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Abstract

Cardiovascular diseases (CVDs) are the leading cause of death in the world,
accounting for 17.9 million deaths each year, 31% of all global deaths. Ac-
cording to the World Health Organisation (WHO), this number is expected
to rise to 23 million by 2030. As a noninvasive technique, medical ima-
ging with corresponding computer vision techniques is becoming more and
more popular for detecting, understanding, and analysing CVDs. With
the advent of deep learning, there are significant improvements in medical
image analysis tasks (e.g. image registration, image segmentation, mesh
reconstruction from image), achieving much faster and more accurate regis-
tration, segmentation, reconstruction, and disease diagnosis.

This thesis focuses on cardiac magnetic resonance images, systematically
studying critical tasks in CVD analysis, including image registration, image
segmentation, cardiac mesh reconstruction, and CVD prediction/diagnosis.
We first present a thorough review of deep learning-based image registration
approaches, and subsequently, propose a novel solution to the problem of
discontinuity-preserving intra-subject cardiac image registration, which is
generally ignored in previous deep learning-based registration methods. On
the basis of this, a joint segmentation and registration framework is further
proposed to learn the joint relationship between these two tasks, leading to
better registration and segmentation performance. In order to characterise
the shape and motion of the heart in 3D, we present a deep learning-based
3D mesh reconstruction network that is able to recover accurate 3D car-
diac shapes from 2D slice-wise segmentation masks/contours in a fast and
robust manner. Finally, for CVD prediction/diagnosis, we design a mul-
tichannel variational autoencoder to learn the joint latent representation
of the original cardiac image and mesh, resulting in a shape-aware image
representation (SAIR) that serves as an explainable biomarker. SAIR has
been shown to outperform traditional biomarkers in the prediction of acute
myocardial infarction and the diagnosis of several other CVDs, and can
supplement existing biomarkers to improve overall predictive performance.
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Introduction: Background, Motivation and
Contribution
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1.1 Cardiac Anatomical Structure, Imaging and Cardiovascular Disease

Cardiovascular diseases (CVDs) are the leading cause of death worldwide. In 2020,
it is estimated that there were approximately 19 million fatalities attributed to CVDs
[3]. To assist medical professionals in understanding, detecting and analysing CVDs,
medical imaging technologies and related processing and analysis algorithms have be-
come increasingly important. With the emergence of deep learning, there has been
considerable advancement in the automated analysis of CVDs. In this chapter, we first
provide an overview of the fundamental knowledge of cardiac image analysis and CVDs,
followed by a summary of our motivations and contributions in this thesis.

1.1 Cardiac Anatomical Structure, Imaging and Cardi-
ovascular Disease

1.1.1 Cardiac Anatomy and Structure

The heart is an essential organ of the human body, which pumps blood through the
circulatory system to provide oxygen and nutrients. Generally, the heart is made up of
four chambers, including the left ventricle (LV), right ventricle (RV), left atrium (LA)
and right atrium (RA), as illustrated in Figure 1.1. The RA receives deoxygenated
blood from the body and passes it through the RV, where it is pumped to the lungs
for oxygen-carbon dioxide exchange. At the same time, LA receives oxygen-rich blood
from the lungs and passes it to LV, then LV pumps it out to the rest of the body.
Among the four chambers, the left ventricle and right ventricle (bi-ventricle) are the
most studied in image-based cardiac analysis works, since they are available in most
cardiac image datasets. To better describe the structure of the LV, it can be divided
into three parts, the epicardium (the external layer), the myocardium (the central layer)
and the endocardium (the internal layer). The myocardium is also known as the cardiac
muscle and is responsible for the contractility of the heart and the pumping action.

The heart of living people keeps a cycle of motion, from diastole to systole, which
continues to repeat continuously. In existing publicly available cardiac image datasets
(e.g. UK Biobank (UKBB)), the cardiac cycle can be split into 50/30/20 time frames
(depending on the imaging operation). In cardiac image analysis, there are two most
important time frames in the cardiac cycle, the frames at end-diastole (ED) and end-
systole (ES), respectively. The LV volume in the ED frame is the largest in the cardiac
cycle, generally in the first frame. In contrast, the ES frame is the time point at which
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Figure 1.1: The structure of the human heart (the left is a four-chamber mesh, and the
right is a short-axis view MR image).

the cardiac volume becomes minimal in the cardiac cycle. Images in these two frames
are generally used to analyse cardiac functions and compute clinical indices.

1.1.2 Clinical Cardiac Imaging Techniques

As a noninvasive method, medical imaging has become one of the most essential tech-
niques for understanding the structures and functions of the heart. Similar to other
anatomic structures, popular imaging techniques such as magnetic resonance imaging
(MR) [4, 5], computed tomography (CT) [6], and ultrasound (US) [7] (often referred
to as echocardiography in cardiac imaging [8]) are widely used in cardiac imaging. In
addition, certain other imaging modalities, such as single-photon emission computed
tomography (SPECT) [9, 10], are also used to diagnose and investigate cardiac patho-
logy.

Different imaging modalities are capable of capturing diverse aspects of the struc-
tures and functions of the heart, thus accommodating varying clinical settings. Echo-
cardiography (US imaging) is one of the first-line imaging modalities for cardiac as-
sessment, which works by utilising sound waves that are described regarding frequency,
to view images. It is safe, noninvasive, portable, cost-effective, and does not require
patients to maintain restricted positions, but the resultant images provide limited as-
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Figure 1.2: Cardiac CT and MR images (from MM-WHS). The first and second rows
are CT and MR images, respectively, presenting the images from axial, sagittal, and
coronal views. The corresponding meshes are also shown in the right column.

sessment of soft-tissue characteristics and extracardiac structures, and are limited by
the acoustic window [8]. Compared with echocardiography, CT and MR generally re-
quire patients to be immobile, and to hold their breath. Correspondingly, the obtained
images by CT and MR are of higher quality than echocardiography. Figure 1.2 gives
an example of MR and CT images of the same person in the multimodal Whole Heart
Segmentation Data Set (MM-WHS) [11, 12]. Cardiac CT is a fast imaging technique
with X-ray that provides high-quality images with superior spatial resolution [13]. The
advantages of CT images are high isotropic spatial and temporal resolution, fast ac-
quisition times, multiplanar image reconstruction capabilities, which make it serve as
an alternative to MR imaging in certain scenarios, while the potential adverse effects
of radiation exposure cannot be overlooked. Cardiac MR imaging creates images from
atomic nuclei with uneven spin using radiowaves in the presence of a magnetic field [14],
which has the unique ability to provide quantitative information on cardiac function,
perfusion and viability. Compared to CT, MR imaging is safer (without radiation dam-
age) and can provide higher contrast on tissues and anatomical structures. However,
despite these benefits, the use of MR imaging is generally associated with increased
costs and a longer acquisition time.
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Figure 1.3: An example of cardiac cine MR images. The first row is the SAX images,
which are a stack of 2D images with a large slice thickness (for example, in UKBB,
the slice thickness is 8 mm). The second row is the corresponding 2CH, 3CH and 4CH
LAX images, respectively, which are all 2D images.

In the analysis/diagnosis of CVDs, MR images are frequently considered the gold
standard, due to the high contrast on tissues. Accordingly, the present research de-
scribed in this thesis focusses mainly on the analysis of cardiac cine MR images, which
comprise short-axis images (SAX) and long-axis images (LAX). SAX images are mainly
used to visualise the structure of LV and RV. Constrained by the inherent limitations
of cardiac MR imaging, SAX images generally have a high in-plane resolution and a
huge slice thickness. Unlike other 3D images, SAX images are similar to a sequence of
2D images (usually containing less than 15 slices). For LAX, it serves as a supplement
of SAX images and can further provide the structure of RA and LA, containing three
slices of 2D images from different LAX views (i.e., 2-chamber (2CH), 3-chamber (3CH)
and 4-chamber views (4CH)). In certain cases, there may be only 1 or 2 slices of LAX
images available. An example of cine MR images from UKBB is shown in Figure 1.3.
The SAX images and LAX images are shown in the first and second rows, respectively,
where the SAX image is a stack of 2D images with a large slice thickness, and the LAX
images in 2CH, 3CH, and 4CH views are all single 2D images.

5
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Figure 1.4: List of the main cardiovascular diseases and corresponding analysis tasks.
For the categories of heart disease, the corresponding International Classification of
Diseases (ICD) 10th Revision codes are also listed.
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1.1 Cardiac Anatomical Structure, Imaging and Cardiovascular Disease

1.1.3 Cardiovascular Diseases and Corresponding Analysis/diagnosis

According to the definition from British Heart Foundation, cardiovascular disease (CVD),
also called heart and circulatory disease, is an umbrella name for conditions that affect
human heart or circulation. Heart disease, cardiomyopathy, congenital heart disease,
and valvular heart disease are various forms of CVD, a group of conditions that affect
the heart or blood vessels, and have become the leading cause of death worldwide in
recent years [15]. They are responsible for around 30% of human mortality, as well
as 10% of the disease burden in the world [16, 17]. Different CVD classifications have
been proposed due to the intricate pathophysiology and systemic impact on the hu-
man body. However, the main CVDs are widely recognised in different category lists,
such as ischaemic (coronary) heart disease and hypertensive diseases. According to the
National Health Service (NHS), there are four main CVDs, including coronary heart
disease (as a result of angina, heart attack, and heart failure), stroke, and transient
ischaemic attack, peripheral arterial disease, and aortic disease. CVDs are not the same
as heart diseases, as the latter are more specific to the heart. Heart diseases include
acute rheumatic fever/chronic rheumatic heart disease, hypertensive heart disease, hy-
pertensive heart and kidney disease, coronary heart disease, heart failure, pulmonary
heart disease and diseases of the pulmonary circulation, and other forms of heart dis-
ease [3] (more details can be found in Figure 1.4). Among those CVDs, the diseases
studied primarily in cardiac image analyses (especially learning-based image analyses)
are acute myocardial infarction (AMI), myocardial infarction (MI), dilated cardiomy-
opathy (DCM), hypertrophic cardiomyopathy (HCM), abnormal right ventricle (ARV),
as they are available in publicly available datasets (e.g. UKBB, Automated Cardiac
Diagnosis Challenge (ACDC) and Multi-Centre, Multi-Vendor & Multi-Disease Cardiac
Image Segmentation Challenge (M&M)).

To understand and analyse such types of complex diseases, cardiac imaging with
the corresponding computer-aided processing and analysis techniques has been widely
used. In some scenarios, clinicians can directly make predictions/diagnoses by looking
at the cardiac images obtained. However, as different patients may have numerous im-
ages of different modalities, scanners, and times, it is a time-consuming and laborious
task for clinicians to process and analyse all of these images manually. With computer
vision technologies, it is possible to achieve some fundamental pre-processing (e.g. re-
gistration, segmentation, detection, denoising, edge detection, restoration, image super-
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1.2 Learning-based Cardiovascular Disease Analysis

resolution, resampling) and higher-level tasks (e.g. classification and recognition) from
the raw images automatically. Those techniques can provide higher-quality images,
faster image analysis, and sufficient information for decision-making. For example, the
registration results provided by automatic registration methods can be used to calcu-
late the strain curve, which is an important parameter to evaluate cardiac motion [18].
With the segmentation masks predicted by automatic segmentation methods in ED and
ES frames, it is easy to compute clinical indices, an important biomarker for CVD pre-
diction/diagnosis. Based on these tools, clinicians can focus on critical things such as
prediction/diagnosis and decision-making, leading to more efficient and accurate CVD
analysis.

1.2 Learning-based Cardiovascular Disease Analysis

Learning-based CVD analysis employs trainable approaches to address CVD-related
tasks, where models are trained on a designated data set and then tested on unseen
data. As shown in Figure 1.4, automatic CVD analysis tasks that involve cardiac MR
images comprise a group of fundamental tasks (e.g. image registration, image seg-
mentation, mesh reconstruction) and high-level tasks (such as CVD diagnosis, CVD
prediction, and CVD association analysis, to name a few). The former is generally
used as the preliminary tasks of the latter. In this thesis, we mainly study the registra-
tion/segmentation and mesh reconstruction in the fundamental tasks. For high-level
tasks, this thesis focusses on CVD prediction and diagnosis, two of the most significant
tasks among them. The diagnosis of CVD is to check the presence of CVD by examin-
ation of cardiac MR images and other possible biomarkers. Similarly, CVD prediction
uses the same information as CVD diagnosis to estimate the likelihood of CVD oc-
curring within a specific period (e.g. 10 years). For both, approaches to learning the
corresponding biomarkers from MR images are essentially important.

Unlike other diseases (e.g. cancer), CVDs are a group of complex diseases affected by
heart motion and vessels, which are difficult to diagnose/predict using the image from
a single time frame. Therefore, temporal/motion information is generally required for
CVD prediction/diagnosis. As jointly analysing the complete cardiac cycle is computa-
tionally intensive and comprises redundant information, previous studies have chosen
images from the ED and ES frames for cardiac analysis. The raw images can be used
for diagnosis/prediction directly, while it is easy to be affected by background tissues,
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Figure 1.5: An overview figure of deep learning-based CVD analysis.
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1.2 Learning-based Cardiovascular Disease Analysis

and brings a high computation burden for traditional machine learning approaches.
Moreover, while deep learning networks can directly take raw images as input and pre-
dict the corresponding diagnosis/prediction results, they lack interpretability and are
unable to provide efficient feedback in a clinical sense to clinicians. To obtain more
efficient and explainable biomarkers, some preprocessing steps are necessary to exclude
background tissues or generate new representations that focus on the heart.

In Figure 1.5, we present a general CVD analysis pipeline (using MR images as an
example). In addition to raw images, other cardiac representations such as segment-
ation masks and meshes are widely used in CVD analysis. The segmentation masks
allow for the identification of various anatomical structures of the heart (e.g. LV blood
pool, LVM and RV) by distinguishing them from the background. The cardiac meshes
are 3D structures with the coordinates of vertices/surfaces along the boundary of the
heart in real-world space, which provides a more intuitive depiction of the cardiac shape
in 3D. Both segmentation masks and cardiac meshes contain only heart-related inform-
ation. However, the latter provides complete 3D spatial structures and enables a better
presentation of cardiac motion. The segmentation masks and meshes are derived from
the raw images using image segmentation or mesh reconstruction methods but yield
enhanced anatomical information beyond raw images by leveraging anatomical priors.
Cardiac image registration, another important tool for capturing motion information,
predicts point-to-point correspondence between images at different time frames of the
cardiac cycle. The deformation fields obtained from this process enable the calcula-
tion of strain curves and other motion-related biomarkers critical for the analysis of
CVD [19, 20]. Automatic CVD prediction/diagnosis methods can rely on a joint con-
sideration of metadata (the fundamental information of patients, e.g. sex, age) and the
three aforementioned representations (using part or all of them) to make decisions.

Given raw MR images, segmentation is applied to segment the region of the heart
from the background, either automatically (using machine learning-based segmentation
methods) or manually. Based on the segmentation results in the ED and ES frames
of the cardiac cycle, nine important clinical indices are calculated for subsequent ana-
lysis, including left ventricle end-diastole volume (LVEDV), left ventricle end-systole
volume (LVESV), left ventricle ejection fraction (LVEF), left ventricle myocardium
mass (LVMM), right ventricle end-diastole volume (RVEDV), right ventricle end-systole
volume (RVESV) and right ventricle ejection fraction (RVEF). These clinical indices
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1.2 Learning-based Cardiovascular Disease Analysis

serve as fundamental features in the prediction/diagnosis of CVDs. Beyond these in-
dices, radiomic features [21] can also be extracted from original cardiac images and
the corresponding segmentation masks, as an additional efficient predictor. In tradi-
tional methods, metadata, clinical indices, and radiomic features are the most popular
features/predictors for CVD prediction/diagnosis.

The 3D cardiac mesh is another important representation of the heart, which plays
a critical role in surgical planning, surgical navigation, and many other CVD analysis
tasks. Unlike cardiac images, cardiac meshes only display the structure of the heart,
without interference from surrounding tissues. It can be obtained from the cardiac seg-
mentation masks [22] or directly from raw images [23]. The cardiac meshes correspond
to the spatial coordinates of the heart in real 3D space, thereby providing an accurate
and more intuitive way to present the cardiac motion. Therefore, some researchers
have proposed to apply cardiac mesh for the prediction of survival in patients with
CVDs [24]. Furthermore, reconstructed meshes can also be applied for cardiac image
segmentation by overlaying them on the corresponding images [23], thus it can be seen
as an advanced representation of segmentation masks.

The primary challenge in image-based CVD analysis is the development of effect-
ive biomarkers for subsequent prediction and diagnosis. Previous research has typic-
ally focussed on individual cardiac representations such as raw images, segmentation
masks, or 3D meshes. For example, numerous traditional methods only use manu-
ally designed biomarkers extracted from raw images or segmentation masks, for CVD
prediction/diagnosis [25, 26, 21]. Recent research has observed deep learning-based
methods for survival prediction, using cardiac meshes [24]. Compared to raw images,
cardiac meshes emphasise cardiac structures and exclude background tissues, providing
a better representation of the shape of the heart while losing local details. Raw MR
images, on the other hand, provide high-contrast local details and serve as the source of
cardiac mesh, but lack a comprehensive overview of the heart. Therefore, it is natural
to consider combining the advantages of both representations for CVD analysis.

Learning-based CVD analysis has great potential in various domains of CVD ana-
lysis tasks, including prediction, early detection, diagnosis, surgical planning, and sur-
gical navigation, among others. It can provide clinical decision support and serve as an
objective reference without human intervention, thus contributing significantly to the
prevention of CVDs and extending the human lifespan. Recent advances in deep learn-
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1.3 Thesis Contributions and Overview

ing have facilitated faster and more precise analysis of medical images. However, most
of the existing research has focussed on individual tasks such as segmentation, regis-
tration, and mesh reconstruction, with little attention to a comprehensive perspective.
Thus, this thesis aims to identify critical tasks in CVD analysis and to analyse the
latent correlations between them, thus establishing a foundation for future research in
the domain of automatic CVD analysis.

1.3 Thesis Contributions and Overview

This thesis aims to explore fast, explainable, and precise image-based CVD analysis,
with advanced deep learning-based approaches. To do this task, we look at three
critical tasks in CVD analysis, cardiac image registration/segmentation, cardiac mesh
reconstruction, and CVD prediction/diagnosis. Consequently, there are three main
objectives that should be taken into consideration:

• Build more realistic and accurate deep learning-based registration and segmenta-
tion methods to address the unique challenges inherent in cardiac imaging scen-
arios. Current deep learning-based registration methods assume that the deform-
ation fields are entirely smooth, which is not always applicable in medical image
registration, particularly in cardiac and abdominal image registration. Moreover,
given that image registration and segmentation are fundamental tasks that are
closely related to each other, it is essential to consider them jointly, particularly
in the context of cardiac images, which can further enhance the performance of
both tasks.

• Design fast, accurate and robust shape reconstruction methods to learn the cor-
responding 3D shapes from raw cardiac images. While raw MR images contain
high-contrast details for diagnosis, they are also subject to interference from back-
ground tissues. Additionally, the large thickness of the cut in the MR imaging
of SAX images leads to a lack of structural information between the slices. As a
result, reconstructing 3D cardiac meshes from the original images is necessary to
obtain an overall understanding of the cardiac structure and improve the analysis
of cardiac motion. Although numerous traditional approaches have been pro-
posed to achieve this task, they typically involve multiple iterations in inference,
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1.3 Thesis Contributions and Overview

which is generally time-consuming and limits their performance in realistic scen-
arios. Therefore, it is important to develop novel methods that can accurately
reconstruct 3D cardiac meshes from raw images, in a fast and robust manner.

• Explore an efficient and explainable cardiac biomarker and use it for subsequent
CVD prediction/diagnosis. For accurate CVD prediction/diagnosis, it is crucial
to utilise all the information available from the raw data. However, previous re-
search typically uses individual representations of the heart (e.g. raw images, seg-
mentation masks, or meshes) and may not achieve optimal prediction/diagnosis
performance, due to the inherent limitations on specific representations. To ad-
dress this limitation, it is necessary to explore efficient and explainable cardiac
biomarkers by jointly considering multiple representations of the heart, rather
than relying on a single representation.

The following chapters in this thesis are organised as follows:
Chapter 2: This chapter gives a thorough review of the literature on deep learning-

based image registration approaches. We review all deep learning-based image regis-
tration methods since 2013, make a detailed summary of existing deep learning-based
image registration methods and provide an in-depth analysis of the current develop-
ment trends, as well as limitations that need to be addressed. We also discuss potential
future directions for research in this area.

Chapter 3: This chapter is to capture motion information in the cardiac cycle by
image registration and segmentation. We first propose a weakly supervised discontinuity-
preserving image registration network, DDIR, to predict more realistic deformation
fields in intra-subject registration. On the basis of DDIR, a joint registration and
segmentation network is further proposed by introducing an additional segmentation
subnetwork. We simultaneously accomplish registration that preserves discontinuit-
ies and segmentation based on co-attention in our joint registration and segmentation
framework. With only moving and fixed images as input, we can achieve more real-
istic and accurate registration performance than previous registration approaches while
obtaining precise segmentation masks.

Chapter 4: This chapter presents a 3D cardiac shape reconstruction approach
from MR images/contours. We propose an end-to-end deep graph convolution network,
named MR-Net, that enables fast and robust reconstruction of accurate 3D shapes from
stacked 2D contours, significantly outperforming traditional approaches. In addition,
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our proposed method can rapidly and accurately reconstruct 3D cardiac meshes from
raw MR images, with the support of pre-trained deep learning-based segmentation
approaches.

Chapter 5: This chapter aims to learn efficient and explainable biomarkers for the
prediction and diagnosis of CVDs. To do this task, we built a mesh-image variational
autoencoder (MIVAE) to learn the joint latent representations of cardiac images and
meshes. MIVAE enables the extraction of shape-aware image representations that take
into account the local details present in MR images, as well as the global structure of
cardiac meshes, leading to improved accuracy in CVD prediction/diagnosis (compared
to traditional biomarkers). Additionally, the MIVAE can work as a mesh reconstruction
method when MR images are given alone as input.

These four chapters of this thesis are independent and based on articles that are
already published or under review in peer-reviewed conferences/journals. The last
chapter, Chapter 6, summarises the thesis and examines current restrictions and po-
tential future directions.
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2.1 Introduction

Image registration is a fundamental task in multiple medical image analysis applic-
ations. With the advent of deep learning, there have been significant advances in
algorithmic performance for various computer vision tasks in recent years, including
medical image registration. The last couple of years have seen a dramatic increase in
the development of deep learning-based medical image registration algorithms. Con-
sequently, a comprehensive review of the current state-of-the-art algorithms in the field
is timely and necessary. This chapter aims to understand the clinical applications and
challenges that drove this innovation, analyse the functionality and limitations of ex-
isting approaches, and provide insight into open challenges and unmet clinical needs
that could shape future research directions. To this end, the main contributions of this
chapter are as follows,

• Discussion of all papers on deep learning-based medical image registration pub-
lished since 2013 with significant methodological and/or functional contributions
to the field.

• Analysis of the development and evolution of deep learning-based image registra-
tion methods, summarising the current trends and challenges in the domain.

• Overview of unmet clinical needs and potential directions for future research in
deep learning-based medical image registration.

2.1 Introduction

Medical image registration has been a central component of various applications in med-
ical image analysis over the last three decades. The field has evolved immensely with
growth in computational resources, algorithmic capabilities, and complexities. Various
clinical applications that involve disease diagnosis and monitoring, image-guided treat-
ment delivery, and postoperative evaluation use image registration. It is also widely
used as a tool to preprocess data for subsequent tasks such as object detection, seg-
mentation, or classification, as variation in the spatial resolution of medical images is
very common. Consequently, the performance of the latter is heavily influenced by
the quality of the image registration algorithm used to bring the images to a common
coordinate frame and fixed size and resolution.
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2.1 Introduction

2.1.1 Framework of Registration

Image registration is the process of identifying a spatial transformation that maps
two (pair-wise registration) or more (group-wise registration) images to a common co-
ordinate frame so that the corresponding anatomical structures are optimally aligned,
or, in other words, a voxel-wise “correspondence” is established between the images.
Depending on the degrees of freedom associated with the desired spatial transforma-
tion, image registration algorithms may be broadly grouped into rigid, affine, or nonri-
gid/deformable. In the case of pairwise image registration, this can be formally defined
as follows: Let F and M denote fixed and moving images, respectively, and let T be the
desired spatial transformation that maps the voxels of M to those of F . Registering
the two images can be posed as an optimisation problem expressed as:

T̂ = arg min
T

S(F, T (M)), (2.1)

where S() represents a measure of dissimilarity (or similarity depending on the formula-
tion of the objective function) between the fixed image and the warped moving image.
Images are recorded by iteratively improving estimates for the desired T , such that the
defined S() in the cost function is maximised or minimised.

Intuitively, nonrigid or deformable image registration is an ill-posed problem, which
makes it fundamentally different from other computer vision tasks such as object loc-
alisation, segmentation, or classification. For example, given two images as input,
deformable image registration aims to find a spatial transformation that warps the
moving image to match the fixed image as closely as possible. However, there is no
ground truth available for the desired deformation field and, without enforcing any
constraints on the properties of the spatial transformation, the resulting cost function
is ill-conditioned and highly nonconvex. To address the latter and ensure tractability,
all image registration algorithms regularise the estimated deformation field, based on
some prior assumptions on the properties of the underlying unknown deformation.

Conventionally, medical image registration algorithms comprise three distinct com-
ponents: a transformation model, a similarity metric, and an optimisation algorithm,
as illustrated in Figure 2.1. The overall process of image registration involves: (1)
design/choice of a suitable transformation model (rigid, affine, or nonrigid) and initial-
isation of its associated parameters, (2) use of the transformation model to warp the
moving image, (3) evaluation of the dissimilarity between the warped moving image
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Figure 2.1: A flowchart of medical image registration framework.

and the fixed image, and (4) update of the parameters in the transformation model by
optimising the cost function formulated using the dissimilarity metric, using a suitable
optimisation algorithm. The registration algorithm iterates between step(2) - step(4)
until a suitable convergence criterion is satisfied (usually based on the change in the
dissimilarity metric or the transformation parameters between iterations). As image
registration using conventional algorithms is an iterative process, they are typically
computationally intensive and time-consuming. The overall framework is generic and
can be formulated within a Deep Learning (DL) setting, enabling significant accel-
eration, for registering a pair or group of unseen images using a trained registration
network.

2.1.2 Basic Deep Learning Networks

Although the theoretical concepts that underpin neural networks have existed for dec-
ades, early attempts to train such algorithms [27], [28] were constrained by the limited
computational power available at the time. Recent years have witnessed an almost ex-
ponential growth in the development and use of DL algorithms, sustained thus far by
rapid improvements in computational hardware (e.g. GPUs). Consequently, clinical
applications requiring image classification, segmentation, registration, or object detec-
tion/localisation, have witnessed significant improvements in algorithmic performance,
in terms of accuracy and/or efficiency. Although DL-based medical image registra-
tion algorithms have yet to achieve significant breakthroughs in terms of registration
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Figure 2.2: An example of the U-Net framework used for brain MRI image registration.
The moving image and fixed image are concatenated at first. A U-Net takes it as input
and predicts the deformation field. The U-Net is an encode-decoder network.

accuracy compared to traditional methods, they have provided a means to accelerate
registration many times. To offer a basis for understanding deep learning-based regis-
tration methods, we briefly introduce and discuss three fundamental and widely used
components of image registration networks, namely an encoder-decoder Convolutional
Neural Network (CNN), a Spatial Transformer Network (STN) [29], and a Generative
Adversarial Network (GAN) [30].

The success of deep learning in visual recognition tasks is mainly due to convolu-
tional neural networks (CNNs). This type of deep learning network has a hierarchical
structure of replicated feature detectors or, in other words, successive layers of “con-
volution” that are used to automatically learn multiscale features specific to tasks.
Several CNN architectures have been proposed in recent years, each with specific archi-
tectural modifications to address the issue of vanishing/exploding gradients common
to deep networks, such as AlexNet [31], VGG [32], ResNet [33], and DenseNet [34].
Among these, in medical image segmentation and registration, the most widely used
architecture is the U-Net [35] - an encoder-decoder-style network with skip connections
between the encoding and decoding paths (as depicted in Figure 2.2). The encoder
contains several convolutional layers and pooling layers, which downsample the input
image to a low resolution. However, the decoder is made up of deconvolution layers
with a number of layers that correspond to the encoder. Through the decoder, the
feature maps are reconstructed to the original size of the input images. The U-Net uses
several down-sampling and up-sampling layers to learn features at different resolutions,
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Figure 2.3: Illustration of spatial transfer network, which consists of three sub-blocks:
localisation net, grid generator and sampler. U and V mean the input and output
respectively. Localisation net is used to learn the transformation parameter θ from U.
With θ, the grid generator can generate transformation grids. Then a bilinear/trilinear
sampling is applied to sample coordinates from U to V. The whole network is differential
so the back-propagation could update the parameters automatically.

at the limited expense of computational resources. It has been widely applied in vari-
ous medical imaging applications (e.g. segmentation), and due to its flexibility, most
state-of-the-art Deep Learning-based medical Image Registration (DLIR) methods use
it as well in some components of the overall framework.

Another core component of most DLIR approaches is STN, proposed in 2015 [29],
which learns to spatially transform feature maps in a manner beneficial to the task of
interest. Although they were not explicitly designed for image registration but rather
to imbue networks with the means to learn features in a manner invariant to rigid
and deformable transformations, they have become the basis for most unsupervised
registration methods. As shown in Figure 2.3, STN includes three components: a
localisation network, a grid generator, and a sampler. The localisation network is a
CNN, which takes feature maps as input and outputs the parameters of a suitable/user-
specified spatial transformation. The transformation parameters are then used to create
a resampling grid with the grid generator. After that, a linear sampler is used to carry
out differentiable image sampling based on the grid created in the prior step. For
3D rigid registration, the spatial transformation is composed of just six parameters,
namely, three rotation parameters and three translation parameters. In the case of non-
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rigid registration, the localisation network estimates a deformation field represented in
a parametric or non-parametric form, as defined by the user, of the same size as the
input. Most DLIR methods could be seen as expanded STNs, which look to improve the
performance of the localisation network to generate more accurate deformation fields
for warping the moving image. As with conventional image registration algorithms, the
objective function optimised in image registration networks is a similarity/dissimilarity
metric computed between the warped moving image and the fixed image, in addition
to suitable regularisation terms which ensure that the problem is suitably constrained
and well-posed. The latter also controls the smoothness of the estimated deformation
field.

As STN gives neural networks the ability to spatially transform feature maps, it
has become the basis of most of the DLIR methods, especially unsupervised/weakly-
supervised DLIR methods. The generator in Figure 2.4 could be seen as a general DLIR
framework, which consists of a CNN (U-Net) and a spatial transform block (refer to
STN). The CNN takes the moving image and fixed image as input and predicts a
deformation field (deformable registration), and then the spatial transform block de-
forms the moving image based on the predicted deformation field. The registration
networks are thus formulated as end-to-end networks that utilise CNN and STN to
jointly estimate the desired deformation fields and warp the moving images. The losses
of similarity/dissimilarity (between warped moving images and fixed images) and reg-
ularisation (on deformation fields) would be computed to update the parameters in the
CNN. Once the network is trained, the registration between new image pairs is just
one forward prediction.

Generative adversarial networks [30] are also a common component of DLIR ap-
proaches. They are the most widely used generative models for image synthesis [36,
37, 38] and have found use in the medical domain as tools for data augmentation [39],
and for applications requiring image-to-image translation [40], and segmentation [41],
among others. It contains two parts, a generator and a discriminator, both of which are
typically convolutional neural networks. The former constitutes the generative model
in the network, which learns to sample from the data distribution and can be used to
synthesise new instances. The latter, on the other hand, is used to distinguish between
synthesised and real samples, thus competing with the generator, or in other words,
acting as its “adversary”. Essentially, GANs are trained in a minimax two-player game,
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Figure 2.4: An example of GAN-based image registration. The generator combines a
U-Net and an STN to synthesise the deformation field and the warped moving image
simultaneously. The discriminator is used to discriminate the difference between the
warped moving image and the fixed image, urging the generator to predict a high-
similarity warped moving image to the fixed image.
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Figure 2.5: An overview of the number of papers published from 2013 to 2020 about
DLIR methods.

where the generator looks to maximise the probability of the discriminator mistak-
ing a synthesised sample as a real one from the training data. This leads to both
networks learning hierarchical representations of the training data in an unsupervised
fashion. A generic GAN-based registration framework is shown in Figure 2.4. With
the fixed image and moving image as input, the generator predicts the warped image.
Then the discriminator evaluates how similar the warped image is to the fixed image.
The discriminator in GANs offers a novel learnable mechanism to evaluate the simil-
arity between two images. This property has significant potential to build adaptable
and learnable similarity metrics, especially relevant for multimodal image registration.
In numerous multimodal registration approaches, GAN-based image translation net-
works (e.g. Cycle-GANs [37]) learn to map the appearance shift between domains,
i.e. between images from different modalities. This simplifies the task of choosing a
suitable similarity metric by transforming the multimodal registration problem into a
monomodal one. Consequently, GAN-based networks are widely used in medical image
registration, which we discuss in more detail in Section 2.2.

The aim of this chapter is to provide a critical overview of existing literature on DL-
based image registration, by highlighting innovations from a methodological and func-
tional perspective, discussing current trends, challenges, and limitations, and providing
insights to the possible directions for future research. While several review papers
have recently been published on DL-based medical image registration [42, 43, 44, 45],
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they mainly focus on the architecture of networks proposed for DL-based medical im-
age registration, grouping, and discussing them according to their design and learning
paradigms (i.e., supervised, weakly supervised, or unsupervised, for example). Con-
sequently, in this chapter, we provide an up-to-date detailed account of both the meth-
odological and functional contributions of the DLIR techniques proposed thus far. To
facilitate benchmarking of existing DLIR approaches and provide future work with a
frame of reference for comparison, we also present a comprehensive summary of publicly
available datasets used to design and validate numerous DLIR methods and provide
links for all methods with publicly available code. In this chapter, we include 77 papers
that focus on DLIR, with the majority published after 2016. The increasing adoption
of DL for medical image registration is highlighted by the yearly count described in Fig-
ure 2.5. Throughout the review, we provide statistics on the number of DLIR papers
published, grouped according to their methodological and functional characteristics.
We restrict the focus of this chapter to publications concerned with medical image re-
gistration alone. To identify relevant publications, PubMed and Web of Science were
queried for papers using combinations of terms such as — DL, medical image regis-
tration, deformable image registration, image fusion, multimodal image registration,
motion tracking, among others. In addition to these databases, other sources such as
Google Scholar1, ArXiv2 and Semantic Scholar3 were also searched in the same way, and
publications with significant contributions to the community were selected for review.

The remainder of this chapter is organised as follows. In Section 2.2, we discuss how
DL networks are applied in the registration of medical images. Section 2.3 describes
those methods from the perspective of applications. Sections 2.4 and 2.5 discuss devel-
opment trends, main challenges/limitations, and possible directions of innovation for
DL-based medical image registration.

2.2 Deep Learning Based Medical Image Registration

The fundamental building blocks of image registration are identical in both tradi-
tional and DL-based approaches, comprising a similarity metric, transformation model,
and optimiser. Neural networks have been integrated into this framework, repla-

1https://scholar.google.co.uk/
2https://arxiv.org/
3https://www.semanticscholar.org/
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Figure 2.6: Classes of deep learning-based image registration methods.

cing/enhancing the role played by one or several of these components. We categor-
ise DLIR methods into three parent classes, namely, approaches that (a) use neural
networks as a similarity metric (often called deep similarity); (b) parameterise the
transformation model using neural networks; and (c) employ neural networks to facilit-
ate other operations (such as feature extraction or learning new image representations,
referred to as other usages in this chapter) that improve registration quality. Each of
these categories can be further divided into subgroups as described by Figure 2.6, and
will be discussed in subsequent sections.

2.2.1 Deep Learning for Similarity Metrics

In traditional medical image registration methods, studies often focus on improving the
similarity metric to obtain a higher registration accuracy. Various similarity metrics
have been used in previous studies, such as cross-correlation (CC), mutual informa-
tion (MI), and dice similarity coefficient (DSC), corresponding to different scenarios,
without sufficient justification for their choice in many cases. That is, these similarity
metrics were not application or immorality specific, as they were learnt from or designed
for the images to be registered. Visual recognition and perception tasks have benefited
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substantially from the ability of deep neural networks (specifically, convolutional neural
networks) to extract features and combine them across multiple scales, providing the
possibility to evaluate the distance between images from different modalities, in a com-
mon feature space. Several studies [46, 47] have used neural networks as data-driven,
learnable interpretations of similarity metrics, providing a framework that adapts to
different applications and image modalities.

DL-based similarity metrics are usually employed for multimodal image registra-
tion due to the substantial variation in the appearance and intensity distributions of
the moving and fixed images. For example, Haskins et al. [46] proposed a similarity
metric based on a regression CNN to register Magnetic Resonance Imaging (MRI) and
Transrectal Ultrasound (TRUS) images, which demonstrated promising performance
compared to MI, and several other conventional similarity metrics. Deep CNN-based
similarity metrics have also been demonstrated to be useful for monomodal image regis-
tration. For instance, Zhu et al. [47] used a pre-trained CNN as a similarity metric for
ultrasound (US) image registration, showing comparable or better performance than
manual registration.

Additionally, the formulation of the discriminator in GANs naturally lends itself to
use as a similarity metric, as its role in distinguishing between generated and real images
can easily be reformulated as one of computing the difference between the warped and
fixed images. Such metrics are often referred to as adversarial similarity and have been
used in several unsupervised image registration networks [48, 49, 50, 51].

Although deep neural networks employed in this context offer more robustness and
flexibility than traditional similarity metrics, the image registration process is still iter-
ative. Therefore, while methods within this category can achieve registration accuracy
that is similar to or better than conventional approaches, they are still time-consuming
during inference.

2.2.2 Deep Learning for Transformation Models

In this section, we discuss approaches that parameterise spatial transformations using
deep neural networks. As described by Figure 2.6, this category of approaches can be
further divided into supervised, weakly supervised, and unsupervised approaches, based
on the learning paradigm used to train the networks. The fundamental advantage of
this group of techniques over conventional approaches and deep similarity networks is
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the substantial acceleration they afford during inference, enabling real-time rigid and
nonrigid image registration.

Supervised Registration

This sub-group of techniques employs deep neural networks to estimate the spatial
transformation parameters necessary to register two (or a group of) images, in a “su-
pervised” fashion, i.e. using ground-truth/target values for the parameters to guide
the learning process. As with other supervised learning approaches common to medical
image analysis tasks such as segmentation or classification, such techniques depend on
the availability of ground-truth/target values for the transformation parameters. In
general, there are two methods to obtain these target parameters: (a) by estimating
them using traditional registration methods; or (b) by using simulated images with
known ground-truth transformations. Supervised registration networks thus estimate
the parameters associated with the transformation model adopted (rigid or non-rigid)
to warp the moving image to the fixed image space, and subsequently, compute the loss
between predicted parameters and ground-truth values. This loss over the transform-
ation parameters, in turn, is used to compute its gradients with respect to the weights
of the network, which parameterise the spatial transformations, and is used to guide
the training of the network. Following training, the registration of two or more images
is achieved as a single forward pass through the network, substantially reducing the
execution time relative to iterative approaches.

Table 2.1 summarises the most relevant supervised DL-based medical image regis-
tration methods that we identified for this chapter. To provide readers with opera-
tionally useful information, we also provide links to repositories for all methods that
have made their code publicly available. We further group supervised methods into
monomodal registration and multimodal registration. Monomodal registration, also
called unimodal registration, aims to register moving images and fixed images from
the same modality such as MRI, computed tomography (CT), and X-ray. Multimodal
registration is applied to register images from different modalities (e.g. CT to MRI,
X-ray to MRI). We found that a large proportion of existing supervised DLIR methods
are monomodal (refer to Table 2.1). As obtaining ground-truth transformations is a
key problem for supervised registration methods, we further classify the monomodal
registration methods into three classes: (a) generating them using traditional regis-
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Table 2.1: A summary of supervised DL-based registration methods. All the super-
vised methods are firstly classified into two general classes: monomodal registration
and multimodal registration. Then monomodal registration methods are further cat-
egorised according to the methodology of obtaining ground truth. Hyperlinks are given
for those works with code publicly available.

Registration Reference Network Modality Dimension Organ Code

Ground-truth generated by traditional methods

Monomodal

Yang et al., 2016 [52] Encoder-decoder MRI 2D, 3D patch Brain link
Cao et al., 2017 [53] Similarity-steered CNN regression MRI 2D Brain -
Cao et al., 2018 [54] Cue-aware deep regression network MRI 3D patch Brain -
Fan et al., 2019 [55] U-Net+hierarchical dual-supervision MRI 3D Brain -

Synthetic deformable datasets
Rohe et al., 2017 [56] SVF-Net(U-Net) MRI 3D Heart -
Eppenhof et al., 2018 [57] U-Net CT 3D Lung -
Eppenhof et al., 2019 [58] Progressive U-Net network CT 3D Lung -
Sokooti et al., 2017 [59] RegNet CT 3D patch Chest link

Synthetic rigid/affine datasets
Mohseni et al., 2019 [60] 18-layer residual CNN MRI 3D Fetal Brain -
Xia et al., 2019 [61] Cascaded CNN Plantar pressure image(PPI) 2D Plantar -
Zhao et al., 2015 [62] 10-layer CNN MRI, CT 2D, 3D Brain, Lung -

multimodal

Yang et al., 2017 [63] Bayesian encoder-decoder network MRI 3D patch Brain -
Yang et al., 2017 [64] Encoder-decoder MRI 3D patch Brain link
Yan et al., 2018 [65] GAN MRI, TRUS 3D Prostate -
Sedghi et al., 2019 [66] 3D classification CNN MRI 3D Brain -
Yao et al, 2019. [67] CIR CT, CBCT 3D Head, Abdomen, Chest, Pelvic -
Liao et al., 2019 [68] POINT X-ray, CBCT 2D, 3D Whole Body -
Liao et al., 2020 [69] MSReg MRI, TRUS 3D Prostate -

tration methods; (b) using synthetic datasets with known ground-truth deformation
fields (for nonrigid registration); and (c) generating synthetic datasets with rigid/affine
transformations (for rigid/affine registration).

Ground-truth generated by traditional methods: In 2016, Yang et al. [52]
proposed a supervised encoder-decoder network for large-deformation diffeomorphic
metric mapping (LDDMM) registration, which used PyCA1 LDDMM to generate
ground-truth deformations. Their approach was shown to substantially accelerate
registration and achieve a lower registration error, compared with traditional meth-
ods. Similarly, Cao et al. [53] designed a 3D patch similarity-steered CNN regression
network for brain MRI registration, which used Symmetric Normalisation (SyN) and
diffeomorphic Demons to generate ground truth deformation fields. Their final regis-
tration results obtained a higher DSC than SyN and Demons. They also proposed a
key-point truncated-balanced sampling strategy and a cue-aware deep regression net-

1https://bitbucket.org/scicompanat/pyca
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work to enhance registration generalisation, which tackled various registration tasks
in different databases [54]. With ground truth generated by Advanced Normalisation
Tools (ANTs) [70] and LCC-Demons [71], Fan et al. [55] proposed a dual-guidance net-
work BIRNET which involved two losses to guide the training process: the distance
between generated deformation fields and ground truth, and the dissimilarity between
fixed image and warped moving image.

Synthetic deformable datasets: Instead of generating ground-truth deforma-
tions using traditional registration methods, Sokooti et al. [59] used artificially gen-
erated displacement vector fields (DVF) as ground-truth, and designed a network
“RegNet” for chest CT image registration. They proved that the trained model could
be applied to real data and obtained registration results on par with a conventional B-
spline registration approach. Eppenhof et al. [57] proposed a U-Net-based registration
network trained on synthetically deformed clinical images, with augmentation trans-
formations to aid in generalisation. Similarly, they generated a large number of ground
truth data by applying random synthetic transformations to a training set of images
and proposed a progressive learning network, which enabled training in large and small
transformations within the same CNN [58]. Rohe et al. [56] proposed to derive a refer-
ence Stationary Velocity Field (SVF) deformation using segmented shapes. Using the
obtained reference SVF as the ground truth, they designed a 3D U-Net-based network
SVF-Net for cardiac MRI image registration.

Synthetic rigid/affine datasets: The ground truth for rigid/affine registration is
much easier to synthesise as random combinations of operations such as rotation, trans-
lation, and scaling would be sufficient to generate the data required to train a network.
Besides, unlike the non-rigid transformations, most rigid transformation parameters
could be obtained manually. Though this task is much easier than non-rigid registra-
tion, a few studies have investigated the use of DLIR for rigid registration. For example,
Salehi et al. [60] proposed an 18-layer residual CNN regression model for 3D pose es-
timation and rigidly registered reconstructed foetal brain MRI images to a standard
(atlas) space. However, based on images generated by the four transformations (i.e.
scaling, horizontal or vertical shift, and rotation), Xia et al. [61] proposed a two-level
cascade CNN for plantar pressure image registration. To capture large and complex
deformations, Zhao et al. [62] proposed a 10-layer CNN to estimate the rotation para-
meters (360 classes) and initialise the subsequent registration step. They utilised the
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Demons algorithm for nonrigid registration, and achieved substantial improvements in
registration accuracy over previous approaches.

Multimodal registration: Supervised DL networks have also been used for mul-
timodal image registration. As in their previous study [52], Yang et al. [63] utilised
PyCA to obtain ground truth deformation fields and proposed a 3D Bayesian encoder-
decoder network to estimate momentum fields for the registration of multimodal brain
MRI images. Furthermore, they developed an approach applicable to both monomodal
and multimodal registration called “Quicksilver” [64], which combined a registration
and correction network for the LDDMM registration. Using images aligned manually
by experts as ground truth, Yan et al. [65] proposed a GAN-based multimodal image
registration method called “AIR-Net”, which estimated the transformation parameters
directly with an efficient forward pass of the generator and additionally evaluated the
quality of registration using the discriminator. Unlike general DL methods that pre-
dict the displacement field directly, Sedghi et al. [66] used a deep multiclass classifier
to predict a collection of discrete displacements between patches. They obtained the
final registration results by iterations.

Several approaches have also focused on rigid multimodal image registration, for
example - Yao et al. [67] used a regression CNN for coarse rigid registration, which
subsequently initialised a conventional intensity-based registration method for fine-
grained registration. This approach combined CNNs with conventional methods to
align 3D CT and CBCT images. Liao et al. [68] proposed a novel multiview 2D-3D
rigid registration method based on learning that directly measured 3D misalignment
using a Point-Of-Interest Network for Tracking (POINT), and found the point-to-point
correspondence between two images. To tackle the task of rigid MRI-TRUS registration
in prostate images, Guo et al. [69] proposed a new strategy to generate augmented
datasets, and designed a coarse-to-fine multi-stage network, which significantly reduced
the registration error compared to previous methods.

Unsupervised Learning Methods

Although supervised DLIR methods have been shown to substantially accelerate re-
gistration and achieve accuracy comparable to traditional methods, the difficulty in
obtaining plausible ground-truth transformations is a fundamental challenge and limit-
ation of this group of methods. Methods used to obtain ground-truth transformations
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typically result in implausible or oversimplified transformations, or are constrained by
the performance of the traditional registration methods used to estimate the same.
Consequently, in either scenario, the performance of DLIR methods on real data may
be limited by the quality of ground-truth transformations available for training. There-
fore, researchers have explored unsupervised learning and weakly supervised learning
methods to ameliorate the need for ground-truth. Unsupervised registration networks
require only the moving and fixed images for training, while weakly supervised ap-
proaches (discussed in Subsection 2.2.2) require some additional information such as
segmentation masks or landmarks, which are much easier to obtain than ground-truth
transformations.

Currently, unsupervised methods are a hot topic in medical image registration, as
they can predict the deformation fields and warped moving images in just one forward
pass, and do not require ground-truth transformations for training. Similarly to super-
vised methods, Table 2.2 gives a summary of the most relevant unsupervised medical
image registration methods. As before, we first classify all methods as mono- or mul-
timodal. The monomodal methods are further categorised according to the type of
regularisation used. Without ground-truth deformation fields, it is difficult for DLIR
methods to guarantee diffeomorphic transformations. Therefore, several approaches
have been proposed to constrain the estimation of deformation fields and improve their
smoothness. To provide an overview of the types of regularisation techniques employed
thus far, we group the monomodal unsupervised methods into several subclasses: (1)
basic networks, (2) smoothness regulariser, (3) invertibility regulariser, (4) SVF, and
(5) cascade networks.

Basic networks: As no ground-truth data are available/used, the first problem to
tackle with training unsupervised registration networks is to formulate a loss function
that can be optimised to train the network. Using STN, DL networks can generate
deformation fields to warp the moving image. The dissimilarity between the warped
moving image(s) and fixed image(s) can subsequently be used to calculate the loss
function for backpropagation. This measure of dissimilarity (or similarity) is typically
estimated using metrics such as Mean Square Error (MSE) and MI, in traditional
registration approaches, and can be employed for DLIR methods as well. This group of
networks, which we refer to as “CNN+STN”, form the basis for most DL-based image
registration networks.
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Table 2.2: A summary of unsupervised deep learning-based registration methods.
Methods are first classified as monomodal or multimodal. Monomodal approaches are
then further classified into several sub-classes.

Registration Reference Networks Modality Dimension Organ Code

Basic networks

Monomodal

De Vos et al., 2017 [72] DIRNet Cine MRI 2D Heart link
Jun et al., 2018 [73] CNN+STN MRI 2D patch, 2D Abdomen -

Smoothness regulariser
Li et al., 2018 [74] Multi-resolution FCN X-ray, MRI 3D Brain link
Balakrishnana et al., 2018[75], 2019[76] VoxelMorph MRI 3D Brain link
Fan et al., 2018 [48] GAN-based registration network MRI 3D Brain -
Zhu et al., 2020 [77] Affine subnetwork+Deformable subnetwork MRI 3D Brain -
Fu et al., 2020 [78] LungRegNet CT 3D patch Lung -
Stergios et al., 2018 [79] CNN+STN MRI 3D Lung link
Kuang et al., 2019 [80] FAIM MRI 3D Brain link
Ali et al., 2019 [81] Conv2Warp CT, MRI 3D,4D patch Lung, Brain -
Hu et al., 2019 [82] Dual-PRNet MRI 3D Brain -
Bhalodia et al., 2019 [83] U-Net+Cooperative auto-encoder(CAE) MRI 2D,3D Brain, Heart -
Sang et al., 2020 [84] CNN+Convolution auto-encoder MRI 2D,3D Heart -

Invertibility regulariser
Fechter et al., 2020 [85] U-Net+STN CT, MRI 3D,4D Lung, Heart link
Mahapatra et al., 2019 [51] SARNet X-ray, MRI 2D,3D Chest, Brain -
Gu et al., 2020 [86] SCC-Net MRI 3D Brain -
Kim et al., 2019 [87] Cycle-Consistent CNN CT 3D Liver -

SVF
Dalca et al., 2018[1], 2019[2] Voxelmorph-diff(Probabilistic Model)+SVF MRI 3D Brain link
Krebs et al., 2019 [88] CVAE+SVF Cine MRI 3D Heart -
Liu et al., 2019 [89] CNN(Feature-level Probabilistic Model) MRI 3D Brain -
Shen et al., 2019 [90] AVSM MRI 3D Knee, Femoral, Tibial Cartilage link
shen et al., 2019 [91] 3D U-Net+SVF MRI, CT 2D,3D Knee, Lung link
niethammer et al., 2019 [92] CNN+vSVF+CNN regulariser MRI 2D,3D Brain link

Cascade networks
De Vos et al., 2019 [93] DLIR (multi-stage ConvNets) Cine MRI, CT 3D patch Heart, Chest -
Zhao et al., 2019 [94] Recursive cascade architecture CT, MRI 3D Liver, Brain link
Zhao et al., 2019 [95] Cascading VTN CT, MRI 3D Liver, Brain link

multimodal

Cao et al., 2018 [96] U-Net+STN CT, MRI 3D patch Prostate, Bladder, Rectum -
Qin et al., 2019 [50] UMDIR+cross-cycle reconstruction CT, MRI 3D Lung, Brain -
Fan et al., 2019 [49] GAN-based registration network MRI, CT 3D Brain, Prostate, Bladder, Rectum -
Jiang et al., 2020 [97] MJ-CNN CT, CBCT 3D Lung -

In 2017, De Vos et al. [72] were the first to propose an unsupervised end-to-end
network, based on CNN and STN, to register 2D cardiac cine MRI images. The ac-
curacy of their approach in the registration was demonstrated to be comparable to
SimpleElastix1. Similarly, Jun et al. [73] proposed a “CNN+STN”network for 2D
abdomen MRI registration, which was the first CNN-based registration method for
abdominal images.

Smoothness regulariser: Although similarity metrics can guide the training of
unsupervised registration networks, previous studies have demonstrated that estimated
deformation fields may contain several regions with “folds”, where the determinant of

1https://simpleelastix.github.io/

32

https://github.com/iwyoo/DIRNet-tensorflow
https://github.com/khj250276857/FCN-registration
https://github.com/voxelmorph/voxelmorph
https://github.com/shreshth211/image-registration-cnn
https://github.com/dykuang/Medical-image-registration
https://github.com/ToFec/OneShotImageRegistration
https://github.com/voxelmorph/voxelmorph
https://github.com/uncbiag/easyreg
https://github.com/uncbiag/easyreg
https://github.com/uncbiag/registration
https://github.com/microsoft/Recursive-Cascaded-Networks
https://github.com/microsoft/Recursive-Cascaded-Networks


2.2 Deep Learning Based Medical Image Registration

the Jacobian (of the deformation field) is negative. The proportion of voxels with neg-
ative values for the Jacobian determinant (or the number of folds) is an important
criterion used in most DLIR methods to evaluate the smoothness of the predicted de-
formation fields. Ideally, deformation fields should be diffeomorphic, and hence smooth
and invertible. To enforce the estimated deformation fields to be spatially smooth,
several researchers [74, 79] have employed various forms of regularisation within the
loss function during training. Li et al. [74] employed the total variation (TV) loss as a
smoothness regulariser and designed a multi-resolution FCN to estimate dense deform-
ation fields. Instead of the TV loss, Stergios et al. [79] proposed a network similar to
“CNN+STN” with L1 regularisation for 3D lung MRI image registration.

Regularisation using L2-norm derivatives of the deformation fields has also been
previously proposed [76, 75]. Here, the proposed approach (called “Voxelmorph”) was
based on a “U-Net+STN” framework with different traditional similarity metrics (MSE
and CC) for 3D brain MRI image registration. The approach was shown to outperform
several traditional registration methods such as SyN [98] and NiftyReg1. Following
Voxelmorph, Hu et al. [82] designed a two-stream 3D encoder-decoder network that
computed two convolutional feature pyramids separately and included a pyramid re-
gistration module to predict multiscale registration fields. Similarly, Ali et al. [81]
proposed a novel end-to-end CNN that comprised sequential linear and deformable
convolutions along with a learnt nonlinear sampler. With the same smoothness reg-
ulariser, Fan et al. [48] proposed an adversarial similarity network (combining a re-
gistration network and a discrimination network) for brain MRI registration. They
also learnt a meaningful metric for effective training of the registration network, using
the discrimination network. Using a similar smooth loss, Zhu et al. [77] designed an
end-to-end network comprising an affine alignment subnetwork and deformable sub-
network, which did not require additional preprocessing of affine registration prior to
registration. Similarly, Fu et al. [78] proposed a LungRegNet based on two GAN-based
networks to register lung CT images from coarse to fine, where the adversarial network
in the GANs was used to enforce additional DVF regularisation. Kuang et al. [80]
designed a fast image registration network (FAIM), with two explicit anti-folding reg-
ularisation terms to force the generated deformation field to be smooth: regularisation
for overall smoothness of the predicted displacements and regularisation for negative

1https://cmiclab.cs.ucl.ac.uk/mmodat/niftyreg
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Jacobian determinants in the transformation.
In addition to adopting a smoothness enforcing loss, Bhalodia et al. [83] proposed

to simultaneously learn and use the population-level statistics of the spatial transform-
ations to regularise the neural networks. To do this task, they employed a Cooperative
Auto-encoder (CAE) on the predicted deformation fields to urge them to lie in the vi-
cinity of a low-dimensional manifold, and then the reconstruction loss of the CAE was
used as a regulariser term. Similarly, Sang [84] pre-trained a convolutional autoencoder
on 3,000 DVF samples obtained by SimpleElastix and applied it as a regulariser, which
improved the physical and physiological feasibility of DVF.

Invertibility regulariser: Although the aforementioned smooth losses contribute
to improving the smoothness of deformation fields, they are unable to guarantee an
invertible deformation. Therefore, several studies have focused on designing invertible
frameworks and appropriate losses to tackle this problem. Using a cyclic constraint in
loss, Fechter et al. [85] presented an approach to calculate DVF for periodic motion
tracking in 3D and 4D medical image datasets. This approach was able to calculate the
forward and inverse transformation simultaneously. Similarly, using a cycle consistency
loss, Mahapatra et al. [51] proposed a GAN-based registration network in combination
with segmentation information (learnt automatically), which could directly transfer
the registration model trained on one type of images to another type of images (for
example, training on lung X-ray images while registering brain MRI on testing). To
improve the consistency of the registration, Gu et al. [86] designed a Symmetric Cycle
Consistency Network (SCC-Net), which introduced pairwise and groupwise constraints
on the consistency of the deformation by losses in inverse consistency and cycle con-
sistency. Some researchers also proposed improving the invertibility by network design.
Kim et al. [87] designed a novel registration framework containing two invertible regis-
tration networks, where the fixed image and the moving image were deformed/warped
to match each other, and subsequently deformed back to the original fixed and moving
images.

SVF: Smoothness and invertibility regularisation enhance the diffeomorphic prop-
erties of spatial transformations. However, they cannot guarantee the prediction of
diffeomorphic transformation fields. In theory, SVF and LDDMM can guarantee dif-
feomorphism [88]. Therefore, instead of predicting regular dense displacement fields,
previous studies have opted to predict SVF to guarantee diffeomorphic transforma-
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tions. Krebs et al. [88] designed a multiscale Conditional Variational Auto-encoder
(CVAE) to estimate stationary velocity fields, which enabled accurate registration of
two images and analysis of deformations. Similarly, Dalca et al. [1, 2] proposed a net-
work Voxelmorph-diff, combining diffeomorphic transformations with DL networks, and
provided a framework for quantifying registration uncertainty. Following the structure
in Voxelmorph-diff to estimate SVF, Liu et al. [89] developed feature-level probabil-
istic models to estimate the deformation fields for feature maps/images from multiple
layers of two convolutional neural networks, which provided direct regularisation for
hidden CNN layers. Shen et al. [90] developed an end-to-end registration method
Affine-vSVF-Mapping (AVSM), using a multistep Affine-Net to obtain an initial trans-
formation map and a U-Net-like network to generate initial momentum. Subsequently,
these two outputs were used as input to the registration component, vSVF, to obtain
the final registration fields. Experiments showed that their method achieved higher
accuracy and smoother (fewer foldings) fields than Voxelmorph-diff. Based on a vector
momentum SVF model, Niethammer et al. [92] were the first to propose a CNN-based
local regulariser for registration, generating deformation fields without foldings. The
initial momentum could be obtained using various methods, including DLIR meth-
ods. For simplicity, we categorised it as an unsupervised DL method. Similar to the
method proposed in [90] to obtain the deformation fields, Shen et al. [91] proposed
a region-specific diffeomorphic metric mapping registration technique. They obtained
large diffeomorphic deformations with a spatiotemporal regulariser and achieved higher
accuracy than AVSM [90]. Rather than estimating displacement fields, these methods
predict SVF/LDDMM and generate smoother fields than previous methods. The be-
nefit of such approaches is that the estimated deformation fields contain only a few
foldings, or in some cases are perfectly smooth.

Cascade networks: Cascade networks combine several registration networks to
obtain the final registration results, often obtaining higher accuracy after several rounds
of registration. However, these networks do not guarantee diffeomorphic transforma-
tions. De Vos et al. [93] proposed a novel registration framework comprising several
ConvNets to solve the problem of unsupervised affine and deformable registration. They
demonstrated that stacking multiple ConvNets into a more extensive architecture fa-
cilitated coarse-to-fine image registration. Zhao et al. [94] presented a deep recursive
cascade architecture for deformable image registration, which could be used to cascade
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other state-of-the-art networks to improve registration quality. In addition, they fur-
ther designed a registration framework called the Volume Tweening Network (VTN)
and incorporated an additional loss of invertibility into the training process [95]. They
showed that cascaded registration subnetworks improved performance for registering
images with large deformations, with minimal increase in computational cost.

Multimodal registration: Unsupervised registration methods, especially GAN-
based methods, are also widely used for multimodal image registration. A common
problem in multimodal image registration is to choose/formulate a suitable metric to
evaluate the dissimilarity between images from different modalities. Cao et al. [96]
designed a “CNN+STN” network for image registration between CT and MRI images.
With a prealigned CT and MRI dataset (fixed and moving images are CT-MRI pairs),
they proposed an intramodality similarity metric, turning the dissimilarity between
MRI and CT images into a combination of two intramodality dissimilarities in MRI and
CT. Qin et al. [50] presented a multimodal deformable image registration method (UM-
DIR), which learnt a bidirectional registration function based on the representation of
the disentangled shape. They pre-trained an image-to-image translation network with
unpaired data, then used it to train the multimodal registration network and GAN
discriminator (to calculate the dissimilarity between images). This method reduced
the registration of multimodal images to monomodal images. Fan et al. [49] designed
a GAN-based network for multimodal and monomodal image registration between 3D
MRI and CT images, designing an adversarial similarity network to learn a meaning-
ful metric for network training. Focussing on pulmonary CT-CBCT and CBCT-CBCT
registration, Jiang et al. [97] proposed a multiscale framework called “MJ-CNN” to pre-
vent the registration network from being trapped in a local minimum, which contained
three subnetworks at different scale levels (from coarse to fine). They trained these
three sub-networks separately first, then jointly trained them in a whole framework.

Compared with traditional registration methods, the unsupervised DLIR meth-
ods are significantly faster. Additionally, unsupervised registration networks do not
need ground truth transformations for training, addressing a fundamental limitation
of supervised image registration methods. Moreover, numerous approaches [1, 2] have
shown that unsupervised methods achieve similar or sometimes better registration per-
formance than traditional state-of-the-art registration methods. Consequently, current
research in the field is predominantly focused on improving the performance and ex-
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panding the capabilities of unsupervised image registration techniques.

Weakly-supervised Learning Methods

As discussed previously, supervised image registration methods require ground-truth
deformation fields, which are generally difficult to obtain. In contrast, unsupervised
image registration methods disregard all available information and utilise only fixed and
moving images. Consequently, useful information that may help guide image registra-
tion is not exploited. To utilise such information (typically encoded as anatomical cues)
and improve the image registration performance of unsupervised approaches, several
weakly supervised learning methods have been proposed. Table 2.3 summarises all deep
learning-based weakly supervised registration methods published to date. It is relev-
ant to note that several studies have proposed both unsupervised registration networks
and their weakly supervised counterparts simultaneously [76, 2]. As done previously
for supervised and unsupervised methods, we categorise this group of approaches into
monomodal and multimodal registration, and discuss them accordingly.

Table 2.3: A summary of weakly-supervised DL methods (categorised as monomodal
and multimodal registration).

Registration Reference Network Modality Dimension Organ Code

Monomodal

Hering et al., 2019 [99] CNN Cine MRI 2D Heart -
Balakrishnana et al., 2019 [76] Voxelmorph MRI 3D Brain link

Dalca et al., 2019 [2] Voxelmorph-diff MRI 3D Brain link
Heinrich et al., 2019 [100] PDD-Net CT 3D Abdominal link

Xu et al., 2019 [101] DeepAtlas (segmentation and registration CNN) MRI 3D Knee, Brain link
Chen et al., 2020 [102] Segmentation+Two-stage registration network CT 3D Lung -
Ha et al., 2020 [103] U-Net+Two-stage registration network MRI 3D Heart link

Mansilla et al., 2020 [104] AC-RegNet X-ray 2D Chest link

multimodal
Hu et al., 2018 [105, 106] Global-Net, Local-Net CNN MRI, TRUS 3D Prostate Gland link
Hering et al., 2019 [107] U-Net MRI, CT 3D Heart -

Monomodal registration: Most weakly-supervised registration networks are sim-
ilar to unsupervised networks, with the exception that additional information is util-
ised during training. This additional information is typically encoded as region-wise
labels/masks or landmarks and is only utilised during training. The labels are spatially
aligned jointly with the images, by minimising a loss function of the warped moving
label and the fixed label. The intuition here is that the labels help preserve anatom-
ical coherence between tissue/organ boundaries by acting as attention maps that guide
the estimation of spatial transformations. These label pairs for the fixed and moving

37

https://github.com/voxelmorph/voxelmorph
https://github.com/voxelmorph/voxelmorph
https://github.com/multimodallearning/pdd_net
https://github.com/uncbiag/DeepAtlas
https://github.com/multimodallearning/semantically-guided
https://github.com/lucasmansilla/ACRN_Chest_X-ray_IA
https://github.com/YipengHu/label-reg


2.2 Deep Learning Based Medical Image Registration

images might include solid organs, ducts, vessels, point landmarks, and other ad hoc
structures that are deemed relevant to guiding registration. In the reviewed literat-
ure, there are mainly two types of labels utilised to guide registration, segmentation
masks, and landmarks. Both types of labels are used to construct a combined loss that
is optimised to match both labels and images and estimate the desired deformation
field. Hering et al. [99] advanced the state-of-the-art in CNN-based deformable regis-
tration by combining a square difference loss between fixed segmentation and warped
moving segmentation with the similarity between fixed and warped moving images.
Following Voxelmorph, Balakrishnan et al. [76] proposed an extension that incorpor-
ated a segmentation loss during training, calculated as the Dice score between the
fixed and warped moving segmentation masks. Similarly, Dalca et al. [2] also built
a weakly supervised version of Voxelmorph-diff by incorporating the surface distance
between the segmentation results. With an MSE loss on segmentation, Heinrich et
al. [100] designed PDD-Net for the registration of monomodal abdominal CT image,
which combined probabilistic dense displacements with differentiable mean field regu-
larisation. This approach was shown to outperform previous DL approaches, achieving
an improvement of 15% in Dice overlap.

Instead of using segmentation masks as just additional terms to match in the loss
function, Xu et al. [101] proposed the first approach to jointly learn two deep neural net-
works for simultaneous image registration and segmentation. The registration network
and segmentation network can guide each other’s training on unlabelled data based on
anatomy similarity loss, therefore, the proposed method only required a few manual
segmentation samples. With a similar idea, Chen et al. [102] proposed using semantic
information (lung lobes and airway masks obtained from a pre-trained segmentation
network) to guide registration. They designed a two-stage registration network, where
the first predicted coarse deformation in the segmentation masks, while the second was
fine registration in the vessel structures. Instead of registering images directly, Ha et
al. [103] proposed a semantically guided registration network, which applied a U-Net to
the extracted semantic features and used a two-stage registration network to predict the
final deformation fields based on the extracted semantic features, under the guidance
of two losses in segmentation. As applying the Dice score on the segmentation results
does not consider the global context of the anatomical structures, to tackle this issue,
Mansilla et al. [104] proposed to use an auto-encoder to extract the global anatomical
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features from fixed and warped moving masks, then computed the squared Euclidean
distance on them as an additional global loss, which helped to predict more realistic
and accurate results.

Multimodal registration: Weakly-supervised registration methods have also
been employed for multimodal registration. Hu et al. [105] introduced a flexible frame-
work that could use all types of anatomical labels for multimodal T2W-TRUS regis-
tration. They proposed a network that combined global net (affine registration) and
local net (deformable registration), which significantly outperformed a separate global
net or local net. Based on the reviewed literature, this is the first DLIR method to
use weak labels to guide image registration. Using segmentation masks for the entire
heart in CT and MRI, Hering et al. [107] combined three 2D networks to construct a
2.5D registration approach for cardiac MRI-CT registration. They demonstrated that
their approach achieved a higher Dice score than previous state-of-the-art unsupervised
registration methods.

2.2.3 Other Usages

Besides predicting similarity metrics and transformation fields, deep neural networks
have been used in other ways to facilitate image registration, such as feature extrac-
tion, learning new image representations, and reinforcement learning, among others.
Table 2.4 summarises these other usages of DL networks for medical image registra-
tion. The majority of approaches thus far have employed DL networks to either: (1)
learn feature maps for the input moving images and fixed images; or (2) learn new
image representations (transfer the original images to new images which are more con-
venient for registration, for example, learn a clean image from the noisy image, or
transfer fixed and moving images to same modality in multimodal registration) for the
original fixed images and moving images. We discuss the details of these methods in
subsequent sections.

Feature extraction: As DL networks have been proven to be efficient at feature
extraction, a few early studies [108, 109] first used DL networks for feature extrac-
tion, and subsequently applied traditional registration methods using the obtained
features. Wu et al. [108] built a convolutional independent stacked subspace analysis
network to learn the hierarchical basis filters from several image patches in brain MRI.
They applied HAMMER [123] for registration, achieving better registration perform-
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Table 2.4: A summary of other reviewed uses of DL networks for medical image
registration, including 3 main classes and several interesting works that are not included
in former classes.

Reference Network Modality Dimension Organ Usage Code

Wu et al., 2013 [108] 2-layer ISA MRI 3D patch Brain

Feature extraction

-
Wu et al., 2016 [109] SAE MRI 3D patch Brain -
Kearney et al., 2018 [110] DCIGN CBCT, CT 3D patch Head, Neck -
Zhu et al., 2018 [111] PCANet CT, MRI 2D patch Brain -
Blendowsk et al., 2019 [112] CNN CT 3D Lung -
Zheng et al., 2018 [113] PDA module X-ray, DRR 2D,3D Spine -
Canalini et al., 2019 [114] 3D U-Net US 3D Brain -

Yang et al., 2016 [115] Encoder-decoder MRI 2D Brain

Image representation

-
Liu et al., 2019 [116] 10-layer FCN MRI 2D patch Brain -
Liu et al., 2019 [117] IB-cGAN MV-DRs, KV-DRRs 2D Head, Neck, Chest, Pelvis -
Lee et al.,2019 [118] ISTN MRI 3D Brain link
Tang et al., 2019 [40] Cycle-GAN MRI 3D Brain -
Blendowski et al., 2019 [119] Shape encoder-decoder CT, MRI 3D Heart -

Liao et al., 2017 [120] 3D classification CNN CT, CBCT 3D Spine, Heart
Reinforcement learning

-
Toth et al., 2018 [121] CNN CT, MRI, X-ray 2D,3D Heart -
Miao et al., 2018 [122] FCN+MDP X-ray, CBCT 2D,3D Spine -

ance than other HAMMER-based methods. Based on a similar idea, they also designed
a stackable auto-encoder to learn latent feature representations for 3D medical image
patches [109]. Kearney et al. [110] proposed a Deep Convolutional Inverse Graph-
ics Network (DCIGN) to extract hierarchical features as input channels to a sparse
Deformable Image Registration (DIR) algorithm for registering CBCT to CT images.
Blendowski et al. [112] proposed a CNN-based approach for learning discriminative 3D
binary descriptors. Focussing on multimodal registration, Zhu et al. [111] designed a
novel structural representation method based on PCANet [124] to automatically learn
intrinsic image features. Subsequently, the spline-based Free-Form Deformation (FFD)
was applied to register the images, obtaining lower Target Registration Error (TRE)
than traditional state-of-the-art methods. In addition, Canalini et al. [114] first pro-
posed a segmentation-based registration method, combining a 3D U-Net for segment-
ation and a traditional registration method, which registered US volumes acquired at
different surgical stages. To transfer the model trained in the source domain (i.e. syn-
thetic data) to the target domain (i.e. clinical data), Zheng et al. [113] proposed a
pairwise domain adaptation module (PDA) to tackle the domain-shifting problem for
CNN-based 2D-3D registration, which learnt domain invariant features using only a
few paired real and synthetic data. Experiments showed that they obtained better
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performance than fine-tuning, using the same pre-trained registration model.
Image representation: Given the fixed and moving images, most previous stud-

ies focus on improving the performance of a component in the registration algorithm,
and often overlook the quality of the given images. However, even in several well-
curated publicly available datasets, low-quality images resulting from tissue, motion,
or scanner-related artefacts are prevalent. This adversely affects the accuracy of the
final registration, unless addressed adequately. Consequently, given such low-quality
images, generating new image representations with prominent distinguishable anatom-
ical features is essential to ensure high registration accuracy. Additionally, in the con-
text of multimodal registration, shifting the domain of the fixed and moving images
to a single modality would simplify the registration task. To this end, several studies
have proposed using DL networks to learn new representations of the images to be re-
gistered. Yang et al. [115] proposed an encoder-decoder network to learn the mapping
from pathological images to quasinormal images. Subsequently, they utilised NiftyReg
for registration and demonstrated superior registration performance compared with
other state-of-the-art approaches. Lee et al. [118] proposed an image-and-spatial trans-
former network to learn a new image representation for the downstream registration
task (using STNs). They showed that their approach outperformed both unsupervised
and supervised STNs.

Using DL networks to learn new image representations also attracts much attention
in multimodal registration. Liu et al. [116] designed a 10-layer FCN for image synthesis,
which learnt a direct image-to-image/patch-to-patch mapping between different mod-
alities and turned multimodal image registration into monomodal registration. With a
similar idea, Liu et al. [117] presented a novel modality synthesis approach IB-cGAN
to synthesise Kilovoltage Digital Reconstructed Radiographs (KV-DRR) images from
Megavoltage Digital Radiographs (MV-DR), and built a multimodal image registration
method combining IB-cGAN with a traditional registration approach. Rather than con-
verting images (generally fixed images) from one modality to another, Blendowski et
al. [119] built a shared space for images from different modalities. In contrast, Tang et
al. [40] designed a multiatlas registration framework, using a Cycle-GAN to synthesise
multimodal average atlases.

Reinforcement learning: Reinforcement learning networks are also explored in
medical image registration, where the key idea is to provide a reward for every re-
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gistration action. This class of approaches is mainly employed for rigid registration,
mimicking a manual registration process. In 2017, Liao et al. [120] first decomposed the
3D rigid registration task into a sequence of classification problems. They trained the
intelligent agent in a greedy supervised fashion and proposed a hierarchical registration
framework relying on the trained networks. Subsequent studies also explored a multi-
agent system [122] and multimodal registration [121]. Miao et al. [122] formulated
2D-3D registration as a Markov Decision Process (MDP) with observations, actions,
and rewards defined according to X-ray imaging systems, and proposed a multi-agent
system to solve this challenging problem. Similarly, Toth et al. [121] proposed a novel
solution to register 3D preoperative models with 2D intraoperative images. They used
a CNN to predict the optimal action with the highest reward and demonstrated clinical
feasibility through the robustness and efficiency of their framework.

In summary, DLIR methods have been demonstrated to outperform traditional re-
gistration methods in two main aspects, registration speed and accuracy. After training,
the registration of DLIR methods (supervised/unsupervised/weakly supervised meth-
ods) is just one forward prediction, generally less than 1 second for an image pair. It
is significantly faster than traditional methods, because several iterations are neces-
sary for traditional registration methods. Furthermore, most studies have shown that
DLIR methods are capable of achieving higher registration accuracy than traditional
methods, by utilising large training datasets. The introduction of deep neural networks
has significantly improved image registration technologies, from their use for deriving
novel representations of transformation models to augmenting the execution of existing
traditional image registration methods. In the next section, we further introduce DLIR
methods from the point of view of application.

2.3 Applications

In this section, we discuss DLIR methods from a different perspective, analysing them
based on their applications. Medical image registration is essential for various clinical
applications, such as disease diagnosis and treatment planning, image-guided therapy
and surgical interventions, treatment evaluation and patient prognostication, among
others. The primary advantage of DLIR methods is their ability to compensate for
soft tissue and patient motion in real-time, setting them apart from iterative tradi-
tional registration approaches. For instance, Krebs et al. [125] designed an unsuper-
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Figure 2.7: The number of papers for monomodal and multimodal image registration
methods in recent years.

vised generative deformation model within a temporal convolutional network to learn
a probabilistic motion model from a sequence of images, which could be applied for
both spatiotemporal registration of cardiac cine MRI and motion analysis. This ap-
proach could be used for real-time cardiac motion analysis, providing the basis for the
discovery of novel motion-based disease biomarkers. DLIR methods can also be ap-
plied to estimate population-averaged atlases from medical images. Dalca et al. [126]
described a probabilistic spatial deformation model based on diffeomorphisms, which
enabled the generation of atlases conditioned on several attributes of interest, such as
age and gender. Such approaches could be employed to generate virtual populations of
anatomical structures of interest, which would be useful for conducting in silico clinical
trials of medical devices. In addition, they provide a structured framework for assess-
ing anatomical variability across populations, conditioned on relevant covariates. Image
registration can also be used to directly facilitate image segmentation. By transform-
ing images from a labelled atlas, Dalca et al. [127] proposed a Bayesian segmentation
method for 3D brain MRI based on an unsupervised DLIR framework, removing the
need for laborious manual segmentation of numerous images. These studies highlight
the versatility in the application of DLIR methods and present several promising dir-
ections for future research.
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Moving Image Fixed Image Warped Image Deformation Field

Figure 2.8: An example of brain and cardiac MRI image registration with Voxelmorph-
diff [1, 2]. The first and second rows are brain MRI registration and cardiac MRI
registration, respectively.

2.3.1 Monomodal Registration

To facilitate and improve future research on DLIR, we summarise all publicly available
datasets used to develop registration methods in Table 2.5, with links to each. Fig-
ure 2.7 summarises the number of articles published on monomodal and multimodal
registration methods in recent years. We observe that most of the studies conducted
thus far have focused on monomodal registration, with a substantial increase over the
past year. The rate of development of DL-based multimodal registration techniques
is relatively slow compared to the above, but the observed trend indicates that it is
likely to increase substantially over the next couple of years. In this section, we review
monomodal DLIR methods, focussing on the most common image modalities used in
the clinic, namely, MRI, CT, US, and X-ray.

MRI registration: MRI is the most widely used modality for developing image
registration techniques, with a special focus on brain MRIs, due to the availability of
numerous large-scale public datasets (an example of brain and cardiac MRI registration
is shown in Figure 2.8). Therefore, a large proportion of recent DLIR methods are
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Table 2.5: Overview of the data sets used for medical image registration. We list
some basic information (organ, registration type, name, and image modality) of every
dataset and the corresponding link and references which exemplify their methods on it.
Note that some brain MRI datasets containing various modalities (e.g. T1W, T2W)
could also be applied for multimodal registration.

Organ Registration Datasets Modality Reference

Brain

Monomodal

ADNI [128] MRI [108, 109, 53, 75, 1, 54, 74, 126, 2, 94, 51, 95, 86]
IXI MRI [108, 54, 55, 116, 66]
OASIS [129] MRI [115, 52, 64, 75, 1, 76, 126, 127, 2, 83, 77]
BRATS2015 [130] MRI [115, 40]
LPBA40 [131] MRI [109, 64, 53, 54, 74, 48, 55, 49, 40, 89, 94, 95, 81, 82, 92, 86, 77]
IBIS [132] MRI [64, 63].
IBSR18 [131] MRI [64, 48, 55, 49, 92, 86]
MGH10 [131] MRI [64, 48, 55, 49, 81, 92, 86]
CUMC12 [131] MRI [64, 48, 55, 49, 81, 92, 86]
ABIDE [133] MRI [75, 1, 76, 126, 127, 2, 94, 95]
ADHD200 [134] MRI [75, 1, 76, 126, 127, 2, 94, 95]
MCIC [135] MRI [75, 1, 76, 126, 127, 2]
PPMI [136] MRI [75, 1, 76, 126, 127, 2]
HABS [137] MRI [75, 1, 76, 126, 127, 2]
Harvard GSP [138] MRI [75, 1, 76, 126, 127, 2]
FreeSurfer Buckner40 [139] MRI [76]
Mindboggle101 [140] MRI [80, 89, 101, 82, 77]
BraTS2017 [141] MRI [50]
BrainWeb [142] Simulated MRI [62, 111, 116]

Multimodal
RIRE CT, MRI [111]
BITE [143] US, MRI [114]
RESECT [144] US, MRI [114, 145, 146]

Heart
Monomodal

Sunnybrook [147] Cine MRI [72, 93, 85, 84]
ACDC [148] Cine MRI [88, 125, 99, 103]

Multimodal MM-WHS [12] CT, MRI [107, 119]

Knee Multimodal OAI MRI, X-ray [90, 101, 91]

Liver Monomodal

MICCAI 2007 Grand Challenge [149] CT [95]
MSD CT [94]
SLIVER [150] CT [94]
LiTS CT [94, 95]

Chest Monomodal

COPDGen [151] CT [50]
NLST [152] CT, X-ray [93]
DIR-Lab-COPDgen [153] CT [112]
DIR-Lab-4DCT [154] CT [93, 85, 81, 57, 58, 97, 78]
SPARE [155] CT, CBCT [97]
POPI [156] CT [85, 81, 57, 58]
LIDC-IDRI [157] CT [121, 58]
Empire 10 lung datasets CT [62]
NIH ChestXray14 dataset [158] X-ray [51]
JSRT [159] X-ray [104]
Montgomery County X-ray database [160] X-ray [104]
Shenzhen Hospital X-ray database [160] X-ray [104]

Several Organs Multimodal UK Biobank Imaging Study MRI [118]

Whole Body Multimodal VISCERAL Anatomy3 [161] CT, MRI [100]
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validated in brain MRIs, in order to compare performance with previous state-of-the-
art methods, such as Voxelmorph [76, 75], VTN [95], and Conv2warp [81]. Several brain
MRI datasets are also used to develop multimodal image registration methods [64, 40],
with T1W and T2W modalities available in most brain MRI datasets. In addition to
neuroimaging, cine MRI is the primary modality used for cardiac image registration
and cardiac motion estimation [88, 125], with two available public datasets, Sunnybrook
Cardiac Data (SCD) [147] and Automatic Cardiac Diagnosis Challenge (ACDC) [148].

CT registration: CT images are widely used to scan organs in the chest (lungs,
heart) and abdomen (liver, kidneys, and pancreas). Specifically, as shown in Table 2.5,
there are four liver CT image data sets (MICCAI 2007 Grand Challenge [149], MSD,
SLIVER [150], LiTS) and eight thoracic CT data sets ( LIDC-IDRI [157], POPI [156],
Empire 10 lung datasets, COPDGen [151], NLST [152], DIR-Lab-COPDgen [153], DIR-
Lab-4DCT [154]). In addition, there are also several multimodal datasets containing CT
images, VISCERAL Anatomy3 [161], MM-WHS [12] and RIRE respectively. We found
that CT image registration is the second largest domain used to develop medical image
registration methods, with numerous recent studies on the topic [67, 93, 85, 81, 57, 58].
Compared with brain MRI registration, CT image registration is more challenging to
some extent, due to limited soft-tissue contrast, and greater variability in image quality.

Ultrasound registration and X-ray registration: In contrast to the modalities
discussed so far, there are few publicly available datasets for US and X-ray images.
Correspondingly, the number of papers focussing on the registration of US and X-ray
images is also limited. There are two brain datasets, RESECT and BITE, containing US
images, and only one article focussing on monomodal US image registration [114] using
publicly available datasets. Regarding X-ray images, there are six publicly available
datasets, NLST [152], NIH ChestXray14 [158], OAI, JSRT [159], Montgomery County
X-ray database [160] and Shenzhen Hospital X-ray database [160]. However, there are
relatively few studies on X-ray image registration [51, 104], compared to MRI and CT.

2.3.2 Multimodal Registration

With the ability to calculate the dissimilarity between images of different modalities, DL
has been widely applied in multimodal registration. However, in contrast to monomodal
registration, there is limited availability of public datasets for multimodal registration.
Based on the reviewed literature, we found only three publicly available multimodal
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data sets for developing registration approaches, namely, RIRE, VISCERAL Anatomy3
benchmark [161] and multimodal Whole Heart Segmentation dataset (MM-WHS) [12]
respectively. Although there are numerous studies that focus on multimodal registra-
tion, most of them collect and use independent, private datasets to develop and valid-
ate their algorithms. In this section, we discuss several typical multimodal registration
applications, for example, T1W-T2W registration, CT-MRI registration, CT-CBCT
registration, and 2D-3D registration.

T1W-T2W registration: T1W-T2W registration aims to learn a mapping between
T1-weighted MRI images and T2-weighted MRI images. It is a common multimodal re-
gistration task in neuroimaging, with many publicly available brain MRI datasets. Yang
et al. [63] proposed a 3D Bayesian encoder-decoder network for multimodal registration
T1W-T2W based on the IBIS 3D autism brain image dataset. Qin et al. [50] proposed
a GAN-based UMDIR network for this task based on the BraTS2017 dataset. Liu et
al. [116] tested their methods on several multimodal registration tasks, T2W vs pro-
ton density (PD), T1W vs PD, and T1W vs T2W, respectively. Tang et al. [40] used
a Cycle-GAN to synthesise multimodal atlases (T1W, T1 contrast-enhanced, T2W,
FLAIR), building a bridge between different modalities.

CT-MRI registration: CT-MRI matching is another common multimodal regis-
tration application. The three public multimodal registration datasets we mentioned
previously all contain both CT and MRI images for the same subjects, useful for de-
veloping multimodal registration approaches. Zhu et al. [111] proposed a PCANet to
learn structural representations of FFD in the RIRE data set. Using a private dataset,
Cao et al. [96] proposed a “CNN+STN” network for registering CT and MRI images.
In addition to these, GAN-based networks have also been used for pelvic [49], and other
studies have proposed approaches to register cardiac CT and MRI images based on the
MM-WHS dataset [107].

MRI-TRUS registration: Several papers have also explored the registration of
MRI and TRUS images. From our reviewed research, two datasets RESECT [144]
and BITE [143] are publicly available for this registration task, and several methods
were developed based on them [145, 146]. However, most of these studies are based
on private datasets. Guo et al. [69] proposed a supervised network to tackle rigid
MRI-TRUS registration on prostate images. Hu et al. [106, 105] proposed a global
subnetwork, for affine registration, with a local subnetwork for deformable registration
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of T2W MRI and TRUS images. Yan et al. [65] designed a GAN-based adversarial
image registration network (AIR-Net) to address this task. Haskins et al. [43] used
CNN to calculate the similarity between the MRI and TRUS images.

CT-CBCT registration: Recently, image registration between CBCT and CT
images has also drawn some attention [110, 67, 97]. Focussing on CT-CBCT deform-
able registration on head and neck images, Kearney et al. [110] proposed DCIGN to
learn hierarchical characteristics, which outperformed intensity-corrected Demons and
landmark-guided DIR. To achieve CT-CBCT rigid registration in image-guided radio-
therapy (IGRT), Yao [67] proposed a CNN to predict an initial rough transforma-
tion, then used traditional intensity-based registration to refine the registration. This
shortened the prediction time while ensuring high registration accuracy.

2D-3D registration: In most multimodal registration applications discussed thus
far, the dimensions of the fixed and moving images are identical. Publicly available
datasets provide 3D image volumes, which can also be employed for slice-wise 2D-2D
registration. Therefore, studies to date have focused primarily on 2D-2D and 3D-3D
image registration. In addition to these, 2D-3D image registration is also useful for a
variety of clinical applications and forms a major part of ongoing research in DL-based
multimodal image registration. This task is even more challenging, due to the differ-
ence in dimensionality and the issue of overlapping tissues and contrast common to 2D
images such as X-rays. Studies on 2D-3D registration have focused mainly on regis-
tering X-ray images with other 3D modality images, such as MRI/US [121], CT [113],
and CBCT [122, 68]. Additionally, slice-to-volume registration has also received some
attention in recent years [60].

2.4 Discussion

Previous sections have introduced and discussed the most relevant DLIR published to
date. In this section, we present current trends in the development of DLIR methods
and discuss the main challenges that are yet to be addressed. Finally, a summary of
the possible directions for future research in the field is presented.
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Figure 2.9: Histogram depicts the number of DLIR papers published until 2020,
grouped according to the categories defined in Section 2.2. “Similarity” refers to the
category of deep similarity.

2.4.1 Development Trends

As discussed previously, recent years have seen a dramatic increase in the number of
papers published on DLIR methods. Unsurprisingly, this follows wider trends in the use
of DL for various tasks in medical image analysis and computer vision. The development
of DL experienced a boom after 2015, with the release of several open-source deep
learning software libraries (e.g. Tensorflow, Keras, and Pytorch). This provided a
convenient and easy-to-use environment for rapid prototyping of DL networks. We
found that the development of DLIR began in 2015. The first two methods proposed in
2013 and 2015 applied CNNs for feature extraction. DLIR methods with high impact
in this domain were first proposed in 2016, where DL networks were used to predict
deformation fields. Subsequent years have seen a continuous increase in the number
of DLIR papers, with several significant and innovative contributions making a strong
case for their superiority over traditional, iterative registration approaches.

Although it has only been a few years since DL networks were applied to med-
ical image registration, the use of DL for medical image registration has seen several
changes. The evolution in the development of DLIR methods is described by the his-
togram plot shown in Figure 2.9. We characterise this evolution over four stages. The
first stage attempted to use deep neural networks for feature extraction, which in turn
were used to guide traditional registration algorithms, by providing more discriminative
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information than the original images. The studies then focused on addressing a crucial
limitation of iterative traditional registration approaches, viz. long execution times.
By learning the space of desired spatial transformations, given suitable training data,
the aim of several supervised networks proposed in this stage was primarily to speed
up registration during inference. Models trained in this fashion on suitable image pairs
are many times faster than iterative registration approaches during testing/inference.
However, supervised methods require ground-truth spatial transformations to be avail-
able for training samples, which are difficult to obtain in most real-world applications,
thereby limiting their applicability.

To circumvent the need for ground-truth deformation fields, at the third stage, un-
supervised and weakly supervised methods were proposed. These approaches demon-
strated comparable registration accuracy and speed with supervised methods, while
requiring just weak labels or no labels at all. Specifically, weakly supervised registra-
tion methods were proposed a little later than unsupervised methods. At this stage,
there was no noticeable improvement in accuracy. In contrast, the deformation fields
generated by DL networks were sometimes non-smooth and unrealistic. The final stage
was aimed at improving the accuracy of the registration and making the deformation
fields smoother. Several additional types of information (e.g. segmentation masks)
were incorporated into networks using weakly supervised learning frameworks, and
various forms of regularisation were introduced during training. These four stages are
not strictly separated. However, we could see a clear line in the development of DLIR
methods, as evidenced by the graph shown in Figure 2.9.

We note that the dimensionality of images used to train DLIR networks is gradually
tending towards the natural space of deformations or organs of interest, as powerful
computing hardware becomes available to handle the high computational and memory
requirements. Initially, the input data used to train the DL registration networks were
mainly 2D images [115, 52, 72, 111, 117, 125, 61, 99] or 2D image patches [116, 73, 47].
They gradually became 3D image patches [108, 52, 109, 64, 53, 63, 110, 96, 55, 93],
and finally whole 3D image volumes and 4D images/patches [85, 81]. In fact, it is
natural to perform 3D registration for most medical images, as most organ motions
take place in 3D. For most medical image registration applications, 3D is enough for
registration tasks. However, for some special applications such as cardiac motion es-
timation, researchers are exploring 3D+t or 4D image registration techniques, which

50



2.4 Discussion

are less common in other computer vision applications.

2.4.2 Main Challenges

Though DLIR methods have addressed many challenging problems in medical image
registration and have achieved faster and more accurate registration than traditional
methods, there are several challenges that must be addressed in this domain.

Preprocessing: Preprocessing is an integral part of image registration, which gen-
erally consists of several operations geared towards simplifying the data to be registered.
Different preprocessing steps may lead to different registration results, even using the
same datasets. In other computer vision tasks, such as image classification and image
segmentation, researchers demonstrate their methods on public datasets, where the
preprocessing is easy to realise and shared by all researchers. However, in medical im-
age registration, although there are many publicly available datasets, the preprocessing
steps tend to vary between studies. For example, in brain MRI image registration,
there are many publicly available datasets, such as OASIS [129], ADNI [128], IXI and
MGH10 [131]. Furthermore, there are several well-acknowledged preprocessing steps,
such as skull-stripping, affine registration, spatial resampling, image enhancement, in-
tensity normalisation, and cropping. However, studies often use different datasets for
training and testing and employ different preprocessing procedures with adapted para-
meters for each step (e.g. voxel size, smoothing factor, etc.). Therefore, in some earlier
DLIR studies, specifically, before Voxelmorph, methods were usually only compared
with traditional state-of-the-art registration approaches (e.g. ANTs [70], Elastix [162],
Demons [163, 164]).

Clinical applications: Clinical applications are the final destination for all med-
ical image processing and analysis methods. Until now, numerous DL-based image
registration methods have proved their efficiency and superiority compared to classical
methods. However, we are yet to see a DL-based tool deployed in a clinical setting,
such as ANTs and Elastix in classical methods. It is challenging for clinicians and
clinical researchers to use DL networks in clinical applications without the right tools.
Furthermore, since DL networks are challenging to interpret, even though a trained
model shows high accuracy in the test datasets, clinicians are still wary of using them
regularly to analyse patient data. Several studies have attempted to quantify the un-
certainty of some predicted registration results of clinicians with useful information to
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provide the validity of the registration [52, 63, 115, 1, 2]. However, more research and
a systematic assessment of registration uncertainty are required to build community
trust and accelerate the adoption of DLIR methods in clinical settings.

Limited data: The lack of suitable public data sets is another fundamental prob-
lem limiting the development of DLIR methods. To obtain accurate and robust models,
DL networks must be trained on large-scale datasets. Although unsupervised learning
registration methods do not require ground-truth data, currently the primary publicly
available datasets are focused solely on brain MRI images, with just a few datasets
containing other organs/modality images. Besides, for supervised methods and weakly
supervised methods, sourcing high-quality ground-truth data remains a challenge. We
also observe that several studies only exemplify their method on their private datasets
due to a lack of publicly available datasets, which is not convenient for benchmarking
and comparing state-of-the-art methods. With the increase in datasets, a more fair
comparison will be possible, facilitating greater innovation in DLIR.

2.4.3 Possible Directions

In this section, we outline possible directions for future research in DLIR to address the
challenges discussed so far. The first step towards identifying these is to consider the
aims of DLIR. Accuracy, robustness, and speed are common goals for all registration
methods. DLIR methods trained to predict the spatial transformation matching a
pair or group of images have not shown a significant difference in registration speed.
Therefore, the obvious focus of future approaches on DLIR should be on improving the
accuracy and generalisation capability of the networks and ensuring that the estimated
deformation fields are more realistic and smooth.

Combining the superiority of traditional methods with DL: A possible
direction is to combine the advantages of traditional methods with deep learning net-
works. Although DLIR methods have significantly improved registration speed and
accuracy compared with classical methods, the superiority of classical methods (e.g.
diffeomorphic attributes and robust registration) can not be overlooked. The trend to
make deformation fields smoother is to combine the diffeomorphic transformation in
traditional methods with DL networks.

Boosting performance with priors: As discussed previously, medical image
registration differs greatly from other medical image analysis tasks. Future research
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should introduce more registration priors to DL networks, making DL networks more
specific to image registration, and more application-specific. To improve registration
performance, DLIR networks could be imbued with prior information related to the
expected type of deformation, the spatial relationship between anatomical structures,
and the topology and morphology of anatomical structures. For example, although
ground-truth spatial transformations are seldom available, other labels could serve as
ground-truth to guide the training process. Several methods on weakly supervised
image registration have been proposed, which generally achieve better performance
than its corresponding unsupervised variant (at no additional cost in terms of execution
speed). More informative priors combined with synthetically modified training data,
such as blackening pixels in the moving image, or generating adversarial examples [165],
could enhance the ability of networks to generalise to unseen data, while remaining
robust to variable image quality. Consequently, combining different types of spatial
and temporal priors with DL networks is a promising direction for future research in
the field.

2.5 Conclusion

In this chapter, we comprehensively summarised the evolution of deep learning-based
medical image registration. We discussed the existing challenges and potential dir-
ections for future research and presented a thorough summary of publicly available
datasets and links to the code of published papers, to facilitate benchmarking of al-
gorithms and enhance future research. The development of DL-based image registration
methods has experienced a similar trend to the development of DL. Image registration
networks increasingly operate in the natural space of the organs or deformations of in-
terest, i.e., gradually evolving from processing 2D images to 3D/4D (dynamic) volumes.
Recent contributions range from speeding up registration in higher dimensions to redu-
cing the need for ground-truth during training, or advanced regularisation constraints
to retrieve plausible deformation fields and preserve anatomical topology. Due to the
difficulty in obtaining ground-truth data for training, DLIR networks gradually turned
to unsupervised learning from supervised learning.

The lack of available data is a major impediment to the advancement of DLIR tech-
niques. Furthermore, the various preprocessing steps used in different studies make it
hard to compare the most recent approaches and conduct thorough benchmarking stud-
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ies. Although DLIR networks have made considerable progress in terms of registration
speed and accuracy for most tasks, some tasks still have accuracy levels that are only
comparable to traditional methods. Additionally, there is a lack of studies that demon-
strate the clinical applicability of DLIR methods, similar to what has been done for
several traditional registration tools (e.g. ANTs, Demons). We have yet to observe this
trend in DLIR methods, but we anticipate that this will be the next area of research in
the field. Accuracy, generalisation, realistic and smooth deformation will likely remain
the main research focus for medical image registration in the near future. Alongside
an increased availability of multimodal datasets, we expect an increased focus on mul-
timodal registration using DL approaches.

Image registration is a fundamental task to understand and capture cardiac motion.
Deep learning-based registration networks have achieved comparable or better registra-
tion performance than traditional approaches in most scenarios, while few studies have
considered the priors of cardiac motion in DL-based image registration networks. In
the following chapter, we would introduce two specific DL-based image registration
networks, incorporating cardiac motion priors in the network to achieve more accurate
and realistic cardiac image registration.
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Chapter 3

Joint Segmentation and Discontinuity-preserving
Image Registration
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Segmentation and image registration are two fundamental tasks in medical image ana-
lysis. The former is to find the region of interest (in cardiac image segmentation, LV
blood pool, LVM and RV) in the original image, while the latter aims to find the
point correspondence between the moving and the fixed images (pairwise registration)
and predict deformation fields to deform the moving image to the fixed image. These
two tasks are relevant and beneficial to each other. Previous research has explored the
deformation of a template to achieve anatomy-plausible segmentation and the incorpor-
ation of segmentation masks in image registration to improve registration performance.
Several approaches have also shown that considering segmentation and registration
simultaneously can achieve better performance than achieving them separately.

Recently, deep learning-based methods have been widely applied in medical image
registration, achieving much faster and comparable results compared with traditional
methods. However, most of the deep learning-based registration methods assume that
the deformation fields are smooth and continuous everywhere, which is not always
true, especially in medical image registration (e.g. cardiac and abdominal images).
Due to the different motion patterns (e.g. sliding) and different properties of differ-
ent organs/tissues, discontinuity may occur on the boundary between different regions.
Consequently, assuming totally smooth deformation would lead to unrealistic deforma-
tion and sub-optimal registration performance. However, this issue is ignored by most
of the current deep learning-based registration methods.

To tackle this issue, in this chapter, we first introduce a deep discontinuity-preserving
registration method, named DDIR, which can preserve the discontinuity in deformation
fields and achieve more accurate registration performance. As ground-truth segmenta-
tion is required in both training and inference of DDIR, we further propose to achieve
segmentation and discontinuity-preserving registration in a single network, which only
requires moving and fixed images as inputs and predicts accurate segmentation masks
and discontinuity-preserving registration results simultaneously. With the predicted
segmentation masks and deformation fields, clinical indices and some motion biomark-
ers can be computed for subsequent CVD prediction and diagnosis tasks.
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3.1 Deep Discontinuity-preserving Image Registration Net-
work

Image registration aims to establish spatial correspondence across pairs or groups of
images, and is a cornerstone of medical image computing and computer-assisted inter-
ventions. Currently, most deep learning-based registration methods assume that the
desired deformation fields are globally smooth and continuous, which is not always
valid for real-world scenarios, especially in medical image registration (e.g. cardiac
imaging and abdominal imaging). Such a global constraint can lead to artefacts and
increased errors at discontinuous tissue interfaces. To tackle this issue, we propose a
weakly-supervised Deep Discontinuity-preserving Image Registration network (DDIR),
to obtain better registration performance and realistic deformation fields. We demon-
strate that our method achieves significant improvements in registration accuracy and
predicts more realistic deformations, in registration experiments on cardiac magnetic
resonance (MR) images from UK Biobank Imaging Study (UKBB), than state-of-the-
art approaches.

3.1.1 Introduction

Image registration is a fundamental component of several applications in medical ima-
ging. Recent years have seen a shift from traditional iterative methods to deep learning
(DL)-based registration approaches. Although training DL-based approaches is time-
consuming, the inference is rapid, involving just a single forward pass through the
network. Consequently, DL-based approaches offer substantial acceleration for pair-
/group-wise image registration relative to traditional approaches, achieving near-real-
time performance in certain applications.

Most existing DL-based registration methods constrain deformation fields to be
globally smooth and continuous, through various means [76, 127, 88]. However, this
assumption is often violated in medical image registration applications, as tissue bound-
aries are naturally discontinuous. This is especially pronounced in cardiac or abdom-
inal imaging, which involves large deformations of multiple tissue-types, and organ
motion/sliding at tissue boundaries. Variability in the physical properties of different
tissue-types results in discontinuities at native tissue boundaries [166, 167]. Hence, en-
forcing deformation fields to be globally smooth can generate unrealistic deformations
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and lead to increased errors near these boundaries.
Discontinuity-preserving image registration is an active area of research in the con-

text of traditional registration methods [168, 169, 170, 166]. For example, Hua et
al. [166] proposed a discontinuous registration approach that utilised enriched B-spline
basis functions at control points near discontinuous tissue boundaries, achieving sig-
nificant improvement in registration accuracy, relative to other existing discontinuity-
preserving registration methods. In contrast, only one study thus far has proposed
a discontinuous DL-based image registration framework. Ng et al. [171] proposed a
custom discontinuity-preserving regulariser on the deformation fields (used with a typ-
ical unsupervised registration network), to preserve discontinuities, while ensuring local
smoothness within specific regions. They formulated a regularisation term based on
the unsigned area of the parallelogram spanned by two displacement vectors associ-
ated with moving image voxels. However, without additional boundary information
for guidance, such a discontinuity regularisation term alone is insufficient to preserve
strong discontinuities in deformation fields.

This work assumes that the desired deformation fields are locally smooth, but dis-
continuities may exist between different regions/organs at tissue interfaces. Therefore,
we generate distinct smooth deformation fields for different regions of interest and add
them to obtain the final registration field, used to warp the moving image. Such a
locally-smooth and globally-discontinuous registration scheme is achieved using a novel
Deep Discontinuity-preserving Image Registration network, or DDIR. The contributions
of this work are two-fold: (1) we designed a novel framework, DDIR, for discontinuous
DL-based image registration. This is the first study to incorporate discontinuity in DL
network structure and training strategy, and not only in terms of a custom regularisa-
tion term in the loss function. (2) Our proposed DDIR achieves significant improvement
in registration accuracy over state-of-the-art registration methods, and preserves key
cardiac morphological indices post-registration, not afforded by the latter.

3.1.2 Method

Pair-wise image registration aims to establish spatial correspondence between the mov-
ing image IM and fixed image IF and is formulated as,

ϕ(x) = x + u(x), (3.1)

58



3.1 Deep Discontinuity-preserving Image Registration Network

where, x represents voxels/pixels in the moving image IM , u(x) denotes the displace-
ment field, and ϕ(◦) represents the deformation function.

To generate deformation fields that are locally smooth and discontinuous at the
boundaries of different organs/regions, we propose to generate deformation fields for
different sub-regions, and add them to obtain the final deformation field. Sub-regions
in the images to be registered must first be segmented either manually or automatic-
ally. With short-axis (SAX) cardiac cine-magnetic resonance (CMR) images, manual
and automatic segmentation results for left ventricle blood pool (LVBP), left vent-
ricle myocardium (LVM) and right ventricle (RV) are generally available in public data
sets, large-scale imaging initiatives (e.g. UK Biobank) and from previous studies on
automatic CMR segmentation [172]. As the focus of this work is on SAX-CMR image
registration, we explicitly model discontinuities along cardiac boundaries by splitting
the images into four sub-regions, namely, LVBP, LVM, RV, and background. These sub-
regions are subsequently used to train our DDIR approach and register CMR images
in a manner that preserves discontinuities at their boundaries.

Network Architecture

Multi-channel Encoder-decoder. Most previous DL-based registration methods
apply an encoder-decoder network (generally U-Net [35]) to extract feature maps from
the concatenated input moving image and fixed image. However, as shown in Figure 3.1,
in DDIR the original moving image and fixed image (at 128 × 128 × 32) are divided
into four image pairs, i.e. LVBP, LVM, RV and background, using segmentation masks
for the corresponding regions. In each of these pairs, voxels in corresponding regions
are preserved while the rest are set at zero. Each pair is concatenated and fed as
input to a distinct U-Net block, which extracts region-specific feature maps. These
four U-Nets have the same architecture, including four down-sampling layers and three
corresponding up-sampling layers. Using this multi-channel encoder-decoder structure,
we obtain four sets of feature maps (64×64×16) corresponding to different sub-regions.
We use the same U-Net architecture (with identical hyper-parameters) in all DL-based
registration approaches investigated in this study.

Discontinuity Addition. Using the region-specific feature maps learnt by U-Nets,
we first predict four different smooth deformation fields (corresponding to each region)
and then add them to obtain the final deformation field, to preserve local smoothness
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Figure 3.1: Schema of DDIR. The registration network applies four different channels
extracting features from pairs of LVBP, LVM, RV and background. Based on them,
we obtain four sub-deformation fields for different regions. The final deformation field
is obtained by adding these four deformation fields with corresponding segmentation.
The cardiac MR images were reproduced by kind permission of UK Biobank ©.

and discontinuity at the interfaces. Similar to previous papers [127, 88], we assume the
transformation function (denoted as ϕz) is parametrised by stationary velocity fields
(SVF) (zi, i ∈ [0, 3]), which are sampled from a multivariate Gaussian distribution.
With the predicted feature map, we compute the mean µi and variance Σi of zi (using
two different convolution layers). Based on them, four SVFs (z0, z1, z2, z3) correspond-
ing to different regions (LVBP, LVM, RV and background) are sampled. With the
corresponding integration layer and up-sampling layer, we obtain four diffeomorphic
deformation fields ϕz0 , ϕz1 , ϕz2 and ϕz3 . As before, we use region-specific segmentation
masks to extract each region of interest from the obtained deformation fields (setting
the remaining voxels to zero) and add them to generate the final deformation field.
Denoting the segmented regions of LVBP, LVM, RV and background as SLV BP , SLVM ,
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SRV and Sbackground respectively, the addition can be formulated as,

ϕz = ϕz0 × SLV BP + ϕz1 × SLVM + ϕz2 × SRV + ϕz3 × Sbackground. (3.2)

Loss Function

The loss function includes two terms, a dissimilarity and a regularisation term. The
former is the distance between the warped moving image and the fixed image, while, the
latter constrains the estimated deformation fields to be locally smooth (i.e. within each
region), to avoid unrealistic deformations. The dissimilarity loss in DDIR captures the
dissimilarity on both images and segmentations. We use normalised cross-correlation
(NCC) LNCC to evaluate the similarity between the warped moving image and the
fixed image. As the region-wise segmentation masks are available, we also compute the
region-wise dice loss, denoted LDice as in [173].

To preserve discontinuity at the interfaces of the organs/regions while ensuring local
smoothness, a global smoothness constraint is not enforced on the final deformation
field. The addition of different deformation fields preserves discontinuities at interfaces,
therefore, we only need to guarantee the deformation field of each sub-region is smooth.
This is achieved by regularising each sub-deformation field. Following Voxelmorph-
diff [127], we calculate the Kullback-Leibler (KL) divergence between the approximate
posterior qψ(z|IF ; IM ) and the prior p(z) (p(z) = N(z; µz, Σz)) of each velocity field z,
formulated as,

R = KL(qψ(z|IF ; IM )||p(z|IF ; IM )),

LR = 1
4(RLV BP + RLVM + RRV + Rbackground),

(3.3)

where R denotes the regularisation for each deformation field and LR is the com-
bined regularisation term. The qψ(z|IF ; IM ) = N(z; µz|IF ,IM

, Σz|IF ,IM
) is a multivariate

normal, where, µz|IF ,IM
and Σz|IF ,IM

are the mean and variance of the distribution,
learnt by convolution layers. The complete loss function used to train the network is,
Ltotal = λ0 × LNCC + λ1 × LDice + λ2 × LR, where, λ0, λ1 and λ2 are used to weight
the importance of each loss term.
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3.1.3 Experiments and Results

Data and Implementation

The registration performance of the proposed approach is evaluated on SAX-CMR im-
ages (spatial resolution at ∼ 1.8×1.8×10mm3), available from UKBB. We chose images
from 2,000 subjects at random, and used images at end-diastole (ED) and end-systole
(ES) for intra-subject registration. Among these, 1,600 subjects were chosen at random
for training DDIR, equating to 3,200 image pairs (ED-to-ES or ES-to-ED registration).
Image pairs from the remaining 400 subjects were used for testing. All CMR images
were resampled to 1.50 × 1.50 × 3.15mm3 using bi-cubic interpolation, and cropped to
a size of 128 × 128 × 32 (with zero-padding for images with fewer than 32 slices). The
region-wise segmentation masks for all CMR images were obtained automatically using
the segmentation method proposed in [172]. DDIR was implemented using Python and
Keras on a Tesla M60 GPU machine. The Adam optimiser was used for training, with
a learning rate of 1e−4. The batch size was set to 2, and the hyper-parameters λ0, λ1

and λ2 were set to 20, 200, 0.1 (determined empirically), respectively. The source code
will be publicly available on the Github 1.

Quantitative Comparison and Analysis

To demonstrate the superiority of our approach, we compare DDIR with both tra-
ditional registration and DL-based registration methods. For the former, we choose
Symmetric Normalisation (SyN) registration (3 resolution level, with 100 iterations
in each sampling level) in ANTs [70], Demons (Fast Symmetric Forces Demons [174]
with 800 iterations and standard deviations 1.0) in SimpleITK and B-spline registra-
tion (max iteration step is 2,000, sampling 6,000 random points per iteration) in Sim-
pleElastix [175], for comparison. For the latter, DDIR is compared with Voxelmorph-
diff [127]. As DDIR uses segmentation masks during training and inference, it is a
weakly-supervised registration method. For a fair comparison, we build three weakly-
supervised versions of Voxelmorph - VM-Dice, VM(img+seg) and VM-Dice(img+seg).
VM-Dice uses a Dice loss LDice term and binary cardiac segmentation masks for the
fixed and moving images during training, but does not require the latter for inference.
In VM(img+seg), we concatenate the fixed and moving images with their correspond-

1https://github.com/cistib/DDIR
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ing multi-class masks (i.e. distinct labels for each region) and use these to train the
network. While, VM-Dice(img+seg) is a combination of the previous two methods. We
did not compare with the DL-based discontinuity-preserving method proposed in [171],
as there is no corresponding source code publicly available. This strategy to register
different sub-regions and add corresponding deformation fields is also applicable to
the aforementioned networks. Hence, we also apply this strategy during inference, for
trained Voxelmorph-diff and VM-Dice models (as they only require sub-images as input
on the inference), for comparison with DDIR. These are denoted Voxelmorph-diff(add)
and VM-Dice(add). These two approaches are different from DDIR as the addition of
sub-deformation fields is not learnt end-to-end during training (as in DDIR).

To demonstrate the advantage of incorporating discontinuity in the DL-based re-
gistration network, we also build a baseline for DDIR, DDIR(baseline), where the pre-
dicted feature maps from the four different channels are concatenated and used to com-
pute a single diffeomorphic deformation field (instead of four sub-deformation fields, as
in DDIR).

Qualitative Results. Registration results obtained using DDIR and the other
methods investigated are assessed visually in Figure 3.2. Here, the moving and fixed
images are shown in the first column. The corresponding warped moving images, de-
formation fields, and Jacobian determinants (rows 1-3) obtained following registration
using SyN, B-spline, Voxelmorph-diff, DDIR(baseline) and DDIR, are shown in columns
2-6. The warped moving images obtained by both traditional registration methods are
distinctly different to the fixed image, although the B-spline result appears visually
more similar than those obtained by SyN. All warped moving images obtained using
DL-based methods look more similar to the fixed image, than the former. The de-
formation fields and their corresponding Jacobian determinants estimated using each
approach indicate that distinct boundaries for the left and right ventricle are retained
using DDIR, not afforded by the rest.

Quantitative Results. To quantitatively evaluate the performance of our ap-
proach, we compare DDIR with previous methods using the Dice score (DS) and the
Hausdorff Distance (HD). DS is computed for LVBP, LVM and RV. These values and
the average DS and HD across all regions are reported in Table 3.1. Besides, to demon-
strate the clinical value of DDIR, we also compute two clinical indices, LV end-diastolic
volume (LVEDV) and LV myocardial mass (LVMM). The former is computed using
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ED segmentations, while the latter, is computed using ED and ES segmentations, pre-
and post-registration. Pre-registration, LVEDV and LVMM are computed based on
the moving and fixed segmentations (used as reference values). Post-registration, we
compute them based on the warped moving segmentation. Therefore, as we perform
both ED-to-ES and ES-to-ED registration for each subject, the LVMM values reported
in Table 3.1 represent the average computed at both ED and ES, across all subjects.
Thus the closer LVEDV and LVMM (post-registration) are to the reference values, the
better the registration performance.

DL-based approaches outperform traditional registration methods in terms of both
DS and HD. The weakly-supervised variants of Voxelmorph-diff provide improvements
over Voxelmorph-diff, consistent with previous research[127]. Using segmentation masks
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Figure 3.2: Visual comparison of deformation fields estimated using DDIR and state-of-
the-art methods. Left column: Moving and fixed images; Right column: corresponding
warped moving image (first row), deformation fields (second row) and Jacobian de-
terminant (last row). Colours in the Jacobian determinant images, from blue to red
represent the intensity from low to high. The cardiac MR images were reproduced by
kind permission of UK Biobank ©.
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Table 3.1: Quantitative comparison between DDIR and state-of-the-art methods using
the DS of LVBP, LVM, RV and average Dice (denoted as Avg. DS) and HD. Statistically
significant improvements in registration accuracy (DS and HD) are highlighted in bold.
Besides, LVEDV and LVMM indices with no significant difference from the reference
are also highlighted in bold.

Methods LVBP DS (%) LVM DS (%) RV DS (%) Avg. DS (%) HD (mm) LVEDV (ml) LVMM (g)
before Reg 57.68 ± 6.21 30.88 ± 8.68 55.13 ± 7.51 47.90 ± 6.33 12.91 ± 2.48 143.76 ± 32.13 83.67 ± 21.06
B-spline 74.44 ± 11.50 68.06 ± 7.20 61.76 ± 12.05 68.09 ± 8.76 13.72 ± 3.57 131.14 ± 40.64 81.11 ± 22.60
Demons 80.29 ± 10.00 69.96 ± 5.50 64.86 ± 9.67 71.70 ± 6.96 13.06 ± 3.12 138.00 ± 34.15 80.00 ± 21.25
SyN 70.92 ± 9.36 57.88 ± 10.59 60.30 ± 8.35 63.03 ± 8.29 12.98 ± 2.68 120.09 ± 41.83 83.12± 21.20
Voxelmorph-diff 81.73 ± 8.71 72.04 ± 4.65 65.73 ± 9.62 73.16 ± 6.26 12.96 ± 3.14 137.16 ± 32.59 78.65 ± 21.68
VM-Dice 82.28 ± 8.75 72.53 ± 4.59 66.30 ± 9.67 73.70 ± 6.28 13.00 ± 3.24 139.58 ± 32.79 78.98 ± 21.57
VM(img+seg) 82.54 ± 8.50 72.66 ± 4.80 66.69 ± 9.64 73.96 ± 6.28 12.68 ± 3.21 138.29 ± 33.00 80.83 ± 21.62
VM-Dice(img+seg) 81.97 ± 8.53 71.23 ± 4.79 70.20 ± 12.05 74.47 ± 6.79 11.28 ± 4.35 144.33 ± 32.93 80.17 ± 22.02
Voxelmorph-diff(add) 78.82 ± 6.38 67.41 ± 8.80 75.10 ± 6.97 73.78 ± 6.10 11.74 ± 3.08 119.30 ± 38.71 91.39 ± 23.07
VM-Dice(add) 79.59 ± 5.91 68.81 ± 7.81 77.93 ± 6.63 75.44 ± 5.36 11.14 ± 3.12 120.90 ± 38.14 94.89 ± 25.96
DDIR(baseline) 84.25 ± 8.63 75.02 ± 4.50 71.42 ± 10.32 76.90 ± 6.58 11.85 ± 3.38 141.73 ± 32.29 79.01 ± 21.40
DDIR 84.63 ± 8.07 75.27 ± 5.03 74.07 ± 8.73 77.99 ± 5.47 10.65 ± 3.51 141.84 ± 32.59 81.92 ± 21.86

as additional input channels to the network (VM(img+seg)) yields better results than
using them just to compute the loss and drive gradient updates (VM-Dice) (73.96% vs
73.70%). However, conversely the former requires segmentation masks during inference,
while the latter does not. The combination of these two strategies (VM-Dice(img+seg))
further improves registration performance (∼ 0.5% in terms of average DS). Adding sub-
deformation fields also improves the registration accuracy of the trained networks, with
Voxelmorph-diff (add) achieving 0.6% higher average DS than Voxelmorph-diff (73.78%
vs 73.16%), and VM-Dice (add) achieving ∼ 1.7% higher average DS than VM-Dice
(75.44% vs 73.70%). We found that the DDIR(baseline) achieves ∼ 1% higher average
DS than VM-Dice(img+seg) (76.90% vs 75.93%), which highlights the advantage of
using a multi-channel encoder-decoder network. Compared with DDIR, we found that
incorporating discontinuity further improves the average DS (77.99% vs 76.90%). Cor-
respondingly, DDIR also obtains the best performance in terms of the DS for LVBP,
LVM and HD, while its RV DS is lower than VM-Dice(add). We evaluated the statistical
significance of these results using paired t-tests and found that DDIR significantly out-
performs Voxelmorph-diff, VM-Dice, VM(img+seg) and VM-Dice(img+seg) on all DS
and HD metrics (P-value<0.05). DDIR also significantly outperforms DDIR(baseline)
in terms of average DS, RV DS and HD. Each sub-deformation field generated by
DDIR is smooth (without foldings). After composing, the discontinuity only exists
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at the interface of different sub-regions, which demonstrates that DDIR can generate
locally-smooth but globally-discontinuous deformation fields.

The clinical indices, LVEDV and LVMM, show no significant differences (P-value
>0.05) post-registration using DDIR to the reference values, not afforded by other
approaches. This demonstrates the superiority and clinical value of our method. To
analyse the discontinuity on the deformation fields, we visualise the deformation fields
generated using DDIR and DDIR (baseline) (presented in Figure A.1 in Appendix A),
where the discontinuity is observed for the former along the LV and RV boundaries. To
further demonstrate the robustness and generalisability of our approach, we apply the
models trained on UKBB data, to the publicly available Automatic Cardiac Diagnosis
Challenge (ACDC) data set. The qualitative and quantitative results are included in
Figure A.2 and Table A.1 for brevity. As cardiac motion in ACDC images is not as
pronounced as in UKBB (in some cases, the images in ED are very similar to ES),
only marginal differences in registration performance are observed between DDIR and
the other addition-based methods in terms of DS and HD. However, as before, DDIR
outperforms Voxelmorph-diff and traditional state-of-the-art methods. Additionally,
the clinical indices quantified (LVEDV, LVMM) post-registration using DDIR show no
significant differences to the reference, not afforded by any of the other methods invest-
igated. This demonstrates the potential for applying DDIR in real clinical scenarios.

3.1.4 Conclusion

We proposed a novel weakly-supervised discontinuity-preserving registration network,
DDIR, which significantly outperformed the state-of-the-art, in intra-patient CMR re-
gistration. DDIR preserves LV clinical indices post-registration, not afforded by other
approaches. This makes it compelling as a tool for use in clinical applications as it
ensures that common diagnostic biomarkers for LV are preserved post-registration.

3.2 Joint Segmentation and Discontinuity-preserving Re-
gistration Network

Medical image registration is a challenging task involving the estimation of spatial
transformations to establish anatomical correspondence between pairs or groups of
images. Recently, deep learning-based image registration methods have been widely
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explored, and demonstrated to enable fast and accurate image registration in a variety
of applications. However, most deep learning-based registration methods assume that
the deformation fields are smooth and continuous everywhere in the image domain,
which is not always true, especially when registering images whose fields of view con-
tain discontinuities at tissue/organ boundaries. In such scenarios, enforcing smooth,
globally continuous deformation fields leads to incorrect/implausible registration res-
ults. We propose a novel discontinuity-preserving image registration method to tackle
this challenge, which ensures globally discontinuous and locally smooth deformation
fields, leading to more accurate and realistic registration results. The proposed method
leverages the complementary nature of image segmentation and registration and en-
ables joint segmentation and pair-wise registration of images. A co-attention block is
proposed in the segmentation component of the network to learn the structural cor-
relations in the input images, while a discontinuity-preserving registration strategy is
employed in the registration component of the network to ensure plausibility in the
estimated deformation fields at tissue/organ interfaces. We evaluate our method on
the task of intra-subject spatio-temporal image registration using large-scale cine car-
diac magnetic resonance image sequences, and demonstrate that our method achieves
significant improvements over the state-of-the-art for medical image registration, and
produces high-quality segmentation masks for the regions of interest.

3.2.1 Introduction

Image registration involves establishing spatial correspondence between a given pair
or group of images, which is fundamental for many downstream medical imaging ap-
plications (e.g. image fusion, atlas-based segmentation, image-guided interventions,
organ motion tracking and strain analysis, amongst others). Recently, deep learning-
based methods have found widespread use in medical image registration, achieving
comparable or better performance than traditional registration methods, and yielding
substantial speed-ups in execution relative to the latter. Among them, unsupervised
and weakly-supervised methods are the most popular as they do not require ground-
truth deformation fields to be available. Unsupervised methods [176, 75, 1] do not need
any ground-truth annotations (e.g. segmentation, landmarks and ground-truth deform-
ation fields) for training and rely just on the information available in the pair/group of
images to be registered. These approaches have been shown to achieve similar or better
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registration performance than traditional registration methods [177], at a fraction of
the execution time. Weakly-supervised methods [76, 127], however, require some an-
notations (e.g. landmarks, segmentation masks) for training, but have been shown to
improve registration performance relative to their unsupervised counterparts.

Currently, most deep learning-based registration methods assume globally smooth
and continuous deformation fields throughout the image domain, using regularisation
like the L2 norm of deformation fields to ensure that. However, this assumption is
not appropriate for all medical image registration applications, especially when there
are physical discontinuities resulting in sliding motion between organs/soft tissues that
must be estimated to register the input images. For example, respiratory motion result-
ing from inflation and deflation of the lungs during breathing contains discontinuities
between the lungs, the pleural sac encompassing the lungs and the surrounding rib
cage. The pleural sac itself contains two layers that slide over one another as the lung
inflates and deflates resulting in what is perceived as a sliding motion at the boundaries
of the lungs. Enforcing deformation fields to be completely smooth when registering
thoracic images of any given individual to recover breathing motion would result in
physically unrealistic deformation fields and artefacts near lung boundaries.

Generally, the sliding of organs and different material properties of different sub-
regions in the input images may cause the deformation fields to be locally smooth but
globally discontinuous [167]. In previous research, many traditional methods have been
proposed to achieve discontinuity-preserving image registration [167, 168, 169, 170, 166,
178, 179, 180, 181, 182]. The fundamental goal of discontinuity-preserving registration
is to predict deformation fields which are locally smooth, i.e. within each sub-region,
while, discontinuous globally, such as at the interface between different regions/organs.
A simple solution to this problem is to register the corresponding sub-organs in the in-
put images independently and then add them to obtain the final deformation field [168].
Another approach is to reformulate the regularisation constraint enforced on the estim-
ated deformation field/functions, to allow for discontinuities at points near the inter-
face between different tissues/organs [169, 170]. However, for those methods, the label
information (segmentation masks/landmark) is generally required to delineate where
the discontinuity may occur, which may not always be available in realistic scenarios.
Therefore, some research has explored achieving discontinuity-preserving registration
without requiring a priori definition of segmentation masks/landmarks, like using vec-

68



3.2 Joint Segmentation and Discontinuity-preserving Registration Network

torial total variation regularisation [179] or bounded formation theory [180].
Most existing deep learning-based image registration methods do not tackle the

problem of estimating deformation fields that preserve discontinuities at tissue/organ
boundaries and generally regularise the estimated deformations to be globally smooth
and continuous across the image domain. Ng et al.[171] was the first to propose a
custom discontinuity-preserving regulariser to constrain the estimation of deformation
fields and guide the training of a deep registration network. They assumed that the
motion vectors should be parallel to each other, and achieved it by minimising the
unsigned area of the parallelogram spanned by two displacement vectors associated
with moving image voxels. The advantage of this method was that it did not require
label information like segmentation/landmarks. However, it was unable to locate the
accurate position of discontinuity that may occur and thereby did not show significant
improvement than traditional methods. Previously, we proposed a deep neural net-
work [183] to register pairs of corresponding anatomical structures in the input images
separately, and add the deformation fields of each pair to obtain the final deformation
field used to warp the source/moving image to the target/fixed image. Instead of using
a globally smooth regularisation, the smooth regularisation is applied to each sub-
deformation field, which ensures the final deformation fields are locally smooth while
globally discontinuous. The proposed approach is shown to significantly outperform
state-of-the-art traditional and deep learning-based registration methods. However,
it requires segmentation masks to split both the moving and fixed images into corres-
ponding pairs of anatomical regions/structures, during both training and testing, which
limits its utility in real scenarios (e.g. segmentation masks may not be readily available
for the regions/structures of interest and trained segmentation models to supplement
the same may not available either).

This work is an extension of our previous work, namely, the deep discontinuity-
preserving registration method (DDIR) presented at the Medical Image Computing
and Computer Assisted Intervention (MICCAI) 2021 conference [183]. In [183], the
segmentation masks were required during both training and testing to split the ori-
ginal moving and fixed images into pairs of corresponding anatomical regions, limiting
its application to scenarios where segmentation masks are readily available for the
anatomical regions of interest or can be predicted automatically using a suitable seg-
mentation approach. In this section, we propose a joint registration and segmentation
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approach wherein, a segmentation module is incorporated within DDIR, which we refer
to as SDDIR. This ameliorates the need for segmenting the fixed and moving images
prior to registering them. Instead of using ground-truth segmentation, SDDIR applies
the predicted segmentation masks to split the moving and fixed images into corres-
ponding pairs of anatomical regions/structures. A co-attention block is used within
the segmentation module to learn the structural correlation between the moving and
fixed images, and further improve the segmentation performance. A comprehensive
set of experiments conducted using a large-scale cardiac cinematic magnetic resonance
(cine-MR) imaging dataset, available in the UK Biobank (UKBB) study [184], is used
to demonstrate that the proposed approach outperforms competing methods in terms
of registration accuracy, whilst also yielding high-quality segmentation masks of the
cardiac structures of interest in the fixed and moving images. Additionally, we also
demonstrate the generalisation of our method by transferring the pre-trained network
on UKBB to two external cardiac magnetic resonance (MR) image datasets, Auto-
matic Cardiac Diagnosis Challenge (ACDC [148]) and Multi-Centre, Multi-Vendor &
Multi-Disease Cardiac Image Segmentation Challenge [185] (M&M).

3.2.2 Related Work

Jointly Segmentation and Registration

Image segmentation and image registration are both fundamental tasks in computer
vision and medical image analysis, which share similarities with each other in terms of
the visual cues/features that are relevant for solving either task. Some traditional meth-
ods have considered these two independent tasks simultaneously, leading to improved
performance in both tasks [186, 187], due to their complementary nature. For example,
Droske et al. [186] presented a variational approach to achieve multi-tasks: the detec-
tion of corresponding edges, edge-preserving denoising, and morphological registration.
They demonstrated that the edge detection and registration tasks were beneficial to
the other, with the local weak edge detection improving registration performance and
vice versa. Similarly, Dong et al. [187] designed a joint segmentation and registration
method for infant brain image registration and found the segmentation and registration
steps were mutually beneficial.

In deep learning based methods, several previous research have proposed to achieve
segmentation by registration (atlas-based segmentation [188]) or use segmentation to
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improve registration (e.g. weakly-supervised registration [183]). Most recently, stud-
ies have proposed to tackle these tasks jointly in a single end-to-end framework [101,
189, 190], which generally includes two parallel sub-networks, the segmentation sub-
network and registration sub-network. A composite loss function is used to train these
networks, comprising four terms, namely, the intensity similarity loss, the segmentation
loss on moving/fixed images, the regularisation term enforcing estimated deformation
fields to be globally smooth, and a segmentation consistency loss term. The segment-
ation consistency loss is computed on warped moving segmentation and ground-truth
fixed segmentation, and is shared by both sub-networks, which helps to improve both
segmentation and registration performance. In [101], Xu et al. proposed a novel joint
segmentation and registration network, named DeepAtlas, which was flexible and could
be applied in samples without label segmentation (segmentation masks). In the training
stage, the registration sub-network and segmentation sub-network are trained altern-
ately, with the ground-truth segmentation missing in some of the training samples. To
train the registration sub-network, when the ground-truth segmentation was available,
the segmentation consistency loss was computed based on the ground-truth segmenta-
tion masks, otherwise using the predicted moving and fixed segmentation from the seg-
mentation sub-network. They demonstrated that their method could achieve significant
improvement in segmentation and registration than sole segmentation or registration
networks. Different from [101], Li et al. [189] trained both sub-networks simultaneously,
with the same loss function. They only segmented the moving image in the network
and used segmentation accuracy (computed between the predicted moving segmenta-
tion and the ground truth moving segmentation mask) and segmentation consistency
(computed between the warped moving segmentation and the fixed segmentation mask)
for network training. Subsequent studies have also explored removing the requirements
of ground-truth segmentation on the segmentation part based on Bayesian inference
with probabilistic atlas [190], or extending the idea of jointly learning segmentation
and registration to multimodal image registration [191].

Segmentation sub-networks in existing joint segmentation and registration approaches
generally segment fixed and moving images independently (or only segment the mov-
ing images), and ignore the inherent correlations that exist between them. To exploit
this correlated structural information, with a view to enhance joint segmentation and
registration performance, we employ a “co-attention” based segmentation sub-network
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within the proposed approach to jointly segment the fixed and moving input images.

Co-attention based Segmentation

Co-attention based segmentation aims to improve segmentation performance by suffi-
ciently leveraging the structural correlations that exist between multiple input images
to be segmented. Generally, there are at least two input images, which contain the same
type of objects to segment. By learning common/correlated features from multiple im-
ages containing the same objects, the co-attention block has been shown to improve
segmentation robustness and accuracy for the objects of interest [192, 193, 194, 195,
196, 197].

The co-attention block is generally used to automatically establish correspondence
between correlated regions in input images/feature representations through training on
large-scale data, where, the correlated regions would be enhanced while other parts
of the images are suppressed. The most popular type of co-attention is spatial co-
attention [193, 195, 198], where the co-attention establishes correspondence within the
spatial domain of the input images. Sometimes an additional channel co-attention is
also used prior to the spatial co-attention [192, 196, 197]. Spatial co-attention has been
predominantly applied to image features, however, recent studies have also applied it
to graph features learnt in graph neural networks [194]. Li et al. [192] utilised co-
attention within a recurrent neural network architecture to learn correlated structural
information across a group of images and improve segmentation performance by sup-
pressing the influence of uncorrelated/noisy information. In the group-wise training
objective, they used the cross-image similarity between the co-occurring objects and
figure-ground distinctness (i.e. distinctness between the detected co-occurring objects
and the rest of the images like background) as additional supervision. Additionally,
co-attention has also been used for the segmentation of the same object in different
time frames, in a video sequence for example. Ahn et al. [193] proposed a multi-frame
attention network to learn highly correlated spatio-temporal features in a sequence. Ex-
periments demonstrated that their method significantly outperformed other competing
deep learning-based methods. Furthermore, Yang [198] proposed a zero-shot object
detection approach for analysing video sequences, using co-attention to learn motion
patterns. They empirically demonstrated that their approach outperformed previous
zero-shot video object segmentation approaches, while requiring fewer training data.
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In this study, we tackle the problem of intra-subject registration of cardiac cine-
MR images, acquired at different phases/time points in the cardiac cycle. In intra-
subject cardiac image registration, the moving and fixed images are different/deformed
representations of the same heart, acquired at different time points in the cardiac
cycle (e.g. at end-diastole (ED) to end-systole (ES)). Hence, we hypothesise that joint
segmentation of both the fixed and moving images using co-attention can yield more
consistent segmentations of the cardiac regions/structures of interest, and in turn,
improve the overall registration performance of the proposed approach.

Discontinuity-preserving Image Registration

Discontinuity-preserving image registration has been widely explored in traditional it-
erative optimisation-based registration approaches but remains relatively unexplored
in the context of deep learning-based image registration. In medical image registration,
due to various material properties between different tissues/organs, and the physical
discontinuities that exist at their boundaries, the underlying deformations that must be
recovered to register the images are often locally smooth and globally discontinuous (e.g.
at the boundaries between different organs [167]). Consequently, registration methods
which constrain estimated deformation fields to be globally smooth, lead to implausible
deformations at tissue/organ boundaries. Traditional discontinuity-preserving registra-
tion methods can be roughly divided into two categories, those that use additional weak
labels such as contours/segmentation masks to guide image registration and others that
do not. Methods that require segmentation masks or contour key points delineating
the discontinuities of interest between structures/organs in the images, can be further
summarised into two categories - (1) registering different sub-regions in the images inde-
pendently [168, 199, 200]; (2) using custom regularisation constraints to preserve global
discontinuities [169, 170, 201] or revising the interpolation function [167, 166] at bound-
aries between different image sub-regions. These methods have been demonstrated to
generate more realistic deformation fields and achieve more accurate results than regis-
tration methods that assume globally smooth deformation fields [168, 169, 170, 166].

The aforementioned approaches generally require segmentation masks/landmarks
delineating the boundaries of objects/structures of interest, which are not always read-
ily available. Several approaches addressed this issue by revising the regularisation term
in the loss/energy function [178, 202, 179, 180, 181, 182], either using some label inform-
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ation like segmentation masks or contour points/landmarks computed pre-registration,
or based on different assumptions for physical property of the deformation fields (e.g.
isotropic total variation or bounded deformation). Li et al. [181] designed a two-stage
registration framework to tackle this issue. They predicted a coarse segmentation mask
based on the motion fields predicted during the first stage of image registration, which
used mask-free regularisation. Subsequently, in the second stage, the smoothness con-
straint was relaxed at object/structure boundaries with discontinuities, using masked
regularisation and masked interpolation. Similarly, Sandkuhler [202] proposed an ad-
aptive edge weight function based on local image intensities and transformation fields to
detect the sliding organ boundaries, then applied an adaptive anisotropic graph diffu-
sion regularisation in the Demons registration to achieve discontinuity-preserving image
registration. Some previous approaches do not need to compute any weak label inform-
ation, prior to registering images [178, 179, 180, 203]. Demirovic et al. [178] proposed
to replace the Gaussian filter of the accelerated Demons with a bilateral filter, using in-
formation from both displacement and image intensity. By adjusting two tunable para-
meters, they could obtain more realistic deformations in the presence of discontinuities.
Vishnevskiy et al. [179] designed an isotropic total variation regularisation approach for
B-splines based image registration, to enable non-smooth deformation fields and used
the Alternating Directions Method of Multipliers to solve it. Their method did not
require organ masks and could estimate the motion of organs/structures on either side
of the discontinuous boundary separating them. By assuming the desired deformation
field to be a function of bounded deformation/bounded generalised deformation (refer-
ring to [204]), Nie et al [180, 203] built novel variational frameworks to allow possible
discontinuities of displacement fields in images, outperforming [179].

Most deep learning-based image registration methods assume the desired deform-
ation fields to be globally smooth and continuous, and do not consider the presence
or relevance of discontinuities at structure/organ boundaries and their impact on the
image registration task. To our best knowledge, only two previous studies have attemp-
ted to preserve discontinuities at object/structure boundaries in deep learning-based
image registration [171, 183]. Ng et al. [171] addressed this issue in an unsupervised
manner. They proposed a discontinuity-preserving regularisation term by comparing
local displacement vectors with neighbouring displacement vectors individually, which
was able to tackle specific behaviours on the discontinuous deformation fields. Without
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ground-truth information specifying the locations of discontinuous boundaries, their
registration performance did not show significant improvements than traditional ap-
proaches. In contrast, we previously [183] proposed a deep discontinuity-preserving
image registration (DDIR) approach, to generate locally smooth sub-deformation fields
for each image sub-region, which were then added to obtain locally smooth and glob-
ally discontinuous deformation fields. Although [183] was shown to outperform the
state-of-the-art, its need for segmentation masks delineating the objects/structures of
interest during inference, limits its application in real-world scenarios. Therefore, in
this section, to tackle this issue, a joint segmentation and registration approach is pro-
posed for discontinuity-preserving registration, which only requires ground-truth masks
in the training process.

3.2.3 Method

In this work, we focus on pair-wise image registration, aiming to establish spatial
correspondence between the moving image IM and fixed image IF . This task can be
formulated as,

ϕ(x) = x + u(x), (3.4)

where, x is the coordinate of voxels/pixels in the moving image IM , u(x) and ϕ(◦)
represents the displacement field and the deformation function, respectively.

To preserve the discontinuities during image registration, similar to our previous
study [183], we decompose the fixed and moving images into corresponding pairs of im-
age sub-regions, register each pair and combine the obtained sub-deformation fields to
obtain the final deformation field used to warp the moving image. Different from [183],
in this study we propose a joint segmentation and discontinuity-preserving image re-
gistration (SDDIR) approach, which includes an additional segmentation sub-network
in DDIR [183], to jointly segment the fixed and moving images. The primary motiv-
ation for the approach proposed in this study is to ameliorate the need for separately
sourcing segmentation masks (either manually or automatically) for the images to be
registered, as required by DDIR. As shown in Figure 3.3, our SDDIR includes a seg-
mentation sub-network and a registration sub-network. The input fixed and moving
images are first fed into the segmentation branch and tissue/organ specific segment-
ation masks are predicted for each image. For example, the focus of this study is
on intra-subject cardiac cine-MR image registration, and given input cine-MR images,
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Figure 3.3: Schema of SDDIR. The proposed network includes a co-attention based seg-
mentation block, a shared-weight encoder-decoder and a discontinuity addition block.
The details of the co-attention based segmentation block can be found in Figure 3.4,
which provides segmentation masks for subsequent registration tasks. The shared-
weight encoder-decoder is to extract features from pairs of LVBP, LVM, RV and back-
ground. Based on them, we obtain four sub-deformation fields for different regions.
The final deformation field is obtained by composing these four sub-deformation fields
with corresponding segmentation, through a discontinuity addition block. The cardiac
MR images were reproduced by kind permission of UK Biobank ©.
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four-class segmentation masks are predicted, delineating the following regions - left
ventricle myocardium, left ventricle blood pool, right ventricle blood pool and back-
ground tissue. Subsequently, the fixed and moving images, and their predicted seg-
mentation masks are fed into the discontinuity-preserving image registration branch,
which predicts region/structure-specific sub-deformation fields, and adds them into a
final deformation field used to warp the moving image. The segmentation and regis-
tration branches are trained jointly end-to-end, as a single network, using a combined
composite loss function. In subsequent sections, we describe the co-attention based seg-
mentation sub-network, discontinuity-preserving image registration sub-network, and
the composite loss function used in the proposed approach.

Co-attention Based Segmentation

The segmentation sub-network in SDDIR is based on a 3D U-Net [205], with a co-
attention block in the bottleneck layer designed to learn structural correlations between
the fixed and moving images, as shown in Figure 3.4. In the segmentation sub-network,
the encoder and decoder branches each comprise two pairs of downsampling and up-
sampling convolution blocks, respectively. The encoder contains two separate chan-
nels to encode the original moving and fixed images from RH×W×D into features of
R

H
4 × W

4 × D
4 . Each encoder channel uses two downsampling blocks (comprising a convo-

lution layer, an activation and an average-pooling layer). The bottleneck layer contains
the co-attention block which takes fixed and moving image features extracted by the
encoder as inputs and predicts corresponding attention maps. Similarly, in the de-
coder, two separate channels comprising two upsampling convolution blocks each, are
used to predict segmentation masks for the fixed and moving images in their original
size/resolution, given their corresponding attention feature maps as inputs. Here, each
upsampling block comprises an upsampling layer, a convolution layer and an activa-
tion layer. To improve network training and performance, skip-connections are used to
concatenate features from each layer in the encoder with its corresponding layer (i.e.
at the same spatial resolution) in the decoder.

The co-attention block predicts task-specific attention feature maps for both the
fixed and moving images, where relevant pixels are enhanced while the rest are sup-
pressed. The moving and fixed image feature maps Fmov, Ffix ∈ RW×H×D×C (C, W,
H and D are channels, width, height and depth of feature maps, respectively) are first
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Figure 3.4: The design of co-attention based segmentation. Two downsampling blocks
are used to extract features from original moving and fixed images. With the co-
attention, the corresponding moving and fixed attention maps can be learnt, which
are concatenated with the input features in the same size as the input of upsampling
blocks. After two upsampling blocks and a Softmax operation, the segmentation masks
of moving and fixed images are obtained. The cardiac MR images were reproduced by
kind permission of UK Biobank ©.

transformed into two different feature spaces (denoted as f(◦) and g(◦)) by two 1×1×1
convolution layers and flattened (from RW×H×D×C to RN×C , N = W × H × D) to cal-
culate similarity matrix S ∈ RN×N . With the similarity matrix S and the feature maps
learnt from the inputs using two additional 1 × 1 × 1 convolution layers (denoted h1(◦)
and h2(◦)), the fixed attention maps ATTfix and moving attention maps ATTmov are
computed. The process of co-attention can be formulated as,

S = f(Fmov) × g(Ffix)T ,

ATTmov = Softmax(S) × h2(Ffix),

ATTfix = Softmax(ST ) × h1(Fmov),

Omov = Concat(Fmov, σ(ATTmov) · ATTmov),

Ofix = Concat(Ffix, σ(ATTfix) · ATTfix),

(3.5)

where, Omov and Ofix are the output feature maps (learnt new representations) of
Fmov and Ffix, following application of their estimated co-attention maps, respect-
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ively. Softmax(◦) is the Softmax function, applied to the last channel of the similarity
matrix S. σ(◦) denotes the Sigmoid function, which is a 1 × 1 × 1 convolution layer
followed by a Sigmoid activation. Concat(◦) is to concatenate the input feature with
the corresponding attention maps, comprising a concatenation, a 1 × 1 × 1 convolution
layer, a batch-normalisation and an activation layer.

Following the two upsampling blocks in the decoder, the co-attention feature maps
of the fixed and moving images are recovered to the original size and resolution of the
input images. A 3×3×3 convolution followed by a Softmax activation function is used
to predict the segmentation masks of the moving and fixed images. The focus of this
study is on intra-subject spatiotemporal registration of cine-MR image sequences, i.e.
pair-wise registration of images acquired at different time points in the cardiac cycle.
We train and evaluate the performance of SDDIR on cardiac cine-MR images available
from the UKBB database. We focus on segmenting and decomposing the fixed and
moving images into four sub-regions, namely, the left ventricle blood pool (LVBP), left
ventricle myocardium (LVM), right ventricle (RV) and background. It is important
to note that while the focus of this study is on intra-subject cardiac MR image re-
gistration, the proposed method is agnostic to imaging modality, organ(s) of interest
and application. SDDIR may be used for joint segmentation (into regions/organs of in-
terest) and registration of other types of images (e.g. computed tomography, computed
tomography angiography, x-ray, MR angiography, etc.).

The co-attention block is inspired by [206], but differs in the following ways - (1)
Skip-connections are applied in our implementation (as shown in Figure 3.4), which
helps ensure better flow of gradients during training and helps improve overall segment-
ation performance; (2) In addition to the standard segmentation loss (e.g. Dice loss
between the predicted segmentation and ground-truth segmentation), we also compute
the cross-entropy between the warped predicted segmentation and the ground-truth
fixed segmentation, as a segmentation “consistency” loss, to ensure that the predicted
segmentations for the fixed and moving images and the deformation field mapping the
latter to the former, are consistent with each other.

Discontinuity-preserving Registration

The segmentation masks predicted for the input fixed and moving images (by the
segmentation sub-network) are passed as inputs along with their corresponding original
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images, to the registration sub-network. To estimate the desired locally smooth and
globally discontinuous deformation field mapping the moving image to the fixed image,
we first predict four different smooth sub-deformation fields for each of the four sub-
regions of interest in the cardiac MR images (i.e. LVBP, LVM, RV and background),
and then add them to obtain the final deformation field.

Network Architecture The segmentation masks predicted by the segmentation
sub-network are used to split the original pair of fixed and moving images into four
different image pairs, comprising, the LVBP, LVM, RV and background sub-regions. As
shown in Figure 3.3, in each pair, the pixel/voxel values within the mask are retained,
while those from the surrounding regions are set to zero. Then, a shared-weight U-Net
(comprising four downsampling and three upsampling blocks) is used to learn features
from all four image pairs. Therefore, we obtain features at 64×64×8 from the original
image pairs (128×128×16). A shared-weight convolution layer followed by a scaling and
squaring layer is used to process the learnt features and estimate their corresponding
diffeomorphic sub-deformation fields. The predicted moving segmentation masks are
used again to extract the corresponding regions in the estimated sub-deformation fields
and combine them to obtain the final globally discontinuous deformation field. Finally,
a spatial transform layer is used to warp the moving image and predicted segmentation
using the discontinuous deformation field.

Discontinuity Addition The addition of deformation fields estimated for rel-
evant image sub-regions is essential to ensure locally smooth and globally discon-
tinuous deformations fields are used for registering images. Similar to previous pa-
pers [127, 88, 183], we assume the transformation function (denoted as ϕz) is para-
meterised by stationary velocity fields (SVF) (zi, i ∈ [0, 3]). With the predicted feature
map, we obtain four SVFs (z0, z1, z2, z3) corresponding to different regions (LVBP, LVM,
RV and background) using a shared-weight convolution layer of size 3 × 3 × 3, whose
weights are sampled from a Normal distribution. The SVFs are integrated by scaling
and squaring layers (referring to [127]) to diffeomorphic deformation fields. After an
upsampling operation, we obtain four diffeomorphic deformation fields ϕz0 , ϕz1 , ϕz2 and
ϕz3 . Similarly, we use the predicted fixed segmentation masks to extract each region
of interest from the obtained deformation fields and add them to generate the final
deformation field. Let the segmentation masks of LVBP, LVM, RV and background be
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SLV BP , SLVM , SRV and SB respectively, the addition can be formulated as,

ϕz = ϕz0 × SLV BP + ϕz1 × SLVM + ϕz2 × SRV + ϕz3 × SB. (3.6)

Loss Function

The segmentation and registration sub-networks within the proposed approach are
trained jointly using the same loss function Ltotal. The loss function Ltotal includes four
terms: segmentation accuracy loss, image similarity loss, segmentation consistency loss
and a discontinuity-preserving regularisation term. The segmentation accuracy loss
includes two parts, the accuracy loss for the moving image and the fixed image. We use
cross-entropy to compute the distance between the predicted segmentation and their
respective ground-truth segmentation masks. Denoting the cross-entropy loss as CE,
the segmentation accuracy loss Lseg is formulated as,

Lseg = CE(Smovpre , Smovgt ) + CE(Sfixpre , Sfixgt ), (3.7)

where Smovpre ,Smovgt ,Sfixpre ,Sfixgt are the predicted and ground-truth segmentation of moving
and fixed images, respectively.

The image similarity loss evaluates the dissimilarity between the warped moving
image and the fixed image. We use the mean squared error to evaluate the distance
between them, formulated as,

LMSE = 1
W × H × D

∑
(Imov ◦ ϕ − Ifix)2. (3.8)

The segmentation consistency loss links the segmentation and registration sub-
networks, allowing them to be jointly optimised. This loss term is computed as the
Dice overlap [173] between the predicted fixed segmentation and the warped predicted
moving segmentation, formulated as,

LDice = 1 −
2|(Smovpre ◦ ϕ) ∩ Sfixpre |
|Smovpre ◦ ϕ| + |Sfixpre |

. (3.9)

The discontinuity-preserving regularisation must ensure that estimated deforma-
tion fields are locally smooth and globally discontinuous. Specifically, discontinuous
at boundaries between structures/regions of interest (i.e. in our case at boundaries
between LVBP, LVM, RV and background). Therefore, we cannot enforce a global
smoothness constraint on the final deformation field. As the addition of different
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deformation fields preserves discontinuities at interfaces, we only need to guarantee
the deformation field of each sub-region is smooth. This is achieved by applying L2-
regularisation on each sub-deformation field, also referred to as the diffusion regular-
iser [127, 76], denoted R, on the spatial gradients of each sub-displacement field u. R

is formulated as,

R(ϕ) = || ▽ u||2,

LR = 1
4(RLV BP + RLVM + RRV + Rbackground),

(3.10)

where LR denotes the combined regularisation terms for each sub-region.
The complete loss function used to train the network is,

Ltotal = λ0 × Lseg + λ1 × LMSE + λ2 × LDice + λ3 × LR, (3.11)

where, λ0, λ1, λ2 and λ3 are hyper-parameters used to weight the importance of each
loss term.

3.2.4 Experiments and Results

Data and Implementation

The proposed approach, SDDIR, is trained and evaluated on three publicly available
cardiac MR image datasets, namely, the UKBB [184], ACDC [148] and M&M [185]. We
choose 1437 subjects from the UKBB dataset, each including short-axis (SAX) image
stacks at ED and ES. The pixel spacing of images in the UKBB is ∼ 1.8×1.8×10mm3.
To train the network, we pre-process all image volumes by cropping and padding (with
zeros) them to a fixed size of 128 × 128 × 16. In this work, we focus on intra-subject
deformable image registration, specifically, registering images from ED to ES and ES
to ED. We split the UKBB data into a training set (1080 subjects), a validation set
(157 subjects), and a test set (200 subjects). This resulted in a total of 2160, 304,
and 400 samples (i.e. pair of fixed and moving images for each subject) that were
used for training, validation and testing. The ground-truth segmentation masks for the
UKBB dataset were manually annotated by experts, as part of a previous study [207].
To verify the generalisation and robustness of the proposed approach, we also apply
the trained model (i.e. trained on UKBB data) to images from the ACDC and M&M
datasets. Similarly, we choose the ED and ES SAX images from 100 subjects (total

82



3.2 Joint Segmentation and Discontinuity-preserving Registration Network

of 200 samples) in the ACDC dataset, whose ground-truth segmentation masks are
available. In the M&M dataset, 300 samples (registration from ED to ES and from ES
to ED) are extracted from 150 subjects. Each image volume in ACDC and M&M is
pre-processed similarly to the UKBB data, resulting in images of size 128 × 128 × 16
using resampling, cropping and padding. Note that, to reduce the domain gap between
different datasets, histogram-matching is applied to the ACDC and M&M images, using
a random image volume from UKBB as the reference.

The SDDIR was implemented in Python using PyTorch, on a Tesla M60 GPU
machine. The Adam optimiser with a learning rate of 1e−3 was used to optimise the
network. We set the batch-size to 3, due to limitations in GPU memory available.
The hyper-parameters in the total loss Ltotal λ0, λ1, λ2 and λ3 were tuned empirically
and were set to 0.1, 1, 0.1, 0.01, respectively, throughout all experiments presented in
this study. The source code will be publicly available on Github (https://github.com/

cistib/DDIR).

Competing Methods and Evaluation Metrics

To highlight the benefits of the proposed approach, we quantitatively compare the
registration performance of SDDIR against both traditional and state-of-the-art deep
learning-based registration methods. Three traditional registration methods are com-
pared against SDDIR, namely, the Symmetric Normalisation (SyN, using 3 resolution
levels, with 100, 80, 60 iterations respectively) in ANTs [70], Demons (Fast Symmetric
Forces Demons [174] with 100 iterations and standard deviations 1.0) available in Sim-
pleITK, and B-splines registration (max iteration step is 4000, sampling 4000 random
points per iteration), available in SimpleElastix [175]. State-of-the-art deep learning-
based registration methods chosen for quantitative comparison against the proposed
approach include, Voxelmorph (VM [127]), the weakly-supervised version of VM (de-
noted as VM-Dice), and a baseline joint segmentation and registration network, named
Baseline. VM-Dice essentially trains the original VM approach in a weakly supervised
manner, with a Dice loss LDice on the warped moving segmentation and fixed seg-
mentation (using the ground-truth segmentation masks). We implement the Baseline
network by referring to [101, 189] based on our setting, which uses a general U-Net
for segmentation and a VM-like architecture for registration. It is trained with the
same loss function as SDDIR, where the only connection between the segmentation
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sub-network and the registration sub-network is the segmentation consistency loss. All
the networks are trained until convergence on the training dataset, and the hyper-
parameters and final models are selected based on their performance on the validation
set.

We also compare the proposed approach, against other discontinuity-preserving
registration methods, namely, DDIR [183] and two other sub-deformation field addition
methods investigated previously in [183], denoted VM(add) and VM-Dice(add). In
these addition-based methods, the original MR images are first split into four different
pairs, using the ground-truth segmentation masks. Then the trained network (VM or
VM-Dice) is used to register those pairs independently. The obtained sub-deformation
fields are added into the final deformation field, which is used to warp the moving image
and segmentation. This strategy is a simple and conventional approach to enabling the
estimation of discontinuity-preserving deformation fields. In contrast with SDDIR, in
this strategy networks are not trained end-to-end and they require segmentation masks
to be available during inference.

Registration performance of each method investigated is quantitatively evaluated
and compared using the following metrics - Dice scores (computed between the warped
moving segmentation and fixed segmentation) on LVBP, LVM and RV, the average
Dice score (denoted as Avg. DS) across all cardiac structures, and Hausdorff distance
(95%) (HD95), where, higher Dice score and lower HD95 indicate better registration
performance. Additionally, two clinical cardiac indices, the LV end-diastolic volume
(LVEDV) and LV myocardial mass (LVMM), are also computed to demonstrate that
the proposed registration approach preserves clinically relevant volumetric indices post
image registration. They are calculated based on the warped moving segmentation of
LVBP and LVM post ES-to-ED registration (LV EDV = VLV BP × SPx × SPy × SPz,
LV MM = VLVM ×SPx×SPy×SPz×Den, where V , SP , Den are the volume of struc-
tures, spacing of images, and an assumed myocardial density (1.05 g/ml) [208, 209],
respectively. VLV BP indicates the left ventricle blood pool volume computed by all
the voxels in the LVBP mask and VLVM denotes the left ventricle myocardium volume
computed by all the voxels in the LVM mask). The closer the clinical indices are to the
reference (i.e. the clinical indices computed based on ground-truth ED segmentation,
presented in the row “before Reg”), the better the registration performance. To assess
segmentation performance, the average Dice scores (denoted as Seg DS) across all car-
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diac structures for the predicted moving and fixed segmentation masks, with respect to
their corresponding ground-truth segmentation masks, are also calculated. To evaluate
the smoothness of deformation fields, we also compute the percentage of voxels with a
non-positive Jacobian determinant (denoted as |J | ≤ 0) for each method, where a lower
percentage means smoother deformation fields. Note that, for discontinuity-preserving
registration approaches (with four sub-deformation fields), we compute the average
|J | ≤ 0 of sub-deformation fields.

Registration Results: UKBB Data

Quantitative registration results obtained for the unseen test set from UKBB are sum-
marised in Table 3.2(the corresponding P-values are shown in Table 3.3). The Baseline
joint segmentation and registration network achieves higher Dice scores on the regis-
tration results than those solely designed for image registration (e.g. Demons, B-spline
and VM). The addition-based methods VM(add) and VM-Dice(add) do not show any
improvements over VM and VM-Dice, and perform consistently worse than VM-Dice
across all metrics evaluated. While the Baseline network significantly outperforms VM
across all metrics, its average Dice score (computed across all three cardiac structures,
LVBP, LVM and RV), only marginally outperforms VM-Dice, and it performs worse
than VM-Dice in terms of HD95. Both the Baseline and VM-Dice networks use the
Dice loss to guide the training of their constituent registration networks. The architec-
tures of the constituent registration networks are almost identical, leading to similar
performance of the Baseline and VM-Dice networks. SDDIR significantly outperforms
the Baseline network in terms of both the Dice score and HD95, highlighting the su-
perior registration performance of the proposed approach. The DDIR approach, which
uses manually annotated ground truth segmentation masks for decomposing the input
images into regions of interest during inference, achieves the best registration perform-
ance of all methods investigated. DDIR achieves an average Dice score 5% higher than
SDDIR and an HD95 score that is on average 2 mm lower than SDDIR. In addition, its
deformation fields are most smooth over all approaches (lowest percentage of |J | ≤ 0).
In terms of the clinical indices, the LVMM values of both DDIR and SDDIR show
no significant differences with respect to the reference, and the LVEDV of SDDIR also
makes no significant difference to the reference (which is not achieved by DDIR). While
DDIR shows some improvements over SDDIR in terms of registration accuracy, the lat-
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ter does not require segmentation masks to be provided as inputs during inference (as
required by DDIR). SDDIR thus has more flexibility in its utility/application and is
better suited to real-world scenarios where segmentation masks for regions of interest
may not be available prior to registering the input images.

Table 3.2: Quantitative comparison on UKBB between SDDIR and state-of-the-art
methods. Statistically significant improvements of SDDIR over previous methods (ex-
cluding DDIR) in registration and segmentation accuracy (DS and HD95) are high-
lighted in bold. Besides, LVEDV and LVMM indices with no significant difference from
the reference (shown in the row of “before Reg”) are also highlighted in bold.

Methods Avg. DS (%) LVBP DS (%) LVM DS (%) RV DS (%) HD95 (mm) Seg DS (%) LVEDV(ml) LVMM(g) % of |J | ≤ 0
before Reg 43.8 ± 5.5 63.1 ± 14.2 52.9 ± 13.1 68.1 ± 15.4 15.4 ± 4.6 - 157.5 ± 32.8 99.5 ± 27.9 -
B-spline 66.8 ± 6.6 75.1 ± 9.4 62.7 ± 7.9 62.7 ± 7.8 15.7 ± 4.9 - 140.3 ± 41.1 100.3 ± 30.3 4.6e−3 ± 4.5e−3

Demons 68.1 ± 5.7 77.6 ± 7.8 63.1 ± 7.2 63.6 ± 7.3 14.1 ± 4.5 - 139.6 ± 37.3 102.5 ± 30.3 2.5e−3 ± 3.7e−3

SyN 64.5 ± 6.1 77.5 ± 8.8 56.2 ± 6.8 59.7 ± 10.9 13.5 ± 3.9 - 149.8 ± 32.4 93.1 ± 27.7 2.8e−2 ± 9.7e−3

VM 74.2 ± 4.9 85.5 ± 6.4 69.4 ± 6.6 67.6 ± 7.4 12.7 ± 4.6 - 151.9 ± 33.8 97.1 ± 29.3 2.0e−3 ± 1.3e−3

VM-Dice 79.8 ± 4.4 86.9 ± 5.8 71.7 ± 6.8 80.7 ± 5.9 8.7 ± 4.6 - 162.1 ± 34.4 100.4 ± 28.6 4.1e−3 ± 2.0e−3

Baseline 79.9 ± 4.3 88.4 ± 5.1 73.6 ± 6.4 77.9 ± 6.8 9.7 ± 4.1 87.9 ± 2.7 158.6 ± 33.9 97.7 ± 28.5 3.0e−3 ± 1.9e−3

VM(add) 70.6 ± 10.2 80.0 ± 13.3 55.4 ± 10.9 76.3 ± 10.9 10.3 ± 3.7 - 150.9 ± 33.5 84.9 ± 31.3 1.4e−3 ± 6.9e−4

VM-Dice(add) 72.9 ± 11.5 83.1 ± 14.9 57.8 ± 11.4 77.7 ± 13.1 9.0 ± 4.3 - 156.9 ± 33.1 81.9 ± 32.5 1.9e−3 ± 1.2e−3

DDIR 92.7 ± 4.9 94.9 ± 4.6 90.9 ± 6.1 92.4 ± 6.2 4.4 ± 5.2 - 157.9 ± 33.2 99.1 ± 27.5 3.8e−4 ± 4.3e−4

SDDIR 87.7 ± 3.4 92.7 ± 3.9 83.1 ± 5.2 87.2 ± 5.5 6.7 ± 4.9 88.6 ± 2.1 157.6 ± 32.9 98.7 ± 26.1 3.5e−3 ± 1.6e−3

SDDIR(-DA) 80.5 ± 4.3 88.5 ± 5.0 74.2 ± 6.3 78.6 ± 6.6 9.4 ± 4.1 88.2 ± 2.3 156.4 ± 33.4 98.9 ± 28.4 2.6e−3 ± 1.4e−3

Table 3.3: P-values between SDDIR and state-of-the-art methods in Table 3.2. Re-
garding LVEDV and LVMM, the P-values are computed between the results post-
registration and reference. All P-values larger than 0.05 are highlighted in bold.

Methods Avg. DS (%) LVBP DS (%) LVM DS (%) RV DS (%) HD95 (mm) Seg DS (%) LVEDV(ml) LVMM(g) % of |J | ≤ 0
B-spline 5.6e−216 1.2e−137 4.9e−195 3.4e−195 1.2e−122 - 6.8e−34 0.17 -
Demons 7.3e−241 4.2e−160 1.2e−207 2.0e−218 1.5e−112 - 8.2e−46 1.6e−8 -
SyN 2.2e−256 1.6e−154 1.3e−256 4.8e−176 2.3e−95 - 2.8e−23 4.4e−25 -
VM 2.0e−214 2.9e−105 9.6e−192 1.3e−190 8.2e−100 - 3.3e−18 3.6e−5

VM-Dice 9.9e−176 3.3e−99 2.7e−168 1.2e−107 3.0e−35 - 9.1e−23 0.08
Baseline 9.6e−175 6.2e−79 2.7e−156 1.5e−130 5.0e−57 3.3e−25 0.03 3.2e−4 -
VM(add) 7.1e−140 9.7e−78 2.9e−174 2.1e−90 2.6e−64 - 1.0e−33 3.5e−47 -
VM-Dice(add) 1.4e−104 5.2e−43 1.4e−158 8.7e−59 2.7e−31 - 1.4e−4 6.3e−52 -
DDIR 4.3e−109 1.3e−35 4.4e−96 1.2e−81 2.4e−27 - 3.0e−3 0.09 -
SDDIR - - - - - - 0.75 0.13 -
SDDIR(-DA) 3.0e−167 2.1e−77 8.8e−151 9.5e−128 4.8e−55 1.8e−16 0.01 0.29 -

Registration results visualised in Figure 3.5 indicate that the warped moving im-
age predicted by SDDIR is more similar to the fixed image than those predicted by
the other methods investigated, which is consistent with the quantitative results ob-
tained. This is especially evident along the boundaries of the right ventricle and the
left ventricle myocardium. Additionally, Figure 3.5 indicates that compared with all
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Figure 3.5: Visual comparison of results on UKBB estimated using SDDIR and state-of-
the-art methods. Left column: moving and fixed images; Right column: corresponding
warped moving image (first row), deformation fields (second row). The cardiac MR
images were reproduced by kind permission of UK Biobank ©.

other approaches, the deformation field estimated by SDDIR captures discontinuities
at boundaries between different structures/sub-regions (such as between the left and
right ventricle, for example) more strongly.

Registration Results: ACDC and M&M Data

To assess the ability of the proposed approach to generalise to unseen data repres-
entative of real-world data acquired routinely in clinical examinations, we apply the
SDDIR model pre-trained on UKBB data, to other external cardiac MR data sets,
namely, ACDC and M&M. Data available in ACDC and M&M were acquired at mul-
tiple different imaging centres distributed across different countries, using different
types of MR scanners, and from patients diagnosed with different types of cardiac dis-
eases/abnormalities (e.g. myocardial infarction, dilated cardiomyopathy, hypertrophic
cardiomyopathy, abnormal right ventricle). Generalising to such unseen data is chal-
lenging due to domain shifts in the acquired images, relative to the UKBB data used
for training SDDIR. The quantitative and qualitative results obtained for data from
ACDC are shown in Table 3.4 (the corresponding P-values are shown in Table 3.5)
and Figure 3.6, respectively. For the results on ACDC, consistent with results in
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UKBB, VM outperforms the traditional registration approaches (B-spline, Demons and
SyN). The VM-Dice consistently performs better than VM, while its addition version,
VM-Dice(add), achieves lower registration accuracy than the addition version of VM
(VM(add)). As Baseline only uses the predicted segmentations to compute the Dice
loss (rather than using it to partition the original images as in SDDIR), the registra-
tion quality of the Baseline network is less dependent on segmentation quality. As a
result, although the segmentation performance of Baseline is significantly worse, it per-
forms comparably to SDDIR in terms of registration quality on ACDC, achieving 1%
higher Dice, and a marginally lower average HD95 score. Using ground-truth segment-
ation masks during inference, DDIR performs the best out of all models investigating,
achieving an average Dice score of 87% Dice score. The registration performance of
SDDIR drops significantly relative to the results obtained for UKBB data, with SDDIR
performing marginally worse than the Baseline and VM-Dice networks in terms of the
Dice and HD95 metrics (compared with Baseline, no significant difference on HD95 and
RV Dice, while average Dice, LV Dice and LVM Dice significantly decreased) used to
evaluate registration performance (see columns 2-6 in Table 3.4). Conversely, SDDIR
obtains 9% improvement in segmentation accuracy, evaluated using the Dice score, re-
lative to the Baseline network. This is mainly because the registration sub-network in
SDDIR is highly-dependent on the segmentation sub-network, to split the original MR
images into pairs of sub-regions. Consequently, segmentation errors are propagated to
the subsequent registration step and overall registration performance drops significantly
when predicted segmentations are of poor quality. Although the SDDIR(-DA) (smooth
version of SDDIR) significantly outperforms previous approaches on Dice score, there
are significant differences between its clinical indices with the reference. As shown in
Figure 3.6, the Demons and B-spline tend to predict warped moving images with over-
smoothed image features and object boundaries, losing local details (e.g. the papillary
muscles in the left ventricle). The deep learning-based registration methods obtain
more such localised anatomical details more consistently.

The quantitative results on the M&M dataset are shown in Table 3.6 (the cor-
responding P-values are shown in Table 3.7). Similar to the results on ACDC, VM
outperforms B-spline, Demons and SyN. VM-Dice and Baseline obtain higher average
Dice scores than the traditional methods and VM. Different from ACDC, the addi-
tion approaches, VM(add) and VM-Dice(add) achieve better registration performance
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Table 3.4: Quantitative comparison on ACDC between SDDIR and the state-of-
the-art methods. Statistically significant improvements of our method over previous
methods (excluding DDIR) in registration accuracy (DS and HD95) and segmentation
performance are highlighted in bold. Besides, LVEDV and LVMM indices with no
significant difference from the reference are also highlighted in bold.

Methods Avg. DS (%) LVBP DS (%) LVM DS (%) RV DS (%) HD95 (mm) Seg DS (%) LVEDV(ml) LVMM(g) % of |J | ≤ 0
before Reg 60.2 ± 11.2 65.7 ± 16.2 51.9 ± 14.5 63.1 ± 14.2 10.6 ± 3.9 - 165.1 ± 73.6 130.1 ± 50.6 -
B-spline 74.9 ± 9.6 80.4 ± 14.2 75.7 ± 7.8 68.8 ± 15.5 10.9 ± 4.7 - 152.5 ± 82.1 134.4 ± 51.4 1.8e−3 ± 3.5e−3

Demons 73.5 ± 8.8 78.4 ± 12.6 72.3 ± 8.9 69.9 ± 13.8 10.5 ± 3.9 - 147.0 ± 81.0 137.1 ± 53.4 1.3e−4 ± 3.3e−4

SyN 70.1 ± 7.5 79.7 ± 10.1 65.9 ± 8.6 64.6 ± 14.7 10.6 ± 3.5 - 156.1 ± 76.4 132.9 ± 51.5 2.2e−2 ± 5.3e−3

VM 76.0 ± 7.8 83.9 ± 10.4 74.2 ± 8.3 70.1 ± 13.9 9.9 ± 4.4 - 156.6 ± 75.9 130.5 ± 51.9 9.8e−4 ± 1.0e−3

VM-Dice 77.8 ± 7.4 84.7 ± 9.9 73.9 ± 8.2 74.7 ± 12.4 8.0 ± 3.9 - 164.7 ± 77.2 134.8 ± 54.0 1.7e−3 ± 1.3e−3

Baseline 78.7 ± 6.9 86.6 ± 9.1 76.7 ± 7.5 72.8 ± 12.9 9.2 ± 3.9 63.8 ± 21.6 161.5 ± 74.9 131.0 ± 52.1 1.4e−3 ± 1.4e−3

VM(add) 78.2 ± 11.2 83.6 ± 15.5 72.2 ± 11.9 78.7 ± 15.9 7.8 ± 4.6 - 159.1 ± 73.9 123.5 ± 53.8 8.9e−4 ± 7.4e−4

VM-Dice(add) 77.7 ± 11.4 84.5 ± 14.9 70.3 ± 12.0 78.1 ± 16.4 7.2 ± 4.0 - 161.3 ± 73.9 120.7 ± 53.3 9.7e−4 ± 8.9e−4

DDIR 92.6 ± 5.6 94.8 ± 5.9 92.7 ± 5.3 90.2 ± 9.9 4.5 ± 4.9 - 164.3 ± 73.9 130.9 ± 51.9 3.1e−4 ± 5.2e−4

SDDIR 77.0 ± 9.7 86.2 ± 10.1 72.9 ± 12.1 71.9 ± 14.5 9.5 ± 3.4 72.7 ± 13.7 161.0 ± 72.5 123.5 ± 53.4 4.1e−3 ± 2.0e−3

SDDIR(-DA) 79.9 ± 6.5 87.1 ± 8.3 77.7 ± 6.7 74.9 ± 12.2 8.4 ± 4.0 70.9 ± 14.9 160.9 ± 75.6 133.8 ± 52.9 1.2e−3 ± 1.1e−3

Table 3.5: P-values between SDDIR(-DA) and state-of-the-art methods in Table 3.4.
Regarding LVEDV and LVMM, the P-values are computed between the results post-
registration and reference. All P-values larger than 0.05 are highlighted in bold.

Methods Avg. DS (%) LVBP DS (%) LVM DS (%) RV DS (%) HD95 (mm) Seg DS (%) LVEDV(ml) LVMM(g) % of |J | ≤ 0
B-spline 5.0e−22 1.1e−16 5.8e−9 6.0e−19 6.2e−21 - 3.5e−12 1.7e−7

Demons 1.7e−41 1.2e−34 2.8e−37 9.3e−22 1.1e−23 - 4.9e−21 6.4e−14 -
SyN 4.1e−82 8.7e−54 4.6e−77 1.1e−48 3.3e−32 - 7.4e−14 3.0e−3

VM 4.7e−48 7.7e−31 1.7e−39 6.3e−27 6.0e−17 - 1.0e−14 0.55
VM-Dice 2.0e−21 1.9e−24 3.4e−34 0.29 3.8e−3 - 0.57 1.1e−6

Baseline 3.0e−24 6.8e−6 2.7e−11 3.0e−18 4.2e−12 6.2e−18 1.1e−6 0.20 -
VM(add) 2.5e−4 1.5e−7 3.6e−17 8.8e−10 5.4e−4 - 1.2e−16 5.0e−13 -
VM-Dice(add) 1.5e−5 2.8e−5 3.2e−24 1.1e−6 3.9e−13 - 2.3e−19 4.6e−20 -
DDIR 1.6e−107 8.1e−60 9.1e−103 7.9e−76 1.3e−37 - 7.7e−5 0.01 -
SDDIR 4.7e−7 0.04 4.7e−10 2.5e−4 1.4e−6 1.5e−4 1.2e−3 2.0e−9

SDDIR(-DA) - - - - - - 1.4e−7 3.3e−7
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Figure 3.6: Visual comparison of results on ACDC estimated using SDDIR and state-of-
the-art methods. Left column: moving and fixed images; Right column: corresponding
warped moving images (first row), deformation fields (second row).

than VM and VM-Dice. To our analysis, this is because the MR images in M&M
are significantly different from UKBB, and thereby the addition-based methods using
ground-truth segmentation would lead to better registration results. DDIR obtains the
highest registration performance, while the performance of SDDIR is significantly de-
creased to 72.12%, due to poor performance of the segmentation sub-network (66.78%).
SDDIR(-DA) obtains significantly better results on the Dice score of LVM than the rest
approaches (exclude DDIR). Despite the drop in registration performance, SDDIR pre-
dicts registered/warped images that show no statistically significant differences from
the reference in terms of LVEDV (Paired samples t-test, P-value > 0.05), not afforded
by other methods.

The aforementioned results were achieved by directly applying our method to ACDC
and M&M, without any fine-tuning steps. To explore the performance of the fine-tuning
strategy and further demonstrate the generalisation of our method, we also conducted
fine-tuning experiments on ACDC and M&M datasets. We fine-tuned our SDDIR net-
work for 200 epochs using 10, 20, and 40 samples for training, 10 other samples for
validation and the remaining samples as the unseen test set. As shown in Figure 3.7,
increasing the number of samples used for fine-tuning the network generally improves
registration accuracy (average Dice score) for SDDIR on ACDC and M&M. This im-
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Table 3.6: Quantitative comparison on M&M between SDDIR and the state-of-the-art
methods. Statistically significant improvements of our method over previous methods
(excluding DDIR) in registration accuracy (DS and HD95) and segmentation perform-
ance are highlighted in bold. Besides, LVEDV and LVMM indices with no significant
difference from the reference are also highlighted in bold.

Methods Avg. DS (%) LVBP DS (%) LVM DS (%) RV DS (%) HD95 (mm) Seg DS (%) LVEDV(ml) LVMM(g) % of |J | ≤ 0
before Reg 54.1 ± 10.4 60.4 ± 12.5 44.3 ± 14.2 57.8 ± 10.6 15.0 ± 4.9 - 161.4 ± 63.9 124.4 ± 46.2 -
B-spline 65.6 ± 10.9 70.7 ± 14.9 67.0 ± 9.3 59.1 ± 13.3 18.8 ± 7.3 - 144.6 ± 72.6 121.5 ± 44.8 3.1e−4 ± 8.6e−4

Demons 65.8 ± 10.0 71.7 ± 12.9 65.0 ± 9.7 60.5 ± 12.5 16.9 ± 6.7 - 142.3 ± 69.7 125.2 ± 45.9 8.5e−4 ± 2.1e−3

SyN 58.4 ± 9.9 66.9 ± 13.5 58.4 ± 10.1 49.8 ± 12.9 17.1 ± 5.3 - 138.7 ± 69.2 116.7 ± 44.5 1.9e−2 ± 6.4e−3

VM 68.9 ± 8.2 76.7 ± 10.0 67.9 ± 8.6 62.2 ± 11.3 15.7 ± 5.9 - 144.8 ± 65.9 115.4 ± 45.3 9.3e−4 ± 1.6e−3

VM-Dice 72.7 ± 7.6 79.3 ± 9.3 67.6 ± 7.9 71.1 ± 11.5 11.8 ± 4.0 - 164.7 ± 66.2 125.6 ± 46.2 2.5e−3 ± 2.3e−3

Baseline 73.4 ± 7.9 81.5 ± 9.3 70.4 ± 8.1 68.5 ± 11.4 12.6 ± 4.5 59.9 ± 23.2 154.7 ± 63.8 118.6 ± 44.8 1.6e−3 ± 2.2e−3

VM(add) 73.0 ± 11.6 78.0 ± 14.5 65.0 ± 12.5 75.9 ± 14.7 10.4 ± 3.9 - 148.5 ± 66.3 109.0 ± 49.3 1.5e−3 ± 1.1e−3

VM-Dice(add) 74.4 ± 13.9 81.9 ± 15.9 67.1 ± 11.8 74.2 ± 19.1 11.0 ± 6.9 - 156.9 ± 63.8 110.5 ± 48.6 1.9e−3 ± 1.4e−3

DDIR 91.3 ± 6.7 93.8 ± 6.3 90.6 ± 6.2 89.4 ± 10.4 5.6 ± 4.9 - 160.7 ± 64.3 122.5 ± 45.8 6.7e−4 ± 1.0e−3

SDDIR 72.2 ± 10.2 80.9 ± 11.5 67.9 ± 10.9 66.7 ± 16.2 12.1 ± 4.1 66.8 ± 16.4 162.1 ± 64.4 120.9 ± 43.7 6.1e−3 ± 3.1e−3

SDDIR(-DA) 75.0 ± 7.6 82.4 ± 8.8 72.1 ± 7.5 70.5 ± 11.6 12.1 ± 4.5 65.1 ± 18.9 159.2 ± 65.8 122.8 ± 45.9 2.0e−3 ± 3.3e−3

Table 3.7: P-values between SDDIR(-DA) and state-of-the-art methods in Table 3.6.
Regarding LVEDV and LVMM, the P-values are computed between the results post-
registration and reference. All P-values larger than 0.05 are highlighted in bold.

Methods Avg. DS (%) LVBP DS (%) LVM DS (%) RV DS (%) HD95 (mm) Seg DS (%) LVEDV(ml) LVMM(g) % of |J | ≤ 0
B-spline 2.0e−58 2.9e−49 1.0e−31 1.9e−52 9.9e−56 - 2.6e−21 1.1e−4 -
Demons 3.3e−80 5.5e−68 1.2e−59 6.7e−61 1.4e−48 - 1.1e−29 0.34 -
SyN 8.9e−100 1.1e−66 9.9e−93 3.5e−85 1.4e−52 - 4.9e−24 5.9e−17 -
VM 6.9e−79 2.3e−63 1.1e−49 3.0e−60 1.7e−39 - 3.0e−34 2.6e−22 -
VM-Dice 1.3e−27 8.0e−37 4.0e−51 0.03 0.03 - 6.3e−4 0.22 -
Baseline 1.8e−25 1.5e−8 3.2e−20 3.0e−20 3.5e−5 1.3e−18 9.1e−17 1.5e−11 -
VM(add) 4.1e−7 4.2e−17 1.7e−28 1.2e−25 3.0e−10 - 7.1e−30 4.7e−36 -
VM-Dice(add) 0.13 0.21 1.4e−18 3.7e−7 2.9e−4 - 6.5e−26 1.5e−37 -
DDIR 1.6e−183 3.2e−122 2.7e−146 1.7e−148 4.6e−94 - 4.4e−4 5.1e−8 -
SDDIR 6.1e−8 0.01 9.2e−10 7.1e−5 0.49 7.5e−4 0.55 3.7e−4 -
SDDIR(-DA) - - - - - - 7.1e−4 0.04 -
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provement in registration performance is more pronounced for M&M than ACDC, with
the latter showing only marginal improvements when the number of training samples
used for fine-tuning is increased from 20 to 40. Furthermore, for ACDC, the results
fine-tuned with 20 samples show no significant difference in registration performance
from those fine-tuned with 40 samples (P-value=0.26). This demonstrates that the
fine-tuning strategy can be applied to those unseen data when the performance of our
SDDIR is sub-optimal, only requiring limited samples (∼20).

Figure 3.7: Fine-tuning experiments on ACDC and M&M.

Segmentation Analysis

In this section, we analyse the segmentation performance of SDDIR and the Baseline
network. Examples of segmentation masks predicted using either approach are shown
in Figure 3.8, and quantitative results summarising the segmentation accuracy of both
approaches are presented in Table 3.2, Table 3.4 and Table 3.6. The segmentation
results obtained for the UKBB, summarised in Table 3.2, show that SDDIR achieves
1% higher Dice score (significantly better, P-value=3.3e−25) than the Baseline network
across the unseen test data. This improvement in segmentation accuracy is more pro-
nounced for the ACDC and M&M datasets, with SDDIR achieving > 6% improvement
in the Dice score for both datasets, relative to the Baseline network (72.72% vs 63.80%
and 66.78% vs 59.94%). These results demonstrate that SDDIR significantly outper-
forms the Baseline network in terms of segmentation accuracy (for the input fixed and
moving images), consistently across multiple datasets.

Figure 3.8 highlights the ability of both the Baseline network and SDDIR to predict
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Figure 3.8: Visual comparison of segmentation estimated using SDDIR and Baseline.
The first two rows are the results on UKBB and the bottom two rows are the results on
ACDC. Left column: moving and fixed images with the corresponding segmentation;
Right column: corresponding moving segmentation, fixed segmentation, warped mov-
ing image, and deformation fields. The cardiac MR images were reproduced by kind
permission of UK Biobank ©.
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high-quality segmentation masks for the input image pairs (fixed and moving) from the
UKBB dataset. Their performance on data from ACDC however, degrades, producing
masks that are visually different to the ground-truth (e.g. the segmentation of the right
ventricle, plotted in blue in Figure 3.8). In the UKBB dataset, the results of SDDIR
are more similar to the ground-truth, but there is over-segmentation in the results of
the Baseline (see the region of the right ventricle in the moving segmentation). There
is a domain gap from the UKBB to the ACDC dataset, which leads to the decreased
segmentation Dice for both methods. However, SDDIR offers some improvements over
the Baseline, for example, by capturing the right ventricle in cases where it is entirely
missed by the latter. In summary, due to the co-attention block, SDDIR is more robust
(than the Baseline) for segmenting the input pairs of images in the presence of domain
shifts.

Ablation Study

To analyse the contribution of each block in SDDIR, we conducted an ablation study on
the proposed network, using UKBB data. The results are shown in Table 3.8 (the corres-
ponding P-values are shown in Table 3.9), where, SDDIR(-DA), SDDIR(-CA), SDDIR(-
Seg) and SDDIR(-Reg) denote removing the discontinuity addition block, co-attention
block, segmentation sub-network and registration sub-network in SDDIR, respectively.
By comparing these variants of SDDIR, we can assess the contribution of the proposed
joint segmentation and registration sub-networks, co-attention block and discontinuity-
preserving strategy. Without the discontinuity addition block, the SDDIR(-DA) is
essentially a globally smooth registration method. SDDIR(-CA) applies the same seg-
mentation sub-network as Baseline, whilst still ensuring discontinuity-preserving regis-
tration. To compare the performance of co-attention and self-attention, we also build
an SDDIR variation with self-attention [210] in the segmentation sub-network, denoted
as SDDIR(SA). By removing the segmentation sub-network, the SDDIR(-Seg) turns
into a registration network similar to VM-Dice. Correspondingly, the SDDIR(-Reg) is
a sole co-attention based segmentation network. To explore the contribution of joint
segmentation and registration in registration performance, we further compare the per-
formance of SDDIR with the results combining DDIR and automatic segmentation
approaches, denoted as DDIR(+CoSeg) and DDIR(+SDDIR). The former utilises the
predicted segmentation masks from SDDIR(-Reg) as the input segmentation masks of
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DDIR, while the latter feeds the predicted segmentation masks from SDDIR to DDIR.

Table 3.8: Quantitative comparison on UKBB between different versions of SDDIR.
Statistically significant improvements in registration and segmentation accuracy (DS
and HD95) are highlighted in bold. Besides, LVEDV and LVMM indices with no
significant difference from the reference are also highlighted in bold.

Methods Avg. DS (%) LVBP DS (%) LVM DS (%) RV DS (%) HD95 (mm) Seg DS (%) LVEDV(ml) LVMM(g) % of |J | ≤ 0
before Reg 43.8 ± 5.5 63.1 ± 14.2 52.9 ± 13.1 68.1 ± 15.4 15.4 ± 4.6 - 157.5 ± 32.8 99.5 ± 27.9 -
SDDIR(-DA) 80.5 ± 4.3 88.5 ± 5.0 74.2 ± 6.3 78.6 ± 6.6 9.4 ± 4.1 88.2 ± 2.3 156.4 ± 33.4 98.9 ± 28.4 2.6e−3 ± 1.4e−3

SDDIR(-CA) 85.7 ± 3.9 91.4 ± 4.5 80.7 ± 5.7 84.9 ± 6.2 7.5 ± 4.8 87.2 ± 2.7 159.0 ± 33.2 99.3 ± 27.1 8.9e−3 ± 3.4e−3

SDDIR(SA) 86.4 ± 3.6 91.3 ± 4.3 81.5 ± 5.6 86.3 ± 5.5 7.3 ± 4.9 87.6 ± 2.3 156.3 ± 32.8 98.8 ± 27.0 2.8e−3 ± 1.8e−3

SDDIR(-Reg) - - - - - 87.4 ± 4.3 - - -
SDDIR(-Seg) 79.8 ± 4.4 86.9 ± 5.8 71.7 ± 6.8 80.7 ± 5.9 8.7 ± 4.6 - 162.1 ± 34.4 100.4 ± 28.6 4.1e−3 ± 2.0e−3

DDIR(+CoSeg) 84.1 ± 4.8 89.7 ± 5.5 79.0 ± 6.0 83.6 ± 6.8 8.3 ± 4.7 - 157.5 ± 32.9 100.0 ± 26.3 3.8e−4 ± 4.2e−4

DDIR(+SDDIR) 84.8 ± 4.6 90.6 ± 5.2 79.7 ± 5.9 84.0 ± 6.5 8.0 ± 4.7 - 156.2 ± 32.9 99.3 ± 26.3 4.0e−4 ± 4.4e−4

SDDIR 87.7 ± 3.4 92.7 ± 3.9 83.1 ± 5.2 87.2 ± 5.5 6.7 ± 4.9 88.6 ± 2.1 157.6 ± 32.9 98.7 ± 26.1 3.5e−3 ± 1.6e−3

Table 3.9: P-values between SDDIR and state-of-the-art methods in Table 3.8. Re-
garding LVEDV and LVMM, the P-values are computed between the results post-
registration and reference. All P-values larger than 0.05 are highlighted in bold.

Methods Avg. DS (%) LVBP DS (%) LVM DS (%) RV DS (%) HD95 (mm) Seg DS (%) LVEDV(ml) LVMM(g) % of |J | ≤ 0
SDDIR(-DA) 3.0e−167 2.1e−77 8.8e−151 9.5e−128 4.8e−55 1.8e−16 0.01 0.29 -
SDDIR(-CA) 2.7e−77 1.6e−23 9.5e−71 1.4e−46 2.2e−13 2.0e−66 1.1e−6 0.68 -
SDDIR(SA) 4.9e−54 2.4e−31 3.1e−47 1.2e−13 7.4e−8 1.1e−58 0.01 0.13 -
SDDIR(-Reg) - - - - - 2.4e−14 - - -
SDDIR(-Seg) 9.9e−176 3.3e−99 2.7e−168 1.2e−107 3.0e−35 - 9.1e−23 0.08 -
DDIR(+CoSeg) 4.1e−96 5.4e−55 3.6e−83 6.5e−66 2.6e−29 - 0.99 0.29 -
DDIR(+SDDIR) 7.2e−91 1.3e−41 9.3e−75 9.3e−70 1.0e−27 - 1.0e−3 0.65 -
SDDIR - - - - - - 0.75 0.13 -

According to Table 3.8, self-attention improves performance with respect to conven-
tional convolutional segmentation network (SDDIR(SA) vs SDDIR(-CA)) but performs
worse than co-attention (SDDIR). For LVEDV, all three approaches are close to the ref-
erence, while only the results of SDDIR make no significant difference to the reference
(P-value>0.05). When considering a 0.01 significance level, SDDIR and SDDIR(SA)
both show no significant difference relative to the reference. In addition, regardless of
which segmentation sub-network is used, their LVMM all make no significant differ-
ences to the reference (P-value>0.05). Therefore, it can be found that the registration
sub-network plays a central role in preserving the clinical indices post-image registra-
tion, while a better segmentation sub-network would lead to better clinical indices.
After removing the discontinuity addition block, the average registration Dice score of
SDDIR(-DA) is significantly decreased, as it is unable to ensure globally discontinuous
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and locally smooth deformation fields. Comparing SDDIR with the corresponding vari-
ants of the network that tackle purely segmentation (SDDIR(-Reg)) and registration
tasks (SDDIR(-Seg)), we find that the joint segmentation and registration framework
improves the performance of each sub-network for each corresponding task. This indic-
ates that the two tasks are mutually beneficial to each other. With the ground-truth
segmentation as input, DDIR achieves state-of-the-art registration performance, while
it may significantly decrease when using automatic segmentation as the input. Com-
paring the results of DDIR(+CoSeg) and SDDIR, it can be found that, using the same
separate segmentation network as SDDIR (co-attention based segmentation network)
to predict segmentation for DDIR leads to significantly worse performance than the
performance of joint segmentation and registration. Even with the same segmenta-
tion masks as the input for registration (DDIR(+SDDIR)), the registration accuracy
of DDIR is significantly lower than SDDIR, which highlights the superiority of joint
segmentation and registration.

Although the overall registration performance of SDDIR is worse than DDIR, the
former outperforms other state-of-the-art methods, and ensures that cardiac clinical
indices derived from the warped/registered images show no statistically significant dif-
ferences to the reference (derived from the original images). Furthermore, SDDIR does
not require high-quality segmentation masks to be available a priori for the input images
to be registered, unlike DDIR (which was trained and evaluated using segmentation
masks delineated manually by experts). SDDIR thus lends itself to use real clinical
applications where high-quality segmentation masks are seldom available, and has the
added benefit of producing good quality segmentation masks for both input images to
be registered, as auxiliary outputs. Although the globally smooth version of SDDIR
(i.e. without discontinuity addition), SDDIR(-DA), incurs significantly higher regis-
tration errors than SDDIR for the UKBB data set, it consistently outperforms other
state-of-the-art approaches in terms of registration accuracy and joint registration and
segmentation performance, across all three datasets. Considering those scenarios where
globally smooth registration is required/appropriate, SDDIR(-DA) can be employed in
place of SDDIR to reduce the dependency of registration accuracy on segmentation
quality, and improve overall registration performance. For example, results reported
for ACDC and M&M data sets in Tables 3.4, 3.6 show that SDDIR(-DA) outperforms
SDDIR in terms of registration accuracy, at the cost of enforcing global smoothness on
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the estimated deformation fields.

3.2.5 Discussion and Conclusion

The proposed approach, SDDIR, is versatile and can be employed in various clin-
ical applications requiring pair-wise image registration. For example, the ability to
simultaneously segment and register cardiac MR images means that SDDIR can fa-
cilitate real-time quantification of cardiac clinical indices across the cardiac cycle and
quantitative analysis of cardiac motion. In addition, as SDDIR can predict both fixed
segmentation and warped moving segmentation, a more anatomical structure-plausible
segmentation results can be obtained by jointly considering those two predictions. SD-
DIR is agnostic to image modality and the organs/structures visible within the field of
view of the images being registered. Hence, SDDIR may also be used to jointly seg-
ment and register thoracic or abdominal computed tomography images, where strong
discontinuities exist between organ structures due to their relative motion (i.e. sliding
at organ boundaries) resulting from respiration.

Although the proposed approach is demonstrated to jointly segment and register
input pairs of images accurately, outperforming several state-of-the-art approaches, one
main limitation remains. The registration performance of SDDIR is highly dependent
on the performance of the segmentation sub-network, i.e. on the quality of the segment-
ation masks predicted for the input pair of images to be registered. As the registration
sub-network requires the predicted segmentation masks to split the original MR im-
ages into pairs of corresponding regions, the registration sub-network performs poorly
when the quality of the segmentation masks is poor. Thus, SDDIR performs well on
the UKBB dataset as accurate segmentation masks are predicted for the input pairs
of images and used to effectively guide the discontinuity-preserving registration. As
SDDIR was trained using UKBB data, the segmentation sub-network was able to gen-
eralise well to unseen data from UKBB due to homogeneity/consistency in appearance
across images from different subjects. Conversely, SDDIR’s performance significantly
degraded when the trained model (on UKBB data) was used to register images from
other datasets (e.g. ACDC and M&M). This is due to domain shifts resulting from vari-
ations in imaging scanners and protocols, used to acquire images in different datasets.
The presented results indicate that SDDIR outperforms the Baseline network in terms
of registration accuracy only when good quality segmentation masks are predicted by
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its constituent segmentation sub-network. Specifically, we found that segmentation
accuracy (in terms of Dice) on the fixed and moving images had to be over 76% for
ACDC and 70% for M&M, for the subsequent registration accuracy of SDDIR to be
better than the Baseline network. Therefore, future work in the field should look to im-
prove the robustness of discontinuity-preserving image registration methods to domain
shifts that are commonly found in medical images. This may be achieved by imbuing
SDDIR with recent approaches to domain generalisation, for example, to mitigate the
drop in segmentation and registration performance resulting from domain shifts (rel-
ative to the training data). Additionally, the over-dependence of registration quality
on the quality of the segmentation masks predicted by SDDIR could be relaxed by
modelling object/tissue boundaries as weak discontinuities (as opposed to strong dis-
continuities used currently in SDDIR) that are incorporated into the regularisation of
the deformation field to ensure locally smooth and globally discontinuous deformation
fields.

In this section, we propose a novel weakly-supervised discontinuity-preserving regis-
tration network, SDDIR. The proposed approach is applied to the task of intra-patient
spatio-temporal cardiac MR registration, to jointly segment the input pair of images to
be registered and predict a locally smooth but globally discontinuous deformation field
that warps the source/moving image to the fixed/target image. Compared with pre-
vious discontinuity-preserving registration methods, SDDIR provides improvements in
terms of execution speed (relative to traditional iterative approaches), and does not re-
quire segmentation masks to be available prior to registering images (unlike some state-
of-the-art deep learning-based registration approaches such as DDIR). We demonstrate
the registration performance of SDDIR on three cardiac MR datasets, and prove that
it can significantly outperform both traditional and deep learning-based state-of-the-
art registration methods. Future works will explore domain generalisation techniques
to mitigate the drop in performance observed with SDDIR due to domain shifts and
will look to weaken the dependency on segmentation quality to ensure accurate image
registration.

3.3 Conclusion

In this chapter, two deep learning-based cardiac image registration methods are pro-
posed to achieve discontinuity-preserving registration.
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We first proposed a novel weakly-supervised discontinuity-preserving registration
network, DDIR, which significantly outperformed the state-of-the-art, in intra-patient
CMR registration. DDIR preserves LV clinical indices post-registration, not afforded by
the other approaches. This makes it compelling as a tool for use in clinical applications
as it ensures that common diagnostic biomarkers for LV are preserved post-registration.

While DDIR can achieve significant improvements over previous traditional and
deep learning-based registration methods, it requires segmentation masks on both train-
ing and inference, limiting its application in realistic scenarios. To tackle this issue,
we further proposed a joint segmentation and registration network, SDDIR to achieve
segmentation and discontinuity-preserving registration simultaneously. Given the in-
put moving and fixed images as input, our SDDIR can predict corresponding accurate
segmentation masks and deformation fields at the same time.

Image segmentation and registration are both fundamental tasks in cardiac image
analysis and CVD prediction/diagnosis. Using the segmentation masks predicted by
our proposed method, we can compute clinical indices and reconstruct corresponding
cardiac meshes. In the next chapter, we will introduce learning accurate cardiac shape
representations from cardiac MR images/contours.
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Chapter 4

Deep Learning in 3D Cardiac Shape
Reconstruction
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Shape reconstruction from sparse point clouds/images is a challenging and relevant task
required for a variety of applications in computer vision and medical image analysis
(e.g. surgical navigation, cardiac motion analysis, augmented/virtual reality systems).
A subset of such methods, viz. 3D shape reconstruction from 2D contours, is especially
relevant for computer-aided diagnosis and intervention applications involving meshes
derived from multiple 2D image slices, views or projections. We propose a deep learn-
ing architecture, coined Mesh Reconstruction Network (MR-Net), which tackles this
problem. MR-Net enables accurate 3D mesh reconstruction in real-time despite miss-
ing data and with sparse annotations. Using 3D cardiac shape reconstruction from
2D contours defined on short-axis cardiac magnetic resonance image slices as an ex-
emplar, we demonstrate that our approach consistently outperforms state-of-the-art
techniques for shape reconstruction from unstructured point clouds. Our approach can
reconstruct 3D cardiac meshes to within 2.5-mm point-to-point error, concerning the
ground-truth data (the original image spatial resolution is ∼ 1.8 × 1.8 × 10mm3). We
further evaluate the robustness of the proposed approach to incomplete data, and con-
tours estimated using an automatic segmentation algorithm. MR-Net is generic and
could reconstruct shapes of other organs, making it compelling as a tool for various
applications in medical image analysis.

4.1 Introduction

Reconstructing plausible 3D shapes (represented as parametric surface meshes) from
sparse, unstructured point clouds (PCs) extracted from single- or multi-view images,
is an active problem in computer vision (CV) and medical image analysis. 3D shape
reconstruction helps visualise the spatial structure of 3D objects, and is relevant to
several applications such as, computer-aided diagnosis, surgical planning, image-guided
interventions, and computational simulations, to name a few [211, 212].

Generally, traditional cardiac shape reconstruction comprises two steps: (1) cardiac
image segmentation; and (2) mesh generation from the estimated segmentations. Car-
diac image segmentation (manual/automatic segmentation) aims to find the region of
interest in the original magnetic resonance (MR)/computed tomography (CT) images
(e.g. left ventricle (LV), right ventricle (RV)). The mesh generation process then takes
the segmentation results as input and generates the corresponding meshes. Marching
Cubes [213] is the most widely used algorithm for generating meshes from segmented im-
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age volumes, but generally requires dense segmentation volumes for reconstructing 3D
shapes as triangulated surfaces/meshes. Such an approach is ill-suited to reconstructing
3D shapes from sparse, stacked 2D contours. Therefore, in cardiac shape reconstruc-
tion, previous studies have approached the problem as one of mesh adaptation. In this
context, a template mesh is first generated (either using an isosurfacing technique or
directly from an existing statistical atlas/template), and then deformed under the guid-
ance of contours or points (extracted from segmentation results) [214, 215, 216, 217].
Using segmented contours to deform the template mesh, [215] proposed to reconstruct
specific 4D meshes (spatial-temporal mesh) for patients. [217] proposed a method to
reconstruct geometrical surface meshes from sparse, heterogeneous, non-coincidental
contours. They used contours to guide the deformation of an initial mesh to obtain
the target mesh, using a smoothness term while maximising the data fitting. However,
those methods are all time-consuming, which limits mesh reconstruction for real-time
applications in surgical guidance and navigation.

Deep learning-based methods have also been explored for this task. As inference
using a trained deep neural network is just one forward pass through the network,
such methods can significantly speed up the process of cardiac shape reconstruction.
Few studies have explored the application of deep learning methods on this task. For
example, [218] proposed to tackle this task as a volumetric mapping problem followed
by isosurface estimation using the generated volume. Their approach generated three
dense 3D volumes, LV myocardium, LV cavity and RV cavity, from sparse volumes of
contours. Then marching cube was used to reconstruct the bi-ventricle cardiac meshes.
This approach was able to accurately predict cardiac meshes even with discrepancies
between intersecting slices (short-axis (SAX) view and long-axis (LAX) view slices).
[219] viewed shape reconstruction as a regression problem, building a deep regression
network to predict the cardiac shape parameters in Principal Component Analysis
(PCA) space from image data (from the UK Biobank (UKBB) cohort), using both
short and long axis views and patient metadata. Using a cardiac statistical shape
model (SSM) estimated a priori and its associated mean template mesh and prin-
cipal eigenvectors, during inference, they reconstructed the bi-ventricle cardiac meshes
for each unseen image volume using the PCA parameters estimated by their network.
Instead of using traditional methods to generate the final shape, some studies have pro-
posed to predict cardiac PCs [220] or meshes [221] directly using deep neural networks,
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enabling cardiac shape reconstruction in real-time. [220] firstly proposed to apply a
deep learning network in cardiac point cloud reconstruction, which could reconstruct
RV from a single image (in the LAX view). Similarly, [221] designed a deep learning
network, Instantiation-Net, to reconstruct 3D RV mesh based on a single LAX view
image. However, reconstructing a 3D object from the image in a single view is ill-posed
due to the large proportions of missing information, making it difficult to generate
accurate meshes.

Slice-by-slice 2D 
Segmentation

Shape 
Reconstruction

3D Image Volume Segmentation Results Sparse/incomplete 
Point Cloud

3D Mesh

Figure 4.1: The proposed pipeline for 3D cardiac shape reconstruction from MR images
(The cardiac image presented were reproduced with the permission of UK Biobank ©).
Note that, the slice-by-slice segmentation methods can be both manual segmentation
and automatic segmentation algorithms.

To reconstruct plausible and high-quality meshes from cardiac images, multiple im-
ages with boundary information (e.g. contours) would be a better input choice. They
are usually available from manual/semi-automatic contours derived from most med-
ical image segmentation tools. As those tools do not provide full 3D reconstructions,
the mesh reconstruction method could be a supplement of these tools in return. Pre-
vious research [214, 215, 216, 217] have also proved that deforming a template mesh
under the guidance of contours facilitates the generation of high-quality personalised
meshes (fitted to the contours). Therefore, in this chapter, we focus on cardiac mesh
reconstruction from a point cloud of contours. We design a novel approach, MR-Net,
to achieve the task of reconstructing 3D bi-ventricle cardiac shapes from stacked 2D
contours, viewing it as a DL-based template-to-PC fitting task. An overview of the
proposed framework is presented in Figure 4.1. Given SAX cine-cardiac MR image
stacks, we first manually/automatically segment the cardiac structures of interest in
each 2D slice. Next, PCs of stacked contours are extracted from these segmentations.
Finally, MR-Net is applied to predict high-quality meshes from PCs of contours. With
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deep learning-based segmentation methods and MR-Net, we can reconstruct accurate
3D cardiac shapes from the MR images accurately, robustly, and in real-time.

Recently, many deep learning-based methods have been proposed for meshes/PCs
reconstruction and analysis [222, 223, 224]. Among them, the most popular task is to
reconstruct 3D mesh from single-/multi-view image(s). [224] firstly proposed a network
Pixel2mesh based on graph convolutional network (GCN) [225, 226, 227] for mesh
reconstruction from a 2D image (a projection of the original 3D object on to one view).
They used an ellipsoid mesh as the template, then applied the GCN blocks to deform
it with the guidance of features extracted from the input image using VGG 16-like
architecture [32]. Based on it, [228] proposed an improved network, Pixel2mesh++, to
tackle the problem of 3D mesh reconstruction from multi-view images, reconstructing
more accurate surfaces of 3D objects. Instead of GCN, [229] proposed to apply a multi-
layer perceptron (MLP) as the deformation module followed by topology modification
blocks, and finally designed a boundary refinement block to improve the visual quality
of reconstructed meshes further. These approaches were developed and validated on
publicly available datasets for the reconstruction of general objects (e.g. plane, chair).
Using approaches like Pixel2mesh, recent studies have also explored the reconstruction
of human hand [230] or body [231] meshes from 2D images. In addition, several deep
learning-based methods have been proposed for mesh reconstruction from dense PCs,
which rely on predicting the surface normal vector for every point in the input PCs [232],
or predicting the skinned multi-person linear model (SMPL, i.e. a parametric human
body model [233]) parameters of the target mesh, then using the off-the-shelf SMPL
model to reconstruct meshes from parameters [234]. However, in our case, the input
PCs are sparse contours with large proportions of missing information relative to dense
point cloud-based representations of shapes. And these contour points differ in number
and spatial distribution to the vertices of the surface (our target/output) that they
implicitly represent.

To this end, considering the nature of the traditional cardiac mesh reconstruction
methods and the context of deep learning-based mesh reconstruction methods, we pro-
pose to use a deep learning network to deform a cardiac template mesh to obtain the
target meshes under the guidance of contours. The key idea behind mesh reconstruc-
tion from single/multiple images is to find a mapping from the input image(s) to the
template mesh, and subsequently, to use the learnt features in the input image to guide
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the deformation of the template mesh. Generally, a 2D projective transformation is
applied to find the corresponding pixels in the 2D image for every vertex in the tem-
plate mesh, before transferring the features of 2D pixels to the corresponding vertex.
However, in our case, the inputs are contour PCs in 3D coordinate space. Applying
a single 2D projection of the input PCs would cause a loss of structural information.
Therefore, we design a PC-to-PC mapping going from the 3D contour point cloud to
a 3D volume, and correspondingly, from the 3D volume to the vertices of the 3D tem-
plate mesh (i.e. a PC-volume-PC mapping), which addresses the challenge of mapping
features between unstructured data sets that lack spatial correspondence.

The main contribution of our work is a hybrid graph convolutional neural network
for 3D mesh reconstruction, MR-Net, which approaches the problem as a template
deformation task conditioned on the sparse point cloud data (stacked 2D contours in
our case). To the best of our knowledge, this is the first study to employ deep learning
for registering a 3D mesh to sparse PCs (or stacked 2D contours), enabling real-time
3D shape reconstruction. Although we focus on 3D cardiac shape reconstruction from
stacked 2D contours in this study, MR-Net is generic and flexible, and can be em-
ployed for various PC-to-PC/mesh reconstruction tasks (e.g. PC/mesh reconstruction,
PC/mesh completion and correction) within the medical imaging or CV domain. To
sum up, the contributions of this chapter are as follows,

• We propose a novel cardiac mesh reconstruction framework, which can predict
accurate cardiac meshes from original MR images in a fast and robust manner,
assisted by existing deep learning-based segmentation methods.

• We demonstrate that MR-Net can generate accurate and high-quality meshes
even from incomplete contours, a challenge that often arises in clinical scenarios.

The rest of the chapter is organised as follows: In Section 4.2, each component of
the proposed approach is described. Section 4.3 exemplifies our proposed MR-Net on
UKBB dataset. Finally, Section 4.4 is the conclusion of this chapter.

4.2 Method

Traditional 3D shape reconstruction approaches have relied on iterative deformation
of a template mesh to sparse contours/PC, using the latter to guide the former, with
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various penalty terms to ensure the estimated deformation is smooth. To eliminate
the requirement of several iterations during inference (which can be time-consuming),
in this chapter, a deep learning-based network, MR-Net, is designed to mimic such a
process. After training, unseen contours/PCs are reconstructed into 3D shapes (repres-
ented as triangulated surface meshes) via a simple forward pass through the network.
This can significantly speed up 3D shape reconstruction while predicting high-quality
meshes. In subsequent sub-sections, we first introduce the overall network architecture
of MR-Net, and then provide details of — the feature extraction module, deformation
module, 3D PC-to-PC mapping, and the loss function formulated for effective training
of the proposed approach.

4.2.1 Network Architecture

The task of our MR-Net is to reconstruct personalised meshes from sparse contours
under the guidance of a template mesh. To accomplish this, we design two modules:
the feature extraction module and the deformation module (comprising three GCN
blocks), as shown in Figure 4.2. The purpose of the feature extraction module is to
extract features from the input point cloud of stacked contours that are beneficial
for the deformation module, while the latter utilises this information to deform the
template mesh to the personalised target mesh under the guidance of the features
from the feature extraction module. The feature extraction module consists again of
two parts: direct PC feature extraction (in PC domain), and 3D convolutional neural
network (CNN [235]) feature extraction (in image domain). The former is to extract
features directly from point clouds whereas the latter extracts features from a voxel-
based representation of the contours.

Generally, the meshes can be presented by vertices and connectivity. Following
Pixel2mesh [224], we assume the connectivity in the target meshes is fixed (the same
as template mesh), and thereby the mesh reconstruction from PC could be simplified
to learn the mapping between input PC and vertices of target meshes. To achieve this
mapping, two problems must be addressed: (1) how to learn the shape priors from
the input PC; (2) how to find the point-to-point correspondence between the input
PC and vertices of the template, in order to apply the graph convolution. The main
contributions of our proposed MR-Net lie to tackle these two challenges.
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Figure 4.2: Schema of the proposed method, MR-Net. The overall network is displayed
in the top row, with the details of the 3D CNN and our proposed PC-to-PC mapping
blocks (between input PCs and vertices of template mesh) presented in the bottom row.
The feature extraction module extracts features from the input contours, and then the
deformation module deforms the template mesh to the target mesh under the guidance
of the learnt features in the features extraction module.

107



4.2 Method

Feature Extraction

Due to the large proportion of missing inter-slice information, 3D shape reconstruction
from sparse 2D contours is a challenging task. A template mesh is randomly selected
from the training dataset to supply the missing information in the reconstruction pro-
cess. The input PCs of contours serve as the guidance of template deformation. All
the input PCs and corresponding target meshes are normalised to a standard sphere
(centred at (0, 0, 0) with a radius of 1) before training the network. To learn the guid-
ance information, feature extraction from the input contours is decomposed into two
paths.

The first path is a point cloud feature extraction block based on PointNet++ [223],
which predicts two new PCs using sampling and grouping. In our experiments, the
number of points in input PCs is 3,000, and these two new PCs contain 2,000 and 1,578
points respectively (the number of points is set empirically, sampling and grouping the
original point clouds of contours gradually from 3,000 to 1,578). After obtaining these
two new PCs, a 3D projection (i.e. a mapping from vertices’ coordinate to index of
voxels, projecting points in 3D space to voxels in 3D volume, see in Formula. 4.2)
is applied to transfer them with the original point cloud of contours into three 643

features, where each voxel is a feature vector with dimension 1 × 4.
In the other path, we first apply a 3D projection to turn the unstructured input point

cloud into a structured volume with 643 voxels in the image domain. Then a 3D CNN
(4 layers, downsampling from 643 to 83) is used to extract features from the 3D volume
projected from the input point cloud, where the extracted features contain feature maps
in all four resolutions (643,323,163,83), where corresponding feature dimensions are 64,
128, 256, 500 respectively.

With volume-to-PC mapping, we can map the features in voxels of volumes back
to points in the template mesh and guide its deformation. Therefore, we finally obtain
a feature of (64 + 128 + 256 + 500 + 4 × 3) = 960 × 1 for every point in the vertices
of template mesh, which is concatenated with the coordinate (3 × 1) of the template
mesh (or the coordinate predicted in the previous GCN block) and taken as input by
the GCN blocks. Although it would cause little information missing in the process of
3D projection, the multi-layer 3D CNN learns rich structured features (across different
resolutions) from the original PCs, which is essential for extracting features from the
input PCs. With feature extraction in both the point cloud domain and the image
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domain, we can obtain a proper understanding of the input contours and use it to
guide the deformation of the template mesh.

Deformation Module

With the features learnt from input contours as guidance, we design a deformation
module to deform the template mesh gradually, which helps to preserve the topology
and the connectivity of meshes, following deformation. The deformation module in-
cludes three GCN blocks (referring to Pixel2mesh [224]), each comprising 14-15 graph
convolution layers (the first is 14, while the next two are 15). Note that, the num-
ber of layers in MR-Net is set empirically and tuned based on results obtained on the
validation set.

3D meshes comprise vertices, edges and faces. The vertices are the coordinates of
the nodes on the mesh, which is generally an N × 3 array (the three columns stand for
x,y,z coordinates respectively). Edge denotes the connectivity between two vertices. In
our case, the face of the mesh is defined by surface triangles, whereby, every face in the
mesh comprises the indices of three vertices (connected by edges to form a triangle).
Let F = {fi}Ni be the features on every vertex of the mesh, the graph convolution layer
can be formulated as,

fl+1
p = ω0flp +

∑
q∈N(p)

ω1flq, (4.1)

where fl+1
p ∈ Rdl+1 is the output feature of vertex p after l-th graph convolution layer,

and flp ∈ Rdl is the corresponding input feature in l-th layer. N(p) are the neighbour
points of vertex p. Both ω0 and ω1 are parameters (dl × dl+1) automatically learnt
during training. The ω1 is shared by all edges, and thereby the graph convolution
layer can be applied to meshes with irregular shapes (i.e. nodes with different vertex
degrees).

The structure of GCN blocks mainly follows Pixel2mesh [224]. In the first GCN
block, the first graph convolution layer takes the concatenation of the learnt feature
(1 × 960) and the original vertices (1 × 3) of template mesh as input and predicts
hidden features at 1 × 256, followed by 12 hidden graph convolution layers (the input
is 1 × 256 and the output is 1 × 256) and a graph convolution layer to predict the
coordinate of each vertex (1 × 3). The next two GCN blocks are the same, where the
first graph convolution layer takes the concatenation of learnt contour features (1×960),
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the predicted coordinates (1 × 3) and the learnt features (1 × 256) in hidden layers of
the previous GCN block as input and predicts features at 1 × 256. This is followed by
13 hidden graph convolution layers (both input and output are 1 × 256) and a graph
convolution layer to predict the coordinates (1×3). Therefore, each GCN block predicts
an output of the target mesh, while the template mesh is deformed gradually to fit the
contours. Further details about GCN can be found in [224, 225].

3D PC-to-PC Mapping

To apply deformation based on GCN, point-level features are required for the vertices in
the template mesh. However, as the input point cloud and the template mesh are both
unstructured and have different cardinalities, there is no point-to-point correspondence
between them. To transfer the learnt shape information from the input point cloud to
the vertices of the template mesh, we build a PC-to-PC mapping module comprising
3D projection and volume-to-PC mapping, where the 3D volume is used as the bridge
between the input point cloud and template. The 3D projection aims to map 3D PCs
to 3D volumes, which can be formulated as follows (using a volume of 643 voxels as an
example),

Vx,y,z =

0, (x, y, z) ̸= ⌊(Pi) × 32⌋ + 32

1, (x, y, z) = ⌊(Pi) × 32⌋ + 32
(4.2)

where Pi is the coordinate of i-th point in PCs, which has been normalised before the
training. Vx,y,z is the corresponding voxel in projected 3D volumes. We project the
point cloud into a 643 volume. If there is a corresponding point in the point cloud,
the voxel in 3D volume would be 1, otherwise 0. To implement our MR-Net, fixed-
size inputs are required. Therefore, we randomly replicate the points in the original
point clouds of contours to obtain point clouds of the same cardinality (3,000). As
3D projection maps the point cloud into a 3D volume based on the appearance of the
input point cloud alone (where points with identical coordinates are presented as one
point/voxel in the 3D space or volume), our MR-Net is invariant to duplicates in point
clouds.

Correspondingly, the volume-to-PC mapping is the inverse process of 3D projection,

fi = VFx,y,z, s.t.(x, y, z) = ⌊(Pi) × 32⌋ + 32, (4.3)

where fi is the obtained feature for point i in template mesh, and VFx,y,z is the corres-
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ponding feature in 3D volume. With these two mappings, we finally obtain point-level
features for the template mesh, which serve as the input of GCN blocks. Note that,
there is a coordinate scale missing (from float coordinate to integer index) in the pro-
cess of 3D PC-to-PC mapping. Generally, larger volumes would enable more accurate
reconstruction results, although requiring more memory. For a trade-off between the
accuracy and computational complexity (GPU memory), we choose a 643 volume as
the bridge between the input PC and template mesh.

4.2.2 Loss Functions

We employ deep supervision with a multi-term mesh loss function to train our proposed
MR-Net. The mesh loss is designed following Pixel2mesh [224], including Chamfer
distance (CD), edge loss, normal loss and Laplacian loss. CD is applied to capture an
overall distance between the predicted vertices and vertices of ground-truth. It does
not require the point number/order to be the same in the two PCs. Denoting p and q
as the predicted and ground-truth vertices, Chamfer distance LCD is written as,

LCD =
∑

p
minq||p − q||22 +

∑
q

minp||p − q||22. (4.4)

Edge loss is a regularisation to penalise high edge length. We use the sum of all
edge lengths in the predicted mesh as the edge loss Ledge,

Ledge =
∑

p

∑
k∈N(q)

||p − k||22, (4.5)

where N(q) is the neighbour vertices of q.
Normal loss Lnormal is computed on surface normals, which helps preserve mesh

topology and retain fine structural details, and is formulated as,

Lnormal =
∑

p

∑
q=argminq(||p−q||22)

|| < p − k, nq > ||22, s.t. k ∈ N(p), (4.6)

where < ·, · > is the inner product of two vectors, k belongs to the neighbour point
of p (denoted by N(p)), and nq is the surface normal of ground-truth. In the pre-
dicted/target meshes, the vectors (edges) from each vertex to its neighbour vertices
should be perpendicular to its normal. If the predicted vertices of meshes are exactly
the same as the target mesh, the normal loss becomes zero. Therefore, this loss is to
guarantee the normal of the predicted mesh is close to the normal in the target mesh.
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Similar to edge loss, Laplacian loss LLaplacian is also a regularisation term. Let δp

be the Laplacian coordinate of vertex p. The LLaplacian is as follows,

δp = p −
∑

k∈N(p)

1
||N(p)||k,

LLaplacian =
∑

p
||δp

′ − δp||22,
(4.7)

where δp and δp
′ are the Laplacian coordinates of vertex p before and after deformation.

The mesh loss has been proven to be useful in mesh reconstruction [224, 228].
However, in our task, we found it is inadequate to generate accurate vertex coordinates,
as there is no exact point-to-point loss. To tackle this issue, we further apply an
additional L1 loss between the predicted and ground-truth vertices. This term (L1)
urges MR-Net to predict more accurate vertices for the reconstructed cardiac mesh,
and it is formulated:

L1 = 1
M

M∑
i

|pi − qi|, (4.8)

where M is the number of points in the predicted mesh. pi and qi are coordinates of
the i-th point in the predicted and target mesh, respectively.

Therefore, the complete mesh loss Lmesh we propose is as follows,

Lmesh = LCD + Ledge + Lnorm + LLaplacian + λ0 × L1, (4.9)

where λ0 is a hyper-parameter that needs to be tuned empirically.
As there are three outputs in MR-Net from coarse to fine, we compute the mesh loss

on all three outputs. Therefore, the final loss function Ltotal is computed as follows,

Ltotal = λ1Lmesh1 + λ2Lmesh2 + λ3Lmesh3. (4.10)

In the loss function, λ0, λ1, λ2 and λ3 are hyper-parameters that weight the re-
lative influence of each structural loss term, on the overall gradient backpropagated
through the network to update the constituent weights. These weights are also tuned
empirically.

112



4.3 Experiments

4.3 Experiments

4.3.1 Data and Implementation

All experiments conducted to validate MR-Net are performed using 7,870 stacks of 2D
contours, available from the manual delineation of SAX view cardiac MR images (at
the end of systole and diastole), within the UKBB dataset. The spacing for cardiac MR
images in UKBB is 1.8 × 1.8 mm2 with a slice thickness of 8.0 mm and a slice gap of
2 mm. Manual contouring was performed by a team of cardiac imaging experts [207]
and the corresponding 3D bi-ventricle cardiac reference shapes were available from a
previous study [219]. We randomly split the dataset into training (6,000), validation
(935) and test sets (935). Each training sample comprises a source-target pair, where
the former is the sparse 2D contour points to be reconstructed, while the latter is the
corresponding bi-ventricle surface mesh (i.e. the target shape). We pre-process all
source PCs to maintain the same cardinality (3,000 points used in all experiments)
across all samples. This is done by replicating points at random for samples with less
than 3,000 points. The target mesh vertices, however, all have the same cardinality
(i.e. 1,578 points) and consequently need not be resampled. In the training dataset,
all input PCs and target mesh vertices are normalised before training the network,
using their centroid and radius (fixed as 100.00 mm). Therefore, all the PCs and
meshes used for training are normalised to a sphere centred at (0, 0, 0) with a radius
of 1. Correspondingly, during testing, the input PCs are also normalised before shape
reconstruction, such that the predicted meshes can be transformed to their original size
using the same values for the centroid and radius.

We use the Adam optimiser, with a learning rate of 1e−05 and a batch size of
1 to train MR-Net, in all experiments conducted. The hyper-parameters λ0, λ1, λ2

and λ3 for the total structural loss are 1,000, 0.1, 0.3 and 0.6 respectively, which are
determined empirically. Note that, these parameters are the same in all experiments.
The network is implemented using Python and TensorFlow, and all experiments are
streamlined and executed on Tesla M60 GPUs, accessed over the MULTI-X platform
1 [236]. All networks are trained until convergence on the training set, taking ∼3-4
days. Our source code is available on the Github 2.

1www.multi-x.org
2https://github.com/cistib/MR-Net
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4.3.2 Comparison with the State-of-the-art

To the best of our knowledge, no previous deep learning-based method for mesh re-
construction from (stacked) contour PCs exists in the literature. However, various
techniques such as point cloud up-sampling, point cloud segmentation and mesh recon-
struction from a single image could be modified to partially address the reconstruction
problem. Consequently, we build three baselines, using state-of-the-art networks for
comparison, namely, PointNet++ [223], PU-Net [237], and Pixel2mesh [224]. Point-
Net++ is a popular network originally proposed for point cloud classification and seg-
mentation. We build an encoder-decoder network based on its kernel block, with a
feature integration component, to obtain our baseline network PointNet++. PU-Net
is a state-of-the-art network for point cloud up-sampling. We adapt it to point cloud
reconstruction by incorporating a sampling layer at the end of the original network.
These two networks can predict PCs only with similar structures to the ground-truth,
but cannot recover the cardiac mesh as the order of predicted points differs from the
ground-truth. To compare our approach with mesh reconstruction methods, we pro-
ject the input PCs onto 2D images, and then reconstruct 3D cardiac meshes from them
using Pixel2mesh [224]. In addition to deep learning-based methods, we also compare
our MR-Net with two traditional point set registration methods, coherent point drift
(CPD [238]) and GMMREG [239], where the template mesh is the same as MR-Net
and the hyper-parameters are tuned based on samples from the training and validation
set.

Qualitative Results

A visual comparison of the generated reconstructions using the proposed method against
the baseline networks is depicted in Figure 4.3. For Pixel2mesh, CPD and our proposed
MR-Net, both predicted meshes and the corresponding vertices (PCs) are presented,
while, only PCs are available for PointNet++ and PU-Net results. For GMMREG,
only the mesh is presented, due to limited space. As shown in Figure 4.3, the Point-
Net++ and PU-Net reconstructions still contain several “contour-like” distributions of
points and lack the inlet to the pulmonary artery at the top of the RV. The recon-
struction of Pixel2mesh just learns a coarse representation of the cardiac shape, and
the corresponding mesh does not preserve bi-ventricle topology and is thus signific-
antly different from the ground-truth. The main reason for this is that 2D projection
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Source PointNet++ PU-Net

12.93
14.22
15.42

13.47
16.14
23.72

13.09
15.75
22.69

13.26
16.28
13.02

7.35
13.06
8.78

CD
EMD
HD

Target-PCPixel2mesh-PC MR-Net (our)-PC

Target-MeshPixel2mesh-Mesh MR-Net (our)-Mesh
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GMM-Mesh

CPD-PC

CPD-Mesh

Figure 4.3: Qualitative results for our MR-Net and baseline networks viz. Point-
Net++, PU-Net, GMMREG, CPD and Pixel2mesh. In the second and third rows,
PCs and meshes computed using MR-Net, CPD and Pixel2mesh are presented.
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causes a significant loss of information, resulting in erroneous reconstructions. It is
difficult for Pixel2mesh to reconstruct meshes with holes using 2D information only.
Both traditional point set registration methods, CPD and GMMREG can reconstruct
smooth cardiac meshes, whilst preserving topology. In our task, the performance of
CPD is better than GMMREG. However, the mesh obtained using CPD is significantly
different to the ground-truth mesh, failing to capture several local details (mainly on
the top and bottom of the ventricles). MR-Net can reconstruct evenly distributed PCs
without contour-like artefacts, while preserving bi-ventricle topology and retaining fine
structural details such as the inlet to the pulmonary artery. The reconstructed mesh
is of high quality and more closely matches the target shape, compared with the other
approaches. This is further supported by the quantitative results summarised in the
next section.

Table 4.1: Quantitative comparison between MR-Net and the baseline networks using
the CD, EMD, HD and PC-to-PC error. Statistically significant differences in recon-
struction accuracy are highlighted in bold. MR-Net (automatic) represents the mesh
reconstruction results from contours extracted using automatic segmentation methods
(see Section 4.3.4).

Methods CD (mm) EMD (mm) HD (mm) ϵPC−to−PC (mm) Inference Time(s)
PointNet++ 13.03 ± 2.96 17.94 ± 2.07 17.04 ± 3.57 - < 0.1
PU-Net 12.15 ± 2.88 14.94 ± 2.02 15.74 ± 3.37 - < 0.1
Pixel2mesh 19.38 ± 5.54 25.27 ± 4.48 16.20 ± 3.30 50.63 ± 7.29 < 0.1
CPD 12.10 ± 6.63 12.49 ± 5.46 13.05 ± 7.74 7.03 ± 2.94 37.45
GMMREG 20.90 ± 7.18 17.58 ± 4.85 15.87 ± 3.04 8.36 ± 1.85 60.90
MR-Net (No L1) 255.08 ± 94.54 36.61 ± 5.49 47.80 ± 7.35 39.12 ± 5.21 < 0.1
MR-Net (Only L1) 6.14 ± 1.61 7.01 ± 1.48 8.10 ± 1.79 3.34 ± 0.65 < 0.1
MR-Net (No PC feature) 6.84 ± 1.69 8.07 ± 1.64 8.78 ± 1.92 3.87 ± 0.65 < 0.1
MR-Net (No 3D CNN) 80.71 ± 39.28 32.03 ± 7.27 29.63 ± 7.06 18.54 ± 2.68 < 0.1
MR-Net 4.39 ± 1.48 5.05 ± 1.41 6.89 ± 1.88 2.48 ± 0.63 < 0.1
MR-Net (automatic) 7.57 ± 3.59 8.19 ± 2.87 9.31 ± 2.86 3.45 ± 0.98 < 0.1
MR-Net (small dataset) 6.89 ± 1.76 8.12 ± 1.71 8.83 ± 2.00 3.92 ± 0.79 < 0.1

Quantitative Results

The reconstruction performance of MR-Net is also quantitatively evaluated and com-
pared with other baseline networks. Following previous shape reconstruction research [220,
240, 224], reconstruction accuracy was measured using CD, earth mover distance (EMD),
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Hausdorff distance (HD) [240, 237, 224] and point cloud to point cloud (PC-to-PC)
error [220, 221], which could capture the distance between two PCs from different per-
spectives. The CD, EMD, and HD are well-known metrics to evaluate the distance
between two PCs, while PC-to-PC error is computed as,

ϵPC−to−PC = 1
M

M∑
m=1

√√√√ 3∑
i=1

(pm,i − qm,i)2, (4.11)

where p and q are vertices of predicted meshes and ground-truth, and the M is the
number of points in predicted meshes (in our experiments is 1,578). For all evaluation
metrics, lower values signify better performance. The average reconstruction accuracy
(expressed as mean±std) across all test samples is summarised in Table 4.1, for each
approach, as mentioned earlier. Paired sample t-tests were used to assess statistical
significance, by comparing the reconstruction accuracy of each baseline network with
that of MR-Net. MR-Net consistently outperformed the others, achieving the best
results across all metrics. Note that, CPD is also the method used to generate the
ground-truth meshes (as mentioned in [219]), requiring a time-consuming process of
tuning hyper-parameters for each sample. In this chapter, for comparison, we tune the
hyper-parameters based on several samples from the training and validation set, and use
the same hyper-parameters for all testing samples. This is why the meshes obtained
using CPD in this study are different to the target meshes (generated in a previous
study [219]). As the inference of MR-Net is much faster (< 0.1 s vs 37.45/60.90 s)
and more accurate than traditional methods, there is potential for its use in real-time
applications.

To further demonstrate the clinical potential and superiority of our approach, we
extract the corresponding segmentations from the predicted and ground-truth meshes
(using the SAX-planes from the original cardiac MR images), and compute five clinical
indices based on the obtained segmentation results - LV end-diastolic volume (LVEDV),
end-systolic volume (LVESV), LV stroke volume (LVSV), LV ejection fraction (LVEF)
and LV myocardial mass (LVM) respectively. The clinical indices are shown in Table 4.2
(as topology is not preserved in meshes predicted by pixel2mesh and MR-Net(No L1),
we did not include their clinical indices), where, values showing no statistically sig-
nificant difference to the clinical indices computed on the ground-truth meshes are
highlighted in bold (P-value ≥ 0.05). While the meshes predicted by MR-Net incur an
average point-to-point error of 2.48mm to the ground-truth, we found that the com-
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Table 4.2: Clinical indices (LVEDV, LVESV, LVSV, LVEF, LVM) computed based
on the segmentation obtained from the predicted meshes. Those clinical indices make
no statistically significant difference to the ground-truth (GT) are highlighted in bold
(P-value≥ 0.05).

Methods LVEDV (ml) LVESV (ml) LVSV (ml) LVEF(%) LVM(g)
CPD 77.66 ± 17.57 43.79 ± 11.86 33.87 ± 9.05 43.71 ± 7.09 161.71 ± 36.47
GMMREG 84.33 ± 19.15 48.19 ± 12.04 36.14 ± 9.00 42.94 ± 5.23 175.96 ± 38.87
MR-Net (Only L1) 132.63 ± 30.49 40.23 ± 15.55 92.40 ± 19.86 70.12 ± 5.87 85.81 ± 19.55
MR-Net (No PC feature) 128.33 ± 29.13 38.88 ± 14.41 89.44 ± 19.27 70.05 ± 5.65 87.37 ± 19.16
MR-Net (No 3D CNN) 80.70 ± 13.63 38.99 ± 16.47 41.71 ± 13.43 52.42 ± 17.37 56.40 ± 16.58
MR-Net 131.69 ± 30.59 39.69 ± 12.71 92.00 ± 20.10 70.12 ± 4.33 88.36 ± 19.97
MR-Net (automatic) 131.50 ± 30.81 39.76 ± 12.81 91.74 ± 20.28 70.01 ± 4.54 88.70 ± 20.15
GT Clinical Indices 132.24 ± 30.25 39.61 ± 11.92 92.63 ± 20.24 70.27 ± 3.88 87.78 ± 20.26

puted clinical indices for MR-Net show no significant difference to the latter. All other
approaches investigated on the other hand, show significant differences to the ground
truth, in terms of the clinical indices evaluated. This further demonstrates the superi-
ority of our approach at preserving key clinical indices that are routinely used to assess
cardiac function.

We also explore the performance of MR-Net when trained with a limited number
of samples, as 6,000 samples are not easy to obtain in real clinical applications. We
randomly choose 200 samples from the original training set to train MR-Net and eval-
uate its performance with the same test set. The results are shown in Table 4.1(MR-
Net(small dataset)). These results indicate that MR-Net performs well in the small
data regime, and outperforms other state-of-the-art methods which were trained on a
significantly larger sample size (6,000).

These quantitative results follow the visual assessment (cf. Sec 4.3.2) of the bi-
ventricle shapes reconstructed using each approach. This highlights further the efficacy
of our proposed MR-Net for 3D shape reconstruction from stacked 2D contours.

4.3.3 Shape Reconstruction from Incomplete Contours

Typical artefacts encountered during cardiac MR image acquisition include missing
slices between the base and apical of the heart, and low signal-to-noise (SNR) ratio in
parts of the myocardium, resulting in blurred boundaries for the left and right vent-
ricles. Correspondingly, these errors are propagated to the manually or automatically
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extracted contours from such image volumes, which might cause missing contours at
intermediate points across the heart. A 3D cardiac shape reconstruction framework
robust to the presence of such irregularities, would be of significant clinical value as it
would enable accurate quantification of cardiac functional indices, despite such arte-
facts. For that reason, the robustness of MR-Net to incomplete data in sparse 2D
contours, used for 3D shape reconstruction, is also evaluated.

Incomplete samples are generated by retaining the basal and apical contours and
randomly removing the contours between them. This process is used to generate four
new samples with 2 to 5 slices each, for every sample in the original dataset. Addi-
tionally, to tackle the common issue encountered in routine CMR imaging, of missing
apical/basal slices, two new samples with one/two pairs of base and apical slices miss-
ing are also generated. The resulting dataset, comprising 42,000 training samples, is
used to re-train MR-Net and evaluate its robustness to incomplete data.

Table 4.3: Quantitative results for our MR-Net with incomplete data (with 2-5 slices
and original input). The -2 slices and -4 slices denote the results with contours removing
one/two pairs of apical and basal slices.

Criterion 2 Slices 3 Slices 4 Slices 5 Slices -2 Slices -4 Slices Original Input
CD (mm) 13.54 ± 14.65 7.94 ± 3.02 7.91 ± 3.36 6.97 ± 2.54 6.51 ± 1.98 9.97 ± 2.68 5.22 ± 1.78
EMD (mm) 12.17 ± 4.93 8.78 ± 2.65 8.74 ± 2.79 7.92 ± 2.31 7.74 ± 2.03 9.13 ± 2.40 6.16 ± 1.75
HD (mm) 11.83 ± 4.12 9.58 ± 2.83 9.34 ± 2.73 8.73 ± 2.40 9.00 ± 2.50 10.20 ± 2.89 7.48 ± 1.96
ϵPC−to−PC (mm) 5.46 ± 2.44 3.94 ± 1.11 3.88 ± 1.12 3.55 ± 0.96 3.46 ± 0.84 4.07 ± 1.36 2.87 ± 0.73

The quantitative and qualitative results in Table 4.3 and Figure 4.4, respectively,
indicate that MR-Net can generate accurate reconstructions of cardiac shape even in
the presence of missing information (i.e. missing slices).

In the extreme scenario (reconstruction from 2 slices), only bottom and apical slices
are given, our proposed MR-Net can still reconstruct high-quality meshes, although
small misalignments exist between the reconstructed mesh and input contours. We ob-
serve that the reconstruction performance progressively improves with including more
slices/contours, with a proportional decrease in the variance. When 5 slices are given
for mesh reconstruction, the reconstruction performance is close to the results obtained
using a complete stack of slices, across all metrics. Although the reconstruction accur-
acy of MR-Net for extreme scenarios is significantly lower than that of the original input
(unmodified 2D contours), the values summarised in Table 4.3 indicate its performance
is still comparable to/better than the baseline networks’ performance on complete data
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Figure 4.4: 3D cardiac shape reconstruction with incomplete input. The CD, EMD,
HD and PC-to-PC error (denoted by PPE in the figure) are shown on the left-top with
red, blue, yellow and green numbers, respectively. The mesh colours indicate the PC-
to-PC error from the predicted meshes to the target meshes (colours corresponding to
distances between 0.00 mm and 4.00 mm are shown in the colour bar).

(cf. Table 4.1).
To further evaluate the robustness of our approach, we employed the trained model

to reconstruct meshes in the absence of apical and basal slices. As the apical and basal
slices are essential to provide the network with contextual information regarding cardiac
size, removing them significantly affects the quality of mesh reconstruction. Therefore,
the results of removing apical and basal slices (-2 or -4 slices) are generally worse than
removing the same number of slices between the apical and basal slices. However, our
approach can still generate high-quality cardiac meshes with the basal/apical slices
missing, as shown in Table 4.3 and Figure 4.4.

The robustness of our approach to missing slices implies we can reconstruct high-
quality cardiac meshes using fewer annotated (manually/semi-automatically) slices and
from sparse SAX cine-MR images. This provides avenues to reduce scan time in the
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future. Hence, the proposed approach could be of significant value in a clinical set-
ting, especially for applications requiring real-time shape reconstruction (e.g. surgical
navigation).

4.3.4 Shape Reconstruction from Autocontouring

To further validate the robustness and efficacy of MR-Net in realistic scenarios, in this
section, we exemplify our method on shape reconstruction with contours extracted from
automatic segmentation results instead of manual segmentations. Compared to manual
segmentation, automatic segmentation results may contain several errors, posing a
challenge for accurate 3D shape reconstruction. To be viable for a real clinical setting,
however, a shape reconstruction method should be able to cope with such errors and
facilitate accurate shape reconstruction from the original cardiac MR images.

For the samples in our testing dataset, the original MR images, the corresponding
PCs of contours from manual segmentations and their target meshes are all available.
Therefore, we use a deep learning-based cardiac segmentation method [172] to segment
the original MR images, and then extract PCs of contours from the segmentation
results. Finally, we apply our pre-trained MR-Net to reconstruct 3D cardiac meshes
from them. As the target mesh for every MR image is available, we compare the
predicted meshes with the former (shown in Table. 4.1 and Figure 4.5).

As shown in Figure 4.5, there are small differences between the input contours ex-
tracted from automatic segmentation results and manual segmentation results in terms
of the number of contours, location and shape. However, even with those differences,
our proposed MR-Net can still reconstruct accurate and high-quality meshes, achiev-
ing comparable performance to the reconstruction from manually segmented contours.
This is further demonstrated by the results in Table. 4.1, where we see that mesh recon-
struction accuracy using automatically segmented contours (MR-Net (automatic)) is a
little worse than the results of mesh reconstruction from manual segmentation (MR-
Net), but significantly better (achieving an average 3.5 mm PC-to-PC error about the
ground-truth) than the other baseline networks investigated. During inference, MR-
Net can reconstruct the shape of a sample less than 0.1s on average, and ∼ 1s or less
duration is required for the estimation of bi-ventricle contours using the deep learning-
based segmentation method. Therefore, with the automatic segmentation method and
MR-Net, we can reconstruct accurate, high-quality, 3D cardiac meshes from original
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Figure 4.5: Samples of 3D cardiac shape reconstruction using automatic and manual an-
notated contours. Each row is one sample. Columns from left to right are: Manual an-
notated contours (MC), automatic annotated contours (AC), reconstructed 3D meshes
from both AC and MC, and ground-truth. The colours of metrics (between predicted
meshes and ground-truth) are the same as predicted meshes in Figure 4.4.

cardiac MR images very quickly (∼ 1s), which is adequate for their use in real-time
applications.

Compared with traditional 3D cardiac shape reconstruction approaches, MR-Net
achieves a significant improvement in the inference time, without compromising the
accuracy of the reconstructed 3D shapes. Additionally, as demonstrated, the proposed
approach outperforms existing state-of-the-art deep learning approaches in terms of
shape reconstruction accuracy. Assisted by deep learning-based segmentation methods,
MR-Net can be further applied for direct 3D shape reconstruction from original MR/CT
images. MR-Net can be applied to (1) guide other clinical image tasks in return (e.g.
segmentation and registration) as it provides a continuous shape in 3D space, (2) in
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several real-time applications (e.g. surgical navigation), and (3) as an extension of
clinical tools for visualising the 3D shape of anatomical structures. Although our
proposed MR-Net can reconstruct highly similar meshes to the ground-truth, currently,
the reconstruction accuracy is still constrained by the size of the 3D volume, which is
the fundamental building block of PC-to-PC mapping. The reconstruction accuracy
can be further improved with larger volume (e.g. 128 × 128 × 128 or 256 × 256 × 256
voxels) as the bridge for PC-to-PC mapping.
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Figure 4.6: The results are predicted by different versions of MR-Net, where the first
and second rows are the meshes from two different orientations.

4.3.5 Ablation Study

To analyse the contribution of different components in MR-Net, an ablation study
is performed, as shown in Table 4.1, Table 4.2 and Figure 4.6. MR-Net (No L1),
MR-Net (Only L1), MR-Net (No PC feature), and MR-Net (No 3D CNN) refer to
training MR-Net without the L1 loss, with just the L1 loss, without the PC feature
extraction block, and without the 3D CNN feature extraction block, respectively. MR-
Net achieves statistically significant improvements (evaluated using paired t-tests) to
the aforementioned variations of MR-Net on all metrics (P-value<< 0.01). Comparing
the results between MR-Net (No L1) and MR-Net, we found that the L1 loss plays
a key role in the network training, without which the network fails to reconstruct
cardiac shapes. The other losses (except L1 loss) bring marginal improvements to
the reconstruction accuracy, help better preserve fine structural details (viz. top and
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bottom of the right ventricle in Figure 4.6) and facilitate the generation of smoother
meshes. Similarly, the lack of a PC feature extraction block weakens the reconstruction
accuracy of MR-Net, while, the lack of a 3D CNN feature extraction block significantly
affects mesh reconstruction quality. Therefore, we can conclude that the L1 loss and 3D
CNN feature extraction block are the key contributors to the reconstruction accuracy
of MR-Net. The remaining components (other losses and the PC feature extraction
block) help further refine mesh reconstruction accuracy.

4.4 Conclusion

A novel deep learning-based approach for 3D shape reconstruction from stacked 2D
contours is proposed in this chapter. Our approach, MR-Net, can accurately reconstruct
3D shapes from sparse and incomplete 2D contour data, outperforming three state-of-
the-art point cloud/mesh reconstruction networks. We further prove that our proposed
approach can reconstruct accurate 3D cardiac meshes using contours generated by
an automatic segmentation approach. This demonstrates that our model is robust
to the segmentation errors induced by the latter. Using 2D automatic segmentation
methods and our MR-Net, it is possible to reconstruct high-quality 3D cardiac meshes
in real-time. The versatile and robust nature of the proposed framework highlights its
potential for application in several diagnostic and interventional settings. MR-Net is
a supervised method, requiring ground-truth meshes during training. To alleviate the
burden of curating high-quality ground truth meshes, which can be non-trivial in several
applications, the problem of shape reconstruction from sparse contour/point cloud data
can be tackled in an unsupervised manner. This could be achieved by approaching the
problem in a manner similar to unsupervised deep learning-based image registration
techniques, using the template mesh as the moving image and the point clouds of
contours as the fixed image. This will be the subject of future work.

Cardiac mesh has drawn more and more attention in cardiac motion analysis and
disease diagnosis, as it provides a more efficient and intuitive 3D representation of
the heart. Prior to this, how to obtain plausible cardiac mesh is essentially import-
ant, because it is unable to obtain directly by imaging. With our proposed MR-Net,
we can reconstruct plausible and accurate 3D cardiac shapes from the segmentation
masks/contours almost in real-time. However, for this approach, manual or automatic
segmentation is required prior to the mesh reconstruction. This additional pre-process
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step would delay the mesh reconstruction, and at the same time may introduce ad-
ditional segmentation interference when using automatic segmentation. Therefore, we
further propose a deep learning-based method to reconstruct accurate 3D four-chamber
cardiac meshes directly from original images (details can be found in [23]).

With the aforementioned approaches (i.e. SDDIR, MR-Net), we can generate two
additional cardiac representations, the segmentation masks and cardiac meshes, from
raw cardiac MR images. In the next chapter, we will focus on CVD prediction and
diagnosis, using the biomarkers extracted from the raw MR images, segmentation masks
and meshes.
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Chapter 5

Deep Learning in Cardiovascular Disease
Prediction and Diagnosis
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5.1 Introduction

In previous chapters, we have described approaches to obtain the cardiac deformation
fields, segmentation and 3D cardiac meshes from given cardiac MR images. With
these cardiac representations (including original MR images), we can extract adequate
biomarkers regarding the cardiac anatomical structures and motion functions. In this
chapter, we introduce how to incorporate those available features/predictors into the
prediction and diagnosis of CVDs. Specifically, we designed a novel multi-channel
variational auto-encoder (MCVAE), named MIVAE, to learn a joint representation
of the paired mesh and image. After training, the shape-aware image representation
(SAIR) can be learnt directly from the raw images and then applied for further CVD
prediction and diagnosis. We demonstrate our proposed method on the data from the
UK Biobank (UKBB) study and two other publicly available datasets via extensive
experiments. We show that our proposed method can reconstruct high-quality images
and meshes from the latent embedding, even with a single input. It can be applied
for 3D cardiac mesh reconstruction from the corresponding image. Using the learnt
SAIR as a novel biomarker in subsequent prediction/diagnosis of CVDs, we find it
leads to better performance than traditional biomarkers (e.g. clinical indices), and can
be applied as an efficient supplement to them, which is of significant potential in CVD
analysis and prediction/diagnosis.

5.1 Introduction

Cardiovascular disease is the leading cause of global mortality. As non-invasive meth-
ods, medical imaging techniques such as magnetic resonance (MR), computed tomo-
graphy (CT) and ultrasound (US), followed by computer vision techniques, have become
more and more popular in the analysis and diagnosis of heart-related diseases. MR im-
age is generally considered the gold standard for disease diagnosis among those image
modalities, due to its high contrast in anatomical structures and lack of ionizing radi-
ation [241]. Previous research has demonstrated the feasibility and efficiency of image-
based diagnosis on various cardiovascular diseases (e.g. heart failure, ischemic heart dis-
ease, congenital heart disease, pulmonary hypertension, dilated cardiomyopathy) [24].

To analyse and predict/diagnose the CVDs from the given images, many machine
learning and deep learning (DL)-based approaches have been proposed, solving vari-
ous medical image analysis tasks [242]. Automatic segmentation approaches [172] are
widely studied to get rid of the time-consuming manual delineation work. Based on the
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predicted segmentation masks at end-diastole (ED) and end-systole (ES) of the cardiac
cycle, clinical indices like left ventricle (LV) and right ventricle (RV) ejection fraction,
ES and ED volume, and myocardial mass can be estimated. In addition, image regis-
tration can obtain the deformation fields between different time frames in the cardiac
cycle, for cardiac motion tracking and strain estimation [177, 183]. Cardiac shape ana-
lysis based on the 3D cardiac mesh is also popular, which provides an intuitive way to
observe and capture cardiac motion [23].

Research on machine learning/DL-based CVD analysis can be roughly divided into
three classes, direct disease diagnosis [243], disease/survival prediction [24](i.e. predict
the probability of disease/death in a specific period from now), and association ana-
lysis between cardiac motion and diseases/genomes/other factors [242, 244, 245]. The
direct disease diagnosis generally extracts biomarkers or feature descriptors from the
original images/deformation fields/cardiac meshes, then uses classifiers (e.g. support
vector machine (SVM), random forest, artificial neural network (ANN)) for disease
diagnosis [243, 21]. For this type of method, the extraction of biomarkers is essentially
important, where some basic information (such as sex and age) and cardiac clinical
indices derived from images/segmentation/deformation fields, are generally used. Re-
cently DL-based approaches have been demonstrated to overcome traditional machine
learning-based methods in various tasks [177], however, there are still few works that
have attempted to apply DL methods for direct cardiac disease diagnosis, because of
the lack of interpretability. Disease/survival prediction has similar feature extraction
steps to disease diagnosis, aiming to predict the probability of getting CVDs in specific
years or the survival time of CVD patients. For example, Bello et al. [24] proposed a
novel auto-encoder for time-resolved 3D meshes to learn the task-specific latent repres-
entation and survival time of patients with pulmonary hypertension, significantly out-
performing human benchmarking and Cox proportional hazards model [246]. Instead of
directly applying DL-based methods for classification, previous studies [242, 244, 245]
have proposed to use DL networks to predict segmentation, deformation fields and 3D
cardiac meshes from given MR images, based on which some cardiac motion patterns
(e.g. strain and myocardial wall thickness) can be calculated automatically. Then, the
correlation between the cardiac motion phenotype and specific factors (e.g. genetic &
environmental factors) can be studied.

However, current CVD prediction/diagnosis is generally solely based on the image
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domain (MR image) or spatial domain (3D mesh). For image domain-based analysis,
cardiac MR images provide high-quality local details, but certain limitations like large
slice thickness (for cardiac cine-MR image), slice misalignment, interference of back-
ground tissues and inability to visualise 3D shape weaken the interpretability and per-
formance of CVD diagnosis/analysis methods. In contrast, in the spatial domain-based
analysis, cardiac mesh provides a more intuitive way to present cardiac shape, and
facilitates the assessment of cardiac motion. Nevertheless, the accuracy of analysis
relies heavily on the quality of reconstructed meshes (derived from cardiac images),
and may introduce inaccurate results on local details (due to the nature of mesh re-
construction). Therefore, a natural idea is to synergistically leverage the advantages of
both cardiac representations to enhance subsequent prediction and diagnosis, attaining
optimal performance.

To obtain explainable and efficient representations from cardiac MR images and
improve CVD prediction/diagnosis performance, we propose a novel MCVAE [247],
mesh-image variational auto-encoder (MIVAE), to learn the joint latent representa-
tions of cardiac meshes and cine-MR images. Following training, using images alone
as input, the learnt latent embedding of images, which we named shape-aware image
representation (SAIR), is fed into a machine learning classifier (e.g. SVM) for down-
stream tasks like cardiovascular disease prediction and diagnosis. Once the MIVAE is
trained, it can be applied as a mesh reconstruction approach by only feeding images
as input. We demonstrate the CVD prediction/diagnosis performance of our method
on a large dataset UKBB [184], and also evaluate the trained MIVAE on another
two datasets, Automatic Cardiac Diagnosis Challenge (ACDC) [148] and Multi-Centre,
Multi-Vendor & Multi-Disease Cardiac Image Segmentation Challenge (M&M) [185],
without any fine-tuning steps.

The contributions of this chapter are summarised as follows,

• We propose a novel MCVAE network for cross-modality data (mesh and image),
comprising a convolutional encoder-decoder and a graph encoder-decoder. To the
best of our knowledge, it is the first paper to learn the joint latent variable from
images and 3D surface meshes.

• A novel, efficient and robust cardiac feature representation, SAIR, is learnt by our
MIVAE. We demonstrate that incorporating this feature can improve predictive
performance relative to existing biomarkers and can correspondingly, supplement
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the latter in predictive diagnostic and prognostic tasks.

• Using the learnt MIVAE, we are able to automatically reconstruct cardiac bi-
ventricle meshes from corresponding MR images, which provides a novel method
for cardiac mesh reconstruction from the corresponding images.

5.2 Related Work

This work is mainly related to joint representation learning and CVD prediction/diagnosis.

5.2.1 Joint Representation Learning

Joint representation learning is a process of learning a parametric mapping from differ-
ent data in multi-domains (e.g. images, video, sound, text) to feature vectors/tensors
in a shared latent space, with the aim of apprehending the latent correlation between
multi-modality data and extracting more refined and valuable vectors/features, which
can enhance performance across various downstream tasks. It has drawn attention
from various cross-modality applications in different domains such as population clus-
tering [248] and disease diagnosis [247, 249]. The architectural designs of joint repres-
entation learning may significantly vary from each other due to differences in inputs.
Nonetheless, they generally encompass several distinct encoders, which encode data
from different domains into the joint latent space. Corresponding to different inputs,
the encoders are generally different (for example, convolutional layers for images/videos,
fully connected (FC) layers for vectors, and graph convolutional layers [250] for graph),
aiming to convert the redundant input into a low-dimensional vector/tensor that can
enhance performance in downstream tasks.

MCVAE [247] is a popular structure used in joint representation learning, including
multiple encoder-decoder pairs, which can encode data from different modalities into
the same latent distribution. MCVAE can reconstruct missing channels when the given
input is incomplete, and the learnt latent representations which contain sufficient in-
formation from the input multimodal data can be applied for subsequent analysis (e.g.
disease diagnosis [247, 249] and separating cell populations [248]). For example, Diaz et
al. [249] proposed a two-channel MCVAE to predict cardiac MR images from the retinal
images of the same subject, and used it for left ventricle end-diastolic volume (LVEDV)
and left ventricle mass estimation and prediction of myocardial infarction. Ternes
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et al. [248] proposed an MCVAE in single-cell image analysis to extract transform-
invariant biologically meaningful features, which helped to advance the understanding
of complex cell biology and enable discoveries previously hidden behind image com-
plexity (like clustering populations).

Note that, although the previous approaches on MCVAE learn the correlation
between different data modalities, they are generally different sub-modalities belonging
to the same modality (e.g. different contrasts of MR images), or several image modal-
ities with a quite simple modality (e.g. a feature vector). To our best knowledge, no
previous research has explored the joint correlation between two significantly different
complex modalities like 3D image and mesh.

5.2.2 Image-based Cardiovascular Disease Analysis

As a non-invasive technology, cardiac imaging has been widely used in CVD diagnosis
and to improve our understanding of the structure and function of the heart. To obtain
a fast and accurate CVD prediction/diagnosis, numerous machine learning/DL-based
approaches [251, 21] have been developed, feeding the features extracted from the image
and corresponding non-image data to a classifier/regressor and achieving the predic-
tion/diagnosis of CVDs. The non-image data generally includes demographic data (e.g.
sex, age), conventional risk factors (e.g. smoking, hypertension, high cholesterol, dia-
betes) and other available data in the electronic health record. In this chapter, we
simply refer to them all as metadata. The classifier can be general machine learning
classifiers like the random forest, SVM, and ANN, also including recent DL networks.
It is essentially important in CVD prediction/diagnosis to extract discriminative fea-
tures/biomarkers that are representative of the patient data and their underlying target
class of interest. In general, the features can be divided into four categories, metadata,
clinical indices, radiomic features [252, 251, 21] and automatic features extracted by
deep neural networks. The first is available in the electronic health record, while the
rest three are derived from the images.

In most previous research [253, 254, 255], the metadata and clinical indices were
widely used and achieved reasonable results. Standard cardiac clinical indices in-
clude LVEDV, left ventricle end-systole volume (LVESV), left ventricle ejection fraction
(LVEF), left ventricle myocardium mass, right ventricle end-diastole volume (RVEDV),
right ventricle end-systole volume (RVESV), right ventricle ejection fraction (RVEF).
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Note that, the clinical indices are computed based on the segmentation masks at end-
diastolic (ED) and end-systolic (ES) frames of the cardiac cycle, and thereby segment-
ation masks are required for this biomarker. Radiomic features are also derived from
raw images, referring to a collection of handcrafted features derived based on first
and second-order statistics of local intensity patterns in images and based on other
types of filter responses resulting from processing image patches/local neighbourhoods
of pixels [251, 256, 257, 258, 25, 26]. It was originally widely used for cancer dia-
gnosis [258], and recently used in diagnosis/prediction of CVDs [25, 26, 21], leading
to promising results. Similar to clinical indices, corresponding segmentation masks are
generally required to calculate radiomic features.

Due to a large amount of data in the raw cardiac image cycle, early researchers
tend to not directly use the raw image for CVD prediction/diagnosis. Instead, they
proposed to extract several biomarkers (e.g. radiomic features and clinical indices)
from the raw images or corresponding segmentation at ED and ES frames, and then fed
them to classification/regression approaches. With the advent of DL, researchers have
started to explore deep neural networks for CVD prediction/diagnosis, using automatic
feature extraction (by a CNN) instead of manual-designed feature extraction [259, 260,
261, 262]. Lu et al. [261] proposed a deep regression network to estimate clinical
measurements from B-Mode echocardiography images, and used it for abnormality
detection, achieving better results than using a direct classification network. Similarly,
Kusunose et al. [262] designed an end-to-end deep CNN for automated diagnosis of
myocardial ischemia using echocardiography images, achieving comparable results to
that produced by cardiologists and sonographer readers.

However, there are some limitations to end-to-end DL-based prediction/diagnosis
approaches. Firstly, end-to-end classification/regression networks generally lack inter-
pretability. Although DL-based networks can provide fast and accurate classification
results, it is difficult to interpret learnt features in a clinical sense and how they con-
tributed to the diagnosis of different CVDs, because of the nature of end-to-end DL
networks. In addition, CVD refers to a group of complex diseases that affect cardiac
structure and motion. Consequently, more than one frame in the cardiac cycle is re-
quired for accurate diagnosis. However, it would bring a huge computation burden to
incorporate all frames (each is a 3D image) of the cardiac cycle into DL networks.

A possible solution is to use DL approaches to learn explainable representations
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of the heart and utilise them for subsequent analysis and diagnosis. In this chapter,
we design an MCVAE to learn a joint latent representation of cardiac image- and
shape-based features, where the impacts of each variable in the latent vector can be
assessed by varying it and visualising the resulting reconstructions. Using the learnt
latent representation of the image (SAIR), as a biomarker for subsequent CVD predic-
tion/diagnosis, we can achieve the task of CVD prediction/diagnosis. Compared with
radiomic features and clinical indices, the extraction of SAIR does not require detailed
segmentation masks. Consequently, our proposed method does not propagate segment-
ation errors incurred to the features that are extracted/learnt (which is the problem
with clinical indices and radiomic features) and can fit more complex scenarios where
segmentation masks may not be available.

5.3 Method

The study and experiments in this chapter are designed and reported in adherence
with the guidelines in CLAIM checklist [263]. In this section, we first introduce data
preparation and the network architecture of MIVAE, then describe CVD prediction
and diagnosis with the SAIR learnt from MIVAE.

5.3.1 Mesh Preparation

In this work, all the patient-specific cardiac meshes are obtained by registering a tem-
plate mesh to the contours of each subject (the details can be found in our previous
paper [23]). To capture the critical shape information and ensure that learnt repres-
entations do not capture differences in pose (i.e. position and orientation) between
the individual shape instances, we remove all differences in pose (by spatially normal-
ising the meshes with respect to translation, rotation and scale) between the cardiac
meshes by rigidly aligning them to the original cardiac mesh. The resulting rigidly
registered patient-specific meshes present the critical shape information of each heart,
named normalised mesh. To balance the point/voxel value between cardiac meshes
and corresponding MR images, and enhance the network training, all coordinates of
vertices in the normalised mesh are divided by a radius of k mm (k = 100 in this work,
following [22]) to make sure the mesh is within a sphere centre at (0,0,0) with radius
1, which is used as the input mesh (Si) in MIVAE. Therefore, denoting the original
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Figure 5.1: Schema of MIVAE. Our MIVAE includes two channels, the mesh encoder-
decoder and image encoder-decoder respectively. Note that, the latent variable learnt in
the image channel is exactly the SAIR used for subsequent CVD diagnosis (highlighted
in orange). The cardiac MR images were reproduced by kind permission of UK Biobank
©.

mesh of a subject as Oi, the recovery process from the Si to the original patient-specific
cardiac mesh Oi is formulated as,

zi = ci × (si × k) × ri + ti, (5.1)

where ci, Ri, ti are the corresponding scale, rotation and translation parameters for
each patient-specific mesh Oi. Corresponding to Si, all the input MR image slices are
cropped, scaled (to 128 × 128) and normalised (the intensity value are normalised into
[−1, 1]).

5.3.2 Mesh-image Variational Auto-encoder (MIVAE)

To learn the joint latent embedding of cardiac image and mesh, we design a mesh-image
variational auto-encoder, MIVAE, as shown in Figure 5.1. MIVAE is an MCVAE [247],
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consisting of two channels of encoder-decoder, the mesh channel and image chan-
nel respectively. Given the input (i.e. cardiac image and mesh pairs), denoted as
x = {xmesh, ximg}, the corresponding encoder (image encoder or mesh encoder) would
encode them into l-dimensional latent vectors z. Subsequently, two corresponding de-
coders (image decoder and mesh decoder) are applied to decode the latent vectors z
to obtain the reconstructed results, denoted as x′ = {x′

mesh, x′
img}. The generative

process for the observation is formulated as follows,

z ∼ p (z) , (5.2)

xc ∼ p (xc | z, θc) , for c in {1, 2}, (5.3)

where p(z) is the prior distribution of latent vector z and p (xc | z, θc) is a likelihood
distribution for the observations conditioned on the latent variable. The likelihood
functions belong to a distribution family P parameterised by the set θ = {θmesh, θimg}.

As deriving the posterior p (z | x, θ) is not always computable analytically, vari-
ational inference is used to compute an approximate posterior. We approximate the
posterior distribution with q (z | xc, ϕc) (conditioned on single channel xc and corres-
ponding variational parameters ϕc), which belong to a distribution family Q paramet-
erised by the set of parameters ϕ = {ϕmesh, ϕimg}. Therefore, the MIVAE is trained
by maximizing the variational lower bound L (θ, ϕ, x),

L (θ, ϕ, x) = Ec [Lc − DKL (q (z | xc, ϕc) || p (z))] , (5.4)

where DKL is Kullback-Leibler (KL) divergence, used to impose a constraint enforcing
each q (z | xc, ϕc) to be as close as possible to the target posterior distribution. Here, Lc

is the expected log-likelihood of decoding each channel from the latent representation
of channel xc, generally formulated as,

Lc = Eq(z|xc,ϕc)

C∑
i=1

ln p (xi | z, θi) . (5.5)

As there is a channel for mesh encoder-decoder in MIVAE, in addition to the log-
likelihood, we further incorporate a mesh loss to ensure high-quality mesh reconstruc-
tions. The details about the loss function can be found in Section 5.3.3.

Mesh Channel Encoder-decoder comprises mesh encoder and decoder sub-
networks which encodes the input mesh into a latent vector and then decodes it back
to reconstruct the input 3D mesh. A mesh M(V, F) is constructed by vertices V and
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faces F. In this chapter, all the meshes are obtained by registering a template mesh,
sharing the same faces. Therefore, we only need to predict the vertices of each cardiac
mesh in the mesh encoder-decoder.

Both mesh encoder and mesh decoder are built using Chebyshev graph convolu-
tion [250] layers. The former is composed of four down-sampling blocks (sampling
1
16 ,1

8 ,1
4 ,1

4 points from the points in the previous layer, respectively), each comprising a
graph convolution layer, a down-sampling layer and an exponential linear unit (ELU)
activation layer. Then a flatten operation followed by an FC layer is used to map
the resulting features to an l-dimensional vector. The encoder predicts a distribution
of an l-dimensional variable, parameterised by the mean µ and standard variation σ.
Following the general MCVAE [247], the reparameterisation trick is used, and thereby
an l-dimensional latent vector z1 is sampled from the distribution.

In the decoder, similarly, an FC layer followed by a reshape operation is utilised to
recover the latent vector into a graph structure (i.e. shape like N × M , where N is
the number of points and M is the dimension of feature for each vertex). After that,
corresponding to the encoder, four up-sampling blocks (comprising an up-sampling
layer, a graph convolution layer, and an ELU activation layer) are used to up-sample
the graph structure back to the original size of the input mesh.

Image Channel Encoder-decoder is a general convolution-based encoder-decoder.
The input images are cardiac MR images in short-axis view (SAX), including a stack of
slices. Due to the large gap between slices (the image spacing for cardiac MR images in
UKBB is generally 1.8×1.8×10mm3), we use 2D convolution instead of 3D convolution
in the image encoder-decoder.

In the image encoder, five down-sampling blocks are used, each comprising a con-
volution layer, a batch-normalisation layer and an activation layer (Leaky ReLU). Sim-
ilarly, a flatten operation with an FC layer is used to turn the down-sampled features
into an l-dimensional latent vector.

Similar to mesh encoder-decoder, the reparameterisation trick is also used and an
l-dimensional vector z2 is sampled from the latent image distribution. In the image
decoder, the z2 is fed into an FC layer followed by a reshape operation, turning into
feature maps with the size of 4 × 4. Corresponding to the image encoder, five up-
sampling blocks, comprising the convolution layer, batch-normalisation layer and Leaky
ReLU activation layer, are used to recover the feature back to the original images. The
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output layer is a convolution layer, followed by a tanh() activation. Note that, both z1

and z2 are fed into the mesh decoder and image decoder, predicting the reconstructed
mesh and image of each channel.

5.3.3 Loss Functions

In most variational auto-encoder based networks, the reconstruction error (generally
negative log-likelihood) and KL divergence are directly used as the loss function. How-
ever, different from the image, the mesh represented by vertices in the MIVAE is sparse
and discontinuous in the space, where even a small difference in the coordinates may
lead to broken faces in the mesh, without the constraints of face regularisation. Hence,
in addition to the log-likelihood, we include a mesh loss as an additional regularisation
in the final loss function.

The mesh loss follows Pixel2mesh [224, 22], including two regularisation losses, the
edge loss and normal loss, and a point-to-point loss. Edge loss is a regularisation to
penalise too-long edges. Denoting p and q as the predicted and ground-truth vertices,
We use the sum of all edge lengths in the predicted mesh as the edge loss Ledge,

Ledge =
∑

p

∑
k∈N(q)

||p − k||22, (5.6)

where N(q) is the neighbour vertices of q.
Normal loss Lnormal is computed using the point-wise surface normal vectors, which

helps preserve mesh topology and retain fine structural details, and is formulated as,

Lnormal =
∑

p

∑
q=argminq(||p−q||22)

|| < p − k, nq > ||22, (5.7)

where < ·, · > is the inner product of two vectors, k belongs to the neighbour point
of p (k ∈ N(p)) , and nq is the surface normal of ground-truth. In the predicted and
target meshes, the vectors (edges) from each vertex to its neighbour vertices should be
perpendicular to its normal. If the predicted vertices of meshes are exactly the same
as the target mesh, the normal loss becomes zero. Therefore, this loss is to guarantee
the normal vectors of the predicted mesh are as close as possible to the normal vectors
of the target mesh.

To improve the performance of mesh reconstruction, we further apply an L1 loss
between the coordinates of the predicted mesh and ground-truth mesh, in addition to
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the negative log-likelihood loss. Then, the complete mesh loss Lmesh is as follows,

Lmesh = Ledge + Lnorm + λ0 × L1, (5.8)

where λ0 is a hyper-parameter that needs to be tuned empirically.
Therefore, the final loss function Ltotal to train MIVAE is computed as follows,

Ltotal = λ1LKL + λ2LNLL + λ3Lmesh, (5.9)

where the LKL, LNLL are the KL divergence and negative log-likelihood of reconstruc-
ted images/meshes (for both channels), as mentioned in Eqn. 5.4 and Eqn. 5.5. λ1, λ2

and λ3 are hyper-parameters that weigh the relative influence of each loss term, which
are tuned empirically.

With MIVAE, we can learn the latent representations of both cardiac images and
shapes. One important benefit of MCVAE is that, it enables training and inference with
missing channels of information, allowing for the missing information to be imputed
during inference. In most realistic applications, the cardiac mesh may not always
be available. In such a scenario, the MIVAE can still extract latent representations
for cardiac MR images. As the representation SAIR is sampled from a joint latent
distribution of cardiac image and mesh, it captures sufficient shape-aware information
conditioned on the input image and can be used as a biomarker for downstream analyses
such as disease prediction/diagnosis. Moreover, due to the nature of MCVAE, MIVAE
can provide a mapping from image to mesh, or from mesh to image, in addition to the
encoder-decoder of image/mesh. Therefore, it further offers a novel approach for fast
and accurate mesh reconstruction from images.

5.3.4 CVD Prediction/diagnosis

Most CVDs affect both cardiac structure and motion, and thereby it is not sufficient to
use a single volume in the cardiac cycle for CVD prediction/diagnosis. With MIVAE,
we can extract the SAIR features for all the cardiac images from the whole cardiac cycle.
Considering the fact that most previous CVD features/biomarkers (e.g. clinical indices)
are extracted from cardiac images at ED and ES, in this work, we also compute SAIR
at both ED and ES frames of the cardiac cycle for subsequent analysis. To demonstrate
the efficiency of SAIR, we compare it to traditional CVD features like clinical indices
and radiomic features.
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Using the learnt SAIR as predictors, we can achieve CVD prediction/diagnosis with
any available classifiers. In this work, we use a traditional machine learning approach,
SVM, as the classifier. Limited by available datasets, we evaluate the prediction per-
formance of SAIR in UKBB and diagnosis performance in ACDC and M&M. Note that,
MIVAE are only trained on UKBB. The SAIR features extracted using the trained
model are used for CVD prediction/diagnosis using a test set from UKBB and external
test sets from ACDC and M&M without any re-training/fine-tuning on the external
data. In all three datasets, the samples are limited, and thereby we use 10-fold cross-
validation to validate the performance of classification. In addition, the SAIR feature
and radiomic features are both high dimensional (over 500) feature vectors, which are
easy to over-fit on limited samples. Therefore, following [25, 21], we use sequential for-
ward feature selection to identify the most relevant ones for CVD prediction/diagnosis
in each feature composition.

5.4 Experiments

5.4.1 Data and Implementation

Our MIVAE is trained using cardiac SAX images from UKBB. To train the MIVAE,
1,176 image-mesh pairs at ED/ES time points of the cardiac cycle from the UKBB are
used, each with the corresponding SAX image and 3D bi-ventricle mesh. We split the
dataset into training and testing sets, with 1,052 and 124 samples respectively. The
input meshes are obtained following our previous paper [23], with the preprocessing
steps described in 5.3.1. There are 96,749 coordinates in each mesh, comprising the
left ventricle and right ventricle. All input MR images are cropped, resized and padded
into 128 × 128 × 15, and then their intensities are normalised into [−1, 1].

For CVD prediction, we choose 442 subjects from UKBB, of which 221 got acute
myocardial infarction (AMI) within 10 years after cardiac MR scanning while the re-
maining 221 did not (until December 15, 2022). The segmentation masks for all cardiac
MR images were obtained automatically using the segmentation method in [23]. The
metadata of each subject is a 24-dimensional vector, including four types, biological
factors (e.g. age, sex), lifestyle (e.g. ethnicity and smoking status), diagnoses (e.g.
diabetes) and treatments (details can be found in [264, 265]). Following previous bio-
markers (e.g. clinical indices), we extract SAIR features (a 512-dimensional feature
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vector) at ED and ES for each subject. The performance of SAIR is compared with
traditional biomarkers and metadata.

To further demonstrate the robustness and generalisation of our MIVAE in CVD
diagnosis, another two datasets ACDC and M&M are also used for inference. In these
two datasets, cardiac meshes are no longer available, but we can still use the images
from them to validate the performance of CVD diagnosis. Different from UKBB, in
these two datasets, patients are grouped into more than two disease classes. Hence,
multi-class classification is applied in these two datasets. In ACDC, five classes, nor-
mal subjects (NOR), myocardial infarction (MINF), dilated cardiomyopathy (DCM),
hypertrophic cardiomyopathy (HCM), and abnormal right ventricle (ARV), are avail-
able, each containing 20 samples. Similarly, M&M dataset also includes five classes,
DCM, HCM, NOR, ARV, and hypertensive heart disease (HHD), containing 54, 49,
38, 8, and 1 samples, respectively. To reduce the domain gap between different data-
sets, all the MR images in ACDC and M&M are pre-processed by re-sampling (to
1.8 × 1.8 × 10mm3), histogram-matching (to the average histogram of 100 random sub-
jects in UKBB), cropping, scaling, padding and intensity normalisation into a size of
128 × 128 × 15.

We use the Adam optimiser, with a learning rate of 1e−3 and a batch size of 7 to
train MIVAE, in all experiments. The hyper-parameters λ0, λ1, λ2 and λ3 for the total
structural loss are 100, 1, 1, 1 and 15 respectively, which are determined empirically
and the same in all experiments. In MIVAE, the input meshes and images are both
encoded into a 512-dimensional latent vector (l = 512, determined empirically). The
network is implemented in Python using the PyTorch library, and is trained using Tesla
M60 GPUs. All networks are trained until convergence on the training set.

5.4.2 Comparison and Evaluation Metrics

In the following sections, we first demonstrate that our learnt SAIR is able to cap-
ture discriminative information useful for CVD prediction/diagnosis from the given
images/meshes, and then apply it in CVD prediction and diagnosis tasks. To demon-
strate the performance of mesh reconstruction, we compare our proposed MIVAE with
a previous mesh reconstruction approach, MCSI-Net [23].

For the CVD prediction and diagnosis, we compare the SAIR features learnt by
MIVAE with several traditional biomarkers/features, including metadata, clinical in-
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dices, and radiomic features (extracted by the Python package Pyradiomics). For ra-
diomic features, we extract seven types of features (the shape-based (3D), shape-based
(2D), first-order statistics, gray level co-occurence matrix, gray level run length matrix,
gray level size zone matrix, neighbouring gray tone difference matrix, gray level depend-
ence matrix) at ED and ES frames of the cardiac cycle, a total of 2104-dimensional
features. For the comparison in UKBB, we also compare SAIR with Qrisk3 [266, 267],
a popular risk to estimate the 10-year risk of having a cardiovascular event for a subject
based on his/her metadata.

To evaluate the performance of mesh/image reconstruction, we use point-to-point
error emesh (following [22]) and mean absolute error eimage between the reconstructed
data and the original inputs. In addition, to further evaluate the anatomical structure
accuracy of the reconstructed meshes, we also compute the Dice score (for the left
ventricle (LV), left ventricle myocardium (LVM), right ventricle (RV) and the average
of them) and Hausdorff distance between the segmentation masks delineated from pre-
dicted meshes and ground-truth meshes. For the prediction/diagnosis performance, we
calculate four classification evaluation metrics, accuracy, precision, F1 score and recall
to obtain a thorough evaluation. In UKBB, the area under the curve (AUC) of the
receiver operating characteristic (ROC) is also computed.

5.4.3 Evaluation of Image/mesh Reconstruction

Before applying MIVAE to learn the joint latent representation of cardiac images and
meshes, it is important to ensure that the latent embedding can present sufficient in-
formation from the input data, which can be reflected by the reconstruction quality.
The quantitative results of reconstruction are shown in Table. 5.1. In MIVAE, each
input channel has two outputs: the reconstructed image and the reconstructed mesh.
Therefore, in the inference, we can use MR images/meshes alone as input, and recon-
struct the corresponding cardiac images and meshes. We find that using either image
or mesh alone as input can reconstruct high-quality meshes. The reconstructed meshes
using either meshes or images as input have low point-to-point error to target meshes
(same as input meshes); even the meshes reconstructed from the image input are with
∼3.6 mm point-to-point error to target meshes. Applying the reconstructed meshes
for cardiac MR image segmentation, the results of MIVAE when given images as input
are comparable to the MCSI-Net, with no significant difference in the LV Dice score.
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Considering the nature of the variational auto-encoder and no ground-truth contour
information is needed, SAIR captures sufficient information and is deemed suitable for
subsequent CVD diagnosis.

In most realistic applications, there are only the original cardiac images, without
the corresponding meshes. Our proposed MIVAE can reconstruct the corresponding
accurate meshes from given images for multiple subsequent analysis tasks (e.g. seg-
mentation). Meanwhile, the obtained latent embedding (SAIR) from MIVAE can be
further applied for CVD prediction and diagnosis.

Table 5.1: Reconstruction error of mesh and image. The first and second rows are
the results using only mesh or image as input, respectively. Point-to-point error emesh

is used to evaluate the distance between reconstructed meshes and the ground-truth
mesh. We segment the original image with predicted mesh, and plot the segmentation
performance with Dice score and Hausdorff distance (HD). For image reconstruction
error, we simply use the mean absolute error eimage. In the results of MIVAE using the
image as the sole input, the bold highlights the results of MIVAE making no significant
difference to MCSI-Net (P-value larger than 0.05).

Methods emesh (mm) Average Dice LV Dice LVM Dice RV Dice HD (mm) eimage

MIVAE(mesh as input) 0.67 ± 0.09 97.76 ± 0.37 98.01 ± 0.52 97.25 ± 0.50 98.01 ± 0.46 6.67 ± 3.28 0.172 ± 0.247
MIVAE(image as input) 3.56 ± 1.02 88.31 ± 3.07 90.87 ± 2.79 85.81 ± 3.70 88.24 ± 3.58 17.65 ± 9.65 0.155 ± 0.227
MCSI-Net [23](image as input) 2.77 ± 1.23 90.28 ± 5.51 91.63 ± 5.75 88.76 ± 5.96 90.48 ± 5.19 14.35 ± 10.06 -

5.4.4 Segmentation with Predicted Meshes

To further demonstrate the accuracy of our MIVAE in mesh reconstruction, we ri-
gidly transform the predicted meshes from both channels in MIVAE back to the space
of original meshes with corresponding transformation parameters, then overlay the
mesh back into the original MR images to obtain the segmentation masks. We com-
pute the Dice score and Hausdorff distance between the segmentation masks from
predicted meshes and segmentation from ground-truth meshes, as shown in Figure 5.2
and Table. 5.1. It can be observed that, the meshes reconstructed of MIVAE using
meshes alone as input are with a high Dice score (97.76%) to the ground-truth, since
the embedding is learnt from the input mesh. For the results of MIVAE using image
alone as input, while it is marginally lower than MCSI-Net [23] on the average Dice
score (88.31% vs 90.28%), it makes no significant difference to MCSI-Net on the LV
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Figure 5.2: Segmentation results with the predicted cardiac meshes. Two subjects are
presented here, where the left is the result of the mesh channel and the right is the result
of the image channel. The cardiac MR images were reproduced by kind permission of
UK Biobank ©.

Dice score. Note that, MCSI-Net requires both SAX images and long-axis view images
as input, while MIVAE only uses SAX images (less in formation in input) and achieves
comparable performance to MCSI-Net.

5.4.5 AMI Prediction on UKBB

With the learnt SAIR from MIVAE, we are able to implement CVD prediction/diagnosis
by feeding it into any available classifiers (here we use the SVM in scikit-learn package,
with radial basis function kernel and C = 1.0). We first demonstrate its performance
in the prediction of AMI, using cardiac MR images from UKBB. Note that, here we
only use the SAIR at ED and ES frames of the cardiac cycle for each subject, as most
traditional biomarkers (e.g. clinical indices) only use these two frames. We compare
the performance of SAIR with traditional biomarkers used in CVD prediction, includ-
ing metadata, clinical indices and radiomic features. In addition, we also compare our
SAIR with Qrisk3 score (using the Qrisk3 score as a feature for classification), and ex-
plore the result of combining all features (including metadata, clinical indices, radiomic
features, Qrisk3 and SAIR).

Note that, we only have 442 samples for the training and testing, which is a small
number for a SAIR feature (1024-dimension) or radiomic features (2104-dimension).
Considering the curse of dimensionality, feature selection is needed. Considering the
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Table 5.2: Quantitative comparison of AMI prediction results on UKBB between SAIR
and the baseline features using Accuracy, Precision, F1 and Recall. For each feature
composition, 8 features are selected from the original feature using Mlxtend package
with 10-fold cross-validation.

Methods Accuracy(%) Precision(%) F1(%) Recall(%) AUC
Metadata 65.79 ± 3.40 66.89 ± 3.66 65.17 ± 3.15 65.75 ± 3.17 66.93 ± 3.72
Qrisk3 65.41 ± 2.81 65.91 ± 2.91 65.26 ± 2.78 65.63 ± 2.80 69.86 ± 3.59
Qrisk3+Metadata 67.67 ± 2.45 67.84 ± 2.29 67.62 ± 2.44 67.81 ± 2.29 71.69 ± 2.89
Clinical Indices 57.52 ± 2.26 57.79 ± 1.98 57.35 ± 2.26 57.70 ± 2.01 60.55 ± 3.84
Radiomic features 79.47 ± 3.76 79.73 ± 3.63 79.38 ± 3.77 79.52 ± 3.74 82.49 ± 3.17
SAIR 81.43 ± 2.93 81.47 ± 2.93 81.38 ± 2.91 81.46 ± 2.87 84.52 ± 2.88
All features (w/o SAIR) 82.18 ± 2.73 82.54 ± 2.77 82.09 ± 2.72 82.23 ± 2.76 84.91 ± 3.79
All features 83.38 ± 2.53 83.62 ± 2.64 83.32 ± 2.49 83.42 ± 2.50 85.10 ± 3.14

curse of dimension, we apply a sequential forward feature selection method (follow-
ing [25], using the Mlxtend package with 10-fold cross-validation) to select 8 features
from the given features, as the input to SVM. The classification results after feature
selection are shown in Table. 5.2, with the corresponding receiver operating character-
istic (ROC) curve in Figure 5.3. We observe that, the results of metadata outperform
the results of clinical indices (65.79% vs 57.52%). Qrisk score performs similarly to the
metadata, as it is derived from the metadata. It is interesting to see that the combina-
tion of metadata and Qrisk3 obtain a higher accuracy (67.67%) than when either one is
used independently. Radiomic features outperform those traditional biomarkers, with
79.47% accuracy. However, our SAIR leads to a significantly better performance than
radiomic features (81.43% vs 79.47%). Combining all the traditional features with
SAIR (All features) results in better AMI prediction accuracy (82.18% vs 83.38%),
which demonstrates our SAIR can provide complementary information for traditional
biomarkers.

In addition, an accuracy curve along the SAIR feature dimension is also provided in
Figure 5.4. In the beginning, with more features, the classification accuracy increases.
However, after 80 dimensions (where the accuracy is 87.59%), the accuracy tends to
drop. This demonstrates the importance of feature selection. To understand how
the SAIR features contribute to the CVD diagnosis and the ventricle shape changes
these features encode, we adopt a method for explainability using latent traversals
proposed recently in [268]. Each of the selected latent SAIR features is varied about
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Figure 5.3: Classification ROC curve of SAIR and baseline features on AMI prediction.

Figure 5.4: Classification accuracy (mean with standard variation) with the increase
of SAIR feature dimension, in UKBB. When selecting 80 features from the 1024-
dimensional SAIR, it achieves the highest accuracy (87.59%).
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Figure 5.5: Visualisation of feature dimension. Those feature dimensions are visualised
in cardiac meshes, by interpolating the original SAIR vector with specific values (from
-5 times standard variation (std) to 5 times std) in the corresponding position.
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the estimated mean (referred to as latent traversals) to reconstruct new ventricle shapes,
and the observed shape changes are visualised in Figure 5.5. We find that most of the
critical features for AMI prediction are located on the left ventricle wall, especially on
the endocardium (see features 0, 1, 2, 6&7). Part of the features also focus on the
connection between the ventricle and artery (the pulmonary valve and aortic valve, see
features 2, 3, 4 &7), and both walls of the left and right ventricles (see feature 5).

5.4.6 CVD Diagnosis on ACDC and M&M

To demonstrate the generalisation of our MIVAE and its applications in realistic scen-
arios, we further apply the MIVAE trained on UKBB data, to unseen images from
two publicly available, external cardiac MR datasets, ACDC and M&M. Note that,
we directly test our MIVAE trained from UKBB on ACDC and M&M, without any
fine-tuning. Similarly, we also select 8 features from the original feature. These two
datasets have multiple classes. In ACDC each class contains 20 samples, and in M&M
the number of samples for each class is not the same. There is a class in M&M con-
taining only 1 sample, and thereby we simply remove it from the original 150 samples.
The metadata in these two datasets both contains two features (weight and height in
ACDC, sex and age in M&M).

Table 5.3: Quantitative comparison on ACDC between SAIR and the baseline features
using Accuracy, Precision, F1 and Recall. For each biomarker (except metadata), 8
features are selected from the original feature using the Mlxtend package with 10-fold
cross-validation.

Methods Accuracy(%) Precision(%) F1(%) Recall(%)
Metadata 16.67 ± 5.16 20.10 ± 10.86 15.66 ± 5.41 20.30 ± 7.61
Clinical Indices 92.67 ± 3.59 93.09 ± 3.52 92.07 ± 4.03 92.50 ± 4.00
Radiomic features 61.67 ± 10.57 65.85 ± 9.27 61.19 ± 9.93 65.74 ± 7.91
SAIR 66.00 ± 7.12 68.90 ± 8.02 65.66 ± 6.95 68.98 ± 7.66
All features (w/o SAIR) 93.33 ± 3.65 93.27 ± 3.51 93.37 ± 3.32 94.41 ± 2.88
All features 94.33 ± 2.60 94.72 ± 2.96 94.55 ± 2.97 95.41 ± 2.88

The results on ACDC are shown in Table. 5.3. As there are only two features,
height and weight of subjects, available in metadata, the classification accuracy of
metadata in ACDC is quite low (16.67%). In contrast, the traditional clinical indices
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obtain a high accuracy (92.67%). Our SAIR outperforms radiomic features, with a
4% increase (66.00% vs 61.67%). Comparing the results of All features with/without
SAIR(94.33% vs 93.33%), it can be observed that incorporating SAIR can further
improve the accuracy of CVD diagnosis.

In Table. 5.4, we present the diagnosis results on M&M. Similar to the findings
in ACDC, the metadata leads to the lowest classification performance, with 43.56%
accuracy, due to the limited information provided by age and sex. Radiomic features
achieve the best classification results (with 87.78% accuracy). While clinical indices
outperform all other biomarkers in ACDC, in M&M, the accuracy of clinical indices is
62.44%, lower than our SAIR (71.78%). In addition, we find the incorporation of our
SAIR leads to a better classification performance than without (88.67% vs 87.78%),
which demonstrates our SAIR can provide further information apart from the existing
traditional biomarkers for CVD prediction/diagnosis.

Table 5.4: Quantitative comparison after feature selection on M&M between features
learnt by MIVAE and the baseline features using the Accuracy, Precision, F1 and
Recall. For each feature (except metadata), 8 features are selected from the original
feature using the Mlxtend package with 10-fold cross-validation.

Methods Accuracy(%) Precision(%) F1(%) Recall(%)
Metadata 46.22 ± 7.08 28.62 ± 8.58 30.56 ± 7.17 35.24 ± 5.77
Clinical Indices 62.44 ± 5.48 48.77 ± 7.41 48.30 ± 7.65 50.65 ± 7.47
Radiomic features 87.78 ± 3.18 67.68 ± 8.21 69.50 ± 7.67 71.82 ± 7.10
SAIR 71.78 ± 4.94 56.18 ± 6.39 56.38 ± 5.94 58.33 ± 5.19
All features (w/o SAIR) 87.78 ± 3.18 67.68 ± 8.21 69.50 ± 7.67 71.82 ± 7.10
All features 88.67 ± 4.03 68.43 ± 8.20 69.96 ± 7.82 72.13 ± 7.31

We observe that there is a decrease in classification/predictive performance when
applying the learnt MIVAE directly to unseen images from ACDC and M&M. This is
attributed to the domain shift between images from UKBB and the images available
in ACDC and M&M, leading to reduced predictive performance on ACDC and M&M.
Nevertheless, SAIR features extracted by our model outperform specific biomarkers
(for example, outperform radiomic features in ACDC, and clinical indices in M&M)
and serve as an effective supplement for existing biomarkers.
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5.4.7 Discussion

Due to the nature of MCVAE, our proposed MIVAE can be applied to cross-domain
reconstruction, reconstructing meshes from corresponding images, or reconstructing
images from corresponding meshes. In realistic scenarios, the raw images are gener-
ally available, thus our MIVAE can be used as a novel image-to-mesh reconstruction
approach. We have demonstrated that it can achieve comparable segmentation per-
formance to the previous mesh reconstruction approach using less input information
(only SAX images), but there is a limitation for MIVAE that, the predicted mesh of
MIVAE is not aligned to the input images, and thus an additional approach like [23]
to predict transformation parameters is required.

In CVD diagnosis, the learnt SAIR shows significantly better results than tradi-
tional biomarkers in UKBB, and comparable or better performance than traditional
features/biomarkers in unseen images from other datasets. Therefore, it can be used
as a useful augmentation for existing features. Although in non-UKBB data our SAIR
perform worse than specific biomarkers, it does not require detailed ground-truth seg-
mentation as radiomic features/clinical indices, which means our SAIR has more general
and robust applications.

Similar to other DL-based approaches, a main limitation of SAIR is the general-
isation between different datasets. While we can directly apply the trained MIVAE
to extract SAIR of images from other sources, its performance would be weakened
if the input images have significantly different appearances from images in UKBB.
Pre-processing techniques like re-sampling, and histogram matching can be applied
to alleviate this decrease, and the exploration of domain adaptation or generalisation
techniques could provide a solution to this problem. In addition to CVD diagnosis, our
learnt SAIR can be also applied to find potential sub-types of diseases using clustering
techniques.

5.5 Conclusion

In this chapter, to obtain efficient representations from the raw MR images for sub-
sequent CVD prediction and diagnosis of CVDs, we designed a novel two-channel
MCVAE, MIVAE, to learn joint latent representations of cardiac images and corres-
ponding meshes. After training, given MR images alone as input, our MIVAE can
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reconstruct high-quality bi-ventricle meshes and learn shape-aware image represent-
ations, useful for subsequent CVD prediction/diagnosis. Through experiments on
UKBB, we demonstrate that the segmentation performance using meshes predicted
by our approach is comparable to previous approaches. The learnt novel biomarker
SAIR by MIVAE captures efficient representations from raw images for CVD predic-
tion/diagnosis, leading to better performance than traditional biomarkers. Also, the
learnt SAIR features capture information that is not contained within existing bio-
markers (e.g. metadata, clinical indices), and thereby it helps supplement existing
biomarkers and improves overall predictive performance. We further demonstrate the
robustness of SAIR on non-UKBB data (ACDC and M&M) and show that it can
enhance the predictive performance of traditional predictors.
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Conclusions
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6.1 Summary and Achievements

In this chapter, we make a summary of the main achievements of this thesis which
advance the field of cardiac image analysis and the prediction/diagnosis of the corres-
ponding CVDs through the application of deep learning techniques. Furthermore, this
chapter discusses certain inherent limitations of the existing methodology and outlines
potential directions for further research to enhance the approaches proposed in this
thesis.

6.1 Summary and Achievements

The motivation of this thesis is to improve the performance of automatic CVD analysis
by promoting its critical tasks, image registration and segmentation, mesh reconstruc-
tion and CVD prediction/diagnosis. The main contributions of the thesis are outlined
below.

In Chapter 2, a detailed review of deep learning-based image registration methods
is provided. It reviews all the deep learning-based registration methods since 2013,
points out the existing drawbacks in this domain, and summarises several possible
future directions. The thoroughness of this review provides a solid basis for novice and
experienced researchers in the field of medical image registration.

In Chapter 3, we design two image registration methods to address discontinuity-
preserving registration problems in deep learning-based image registration. We first
propose a novel weakly-supervised registration network, DDIR, significantly outper-
forming the state-of-the-art, in intrapatient cardiac MR image registration, while achiev-
ing discontinuity-preserving registration. Furthermore, to eliminate the requirements
of segmentation masks in DDIR, a joint segmentation and discontinuity-preserving re-
gistration network, SDDIR, is proposed. Using only moving and fixed images as input,
SDDIR can accurately predict segmentation masks and deformation fields that preserve
discontinuities, outperforming existing methods.

In Chapter 4, we propose a novel deep learning-based mesh reconstruction network,
MR-Net, to archive rapid, precise, and robust cardiac bi-ventricle mesh reconstruc-
tion from cardiac contours, significantly outperforming previous mesh reconstruction
approaches. We demonstrated that MR-Net can reconstruct accurate and plausible
meshes even with contours missing in the input, applicable for various complex scen-
arios. Furthermore, in conjunction with an established deep learning-based segmenta-
tion approach, our MR-Net can reconstruct accurate 3D cardiac meshes directly from
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the original MR images in real time.
Finally, in Chapter 5, we build a novel multichannel VAE, named MIVAE, to learn

the joint latent distribution of cardiac MR images and meshes, enabling the extraction
of efficient and explainable biomarkers from cardiac MR images. The new biomarker
learnt, named Shape-Aware Image Representation (SAIR), exhibits significant potential
for use in CVD prediction and diagnosis. With only learnt SAIR as a feature in CVD
diagnosis, we observe highly promising prediction and diagnosis results that outper-
form those of popular traditional biomarkers. Furthermore, the learnt SAIR features
capture information that is not contained within existing biomarkers (e.g. metadata,
clinical indices), thereby helping supplement existing biomarkers and improving overall
predictive performance. In addition to learning explainable biomarkers, MIVAE can
also work as a potential mesh reconstruction approach, which can reconstruct accurate
cardiac meshes directly from the corresponding images.

6.2 Limitations and Future Research Directions

In this thesis, we investigate three principal tasks in CVD analysis: cardiac image re-
gistration/segmentation, cardiac mesh reconstruction, and CVD prediction/diagnosis.
While we have made notable strides and achieved promising outcomes in these areas,
surpassing previous approaches, certain challenges remain that require further attention
to facilitate better cardiac image analysis and CVD prediction/diagnosis.

In cardiac image registration, the discontinuity-preserving registration problem has
not been completely solved. As mentioned above, our proposed DDIR requires seg-
mentation masks for both training and inference, which may not always be applicable
due to the unavailability of such masks. SDDIR can achieve accurate segmentation and
discontinuity-preserving registration with only moving and fixed images as input, while
its performance may be suboptimal when applied to other datasets where segmentation
performance may be poor. Further research into robust discontinuity-preserving regis-
tration approaches that do not require segmentation masks is warranted to overcome
this challenge.

In 3D cardiac mesh reconstruction, unsupervised cardiac mesh reconstruction is a
promising direction worthy of exploration. Our MR-Net provides a fast, robust, and
accurate cardiac mesh reconstruction approach, while it requires ground-truth cardiac
mesh on the network training. Considering the nature of registration, it is possible
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to build an unsupervised network to reconstruct a 3D cardiac mesh from the given
contours. On the other hand, MR-Net needs additional segmentation approaches when
reconstructing meshes from the original images, which may introduce additional inter-
ference. In our recent work [23], we have achieved cardiac mesh reconstruction directly
from the original images and applied it to cardiac image segmentation. This is achieved
by using a point distribution model and two deep learning networks to predict shape
and transformation parameters, respectively. However, while it can reconstruct smooth
cardiac meshes and predict anatomical structure-preserved segmentation results, its
segmentation performance is comparable to or slightly inferior to segmentation-specific
networks. Furthermore, it requires two separate networks to predict the shape paramet-
ers and transformation parameters separately, which leads to redundant architecture
and less efficiency. Therefore, there is still a need to design a more efficient and ac-
curate network that can directly reconstruct meshes from the original images, without
requiring additional segmentation approaches.

In deep learning-based CVD diagnosis, more efficient image latent representations
and more time-relevant features should be considered. In MIVAE, we design a two-
channel VAE to learn the joint latent space of cardiac meshes and images. Considering
the objective of learning latent representation, it is interesting to try building a three-
channel VAE to learn joint latent representations of cardiac meshes, cardiac images,
and cardiac segmentation masks. As the cardiac mesh and cardiac segmentation can
be derived from each other, such an architecture may provide further promotion than
MIVAE. However, most CVD prediction/diagnosis approaches use only MR images in
the ED and ES frames, while the remaining frames in the cardiac cycle are not fully
exploited. Incorporating these additional frames in CVD image analysis can result in
more accurate prediction/diagnosis performance.

A more general challenge is domain adaptation between different datasets. This is
a common problem in current deep learning-based approaches, where a network works
very well in data similar to the training data, while its performance may significantly
decrease when applied to other unseen data. This challenge is particularly relevant to
medical image analysis, where images from different scanners and centres can exhibit
marked differences in appearance. In our experiments, the networks trained on UKBB
also suffer from domain gaps when applied to other datasets such as ACDC and M&M.
To address this issue, three directions are worth trying: (1) data augmentation. This is
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to generate a range of input appearances during the training stage, enabling the model
to be more robust to unseen data. (2) pre-processing of the test data. Preprocessing
techniques can be used to reduce the gap between the distribution of the training data
and that of the unseen data by preprocessing the unseen data into similar attributes
(e.g. spacing, light, voxel distribution) to the training data. We have found that
resampling and histogram matching can be effective when evaluating the performance
of the UKBB-trained model on ACDC and M&M datasets. (3) build domain-invariant
representations for subsequent tasks. This should be the essential way to solve the
domain adaptation problem, while it is very challenging and few works have explored
this aspect.

Another general challenge is the limitation of datasets. In the context of CVD
analysis, even medical image analysis, current research tends to rely on small-scale
datasets. For example, different from general classification problems in the computer
vision domain, there are limited positive samples in medical image prediction/diagnosis.
Publicly available data sets typically comprise a limited number of samples (for CVD,
generally ∼ 100), leading to less reliable and unconvincing results when applied to
realistic scenarios. Given that it is infeasible to substantially expand the scale of such
datasets to obtain sufficient training data in the near future, it is imperative to pursue
the development of explainable diagnosis approaches, rather than simply relying on
end-to-end classification networks.

In summary, although deep learning-based approaches have demonstrated remark-
able success across a wide range of computer vision applications, successful and precise
cardiac image analysis and prediction/diagnosis of CVDs require specific attention to
the inherent limitations of DL methods and relevant priors of cardiac imaging, such as
cardiac motion, anisotropic image spacing, and the cardiac cycle. Taking these factors
into account is both required and critical to achieving more efficient and accurate results
in the context of CVD analysis.

6.3 Code and Results Availability

The source codes of our work on discontinuity-preserving registration (DDIR) and mesh
reconstruction (MR-Net) are already publicly available on GitHub.

The data used to train, validate, and test our networks in this thesis are mainly
from UKBB, and we also test our networks on two publicly available datasets, ACDC
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and M&M.
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Appendix A

Supplementary Material for DDIR in Chapter 3
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Background Background

Background Background

Figure A.1: Visualisation of discontinuity on deformation fields. The first row and
second row are the deformation fields predicted by DDIR and DDIR(baseline). The
first column is the original deformation fields (vector arrows) overlay moving images.
The red box marks the zoom-in regions on the right columns(the second column is
deformation arrows on zoom-in images, while the third column is on the corresponding
segmentation results). The discontinuity can be found on the interface of LVM, RV
and background. The cardiac MR images were reproduced by kind permission of UK
Biobank ©.
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Figure A.2: Visual comparison of results estimated using DDIR and state-of-the-art
methods on the ACDC dataset.

Table A.1: Quantitative comparison between DDIR and state-of-the-art methods on
the ACDC dataset (the metrics are the same as on the UKBB dataset).

Methods LVBP DS (%) LVM DS (%) RV DS (%) Avg. DS (%) HD (mm) LVEDV LVMM
before Reg 69.08 ± 14.56 52.50 ± 14.68 66.00 ± 16.36 62.53 ± 11.35 9.67 ± 3.10 51.80 ± 20.88 39.28 ± 15.66
B-spline 77.15 ± 14.38 78.13 ± 7.28 82.73 ± 12.52 79.34 ± 8.79 8.51 ± 3.38 46.38 ± 22.26 40.52 ± 16.16
SyN 77.43 ± 14.04 69.82 ± 10.91 77.26 ± 14.19 73.84 ± 10.12 9.18 ± 3.19 44.53 ± 21.99 42.16 ± 16.74
Demons 76.30 ± 13.94 76.75 ± 8.45 84.12 ± 10.47 79.05 ± 9.04 8.72 ± 3.39 46.50 ± 21.53 39.56± 15.89
Voxelmorph-diff 77.78 ± 12.49 76.17 ± 7.77 84.81 ± 9.79 79.58 ± 7.34 8.74 ± 3.36 46.25 ± 21.41 40.36 ± 16.41
VM-Dice 77.56 ± 12.53 76.62 ± 7.76 85.00 ± 9.76 79.73 ± 7.25 8.84 ± 3.34 46.05 ± 21.52 40.46 ± 16.43
VM(img+seg) 76.98 ± 12.57 77.23 ± 7.36 85.23 ± 9.72 79.82 ± 7.14 8.82 ± 3.38 45.58 ± 21.62 41.01 ± 16.89
VM-Dice(img+seg) 77.38 ± 12.51 77.65 ± 6.59 84.94 ± 10.06 79.99 ± 7.20 8.66 ± 3.34 45.84 ± 21.46 40.83 ± 16.62
Voxelmorph-diff(compose) 84.13 ± 9.45 80.62 ± 10.68 83.76 ± 12.29 82.84 ± 8.48 7.82 ± 8.03 46.57 ± 21.46 43.09 ± 17.75
VM-Dice(compose) 84.27 ± 9.18 80.99 ± 9.94 84.66 ± 11.11 83.31 ± 7.86 7.66 ± 7.90 46.69 ± 21.31 42.92 ± 117.57
DDIR(baseline) 80.69 ± 11.84 78.15 ± 7.59 84.26 ± 9.91 81.03 ± 7.00 7.66 ± 3.19 47.85 ± 21.36 41.35 ± 17.20
DDIR 82.20 ± 11.20 77.04 ± 8.15 84.36 ± 12.20 81.20 ± 8.11 7.92 ± 3.24 48.23 ± 21.03 39.76 ± 16.56
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B.1 Journal Papers

B.1 Journal Papers

1. Chen X, Diaz-Pinto A, Ravikumar N, Frangi AF. Deep learning in medical image
registration[J]. Progress in Biomedical Engineering, 2021, 3(1): 012003.
2. Chen X, Ravikumar N, Xia Y, Attar R, Diaz-Pinto A, Piechnik SK, Neubauer S,
Petersen SE, Frangi AF. Shape registration with learned deformations for 3D shape
reconstruction from sparse and incomplete point clouds[J]. Medical Image Analysis,
2021, 74: 102228.
3. Xia Y*, Chen X*, Ravikumar N, Christopher K, Attar R, Aung N, Neubauer S,
Petersen SE, Frangi AF. Automatic 3D+ t Four-Chamber CMR Quantification of the
UK Biobank: integrating imaging and non-imaging data priors at scale[J]. Medical
Image Analysis, 2022: 102498 (* denotes joint-first author).
4. Chen X, Xia Y, Ravikumar N, Frangi AF. “Joint Segmentation and Discontinuity-
preserving Image Registration using Deep Learning.” under review.
5. Chen X, Xia Y, Dall’Armellina E, Ravikumar N, Frangi AF. “Joint shape/texture
representation learning for cardiovascular disease diagnosis from MRI.” under review.
6. Xia Y, Chen X, Ravikumar N, Frangi AF. “Multi-Contrast MR Image Synthesis
from Incomplete Input Data using Multi-channel Adversarial VAEs.” under review.

B.2 Conference Papers

1. Chen X, Xia Y, Ravikumar N, Frangi AF. A Deep Discontinuity-Preserving Image
Registration Network[C]//International Conference on Medical Image Computing and
Computer-Assisted Intervention. Springer, Cham, 2021: 46-55.
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Xiang Chen was born in Hunan, China, in 1994. He earned his Bachelor of Science
in Electronics and Information Engineering from Sichuan University in Chengdu in
2016 and his Master of Science in Communication and Information System from the
same university in 2019. During his postgraduate studies from 2015 to 2019, he was
part of the Computer Vision (CV) group at the Image Information Institute of Sichuan
University. During this time, he was the main contributor to several projects in the
fields of artificial intelligence and computer vision, such as the Identification of Unsound
Wheat Kernels and the Construction of Knowledge Base. In September 2019, he began
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in Biomedicine (CISTIB) at the School of Computing, University of Leeds. His research
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“End-to-end Unsupervised Deformable Image Registration with A Convolutional
Neural Network,” in Deep Learning in Medical Image Analysis and Multimodal
Learning for Clinical Decision Support, pp. 204–212, Springer, 2017.

[73] J. Lv, M. Yang, J. Zhang, and X. Wang, “Respiratory Motion Correction for
Free-breathing 3D Abdominal MRI Using CNN-based Image Registration: A
Feasibility Study,” The British Journal of Radiology, vol. 91, p. 20170788, 2018.

[74] H. Li and Y. Fan, “Non-rigid Image Registration Using Self-supervised Fully Con-
volutional Networks Without Training Data,” in IEEE International Symposium
on Biomedical Imaging, pp. 1075–1078, IEEE, 2018.

[75] G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca, “An
Unsupervised Learning Model for Deformable Medical Image Registration,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp. 9252–9260, 2018.

[76] G. Balakrishnan, A. Zhao, M. R. Sabuncu, J. Guttag, and A. V. Dalca, “Voxel-
morph: A Learning Framework for Deformable Medical Image Registration,”
IEEE Transactions on Medical Imaging, vol. 38, no. 8, pp. 1788–1800, 2019.

[77] Z. Zhu, Y. Cao, C. Qin, Y. Rao, D. Ni, and Y. Wang, “Unsupervised 3D End-
to-end Deformable Network for Brain MRI Registration,” in International Con-
ference of the IEEE Engineering in Medicine & Biology Society, pp. 1355–1359,
IEEE, 2020.

[78] Y. Fu, Y. Lei, T. Wang, K. Higgins, J. D. Bradley, W. J. Curran, T. Liu,
and X. Yang, “LungRegNet: An Unsupervised Deformable Image Registration
Method for 4D-CT Lung,” Medical Physics, vol. 47, no. 4, pp. 1763–1774, 2020.

173



REFERENCES

[79] C. Stergios, S. Mihir, V. Maria, C. Guillaume, R. Marie-Pierre, M. Stavroula, and
P. Nikos, “Linear and Deformable Image Registration with 3D Convolutional
Neural Networks,” in Image Analysis for Moving Organ, Breast, and Thoracic
Images, pp. 13–22, Springer, 2018.

[80] D. Kuang and T. Schmah, “Faim–A Convnet Method for Unsupervised 3D Med-
ical Image Registration,” in International Workshop on Machine Learning in
Medical Imaging, pp. 646–654, Springer, 2019.

[81] S. Ali and J. Rittscher, “Conv2Warp: An Unsupervised Deformable Image Regis-
tration with Continuous Convolution and Warping,” in International Workshop
on Machine Learning in Medical Imaging, pp. 489–497, Springer, 2019.

[82] X. Hu, M. Kang, W. Huang, M. R. Scott, R. Wiest, and M. Reyes, “Dual-Stream
Pyramid Registration Network,” in International Conference on Medical Image
Computing and Computer-Assisted Intervention, pp. 382–390, Springer, 2019.

[83] R. Bhalodia, S. Y. Elhabian, L. Kavan, and R. T. Whitaker, “A Cooperative
Autoencoder for Population-Based Regularization of CNN Image Registration,”
in International Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 391–400, Springer, 2019.

[84] Y. Sang and D. Ruan, “Enhanced Image Registration With a Network Paradigm
and Incorporation of a Deformation Representation Model,” in International
Symposium on Biomedical Imaging, pp. 91–94, IEEE, 2020.

[85] T. Fechter and D. Baltas, “One Shot Learning for Deformable Medical Image Re-
gistration and Periodic Motion Tracking,” IEEE Transactions on Medical Ima-
ging, vol. 39, no. 7, pp. 2506–2517, 2020.

[86] D. Gu, X. Cao, S. Ma, L. Chen, G. Liu, D. Shen, and Z. Xue, “Pair-Wise and
Group-Wise Deformation Consistency in Deep Registration Network,” in Inter-
national Conference on Medical Image Computing and Computer-Assisted Inter-
vention, pp. 171–180, Springer, 2020.

[87] B. Kim, J. Kim, J.-G. Lee, D. H. Kim, S. H. Park, and J. C. Ye, “Unsupervised
Deformable Image Registration Using Cycle-Consistent CNN,” in International

174



REFERENCES

Conference on Medical Image Computing and Computer-Assisted Intervention,
pp. 166–174, Springer, 2019.
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and J. Weese, “Integrating Viability Information into a Cardiac Model for In-
terventional Guidance,” in International Conference on Functional Imaging and
Modeling of the Heart, pp. 312–320, Springer, 2009.

[213] W. E. Lorensen and H. E. Cline, “Marching Cubes: A High Resolution 3D Sur-
face Construction Algorithm,” ACM Siggraph Computer Graphics, vol. 21, no. 4,
pp. 163–169, 1987.

[214] P. Medrano-Gracia, B. R. Cowan, D. A. Bluemke, J. P. Finn, J. A. Lima, A. Suin-
esiaputra, and A. A. Young, “Large Scale Left Ventricular Shape Atlas Using
Automated Model Fitting to Contours,” in International Conference on Func-
tional Imaging and Modeling of the Heart, pp. 433–441, Springer, 2013.

[215] C. W. Lim, Y. Su, S. Y. Yeo, G. M. Ng, V. T. Nguyen, L. Zhong, R. San Tan, K. K.
Poh, and P. Chai, “Automatic 4D Reconstruction of Patient-specific Cardiac
Mesh with 1-to-1 Vertex Correspondence from Segmented Contours Lines,” PloS
one, vol. 9, no. 4, pp. e93747:1–e93747:14, 2014.

[216] M. Zou, M. Holloway, N. Carr, and T. Ju, “Topology-constrained Surface Recon-
struction from Cross-sections,” ACM Transactions on Graphics, vol. 34, no. 4,
pp. 1–10, 2015.

[217] B. Villard, V. Grau, and E. Zacur, “Surface Mesh Reconstruction from Cardiac
MRI Contours,” Journal of Imaging, vol. 4, no. 1, pp. 16–36, 2018.

190



REFERENCES

[218] H. Xu, E. Zacur, J. E. Schneider, and V. Grau, “Ventricle Surface Reconstruction
from Cardiac MR Slices Using Deep Learning,” in International Conference on
Functional Imaging and Modeling of the Heart, pp. 342–351, Springer, 2019.
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