to exist is if one of the
previous instability conditions (5.11), (5.17), (5.23) is satisfied.

Hence, the only possible instabilities are via condition (5.11) (energy mode, m →
0, m∗ real), conditions (5.17a,b) (small wavenumber Phillips instability, m∗ real), or
condition (5.23) (high wavenumber, m∗ real). A combination of the conditions is possible,
such that m∗ is imaginary and there is a positive growth rate ℜ(s)> 0 for all m.

5.2.4 Conditions for layering

We have deduced the conditions for linear instability, but have not yet demonstrated how
these conditions can lead to layering. BLY proposed that, in a two-component model,
layering requires an N-shaped relation between the buoyancy flux f and the buoyancy
gradient g (such as that shown labelled ‘BLY’ in Fig. 1.2), so that Fg < 0 for only a
finite range of gradients. The equivalent condition for a three-component model with
independent contributions to the buoyancy is that there exists a bounded region of g-d
space in which any one of the conditions for instability (5.11), (5.17) or (5.23) are met, as
illustrated schematically in Fig. 5.1. On any path through the unstable region, only a finite
range of points are unstable, with stable regions either side arresting the instability.

5.2.5 Comparison with Radko’s γ-instability

Radko (2003) put forward the idea that the driving factor behind layering is an instability
arising from the parametric variation of the flux ratio γ as a function of the density ratio R.
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Fig. 5.1 (a) Sketch of a region of instability in g0-d0 space, shaded pink. The locus of
marginal stability is shown in black. The blue line shows an arbitrary cross-section through
the unstable region. Panel (b) shows the value of FgCd −FdCg along the blue path — it
is negative only in the finite region between the two points shown in red, giving a finite
region only where condition (5.17a) is satisfied

He modelled the two components of the density as

Tt =
∂

∂ z
f (γ,Nu), (5.26)

St =
∂

∂ z
c(γ,Nu), (5.27)

where the flux ratio γ = f/c and the Nusselt number Nu is the ratio of convective to
conductive heat transfer. The functions γ(R) and Nu(R) depend only on the density ratio
R = αTz/βSz, i.e. the ratio of the contributions to the density from temperature and salt.
Steady states of the flux-gradient relations (5.26)–(5.27) are found to be linearly unstable
to perturbations when

dγ

dR
< 0, (5.28)

representing the γ-instability.
To compare the criterion (5.28) with the conditions for instability that we have deduced

in the context of our general three-component model, we formulate our system in terms of
Radko’s parameters. Making Radko’s assumption that the equations can be parameterised
in terms only of the ratio of gradients, R, we express the fluxes in terms of turbulent
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diffusivities KT (R) and KS(R) as

f = KT (R)g, (5.29)

c = KS(R)d, (5.30)

with R = g/d. Returning to the Jacobian form of the problem (5.19) with this new notation,
we obtain

JJJ =

(
KT +K′

T R −K′
T R2

K′
S KS −K′

SR

)
, (5.31)

where primes denote differentiation with respect to R. Note that JJJ does not depend on g or
d independently and the only parameter of importance is the density ratio R. The trace and
determinant of JJJ are given by

tr(JJJ) = KT +KS +R(K′
T −K′

S), (5.32)

det(JJJ) = KT KS +R(K′
T KS −KT K′

S). (5.33)

With fluxes of the form (5.29)–(5.30), the flux ratio γ = RKT/KS, so

dγ

dR
=

d
dR

(
R

KT

KS

)
=

KT

KS
+

R
K2

S

(
K′

T KS −KT K′
S
)
= K2

S det(JJJ). (5.34)

The negative determinant condition (5.20) exactly recovers Radko’s γ-condition. The trace
condition (5.20b) is new, and allows for two unstable modes, while Radko’s γ-instability
indicates only the onset of instability with a single mode.

To summarise, Radko’s γ-condition (5.28) is mathematically equivalent to the Phillips
instability, in the specific context of double-diffusive flux-gradient relations dependent
on R. The three-component model (5.1)–(5.3), with instability conditions (5.11), (5.17)
and (5.23), describes a generalisation of both the Phillips and γ-instabilities for a three-
component system with explicit dependence on the kinetic energy e. The inclusion of e
avoids the ultraviolet catastrophe inherent to the γ-instability and the single-component
Phillips instability, allowing the model to capture not only the initial growth of perturbations
but also the possible development of layers and their long-term evolution. Note that
for a system in the general form (5.1)–(5.3), condition (5.17a) can lead to instability
by two different physical mechanisms. If the function p is parameterised to include
an energy source term, then the system describes the forced mechanism of BLY and
Paparella & von Hardenberg (2014). By contrast, with no source term in p, but appropriate
parameterisations for f and c such that (5.17a) is satisfied, the instability comes from the
γ-instability of Radko (2003).
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5.3 Hyperdiffusion can regularise the high wavenumber
instability

The single component Phillips equation (1.1), the three component system (5.1)–(5.3), and
the temperature-salinity system (5.26)–(5.27) may all be unstable at high wavenumbers,
depending on the specific parameterisations of the flux terms. Such a high wavenumber
instability can be regularised by the addition of hyperdiffusion terms. This is a common
approach for regularisation, and we will first demonstrate it for the Phillips equation (1.1).
Expressing the equation in terms of the buoyancy gradient g = bz, the hyperdiffusion term
takes the form of a fourth derivative, with a negative hyperdiffusion coefficient −A, giving
the equation

gt = fzz −Agzzzz. (5.35)

This altered equation admits the same uniform steady states g = g0 as without hyperdiffu-
sion. A linear stability analysis about these states, with perturbation ∝ exp(st + imz), gives
the following equation for the growth rate s:

s =−m2 fg −Am4. (5.36)

If fg < 0, then this produces positive growth rates for 0 < m <
√

− fg/A. Above this
wavenumber, the hyperdiffusion becomes dominant, and the growth rate is negative.

To regularise the high wavenumber instability in the three-equation system (5.1)–(5.3),
we add hyperdiffusion only to the temperature and salinity equations. The condition for a
high wavenumber instability (5.23) does not depend on any terms in the energy equation,
so there is no need to alter the energy equation. The altered system with hyperdiffusion
terms added is:

gt = fzz −Agzzzz, (5.37)

dt = czz −Bdzzzz, (5.38)

et = (κez)z + p. (5.39)

The augmented growth rate equation is

0 = s3+s2[m4 (A+B)+m2( fg+cd +κ)− pe
]
+s
[
m8AB+m6 ( fgB+ cdA+κ (A+B))

+m4( fgcd − fdcg+κ fg+κcd −(A+B) pe)+m2( fe pg− fg pe+ce pd −cd pe)
]
+m10

κAB

+m8 (κ fgB+κcdA−ABpe)+m6
κ( fgcd − fdcg +A(ce pd − cd pe)+B( fe pg − fg pe))

+m4( fgce pd − fgcd pe + fecd pg − fecg pd + fdcg pe − fdce pg). (5.40)
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The hyperdiffusion terms do not affect the small wavenumber behaviour, but become
dominant at large wavenumbers. As m → ∞, (5.40) becomes

s3 + s2m4 (A+B)+ sm8AB+m10
κAB = 0. (5.41)

The growth rates at large m are therefore

s =−m4A, −m4B, and s =−m2
κ. (5.42)

As mentioned before, κ must be positive, so all three growth rates are negative as m → ∞.
Hence, any amount of hyperdiffusion will counter the high wavenumber instability eventu-
ally. However, this means that the choice of coefficients A and B has a significant effect on
the range of wavenumbers susceptible to instability, and on the wavenumber of maximum
growth rate. As seen in Chapter 3, the wavenumber of maximum growth rate corresponds
directly with the initial number of layers. Hence the spatial scale for layers is set by
the hyperdiffusion coefficient. This is a disadvantage of the hyperdiffusion approach,
in comparison with choosing parameterisations such that there is no high wavenumber
instability, in which case the layer depth depends only on the other parameterisations,
rather than the arbitrary choice of hyperdiffusion coefficient.

5.4 Discussion

In this chapter we have investigated the linear stability of uniform steady states of a system
of two turbulent diffusion equations based on flux laws (for two components of buoyancy,
for example), coupled with a third flux-diffusion equation including a general source term
(the ‘energy’ equation). There are four possible types of instability. First, the energy mode,
due to instability in the energy equation alone; this mode is most unstable at wavenumber
m = 0, leading to growth in energy across the whole domain. Next, there are three possible
instabilities attributable to either the Phillips effect or the γ-instability, depending on the
parameterisations of the fluxes. At low wavenumbers, there can be one or two positive
growth rates, corresponding to positive eigenvalues of the Jacobian of the temperature
and salinity fluxes with respect to their gradients. There is also the possibility of a high
wavenumber instability, which can be avoided by suitable parameterisation of the flux
terms, or by the inclusion of hyperdiffusion terms in the system.

We compare these results with those of two important previous studies. The system of
Balmforth et al. (1998) was unstable to a single Phillips mode, and also allowed for a stable
energy mode. We have shown the possibility of an extra Phillips mode, allowing for an
oscillatory instability, as may be expected in the diffusive convection regime. While BLY’s
use of the energy equation precluded the high wavenumber instability inherent to Phillips
(1972) and Posmentier (1977), the same is not automatically true in the three-component
system. Instability at high wavenumbers can be avoided through careful parameterisation
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of the flux terms. An alternative approach is the introduction of hyperdiffusion terms to the
temperature and salinity equations, which we have shown to suppress the high wavenumber
instability entirely. This approach was taken by Radko (2019a), leading to a model that
produces the key dynamics of double-diffusive layering in terms of only the temperature
and salinity fields (in comparison with our three-component model).

In addition, we have demonstrated that Radko’s γ-instability and the Phillips effect
are mathematically equivalent, both being described by the instability condition (5.17a).
The two cases are separated by the specific forms of the equations, with the Phillips effect
relying on a forcing in the energy equation, while the γ-instability stems from a direct
interaction between the temperature and salinity fluxes.

In the following chapters, we apply the stability analysis presented here to three
different systems. First, to the problem of stirred staircase formation with two components
of buoyancy in Chapter 6. In Chapter 7 we investigate double-diffusive layering without
any source term, using different parameterisations for the flux terms than in Chapter 6.
Finally, we reintroduce a source term in Chapter 8 to model diffusive convective staircases.



Chapter 6

Stirred double-diffusive layering

6.1 Introduction

In Chapter 2, we presented a derivation of a one-dimensional model for layering in a
turbulent stratified fluid. In Chapter 3, we applied this model to the case of stirred stratified
flow and studied the behaviour of its solutions to late time. This model was based on the
Phillips effect, where the layering instability stems from a non-monotonic dependence
of the buoyancy flux on the buoyancy gradient. Work by Balmforth et al. (1998) (BLY)
extended the Phillips effect to a well-resolved model for layering, and our work in Chapter 3
developed this further to study the long term evolution of staircases in detail. The model
of BLY has been adapted to model staircases in several physical contexts, including in
double-diffusive convection. On the basis of the numerical results of Paparella & von
Hardenberg (2012), Paparella & von Hardenberg (2014) made the assumption that the flux
ratio γ = f/c is constant throughout the evolution. With this assumption, the temperature
and salinity equations can be reduced to a single buoyancy equation. Also based on the
simulations of Paparella & von Hardenberg (2012), they suggested that the layering process
in salt fingering is due to stirring by clusters of salt fingers moving together, allowing salt
fingering staircases to be modelled using the BLY system, with some slightly different
parameterisations.

An important point about two-component models (i.e. models for buoyancy b(z, t) and
energy e(z, t)) can be made by considering a generalised form of the energy equation,
adapted from (3.13)

et = ( fe)z − fb +C−D. (6.1)

Here fe is the energy flux, fb is the buoyancy flux, C is an energy source and D the
dissipation term. The uniform, steady-state buoyancy flux is fb(g0,e0) = C(g0,e0)−
D(g0,e0), so the form of the steady-state flux can be chosen arbitrarily through choice
of C and D. Hence it is always possible to generate a flux-gradient relation with the
characteristic ‘N’-shape required for layering (BLY), simply by careful parameterisation
of the dissipation and source terms.
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By simplifying the double-diffusive problem to a two-component model, Paparella
& von Hardenberg (2014) removed any possibility for the salt and temperature fields to
evolve separately, and for further double-diffusive effects to occur. To study DDC layering
in detail, we propose instead a three-component model, with temperature and salinity
independent of each other. In this chapter, we retain the stirring term as a bridge between
the model of Chapter 3 and a fully double-diffusive model; in Chapter 7 we present a
model where the energy input to the system comes directly from double-diffusive terms in
the equations, without the need for stirring.

We begin in Sec. 6.2 by presenting a three-component model, derived using the method
outlined in Chapter 2. We investigate uniform steady-state solutions to the model, and
their linear stability, in Sec. 6.3. In the salt fingering regime, steady states are unstable
to the Phillips instability for a wide range of parameters. In the diffusive convection
regime, the Phillips instability is also active, but there is an additional high wavenumber
instability (HWI) and energy mode instability, as discussed in Chapter 5. The HWI can
be suppressed by adding hyperdiffusion terms to the equations. We consider the effect of
different parameter values on the stability of the system in Sec. 6.3.5.

In Sec. 6.5 we present numerical solutions in the salt fingering (SF) regime, and
demonstrate that the primary behaviour is that of stirred layering, with double-diffusion
having only a minor effect. We present solutions in the diffusive convection (DC) regime
in section 6.6. Even for initial conditions where the HWI is not expected, the HWI is
present in the nonlinear evolution, and structures narrow to the spatial mesh scale. Adding
hyperdiffusion to the system successfully suppresses the HWI, producing layered solutions.
As in the SF regime, these solutions are dominated by stirring, with the salt and temperature
fields evolving identically. In section 6.7 we discuss our results.

6.2 A model for stirred double-diffusive layering

The dynamics of a stirred double-diffusive fluid are governed by the Boussinesq equations
for velocity uuu(xxx, t), temperature T (xxx, t), salinity S(xxx, t) and pressure p(xxx, t):

uuut +uuu ···∇∇∇uuu = − 1
ρ0

∇∇∇p+g
ρ −ρ0

ρ0
eeez +ν∇

2uuu+ΦΦΦ, (6.2)

Tt +uuu ···∇∇∇T = κT ∇
2T, (6.3)

St +uuu ···∇∇∇S = κS∇
2S, (6.4)

∇∇∇ ···uuu = 0, (6.5)
ρ −ρ0

ρ0
= βS−αT, (6.6)

where ΦΦΦ is a body forcing representing stirring (for example, by a rod), defining a charac-
teristic length d and speed U . The thermal and solutal expansion coefficients α and β , and
gravitational acceleration g account for the effect of temperature and salinity on buoyancy,
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and ρ0 is a reference density. We use these characteristic scales to nondimensionalise the
equations via the following prescriptions:

t̂ =
U
d

t, ẑ =
1
d

z, ûuu =
1
U

uuu, T̂ =
αgd
U2 T, Ŝ =

βgd
U2 S, p̂ =

1
ρ0U2 p, Φ̂ΦΦ =

d
ρ0U2 ΦΦΦ,

(6.7)
where hats denote dimensionless variables. With these scalings, upon dropping hats, we
obtain the Boussinesq equations in dimensionless form:

∂uuu
∂ t

+uuu ·∇uuu =−∇p+bẑzz+Re−1
∇

2uuu+ΦΦΦ, (6.8)

∇ ·uuu = 0, (6.9)

∂T
∂ t

+uuu ·∇T = Pt−1
∇

2T, (6.10)

∂S
∂ t

+uuu ·∇S = Ps−1
∇

2S, (6.11)

b = T −S. (6.12)

These equations are governed by three dimensionless numbers: Re=Ud/ν is the Reynolds
number, and Pt =Ud/κT and Ps =Ud/κS the thermal and solutal Péclet numbers respec-
tively. For salt water, the solutal Péclet number Ps is O(100) times larger than Pt. Using
the averaging process detailed in Chapter 2, we obtain the following model for the three-
component system:

Tt =

(
l2e

le1/2 +Pt−1 Tz

)
z
+Pt−1 Tzz, (6.13)

St =

(
l2e

le1/2 +Ps−1 Sz

)
z
+Ps−1 Szz, (6.14)

et =

(
l2e

le1/2 +Re−1 ez

)
z
− l2e

le1/2 +Pt−1 Tz +
l2e

le1/2 +Ps−1 Sz +Re−1 ezz − ε
(e−1)e1/2

l
.

(6.15)

As in Chapter 3, we adopt the BLY length scale, splitting the buoyancy gradient into its
constituent parts as bz = Tz −Sz. Thus,

l =
e1/2

(e+Tz −Sz)
1/2 . (6.16)

In Chapter 3, there was a single component of density, so writing the length scale in terms
of bz was the only option. Here, it would be possible to consider a length scale in terms
of only the temperature or salinity gradient, rather than the total buoyancy. However, the
dynamics of both components will be affected by the form of the length scale, so both
Tz and Sz should feed back in to the form of l. The prescription (6.16) will clearly be
problematic if Tz −Sz becomes negative, but when this happens the gradient is statically
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unstable. As we are modelling the mixing of an initially stable gradient, we expect that the
total gradient should remain stable, and this should not be an issue.

Note that by writing b = T −S, (6.13)-(6.15) can be rewritten as:

bt =

(
l2e

le1/2 +Pt−1 bz

)
z
+Pt−1 bzz

−
(
Pt−1−Ps−1)( l2e(

le1/2 +Pt−1)(le1/2 +Ps−1)Sz −Sz

)
z

, (6.17)

St =

(
l2e

le1/2 +Ps−1 Sz

)
z
+Ps−1 Szz, (6.18)

et =

(
l2e

le1/2 +Re−1 ez

)
z
− l2e

le1/2 +Pt−1 bz

+
(
Pt−1−Ps−1) l2e(

le1/2 +Pt−1)(le1/2 +Ps−1)Sz +Re−1 ezz − ε
(e−1)e1/2

l
. (6.19)

Recall that in the case of Chapter 3 with only one component of buoyancy, staircases formed
only for relatively small values of Pe−1 = O(0.1). Assuming that Pt−1 is also small in the
three-component case, and recalling that Ps−1 = O(Pt−1 /100), then the system (6.17)–
(6.19) is only an O(Pt−1) perturbation away from the two-component system (3.12)-(3.13).
As such, we expect that the results of this system will be very similar to those obtained for
the two-component system.

Also recall that the Péclet numbers can be written in terms of the Reynolds, Prandtl
and Schmidt numbers as

Pt = PrRe, Ps = ScRe . (6.20)

Table 3.1 gave realistic values of Pr and Sc at a variety of temperatures and salinities,
showing that for a wide range of values, Pr ≈ O(Sc/100). To reduce the number of
parameters in the system, we will henceforth assume that Ps−1 = Pt−1 /100, and only vary
Pt−1 and Re−1 independently.

6.3 Uniform-gradient steady states

In this section we investigate steady state solutions of the system (6.13)–(6.16), with
spatially uniform temperature and salinity gradients, and uniform energy. We discuss the
stability of these states in Sec. 6.3.2.
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6.3.1 Steady-state solutions g0(e0;G0)

If a uniform steady state (Tz,Sz,e) = (g0,d0,e0) exists, then the temperature and salinity
equations (6.13)–(6.14) are trivially satisfied, and the energy equation (6.15) reduces to

l2
0e0

l0e1/2
0 +Pt−1

g0 −
l2
0e0

l0e1/2
0 +Ps−1

d0 + ε
(e0 −1)e1/2

0
l0

= 0, (6.21)

where l0 = l(g0,d0,e0), calculated using (6.16). Substituting for l0 and writing the total
buoyancy gradient G0 = g0 −d0, (6.21) becomes

e2
0g0

e0
√

e0 +G0 +Pt−1 (e0 +G0)
−

e2
0d0

e0
√

e0 +G0 +Ps−1 (e0 +G0)
+ε (e0 −1)

√
e0 +G0 = 0.

(6.22)

In general this is a high order polynomial for e1/2
0 , which is difficult to solve, or work

with analytically. First of all, note that when G0 = 0, (6.22) reduces to(
Ps−1−Pt−1)e0(

e1/2
0 +Pt−1

)(
e1/2

0 +Ps−1
)g0 + ε (e0 −1)e1/2

0 = 0. (6.23)

From this, it is clear that e0 = 0 is a solution for any value of g0 when G0 = 0.
To find the other solutions, we write G0 = g0 −d0 and treat G0 as a parameter. This

allows us to solve exactly for g0(e0;G0) to obtain steady states with the salinity gradient
d0 a known step G0 away from the temperature gradient g0. Hence we obtain the exact
expression for g0(e0;G0)

g0 =
e0 +Pt−1√e0 +G0(

Pt−1−Ps−1)
(

G0√
e0 +G0

+
ε (e0 −1)

(
e0 +Ps−1√e0 +G0

)√
e0 +G0

e2
0

)
.

(6.24)
Expression (6.24) for g0 is plotted in Fig. 6.1 for a range of values of G0. Fig. 6.1(a)

shows that for G0 ≲ 0.015, there are multiple steady-state energies for some values of g0.
For G0 above this value, the energy is a single valued function of g0. Fig. 6.1(d) shows a
close-up picture near the origin, for a narrow range of values of G0, allowing the transition
from multi- to single-valued solutions to be seen clearly. Fig. 6.1(b) shows a larger scale
version of (a) near e0 = 0: for all positive values of G0, the temperature gradient g0 → ∞ as
e0 → 0. In Fig. 6.1(c) the energy is plotted for larger values of G0: as g0 increases, e0 → ∞

at an increasing rate (although it is not exponential). Note that the scale on the g0-axis is
significantly larger than that on the e0-axis in both these plots. Steady-state solutions exist
for very large temperature gradients, as similarly large salinity gradients ensure that the
overall buoyancy gradient is substantially weaker than either of its components.

When the steady-state solution is multivalued (as seen in Fig. 6.1 for G0 ≲ 0.15), there
are multiple solutions e0(g0,d0) of p(g,d,e) = 0. The limiting case for multiple solutions
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Fig. 6.1 Steady-state energies for constant G0, found using the expression for g0(e0) given
in (6.24). For this plot, Pt−1 = 0.01, Ps−1 = 0.0001 and ε = 0.02. (a) shows small values
of G0, where e0 is multivalued for some negative values of g0; (b) shows the behaviour
of the solutions in (a) for small e0; (c) shows larger values of G0, where e0 is always
single-valued; (d) shows a selection of very small values of g0, near the point where they
all take a similar value, and shows that the maximum G0 for which there are values of g0
with multiple solutions is 0.012.



6.3 Uniform-gradient steady states 76

is a double root where p(e0) = pe(e0) = 0. Beyond this limiting case, there are three
solutions, and it is necessarily true that −pe < 0 for one of the solutions. Hence the energy
mode is unstable by condition (5.11).

6.3.2 Unstable regions for the three-component system

To analyse the stability of the steady-state solutions, we express the three-component
system (6.13)–(6.15) in the general form (5.1)–(5.3) by writing

f =
(

l2e
le1/2 +Pt−1 +Pt−1

)
g, (6.25)

c =
(

l2e
le1/2 +Ps−1 +Ps−1

)
d, (6.26)

κ =

(
l2e

le1/2 +Re−1 +Re−1
)
, (6.27)

p =− l2e
le1/2 +Pt−1 g+

l2e
le1/2 +Ps−1 d − (e−1)e1/2/l. (6.28)

Fig. 6.2 Loci of marginal stability in g0-G0 space, for parameter values Pt−1 = 0.01,
Ps−1 = 0.0001 and ε = 0.02. Found by solving simultaneously (6.24) with the conditions
for marginal stability FgCd −FdCg = 0, pe = 0, fgcd − fdcg = 0 and Fg +Cd = 0.

Recall from Chapter 5 that the system is unstable to the Phillips instability if either
FgCd −FdCg < 0 or Fg +Cd < 0, and the energy mode is unstable if −pe < 0, where
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Fg = ( fg pe− fe pg)/pe and other quantities are defined similarly, and partial derivatives are
taken in the steady-state (g0,d0,e0). If fgcd − fdcg < 0 then there is a high wavenumber
instability. We investigate the stability boundaries for the system by finding loci of marginal
stability for each condition. We first consider the Phillips instability, for which the system
is marginally unstable at points where FgCd −FdCg = 0. We fix a value of G0 and use (6.24)
to write g0(e0;G0). This expression is substituted into the condition for marginal instability
FgCd −FdCg = 0, which can then be solved for e. Now substituting this value of e0 back
into (6.24), we obtain a numerical value for g0(G0) on the stability boundary. Repeating
this process for a range of values of G0, and for all four instability conditions, we obtain a
full picture of the unstable regions in g−G space.

Fig. 6.2 shows the stability boundaries in g0 −G0 space for all four types of instability:
the locus on which FgCd −FdCg = 0 is shown in blue, pe = 0 in red, fgcd − fdcg = 0
in yellow and Fg +Cd = 0 in purple. Note that for g0 > 0, i.e. in the salt fingering
regime, only the Phillips instability (FgCd −FdCg < 0) occurs. In the diffusive convection
regime (g0 < 0), all types of instability are possible. Recall that an oscillatory Phillips
instability occurs if and only if Fg +Cd < 0 and FgCd −FdCg > 0. The unstable region for
Fg +Cd < 0 is a subset of the region where FgCd −FdCg < 0, so only a direct instability
occurs. Additionally, for almost the entire unstable region for the Phillips mode, neither
the energy mode nor high-wavenumber instability takes place. Note that in part of the
unstable region, 0 < g0 < G0, and hence g0 > 0, d0 < 0. This is the doubly stable region,
where both components of the buoyancy gradient are individually stable. So the stirring
produces instability even in the doubly stable regime.

Further, note that in the region where the energy mode is unstable, i.e. (−pe < 0, red),
we also have the high wavenumber instability ( fgcd − fdcg < 0, yellow). According to
the expression for the cutoff wavenumber (5.24), there is no real valued m∗, so there is
instability for all wavenumbers m > 0.

Wavenumber-growth rate plots are shown in Fig. 6.3, in a range of steady states
(g0,d0,e0), to demonstrate the different types of instability. Fig. 6.3(a) shows the Phillips
instability, where FgCd −FdCg < 0; (b) where FgCd −FdCg < 0 and Fg +Cd < 0. In both
Figs. 6.3(a) and (b), there is a clearly defined wavenumber of maximum growth rate
which will set the scale for layering, as seen in Chapter 3. Fig. 6.3(c) shows the high
wavenumber instability, where fgcd − fdcg < 0 and the growth rate diverges as m → ∞.
Figs. 6.3(d)–(f) show the stability of the three different steady states associated with
g0 =−0.4, d0 =−0.405, where the steady-state energy is multivalued. Of the three steady
states, only the middle one is unstable to the energy mode instability.

6.3.3 Why is there such a difference between SF and DC?

Figure 6.2 shows that in the salt fingering regime (g,d > 0), only the Phillips instability
occurs, while all of the types of instability occur in the diffusive convection regime
(g,d < 0). Why this happens is not initially clear from the form of the equations, which
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Fig. 6.3 Wavenumber-growth rate plots for the three-component system, demonstrating
different types of instability, for parameter values Pt−1 = 0.01, Ps−1 = 0.0001, ε = 0.02
and Re−1 = 0. (a) FgCd−FdCg < 0; (b) FgCd−FdCg < 0 and Fg+Cd < 0; (c) fgcd− fdcg <
0. Panels (d)–(f) correspond to three different energies for the same values of g and d; (d)
and (f) show stable modes; (e) shows the energy mode instability −pe < 0.
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have a similar dependence on g and d. Upon closer inspection, all of the stability conditions
depend on g and d not only through G = g−d, but also through the combination Ps−1 g−
Pt−1 d. The total buoyancy gradient G is positive in either regime, but owing to the
difference between Pt−1 and Ps−1, we have:

Ps−1 g−Pt−1 d > 0 when g >
Pt−1

Ps−1 d =
κT

κS
d, (6.29)

where κT and κS are the thermal and solutal diffusivities. The ratio κT/κS > 1, and is
approximately 100 in salt water. In the DC regime, both g and d are negative. So for
the total buoyancy gradient to be positive requires g > d > κT d/κS, so Ps−1 g−Pt−1 d is
always positive. Conversely, in the SF regime, both g and d are positive, and g > κT d/κS

in only a small segment of the region. Outside this segment, Ps−1 g−Pt−1 d is negative,
introducing an asymmetry between the regimes that accounts for the difference in stability
behaviour.

6.3.4 Suppressing the high wavenumber instability with hyperdiffu-
sion

As discussed in Chapter 5, it is possible to suppress the high wavenumber instability by
the addition of hyperdiffusion terms −Agzzzz and −Bdzzzz to the temperature and salinity
equations (6.13) and (6.14) respectively. To demonstrate this suppression, Fig. 6.4 shows
how the growth rate of perturbations varies with wavenumber, starting in the steady
state (g0,d0,e0) = (−0.6,−0.63,0.0022), which is susceptible to the high wavenumber
instability (HWI). For simplicity, we take B = A. We see that for sufficiently large values
of A, the HWI is suppressed entirely, while for smaller values there is an instability, but it
is suppressed at high enough wavenumbers. Any positive value of A will cause the growth
rate to be negative as m → ∞. However, the choice of A is arbitrary, not being informed
by any physical quantity. Further, the value of A has a significant effect on the maximally
unstable wavenumber mmax, with increasing A causing mmax to decrease. Layers form
on the scale of mmax (cf. Chapter 3), so the introduction of hyperdiffusion introduces an
artificial scale selection. Therefore we can say that the system with hyperdiffusion is less
physically grounded than the system with A = 0.

6.3.5 The effect of changing parameters

The system (6.13)–(6.15) is governed by several dimensionless parameters. So far, we
have considered these fixed at Pt−1 = 0.01, Ps−1 = Pt−1/100, Re−1 = 0 and ε = 0.02,
but in general these values may be varied. The Péclet numbers Pt−1 and Ps−1 depend
on the diffusivity of the two components of buoyancy. In an oceanic setting, the ratio
τ = Ps−1 /Pt−1 = 0.01 is appropriate, but if the buoyancy gradients are provided by,
for example, salt and sugar, then a diffusivity ratio of τ ≈ 1/3 is more appropriate. In
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Fig. 6.4 Wavenumber-growth rate plots for (g0,d0,e0) = (−0.6,−0.63,0.0022), for a
range of values of A and parameter values Pt−1 = 0.01, Ps−1 = 0.0001, ε = 0.02 and
Re−1 = 0. For perturbations to this steady state, increasing A beyond 10−4 is sufficient to
suppress the high wavenumber instability for all wavenumbers.

Chapter 3, we saw that for the two-component system, increasing Pe−1 decreased the range
of gradients where instability occurred. It is natural to expect that there will be a similar
effect in the three-component system. We now investigate the effect on the stability of the
system of changing τ and Pt−1.

Varying the diffusivity ratio τ

The diffusivity ratio τ determines the strength of the double-diffusive effects, with τ = 0
meaning that salt does not diffuse at all, and τ = 1 the case where salt and temperature
diffuse at the same rate, and can therefore evolve together as a single buoyancy field.
Note that the system is invariant under the transformation τ → 1/τ , g →−d, d →−g,
Ps−1 → Pt−1, with ‘salt’ now the faster diffusing component, and ‘temperature’ diffusing
more slowly.

Figure 6.5 shows the stability boundaries in g0–G0 space for a range of values of τ .
Increasing τ acts to flatten the unstable region, until at τ = 1 the unstable region depends on
G0 alone. Note that as τ increases towards 1, the scale of the g axis increases significantly,
until it is infinitely wide at τ = 1. Continuing to increase τ beyond unity, the system flips,
with the shape of the stability boundaries reflected in the g = 0 axis. Note that we take
Pt−1 = 0.01 in Fig 6.5(a)–(d), and Ps−1 = 0.01 in Fig. 6.5(e)–(f), to allow this symmetry
to be seen.
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Fig. 6.5 Comparison of instability conditions (as shown in Fig. 6.2) for a range of values of
τ , taking Pt−1 = 0.01 in panels (a)–(d), and Ps−1 = 0.01 in panels (e) and (f). Re−1 = 0
and ε = 0.02. Increasing τ ‘flattens’ the profile of the region, until g− d does not vary
with g when τ = 1. Note that the plots in (e) and (f) are reflections of those in (c) and (b)
respectively.

We have seen that changing τ has a significant effect on the unstable range of g0

and d0, but have not yet seen its effect on the instability of perturbations in each steady
state. Figure 6.6 shows how the growth rate of perturbations to the background state with
(g0,d0) = (0.1,0.075) depends on wavenumber, for a range of values of τ . Increasing the
value of τ increases the range of wavenumbers that is unstable, as well as the wavenumber
of maximum growth rate. Thus, the larger the value of τ (i.e., the more similar the
diffusivities of temperature and salt), the smaller the predicted scale of layers will be. So
more strongly double-diffusive fluids will produce layers on a larger scale.

Varying the Péclet number Pt−1

As discussed in Chapter 3, for the two-component system, increasing the Péclet number
Pe−1 decreases the range of gradients that are susceptible to instability. Here, we expect
that increasing Pt−1 while keeping τ fixed is likely to have a similar effect — shrinking
the size of the unstable region in g0–G0 space. Note that at Pt−1 = 0, if τ remains finite,
then Ps−1 = Pt−1 = 0, recovering the two-component system.

Pt−1 measures the importance of thermal diffusion compared to advective transport,
with larger values of Pt−1 corresponding to a system with more diffusion. Diffusion is
a smoothing process, so it is to be expected that increasing the value of Pt−1 will act to
suppress the layering instability.
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Fig. 6.6 Comparison of wavenumber-growth rate plots for a range of values of τ , taking
Pt−1 = 0.01, Re−1 = 0 and ε = 0.02. Each plot is for the same point (g0,d0)= (0.1,0.075),
roughly in the centre of the SF unstable region. Increasing τ increases both the range of
unstable wavenumbers and the maximumum growth rate

Fig. 6.7 Comparison of instability conditions for a range of values of Pt−1, taking τ = 0.01,
Re−1 = 0 and ε = 0.02. Increasing Pt−1 shrinks the size of the unstable region (of both
regimes) in g0–G0 space.
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Figure 6.7 shows the stability boundaries in g0–G0 space for a range of values of Pt−1.
For very small values of Pt−1 there is a very large range of g0 in the DC regime (g0 < 0)
where the Phillips instability occurs, while the size of the unstable region in the SF regime
g0 > 0 remains relatively small. As Pt−1 increases, the size of the unstable region of both
regimes decreases, as expected. This is in keeping with the results of Chapter 3, where
increasing Pt−1 also acted to suppress the layering instability.

6.4 Numerical Solutions

We have seen the conditions that are necessary for staircases to form in the three-component
stirred system (6.13)–(6.15). To look beyond the initial instability, we now present long
term nonlinear solutions, demonstrating the formation and subsequent evolution of stair-
cases.

6.4.1 Numerical method to include hyperdiffusion

To solve the three-component system, we use the same MATLAB pdepe solver as in
Chapter 3. This solver is designed to solve problems of the form:

c(x, t,u,ux)ut = x−m (xm f (x, t,u,ux))x + s(x, t,u,ux), (6.30)

with boundary conditions

p(x, t,u)+q(x, t) f (x, t,u,ux) = 0. (6.31)

It is straightforward to put the system (6.13)–(6.15) into this form. However, when
hyperdiffusion is added, fourth derivatives are introduced. The pdepe solver is only
designed to solve second order equations, so to tackle the fourth order system, we must
rewrite it in terms of T ′′ ≡ Tzz and S′′ ≡ Szz, and solve the five-component system

Tt =

(
l2e

le1/2 +Pt−1 Tz Pt−1 Tz

)
z
−A

(
T ′′

z
)

z , (6.32)

St =

(
l2e

le1/2 +Ps−1 Sz +Ps−1 Sz

)
z
−A

(
S′′z
)

z , (6.33)

et =

(
l2e

le1/2 +Re−1 ez

)
z
− l2e

le1/2 +Pt−1 Tz +
l2e

le1/2 +Ps−1 Sz +Re−1 ezz − ε
(e−1)e1/2

l
,

(6.34)

0 = (Tz)z −T ′′, (6.35)

0 = (Sz)z −S′′. (6.36)
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This new system (6.32)–(6.36) can be expressed in the form (6.30) by writing u =

(T,S,e,T ′′,S′′).
For initial conditions, we take a uniform gradient background state (g0,d0,e0), per-

turbed by a sinusoidal perturbation with a single wavenumber. We choose the amplitude of
the perturbation to be an eigenstate of the system for the chosen wavenumber m = 2πn/H.
This eigenstate is found by considering the matrix equation for the growth rate of perturba-
tions:

s

g′

d′

e′

= M

g′

d′

e′

 , (6.37)

where the matrix M takes the form:

M =

−m2 fg −m4A −m2 fd −m2 fe

−m2cg −m2cd −m4A −m2ce

pg pd −m2κ + pe

 , (6.38)

and is evaluated in the steady state g0,d0,e0.
We use the MATLAB eig solver to find the eigenvalues s and eigenvectors of M,

and choose the maximum eigenvalue smax, i.e. the one leading to the maximal growth of
perturbations. Writing its eigenvector as vvvmax = (v1,v2,v3)

T , the perturbation amplitudes
are thus linked by the relation g′

d′

e′

=

 1
v2/v1

v3/v1

g′. (6.39)

We take the amplitude of the temperature perturbation to be g′ = 0.001g0; this co-
efficient is an arbitrary ‘small’ number, to make the perturbation small in comparison
with the background state. Changing this simply changes the effective time origin of the
perturbation. Values up to at least 0.1 are sufficiently small to ensure an initial linear
growth phase in the two-component system. Combining this eigenstate-perturbation with
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the background state gives the initial conditions for the numerical solutions as:

T (z,0) = g0z−g′ sin
(

2πnz
H

)
, (6.40)

S(z,0) = d0z−d′ sin
(

2πnz
H

)
, (6.41)

e(z,0) = e0 − e′
2πn
H

cos
(

2πnz
H

)
(6.42)

T ′′(z,0) = g′
4π2n2

H2 sin
(

2πnz
H

)
, (6.43)

T ′′(z,0) = d′4π2n2

H2 sin
(

2πnz
H

)
. (6.44)

Based on our work on two-component stirred stratified convection (cf. Sec. 3.4.1), we
take Dirichlet conditions to match the initial state:

T (0, t) = 0, T (H, t) = g0H, (6.45)

S(0, t) = 0, S(H, t) = d0(H), (6.46)

ez(0, t) = ez(H, t) = 0. (6.47)

T ′′(0, t) = T ′′(H, t) = 0, (6.48)

S′′(0, t) = S′′(H, t) = 0. (6.49)

The disadvantage of hyperdiffusion is that adding the extra two equations for T ′′ and
S′′ significantly increases the computational time needed. So in the SF region, where there
is no HWI, we will solve the three equation system without hyperdiffusion (6.13)–(6.15),
and we will only use the new five equation system (6.32)–(6.36) for the DC region. We
will also show some results from DC without hyperdiffusion, to demonstrate how the HWI
develops in the numerical solutions.

6.5 Numerical solutions in the salt fingering regime

We begin by considering states in the salt fingering regime, where g > d > 0. In this
region, Fig. 6.2 shows that the only form of instability is the Phillips effect, which occurs
in a finite region of g0 − d0 space, 0 < g0 ≲ 0.24. As seen in Fig. 6.2, the range of G0

where instability occurs is widest when g0 = 0, with 0.014 ≲ G0 ≲ 0.036 susceptible to
instability. As g0 increases, the unstable range of G0 decreases, until the tip of the unstable
region is reached at (g0,d0) ≈ (0.24,0.025). Of course, these values are specific to the
parameters used (Pt−1 = 0.01, Ps−1 = 0.0001, ε = 0.02).

For the numerical integration, we take initial conditions (6.40)–(6.42), with fixed
buoyancy and fixed energy boundary conditions (6.45), (6.46) and (6.47). We use the
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MATLAB pdepe solver, with 4000 spatial steps over a depth of H = 2000 — the same as
we used for the two-component system.

Figure 6.8 shows the evolution of solutions to the three-component model (6.13)–
(6.15) for a range of initial conditions. Figure 6.8(a) has background state (g0,d0,e0) =

(0.1,0.075,0.11), representing a point in the interior of the salt-fingering unstable region.
Figure 6.8(b) has background state (g0,d0,e0) = (0.005,−0.03,0.0403) — very close to
the g = 0 boundary. Note that d0 < 0 here, so both temperature and salinity gradients
are statically stable, but the system is still unstable to perturbations due to the external
stirring. Fig. 6.8(c) has (g0,d0,e0) = (0.23,0.205,0.17), near to the right hand boundary
of the unstable region. The behaviour of all these solutions is qualitatively similar, with
an initial stack of layers developing, and merging by Radko’s H-merger pattern, whereby
neighbouring interfaces drift and combine, as seen in the two-component stirred model of
Chapter 3.

Stirring dominates double-diffusion

To investigate the importance of double-diffusive effects versus stirring, we now take
snapshots of solutions at fixed times. We compare the evolution of the temperature
and salinity gradients by normalising them with respect to their background gradients.
Figure 6.9 shows a snapshot of the normalised temperature and salinity gradients Tz/g0

and Sz/d0, in solutions to (6.13)–(6.15). Three different values of the density ratio τ

are considered, to demonstrate how the solutions change as the relative strength of the
diffusivities is varied. In each case, the normalised temperature and salinity fields are
almost identical, evolving together as a total buoyancy field, even when salt does not
diffuse at all (τ = 0). From this, we conclude that rather than double-diffusive effects
being important, the layering dynamics are dominated by the stirring. Hence this model
effectively produces the same results as the two-component model of Chapter 3. Recall
the alternative form of the system (6.17)–(6.19); in this form, the model is clearly only a
small perturbation away from the stirred two-component system (3.12)–(3.13). So it is not
surprising that the results are very similar to those obtained in Chapter 3. As discussed in
Chapter 1, Paparella & von Hardenberg (2014) proposed a two-component model based on
that of BLY, in which the flux ratio γ was assumed to be constant, allowing the buoyancy
to be modelled with a single equation. Here, we have separated the two components of
buoyancy, but found them to evolve identically. As such, our third equation is not necessary,
and instead the constant-γ assumption of Paparella & von Hardenberg (2014) would be
appropriate for this stirred system. The additional equation makes the three-component
system significantly more computationally expensive than a two-component system, so the
model of Paparella & von Hardenberg (2014) is better suited to such stirred systems.
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Fig. 6.8 Long-term evolution of the buoyancy gradient bz(z, t) in solutions of the three-
component stirred system (6.13)–(6.15) with length scale (6.16), for parameter values
Pt−1 = 0.01, Ps−1 = 0.0001, ε = 0.02 and Re−1 = 0. (a) Background state (g0,d0,e0) =
(0,1,0,075,0,11) and an n = 33 sinusoidal perturbation, near the centre of the SF unstable
region; (b) (g0,d0,e0) = ()0.005,−0.03,−0.043) and n = 22, with both temperature and
salinity gradients stable; (c) (g0,d0,e0) = (0.23,0.205,0.17) and n= 6, near the right-hand
boundary of the unstable region seen in Fig. 6.2. All three panels share a common time
axis.
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Fig. 6.9 Profiles of the temperature and salinity gradients in solutions to the three-
component stirred system (6.13)–(6.15), at time t = 107, normalised by their background
gradients. Each panel contains a snapshot at t = 107 of the solution with background
gradients (g0,d0) = (0.1,0.075), with (a) e0 = 0.11, τ = 0; (b) e0 = 0.11,τ = 0.01; and
(c) e0 = 0.095, τ = 0.5. Temperature and salinity fields track each other closely, with the
normalised gradients being identical in all three cases.

6.6 Numerical solutions in the diffusive convection regime

In Sec. 6.3.2, we saw in Fig. 6.2 that there are regions of g0 −d0 space in the DC regime
in which each of the possible instabilities takes place: the Phillips instability where
FgCd −FdCg < 0, the energy mode where pe > 0, and the high wavenumber instability
where fgcd − fdcg < 0. In contrast, the SF regime admitted only the Phillips instability. In
this section, we present numerical solutions in the DC regime for initial conditions with
the HWI predicted (§ 6.6.1), and the Phillips instability (§ 6.6.2), both with and without
hyperdiffusion terms in the equations.

6.6.1 Solution with high wavenumber instability

We begin by considering a solution for which the linear stability analysis predicts a high
wavenumber instability. Fig. 6.2 shows a large region of the DC regime (g0 < 0) in which
the HWI is predicted by the stability analysis. We choose a background state in this
region. Figure 6.10 shows two solutions to (6.32)–(6.36) starting with background state
(g0,d0,e0) = (−0.6,−0.63,0.0022). Fig. 6.10(a) shows the solution with no hyperdiffu-
sion to counter the HWI; there is random growth of spikes in the gradient on the scale of
the spatial mesh, which fits the expectation of the HWI producing growth on the smallest
possible scales. Fig. 6.10(b) shows the solution with hyperdiffusion coefficient A = 0.01,
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Fig. 6.10 Solutions to (6.32)–(6.36) in the DC regime, with background steady state
(g0,d0,e0 =−0.6,−0.63,0.0022) and parameter values Pt−1 = 0.01, Ps−1 = 0.0001, ε =
0.02 and Re−1 = 0. In this background state, a high wavenumber instability is expected.
(a) Solution at time t = 100 for the system solved without hyperdiffusion terms to counter
the HWI (i.e. A = 0). (b) Solution at time t = 100 for hyperdiffusion coefficient A = 0.01.
The initial condition is shown in red for comparison.

as well as the initial condition. It is clear that the hyperdiffusion has suppressed the HWI,
with the amplitude of the initial condition simply decaying.

6.6.2 Solution with Phillips instability

Now we consider a solution where the linear analysis predicts the Phillips instability, with
no HWI expected. It would be reasonable to assume that with no HWI, the solutions will be
similar to those in the SF regime with the Phillips instability. Figure 6.11 shows two solu-
tions to (6.32)–(6.36), starting in the background state (g0,d0,e0) = (−0.1,−0.13,0.033).
Applying the stability analysis of Chapter 5, we find that this state is unstable to the
Phillips effect, with most unstable wavenumber m = 0.297, predicting the formation of
n = 24 layers across a domain depth of H = 500. Fig. 6.11(a) shows a solution with no
hyperdiffusion. The solution evolves through the formation and merger of layers, but over
time the interfaces gradually sharpen to the scale of the spatial mesh. This is surprising,
as in all previous solutions interfaces the initial width of interfaces has been set by the
linearly most unstable wavenumber, and interfaces have changed in width only via merger
events. Contrary to expectation, it appears that the HWI does have an effect even when the
background state is not linearly unstable at small scales. During the nonlinear evolution,
the solution locally attains states that are unstable to the HWI, which then produce growth
on infinitesimal scales. As such, it appears that it is necessary to include the hyperdiffusion
terms to produce well-resolved layers in the DC regime.
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Fig. 6.11 Solutions to (6.32)–(6.36) in the DC regime, with background steady state
(g0,d0,e0 = −0.1,−0.13,0.032) and parameter values Pt−1 = 0.01, Ps−1 = 0.0001,
ε = 0.02 and Re−1 = 0. In this background state, the Phillips instability is predicted
by the linear stability analysis. (a) Solution at time t = 10000 for the system solved
without hyperdiffusion terms (i.e. A = 0). Interfaces sharpen to the scale of the spatial
mesh owing to the effect of the HWI. (b) Solution at time t = 10000 for hyperdiffusion co-
efficient A = 0.01. The hyperdiffusion regularises the sharpening, producing well-resolved
layers. Note the plots show only a portion of the depth, to demonstrate most clearly
the resolution of the interfaces. (c) Comparison of temperature and salinity gradients,
normalised by their background gradients Tz/−0.1 and Sz/0.13, at time 10000, for the
case with hyperdiffusion.

Figure 6.11(b) shows a solution with hyperdiffusion coefficient A = 0.01. Clear, well-
resolved layers can now be seen. A disadvantage of the hyperdiffusion terms is that the
system takes significantly longer to solve numerically, owing to the addition of the two
extra equations (6.35)–(6.36). To produce the results in Fig. 6.11(b), the normal spatial
resolution of 4000 meshpoints over H = 2000 was not sufficient, and the solver failed,
so the domain depth was reduced to H = 500. To reach t = 105 in Fig. 6.11(b) took
2500s, compared to 90s for Fig. 6.11(a). Further increasing the time range leads to a
nonlinear increase in the computational time. However, the dynamics of the solutions
closely resemble those of the salt fingering solutions, so it is not necessary to show large
numbers of solutions for DC.

Figure 6.11(c) shows a comparison of the normalised temperature and salinity gradient
fields Tz/g0 and Sz/d0 at t = 10000. As in the SF case, the fields are almost identical,
evolving together as a total buoyancy field, demonstrating that the dominant driving factor
for the layering is the stirring, with double-diffusive dynamics being a secondary factor.
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6.7 Discussion

In this chapter, we have investigated staircases in a double-diffusive system with an
external energy source. We have used the same framework as in the two-component system
presented in Chapter 3, adding an equation for the second component of density. We
have applied the stability analysis of the three-component Phillips effect as discussed in
Chapter 5.

In the salt fingering regime, the system is unstable to the Phillips instability for a wide
range of parameter values. Numerical solutions of the three-component system produce
results very similar to those shown for the two-component system with only a single
independent component of buoyancy. In fact, by comparing the profiles of the temperature
and salinity gradients in the solutions, we have seen that they are almost identical. Rather
than evolving independently, both components of the buoyancy are merely carried together
as part of the total buoyancy field. The stirring of the system is the driver behind the
dynamics, with double-diffusive effects being secondary. Even for the extreme case where
the diffusivity ratio τ = 0 (i.e. no molecular diffusion of salt), there is only a very small
difference between the two components of buoyancy. We will see in the next Chapter
that for true salt fingering staircases to exist in the absence of stirring, it is necessary to
reconsider the form of the length scale so that double-diffusive effects, rather than stirring,
drive the Phillips instability.

In the diffusive convection regime, the system is unstable not only to the Phillips insta-
bility, but also to the energy mode and high wavenumber instabilities. The energy mode
can be avoided by choice of suitable initial background gradients. The high wavenumber
instability, on the other hand, can not be avoided. Even when the system is initialised in a
state that is not linearly unstable to the HWI, the nonlinear evolution leads to states that
are locally unstable at high wavenumbers. This leads to interfaces sharpening to the spatial
mesh scale, rather than having a well-defined finite width. As such, the model must be
regularised.

We saw in Chapter 5 that the high wavenumber instability can be regularised through
the addition of hyperdiffusion terms to the temperature and salinity equations. By adding
these terms with a suitable coefficient, the HWI is avoided and diffusive staircases can
form. However, the addition of the hyperdiffusion makes the system significantly more
computationally expensive. As in the salt fingering regime, we see that the dominant
behaviour is due to stirring, rather than double-diffusive effects. In Chapter 8, we will
present a model of DC layering where DDC effects are dominant.



Chapter 7

Thermohaline staircases: Salt fingering

7.1 Introduction

In Chapter 5, we extended the concepts of the Phillips effect and γ-instabilities to a three-
component system in terms of temperature, salinity and kinetic energy. We demonstrated
that the two instabilities are mathematically similar, with the physical difference coming
from the driving energy source. The Phillips instability relies on forcing in the energy
equation, for example via a direct energy source, as in the model of Balmforth et al. (1998),
or from a constant salt finger flux, as assumed by Paparella & von Hardenberg (2014). We
saw in Chapter 6 that in a three-component model, if stirring is retained, then the dynamics
are almost identical to that of the two-component stirred system, with the temperature and
salinity fields evolving together as a single buoyancy field. In this chapter, we present a
new model for the evolution of thermohaline staircases without the need for such forcing,
by reconsidering the form of the length-scale used to close the system. This is the first
three-component mixing-length model for double-diffusive layering.

We begin by presenting a three-component model derived using the averaging process
described in Chapter 2, and discussing an appropriate form for the length scale in the
unstirred system. We apply this model to the salt fingering regime of double-diffusive
convection. Applying the instability theory of Chapter 5, we analyse the linear stability
of steady states, and demonstrate that the system is unstable for a range of parameter
values within the salt fingering regime. Numerical solutions of the model to long times
indicate that staircases evolve via the ‘B-merger’ pattern described by Radko (2007),
whereby strong interfaces grow at the expense of weaker ones. Each layer merger causes
the buoyancy gradient in surviving interfaces to increase, and the buoyancy flux through
the layers to increase, so the staircase has significantly higher buoyancy flux than the initial
unlayered state.

The chapter is arranged as follows. Section 7.2 contains a description of our three-
component double-diffusive model and a discussion of the mixing length on which it
depends. In Sec. 7.3 we apply the results of Chapter 5 to our model, demonstrating the
expected regions of instability, and discussing the effect of changing the parameters of the
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model. In Sec. 7.4, we present long-term numerical solutions and discuss the behaviour
of the buoyancy flux through layer mergers. We end in Sec. 7.5 by summarising our key
conclusions. The results presented in this chapter have been published as Pružina et al.
(2023)

7.2 A three-component model for thermohaline staircases

To develop our model for the formation and evolution of thermohaline staircases, we
consider a domain of height h, with a background dimensional temperature gradient
Θz, salinity gradient Σz and reference density ρ0. The evolution of the velocity uuu(xxx, t),
temperature T (xxx, t) and salinity S(xxx, t) are governed by the Boussinesq equations

uuut +uuu ···∇∇∇uuu = − 1
ρ0

∇∇∇p+
g(ρ −ρ0)

ρ0
eeez +ν∇

2uuu, (7.1)

Tt +uuu ···∇∇∇T = κT ∇
2T, (7.2)

St +uuu ···∇∇∇S = κS∇
2S, (7.3)

∇∇∇ ···uuu = 0, (7.4)
ρ −ρ0

ρ0
= βS−αT, (7.5)

where ρ(xxx, t) is the density, and p(xxx, t) the pressure. The equations depend on the kinematic
viscosity ν , the thermal and solutal diffusivities κT and κS, gravitational acceleration g,
and thermal and solutal expansion coefficients α and β .

We nondimensionalise the system (7.1)–(7.5) via

t̂ =
κT

L2 t, ẑ =
1
L

z, ûuu =
L

κT
uuu, T̂ =

αgL3

κT ν
T, Ŝ =

βgL3

κT ν
S, p̂ =

L2

ρ0νκT
p, (7.6)

with hats denoting dimensionless quantities. The characteristic length L is taken to be the
salt finger length, chosen such that the magnitude of the local Rayleigh number is equal to
unity (Stern, 1960):

|Ra |= αg|Θz|L4

κT ν
= 1. (7.7)

With the choice of nondimensionalisation (7.6), the magnitudes of the dimensionless
background temperature and salinity gradients are equal to the thermal and solutal Rayleigh
numbers:

|Θ̂z|=
αg|Θz|L4

κT ν
= |Ra |= 1, (7.8)

|Σ̂z|=
βg|Σz|L4

κT ν
= |Rs |= 1

R0
, (7.9)
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where R0 is the density ratio. Dropping hats, we obtain the dimensionless form of the
governing equations (7.1)–(7.5) as

uuut +uuu ···∇∇∇uuu = −σ∇∇∇p+σbeeez +σ∇
2uuu, (7.10)

Tt +uuu ···∇∇∇T = ∇
2T, (7.11)

St +uuu ···∇∇∇S = τ∇
2S, (7.12)

∇∇∇ ···uuu = 0, (7.13)

b = T −S, (7.14)

where b(xxx, t) is the nondimensional buoyancy field. These equations depend on the
diffusivity ratio τ = κS/κT and the Prandtl number σ = ν/κT . The dimensionless height
of the domain is H = h/L.

We now present a one-dimensional model for double-diffusive layering of the form
(5.1)–(5.3), developed using a horizontal averaging process. Oceanic observations of
double-diffusive staircases show a horizontal extent far greater than the thickness of
the individual layers (e.g. Schmitt et al., 1987). As such, a horizontally averaged one-
dimensional model is appropriate, providing insight to the physics of layering within a
model that is relatively simple computationally. We once again apply the averaging process
detailed in Chapter 2, to obtain the following system:

Tt =

(
l2e

le1/2 +1
Tz

)
z
, (7.15)

St =

(
l2e

le1/2 + τ
Sz

)
z
, (7.16)

et =

(
l2e

le1/2 +σ
ez

)
z
−σ

(
l2e

le1/2 +1
Tz −

l2e
le1/2 + τ

Sz

)
+σezz − ε

e3/2

l
, (7.17)

where T , S and e represent the horizontally averaged temperature, salinity and turbulent
kinetic energy. The parameter ε controls the strength of the dissipation term. The system
is closed by the mixing length l. The parameterisation of l is critical to the model, as it
controls the form of the flux terms, and therefore the nature of any instability (cf. Chapter 5).
For this turbulent model, we assume that the turbulent flux terms are more important than
molecular diffusion, and have thus neglected the independent diffusion terms in (7.15) and
(7.16).

It should be noted that this is a model of turbulent flow, relying on parameterisations
of fluxes in terms of eddy diffusivities. As such, it should not be expected, and is not
intended, to describe non-turbulent states accurately. Numerical simulations (e.g. Stellmach
et al., 2011) show that the salt fingering instability quickly leads to a highly turbulent state;
although this form of model cannot capture the initial salt fingering stage of the evolution, it
is nonetheless appropriate to describe all subsequent development, including the formation
and evolution of staircases. Despite the fact that we are modelling a turbulent system,
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observations and numerical simulations show that the diffusivity ratio τ is critical to the
evolution of double-diffusive staircases, and hence it is important to keep it in the model.
As such, the eddy diffusivities are not identical in each equation, as may be expected in a
fully turbulent model. If τ = 1, there would be no difference between the two components
of buoyancy, and layering would not be possible without an external forcing.

The aim of this model is to describe layering within a mixing-length framework through
the mechanism described in Chapter 5, which we have shown to be equivalent to the γ-
instability of Radko (2003). Based on Radko’s work, we propose to parameterise the flux
functions, and therefore the length scale, in terms of the density ratio R = Tz/Sz, rather
than in terms of the gradients individually. From a physical perspective, the mixing length
l can be interpreted as a characteristic size of turbulent eddies, indicating that it should
depend on e as well as R. Previous work on layering has shown that the it is the qualitative
form of the length scale that is important, rather than its precise parameterisation. For
example, Balmforth et al. (1998), Paparella & von Hardenberg (2014) and Coclite et al.
(2018) all used different prescriptions for l(bz,e) in models of stirred layering, producing
very similar results. With this in mind, we propose a prescription for the length scale based
on qualitative arguments, rather than a direct physical derivation.

In salt fingering systems, it has been established, both numerically and experimentally,
that the temperature and salinity fluxes have a decreasing dependence on the density ratio
R = Tz/Sz (McDougall & Taylor, 1984; Kimura et al., 2011). Furthermore, for the γ-style
instability to be present, the flux ratio γ = f/c should also decrease as a function of R.
In our system (7.15)–(7.17), the temperature flux is f = l2eTz/(le1/2 +1) and the salinity
flux is c = l2eSz/(le1/2 + τ). From these forms, f , c and γ are all increasing functions
of the length scale l, and hence for f (R), c(R) and γ(R) to be deceasing, l(R) must also
be decreasing. Real fingering staircases are generally observed in the range 1 < R < 2,
so we parameterise l(R) to be decreasing within this range of interest. From a physical
standpoint, the eddy diffusivities should increase as the amount of turbulence increases, so
we parameterise l to also have an increasing dependence on e within the range of interest.
Mathematically, a choice of l that depends on R alone would lead to the high-wavenumber
instability discussed in Chapter 5, further motivating the dependence on both R and e.
Based on these considerations, we adopt the parameterisation

l =

(
e2 +δR2)1/2

e1/2R
, (7.18)

where δ is a parameter chosen to be small such that, for O(1) values of e and R, the mixing
length l ∼

√
e/R. The value of δ must be non-zero, as otherwise e = 0 is a steady-state

solution for all values of R0, susceptible to the energy-mode instability (5.11). For values
of R close to unity, the prescription (7.18) is a decreasing function of R, giving a large
length when R ≈ 1, and smaller lengths for larger values of R, as required. We note that,
while the model (7.15)–(7.17) was derived via averaging processes and physical arguments,
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by contrast there is not such a clear physical motivation for the exact form of the length
scale. The prescription (7.18) is therefore not the only possible choice, but is, nonetheless,
a simple parameterisation with the appropriate qualitative dependence on e and R to model
layers.

It should be noted that in double-diffusive convection described by the Boussinesq
equations (7.1)–(7.5), the buoyancy anomalies leading to convective motions appear at or
below the salt fingering length scale (l = 1, in our nondimensionalisation), while turbulent
mixing is expected to occur on scales larger than this. Our turbulent model cannot describe
these small scale dynamics directly, and instead assumes that turbulent motion continues
down to the smallest scales to parameterise these motions. The length measures the scale of
the turbulent motion, rather than the layers themselves, so that in these strongly convective
regions, we expect l to represent the size of a turbulent eddy, which may be significantly
smaller than the full layer depth.

At this stage, it is helpful to review the parameter values for which the two different
regimes of double-diffusive convection occur. In the salt fingering regime, both temperature
and salt gradients are positive. For the fluid to be statically stable, it is required that
bz = 1−1/R0 > 0, and hence the background density ratio

R0 > 1. (7.19)

For diffusive convection, both gradients are negative. The overall buoyancy gradient is
bz =−1+1/R0, so for the fluid to be statically stable, it is required that

0 < R0 < 1. (7.20)

The system (7.15)–(7.18) depends on four dimensionless parameters: τ , σ , δ and ε .
The first two are material parameters of the fluid under consideration. For example, salt
water has a diffusivity ratio of τ ≈ 0.01 and a Prandtl number of σ = O(10), depending
on the temperature and salinity. In this study, we focus primarily on illustrating the results
of our model for the case of salt water, but we note that the choice of τ and σ can be
adapted to model other physical contexts. The latter two parameters, δ and ε , are empirical
modelling parameters introduced in the derivation to control the relative importance of
turbulent dissipation and the form of the mixing length (7.18) (the parameter ε also appears
in the model of BLY). We will determine values of δ and ε that lead to physically realistic
behaviour in the solutions.

7.3 Steady states and their stability

To analyse the stability of the system (7.15)–(7.17), we begin by applying the general linear
stability theory of three-component systems developed in Chapter 5. Equations (7.15)–
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Fig. 7.1 Steady-state solutions to (7.25) with τ = 0.01, σ = 10. (a) Energy e0 and cor-
responding value of the length scale l0 given by (7.18), as functions of R0 for ε = 1,
δ = 0.001. For small R0, e0 and l0 are large; as R0 increases, e0 decreases, with l0 initially
decreasing but l0 → ∞ as e0 → 0. Inset plot shows behaviour of e0 and l0 near R0 = 1, with
red and blue dotted lines showing the values e0 = σ/ε −1 = 9 and l0 =

√
σ/ε −1 = 3.

(b) e0 as a function of R0, for a range of values of δ with ε = 1 fixed. (c) e0 as a function
of R0, for a range of values of ε with δ = 0.001 fixed. Sufficiently small values of δ and
large values of ε lead to e0(R0) being multi-valued.
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(7.17) may be expressed in the form (3.17)–(3.18) by writing

f =
l2e

le1/2 +1
g, (7.21)

c =
l2e

le1/2 + τ
d, (7.22)

κ =
l2e

le1/2 +σ
+σ , (7.23)

p = −σ

(
l2e

le1/2 +1
g− l2e

le1/2 + τ
d
)
− ε

e3/2

l
, (7.24)

where g = Tz and d = Sz. For a given value of R0, the system admits the uniform steady
state (g0,d0,e0) = (±1,±1/R0,e0(R0)).

7.3.1 Steady states

With the length scale prescribed by (7.18), the steady-state equation p = 0 for e0(R0) leads
to the following algebraic relation between e0 and the parameter R0:

g0 (R0 −1)
(
e2

0 +δR2
0
)2

+g0 (τR0 −1)
(
e2

0 +δR2
0
)3/2

R0

+
ε

σ
R3

0e2
0
(
e2

0 +δR2
0
)
+(1+ τ)

ε

σ

(
e2

0 +δR2
0
)1/2

e2
0 +

ε

σ
R5

0τe2
0 = 0, (7.25)

where g0 =±1. We interpret the uniform-gradient steady state physically as a represen-
tation of the flow resulting from salt fingers. Individual fingers cannot be distinguished,
but a mean fluid motion is supported by one stable and one unstable component of the
buoyancy gradient.

Figure 7.1(a) shows e0 as a function of R0. When there is no overall stratification
(R0 = 1), the energy e0 ≈ σ/ε −1 (shown by the blue dotted line in the inset plot). As
R0 increases, e0 decreases, reaching e0 = 0 at R0 = (1+

√
δ )/(τ +

√
δ ). However, it is

important to note that such an unphysical ‘zero energy turbulent state’ is precluded in our
time-dependent model. To see this, we consider the evolution of a state that begins with
e > 0 for all z. At a given time, let z = z∗ denote the position of a local minimum of e,
with ez(z∗) = 0, ezz(z∗)> 0, and e(z∗) is near zero. Additionally, we note from (7.18) that
le1/2 →

√
δ as e → 0. After some algebra, the governing energy equation (7.17) at z = z∗

gives

et(z∗)∼
(

δ√
δ +σ

+σ

)
ezz −σ

(
δTz√
δ +1

− δSz√
δ + τ

)
. (7.26)

Provided that R0 < (
√

δ +1)/(
√

δ +τ) (i.e. R0 is in the range where uniform steady states
exist), every term on the right-hand side of (7.26) is positive. It follows that et(z∗) > 0,
implying that the minimum energy cannot decrease, precluding the energy from ever
reaching zero. Hence, while zero energy and negative energy states can exist within the
equations, they will never be attained from initial conditions starting with positive energy.
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Nonetheless, the change of sign of e0 when R0 > (
√

δ + 1)/(
√

δ + τ) means that this
model is applicable only for sufficiently low density ratios.

Figure 7.1(a) also shows the value of the length scale l0 calculated from the energy
using (7.18). As R0 → 1, l0 ∼

√
e0 ≈

√
σ/ε −1, which is shown by the red dotted line in

the inset. As R0 increases from 1, the length scale is decreasing in the range of interest near
R0 = 1, before reaching a minimum and increasing for larger values of R0, with l0 → ∞

and e0 → 0 as R0 → (
√

δ +1)/(
√

δ + τ). The fact that l diverges as e0 → 0 is at on the
surface a little concerning, however the length scale is decreasing as a function of R inside
the range of interest, and the divergence occurs for much larger values of R than those for
which we expect layering, so the parameterisation (7.18) is acceptable. Further, we have
shown that the zero energy state is never reached, and hence this divergence in the mixing
length will never occur in numerical solutions.

The relationship between e0 and R0 given by (7.25) is shown for various choices of the
parameters ε and δ in figures 7.1(b)–(c). The results illustrate a strong dependence of e0

on both ε and δ . As ε increases, the value of e0 decreases for each R0, with e0 ≈ σ/ε −1
at R0 = 1, and e0 = 0 at R0 =

(
1+

√
δ

)
/
(

τ +
√

δ

)
. On the other hand, increasing the

value of δ increases the energy at each R0. At smaller values of δ and larger values of ε ,
e0 to be multi-valued for some range of R0. For example, the solution shown in purple
in Fig. 7.1(b) is multi-valued near R0 ≈ 8. In cases where there are multiple steady-state
energies, one steady state is unstable to the energy mode, leading to growth in energy on
the domain scale. To investigate layering processes we wish to avoid this situation, so we
set ε = 1 and δ = 0.001. These are the parameters used in Fig. 7.1(a), where e0 is clearly
single-valued throughout.

In the diffusive convection regime, Tz,Sz > 0 and 0 < R0 < 1. Within these ranges,
all the terms in (7.25) are negative, and hence there are no positive solutions for e0 in the
diffusive convection regime. This result holds in general for any system of the form (7.21)–
(7.24), no matter what parameterisations are adopted for the length scale and dissipation
term. As such, it appears that an unforced system of this form is not sufficient to model
layering in diffusive convection, lending weight to the proposition of Ma & Peltier (2022)
that external forcing may be necessary. In this chapter, we will restrict our focus to the salt
fingering regime, with the modelling of layering in diffusive convection being revisited in
Chapter 8.

7.3.2 Linear stability

The stability of the steady states of (7.15)–(7.17) can be analysed using the framework
described in Chapter 5. For a range of values of R0, we first calculate e0(R0) and substitute
the value into the expressions for −pe, FgCd − FdCg, Fg +Cd and fgcd − fdcg; these
quantities are plotted as functions of R0 in Fig. 7.2(a). For a finite range of R0 (between the
red dots), FgCd −FdCg < 0, thereby satisfying the condition for the Phillips instability. By
comparison with the schematic in Fig. 5.1(b), we see that our expectation of a finite unstable
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Fig. 7.2 (a) Various stability measures of the uniform steady state as R0 varies, with
τ = 0.01, σ = 10, ε = 1, δ = 0.001. The quantity −pe is shown in red, FgCd −FdCg in
black, Fg +Cd in yellow, and fgcd − fdcg in purple. The red circles mark the minimum
and maximum values of R0 for which condition (5.17) is satisfied. (b) The growth rate
s against wavenumber m for the steady state with R0 = 1.8 (marked with a dotted black
line in (a)). There is a single unstable mode with maximum growth rate s = 4.6×10−4 at
wavenumber m = 0.363.
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region is met. Note that by our choice of nondimensionalisation, |Ra |= 1, so varying R0

in Fig. 7.2(a) represents a single path through the unstable region of Ra–Rs space. The
values of ε and δ are chosen so that the energy mode is not unstable (condition (5.11)),
and neither condition (5.17b) nor (5.23) is met. Figure 7.2(b) shows a plot of growth rate
against wavenumber for the case of R0 = 1.8 — there is a single unstable mode, with a
uniquely defined wavenumber of maximum growth rate, which can be used to predict the
width of the fastest growing perturbations, and hence the width of the initial layers formed.

Recall from Chapter 5 that in a system of the general form (5.1)–(5.3), the layering
instability (condition (5.17a)) may be caused by either the forcing mechanism of BLY and
Paparella & von Hardenberg (2014), or the γ-instability of Radko (2003). With the specific
system (7.15)–(7.17), this is no longer the case. For a model with no source term in the
energy equation (7.17), the γ-mechanism is the only one in play.

We now investigate the effect on the stability of the system of varying the values of the
material parameters, while fixing δ = 0.001 and ε = 1. Figure 7.3 shows the effect on the
critical values of R0 for instability of changing τ and σ independently. The black line in
Fig. 7.3(a) shows the minimum and maximum values of R0 for which instability occurs, as
τ is varied with all other parameters kept fixed. The critical value of τ at the tip of the curve
is τc = 0.1055. This critical value is independent of σ , although larger values of σ lead to
larger unstable ranges of R0. Figure 7.3(b) shows the effect of varying σ on the critical
values of R0. For σ ≪ 1, only a very narrow range of R0 leads to instability; at larger
values of R0 this range increases significantly, saturating at approximately 2 ≲ R0 ≲ 14
for large σ . The dashed line shows the lower boundary of the fingering regime, at R0 = 1.
Larger values of τ reduce the size of the unstable range of R0, but there is little qualitative
change. For small σ , the entire unstable range lies below R0 = 1, and is therefore not in
the salt fingering regime. This result is consistent with those of Traxler et al. (2011), who
studied salt fingering at low Prandtl number using three-dimensional numerical simulations.
Traxler et al. (2011) found that the empirical flux ratio γ increased monotonically with
density ratio R, so layering by the γ-instability was not expected at small σ . Instead, it was
suggested that any layering was due to the collective instability of Stern (1969).

From Fig. 7.2, we see that staircases are predicted in our model for 1.4 ≲ R0 ≲ 2.3,
given the parameter values τ = 0.01, σ = 10, ε = 1, δ = 0.001. This is in disagreement
with the results of some previous studies that found instability much closer to the boundary
R0 = 1 (e.g. Stellmach et al., 2011). However, Fig. 7.3 shows that the range for instability
strongly depends on the values of σ and τ , and we saw in Sec. 7.3.1 that the values of δ

and ε also have a strong effect on steady-state solutions. Hence given the difference in
parameter values, it should not be worrying that the specific unstable range of R0 found
here does not match completely with previous works. A possible future adaptation of the
model could include a more detailed parameter search with the goal of producing more
quantitatively exact predictions.
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Fig. 7.3 Effect on the layering instability of changing (a) the diffusivity ratio τ , and (b)
the Prandtl number σ . Black lines show the boundary of the unstable range of R0, as (a)
τ is changed with fixed σ = 10, and (b) σ is changed for fixed τ = 0.01. In each case,
changing the value of the other parameter leads to no qualitative differences. The other
model parameter values are δ = 0.001 and ε = 1; for these choices of δ and ε , there is no
energy mode instability. The dashed line in (b) shows R0 = 1, the lower boundary of the
salt fingering regime.

7.4 Nonlinear evolution and long-term merger behaviour

A key advantage of the regularisation inherent in our mixing-length formulation (7.15)–
(7.17) is that it allows the investigation of long-term dynamics of staircase evolution and
merger beyond any initial instability. To investigate this long-term behaviour, we solve the
system (7.15)–(7.17) with length scale (7.18) subject to the boundary conditions

T (0) = 0, T (H) = H, (7.27)

S(0) = 0, S(H) = H/R0, (7.28)

ez(0) = 0, ez(H) = 0, (7.29)

and initial conditions

T = z−g′ sin
(

2nπz
H

)
, (7.30)

S =
z

R0
−d′ sin

(
2nπz

H

)
, (7.31)

e = e0 − e′
2nπ

H
cos
(

2nπz
H

)
, (7.32)

where the perturbation amplitudes (g′,d′,e′) are chosen such that the initial condition is an
eigenstate of the linear stability problem, with 2nπ/H chosen to be the maximally unstable
wavenumber based on the linear theory of Sec. 7.3. We solve the model numerically using
the MATLAB pdepe solver, with 4000 spatial mesh points across a domain of depth 500,
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which is sufficient for well-resolved solutions. The solver varies time steps dynamically to
ensure adequate resolution.

7.4.1 Nonlinear evolution

Figure 7.4 shows the results of a numerical solution of (7.15)–(7.17), for the same parame-
ters as used in Fig. 7.2(b). Figure 7.4(a) shows the buoyancy field b = T −S plotted over
a range of times. The plot illustrates the evolution from an initially uniform gradient to
a layered staircase; the layers then proceed to undergo mergers over time. Eventually,
at t ≈ 2× 106, only a single interface remains, located at z ≈ 350. Figure 7.4(b) shows
the normalised buoyancy gradient at the same time points. Interfaces between layers are
represented by sharp spikes in the gradient profile; these profiles reveal the fine structure
at early times that is not visible in the overall temperature field in Fig. 7.4(a). The range
in the buoyancy gradient, i.e. max(bz)−min(bz), is shown in Fig. 7.4(c), measuring the
difference between the gradients in the interfaces and the layers. There is a clear gradual
increase in the maximum gradient, beginning at t ≈ 6× 105 and ending at t ≈ 2× 106,
defining the range of times over which mergers occur. During a layer merger, the overall
buoyancy variation across a region must be conserved, resulting in sharper interfaces with
higher gradients after each merger. Referring to the unstable region shown in Fig. 7.2(a),
there is no constraint individually on Tz and Sz, provided that R0 stays within the bounds
of the unstable region. Hence bz can become arbitrarily large, resulting in ever steeper
interfaces as successive merger events take place. This contrasts with the results of Chap-
ters 3 and 6, where a well-defined maximum unstable gradient is determined, such that
subsequent mergers produce thicker interfaces of fixed gradient. The long-term evolution
of merger behaviour follows the same inverse logarithmic trend identified in Chapter 3,
with the number of remaining interfaces N obeying the scaling 1/N ∼ log(t) as t → ∞.

7.4.2 Merger dynamics

To understand the merging behaviour in more detail, we consider the results in the context
of the analysis of Radko (2007), who identified two types of mergers: the B-merger, in
which relatively strong interfaces grow at the expense of weaker neighbouring interfaces,
and the H-merger, where neighbouring interfaces drift and collide. By considering a
one-dimensional buoyancy conservation equation in a stepped basic state, and analysing
the variation of the buoyancy flux across a step, Radko demonstrated the so-called merger
theorem, showing that the B-merger has growth rate λB ∝ −∂ F̃/∂ B̃, and the H-merger
has growth rate λH ∝ ∂ F̃/∂ H̃, where F̃(B̃, H̃) is the buoyancy flux across a step, B̃ the
buoyancy jump, and H̃ the height of the step.

To apply the merger theorem to the BLY model, Radko (2007) considered constant
flux solutions, for which the model can be reduced to a nonlinear oscillator equation for
e(b). To apply the same analysis to our model, we adopt the same approach. Thus we seek
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Fig. 7.4 Nonlinear evolution of the system (7.15)–(7.17), with length scale (7.18), subject
to boundary conditions (7.27)–(7.29) and initial conditions (7.30)–(7.32), for parameter
values τ = 0.01, σ = 10, δ = 0.001, ε = 1, R0 = 1.8. (a) Depth profiles of the overall
buoyancy field b = T −S at a range of times logarithmically distributed between t = 104

and t = 107; (b) profiles of the buoyancy gradient bz = Tz − Sz scaled by the range of
its values at each time, plotted at the same times as in (a); (c) range of gradients, i.e
max(bz)−min(bz). The solution evolves from the initial condition into a dense stack of
layers (seen as the first solution presented in (b)). At t ≈ 6× 105, the layers begin to
undergo mergers, which cause the maximum gradient to increase, until by t ≈ 2× 106,
only a single interface remains at z ≈ 350, with bz ≈ 120.
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steady-state solutions to the system (7.15)–(7.17) with uniform temperature and salinity
fluxes f0 and c0. Using a process mirroring that of BLY, the system can thus be reduced to
a single equation. Whereas the derivation of BLY concerned their two-component system,
the derivation given below includes the third equation of the model (7.15)–(7.17)

Assuming a steady state, the system (7.15)–(7.17) can be written as

f0 =
D2

D+1
Tz, (7.33)

c0 =
D2

D+ τ
Sz, (7.34)

0 = (κez)z −σ ( f0 − c0)− ε
e2

D
, (7.35)

where D = le1/2 and κ =
(
D2/(D+σ)+σ

)
. Note that (7.33) uniquely defines D(Tz)

and (7.34) uniquely defines Sz(D). The salt gradient is therefore tied to the temperature
gradient, rather than the two fields being independent.

Dividing (7.33) by (7.34), we obtain

γ0 =
f0

c0
=

D+ τ

D+1
R, (7.36)

thus defining R in terms of D, where γ0 = f0/c0 is the steady-state flux ratio. The prescrip-
tion for the length scale (7.18), coupled with the definition of D = le1/2, can be rearranged
to give an expression for e(D,R), namely,

e2 =
(
D2 −δ

)
R2. (7.37)

Combining (7.37) with (7.36), we define the energy solely in terms of D by

e(D) =

√
D2 −δ (D+1)

D+ τ
γ0. (7.38)

Multiplying the energy equation (7.35) by κez, integrating with respect to z, and changing
variables such that ez dz = eD dD, we obtain

1
2
(κez)

2 +

∫ (
−σ ( f0 − c0)− ε

e(D)2

D

)
κeD dD = E, (7.39)

where E is a constant.
To transform (7.39) to an equation for eb, we could write ez = ebbz and divide all terms

in (7.39) by (κbz)
2. However, when bz = 0, this leads to a singularity in the potential. To

avoid this, we note that Tz ̸= 0 when f0 ̸= 0, and write ez = eT Tz in terms of the temperature
instead. This use of T instead of b as the ‘time’ variable is valid because D and Sz are
defined as functions of Tz via (7.33)–(7.34). On using (7.33) to rewrite Tz as a function of
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Fig. 7.5 (a) Potential U(e) found by integrating (7.41) with respect to D, and coupling with
(7.42) to find corresponding values of e. The red line has two peaks at e1 and e2, where
U(e1) =U(e2). Parameter values are f0 = 0.45, τ = 0.01, σ = 10, ε = 1 and δ = 0.001.
(b) Plot of the ratio λB/λH calculated in the small-gradient case given by equation (7.43),
for the solutions presented in Fig 7.4. The dotted line marks λB/λH = 1: above this line,
the B-merger dominates; below it, the H-merger dominates.

D, we obtain
1
2

e2
T +U(D) = E

(
D2

κ f0 (D+1)

)2

, (7.40)

where D(e) = le1/2, the potential U(D) is defined by

U(D) =

(
D2

κ f0 (D+1)

)2
∫ (

−σ ( f0 − c0)− ε
e(D)2

D

)
κ dD, (7.41)

and e(D) is defined by

e(D) =

√
D2 −δ (D+1)

D+ τ
γ0. (7.42)

Equation (7.40) represents a nonlinear oscillator for e as a function of temperature T ,
with variable weight. By inverting (7.42) for D(e), (7.40) is transformed into an equation
for eT in terms of e. Analytically, this requires writing D(e) as the root of a quartic, but
the inversion is simple to do numerically by coupling (7.42) with (7.41).

The potential U(e) is plotted in Fig. 7.5(a). For a narrow range of values of f0 and
γ0, U(e) has two peaks, at e1 and e2. With this two-peak shape for U(e), the oscillator
equation (7.40) has two stable steady states corresponding to the peaks of the potential:
one with a smaller energy and the other with larger energy. These correspond to values of
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the energy in interfaces and layers respectively. The profile of U(e) depends sensitively
on γ0 and f0, but for each f0 there is a precise value of γ0 such that U(e1) =U(e2); this
value of U is shown by the red dashed line in Fig 7.5(a). For this critical value of γ0,
the oscillator e(T ) has a special kink solution linking the two maxima (Balmforth et al.,
1998). By analogy with similar kink solutions to the Cahn-Hilliard equation, more complex
solutions with gradient spikes also be constructed (e.g. Fraerman et al., 1997).

With the potential taking this two-peak form, our three-component system maps
directly to Radko’s (2007) analysis of the merging behaviour of the BLY model, which is
susceptible to both B- and H-mergers. Radko shows that, in this situation, the ratio of their
growth rates is

λB

λH
=

ḡ−gmin

gmin
, (7.43)

where gmin is the minimum gradient (in layers) and ḡ the background gradient (averaged
across the whole layer-interface system). If the ratio λB/λH is greater than unity, B-mergers
occur, and if the ratio is less than unity then H-mergers will dominate instead. In the
solutions shown in Fig 7.4, it appears that the mergers occur via the B-merger pattern,
with weaker interfaces shrinking without significant drifting. To show consistency with
this condition on λB/λH , we calculate λB/λH at each time using (7.43). We take gmin to
be the global minimum gradient at each time, and ḡ = 1 as the background gradient. The
ratio λB/λH is shown in Fig. 7.5(b), where we see that for times 104 ≲ t ≲ 2×106, the
ratio λB/λH > 1, implying consistency with the numerical results, in which B-mergers
dominate.

7.4.3 Increase of the buoyancy flux

In the full thermohaline system, it has been established that the existence of staircases
leads to greater turbulent transport of both heat and salt through the fluid in comparison
with an unlayered state (e.g. Rosenblum et al., 2011; Hughes & Brummell, 2021). In the
following section, we investigate this effect in our model, and provide an explanation for
why it is the case. Figure 7.6 shows the evolution of the mean of the upward buoyancy flux

1
H

∫ H

0
(c− f ) dz, (7.44)

calculated at each time for the solution previously shown in Fig. 7.4. There is little change
in the flux at early times, until the initial linear perturbation grows into a stack of layers
at t ≈ 104. As layers undergo mergers, the magnitude of the flux increases, with thicker
mixed layers producing larger fluxes, consistent with simulations of salt fingering (e.g.
Rosenblum et al., 2011) Also plotted are the spatial profiles of the upward buoyancy flux
(c− f ) at a range of times, showing that, in general, the flux is reasonably consistent across
the different layers at each time, but with small perturbations in the interfaces.
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Fig. 7.6 Evolution of the buoyancy flux field for the solution shown in Fig. 7.4(a). The
black dashed line shows the vertical mean of the upward buoyancy flux (c− f ) defined
by (7.44), plotted against time on the lower horizontal axis. The spatial profile of the
buoyancy flux (with z on the upper horizontal axis) is also shown at a range of times, with
the corresponding mean flux at each time marked with a dot of the same colour.

The increase in flux seen in Fig. 7.6 can be explained using the merger theorem of
Radko (2007). We saw in Fig. 7.4 that layers undergo B-mergers, where weak interfaces
decay with little vertical drift. To explain this, we consider a region of fluid initially
containing two layers and one such weak interface. Initially, there is a buoyancy jump of
B1 across the interface. When a B-merger takes place, the resultant state is a single mixed
layer, with the buoyancy variation from the top to the bottom now B2 ≪ B1. The merger
theorem states that the system is unstable to B-mergers if the buoyancy flux decreases as
the buoyancy variation increases, and so this decrease of B during the merger must increase
the flux in the region.

7.4.4 Variation of parameter values

An exploration of parameter space reveals that the solutions shown in Fig. 7.4 are rep-
resentative of a large range of parameter values. To demonstrate this, we illustrate the
solution for some extreme choices of parameters, shown in Fig. 7.7. Figure 7.7(a) takes a
very large value of the Prandtl number σ , for which the scale of the most unstable mode is
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Fig. 7.7 Evolution of solutions to (7.15)–(7.17) with length scale (7.18), subject to boundary
conditions (7.27)–(7.29) and initial conditions (7.30)–(7.32). (a) Very high Prandtl number
case, with τ = 0.0001, σ = 104, δ = 0.001, ε = 1 and R0 = 3.64, showing wide, smooth
interfaces and layers. (b) No overall background buoyancy gradient, with τ = 0.01, σ = 1,
δ = 0.01, ε = 1, R0 = 1, in which the timescale for mergers is similar to that for layer
growth. Layers merge quickly, eventually giving way to a single convective state across
the entire domain.

very large, resulting in layers and interfaces that are wider and smoother in comparison
with the results of Fig.7.4. Figure 7.7(b) shows the case with R0 = 1, on the boundary
between the salt fingering and statically unstable regimes. In this case, layers do form,
but mergers occur on such a fast timescale that a regular staircase never develops, and
the system transitions very quickly from the linear growth phase to a single interface in
the middle, which then decays, forming a single layer across the entire domain depth. In
both of the cases shown, while there are some quantitative differences from the results in
Fig. 7.4, the qualitative behaviour is the same.

We selected the parameter values δ = 0.001 and ε = 1 to prevent the energy mode
from being unstable. If instead we choose parameters such that there is an energy mode
instability, then there is energy growth on the domain scale, producing a wide interior



7.5 Discussion 110

region with a large energy and constant temperature and salt gradients, with narrow
boundary regions on either side to satisfy the boundary conditions (7.27)–(7.29).

7.5 Discussion

In this chapter we have presented a model for layering in salt fingering convection, derived
from the Boussinesq equations using the averaging process of Chapter 2, and investigated
its linear stability via the framework described in Chapter 5. In contrast to previous models,
such as that of Paparella & von Hardenberg (2014), and the one discussed in Chapter 6,
there is no forcing term, with instability being driven purely by interaction between the
temperature and salinity fluxes. By suitable parameterisation of the length scale, the flux
terms have the appropriate functional form to allow for the release of potential energy
to drive instability via the γ-instability. This parameterisation of the length scale is a
key ingredient of the model, and the form chosen (7.18) is not the only possibility. It
is interesting to note that the length scale adopted by Balmforth et al. (1998), and used
in Chapters 3 and 6 in models of stirred convection does not provide the appropriate
release of potential energy from the flux terms to generate layering in (non-stirred) DDC.
A prescription based on the density ratio R alone leads to a high wavenumber instability.
However, a physically motivated and relatively simple parameterisation in terms of both R
and e captures the essential physics of the layering process.

The multiscale analysis of Radko (2019a) provides an alternative method of regularising
the high wavenumber instability by the inclusion of hyperdiffusion terms. This allowed a
model in terms of temperature and salinity alone to produce realistic layering dynamics,
without the need for the energy equation. Radko’s model depends on the empirical
calibration of several coefficients, requiring direct numerical simulations a priori to inform
the choices of coefficients. By contrast, our model is derived using a spatial averaging
process and the choice of a simple mixing length dependent on only one parameter. Both
our model and that of Radko (2019a) provide similar numerical results, with staircases
appearing and gradually reducing via the B-merger pattern of Radko (2007).

A slightly simpler mathematical model of layering could be produced by a reduced form
of the model in which et ≡ 0. In this case, the energy equation becomes diagnostic, and e
is determined directly at all times as a functional dependent on the global temperature and
salinity fields. This modification does not affect the conditions for the layering instability
(5.17), but removes the possibility of the energy mode instability (5.11). In this case, we
are effectively left with a two-component system for T and S, closed via a functional
parameterisation of e in the form of the steady energy equation. The layering instability,
and its regularisation, are dependent entirely on the specific forms of f , c and p.

In Sec. 7.3, we showed that the model (7.15)–(7.17) admits uniform-gradient steady
states (Tz,Sz,e) = (z,z/R0,e0) in the salt fingering regime, with e0(R0) being single-valued
for appropriate choices of δ and ε . These steady states are unstable to perturbations for a
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finite range of R0, with a well-defined wavenumber of maximum growth rate. Increasing
the value of τ decreases the range of R0 susceptible to instability, with no instability
possible for τ ≳ 0.105 (a value dependent on δ and ε). Larger values of σ give wider
ranges of R0 for instability. For values of the Prandtl number σ ≲ 1, the unstable range
of R0 is very narrow, and exists only for R0 < 1, i.e. outside of the salt fingering regime.
Hence, for sufficiently small Prandtl number, there is no possibility for salt fingering
staircases to form via the γ-instability, in agreement with the results of three-dimensional
numerical simulations of the full thermohaline system (Traxler et al., 2011).

We have presented numerical solutions to the model in Sec. 7.4, showing the initial
development of a staircase and its subsequent evolution to late times. The staircase evolves
via the B-merger process described by Radko (2007), eventually leaving a single strong
interface with well-mixed layers on either side. During a merger event, the buoyancy
gradient in the remaining interface increases, so that the gradient in the final interface is
significantly higher than in the first interfaces to develop. The buoyancy flux through the
system also shows sharp increases during merger events, which can be explained by the
condition responsible for the B-merger that flux increases as buoyancy jump decreases.
This increase in flux agrees with previous results (e.g. Rosenblum et al., 2011), and is an
important piece in the puzzle needed to understand transport processes through staircases.

To use the present model to make predictions for real staircases, we consider dimen-
sional forms of the key parameters. With typical values of α , g, |Θz|, κT and ν for an
oceanic staircase, (7.7) gives a characteristic length of L ≈ 0.01m, and hence a domain of
depth 500 represents 5m—signicantly smaller than the scale on which staircases are seen
in the oceans. However, the parameters δ and ε can readily be varied, and it seems likely
that such fine-tuning will allow the model to produce good predictions for real staircases.
The value of σ = 10 used here is also slightly unrealistic, with a true oceanic value of
σ ≈ 7. With this reduced value, Fig, 7.3(b) shows a lower range of R0 for instability,
more in keeping with the range 1 < R0 < 2 in which observed staircases are found. With
these changes to parameters it seems likely that the model can be adapted to produce good
predictions of real staircase behaviour, which can easily be tested by comparison with
observations.



Chapter 8

Thermohaline staircases: Diffusive
convection

8.1 Introduction

In Chapter 7, we presented a model for layering in double-diffusive convection, and
investigated staircase formation in the salt fingering regime. We saw in Sec. 7.3.1 that
in the diffusive convection regime, no uniform-gradient steady-state solutions exist, no
matter what parameterisations are used for the various terms in the equations. Ma & Peltier
(2022) note that the value of the density ratio in observed diffusive staircases (2 < 1/R < 7)
are significantly different from the range of R in which the basic diffusive convection
instability takes place (1 < 1/R < 1.14, cf. Sec. 1.3). On this basis, they propose that rather
than staircases being caused by diffusive-convection alone, some forcing is necessary, for
example the imposition of an external flow, and that double-diffusive effects play only a
secondary role in regularising the staircase. The lack of steady-state solutions in our model
lends some support to this hypothesis.

Another suggestion for the mechanism driving diffusive layering is thermohaline-
shear instability, where a flow stable to both shear and diffusive instabilities can become
unstable due to a combination of both (Radko, 2016; Brown & Radko, 2019; Radko,
2019b). Numerical solutions have shown that these instabilities can then develop into
layers. Another proposal is that layering is driven by the existence of horizontal density
gradients, with thermohaline intrusions interacting with double-diffusive effects to form
layers. This theory was originally developed in the SF regime (Merryfield, 2000), and
has more recently been applied to diffusive staircases (Bebieva & Timmermans, 2017).
Both of these alternative suggestions are dependent on horizontal structure — either with a
mean shear flow or a horizontal temperature gradient, so naturally cannot be captured by
the one-dimensional models discussed in this work.

However, three dimensional numerical simulations have produced diffusive layers in
the absence of forcing (e.g. Rosenblum et al., 2011). In Chapter 7 we interpreted the
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uniform-gradient steady state as a representation of a salt-fingering field in a turbulent
flow. In the DC regime, the analogous diffusive convection field cannot exist in our
model without an external energy source driving the turbulence. As the layering instability
develops from these uniform fields, it is possible that our model requires forcing not to
drive layering, but simply to initialise the system in a uniform diffusive convective state.

In this chapter, we adapt the system (7.15)–(7.17) with length scale (7.18) to model
staircases in the diffusive convection regime by reintroducing a constant power forcing
term. In Chapter 6, we found that a model employing the BLY parameterisations for the
length scale and stirring produced staircases, but led to a high-wavenumber instability in
the diffusive regime, which could be suppressed by the addition of hyperdiffusion terms
to the equations. In both regimes, the dynamics were dominated by the stirring, with
the temperature and salinity fields evolving almost identically. For a realistic model of
double-diffusive layering, the two components of buoyancy should be fully independent.
We show here that with parameterisations for the length scale based on the density ratio R,
as in Chapter 7, and an appropriate choice of source term, staircases form in the diffusive
regime with the two components of density evolving separately, and no high wavenumber
instability.

8.2 Model for DC layering incorporating an energy source

We begin with the same model as used in the salt fingering regime, with the addition of a
energy source term P

Tt =

(
l2e

le1/2 +1
Tz

)
z
, (8.1)

St =

(
l2e

le1/2 + τ
Sz

)
z
, (8.2)

et =

(
l2e

le1/2 +σ
ez

)
z
−σ

(
l2e

le1/2 +1
Tz −

l2e
le1/2 + τ

Sz

)
+σezz − ε

e3/2

l
+P. (8.3)

These equations are nondimensionalised according to (7.6) such that in the DC regime,
the background temperature gradient is g0 = −1, and the background salinity gradient
is d0 = −1/R0, for R0 the density ratio. For a statically stable buoyancy gradient, bz ≡
−(1−1/R0)> 0, so R0 < 1.

Once again we use the length scale

l =

(
e2 +δR2)1/2

e1/2R
, (8.4)

chosen to provide the appropriate release of potential energy to drive layering, as discussed
in Chapter 7.
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To parameterise the energy source, we take the simplest possible option — a constant
power source term P =W . We will keep all other parameters fixed at the values used in
Chapter 7, but will investigate the effect of changing the value of W . This constant power
parameterisation for the energy source was considered by Balmforth et al. (1998) (BLY) in
their work on stirred stratified layering, but in that case the range of uniform steady-state
gradients unstable to perturbations was unbounded, leading to the development of infinite
gradients in a finite time. We will see in Sec. 8.3.2 that beside allowing the existence of
steady-state solutions to (8.1)–(8.4), this constant power source does not affect any of the
conditions for instability. We choose this constant power parameterisation as the minimal
possible addition to the model that will allow staircases to form; in future work more
physically-motivated forms should be considered.

8.3 Steady states and their stability

8.3.1 Uniform gradient steady states

The system (8.1)–(8.4) admits uniform steady states (g0,d0,e0) = (−1,−1/R0,e0(R0))

such that p(g0,d0,e0) = 0, where

p =−σ

(
l2e

le1/2 +1
Tz −

l2e
le1/2 + τ

Sz

)
− ε

e3/2

l
+W. (8.5)

Recall from Chapter 7 that in the DC regime g0 < 0, d0 < 0, R0 < 1, there are no positive
solutions e0 when W = 0, as the bracketed term in (8.5) is negative. Adding any positive
value of W allows positive solutions e0 to exist. Setting e0 = 0, g0 =−1, d0 =−1/R0 in
(8.5), we find that e0 = 0 at

Rc =
σδ

(
1+

√
δ

)
(

W
(

1+
√

δ

)
+σδ

)(
τ +

√
δ

) . (8.6)

Uniform gradient steady-state solutions exist for all values of R0 ≤ Rc. Steady states exist
in the DC regime (0 < R0 < 1) for W >Wc, where Wc is given by

Wc =
(1− τ)σδ(

1+
√

δ

)(
τ +

√
δ

) . (8.7)

For parameter values τ = 0.01, σ = 10, ε = 1 and δ = 0.001, this critical value is Wc ≈ 0.23.
Figure 8.1(a) shows the steady-state energy as a function of R0 for a range of values of
W . As W increases, the value of Rc decreases, thus expanding the range of R0 for which
steady states exist.
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For each value of W , e0(R0) increases for small values of R0. For the higher values of
W , the profile is not monotonic, with e0(R0) peaking, then decreasing for larger values
of R0. However, this peak and decrease happens only for R0 > 1, so not in the region of
interest for DC. Note that no matter the value of R0, a higher value of W produces a greater
energy. This makes sense physically, with a larger power source giving a more energetic
state. From here onwards, we adopt the value W = 1.

Figure 8.1(b) shows the form of the length scale (8.4) corresponding to each of the
steady-state energies in Fig. 8.1(a). As e0 → 0, l0 → ∞, while l0e1/2

0 →
√

δ . For all except
the largest value of W shown, the length scale decreases monotonically as R0 increases.
This is contrary to expectation; when R0 is near zero, there is a large difference between
the two components of buoyancy, producing a relatively large buoyancy gradient, so we
would expect a small length as in interfaces. Similarly, when R0 is close to 1, the buoyancy
gradient is smaller, so we expect a longer length scale. However, this argument does not
take into account variation in the magnitude of Tz. With a sufficiently large value of Tz a
large buoyancy gradient is possible even for R0 near 1. Conversely, a small enough value
of Tz can produce a very small buoyancy gradient for values of R0 near zero, where we had
previously assumed bz to be large. Although the length scale does not have the expected
dependence on R0, we shall see in Sec. 8.4 that it does produce the appropriate lengths in
numerical staircase solutions.

8.3.2 Stability

We analyse the stability of the steady state (g0,d0,e0) = (−1,−1/R0,e0(R0)) using the
framework developed in Chapter 5. Writing the equations in the general form (5.1)–(5.3),
f , c and κ are unchanged from the expressions (7.21)–(7.23), while p picks up the source
term, as given by (8.5).

For a range of values of R0 we first calculate e0(R0) and substitute the value into the
expressions for −pe, FgCd −FdCg, Fg +Cd and fgcd − fdcg; these quantities are plotted
as functions of R0 in Fig. 8.2(a). There is a finite range of R0 where FgCd −FdCg < 0,
so (5.17a) is satisfied. As well as a portion of the DC regime, this unstable range includes
values where R0 > 0 and the fluid is statically unstable. None of the other instability
conditions (5.11), (5.17b) or (5.23) are satisfied anywhere. Figure 8.2(b) shows how the
growth rate s of sinusoidal perturbations varies with wavenumber m. There is a clear finite
range of m for instability where s > 0, and a well-defined maximally unstable wavenumber.

Note that all of the stability conditions (5.11), (5.17a,b) and (5.23) depend only on
partial derivatives of the functions f (g,d,e), c(g,d,e) and p(g,d,e). The constant power
source W in (8.5) vanishes when any derivative is taken, so has no direct effect on the
stability of the system. The source term is necessary in order to produce uniform steady
states with positive energies, but the instability comes entirely from the double-diffusive
interaction of the fluxes, rather than the energy source. This contrasts with the stirred
models of BLY, and Chapters 3 and 6, where the source term was parameterised as a
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Fig. 8.1 (a) Steady-state solutions e0(R0) to the DC steady-state equation (8.5), for a range
of values of the constant power source W . Other parameter values are τ = 0.01, σ = 10,
ε = 1 and δ = 0.001. The black dotted line shows the boundary of the DC region R0 < 1.
(b) Values of l0(R0), corresponding to each line shown in (a).
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Fig. 8.2 (a) Stability conditions for the state (g0,d0,e0) = (−1,−1/R0,e0(R0)), for param-
eters τ = 0.01, σ = 10, ε = 1, δ = 0.001 and W = 1. Condition (5.17a) is satisfied for
values of R0 between the red dots. (b) Growth rate of perturbations to the steady state
with R0 = 0.9. There is a single unstable mode, with maximally unstable wavenumber
m = 0.222.

function of bz and e. BLY demonstrated that alternative forms for the energy source
(including the constant power option used in this chapter) do not lead to the well-resolved
layers seen when their ‘equipartition’ source P = εe1/2/l is used. Here, by adopting the
constant power source, we ensure that all the instability is due to double-diffusive effects.
The only effect of the constant power source is in supporting uniform-gradient steady
states in the DC regime.

In Chapter 5, we presented the ‘three-component Phillips effect’ — an extension of the
stability analysis of Balmforth et al. (1998) to a three-component system of temperature,
salinity and kinetic energy. A linear instability in such a system can follow either the
Phillips mechanism, where the layering instability is driven by an energy source, or the
γ-instability, where interaction between steady-state temperature and salinity fluxes causes
the release of potential energy allowing for layers to form. The stirred three-component
model of Chapter 6 produced staircases by the Phillips mechanism. By contrast, the energy
source here does not affect the conditions for instability directly, with layering being caused
by the γ-instability.

8.4 Nonlinear evolution

We solve the system (8.1)–(8.4) with boundary conditions (7.27)–(7.29) and initial condi-
tions (7.30)–(7.32). The perturbation amplitudes (g′,d′,e′) are chosen to be an eigenstate
of the linear stability problem for the background state (g0,d0,e0) = (−1,−1/R0,e0(R0)),
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with m = 2nπ/H the maximally unstable wavenumber. As before, we use the MATLAB
pdepe solver.

Figure 8.3 shows the solution for background state (g0,d0,e0) = (−1,−1/0.9,0.0861),
with the n = 35 sinusoidal perturbation across a domain depth H = 1000, using 4000
spatial mesh points. The results show some similarities to those for the SF regime shown
in Fig. 7.4, but there are some notable differences. At early times, a stack of layers
and interfaces forms, which gradually undergoes mergers until by t ≈ 1013 there are two
interfaces remaining, at the top and bottom of the domain. The interfaces appear very
different to those seen in the SF regime in Chapter 7: rather than a single spike in the
buoyancy gradient, they are characterised by two spikes separated by a region of lower
gradient. In the SF regime, successive mergers increased the maximum buoyancy gradient
in an interface, with the width remaining approximately constant. Conversely, Fig. 8.3(c)
shows that in the DC regime, the maximum buoyancy gradient remains O(1), with a slight
decrease as mergers occur. Instead, interfaces get wider with each successive merger.
This difference in behaviour is discussed in Sec 8.5. The mergers seen here follow the
H-merger pattern described by Radko (2007), where neighbouring interfaces drift and
combine. By contrast, in the SF regime, mergers followed the B-merger pattern of strong
interfaces growing at the expense of weaker ones. In comparison to the SF solutions seen
in Chapter 7, the difference in gradient between layers an interfaces is very small, with
max(bz)−min(bz)≈ 0.7 at late times.

8.4.1 Profile of the layers and interfaces

We now discuss the profile of the layers and interfaces in a snapshot of the solution at fixed
time. Figure 8.4 shows the profile of the solution shown in Fig. 8.3 at t = 108, showing (a)
the density ratio and length scale, (b) the temperature, salinity and buoyancy fields, and (c)
their gradients.

As discussed in Sec. 8.3.1, we initially expect that R should be close to 1 in layers to
produce a small overall buoyancy gradient, while R should be near zero in interfaces to
give a large gradient. However, this does not account for the magnitude of each of the
components of buoyancy. We see in Fig. 8.4(a) that in the wide, well-mixed layers, R is
near zero and l is large, while in the narrower interfaces, R approaches unity and l is near
zero. This matches well with the picture seen in Fig. 8.1(b), where l → ∞ as R → 0, and l
decreases as R increases.

In the solution shown in Fig. 8.3(b), the interfaces display two large spikes in the
buoyancy gradient, either side of a region with lower gradient. To investigate this profile,
we consider the temperature and salinity fields individually. Figure 8.4 shows (b) the
individual fields and (c) their gradients at time t = 108, after several mergers have taken
place. The buoyancy field in (b) and buoyancy gradient in (c) have been normalised to
have the same horizontal scale as the salinity field. In both the temperature and salinity
fields, a clear staircase structure can be seen. However, the steps in the buoyancy field are
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Fig. 8.3 Nonlinear evolution of the system (8.1)–(8.3), with length scale (8.4), subject
to boundary conditions (7.27)–(7.29) and initial conditions (7.30)–(7.32), for parameter
values R0 = 0.9, τ = 0.01, σ = 10, ε = 1, δ = 0.001 and W = 1. (a) Overall buoyancy
field b = T −S; (b) buoyancy gradient bz = Tz−Sz scaled by the range of its values at each
time; (c) range of gradients, i.e. max(bz)−min(bz). The time axes of all panels are aligned.
Profiles in (a) and (b) are shown corresponding to the time at which they intersect the time
axis. The solution evolves from the initial condition into a dense stack of layers (seen as
the first solution presented in (b)). At t ≈ 106 , the layers begin to undergo mergers, which
cause the maximum gradient to increase, until by t ≈ 1013 two interfaces remain on the
edges of the domain. Interfaces are characterised by two spikes of equal magnitude in the
buoyancy gradient bz, with a lower gradient region in between.
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Fig. 8.4 Snapshot of the solution from Fig. 8.3, showing (a) the density ratio R and length
scale l; (b) T , S and b; and (c) Tz, Sz and bz at t = 108. The b and bz fields have been
normalised to have the same scale as S and Sz. The box outlined in blue in (c) shows a
larger scale view of the range 630 ≤ z ≤ 660.

less well-formed. We see from Fig. 8.4(c) that the interfaces in T and S are smooth but the
salinity interfaces are slightly wider than the interfaces in the temperature. As such, when
the total buoyancy gradient is calculated, there are two spikes, corresponding to the edges
of the interfaces where Sz is much greater than Tz. In the centre of the interface, Tz ≈ Sz, so
bz is smaller than in the edges of the interface. Note that |Sz| ≥ |Tz| everywhere, so the total
buoyancy gradient bz remains positive. That the interfaces in the salt field are wider than
in the temperature field is somewhat surprising — previous numerical studies have found
interfaces to be sharper in the salt than the temperature field (e.g. Hughes & Brummell,
2021). It has been argued that this is because the molecular diffusivity of temperature is
much higher than that of salt, so peaks in the temperature gradient become more spread
out (e.g. Wood et al., 2013).

This two-spike interface profile is generic for the entire unstable range of R0. Fig. 8.5
shows snapshots of solutions for two different values of R0 to illustrate this. For R0 = 0.8,
Fig. 8.5(a) clearly shows the two-spike structure. In comparison to Fig. 8.4, the spikes
are smaller, with the interior of the interface having a larger gradient than the R0 = 0.9
case. Fig. 8.5(b)–(c) show the profile of solutions with R0 = 0.6; (b) shows the whole
solution, and (c) a close-up on a single interface. The two-spike profile cannot be seen from
the global form in Fig. 8.5(b), in which it appears that interfaces have an approximately
rectangular profile. However the close-up view in Fig. 8.5(c) shows that the two-spike
profile does still exist, but the gradient in the middle of the interface is almost identical to
that in the spikes. In both Figs. 8.5(a) and (b), the interfaces in the salinity gradient appear
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Fig. 8.5 Snapshots of solutions to (8.1)–(8.3) at time t = 1010, for (a) R0 = 0.8 and (b,c)
R0 = 0.6. Tz Sz and bz are plotted, with the buoyancy gradient fields been normalised to
have the same scale salinity gradient. (b) and (c) show the same solution, with (c) giving a
close-up view of the profile of a single interface.

to be marginally wider than those in the temperature gradient, leading to the two-spike
profiles.

The two-spike profile can be explained by noticing that the interfaces in the salinity
staircase are wider than those in the temperature staircase. However, this leads to the
new question: why are the salt interfaces wider? To answer this, we consider the forms
of the temperature and salinity fluxes given by (7.21)–(7.22). When le1/2 is large, as in
layers, f/g ≈ c/d. So in layers, temperature and salinity are transported at similar rates.
However as le1/2 → 0, f/g ∼ c/τd. Hence in small-length, low-energy interfaces, the
ratio of temperature flux to salinity flux is much smaller than in layers. So temperature
and salinity are transported at similar rates from the layers and into interfaces, but less
temperature is transported through interfaces than salinity. As such, the density ratio in
the interfaces RI is heightened in comparison with the background ratio R0. The solutions
shown above confirm this, with measured values of RI = 0.94, 0.84 and 0.62, compared to
background values R0 = 0.9, 0.8 and 0.6 in Figs. 8.4, 8.5(a) and 8.5(b)) respectively.

Now we have established that RI > R0 in interfaces, we shall demonstrate why the
interfaces in the salinity profile are wider than those in the temperature. For simplicity, we
assume a rectangular structure to the temperature and salinity gradient profiles (although a
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similar argument to the following may be made with smoother profiles), so that

In layers


Tz = 0,

Sz = 0,

R = 1.

(8.8)

In interfaces


Tz = T I

z ,

Sz = SI
z,

R = RI.

(8.9)

We additionally write hT
i as the thickness of the ith interface in the temperature, and hS

i

as the thickness of the ith salinity interface, for i = 1,2, ...N, where N is the total number
of interfaces. Thus, the total temperature and salinity gradients are

T (H)−T (0) =
N

∑
i=1

hT
i T I

z , (8.10)

S(H)−S(0) =
N

∑
i=1

hS
i SI

z. (8.11)

By the choice of nondimensionalisation (7.6), the background temperature gradient is fixed
as −1, with background salinity gradient −1/R0. Taking T I

z and SI
z to be constants (once

again, non-constant profiles are possible), conservation of temperature and salinity requires

N

∑
i=1

hT
i =− H

T I
z
, (8.12)

N

∑
i=1

hS
i =− H

R0SI
z
=− RIH

R0T I
z
. (8.13)

Recalling that RI > R0, it follows from (8.12)–(8.13) that

N

∑
i=1

hT
i <

N

∑
i=1

hS
i , (8.14)

i.e. the total width of temperature interfaces must be less than the total width of salinity
interfaces. In the numerical solutions shown in Figs. 8.3–8.5, condition (8.14) is satisfied
by having hT

i < hS
i in every interface, yielding the two-spike profile in the buoyancy

gradient.
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Fig. 8.6 Regions of Ra–Rs space unstable to the layering instability (5.17a), with parameter
values τ = 0.01, σ = 10, ε = 1, δ = 0.001 in (a) the unforced SF system (7.15)–(7.17),
and (b) the forced DC system (8.1)–(8.3) with W = 1. Dashed lines show g0 = d0; above
these lines the fluid is statically unstable.

8.5 Difference in behaviour between salt fingering and
diffusive convection

We have seen that there are significant differences in the solutions of the forced DC
system (8.1)–(8.3) and the unforced SF system (7.15)–(7.17). Most notably, in the SF
regime, successive mergers led to an increase in the gradient in interfaces, while in the DC
regime there is no significant increase in gradient, but the thickness of interfaces increases.
Both of these behaviours ensure that the buoyancy jump across the interface is conserved
during a merger event. To investigate the cause of this difference, we consider the stability
boundaries in Ra–Rs space.

Recall that the system (7.15)–(7.17) was nondimensionalised such that in the back-
ground state, the Rayleigh number Ra had unit magnitude, with the salinity Rayleigh
number Rs = Ra/R0. In all the analysis so far, we have considered only background states
with g0 ≡ −Ra = ±1. However, in the nonlinear phase of evolution, g(z, t) is not fixed
at ±1, and may evolve freely subject to the boundary condition (7.27). Assuming that a
locally uniform state (g0,d0,e0(g0,d0)) exists across some region of the domain, we can
extend the stability analyses of sections 7.3 and 8.3.2 to find unstable regions in g0–d0

space. These are shown in Fig. 8.6.
We see from Fig. 8.6 that in the SF regime (a), the unstable region takes the form of a

wedge of Ra–Rs space, extending to arbitrarily large values of |Ra | and |Rs |. Hence, bz

can attain any value bz ∈ R+ within the unstable region. By comparison, in the DC regime
(b), the unstable region is a bounded region with 0 ≲ Ra ≤ 3.7 and 0 ≲ Rs ≤ 1.8. With
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these constraints on the Rayleigh numbers, the total buoyancy gradient can exist only in
the range −2.5 ≲ bz ≲ 1.8. So when a merger takes place, the buoyancy gradient cannot
increase every time. To ensure total buoyancy conservation, the interface must instead
grow in thickness. This reduced range of unstable buoyancy gradients also explains the
very small difference between the gradient in interfaces and layers seen in the numerical
results of Fig. 8.3.

The picture in the DC regime shown in Fig. 8.6 is a little concerning. As Ra → 0, the
system is unstable to layering for a finite range of Rs. Arguing based on continuity and
smoothness, it appears that there may also be an unstable region where Rs > 0 and Ra < 0
(and hence R0 < 0). This is the doubly stable regime, in which both components of the
buoyancy have stable gradients, so instability here is not expected. Of course, we saw
in Chapter 6 that stirring produced instability for some parts of the doubly stable regime
(cf. Fig. 6.2), so it is possible that the same will happen with the parameterisations used
here. However, considering the form of the length scale (8.4), l < 0 when R0 < 0, which is
clearly not physically valid as a length scale. Naïvely ignoring this problem, and seeking
steady-state solutions anyway, we find that there are indeed steady states in the doubly
stable regime that are unstable to layering — so the inclusion of an energy source allows
instability where none is expected. However, we saw in Sec. 8.3.1 that l → ∞ as R → 0. So
by continuity, it will not be possible to reach negative values of l in solutions. Hence, the
doubly stable regime cannot be reached. This is a limitation of the model, where ideally
the same equations would be applicable to all regions of Ra–Rs space. As an aside, if
the forced system (8.1)–(8.3) is applied in the salt fingering regime, the results are not
significantly different from those presented in Chapter 7. The steady-state solutions are
changed, but, as discussed in Sec. 8.3.2, the constant power source does not directly impact
the γ-instability.

Furthermore, the shape of the unstable region in Fig. 8.6(b) is unexpected. Whereas in
the SF regime, there is a semi-infinite wedge in Ra–Rs space where layering is predicted,
the unstable region in the DC regime is fully bounded, and contains only relatively small
values of Ra and Rs. Referring to Fig. 1.3, we see that for a basic double-diffusive
instability, both Ra and Rs are O(1000) — significantly larger than the O(1) values seen
in Fig. 8.6(b).

In summary, while the addition of a constant power source does allow staircases to
form in the DC regime, the overall stability picture does not provide a good model for real
staircases. This is a useful first step, but leaves work to be done.

8.6 Discussion

In Chapter 7 we presented a model for layering in salt fingering, but showed that it does
not have any uniform steady states in the diffusive convection regime. Ma & Peltier (2022)
suggested that diffusive staircases are not in fact due to an initial DC instability, but rather
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require some external forcing in order to form. By adding a constant power source term to
the energy equation, we have adapted the model to produce staircases in the DC regime.

The system is unstable to the γ-instability for a range of values of the density ratio, in
both the DC and statically unstable regimes. Solutions follow the characteristic pattern of
layers initially forming, then evolving through mergers, gradually reducing the number of
layers over time. Mergers follow the H-merger pattern of interfaces drifting and colliding.
The interfaces in the salinity field are slightly thicker than those in the temperature field,
producing interfaces in the buoyancy field characterised by two sharp spikes either side of
a smooth region. We have established that this difference in interface thickness between
the two components of buoyancy is due to a difference in the turbulent fluxes, such that the
ratio of temperature to salinity flux is much smaller in interfaces than in layers.However,
this stands at odds with the results of previous numerical studies, where the small diffusivity
ratio τ has produced sharper interfaces in the salt than in the temperature (e.g. Wood et al.,
2013; Hughes & Brummell, 2021). In deriving the model (8.1)–(8.3) we neglected the
independent molecular diffusion terms in the temperature and salinity equations, assuming
that the turbulent fluxes would be significantly more important. It seems likely that this
approximation was not valid for these diffusive interfaces, and molecular diffusion should
be retained to produce the sharper saline interfaces seen in simulations. In the SF regime
(cf. Chapter 7), the neglect of molecular diffusion appears to be remain valid, as interfaces
are not wide, but sharp, with a single peak.

During a merger, the interface width increases, in contrast with the SF regime where
the maximum buoyancy gradient increased. Considering the unstable regions of the whole
of Ra–Rs space (i.e., considering locally uniform states, rather than global states across the
whole domain, where the temperature gradient is fixed at ±1 by the nondimensionalisation),
we found that the unstable region of the SF quadrant is a semi-infinite wedge, while the
unstable region of the DC regime is fully bounded. In the SF regime, temperature and
salinity gradients may combine to produce any arbitrary value for the buoyancy gradient;
in the DC regime, only a finite range of buoyancy gradients is available. As such, when
two interfaces merge, the new single interface cannot increase in gradient beyond a certain
level, so the interface instead must thicken to ensure buoyancy conservation.

In this chapter, we included an energy source in the model (8.1)–(8.4). However,
numerical studies of layering in the diffusive regime have shown that no such source term
is necessary, with staircases forming in solutions to the unforced Boussinesq equations
(Rosenblum et al., 2011; Mirouh et al., 2012). For the system to develop layers, an initial
diffusive convective state is needed, which cannot exist in our model without some forcing.
We have adopted a constant power source term, which allows uniform-gradient diffusive
convection states to exist in the turbulent model, while having no effect on the linear
stability of these states. As in the SF regime (cf. Chapter 7), staircase formation occurs
via the γ-instability, in contrast with the proposal of Ma & Peltier (2022) that the layering
instability itself requires forcing in the DC regime.
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We have now presented two different three-component systems with energy sources to
model staircases in diffusive convection. The first, in Chapter 6, relied on the BLY forms
for the length scale and source term. These parameterisations were designed specifically to
describe the dynamics of a stirred system, and were based on characteristic scales derived
from the stirring motion. By contrast, the model in this chapter used the length scale
parameterised in terms of the density ratio, with scales based on double-diffusive physics.
The constant power source term here was chosen as the simplest possible form, and has no
effect on the system’s stability beyond enabling the existence of basic diffusive convection
states. The first model (Chapter 6) can be considered a stirred model with some possibility
for double-diffusion, while the second (Chapter 8) is a double-diffusive model, with an
energy source added to ‘help’. In solutions to the model in Chapter 6, the temperature
and salinity fields evolved identically as a single buoyancy field; in the double-diffusive
model presented here, the two components of buoyancy evolve independently to create
true double-diffusive staircases.

To summarise, the model presented in this chapter is an extension of that presented in
Chapter 7 for salt fingers, extended to model the diffusive regime. The system (8.1)–(8.3)
represents the minimum change to the salt fingering model that is required for staircase
solutions to exist. However, the results in this chapter cannot be viewed as conclusive, and
have some serious shortcomings that must be acknowledged.

First, the numerical solutions show interfaces in the salinity field to be wider than
in the temperature, where simulations and observations in fact show the opposite, with
salinity interfaces being sharper. In the derivation of the model, we ignored the additional
molecular diffusion terms (i.e., Tzz and τSzz on the right hand sides of (8.1) and (8.2)
respectively), as they were considered to have a significantly smaller contribution than the
flux terms. This assumption was appropriate in the SF regime, and produced solutions
with a good resemblence to real staircases. It has been suggested that the differences in
molecular diffusivity is the key factor driving the different interface thicknesses in the
two components of density, so neglecting these diffusive terms has resulted in incorrect
predictions. To develop a more physically relevant model, the obvious first step is to retain
these molecular diffusion terms. In this case, the form of the length scale (8.4) may need
to be reconsidered; it was developed for the particular fluxes in (8.1)–(8.2), so may not
necessarily produce the same behaviour if the diffusive terms are retained.

Another obvious issue is the unstable regions shown in Fig. 8.6(b). The figure shows
instability only for a very small range of O(1) values of Ra and Rs. In reality, the values
of the Rayleigh numbers for the basic diffusive convective instability are O(1000) (cf.
Fig, 1.3). With a more detailed investigation of parameter space (i.e. ε , δ ) it may be
possible to produce more realistic results. In addition, it is concerning that the system is
unstable as Ra → 0. By continuity, it appears that there may also be a layering instability
when Ra < 0 and Rs > 0, i.e. the doubly stable regime, where no instability should be
exist. It seems most likely that this problem stems from the inclusion of forcing, with the



8.6 Discussion 127

constant power source term allowing diffusive convective states to exist where none are
expected, which can then become unstable by the same layering instability.

With these limitations in mind, the results presented in this chapter should be seen as an
interesting extension of our salt fingering model, and an investigation into the limits of its
applicability, rather than as a serious physical prediction. There is certainly room for future
work on this style of model for diffusive layering. By reconsidering the assumptions in the
model, and retaining the molecular diffusion terms, it seems likely that a more accurate
model can be developed, with the potential for making physically relevant predictions. As
discussed in Chapter 7, the prescription for the length scale (7.18) is not the only possible
option, so the model could be tuned further by investigating different forms for the length
scale.

A further alteration to the model could be through reconsidering the form of stirring.
While the constant power form used in this chapter has advantages as the minimum forcing
necessary, individual physical situations could be modelled with more specific forcing
terms. As an example, recent measurements have shown the existence of DC staircases in
river outflows in the Caribbean, strongly forced by diurnal heating (Taylor, 2022, personal
correspondence). By forcing instead with a time and depth-dependant heat source, the
model could be adapted to produce a more realistic representation of this physical scenario.



Chapter 9

Conclusions

Summary

From stratified layers in a laboratory tank, to thermocompositional layers in the interiors
of stars, the dynamics of staircases represent a challenge to mathematicians with far
reaching effects across different areas of physics. In a geophysical context, understanding
the conditions under which double-diffusive staircases form, and the transport properties
through them, has important consequences for climate modelling. In the Arctic, accurate
parameterisations of the ocean-ice heat flux are important in determining the fate of polar
ice cover, so knowing accurately where diffusive staircases can be found, and how much
heat is transported through them will play an important part (e.g. Stranne et al., 2017).
In general, as a changing climate alters oceanic salt and heat distributions, changes in
double-diffusive fluxes have the potential to destabilise existing oceanic circulation (e.g.
van der Boog et al., 2021). Likewise, EEE ×BBB staircases form transport barriers, and are thus
important in the context of plasma confinement—a key problem for nuclear fusion (e.g.
Dif-Pradalier et al., 2010). Between producing better climate models and helping to make
fusion power viable, staircase physics has the potential to play a large role in adaption to
the climate crisis in the coming years.

In this thesis we have made developments in two areas: stirred stratified convection,
and double-diffusive convection. In Chapter 2, we presented a spatial averaging process to
develop one-dimensional models for density staircases from the Boussinesq equations. In
subsequent chapters, we applied this model to different contexts by varying the parame-
terisation of a turbulent mixing length. Our model relies on the related phenomena of the
Phillips effect and γ-instability, in which parameterisations of density fluxes produce a
negative turbulent diffusivity, leading to sharpening of the density profile, and eventually
to the formation of layers.

In Chapter 3, we investigated stirred stratified convection, using a mixing length that
interpolates between a scale based on the stirring motion, and the emergent Ozmidov
length based on the stratification, and including an explicit forcing term in the equations.
We investigated the influence of boundary conditions on staircase solutions. In particular,
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we found that certain choices allow investigation of the behaviour of staircases to very long
times. We showed that the inclusion of molecular and viscous diffusion acts to suppress
the instability that leads to layering. Staircase solutions evolve by layer mergers, in which
adjacent layers combine into one. We showed that these mergers happen on a logarithmic
timescale, which is consistent which other models of layering.

In Chapter 4, we presented an experimental study to test a prediction of Chapter 3,
namely that the system is unstable to layering for only a finite range of Richardson number.
Equipment constraints allowed us to access only a small region of parameter space, in
which our results are consistent with the hypothesis. However, further experimental work
for a wider range of parameters is necessary to confirm and extend our results, and to
produce a more quantitative study.

To tackle the problem of double-diffusive layering, it is necessary to consider the two
components of density (temperature and salinity) separately. As such, a two-component
model such as that used in Chapter 3 (for buoyancy and energy) is not sufficient, and a
third equation must be added. In Chapter 5 we presented a linear stability analysis of
a general three-component system of equations, finding conditions for the equivalent of
the Phillips instability. We showed that the ‘γ-instability’ based on the ratio of fluxes,
and the Phillips instability, are mathematically equivalent, with the physical difference
being the energy source driving the instability. While the Phillips instability relies on
some large scale stirring or energy production, the γ-instability is driven by the release of
potential energy from the background temperature and salinity fields. We also found that a
high-wavenumber instability can occur in a three-component system, and demonstrated
how it can be regularised by the inclusion of hyperdiffusion terms.

In Chapter 6, we applied the analysis of Chapter 5 to a three-component model with
stirring retained. By retaining a stirring term, while adding an extra equation for a second
component of density, we hoped to produce a ‘halfway house’ between the externally
forced and double-diffusive problems. However, when solved numerically, this model
produces solutions almost identical to those in the stirred case with a single component of
buoyancy, with temperature and salinity fields evolving as a single buoyancy field. The
dynamics are dominated by the stirring, with double-diffusion playing a much smaller role.

To produce a true model for double-diffusive staircases, we removed the forcing term
entirely. Previously, the mixing-length had been parameterised based on assumptions about
the stirring behaviour. In Chapter 7, we presented a new choice of length scale appropriate
for double-diffusive physics. This new length allows for the release of potential energy
from the background density fields to drive the γ instability so that staircases can form.
The inclusion of an energy equation regularises the system, avoiding the high wavenumber
instability found in models of temperature and salinity alone. Numerical solutions in
the salt fingering regime show the evolution of staircases via mergers. We demonstrated
that each merger increases the buoyancy flux through the staircase, thus explaining the
heightened fluxes found in observed staircases compared to non-layered regions.
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We found that the model presented in Chapter 7 did not produce staircase solutions in
the diffusive convection regime. Previous work has suggested that the layering instability
in the DC regime is not in fact the result of a basic double-diffusive instability, but requires
something else to drive it, for example a background shear flow. In Chapter 8 we showed
that introducing a simple constant-power forcing term does produce staircase structures
in DC. These DC staircases appear quite different to the SF staircases of Chapter 7,
with interfaces becoming wider, rather than sharper with successive mergers, owing to
differences in the unstable regions of parameter space.

Outlook

There is significant potential for future research to build on the results presented in this
thesis. One particular direction to take is an extension of the experiments of Chapter 4
to a fuller study, to demonstrate more conclusively the existence of an upper limit on the
Richardson number for staircase formation. Two simple ways to access new parameter
spaces are by changing the geometry, and hence the characteristic scales, and by changing
the solute, allowing a wider range of densities. Another improvement would be to take
quantitative measurements of the fluid density, potentially allowing finer structures to be
seen than are visible in the shadowgraph images.

Another important direction for further study is a comparison of the models presented
here with direct numerical simulations. In the salt fingering model, there are two physical
parameters (σ and τ), which are set by the fluid, and two free parameters (ε and δ ). By
comparison with simulations and observations, these free parameters may be calibrated to
produce more quantitative results, enabling more accurate predictions to be made for real
staircase structures.

The study of diffusive convection in Chapter 8 produced results with some worrying
characteristics. Most notably, the interfaces in the salinity field are wider than those in
the temperature field, which is contrary to what is observed in real oceanic staircases. To
improve this model and produce more realistic results, some of the assumptions in the
derivation of the model should be reconsidered. Specifically, when developing the salt
fingering model, we neglected the molecular diffusive terms in the temperature and salinity
equations, assuming that the contribution from diffusion would be of secondary importance
in comparison to the turbulent fluxes. However, the difference in molecular diffusion is
suggested as the key factor influencing the different thickness of salt and temperature
interfaces, so to reproduce this characteristic, these terms should be retained in the model.
To further develop the DC model, an obvious step is to focus on the forcing term. The
constant-power forcing was chosen as a minimal addition to the SF model to allow it
to produce staircase solutions in the DC regime, and an extended investigation should
consider a different way of forcing the fluid. As an example, some oceanic systems may be
strongly forced by diurnal heating (for example in river outflows, where cold, fresh water
is flowing above warmer, salty water). This could be represented in the equations by a
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time- and space-dependent forcing in the temperature equation, rather than a direct kinetic
energy source.

More generally, the stability analysis of Chapter 5 and the model of Chapter 7 could
be used to inform the study of layering in other systems. For example, several models
of layering in other contexts rely on arbitrary forcing terms to drive the layering instabil-
ity. Our work on salt fingering staircases has shown that such forcing is not necessary
for the formation of layers, and so our choice of length scale could be used to inform
parameterisations in other models.

An ultimate goal would be the creation of a ‘grand unified model’ for layering that
could be applicable in several different contexts. One promising direction could be to
construct a model that makes use of available potential energy (the fraction of potential
energy that may be converted to kinetic energy). Instead of a model based on density fields,
or potential vorticity, a system written only in terms of energy could be applied across
all contexts. A range of physical setups could be modelled with a single set of equations,
allowing their behaviours to be compared, and knowledge from one area to be applied to
others. With large numbers of researchers working on staircase physics from a wide range
of areas, the future looks bright for new developments in the field.
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